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Preface

This book on Classical micro- and macrodynamics includes revised versions of
papers which were written between 1983 and 2000, some jointly with co-authors,
and it supplements them with recent work on the issues which are raised and treated
in them. It attempts to demonstrate to the reader that themes of Classical economics,
in particular in the tradition of Smith, Ricardo and Marx, can be synthesized into a
coherent whole, from the perspective of formal model building.

This is accomplished by means of mathematical techniques which, on the one
hand, provide a consistent accounting framework (labor values and prices of pro-
duction) as point of reference for Classical micro- and macro-dynamics and which,
on the other hand, attempt to apply these accounting schemes – or suitable exten-
sions of them – by showing their usefulness as tools of analysis of the implications
of technological change (labor values) and as potential tools for understanding the
dynamics of market prices and of income distribution around their centers of gravity
(production prices and the wage-profit curve).

It is, however, one finding of this book that the imposition of a uniform profit
rate should give way sooner or later to the consideration of significant (more or less
stable) profit rate differentials, to make production price schemes applicable to real
world phenomena, as this is done in Flaschel et al. (2008) by way of a critical ap-
praisal of the relevance of Han and Schefold’s (2006) recent empirical application of
Sraffian capital theory. We here act on suggestions made by Farjoun and Machover
(1983) 25 years ago that the imposition of a uniform rate of profit on price formation
for all sectors of a given economy is far too restrictive to be of empirical relevance.
This should be obvious on the ultra-micro level of actual physical input–output data,
but it is also inadequate for highly aggregated input–output data as we shall show in
Chap. 8.

The first set of the above two tasks is solved through the application of the so-
called Perron–Frobenius theory of eigenvectors and eigenvalues of non-negative
matrices and will supply us with a Classical System of National Accounts (SNA),
based on labor values, that helps to classify what is going on behind the surface of
competition in real terms, comparable to the SNA established by Richard Stone and
his research group (see the United Nations’ (1968) System of National Accounts).
Such an SNA provides measures of real output, labor productivity, real growth of
both of them and more, constructed both in the Classical theory and in Stone’s
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system as instruments to describe real tendencies behind the nominal aggregates.
On the basis of this understanding, Classical labor values are not competing in the
first instance with production prices about being the better theory of market prices,
but are indeed providing a framework for National Accounting that should be com-
pared with the current (the UN’s) System of National Accounts with respect to their
weak points and their strong analytical implications.

Considering the current SNA (not Stone’s original version) one may hold the
view that its various measures do not construct something “real” behind the “nomi-
nal”, for example when real value added is calculated on an industry level in terms
of prices of a more or less distant past. Likewise, one could claim that the con-
struction of labor values is nothing that can be considered as “real”. But what is
the meaning of “real” here? In our view this can only be substantiated by showing
mathematical propositions that demonstrate important implications of the measures
proposed by the employed System of National Accounts, be it Classical or Stone’s,
for the understanding of the capitalist mode of production and its process of creative
destruction at all levels of society.

This is the setup in which the Classical Theory of Value and Competition has to
be confronted with the achievements of Stone’s SNA. We shall show in the first
part this book that there is no conflict between the two approaches to National
Accounting, but in fact some complementarity, with labor values originating from
the input–output part of Stone’s accounting system and this even at the highest levels
of generality that is present in Stone’s input–output methodology.

Labor values are built on the principle that only labor is productive. Keynes
(1936, p. 213/4), not at all a proponent of the labor theory of value, is indeed ex-
pressing a somewhat similar view, when he writes:

It is preferable to regard labor, including, of course, the personal services of the entrepreneur
and his assistant, as the sole factor of production, operating in a given environment of tech-
nique, natural resources, capital equipment and effective demand. This partly explains why
we have been able to take the unit of labor as the sole physical unit which we require in our
economic system, apart from the units of money and of time.

Our view on the role of labor values for economic analysis is a pragmatic one. Labor
Values should be well defined for general models of production (see Chap. 5 for an
example) and they should first of all be applied to generally understandable scien-
tific topics like the implications of technological change in the capitalist mode of
production (see Chap. 3). There they can be used at the theoretical level for example
to show that capital-using labor-saving technical change systematically lowers such
labor values, and at the empirical level to measure whether this actually is the case.

Approaching labor values from this pragmatic perspective indicates that there is
not really a “transformation problem” to be solved (as in the example of Marx’s
(1977) Capital Vol. III), since the role of labor values is not primarily one of
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explaining the movements of prices.1 Labor values – when based on Richard Stone’s
SNA, as done in this book – are nothing counterfactual, but can be calculated and
used as measures of the total labor costs or of labor productivity characterizing
the various commodities produced in the economy. Such a pragmatic, application-
oriented approach to the LTV does not exclude the view however, that labor values,
viewed as representation of abstract labor, can be used as in Marx’s (1977) Capital,
Vol. I, also from a philosophical perspective, as a concept with which one can inter-
pret and analyze the socio-economic relationships (of classes) of human beings in a
certain society at a certain time.

Prices of production, our second accounting measure (besides labor values),
based on the assumption of a uniform rate of profit (and of wages) between in-
dustries and a given numéraire commodity, can also be derived from Stone’s
input–output methodology and thus be determined empirically and compared with
the profit rate differentials that actually exist in the economy. At the theoretical level
they can be used as long period prices for modeling capitalist competition and in-
duced directions of technological change among other things. They are also defined
by an application of the Perron–Frobenius theory, with the uniform rate of profit
given through a simple transformation of the dominant eigenvalue that this theory
investigates.

While labor values are characteristics of the sphere of production and devoted to
an understanding of what is going on there, prices of production apply to the sphere
of circulation and the distribution of net national product. Labor values may be
useful in understanding the conflict between capital and labor in the transformation
of commodity inputs into commodity outputs, while production prices may be of
use for the understanding of capital flows between the sectors of the economy, of
investment decisions of firms, and for the comparison of the newest with the average
and the oldest production techniques and – at the macro-level – for the study of the
conflict about income distribution between capital and labor.

With these two instruments, labor values and production prices (appropriately
generalized), we thus have concepts at hand that in specific ways allow the anal-
ysis of the production and the distribution of commodities in capitalist economies
from supply-side and long-period perspectives. Keynesian effective demand prob-
lems concerning the short-run evolution of the economy and the business cycle
need to be integrated into such a supply-side framework, a task that is not really
approached in this book. It is however an implication of the book that prices of pro-
duction may be considered as an unnecessary intermediate step in this reflection of
the relationship between production-based labor values and average market prices,
in particular when the latter are measured in wage-units (as the “real” magnitudes
underlying Keynes’ (1936) theory of the business cycle).

Authors working in the Neoricardian tradition have indeed produced little evi-
dence that prices of production are point attractors of market prices and that uniform

1 Though it may be an empirical outcome that total labor costs are a fairly significant component
in actual price formation.
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profitability is a tendency in capitalism in its earlier or later phases. We will see in
part II of the book that the latter may be very questionable (if stock-flow relation-
ships are taken properly into account). Moreover, as part III of the book will show,
the theoretical stability of the Classical long-period prices is far from being well
proven. We consequently conclude here – until the opposite is clearly shown – that
prices of production may represent an unnecessary detour in the study of the results
of the capitalist circulation process and that the direct link between labor values
and actual average market prices may be the better choice for theoretical as well
as empirical investigations (see Chap. 3 in particular) than the addition of prices or
production to this link, since the latter may be irrelevant for the actual choice of
technique under capitalism.

The second set of tasks described at the beginning concerns dynamics, both
on the micro- as well as on the macro-level. It may be claimed with respect
to the above that the Classical authors would have created the Perron–Frobenius
eigenvalue theory if they, like Marx, had attempted to go extensively into the math-
ematical literature that existed at their time. Similarly, they could have established
the Lotka-Volterra mathematics underlying the investigation of population dynam-
ics if they – in particular Marx – would have attempted to formalize the Classical
ideas on the dynamics of market prices and capital flows and – on the macro-level –
Marx’s general law of capitalist accumulation by the mathematical formulation of
these laws of motion.

In Classical ruthless competition, financial capitals are moving into the sectors
with a rate of profit higher than the average and are leaving the sectors that are char-
acterized by the opposite. But in doing so they increase the supply of commodities
in the profitable sectors and reduce it in the unprofitable ones. Prices will therefore
tend to fall in the profitable sectors and rise in the latter ones, thereby providing
a check to this type and direction of capital flows. From a predator–prey perspec-
tive, price reactions counteract profitability levels and are thus the predator in this
Classical approach to competition, capital mobility, the law of demand and supply
and their consequences.

Price-determined profitability acts positively on supply and supply acts neg-
atively on prices, which is exactly the Lotka-Volterra predator–prey mechanism,
applied to a multi-sectoral economy and thus to microeconomic price and quantity
adjustment processes. At the macro-level, in the theory of employment and income
distribution, we know of course from Goodwin’s (1967) formalization of Marx’s
general law of accumulation that the roots of his modeling of this law are indeed
given by the Lotka-Volterra predator–prey dynamics, with employment as the prey,
acting positively on the wage share, and with the wage share the predator, acting
negatively on investment and thus on future employment possibilities of the work-
force. This is again a cross-dual or cross-over type of dynamics with one positive
feedback mechanism and one negative feedback channel, when looked at from this
general perspective.

We thus have the result that, from a mathematical perspective Classical value
and price accounting are intimately related with the theory of non-negative matrices
(or more generally, matrix bundles) and the eigenvalue theory that can be based
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on them, while the Classical theory of competition between industries and between
labor and capital shows significant analogies to Lotka-Volterra types of dynamics,
and thus not only of the overshooting predator–prey type, but also with respect to
other types of interacting population dynamics.

The Classical approach to economics thus not only supplies us with two – from
the definitional point of view – clear-cut factual accounting schemes for the in-
vestigation of the tendencies that govern the capitalist mode of production and
circulation, but also provides us with micro and macro laws of motion around these
accounting schemes (when appropriately formulated). The total labor costs account-
ing schemes, in addition, remind us of the fact that only labor is productive (as the
only really indispensable factor of production) and they provide us with an analytical
instrument which allows us to detect the tendencies that characterize the capitalist
mode of production.

On this background, this book is structured as follows: In its part I, we define la-
bor values for general models of production and show that this type of definition not
only mirrors the factual cost-accounting behavior of firms, but is also – which came
as a surprise – closely related to the principles that characterize Stone’s input–output
methodology when applied to measures of total labor costs of produced commodi-
ties in general models of production.

This starting point for the investigation of the Classical concept of labor values
should make sense to all schools of economic thought and thus not only be of interest
to scientists working on the so-called Marxian transformation problem (which is an
issue only when labor values are interpreted as some sort of physical magnitude like
energy in place of considering them as a mathematical definition, the usefulness of
which must be proved by mathematical theorems and their empirical examination).
While Chaps. 1 and 5–7 are based on work published in the 1980s, Chaps. 1–4 show
that this earlier work is still relevant for the current debate on labor values and
measures of total labor costs.

Part II considers the Classical theory of competition in the form of the long-
period prices this theory starts from. It provides – in Chap. 8 – an introduction to the
results implied by Classical ruthless competition, the perfectly competitive prices
of production and the theorems this second Classical accounting scheme gives rise
to. Since these pricing procedures and the wage–profit relationship they imply have
already been investigated in numerous articles and books, we can be brief here. We
therefore concentrate in the remaining chapters of part II on two issues, namely:
on the usefulness of Sraffa’s concept of basic commodities in general models of
production and on the uselessness of his concept of a Standard commodity of a
given input–output structure, by which the theory of income distribution is in fact
not simplified, but obscured.

Part III is on Classical microdynamics and starts this topic in fact from a
Walrasian perspective. Walras (1954) has indeed – as we shall see there –
reformulated Classical cross-dual microdynamics between prices, profitability and
quantities supplied, at the level of production economies, by way of a tâtonnement
process between firms, households and the auctioneer. This dynamic process is
reformulated by means of differential equations in Chaps. 13 and 14 and shown to
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be of fairly stable nature if a further aspect of actual market dynamics is taken into
account, namely that derivative forces, showing the influence of the direction of
change of the interacting imbalances, also matter in this abstract formulation of the
forces of competition in capitalist economies.

Chapter 15 applies these considerations to the Classical von Neumann model and
the theory of production prices it implies. We there find a clear indication for the
proper working of the Lotka-Volterra predator–prey mechanism, and can also ap-
ply its features that concern the extinction, in our context, of economic processes
and marketed commodities. Chapter 16 finally adds Keynesian dual dynamics to the
Classical cross-dual ones, which with respect to quantities is of dynamic multiplier
type and with respect to prices uses iterated markup pricing procedures.

The overall outcome of part III of the book is that Classical cross-dual dynam-
ics can be successfully formalized in mathematical terms (and also be extended by
Keynesian short-run forces). However, these dynamical structures in no way depend
on the assumption that the restrictive concept of prices of production is to be used
as their center of gravity. There may instead exist many reasons that differentiate
average profit rates also in the longer run so that average market prices are to be
confronted with a long-period price accounting scheme that is more flexible than
the conventional formulation of prices of production.

In part IV we reconsider the Classical growth cycle model of Goodwin (1967)
from various perspectives, concerning its structural instability, endogenous aspi-
rations in pricing procedures, low-skilled and high-skilled labor solidarity – or
cooperations of the latter group with capital in place of labor. We also reformu-
late the Goodwin growth cycle as a limit cycle that surrounds and tames explosive
forces around the steady state caused by the conflict of labor and capital over in-
come distribution and we confront – as in Solow (1990) – this overshooting, but
stable dynamics with empirical phase plots of the Goodwin growth cycle type for
various OECD economies as well as – in a new paper, see Chap. 21 – with modern
econometric investigations (for the US economy) of the long phase cycle that is im-
plied by this cross-dual cycle generator. Finally, its relationships to a general model
of Keynes-Wicksell type are explored in Chap. 22.

Summing up the preface, we stress that labor values can be investigated in their
role to reflect what is happening in capitalist competition and the technological dy-
namics it implies by contrasting them directly with average market prices (in terms
of the wage-unit as in Keynes General Theory). Prices of production (with their
strict assumption of a uniform rate of profit) may be a useful intermediate step, at
least when reformulated in an appropriate way, yet this is currently far from being
obvious. This holds true in particular when they are formulated as in Sraffa (1960)
from a purely academic physical perspective and not as in Bródy (1970) from an
applicable Leontief approach at some intermediate level of aggregation.

If prices of production are not close to market prices, their role for analyzing
technical change may indeed be very limited. It may therefore well be the case –
as Farjoun and Machover (1983) indirectly argue – that Samuelson’s (1971) eraser
principle does in fact not apply to the usefulness of labor values, as it is repeatedly
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stated in Steedman (1977), but instead to the alternative accounting concept of prices
of production — for which no empirically relevant application may exist.

In closing, I thank Reiner Franke for supplying material for the empirical sections
of Chaps. 3 and 8. Roberto Veneziani has read part of the manuscript and contributed
many valuable suggestions. Christian Proaño has done a marvelous job in formatting
the manuscript according to the style files supplied by Springer Verlag. Finally, the
chapters of the book owe much to controversial and non-controversial discussions
with colleagues, too numerous to be mentioned in person, working in the areas
covered by this book, in particular very recent ones at two conferences on Marx’s
Capital in Bristol upon Avon and in Kingston-upon-Thames, as well as at the 10th
annual conference of the Association of Heterodox Economists in Cambridge in
2008. Of course, the usual caveats apply.

Bielefeld Peter Flaschel
July 1, 2009
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Part I
Labor Values: Theory and Measurement

This part considers the sphere of commodity production and the question which
tools can be of use to analyze its evolution in its own right, a very dynamic process
of creative destruction as Schumpeter has characterized it. We therefore are here
abstracting from the process of commodity circulation and the explanation or theory
of the price signals that drive this latter process. On this basis we assert that only
Classical labor values can be of use to analyze the dynamic processes of production
and technical change in depth.1

We share in this field the opinion of Keynes (1936, p. 213/4),2 who formulated a
pragmatic position with respect to production, when he wrote:

It is preferable to regard labor, including, of course, the personal services of the entrepreneur
and his assistant, as the sole factor of production, operating in a given environment of tech-
nique, natural resources, capital equipment and effective demand.

In contrast to Marx’s Labor Theory of Value (LTV), he however uses prices di-
vided by the wage unit, as the real unit underlying his theory of effective demand.
We will see in Chap. 3 that it may indeed be meaningful to consider labor values
and prices measured in the wage unit side by side, in particular, since the latter
are an upper estimate of labor values in general. However, labor values (total la-
bor costs) are more closely related to the evolution of the technological structure
and thus serve to measure its historical phases in a better way than Keynes’ prices
in terms of the wage-unit, where income distribution is involved to a significant
degree. Keynes’ measure of real magnitudes may be useful in demand constrained
n-sectoral economies that are using marginal cost pricing principles. This topic how-
ever concerns the sphere of commodity circulation and thus not production in its
own right. We take here the view that the traditional approach to defining labor val-
ues (appropriately generalized) is the more fruitful one, regarding changes in the
sphere of production, and it is firmly rooted in general input-output routines estab-
lished by Richard Stone, see United Nations (1968), as part of a complete System

1 This part also considers in its Chap. 3 a measure of total energy costs, but we believe that such
measures are of a partial usefulness only and are not related very much with the core relation-
ship within capitalism, i.e., the conflict between capital and labor about production conditions and
income distribution.
2 The General Theory of Employment, Interest and Money. New York: Macmillan.
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of National Accounts, as we shall see. Part I therefore provides a production-based
approach to labor values (total labor cost or – in reciprocal form: indexes of labor
productivity). This approach is in general distinct from an alternative measure of
total employment effects, the so-called employment multipliers, which can be nega-
tive in joint production economies in a meaningful way. Our concept of labor values
(total labor costs) does not allow for this, but allows instead for Classical proposi-
tions of the LTV also in quite general models of production (and for a variety of
price-theoretic approaches). It is however not directly oriented towards a solution of
the so-called “transformation problem”, an issue that we consider to be secondary in
nature in the relationship between average actual prices and average total labor cost,
the “real” behind the “nominal” as part of Stone’s Systems of National Accounts
and the categories it uses as real magnitudes.

Labor value accounting therefore primarily provides a scientific framework that
may allow to understand the results of capitalist production. This interpretation of
the role of the LTV is quite independent of whether and how labor values can be
transformed into price of production (or any other price system) such that certain
aggregate expressions remain unchanged under such a transformation. This latter
view runs into the danger that a formal scientific definition that attempts to charac-
terize produced commodities qualitatively and quantitatively in an applicable way is
reinterpreted as “object” inherent in these commodities, a substance that can trans-
ferred between the firms which constitute the considered economy.

In Chap. 1 we provide a sketch of one interpretation of the LTV, primarily con-
cerning the understanding of Marx’s rate of exploitation, as the fundamental entity
behind profit creation. It shows in addition that central ratios based on labor value
accounting may provide measures for the systematic component in their correspond-
ing price ratios. Chapter 2 gives a survey on approaches to the LTV that can be clas-
sified as single or dual systems. Its main conclusion is that a synthesis between the
new interpretation and traditional labor value measurement á la Stone can provide a
fruitful approach to an extended LTV. This gives labor values an independent role in
National Accounting and separates them methodologically from their potential use
as price indicators and their interpretation from a purely price-theoretic perspective.

Chapter 3 shows factual uses to which such labor value measurement can be put,
concerning technical change and sectoral productivity growth, in contrast to what
the United Nation is nowadays proposing as sectoral measures of labor productivity
in its System of National Accounts. The chapter also provides important proposi-
tions on the relationships between types of technical change, actual prices measured
in wage-units and labor values. It thus in particular shows that Sraffian prices of
production are not needed to understand the interrelationships between commod-
ity production and commodity exchange and are therefore secondary for a proper
understanding of the LTV.

In Chap. 4 we show by means of examples from Steedman (1977) that neither
pure joint production nor fixed capital create problems for labor value accounting
from a proper input-output perspective, since labor values are not just prices of
production at a zero rate of profit in general. Instead, labor values are related to the
full cost accounting principles of firms where it is well-known that physical data are
in general insufficient to perform such a task.
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General joint production models are considered in Chap. 5 where it is shown
that many propositions of the LTV that hold for square single-product systems can
be meaningfully generalized to these economies. This task is solved by using a
price system that is not based on Sraffian prices of production accounting which
again shows that the LTV is not dependent on the very special Sraffian approach
to the determination of long-period prices. Chapter 6 relates these issues again to
Stone’s formulation of a SNA and its consideration of input-output techniques and
the measures that can be derived from them.

Chapter 7, finally, applies these general input-output accounting procedures to a
commodity called “energy” and shows how total energy consumption and total en-
ergy costs can be calculated in joint production systems. It shows that the definition
of such magnitudes is not restricted to the case of “labor”, but is also meaningful for
other primary factors of production. The differences between “labor” and “energy”
are, however, that energy is a produced commodity (which labor is not), that only
labor is truly indispensable for social reproduction, that the commodity “labor” is
traded between interacting social groups and that there is awareness of the condi-
tions of capitalist reproduction only within this particular exchange relationship.

Summing up, this part of the book shows that definitions of labor values not based
on and related to input-output methodology and its considerations of labor produc-
tivity are of a very questionable nature. This concerns all approaches which attempt
to solve the transformation problem by an appropriate static or temporal description
of labor values that make them more or less an outcome of the sphere of commod-
ity circulation in place of commodity production. Our finding therefore is that the
traditional approach to labor values – appropriately extended to general models of
production by means of Stone’s input-output methodology – is the only approach
allowing to detect the ‘real’ evolution of capitalism behind the nominal interactions
on its surface, the sphere of commodity circulation. In principle, we believe, that this
result is compatible with the approaches suggested by Foley, Duménil and Lévy and
Shaikh, though these authors consider these issued from their own and to a certain
degree different angle.

By contrast, Steedman’s claim of the redundancy of labor value calculations (for
prices of production calculations) does not at all imply that labor values are com-
pletely redundant as this part of the book shows. In the next part we will instead
see that prices of production accounting procedures may in fact be the redundant
element, as far as the sphere of commodity circulation is concerned.
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Chapter 1
The So-Called “Transformation Problem”
Revisited

Thus, even if the transformation problem could be solved mathematically, the resulting
model would not only rest on the fallacious assumption of the uniformity of the rate of
profit, but would actually be inferior to the original unmodified model (of Capital, Vol.I,
P.F.) in respect of prices (Farjoun and Machover 1983, p. 134).

1.1 Introduction and Overview

This chapter on the “transformation problem between labor values and prices of
production”1 shows that Lipietz’s analysis of the Marxist transformation procedure
represents but a simple, though useful reinterpretation of obvious mathematical con-
sequences of a standard Sraffa model – by making appropriate use of its known
degrees of freedom. Labor values are not involved in this new interpretation of
conventional prices of production. A proposal is therefore made how the role of
labor values can be investigated further in such a framework, from the perspective
of Marx’s “Capital” and on the basis of Lipietz’s theorem and its reinterpretation of
the “value of labor power”. Our additions to Lipietz’ definitional procedures suggest
that important labor value aggregates such as the average value rate of profit and the
value rate of exploitation may be of use in analyzing the systematic consequences
of changes in the sphere of capitalist production, while the effects of the actual price
dynamics that drive these changes (not yet accounted for by total labor costs) may
be unsystematic and may therefore represent distortions of secondary importance.
The issues considered here will be further investigated in the next chapters where
also Marx’s (1954, p. 48) view that labor values are measures of labor productiv-
ity, and thus also important in their own right, is explored from the perspective of
Richard Stone’s System of National Accounts. From this perspective, labor values
concern the accounting side of an economy, constructed from the observed dynam-
ics of nominal magnitudes in order to understand in a conventional way or in a
Marxian sense what is going on behind the surface of nominal magnitudes.

1 This chapter provides an extended version of Flaschel’s (1984) comments on Lipietz (1982),
cf. also the comments on his paper by Duménil (1984) in the same Journal and Foley’s (1982)
contribution to these issues.

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 1,
c� Springer-Verlag Berlin Heidelberg 2010
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1.2 Lipietz’s Theorem

In the Journal of Economic Theory, Lipietz (1982) has presented a new version of
a “Marxist transformation theorem”. This chapter argues that Lipietz’s theorem is
contained in a conventional Sraffa model in a mathematically trivial way. This does
not imply that his idea how to reformulate Marx’s transformation problem must
be regarded as useless. Indeed, I find his idea convincing or at least worthy for
elaboration. Yet, Lipietz’s mathematical formulation obscures what in fact has been
achieved by him. Furthermore, if – as we shall see – the transformation problem
becomes a trivial exercise in definitions, one is asked to point to at least one useful
application of this exercise. Such an application will be sketched at the end of this
chapter.

Let the symbolsA; l; I; x; y D x�Ax be defined as is customary in input–output
analysis (x D Y in Lipietz (1982)), i.e., we start from a simple Sraffa input–output
system with given vectors of gross and net outputs x; y. It is assumed that the input–
output–matrix A is productive. If wages w are paid ex ante we get instead of Sraffa’s
prices of production the price equations

p D .1C r/.pAC wl/; py D lx: (1.1)

It is well known that eq. (1.1) can be uniquely solved for each given w 2 Œ0; 1� with
regard to prices p and the rate of profit r; in an economically meaningful way (cf.
also (H2)–(H2”) in Lipietz (1982) and note that his symbol p� in (H2) – and in his
following text – should be replaced by p (or v:v:) to clear up the formulae employed
by him). Solving (1.1) for w D 1 .r D 0/ defines labor values v D vAC l; vy D lx
with regard to which the transformation problem then has to be re-formulated.

In his transformation theorem, Lipietz (1982, p. 78) takes the vector y and wages
w 2 .0; 1/ as given and defines – as I interpret his formulations – a capitalist re-
distribution of value by a solution p of (1.1) with respect to these data. That such
a solution exists and is uniquely determined has already been noted to be a well–
known fact. Furthermore, Sraffa’s prices (1.1) of course fulfill

r.pAx C wlx/ D py � wlx D vy � wlx; (1.2)

i.e., profits, of course, must equal (or are a redistribution of) surplus values if w is
interpreted to represent Marx’s “value of labor power”. Finally, if the rate of surplus
value e is defined by e D .1 � w/=w, there immediately follows from (1.2)

r D
.1 � w/lx
pAx C wlx

D
1 � w

w
wlx

pAx C wlx
D e

V

C C V
; (1.3)

i.e., the third assertion of Lipietz’s theorem.
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1.3 Labor Value Ratios: The Systematic Component
in Their Price Expressions?

We conclude that Lipietz’ theorem is but a simple reinterpretation of a modified
conventional Sraffa model (see Sraffa (1960, Chap. 3)) by making appropriate use
of its degree of freedom w. This corresponds to Robinson’s (1969, pp. 333/4) pro-
posal that Marx’s rate of surplus value e should best be measured by the ratio
profits/wages, i.e., by .1 � w/=w, which also implies the above redistribution prop-
erty. Yet, what is the use to which such a reinterpretation of Sraffa’s prices – besides
redefining certain Marxian aggregates – can be put?

With regard to Marx’s aims this cannot be demonstrated by Lipietz’s final equa-
tion on p. 80, since this equation is but a formal reformulation of (1.1) in terms of
e D .1 � w/=w and v D l.I � A/�1, the conventional definition of labor values,
the independent use of which we are looking for. This equation consequently does
not leave the sphere of Sraffa’s price calculations. Lipietz’s in our view meaningful
reinterpretation of the value of labor power (in particular, if workers are allowed to
save) by means of the wage rate (the wage share) of system (1.1) can, however, be
supplemented by the value rate of profit �, the central link in Marx’s own transfor-
mation procedure in a meaningful way. This rate is to be defined as follows

� D
v.I � A/x � wlx

vAx C wlx
D

.1 � w/lx
vAx C wlx

D
e

vAx=wlx C 1
; (1.4)

e D
1 � w

w
; vy D lx (1.5)

For the relative deviation between the price rate and the value rate of profit we easily
obtain from (1.1), (1.2), and (1.4) the expressions

r � �

�
D

.v � p/Ax
pAx C wlx

D
.v � p/x
pAx C wlx

ŒD 0; if x D ˛y; ˛ > 0� (1.6)

This in our view represents the fundamental formula on the basis of which
Marx’s value theory of the price rate of profit r , i.e., its deviation from the value
rate �, and thus the transformation problem should be evaluated further – by means
of suitable theoretical as well as empirical examinations of the difference shown by
(1.6).2 Hence, Marx’s central aim can be examined further and can in particular be
subjected to test by means of the labor values or productivity indexes v as measured
by input–output analysts (see Gupta and Steedman (1971) for an example of such a
measurement), indexes which play no role in Lipietz’s rate of profit formula (1.3).
The real issue for a Marxian analysis of profits, therefore, is to test whether the
production–based rate � can provide a proxy for the uniform (or average) rate of
profit or not. Lipietz’s redefinitions in this respect only serve to pose the problem
anew.

2 The above result also holds for all average price rates of profit in place of the uniform rate of
profit we have considered so far.
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We get that the price and the value rate of profit (for any given price vector p with
py D lx) in fact differ only by unsystematic historically determined price-value de-
viations from each other which tend to neutralize themselves in the aggregate at least
to a certain degree, see Chaps. 3–5 for more details. The systematic forces of capi-
talism primarily concern the evolution and laws of motion of production, and not so
much the many interacting (opposing) forces that determine actual price dynamics.
A rising organic composition of capital vAx=wlx will therefore in general not only
lower the value rate of profit, but also the price rate of profit if not offset by a rising
rate of exploitation e; see Farjoun and Machover (1983, Chap. 7) on how such an
argument can be made more precise from a probabilistic point of view. Note here
also that their argument that actual prices and their Marxian ratios should be investi-
gated form the viewpoint of Marxian labor value categories is shared by the chapters
that follow, since all of the above does not depend on the use of a production price
system which may be a very hypothetical and restrictive (micro or meso) construct
in the globalized world we are experiencing now in the age of the internet.

Supplement: If workers do not save and their yearly consumption is given by Cw we
can define – in correspondence to the rate e – the value rate of exploitation by:

� D
1 � vcw

vcw
; cw D Cw=lx

and compare it with the price rate of exploitation e D .1�w/=w we have used in the
above calculations. Since there must hold pcw D w then, we get for their difference:

e � � D
.v � p/cw

vcwpcw
ŒD 0; if cw D ˛y; ˛ > 0�

We thus also get that the price and the value rate of exploitation (for any given price
vector p with py D lx) differ only by unsystematic, historically determined price-
value deviations from each other which may neutralize themselves in the aggregate
to a larger degree. One may therefore claim that the systematic forces behind an
increase in the price rate of profit are the forces that lower either v or cw (or both)
or that increase the labor time the worker family has to work for their consumption
bundle cw. The consideration of the value rate of exploitation therefore directs our
view to central causes of increasing exploitation which are not equally well visible
if this ratio is expressed in money terms as the actual profit share divided by the
actual wage share, as it was discussed above.

1.4 Conclusions

We have shown in this brief chapter how central aggregates of Marx’s theory of
capitalistic reproduction can be defined within a system of Sraffian production prices
and also for all actual price vectors (fulfilling py D lx for later comparison with
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labor value analogues). We have moreover shown that the systematic changes in
profit and exploitation rates should be represented by labor value expressions rather
than by price expressions, due to the chaotic nature of the interacting processes
of commodity exchange in space, time and with respect to contingencies. We thus
regard the evolution of labor value (or total labor cost) expressions as capturing
the essence and the inertial laws of motion of capitalism, while the corresponding
price expression are to a larger degree chaotic in their daily worldwide motions, an
arbitrariness which may however only be of a secondary degree as far as deviations
between the considered price and value aggregates are concerned.

Labor power is the only commodity which (in a systematic way) is not produced
by firms and where no profits accrue in the course of its production (in contrast
to slavery). Moreover labor power is indispensable for social reproduction, while
all other commodities can in one way or another be substituted through each other.
Reducing the value of labor power – through a lengthening of the workday (of fam-
ilies), a reduction in workers per hour consumption or most importantly: through
technological change – therefore is the central mechanism by which the average
rate of profit of an actual economy can be increased.

For further thoughts on such issues the reader is referred to the following chapters
and their discussion of the role of labor values for an explanation of the forces that
drive technical change in a capitalist economy. We here state already however that it
may well be that the so-called “Marxian transformation problem” can be replaced by
a System of National Accounts, calculated in Marxian labor time expressions as the
underlying “real structure” to be used for the explanation of the ways actual price-
quantity interactions are determining the accumulation and innovation dynamics of
capitalist economies.
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Chapter 2
Baseline Approaches to the Labor Theory
of Value

A scientific theory cannot confine itself to dealing with what is directly observable, to the
exclusion of abstract theoretical concepts. The attempt to expunge theoretical concepts,
such as labour-content, from economic theory, leaving only directly observable quantities,
such as prices, is a manifestation of instrumentalism, an extreme form of empiricism, which
is destructive of all science. Without the concept or labour-content, economic theory would
be condemned to scratching the surface of phenomena, and would be unable to consider,
let alone explain, certain basic tendencies of the capitalist mode of production (Farjoun and
Machover 1983, p. 97).

2.1 Introduction

The dominant price theory from the perspective of models of general equilibrium is
in terms of rigor the Arrow-Debreu General Equilibrium Theory (GET) of so-called
(neoclassical) perfect competition. The most developed framework for national ac-
counting is the System of National Accounts (SNA) of the United Nations in its
current form. Both approaches towards a classification and analysis of microeco-
nomic structures flourished in the 1960s and 1970s, but lost in importance thereafter,
in the first case, due to the internal limitations of GET in the fulfillment of Smith’s
conjecture on the working of market economies and, in the second case, due to a
dilution of the current SNA as a rigorous and coherent approach to input–output
structures within the System of National Accounts as it was originally formulated
by Richard Stone and his research group.

Moreover, the Arrow-Debreu world pays little attention to the need for a System
of National Accounts (though there have been some attempts to combine these
two approaches in the study of the “real” magnitudes usable to characterize mar-
ket economies).1 It is therefore basically a purely “nominal” approach,2 despite the
fact that it is in fact solely a theory of relative prices and thus faces the problem

1 See Fisher and Shell (1972) for a prominent example.
2 The expression “nominal” is here used in contradistinction to the concept of “real” (“quantity”-
oriented) magnitudes of national accounting systems.

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 2,
c� Springer-Verlag Berlin Heidelberg 2010
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of the choice of a numéraire, which however is not supposed to reflect something
truly “real”. It therefore seems to suggest that there is nothing “real” behind the
“nominal”, not even as a theoretical construction that can help to understand the
movement of “nominal” magnitudes. In addition to its pure “surface” orientation,
GET pursues a theory of competition that does not reflect any competition at all,
since all individuals and firms are isolated utility or profit maximizing price-takers
without any interaction with each other.

The United Nations’ System of National Accounts (SNA), now from 1993,
scheduled to be revised again in 2008 and based on Stone’s SNA, is a rigorously
developed classification system for the economic activities of a whole economy.
It considers many complexities of real life, as for example joint production, and
attempts to construct from detailed economic data, not only stock and flow ma-
trices that can characterize the evolution of economies, but also real magnitudes
like real GDP, physical input–output tables, and labor productivity measures. Quite
obviously, its constructions of real magnitudes have to be considered as theoret-
ical concepts intended to increase our understanding of what goes on in actual
economies behind their nominal categories and not as representing something “real”
in the sense that we can find it in the real world. The United Nations’ System of
National Accounts provides therefore a language (with precise qualitative and quan-
titative meanings) with which we can discuss the progress or regress in the (world)
economy.

In my investigation of the United Nations’ Systems of National Accounts I have
come to the opinion that this system is more Classical than Neoclassical in nature,
where Classical here simply means that its concepts stress more the evolution of
average magnitudes than of marginal ones obtained under the assumption of per-
fect competition. Classical theory, moreover, can be characterized as providing an
approach to indeed ruthless competition, where households and more significantly
firms interact (sometimes with brute force) such that all differential advantages are
swept away. The result are so-called prices of production which are conceived of as
the centers of gravity of market prices and which provide some sort of long-period
moving averages for the many concrete pricing actions that take place in daily eco-
nomic life, a process assumed to be working already in this way at the time of
the industrial revolution and maybe even with more ruthless sectoral inflows and
outflows of capital nowadays. The theory of ruthless Classical competition and its
theoretical gravity concept, the prices of production, is one of the building blocks
from which this chapter will start its investigations. The other building block will be
Marx’s labor theory of value which in my interpretation has the basic objective of
finding the “real” or the “essence” behind the surface of nominal magnitudes, from
a Marxian perspective,3 by way of the qualitative concept of “abstract labor” and its
quantitative expression “labor content”, measured by the average amount of labor
time that is “embodied” in the various commodities (in the sense of full-cost ac-
counting in terms of labor time spent on average in the production of commodities).

3 But based on Marxian categories.
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We stress here that we take Classical prices of production only as one point of
reference (besides actual average prices in terms of the wage unit for example), the
properties of which have to be compared with those of the labor values, including
the theoretical links that exist between these two types of theoretical accounting
systems. Our approach to labor values is however independent from this type of
comparison and in fact a purely factual one which needs as inputs the production
data (the depreciation of stocks and the flows) of the year that is under consideration
and also actual prices in some places (when joint production, heterogeneous labor
and the like are taken into account). We thus use only production data (and some
price data in addition) for a given economy in a given year in our formulation of
the “labor time directly and indirectly embodied” in the various commodities. These
data can of course also be supplied from some equilibrium approach like the von
Neumann model and the like which then only means that we impute them into this
type of framework as an additional tool of analysis.

Marx’s labor theory of value has of course many qualitative and quantitative
aspects which cannot be treated adequately in a single chapter.4 The aspects of it
that I will stress and investigate is that its methodological status is that of a Classical
System of National Accounts, with the basic objective of analyzing and explaining
what really goes on in a capitalist market economy. As the UN’s SNA it therefore
aims at categorizing in real terms what the (dis-)achievements of such an economy
actually were in a certain year, not in terms of the very limited concept of Pareto
efficiency, but in terms of real growth, productivity progress, exploitation, increasing
or decreasing tensions between capital and labor and the like. It is thus not at all of
the status of a price theory as Samuelson and others have claimed it to be over
and over again, a status that nobody would seriously associate with the SNA of the
United Nations as established by Stone.

The aim of the presentations in this part of the book is to demonstrate that
Classical price (production prices and labor commanded prices) and value theory
are at least as far-reaching in their theoretical and empirical potential as the only
loosely connected neoclassical price theory and the accounting principles of the
conventional SNA (based on constant price data of a certain base year, which indeed
needs to be rebased often in order not to loose contact with the ongoing economic
evolution). Classical (labor) value theory is a theoretical concept that can be deter-
mined simultaneously with actual prices and prices of production and thus does not
need a base year for its proper formulation. The question then however is what rig-
orous relationships there are between such labor value accounting and the Marxian
SNA that is based on it and the prices of production, not in the sense of some sort of
transformation theorem, but in the sense of detecting the qualitative and quantitative
relationships between the theoretical concept of non-nominal economic reasoning
and the centers of gravity of the purely nominal development of actual market prices.

In this respect the chapter will in particular discuss in the next section a list of
properties that may help to understand (here primarily) the quantitative relationships

4 See Eatwell et al. (1992) for a summary of Marx’s economics.
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of theorizing the “real” behind the dynamics of the nominal magnitudes like profit,
wages, value added and more. Concerning the so-called Marxian transformation
problem, we start from the state of the art in economic accounting, the United
Nations’ SNA (of the 1960s rather than of the 1990s), where magnitudes mea-
sured in terms of current prices and constant prices coexist without raising the issue
whether one scheme can be transformed into the other one in order to obtain a mean-
ingful relationship between the two. It is obvious that our perspective will provide
a dual approach to Marxian economics, with labor values providing the means to
analyze the “real” behind the nominal resulting from the interactions of the human
beings that constitute a certain society at a certain time and certain place in the
history of mankind. Yet, as we shall see, this Marxian dual is embedded (from the
quantitative perspective) in what is provided by the United Nations’ SNA (with all
its details for deriving physical input–output tables in the presence of many techno-
logical complications as they exist in modern market economies). We simply have
to take its measure total labor costs and to interpret it from the perspective of Marx’s
Capital.

This can be done in competition with or in contrast to the categories provided by
the conventional SNA and thus provides an ideal scenario by which the explanatory
power of the two SNA’s, the conventional one and the Marxian one, can be compared
and evaluated, potentially also allowing the conclusion that both systems for a “real
value accounting” (labor values vs. magnitudes based on constant prices) have their
own advantage in certain areas of their application. The United Nations’ SNA starts
from the nominal to construct its “real” magnitudes on this basis, while Marx started
from labor values in order to show their explanatory power for the price-quantity dy-
namics of capitalist economies. Nevertheless, the two “real” SNA’s thereby obtained
are both not meant to provide a substitute for a price theory, which is obvious for the
United Nations SNA and which was totally confused in its objectives by the discus-
sion on the transformation problem that followed reasonings of Samuelson (1971)
and others.

From today’s perspective the task simply is to formulate and prove propositions
that show the usefulness of the real SNA of the United Nations and of Marx’s valu-
ation scheme and also maybe to show that they both can face common application
problems. This places them on an equal footing with respect to what they claim to
be the “real” behind the nominal, which in my view creates a scientific approach
that can proceed with rigor and without any necessity for heated ideological debates
and terminology. We shall consider here as possible theoretical outcomes either a
result that is of the type of Keynes’ (1936) wage units construction, an approach
that attempts to have a single, basically proportional to prices, reconstruction of val-
ues from the sphere of nominal price magnitudes or a dual one – which we favor –
where an accounting system is created that differs in structure from the one supplied
by the nominal price magnitudes.

With respect to such possibilities, we provide in Sect. 2.2 a set of assertions that
can be used – if accepted – to test competing theories of labor values against each
other. Section 2.3 then briefly presents various contemporary approaches to the labor
theory of value from the unifying perspective of a system of national accounts’ point
of view. Section 2.4 concludes.
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In Chap. 4 we will provide the details of our approach to the definition of labor
values, there exemplified for the case of Steedman’s (1977) joint production and
fixed capital examples, in order to show the working of our definition of labor values
in a context where conventionally defined labor values would become negative and
thus meaningless (as Steedman has shown). This chapter also compares our proce-
dure of defining labor values using accounting principles from the cost accounting
methodology of firms with procedures introduced by Richard Stone into general-
ized input–output compilations and analyses. We find that there is indeed a close
correspondence between these two ways of approaching a definition of total labor
costs (if the so-called industry technology assumption is used for input–output table
compilation and the so-called sales value method from the accounting perspective
of single firms).

2.2 Labor Value Accounting: Some Propositions

The aim of this section is to provide lists of properties that may be of use in
evaluating the various proposals for a definition of labor values (or total labor costs)
that have been put forward in the literature, and their application to theoretical as
well as empirical investigations. This list is not intended to exclude any approach
that violates one or another of its principles (maybe with quite different objectives in
mind) from serious consideration. Instead, they should help the reader to systemize
(and form preferences for) the different approaches to Marx’s LTV with respect to
the features they explicitly or implicitly exhibit. We believe however that these list
are by and large in accordance with what is stated in Marx’ Capital on the various
properties his definition of labor values should give rise to.

1. Simple quantitative features of the Labor Theory of Value (LTV):

(a) Aggregation Theorem. The (labor) value of net production of a given year
equals the total labor time expended in this period. A simple matter of the
proper definition of labor values.

(b) Profit–Rate Theorem. The average (labor) value- and price-rate-of-profit are
of the same magnitude in situations of uniform rates of growth. A very weak
side-condition (see also Chap. 1 on this matter).

(c) Price / Value Theorem. Uniform ratios of profits to wages (in terms of what-
ever prices) in all sectors of production imply proportionality between labor
values and these prices. A methodologically important proposition of Marx’s
labor theory of value.

(d) Redistribution Theorem. Total profits are equal to total surplus values (and
the rate of exploitation is given by the ratio of total profits to total wages).
A simple matter of choosing an appropriate definition of the value of labor
power (and net output y as numéraire commodity, see Chap. 1).

(e) “Fundamental” Marxian Theorem. The rate of exploitation is positive if and
only if the uniform price rate of profit is positive. A very weak side-condition.
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(f) Labor–Commanded Theorem. Labor values are smaller than actual prices
when these prices are normalized by the money wage rate (assuming that all
sectors earn positive profits). A proposition with important empirical content.

Most of these assertions are known to hold true in single non-joint production
systems (no fixed capital), but some of them are not easy to generalize to general
production systems, see Chap. 4 for example.

2. Basic principles, when generalizing Labor Values (LVs):

(a) Commodity Correspondence Principle (Free good rule). The sign of the price
of a good equals the sign of the labor value of the good. In particular: The
labor values of free goods are zero. This is not a trivial property of labor
values in the light of the discussion of their proper definition for general joint
production systems in the 1970s and 1980s.

(b) Value–added principle. Value added (per commodity) equals direct labor (per
commodity). This is not a trivial property of labor values in the light of the
discussion of their proper definition in the 1970s and 1980s.

(c) Individual– and Market–value Principle. Labor values are averages of in-
dividual values, which in turn are derived from actual production data of
multiple activity systems by means of average labor values. A basic con-
struction principle that has been stressed by Marx already.

(d) Labor–Value Continuity Principle. Labor values change continuously with
technology. This is not a trivial property of labor values in the light of the
discussion of their proper definition in the 1970s and 1980s.

(e) Labor–Unit Principle. Labor is to be homogenized by means of wage dif-
ferentials. One prominent approach towards the solution of the so-called
reduction problem which allows for the generalization of the price-value the-
orem stated above.

(f) Imputation Principles. If full–cost accounting (of any type) is not possible
by means of actual physical input–output data alone, the existing practices of
firms have to be analyzed and to be applied appropriately to close the then
existing degrees of freedom in the definition of such total costs (principles
like the sales value method, e.g., see later sections of this chapter).

Most proposed concepts for generalized labor values in the 1970s and 1980’5 for
general production systems are hurting one or more of these principles so that
either these value definitions or some of the above principles must be discarded
from a further discussion on the meaningfulness of the labor theory of value.

3. Pragmatic uses of the notion of LVs:

(a) Leontief Multiplier Theorem. Monetary input–output calculations of total
labor costs per unit of output value determine the value/price ratios of
individual commodities also in general production systems – if input–output

5 By Morishima, Okishio, Steedman, Wolfstetter, Krause, Holländer, and others.
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tables are calculated appropriately (by means of the so-called industry tech-
nology assumption, see later sections of this chapter).

(b) Inflation Measurement. The “monetary equivalent of labor time” (MELT) is
to be determined by total nominal net output (NNP) per unit of labor time
expended which leads to an index formula of the type

� D py=lx D
X

i

.pi=vi /
viyiP

viyi
;

see the preceding chapter and note that change of this expression in time can
be used to determine the rate of inflation of the economy.

(c) Labor Productivity Measurement. The reciprocal values of labor values are
the appropriate measures of labor productivity of the corresponding sectors
of commodity production.

(d) Technical Change Theorem (one example). Capital–using labor–saving tech-
nical change which is profitable raises labor productivity (in the sense just
defined).

(e) The General Law of Capitalist Accumulation (Marx’s Capital I, Chap. 23)
implies the need for a macroeconomic presentation in real terms that is inde-
pendent of base periods as they are needed – and often rapidly updated – in
the measurement of real magnitudes in the conventional system of national
accounts.

These assertions attempt to link the theoretical concept of labor values to actual
data and the measurement of so-called real magnitudes and try to avoid the pes-
simistic conclusion: “The only real in a capitalist production economy are the
nominal (price times quantity) expressions” as judgement on the value of con-
ventional accounting practices in so-called real terms (and all the fallacies they
may exhibit).

The purpose of the presentation of the above lists of features of and assertions
on Marx’s labor theory of value lies in the suggestion that all these points can be
considered as systematic outcomes of the reflection of Marx’s labor theory of value
in the 1970s and 1980s – and this on the level of simple two-sectoral models as well
as general n-sectoral models of production – on the basis of which the remaining
possibilities for a coherent and applicable LTV can then be investigated and judged
in detail.

In the next section we will provide a brief survey of baseline definitions and
approaches to the Marxian concept of a value rate of profit and an underlying value
rate of exploitation that are still proposed, including a comparison with the status of
the United Nations’ SNA and its considerations of total labor costs. We will however
not go into a detailed discussion here, that confronts the above list of assertions with
the approaches to be presented next, but leave this for future research and debate of
the issues that are raised in this chapter.
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2.3 Four Baseline Approaches to Marx’ Labor Theory of Value

The following discussion of various approaches to a value accounting in Marxian
or in other terms will be very short, since we solely want to provide a framework
where all four approaches that are here discussed can be compared from the unifying
perspective of National Accounting and a specific angle, namely by their provision
of a “real” accounting system, in addition to the official purely nominal one and
its categorization of economic activities, stocks, flows and the growth processes the
interaction of stocks and flows gives rise to.

One possibility to evaluate the following approaches (where we consider the UN
approach here from the perspective of its nominal categories and its definitions
of inflation and growth, but not of so-called real magnitudes) is to briefly apply
the criteria of the preceding section to these approaches in order to evaluate their
proposals for the determination of labor values or total labor costs. Ultimately the
theoretical and empirical application of the proposed definitions and the quantita-
tive expressions derived therefrom will decide which approach is the more fruitful
one in constructing something behind the UN’s nominal magnitudes that can be of
help in the understanding of what is actually observed in nominal terms for capi-
talist market economies in space and in time. We stress that the statements made in
the following subsections are still somewhat preliminary and need further discus-
sion and elaboration, in particular of those contributions that are not considered as
appropriate in this book.

2.3.1 The Temporal Single System Interpretation (TSSI)

In this approach, labor values vtC1 are derived from the physical and labor input
costs of firms, see McGlone and Kliman (1996, p. 46),6 the former evaluated at cur-
rent prices pt and divided through a given scalar �; called the monetary expression
of labor time (MELT) in the literature, which renormalizes the price expressions for
the input costs towards a measurement in terms of labor units: vtC1 D .pt=�/ACl .7

Otherwise, the definitional procedure is as in the conventional algebraic approach to
labor values, with the important difference however that input costs (in prices) are
taken from the beginning of the production period and the labor values of outputs
are defined as end of period values (beginning of the next one).8 Labor values – and
prices of production, see below – therefore are here employed in a dynamic fashion,
one that leads from exogenously given prices (of production) to an appended updat-
ing of labor values (and prices of production). We set the MELT expression � equal

6 I have to thank Andrew Kliman for detailed comments on this section of the chapter which con-
tributed to improving its presentation. Of course, the usual caveats apply.
7 A; l are the unit input data of standard input–output analysis, see also Chaps. 1/3, that is aug-
mented by workers average consumption data.
8 In contrast to the simultaneous equations approach there are however no linear equation systems
to be solved here.
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to 1 for expositional simplicity (and in order to avoid confusion with the value rate
of exploitation we defined in the preceding chapter). On the basis of the notation of
this chapter we can then define the average rate of profit of the value system by9

�t D
pt .I � A

C/xt

ptACxt
D
.1 � wt /lxt
ptACxt

D
et

ptAC=wt lxt C 1
; et D

1 � wt
wt

;wt D ptcw

(2.1)
since there holds pty D lxt due to � D 1.

We define next10 the uniform rate of profit system (the prices of production in
this dynamic setup) by:

ptC1 D .1C �t /ptA
C

It is easy to show on this basis that there holds (rt the average price rate of profit):

1. ptC1xt D vtC1xt
2. ˘t WD �tptACxt D St WD lxt � wt lxt D ptyt � ptcwlxt
3. rt D .ptC1xt � ptACxt /=ptACxt D �t D .1 � wt /lxt=ptACxt

These equations provide the core equations of the TSSI solution to the Marxian
transformation problem, an interpretation which preserves the Marxian accounting
identities in his transformation example. If iterated in time, they give – on the basis
of what was assumed above – in the limit (if it exists) rise to:

v D vAC l; p D
px

pACx
pAC; i:e:;

the conventional equations for labor values and prices of production, see Bródy
(1970) for example and for convergence proofs. As temporal values, old prices (and
values) determine the average value rate of profit and the amount of surplus value
that is produced,11 while the next periods values and prices of production are just
appended to the current situation’s characteristics (and may need adjustment with
respect to the MELT condition).

The basic question here is (as in any scientific approach that deals with phenom-
ena of real life) which theoretical and empirical propositions can be obtained from
these definitions of the value and price schemes vtC1; ptC1; apart from the three
identities they give rise to by definition. Following Mohun (2004) we would also
stress here that the central point of a quantitative expression or definition is to be
able to use it in the form of proposition on vtC1; ptC1 relationships and in empir-
ical investigations of the actual behavior (measured in terms of actual prices) of
the economy with respect to production and technical change on the one hand and
competition and exchange on the other hand.

9 See McGlone and Kliman (1996, p. 46). Note that pt is here interpreted in terms of a historically
given vector vt .
10 See McGlone and Kliman (1996, p. 46).
11 Constant capital, variable capital and surplus value are thus all given magnitudes when the price-
value iteration is started.
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Due to the dynamic nature of the definition of labor values this is labelled a
temporal approach, since it implies an evolving system of labor values even if all
technological data are given (where also prices of production are updated by an
iteration procedure as proposed by the TSSI). The advantage of this definitional
procedure is that it preserves Marx’s basic aggregate accounting identities. This
approach is discussed and evaluated in detail in Duménil and Levy (2000a,b), Foley
(1997, 2000), Freeman and Carchedi (1996), Freeman et al. (2004), Kliman and
McGlone (1999), Mavroudeas (1999), Mohun (2003), Mongiovi (2002).

There is also the question how such labor values can be properly generalized12 to
the treatment of pure joint production systems (with a rectangular output matrix B),
in particular if the jointly produced commodities are used again in production (in
different processes), without giving rise to negative values for some commodities,
indeterminacy of value accounting or other quantitative “anomalies”.13 This is a
topic where in our view also actually employed methods of dealing with joint pro-
duction within firms should be taken into account (an empirical orientation of the
labor theory of value clearly found in Marx’s Capital, Vol. II). The further question
is how the definition of labor values in the TSSI can be related to Marx’s (1954,
p. 48) understanding of the relationship between labor values and the measure-
ment of labor productivity. The latter should change systematic fashion (ignoring
“secondary” influences of actual prices on labor values as they are discussed in the
Chaps. 4 and 5) when methods of production are changing, for example in the sim-
ple input–output system considered by McGlone and Kliman (1996, p. 46), while
labor values according to the TSSI can change in proportions when the proportions
of prices (of production) are changing in the iteration procedure they propose for
labor values and prices of production.

In our view, the most basic problem of this approach to values and prices however
is that it makes use of a uniform point-input (t) point–output (tC 1) assumption for
all production processes happening in the considered economy. This is extremely
implausible from the empirical perspective.14 Input–output flow data are accumu-
lated data transformed into averages by appropriate normalizations and input–output
stock data measure inventories needed for production at certain moments in time,
also transferred to averages by appropriate normalization procedures. We thus have
average items for capital consumed (including wages) as well as for capital ad-
vanced (also including wages). To assume that all flows are consumed uniformly at
the beginning of the year and all outputs sold uniformly at its end is introducing an

12 This seems to be a general problem for the presentations of the TSSI in the literature, since there
meanwhile exist numerous examples for its formulation, but by and large no compact, concise
definition for general models of production which avoids the various shortcomings of the examples.
13 A possible solution could be found here by using the distinction between individual and market
values in the way proposed in Flaschel (1983a) or alternatively of the kind proposed in Duménil
and Levy (1989).
14 If at all, a continuous-input continuous-output model type would here be the more appropriate
starting point for the modelling of a capitalist economy, see Foley (1986) for a formulation of this
type of approach in the context of Marxian economics.
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abstraction that is not adequate in the context of a Marxian approach to reality, see
Marx’s detailed factual analysis of the turnover of capital in Capital, Vol. II. We have
production processes that use up inputs and produce new outputs each day during
the year as well as processes where even one year is not sufficient to produce a fin-
ished commodity. Turnover times of inputs therefore can vary in extreme ways and
should thus not be forced into a purely theoretical Austrian point-input point-output
approach to capital theory.

Instead input–output averages moving continuously in time (based on data that
are changing on a daily basis, but normally only measured once per year) should be
used to measure labor values and prices of production (both pure accounting con-
cepts in such a framework) which therefore also represent moving averages to be
defined at each moment in time and thus necessarily not of the temporal type we
considered above. The task then is to state laws of motion for such moving averages
and their interactions and to show their theoretical as well as empirical validity.
Definitions – whether temporal or simultaneous – therefore must be based on em-
pirically relevant formulations of the production processes of a capitalist economy
and be employed to a theoretical and empirical understanding of what we observe
in reality through more or less conventional statistical procedures.

Following Kliman (2007) the TSSI is primarily concerned with refuting the myth
of inconsistency of Marx’s solution to the transformation problem from labor val-
ues to prices of production. It provides a specific solution to this problem and is as
such concerned about value – price relationships, where production prices are just
the first step when going from theory and essence (abstract labor) to the surface
of price-quantity adjustment processes (including commercial capital, banking cap-
ital, international exchange and so on). Yet, handling the transformation problem
in our view leads to a combination of value and price expressions that distorts the
distinction between essence (abstract labor) and surface (price and quantity inter-
actions). It runs the risk of not separating Marx’s System of Labor Value Accounts
(Capital, Vol. I) in a persuasive way from what happens on the surface of capitalist
competition.

We close this brief section on the TSSI with the conclusion that its primary con-
tribution is to make the TSSI comparable – from our perspective – to the treatments
of the LTV that are now following. There has been an extensive debate in the lit-
erature on the merits and the deficiencies of this interpretation of Marx’s Capital
which we will not discuss here any further, see however – besides the contributions
already mentioned – the papers by Veneziani (2004, 2005), Mohun and Veneziani
(2007) and also the response by Kliman and Freeman (2006).

2.3.2 The Aggregate Single System Interpretation (ASSI)

To a certain degree this approach is similar to Keynes’ (1936) approach who con-
sidered the working of the economy from the perspective of prices normalized by
the wage unit, i.e. in his case, neoclassical marginal cost prices in terms of labor
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commanded, representing the amount of labor that is exchanged for one unit of the
considered commodity. In the ASSI interpretation of Marxian categories, prices of
production or actual prices) are normalized in terms of the labor time expended in
the year under consideration, leaving actual prices p as remainder the expression
py=lx, the monetary equivalent of labor time (MELT) we have already considered
in the preceding subsection. The ASSI approaches to the labor theory of value share,
on the one hand, a common core in their understanding of Marxian price ratios, but
are also and on the other hand to a certain degree significantly distinguished from
each other. Original contributions that are related to what was discussed in Chap. 1
are given by the works of Duménil (1983, 1984) 15 and Foley (1982, 1983, 1986)16

and – with a different twist – in Germany by work of Krause (1980a,b, 1998) and
Picard (1979), where the postulate of a uniform rate of exploitation is discarded
in favor of a single value and price interpretation. Mohun (1993, 1994, 2003) has
considered the Duménil-Foley (DF) interpretation in detail, while we have done so
(indirectly) in Chap. 1.17

The DF single system approach rescales actually observed market prices (or
prices of production) such that they represent the price of net product py by the
amount of labor L D lx D vy expended in its production, see here Chap. 1, in
order to define on this basis Marxian categories like the value of labor power, sur-
plus value, the rate of exploitation and more. Assuming that workers do not only
consume, but also save, makes it necessary to depart from the subsistence definition
of the value of labor power as measured in terms of labor values applied to the
assumed subsistence basket. A new interpretation of the value of labor power is
then provided by money wages divided by MELT, i.e., the wage share in national
income, see again Chap. 1, whereby the sum of wages (divided by MELT), i.e., mea-
sured relative to py D lx; becomes identical to Marx’s concept of variable capital
and the sum of profits becomes identical to Marx’s notion of surplus value. The ac-
counting identities of this particular framework are therefore given by these three
sets of equations. The attractive thing with this approach lies in the fact that it is
empirically the least demanding one to be implemented and that it therefore can
progress rapidly from a given nominal system of national accounts to the consid-
eration of the tendencies that are implicitly contained in these data sets and their
evolution over time (including the determination of the rate of inflation, see the next
subsection).

The ASSI therefore interprets the existing data in a new way and is immediately
applicable to the analysis of the evolution of capitalist economies, such as in the
study of Duménil and Levy (1993) on the economics of the profit rate. In this work
however, in the appendix on pp. 48/49, a brief account of the transformation of

15 Duménil and Levy (2000a,b).
16 See also Foley (2000).
17 See also Mohun (2004) for further remarks on the literature and an outline of some recent ap-
proaches to an accounting structure which relates observable prices to Marxian labour values.
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values into prices of production is provided that stresses the difference between
appropriation and realization of surplus value, stating that (p. 49):

Surplus value is appropriated proportionally to labor inputs, but realized (under ordinary
circumstances) proportionally to capital advanced. This separation between appropriation
and realization hides the existence of exploitation.

With respect to the use of conventionally defined labor values and their role in defin-
ing rates of profit and exploitation, see here Chap. 1, the ASSI is therefore somewhat
inconclusive and does in any case not erase this definition as it was proposed by
Samuelson (1971). In our view, the statement from Duménil and Levy (1993) can
be associated with the approach to the definition of labor values and the value rate of
profit we have considered in Chap. 1, which bases the stated difference again on dual
concepts of value and price and the proximate relationships they imply for central
Marxian aggregates (which re-direct the focus again on capitalist production and the
forces that are shaping it). It is in principle also obtained from what is supplied by
the United Nations’ System of National Accounts and its application to the data of
particular economies if one replaces their concepts of (aggregate or sectoral) labor
productivity by labor values and their aggregates as indexes of labor productivity,
see the following two subsections.

2.3.3 The Conventional Dual System Approach (CDSA)

In theoretical debates on Classical economics and their considerations of value and
price in the framework of given input–output data the work of Piero Sraffa (1898–
1983) is clearly of outstanding importance, represented in particular by his 1960
book “Production of Commodities by Means of Commodities” which may be con-
sidered the Classical equivalent to Debreu’s “Theory of Value”, both very compact
publications with an overwhelming impact on the corresponding scientific commu-
nities. Both contributions are heavily concentrated on the sphere of competition and
thus on price theory, in one case long-period production prices and in the other case
short-run market prices. From a Marxian perspective these theories therefore con-
cern “surface phenomena” that do not penetrate what is going on behind commodity
exchange in the sphere of capitalist production.

Be that as it may, conventional economics goes beyond such categories of com-
petition in significant ways in that it constructs accounting concepts on the micro as
well as on the macro-level that are intended to provide insights on the dynamics of
a capitalist economies by snapshots of its real behavior underlying by definitional
construction its nominal magnitudes and their movement in time. These efforts have
been started on a larger scale, since the appearance of Keynes’ General Theory and
have found their culmination point in the work of Nobel Laureate Richard Stone
(1913–1991) and his co-authors, in their joint efforts to establish a coherent frame-
work for national accounting, published in compact form as “A System of National
Accounts” by the United Nations in 1968. Reading both Sraffa’s and Stone’s work
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(who both lived in Cambridge, UK) reveals striking common features (for example
between Stone’s Commodity Technology Assumption and Sraffa’s Standard Com-
modity in the case of joint production), interrelationships that have been totally
ignored in the mainly academic debate on capital controversies, but also in the prag-
matically oriented, but theoretically very refined work of Stone and his followers.

With the abbreviation CDSA we here simply mean the current practices in the
System of National Accounts of the United Nations as far as the calculation of real
magnitudes, besides nominal expressions, based on double deflating procedures are
concerned. Such an approach is clearly dual in nature, since it employs besides a full
set of nominal categories a constructed set of so-called real magnitudes, calculated
at constant prices (where inputs and outputs are deflated differently), or prices of a
certain base year, like real GDP, real growth, real value added, labor productivity
measures and more. We may also call this approach a temporal one, because it gets
into trouble when the base period departs too much from the current period, in which
case magnitudes have to be rebased in some way or another. Furthermore, it is ques-
tionable what is really measured when one calculates for example real value added
at prices of a base year, i.e., at prices that may be quite different in structure from the
one of the present period, leading for example to potentially virtual income expres-
sions thereby. This however does not mean that the double deflating methods applied
in this accounting approach are generally suspect from a theoretical point of view,
for example when they are used as in input–output methodology where different
things have to be deflated differently. The important thing here however is that such
differently deflated things (the inputs) should then still be treated as different and
not deducted from separately deflated output in order to arrive at a difference, then
called real value added, with which indeed no economic meaning can be associated.

This has lead some researchers in this area to declare that the only real object
of investigation in the SNA is the purely nominal one, or less strictly that only a
single deflator should be applied throughout (the so-called single deflating method)
when going from nominal magnitudes to real ones. Yet, the example of input–output
compilation shows that double deflation can in principle be applied to certain areas
of the System of National Accounts, though of course subject to well-known aggre-
gation problems as well as changes in process and product properties. The current
system of national accounts – as routinized by the methodology published since the
1950s by the United Nations Statistical Division – provides however a wealth of cat-
egories, classifications and definitions which demand for closer inspection from the
perspective of advanced economic theory, in particular in the area where quantity
expressions for real magnitudes are derived and applied.

In this part of the book, we make the general assumption that there is something
“real” behind the dynamics of nominal magnitudes, and that these real magnitudes
are given by theoretically sound definitions and not by some substance hidden be-
hind the interaction of nominal expressions as we observe them as individuals and
from a scientific perspective. These real magnitudes of an economy with many pro-
duction and household sectors are to be constructed with great care and precision
and they of course are only justified if we can use them to measure, explain and
predict what is going on in the economy in greater depth than is possible by means
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of nominal prices and their aggregates, regardless of whether market prices or prices
of production are used for this purpose. We view Stone’s SNA as a big step forward
into such a direction, in particular what its detailed and very general input–output
methodology is concerned. From this perspective, microeconomics of any type is
nowadays always characterized by a dual system approach, the accounting system
on the firm as well as on the national level (which have to correspond to each other)
and the theory of prices, be it a Classical or a Neoclassical one. We will call the
combination of Stone’s SNA with the Sraffian theory of long-period prices the Con-
ventional Dual System Approach (CDSA) in this section. Their common origin is
Cambridge, UK in the 1950s and 1960s and their treatment of input–output data is
in many respects interrelated as we have tried to show in Flaschel (1984). In a subse-
quent section we shall moreover show how value theory fits into such a framework,
indeed by correcting for undesirable developments that have taken place in its fur-
ther evolution, since the seminal contributions of Stone (1968), see United Nations
(1993).

From a macroeconomic perspective the most important measures provided by a
SNA are the rate of inflation and the rate of growth. With respect to inflation rates
�t one starts from expressions of the type:
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From these expressions there easily follows by iterative extension:
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i.e., accumulated inflation factors are just given by the value of current output levels
divided by their value measured in prices of the base period t D 0: So far, everything
is fine. We measure inflation by a specific weighted average of sectoral inflation rates
where the weights are given by the relative sectoral output value in the current value
of total output. The weights therefore depend on the current price vector, but having
taken note of this, we just have an average of sectoral inflation rates at our disposal
to measure and apply inflation rates for a whole economy.

In the same way we can measure the average growth rate of an economy by:
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From these expressions there again easily follows by iterative extension:

1C �t;o D .1C �t /.1C �t�1/ � � � .1C �o/ D

P
i pi;tyi;tC1P
i pi;tyi;o

which in a specific way provides an expression for accumulated growth factors. It is
also easy to show that the growth factor of nominal output fulfills the equations
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We here concentrate on the determination of inflation rates and now show that
they are identical to the fractions formed from the MELT expressions used in the
preceding section if the net output vector y D .y1; :::; yn/ is the vector used in
above summations for average inflation rates. This follows easily from

MELT tC1=MELT t D
ptC1yt=lxt

ptyt=lxt

if the data characterizing production are kept constant (since lxt can be canceled in
these expressions).

Growth rate calculations, whether for prices or for output, therefore enrich the
consideration of nominal data such as ptyt in that they separate price level effects
from output level effects in terms of their rates of change, i.e., as dimensionless
percentages. This adds information to the consideration of the time series ptyt and
thus helps to distinguish price level growth from output level growth. A big error
however occurs in the United Nations’s (1993) SNA when one proceeds from there
to an interpretation of the fraction Yt D

P
i pi;oyi;t in the denominator of the ac-

cumulated inflation rate expressions, by calling it the real NNP of period t and by
proceeding from there to the measurement of average labor productivity in terms of
Yt=Lt D poyt=lxt :18
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Viewed from its bare definition, Yt is nothing but the current net output basket
valued at price of a base period 0 which remains a price expression, based on a price
vector of some arbitrary past. Output at hypothetical past prices cannot be used to
measure labor productivity in a technically convincing way. This will be shown in
detail in the next Chap. 3, but should be already relatively obvious here from an
input–output theoretic perspective. Similarly, since yi are the net output levels of
a whole economy (where intermediate inputs have been deducted) we cannot use

18 y D .I � A/�1x as usual.
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yi=Li D ..I � A/�1x/i=Li as a sectoral measure of labor productivity, since this
is providing an expression that cannot be considered as isolated from the other sec-
tors of the economy. On the other hand, using xi=Li is but a partial measure of
sector’s i performance, since it neglects its capital consumption in the form of inter-
mediate inputs. Finally, the United Nations (1993) measure of sectoral labor produc-
tivity .poixi;t�poAixi;t /=Li;t , i.e., value added of sector i in terms of arbitrary base
years prices po divided by the total labor input of this sector is again contaminated
by arbitrary price-dependent aggregators which prevents that anything characteriz-
ing the production side of the economy can be defined meaningfully in this way.

We conclude that the measurement of labor productivity should be left to the con-
sideration of input–output theory and not become a byproduct of the measurement
of real GDP or NDP as it is the case in the Systems of National Accounts in their
current form (which differs from what was originally proposed by Stone himself).
To show this in detail is the task of Chaps. 3 and 4. Here we only conclude that
the construction of SNA’s behind the evolution of nominal magnitudes is a mean-
ingful activity, independently of whether it is classically oriented or neoclassical in
nature. SNA’s provide theoretical concepts intended to measure evolution not visi-
ble from the consideration of purely nominal magnitudes and aggregates and in this
sense they are dual in nature as compared to the sphere of competition, exchange
and money prices. As economics is taught and investigated today it is indeed dual
in nature. This however does not automatically imply that all of its categories are
well-defined and coherently applicable, but they may sometimes be flawed by erro-
neous definitional attempts. The next subsection will argue on this basis that Marx’s
Capital I–III forms such a dual system of national accounts and long-period or mar-
ket prices where one should not immediately proceed to the conclusions that the
labor values of the Classical System of National Accounts are but – in the majority
of interpretations of the Labor Theory of Value: bad – predictors of prices of produc-
tion or even market prices. It is not the central task of a System of National Accounts
to provide price predictors, but its foremost duty is to provide categories (including
their quantification and measurement) that are of use for the understanding of the
dynamics of nominal magnitudes in the working of capitalist economies.

The structured macro-data as supplied by the United Nations’ System of National
Accounts will be the point of departure and also a point of reference for our pro-
posal, in the next section, to formulate a system of indexes of labor productivity
by means of labor values from a Marxian perspective. We stress that the United
Nations’ System of National Accounts (in the original version as formulated by
Stone and his research group in 1968) indeed defines labor productivity indices
(and thus implicitly labor values, there called total labor costs) in the tradition of
the Classical authors, and does so in the presence of joint production and even more
general modes of production, see the concluding section of this chapter.

2.3.4 The Marxian Dual System Approach (MDSA)

With respect to the single commodity production system A; l , as considered al-
ready above in our representation of McGlone and Kliman’s (1996) transformation
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procedure of the TSSI, the MDSA approach is based on the traditional algebraic
and simultaneous type of labor value accounting in line with the work published
by Okishio and Morishima among others in the 1960s and 1970s, and also in line
with the measures for direct and indirect or total labor costs in the United Nations’
System of National Account based on the work of Richard Stone, i.e., its defini-
tion of labor values is simply given by the matrix equation v D vA C l . This
approach is therefore the conventional approach in the literature on Marxian eco-
nomics and thus seems to offer nothing really new for the interpretation of Marx’s
Capital, Vols. I–III.19 Yet, first of all, this conventional approach to the definition of
labor values is quite general in nature. It has been generalized to the treatment of
multiple activities for the production of a single commodity, pure joint production,
fixed capital and heterogeneous labor in Flaschel (1980, 1983a, 1983b, 1995) mak-
ing use of certain accounting practices actually applied by firms, certain accounting
practices of input–output methodology and above all of the averaging approach put
forth by Bródy (1970), see also Bródy (1987) and Simonovits and Steenge (1996),
in place of Steedman’s (1977) generalizations of labor values by means of Sraffian
zero-profit approaches to joint production and fixed capital. Moreover, and more
importantly, the conventional approach to the definition of labor values is not only
providing a very general accounting framework for the determination of total labor
costs, but in addition allows for various theoretical as well as empirical applica-
tions of this valuation scheme that prove the meaningfulness of this approach. We
will consider some of these applications below, after some short comments on the
generality of the conventional approach to the definition of labor values.

Multiple activities lead in a natural way to the distinction of market from individ-
ual values, the former being certain averages of the latter as in Marx (1954), and as
in the aggregation procedures of input–output methodology. Pure joint production
is compatible (with respect to a disentangling of joint input costs that is neutral with
respect uniform rates of profit) with only one allocation method of firms’ actual cost
accounting procedures, the so-called sales value method. This method is applied, but
barely understood in standard books on cost accounting. It in fact represents the only
method that allows to allocate costs in pure joint production activities that does not
introduce a distortion in the profitability statements of the whole process as com-
pared to its single disentangled activities. From the perspective of Marx’s Capital,
Vol. II (where the actual behavior of firms is always paid attention to) it thus rec-
ommends itself from the practical and the empirical point of view. Astonishingly
enough, this method reappears (unnoticed) in the treatment of secondary products
in input–output methodology designed by Richard Stone, by way of the so-called
industry technology assumption for the reallocation of such secondary products to-
wards the sector where they are produced as main products. This happens without

19 An interesting non-standard approach to a definition of labor values – which includes capitalists’
consumption basket into the “means of production” in a stationary economy – has been provided
recently by Wright (2007).
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any reference to the actual accounting practices of firms and may be interpreted
as fact driven behavior on the level of firms as well as on the level of national
accounting.

Fixed capital is already treated in a detailed way in Bródy (1970), there too by
the application of actual accounting techniques that define the concept of turnover
times and its relationship to capital advanced as opposed to capital consumed. Such
a distinction makes the relatively arbitrary or even hypothetical distinction between
circulating and fixed capital superfluous, since nearly every means of production
appears in the form of capital advanced and capital consumed, by referring to an
accounting period of one year in general (or one quarter), with respect to which
turnover times are then measured as being less or larger than one. The sharp dis-
tinction between circulating and fixed capital by contrast refers to a hypothetical
period of production with no factual content and thus assumes that turnover times
are either exactly one or – if larger than one – lead to a vintage approach with close
connection to joint production and fairly academic valuation schemes for the various
vintage types of fixed capital.

Skill differences with respect to labor inputs finally are here evaluated by way of
actual wage differentials, which may be subject to purely arbitrary valuation con-
ventions in different countries and at different times, which thus includes a historical
dimension into labor value accounting. Like the TSSI the ASSI needs market prices,
now however only in certain accounting procedures, namely when disentangling
joint productions activities (where relative sales values are used) and also in the so-
lution of the so-called reduction problem of skilled to simple labor. It is a purely
ex post approach and can be directly applied to actual input–output tables when
these tables have been constructed by way of the industry technology assumption.
It distinguishes between stocks and flows in the same way as firms do it in their ac-
counting procedures and also as in the stock-flow distinction in the United Nations’
Systems of National Accounts. In sum this approach in fact allows for all the as-
sertions summarized at the beginning of this chapter, without any need to construct
data for labor value calculations that are not already provided by the conventional
System of National Accounts, at least in principle. It in addition bears relationships
with the work provided by Shaikh and Tonak (1994). These authors also discuss
the United Nations’ Accounting methodology to a certain extent (as it derives from
make or supply matrices and use or absorption matrices), quite independent from
the question of whether their use of the data is already a convincing one, see Mohun
(2005) in this regard.

Duménil and Levy (1989), see also Duménil and Levy (1987, 1988), have re-
considered the labor value definition of the joint production approach of Flaschel
(1983a) from a more general perspective that initially makes use of physical rela-
tionships (market shares) solely. Such an approach allows for more than just one
definition of labor values, with Flaschel’s (1983a) case as a special example. We
would however maintain here that firms’ actual behavior should be taken into ac-
count when searching for a determined labor value definition. Firms indeed reverse
the order in cost allocation procedures in the case of pure joint products (by using
relative sales values to obtain the costs to be allocated to a single item in the joint



30 2 Baseline Approaches to the Labor Theory of Value

output basket) in order to get determinacy. We should therefore also be prepared
to use such values in total labor cost allocation, since joint production exhibits un-
avoidable degrees of freedom that must be closed in reference to factual procedures
in firms’ behavior.

In a comparable case, Rowthorn (1974) has solved the reduction problem of
skilled to simple labor in terms of a physical approach solely. The question here
too is to what extent market prices should have an impact on labor value account-
ing or not. In view of the preceding section and its principles (also with respect
to the rule for free goods) we believe that the contact to actual accounting proce-
dures on the level of the firm and the level of the whole economy is a necessary
one in order to arrive at a concept of labor values that is factual in nature and ap-
plicable to the data generated by the evolution of capitalist economies. Yet, in this
respect the ASSI has surely its own merits, in categorizing and measuring facts of
this evolutionary process based on nominal magnitudes solely and has in this re-
spect for example received recent reconsideration and application in the work of
Mohun (2004) and others. Our dual approach (of this subsection) is more difficult
to handle than this approach, and in fact an extension of it, and is directed towards
a total cost measure of labor inputs into the production of the various commodities
which can be applied to an analysis of the labor productivity implications of price-
and profitability-driven capitalist technological change, an important issue at least
on the level of macroeconomics (where for example productivity slowdowns have
been discussed intensively), but similarly on the level of industries whose produc-
tivity changes are to be measured and evaluated.

Turning now to applications of labor value accounting (in the case of the sin-
gle production system A; l so far considered), we use actual prices p to show the
relationship between input–output tables An that are measured in nominal terms
(and their corresponding labor usage vector ln), which show the $-inputs (labor in-
puts) per $ of output value and the ones measured in physical terms. Denoting by
Op the diagonal matrix which can be obtained from the price vector p the relation-

ship between the monetary and the physical tables are then given by: An D OpA Op�1

(ln D l Op�1). There follows that the measurement of total labor costs per $ of out-
put value, vn; is given by the matrix equation vn D vnAn C ln; while labor values
per unit of output are of course still given by v D vA C l: It is straightforward to
show that there holds vn D v Op�1:We thus get that labor values can immediately (in
principle) be calculated from monetary input–output data which in fact even deliver
the value-price relationship at one and the same time.

Conventional labor values are therefore (and this also holds for joint production
when the industry technology assumption of input–output analysis is used, see the
next chapters) factual magnitudes that can in principle be measured and studied in
their evolution in time. In the following chapters we will consider uses of these ac-
counting magnitudes in detail, which will here only be summarized in their essential
features. The principles we have considered in Sect. 2.2 in this chapter can all be ap-
plied to the now considered dual to the sphere of prices (of production), but we shall
concentrate here our efforts on the fundamental properties our MDSA gives rise to.
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A first basic property of labor values is that they are always smaller than prices
measured in terms of the wage unit (if profits are positive in all sectors of the econ-
omy), i.e., we have pw D p=w > v: The labor time commanded by the various
commodities thus provide an upper estimate of the labor time that was embodied
(imputed) into them. This provides an important bridge to what Keynes considered
as real magnitudes in the General Theory, namely the nominal expressions divided
by the wage unit.

A second important property of conventionally defined labor values or the total
labor costs of commodities is that they fulfill the following proposition:

Assume that technical change is profitable (as measured by actual prices) and in a strict
sense capital-using and labor saving. Then: the total labor costs of commodities as measured
by the above vector v (all) decrease (if the input–output matrix is indecomposable).

This theorem will be formulated and proved in detail in the next chapter. It shows
that there are deterministic foundations for the statistical “law of decreasing labor
content” that is formulated and proved in Farjoun and Machover (1983, Chap. 7).
Such a law is assumed to exists on the macrolevel by nearly every macro-theory (if
applicable) and it here receives a fundamental formulation through a comparison of
prices in terms of the wage unit and our labor value accounting scheme.

A third important property of labor values (in their own right) is that they can be
used to measure labor productivity, as proposed in Marx’s Capital I (by means of
the reciprocal values 1=vi ), and in the United Nations (1968) SNA. Using the matrix
equation xi D Axi C ei ; where ei is the ith unit vector, i.e., calculating the total
input basket in order to produce one unit of commodity i immediately implies the
relationship:

Li D lxi D l.I � A/
�1ei D vi ; i:e:;

the labor time needed to produce one extra unit of net output of commodity i is
given by the labor content of this commodity. This property of labor values will be
investigated in detail in the next chapter.

Final important properties of a system of labor value accounts have already been
studied in Chap. 1 where we have identified the average value rate of profit as the
systematic (production oriented) component in the average price rate of profit which
– following again Farjoun and Machover (1983) may be subject to chaotic influences
from the sphere of commodity exchange that are statistically viewed of second order
type.

Summarizing this subsection we would claim here that the conventional type of
labor value accounting has important roots in firms accounting procedure as well
as national input–output accounting procedures that not only imply that such labor
content are well-defined in general models of production, but also give rise to mean-
ingful proposition concerning labor productivity, technical change, the price rate of
profit and Classical labor commanded prices and that allow to proceed with the la-
bor theory of value as expressed by the principles formulated at the beginning of
this chapter. This implies that the line of research which has been put forward in
Bródy (1970) can be continued successfully in very general and applicable terms.
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2.4 Conclusions

Summing up, we would conclude that the CDSA and the MDSA are closely related
with each other and can supplement each other. The CDSA lays more stress on
(however sometimes questionable) macroeconomic real accounting, obtained from
single or double deflating methods, like real GDP, real values added and the like in
order to characterize the performance of capitalist economies. By contrast, the
MDSA puts more emphasis on multisectoral flow matrices and, with respect to the
them, on the derivation and application of measures of directly and indirectly em-
bodied labor efforts (labor content or total labor costs) and their implications for
the measurement of labor productivity, see Stone’s productivity considerations in
United Nations (1968, p. 69) for a bridge between the two approaches. The two ap-
proaches to a system of national accounts should therefore be further integrated with
each other in future research, paying also attention to the contributions provided by
the ASSI of G. Duménil, D. Foley and others on the level of price aggregates nor-
malized by the labor efforts of the yearly production cycle.

The TSSI, by contrast and on the one hand, is in our view however not of help
here because its definition of labor values is too temporarily oriented or too futile
to provide an anchor for actual productivity measurements as they are discussed in
Marx (1954, p. 48) Capital, Vol. I:

In general, the greater the productiveness of labour, the less is the labour-time required for
the production of an article, the less is the amount of labour crystallised in that article, and
the less is its value; and vice versâ, the less the productiveness of labour, the greater is the
labour-time required for the production of an article, and the greater is its value. The value of
a commodity, therefore, varies directly as the quantity, and inversely as the productiveness,
of the labour incorporated in it.

This quotation is much more in line with what is proposed in Stone’s SNA as
labor productivity indices, see United Nations (1968, p. 69, 4.42) which in our
notation and slightly simplified reads:

���� D
x0.1/.I � A0.1//.I � A0.0//�1l 0

x0.1/l 0.1/
D
l.I � A.0//�1.I � A.1//x.1/

l.1/x.1/

D
v.0/y.1/
v.1/y.1/

where 0; 1 denote points in time and x; y are feasible vectors of gross and net pro-
duction. Stone’s measure ���� thus exactly describes (in inverted form) the change
in (the conventional) labor value of the net vector of period 1 that occurs through
the technical change leading from A.0/; l.0/ to A.1/; l.1/: The increase of his mea-
sure thus shows increasing labor productivity in the sense of Marx (1954, p. 48).

On the other hand, the TSSI concept of prices of production and their uniform
rate of profit (on which level of dis-aggregation?) may not be a well-suited one as far
as an analysis of capitalist competition, in particular in the age of globalization – we
are currently subject to – is concerned. Therefore, identities between labor value ag-
gregates and production price aggregates are not the most important thing a Marxian
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theory of value (essence) and prices (surface) has to investigate. We would follow
here at least partly the suggestions of Farjoun and Machover (1983) that we should
use empirically applicable measures of labor content and actual prices (normalized
by the wage-unit) to further study in particular their law of decreasing labor content
from the theoretical as well as from the empirical perspective. Actual prices nor-
malized by the MELT condition on the other hand may be used to study the conflict
about income distribution in the spirit of Marx (1954, Chap. 23) formulation of a
general law of capitalist accumulation.

Another subject for future research may be to reconsider the concept of abstract
labor introduced by Marx in Capital, Vol. I, and to provide a sociological frame-
work where Marx’s objective to understand the laws of motion of capitalism from
the perspective of “equivalent exchange” (as the underlying link between human
beings, but covered by the laws that regulate actual commodity exchange) can be
substantiated from the quantitative point of view under general production relation-
ships. In this respect, Keynes’ (1936, p. 213/4) is indeed expressing a somewhat
similar point of view, when he writes:

It is preferable to regard labour, including, of course, the personal services of the en-
trepreneur and his assistant, as the sole factor of production, operating in a given envi-
ronment of technique, natural resources, capital equipment and effective demand.

From such a point of view it may then be a worthwhile attempt to understand
the reported stock-flow interaction of capitalist economies from the angle of the
single factor of production that allows this interaction to continue in time, by help of
the Classical concepts for the analysis of the evolution of capitalist economies were
labor commanded prices (Keynes’ concept of prices in terms of the wage unit) and
total labor costs (Marx’s concept of value) are of central importance. The present
section has argued in this regard (see the next chapter for details) that there are
links between these two measures (expressed in terms of labor) that may be relevant
for the understanding of the general laws of capitalist accumulation, the technical
changes that drive this accumulation and the forces of competition by which these
laws are implemented.

In the next chapters we concentrate on the MDSA approach to labor values and
show that this dual approach to social accounting is indeed compatible with the ac-
counting practices on the level of firms as well as on the level of whole economies,
as provided by the United Nations’ (1968) System of National Accounts, not only
as far as pure joint production is concerned, but also in the treatment of fixed cap-
ital. Marx’s labor theory of value therefore performs quite well when compared in
the details of its accounting with the accounting practices of the conventional SNA,
its proper counterpart when comparisons have to be made. Prices of production by
contrast – which are just another accounting scheme – must prove their relevance
as centers of gravity of market prices theoretically as well as empirically and it may
happen here, if one follows and extends Farjoun and Machover’s (1983) arguments,
that Samuelson’s (1971) eraser must be applied to them as a suggested “relevant”
link between the sphere of production (labor values) and the sphere of competition
(actual prices). Theoretical as well as empirical relevance decides what type of ac-
counting concepts are of help in the analysis of capitalist reproduction and here it
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may happen that the law of decreasing labor content is much more to the point than
the law of equalizing profit rates in a globalized world with agricultural production,
manufacturing and industrial as well as consumer services production.

Summing up, we view Marx’s (1954) Capital, Vol. I as providing through ap-
propriate definition the essential categories and theoretical (internally consistent)
structure the underlying the analysis of competition discussed in Vol. III of “Das
Kapital”. This marxian System of National Accounts need not be transformed to
the interaction of price and quantities happening on the surface of the economy. In-
stead it must show its usefulness by its application to what happens empirically in
the monetary dynamics of a capitalist economy, the observed real phenomena, like
productivity increases as well as productivity slowdowns. Here it may be that the
Marxian definition of the rate of exploitation and its changes provides the essential
source for increases in the rate of profit, though there are of course secondary el-
ements – like changes in the turnover time of capital – that may lead to increases
in the observed average rate of profit as well. All concerned magnitudes – and the
input–output data they are based on – have to be understood as moving averages
(which may only be measured once a year). This latter fact should therefore not
lead us to the empirically false conclusion that we can use point-input point-output
models in the discussion of the baseline approaches to the labor theory of value.
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Chapter 3
Using Labor Values: Labor Productivity
and Technical Change

The law of decreasing labour-content is a prime example of a tendency that operates “behind
the backs” of the social protagonist, as though it were a law of nature. The fact that it nev-
ertheless does operate must be explained by the existence of some systematic connection
between the visible and the invisible - between price and labour-content. Without such a
“black law” (to use Rosa Luxemburg’s apt phrase) it is quite incomprehensible why in-
dividual actions motivated by considerations of price should in the long term result in a
systematic effect on labour-content (Farjoun and Machover 1983 p. 84).

3.1 Introduction

In this chapter we provide theoretical and empirical examples for the usefulness of
the Marxian Dual System Approach (MDSA) to the LTV, here from a very prag-
matic perspective, namely concerning their role to serve (in reciprocal form) as
measures of labor productivity which allow to discuss the sectoral implications of
technological change as we observe it happening now in more and more rapid terms.
Already Marx supplied such an interpretation of his measure of labor values, see for
example Marx’s (1954, p. 48), where he discusses the reciprocal relationship be-
tween labor values (total labor costs) and the measurement of labor productivity
in the production of commodities by means of commodities and labor. Moreover,
there are theoretical links between cost-reducing (profitable) technical changes and
decreases in the labor content of commodities that assume various forms, depending
on the type of technical change that is occurring.

We show in the next section of the chapter that conventional measures of labor
productivity, see United Nations (1993), can be very misleading in grasping what
is going on in the production side of the economy.1 Compared to these measures
the Marxian view to use labor values for this purpose in reciprocal form is shown
to be well-defined and superior. This indicates again that the strength of the la-
bor theory of value lies in its use as a system of national accounts and not as a
means to understand price formation in a capitalist economy (though total labor

1 See Flaschel (1983) for the original article (in German) on the arguments considered here in
Sect. 3.2.

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 3,
c� Springer-Verlag Berlin Heidelberg 2010
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costs are clearly an important – if not the central – component in prices as measured
by Keynes (1936) wage-units. In addition we will consider in Sect. 3.3 theorems that
reveal the consequences of cost-reducing technical change for labor values as well
as their interpretation as indexes of labor productivity. These propositions provide
theoretical explanations for the law of decreasing labor content, in addition to what
has been shown by Farjoun and Machover (1983) from a probabilistic point of view.
In this section we also provide some empirical applications of these propositions
and show that this law has much wider applicability then is suggested on the purely
theoretical level.

3.2 Labor Productivity. A Marxian Critique
of its Value-Added Decomposition

3.2.1 The Measurement of Labor Productivity

Measures of labor productivity play an important role as foundation for our under-
standing of the evolution of economies with respect to growth, employment, but
also inflation (income distribution) and international competitiveness. On the one
hand, one may ask how much additional labor is needed for a given change in final
demand, which leads to the idea of so-called employment multipliers or, in single
product systems, a measure of the total labor costs that can be imputed to the produc-
tion of single commodities.2 On the other hand, one may use real GDP per worker or
work-hour or – with respect to single branches of the economy – “real value added”
per work hour to measure the performance of (the sectors of) the economy.

In this section we show however that any measure of the latter type can be quite
misleading if it is based on constant price data (measured in terms of the prices of
some base year) and must be considered as inadequate if only a single deflator –
for example the GDP deflator – is used to measure the performance of single sec-
tors, besides its use to measure the inflation rate in a certain economy for a certain
time period, see the discussion of the CDSA in Chap. 2. The basic conclusion of
this section will be that measuring sectoral and total labor productivity should be
based on technological data as much as possible (though never totally, due to the
unavoidable existence of a certain degree of aggregation) and not on data that by
their very formulation explicitly employ a set of price expressions in addition. Mea-
sures of labor productivity are thus concepts that are to be based on input–output
calculations and analysis and not on the real value added concepts of the System of
National Accounts. These latter concepts at best measure purchasing power, but not
real output on the sectoral level as will be shown in this section.3

2 These two measures are identical for basic Leontief matrices, but can become very different for
more general systems of production, see Chap. 4.
3 Revisions of the United Nations’ System of National Accounts (SNA) have reintroduced the
conventional measures of labor productivity (in place of the indices proposed here and – in
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Such magnitudes have been criticized in the (German) literature as being even
devoid of content if they are obtained by means of the method of double deflat-
ing where outputs and inputs are deflated by their respective price deflators, see
for example Neubauer (1978), Meyer (1981). Neubauer (1978, p. 123) for example
writes:

Einen Nettoproduktionswert der doppelten Deflationierung zu unterwerfen heißt: Eine
Deflationierungsmethode, die nichts anderes leisten kann und soll als die Isolierung der ph-
ysischen Komponente aus den Veränderungen eines Wertaggregats, auf einen Wertausdruck
anzuwenden, der eine isolierbare physische Komponente nicht enthält. Das Resultat muß
ein gänzlich fiktives sein, dem es an Validität gebricht.

We fully agree with this negative judgment on the practices of actual statistical mea-
surement and will criticize the resulting measures of labor productivity similar to
what has been shown in Meyer (1981) for measures of sectoral net production, here
for the SNA concept of total labor productivity and its conventional disaggrega-
tion into measures of sectoral labor productivities. To do this we will reflect such
productivity measures from the perspective of the underlying input–output table.
Thereafter we will introduce our alternative measures of sectoral and economy-wide
labor productivity indices which by construction will represent purely technologi-
cal concepts as long as input–output coefficients can be interpreted in this way. We
will compare both concepts in their potential to grasp the consequences of final
demand changes and also technological changes. We will do this on the general
n-sectoral level as well as for two-sectoral numerical examples. They will in par-
ticular show that input–output oriented measures of labor productivity may show
(correctly) the opposite direction of change when compared with measures that are
based on sectoral “real net production values”.

We conclude this section by showing that this misleading disaggregation of real
GDP into sectoral components can be replaced by a decomposition that is based on
total labor costs (equal to the employment multipliers of input–output calculations if
only single product industries are considered) in a sound and intuitively understand-
able way. The conclusion will therefore be that input–output tables should always
be considered as an integral part of the System of National Accounts and should be
the point of reference for all concepts that try to provide “quantity measures” on the
macro or the meso-level of economic activity. In the case of our ADSA-based mea-
sure of labor productivity, see Chap. 2, we will close this chapter with the assertion
– based on some examples we have calculated for a 7 sectoral model of the German
economy – that labor values (the total labor costs of commodities) will tend to fall
in time, see also Farjoun and Machover (1983), implying rising labor productivity,
a fact that is not at all easily visible by just looking at the sequence of input–output
tables from which this sequence of labor values is constructed.

input–output methodology– by Richard Stone) and are therefore now proposing again measures
which this section seeks to show are devoid of empirical content.
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3.2.2 Input–Output Tables and Measures of Real Value Added

Point of departure for our reconsideration of measures of labor productivity that
are proposed in the literature is Table 3.1 and its representation of a standard and
single input–output table. It shows in the usual way the interindustry transactions
of a given economy for a particular year including final demands, total outputs and
values added for and in the n branches of the economy.4

Meyer’s (1981) article compares the methods of double and single or real value
deflating with regard to determining real gross production values and GDP. Accord-
ing to Neubauer (1978), Meyer’s method of real value calculations results in the
recommendation of a single deflator, e.g. of the Paasche type

pp D
X

i

fi .t/pi .t/

,
X

i

fi .t/pi .0/ (3.1)

The therewith deflated gross production values or real quantities of value added
Y �.t/ D F �.t/ then fulfill

Y �.t/ D Y.t/=pp D
X

i

Y �i .t/ D
X

i

fi .t/pi .0/ D F
�.t/: (3.2)

In contrast to this inflation adjusting of value added, the method of double de-
flating attempts to count everything in constant prices, i.e., with regard to Table 3.1
to work with prices p1.0/; :::; pn.0/ of the base period 0 instead of current prices
pi .t/. This method is problematic in that, initially, it provides no insight on how to
deal with the row of values added in the above Table 3.1.

This problem is then solved by applying the accounting consistency requirement
of the nominal input–output Table 3.1 also to its analogue in constant prices pi .0/.

Table 3.1 The standard form of an input–output table
Delivery from # to! Sector 1 . . . Sector n Final demand Row sum
Sector 1 x11.t/p1.t/ : : : x1n.t/p1.t/ f1.t/p1.t/ x1.t/p1.t/

� � � � �

� � � � �

� � � � �

Sector n xn1.t/pn.t/ : : : xnn.t/pn.t/ fn.t/pn.t/ xn.t/pn.t/

Value added Y1.t/ : : : Yn.t/ – Y.t/

Column sum x1.t/p1.t/ : : : xn.t/pn.t/ F.t/

4 We stress that the use of a price vector p.0/ of a base year 0 (in place of p.t/) is not sufficient
to get the physical input structure behind the nominal Table 3.1, but that these prices have to be
removed too in order to solve this task. Value added in base year prices thus remains a value
magnitude and is thus no volume measure that is independent of relative prices as it is commonly
assumed in the SNA.
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This means that the value added Y oj .t/ of the double deflating method is simply the
value added that would have resulted if the prices in Table 3.1 had remained constant
after their base year determination. It is obvious from (3.2) that in this aggregate case
the identity

X

i

Y �i .t/ D Y
�.t/ D Y 0.t/ D

X

i

Y 0i .t/

must apply when both methods are compared. It is however not possible to transfer
these results to the sectorial quantities of income Y �i .t/ and Y oi .t/.

This suggests that fictitious (price deflated) quantities of income, Y oj .t/, which do
not satisfy any argument of real purchasing power, have no economic content. This
has also been demonstrated by Neubauer (1978) and Meyer (1981) by a different set
of arguments.

As already carried out introductorily, there are meaningful economic structural
coefficients, e.g. macroeconomic labor productivity, the content of which is closely
related to the intention behind the above mentioned values Y oj .t/. Following Stobbe
(1980, p. 313/335) it is possible to decompose the value of macroeconomic labor
productivity �o.t/ in the following way:

�o.t/ D Y o.t/=L.t/ D
X

j

.Lj .t/=L.t// � .Y
o
j .t/=Lj .t//

D
X

j

gj .t/�
o
j .t/;

X

j

gj .t/ D 1 (3.3)

Here, L.t/ and Lj .t/ indicate the employed work hours for the entire economy
and the sector j; respectively.

Following the two authors mentioned above, one might expect that criticism of
the gross production value Y oj .t/, in constant prices, can be extended to the sec-
toral labor productivity indices �oj .t/. However, Neubauer and Meyer give only
short or implicit evidence to support such a view. In contrast, Härtel (1981, S. 190/1)
holds the view that value added in constant prices as a “quasi-quantity-aggregate” is,
especially in this case, a construct rich in content, answering correctly the question
of which sectors can be accredited with the rise of macroeconomic labor productiv-
ity. Therefore, it is of interest to further reflect on such aspects so far only briefly
deduced from the work of Neubauer and Meyer.

It is possible to approach a critical examination of the above coefficient (3.3) of
labor productivity of the system of national accounts and its structure .�o1 ; :::; �

o
n/

due to the following circumstances. On the one hand, distinct from the view of
“gross production value in constant prices,” labor productivity can supposedly be
understood as a well-defined technological concept. On the other hand, given that
the volume-oriented (double) deflation of the input–output Table 3.1 - neglecting the
row on values added - is no doubt meaningful, we have an instrument to examine
the relation of labor productivity to technology (see Sect. 3.2.1). To do so, one has
to make use of the quantitative input–output structure which has been formulated
above. Furthermore, input–output calculations which are based on such structures,
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have led to the separate term “sectoral labor productivity” which we have to compare
with the concepts introduced above.

Remark. We remark briefly that we will considered later on and in later chapters
expressions such as

Double deflation: p2.0/C=L2 as well as Single deflation: p2.t/C=L2=pp

as problematic expressions as far as the measurement of labor productivity in the
consumption good sector C (sector 2) is concerned, in an economy where the net
output consists of investment goods I and consumption goods C in such a two-
sector framework. Since the single deflation measure is clearly not suitable for
such a measurement we will refrain in the following from considering this deflation
method any further as far as the determination of volume or productivity indices is
concerned.

3.2.3 Labor Values as Measures of Labor Productivity

It is common practice in the technological evaluation of input–output tables to
choose the units of n produced commodities in a way that one can assume p.0/ D
.p1.0/; :::; pn.0// D .1; :::; 1/ (with regard to the base period), i.e., this base price
vector is set equal to the summation vector e0. In the following, we denote diagonal
matrices, which have been composed with the vector e as the diagonal, as I D Oe,
the unity matrix. It is then possible, to express Table 3.1, double or row-wise “price
deflated” in matrix notation as shown in Table 3.2. where 0 denotes – as usual –
row vectors instead of column vectors.5 It is also common practice in input–output-
analysis to transform the matrix of intermediate inputs X into the so-called matrix
of input coefficients A D X Ox�1. This is done - as shown above - by dividing all
columns (processes) in X by the corresponding output value xj . Accordingly, we
also get ` D l Ox�1 with regard to the vector of the labor inputs l D .L1; :::; Ln/. In
the following we will abstain from the dating t — as already done – unless needed
for clarification.

Table 3.2 Elementary
input–output table in matrix
notation

n 1 : : : n

1
�

� X f x

�

n

yo
0

- Y o

x0 F o -

5 We use this symbol if the original vector was a column vector, but stress that prices, etc. are
always given as rows (without any 0-superscript.
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The macro-identity Y o D p.0/f D F o which is behind Table 3.2 can be made
explicit with help of the above symbols as follows

Y o D yo
0

e D e0.I � A/x D e0f D F o (3.4)

It can be reasonably completed by the following identity which is obvious by
definition of the vector v D `.I � A/�1 but important nevertheless

L D le D `x D `.I � A/�1f D vf (3.5)

Vectors of the type v are commonly used in input–output-analysis. They are applied
to acquire indirect effects, here with regard to the matrix of intermediate inputs; the
vector v then represents in particular labor time spent directly or indirectly in the
production of the n types of commodities. Equation (3.5) thus simply shows that
labor time vf that is directly and indirectly necessary to manufacture the net product
f is equal to the total employment (L). The components vi of the vector v are
also referred to as system measures of labor productivity in sector i , when they are
expressed in a reciprocal form �mi D 1=vi .

We will show that such a denomination indeed makes sense. It will allow us
to detect and to correct the frailty of (3.2), i.e., the decomposition of macroeco-
nomic labor productivity in terms of the conventional system of national accounts.
In order to avoid problems of interpretation, it is useful and common to understand
the structural coefficients A; ` added to Table 3.2 as parameters of a linear technol-
ogy. The equations are then valid for all nonnegative net product vectors f and the
corresponding levels of activity x, without the need to consider them as average
expressions.

We have now outlined the necessary elements needed to analyze increases of
labor productivity within the frame of the given input–output structure.

Definition 3.1. We say that labor productivity has increased with regard to com-
modity i if an increase of the net product f by one unit of commodity i demands
less additional labor with regard to this commodity than was necessary in the base
period, i.e. formally:6

For: li .t/ D `.t/xi .t/; xi .t/ D .I � A.t//
�1ei there holds: li .t/ < li .0/:

Note that the original net product f is irrelevant in this comparison due to the
supposed linearity of the technological relationships. Secondly, we say that the labor
productivity has increased with regard to the total input–output system if it has not
decreased for any i D 1; :::; n and if an increase is observed for at least one i 2
f1; :::; ng.

6 ei D .0; :::; 1; :::; 0/0 the ith unity base vector.
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Proposition 3.2. The first and the second formulation in Definition 3.1 are
equivalent to: vi .t/ < vi .0/ and v.t/ � v.0/; respectively, where � means semipos-
itivity, i.e., the case of v.t/ D v.0/ is excluded there.

The proof of this proposition is evident, since li .t/ D v.t/0ei D vi .t/ applies due
to (3.5). It demonstrates that 1=vi .t/ can be meaningfully understood as a system
indicator of labor productivity with regard to the production of commodity i though
with the well-known disadvantage that it is not possible to deduce vi .t/ simply and
solely from data that characterize sector i .

It seems to be possible to avoid this “disadvantage” by starting instead from the
following measure of the System of National Accounts, namely the measures of
labor productivity �oj D Y oj =Lj obtained from (3.2), instead of the input–output-
theoretical sectoral measure �mj D 1=vj . Yet, the advantage of using data from
sector j alone to define �oj is only apparently an advantage: the dependence on the
other sectors is solely not as evidently as it is the case of the definition of vector v:
It is indeed not possible to formulate and to interpret value added Yj – as well as
value added in constant prices Y oj – without reference to a price system (even if
this price system does not appear explicitly because of the base year assumption
p.0/ D e). The employed prices thus only reveal the dependence on the data of
the other sectors – in difference to 1=vj – and does so in a way that depends in an
unexplained manner on the actual institutional and market specifications of the base
year t D 0. The distinct technological foundation which characterizes the indicators
vj is here absolutely missing. Therefore, it cannot be agreed upon that the increase
of gross production in constant prices per labor hour �oj correctly identifies which
sectors were responsible for the macroeconomic increase of total labor productivity
of the SNA (as Härtel (1981, p. 191) argues and as it is intended by (3.3)).7

We show below that attempting to identify such sectors cannot be expected to
make sense in general. With regard to a basic comparison of the indicators �m D
1=vi and �oj the following proposition however applies:

Proposition 3.3. The identity �oj D 1=vj ; j D 1; :::; n applies iff all sectors have
the same (uniform) labor productivity indexes �o1 D ::: D �on D �o. Deviations
between these two productivity indicators therefore must be examined and estimated
in relation to sectoral productivity differences.8

The proof of Proposition 3.3 also is very simple. Uniform labor productivity �o

immediately signifies that e0� e0A D �o` has to be fulfilled. It follows .1=�o/e0 D
`.I � A/�1 D v:

Proposition 3.4. Consider as given with regard to the base and the actual time pe-
riod the same vector of final demands f (which furthermore is assumed for simplicity
to be strictly positive).

7 Note here again that the indexes vi are commodity oriented and the measures �oj industry oriented.
8 The net product transformation curve exhibits in this case slope �1:
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1. �o.t/ > �o.0/ follows from v.t/ � v.0/, i.e., the technologically progressive
changes as described in the second part of the definition of this subsection imply
a corresponding reaction of the conventional measure (3.4) of macroeconomic
labor productivity.

2. �o.t/ > �o.0/ implies v.t/0f < v.0/0f , i.e., the expenditure of human labor for
the production of the given vector of final demand f has necessarily decreased
with this change in technology.

To prove this proposition it suffices to remember that �o.t/ can be defined by
p.0/0f=L D e0f=L due to the result in sect. 3.2.2 and that the following applies
due to (3.5): L D vf . The change in �o can thus completely be ascribed to changes
of the input–output-theoretical measure of labor productivity.

Figures 3.1 and 3.2 illustrate the results of Proposition 3.4 focusing on the
case n D 2. They furthermore show the technological relations addressed in the

t=0 t=1

Fig. 3.1 v.1/ < v.o/ ) �o.1/ > �o.0/ W. The case of an unambiguous increase of labor pro-
ductivity and its impact on �o based on physical transformation curves (net production lines):
v0f D L D 1)
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t=0t=1

Fig. 3.2 �.1/o > �o.0/) v.1/f < v.0/f D 1 W. The case of an increase of labor productivity
that is depending on final demand

definitions and in Proposition 3.2. Note that the defining equation of labor values or
total labor costs v1f1 C v2f2 D L implies as net product transformation curve the
linear equation: f2 D

L�v1f1
v2

.
It can be stated as a result - at the level of macroeconomic aggregate relationships

of the usual SNA measures - that macroeconomic labor productivity and the vector
measures of labor productivities, which have been obtained with the help of input–
output-accounting, do not act contrariwise under certain conditions.

In the following subsection we will show that this need not be the case on the
sectorial level and will identify there which conclusions can be drawn from this
result.
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3.2.4 Notes on Technological Change

We will now consider the simple example of a two-sector-economy as described in
Table 3.3 where process 1 is subject to technological change between time t D 0

and t D 1.9

The following now applies to this technical change:

1. The cost of production of sector 1 decrease from 0.95 to 0.85 (per unit) i.e., the
technical change is profitable.

2. The value added in constant prices per unit of labor, i.e., labor productivity in
terms of the SNA measure in Sect. 3.1 increases from 1.33... to 1.6 (while the
labor productivity of Sect. 3.2, of course, remains constant: 2.66).

3. The indicators of labor productivity of the input–output analysis .�m1 ; �
m
2 / —

obtained from vAC ` D v – decrease from approx. (2.02, 2.30) to (1.85, 2.18),
i.e., the considered technical change is of regressive type.

4. Therefore, the labor time which is necessary for the production of a certain net
product f , has to increase when changing from t=0 to t=1, e.g. in the case of
f D .10; 5/0 from approximately L D 7:19 to L D 7:71.

This means graphically that the line of net production, i.e., the set of combi-
nations of both commodities, which can be produced alternatively as net output
by the given technology, given the amount of employment L.D 1/, has to shift
towards the origin, as Fig. 3.3 illustrates. The vectors f 1 and f 2 in Fig. 3.3 further-
more demonstrate with regard to the dashed budget line pf 1 D pf 2 D const:,
that there can be cases in which vf 1 D vf 2 D 1 holds true, i.e., the neces-
sary labor time L remains constant for this change in final demand, and where
e0f 2 D p.0/f 2 > p.0/f 1 D e0f 1 is the case, where labor productivity in terms
of the SNA has increased. It follows that close to these situations vectors of final
demand can be found, with regard to which the necessary labor time and the labor
productivity in terms of the SNA behave “perversely” to each other. This leads to
the question to which extent changes in the structure of final demand should be re-
lated at all to changes of macroeconomic labor productivity. We will deal with this
question in more detail in the next, concluding subsection.

Table 3.3 A two-sector economy with profitable
C(apital)S(aving)-L(abor)U(sing) technological change
(based on constant prices data p.0/ D e0;w D 1)
Structuren Period t D 0 t D 1

Matrix of intermediate input A 0 0:4

0:8 0:2

0:2 0:4

0:4 0:2

Inputs of labor ` 0:15 0:15 0:25 0:15

9 Note that the terms Capital-Saving/Using here (and in the following) only apply to the aggregate
value of intermediate inputs and are thus much less restrictive concepts than the ones used in the
theorems of the next section.
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t=0
t=1

Fig. 3.3 Increase of overall labor productivity �o in the case of a simultaneous decrease of la-
bor productivity indices �m1 ; �

m
2 (L=1 being constant, while final demand f has changed from

f 1! f 2)

Table 3.4 A two-sector economy with profitable CU-LS
technological change (based on constant prices p.0/ D
e0;w D 1)
Structure n Period t D 0 t = 1
Matrix of intermediate inputs A 0:1 0:3

0:4 0:3

0:44 0:3

0:1 0:3

Labor inputs ` 0:4 0:05 0:32 0:05

We have presented in Table 3.3 an example in which capital-saving, labor-using
technical change has taken place. It has still to be examined if the opposite direction
of substitution in which labor is replaced by capital, also allows the same opposition
between the development of labor productivity of the SNA and of the input–output
analysis. The example in Table 3.4 shows that this is indeed the case.

This technical change is also profitable, since the unit costs (in the first sector)
decrease from 0.9 to 0.86. With regard to sectoral labor productivity �o1 and �o2 the
following applies in terms of the SNA measure:

�o1 .1/ � 1:44 > �
o
1 .0/ D 1:25; �o2 .1/ D �

o
2 .0/ D 8;
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i.e., as in the first example, there is an increase with regard to sector 1. On the other
hand, we get with regard to the indexes of labor productivity �m1 D 1=v1; �m2 D
1=v2 of input–output analysis contrary to the just stated increase of productivity:

�m1 .1/ � 1:58 < �
m
1 .0/ � 1:70 and

�m1 .1/ � 3:04 < �
m
1 .0/ � 3:09:

and thus again an unambiguously regressive type of technical change.
This example is even more drastic compared to the first example (Table 3.3),

since it shows, that the conventional indicators of labor productivity in a narrow and
a broad sense - the reciprocal values of the necessary labor time per output unit 1=`i
as well as the value added in constant prices per labor hour - can be monotonically
changing in a direction which contradicts the direction of change of the sectoral la-
bor productivities of input–output-analysis (which is monotonically decreasing). It
holds, however, with regard to Figs. 3.1–3.3 that the latter constitute the coefficients,
which reflect the factual technological changes that have been taking place. There-
fore we have to state as a result of this section that the sectoral labor productivities
of the SNA are no suitable structural coefficients for estimating to which sectors an
increase of the macroeconomic labor productivity has to be assigned. The reader is
referred to Sect. 3.3.5 for further observations on this matter, in particular to a two
sectoral example of the atheoretical character of the measures �oj :

3.2.5 Disaggregating Aggregate Measures of Labor Productivity

We have just seen that the decomposition (3.3) of the macroeconomic coefficient
of labor productivity as conventionally defined in the SNA can be very mislead-
ing. This holds because this procedure is based on profit-like balances that depend
on income distributions instead on technological gains and necessary labor time.
These balances are in addition suspect, since they have been acquired by an arbi-
trarily given price structure judged from the current point of view. It follows that the
effects of labor effort versus productivity structure as discussed in Stobbe (1980,
p. 314) do not meet the necessary standards from the viewpoint of measuring labor
productivity. We have therefore to ask whether it is possible to find a decomposition
of the concept of average labor productivity, which is based on, as an alternative to
the indices �oj , the measures of technological labor productivity of the SNA? This
is indeed possible and can be done in the following simple way.

We know – due to the reasoning in Sect. 3.2.2 – that the there discussed methods
of deflating always lead to the same result with regard of the aggregate Y(t) D
F(t), i.e.

Y o.t/ D
X

j

Y oj .t/ D Y
�.t/ D

X

i

pi .0/fi .t/ (3.6)
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This formula shows that the value-added oriented decomposition used in (3.3)
may have been the wrong way since we cannot expect a quantitative structure in the
background of an income magnitude as was stressed several times. Such a structure
is only existent in the last term of (3.6), i.e., referring to the vector of final demand.
As a net product of the given input–output system, it is clearly of physical nature,
but – on the other hand – it does not give rise to an obvious decomposition which
allows an imputation to the different sectors in a way such that production outcomes
per labor unit can be determined on a sectoral level. This can only be done with the
help of the formulae (3.4), (3.5). Applied to �o D Y o=L, they deliver with regard
to the new point of reference, the vector of final demand f :

�o D Y o=L D e0.I � A/x=`x D e0f=vf (3.7)

Note here the underlying assumption p.0/ D e0: There follows from (3.7) in com-
parison to (3.3) by means of the weights Mgi D vifi=vf;which express the labor time
directly or indirectly used in the production of the corresponding components of fi-
nal demand as part of the totally expanded labor hours, the decomposing relationship

�o D
X

i

Mgi .�
m
i / (3.8)

We regard this structuring of macroeconomic labor productivity �o; as a weighted
arithmetic mean of the sectoral labor productivities in terms of SNA, as superior to
its conventional pendant (3.3) due to the arguments in Sect. 3.3.3 and the there indi-
cated content of the latter indicators. Yet, we will not conceal here that our opinion
is more based on the weakness of (3.3) as analyzed in sects. 3.3.3 and 3.3.4 than
on an evidence of the validity of (3.8), since this evidence has still to be provided
with regard to the coefficients vi in spite of the existing theoretical and empirical
explorations. This question is however left for future research here.

Instead, we will briefly deal with the question whether the initial measure �o

itself is problematic and would thus need to be re-examined in view of its structure
as reformulated in (3.8). Does it really make sense to aggregate the (meaningful)
indicators �mi D 1=vi in the form of the one-dimensional mean value as in (3.8)?

An example: If v1=v2 > p1.0/=p2.0/ D 1 holds, a movement along the net prod-
uct line L D 1 towards the left is accounted for as an increase of macroeconomic
labor productivity by the measure �o; on the basis of a given linear technologyA; `:.
This situation is illustrated in Fig. 3.4.

From our point of view, one should not speak of an increase of macroeconomic
labor productivity in the case of a pure change of the structure of final demand (of the
above kind). A first reason for this is given by the fact that in empirical examinations
of the development of aggregates like L.t/ D v.t/f .t/ in general a splitting-up is
done in a term conditional on technology and in a term which is referring to final
demand as for example in

L.t/ � L.0/ D .v.t/ � v.0//f .0/C v.t/.f .t/ � f .0// (3.9)
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Fig. 3.4 Two vectors of final demand, which demand the same labor input, but for which �o2 D
e0f 2=L < �o1 D e0f 1=L holds true

These measures should allow to differentiate changes in factor inputs due to
changes in consumer habits from changes that are due to technological change. How
is it possible to describe this reduction of the change L.t/�L.0/ to its technology-
dependent part .v.t/ � v.0//f .0/ (= 0 in the above example) in the case of the
measure �o?

As the above figure shows, the increase of productivity stated there with regard
to �o has to be assigned to the fact, that the price structure and the structure of the
indicators of labor productivity of the input–output calculation fall apart. This points
to the way how the measure �o could also be improved in its present form. First, we
have to state, that the above presentation (3.8) of the indicator �o:

�o D
X

i

pi .0/fi .t/
.X

i

vi .t/fi .t/ (3.10)

shows a significant arbitrariness, i.e., its price structure p(0) which is not at all un-
derstood in its underlying causes and which thus turns out to be completely arbitrary.
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Here, the question occurs whether p.0/ should be replaced by the indicators v.0/
provided at time 0 with a clearly defined content, i.e., succinctly, whether one un-
consciously refers to a Paasche-index of the evaluation scheme v when using �o.
A correction could therefore be done in the following way

M�o D
X

i

vi .0/fi .t/

,
X

i

vi .t/fi .t/ (3.11)

This index would express by its increase that the labor input to produce today’s
net product f has decreased in relation to the base period. It would have the ad-
vantage to be homogeneous with regard to dimensions and furthermore to be really
price deflated. It avoids a deficit in (3.8) which is hidden due to a clever choice of
physical units, i.e., that it would have been necessary to present them in the form

�o D
X

i

Mgi Œpi .0/=vi .t/� (3.12)

It again appears that two theoretical non-related, dimensionally different indica-
tors pi .0/ and vi .t/ are related to each other in order to get the mean value �o.

Therefore, our concluding proposal here is to deliver the task of productivity
measurement only to the theoretically well-founded, though at present still afflicted
with several severe practical problems, vectorial measure v, or to test it further with
regard to this task. Besides the above Paasche-index other indices of labor produc-
tivity are noteworthy in addition, such as one of the following Laspeyres-type

Q�o D
X

i

vi .0/fi .0/

,
X

i

vi .t/fi .0/ D v.0/f .0/=v.t/f .0/

In such a re-orientation of the macroeconomic measure of labor productivity it
need not necessarily follow that measures of type (3.10) have become completely
irrelevant. First, it would be necessary to clarify whether such measures may be
suitable approximations for their pure theoretical forms (3.11) with good reasons,
in spite of the objections raised and in spite of their inhomogeneity with regard to
dimensions. This means, however, that one has to give the (often made measure-
ments of the indicators of labor productivity of the input–output calculations within
the theory of allocation) a price-theoretical fundament which is still mainly missing.

In spite of such missing allocation-theoretical reflections of the input- output
measures vi it can already be stressed here that their applicability is by no means
limited to the assumptions of Table 3.3, see, e.g., Gupta and Steedman (1971) with
regard to the treatment of fixed capital and imports as well as Flaschel (1980) with
regard to procedures that can be applied when joint production is involved.

The technological aspect of measuring labor productivity by means of the indi-
cators vj as examined in this section is therefore not subject to principal definitional
barriers. This may be regarded as a further argument for leaving the judgement of
the development of labor productivity to an input–output calculation as an integral
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part of the System of National Accounts. The conventional price deflated measures
of value added are neither necessary nor meaningful for this purpose. This also
means that the second theoretical aspect of our analysis of labor productivity which
we have mentioned earlier cannot be associated with it without problems. It should
therefore be excluded from this discussion.

3.2.6 A Summing Up

We are now in the position to compare the following three per capita expressions
with each other with respect to their economic content on the macroeconomic as
well as on the microeconomic level (where they are decomposed into their sectoral
components).

Y o.t/

L.t/
D
X

j

Lj .t/

L.t/
�
Y oj .t/

Lj .t/
D
X

j

vj .t/fj .t/
v.t/f .t/

�
pj .0/

vj .t/
(3.13)

Yw.t/

L.t/
D

Y n.t/

wL.t/
D
X

j

vj .t/fj .t/
v.t/f .t/

�
pwj .t/

vj .t/
D
X

j

vj .t/fj .t/
v.t/f .t/

�
pj .t/

wvj .t/
(3.14)

L.t/

L.0/
D

P
j vj .t/fj .t/P
j vj .0/fj .t/

D
X

j

vj .0/fj .t/
v.0/f .t/

�
vj .t/
vj .0/

D
vj .0/fj .t/
v.0/f .t/

X

j

�
�mj .0/

�mj .t/
(3.15)

We consider (3.13) as a meaningless decomposition of GDP at constant prices
and also stress that this average is more of an income – expenditure type than of
a volume index. In place of this virtual income expression we would propose to
deflate National Income (as in Keynes’ (1936) General Theory) by means of the
wage unit as in expression (3.14) which has moreover the advantage that it does not
have a trend in the very long run (since it is the inverse of the wage share in national
income). It can be decomposed – with relative labor costs as weights – into a sum
of ratios representing the relation of labor commanded prices to total labor costs for
the n goods of the considered economy, respectively (the amounts of hours bought
by a particular commodity divided by labor embodied in this commodity). As this
measure is formulated it represents an income distribution oriented representation of
what is going on in an actual economy and thus not a measure of labor productivity
in the technological sense of this word. Such a concept can better be represented by
the ratio considered in (3.15), the labor time needed in t to produce a given vector of
net output f as compared to the time the technology at time 0would have needed for
this vector of final demands. The weights needed in this case are the relative value
magnitudes at time 0 needed for the given net output vector and they are applied to
the relative labor values of the n commodities between period t and period 0:

We thus propose the second measure as measure of per capita real income and the
third as measure of technological progress in terms of labor productivity. In macro-
models of the wage-price spiral – see for example Flaschel and Krolzig (2006) – one
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could however employ the growth rate of measure 1 as proxy for the growth in la-
bor productivity (based on Proposition 3.6 and due to its representation in terms of
final demand). Taylor type interest rate i policy rules can in this context be reformu-
lated as

i D ˛iw. Pw=w � const/C ˛iy.Yw � NYw/

They then are concentrated on wage inflation and the wage share which in a closed
economy is indeed sufficient to control inflation. There is thus also here no need to
use base year prices to deflate output to its real value and to calculate and employ
the inflation rate for commodity prices in order to control inflationary pressure in
the economy. If needed one can of course add the unemployment rate gap U � NU as
a further measure such a monetary policy is responding to.

3.3 Technical Change and the Law of Decreasing
Labor Content

In input output theories of prices and profit the notion of labour- content can be defined,
and the law can certainly be formulated. But it cannot be deduced or explained, because in
these theories there is no general systematic connection between labour-content and price
(Farjoun and Machover, 1983, p. 141).

It is one purpose of the following pages to show that there is some theoretical
and deterministic connection in the relationship between price and labor content
which adds insights to the approach chosen by Farjoun and Machover, but does not
question the probabilistic framework they have chosen in their book.

3.3.1 Basic Propositions on Price-Value Relationships

We will only briefly consider here the case of joint production, see the following
chapters for more details, but will concentrate in the following propositions again
on the case of a simple (single) input–output matrixA and thus on the case where the
output matrix B D I is the identity matrix. We will now study the relationships be-
tween prices pi ; and firm’s profitability, and labor values vi and labor productivity,
and different forms of technical change, so called capital–using labor–saving (CU–
LS) technical change and capital–saving labor–using (CS–LU) technical change.
One typical result, in fact the one that may be characteristic of many phases in
the evolution of capitalism will be that CU–LS technical change that is profitable
will increase labor productiveness �mi D 1=vi at least in certain sectors, i.e., will
decrease the total labor costs of producing commodities i , but there still remain
CU–LS technical changes that have this latter property, but are not profitable and
thus are not implemented in a capitalistic economy.
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We will consider such theorems for simplicity for matrices A that are not only
productive, see Chap. 1, but also indecomposable and would thus get that the above
proposition will extend to all commodities i , i.e., the measures �mi will increase for
all i . We assume for simplicity again also l D .l1; : : : ; ln/ > 0 for the direct labor
used up in each sector and thus know that labor values must all be positive, due to

v D vAC l � l > 0:

In the preceding section we have moreover already provided arguments that �mi D
1=vi is indeed the only sensible measure of labor productivity in the considered
environment, since 1=li is too limited as a measure for labor productivity in the pro-
duction of commodity i and since the conventional measures of labor productivity
of the System of National Accounts, where the trend in the price level is eliminated
or where constant prices are the basis of their calculation of real value added, do not
provide workable alternatives to the measures �mi .10

Definition 3.5.

1. Technical change .A; l/ 7! .A�; l�/ is profitable iff at initially given prices
(where each sector is assumed to earn a positive rate of profit) we have for the
vector pw of prices in terms of labor commanded:

pwAC l � pwA
� C l�

2. Technical change .A; l/ 7! .A�; l�/ is progressive iff

v D vAC l � v�A� C l� D v�:

3. Technical change .A; l/ 7! .A�; l�/ is of type CU–LS, CS–LU and CS–LS,
respectively if

A � A�; l � l�I A � A�; l � l�I A � A�; l � l�;

respectively.

Proposition 3.6.11

1. All CU–LS technical changes which are profitable are progressive, but there are
CU–LS progressive changes which are not profitable.

2. All CS–LU technical changes which are progressive are profitable, but there are
CS–LU changes which are profitable, but not progressive.

3. Technical changes of type CS–LS are always profitable and progressive.

10 The following is based on Roemer (1977), see also Roemer (1977, 1981).
11 Note here that the assumptions in this propositions are much more restrictive than what was
considered as technical change in some of the examples in the preceding section.
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Remark. We thus have that profitable CU–LS changes do not fully exploit the po-
tential of technical change to increase the labor productivity indices �mi , while there
can be profitable CS-LU changes which may decrease the labor productivity indices
�mi . Of course CS–LS changes are always welcome to capitalist firms and are also
always increasing labor productiveness �mi ; i D 1; : : : ; n.

Note that technical change here occurs only in quantitative terms and not in terms
of qualitative product changes. Note also that we at present only consider capital
consumed and not capital advanced. The validity of the above proposition is thus
still fairly limited, though its conclusions become more and more likely the closer
total labor costs resemble actual market prices in their structure (in the limit, the
above propositions indeed provide conditions that are necessary and sufficient).

We now present proofs of the above three assertions which to some extent mirror
economic intuition and thus can be read also from this perspective.

Proofs.

Assertion 1. We know from work on uniform rates of profit (which we do not con-
sider in this chapter, unless it is explicitly stated) that 0 < v < pw holds true, i.e.,
labor values are always smaller than prices of production measured in terms of the
wage–unit. This assertion however also holds for all (profitable) price systems pw

which fulfill
pwAC l < pw;

since the iteration12

pw.t C 1/ D pw.t/AC l < pw.t/;

t D 0; 1; 2; : : : ; pw.0/ D pw provides us with a sequence of positive vectors
which is bounded from below by zero and monotonically decreasing and thus con-
verging to our definition of labor values:

pw.1/ D pw.1/AC l D v:

Therefore v < pw for all actual price systems pw in terms of labor commanded
that allow for positive profits pw�.pwACl/ in all sectors. Labor commanded prices
are thus a useful upper estimate for total embodied labor costs under quite general
conditions.

This proposition is now applied to the change A � A�; l � l� which fulfills

pw.A
� � A/ � .l � l�/ � 0

with the terms in brackets both being nonnegative due to the above assumptions.
Due to v < pw we therefrom get

v.A� � A/ � .l � l�/ � 0

12 Note that the consideration of this sequence bears some relationships with the TSSI system
considered in Chap. 2.
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and thus13

vA� C l� � vAC l D v:

By the recursive application of this inequality we then again get:

v.t C 1/ D v.t/A� C l� � v.t/

with v.0/ D v and for t D 0; 1; 2; 3; : : :. This sequence is again bounded from below
and monotonically decreasing and thus converges to the vector

v.1/A� C l� D v.1/ D v�

the vector of labor values of the technology A�; l�. This proves assertion 1., when
account is taken of the fact that � must lead to < in the case of indecomposable
A’s and l > 0. It also shows that there may be situations with v� < v; A� � A; l �
l� � 0 which are not profitable when judged from the perspective of the initial
price structure pw > pwAC l , which is not proportional to v in general.

Assertion 2. We now have

A � A� � 0; l� � l � 0; v > v�

and thus
v D vAC l > v�A� C l� D v�:

Without loss of generality we assume that technical change only occurs in
sector 1. We thus have vAj C lj D vA�j C l

�
j for all j > 1. Assume now that

vA1 C l1 < vA�1 C l
�
1 (3.16)

would hold true (which we want to show not to be possible). Note here that, so far,
we only know that

vA1 C l1 > v�A�1 C l
�
1

must hold true, i.e., labor costs at initial labor values are not yet known to decrease.
If (3.16) holds, we can find however:

MA�1 < A
�
1 ;
Ml�1 < l

�
1 s.t. vA1 C l1 D v MA�1 C Ml

�
1

i.e.
vAC l D v MA� C Ml�

13 Note that this condition is all that we need to get the main conclusion of the proposition, i.e.,
the new technology must be labor value saving with respect to the initially given system of labor
values. This enlarges considerably the set of technological changes that allow for the asserted
result.
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must hold true, implying for the labor values of the system MA�; Ml� the result Mv� D v.
But A�; l� was already progressive and MA�; Ml� is therefore progressive, too, imply-
ing Mv� < v, i.e., a contradiction.

Therefore, we must have vA1 C l1 > vA�1 C l
�
1 (since 0 would imply a contra-

diction again). We therefore get:

vAC l � vA� C l�; i.e.
v.A � A�/ � .l� � l/ � 0:

But since v < pw; A � A
� � 0 holds true we finally get

pw.A � A
�/ � .l� � l/ � 0 or

pwAC l � pwA
� C l�;

with strict inequalities again following from our assumptions on the matrices
A;A�; l; l�. The change is therefore profitable with respect to initially given la-
bor commanded prices pw. Again, due to the presented inequalities, there is room
for profitable CS–LU changes which are not progressive and which therefore allow
for the possibility of technical change undertaken by capitalist firms that does not
increase labor productivity unambiguously. Periods, where capital–saving labor–
using technical change occurs may therefore be plagued by productivity decreases.

Assertion 3. Obvious ut

In an economy without joint production, fixed capital and a single primary input we
thus have some systematic relationships between certain forms of technical change,
profitability driven substitutions in production and the total labor costs that charac-
terize the production of the considered n commodities. In particular, the conflict over
income distribution may introduce a bias into the direction of technological change
(towards CU-LS changes if CS-LS changes are not available) that may explain to
some extent the significant increases in labor productivity observed for capitalist
market economies at least on the aggregate level.

3.3.2 Notes on the Law of Decreasing Labor Content

Farjoun and Machover’s (1983) prove in their Chap. 7 in probabilistic terms that
the law of decreasing labor content is implied as a cumulative result of a sequence
of technological changes of physical inputs that reduce the costs of these inputs
(assuming a given labor input per commodity as a side condition). They are therefore
considering capital-saving (and labor-preserving) technical change where capital-
saving is now only in the form of the aggregate price of the inputs consumed in
production. As we understand their argument this however makes a statement of the
following type

pwA
� � pwA) vA� � vA
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and not really one on the new labor content vector v� to be determined from the
matrix equation v� D v�A� C l: Yet as our proofs in the preceding subsection
shows, one simply has to iterate then the sequence of decreasing vectors vk

vkC1 D vkA� C l; v0 D v D vAC l ! v� D v�A� C l

in order to get the result that v� � v must hold true (with strict inequalities in the
case of indecomposable matrices and with somewhat weaker formulations in the
case of existence of non-basic commodities).

They therefore provide a fairly strong result on the law of decreasing labor con-
tent, allowing significant deviations from the purely physical formulation of the
definition of capital-using in the preceding subsection. This represent a first im-
portant step that takes from physical inequalities to sectoral price aggregates. The
assumption needed for the above sequence to work as suggested in fact only is that
pw.A

� � A/ � 0 implies v.A� � A/ � 0 which always holds when pw are prices
of production and when the composition of capital is uniform across sectors (since
values are then proportional to prices measured in terms of the wage unit). Their
law is therefore based on assumptions concerning probability distributions of pw

(relative to v) and a sequence of changes of the type described above (and not just
the one step change there considered), by which they can deduce the probability of
the statement: pw.A

� � A/ � 0 implies v.A� � A/ � 0.
However, technical change need not be of their capital-saving labor time pre-

serving type, but may be of capital-saving labor-using type (in the service sector)
or even – in particular in the case of fixed capital consumption (depreciation of ma-
chines over a certain lifespan) – be of capital-using labor-saving type. In order to
approach a brief discussion of these cases let us first consider as alternative to the
above labor-saving capital-preserving technical change (where the matrix A is now
kept constant. This immediately gives rise to always falling labor content by con-
sidering the above sequence under this new assumption, since l� � l � 0 implies
vACl� � v. The case CS�LS (in terms of prices should therefore strengthen their
argument and not create new problems for their formulation of the law of decreasing
labor content.

But what happens in the case CS � LU if we go from the detailed physical
inequalities of the preceding subsection to the consideration of sectoral price aggre-
gates in the measurement of capital-saving? In this case it is no longer sufficient to
consider only the input matrix A: We now need the condition

pwA
� C l� � pwAC l ) vA� C l� � v D vAC l

in order to make use again of the proof strategies of the preceding subsection. There-
fore Farjoun and Machover’s (1983) probabilistic reasoning must now be applied to
the above implication and its probabilistic relevance when sequences of technical
change are considered as carriers of the law of decreasing labor content. Such a
reconsideration of their argument must be left here for future research however.
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Considering finally (in terms of prices pw) CU-LS technical change, we have
to justify how such a type of innovation is occurring under capitalists’ choice of
technique, since it is not likely that the use of raw material or auxiliary means of
production (energy) is systematically increasing per unit of output that is produced.
Yet, input matrices A also contain items that stem from fixed capital consumption
(depreciation of buildings and machinery) and here it is conceivable that the amount
of fixed capital per worker and thereby also the consumption of these items is in-
creasing in the sense we have used it above in terms of prices measured in the
wage unit (no longer only in the strict physical sense of the preceding subsection).
We stress that we consider here the input–output approach to fixed capital (capital
advanced with lifespans that exceed the yearly production cycle of the economy)
as point of reference and not the Sraffian one with its hypothetical uniform profit
rate calculations over all vintages of the existing machinery, see Bródy (1970) for
its detailed discussion in terms of capital advanced, capital consumed and turnover
times of capital advancements. The input–output matrix A is therefore now to be
augmented by durable investment goods in its dimension and by the addition of a
depreciation matrix Aı for these commodities. On this basis of this extension, the
definition of labor values is the same as before, namely: v D v.AC Aı/C l:

Investment criteria for the choice of technique in the case where items with a
longer life span than one year are used in capitalist production are much more diffi-
cult to formulate, but we still assume that they will by and large imply cost-reduction
with respect to the matrix .A C Aı/ so that we may still consider the relevance of
the condition

pw.A
�CAı�/C l� � pw.ACA

ı/C l ) v.A�CAı�/C l� � v.ACAı/C l D v

Again, Farjoun and Machover’s (1983) probabilistic reasoning may be applied to
this condition in place of pw.A

� � A/ � 0 implies v.A� � A/ � 0 which when
applicable would then give rise to the same reasoning on decreasing labor content
as we have used it before. Again, this further extension of their argument must be
left for future research here.

3.3.3 Multiple Activities and Joint Production: Some Observations

We want to indicate here verbally how cases of more than one activity per sector or
even of multiple activities with joint production can be treated in order to generalize
in an empirically relevant way what has been shown beforehand for the case of a
square input–output system with no joint production. The topic of pure joint pro-
duction (including multiple activities) and its implications for relationship between
labor value accounting and profitable substitutions with specific forms of technical
change will be treated from the formal point of view in Chaps. 4–7 of the book in
detail.
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Let us consider the case of multiple activities first. In this case input output
methodology derives a standard square input–output table by aggregating the ac-
tivities of the given sectors by way of the activity levels that characterize the single
activities. The A?jl ; l D 1; :::; k.j / of a single sector are thus combined to a single
column vector by the following operation:

NA?j D .xj1A?j1 C :::C xjk.j/A?jk.j//=.xj1 C :::C xjk.j//

which sums activities on their activity level and then divides by the total output
generated in this sector (the same happens with the labor inputs of the various ac-
tivities). Labor values are then to be defined as solution v NA C Nl D v, since they
are understood to represent average total labor costs of producing the various com-
modities with respect to the multiple activities that are operated in each sector. This
procedure is closely related to Marx’s distinction between average and individual
labor values, see Chap. 5 for details on this.

If all single activities have been profitable in the sense of this section then of
course also their above aggregate is profitable with respect to the initially given
prices. And if, for example, CU-LS technical change is taking place with respect to
some activities and activities levels are assumed to be invariant, then of course this
type of technical change will also characterize the average inputs NA; Nl : These obser-
vations indicate that the propositions of this section can find obvious generalizations
to the case of multiple activities, at least as long as the market of single activities
remains the same. Furthermore, these reformulations are in line with standard input
output methodology and thus keep the definition of labor values also in line with
the definition of labor productivity indexes as they are made in Stone’s System of
National Accounts and its input–output substructure.

Let us next consider the case of pure joint production. In this case, input–output
methodology disentangles the joint outputs of one sector or activity – if its so-called
industry technology assumption is applied – by splitting up all inputs in proportion
to the relative value of output in the output basket of the joint production activ-
ity. In the full-cost accounting techniques of business administration this is called
the sales value method, since the relative proceeds of the items in a joint bundle
then determine the amount of joint inputs these single items have to bear. It is
obvious that this disentangling of jointly produced products preserves profitabil-
ity (since it is intended to be neutral with respect to profit generation capabilities).
We thus again obtain the situation just considered for multiple activities and can
apply the same conclusions, namely that labor values can be defined by the square
input matrix (and its corresponding labor input vector) obtained from input–output
methodology in the case of the industry technology assumption and the subsequent
aggregation of the resulting disentangled multiple activities. The propositions of this
section will then also apply to this general case of capitalist commodity production,
if again the market shares of activities are assumed as unchanged. We shall come
back to the details of such generalizations of labor value accounting (with positive
labor values obtained in the conventional way) and their comparison with actual
prices or production prices in terms of the wage unit in chaps. 4–6 of this book.
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3.3.4 The Okishio Theorem and the Tendency
of the Profit Rate to Fall

Before closing the theoretical part of the section we add one further proposition
on the implications of profitable technical change, the so-called Okishio theorem,
which basically states that sectoral profitable technical change – starting from the
position of balanced rates of profit – will never lower the equilibrium (uniform)
rate of profit when wages remain at their subsistence level s: In fact, if the square
input matrix As (augmented by subsistence consumption of workers per activity) is
assumed to be indecomposable, the equilibrium rate of profit will necessarily rise for
all conceivable forms of profitable technical change, i.e., the extra profits generated
by the applied technological substitution in one or more sectors of the economy
will always – when prices and quantities have adjusted to the new equilibrium –
increase the uniform rate of profit of the economy compared to the one before the
technical change. We stress that this theorem in general holds only when we start
the process of substitution from the position of uniform rates of profit and is thus not
necessarily true in the more general profitability consideration that were the basis
of our comparison of profitable and progressive technical change in the preceding
subsections.

Proposition 3.7. Assume as given an equilibrium .1 C r/pAs D p; p > 0 of the
currently prevailing input–output technology. We here only consider input–output
systems where the sector of basics (of which at least one is assumed to exist) deter-
mines the Frobenius root of the matrix As :

Technical changes As� – occurring in one or more columns of the input–output
matrix As D A C S D A C sl with respect to the inputs A; l – which are prof-
itable (cost-reducing) for each modified activity j with respect to the given prices
of production p W pAs�?j < pAs?j ; never lower the balanced rate of profit of this
input–output structure and will in fact increase it if the matrix As is assumed to be
indecomposable.

Proof. By assumption we have as relationship before and after the technical change
for the augmented input matrix As :

pAs � pAs� and thus .1C r/pAs� � p

According to Woods (1978, p. 21) we have the proposition that

pAs� �
1

1C r
p; p > 0 ) 	.As�/ �

1

1C r
D 	.As/

for the dominant root 	.As�/ D 1
1Cr�

of the non-negative matrix As�: This implies

	.As/ � 	.As�/; and thus r� � r:
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In the case of an indecomposable matrix As the situation just considered applies
to an indecomposable matrix MAs� where the innovating sectors are assumed to
exhibit slightly higher inputs than is actually the case. We therefore know from
Perron-Frobenius theory, see part II of the book, that its dominant root must be
larger than the one of the actual matrix As�:

We thus have that there cannot be a falling rate of profit in input–output sys-
tems A; l; s; B D I with a given subsistence wage s if innovation occurs in a
cost-reducing way, completely independent of the physical type of technical change
that is in fact occurring. The question here however is whether wages will indeed
stay at their subsistence level in the face of more or less rapid labor-saving techni-
cal change, in particular if labor productivity increases significantly under this type
of technical change. It is our view that the Marxian assertion of a falling rate of
profit is to be based on a given rate of exploitation � D .1 � w/=w, as considered
in Chap. 2 in the ASSI of Duménil, Foley and others, where therefore there are real
wage increases occurring that by and large keep the share of wages in national in-
come constant, see Foley (1986) for a detailed investigation of such an argument.
Here we will only state our belief that the rate of profit would have been increased
considerably over the past two hundred years if the real wage would had stayed con-
stant over this period. But this is a purely academic assertion that has not much to
do with the actual evolution of capitalist economies.

3.3.5 The Law of Decreasing Labor Content: Empirical Results

In this subsection we provide some empirical illustrations of the concepts and
propositions we have considered in this chapter.14 For this purpose we are using
input–output data from Kalmbach et al. (2005) utilized in their study of the role of
the service sector in the German economy, 1991 – 2000. Their subdivision of the
economy into 7 sectors is a very interesting one, since it shows the importance of the
service sector in an advanced economy and also the characteristics that distinguish
its three subsectors from more traditional industries.

The industry sector is in their work split up into agriculture, manufacturing, and
construction. Within manufacturing itself, they separate out another subsector which
for an export-oriented country like Germany should be of particular importance. It
comprises the four single production sectors (among the 71 originally given sectors)
with the highest exports: chemical, pharmaceuticals, machinery, and motor vehicles.
For short, they call this macro sector the export core. On the other hand, also the ser-
vices sector is made up of very different sorts of output “goods”. They distinguish
between three main types: business-related services, consumer services, and social
services. The term business-related services needs a further clarification. There is

14 See Gupta and Steedman (1971) for another contribution on the empirical content of labor
values.



64 3 Using Labor Values: Labor Productivity and Technical Change

an extra sector among the 71 original sectors of the German input–output tables
carrying this label, which has grown considerably over the 1990s and whose output
share in 2000 has risen to almost seven percent (it is thus larger than the construction
sector). This single sector may be viewed as business-related services in a narrow
sense. For their aggregation, however, they understand this term in a broader sense
and in addition count the following sectors within it: wholesale trade, communi-
cations, finance, leasing, computer and related services, research and development
services. The concept of what they have specified as business-related services (in
a broader sense) will become even clearer by briefly indicating what they have not
assigned to it and what they rather include in the consumer services, namely: re-
tail trade, repair, transport, insurance, real estate services, and personal services.
Table 3.5 summarizes the seven (macro) sectors thus obtained. For a better assess-
ment of their relative importance, it also indicates the sectoral output shares (again
for the year 2000).15

The technological coefficients of the 7-sectoral aggregation are reported in
Table 3.6 and show the input–output matrix A of the German economy for the
year 2000 per 106 Euro of output value. Before having a look at it, the reader may
ask himself or herself in which row he or she expects the largest and smallest co-
efficients, respectively; and perhaps even in which cells. In addition to the plain
presentation of input–output coefficients Qaij in Table 3.6, an overall impression of
the input–output relationships can be gained from the three-dimensional plot of the
matrix A shown in Fig. 3.5. We have used Qaij to characterize the entries of the con-
sidered input–output table A: The reason for this is that input–output calculations
are based on constant prices, but still contain the prices of their base period in the

Table 3.5 The 7-sectoral
structure of the economy

1: Agriculture 1.33
2: Manufacturing, the export core 12.37
3: Other manufacturing 22.55
4: Construction 6.29
5: Business-related services 21.36
6: Consumer services 23.35
7: Social services 12.75

Table 3.6 Technological
coefficients of the 7-sectoral
aggregation (Germany, year
2000)

1 2 3 4 5 6 7
1: 0.028 0.000 0.045 0.000 0.000 0.002 0.002
2: 0.090 0.282 0.050 0.022 0.003 0.008 0.011
3: 0.142 0.232 0.324 0.287 0.030 0.055 0.065
4: 0.007 0.003 0.006 0.017 0.006 0.028 0.016
5: 0.142 0.121 0.140 0.107 0.332 0.134 0.096
6: 0.036 0.053 0.051 0.108 0.072 0.152 0.049
7: 0.031 0.006 0.011 0.007 0.007 0.013 0.024

15 The numbers in the last column are the sectoral output shares (in percent) for Germany in 2000.
See text for an explanation of the sectors.
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Fig. 3.5 3D plot of the technological coefficients (The German labels “Zeile” and “Spalte” mean
row and column, respectively)

definition of their coefficients, i.e., we have as relationship between technological
coefficients aij and Qaij the equation Qaij D p.0/iaij =p.0/j : Input–output methods
normally simply assume p.0/ D .1; :::; 1/ D e and thus conceal thereby that rela-
tive prices (of the base year) are involved in the measurement of input–output tables
in so-called real terms.16

For the purposes of this subsection we are using the column sums of the above
input–output matrix.17 This gives for the ten years and seven sectors under consid-
eration the table of intermediate consumption coefficients:

1991 0.475 0.698 0.627 0.548 0.450 0.392 0.263
1992 0.502 0.601 0.605 0.481 0.415 0.375 0.240
1993 0.479 0.611 0.611 0.496 0.410 0.379 0.247
1994 0.466 0.616 0.612 0.509 0.410 0.387 0.249
1995 0.480 0.622 0.614 0.517 0.409 0.382 0.244
1996 0.482 0.630 0.627 0.523 0.412 0.374 0.251
1997 0.471 0.653 0.624 0.537 0.418 0.373 0.252
1998 0.470 0.654 0.628 0.538 0.429 0.373 0.253
1999 0.469 0.671 0.638 0.536 0.429 0.380 0.255
2000 0.475 0.702 0.637 0.550 0.434 0.388 0.263

16 We similarly have Qlj D lj =p.0/j and thus get for labor values the same relationship Qvj D
vj =p.0/j by definition.
17 Note however that we are neglecting the depreciation of the fixed capital stock in each sector
here.
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Subtracting these items from 1 gives real value added (at prices of the assumed
base year 1995) per 106 Euros of output value. Similarly the labor coefficients (num-
ber of employed workers per 106 Euros output) are given by:

1991 34.9 8.5 10.2 14.2 11.5 13.6 21.1
1992 29.1 8.0 9.5 13.2 11.3 13.3 20.5
1993 27.1 8.4 9.2 13.2 11.1 13.3 20.6
1994 26.8 7.5 8.7 12.8 11.1 13.1 20.5
1995 25.4 6.6 8.5 13.3 11.0 12.8 20.4
1996 22.0 6.4 8.2 13.2 10.7 12.6 20.5
1997 21.6 6.1 7.9 12.9 10.4 12.6 20.3
1998 21.3 5.7 7.7 12.9 10.2 12.5 20.2
1999 20.4 5.6 7.4 12.6 9.8 12.4 20.1
2000 20.2 5.3 7.0 12.5 9.7 12.5 20.0

For calculating the labor values of the seven sectors and the ten years under con-
sideration we have to use the formula v D l.I � A/�1 for each year for their
determination. The 10 input–output matrices of the type shown in Table 3.5 have
been supplied to me by Reiner Franke (including fixed capital consumption) and
gave rise to the following columns of labor values for the seven sectors and the 10
years these tables were available for. In contrast to the preceding table, showing the
labor coefficients of the seven sectors, we here have the accumulated number of em-
ployed workers per 106 Euros output, augmented by the indirect effects as they are
contained in the application of the Leontief inverse .I �A/�1 D

P1
kDoA

k : Clearly,
the labor values must all be larger than the corresponding direct labor input vectors
of labor coefficients.

1991 47.64 22.72 25.98 25.82 20.40 22.17 26.82
1992 40.50 21.84 24.47 24.69 19.81 21.72 26.17
1993 37.96 22.19 23.84 24.76 19.46 21.78 26.20
1994 37.72 20.87 22.92 24.20 19.34 21.28 25.91
1995 36.17 19.86 22.79 24.67 19.18 20.69 25.83
1996 32.17 19.79 21.88 24.55 18.86 20.34 25.85
1997 31.57 19.15 21.31 24.05 18.68 20.23 25.58
1998 31.16 19.03 21.26 23.91 18.39 20.19 25.47
1999 30.14 19.45 20.61 23.63 17.87 20.13 25.43
2000 29.76 18.56

Dividing, on the one hand, each of the 70 real value added items (per 106 Euro
output value) by the corresponding labor coefficient (per 106 Euro output value) in
order to get conventional measures of labor productivity for the considered economy
and taking, on the other hand the inverse of the above labor values (which are also
expressed per 106 Euro output value), we get magnitudes that are all in the interval
Œ0; 1� and thus easy to compare with each other with respect to their size and their
direction of change as the graphical representations for the seven sectors given in
Fig. 3.6 show. These figures show the measures of productivity �oj ; 1=vj we have
discussed extensively in Sect. 3.2 of this chapter. We here repeat again by way of
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Fig. 3.6 Comparing conventional and Marxian labor productivity indices: �oj ; 1=vj

a simple example why the latter terms are the better measure of labor productivity
and in fact the only reasonable one.

For this purpose we use again the price vector p.0/ of the base period in explicit
form in the presentation of the data of the economy. We consider a simple economy
with one capital and one pure consumption good, characterized therefore by the
input–output matrix:

QA D .pi .0/aij =pj .0//; 0 < a11 < 1; a12 > 0; a21 D a22 D 0

Since the investment good sector is homogeneous with respect to inputs and outputs
we there immediately get:

�o1 D
1 � p1.0/a11=p1.0/

l1=p1.0/
D
1 � a11

l1
D 1=v1; i:e:;

no discrepancy between the two measures of labor productivity. But for the con-
sumption good sector we get:
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�o2 D
1�p1.0/a12=p2.0/

l2=p2.0/
D p2.0/�p1.0/a12

l2
¤

1
v2=p2.0/

D 1
.v1=p1.0//p1.0/a12=p2.0/Cl2=p2.0/

D 1
.v1a12Cl2/=p2.0/

It is true that also labor values are here measured relative to output value (not out-
put level), but this only means that each time series of labor values has been divided
through the constant price of the corresponding commodity which does not distort
the internal structure of each time series. Yet, the numerator of the conventional
measure of labor productivity p2.0/ � p1.0/a12 depends on relative prices and is
thus not independent of their structure (and thus of the base period that is used). The
measure �oj (for given j) can therefore change erratically without any change in the
production conditions of the economy, while the measure 1=vj is only rescaled (for
given j) in case of a change in the price vector of the base period (in fact it is totally
independent of prices if its rate of growth is considered).

Generalizing this situation (and returning to p.0/ D e) for notational simplicity)
we expect to get for

�oj D
e.I � A/j

lj
¤

1

vj
D

1

l.I � A/�1j

that these two series should behave quite differently over time due to the (arbitrarily
chosen) relative base year prices on which the first measure depends. The compari-
son of these time series in Fig. 3.6 therefore came a bit as a surprise, since it shows
by and large that the two measures do not develop in different directions as time
goes by. Our theoretical comparison of the labor content of commodities (or bet-
ter its reciprocal value “labor productivity” ) with real value added per worker in
the same sector thus does not give rise to extreme differences in the behavior of
the two indices of labor productivity considered from the perspective of highly
aggregated input–output tables (which exhibit significant difference in their cap-
ital to labor ratios cj )18 shown in Fig. 3.6 bottom right.19 Note however that the
tables in Fig. 3.6 all show (with mild exceptions) that Farjoun and Machover (1983)
law of falling labor content holds for the German economy over the considered pe-
riod. Note also that construction is the single sector where productivity in Marxian
terms has risen over the considered period while the conventional measure shows
only a sharp increase directly after the German reunification and significant decline
thereafter. Consumer services are characterized (much weaker however) by a similar
occurrence, as are social services (a sector that is however subject to processes that
are in general not controlled by private enterprises). Be that as it may, the general
conclusion is that indexes �oj must be considered as atheoretical and thus have to be
treated with care, and should moreover only be relied upon if indices 1=vj provide
by and large the same qualitative behavior.

18 Measured in million Euros per worker.
19 This may be due to the larger variations in the inputs l as compared to the inputs A:
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3.4 Conclusions

We have considered in this chapter the question of a proper measurement of labor
productivity and argued that the Marxian measurement is the theoretically sound
one, while the conventional measure of the SNA, real value added per worker is
questionable both from the theoretical as well as from the empirical point of view.
Moreover, labor values also convince by explaining rising labor productivity in con-
junction with the competitive choice of techniques (by cost-reducing new methods
of production). The law of decreasing labor content has thus been justified here by
theoretical propositions and has also been clearly working for the German economy
after reunification.

In our view this demonstrates that labor values as defined in this chapter in the
conventional way (concerning Marxian economics as well as Leontief type input–
output analysis) are the relevant measure for total labor costs and – in reciprocal
form – commodity-specific indexes of labor productivity.
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Chapter 4
Marx After Stone: The Marxian Contribution
to the UN’s SNA

4.1 Introduction

In this chapter we reconsider the examples of Steedman (1977, Chaps. 10, 11) from
the viewpoint of input–output methodology. Steedman’s examples wee intended to
show that Marxian labor values can exhibit anomalies – which deprive them of
economic content – when models of production are considered that include pure
joint production or fixed capital. We will show that his claims are due to a very
narrow understanding of the definition of labor values in Marx’s capital, namely that
they are under all circumstances defined in Marx’s Capital in a purely additive way,
ignoring here in particular that Marx’s distinguished between average and individual
values whenever multiple activities for producing one and the same commodity were
present. Moreover, as in particular obvious from the first part of second volume of
Marx’s Capital, Marx’s was always eager to learn what firms actually do when a new
aspect of value accounting was to be considered and not so much in what economists
think firms should do in such a situation.

Keeping this in mind it is easy to understand that joint production must be dis-
entangled into separated single product activities if firms want to calculate the total
costs of single items. Firms here often use the so-called sales value method, by
which joint costs are split and allocated to the single outputs on the basis of the
relative proceeds generated by these outputs. This method is always applicable and
it has the remarkable property that the rate of profit of the considered joint produc-
tion activity is not distorted when the profitability of the single items is calculated.
Production prices on the level of a joint production system thus remain production
prices after joint products have been disentangled in the above way. Surprisingly
enough the same method is used under the name “industry technology assumption”
in the UN’s input–output methodology when they construct single input–output ma-
trices from originally give make and use matrices, if the make matrix exhibits joint
production, here generally meaning that there are secondary products produced in
each sector beside his main product. Firms and input–output theorists have therefore
instinctively done the same thing without taking notice of each other and without
stressing that their method preserves the uniformity of profit rates and is therefore a
neutral type of accounting principle.

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 4,
c� Springer-Verlag Berlin Heidelberg 2010
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Using Steedman’s examples and the data they contain we show in this chapter
that labor values can be generalized by means of such principles in a meaningful
way without giving rise to anomalies as in Steedman (1977) anymore. They are
treated in the same way as firms and input–output theorists do it in their full cost
accounting methods and lead here to the calculation of total labor costs embodied
in single commodities in direct analogy to the cost accounting methods on the firm
and on the national level. But even if the examples of Steedman (1977), intended
to disqualify the quantitative content of Marxian labor values, can be shown to be
misguided by the Sraffian methodology to use linear equations without any extra
qualification and for all models or production as the single principle (up to the rate
of profit which of course enters in a multiplicative way), his basic argument may
still hold, namely that labor values are but a detour when going from the data of
production to the prices of production scheme of the Classical theory of competition.

Samuelson’s (1971) eraser principle is just another way of expressing this opin-
ion. We will see however in the next part of the book that just the opposite is true
in the relationship between labor values and prices of production, since labor val-
ues are firmly rooted in the total cost accounting techniques of the UN’s System of
National Accounts (and their application to specific data). Price of production, how-
ever, represent a very extreme assumption on the dynamics of capitalist economies
which when taken literally in a Sraffian way would suggest that all activities (old
and new) exhibit a uniform rate of profit for all vintages of their fixed capital, for all
semifinished products and throughout the globalized economy we are now living in.
Billions of purely technological equations are therefore to be solved here under the
application of a unique principle, namely that there prevails a uniform rate of return
on total costs throughout. Empirically seen this is a task that can neither be solved
by the market nor by the computer, since it abstracts from to many things that drive
capitalist economies in the real world. We conclude that purely technological deter-
mined production prices are accounting prices of a very hypothetical nature and of
purely academic interest.

Input–output theorists would approach the issue of uniform profitability (with
stock matrices representing capital advanced, not with a Sraffian vintage approach),
on the level of industries (appropriately classified). An example for this has been
given in the preceding chapter with respect to which we will show in the next part
of the book that nothing that comes near to a uniform rate of profit can be expected
to hold even in such a highly aggregated seven sectoral example. The sectors there
considered are just to diverse in their fundamentals and their evolution to expect
that a single rate of return can characterize this evolution approximately. The irony
in this situation (and its implications) is that we should in fact apply Samuelson’s
(1971) eraser principle to prices of production and not to labor values, since the latter
are proper and usable theoretical accounting concepts for the analysis of labor pro-
ductivity changes and their implications, while the former are just an inconvenient
detour to the theories of competition we have to apply to understand the behavior
of actual average market prices and their implications for productivity changes (see
the preceding chapter).
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Defining labor values in an appropriate way for examples of input–output
structures which include joint production proper and fixed capital (machinery) is
the contribution of this chapter. It shows in particular that accounting procedures
actually employed by capitalist firms for the treatment of joint products and fixed
capital must be reflected and applied in such generalized situations. This then gives
rise to labor value concepts that – in contrast to the literature – are direct generaliza-
tions of the conventional approach to the labor theory of value and its propositions
(see Chap. 3 on the MDSA approach). An additional advantage of this way of
generalizing the Labor Theory of Value is that it is in line with procedures of the
United Nations’ (1968) System of National Accounts, based on work of Richard
Stone and his research group, in particular its conventions for the treatment of joint
products and capital advancements. In this sense, the LTV even contributes to an
understanding of the measures of total labor costs as they are formulated in the
UN’s SNA, and their applications and implications.

4.2 Employment Multipliers and Labor Values
in Pure Joint Production Systems

In the following1 we will compare the notion of “employment multipliers” exem-
plified in Steedman (1977, Chap. 11) in the frame of a specific two–sector model
with the definition and interpretation of labor values we have briefly sketched in the
preceding chapter, here also confined to Steedman’s example. Our aim is to show
the difference between these two definitions with respect to concrete numbers, and
to exemplify that the latter concept is based on a joint–product convention,2 which
allows us to generalize Marx’s ideas on the additivity of the value creation pro-
cess to joint production in a meaningful way, without running into the anomalies
described in Steedman (1977). In contrast to Steedman’s employment multipliers,
which reflect the system’s labor requirements to produce additional quantities of net
output, our concept of labor values tries to incorporate the idea that average values
of jointly produced goods should vary with prices (and proceeds) in a continuous
fashion such that the labor value of a good, which becomes free, must become zero.
This idea implies that by–products which shrink in price should exhibit this fact also
with regard to their labor value, i.e., labor values cannot be defined independently of
prices (as is the case for Steedman’s (1977) definition of employment multipliers).

We have already shown for the von Neumann model, see Flaschel (1983b) that
both concepts of total labor requirements share the feature that they allow to pre-
serve Marx’s methodological device to explain the general nature of profits at first
under the assumption that commodities exchange at their labor values, adopted by
Marx in the first two volumes of “Capital” by assuming a uniform composition of

1 The sections of this chapter were originally published in Flaschel (1983b).
2 Cf. also Sen (1978, p. 178).
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capital. Their difference consequently first arises when we consider how additivity
of value creation is to be described for joint production systems in case of a nonuni-
form composition of capital. For such a case Steedman has demonstrated by means
of his example that a purely technologically determined notion of “labor costs” does
not remain sensible with regard to the aims pursued by Marx.3 Our alternative ex-
tension of Marx’s labor values to the case of differing organic compositions of joint
activities, is based on principles of full–cost accounting for jointly produced prod-
ucts, see also Flaschel (1983b). It allows to further examine Marx’s point of view
that the actual production plays a dominant part in the process of profit creation.4

4.2.1 Employment Multipliers

In Steedman (1977, pp. 151f.) the following two–sector examples of a von Neumann
model (where, however, wages are paid ex post) are explored with regard to the def-
inition of employment multipliers and the validity of the so-called Marxian FMT
(Fundamental Marxian Theorem), see Morishima (1973) for the details of this
theorem:

A D

�
5 0

0 10

�
; L D .1; 1/ material and labor input matrices

(processes are represented by columns),

B D

�
6 3

1 12

�
output matrix

(circulating capital goods and pure joint production only),

C D .3=6; 5=6/ or .6=5; 3=5/ or .3=7; 6=7/

(various wage baskets per unit of labor input5)
The relevant von Neumann equilibrium values (measured in wage–units) are

given in each of these cases by: p1 D 1=3; p2 D 1;w D 1 D .p1; p2/C
t . On the

quantity side we get with respect to the three levels of labor supply L1 D 6;L2 D 5
or L3 D 7 associated in this order with the above wage baskets:6

x11 D 5; x
1
2 D 1 or x21 D 3; x

2
2 D 2 or x31 D 6; x

3
2 D 1:

3 This does not mean, however, that they cannot be usefully applied to other purposes.
4 Cf. also Sen (1978, p. 179) on this matter.
5 AC CL would then give the usual augmented von Neumann input matrix in each of these cases
which, however, is of no use here, because of the assumed ex post payment of wages.
6 We shall write xi D .xi1; x

i
2/
t ; Y i , etc. Œi D 1; 2; 3� in order to distinguish the employed concepts

with respect to the three given wage baskets C i and labor supplies Li .
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In each of these three cases the growth rate is equal to the rate of profit equal
to 20%. As net output Y D .B � A/x we obtain for these three cases Y 1 D
.8; 7/t ; Y 2 D .9; 7/t ; Y 3 D .9; 8/t .

In comparing equilibrium 1 and 2, Steedman finds that a change in employment

L D L2 �L1 D �1 corresponds to a change in output 
Y D Y 2 � Y 1 D .1; 0/t

by one unit of commodity 1. And when comparing 2 with 3 he finds:


L D C2
^
D 
Y D .0; 1/t :

These two calculations demonstrate the general fact that a meaningful change
in output by one unit of commodity 1 (respectively 2) will be accompanied by a
change in total employment of “�1” (respectively “C2”), numbers which there-
fore describe “employment multipliers” of the technique under consideration, cf.
Steedman (1977, p. 158) for further details.

It is easy to prove that these well–defined employment multipliers z1; z2 fulfill
the following equation system

25z1 C 5 D 30z1 C 5z2 or 5z1 C 1 D 6z1 C z2 (4.1)
10z2 C 1 D 3z1 C 12z2 or 10z2 C 1 D 3z1 C 12z2 (4.2)

i.e., they can be calculated from the given technological data in the usual purely
additive way.

Should we regard these employment multipliers as the successful extension of the
concept of labor value as defined by Marx under simpler conditions of technology
with respect to the aim pursued by him? Steedman who restricts the aim of value
calculation to the exact quantitative determination of the uniform rate of profit does
deny this, though he claims that his employment multipliers give the correct exten-
sion of the Marxian definition of labor value. But how can we judge “correctness”
if not by means of a successful application to the aims pursued by Marx?

And, if we compare Steedman’s strictly additive definition of value (4.1), (4.2)
with characterizations of labor value found in Marx’s Capital the following prob-
lems can be stated in addition:

1. The view that labor gets “incorporated” in the commodities produced with it
(actually or by means of a theoretical imputation) has become meaningless in
the present situation if it is understood in terms of “technology” alone. This is
due to the fact that there no longer exists a sensible chain of commodity inputs
purely determined by facts of technology which can be characterized as having
gone into the production of single units of net output. Subsystems .B � A/�1Y
of gross output needed to produce a certain basket of net output Y no longer
represent a sensible way to determine the amount of labor “embodied” in it. This
is demonstrated in the above example by the fact that “�100 hours of labor cannot
be characterized as having been “incorporated” into commodity 1.
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2. Additivity with respect to labor value determination is restricted in Marx’s
Capital to average conditions of production. Are we sure that such average con-
ditions are immediately expressed by the above example, though one of the two
processes is absolutely inferior to the other?

3. The above presented change which results in an extra production .1; 0/t obvi-
ously goes hand in hand with an increase in labor productivity: .8; 7/t=6 !
.9; 7/t=5. Marx did connect changes in labor productivity with changes in labor
value. Steedman’s “correct” value calculations, however, will show no change
at all.

We conclude that, regarding actual technological data alone, there remains but an
unacceptable possibility to define “labor values” in the present situation, namely
jointly and by their strict and narrow interpretation as the sum of values of the means
of production and the new value added by “living labor”. This interpretation of “la-
bor values” destroys their dual characterization as presented in Morishima’s (1973,
Chap. 1) for single–product activities. It applies Marx’s treatment of constant and
variable capital to the case of joint inputs without any need for further qualifica-
tions. And it thereby lays the ground on which Marx’s “Fundamental Theorem” can
be proved to be incorrect.

4.2.2 Labor Values

We shall now consider the definition of labor values introduced in Flaschel (1983b)
with respect to the example here employed. It will be shown that this definition
gives a better approximation to the above mentioned characteristics of labor value
than employment multipliers do. Yet, it is not clear which descriptive, predictive
or normative power the new concept will have besides the uses already described in
models without joint production. Nevertheless it may be useful to know an extension
of Marx’s concept of labor values which allows for a sensible reformulation of the
conventional LTV.

Since our method of labor value calculation is a strict ex post calculation, we have
to introduce further data for its execution first. In general these date may be given by
all actual quantity and price configurations of the period under consideration. With
respect to the above example this means that we must take an equilibrium situation
of this model as given. We therefore start from the knowledge of Steedman’s actual
commodity prices p1 D 1=3; p2 D 1 and (e.g.) from the following absolute input–
output configurations (realized in the above case 1):

Com.1 Com.2 Labor Com.1 Com.2
Process 1 25 0 5 ! 30 5
Process 2 0 10 1 ! 3 12

Our method of labor value calculation takes its starting–point in the separation
of joint activities in proportion to proceeds relationships within each joint output
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basket. These ratios are here given by:

ˇ11 D
p1b11

pB1
D

.1=3/ � 6

.1=3/ � 6C 1 � 1
D
2

3
; ˇ21 D

1

3
(process 1 )

ˇ12 D
.1=3/ � 3

.1=3/ � 3C 1 � 12
D

1

13
; ˇ22 D

12

13
(process 2 )7

for each of the three cases considered. With the help of these coefficients we can de-
rive four single–product “processes”. In a second step we then have to aggregate the
processes “producing” the same good according to market shares, thereby arriving
at a two–equations system for the two unknown labor values: v1; v2:

.v1; v2/ D .v1; v2/A
�

pibijxj

.pBj /.Bix/

�t
C L

�
pibijxj

.pBj /.Bix/

�t
(4.3)

The two steps which have led to this equation system may be exemplified with
respect to case 1 as follows:

A0 D

��
2
3

�
� 25

�
1
3

�
� 25 0 0

0 0
�
1
13

�
� 10

�
12
13

�
� 10

�
! B 0 D

�
30 0 3 0

0 5 0 12

�

L0 D ..2=3/ � 5; .1=3/ � 5; 1=13; 12=13/

MA D

� �
2
3

�
� 25

�
1
3

�
� 25�

1
13

�
� 10

�
12
13

�
� 10

�
! MB D

�
30C 3 0

0 5C 12

�

ML D

�
2

3
� 5C

1

13
;
1

3
� 5C

12

13

�

Equations (4.3) can then be obtained by normalizing the matrices MA; ML to unit–
output levels (� MB�1).

The calculation of labor values by v MAC ML D v MB or v MA MB�1C ML MB�1 D v leads to
the following (approximate) values with respect to cases 1, 2 and 3: v D .v1; v2/ �
.0:24; 0:59/ or .0:24; 0:60/.

In difference to Steedman’s unchanged employment multipliers we here recog-
nize a rise (fall) in labor productivity, when comparing case 2 with 1 or case 3 with
1 (case 3 with 2), changes which obviously correspond to the changes which take
place with regard to the ratios Y i=Li . Furthermore, individual values can now be
calculated by help of relative dales values as:

.ev1;ev2;ev3;ev4/ � .0:24; 0:18; 0:72; 0:54/ case 1
� .0:22; 0:14; 0:66; 0:42/ case 2
� .0:25; 0:18; 0:75; 0:54/ case 3

[Index 1; 2 = Com.1, Index 3; 4 = Com.2].

7 bij are the coefficients, Bj the columns and Bi the rows of the employed matrix B .
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We can see from these values that both commodities are produced by less labor
with respect to the second process which reflects the fact that the first process is
absolutely inferior to the second one with regard to a timeless comparison of input–
output relationships: one unit of labor is converted into more than twice as much
net output by the second process as compared to the first. But as the inputs of each
of our two commodity sectors indeed stem from both activities – the distribution of
inputs is governed by the ratios in output–value – both commodity sectors employ
inputs produced under favorable as well as under unfavorable conditions. Produc-
tivity differences therefore equalize to a certain extent, thereby narrowing the gap in
individual values actually observed.

Still another way to perceive the productivity differences between the two sectors
in question is to calculate

L0 D v.B � A/ D v

 
1 3

1 2

!
�

8
<

:

.0:83; 1:90/ (case 1)

.0:65; 1:50/ (case 2)

.0:84; 1:92/ (case 3)

and to regard these numbers as “socially necessary direct labor inputs”. These values
show the hypothetical technological changes in labor inputs that have to take place
in order that all processes will look “normal”8 with respect to the average labor
values determined above.9

To achieve this kind of normality labor productivity measured in the usual narrow
sense (output per labor input) has to rise in the first and to fall in the second process,
indicating thereby again the productivity differences between the two considered
activities.

It is stated in Marx (1977, Vol. II, p. 153) that

“capitals of equal magnitude yield equal profits in equal periods, applies only to capitals of
the same organic composition, even with the same rate of surplus value. These statements
hold good on the assumption which has been the basis of all our analyses so far, namely
that the commodities are sold at their values.”

Slightly reformulated this means that Marx’s analysis is based on the assumption of
a uniform composition of capital in the first two volumes of “Capital”. To give an
example of this situation for Steedman’s and our definition of labor values consider
the following modification of the above presented input–output configurations.

Com.1 Com.2 Labor Com.1 Com.2
Process 1 25 0 5 ! 30 5
Process 2 0 10 6 ! 3 17

8 It is perhaps in this sense that Sen’s (1978, p. 178) characterization of “socially necessary labor
time” as “involving counterfactuals” has to be understood.
9 The systemA;B;L0 will not necessarily generate the same v or evenev as before when our method
of calculation is applied to this hypothetical technology.
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With regard to this table our former prices p1 D 1=3, p2 D 1, w D 1 again
represent prices of production, now with the additional property that they imply a
uniform composition with regard to the two processes shown: .25=3/=5 D 10=6.
This fact is not changed by the reallocation A0; L0 and MA; ML of the inputs now un-
derlying equation system (4.3) by virtue of the method employed to disentangle
joint products. It follows that the reallocated production data MA MB�1; ML MB�1 also
exhibits a uniform composition of capital with regard to the above prices. In a well–
known fashion this implies the proportionality between our labor values (4.3) and
these prices p D .1=3; 1/ (with a proportionality factor that can be determined
by: .v1; v2/.8; 12/t D 11, implying .v1; v2/ D 1=4; 3=4/). By proposition 8, see
Flaschel (1983b), we already know that Steedman’s employment multipliers must
then be identical with our labor values v, i.e., we in this case also have

v D .5; 6/

 
30 3

5 17

!
�

 
25 0

0 10

!�1
D .5; 6/

 
7 � 3

�5 5

!,
20

Disagreement with Steedman’s understanding of labor values thus can arise solely,
when joint production and a non–uniform composition of capital are considered in
conjunction. For such a situation we would claim that a straightforward application
of Marx’s additive process of value creation (of “Capital”, Vol. I) – with no averag-
ing process involved – is misplaced and cannot discredit the established formulation
of the LTV by means of the anomalies which are thereby obtained.

Be that as it may, it is in any case most important to recognize that the inade-
quacy of Steedman’s technological value–accounting method vB D vAC L is first
given at the same level of abstraction where the “transformation problem” poses it-
self (in Chap. IX of Marx’s Capital, Vol. III). It is our opinion that from this point
onward, the methodological status of “labor values” has not yet been discussed suf-
ficiently. Thus, it may well be that our way of extending joint–product labor values
to the case of unequal compositions of capital is not so unacceptable in the end as is
suggested at first glance by the chosen approach.

It must be admitted, of course, that these results, see also Flaschel (1983b), with
regard to our labor value definition cannot yet be regarded as sufficiently strong to
imply the “correctness” of this extended approach to the LTV. The main weakness of
this extension – as will be argued surely – is the direct dependence of the employed
labor values on given prices p [Note in this respect that our method of definition
will imply for individual valuesev thatev1=ev3 Dev2=ev4 D p1=p2 D 1=3 must hold
true, see above examples and proposition 7 in note II of Flaschel (1983b)].

Three reasons can already be presented by which such an approach to generalize
the LTV may be defended:

1. Labor values depend on price already before any introduction of joint production
and its peculiarities, since, e.g., the choice of technique depends on it. Thus their
basic methodological status is not changed by our extension of their definition.

2. The rule we have employed to allocate joint costs to the different units of cost-
ing is important to the extent it is the only general rule of cost accounting
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which allows for the possibility that a uniform rate of profit may result from
price–setting behavior and competition. Yet, this rule makes costs and profits ac-
cruing to a particular item of joint outputs dependent on the price of this product.
It thus seems to undermine the practical possibility of a price–setting behavior by
reversing the order of “causation” to a certain extent. This circular problem in-
volved in the formulation of a tendency towards uniform profit rates on the basis
of a factual method of price–setting is logically similar to the above formulated
type of price–dependency of labor values.

3. If full–cost accounting for jointly produced commodities by means of the above
market value method is accepted – on the level of prices – as the general method
of allocating joint costs to the various outputs produced, then it is only sensi-
ble to act accordingly with regard to Marx’s LTV, i.e., to apply this rule to full
labor–cost accounting, too. This, in our view, is the only meaningful way to fur-
ther examine Marx’s procedure which uses labor values as a sort of real–cost
accounting by which one can relate price behavior to the results achieved in the
process of production, such that the coercive nature of the latter may be made
visible.

Labor cost accounting in our view should apply the same principles as are customary
on the level of ordinary cost accounting. This gives the main reason why we would
conjecture that our definition of labor values may provide a successful method for a
general formulation of the Marxian LTV.

Finally it may be useful to look for simplifications and approximations to the cal-
culations we have made. Since the three units of commodity 1 produced in process 2
do not contribute very much to output value in that process (and also to total output
with respect to commodity 1) and since the proceeds–relationship within process 1:
2=3 W 1=3 is not too far away from one, it may already give a first impression of the
labor value situation if we neglect the three units of commodity 1 in process 2 and
divide inputs into halves to separate the joint outputs in process 1. We then arrive at
the following “technological” description of our joint production system (in case 1):

A0 D

�
5 � 2:5 5 � 2:5 0

0 0 10

�
B 0 D

�
30 0 0

0 5 12

�

L0 D .2:5; 2:5; 1/

which gives (when aggregated in the same way as before):

MA D

�
5 � 2:5 5 � 2:5

0 10

�
MB D

�
30 0

0 17

�

L0 D .2:5; 3:5/

This (now decomposable) equation system v MB D v MA C ML has the solution v1 D
0:14; v2 D 0:75 and thus points into the right direction [but overstates, since the
output of process 2 and the input imputed to commodity 1 in process 1 have both
been reduced].
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4.2.3 Summary

Summarizing we can state to have exemplified that the term “incorporated labor”
may remain sensible, when price valuations help to decide how much labor to im-
pute to the different commodities created by joint activities.10 This method of calcu-
lation provides us with a valuation scheme of the same qualitative behavior as prices,
which – when filled with reasonable magnitudes – (presumably) will be determined
primarily through the production side of the system nevertheless. Steedman’s asso-
ciation of L2 � L1 D �1 with Y 2 � Y 1 D .1; 0/t is now represented by

v2Y 2 � v1Y 1 D v2.Y 2 � Y 1/C .v2 � v1/Y 1 D L2 � L1 D �1;

i.e., the change in the labor value of net output equal to the change in employment
is now of a double nature. This shows that this change cannot be simply associated
with a change in net output (1� com.1) solely. The valuation scheme needed to
pursue Marx’s aims of analysis in the presence of joint production is not only de-
pendent on relative input–output proportions, but in fact involves scale–dependent
average considerations, whenever one commodity is produced by more than one
process. Conventional additivity of labor value determination is now present with
regard to the original technological data on the level of individual values only. And
related average calculations then guarantee that the exemplified change in physical
labor productivity: .8; 7/t=6! .9; 7/t=5 obtained by switching from case 1 to case
2 is in fact reflected in the labor value calculations made.

Incorporated labor cannot be measured in general without the use of some con-
vention11 needed to complete the pure facts of technology in such a way that the
degrees of freedom, which “technology” in general entails for economic costing–
procedures, are again removed. This is also demonstrated by Steedman by means
of the concept of “employment multipliers” – the sole concept which makes use of
the technological data of actual production only – when he shows that they behave
“perverse” in the light of their interpretation as measures of labor costs or embod-
ied labor time.

Finally “. . . one may be interested in the relationship between values and prices
even if this is not a convenient way of calculating prices with given physical data, or
a good way of predicting future prices. Value is then treated not as an ‘intermediate
product” in some calculational or predictive exercise but as a concept of interest in
its own right’ Sen (1978, p. 182). This is the way – we think – one has to conceive
the usefulness of labor value derivations. There already exists a variety of opera-
tional theorems relating such labor value to questions of allocation and of technical
change. Such considerations have to be extended further (instead of an interference
into “transformation procedures” which are of purely algebraic kind) if the true con-
tent of Marx’s labor values is to be discovered. The existence of joint products in
our view is no hindrance to that.

10 For this purpose, the expression .B � A/�1Y of point 1) in the section on “employment multi-
pliers” is now to be replaced by . MB � MA/�1Y , see the notation introduced above.
11 Cf. again Sen (1978, p. 178).
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4.3 Measurements of Total Labor Requirements
Using Input–Output Methodology

One important and early motivation for the laborious construction of input–output
tables with a considerable degree of sectoral disaggregation was the practical inter-
est to calculate the indirect employment effects associated with the expected change
in activity levels for the U.S. economy at the end of world war two. Associated “to-
tal employment multipliers” were considered by Leontief already in 1944, cf. his
paper: Output, employment, consumption and investment (Quarterly Journal of Eco-
nomics 58) and also the various editions of his book: The Structure of the American
Economy 1919 - 1939.12

Later writers have adopted Leontief’s procedure to construct indexes of total la-
bor productivity in an – on the surface – identical manner (see Evans (1953), Stobbe
(1980) for example). This new interpretation of the same formal measure strength-
ened the (today still prevailing) view that employment multipliers will be positive
numbers under all economically sensible circumstances. Yet, we have seen in the
preceding section that this conclusion is incorrect if joint production is assumed to
occur. We conclude that the additional characterization of employment multipliers
as indexes of labor productivity must be premature, since the latter, of course, should
be positive by their intended purpose. A notion which tries to capture atemporal to-
tal changes in employment associated with definite changes in final demand need
not at the same time express intertemporal changes in labor productivity in a satis-
fying way if technological situations of more general type than the simple Leontief
model prevail. It is astonishing to see that input–output analysts have since long
accepted such problematic situations as their methodological starting–point, yet did
not arrive at the conclusion that employment multipliers could be negative in prin-
ciple. The obvious reason for this fact in my view is that they in the main accepted
the procedure that data on input and output should be rearranged in a way which
finally allows the simple Leontief model – and the interpretation of total or system
labor requirements it offers – to become applicable. A consequence of this attitude
was that negative input–output coefficients were declared to be “manifestly absurd”
whenever they were observed, cf. United Nations (1968, p. 39) for example. Thus,
no attempt was made to interpret the product � product labor–content calculations
in the light of the product � sector accounts they were actually derived from.

This section offers, such an interpretation for the two basic mechanical rules
which are in use to move from product � sector accounts to ordinary input–output
accounts, methods which transfer inputs and outputs to achieve this aim [cf. United
Nations (1968, pp. 39f.)]. In addition to this, we shall see that methods which rest
on the transfer of outputs alone cannot be sensibly interpreted in general and thus
should be ignored in actual applications, even if the numerical difference they give
rise to (in comparison with those methods we show to make sense) is neglectable,
unless they are stated explicitly as a numerical simplification of a rule which is

12 Taken from Flaschel (1983b).



4.3 Measurements of Total Labor Requirements Using Input–Output Methodology 83

theoretically sound. Such an advice may help to avoid surprises if the repeated
application of non-reflected approximations suddenly leads to absurd results.

4.3.1 A Physical Input–Output Example

To pursue our aim we shall employ the example of the preceding section, see
also Flaschel (1983b), on joint production. Yet, in difference to the presentations
and calculations we have provided in this section, we shall now employ input–
output tabulation methods throughout to exemplify the various ways by which
input–output tables may be derived. Consider as given the following physical data
on input and output which are arranged in the way as it is proposed by input–output
methodology.

Note that certain standard row and column sums of this basic input–output tab-
ulation are not yet available because of the heterogeneity of products still involved.
To fill this gaps the elements of Table 4.1 have to be recalculated in price terms first.
Employing the prices p1 D 1=3; p2 D 1 for products 1; 2 and w D 1 for labor the
following completed system of monetary accounts results:

This is the basic schematic arrangement of monetary data on input and output of
the United Nations’ (1968) System of National Accounts, from which input–output
tables are then to be derived (note that the displayed factor incomes represent labor
income and residual capital income, cf. the preceding section). Four cases to derive
a single input–output or Leontief table from the above data are now considered in
succession and examined with regard to their content.

4.3.2 Case 1: Industry Coefficients

In this simplest case no transfer of outputs or inputs is made between different
sectoral accounts in order to obtain a Leontief–table Q of ordinary type. Instead,
products of each sector are regarded as if they were homogeneous and of the type of
the characteristic product (i.e., the one which is principally produced) for each sec-
tor. Table 4.2 thereby changes to the following Table 4.3. This rearranged Table 4.2

Table 4.1 Steedman’s joint
production example

Products Sectors Final demand Totals
Product 1 25 0 8 33

Product 2 0 10 7 17

Sector 1 30 5

Sector 2 3 12

Primary Inputs 5 1

� �

Totals 33 17
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Table 4.2 Disentangling joint production, step 1
Products Sectors Final demand Totals

Products 25=3 0 8=3 11

0 10 7 17

Sectors 10 5 15

1 12 13

Factor incomes 5 1 6

5=3 2 11=3

Totals 11 17 15 13 29=3

Table 4.3 Disentangling joint production, step 2
Products Sectors Final Demand Totals

Products 25=3 0 20=3 15

0 10 3 13

Sectors 15 0 15

0 13 13

Factor Incomes 5 1 6

5=3 2 11=3

Totals 15 13 15 13 29=3

Note here that final demand must be adjusted to reflect the
hypothetical change in homogeneity that is here assumed.

is now of the classical Leontief type. Input coefficients Qij ; uj of intermediate
products and labor can therefrom be obtained in the known way, by normalizing
outputs to “one” which gives

Q D

�
5=9 0

0 10=13

�
; u D .1=3; 1=13/:

Note thatQ is identical with the matrix S of industry coefficients which we have
considered in notes IV and V in Flaschel (1983b). The above Leontief structure
Q; u thus simply gives the unit–costs (per $ of output value) structure of the various
sectors j irrespective of the type of product that is produced therewith.

Data of kind Q; u are employed in Rettig (1979, cf. p. 93) to calculate sectoral
employment multipliers by means of the classical multiplier formula of single–
product systems. For our example this formula gives

X D u.I �Q/�1

D .1=3; 1=13/

�
1 � 5=9 0

0 1 � 10=13

��1

D .3=4; 1=3/
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The resulting total labor inputs Xi per $ of commodity of sector i thus seem to
look perfectly normal. They imply that index “1” is associated with the larger total
employment effect.

One problem with this simple Leontiefian approach, however, is that it does
not make unambiguously clear what actually should be done if an increase of em-
ployment is to be achieved for the economy as a whole. Should we stimulate the
production of commodity 1 (irrespective of where it is in fact produced) or should
we stimulate sector 1 (irrespective of what this sector will produce in the end)?
If we do the first, then the preceding section implies that aggregate employment
may exhibit a decrease instead of an increase, since the physical employment multi-
plier there calculated is equal to “�1”. And if we do the second then the example of
the preceding section tells us that we are stimulating the less productive sector and
that the resulting increase in employment simply derives from this fact. That such a
rearrangement of outputs is completely arbitrary can also be demonstrated by con-
sidering an isolated (hypothetical) change of the price p1 from p1 D 1=3 to p1 D 1.
By this change the above employment multipliers are changed from .3=4; 1=3/ to
.1=2; 1=5/. We conclude that Rettig’s method of calculating employment multipli-
ers cannot be regarded as theoretically sound. The product � sector difficulties of
joint production are thereby in no way overcome.

4.3.3 Case 2: The Output Method

The output method, cf. United Nations (1968, p. 39), differs from case 1 to the ex-
tent as it in addition tries to remove the arbitrary homogeneity assumption we have
employed to motivate the use of industry coefficients Sij as entries of the Leontief
matrix Qij . In addition to Table 4.3 it is now (hypothetically) assumed that co–
products are sold and thus transferred to the production accounts of the industry
in which they are characteristic products (or where they are principally produced).
This implies that such co–products now appear both as an input and as an output (of
equal amount) of their characteristic industry. Thereby, one may hope to overcome
the lack of homogeneity involved in Table 4.3, since this method acknowledges that
the output matrix of Table 4.3 is based on inhomogeneous entities, which in a sec-
ond step are then transferred (sold) to that sector which characteristically produces
them. An inspection of Table 4.2 shows that by this second step we have to add
one (respectively: five) units of value to the input and output accounts of sector 1
(respectively: sector 2), see Table 4.4:

The vector of total employment effects is now given by the following
calculations:

X D .5=16; 1=18/

�
.1 � 28=48/ 0

0 .1 � 5=6/

��1

D .5=6; 1=3/:
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Table 4.4 The output method
Products Sectors Final Demand Totals

Products 28=3 0 20=3 16

0 15 3 18

Sectors 16 0 16

0 18 18

Factor Incomes 5 1 6

5=3 2 11=3

Totals 16 18 16 18 29=3

Again this vector is subject to considerable changes if isolated changes in com-
modity prices occur. Furthermore, since sector 1 now seems to be related to the
production of commodity 1 only (cf., however, United Nations (1968, p. 39) for
some interpretational doubts), it seems now even more plausible that the production
of commodity 1 should be subsidized, which – as we have already argued – will
lead to a reduction and not an increase in total employment. The output method thus
only superficially corrects the arbitrariness of method 1 to calculate the employment
multipliers associated with the joint production system of Table 4.1.

Both methods do not produce the meaningful magnitudes we have defined in
the preceding section (there per unit of physical output!). We conclude that some
proportions of the inputs Uij have to be transferred along with outputs if better
results are to be achieved. Thus, while transferring outputs is a comparatively simple
matter because the outputs of uncharacteristic products appear as the off–diagonal
elements in the make matrix V and though the simultaneous transfer of inputs is
much more difficult, this task must be approached nevertheless, if the theoretical
measures of the preceding section are to be reconstructed from the monetary input
and output data of Table 4.2.

Remark. The output method is generally described in the following mechanical way
(cf. United Nations (1968, 1973)): Transfer all off–diagonal outputs to the diagonal
by horizontal as well as by vertical displacement. Eliminate the double–counting of
outputs thereby involved by adding all off–diagonal elements of the make matrix
V to the corresponding elements of the absorption matrix U . This method, on the
one hand, does not change the “value added” in each sector, but it, on the other
hand and in contrast to method 1, now involves the transfer of outputs between
different production accounts. Of course,this method depends on the assumption
that the principal product of each sector can be unambiguously identified.

4.3.4 Case 3: The Commodity–Technology Hypothesis

We have seen that neither the method where jointly produced goods are simply
considered as homogeneous nor its “improvement” by hypothetically assuming that
co–products are “sold” to their characteristic sector (which then sells them to final
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demanders) represent suitable hypotheses with which the total employment effects
of the given joint production example can be analyzed. Outputs cannot be simply
separated from inputs in the way proposed by the output method if an examination
of the labor requirements of commodities is intended in the end.

A possibility to overcome this weakness is given by the so–called commodity
technology hypothesis. This hypothesis assumes that there exists a uniquely deter-
mined unit–cost structure of commodities from which Table 4.2 is derived by means
of (institutionally determined) product mixes based on constant $ –economies of
scale. Of course, by the very example chosen,this hypothesis cannot be true with
regard to the situation considered in Table 4.1.

Let us nevertheless calculate the input/output rearrangements and the employ-
ment multipliers derived therefrom to analyze the working of this assumption.
Denote in accordance, see also Flaschel (1983b), by ˛il the uniquely determined
costs which result from commodity i as employed in the production of commodity l .

For the example considered in Table 4.2 there then follows:

10˛11 C 5˛12 D 25=3 (4.4)
10˛21 C 5˛22 D 0 (4.5)
˛11 C 12˛12 D 0 (4.6)
˛21 C 12˛22 D 10 (4.7)

In matrix notation (4.4)–(4.7) read:

�
˛11 ˛12
˛21 ˛22

��
10 1

5 12

�
D

�
25=3 0

0 10

�

The input–output table or cost–structure of commodity � commodity type is there-
fore given by

Q D

�
˛11 ˛12
˛21 ˛22

�
D

�
20=23 �5=69

�10=23 20=23

�

Wage costs to produce commodities 1 and 2 must, of course, be calculated in the
same way:

10˛01 C 5˛02 D 5 (4.8)
˛01 C 12˛02 D 1 (4.9)

Equations (4.8), (4.9) imply u D .˛01; ˛02/ D .11=23; 1=23/.
The above input–output table Q represents an example for what would be de-

clared an absurd result according to the understanding of matrix Q in input–output
methodology [cf. our introduction, and United Nations (1968, p. 39)]. Nevertheless,
the application of the classical Leontief–multiplier formula here gives

X D u.I �Q/�1 D .11=23; 1=23/
�

9 5

�30 9

�
D .�3; 2/ (4.10)
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Table 4.5 The Commodity Technology procedure

Products Sectors Final demand Totals

Products 220
23

� 85
69

8
3

11

� 110
23

340
23

7 17

Products 11 0 11

0 17 17

Factor incomes 121
23

17
23

6

22
23

187
69

11
3

Totals 11 17 11 17 29
3

i.e., the technological employment multipliers (1),(2) of note III in Flaschel (1983b)
now reckoned per $ of output value and not per unit of product .p D .1=3; 1//. This
results comes about, since (4.10) is but a mathematically twisted form of the original
employment multiplier equations we have established and motivated in note III. To
see this, re–write (4.10) in the form X.I �Q/ D u and postmultiply this equation
with the transposed of the make matrix V t . This leads us to the matrix equations

.5; 1/ D X.I �Q/

�
10 1

5 12

�
D X

��
10 1

5 12

�
�

�
25=3 0

0 10

��

which is the original system of multiplier equations expressed in monetary terms.
We conclude, that the above procedure of deriving input–output data Q; u from

which employment multipliers are then calculated in the classical Leontief way rep-
resents but a complicated detour in the application of the true multiplier formula
which is based on the inverse of V t � U instead of I �Q in the case of multiple
production. This view finds support from the virtual “technology” assumption we
had to make to derive matrix Q and from the “absurd” elements this matrix Q now
exhibits from the standpoint of input–output computations. Nevertheless no harm is
done, if the results obtained are interpreted by means of the employment multipliers
we have considered in the preceding section, see also Flaschel (1983b), where there
is no need for dubious intermediate steps of doubtful technological content. Thus,
Table 4.2 should not be replaced by the following “absurd” Table 4.5 of product �
product type in the hopeless attempt to show the inputs of commodities into com-
modities as in the classical Leontief model despite the more general technological
data now given. (cf. Flaschel (1980) for a general examination of the misconceptions
underlying this treatment of the original data on input and output of Table 4.2).

4.3.5 Case 4: The Industry–Technology Hypothesis

A further basic procedure invented to overcome the weakness of the output method
(of paying no attention to inputs while transferring outputs between accounts) is
given by the so–called industry–technology hypothesis. Here it is now assumed that
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Table 4.6 The Industry Technology procedure

Products Sectors Final demand Totals

Products 50
9
� 25

9
8
3

11

� 10
13

120
13

7 17

Products 11 0 11

0 17 17

Factor incomes 133
39

101
39

6

148
117

281
117

11
3

Totals 11 17 11 17 29
3

the cost–structure of commodities is determined by their industry of origin, i.e., is
given by the industry coefficients we have considered in case 1.

This assumption implies that the cost–structure of commodities is no longer
uniquely determined if joint production is involved. Average cost–structures of com-
modities therefore have to be derived to obtain an input–output table of ordinary
type. This task is performed in the usual way by means of market shares as weights.
We have already seen, that this procedure will lead us to input–output data Q; u on
intermediate and labor inputs which by the conventional Leontief–multiplier for-
mula just measure the indexes of labor productivity we defined in notes II and III in
Flaschel (1983b): X � .0:72; 0:59/.

We shall conclude our present investigation of input–output procedures em-
ployed to overcome the problems of observed multiple production (Table 4.2) by
the representation of the input–output data of Table 4.2 if the above methodology is
applied to transfer co–products to their characteristic industry, see Table 4.6.

This rearranged table exemplifies what is proved in Flaschel (1983a) for the gen-
eral case, namely that no “absurd” input–output coefficients are possible in this
case. The very choice of our example (Table 4.1) again shows, however, that this
cannot be due to any property of the given technology as the chosen denomination
“industry technology hypothesis” for the assumption employed to disentangle joint
inputs wrongly suggests. Furthermore, a comparison of case 3 and 4 shows that it is
the commodity–“technology” and not the industry–“technology” hypothesis which
should be employed if employment multipliers are to be measured in the presence
of multiple production, in contrast to the choice which is made in Dominion Bureau
of Statistics (1969, p. 140).

4.3.6 Concluding Remarks

We have shown in this section that the matrix of industry coefficients S because of
its arbitrary homogenization of jointly produced goods should not be considered as
a final type of input–output table; instead, this table is but an intermediate step in the
derivation of the input–output table of case 4 (where Q D ST ). Manipulations of
outputs alone which aimed at their rearrangement such that homogeneity of output
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items might be claimed, furthermore, was also not a successful strategy to provide an
interpretable type of labor–requirements measurement in the presence of joint prod-
ucts. Instead, two basic methods of transfer of outputs and inputs (though devoid of
the technological content normally ascribed to them) could be shown to imply sensi-
ble measures of such requirements. These two measures in addition made clear that
employment effects associated with final demand changes under constant technical
conditions and productivity effects associated with technical changes depart from
each other once joint production is taken into consideration [cf. Flaschel (1980) for
a more complete demonstration of this fact].

Hence, measuring employment multipliers as in Dominion Bureau of Statistics
(1969, p. 140) or measuring indexes of labor productivity à la Evans (1953)/Stobbe
(1980) in principle demands for a particular derivation procedure of the input–output
table to be employed for this purpose. It is only after this choice has been made
explicit for the reader in the intended investigation that one may pose the question
whether, e.g., the output method (though devoid of theoretical content) may serve as
a numerical approximation to the type of labor requirements that is to be measured.
Finally, it should be noted that the methods 1, 2, 4 here considered are incapable
of analyzing supply bottlenecks which stem from joint production, since by these
methods all rigidities due to joint production are removed, from the production ac-
counts that are used for the analysis.

4.4 Actual Labor Values vs. Zero–Profit Prices in Sraffian
Models of Fixed Capital

4.4.1 Introduction

In his book “Marx after Sraffa” Steedman (1977) has collected a number of prob-
lems and calculations which are intended to show that the Marxian definition of
value will lead to nonsensical quantitative expressions when applied to general
technological situations and that, furthermore, no such value calculations are needed
for a correct determination of the rate of profit. The main points of his examination
of the properties which a quantitative expression of “embodied labor time” ought
to have (but will not have) are developed in his chapters on fixed capital and pure
joint production, but attention is also paid to problems arising from the existence of
multiple activities and from heterogeneous labor.13

For the case of pure joint production we have already shown in note II in Flaschel
(1983b) that the raised problems can be overcome when prices are taken into ac-
count in the formation of labor values to disentangle joint labor costs. This is not as

13 This chapter was first presented at the conference “The value of value theory” in Bielefeld,
March 1980. I like to thank Heinz Kurz and Ian Steedman for comments on the original version of
the chapter.
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“unnatural” as it may appear to be at first sight, if it is remembered that labor values
are deduced in Marx’s Capital from the notion of exchange value (things may be
useful and the product of human labor, yet their labor values are zero because they
have no exchange value, cf. Marx (1957, Vol. I, p. 40). Note also that relative wages
are sometimes used by Marx to make labor “homogeneous”).

The particular difficulties that arise with fixed capital and labor value depre-
ciation have been treated in Flaschel (1979) only briefly and in relation to the
procedures used for pure joint production in the main. The present section now
elaborates the there noted particularities of value depreciation to derive a definition
of labor values for the case of fixed capital that is economically meaningful (i.e., is
additive, positive, and unique) and that in our view generalizes Marx’s original de-
scription by integrating more flexible depreciation rules than are taken into account
by him.

As fixed capital models embrace the existence of production alternatives, the
introduction of the Marxian notion of “individual” (see note I in Flaschel (1983b))
complementing its average: “labor value” will become unavoidable in the following.
This additional concept will be defined first in its natural surroundings: input–
output tables which contain production alternatives but neglect fixed capital and
its depreciation. To enable direct comparison this will be done at the same level of
generality as is applied in Steedman (1977) chapter on fixed capital, i.e., we will
use a two–sector presentation throughout. The next sections will then employ these
pre–considerations to show how negative or incoherent book (labor) values of old
machines can be avoided completely in Steedman’s example of falling efficiency.

Furthermore, it will be argued that there is no necessity to view rising efficiency
and rising book values as anomalies, no matter whether Steedman’s “correct value
calculation rule” or our definition is applied to his example of rising efficiency. Our
conclusion will be: Nothing unusual can be observed on the side of labor value
determination, when the notion of “individual value” is taken properly into account
(though surely such definitional considerations do not suffice to give the label “true”
or “correct” to the here proposed definition).

There remains the question of the usefulness of labor values. To that end cer-
tain results on the connection of labor–value and price magnitudes are derived
for multiple–activity as well as fixed–capital models. Yet, despite the shown
relationship between prices and labor productivity considerations, the explana-
tory power of labor values for a theory of profits must still be regarded as an open
question.

Consequently, the main purpose of the following considerations is to push the
discussion back to the real issue, i.e., the assertion of redundancy with respect to the
utility of labor values which is the second type of critique that is raised by Steedman
and others. How to generalize labor values and relating known propositions in a way
that preserves the standard properties of this notion is not the crucial question of the
labor theory of value, though it may make the methodological status of this ex post
theorizing more precise. Instead it is the basic Marxian model presented, e.g., in
Morishima’s (1973) book which needs further elaboration.
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However, the still existing crude versions of the “transformation problem”, which
give labor values a direct role in the determination of the rate of profit (a point which
is rightly criticized by Steedman), should not directly lead to the conclusion that
there is nothing to be gained from such an elaboration - as a view into existing input–
output methodology should make clear, see also notes IV-VI in Flaschel (1983b).

4.4.2 Average and Individual Labor Values in Single
Product Systems

To demonstrate the possibility of a sensible definition of labor values in the frame-
work of fixed–capital–using economies as considered in Steedman (1977, pp. l4ff.)
we have to treat single–product systems first. Contrary to the customary presentation
of such systems our interest here lies in the examination of the case where several
activities are employed in at least one sector of the economy.

Apart from this alteration our assumptions are the same as those made by
Steedman (1977, pp. l40/1). In particular, we shall only consider two–sector models
of simple reproduction with a given real wage s (corn) paid in advance. We assume
as given two (circulating) capital goods M and C , where C (corn)14 is used for
consumption purposes of both workers and capitalists. Labor will be symbolized by
“L”. The period of production (a year) will be uniform between and within both
sectors of the considered economy.

In direct correspondence to Steedman’s (1977, p. 141) Table I we assume the fol-
lowing input–output table as given (Table 4.7), representing the quantities realized
during the year under consideration.

As simple reproduction prevails, we have M2 CM
0

2 D M1 and Q � C as net
output of the system.

Let vm; vc labor values of “material” and “corn”, respectively. According to
Marx (1977, Vol. I, pp. 316f) we have to consider individual values, too, when
more than one technique – here for the production of corn – is applied. The relation
between individual values and labor values can be described in the following way:

Table 4.7 Disentangling fixed capital processes
Material Corn Labor Material Corn
0 C1 L1 ! M1 0 M-sector

M2 C2 L2 ! 0 Q2 C-sector

M 02 C 02 L02 ! 0 Q2

M2 CM
0

2 C D L D ! M1 Q DQ2 CQ
0

2 Totals

C1 C C2 C C
0

2 L1 C L2 C L
0

2

14 M D material and later: machines.
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Let wc ;w0c be the two individual values of corn with respect to the two given
processes (of course no such distinction has to be made for the first sector here).
Then we should have:

wcQ2 C w0cQ
0
2

Q
D vc (4.11)

i.e., the labor value of corn is the average of the individual values, the weights being
given by the output shares of the processes of the corn–producing sector. And by
Marx’s verbal definition of individual values, cf. Marx (1977, Vol. I, p. 317), we on
the other hand have:

vcC2 C vmM2 C L2 D wcQ2 (4.12)

vcC 02 C vmM 02 C L
0
2 D w0cQ

0
2 (4.13)

i.e., the process–dependent individual value of a commodity – here of one unit of
corn – is the sum of the labor values of physical inputs plus the direct labor time
individually needed.

Substituting (4.11) into (4.12) and (4.13) and adding the equation for sector 1 –
also transformed into wc ;w0c by help of equation (4.11) – we get a system of 3
equations with 3 unknowns wc ;w0c ; vm:

w2Q2Cw0cQ
0

2

Q
C1 C L1 D vmM2 (4.14)

wcQ2Cw0cQ
0

2

Q
C2 C vmM2 C L2 D wcQ2 (4.15)

wcQ2Cw0cQ
0

2

Q
C 02 C vmM 02 C L

0
2 D w0cQ

0
2 (4.16)

(the fourth unknown: vc is then immediately given by (4.11)).

Assumption. There exist prices pm; pc > 0 for “material” and “corn” such that
(in matrix notation) :

.pm; pc/

 
0 M2 M 02
C1 C2 C 02

!
< .pm; pc/

 
M1 0 0

0 Q2 Q02

!

i.e., the proceeds from output exceed the costs of physical inputs for each of the three
given processes. No other price systems will be taken into account in the following.

Proposition 4.1. The system (4.14), (4.15), (4.16) has exactly one solution
.vm;wc ;w0c/. This solution is strictly positive.

In matrix notation the system (4.14)–(4.16) can be written as

.vm;wc ;w0c/

0

@
0 M2 M 02

x2C1 x2C2 x2C
0
2

x02C1 x
0
2C2 x

0
2C
0
2

1

AC.L1; L2; L02/ D .vm;wc ;w0c/

0

@
M1 0 0

0 Q2 0

0 0 Q02

1

A
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with x2 D Q2=Q and x02 D Q02=Q: Let A symbolize the matrix of inputs, B that
of outputs, and let “a00 stand for the vector of direct labor inputs of this system. The
last equation can then be abbreviated by

.vm;wc ;w0c/AC a D .vm;wc ;w
0
c/B or

.vm;wc ;w0c/AB
�1 C aB�1 D .vm;wc ;w0c/

And by help of the above assumption we have (because of x2 C x02 D 1):

.pm; pc ; pc/A < .pm; pc ; pc/B or

.pm; pc ; pc/AB
�1 < .pm; pc ; pc/

which implies Proposition 4.1 by known theorems on non–negative matrices (see,
e.g., Nikaido (1968, Chap. II)).

Proposition 4.2.

.vm; vc/
�
0 M2 CM

0
2

C1 C2 C C
0
2

�
C .L1; L2 C L

0
2/ D .vm; vc/

�
M1 0

0 Q

�

This result follows immediately by summing (4.15) and (4.16). It says that (av-
erage) labor values can be computed from specifically aggregated data without any
interference from individual values. Note that the above assumption on the posi-
tivity of “value added” can be reduced to this aggregated system without loss of
implications.

By summing the two remaining equations of result 2 we furthermore get:

Proposition 4.3. There holds the value added identity: L D vc.Q � C/ i.e., total
employment is equal to the labor value of the net product Q � C of Table I.

Proposition 4.4.

" D
1 � vcs

vcs
D

vc.Q � C/ � vcsL
vcsL

i.e., the ratio of surplus value to the total value of labor power is equal to ", the rate
of exploitation per labor hour bought.

Proposition 4.5. The rate of exploitation is positive if and only if there exist positive
prices (pm; pc), which imply positive profits (in the aggregate).

Positive (aggregate) profits can be expressed by

PcQC pmM1 � pcC � pm.M2 CM
0
2/ � pcsL > 0;
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where pcs describes the money wage per unit of labor. Now, because of M1 D

M2CM
0
2, this is equivalent to pc.Q�C � sL/ > 0, which in turn is equivalent to

" > o.
The following definitions and proposition 4.8 have been taken from Roemer

(1977) by extending his proof, cf. the mathematical appendix, to the case where
several activities coexist in at least one sector.

Definition 4.6. Technical change is of capital–using labor–saving type, i.e., of type
CU–LS, if and only if material or corn inputs must be increased for labor input to be
decreased (technical change of type CS–LU or CS–LS is defined in a similar way).

Definition 4.7. Technical change is progressive (or neutral or retrogressive) if and
only if the labor values (v�m; v

�
c ), computed after the technical change has occurred,

fulfil
.v�m; v

�
c / � .vm; vc/ . or: D .vm; vc/; or: � .vm; vc// (4.17)

with respect to the labor values (vm; vc) originally given.

Proposition 4.8. (Roemer, 1977, p. 411)):

(a) All technical changes of type CU–LS which reduce average cost15 are progres-
sive (but there are progressive CU–LS–changes which do not reduce average
cost).

(b) All technical changes of type CS–LU which are progressive reduce average
cost (but there are CS–LU changes which reduce average cost but are not
progressive).

Since Marx (1977, Vol. I, p. 40) regards labor values also as indicators of labor
productivity:

“In general, the greater the productiveness of labor, the less is the labor time required for
the production of an article, . . . the less is its value”,

we can reformulate the above two assertions in the following way: Technological
changes of the type that Marx considered as being of dominant kind in capitalism
(average cost reducing CU–LS changes) always raise labor productivity, though not
all of the CU–LS changes which raise labor productivity will be of this kind. On the
other hand, CS–LU changes which raise labor productivity are always “profitable”
for capitalists, but here there may exist average–cost reducing CS–LU changes
which will lower labor productivity in at least one sector.

The results 1–6 and especially the definitions of average and individual labor
values are not restricted to two–sector models, constant returns to scale, stationary
economies and the like. All that in fact is needed is an ex–post Leontief–table with
multiple activities together with a price vector p, such that value added is positive
for any sector of this table.

15 At the given initial prices pm; pc; pcs.
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Summarizing we have shown that the presence of production alternatives leads
in a natural way to the distinction of individual vs. average labor values, where the
latter are defined as properly weighted averages of the former, while the former are
given by the column sums of the given input–output table made homogeneous by
help of the latter. And though such individual values are not really necessary to
compute the corresponding labor values, they are nevertheless needed to explain the
latter, i.e., they help to depict the nature of labor values. This should be particularly
obvious for an interpretation of labor values as productivity indexes. Here, individ-
ual values can be used not only to calculate their mean; but also to consider the
variance that may exist within each sector with respect to such average productivity
indexes.

Finally, our presentation has shown that additive calculations indeed form the
basis of the determination of individual and average labor values, though – as de-
viations between them are possible – it cannot normally be expected that average
labor values will fulfil the originally given rectangular input–output system in a
strictly additive way. To my knowledge the necessity of such individual and aver-
age calculations has been completely ignored in the literature published so far.16

These calculations are crucial for the now following arguments which show that
Steedman’s “correct value calculations” for fixed capital models are not so com-
pelling as they seem to look at first glance.

4.4.3 Individual Values in the Case of Fixed Capital: Steedman’s
Example of Falling Efficiency Reconsidered

Consider the following technological description of a process which employs a
durable capital good M (“machines” instead of “materials” as in the preceding
section) to produce the consumption– and seed–commodity C :

C M L C M L C M L

.�49; �3; �30;„ ƒ‚ …
date 1

88 � 3; 0; �30;„ ƒ‚ …
date 2

30; 0; 0/„ ƒ‚ …
date 3

production period 1 production period 2

In this example, 3 machines together with 49 units of corn and 30 units of labor
have to be advanced to produce 88 units of corn at the end of the first period and
can be employed again (but with falling efficiency) to produce 30 units of corn at
the end of the second period by using up 3 units of corn and 30 units of labor at
its beginning. At the end of the second period the employed machine is physically
worn out with no use value left.

16 See however Kurz’s (1979) consideration of “rent” for an exception.
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Following Sraffa’s methodology, Steedman (1977) gives the following alternative
description of the above example of fixed capital (cf. his Table III on p. 145):

49C C 3Mnew C 30L! 88C C 3Mold (4.18)
3C C 3Mold C 30L! 30C (4.19)

Here, the two phases of the above process are shown separately by means of the
introduction of one further good: the one–year–old machine: Mold.

It is the aim of such a presentation to make applicable the price equations of
Sraffa’s square joint production systems for the case of fixed capital models, too. By
this approach, prices of production are calculated in such a way that a uniform rate
of profit will emerge on each stage of the machine–using process under considera-
tion. To perform this task in the here needed economy–wide sense it is necessary to
complete the above characterization of corn production (4.18), (4.19) by a machine–
producing process, which is done by Steedman in the following way:

3C C 3L! 3Mnew (4.20)

Taking corn as numéraire he then obtains with respect to a given real wage of
s D .2=3/C as prices for the two types of machines

pn D 2; p0 D 2=3 (4.21)

corresponding to a uniform rate of profit of 20%.
With regard to these prices – which are taken as actual ones in the following –

two thirds of the value of the new machine is written down in the first period and
the remaining (book) value in the second.

To calculate his “correct labor values” Steedman now applies the principle of
uniform profitability to a zero rate of profit, too, i.e., to a hypothetical real wage s,
and he characterizes Marx’s labor value calculations as being purely additive as far
as new commodities are concerned and strictly linear with regard to fixed capital and
depreciation. As result he then obtains a negative book value for the old machine by
his first method and incoherent results, i.e., an overdetermined equation system by
his second one.

But is it really plausible that value depreciation – which as any depreciation
process is not a matter of technology alone – should be conducted by ideal rules
of uniformity – here of zero profits – which are not related to existing facts, i.e.,
do not pay regard to our actual depreciation rates 2=3; 1=3? It is our opinion that
not only factual data of technology but also factual economic data have to be used
for the calculation of “embodied labor time” in case the former do not suffice to
solve this task. And it is a well–established fact in managerial cost–accounting that
one cannot arrive at a determination of full costs on purely technological grounds in
general, i.e., without help from more or less plausible economic imputations. Why
should things be better with respect to the calculation of “real costs” - here with
regard to labor?
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We have elsewhere shown, cf. note II in Flaschel (1983b), how labor values can
be defined without anomalies in the presence of “pure joint production” (corn and
straw). There, the existing joint commodity outputs and their inputs have been disen-
tangled by help of economic imputations which reflected the benefit received from
each unit of costing.

The above prices of production (4.21) and the implied depreciation rates 2=3; 1=3
now obviously obey the same “benefit principle” (which again imputes joint effort in
such a way that uniform profitability, here over stages of production, will emerge).
By employing this principle now for the case of fixed capital, the methodology of
the foregoing section will again suffice to prevent Steedman’s anomalies of labor
value depreciation as we shall now show.

The above treatment (4.18), (4.19) of the corn–producing sector already indicates
that fixed capital systems contain the side by side existence of production alterna-
tives, i.e., that the foregoing section will find application. But compared to the case
of pure joint production it is now only the fixed capital good which has to be imputed
to the different stages of production [and not the whole input basket (as was neces-
sary in that former case). This method, which replaces the artificial output: M old
by the actual deduction that is made from the (value of the) input: 3Mnew, reduces
the considered situation to the case of multiple activities already considered.

Treating Table 4.8 now in the same way as Table 4.7 in the preceding subsec-
tion, we get for the two labor values of “corn” and “machines” (by means of
Proposition 4.2):

.vm; vc/
�
3 0

52 3

�
C .3; 60/ D .vm; vc/

�
3 0

0 118

�
; i.e. ; .vm; vc/ D .2; 1/;

which are the same values as those obtained by Steedman (1977, p. 145), as they
stem from the same aggregated system. But instead of v0 D �1 we now have
.1=3/vm D 2=3 for the book value of the old machine. Furthermore: Instead of
extending this additive approach to a three equations system we here have two fur-
ther (4.12),(4.13) to consider, which determine the two individual values of corn for
the two existing stages of production:

wc � 0:943; w
0

c � 1:167

which are connected to the (average) labor value of corn by means of (4.11):

vc D
88wc C 30w

0

c

118
:

Table 4.8 Rising machinery
efficiency

M C L M C

0 3 3 ! 3 0 M–sector
.2=3/ � 3 49 30 ! 0 88 C–sector
.1=3/ � 3 3 30 ! 0 30

3 55 63 ! 3 118 Totals
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Hence, nothing abnormal can be observed with respect to labor values in
Steedman’s example of falling efficiency, when reference is given to the notion
of individual value in order to take into account productivity differences at the
two stages of the corn–producing process. As against that Steedman’s approach
produces its anomalies because it starts from the assumption that: vc D wc D w

0

c

(then having only three equations to consider, instead of 5), an assumption, that will
be justified in very special cases only.

But what about Marx’s original value calculations?
“. . . Marx worked in terms of linear value depreciation but was aware that it was an over–
simplification”, Steedman (1977, p. l40)).

Let us thus adopt ˛1 D ˛2 D 1=2 instead of Sraffa’s 2=3; 1=3 as depreciation
rates in our Table II. We then obtain (besides vm; vc as before) the individual values:
wc � 0:932;w

0

c � 1:200 – now with respect to the book value .1=2/ � 2 D 1 D v0
for the one–year–old machine.

Thus Marx’s oversimplification’ produces little difference to the preceding cal-
culations (and surely no “internal incoherence”), but has the advantage of getting
rid of price–determined non–linear depreciation procedures. It may, therefore, be
regarded as an approximation, an approximation that works the better, the less fixed
capital is employed per unit of output.

The above calculations clearly indicate, that (at least as long as ˛1; ˛2 � 0;

˛1 C ˛2 D 1 holds true) no perverse (negative) labor values (book values) can be
obtained from the application of our first subsection to such examples with falling
efficiency. These values remain well-defined, whatever the process may be that ac-
tually determines the depreciation rates ˛1; ˛2.

This shows that it is not the exact form of the employed actual depreciation rates
which is crucial for the above obtained quite normal results, but that it is simply
the methodology of our approach that prevents the occurrence of “anomalies”. Our
understanding of what is factual with respect to depreciation may change, but as
long as it is acknowledged that fixed capital must embrace the existence of produc-
tion alternatives and that this makes the concept of “individual values” unavoidable,
nothing unusual will happen as far as the determination of “real labor costs” is con-
cerned. It is the neglect of this latter concept (and the derivation of depreciation
rates ˛1 D 1:5; ˛2 D �0:5 outside the above admissible range Œ0; 1� by a formal
procedure 17) which makes Steedman’s “correct value calculations” unsuitable for a
proper generalization of Marx’s labor values.

There are two notes of warning to be appended to our method of definition. First:
The above indicated range of admissible choices of depreciation rates ˛1; ˛2 is not
sufficient to establish proportionality between prices of production and labor values
(in fact the above labor values vm; vc do not even depend on ˛1; ˛2!) And second:
This independence of vm; vc from ˛1; ˛2 and their equality with zero–profit prices

17 which ensures wc D w
0

c and therefore makes our average calculations avoidable zero–profit
condition.
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is due to the assumption that “simple reproduction” prevails, in which case the ag-
gregated system of Proposition 4.2 does not depend on ˛1; ˛2. Hence, it will not be
possible in general to deduce the positivity of our labor values from the positivity of
Sraffa’s zero profit prices for finished goods.

Summarizing, we can state that uniform profitability implies uniform produc-
tivity on all stages of production of the actually chosen technique in very special
cases only, i.e., different stages of production will be characterized by different real
costs with respect to their homogeneous output in general. Thus, averages have to
be formed to arrive at unique labor values per type of commodity.

4.4.4 Rising Efficiency and Rising Book Values of Machinery

We have excluded negative depreciation rates from the above reasoning. Yet,
Steedman also provides an example, where a situation with ˛1 < 0; ˛2 > 0 will
arise. The technological description of this example of rising efficiency (expressed
in integrated form) reads (Table 4.9):

The output of corn in the first period does not even exceed the input necessary
for the second period, but there is a net output of 25C 10 � .15C 9/ units of corn
with respect to the whole process.

To apply Sraffa’s book values to the determination of labor values, we have to de-
termine Sraffa’s prices first (which have been omitted by Steedman in this example).
Let the real wage s be 0:2C and set pc D 1. We then have to solve:

.1C r/.1C 0:2 � 5/ D 5pm

.1C r/.9C 5pm C 0:2 � 10/ D 10C 5p0

.1C r/.15C 5p0 C 0:2 � 25/ D 25

As solution we get:

pm � 0:4204 the price of the new machine
p0 � 0:7540 the book value of the old machine
r � 5:1% the uniform rate of profit

The given phenomenon of rising (physical) efficiency here finds its expression
in rising vintage prices and “might be the result of the ‘running–in’ of the new
machine”, see Steedman (1977, p. 142). We would suppose, however, that the
“running–in” of the new machine resulting in risen efficiency during its second year

Table 4.9 Disentangling fixed capital processes
C M L C M L C M L
�1 0 �5 0 5 0 0 0 0 M
�9 �5 �10 10� 15 0 �25 25 0 0 C

date 1 date 2 date 2
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cannot be reasonably thought of if it is not accompanied by running–in costs18 – not
necessarily easily identifiable in each case. Therefore (and for a simple presentation
of our arguments), we shall assume that 3 of the 9 units of the corn– input at the
beginning of the first period are necessary (e.g.):

(a) To have a sufficient output in period one, or
(b) To ensure the possibility of using the one–year–old machine once again19 or
(c) To raise the output of corn in each period by two units (from 8 to 10 and from

23 to 25 respectively).20

Yet, let us neglect these possible interpretations of the above 3 units of corn–
costs for the moment and apply instead the methods of definition considered in the
preceding subsection without further qualification.

Steedman (1977, p. 144) – identifying again vc with wc and w
0

c by his “correct
value accounting” method – has to solve the equation system

vc C 5 D 5vm
9vc C 5vm C 10 D 10vc C 5v0
15vc C 5v0 C 25 D 25vc

and gets as solution vc D 4; vm D 1:8; v0 D 3.
He concludes “that with machines of rising efficiency, value depreciation can be

negative” (Steedman, 1977, p. 144). Yet there is nothing paradoxical in the fact that
additional costs (3C) may lead to rising book values of machinery - both at a rate of
profit of 5.1% or of 0%! The only thing to be explained here is the way in which this
simple fact expresses itself in the above used system of price equations, where no
distinction is made between those corn–costs which will circulate with their product
and those which will remain fixed with the machinery during its useful life. This is
a topic that cannot however be pursued here any further.

Now, in contrast to Steedman’s method of definition we have proposed to distin-
guish between vc and wc ;w

0

c when labor values are to be defined. By use of Sraffa’s
vintage prices (see above) we get the depreciation rates:

˛1 D
pm � p0

pm
� �0:794; ˛2 � 1:794

and thereby – through an economically determined allocation of the 5 machines
to the two stages of corn production – in complete analogy to the preceding section
(Table 4.10):

Employing once more the definitions initially introduced (especially (4.12),
(4.13)) we here get:

18 A special kind of investment expenditure.
19 In this case there exists the alternative profile .�6;�5;�10; 10; 0; 0/ which can be neglected,
because it is inferior at the given equilibrium prices.
20 This again will lead to a more profitable solution.
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Table 4.10 Fixed capital and
the measurement of embodied
labor time

M C L ! M C
0 1 5 ! 5 0 M–sector

�0:794 � 5 9 10 ! 0 10 C–sector
1.794 � 5 15 25 ! 0 25

5 25 40 ! 5 35 Totals

wc � 3:886;w
0

c � 4:046; vc D
10wc C 25w

0

c

35
.D 4/

v0 D .1C 0:794/ � vm � 3:229 .vm D 1:8/:

While in the example with falling efficiency our distinction between individual
and average labor values made it possible to prevent Steedman’s negative book–
values completely, our definition of v0 (and wc ;w

0

c) applied to his example of rising
efficiency stays in close contact with the qualitative features found by him. This can
be so, since there is no anomaly in rising book values, as we have noticed above; on
the contrary, it is quite natural that the labor value of machine vintages should rise
if investment expenditures (implying “appreciation”) exceed depreciation.

We now come to a consideration of the three kinds of investment expenditures
a),b),c) stated at the beginning of this section. As truncations can be excluded
here, there will be no difference between them with regard to Sraffa’s method of
price determination. This method will only discriminate between these types of
investment, when different truncations are implied by them, and it performs this
task by representing the combined effect of depreciation allowances and “apprecia-
tion” efforts at each stage by a single number: the (then possibly positive) change in
book–value.

But (at least) when measuring labor value and productivity there might be a dif-
ference between the three stated types. With respect to our example of 3 units of
corn as “running–in” costs this may be illustrated in the following way. Neglecting
these costs we obtain for the two stages of the corn–producing sector:

6C C 5Mnew C 10L! 10C

15C C 5Mold C 25L! 25C:

Consequently, we get as pure depreciation rates for period 1 and 2

˛1 D 2=7I ˛2 D 5=7;

if we assume proportionality between activity level and depreciation and regard
constant efficiency to be in line with the application of linear depreciation.21 But in
addition to that we have distinguished three types of “running–in” costs. We now

21 This is not the case when Sraffa’s book–keeping method is applied.
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would propose to interpret case a) as implying “appreciation rates” ˇ1 D 1; ˇ2 D

022 and case c) as implying (approximately) ˇ1 D 2=7; ˇ2 D 5=7.
We have shown in the subsection on multiple activities that in the case of simple

reproduction (average) labor values do not depend upon such rates. But with regard
to individual values and (4.12), (4.13) we would propose to define these values in
the presence of “appreciation” by:

6vc C ˇ13vc C ˛15vm C 10 D 10wc
15vc C ˇ23vc C ˛25vm C 25 D 25w

0

c :

In case a) we then get: wc � 4:857;w
0

c � 3:657 and v0 D Œˇ2.3vc/ C
˛2.5vm/�=5 � 1:286, i.e., we get rising labor productivity within the process con-
sidered and a falling book value.

In case b) we get: wc � 3:657;w
0

c D 4 D vc and v0 � 3:686, i.e., the opposite
result in comparison to a).

And in case c) we get: wc D w
0

c D 4 D vc and v0 D 3, which is the case
that Steedman describes as “correct value accounting” (a special situation, where
“appreciation” exceeds depreciation).

But no matter how any given pattern of ˛i ; ˇi will be determined in the end, once
they are given it is always possible to associate with these depreciation and “appre-
ciation” coefficients a positive vector of individual values describing productivity
changes within the fixed–capital–using process(es) in a meaningful way in compar-
ison to their (positive) averages: the Marxian labor values. There is no need to dwell
upon the question of how to determine the practically most relevant depreciation
procedures to show that labor values and the transfer of labor value from durable
means of production to commodity output can be defined without anomalies.

4.4.5 Final Remarks

We have shown that the first part of Steedman’s (1977, pp. 148/9) conclusions may
be due to a too narrow definition of labor values. Neither does Marx’s simplification
(to assume linear value depreciation) necessarily lead to incoherent results nor are
Steedman’s “properly calculated additive values” as conclusive as they seem to be.

We have reached this result by the inclusion of prices into the definition of labor
values itself. Will this new feature of labor values deprive them of their formerly
possibly existing usefulness? We do not believe this to be the case.

Though other opinions indeed exist, we would insist that labor values 1 have to be
considered as ex–post defined magnitudes, i.e., they are derivatives of the physical
data Q in existence. As such they will, of course, depend on prices p, since actual
physical data will depend on them. Labor values v, therefore are characterized by
the following dependency:

v D v.Q.p//

22 This may be the only case which is really covered by Sraffa’s method of price computation.
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But is there really a new quality involved between this understanding of labor
values and the now reached stage of their interpretation

v D v.Q.p/; p/;

where prices exercise direct influence on their determination to some extent? And is
it really such a surprise that prices may have further influence on labor value deter-
mination apart from their influence on the choice of technique, e.g., by regulating
the amount of labor value depreciation? In fact, we do not believe that the above
described change in interpretation – from the first type of dependency to the second
– will give further reasons for the claim of redundancy of labor values with regard
to the calculation, determination or explanation of profits and prices.

Both kinds of the comprehension of labor values on the one hand as pure deriva-
tives of actual technology, and on the other hand as the attempt to erect a sensible
definition of full costs in real terms (which is known to be impossible on purely
technological grounds) in my view share the common and more important method-
ological difficulty of how to explain the uses that can be drawn from such post
factum magnitudes. It is the scientific content of such derivatives of price–quantity–
interrelationships which presents the most crucial question.

There are two basic and related strategies – besides methodological contem-
plation – to attack this difficulty. First: to enrich the standard Marxian model as
in Morishima (1973) by further theoretical insights into the relationship of price-
value calculations, e.g., by exploiting further the labor productivity characterization
of labor values (cf. Proposition 4.8) and secondly: by integrating the empirically
oriented work done by input–output analysts with respect to similar magnitudes
to enrich the above model by hypotheses which can be judged by empirical
observation.

It may be that in doing so we shall find out that the question of generalization
will be solved simply by practical constraints, conventions or insights which still
lack a thorough theoretical consideration.

4.5 Conclusions and Outlook

We have proposed in this chapter an alternative way of measuring labor values in
general joint production systems (see the following chapters for its general formula-
tion) which allows us to use the nominal and “real” statistics supplied by the United
Nations’ System of National Accounts without much change when the input–output
tables and their data are derived on the basis of the so-called industry technology
hypothesis. We have moreover seen that this hypothesis is in line with what firms
are actually doing in cost accounting when they face the situation of pure joint pro-
duction. Our approach to labor values, their definition and their application, is on
the one hand of a very general nature, but nevertheless operational and applicable in
the way concepts of input–output analysis are defined and applied. This also holds
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for the treatment of fixed capital, semi-finished products, skilled labor and more, see
Flaschel (1983b) for details. The only big and still unsettled issue for the approach
we are propagating is in fact the treatment of open economies and international
labor values, a treatment where we also hope to learn from procedures applied in
United Nations’ System of National Accounts. As in the United Nations’ System of
National Accounts – though from a different angle – we thus suggest that a dual way
of interpreting and analyzing (ex post, without any dependence on a particular equi-
librium or disequilibrium approaches) the data supplied by the working of capitalist
market economies is the appropriate one, since we interpret Marx’ value theory as
a System of National Accounts meant to allow an analysis of what is “really” going
on behind the reported nominal statistics.

Mathematical Appendix

In this section we provide a proof for the proposition 4.8 formulated in Sect. 4.4.23

As the case of switch–points (under the assumption of a finite set of substitution pos-
sibilities) is an isolated phenomenon, it is not sensible to restrict the following proof
to constant returns to scale and switch point situations solely. Hence, the following
simple generalization of a switch point situation is assumed to be given:

Assumption. There exist positive prices pc ; pm and positive numbers r1; r2; r
0

2

(rates of profit) such that the following equations hold for the data of Table 4.7:

.pcC1 C L1/.1C r1/ D pmM1

.pcC2 C pmM2 C L2/.1C r2/ D pcQ2 (4.22)

.pcC
0

2 C pmM
0

2 C L
0

2/.1C r
0

2/ D pcQ
0

2

Let vAC L D v denote the equation system of Proposition 4.2 (with respect to
M1 D 1;Q D 1 by appropriate choice of units).

Lemma.
.0; 0/ < v D .vm; vc/ < p D .pm; pc/

Proof. Equation system (4.22) implies

.pm; pc/

��
1 0

0 1

�
�

�
0 .1C r2/.M2CM

0

2/

.1Cr1/C1 .1C r2/.C2 C C
0

c/

��
D

�
.1Cr1/L1
.1Cr2/.L2 C L

0

2/

�t

with respect to 1C r2 D pc

pc.C2CC
0

2
/
C pm.M2 CM

0

2/C .L2 C L
0

2/ > 1.

Since the right hand side of this equation system

23 cf. also Roemer (1977, p. 420) for a proof with respect to the standard Leontief model.
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p.I �D/ D .1C r1/L1; .1C r2/.L2 C L
0

2//

is positive, the matrix I �D on the left hand side must be nonnegatively invertible
(cf. Nikaido (1968, p. 95)), i.e., we get

.pm; pc/ D ..1C r1/L1; .1C r2/.L2 C L
0

2//.I �D/
�1 and

.I �D/�1 D 1CD CD2 CD3 C : : : � 0:

Furthermore, we have:

..1C r1/L1; .1C r2/.L2 C L
0

2// > .L1; L2 C L
0

2/

and .I �D/�1 C AC A
2
C : : : ; where A D

�
0 M2 CM

0

2

C1 C2 C C
0

2

�
:

Therefore we get

.pm; pc/>.L1; L2 CL
0

2/.I CACA
2
C : : :/D.L1; L2 CL

0

2/.I �A/
�1Dv: ut

CU–LS technical change which reduces average cost is progressive:
Let LA; LL; LQ be the input–output coefficient matrices of Proposition 4.2 after the

change has been made. In direct generalization of the case of constant returns to
scale, the CU–LS assumption can be understood to hold “on an average”:24

CU W A � LA LQ�1; LS W L � LL LQ�1 (4.23)

The assumption of a reduction in average costs can be expressed by:25

pAC L � p LA LQ�1 C LL LQ�1 (4.24)

with respect to the price system initially given (see above).
Combining (4.23) and (4.24) gives:

p. LA LQ�1 � A/ � .L � LL LQ�1/ � 0; LA LQ�1 � A � 0; v � LL LQ�1 � 0 (4.25)

By the above lemma we have v < p, which implies

v. LA LQ�1 � A/ � p. LA LQ�1 � A/;

24 Multiplication by LQ�1 gives the average input coefficients per sector and per unit of output.

Note that we have assumed Q D
�
1 0

0 1

�
:

25 Inequality (4.24) bears no close resemblance with the criteria used to describe the choice of
technique when durable equipments are considered. Therefore, the possibility of the occurrence of
profitable CU–LS changes which do not raise labor productivity is considerably increased then.
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because of the non–negativity condition LA LQ�1 � A � 0. Inserting this result into
(4.25) and rearranging the obtained terms we get:

v LA LQ�1 C LL LQ�1 � vAC L D v:

And by recursive application of this inequality we finally get:

v
0

D v LA LQ�1 C LL LQ�1 � v

v
00

D v
0 LA LQ�1 C LL LQ�1 � v

0

v
000

D v
00 LA LQ�1 C LL LQ�1 � v

00

; etc.

This monotonic sequence is bounded from below (by 0) and therefore converges
to a nonnegative vector v� fulfilling:

v � v� LA LQ�1 C LL LQ�1 D v� > 0 (by Proposition 4.1/ ut

Because of the gap between v and p (cf. the lemma) there exists, on the other
hand, the possibility for a CU ��LS change to be progressive, i.e., to fulfil v� � v,
without leading to a reduction in average cost, cf. (4.24), i.e., (4.25) is not a neces-
sary condition for the occurrence of v� � v.

The proof of Proposition 4.8(b) is obtained by reversing the above inequalities
and the order of the argument.
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Chapter 5
Actual Labor Values in a General Model
of Production

5.1 Introduction

In contrast to counterfactual linear programming definitions of labor values this
chapter introduces an at least equivalent definition of such values for the general case
of joint production which is exclusively based on actual data. This task is accom-
plished by extending Marx’s concept of “individual values” from multiple activities
to joint production by means of certain price ratios at those points where produc-
tion data are insufficient to ensure the positiveness of “embodied labor time”. Our
approach generalizes the simple formula that relates labor values to monetary input–
output tables, and it reformulates the labor theory of value in such a way that the
“theoretical priority” of the case of a uniform composition of capital is reaffirmed.

In the concluding pages of his book, Marx’s Economics, it is suggested by
Morishima that Marxian economists “ought radically to change their attitude to-
wards the labor theory of value” since in general the value system of the methods
of production actually adopted in a capitalistic economy “may be determined to
be negative, indefinite or even contradictory to the postulate of the uniform rate of
exploitation” (Morishima 1973, p. 193). He then continues by proposing that “opti-
mal labor values”, the shadow prices of certain linear programming problems which
minimize the amount of labor needed to produce given bundles of net output, should
take the place of “actual labor values” when production models of a more general
kind than the simple Leontief model are to be considered, an interpretation of labor
values which has been worked out in detail in Morishima (1974) and has become a
widely accepted approach to labor values and the labor theory of value for all types
of multiple production systems.

In contrast to these theoretical refinements in the determination of such – direct
and indirect or – system labor requirements, input–output analysts have continued to
measure them in the standard way, i.e., by means of the Leontief inverse of recorded
transactions tables. Yet they, too, became aware of the problems of multiple and
in particular joint production in the course of verifying their basic assumptions of
“the identity of industry and product” and of “product homogeneity.” In the process
of aggregating production statistics collected from establishments into those of in-
dustries, by means of the method of “principle products,” it was usually observed
that some subsidiary production remained in existence despite efforts towards the

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 5,
c� Springer-Verlag Berlin Heidelberg 2010
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classification of establishments and products into suitable groups. Data on output
and input of industries, accordingly, arise in a form for which no obvious procedure
is available for reducing them to the single input–output table finally presented. To
solve this problem formal methods have been invented which suitably transfer sub-
sidiary production from the production accounts of their industry of origin to those
of their principal industry. This methodology is meanwhile well established, and is
surveyed in the United Nations’ SNA, the System of National Accounts (see United
Nations (1968, Chap. III)). Despite the tenacious existence of multiple products of
various sorts, therefore, input–output methodology has succeeded in deriving single
input–output tables to which the conventional formula of measuring system labor
requirements can be applied. Probably because of the minuteness of the realloca-
tions involved in the derivation of such tables (at present), however, no theoretical
penetration of their effect on the obtained measure of labor requirements, when as-
suming one or another definite technological basis, has been undertaken so far.

Taking both approaches into consideration we are thus confronted with two dis-
tinct attitudes towards the determination of such system labor requirements: one that
is theoretically sound but which, by the counterfactual use it makes of all kinds of
potential methods of production out of a given set of blueprints, cannot be checked
by observation, and one that performs this task in the conventional way by first re-
moving all multiple production through seemingly arbitrary manipulations of input
and output coefficients. Are we consequently forced to conclude that the identity
between these two types of measures, shown to exist for simple Leontief models
in Okishio (1963, p. 291) through a simple translation of physical into monetary
terms, is restricted to this latter type of model, thereby in general invalidating his
conclusion that “value” in the Marxian sense is not metaphysical as is often claimed
but an observable and operational magnitude’?

It is the purpose of this chapter to show that this need not be the case. A definition
of labor values can be given which again is based on the methods of production that
are actually adopted, but which nevertheless avoids the anomalies ascribed to it in
the introductory quotation from Morishima’s book, and by which Okishio’s result
can be generalized into the von Neumann world of joint production. The concep-
tional discrepancy pointed out above between theory and measurement, therefore,
can be bridged again, and, to be sure, by way of a new interpretation of labor values
which applies the so–called “sales value method” of the accounting principles of
firms to the case of labor costs, and through an intimate relationship of this method
with the allocation rule proposed for the case of joint products in the SNA.

For a detailed demonstration of these assertions we shall employ the general equi-
librium model of capitalistic reproduction that was introduced by Roemer (1980).
This model, together with Roemer’s reformulation of the “optimum labor theory
of value,” our basis of comparison, will be considered briefly in Sect. 5.2. The ac-
tual data supplied by means of its equilibrium concept of “reproducible solutions”
will then be utilized in Sect. 5.3 and will suffice to present our new formulation
of labor values for the case of joint production. To motivate this formulation we
shall first consider the case of multiple, but single product, activities (Sect. 5.3) –
and will do this by the very method used in Marx’s Capital for this case, i.e., by
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way of a formalization of his important distinction between average and individual
values. Section 5.3 then shows how the case of joint production can be reduced to
this preliminary study of multiple activities per commodity, that is, by the sales value
method already mentioned. In Sect. 5.3, on the other hand, the employed actual equi-
librium solution will be transformed into a single input–output table of conventional
type by way of the SNA methods recommended for the case of joint production. As
one of our basic findings we shall then demonstrate that the resulting system labor
requirements per unit of output value must simply be multiplied by corresponding
commodity prices to arrive at the labor values as defined in Sect. 5.3, i.e., Okishio’s
result for the case of joint production. In Sect. 5.4, finally, basic propositions as, e.g.,
the Marxian case where “prices are equal to values,” (only) known to be valid in the
conventional equations presentation of Marx’s labor theory of value, are shown to
remain true for this general model of production. The narrow limits of the “opti-
mum labor theory of value,” discussed in Sect. 5.2, will thereby be considerably
overcome. Morishima’s (1973, p. 193) claim that the techniques actually adopted
will allow for “no satisfactory theory at all” thus cannot be regarded to represent
a good working hypothesis when measured against the standards set by his own
“optimum labor theory of value.”

It may be argued, however, that there is a serious cost involved in our rehabilita-
tion of conventional propositions of the labor theory of value, since by our use of the
sales value method (to disentangle joint products in such a way that Marx’s notion
of “individual value” can again be applied) relative prices are now introduced into
the definition of labor values itself. Yet, this does not impose far–reaching restric-
tions on our version of a labor theory of value in comparison with its elementary
form (Morishima, 1973). In fact, our approach will neither sacrifice the fundamen-
tals of established theory nor lose contact with common practices of measurement.
Should we, therefore, be bothered by the fact that one further step has been taken
to dispense with the curious postulate that labor values have to be “independent of
what happens in the market” (see Morishima (1973, p. 181))?

5.2 A General Equilibrium Approach to Marxian Economics

In elementary mathematical formulations of Marxian economics in general, and of
the labor theory of value in particular, all basic definitions (of values, prices and
quantities) are given in terms of simultaneous input–output equations, as for exam-
ple in Morishima’s (1973) well known presentation of the theory. In the final chapter
of that work, however, this equations approach is severely criticized by Morishima
for its narrow range of validity and is replaced by an inequality approach: the von
Neumann model with regard to prices and quantities plus a linear programming for-
mulation of labor values and the rate of exploitation (see Morishima (1974) and
Morishima and Catephores (1978) for extensions and modifications).

The central theme of this way of generalizing labor values to include all kinds
of joint products has been the so–called Fundamental Marxian Theorem (FMT): the
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equivalence of positive profits and a positive rate of exploitation (see Morishima
and Catephores (1978, p. 30) for a brief history). This theorem and its current for-
mulation in terms of “optimum values” is also included in the general equilibrium
approach to Marxian economics presented in Roemer (1980), which will provide
the formal framework, the price and quantity data, and the point of reference for the
alternative approach we shall develop in the following.

5.2.1 Reproducible Solutions

We shall employ the following notation in this chapter: lower case letters are used
to represent vectors (upper case letters, matrices). A prime (’) denotes transposition.
Untransposed vectors are column vectors. The circumflex .^/ over a vector indi-
cates the matrix formed by diagonalizing the vector. <nC denotes the subspace of

nonnegative elements .>D 0/ of <n, while semipositivity (strict positivity) is char-
acterized by � 0.> 0/. Furthermore, e D .1; : : : ; 1/0 is the summation vector (of
appropriate dimension in each case) and I Dbe the identity matrix. Ai ; Aj indicate
the i th row and the j th column of a matrix A, respectively; the vectors I 1; : : : ; I n,
therefore, represent the canonical basis of <n.

To introduce briefly the required components of Roemer’s general equilibrium
model1 consider as given a commodity space of dimension 2n C 1, i.e., <2nC1,
that is based on one elementary region, two elementary time intervals (the present
and the future), and n C 1 physically distinguished commodities, n produced and
one unproduced commodity (homogeneous labor). Production takes time; both la-
bor and the means of production have to be advanced. There are m capitalists
.j D 1; : : : ; m/, each facing a production possibilities set P j � <2nC1 which
contains 0 (the possibility of inaction) and is closed and convex. Vectors ˛j 2 P j

are written as ˛j D .�˛
j
0 ;�˛

j ; ˛j /, where ˛j0 2 <C; ˛
j ; ˛j 2 <nC denote

the input of direct labor and the inputs and outputs of produced commodities for
capitalist j, respectively. Net production ęj is defined by ˛j � ˛j . The symbols
˛ D .�˛0;�˛; ˛/ 2 P;ę refer to the economy as a whole, i.e., they are obtained
from the corresponding individual data of capitalists j by summation over j .

Workers do not save, but simply obtain a consumption bundle s 2 <nC, s � 0 per
hour of labor sold at the wage rate w D p0s, where p 2 <nC denotes the vector of
commodity prices. We normalize prices by taking the wage rate as 1. Capitalist j is
assumed to possess the physical capital !j 2 <nC and to maximize profits, i.e., to
choose his activities from the set

Aj .p/ D f˛j 2 P j =˛
j
0 C p

0˛j
<
D p0!j ^ p0ęj � ˛j0 ! maxg � P j :

1 We stress that we use Roemer’s equilibrium concept (of reproducible solutions) as providing the
data for the calculation of labor values. These calculation can however equally well performed with
any other equilibrium or disequilibrium price-quantity configuration of a given period of time.
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We shall employ the following equilibrium concept as representation of our
“actual data” in all that follows.

Definition 5.1. ˛ 2 A.p/ D
Pm
jD1A

j .p/ is called a reproducible solution with

respect to the price vector p and the above specified economy if ˛ C ˛0s
<
D ! DPm

jD1 !
j and ę >

D ˛0s, i.e., if the profit maximizing solution ˛ is feasible and if it
reproduces at least the amount of consumption and production goods needed for its
execution (see Roemer (1980, 1981) for a discussion and various generalizations of
this approach).

It is not necessary, for the purpose of the following investigation, to enumerate the
set of assumptions which would assure the existence of “reproducible solutions” for
this general model of production. Our understanding of labor values, as measures
of actually embodied labor time, only demands that they be defined with respect
to the actual data of a given equilibrium situation, no matter how its existence in
fact is assured. We, therefore, may conclude this section by providing an example
of the above type of economy and its equilibrium concept which (with appropriate
modifications) will serve to illustrate all basic definitions which will follow.

Example E1. Consider the following economy:

P 1 D f�1.�2I 0;�2I 8; 0/
0 C �2.�0:5I 0;�3I 8; 0/

0=�1; �2
>
D 0g; !1 D .6; 0/0;

P 2 D f�1.�4I 0;�1I 0; 4/
0 C �2.�0:1I 0;�3I 0; 4/

0=�1; �2
>
D 0g; !2 D .0; 3/0;

P 3 D f�1.�1I 0;�4I 12; 0/
0=�1

>
D 0g; !3 D 4; 2:5/0

P 4 D f�1.�3I 0;�3I 0; 6/
0=�1

>
D 0g; !4 D 0; 4:5/0;

i.e., where four capitalists with distinct methods and endowments are engaged in
the production of only two commodities, the first a pure consumption good and the
second a pure capital good. Let the workers’ consumption bundle s be given by
.1; 0/0. It can easily be checked then that the vectors p D .1; 2/0 and

˛1 D .�2I 0;�2I 9; 0/0 2 P 1; ˛2 D .�4I 0;�1I 0; 4/0 2 P 2;

˛3 D .�1I 0;�4I 12; 0/0 2 P 3; ˛4 D .�3I 0;�3I 0; 6/0 2 P 4;

describe a reproducible solution for this economy.

5.2.2 The Optimum Labor Theory of Value

The following definitions of labor values and exploitation adopt Morishima’s con-
cept of “optimal (or true) values” for the general model of production here under
consideration.
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Definition 5.2. The labor value of a bundle h >
D 0 of commodities is defined by

v�.h/ D minf˛0=.�˛0;�˛; ˛/ 2 P; Q̨
>
D hg:

Definition 5.3. The rate of exploitation at ˛ D .�˛0;�˛; ˛/ 2 P is

e.˛/ D .˛0 � wv�.˛0s/=v�.˛0s/ if v�.˛0s/ > 0

(see Roemer (1980, 2B) and Morishima and Catephores (1978, 2.3/2.5) for further
explanations).

It has already been noted that it is mainly the FMT at which this construction
of the rate of exploitation is aimed. This theorem is declared to be of decisive
importance to Marxism and Marxian economics, and claimed to be valid only if
it is interpreted in terms of the above type of labor values (see Morishima and
Catephores (1978, p. 38)). In simplified form Roemer’s version of this theorem is
the following (see Roemer (1980, p. 519) and note the restrictive assumption of
“independence of production” is required there for its proof ).

Theorem 5.4 (FMT1). There exists a reproducible solution yielding positive total
profits � if and only if there exists a reproducible solution yielding a positive rate of
exploitation, in which case both characteristics extend to the set of all reproducible
solutions.

Example 2. With regard to the reproducible solution considered in E1 we have
� D 10 > 0 and ˛0 D 10. The labor value of a bundle h >

D 0 will be determined by
the two basic processes of P 1; P 2 that are not activated by the profit–maximizing
capitalists 1, 2 in the reproducible solution presented in Example El, which in par-
ticular implies:

v�..1; 0/0/ D 0:1, v�..0; 1/0/ D 0:1, and v�.˛0s/ D v�..10; 0/0/ D 1. The rate
of exploitation, therefore, will be .10� 1/=1 D 9 or 900 percent and this in view of
an actual price rate of profit of 33.3 percent.

To conclude this section we shall list some properties of optimal values which in
our view do not reflect Marx’s understanding of labor values in an adequate way :

1. Optimal labor values can be positive quite independent of the question of whether
the product concerned is actually exchanged or – still weaker – is an object of
utility (see, e.g., Marx (1977, Vol. I, p. 48) for opposing views).

2. No close relationship need exist between the labor time actually expended and the
(optimal) labor value of actual net production, as is obvious from Example E2,
where ˛0 D 10 and v�.ę/ D v�..20; 0/0/ D 2. Optimal labor values are of
a counterfactual nature and may depend solely on purely potential methods of
production (compare again Example E2). They – and the rate of exploitation –
thus may be subject to change without any change in the conditions of production
that actually prevail.
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3. As these labor values do not define a linear functional on the commodity space
<n, homogeneous ratios such as the rate of surplus value s.˛/ and the value
rate of profit can no longer be defined in an unambiguous way, since, e.g.,
the first rate s.˛/ may be defined by v�.ę � ˛0s/=v�.˛0s/ or by .v�.ę/ �
v�.˛0s//=v�.˛0s/, or even by further disaggregated terms. (With regard to E1,2,
the above two expressions for s.˛/ are equal to “1”, which is quite different from
the “bastard” ratio e.˛/ D 9.)

4. Labor values cease to be proportional to prices of production in the case of equal
composition of capital for this particular extension of Marx’s labor theory of
value to quite general conditions of production. Adding to the difficulties in
finding proper expressions for important ratios of Marx’s theory, the Marxian
intention of deriving a set of basic quantitative relationships between value and
price expressions, which preserve or only modify the basic insights, developed
in Capital, Vol. I, II, for the case of uniform composition of capital, thereby loses
its basis completely.

5.3 A New and Measurable Definition of Labor Values
for Joint Production Systems

We have tried to give a brief indication of the fact that apart from the FMT not much
is left by Definition 5.2 of Marx’s original perception of value and price relationships
in the general case of joint production. It is now the intent of this and the following
section to show that this loss of labor values in theoretical as well as in factual
content can be avoided completely if a new concept of labor values is adopted which
(though fulfilling the FMT) differs sharply from the one given by Definition 5.2. To
prove this we shall first consider an important special case of Roemer’s general
model of production, where a plausible extension of the simple equations approach
can be given simply by integrating properly Marx’s concept of individual values.
Related averages will then replace the optimal values hitherto used and will guide
our approach to the general case, to begin in Sect. 5.3.

We did not consider it necessary in Sect. 5.2 to state the assumptions made by
Roemer to assure the existence of reproducible solutions. Our suggestion, on the
contrary, was to start from such an equilibrium ˛ D .�˛0;�˛; ˛/; p – however
derived. And then only one assumption must be made with regard to this given
reproducible solution in order to ensure all following constructions of labor values
from such data.

Assumption 1. The given reproducible solution ˛ D .�˛0;�˛; ˛/ is assumed to
fulfill: ˛j � 0 ! ˛

j
0 > 0 .j D 1; : : : ; m/ and ˛ � 0, i.e., we assume that labor is

indispensable whenever production occurs (which is supposed to be the case at least
once).
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This assumption is not implausible in view of the fact that capitalists, i.e.,
institutions, have been defined to provide the smallest possible unit of production.
Furthermore, it only serves to relieve the considerations below from unnecessarily
detailed technicalities.

As a simple consequence of the assumed possibility of inaction, implying that
profits �j D p0.ęj �˛j0 s/ D p0ęj �˛

j
0 have to be nonnegative in each case, there

immediately follows this lemma:

Lemma 5.5. p0˛j > 0; p0ęj > 0 for all j and ˛ > 0, since capitalists j and
commodities i that do not take part in production .˛j D 0; ˛i D 0/ can be safely
neglected in all that follows (note in this connection that a commodity i which is not
produced will not be used as an input; see Definition 5.1).

The above properties together with Assumption 1 represent the information that is
necessary and admissible for our view of a proper definition of embodied labor time.
We continue to employm; n to denote the number of activities and commodities now
left for consideration.

5.3.1 Marx’s Case of Multiple Activities

Consider the simple case where each capitalist j is engaged in the production of one
commodity i.j / only, i.e., the ˛j ’s will have but one positive component (which
implies n <

D m). Note that, by the very choice of our equilibrium model, we are not
constrained to situations of equal profitability.

To introduce Marx’s (and our own) approach to labor value determination for this
case it is best to first let Marx speak for himself:

“Now let some one capitalist contrive to double the productiveness of labor, and to produce
in the working–day of 12 hours, 24 instead of 12 such articles. The value of the means of
production remaining the same, the value of each article will fall . . . . The individual value
of these articles is now below their social value . . . .” “The real value of a commodity is,
however, not its individual value, but its social value; that is to say, the real value is not
measured by the labor–time that the article in each individual case costs the producer, but
by the labor–time socially required for its production” (Marx, 1977, Vol. I, pp. 300/1).

This states that the individual value of a commodity produced by a capitalist j is
given by the sum of labor values of the commodities used in its production plus
the direct labor time individually needed, and that labor values are an average of
individual values, an average which in our view should best be formed by means of
market shares as weights.

To formalize this idea with regard to the given data let v1 D .v1; : : : ; vn/0 denote
the vector of labor values and let v.j / denote the individual value of the commodity
which is produced in process j , the index of which we have already denoted by i.j /.
The foregoing twofold connection between individual values and their averages,
labor values, can then be represented by
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v.j /˛j
i.j /
D v0˛j C ˛j0 .j D 1; : : : ; m/; (5.1)

vk D
mX

jD1

v.j /Djk .k D 1; : : : ; n/; (5.2)

Djk D ˛
j

k
=˛k ; the (potential) market share of capitalist (5.3)

j in the market for commodity k:

Proposition 5.6. The equation system (5.1), (5.2), (5.3) has exactly one solution
v D .v1; : : : ; vn/0, vI D .v.1/; : : : ; v.m//0 for average as well as individual labor
values. These solution vectors will be positive throughout.

Proof. See Proposition 5.13. ut

Example E3. For the reproducible solution Example E1 we by definition (5.1)–(5.3)
obtain v D .1=2; 7=6/0 and vI 	 .0:54; 1:29; 0:47; 1:08/0, where j D 1; 3.2; 4/ re-
late to commodity 1.2/, respectively (see (17) for a simplification in computation).
This example shows that individual values may provide an expression of individ-
ual productivity when compared with average or system labor requirements: 1=2
and 7=6 and may be usefully employed in that direction. Furthermore, these actual
Marxian values differ considerably from the hypothetical “optimal values” of Ex-
ample E2 (both equal to 0.1), which shows that “optimal values” cannot be regarded
as a proper extension of Marx’s ideas on “value.”

It is argued in Morishima and Catephores (1978, p. 35) that the value system will
easily be liable to fluctuate once alternative methods of production are allowed for
(because firms will be indifferent between equally profitable alternative processes
then). With regard to this opinion, it is strange to see how an obvious indeterminacy
of “equilibrium production” is turned against Marx’s concept of labor values, since
it is quite natural that these latter values should fluctuate if the same is true for the
actually prevailing methods of production. Such fluctuations, if a problem, are a
problem of the equilibrium concept employed, and not one of labor value determi-
nation – the uniqueness of which, moreover, is assured by an appropriate equations
approach despite the possibility of rectangular systems of input–output data (of type
n � m).

5.3.2 Joint Production

We deduce from the preceding section that the Marxian notion of “individual value”
may be of decisive importance if such hypothetical labor values as considered in
Example E2 are to be avoided. Recent models of the labor theory of value, how-
ever, have not paid much attention to this intermediate case of multiple activities,
but have in general progressed immediately to a consideration of the case of joint
production. The question arises whether Marx’s ideas on individual values can be
made general enough to overcome the difficulties that have been attributed to the
equations approach in this general case.
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In accordance with Morishima and Catephores (1978, p. 54) we believe “that
there was no serious Marxian economic analysis of joint production.” Yet it is
not our aim here to examine what Marx himself might have done in this case. It is
our opinion that Marx’s labor theory of value should be understood as a dual man-
ner of cost accounting attempting to connect real (labor) costs with normal prices.
And it is completely in line with the purely factual approach to real cost accounting
we have employed to this point that in this question, too, we will look for a factual
principle, in use to solve the problems of unit–cost determination for joint products
in everyday life, but also applicable to the general situation here under considera-
tion. Such a principle is indeed available in the form of the so–called sales value
method, a method which enjoys great popularity among cost accountants and which
sometimes is viewed as “the only logical way to pro–rate joint costs” to the various
items produced Matz and Usry (1976, p. 189).

The definition which follows provides the basis for incorporating this sales value
method into the abstract setting which here serves as foundation for the envisaged
construction of embodied labor time.

Definition 5.7. The vectors

ıj;k D .�ı
j;k
0 ;�ıj;k ; ı

j;k
/ D .�Ckj˛

j
0 ;�Ckj˛

j ; ˛
j

k
I k/ ¤ 0 (5.4)

where Ckj D pk˛
j

k
=p0˛j denotes the relative sales value of good k with respect to

activity j , are said to prorate the joint costs of activity j , j D 1; : : : ; m, according
to the sales value method, to its various outputs ˛j

k
.¤ 0/.

It is known that the above rule for disentangling joint costs – here traced back to
the level of physical magnitudes – is not unanimously accepted by cost accountants
as the only solution to the problem of joint–product accounting in all of its possible
settings. Yet, to the extent that as cost determination for single commodities – here
with respect to labor costs – is considered a meaningful task at all, it appears to us
as the only truly general method as far as an abstract approach to joint production
is concerned. (Note in this connection that our data source Assumption 1 may com-
prise questions of partially separable costs and the like and that some aggregation
may already be involved, both of which problems which, however, must remain ex-
cluded by assumption from this general reconsideration of Marx’s labor theory of
value.)

In addition to its universality the employed rule is known to have the advantage
of representing a costing procedure for which it cannot occur that some co–products
in a jointly produced group appear to be consistently unprofitable, while others are
profitable. Under its regime each unit of value of jointly produced goods must con-
tain the same amount of profit 1 � .p0˛0 C ˛j0 /=p

0˛j , which in particular means
that we will have p0ıj;k C ıj;k0 � p0˛j D pk˛

j

k
(because of p0˛0 C ˛j0 � p

0˛j )
for any reproducible solution under consideration. The conclusion that value added
cannot be negative (because of the assumed possibility of inaction) hence also holds
for all components of joint production if the sales value method is used to allocate
their joint costs.
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From the formulation of Definition 5.7 it should be obvious how the application
of the sales value method will lead us back to the labor value determination envis-
aged by Marx and worked out here in Sect. 5.3.

Definition 5.8. Let p; ˛1; : : : ; ˛m be a reproducible solution as postulated in
Assumption 1. Labor values vk (and individual values v.j /k) of commodities k
(as produced by capitalist j ) are determined by equations (5.1)–(5.3) applied to the
set of “activities” ıj;k of Definition 5.7.

Proposition 5.9. Labor values vk as defined in Definition 5.8 are uniquely deter-
mined and of the same sign as prices pk for any reproducible solution which satisfies
Assumption 1.

Proof. See Proposition 5.13 in Sect. 5.3. ut

We herewith have formulated a way in which Marx’s ideas on actual labor values
can be extended to the case of joint production without running into the anoma-
lies of negativity or non-uniqueness normally attributed to them in this situation.
The “apparent cost” to obtain this result – the inclusion of certain price ratios
into the equations determining individual values – will be examined in Sect. 5.4,
where the resulting form of labor theory of value is considered.

Example E4. Consider the following modification of Example E1. There exist
two capitalists, capitalist 1, who employs the basic activities that formerly
formed p1; p2 (on the basis of the endowment !1 C !2), yet with the joint
activity ˇ1 D .�6I 0;�3I 8; 4/0 instead of its formerly separable components
˛1 D .�2I 0;�2I 8; 0/0 and ˛2 D .�4I 0;�1I 0; 4/0, and capitalist 2, who in a simi-
lar fashion employs ˇ D .�4I 0;�7I 12; 6/0 instead of ˛3 D .�1I 0;�4I 12; 0/ and
˛4 D .�3I 0;�3I 0; 6/ on the basis of the endowment !3C!4. The activities which
in Example E1 gave rise to a reproducible solution with regard to prices p D .1; 2/0

are thereby transformed into two joint production activities, a fact which, however,
does not disturb their feature to provide a reproducible solution with regard to the
given prices p. Furthermore, the two potential methods of production included in
the definition of P 1 and P 2 in Example E1 will experience no changes here, which
implies that optimal labor values will remain the hypothetical ones determined in
Example E2. Hence, no change will result for the optimum labor theory of value
through the assumed change in the institutional and technological set–up of the
employed model.

Things are different when our definition of labor values is utilized instead. Their
technological background, which by our definition is given by the activities ˇ1; ˇ2

that are actually employed, now has to be disentangled by the sales value method
first to allow for the application of Marx’s description (5.1), (5.2), (5.3) of labor
values v1; v2. In the above case, relative sales values are given by 0:5; 0:5 for each
of the two joint activities ˇ1; ˇ2. Prorating their inputs according to Definition 5.7
then leads to

.�3I 0;�1:5I 8; 0/ and .�3I 0;�1:5I 0; 4/ in the first, and
.�2I 0;�3:5I 12; 0/ and .�2I 0;�3:5I 0; 6/ in the second case,
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a situation which clearly differs from the four activities on which the calculations
in Example E3 were based (compare ˛1; : : : ; ˛4 in Example E1). Through this dif-
ference we now obtain v D .1=2; 1/0 instead of v D .1=2; 7=6/0, the labor values of
the non joint case Example E3.

5.3.3 The Input–Output Approach to Joint Production

We have seen how the theoretical–quantitative side of labor value determination
may be treated without anomalies in a very general model of production. It is now
the purpose of the following to show the same for the empirical–quantitative side
of this problem (as far as its methodology is concerned) in a way that will lead us
back to Definition 5.8 of the preceding section. Let us start again from the repro-
ducible solution ˛; p underlying Assumption 1. These data can be translated into a
single (monetary) input–output table by means of standard SNA methodology in the
following way (see United Nations (1968, 3.67–3.86 and 3.40)):

U D .Uij /; Uij D pi˛
j
i .i D 1; : : : ; nI j D 1; : : : ; m/ (5.5)

V D .Vj i /; Vj i D pi˛
j
i .j D 1; : : : ; mI i D 1; : : : ; n/ (5.6)

u D .uj /; uj D ˛
j
0 D w˛j0 .j D 1; : : : ; m/ (5.7)

define the so–called absorption matrix, make matrix, and the vector of wage in-
comes, respectively. From these basic arrangements the following auxiliary vectors
or matrices are then derived:

D D Vbq�1; q given by qk D .V
0e/k D pk˛k if pk > 0 (1 otherwise); (5.8)

i.e., the matrix of market shares Djk D pk˛
j

k
=qk ;

g D Vbq�1; i.e.; gj D p0˛j > 0 .j D 1; : : : ; mI see Lemma 1/ (5.9)

which gives the vector of output values of activities 1; : : : ; m and

Bp D Ubg�1 and b0p D u0bg�1; (5.10)

i.e., the unit–cost structures of current production activities. It is from these unit–
cost structures of activities that input–output tables Ap (and corresponding rows a0p
of primary inputs, here of wage incomes) are finally derived and, to be sure, for the
case of joint production in the following way:

Ap D BpD and a0p D b
0
pD: (5.11)
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This derivation of an nxn–matrix Ap (of commodity � commodity type) – and a
corresponding n-vector a0p – from the originally given joint production system U; V

is motivated as follows:

1. “The construction of an input–output table which is necessarily square (because
of the intention of applying standard input–output theory, P.F.) from separate in-
put and output tables involves transfers of inputs and outputs between categories”
(United Nations, 1968, 3.15) in order to show the inputs of commodities in the
production of the single commodities.

2. In the presence of joint production the most sensible way to accomplish these
transfers seems to be given by the so–called “industry technology assumption,”
whereby it is assumed that each dollar of activity j ’s output should have the
same cost structure Bjp , irrespective of the particular product behind this dollar
of output value (see United Nations (1968, 3.40)) for such a recommendation).

3. This assumption about the cost structures of activities is then used to define the
cost structure of commodity k, i.e., Akp , by their weighted sum, the weights be-
ing the market shares Djk activities j have with regard to commodity k. It is
exactly this summation which is described by Akp D BpD

k , i.e., by Ap D BpD
with regard to the set of all commodities k D 1; : : : ; n; see (5.11). The same
explanation applies to a0p in (5.11).

It is a bit strange to find in the SNA that a technological characterization is as-
sociated throughout with the procedure just described though quite obviously no
technological feature is involved, at least in its application to the joint production
system here under review. Be that as it may, having derived the matrices Ap , a0p by
means of the above reallocations, system labor requirements are then measured in
the conventional way by the following definition:

Definition 5.10. System labor requirements t D .t1; : : : ; tn/0 of commodities k per
dollar of output value are defined by t 0 D t 0Ap C a0p .

Before proceeding to a further analysis of the formula just presented, a final defini-
tion has to be added for the purpose of later comparison.

C D V 0bg�1; i.e.; Ckj D pk˛
j

k
=p0˛j (5.12)

defines the matrix of commodity mixes or relative sales values, the coefficients of
which we have already employed in our Definition 5.8 of labor values in Sect. 5.3.

We have described how monetary joint production tables U; V can be converted
into a form where the ordinary Leontief inverse may become applicable. No atten-
tion is paid in this application to the effect the proposed mechanical transfers (see
United Nations (1968, 3.16)) may have on the values to be measured. That measure-
ment is possible is all that is of interest, and this can be assured by the following:

Proposition 5.11. The equation t 0 D t 0Ap C a0p will allow for exactly one solution
vector t 2 <n, which is nonnegative in addition. System labor requirements tk will
be zero if and only if product k is free with regard to the given reproducible solution
p; ˛j ; j D 1; : : : ; m.
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Sketch of Proof. By Lemma 2 e0Bp D e0Ubg�1 D .p0˛j =p0˛j / < e0. Furthermore,
e0D D e0Vbq �1 � q0bq �1 D e, i.e., e0Ap D e0BpD < e0. The matrix A, therefore,
is nonnegatively invertible, i.e., t 0 D a0p.I � Ap/ is well defined and nonnegative.
Furthermore, b0p > 0, i.e., pk D 0 if and only if .a0p/k D 0 and Akp D 0 if and only
if tk D 0. ut

For the purpose of comparing the above system labor requirements tk with the
labor values defined in Definition 5.8 let us restate this definition in more explicit
terms:

Definition 5.12.
(i) The individual value v.j /k of product k (if) produced by capitalist j is de-

fined by

v.j /k˛
j

k
D Ckj .v0˛j C ˛

j
0 / .k D 1; : : : ; nI j D 1; : : : ; m/ (5.13)

(and, of course, by “0” if ˛j
k
D 0, in which case Ckj will be “0”, too), where

v D .v1; : : : ; vn/0 is the vector of labor values and Ckj the relative sales value
of product k with respect to process j .

(ii) The labor value vk of product k is defined by

vk D
mX

jD1

Djkv.j /k .k D 1; : : : ; n/ (5.14)

where Djk is the market share of capitalist j with regard to the kth product
market.

Proposition 5.13. The equation system (5.13), (5.14) has exactly one set of solution
vectors v; v.1/; : : : ; v.m/ 2 <n, which are nonnegative throughout and which fulfill

tk D vk=pk > 0 if pk > 0 (and tk D vk D 0 if pk D 0/ (5.15)

v.j /k D 0 if and only if pk D 0 or ˛j
k
D 0: (5.16)

Proof. Note first that the equation system (5.13), (5.14) is equivalent to the system
of equations that is given by (5.13) (plus the qualification made there!) and

vk˛k D
mX

jD1

Ckj .v0˛j C ˛
j
0 / .k D 1; : : : ; n/: (5.17)

Equations (5.17) are obtained by summing equations (5.13) with respect to j and
by inserting the equation vk˛k D

Pm
jD1 v.j /k˛

j

k
(which is a direct consequence of

(5.14), ˛k > 0 and vk ; v.j /k D 0 if pk D 0) into the left hand side of this sum.
Equations (5.14) in turn follow from (5.13) and (5.17) by the insertion of (5.13)
into (5.17). Note further, that the vector x defined by vk=pk if pk > 0 (and by “0”
otherwise) fulfills x0bp D v0, because we have vk D 0 if pk D 0 by (5.14). With
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these preliminaries behind us we can now exploit the fact that individual values
v.j /k have been eliminated through the introduction of equations (5.17) in place of
(5.14). Transformed to the above defined vector x the equations (5.17) read

xkpk˛k D

mX

jD1

Ckj .x
0bp˛j C ˛j0 /; i.e., in input–output notations

xkqk D

mX

jD1

Ckj .x
0U j C uj / (compare (5.5), (5.7), (5.8)).

In matrix notation this results in

x0bq D x0UC 0 C u0C 0 D x0Ubg�1V 0 D x0BpV 0 C b0pV 0 (5.18)

(compare (5.10), (5.12) and recall that q > 0 by definition). Premultiplying
equations (5.18) withbq�1 then gives

x0 D x0Bpv0bq�1 C b0pV 0bq�1 D x0BpD C b0pD D x0Ap C a0p

by (5.8), (5.9), (5.11), which by Proposition 5.11 implies that x must equal the vec-
tor of system labor requirements t defined in Definition 5.10. It is hereby obvious
that the equations (5.17), (5.13), which can be solved in this order, will have exactly
one solution set of vectors v; v.j /; j D 1; : : : ; m, since the above transformations
of (5.17) can all be reversed again, and that these solution vectors will fulfill (5.15)
and (5.16). ut

Remark. Summing (5.13) over k implies

v.j /0˛j D v0˛j C ˛j0 ; v.j / D .v.j /1; : : : ; v.j /n/0 (5.19)

and from (5.13) and (5.19) there follows

Ckj D v.j /k˛
j

k
=v.j /0˛j ; (5.20)

i.e., the relative sales values employed in Definition 5.12 are identical to those de-
termined by individual values (once the latter have been defined by means of the
former). Utilizing the relationships (5.14), equations (5.13) hence may be expressed
in terms of individual values exclusively, yet will not represent a determinate system
unless sales values Ckj in (5.20) have been qualified further, i.e., by prices p as far
as our intents are concerned.

There does, however, exist a way which avoids any use of prices in Definition
5.12 without changing the method of definition employed, namely by inserting sales
valuesCkj defined by vk˛

j

k
=v0˛j instead of pk˛

j

k
=p0˛j into equations (5.17) which

gives the equation system

v0b̨D .v0.˛j /C .˛j0 /
0/1v0.˛j /�1.˛j /0bv; with .˛j / D .˛1; : : : ; ˛m/; etc.
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No attempt will be made here to examine this technologically self–contained
(though “sales value” dependent) definition of labor values, because (a) there is no
need for labor values to be price–independent with regard to the labor theory of
value (see Sect. 5.4), (b) the labor value of a jointly produced free good should be
zero, but should become positive if non–technological changes make this good an
economic one, and (c) labor values should be identical to prices (of production)
in the case of a uniform internal composition of capital (see again Sect. 5.4), facts
which will not be fulfilled if Definition 5.12 is changed in this way.

That labor value depends on price is meanwhile also acknowledged by Roemer
(see Roemer (1982, VI.)), who arrives at this result from a completely different point
of view, which also leads him to conclude that the FMT is not a sufficiently discrim-
inating tool to indicate the superiority of the “optimum labor theory of value”!

We have shown by Proposition 5.13 that Marx’s labor values in the extended ver-
sion of Definition 5.12 remain “observable” despite the general type of production
considered, which generalizes Okishio’s claim (we have quoted in Sect. 5.1) in a
way which preserves his simple relationship between system labor requirements tk
per unit of output value and labor values vk per unit of product, and, to be sure, with-
out any marked change in its final presentation, as the following corollary shows.

Corollary 5.14. Assume p > 0 for simplicity and define matrix A by .˛1; : : : ; ˛m/
C 0b̨�1 and vector a0 by .˛10 ; : : : ; ˛

m
0 /C

0b̨�1. Then Ap D bpAbp�1, a0p D a
0bp�1, i.e.

t 0 D t 0bpAbp�1 C a0 Op�1 or v0 D v0AC a0.

Proof. Compare (5.18) and its subsequent transformation. ut

The employed mechanical allocations of cost structures U; u by means of output
structures V thereby become interpretable (however large the degree of jointness
of production may be), while theoretically motivated imputations of labor costs to
single products remain measurable without any discernible change in the matrix
multiplier formula that is applied. This final result in our view should be partic-
ularly stressed, as it, quite independent from any interest in Marxian economic
analysis, can provide a theoretical underpinning, as far as joint production is con-
cerned, to the measurement of system labor requirements actually performed, as,
e.g., by Gupta and Steedman (1971), where it is, e.g., discovered in the empirical
part of this chapter that “a falling tendency in the direct labor input vector was com-
bined with a rising tendency in the input–output matrix to produce a fall in total (or
system) labor use” Gupta and Steedman (1971, p. 29). Such a finding on the impact
of technological change on direct and indirect labor use and also the whole approach
that is taken in demonstrate that labor values (as system labor requirements or pro-
ductivity indexes) may constitute at least an analytical concept of interest in itself.

5.4 Values, Prices and Profits

It has been demonstrated in Sect. 5.3 how the anomalies of actual labor values,
extensively discussed in Steedman (1977), can be avoided completely through
an appropriate choice of their definition. To provide further justification for this
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choice of Definition 5.12 we shall now show that it also resolves the deficiencies
of “optimal values” pointed out in Sect. 5.2, and that it fulfills the standard “quality
specification”: the validity of the “Fundamental Marxian Theorem” (FMT).

The following propositions again refer to the reproducible solution ˛; p of
Assumption 1 and the notation introduced in Sect. 5.2.

Proposition 5.15. v0ę D ˛0 The influence of relative prices p drawn into the
definition of labor values cancels with respect to the bundle ę, reestablishing the
identity between the labor value of actual net national product and the total labor
time actually expended (compare comment 2 in Sect. 5.2 and note that 1 has already
been treated in Proposition 5.13).

Proof. Summing equations (5.17) over k gives

v0˛ D
nX

kD1

mX

jD1

Ckj .v0˛j C ˛
j
0 / D

mX

jD1

 
nX

kD1

Ckj

!
.v0˛j C ˛j0 /

D

mX

jD1

.v0˛j C ˛j0 / D v0˛ C ˛0 ut

Definition 5.16. The rate of surplus value "j with regard to capitalist j is defined
by "j D .v0ęj � ˛j0 v0s/=˛j0 v0s and for the economy as a whole by " D .v0ę �
˛0v0s/=˛0v0s, the ratio of surplus value to the total value of labor power.

Corollary 5.17. " D .˛0 � ˛0v0s/=.˛0v0s/ D .1 � v0s/=v0s:

Note that the above rates of surplus value are well defined .w D 1/ and that
the individual rates "j will be equal to the overall rate of surplus value ", when-
ever v.j /0˛j D v0˛j holds (compare (5.19)). It follows that Steedman’s (1977)
straightforward equations approach to labor value determination will coincide with
our approach exactly in that case where a uniform rate of surplus value prevails
with regard to our Definition 5.12. Furthermore, it should now be apparent that it is
illegitimate to speak of a “postulate of the uniform rate of exploitation” Morishima
(1973, p. 193) with regard to Marx’s conception of value rather than of a number
of explicitly stated or implicitly contained conditions by which such a uniformity is
implied (see Marx (1977, Vol. I, p. 302) for some such conditions).

By means of Proposition 5.13 the rate of surplus value (as any other labor value
expression) can be transformed into a measurable magnitude in the following way

" D .t 0bp ę� ˛0t 0eps/=.˛0t 0bps/ D .1 � t 0bps/=t 0bps

where t is determined by Proposition 5.11. It is by such an expression that the rate of
surplus value is in fact estimated in Wolff (1979). And quite in contrast to the con-
sequences drawn from Definition 5.3 this procedure is not deprived of its theoretical
foundations if the degree of jointness of production is assumed to have reached di-
mensions worthy of notice, as we have shown in Sect. 5.3.
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Example E5. By Example E4 we have

" D .1 � .0:5; 1/.1; 0/0/=.0:5; 1/.1; 0/0 D 1;

which is quite different from the optimal rate ".˛/ D 9 of Example E2, 4.

Theorem 5.18 (FMT2). The rate of surplus value " is positive if and only if total
profits � D p0ę� ˛0 are positive.

The proof of this theorem is simple and follows from the fact that the economic
goods of the two accounting schemes employed, v and p, have been shown to be
identical. It, as well as the proofs of the following two propositions, can be obtained
on request from the author as part of the original discussion paper from which this
chapter has been drawn. Note, that in comparison to Theorem 5.4 (see also Roemer
(1981, pp. 64 ff.)), no additional assumptions are necessary here to ensure the valid-
ity of this theorem.

Definition 5.19. The average price and value rates of profit �p , �v are given by
p0.ę�˛0s/=p0.˛C˛0s/, v0.ę�˛0s/=v0.˛C˛0s/ respectively. Note that the deficien-
cies of optimal values of point 3 in Sect. 5.2 cannot arise for the ratios introduced
here.

Proposition 5.20. For all � 2 < and for � defined by p0.˛ C ˛0s/=v0.˛ C ˛0s/
there holds

�p � �v D .1C �p/.e
0 � �t 0/bp.˛ � .1C �/.˛ C ˛0s//=p0˛: (5.21)

Note that, here again, all expressions involved can be checked by observation. Both
rates have been determined separately for the U.S. economy for the years 1947,
1958, 1963 and 1967 in Wolff (1979, p. 335) by means of the simple equations
approach to labor values and have been found to be closely related to each other.
Equation (5.21) now shows that as in the simple equations approach there exist two
independent reasons which may account for this observation: (i) ˛ � .1C �/.˛ C

˛0s/, i.e., commodity production approximately grows in proportion to physical
inputs including the necessities of the labor force, and (ii) e 
 �t , i.e., labor values
are virtually proportional to given prices p. With regard to this second case, it is,
of course, worthwhile to know the conditions that may lead to such a situation.
Here again, our approach allows us to preserve the results of the simple equations
approach and to add a condition which directly applies to the derived input–output
data Ap , a0p of Sect. 5.3.

Proposition 5.21.

(i) � D p0.˛ � ˛0s/ D 0 implies t D e, i.e., � D 1 and p D v.D v.j /; j D
1; : : : ; m, where this latter equality should be understood to apply to produced
commodities only).

(ii) 9x 2 < W e0.I � Ap/ D xa0p implies x D � D .v0s/�1 and �t D e, i.e.,
�v D p (and p > 0).
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(iii) The assumption, which implies assertion (ii), is fulfilled if p0˛j =˛j0 is
independent of j and if �jp D p0.ęj � ˛j0 s/=p0.˛j C ˛

j
0 s/ D �p for all

j (and p > 0).

This proposition describes (in part (iii) and generalizes (in part (ii)) Marx’s clas-
sic case of proportionality between labor values and prices of production, whereby
the one remaining deficiency (4 in Sect. 5.2) of optimal labor values has now turned
out to be avoidable as well, and it provides a simple test for how far the central link
in Marx’s labor theory of value, the similarity between the rates of profits �v and �p ,
may or may not be due to a relationship between prices and labor values alone. The
degree of price variations that can be explained by variations in labor values thereby
remains a question of empirical interest and verification, which, though probably
less central than the direct comparison of corresponding rates of profit, seems to
lead to noteworthy answers, too (see Nell (1980, p. 189), Wolff (1979, p. 335) and
Gupta and Steedman (1971, p. 27) for some interesting statements in that direction).

Example E6. It can easily be calculated that the ˇ0s (and p) of Example E4 do not
fulfill Proposition 5.21 (iii) (the internal composition of capital is not uniform) and
that commodity production does not exhibit a uniform rate of growth. Nevertheless,
there holds v 
 p (and thus �v D �p), because of a0p D 0:25.1; 1/ 
 e

0.I �Ap/ D

0:5.1; 1/ (compare also Example E4).

A Final Remark. We have already pointed to a possible serious cost involved in our
rehabilitation of the conventional equations approach to the labor theory of value in
the final paragraph of the introduction to this chapter. For our intents, labor values v
were made to depend on prices p by use of sales values Ckj (compare (4)). But how
much do we lose by this kind of extension of labor values – to take account of joint
production – with regard to their known core of applicability? We guess, nothing
that is of real importance! There is, of course, no sense in the claim that prices are
but derivatives of labor values, i.e., we also do not allege “logical priority” to labor
values with this in mind. On the contrary, actual labor values quite obviously depend
on prices, since the choice of technique, symbolically expressed by A.p/, depends
on them. What we have added to this evident fact simply is that their basis A.p/
may be of a more complex form than hitherto believed (see Corollary 5.14). Hence,
little is lost through our extended interpretation of actual labor values with regard to
a proper understanding of their relationship to prices p. Just the opposite is the case,
since basic aspects of Marx’s analysis of values, prices and profits, invalid under the
regime of optimal labor values, can then be established under quite general assump-
tions on production, in a way which does not disqualify the empirical investigations
which have been made so far with regard to Marxian (or other) hypotheses based on
system labor requirements, i.e., Definition 5.10.

What then is the rationale of claiming “logical priority” for labor values over
prices (of production)? In our view the answer to this question is provided by
Proposition 5.21 (iii) which insures that labor values can still be employed theo-
retically prior to any consideration of prices, i.e., in the way they in fact are used in
Das Kapital through the systematics chosen by Marx.
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5.5 Conclusions

After having discussed the wide range of technological possibilities covered by the
von Neumann model, Morishima (1973, p. 175) concludes: “Once we get rid of
the world where n D m, the Marxian analysis of value and production in terms
of simultaneous equations loses its foundation entirely.” It has been the aim of this
chapter to show that there is no necessity in this view. In fact, Marx’s labor theory of
value can be extended to quite general models of production through the inclusion
of only one new relationship (represented by the matrix of commodity mixesC ) into
the Marxian equations approach (5.1), (5.2), (5.3), leaving intact Marx’s methodol-
ogy, the main conclusions he related with his simple transformation example Marx
(1977, Vol. III, Chap. IX) to the extent they could be demonstrated within the sim-
ple equations approach (Morishima, 1973), and also Okishio’s conclusion on the
observability of labor values. This implies, that there is no gain involved, but indeed
a loss, if optimal labor values are employed in place of our actual ones. Thus, some
Marxian economists may have to change their attitude towards the labor theory of
value once again.
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Chapter 6
Employment Multipliers and the Measurement
of Labor Productivity

6.1 Introduction

There have been numerous attempts to measure total employment effects and
productivity indexes since the early work of Leontief (1944). These measurements
have been based on the Leontief inverse .I � A/�1 of recorded input–output ta-
bles. Examples of this are Bezdek’s (1973) manpower analysis and the employment
multiplier study of Diamond (1975). However, not much attention has been paid
in these investigations to the derivation of the coefficients of the input–output ma-
trix A, although at least two fundamentally different procedures exist in this respect.
This may be due to the fact that the two procedures lead to different input–output
tables only when subsidiary production is present in the classification of industries
and commodity groups.

The objective of this chapter is to show that these two input–output accounting
schemes, recommended by the United Nations (1968) in the case of insufficient
information about subsidiary production, generate two different measures of total
factor requirements (Sect. 6.2). In the Sect. 6.3 attention is focused on the case
of pure joint production. Sraffa’s interpretation of joint production and employ-
ment multipliers is summarized and a new concept of average labor content, or
in reciprocal form: of labor productivity, is introduced and compared. It is shown
in Sect. 6.4 then, that the UN method for calculating total labor requirements per
dollar of output value from input–output tables leads either to Sraffa’s or to the new
interpretation of physical total input requirements, depending on how the A matrix
is derived. Subsequent sections examine additional properties of these employment
multiplier calculations and productivity concepts.

In sum, this chapter therefore demonstrates that it is in fact unnecessary to reduce
to a simpler form the ‘technological’ input and output data underlying the input–
output accounting framework of the UN. Homogeneity of activity outputs (United
Nations 1973, p. 20) is in particular not required for a proper calculation of the total
labor requirements in the production of commodities by means of commodities.

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 6,
c� Springer-Verlag Berlin Heidelberg 2010
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6.2 The Measurement of Total Factor Requirements
Using Input–Output Tables

The accounting framework of the United Nations’ (1968, 1973) System of National
Accounts is represented in the Table 6.1 below. In this table U represents the ab-
sorption matrix, which shows the input of commodities into industries, and V the
make matrix, which gives the output of commodities by industries (in transposed
form). The identity vector i D .1; : : : ; 1/ is used for summation. The column vec-
tors e and q represent final demand and total output for commodities. Row vectors
y0; g0 represent value added and total output for industries. All coefficients in the
above table are expressed in value terms.

Three simple reduced-form matrices are normally derived from Table 6.1.1

These are:

1. The matrix of industry input coefficients G D Ubg�1
2. The matrix of commodity mixes (of industries)
C D V 0bg�1

3. The matrix of market shares (of industries)
D D Vbq�1

In order to measure the direct and indirect effects of changes in final demand on pri-
mary inputs (factor incomes), it is helpful to derive from the commodity � industry
U matrix a commodity � commodity input–output table (there are also procedures
to transform such tables to industry � industry version, cf. United Nations 1968, pp.
39–49).

There are two distinct ways to make such a derivation. These depend upon the
following assumptions:

1. The industry technology assumption (ITA): the inputs into commodities are in
proportion to the value share of these commodities in the total output of their
industry.

2. The commodity technology assumption (CTA): there is a unique input structure
(per unit of output value) for each of the given commodities 1; : : : ; n.

These two assumptions can also be combined in a number of ways to allow a more
flexible derivation of input–output tables. However, the impact of each of these
assumptions on the measurement of direct and indirect requirements should be stud-
ied separately.

Table 6.1 The UN’s representation of input-output tables
Commodities Industries Final Demand Totals

Commodities U e D q � U i q

Industries V g D V i

Factor incomes y D g � iU 
 D yi

Totals q0 D iV g0 
 D ie

1 Og the diagonal matrix formed from a vector g:
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In order to understand the implications of the ITA Assumption 1, one should note
that each dollar of output value of commodity i is on the average obtained from the
different industries j D 1; : : : ; m in proportion to their market sharesDj i . The ITA
then implies that the vector of average inputs per unit of output of i is given by

D1iG
1 C : : :CDmiG

m; i D 1; : : : ; n (6.1)

where n is the number of commodities and Dj i ; Gj the elements and columns of
the matrices D and G, respectively. The implied input–output table of commodity
� commodity type is therefore given by

AI D GD (6.2)

It is customary to restrict attention to cases where the number of industriesm equals
the number of commodities n. (United Nations 1973, pp. 37f.). In this case the CTA
will allow the straightforward determination of the unique input structure AiC 2 <

n

of commodities i . By assumption we have

Gj D C1jA
1
C C : : :C CnjA

n
C ; j D 1; : : : ; n or G D ACC (6.3)

Post-multiplying G by the inverse of C gives

AC D GC
�1 (6.4)

which is the underlying input–output table of commodity � commodity type.
The measure of total effects of final demand on factor incomes (in our case the

vector of wage incomes .u/) is then obtained by transforming this vector u in the
same way as was done with intermediate inputs U (i.e., to industry coefficients
ubg�1 and then to aI D ubg�1D or aC D ubg�1C�1 and by applying the customary
formula for the determination of these effects:

xI D xIAI C aI D aI .I � AI /
�1

xC D xCAC C aC D aC .I � AC /
�1 (6.5)

Of course these two formulae will yield different results only when industries are
recorded as producing several commodities through the make matrix V . In actual
tables the amount of this subsidiary production is often quite small but it increases
with the size of the table, see Armstrong (1975, 5.6). Therefore the two vectors xI
and xC have to be distinguished. The first type of equation has been used by the
Dominion Bureau of Statistics (1969) to calculate employment effects. But is this
really the proper choice to calculate these effects? Must xC be regarded as a proxy
for these employment multipliers xI , the quality of which depends on the extent of
joint production in the matrix V ?
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To answer these questions it is necessary to examine the content of the two
definitions further. Initially one should ignore the aggregation problem and con-
trast monetary calculations with physical ones. Aggregation then comes as a second
step (not considered here) which may cause additional difficulties, but which cannot
correct an interpretation of magnitudes xI ; xC , which is not justified on the level of
physical relationships.

6.3 Joint Production

This section concentrates on the central technological feature that gives rise to sub-
sidiary production in input–output tables, that is, pure joint production.

Following the approach of Sraffa (1960, Chap. VII) – which is in some respects
close to that described by Table 6.1 – we assume a positive solution for prices
p1; : : : ; pn in the following system of price equations:

.p1A11 C : : :C pnAn1/.1 C r/C wl1 D p1B11 C : : :C pnBn1
:::
:::

.p1A1n C : : :C pnAnn/.1 C r/C wln D p1B1n C : : :C pnBnn

(6.6)

Here, Aij and Bij denote the physical input and output of commodity i for pro-
cess j , and lj denotes the corresponding labor input, each item in terms of absolute
production of the year under consideration.2 The first bracket to the left describes
the total value of intermediate inputs for each process, on which the rate of profit r
is to be calculated. Wages are considered to be paid ex post. The wage rate w and
the rate of profit r are assumed to be uniform. Equation (6.6), therefore, describes a
system of production prices p.

This system of equations can be put in following matrix form:

pA.1C r/C wl D pB; p D .p1; : : : ; pn/ (6.7)

(columns Aj ; Bj of A;B represent the input and output vectors of activities j , re-
spectively). Combining these symbols with those of the United Nations’ framework
(Table 6.1) one can obtain:

U D bpA; V 0 D bpB . or B 0bp/ (6.8)

2 Note that ‘homogeneity’ of activity outputs is no longer assumed and that by Sraffa’s method-
ology (to start from given production conditions) ‘proportionality’ is not involved unless specific
considerations (of change) make such an assumption necessary, cp. Sect. 6.7 for an example and
United Nations (1973, p. 20) with regard to the above terminology. Note also in the following
that the vectors u; l; p all represent rows (where the ‘prime’ has been suppressed as no column
representation of these vectors will appear in this chapter).
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The remaining data then follow from the definitions already included in Table 6.1.
Factor incomes y0 can now be decomposed into two components:

u D wl (already considered) and rpA

where only u can be considered to be based on a primary factor with regard to the
employed model and Sraffa’s intentions.

6.4 System Indicators of Employment and Productivity

On the basis of the physical data introduced in the last section, definitions are
made of employment multipliers and of labor productivity. These are compared with
those definitions established in Sect. 6.2. Employment multipliers can be defined on
the basis of Sraffa:

Now, if we wish to increase by a given amount the quantity in which a commodity enters
the net product of the system, while leaving all the other components of the net product
unchanged, we normally must increase the total labor employed by society. It is, therefore,
natural to conclude that the quantity by which labor has to be increased for this purpose
goes in its entirety, whether directly or indirectly, to produce the additional quantity of the
commodity in question. The commodity added will, at the price corresponding to a zero
rate of profits, obviously be equal in value to the additional quantity of labor (Sraffa 1960,
p. 57).

The implied formula for the determination of employment multipliers thus reads:

Definition 6.1.
zB D zAC l; z D .z1; : : : ; zn/ (6.9)

(See Sraffa (1960, Chap. IX) and Steedman (1977, Chap. 11) for further details.)

There is one aspect of this definition which should be stressed here. Due to the
assumption of joint production (with fixed coefficients) there is no need for em-
ployment multipliers z D l.B � A/�1 to be non-negative with regard to every
component. Technological rigidities3 may cause the emergence of negative employ-
ment effects in connection with final demand stimulation. Although this possibility
is only hypothetical, it nevertheless provides a suitable conceptual means to dis-
tinguish employment multipliers from the definition of labor contents to be given
below – or (in reciprocal form) from labor productivity – which under no circum-
stances can become negative.

3 which here are only due to the ex-post character of the employed input–output table (or alterna-
tively: to Sraffa’s consideration of ‘frozen’ production conditions, cf. the preface in Sraffa 1960),
i.e., which do not necessarily exist with regard to time (or reality).
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Indeed, Sraffa (1960, p. 56) questions ‘whether it makes any sense to speak of
a separate quantity of labor as having gone to produce one of a number of jointly
produced commodities’. If one considers such quantities with respect to technology
alone these doubts seem to be justified: there is ‘no obvious criterion for apportion-
ing the labor among individual products’ (p. 56).

However, the measurement of labor content (i.e., real total costs) is, in contrast
to the definition of purely technologically determined employment multipliers, si-
multaneously a question of technological interdependence and of cost allocation. In
order to elaborate this premise, managerial cost accounting should be considered.

It is well-known from the literature on cost-accounting that not all costs can be
allocated to final products on the basis of technological causation alone. In the case
of joint costs the use of somewhat arbitrary economic conventions is unavoidable:
‘Joint costs can be allocated, but all bases for allocation imply assumptions which
cannot be objectively verified.’ NACA (1957, p. 2). However, the market or sales
value method

‘enjoys great popularity because of the argument that the market value of any product is a
manifestation of the costs incurred in its production . . . . Therefore, the only logical way to
prorate joint costs is on the basis of respective market values of the items produced’. Matz
and Usry (1976, p. 189). ‘Many, if not most, cost accountants believe that joint costs should
be allocated to individual products according to their ability to absorb joint costs’. Dickey
(1960, 13.11).

Of course, there are also authors who are doubtful about the usefulness of this pro-
cedure of cost allocation. It is however not possible, in this chapter, to discuss the
usefulness of the method in the allocation of joint costs referred to above. The quo-
tations cited must suffice to indicate that this rule has some advantage over existing
alternatives.4 This method is now applied to determine real total labor costs. In de-
fense of the definition of ’real total labor costs‘ presented below, two arguments
may, however, be presented.

First, an empirically minded determination of such real costs should keep contact
with the principles which govern the calculation of total costs in general and in prac-
tice, i.e., the introduction of a theoretical notion of this kind should to some extent
reflect the practical state of affairs on the level of activities and the firm. Second,
it will be shown below that the application of the sales value method to our physi-
cal data A;B; l or to an apportioning of direct and indirect labor among individual
products to determine their labor content will lead us back to the monetary measures
xI of Sect. 6.2, there derived from an input–output table which has been defined by
help of market shares of products (instead of the sales value method employed to
disentangle joint costs, which lies behind the type of mechanical rearrangement of
inputs described in (6.1) to obtain a square monetary table of commodity � com-
modity type.

4 Note, however, that the sales value convention is the only allocation method which is compatible
with Sraffa’s equilibrium prices (6.7), if such prices are based on full costs, cp. NACA (1957, p.
47) with regard to the practical relevance of this point.
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In light of the foregoing remarks consider now the following definition:

Definition 6.2. The vector of labor content z D .z1; : : : ; zn/ of commodities
1; : : : ; n is the solution of the following system of equation:

zcBi D zAC 0 C lC 0 (6.10)

where C 0 D bg�1V is the matrix of commodity mixes (in transposed form), cp.
Sect. 6.2, and where Bi represents the vector of total outputs of commodities
1; : : : ; n.

It is customary to speak of indexes of labor productivity when 1=z instead of z is
considered. By (6.10) the total output of commodity k; i.e., .Bi/k D Bki is now
associated with an input vector of commodities 1; : : : ; n (a column) of kind:

.AC 0/k D A1Ck1 C : : :C A
nCkn

and an amount of direct labor inputs of kind:

.lC 0/k D llCk1 C : : :C lnCkn

The vector AjCkj (and similarly ljCkj ) represents what firms would allocate to the
production of their output Bkj with regard to the jth process on the basis of the sales
value method, since by definition of the matrix of commodity mixes C we have

Ckj D pkBkj

.X

k

pkBkj :

The above sum of vectors, therefore, represents the total amount of commodity in-
puts which would have been allocated to the total amount .Bi/k D

P
j Bkj that is

produced of commodity k if the sales value convention is applied throughout. This
reallocation of inputs leads to an equation system (6.10) for labor contents of com-
modities that is of the usual kind, where joint inputs have been disentangled by the
described sales value procedure and where joint outputs have all been placed on the
diagonal of the matrix B by horizontal summation (which just gives the matrix cBi).

Note that relative prices are now involved in the definition of labor contents,
because they are used – by means of the coefficients Ckj – to determine how much
labor is absorbed by the different products of each joint basket. Hence, the above
defined labor contents zk can be regarded as ‘physical’ only up to the applied rule
that disentangles formerly joint labor effort of direct and indirect kind.

This is the price that has to be paid if a notion of ‘real total factor costs’ is desired
which remains operational even in the presence of joint production.

It is in any case this vector of labor contents (6.10) which is measured by xI (on a
per $ base, cp.(6.5)), i.e., by the standard procedure, if an input–output table is used
which is based on the industry technology assumption ITA described in Sect. 6.2
as the following proposition will now show in particular. In contrast to this finding
(that the vector xI cannot be interpreted in purely physical terms if joint production
is involved) it will be shown furthermore that the alternative definition of labor costs,
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xC (cp. (5) in Sect. 6.2), which employs the CTA instead of the ITA, will be of a
purely technological nature throughout since it on the whole is identical with the
definition of employment multipliers (6.9) given above.

Proposition 6.3.

1. xI D wzbp�1. Vectors xI ; z will exist, be unique and positive, if iG < i , i.e., if the
unit costs of intermediate goods are less than one with respect to every process.

2. xC D wzbp�1. Vectors xC ; z will exist and be uniquely determined, whenever
B �A is invertible (which can always be ensured by a slight variation of up to n
coefficients in the matrices B or A).

Proof.

1. Definition (6.10) implies

.wzbp�1/bpcBi D .wzbp�1/bpAC 0 C wlC 0; i.e.
wzbp�1 D .wzbp�1/bpAC 0bq�1 C wlC 0bq�1

D .wzbp�1/bpAbg�1D C ubg�1D
D .wzbp�1/AI C aI :

And because of AI � 0, iAI D iGD < iD D i the solution xI D wzbp�1 of
this latter equation is uniquely determined and positive as is well-known from
theorems on non-negative matrices, see Chap. 7.

2. Definition (6.9) implies

.wzbp�1/bpB D .wzbp�1/bpAC wl; i.e.
.wzbp�1/bpBcpB�1 D .wzbp�1bpAcpB�1 C wlcpB�1:

With the notations used in Sects. 6.2,6.3 this gives

.wzbp�1/C D .wzbp�1/G C ubg�1; i.e.
wzbp�1 D .wzbp�1/GC�1 C ubg�1C�1; i.e.
wzbp�1 D xC

The above proposition shows that employment multipliers and labor contents
as defined in this section will lead to the formal definitions of total costs (6.5) –
which were based on mechanical procedures of input–output methodology – when
considered in terms of wage income (i.e., when multiplied by w) and reckoned per
unit of value of commodities 1; : : : ; n instead of their physical units. These formal
definitions, therefore, have now been filled with ‘physical content’ as far as the
occurrence of joint production is concerned.

The kind of physical foundation introduced, however, implies that neither the ITA
nor the CTA can be considered as assumptions on ‘technology’ in this surrounding.
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In the case of the CTA post-multiplication of G by C�1 only re-establishes the
‘technological rigidities’ that have been lost in the calculation of the industry coef-
ficient matrix G, i.e., this multiplication only represents a mathematical device to
reduce joint production calculations of total labor costs to the kind of formula that is
well known from simple Leontief models. The possibility of such a reduction, how-
ever, does not imply anything about the input of commodities for the production
of commodities. This should be obvious from the general type of joint production
which is under consideration. And with regard to the ITA we have already stressed
the necessity of economic imputations to supplement the usual technological data
in the derivation of Definition 6.2, which again shows that there are no facts of tech-
nology hidden behind the construction of AI D CD from the physical data A;B .
Here, possibly existing rigidities remain dissolved even after post-multiplication by
D which is the reason why no negative values can occur in the corresponding notion
of labor requirements.

6.5 Some Results for an Analysis of Technical Change

Let us consider the case of employment multipliers first – with the help of a simple
example taken from Steedman (1977, Chap. 11).

Let the matrix of outputs B be defined by B D
�
30 3

5 12

�
, intermediate inputs A

by
�
25 0

0 10

�
and labor inputs l by .5; 1/. Definition 6.1 then implies

z D .z1; z2/ D .l1; l2/.B � A/�1 D .l1; l2/
�
x11 x12
x21 x22

��1

D .5; 1/

�
5 3

5 2

��1
D .�1; 2/

which in particular means that employment effects with regard to the first commod-
ity may be negative, a not too unexpected result in the light of the given technology.

In general terms the appearing inverse can be calculated as:

1

x11x22 � x12x21
�

�
x22 �x12
�x21 x11

�

and the above vector of ‘employment multipliers’ by:

.z1; z2/ D
1

x11x22 � x12x21
.l1x22 � l2x21;�l1x12 C l2x11/
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Table 6.2 Comparative
Statics: Summary

#x11 #x21 #x12 #x22 #l1 #l2

#z1 � C C � � C

#z2 C � � C C �

Calculating partial derivatives then implies the following table of ‘signs’ for the
derived matrices of the above example:

This table in particular shows that an isolated increase in x22 D B22 �A22, e.g.,
an increase in output B22, which should imply an increase in labor productivity
(if such an interpretation were justified) in fact causes a fall in z�12 , i.e., a fall in
‘labor productivity’ with respect to that commodity. Similarly, a decrease in li will
not lead to a rise in ‘labor productivity’ 1=zi . Both facts, therefore, clearly show
that an interpretation in terms of ‘labor productivity’ (or in reciprocal for: of ‘labor
content’) cannot be the appropriate one.

On the other hand, the alternative interpretation – in terms of total employment
effects – is not invalidated by the occurrence of such ‘anomalies’ as has already
been remarked in connection with (9), cf. also Steedman (1977, Chap. 11).

Better results in the direction of the first interpretation can be obtained for the
second definition: z and xI .

To show this let us abbreviate the matrix AC 0cBi�1 by A and the vector lC 0cBi�1
by l . From Definition 6.2 and the proof of Proposition 6.3, part 1 we then obtain:

z D zAC l and AI D bpAbp�1 (6.11)

where the latter equation describes the usual connection between input/unit–output
tables of monetary and physical kind. Since both AI and A are non-negative and
since the viability of AI – cf. Proposition 6.3 – by (6.11) implies the viability of
A, it follows that I � A is non-negatively invertible, too. From known facts on the
simple open Leontief model it is then clear that changes in the coefficients Aik ; lk
will imply equally directed changes in all components of z (up to problems of de-
composability).

To calculate the effects of (isolated) changes in Aij , Bij , lj and pi on the indexes
zi it therefore suffices to look for unidirectional changes in A, l with respect to these
coefficients. From the definition of C and cBi we get

.C 0cBi�1/jk D
pjBjk

.
P
k Bjk/.

P
j pjBjk/

Changes in Ain and lj , accordingly, will imply changes in A D AC 0cBi�1 of
equal direction solely and will thus be reflected correctly by our measure of labor
content zk , i.e., of labor productivity.

The productivity effect of changes in Bij , however, cannot be judged so eas-
ily. These coefficients will give rise to (desirable) unambiguously opposite (or
zero) effects in the ith row and the jth column of C 0cBi�1 up to their intersection
.C 0cBi�1/ij only. There will be no effect in the remaining entries of C 0cBi�1. Yet,
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with regard to the entry .C 0cBi�1/ij the effect of a change in Bij will be indetermi-
nate and this implies – despite further summations – that the logical possibility for
exceptional cases (where a rise in Bij will lead to a rise in some zi ) may exist. This
possibility is due to the adopted rule of imputation and should be examined in this
regard in case it happens to occur.

In the light of the foregoing example (which has to be completed by price data
then, e.g., 1/3, 1, cf. Steedman 1977, p. 152) the vector of labor contents can be cal-
culated as .z1; z2/ � .0:24; 0:59/, which is very different from the above calculated
employment multipliers .�1; 2/. Yet, it must be noted here that this very example
can give rise to the exceptional cases (with respect to B21; B12) just mentioned and
may therefore be used to examine the content of the proposed measure xI in more
detail.

Finally, changes in pi may cause any effect, that is no general rule will be ob-
tainable here. This is to be expected from a measure which employs economic
imputations for its full determination.

In sum, at least the saving of intermediate and primary inputs will give rise to
positive effects on such indexes of labor productivity 1=zi in each possible case,
thereby showing that the first type of ‘total factor requirements’ of United Nations’
input–output calculations, cf. (6.5), may be useful for empirical investigations. The
discovered dependency of this notion on the use of economic imputations, on the
other hand, has shown that it cannot be regarded as the first candidate for the calcu-
lation of employment multipliers – up to certain special cases as will be seen in the
next section.

6.6 The Case of a Uniform Composition of Capital

Proposition 6.4. Let pA be proportional to wl . We then have:

z D z D p (6.12)

if prices p have been normalized as to fulfill: p.B � A/i D li .

Lemma 6.5. With respect to xI ; xC of Sect. 6.2 there holds:

.xI � xC /.I � AI / D xC .I � CD/; i.e., (6.13)
xC � xI D aC .I � AC /

�1.I � CD/.I � AI /
�1: (6.14)

Proof. According to Sect. 6.2 we have

xC D aC C xCAC and xI D aI C xIAI or
xCC D ubg�1 C xCG; xID�1 D ubg�1 C xIG:
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From this there follows:

xCC � xCD
�1 C xCD

�1 � xID
�1 D .xC � xI /G or

xC .C �D
�1/C .xC � xI /D

�1 D .xC � xI /G:

Post-multiplication by D then implies:

xC .CD � I / D .xC � xI /.GD � I /; i.e.,
xC � xI D xC .I � CD/.I �GD/

�1:

Note, that (as always) we have neglected the case where the inverse of C or D
(or B � A) does not exist. ut

By the same method a similar formula may be obtained with respect to the phys-
ical Definitions 6.1, 6.2:

z � z D zcBi.C�1 �D/0.B � A/�1 (6.15)

Proof of the proposition: The assumption pA 
 wl implies that the wage rate w
and the rate of profit r in system (7) can be changed in such a way as to yield a rate
of profit r D 0 without any change in the structure of p. It follows that there exists
a positive w0 such that

pAC w0l D pB

is fulfilled. But due to the assumed normalization of prices p the number w0 must
be equal to one, which implies p D z by Definition 6.1. It follows that xC will be
equal to wi , which by help of the above lemma implies:

xC � xI D wi.I � CD/.I � AI /�1 D 0

as we have iC D i and iD D i .
Formulae like (6.13), (6.15) may be helpful to estimate the extent of deviations

that may occur between employment multipliers and indexes of labor productivity
in the case of a non-uniform composition of capital. These estimates could be still
improved. However, it is already important to know that there are two cases: the
above case of similar compositions of capital and the case of a small proportion of
subsidiary production (C�1 � D � I , cf. also Armstrong 1975, pp. 88f.) for which
a similarity between z and z can be claimed.

6.7 Conclusions

We have shown that for a pure joint production system some care is required in the
choice of the input–output table when one’s objective is to measure interindustry
employment effects. This is a point which is completely ignored n the existing UN
proposals for such a measurement.
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It can be argued of course that the extent of joint production in observed
input–output data of the kind as shown in Table 6.1 does not make it necessary
to be precise to such an extent. However, knowledge of the correct procedure may
be worthwhile in itself, even though resulting quantitative improvements may still
be small. Furthermore, technological constraints on supply are in fact recognized in
applied work (Dominion Bureau of Statistics 1969, A. 7). It therefore makes little
sense to choose tables as AI (where such constraints have been eliminated by eco-
nomic imputation) when such questions are approached. Finally, it has been shown
that negative entries do occur when the commodity technology assumption is used
in the calculation of input–output tables (AC ). As a consequence, methods have
been invented to eliminate those negative numbers again in a second step, cf. Arm-
strong (1975, pp. 78–81), without noticing that such procedures may just endanger
the uses that can be drawn from the original table of type AC .5

Instead of such mechanical manipulations the search for further distinctive fea-
tures of the two basic procedures for the derivation of input–output tables of
commodity � commodity type may be worthwhile. In closing we shall, therefore,
comment briefly on two such possibilities.

One difference between tables AC and AI of Sect. 6.2 is given by the occurrence
of rectangular, instead of only square, make and absorption matrices U; V , (United
Nations 1973, III.D). With respect to this occurrence the special case of multiple,
but single product activities will be of particular interest (this situation is already
included in the foregoing derivations insofar as no inverse matrices are employed).
In the case of the CTA we will find then that this assumption in fact is now hurt by
assumption! Furthermore, since it is not clear which activities of each sector will be
stimulated by a change in final demand, the concept of an employment multiplier
will become rather vague in such a situation. The ITA, on the other hand, will give
rise to very simple and perfectly sensible calculations: activities producing the same
commodity will now be simply summed by use of the matrices C 0;cBi , thereby
leading back to square matrices of the usual kind which again give rise to sensible
calculations of average labor contents of commodities.

A second point which allows one to distinguish between the two basic procedures
of input–output calculations here employed lies in their usefulness for projection
work, i.e., in the question of stability of the input–output matrices AC ; AI .

The proof of Proposition 6.3 in Sect. 6.4 has shown that the two tables in use can
be reduced to ‘technological’ terms in the following way:

AC D GC
�1 D bpAB�1bp�1 (6.16)

AI D GD D bpAcpB�1D D bpAC 0cBi�1bp�1 (6.17)

Assuming that the technology used for (6.16) and (6.17) is based on fixed
coefficients and constant returns, that no technological changes occurs and

5 For a similar dangerous argument cp. United Nations (1968, p. 39), where the occurrence of
negative entries in AC is characterized as being ‘manifestly absurd’.
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that distribution and therefore price ratios remain constant (the latter is not
really necessary), it can then be seen from (6.16) that changes in final de-
mand and therefore activity levels x will leave AC invariable (because of
AB�1DAbxbx�1B�1D.Abx/.Bbx/�1, i.e., we then have ‘constant technical con-
ditions’ in the language used for input–output tables. Under these conditions, the
table AC can, of course, be used for input–output projections with respect to final
demand and resulting employment effects.

The matrix AI , on the other hand, will not be invariable even under these most
favorable conditions, since market shares normally will have to change with final
demand in the presence of joint production. But this fact will create no discomfort
here, since the proper task of AI – and of resulting labor productivity indexes z –
in fact lies just in the analysis of technological change and the factors that have
influenced the resulting change in labor productivity. Therefore, the often needed
assumption of ‘constant technical conditions’ very nicely is associated to exactly
that case where it really is needed.

A final word may be in order about the effect on the application to empirical
analysis of issues examined in this chapter. Inspecting reported make matrices V
makes it obvious that not much difference between the two measures xC and xI
can be expected to result in actual computations, since joint production here only
appears in the form of (minor) by-products as far as empirical tables are concerned
(because of their degree of aggregation), cp. e.g., Armstrong (1975, pp. 81f.) for a
comparison of AC and AI for tables of type 35 � 35 and 70 � 70. This chapter,
therefore, should be considered more as a contribution to the methodological and
theoretical state of input–output considerations; in particular, it should help to pre-
vent misplaced manipulations with regard to negative entries (for example in AC )
and in general offer an interpretation of the things which are being measured. This
latter task has been performed by confronting the absorption matrix U and the make
matrix V with physical data of the same qualitative type, which, however, cannot be
reduced to ‘technical conditions’ of form A; I as is customary in input–output anal-
ysis, but which nevertheless allow sensible interpretations of the formula for total
labor requirements based on such artificial reductions.
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Chapter 7
Technology Assumptions and the Energy
Requirements of Commodities

Since Stone’s original work, input output methodology has taken a great step
forward in standardizing the procedures employed for the derivation of monetary
input output tables which in turn, e.g., are used to measure the energy require-
ments of commodities. In this methodology there exist two basic (mechanical)
ways, or “technology” assumptions, by which such measures under circumstances
of joint production can be defined. The physical effects of these assumptions on the
measures obtained, however, have not yet been analyzed sufficiently. This chapter
presents such an analysis on the basis of technological conditions of a quite general
kind, including joint production, and shows that even then these two measures of
energy requirements will give rise to economically well-grounded expressions, i.e.,
do not represent measurement without theory. The expressions obtained will allow
us to prove several assertions within their respective ranges of applicability, which
complement each other to some extent.

7.1 An Overview on Problems and Results

Input–output methods have been applied to a variety of questions of theoretical as
well as of empirical interest. Examples are found in the discussion of the labor re-
quirements of commodities within the theory of capital, or in the empirical study of
technological change in its effects on measures of total labor productivity (see Sraffa
1960 and Gupta and Steedman 1971 for a typical example of each). The interaction
of both kinds of economic investigation, however, often leaves much to be desired
in their further development, as can be briefly indicated with reference to the two
works cited. Taking for example their treatment of fixed capital, in theory we find the
decidedly idealistic attitude of considering all kinds of old capital goods as merely a
special case of joint production, while in Gupta and Steedman’s examination of the
British economy very crude assumptions are made to derive (and utilize) replace-
ment coefficient matrices from reported matrices of capital stocks. Yet despite such
discrepancies between theory and measurement there also exists a range of topics
where recent developments can be fruitfully combined to explain factual findings as
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well as to avoid theoretical constructions – of the kind just referred to – that are too
ideal to meet the needs of daily economic life. With the present chapter we hope to
contribute to the required interaction.

The measurement of total (direct and indirect) factor requirements of commodi-
ties has in general been approached with regard to factors such as labor, capital and
imports, then considered primary factors in the underlying input–output methodol-
ogy. However, the oil embargo and rising energy prices have also directed attention
to the measurement of total energy requirements, an input which is frequently
situated in the intermediate part of the complete System of National Accounts. Re-
garding such requirements, questions are then raised as to how far sectoral energy
requirements differ from their average, how these requirements have changed over
the past two decades, and in particular if and how the energy requirement pattern of
the United States – the level of which is roughly twice as that of Western European
Countries – can be influenced to approach the standard provided by the latter coun-
tries (see Krenz 1977 and Howe 1979 for further details).

As already stated, the purpose of this chapter is to help to bridge the gap between
certain theoretically and empirically motivated inquiries of similar kind. To do this
we shall take as our topic the determination, interpretation and intertemporal com-
parison of the energy requirements of commodities in their relation to an important
feature (and trouble-maker) of observed technology: the widely prevalent existence
of joint production in modern industry. This technological characteristic has become
of increased theoretical interest since the publication of Sraffa’s (1960) critique of
economic theory, and is meanwhile also thoroughly reflected in the empirical input–
output methodology of the United Nationss’ (1968) SNA, its System of National
Accounts. But, despite an existing relationship, our following theoretical consid-
erations will make no explicit use of Sraffa’s complex analysis of relative prices
and their movements. Instead, the instruments provided by the SNA together with
some knowledge of the properties of non-negative matrices (practically comparable
to that required for the simple Leontief model) will suffice to prove the assertions
we shall make. Furthermore, joint production will not be considered in its myriad
details here, but will be treated in the abstract and general manner that is the basis of
the mechanical manipulations applied to it in the SNA. Since our interest lies in the
first place in the understanding of these mathematical manipulations with respect to
their economic content, all noteworthy concrete cases of joint products (of which
the energy sector is particularly rich, e.g., crude oil and natural gas, gasoline and
heating oil, electricity as an economically motivated by-product of industrial heat
production, for example, in chemical and petrol-refining industries) must be left to a
separate and more specific treatment then can be provided here (compare, however,
James 1980, p. 177, where the output data of five industries engaged in the produc-
tion of 21 energy commodities are presented in a format which is closely related to
the abstract approach which we shall utilize in this chapter).

The mathematical formula conventionally used in input–output analysis to deter-
mine the total requirements of commodities j per unit of output value with regard
to, say, an energy sector with index 1 is simple. Allowing for slight variations em-
ployed by the various writers in this field (see Wright 1975, p. 31 for an example)
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it is given by the coefficient A�1j of the Leontief-inverse A� D .I � A/�1 of the
central transaction matrix A of the whole input–output system. This coefficient – by
its well-known multiplier interpretation (see Lancaster 1968, p. 86ff.) – describes
the sum of direct and all indirect requirements of commodity 1 in the production of
commodity j .

Yet a number of important additions have to be given when such an expression,
calculated from reported monetary transactions tables, is used for the analysis of
energy requirements in order to ensure their proper interpretation. These additions
can concern (1) the role of fixed capital and depreciation (see Gupta and Steedman
1971; Herendeen 1974, p. 147; and Wright 1975, p. 35 for some details), (2) the
treatment of imports (see again Gupta and Steedman 1971 and Wright 1975, p. 32,
but also James 1980), (3) the fact of price changes (see here in particular Stobbe
1959, p. 250ff. and United Nations 1968, 1973), and last but not least (4) the exis-
tence and handling of joint products. As already said it is this latter complication and
the interpretational problems deriving from it that our following considerations are
addressed to, and this by a strict exclusion of all the other problems just enumerated
(though these are by no means less important than the problem here selected). What
we want to show in concentrating on the case of joint products, concerns, among
other things, the following assertions:

1. The two notions “total energy consumption” and “total energy costs”, which are
identical if the simple Leontief model is applied to assign a physical content
to their definition by means of A�1j , and which are used interchangeably in this
case and in general (see, e.g., Reardon 1973 and Herendeen 1974), are shown to
give rise to two different and both economically meaningful measures, once joint
products are introduced into the technological situation assumed to underlie the
employed transactions table A.

2. Despite their difference in physical description and content both measures can be
expressed in the same conventional way depending (in this order) on whether the
“commodity technology” assumption or the “industry technology” assumption
of the SNA has been used to derive the monetary input–output table A that is
being utilized for their determination.

3. The two notions (at least initially) apply to situations of quite different kinds. The
notion of “energy consumption” per commodity finds ideal application whenever
the technical conditions of input and output can be assumed to be constant; it
does not depend on changing activity levels nor on changing prices. Its principle
characteristic, therefore, is to measure the energy requirements of commodities
in a purely technological way. The notion of “energy costs” of commodities, on
the other hand, will not remain invariable under the above stated conditions. It
in fact depends on the choice of activity levels and also on prices by way of
its implicit reliance on factual economic conventions that are used for unit-cost
calculations in the presence of joint products, i.e., it no longer is of a purely tech-
nological kind. Its principal field of application, after all, lies in the analysis of
technological change – just the opposite of constant input and output coefficients,
the ideal case for the measurement of energy consumption.
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4. Thus, the two concepts to be introduced in Sects. 7.3 and 7.4 should be regarded
as complementary rather than as alternatives, the first being best suited for short-
run analysis and scenarios of final demand changes, while the second more
naturally applies to an analysis of the long-run consequences of technological
change, that is, to intertemporal productivity comparisons.

5. In the light of the given characterization of “energy consumption” coefficients it
is not astonishing to find that the application of only one input and one output
table for their determination may lead to situations where some of these coeffi-
cients may become negative, i.e., where an extra net output of commodities is
accompanied by a reduction and not a rise in energy use. There is no reason for a
purely technologically determined notion to be positive under all circumstances,
since it is not automatically ensured in the presence of joint products that an
unproductive use of “energy” cannot occur with a profit-maximizing choice of
technique. The appearance of negative entries in input–output tables A of “com-
modity technology” type, as reported in Armstrong (1975, p. 78ff.), hence allows
a quite natural explanation which in fact disqualifies the efforts made to suppress
such entries in the tables finally presented for use.

6. “Energy costs”, on the other hand, cannot become negative under economically
viable conditions by their very definition, and that is one of the reasons that we
have attached the term “costs” to this type of measurement.

We have already cited Krenz (1977) and Howe (1979) for possible questions and
applications with respect to input–output computations of the energy requirements
of commodities. Further computations of such energy requirements can be found
in Wright (1975), where an intertemporal comparison of these requirements is pro-
vided for the British economy of the years 1963 and 1968. But, though there is
reported there a tendency of these requirements to fall (with an average ratio of
1:1.29), Wright (1975, p. 35) ascribes the relevant part of this tendency in the last
instance to changing prices rather than to “technological change affecting energy in-
tensity”. The time behavior of energy-use coefficients is also estimated in Reardon
(1973) for the US economy of the years 1947, 1958 and 1963. In this chapter a sub-
stantial improvement is found in energy use per 1958 dollar’s worth of final demand
for the first of the two mentioned time periods, but none for the second. In addition,
a resolution of fuel-use changes into final demand changes and changes due to tech-
nology is also presented in this chapter, showing that the changes due to increases
in final demand more than offset the reported increases in efficiency. The computa-
tions mentioned so far in their essence relate more to an analysis of intertemporal
changes of energy requirements (i.e., in principle to “energy costs”). An analysis
confined to changes in final demand in their effects on energy consumption (i.e., the
first of our two notions) is provided by Folk and Hannon (1974) in conjunction with
an accompanying analysis of employment effects by means of simulations based on
the 1963 input–output table of the United States.

Clearly, there still exists a considerable gap between these generally very la-
borious practical estimations of the energy requirements of commodities, where the
proper choice of the tableA to be employed is rarely considered, and their economic
foundation presented here in relation to joint production and standard input–output
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methodology (which moreover is still far from being universally applied, yet see
Herendeen (1974, p. 147) for some comments on the strange practices found in
use instead). A final remark may therefore be in order to further clarify the value of
the analysis which follows.

As a special case, general joint production systems contain all kinds of multiple,
but single-product, activities, a fact which tends to increase the number of activities
relative to the number of produced commodities (whereas the existence of joint pro-
duction tends to reverse this relationship). In view of these technologically based
tendencies the two economic interpretations we shall associate with the “commod-
ity technology” and the “industry technology” assumption, respectively, should not
be restricted to the case of square multiple product systems (a case one is inclined to
assume in the light of the existing input–output methodology; compare James 1980,
for example). Instead, our two concepts of energy consumption and energy costs
should in principle be applicable to all kinds of rectangular systems as well – pro-
vided that the technological data on which each of these concepts rests have not been
aggregated in a way that is inconsistent with their respective definition. Thus our as-
sociation of two physically based definitions with the two basic methods of transfer
used to derive monetary input–output tables A of commodity � commodity type
intends to prove in the first place that these methods do not lead to measurement
without theory despite the existence of joint products (and thus “common costs”)
of any degree of generality. Both methods of transfer can be shown to give rise
to theoretically sound and applicable concepts of energy requirements even in the
most general case, and it is “only” the lack of sufficiently detailed technological
information (e.g., caused by the aggregation of single-product activities into mul-
tiple production not clearly distinguishable from intrinsic joint production in the
industrial census) which introduces all kinds of difficulties into their precise mea-
surement. This does not mean that such problems of (dis-)aggregation (e.g., through
application of the hybrid technology assumptions proposed in the SNA) are of minor
importance as compared to the theoretical solutions here proposed. On the contrary,
they by far represent the more difficult subject, which is also the reason why their
treatment cannot be simply appended to the considerations made here.

Yet it is by no means established that the mechanical methods of transfer em-
ployed in the SNA to solve the problems arising from joint and other kinds of
multiple production indeed make sense and can be usefully applied in theory as
well. Were this not the case, however, no subsequent aggregation would be able to
give economic content to concepts for which no economic foundation in general
exists. Therefore, our considerations evidently have to precede any treatment of the
possible disturbances caused by the lack of information and by the aggregation that
may be involved in the data finally employed for measurement.

To supply the general foundations for such a measurement consequently is the
main purpose of the analysis that follows. After some preliminaries which will make
standard input–output methodology accessible for the questions to be approached
(Sect. 7.2), we shall first consider the concept of “energy consumption” and some of
its properties (in Sect. 7.3). Section 7.4 will then make a similar contribution with
regard to the concept of “energy costs”. In Sect. 7.5, finally, we shall give a brief
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comparison of these two concepts accompanied by an examination of the applica-
bility of the second one for the study of technological change.

7.2 Analytical Preliminaries

We have already presented the basic expression in use for measuring the (value of)
total energy requirements of the different commodities j (per unit of their output
value). In a slightly modified form which excludes the amount of energy commodity
“1” that is used for final demand, this expression reads

A�1j � ı1j D .I � A/
�1
1j � ı1j D A1j C .A

2/1j C .A
3/1j C : : : .�/

where the matrix A represents a conventional input–output table in monetary terms
and where ı1j is defined by “1” for j D 1 and by “0” otherwise. To apply the pure
theory of input–output to such coefficients it is common practice, then, to assume a
direct correspondence between the coefficients Akj if A and the physical quantities
Akj of commodities k needed for the production of one physical unit of commodity
j (in general supplemented by the assumption of a linear technology with regard to
the resulting matrix A; see United Nations 1973, p. 20 for an example). The implied
relationship between the foregoing monetary measure .�/ of energy requirements
and the corresponding physical one is of a very simple nature in this case, as can be
seen from the following set of equations:

Akj D pkAkj =pj ; e.g., A�kj D pkA
�

kj =pj ; A
�
D .I � A/�1 .��/

Here, symbols pk and pj denote the prices of the commodities concerned, which
should not be eliminated from the above equations through an appropriate choice of
physical units (as is often done) if an analysis of intertemporal changes in energy
requirements is finally intended.

An early example of such an analysis (of primary factors such as labor) which
explicitly includes changing prices and, therefore, the choice of appropriate index
numbers and which thus starts from the above set of relationships .�/, is pre-
sented in Stobbe (1959). And there too the problem of how to disentangle complex
multiple-product activities into single-product processes is declared to be of deci-
sive importance for both a theoretical-quantitative as well as an empirical–statistical
point of view – on the final solution of which the value of the whole analysis pre-
sented in Stobbe (1959) is viewed to depend. Shortly thereafter (and independent of
this work) the methods employed to transfer secondary products – the typical form
of multiple production that is observed in input–output data collection – from the
accounts of their industry of origin to those of the industry where they are princi-
pally produced came to be studied in a more systematic way, leading to their first
rigorous mathematical treatment in the work of Stone et al. (1963). The method-
ology of input–output computations which resulted has since become a basic and
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indispensable part of the United Nations’ System of National Accounts (see United
Nations 1968, 1973). It has also been further analyzed and extended in various
papers as, e.g., in Gigantes (1970) and Armstrong (1975). This progress in the treat-
ment of data on multiple production, however, remained confined to the empirical–
statistical side of the approached problems due to the unchanged theoretical position
which tries to transform all recorded data on the input and output of industries in
such a way that the simple technological interpretation of type .�/ can be applied.
The methodological development of input–output analysis thus shows an improve-
ment in the systematic treatment of monetary coefficients that is not accompanied
by an equally explicit understanding of its results on the side of physical units.

In what follows we shall adopt the SNA by means of the notation used in
Armstrong (1975). We shall assume that the reader has some familiarity with the
basic schematic matrix arrangements and rearrangements of this system, but shall,
of course, provide a short description of the concepts and symbols which will
be adopted. The suggested notation in particular employs the following general
conventions:

Matrices will be characterized by capital letters A;B; : : : in general. A prime
(0) superscript is used to indicate transposition. Vectors (without a prime) represent
column vectors. The symbol O� above a vector is used to indicate the diagonal matrix
that can be formed by means of this vector. The summation vector i is defined by
.1; : : : ; 1/0 – of appropriate dimension in each case. The matrix I D bi then gives
the identity matrix (already employed). The j th column and the kth row of a matrix
A D .Akj / are denoted by Aj and Ak , respectively implying that I 1; : : : ; I n can
be used to represent the canonical basis of <n if i 2 <n. Finally, the symbols “�”,
“>” are used to denote non-negativity, semi-positivity and strict positivity for the
difference of the vectors (and matrices) that are thereby compared.

The data base of the accounting framework employed in the SNA is given by the
so-called make- and absorption-matricesM andX , which by their columnsM j and
Xj represent the total output and input of commodities of industry j in monetary
terms for the year under consideration. The convention for M j just described – and
this is a point that the reader is asked to keep in mind throughout the chapter –
represents a digression, the only one we will allow for, from the notation employed
by Armstrong (1975). To ease theoretical presentation it is recommendable to break
with the accounting convention which represents M j by a row in contrast to the
inputs X i , a column. This implies that, e.g., net output can be denoted simply by
M j � Xj instead of .M j /0 � Xj , which would be the correct way if Armstrong’s
(1975) notation were applied without this slight, single change in convention.

Let m denote the number of industries j and n the number of commodities
k represented by the two matrices X and M , numbers which are normally set
equal as far as practical classifications and computations are concerned – a practice
we shall adopt unless the opposite is stated explicitly. We have already presented
some arguments in the introduction as to why problems of aggregation should
be excluded from the present study. On the basis of this exclusion, the above
data Xj and M j of industries j can be translated again into physical terms in a
very simple way. Let us denote the vector of prices of commodities 1; : : : ; n by
p D .p1; : : : ; pn/

0 2 <n. The vectors X
j
D bp�1Xj (or equivalently bpXj D Xj )
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and M
j
D bp�1M j .bpM j

D M j / then describe the physical inputs and outputs
of industry j in the year of report and give rise to physical absorption- as well as
make-matrices X D bp�1X and M D bp�1M .1 This immediate correspondence
between monetary and physical data will allow us to use the terms “industry”, “ac-
tivity”, “method of production”, etc., interchangeably. We shall employ the symbol N�
throughout to denote the physical analog of a monetary expression of Armstrong’s
(1975) set of symbols, whenever it exists. But, though prices p are shown in all cal-
culations where they are involved, no analysis of changing prices will be presented
in this chapter. Prices p will remain exogenous; yet it is not sensible to set them
equal to one through an appropriate choice of physical units since their explicit role
in the proposed reallocations is an important source of information, and, of course,
a necessary prerequisite for any subsequent analysis of intertemporal changes.

The number of energy commodities explicitly considered in the input–output ap-
plications we have so far cited ranges from “2” in Krenz (1977) to “21” in James
(1980) and may in both cases also be aggregated into one single “energy commod-
ity” by means of the common unit of measurement petajoule (or Btu, etc.) employed
in these works (see Krenz 1977, p. 121 for an example). Yet it is well-known that the
formal principles for measuring the energy requirements of commodities remain the
same regardless of whether two, five, 21 or only one aggregated energy commodity
are taken into consideration (since their treatment by matrices with a correspond-
ing number of rows can be dissolved into a separate treatment of each single row).
It suffices therefore to restrict our considerations to only one energy commodity,
which will be given the index “1” in all that follows.

For purpose of completeness and for later reference let us conclude here with the
following list of concepts and assumptions (see Armstrong 1975, p. 71ff. for further
details):

g0 D i 0M > 0 D vector of the output values of industries
q DMi > 0 D vector of total commodity outputs

B D Xbg�1 � 0 D unit cost structure of industries
C DMbg�1 � 0 D matrix of product mixes and

D DM
0bq�1 � 0 D matrix of market shares

7.3 Energy Consumption

Consider now as given the two matricesX ,M � 0 of order n�n, which we derived
in the previous section from the basic matrices X and M of the schematic input–
output data arrangements of the SNA and which by our slight deviation from the
conventions represent by their j th columns the inputs and outputs of commodities

1 We thereby dispense with the “homogeneity assumption” customarily made (see United Nations
1973, p. 20).
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k D 1; : : : ; n of the given range of industries j D 1; : : : ; n. Note that by our very
point of departure there is no reason to expect that these data can be reduced to the
single matrix A of the purely technological kind postulated in connection with .�/.
On the contrary, the situation given above in particular may include all types of
joint production where, of course, no such reduction can be hoped for. Assuming
two matrices X and M instead of only one .A/ for grasping the technological situ-
ation that underlies the recorded matrices X and M is but the logically compelling
theoretical counterpart of this observed and widely accepted situation, and thereby
the correct starting point for pursuing our aim of analyzing that which is measured
by the expressions A�1j in .�/ under the assumed circumstances. To perform this
task we shall reverse the order of analysis in the sense that we shall start from the
presentation of a physically based measure of total energy requirements here and
in the following section in order to subsequently examine what kind of monetarily
based measurement these coefficients will give rise to.

Definition 7.1. Let us denote by 
i D .
i1; : : : ; 
in/
0 a change in the activity

levels of industries j D 1; : : : ; n. Then the change in the consumption of energy,
i.e., here of commodity 1, induced by this change in activity levels is defined by

X1
i D

nX

jD1

X1j
ij ;

and is ascribed to the accompanying change in net output,


f D .M �X/
i 2 <n;

in total.
Note that by this definition only the (intermediate) consumption of energy of the

producing sector is taken into account, leaving out the amount
f 1 D .M�X/1
i
that is produced for other purposes (final demand broadly defined). Adding both
amounts X1
i C
f 1 D X
i C .M 1 � X1/
i establishes the measure M 1
i ,
which could have equally well been used in place of the one proposed above in
all that follows. Note further that this definition by its very formulation contains
the implicit assumption of fixed input and output coefficients – up to variations of
scale. Note finally that due to our choice of starting point X;M , the activity levels
originally prevailing must be described by i D .1; : : : ; 1/0, and thus a constraint of
kind 
i � �i is involved in the above definition (the constraint need not be of this
particular form if the original activity levels i are recalculated to allow for greater
scales by taking smaller output baskets as units).

To simplify our following computations additional assumptions will be made
which, however, are implied in the SNA’s application of the “commodity technol-
ogy” hypothesis to be used in the following.

Assumption 1. The inverse matrices of the two matrices M andM �X , i.e.,M
�1

and .M � X/�1, are assumed to exist for all square systems M;X that are consid-
ered in this section.
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Consequently
i can be uniquely calculated from any given change in net output

f by means of
i D .M�X/�1
f , which reverses the order of assignment used
in the Definition 7.1.

Definition 7.2. The vector r 2 < defined by r 0 D X1.M �X/�1 is said to describe
– through its corresponding components – the total energy requirements necessary
for the production of one (extra) unit of commodities k D 1; : : : ; n.

This definition finds justification through the following:

Proposition 7.3. rk D X1
ik ; 
ik D .M �X/�1; k D 1; : : : ; n. The kth compo-
nent of the vector r thus exactly describes the extra energy consumption that results
from the change in activity levels 
i which is necessary to satisfy the postulated
rise in final demand 
f by one unit of commodity k: 
f D lk (independent of the
levels of activity and final demand that form the basis of this change).

Proof. rk D r 0I k D r 0.M �X/
ik D X1
ik :

Proposition 7.4. The vector r will be non-negative if and only if for every 
i that
fulfills 
f D .M � X/
i >D 0 we have X1
i

>
D 0, i.e., if and only if any change

in the economy’s activities which raises net output f cannot lower the energy con-
sumption associated with it.

Proof. From Definition 7.2 follows r 0
f D X1
i for all 
i D .M � X/�1
f

which implies the assertion by means of Proposition 7.3.

The vector r thus contains negative components exactly in those cases where
there exist vectors of activity levels i1 and i2 such that

f 2 D .M �X/i2
>
D .M �X/i1 D f 1 and X1i2 < X1i1:

The reader accustomed to the behavior of single-product systems and Leontief
models may wonder whether there can exist any reasonable case where some of the
components of r may become negative. To demonstrate the plausibility of such an
occurrence consider the following:

Example.

X D

0

BB@

3 0:2 0:2 8

0 2 3 16

0 4 2 4

15 2 3 0

1

CCA M D

0

BB@

12 2 2 0

12 10 0 0

2 0 10 0

0 0 0 30

1

CCA

With regard to our vector of initial intensities i D .1; 1; 1; 1/0 – the choice of
which, however, is of no particular relevance for the arguments that follow – we
have

Xi D .11:4; 21; 10; 20/0 and Mi D .16; 22; 12; 30/0;
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i.e., the above system is physically viable utilizing in particular 11.4 units of
“energy” to produce, among others, 16 units of “energy”. Now consider the change
in intensities 
i equal to .�1; 3; 2; 0/0. We then have

.M �X/
i D .0; 6; 2; 3/0 and X1
i D �2;

which implies a saving of energy despite the unambiguous increase in the bundle of
commodities available for final demand. According to Proposition 7.4 at least one of
the components of the vector r in this example hence has to be negative, as remains
to be demonstrated.

The explanation of this result lies in the fact that the methods of production “2”
and “3” taken in conjunction, e.g., with the operating levels “three” and “two” are
more efficient than the single method “1”, e.g., they then need less input and pro-
duce more output than is achieved by operating activity “1” on the level “one”. It
is the occurrence of such situations – which as the above example shows cannot be
excluded on a priori grounds – that is reflected by the existence of (some) negative
coefficients in the vector r of the energy consumption of commodities, situations
which in general may be far from being obvious if high-dimensional joint produc-
tion systems are considered.

Proposition 7.5. Define matrix A by A D BC�1 .with g0 D i 0M;B D Xbg�1;
C D Mbg�1/,2 i.e., the matrix A is the input–output table derived from monetary
data X and M by means of the so-called “commodity technology” assumption of
the SNA’s input–output methodology. For the monetary clothing r of the vector r of
Definition 7.2 we then have:

r 0 D p1rbp�1 D A1A� D A1.I � A/�1 D ..I � A/�1 � I /1

Proof.

A D BC�1 D .Xbg�1/.Mbg�1/�1 D Xbg�1bgM�1

D XM�1 D bpXM�1bp�1 (7.1)

From (7.1) there then follows:

A1.I � A/
�1 D p1X1M

�1bp�1.bp.I �XM�1/bp�1/
D p1X1M

�1bp�1bp.I �XM�1/bp�1

D p1X1M
�1
.MM

�1
�XM

�1
/�1bp�1

D p1X1M
�1
M.M �X/�1bp�1

D p1X1.M �X/
�1bp�1 D p1rp�1; (7.2)

2 See the final remark in Sect. 7.2 for a description of these symbols.
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by Definition 7.1. Moreover:

.I � A/C A D I implies I C A.I � A/�1 D .I � A/�1 (7.3)

which quite generally gives

A.I � A/�1 D .I � A/�1 � I;

independent of the confinement to the first row of these two matrices which is con-
sidered in the last equation of .���/. Equations (7.2) and (7.3) taken in conjunction
then prove the whole assertion since by Assumption 1 all inverse matrices employed
in the above proof in fact exist. ut

Proposition 7.5 states that our physical measure of energy consumption r can
be obtained from an ordinary Leontief table in the customary way .�/, provide that
this table has been constructed by means of the above “technology” assumption,
which – briefly characterized – assumes that a commodity has the same cost struc-
ture in whichever industry it in fact is produced.3 The part of table A in .�/ is now
played by the matrix XM

�1bp�1 [as equations (7.1) in the above proof shows] –
a matrix which in general, i.e., up to the special case where the “commodity tech-
nology” assumption in fact represents a true description of reality, no longer will be
interpretable in physical terms. Yet the applicability of the matrixA D bpXM�1bp�1
to the determination of energy requirements r as shown by .� � �/ is not confined
to cases where the “commodity technology” assumption makes sense, but remains
possible as long as Assumption 1 can be established. We simply do not have to
bother about the kind of technological relationships that lie behind the given make-
and absorption-matrices M and X (at least as long as the implicitly involved as-
sumption of constant returns to scale is not put to question).

Furthermore, the computation of energy requirements r by means of the matrix
A D BC�1 D XM�1, i.e., by X1M�1.I �XM�1/�1 (see Proposition 7.5) is but
a mathematical detour to obtain a situation that pretends to be of the conventional
Leontief type .�/.4 In this regard, (7.2) in the above proof clearly demonstrates that
the computation ofX1.M�X/�1 orX1.M�X/�1 is all that is needed to determine
the vectors r or r , respectively, thereby showing that a direct computation of such
energy requirements from the basic data X and M is possible and recommendable.

Finally, in applying the “commodity technology” assumption it has been ob-
served since the early work of Stone et al. (1963) that negative entries may appear in
the thereby derived input–output tableA. Having the simple Leontief model in mind,
the general attitude toward their appearance has been to remove them in a second
step by more or less sophisticated mathematical methods to obtain a final matrix A,

3 Postmultiplying the matrix B of unit-cost structures of industries by C�1 (to obtain the table A)
just converts these structures into the unit cost structures of commodities.
4 This, however, is devoid of economic content as no meaningful interpretation of the matrix
XM�1 will exist in general (see also the following examples).



7.3 Energy Consumption 157

which at least does not immediately disqualify the applicability of a technological
interpretation of kind .�/. This illusion with regard to the technological nature of the
matrix A continues to exist to this day, as demonstrated by the following quotation
from James (1980, p. 178): “. . . the mechanical methods of deriving input–output
matrices from make and absorption matrices described above do not always work
smoothly. For example, negative coefficients sometimes appear. Methods of over-
coming this problem can, however, be applied”, methods – it must be added – which
just endanger the use that can be made of this table A as shown by our Proposi-
tions 2 and 3! Such methods are surveyed in Armstrong (1975, p. 79ff.) where it
is also stated that it is basically Stone’s procedure (to replace all negative entries
simply by zeros) plus some further consistency considerations that have been used
in computing the input–output table A of the UK economy for 1963.

Example. Regarding the example of this section, the matrix A of Proposition 7.5 is
given by

A D
1

13;800

0

BB@

4;080 �540 �540 3;680

�4;500 3;660 5;040 7;360

�7;800 7;080 4;320 1;840

18;000 �840 540 0

1

CCA �

0

BB@

0:296 �0:039 �0:039 0:267

�0:326 0:265 0:365 0:533

�0:565 0:513 0:313 0:133

1:304 �0:061 0:039 0:000

1

CCA

(where p is assumed to equal .1; 1; 1; 10) for simplicity).
By means of I1..I � A/�1 � I / this matrix leads to

r 0 D r 0 � .1:75;�0:44;�0:36; 0:45/ (7.4)

as the correct vector of energy requirements of commodities 1, . . . , 4. Removing all
negative entries from the above matrix A (and neglecting Armstrong (1975) addi-
tional consistency considerations for simplicity), however, would lead to the, in this
case necessarily, non-negative vector

r 0 D r 0 � .1:94; 0:05; 0:07; 0:82/: (7.5)

With respect to this example we already know that an additional net output of
f D
.0; t; 2; 3/0 is associated with a saving of “energy” of amount “2” and a change in
operating levels i given by .�1; 3; 2; 0/0. From Definitions 1 and 2 it is furthermore
obvious that r 0
f must be equal to X1
i (quite generally), an equality that is
confirmed by (7.4). With regard to(7.5), however, we obtain r 0
f D 2:93, which
suggests wrongly that an extra energy requirement of 2:93 units would be necessary
to produce the increase .0; 6; 2; 3/0 in net output f .

The above equation r 0
f D X1
i (and also r 0f D r 0.M � X/i D Xi/ for
totals of industrial energy consumption based on a single input–output table A of
conventional, and thus obscure, type is applied in Folk and Hannon (1974, p. 163)
to compute the total energy requirements for different scenarios of final demand – an
undertaking which, in the last instance, requires the application of the “commodity
technology” assumption, as we have shown.
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In sum, negative entries are to be expected not only in the theoretically
misleading input–output table A where they have been frequently observed,5 but
also for the measure r D A1.I � A/

�1 – though with much less probability then.6

See Armstrong’s (1975) appendix for an example of the first, where one can easily
check that

.M �X/�1 � 0:0001

0

@
14:0 3:8 0:3

2:0 5:1 0:4

2:3 1:0 7:8

1

A (7.6)

and

A� D .I � A/�1 �

0

@
1:259 0:341 0:026

0:727 1:477 0:190

0:480 0:290 1:483

1

A (7.7)

are positive, despite the occurrence of one negative entry in his input–output table
A.�1;000/,

A D

0

@
87 213 �11

422 207 94

213 86 311

1

A

derived from

X D

0

@
10 60 0

40 60 20

20 30 60

1

A and M D

0

@
90 0 0

10 280 10

0 20 190

1

A ;

facts which are obviously due to the small amount of subsidiary production in the
make-matrix chosen by Armstrong. Yet, though we have a normal-looking Leontief
inverse (7.70) in this case, this does not imply the existence of a meaningful in-
terpretation for the matrix A in addition to that which exists for matrix (7.6) (see
Proposition 7.3). And, adding to this difficulty, there is no obvious theoretical rea-
son which automatically ensures the technologically efficient use of the given energy
resource (in the sense of Proposition 7.4) under all economically viable circum-
stances, i.e., even situation (7.4) cannot be dismissed on a priori grounds. Finally,
the possible excuse that the negative entries which occur in practice are of no great
importance is of no help in this case, since such an argument only leads to the con-
clusion that there is no use in supplying a systematic treatment of joint and other
kinds of multiple products (as done in the United Nations’ SNA).

In spite of all difficulties, however, the recommendation for avoiding faulty
interpretations or manipulations is quite simple. Having acknowledged the

5 See Armstrong (1975, p. 78ff.).
6 This is because (at least at present) voluminous negative entries of A (and thus negative entries
in A�) are not likely to be reported in the light of the methods currently applied – a fact, which,
however, does not deprive the hypothetical situation we have exemplified above of its conceptual
importance for a proper development on input–output analysis.
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meaningfulness of starting from a data base of the kind X and M , it is only sen-
sible to act accordingly with regard to the underlying technology, i.e., to apply X
andM to interpret the computations performed (and not A D XM

�1
, in an attempt

to rescue the conventional Leontief model despite the more general observations
made).

7.4 Energy Costs

To derive an alternative to the concept of energy consumption given by Defini-
tion 7.2, let us start again from known physical make- and absorption-matrices M
and X of order n�m, with no restriction placed now on the number n of commodi-
ties and the number m of industries.

The definition of energy consumption in the previous section was characterized
by technological considerations throughout, since all prices involved in its conven-
tional monetary measure r D A1.I � A/

�1 could be made to disappear by simple
and economically reasonable algebraic operations. Furthermore, no non-negative
property was needed for this technological characterization of energy consumption
to be meaningful.

This will change with regard to the now proposed economically motivated con-
cept of “energy costs” where by choice of terminology the non-negativity of the
coefficients to be measured is considered to represent one of their basic features. By
Definition 7.2 we get for the total energy requirements of activity j the equation

r1M 1j C : : :C rnM nj D r1X1j C : : :C rnXnj ; j D 1; : : : ; m: (7.8)

It is tempting to regard the set of these equations as an equation system which deter-
mines the energy costs (or energy contents of commodities 1; : : : ; n if the “primary”
inputX1j on the right-hand side of (7.8) is interpreted as an input from “nature” and
r1X1j to represent the energy costs of the input 1 of industry j measured in terms
of such primary “natural” units. Such an interpretation of (7.8) seems possible be-
cause of their close resemblance to standard procedures employed in the field of
cost-price determination. There is, however, one problem involved in this straight-
forward economic reinterpretation of the components of the vector r . Of course,
total costs r1M 1j C : : : C rnM nj of finished goods are computed by accumulat-
ing manufacturing costs (here in terms of the assumed input from “nature”). But in
the presence of joint products7 we have the problem of common costs and there the
majority opinion is – as far as conventional cost accounting is concerned – that “to
some extent all methods of allocating joint costs to individual co-products rest upon
opinion rather than upon objective measurements” (Dickey 1960, 13.7). It is to be
expected, then, that we will be in a better position when approaching the problem of
energy costs under such circumstances from an economy-wide perspective, and that

7 Not used here in the narrow sense of fixed output proportions (see Proposition 7.12).
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(7.8) will provide us with a basis for an “objective measurement” in this particular
situation? We do not believe this to be the case and propose as evidence for our opin-
ion the results that have been obtained in Sect. 7.3 with regard to this measure (7.8).

In our view the need for practicable economic conventions cannot be avoided
in the field of energy cost accounting of single commodities too, if joint products
and common costs are involved – which thus bring in an element of arbitrariness to
be closed by an appropriate definition. There are several possibilities for evaluating
the different techniques of joint cost accounting that are in use, namely: (a) by the
degree to which they are actually employed, (b) by their degree of generality in
covering existing as well as in principle possible situations, and, last but not least,
(c) by the use to which they can be put – for making a selection which suits our
purposes best.

Since we do not have the space here to enter into a satisfactory discussion on
managerial cost accounting, let it suffice with respect to point (a) to point to the
remarks made in Dickey (1960, 13.11ff.) and in Matz and Usry (1976, p. 189) in
favor of the so-called market value method of allocating joint costs. Regarding point
(b) this method can furthermore claim to be applicable to all kinds of joint products,
quite independent of the technological or economic peculiarities involved in each
single case. Hence there remains point (c) – in any case the most important one – to
be considered when arguments for defending the customary and, in particular, our
own application of the market value method to the problem of joint costs are needed.
Such a defence of the way by which we shall now use this method in the question of
energy cost accounting will be postponed here to Sect. 7.5, where the (dis)advantage
of “energy costs” in comparison with last section’s measure of energy consumption
is investigated.

The market value method functions by apportioning joint costs, e.g., of the pro-
cess j considered in (7.8), to the different units of costing “k” in relation to their
relative market values pkM kj =p

0M
j

, i.e., by means of the entries Ckj of the j th
column of the matrix C which we have defined in Sect. 7.2. Applied to our problem
of total energy cost determination this then leads to the following modification of
“cost equations” (7.8):

c
j

k
M kj D Ckj .c

0X
j
CX1j /; k D 1; : : : ; n; j D 1; : : : ; m; (7.9)

(and cj
k
D 0 if M kj D 0, i.e., if k is not produced by j ).

In these equations, the coefficients cj
k

describe the individual energy costs of
commodity k induced by process j , while the vector c D .c1; : : : ; cn/

0 represents
the average energy costs of commodities 1; : : : ; n. The sum c0X

j
C X1j conse-

quently represents the average energy costs that fall upon process j , which by means
of (7.9) are then apportioned to its output components M kj by taking relative mar-
ket values Ckj as weights.8 It is the introduction of the terms Ckj (and thereby also

8 Note that by this procedure it is not necessary to know the industrial origin of the inputs (or the
destination of the outputs).
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of individual energy costs cj
k

) which distinguishes (7.9) from (7.8) (and coefficients
ck from rk), but which also brings about the situation that the equation system (7.9)
now contains may more unknowns than equations. This indicates that the descrip-
tion of individual and average energy costs of commodities has not yet been finished.
To complete this description it is evident that the way these two types of costs relate
to each other remains to be determined.

The simplest way to perform this task, which at the same time makes the best
of a considerable lack of information, is to utilize the market shares Djk (compare
Sect. 7.2) of industries j in the market for commodity k as weights to form the
average of individual energy costs of commodity k, which leads to

ck D

mX

jD1

Djkc
j

k
; Djk DM kj =

mX

jD1

Mkj ; k D 1; : : : ; n: (7.10)

By means of such market shares, Djk , the individual efficiency, cj
k

, with regard to
average energy costs is again reduced appropriately to these latter average numbers,
which in fact is all that is needed for a completion of (7.9) to make them determinate.

If uj is the number of products produced by process j , (7.9) and (7.10) lead
in their totality to the consideration of u1 C : : : C um values for individual energy
costs plus n values for average energy costs. The task of determining all these values
can, however, considerably be simplified by inserting (7.9) into (7.10), which gives
the following equation system for (average) energy costs c of commodities k D
1; : : : ; n:

ck D

0

@
mX

jD1

Ckj .c
0X
j
CX1j /

1

A =

0

@
mX

jD1

M kj

1

A : (7.11)

Translated into matrix notation this finally motivates the following:

Definition 7.6. The energy costs of commodities k D 1; : : : ; n are determined by

c0 D c0XC 0bq�1 CX1C 0bq�1 q DMi

D c0AC A1; A D XC 0bq�1 (7.12)

where the matrix C is identical with the one introduced in Sect. 7.2.
We have thus succeeded in obtaining an equation system of n� n type, uniquely

solvable in principle, which replaces Definition 7.2 which we used for the determi-
nation of the energy requirements of commodities in Sect. 7.3. To demonstrate the
solvability of (7.12) we shall employ the following:

Assertion 4. p0X < p0M , i.e., value-added is positive for all industries j D
1; : : : ; m.

We shall employ this assumption in place of Assumption 1 used for the purposes
of Sect. 7.3.

Furthermore, and in contrast to the in general purely artificial matrix A D

XM �1, we have now introduced a matrix A D XC 0bq �1 of commodity �
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commodity type which not only is non-negative by definition, but which also al-
lows a sensible interpretation for each constellation of the numbers n and m with
regard to all kinds of technological situations (the same, of course, holds true with
regard to the vector of “primary” inputs X1C 0bq�1), to be made in the following
way: By (7.12) we have for the kth column A

k
of A the equation

A
k
D

mX

jD1

CkjX
j
=M ki ; (7.13)

the numerator of which gives the vector of total inputs that are allocated to the total
production of commodity k by means of relative market values 0 � Ckj � 1 at-

tached as weights to the total input vectors X
j

of industries j . Subsequent division
by M ki D

Pm
jD1M kj , the total production of commodity k, then, of course, ex-

presses this input vector per unit of output of commodity k and gives the vector A
k

.
On the basis of Assumption 4, we now have:

Proposition 7.7. Define the matrix A by A D BD, where the n � m matrix B is
defined as in Proposition 7.5 and the m � n matrix D by the coefficients Djk of
(7.10), i.e., the matrix A is the input–output table derived from monetary data X
and M by means of the so-called “industry technology” assumption9 of the SNA’s
input–output methodology. For the monetary clothing c of the vector c 2 <n of
Definition 7.6 we then have

c0 D p1c
0bp�1 D c0AC A1; i.e., c D A1.I � A/

�1: (7.14)

Proof. By Definition 7.2 there holds

c0 D p1c
0bp�1 D p1c0XC 0bc�1 C p1X1C 0bq�1bp�1

D c0bpXC 0bq�1 C p1X1C 0bq�1 D c0Xbg�1bgC 0bq�1 CX1bg�1bg�1bgC 0bq�1;

where g; q are defined by i 0M and bpq, respectively .q D Mi/. By the definitions
made in Proposition 7.5 these equations then give rise to

c0 D c0BM 0bq �1 C B1M 0bq �1 D c0BD C B1D D c0AC A1;

because
D DM

0
bMi�1 DM

0bpbp �1bMi�1 D m0bq�1;

for the matrixD D .Djk/ defined in (7.10), proving the first part of the proposition.
To prove the second part, i.e., the invertibility of the matrix A, it suffices to realize
that

9 This, in contrast to the “commodity technology” assumption, assumes that all commodities pro-
duced by an industry are produced with the same input structure (see Armstrong 1975, p. 71, and
compare again Sect. 7.2 with regard to the notation employed).



7.4 Energy Costs 163

p0X < p0M implies i 0A < i 0:

This follows, since p0X < p0M (Assumption 4) is equivalent to

i 0X < i 0M or i 0Xbi 0M�1 < i 0 or i 0B < i 0;

which implies
i 0A D i 0BD < i 0D D i 0

by the very definition of D [see (7.10] and regard the non-negativity of all the
matrices involved). By well-known assertions on such non-negative matrices (see,
e.g., 6.3 in Nikaido 1968, p. 95) we therewith know that the matrix I � A is non-
negatively invertible, i.e., the Leontief inverse A exists (and is non-negative).

Proposition 7.8.

(1) A D bpAbp�1, A D XC 0bq�1,
(2) c and c are uniquely determined and non-negative, and positive if X1 > 0.10

(3) Individual energy costs cj
k

can be determined on the basis of the computed
vector c by means of (7.9).

(4) For any bundle of commodities b � 0, we have p1c0b D c0b where b – as usual
– is defined bybpb.

(5) c0.M �X/i D X1i , i.e., the energy costs of net output are equal to the amount
of energy that is consumed in its industrial production.

Proof. Assertion (1)–(4) are immediate consequences of Proposition 7.7 and its
proof. To prove (5), note that by (7.11) we have

ck.Mi/k D

mX

j�1

Ckj .c
0X
j
CX1j /:

Summation over k then implies

c0Mi D

nX

kD1

ck.Mi/k D

nX

kD1

0

@
mX

jD1

Ckj .c
0X
j
CX1j /

1

A

D

mX

jD1

 
nX

kD1

Ckj

!
.c0X

j
CX1j / D

;X

jD1

.c0X
j
CX1j /

D c0Xi CX1i:

10 Neither this assumption nor Assumption 4 are of the weakest possible kind to allow for these con-
clusions. This topic is, however, not central to our problem of analyzing the two different concepts
of energy requirements r and c defined here. Weaker assumptions than the one considered above
(which assumes that energy is a direct input with regard to every industry) can be obtained, e.g.,
from the analysis of basic commodities that is supplied in Flaschel (1982). For simplicity, however,
the assumption X1 > 0 is retained for the remainder of this chapter.
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ut

Example. With regard to the example of the previous section we here obtain as
input–output table A D A D BD .p D i/,

A �

0:090 0:071 0:033 0:267

0:052 0:076 0:208 0:533

0:063 0:152 0:139 0:133

0:485 0:390 0:304 0:000

;

which by means of

c0 D c0 D A1.I � A/
�1 D I1..I � A/

�1 � I /;

leads to
c0 � .0:56; 0:51; 0:45; 0:74/; (7.15)

and, e.g., with respect to the energy commodity “1” to its following individual en-
ergy costs:

c11 � 0:61; c21 � 0:38; c31 � 0:41; c41 D 0: (7.16)

Comparing these results with those obtained for A and r 0 in Sect. 7.3 [see (7.4)]
reveals a remarkable difference between them, in particular with regard to the neg-
ative entries allowed for in the latter case, but also with respect to the “corrections”
(7.5) that have been used to prevent their occurrence.

By apportioning joint energy costs to individual products by means of (7.9) [re-
placing (7.8) which were used for the analysis of the previous section], we have
managed to establish a notion of such costs which (1) is based on non-negative
magnitudes throughout (independent of any relation between n and m), (2) con-
firms again the procedures .�/ and .�/ that are customarily applied to measure the
energy costs of commodities11 – here under the provision that table A of definition
e, i.e., the market value method (and thus the “industry technology” assumption) are
used as foundations, (3) shows by (2) that it is in fact included among the measures
that are actually proposed for use – in particular with regard to the occurrence of
joint products (see United Nations 1968, 3.40), and (4) allows the consideration of
cost differences in the usage of “energy” [as exemplified by (7.16) with regard to
the average energy costs c1 D 0:56 per unit of energy commodity 1 produced]! Fi-
nally prices p, which have been utilized (by means of Ckj ) to conduct the proposed

11 In the light of the demonstrated possibility of reducing both of our measures r and c to the
monetary expression A1.I � A/�1 (depending only on what type of “technology” assumption is
being used), the formula (3) which is proposed in James (1980, p. 176) does not appear entirely
convincing to us. Translated into our notation it would be based on an expression of the kind
X1bg�1.I �A/�1, that is, one where no full transformation of the vector of energy inputs X1 (into
A1), corresponding to the complete set of rearrangements made with regard to the matrix A, is
accomplished.
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apportioning of joint costs and which therefore enter the definition of such energy
costs to some extent, have been shown to exercise no influence on the determination
of the energy costs of total net production .M �X/i (see Proposition 5(5)).

Despite these achievements it must be admitted that our notion of energy costs is
still to this point of an essentially definitional kind when compared with its counter-
part, the vector of energy consumption r , although its factual existence is given
whenever the “industry technology” assumption is employed. The actual use to
which such an instrument of measure can be put, therefore, still remains to be clari-
fied. Steps into this direction will be undertaken in the now following section.

7.5 Comparing Energy Consumption and Energy Costs

In the preceding two sections we have shown that the two defined notions of energy
requirements exhibit essentially the following common characteristics: (1) They sat-
isfy the same formula with regard to their monetary transactions tables A. (2) The
accompanying “technology” assumptions are not based on facts of technology in
both situations at least as far as joint products are concerned). 3) They are iden-
tical if joint products and alternative ways of producing the same commodity are
excluded from consideration M D I ; a more general condition which implies this
result – by summation of (7.9) over k – is: individual energy costs c�j

k
are equal to

average energy costs ck whenever k is produced by j .
Despite these common features there are, however, also notable differences

between the two definitions presented, as for example with regard to the often em-
ployed “physical” analog A D bp�1Abp of the above matrix A. In the case of energy
costs c it permits an economically sensible interpretation throughout, while it merely
represents a mathematical detour in the calculation of energy consumption coeffi-
cients r . A second difference in nature can be illustrated by considering the special
case of multiple, but single-product, activities. Energy consumption coefficients rk
are (quite generally) independent of changes in operating levels, in market shares,
and can then even be defined in this unambiguous way if the number of industriesm
exceeds n, the number of commodities, by means of the following linear program-
ming problem (compare Definition 7.1):

minfX1
i=.M �X/
i D 
f ; i C
i � 0g; 12

independent of the given change in final demand 
f (see Lancaster 1968, p. 91ff.
and note that the proof of this assertion, i.e., the non-substitution theorem,13 will

12 A solution to this program describes the extra energy consumption that is absolutely necessary
to allow for the assumed change in final demand with regard to the technological alternatives that
are now available.
13 This theorem is often considered as a justification for the assumption n�mwe made in Sect. 7.3.
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in general also apply to those multiple-product systems which exhibit the order of
magnitude of subsidiary production that is actually observed.) The above invariance
properties of the coefficients rk and their purely technological character thus show
that they best apply to an (optimizing) investigation of the short run where (hypo-
thetical) shifts in expenditures are examined under the provisional assumption of
constant technical conditions. Energy costs ck , on the other hand, are defined as
pure averages in the above assumed special case (without any reference to prices
p then) on the basis of simple summation of the activities which manufacture the
same commodity k and a subsequent division of the thereby obtained vector of in-
puts by the total number of unites k produced [which gives the kth column A

k
of A

in this case; see (7.13)]. Energy costs ck thus depend on and specifically summarize
the properties of the whole set of given activities and not only those of the energy-
minimizing subsystems implied by the non-substitution theorem. They therefore do
not possess the above invariance properties of coefficients rk even in this special
case, which means that they can at best be applied to an analysis of the factual
changes over time of the whole system of existing processes, i.e., to the longer run.
Both notions are thus already clearly distinguishable in the special case of multiple
activities, complementing each other rather than standing in any direct competition
for superiority.14

The study of the long-run tendencies of technological change hence may repre-
sent the primary filed of exploration for our second notion, the energy costs c of
commodities. One goal of the remaining pages is to present some fundamentals for
such an analysis hoping thereby to point out the relevance of this newly formulated
notion of energy costs (in part based on conventional imputations) whose factual
existence has already been proved in the last section.

Proposition 7.9. Define the matrix A
0

by setting the first row of A (see Defini-
tion 7.6) equal to zero. The vector d 2 <n defined by d D .1C c1/�1c then fulfills

d
0
D d

0
A
0
C A1 D A1.I � A

0
/�1; d1 < 1; c D .1 � d1/

�1d:

Proof. From Definition 7.6 we get

c D c0AC A1 D c
0A
0
C c1A1 C a1 D c

0A
0
C .1C c1/A1;

i.e.,
.1C c1/

�1c0 D .1C c1/
�1c0A

0
C A1:

This implies the first part of the assertion, since I � A
0

must be non-negatively in-
vertible, because A

0
� A (see Proposition 7.7 and Nikaido 1968, Theorem 7.2(iv)).

14 Related with this distinction between optimal and average energy requirements is the fact that
the latter (but not the former) can be supplemented by the important concept of individual energy
costs [compare (7.9)].
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By the very definition of d we furthermore get

d1 D c1=.1C c1/ < 1;

since c1 is non-negative. There follows

.1C c1/=c1 D 1=d1;

i.e.,
1=c1 D .1 � d1/=d1 or c1 D d1=.1 � d1/;

which implies
1C c1 D .1 � d1/

�1:

ut

The vector d defined in Proposition 7.9 thus fulfills an equation system of type
(7.12) too, where, however, all intermediate energy input has been removed from
these equations. Energy inputs – in contrast to (7.12) – now appear only once and
in the form of a “primary” input vector x1, implying that the vector d represents
accumulated (and apportioned) costs, or cost-prices, now in terms of commodity I
and not in terms of the hypothetical “natural” units utilized to explain the content
of the vector c in the preceding section. It is, of course, only natural then to expect
that the energy costs d1 of producing commodity 1 should be less than one (under
viable conditions), as we have shown above.

Proposition 7.10. p1d < p, i.e., the energy costs just defined of commodities
1; : : : ; n are always less than the given market prices p of these commodities (if
multiplied by p1).

Proof. By Proposition 7.7 and its proof we already know that p0A < p0, i.e., that
p0A

0
C p1A1 < p

0. By footnote 10 we in addition get A1 > 0, implying that there
exists a vector x > i such that

p0A
0
C p1A1bx D p0:

Applying Proposition 7.9 then gives

p0 D p1A1bx.I � A
0
/�1 > p1A1.I � A

0
/�1 D p1d

0
;

because
.I � A

0
/�1 � 0:

ut

Note that the foregoing proof cannot be applied to energy consumption r as well
because of the negative entries which often appear in the matrix A to be employed
in this case. This deficiency in the definition of energy consumption also extends to
the considerations on technological change which now follows.
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Definition 7.11. Technical change is said to be of (purely) energy-saving, capital-
utilizing type if the following inequalities hold: UC1 � U1 (energy-saving) and
.UC/0 � U 0 (capital-using: a matrix inequality), where U is given by Xbg�1, the
physical input structure per $ of output value, where “+” represents the situation
after the technical change has occurred, and where U 0 and .UC/0 are used to de-
note the matrices obtained from U and UC by setting their first rows U1 and UC1
(representing the inputs of commodity 1) equal to zero.

Note that in this distinct situation the problematic cases where the saving of en-
ergy is accompanied by a partial saving of capital goods, which makes “viable”
(with regard to given prices p) greater amounts of inputs of some of the other cap-
ital goods 2; : : : ; n, are excluded from consideration. Instead, reductions in direct
energy input – in some sectors – are always accompanied by unambiguous in-
creases with respect to (some of) the capital goods 2; : : : ; n employed by theses
sectors [compare (7.17) for more general situations]. Note further that our formu-
lation does not rule out changes in scale (and in product) which may be associated
with the given technical change, and that it is by no means clear whether a sav-
ing in total energy usage will result from the assumed kind of direct energy input
savings, even under conditions of an unchanged final demand, since the necessary
extra production of intermediated goods 2; : : : ; n by its uses of energy commodity 1
may more than compensate for the assumed reduction in direct energy inputs. To
describe situations where this latter possibility can be safely excluded we can now
usefully employ our concept of energy costs c and thus provide further justification
for its somewhat arbitrary definition in Sect. 7.4.

Proposition 7.12. If the above assumed type of technical change is cost-reducing
(viable) with regard to prices p it will be cost-reducing with regard to energy costs
c and d as well,15 provided that the market shares of industriesDjk have remained
stable.16

Proposition 7.13. Under the assumptions just made the energy requirements for
producing a fixed vector of final demand f will fall.

Proof of Proposition 7.13. By Proposition 5(5) we know the equality

c0f D c0.M �X/i D X1i

15 A similar situation and proposition with regard to single-product activities, prices of production
and the primary factor labor is examined in Roemer (1977).
16 Note in this connection that the employed assumption on cost reduction p0UC � p0U (a vector
inequality in terms of initial prices p solely!) means that the new activities, i.e., the columns of
matrix U which actually change, will be regarded as superior and will therefore be adopted by en-
trepreneurs (if static price expectations prevail). As a consequence of the implied technical change,
however, prices p in all probability will be subject to change. But, though this may cause further
changes with regard to energy costs c which may endanger the derived inequality cC

<
D c, this

cannot invalidate the assertion made on total energy saving (Proposition 7.13) if no further change
in cC1 takes place.
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to be true before and after the technical change considered.17 Now, f is assumed
to be constant and energy costs c unambiguously fall to c1 � c (Proposition 7.12),
implying the desired inequality X

C

1 i < X1i by means of the foregoing equality.
ut

Proof of Proposition 7.12. Utilizing the symbols introduced in Definition 7.11 the
assumption on cost reduction can be expressed by

p0UC � p0U or p0.
U / D p0.UC � U/ � 0;

(the symbol 
 will always be used to denote differences of the just described kind).
Postmultiplying U by Dbp gives

UDbp D Xbg�1Dbp D Xbg�1M 0bq�1bp D X.bpMbg�1/0bq�1 D XC 0bq�1 D A

(see Definition 7.11 and Sect. 7.2, I–IV). By assumption the matrixD can be applied
to UC as well, thereby giving rise to

p0
UDbp D p0
A D p0
A0 C p1
A1 � 0;

because of the non-negativity of the matrix Dbp. The cost reduction assumed with
regard to industries j thus is also true for the derived tables A and A

C
describing

the “production of commodities by means of commodities”. And because of the
assumed kind of technical change we furthermore have 
U 0 � 0, i.e., 
A

0
� 0.

By Proposition 7.10 we then get p0
A
0
� p1d

0

A

0
, i.e., we – a fortiori – will find

reduced costs with regard to our initial vector of energy costs d ,

p1d
0

A

0
C p1
A1 � 0;

or
d
0

A

0
C
A1 � 0;

or
d
0
.A
C
/0 C A

C

1 � d
0
A
0
C A1 D d

0
:

Let us now define x1 by d
0
.A
C
/0CA

C

1 , x2 by x1.A
C
/0CA

C

1 , x3 by x2.A
C
/0CA

C

1

(and so forth). By the last inequality presented we gain the inequality x1 � d
0
,

which implies x2 � x1, which in turn implies x3 � x2, etc. We consequently obtain
a monotonically falling sequence of vectors xk which is bounded from below by

17 With an index “+” in the second case, of course. Note that the change in total energy use X1i �

X
C

1 i will be equal to the sum of two effects Nc0 � . NcC1/0/ Nf C . NcC/0. Nf � Nf C/ if the assumption
f D fC is dropped, which thus may lead to an increase in total energy consumption if the

demand effect .f
C >
D Nf / is sufficiently strong of offset the saving of energy that is implied by the

first item in the above sum (see Reardon 1973, p. 41ff. for a practical computation of this kind).
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0 2 <n and which, therefore, must converge to a vector x� � 0. Simple continuity
arguments then imply that this vector x� must fulfill x�.A

C
/0 C A

C

1 D x
�, i.e., by

Proposition 7.9, will define the vector of energy costs d
C

based on the new technical
conditions given. This vector thus fulfills d

C
� d and hence also cC � c (see again

Proposition 7.9). ut

Remark 1. Technical change will seldom occur in practice in the extreme form we
used to prove Proposition 7.12, a fact which, however, does not render this propo-
sition worthless, since its proof provides important insights into the scope for the
assertion of a general reduction in energy costs when less clear (mixed) types of vi-
able and energy-saving technical change are considered. The strategic points which
allowed the derivation of an unambiguous reduction for the vector c are given by
the following two inequalities (compare the proof of Proposition 7.12):

0 � p0
A
0
C p1
A1 and p0
A

0
� p1d

0

A

0
; (7.17)

i.e., the fact of cost reduction with regard to the employed input–output table A
and an inequality which transfers this result to energy costs (on the basis of p >

p1d if A
0
� 0). it is the second inequality which represents the most crucial point

in the arguments made and which, therefore, should be ensured by more detailed
assumptions or facts in the case where A

0
� 0 does not hold in particular since a

falling vector c indeed is reported in some of the empirical computations mentioned
(compare Sect. 7.1).

Remark 2. Inequalities (7.17) and p > p1d in addition show that there is room for
technical change which reduces energy costs but which is not viable, i.e., which will
not be adopted in a profit-maximizing economy (see Krenz 1977, p. 128 for related,
more concrete considerations of this kind).

Remark 3. By inverting the order of inequalities used to prove Proposition 7.12 it
can finally be shown that technical change which utilizes energy to save capital
(goods 2; : : : ; n) in the ideal way described in Definition 7.11 will reduce the vector
of energy costs c at most in those cases where it is viable, yet that there exist viable
changes of this kind which do not reduce the vector c unambiguously.

Example. Consider the following case of technical change:


X
4
D .�6; 0;C4; 0/0;

on the basis of the example employed in Sect. 7.3 (all other columns of X and the
matrix M remain as they were). This change in the production of commodity 4
provides a simple example for Definition 7.11, which is also viable .p D i/. The
vector of post-change energy costs cC is then given by

cC D .0:27; 0:24; 0:20; 0:27/0; (7.18)
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and is considerably lower than the original one [see (7.15)]. The vector r of energy
consumption, on the other hand, will change from

r � .1:75;�0:44;�0:36; 0:45/0

to
rC � .0:56;�0:23;�0:21;�0:k07/0;

and thus will not behave in a similar way, i.e., the considered viable technical change
(which is energy-saving in the sense of Proposition 7.13) will have no clear-cut
(normal) effect on energy consumption coefficients rk here. This provides us with
a further argument to stress constant technical conditions – and not technological
change – as their proper field of application, a situation where energy consumption
r is known to be uniquely defined independently of any change in operating levels
of activities. This property in return is not shared by energy costs c. Considering,
for example, the change in activity levels 
i D .�1; 3; 2; 0/0 employed in Sect. 7.3
we indeed get a new vector c approximately given by .0:22; 0:21; 0:23; 0:47/0 which
in its own (averaging) way reflects the rise in productivity brought about by delet-
ing the inefficient activity 1 from the set of applied activities [see again (7.15)].
There thus seems to be some theoretical guideline for choosing between energy
consumption r and energy costs c, i.e., between the application of the “commodity
technology” assumption and the “industry technology hypothesis” when measuring
the energy requirements of commodities in practical applications.

Summarizing we can now state the constitutive result that the measure c of
Sect. 7.4 indeed allows for useful application in the analysis of change over time,
applications which in part depend on the non-negativity of its corresponding input–
output table A. This non-negativity of the underlying matrix A, which is based on
the whole set of existing activities, has become possible in the general case consid-
ered by an equal treatment of all kinds of jointly produced commodities by means of
the market value method, which in our view by its general and abstract applicability
very sensibly – though not necessarily uniquely – supplements the average compu-
tations involved in the customary case of multiple, but single-product, activities. In
our opinion this further justifies our special choice of an economic convention to
allow for an applicable notion of energy costs.18 Yet in order to prove this appli-
cability the restrictive and pregnable assumption of stable market shares D had to
be made. To defend this assumption let us state here briefly that it is not necessar-
ily less plausible than the assumption of stable product mixes C ,19 which we have
made (together with the assumption of a constant matrix B , i.e., of constant dollar

18 Note in this regard that our object here has not been to consider (marginal) investment decisions
based on given prices (see Helliwell and Cox 1979 for a joint product example of electricity co-
generation of this kind – making no use, of course, of the market value method), but to introduce a
sensible generalization of average energy costs which overcomes the difficulties of joint production
on the abstract level of input–output methodology.
19 See Gigantes (1970, p. 282) for such an assertion.
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economies of scale) in Sect. 7.3 to ensure the existence of a single vector of energy
consumption r for valuing different scenarios of final demand. Thus, the provisional
assumption made to show the usefulness of the vector c can bear comparison with
those we employed in the case of energy consumption r .

7.6 Summary

In this article the two basic procedures of input–output methodology available to
derive monetarily based measures of the energy requirements of commodities in the
presence of multiple production of various kind have been examined with regard
to their technological and economic content. It was established that the measure
which is based on the so-called “commodity technology” assumption allowed an
interpretation in terms of a concept which applies to the determination of the energy
consumption of all admissible changes of final demand under constant technical
conditions, while the second measure, based on the “industry technology” assump-
tion, led us to a calculation of average (real) energy costs which relied on the market
value method of managerial cost-accounting to the extent that joint products are
present. Our analysis showed that input–output measurement of such general kind
contains definite theoretical foundations which permit an explanation of “anoma-
lies” observed with respect to the first measure and an illustration of how to apply
the second with regard to an analysis of technical change, thereby supplying us with
suitable conceptual means to distinguish energy consumption from energy costs.

The analysis presented, it is hoped, provides an abstract but useful counterpart
to the various concrete computations of the energy requirements of commodities
which are made. It should be extendable by means of already existing practically
oriented methodology to those questions we have excluded from consideration, i.e.,
in particular to the problem of how to treat fixed capital and depreciation when
measuring the energy requirements of commodities.
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Part II
Production Prices and the Standard

Commodity. A Critical Reassessment

The characterization of this part of the book could be brief, if it basically were
intended to provide some additional material (qualifications) for the well-known
theory of production prices (of Sraffa or von Neumann type) and also for the un-
derlying mathematical theory. However, at the close of the first chapter of this part
(on prices of production), we will argue that these physically based input-output ap-
proaches to the treatment of Classical ruthless competition and its production price
scheme are going much too far in the choice of their disaggregation level to allow for
a uniform rate of profit based on physical data and a physically determined uniform
production period and most importantly – also going much too far – in its treatment
of fixed capital vintages as just special cases of joint commodity production. There
simply is no meaningful technologically determined periods of production in devel-
oped market economies by which we can distinguish on a physical level so-called
fixed capital goods from so-called circulating ones.

Instead we will, here too, favor the pragmatic Leontief approach which is dis-
tinguishing instead between flow matrices (capital consumed) and stock matrices
(capital advanced) within the yearly accounting framework of firms and the turnover
times these two matrices imply for the use of each input commodity in each activity.
From this perspective each commodity gives rise to amounts tied up in their usage
and to amounts in which it has been consumed during the typical accounting period,
the year. This topic is however not treated in the present book in detail, but is only
touched here upon to argue that firm based input-output considerations may be the
more appropriate choice when factual economic outcomes are to be theorized. If –
as production prices assume – a uniform rate of profit across sectors is justified at
all, this becomes a (not trivial) matter of choosing the right aggregation level, in
place of an application of the principle of uniform profitability on all conceivable
sub-stages of the daily input-output processes of billions of firms that are competing
with each other in the world economy.

Our basic findings in the chapter 8 therefore is that prices of production (nicely
defined by help of Perron-Frobenius theory) – if useful at all – have to be inves-
tigated from the applied perspective in order to find out where they can really be
used in a meaningful way. Our empirical findings (for the German economy with
only 7 sectors) are not too supportive in this regard. It may therefore well be that
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Farjoun and Machover (1983) are correct when they reject the above hard version
of the uniformity assumption as fallacious (see their p. 19).

We go on, in chapter 9, to considering Sraffa’s concept of basic commodities
extended to the case of pure joint production systems where – as we show – there
are in fact two fundamental possibilities for their definition and investigation. As
already suggested through chapter 8 we here too favor the Leontief – Stone (empir-
ically oriented) input-output approach to such issues as against the Sraffa approach
to the investigation of the basic / non-basic distinction in general models of produc-
tion. Our reason for this is that so-called Leontief-basics are defined quite generally,
while the concept of Sraffa basics rests on restrictive mathematical assumptions
which moreover do not allow for economic interpretation.

In chapter 10 we return to single product systems. We argue there – on the basis of
various continuity propositions – that the distinction between basics and non-basics
is fairly arbitrary if one applies these concepts on the physical level, since ‘energy’
and ‘pencils’ may then belong to the same category, the basics. Instead aggregation
is again needed for a sensible application of the basic / non-basic distinction.

Part II is closed by two chapters on Sraffa’s Standard Commodity. It is shown
there of not providing a simplifying device for the theory of income distribution and
of not providing an invariable measure of value (as searched for by Ricardo).

In sum, part II may therefore appear to the reader as providing a fairly negative
contribution to the Classical theory of production prices and the income distribution
between capital and labor. It is nevertheless meant to support the Classical theory
of long-period prices and the inverse relationship between real wages and the rate
of profit they imply, but it suggests that empirically oriented input-output concepts
as discussed in detail in Bródy (1970), stressing for example the stock-flow distinc-
tion and turnover times, and building quite generally on cost and revenue allocation
techniques that are actually used by firms, should be employed for the treatment
of general production systems in place of the often purely theoretical concepts of
Sraffa’s (1960) book.

Sraffa’s early contribution was surely a very important one and also a precisely
formulated step forward to the revitalization of Classical economics in the 1960’s
and thereafter, but in order to turn it into an applicable framework it must be revised
significantly in view of the contributions by Leontief, Stone and Brody and subse-
quent work on input-output analysis, including the question to what extent and on
what level profit rates tend to approach each other to a certain degree.20

The outcome of such a research programme may well be that Samuelson’s (1971)
eraser principle should be in fact applied to the theory of production prices instead to
labor values (which are firmly rooted in the analysis of the implications of technical
change as we have argued in part I). Such a result would imply that Steedman’s
(1977) critique is just the opposite of the truth, in addition to what we have already
stated in the ch. 4.

20 See Flaschel, Franke, and Veneziani (2009) for such a revision of production price schemes that
takes account of differentiated profit rates.
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Sraffian production price accounting may have been a useful starting point for the
revitalization of Classical ideas in the 1960’s, but they are definitely inferior to their
general definition in Bródy (1970), to be extended by the United Nations’ (1968)
treatment of joint production. Moreover, their may be a fairly stable distribution
of profit rate differentials as discussed in Flaschel, Franke, and Veneziani (2009),
distribution that may also be governed by statistical laws as Farjoun and Machover
(1983) have argued. We have shown in part I that Marx’s (1977) Capital, Vol. I
analysis does not depend on the specific price theory that may be the outcome of a
coherent revision of Marx’s (1077) Capital, Vol. III and chances are that this will
not be based on the Sraffian approach to production prices as long-period centers of
gravity or even point attractors of market prices.
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Chapter 8
In Search of Foundations for a Classical
Theory of Competition

In our own probabilistic analysis, labor value does not determine prices. We have no ‘prices
of production’, or any other kind of ideal ‘natural’ price, but only actual market prices. The
latter are connected to labor content, but the connection is a ‘probabilistic’ one (Farjoun and
Machover 1983, p. 84).

8.1 Classical Ruthless Competition

In this chapter we go from the sphere of the production of commodities to the sphere
of their circulation, by means of the theoretical as well as the empirical investigation
of the Classical concept of prices of production which is based on the principle
that there is a single uniform rate of profit for all activities that are organized on a
profit-oriented basis. We start the Classical theory of price formation at first in its
most basic setup, and then with increasing generality, in order to show how long-
period prices of production may be formulated in more and more general models
of production. We also provide a brief survey on the mathematical tools that are
needed for the proof of basic Classical assertions on the properties of such long-
period accounting prices which shows that indeed quite sophisticated mathematical
theorems are needed for this purpose, for proving things that the Classical authors
(including Marx) simply took for granted.

Our findings will be that the search for the foundations of a Classical theory
of competition has by no means been a successful one so far. On the theoretical
level, we find that the analysis of the process of the circulation of capital has by
and large ignored the many factual accounting principles that are involved in and
indeed are governing this process and that are needed for proper production price
calculations in general production systems. And on the empirical side, we come
to the conclusion that the principle of imposing a single uniform rate of profit on
all profit-oriented activities of the (world) economy is simply going too far in the
pursuit of finding useful and applicable long-period prices for the factual analy-
sis of existing economies. Sectoral profitability studies are urgently needed for the
proper formulation of long-period prices but are rarely done by the proponents of
the Classical theory of prices of production.

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 8,
c� Springer-Verlag Berlin Heidelberg 2010
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8.2 Two-Sector Economies

8.2.1 The Crude State of the Society

We start this chapter with the consideration of a simple two-sector economy, with
only ‘corn’ as intermediate physical input into the production of both corn and
manufacturing commodities, to investigate in detail output values and prices and
wage-profit relationships on the basis of the assumption of uniform wages and uni-
form rates of profit. Before that we in fact even consider an economy with two
produced commodities, good 1 and 2, which are produced by means of labor solely,
i.e., an economy exhibiting Adam Smith’s crude state of society (deer and beaver
hunt). In such an economy, the Marxian theory of labor values and the rate of ex-
ploitation and their relationship to the rate of profit are totally transparent, a situation
which already changes significantly on the two sector level with produced means of
production. For the time being we here however even ignore all produced means
of production.

We assume that the result of one production period can be represented ex post
(with frozen production conditions) by

L1 7! Nx1; L2 7! Nx2

with L1 the amount of labor spent in the production of the quantity Nx1 of good 1
(beaver hunt in Smith’s example) and L2; Nx2 with respect to good 2 (deer hunt). Per
unit of output we thus would get as average labor input structure

l D .l1; l2/ D .L1= Nx1; L2= Nx2/; A

�
D

�
0 0

0 0

��
still irrelevant

which is again augmented by the assumption of constant returns to scale, i.e. on
all levels of production, we need labor l1 to produce one extra unit of good 1 (and
nothing else) and, similarly, labor l2 to produce one extra unit of good 2. It is obvious
that the reciprocal values 1=l1; 1=l2 can be considered as full measures of labor
productivity. Moreover it is not meaningful to consider an aggregate of these two
measures, since they are commodity-specific and incommensurable and since this
would involve the use of commodity prices in some way or another.

We could also replace nominal wages w by p1c where c is the given commodity
1 wage basket of workers per hour worked and thus formally return to a Leontief
input–output matrix, but have here to consider nevertheless labor effort explicitly
in order to allow for the definition of labor values as is shown below. We will not
consider given subsistence wage baskets in this section however, but will use instead
arbitrarily chosen numéraire commodities that do not necessarily represent the wage
basket of wage earners.

The above is indeed a crude state of society. Our current representation of
the technological side of the economy will nevertheless already be very useful
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for defining the basic concepts of labor embodied, natural prices (or prices of
production in Marx’s terminology) and labor commanded prices per unit of com-
modity of the Classical approach to political economy (Smith, Ricardo and Marx in
particular). Accordingly, we define the commodity valuations:

v1 D l1; v2 D l2 (labor embodied)
p1 D .1C r/wl1; p2 D .1C r/wl2 (nominal natural prices)
p1w D .1C r/l1; p2w D .1C r/l2 (labor commanded)

on the basis of a given uniform rate of profit r and a given uniform nominal wage
rate w. Labor commanded prices may also be measured by dividing actual nominal
prices p1.t/; p2.t/ by the wage level w; in which case we may have differentiated
rates of profit (which we assume to be positive). Assertions on prices in terms of the
wage-unit will also apply to such factual prices in place of the long-period prices of
the Classical authors.

Labor embodied type valuation schemes or briefly labor values are defined by the
total amount of labor spent on an average on the production of one unit of output
of the considered economy. Such total labor costs will later on also include the labor
time spent on the means of production, their means of production and so on and is in
principle just a definition that attempts to as general as possible and to be applicable
to real world situations, for example by providing meaningful measures of labor
productivity, here defined by 1=`i D 1=vi ; i D 1; 2 that are of use in the empirical
investigation of whole economies.

Natural prices, in the presently considered crude state of the society, where pro-
duction is nevertheless assumed to be organized by capitalist firms in the pursuit of
positive profits, are based on these labor costs, but expressed in terms of wages costs
now, and multiplied by 1Cr in order to include normal profits at the rate r into these
prices. As natural prices are defined, it appears that increases in w or r just lead us
to increases in both p1 and p2 which would then just include increased components
of wage payments and profit receipts. This ‘component approach’ to the formation
of natural prices represents however only a partial understanding of the results of
Classical ruthless competition, more concerning ‘surface phenomena’, and will be
supplemented by Ricardo’s analysis of the wage-profit relationship below.

Labor commanded prices, finally, are natural prices normalized by the wage rate,
i.e., these prices represent the amount of labor that can be bought on the market
by one unit of good 1 or 2, respectively. In popular statements this is expressed by
the phrase that ‘a household has to work pw1 time units in order to get one unit of
commodity 1 for consumption purposes’, which therefore ‘commands’ this amount
of labor.

In the crude state of society here considered, these value and price concepts of
course all imply the same relative magnitudes

v1=v2 D p1=p2 D p1w=p2w

and thus here all give rise to one and the same same relative price on the real side
of the economy. Labor time embodied, natural prices and labor commanded prices
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thus appear to be just three different ways to look at one and the same thing, a view
that cannot however be maintained outside the considered crude state of the society
as we shall see in this section.

8.2.2 Some Observations

Prices measured in terms of the wage unit (actual, natural or competitive ones) are
used by Keynes (1936) when he discusses the choice of units for his macroeconomic
theory and in particular the measurement of output as a whole. It is an unsettled
question whether Keynes’ General Theory is better represented when output is mea-
sured in this way as compared to the national output measures that are used in the
now standard system of national accounts.

Natural prices as they were formulated above at first sight do not seem to imply
anything that looks like a conflict between profit-oriented capitalist households and
consumption-oriented worker households. Yet, if one introduces a real consump-
tion basket of workers c 2 <C, measured per work-hour and here for simplicity
only represented through commodity 1, and fulfilling w D p1c one can rewrite the
equations for natural prices as follows:

1 D .1C r/cl1; p2 D .1C r/p1cl2; i:e:; r D
1 � cl1

cl1
D

1

cl1
� 1

and thus get a strictly negative relationship between the current consumption level
c of workers and the rate of profit that is earned by capitalists. Ricardo, who was
held responsible for having formulated this relationship with analytical rigor, was
accused later on by economists of his time for having formulated by it a theory of
class conflict. From today’s perspective this relationship is no longer viewed in this
way and it in fact only represents a relationship on the distribution of the domestic
product and thus describes, here still in very simple terms, the conflict about income
distribution between labor and capital.

Marx attempted to dig deeper into the capital-labor relationships and he for-
mulated for this purpose – based on the concept of labor values – the rate of
exploitation, the ratio of surplus labor to necessary labor in for example one hour
spent in production. By means of the above labor value expressions and the wage
basket c per work-hour we can express this rate of exploitation � as follows

� D
1 � v1c

v1c
D
1 � l1c

l1c

and thus see that it coincides with the rate of profit r in the considered crude state
of society. Marx’s two sources for an increase of the rate of profit can thus in a
strictly one to one fashion represented by the forces that imply increases in the rate
of exploitation. These two reasons are: An increase of the (family) hours worked
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per week (which decreases c; subsistence level of the worker household obtained
per hour worked (or a direct reduction of the consumption basket that a household
can afford with its weekly wage rate w/: Alternatively, there may be an increase in
labor productivity through technological change (or an increase in labor intensity).
Marx called the first possibility the creation of absolute surplus value and the second
one the creation of relative surplus value. The class conflict that was considered by
Ricardo on the level of the distribution of the national product thus here becomes
a deeper one, since it already starts on the level of the production of the national
product with the conflict over the length of the work week (of the whole worker
household, including child labor) and with the conflict over the of the permanent
revolution of labor division and the intensity of work in the firm.

In the presently considered extremely simple economy Ricardo therefore by and
large only considered the conflict about the determination of c on the external labor
market while Marx added the conflict about the work conditions of workers.

8.2.3 Production of Commodities by Means of Commodities

Let us in a next step extend the considered production technology to a two-sectoral
one, i.e., we now assume as given an average (or linear) input–output structure
(here still coupled with exogenous, i.e., frozen or stationary output levels) of the
following type

l D .l1; l2/ > 0; A D

�
a11 a12
0 0

�
� 0; x

0

D . Nx1; Nx2/ with y D x�Ax � 0:

We thus now simply add the following simple intermediate input structures to the
production of commodities 1 and 2. The accounting equations for labor embodied
or labor values or total labor costs read in the case of a single intermediate input:

v1 D l1 C v1a11 (8.1)
v2 D l2 C v1a12 (8.2)

since the amount of labor embodied in intermediate inputs a11; a12 has now to be
added to the labor directly embodied into the production of goods 1 and 2. In matrix
notation this equation system is given by v D l C vA and it fulfills the aggregate
relationship vy D v.I � A/x D lx D L; where L is the amount of labor used up
in the production of the gross output vector x; which is as shown equal to the total
labor cost embodied in the production of net output y:

The solution to system (8.1), (8.2) reads in the case of a productive economy
(a11 < 1):

.v1; v2/ D .l1; l2/.I � A/�1 D
1X

kD0

.l1; l2/A
k ; A0 D I:
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It is uniquely determined and strictly positive if the matrix A is productive
(a11 < 1) and if .l1; l2/ > 0 holds. In the presently considered case the solution is
however also immediately obtained by solving the first equation with respect to
v1 .D l1=.1 � a11/ and by inserting this result into the second equation
(v2 D l2 C v1a12). The positivity of labor values vi ; i D 1; 2 of course is needed
if the concept of ‘embodied labor’ is to be considered an economically meaningful
one. We note that labor values do not depend on income distribution, in difference to
the price vectors to be considered below. As the above abstract presentation shows,
they can be interpreted as the accumulated sum of labor efforts on all (simulta-
neously considered) stages of production needed to produce one unit of output of
good 1 or 2.

Let us next consider the accounting equations for long-period natural prices as-
suming a given nominal wage rate w and characterized by a rate of profit r that is
uniform across sectors. The equations for these prices read in the case of the above
extended input–output model1

.1C r/Œwl1 C p1a11� D p1 (8.3)

.1C r/Œwl2 C p1a12� D p2 (8.4)

These equations express that both labor and intermediate inputs are paid at the be-
ginning of the production period and thus represent capital advanced, the basis of
the calculation of the rates of profit in both sectors:2

r D
p1 � Œwl1 C p1a11�

wl1 C p1a11
D
p2 � Œwl2 C p1a12�

wl2 C p1a12
:

In the presently considered case the solution to the system (8.3), (8.4) is easy to
obtain if one observes that only two of the potential unknown p1; p2;w; r can be
determined by this system. In view of this, we take w as being exogenously given
and normalize p1 by setting it equal to ‘1’, i.e., we now consider the real wage
! D w=p1 in place of the nominal wage w.3 We then obviously get:

1C r D 1
!l1Ca11

or r D 1�Œ!l1Ca11�
!l1Ca11

D 1
!l1Ca11

� 1 (8.5)

p2 D .1C r.!//Œ!l2 C a12� (8.6)

1 Note that we here assume as in the crude state of the society that wages are paid ex ante and thus
represent capital advanced on which profits have to be earned.
2 The type wage profit curve here considered need not be strictly convex in higher dimensional
commodity spaces.
3 In the present case the real wage! is still equal to the consumption basket c of worker households,
since this basket here consists of the corn commodity solely. We therefore allow now for variable
real wages (which leads us away from the pure subsistence level assumption), but not yet for
multiple commodities in workers’ physical consumption.
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as solution of system (8.3), (8.4). Note that commodity 1 is a basic commodity and
commodity 2 a non-basic. The rate of profit is therefore only dependent on the sector
of basic commodities, since a22 holds in the non-basic sector.

Since A is productive (a11 < 1), we thus know that r (and p2) are positive for
wages rates ! close to zero. There is, however, a maximum ! where r stops to be
positive, given by: !max D .1 � a11/=l1. The first equation therefore defines what
is called a wage-profit curve r.!/ in the literature. It is easy to show that

Dr.!/ < 0; D2r.!/ > 0

holds true, i.e., this curve is always of the following strictly convex type .rmax D
1�a11
a11

; !max D 1�a11
l1

/:4

Ricardo’s theory of class conflict over income distribution thus holds in this ex-
tended input–output structure (and also in general as we shall see), i.e., real wages
can only be increased through a reduction in the rate of profit that is earned by
capitalists. Since we consider good 1, besides being the physical input into the pro-
duction of goods 1 and 2, as consumption good (corn) of the workforce (and thus
good 2 as luxury good not present in workers consumption basket), our normaliza-
tion p1 D 1 implies that the wage rate ! in fact represents the real wage or ‘corn’
wage of workers. In the case !max the surplus 1 � a11 obtained in the production
of corn is fully paid out as wages, while it is paid out as profit at the rate rmax if
! D 0 holds. The above then shows that there is a strictly convex inverse relation-
ship between corn wages and the rate of profit, so that this rate can only go up if
there is a decrease in these real wages. In these real terms there is thus no basis for
a component theory of prices, adding up nominal wages and nominal profits (and
rent) to the price charged for the considered product, but indeed a subdivision of the
surplus 1 � a11 between capital and labor that furthermore does not vary linearly
with changes in the wage rate !.

With respect to the price of the luxury good we then find p2.!/ D .1 C r.!//

Œ!l2 C a12�. This gives (due to Dr.!/ D � l1
.!l1Ca11/2

):

Dp2.!/ D �
l1

.!l1 C a11/2
.!l2 C a12/C

1

!l1 C a11
l2

D
a11l2 � a12l1

.!l1 C a11/2
D
a11=l1 � a12=l2

l1l2.!l1 C a11/2
D

k1 � k2

l1l2.!l1 C a11/2

The terms k1 D a11=l1 and k2 D a12=l2 represent the capital intensities of
the two processes under consideration (ki D Ki=Li D a1i Nxi=.li Nxi /). We thus get
the result that the price p2 will increase with the wage rate ! iff k1 > k2 and it
will decrease with ! iff k1 < k2, while it will stay constant in the singular case
k1 D k2 and that p2.!/ is strictly concave in the first case and strictly convex in
the second situation (i.e., we have D2p2.!/ < 0 and D2p2.!/ > 0, respectively).

4 since real wages ! D w=p1 are paid ex ante.
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Labor values thus cannot be considered as providing a theory of long period prices
(up to the cases where r D 0 of k1 D k2 holds) and this is indeed also not the role
they play in national accounting and economic theorizing as we will argue below
and will continue to argue throughout the book).

Digression

The rate of exploitation and indexes of labor productivity

1. In the still very simple type of economy here considered we have for the uniform
rate of profit r the following relationships:

r D
1 � Œ!l1 C a11�

!l1 C a11

D
v1 � Œv1!l1 C v1a11�

v1!l1 C v1a11

D
l1 � v1!l1

v1!l1

v1!l1
v1!l1 C v1a11

D �
v1!l1

v1!l1 C v1a11

D �
1

1C v1a11=.v1!l1/
D �

1

1C C=V

The ratio C=V is called the organic composition (here in corn production) in
Marx’s Capital and it now drives a wedge between the rate of exploitation in
production � and the rate of profit r that is characterizing long-period prices. Up
to this new element in the exploitation-profit relationship we have however again
that a decrease in the consumption basket of workers c or a decrease in the labor
value of commodity 1 are the only means by which the rate of profit r can be
increased in such an economy. In particular, the so-called Marxian Fundamental
Theorem, see Morishima (1973), which claims that the rate of profit is positive
if and only if the rate of exploitation is positive quite obviously holds in our
model economy. Class conflict as in Marx’s Capital therefore already starts in the
sphere of production and is only augmented later on in the sphere of commodity
exchange. Moreover, there is no possibility for the full exchange of equivalents
in an economy with positive profitability, since this fact demands that workers
have to supply more labor in production than they get back in the form of their
consumption basket.

2. Sectoral labor productivity in Marx’s (1954) Capital, Vol. I is defined by

�1 D 1=v1 D
1 � a11

l1
; �2 D 1=v2 D

1

l2 C v1a12
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In the basic corn sector it is thus given by the net corn product of this sector per
unit of hour worked which is quite obviously a meaningful expression. In the
‘luxury good sector’ it is the net (Dgross) output of this sector divided by the di-
rect and indirect labor spent in producing this output level. Productivity in the
corn production increases if labor per unit of output can be decreased of if in-
termediate corn inputs are decreased per unit of output. The same holds for the
production of the luxury good, but there we also get productivity increases if the
total labor costs of producing one unit of corn have decreased. Conventional na-
tional accounting defines sectoral labor productiveness in different ways, either
by using single deflation indices or the so-called double deflation procedure.
In the first case on uses a single price deflator, for example defined by

sd.t/ D .p1.t/ Nx1 C p2.t/ Nx2/=.p1.0/ Nx1 C p2.0/ Nx2/

where 0 denotes the base year for this deflation procedure. Sectoral labor pro-
ductiveness are then defined by sectoral values added deflated with this single
deflator and divided by the direct labor input of this sector:

�1.t/ D
p1.t/.1�a11/ Nx1=sd.t/

l1.t/ Nx1
D p1.t/.1�a11/=sd.t/

l1.t/
;

�2.t/ D
.p2.t/ Nx2�p1.t/a12 Nx2/=sd.t/

l2.t/ Nx2
D .p2.t/�p1.t/a12/=sd.t/

l2.t/

These expression may measure real value added per laborer (in terms of real
purchasing power), but quite obviously have little to do with labor productivity
as a concept that relates itself closely to the production technology that is in
operation. For example, labor productivity in sector 1 can here changed due to
changes that concern sector 2, though the activities in sector 1 (the basic sector)
are completely independent of those of sector 2.
In the case of double deflating procedures one would deflate each commodity by
means of its own price deflator and not by means of a price deflator that concerns
GDP. In this case one would get for values added per unit of labor input the
expressions:

�1.t/ D
p1.0/.1�a11/ Nx1

l1.t/ Nx1
D p1.0/.1�a11/

l1.t/
;

�2.t/ D
.p2.0/ Nx2�p1.0/a12 Nx2

l2.t/ Nx2
D p2.0/�p1.0/a12

l2.t/

This implies that labor productivity in the first sector is distorted in its measure
by the price of its commodity in the base year which is clearly undesirable. Fur-
thermore, and even more disturbing, is that labor productivity in sector 2 here
depends in addition on the relative price p2.0/=p1.0/ of the base year which
may be totally meaningless with respect to what one hopes to measure by such
a concept of labor productivity. We conclude that only labor values provide a
sound basis for measuring labor productivity, since the final alternative where
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labor productivity is measured by 1=li ; i D 1; 2 is not paying attention to the
indirect effects in a technological system and thus only partial in nature.
Let us now come to the other normalization of natural prices in terms of labor
commanded prices or prices measured in terms of the wage-unit (as Keynes in-
troduced them in his ‘General Theory’). These purchasing power prices (where
w D 1 is achieved) fulfill:

.1C r/Œl1 C p1;wa11� D p1;w

.1C r/Œl2 C p1;wa12� D p2;w

which in matrix notations gives rise to

pw

�
1

1C r
I � A

�
D l D .l1; l2/; pw D .p1;w; p2;w/:

The solution to this matrix equation is, of course, proportional, but not equal to:

Qpw D

�
1=w

p2.!/=w

�

where p2.w/ is the price function we have considered above. It is thus again eco-
nomically meaningful for all w 2 Œ0;wmax�. We now however take r as exogenous
(and w D 1) as basis for solving the system with respect to natural prices and get
on this basis

pw D l

�
1

1C r
I � A

��1
Dl

�
1

1C r
.I � .1C r/A/

��1

D .1C r/l ŒI � .1C r/A��1

D .1C r/l.I C .1C r/AC .1C r/2A2 C .1C r/3A3:::/

D .1C r/l

1X

kD0

..1C r/A/kD.1C r/l

2

4
1

1�.1Cr/a11

.1Cr/a12

1�.1Cr/a11
0 0

3

5 > 0

This follows as long as r < rmax holds, since I � .1 C r/A is then profitable
as well as productive and therefore nonnegatively invertible, i.e., the Leontief-
Inverse exists and is representable by means of the above geometric matrix series
in the usual way. Note here in addition that the equation systems

pw.I � .1C r/A/ D .1C r/l I pw

�
I

1C r
� A

�
D l

are equivalent to each other.
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Proposition 8.1. Assume, as employed above, that the matrix A is productive in the
sense of Definition 1.1 (i.e., here a11 < 1). Then

1. pw > v > 0; i.e., labor commanded prices are always strictly larger than labor
values (if the rate of profit is positive).

2. p2;w=p1;w is strictly increasing, decreasing or constant iff a11=l1 > a12=l2;

k1 D a11=l1 < k2 D a12=l2 or a11=l1 D a12=l2 holds, respectively.

Assertion 1 follows from:

pw D .1C r/l

1X

kD0

..1C r/A/k > l

1X

kD0

Ak D l

"
1

1�a11

a12
1�a11

0 0

#
D v > 0;

since l > 0:
Assertion 2 has already been shown, due to the following equalities

p2;w=p1;w D p2=p1 D p2.!/ for p1 D 1

Natural prices in terms of labor commanded thus can indeed command more
labor per unit of commodity than is embedded in this commodity.

Furthermore, relative natural prices p2=p1 are identical to relative values v2=v1 –
independent of their normalization – iff the composition k1 D a11=l1 in the produc-
tion of commodity 1 is the same as k2 D a12=l2 in the production of commodity 2.
This follows from the facts that labor values are equal to natural prices in the case of
zero profits (r D 0) and that relative prices do not change in the considered case of
a uniform capital intensity in both of the considered processes. Note that the wage
profit curve does not become a linear curve in the considered situation.

These assertions apply to the case r > 0, while of course we always have

.p1;w; p2;w/ D .v1; v2/

in the case r D 0 Œ! D !max�. With respect to p1 D 1 we had that p2 could
decrease or increase with the rate of profit. Due to the above representation of p1;w
and p2;w we however then have that these normalized prices will always strictly
increase with the rate of profit r , the faster increase taking place in the sector i with
the higher composition ki D a1i=li . We note in closing these considerations that
the quantity theory of money may be used in addition to determine which absolute
levels of prices and wages actually may come about:5

p1;w Nx1 C p2;w Nx2 D N� NM=w

This extra equation implies that either pi;w; Xi or w must then adjust appropri-
ately in view of the given quantity of money NM; implying that r; Xi or w are then to
be determined endogenously.

5 N� the velocity with which the quantity of money M is turned over.
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This section has shown that embodied labor values and natural prices are in
general not proportional to each other and thus not both candidates around which ac-
tual market prices may be assumed to oscillate. However, labor embodied is always
smaller than labor commanded for a given commodity (if positive profits are postu-
lated), which at least provides a first useful comparison between such valuations of
one and the same commodity. Adam Smith has not been successful in distinguish-
ing clearly natural prices (in terms of wages or in terms of any other numéraire)
from labor values or the labor time embodied (or imputed) into the considered com-
modities. This also holds true with respect to Ricardo’s analysis of values and prices.
Though they are there clearly distinguished from each other, Ricardo could not solve
for them the problem of the choice of a suitable numéraire (labor in the case of labor
values), by means of which the causes behind changes in nominal price magnitudes
could be detected in a way that did not make use of labor values as an approximation
to prices of production.

The next section goes in this regard a considerable step forward in that it provides
generalized expressions for labor values, natural prices and their renormalization in
terms of labor commanded by way of powerful mathematical theorems on the dom-
inant eigen-value of nonnegative and square input–output matrices of an arbitrary
dimension n.

8.3 Sraffian Multisectoral Economies

In this section, we consider a nonnegative, square and productive n�n intermediate-
input–output matrix A D .aij / � 0, which may here also be augmented by a
consumption basket c0 D .c1; :::; cn/ (of workers) to be used as numéraire com-
modity in the place of the numéraire ‘corn’ of the preceding section.6 We later add
a vector of labor inputs l D .l1; :::; ln/; assumed as strictly positive, which together
with the columns of the matrix A characterizes the (average) inputs of the n activi-
ties per unit of output. Whenever convenient we will augment the matrix A by the
n� n matrix cl D .ci lj / which then adds the reference basket of workers weighted
by the direct labor input lj to the intermediate inputs of each activity j . We denote
the resulting n � n matrix by Ac : If ! D w=pc denotes the real wage in terms of
the basket c we denote the then resulting augmented matrix by Ac.!/ D AC !cl

which then varies with the real wage ! in a linear way. All quantity expressions will
be considered as given magnitudes in the present section.

6 We do not consider here as in Sraffa (1960) wages that are paid ex post, but refer the reader
to Chap. 9 for their treatment as surplus wages or deficit wages with respect to the here consid-
ered given consumption basket of workers. The reader is referred to Kurz and Salvadori (1995),
Schefold (1997) and Bidard (2004) for detailed treatments of many aspects of Sraffa’s (1960) ap-
proach to the production of commodities by means of commodities.
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From the mathematical point of view, but motivated by economic analysis long
before the mathematical theorems of this section have become available, we can
investigate the eigenvalue problems

pA D 	.A/p; 	.A/ � 0; p � 0;Ax D 	.A/x; 	.A/ � 0; x � 0;

or from the economic point of view the balanced situations

.1C r/pA D p; .1C r/ � 0; p � 0; .1C g/Ax D x; .1C g/ � 0; x � 0;

i.e., we are here looking for non-negative (non-zero) price systems and activity vec-
tors such that the vector of production cost pA and the vector of intermediate input
consumption Ax are proportional to the price system p and the activity vector x;
respectively. This is again the question of uniform profitability with the rate of profit
formula 1Cr D 1=	.A/; and of balanced expansion with rate of expansion formula
1C g D 1=	.A/ (assuming 	.A/ > 0 here of course). Note that both r and g can
still be negative here, but are assumed to be larger than �1: We shall concentrate
here on the price equation, but observe that everything obtained for this case can be
obtained for the case of the activity equation as well. The latter case will however
need the assumption of a linear technology. while the consideration of (average)
price systems is independent of this extra assumption. Note that the properties of
dominant eigenvalues considered below of course apply (with different dominant
eigenvalues) to he matrices A;Ac ; etc:

8.3.1 Economic Properties

As is well known, such eigenvalues are obtained from an equation of the type
det.	I�A/ D 0; the so-called characteristic equation, with solutions in the complex
plane in general. In the case of a nonnegative matrix economic intuition suggests that
solutions of the above problems should exist. Independently from economics how-
ever mathematicians have established at the beginning of last century that this is
indeed the case and that such an eigenvalue 	.A/ majorizes any other eigenvalue 	
in modulus 	.A/ � k	k and is thus uniquely determined (but may be a multiple
root of the above characteristic equation). This root is called the dominant root in
the following presentation of the mathematical theorems characterizing such domi-
nant roots. The proofs of all the theorems considered in this section can be found in
Nikaido (1968, II).

With respect to such dominant roots, see the theorems that follow below, we have
as a first result the Proposition 8.2 which relates our statements on the Leontief-
inverse in the preceding section to such roots:

Proposition 8.2.
1. We define the set ˚.A/ by those r for which the matrix I � .1C r/A is nonnega-

tively invertible, i.e., these r allow for the calculations of the preceding section in
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particular. Then: The set ˚.A/ is given by .�1; rmax/ with rmax a number larger
than �1; i.e., 1C rmax is always positive (and may be infinite).

2. For the above rmax we have that there is some p � 0 such that there holds:

.1C rmax/pA D p:

Remark. From the viewpoint of mathematics this amounts of course to the con-
sideration of eigenvalues 	 D 1=.1 C rmax/ in the place of such maximum profit
rates, with the same vector as eigenvector. From the economic point of view we are
however asking whether there is a maximum uniform rate of profit for the sectors
of the economy if intermediate inputs are the only costs that are considered. This
rate of profit indeed exists and all rates of profit below it allow for the conventional
Leontief multiplier formula (but not for this maximal value).

We assume as given for the remainder of this section an input–output ma-
trix A that satisfies the Hawkins-Simon conditions (i.e., that it is productive and
profitable). We know that this matrix has a nonnegative Leontief-inverse, which
implies according to the above that there exists a maximum positive rate of profit
rmax D 1=	.A/ � 1, i.e., the matrix M D I � .1C r/A is nonnegatively invertible
for all rates of profit r 2 Œ0; rmax/: We now add the vector l D .l1; :::; ln/ > 0 of
labor inputs into the n sectors to the considered situation.

Proposition 8.3. In the considered situation, i.e., for profit rates r < rmax we have:

1. There is a unique, strictly positive vector v 2 <n which fulfills

v D l C vA; v D .v1; : : : ; vn/ > 0 (8.7)

called the vector of embodied labor or briefly the vector of labor values.
2. There is a unique, strictly positive vector p 2 <n which fulfills

p D .1Cr/Œ!lCpA� D .1Cr/pŒ!clCpA�; p D .p1; : : : ; pn/ > 0 (8.8)

for given positive ! 2 < measured in terms of the consumption basket c (pc D
1; ! D w=pc/; the natural prices in terms of this commodity basket that belong
to a given rate of profit.

3. There is a unique, strictly positive vector pw 2 <
n which fulfills

pw D .1C r/Œl C pwA�; pw D .pw1; : : : ; pwn/ > 0; (8.9)

the vector of labor commanded prices,7 i.e., measured in terms of or the wage
unit.

4. There always holds: pw > v; i:e:; pwi > vi for all i D 1; :::; n if r > 0 holds
true.

7 This price concept is not restricted to the consideration of production prices schemes.
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All these assertions follow again immediately from the fact that we have for
all considered rates of profit r the well defined (convergent) sequence of matrix
multipliers

.I � .1C r/A/�1 D I C .1C r/AC .1C r/2A2 C .1C r/3A3::: � .I � A/�1

and from the facts that .1 C r/l and v D l.I � A/�1 are strictly larger than l D
.l1; :::; ln/ > 0: We note that labor values are equal to labor commanded prices in
the case r D 0 and that they will be proportional to labor values for all admissible
r > 0 if vA is proportional to l , i.e., if the ratio of labor indirectly embodied in
the means of production to direct labor are the same for all n sectors. This follows,
since ˛v for positive ˛ is then a solution of the type considered in Proposition 8.3.
A similar assertion of course applies to Proposition 8.2.

We thus first of all have that the labor vi embodied in commodities i D 1; :::; n

or the total labor costs needed for producing these commodities (the summed la-
bor costs contained in the intermediate inputs plus the direct labor added in each
production sector), to be defined as the equation system v D l C vA, is uniquely
determined and always positive. Due to the multiplier formula it is in fact, for com-
modity j , the direct labor lj used in the production of j plus the direct labor used in
the production of the intermediate inputs lA?j plus the direct labor used in the pro-
duction of the intermediate inputs A.A?j / D A2ej and so on (ej the jth vector in
the canonical basis of <n). The labor embodied concept or the labor values of com-
modities j is therefore a not immediately meaningless definition which however is
not directly defined with respect to principles that govern price formation and which
therefore needs sensible applications via economically meaningful propositions in
order to justify the usefulness of such a definition.

A first important result in this direction is the assertion 4.4 which states that –
due to the inclusion of profits into the definition of labor commanded by the var-
ious commodities – that one can always get more labor in exchange for one such
commodity than is embodied into the production of it. Dividing actual prices, not
only natural prices, by the wage rate w should therefore always (as long as there are
positive profits in each of the considered sectors) lead to a magnitude that is larger
than the labor that has been embodied into this commodity or that represents is total
cost of production in terms of labor. The first empirically important assertion thus
here is that we can easily get an upper estimate for labor values by just dividing
actual prices – not only natural prices – by the money wage rate.

8.3.2 Mathematical Foundations

We now provide a formulation of the fundamental Frobenius–Perron theorem on
nonnegative square matrices that is based on Nikaido (1968, p. 102) and that leads
us on a route with many intuitively plausible properties of the dominant eigenvalue
of such matrices. Note that the following theorems are all concerning maximal rates
of profit for intermediate input–output relationships augmented or not augmented
by the numéraire wage basket c and the real wage !:



194 8 In Search of Foundations for a Classical Theory of Competition

According to the fundamental theorem of algebra, the roots of the polynomial
det.	I � A/ of degree n in the variable 	 are always n in number when solved
in plane of complex numbers. The generally complex-valued eigen-vectors corre-
sponding to these eigenvalues may not reach the same dimensionality if multiple
roots occur in the above characteristic polynomial of the matrix A: There are thus
a number of difficulties when arbitrary matrices A and all of their eigen-values and
eigen-vectors are considered. In the case of square semipositive matrices however
we can – in close correspondence to the Classical considerations of natural prices
of balanced growth paths – concentrate on so-called dominant roots and can then
formulate the following set of propositions which by and large are quite intuitive in
nature when the dominant roots are transformed to the uniform rate of profit they
imply.

Theorem 8.4. Let A be nonnegative and square. Then:

1. A has a nonnegative eigenvalue. A nonnegative eigenvector is associated with
the largest 	, to be denoted by 	.A/; of all the nonnegative eigenvalues 	.

2. I � .1C r/A is nonnegatively invertible if and only if r < 1=	.A/ � 1:
3. IfAx � 	x for a real number 	 and a semipositive vector x � 0, then 	.A/ � 	:
4. 	.A/ � k	k D

p
a2 C b2 for any eigenvalue 	 D aC bi of A:

There are further remarkable, to some extent intuitively plausible, properties of the
dominant root 	.A/ of Theorem 8.4.

Theorem 8.5. Let A be nonnegative. Then:

1. 	.A/ D 	.A0/.
2. 	.˛A/ D ˛	.A/ for ˛ � 0:
3. 	.Ak/ D .	.A//k for any positive integer k.
4. 	.A/ � 	.B/ if A � B � 0.
5. 	.A/ � 	.B/ for any principal minor matrix B of A.
6. 	.A/ D 0 if and only if Ak D 0 for some positive integer k:

The reader is again referred to Nikaido for the proofs of the assertions of this
theorem. The Proposition 8.3 in particular allows to establish the result on the wage-
profit frontier shown in Fig. 8.1 for the case of a multisectoral economy too. To show

Fig. 8.1 The real wage/profit
curve underlying the conflict
about income distribution and
about work conditions in the
crude state of the society

r

ccmax
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Fig. 8.2 The wage-profit
curve and the conflict over
income distribution in the
production of commodities by
means of commodities case

r

ω

wmax

rmax

this we consider the matrix Ac.!/ presented at the beginning of this section. Using
again the normalization rule pc D 1 for natural prices p in place of w D 1 then
provides us with the equation system:

p D .1Cr/pAc.!/ D .1Cr/pŒAC!cl� D .1Cr/ŒpAC!pcl� D .1Cr/ŒpAC!l�

where ! is the real wage in terms of the wage basket c and determines the scale of
consumption of this basket that workers can realize.

We know that r D rmax if! D 0 holds true. And we expect that the normalization
pc D 1 here defines a wage-profit curve r.!/ or!.r/ that is decreasing, see Fig. 8.2.
This is shown with the help of theorems 2/3 as follows. We first recall that cl is a
square matrix of the same type as A; since c is a column vector of dimension n
and l a row vector of this dimension. The n�nmatrix !cl D !.cl1; :::; cln/ in fact
provides the consumption of workers of the wage basket c for each production sector
j here considered (clj ), now in the same form as the consumption of intermediate
inputs A?j : Since the thus augmented matrix Ac.!/ D A C !cl is decreasing
with !; we thus immediately get that also 	.Ac.!/ is decreasing with ! and r D
1=	.A.!// � 1 therefore increasing with decreasing !:

However, in order to obtain strictly decreasing (increasing) in the considered sit-
uation we have to restrict our considerations to matricesAc that are indecomposable
(or that represent a non-empty basic sector of the considered economy) as the fol-
lowing theorem makes clear.

Theorem 8.6. Let A be nonnegative and indecomposable. Then:

1. Any nonnegative eigenvector associated with 	.A/ is positive. Moreover
	.A/ > 0:

2. The eigenvector of A associated with 	.A/ is unique up to multiplication by
scalars.

3. 	.A/ is a simple root of its characteristic equation.
4. If A � B � 0; and one of A or B is indecomposable, then 	.A/ > 	.B/:

We thus have positive profit factors and positive and unique (up to scale) prices
1 C r; p associated with such situations. Furthermore, considering the case Ac.!/
and varying ! now leads to strictly decreasing reaction of the rate of profit r: Note
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however that neither convexity nor concavity will characterize the resulting strictly
decreasing wage profit curve in general.

In the simple case of only two commodities we have as formula for the eigenval-
ues of the matrix A D .aij /i;jD1;2:

	1;2 D t rA=2˙
p
.t rA/2=4 � detA D

a11 C a22

2
˙

r�a11 � a22
2

	2
C a12a21

and in particular only real solutions in this case, since at least must be real. In the
case of only one basic commodity (a21 D 0) this in particular gives

	1;2 D
a11 C a22

2
˙

s�
a11 C a22

2

�2
� a11a22 D

a11 C a22

2
˙
ka11 � a22k

2

In the case a11 � a22 this gives as eigen-values a11 > a22 and in the opposite case
(<) just the opposite order of these eigen-values (with right and left hand eigenvec-
tors x0 D .1; 0/; p D .1; a12=.a11�a22/ and x0 D .1; a11=.a22�a11/; p D .0; 1/).
In the even simpler case where also a22 D 0 holds we finally simply get
	.A/ D a11:

It is indeed not implausible to assume that the matrix Ac.!/ D A C !cl is in-
decomposable, since this amounts to assuming that each good is used directly or
indirectly for the production of intermediate goods or consumption goods of work-
ers (so that not too many goods are excluded from consideration). There is thus no
selection of commodities possible that do not feed back into the sector of basics and
are thus of the type of luxury goods to be used outside the sector of worker house-
holds. For indecomposable Ac.!/ D A C !cl we then indeed get from theorems
2/3 that 	.Ac.!// is strictly decreasing with ! and thus r D 1=	.Ac.!//�1 strictly
increasing with this measure of the real wage. Furthermore, there is a unique value
!max where

	.Ac.!max// D 1; i:e:; r.!max/ D 0

must hold true, where therefore ! has become so large that the uniform rate of profit
has become zero. There is thus in the multisectoral economy a wage-profit curve as
shown in Fig. 8.1 (there measured in terms of commodity 1 in place of the basket c),
but one that need not be convex (or concave) and that is in sum defined by:

p D .1C r/Œ!l C pA�; pc D 1; ! 2 Œ0; !max�

for some maximum real wage !max 2 <.
We note finally that in the case of decomposable matrices A;Ac ; Ac.!/; ::: we

shall consider only cases where at least one basic commodity exists and we assume
with respect to its canonical form in terms of basic and non-basic commodities
(represented by the matrices A11; A22):

�
A11 A12
0 A22

�
W 	.A/ D 	.A11/ � 	.A22/;
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with A11 a primitive matrix in addition (no cyclical hierarchies in the ordering of
industries).8 Following U.Krause’s suggestion we call such a matrix a Sraffa ma-
trix and note once again that the matrix A22 can be further structured in the way
we have structured the matrix A; and so on. We note also that the assumption of
the existence of basics implies that all columns in the matrix A12 must be semi-
positive, but that A22 may consist of zeros throughout (as in the basis example of
the preceding section). Matrices where 	.A11/ < 	.A22/ holds and where thus
the non-basic commodities dominate the basic ones, since their maximum profit
rate restricts the profit rate of the basic sector, have no real economic meaning, as
the Frobenius-Perron theorems suggest (the prices of the basic commodities are then
zero in general), and are therefore excluded from all following considerations.

Due to what has just been assumed, the maximum rate of profit supported by the
basic sector is at most equal to the one of the sector of non-basics9 implying that
the Leontief-inverse for non-basics is always well-defined if this holds true for the
sector of basic commodities. In such a case the Leontief-inverse of the full matrix A
can be shown to be of the form:

.I � .1C r/A/�1 D

"
.I � .1C r/A11/

�1 .I � .1C r/A11/
�1A12.I � .1C r/A22/

�1

0 .I � .1C r/A22/
�1

#
:

In the opposite situation the sector of non-basics would represent a limitation for the
rate of profit of the sector of basics and would imply economically strange results if
its maximum rate of profit is approached.

8.4 A Streetcar Named Desire: The von Neumann
Production Price Model

So far we have considered only output matrices B of the following type

B D I D

0

BBB@

1 : : : 0

: : : : : :

: : :
: : : : : :

0 : : : 1

1

CCCA ; i.e.,

each sector produced a single and unique commodity with a single production
method. We now go to the other extreme of a general system of joint production, al-
lowing in addition for a multiplicity of production techniques even if there is no joint
production, so for example a sector which produces a single and unique commodity

8 Note also that the matrix A11 represents a principal minor of the matrix A:
9 This is a quite natural assumption, since the matrix A22 neglects all inputs of the basic sector into
the sector of the non-basic commodities.
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j by means of k production techniques, i.e., activity vectors A�j1 ; :::; A�jk.j/ . This
special case of multiple production techniques would then be represented by the
partial input–output structure

.A�j1 ; : : : ; A�jk.j// 7! .ej ; : : : ; ej /;

with e0j D .0; :::; 0; 1; 0; :::0/ the jth vector in the canonical basis of IR n. In complete
generality we would then proceed to assume given input and output matrices A;B
with m columns (representing m different activities) and n rows (representing n
different commodities) and would only demand that A � 0; B � 0 holds true. In the
extreme it could therefore be that every process produces every commodity .B > 0/

and that the only restriction then is that the number of such processes is finite.
From the empirical point of view, regarding firms and the input–output tables of

the System of National Accounts, the natural accounting unit is one year. We thus do
not follow here the practice of von Neumann models to assume a fictitious period
of production (of which all real periods of production are a multiple or of which
it is a common divisor). This modeling technique would imply the introduction of
semifinished products after each unit period10 and their treatment as if they were
marketed commodities, which they are not. We consider the period of production
as a non-technological, indeed an accounting concept which represents information
on costs and proceeds (inputs and outputs) on a calendar basis. Leaving such con-
ventional timing of inputs and outputs aside, would allow for no real alternative,
since there is no common unit for the production period of the considered n com-
modities in real life and, if it would exist, it would imply an enormous increase in
the dimension of the employed matrices A;B that would create enormous calcula-
tion difficulties and expenses in reality which only purely theoretical oriented von
Neumann modelings can neglect.

We therefore restrict ourselves to input matrices A and output matrices B , the
latter representing pure joint production only, with the calendar year as implicit ref-
erence time unit. On the level of actually constructed input and output tables, these
two matrices are called absorption and make matrices, respectively. We here finally
observe that, in the treatment of fixed capital, leading to fictitious, i.e., generally
non-marketable outputs (used capital goods) as well, we also do not follow the phi-
losophy of the von Neumann model. In this approach used capital goods are also
treated as if there were markets where they can be sold, which is rarely the case. In-
stead, we shall (in Part II of the book) follow again established accounting practices
of firms and in the System of National Accounts, and will introduce an appropri-
ate stock matrix C in this Part II of the book when the treatment of fixed capital is
introduced into the classical approach of values and prices.

Having redefined the range of applicability of the von Neumann model, we now
proceed to its standard formulation and the assumptions that are generally made to
show existence and uniqueness of its solution concept.

10 and old machine vintages if fixed capital is considered in addition.
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We assume in the following that the input and output matrices A D .aij /; B D

.bij /; i D 1; :::; n; j D 1; :::; m; represent the unit intensities of a linear technol-
ogy with aij the quantity of good i required per unit intensity of technique j and
bij the quantity of good i produced per unit intensity of technique j. We denote by
`j the labor inputs of these techniques and by si the quantity of good i required
as subsistence per worker. The matrix S D .si`j /; i D 1; :::; n; j D 1; :::; m is of
the same dimension as the matrix A of physical inputs. We define the augmented
input matrix As by A C S and thus have that the consumption of the workforce is
included in input matrix As in physical terms, as necessities of life consumed by
workers in each activity. We assume finally that each techniques uses at least one
input (A?j � 0) and that each good can be produced by at least one techniques
(Bi? � 0) and finally that labor supply is unlimited and thus does not represent a
bottleneck for the following solution of the model.

We denote by p D .p1; :::; pn/ the price-vector for the given n commodities
and by x0 D .x1; :::; xm/ the vector of intensities at which the given techniques are
operated . We are interested in vectors x and p that, in the first case, represent a
balanced expansion path with a common expansion factor 1 C g for those goods
that are in fact commodities and that, in the second case, represent a balanced prof-
itability situation with a common gross rate of profit 1C r for those techniques that
are operated. This amounts to assuming

mX

jD1

bijxj � .1C g/

mX

jD1

asijxj ; i D 1; : : : ; n (8.10)

with pi D 0 for all i where 0 >0 applies, and

.1C r/

nX

iD1

pia
s
ij �

nX

iD1

pibij ; j D 1; : : : ; n (8.11)

with xj D 0 for all j where ‘>’ holds true. Goods in access supply with respect to the
factor g thus become free goods in this search for balanced growth and profitability
situations, and processes with inferior profitability become extinct.

The above model, the von Neumann (1945) model of economic growth, can be
rewritten in matrix notation as follows:

.B � .1C g/As/x � 0; x � 0 (8.12)

p.B � .1C g/As/x D 0 (8.13)

p.B � .1C r/As/ � 0; p � 0 (8.14)

p.B � .1C r/As/x D 0 (8.15)
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If x; p are solutions, then, of course, ˛x, ˇp are also solutions for any ˛, ˇ > 0.
The model (8.12)–(8.15) therefore involves the determination n+m unknown, in-
cluding the common rate of growth g and the common rate of profit r .

Proposition 8.7.

1. There is a solution .x; g; p; r/ of the model (8.12)–(8.15) which satisfies pBx >
0 and:

pi D 0 iff .1C g/

mX

jD1

asijxj <

mX

jD1

bijxj

xj D 0 iff .1C r/

nX

iD1

pia
s
ij >

nX

iD1

pibij

2. There holds g D r > �1 for any .x; g; p; r/ which satisfies (8.13), (8.15) and
pBx > 0:

3. We get that g D r > o holds if there is x � 0; s.t. .B �As/x > 0, i.e., if the von
Neumann model is productive.

Proof. See Nikaido (1968, pp. 145–147).
Proposition 8.7 ensures an economically meaningful solution to (8.12)–(8.15) if

the productiveness condition Bx > Asx is made. It, however, does not ensure the
uniqueness of the common growth and profitability factor 1C g D 1C r . Nikaido
(1968, p. 147) gives in this matter the following simple example for nonuniqueness:

As D

�
1 0

0 1

�
; B D

�
2 0

0 3

�

where one has the solutions

x0 D .1; 1/; p D .1; 0/; g D r D 1 (8.16)
x0 D .0; 1/; p D .1; 1/; g D r D 2 (8.17)

This is an economically decomposable system of the simple sort considered in
standard input–output analysis and thus requires no sophisticated output matrixB in
order to get this result. Von Neumann (1945) himself assumed As CB > 0 in order
to get the uniqueness of g D r and justified this assumption by means of arbitrarily
small additions to the originally given matrices, for example, as follows

As D

�
1 3�

2� 1

�
; B D

�
2 0

0 3

�
; � small

ut

In our view this does however not solve the problem, since the size of the addi-
tions influences the solution to be obtained in a radical way. In the next section,
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we shall therefore simply assume uniqueness (for square-systems) in order to
investigate the stability of the activity vector x and the price system p if the economy
is not situated in a von Neumann equilibrium situation. In Woods (1978, p. 282) it
is briefly stated that decomposability (appropriately applied to joint production sys-
tems11) is a necessary, but not a sufficient condition for multiple growth rates to
occur.

We continue this section with a brief discussion of the important special case of
multiple activities, but no joint production. In this case we have a rectangular output
matrix of the following type

B D

0

BBBBBBB@

1 : : : 1 0 : : : 0 : : : : : : : : : 0 0 : : : 0

0 : : : 0 1 : : : 1 : : : : : : : : : 0 0 : : : 0

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

0 : : : 0 : : : : : : : : : : : : : : : 0 1 : : : 1

1

CCCCCCCA

with k1 activities for the production of commodity 1, k2 for commodity 2 and so
forth, up to kn, each case represented by the ‘1’s in one row of the matrixB . The ma-
trixB , and alsoAs , are therefore of dimension n�.k1C:::Ckn/ in this case. Selecting
one process per commodity in order to form square subsystems Asn; Bn D I of the
given input–output structure allows for the selection of

Qn
iD1 ki possible square

subsystems of this type.
Let us now select that matrix As�n from the above subsystems which has the

smallest Frobenius or dominant root 	.As�n / � 	.Asn/ and thus the fastest expan-
sion path among all these alternatives. We assume here for simplicity that As�n is
indecomposable and thus know that

	.As�n / < 	.A
s
n/

must hold true if Asn ¤ A
s�
n ; up to flukes (special cases which we here exclude from

consideration). We furthermore assume that this matrix fulfills 	.As�n / < 1 and thus
have a unique solution

As�n x
�
n D 	.A

s�
n /x

�
n ; p�As�n D 	.A

s�
n /p

�

with x�n ; p
� > 0 and r�n D 1=	.As�n / � 1 > 0. In this situation we then get the

following proposition:

Proposition 8.8.

1. The equations (8.12)–(8.15), with pBx > 0 added, have the solution

11 The input and output structure A;B may be called decomposable if there is a proper subset of
goods that can be produced by using only inputs from this proper subset.
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x� D Mx�n ; p�; g� D r� D 1=	.As�n / � 1

where x� denotes the activity vector of IR m
C where all components corresponding

to activities inAs not present inAs�n are zero and all other given by the vector x�n :
2. If x; p; g D r solve (8.12)–(8.15), with pBx > 0, then x D c1 Mx

s�; p D c2p
�

for positive constants c1; c2 and g D r D 1=	.As�n / � 1 > 0:

Proof. See Woods (1978, pp. 274ff.).
Selecting the square subsystem with the smallest Frobenius root therefore pro-

vides us (when trivially expanded) with the unique von Neumann solution of a
system with multiple activities and no joint production.

Returning to the case of joint production, we close this section with a result from
Bidard (1986, p. 412) which reads as follows: ut

Proposition 8.9. From an indecomposable generic (non-exceptional12) von
Neumann model of production, As; B , it is possible to extract one square sys-
tem As�; B� consisting of operated methods and commodities (goods with positive
prices) at the rate g� D r�; such that

1. Production methods, resp. goods, inside the truncation are efficient, resp. not
overproduced.

2. The row and column vectors p�; x� ofAs�; B� associated with 1
1Cr�

are positive
and (up to a factor) unique and when completed by zeros represent equilibrium
prices and equilibrium activity levels of the whole von Neumann model of pro-
duction.

3. There exists an open interval . Nr; r�/ on which B� � .1C r/As� is nonnegatively
invertible.

Proof. See Bidard (1986). In almost all cases, we can therefore assume that the
number of efficient activities (with respect to the rate of profit they allow for) equals
that of commodities (goods not produced in excess) and, moreover, that the square
active part As�; B� of A;B we determined above satisfies the side-condition .B� �
.1 C r/As�/�1 > 0 for all rates of profit r sufficiently close, but strictly below
the rate r�: This latter property becomes important if (part of the) labor effort l
is not included by means of a subsistence basket into the activities shown which
then allows again the direct calculation of prices of production, in terms of labor
commanded, by means of an expression of the type p� D l�.B��.1Cr/A�/�1. ut

We have explicitly excluded semifinished goods and fixed capital from our in-
terpretation of the equations of the von Neumann model. Our reason for this is that
their inclusion in the output matrix B; has little to do with what firms actually do
in treating these complications in their production activities. Moreover, the uniform
period of production that the von Neumann model is assuming for all of its activ-
ities is a purely hypothetical one in this approach and can in fact be of any length
(whereby the structure of semifinished goods and vintages of machinery becomes

12 See Bidard (1986) for details.
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purely arbitrary). Yet, if the restriction of long-period price accounting to a uniform
rate of profit matters at all, it must be applicable to the rate of return calculations
that firms actually perform.

This implies that the proper period of time for such profitability calculations is
the year and that moreover the book-keeping methods that the accountants of firms
actually apply will matter for the determination of prices of production. The rele-
vant concepts here are: capital consumed (a flow magnitude) and capital advanced
(a stock magnitude) and corresponding turnover times which should replace the
common usage of the terms circulating and fixed capital, at least in their interpre-
tation in physical terms. For all commodities employed in the production process
(raw of auxiliary materials, plant and equipment, semi-finished goods and cash –
and also labor) there exist some capital advancements, since their are some funds
tied up in their usage.

Fixed capital is normally associated with plant and equipment and their lifespan,
but in cost accounting it is not life span that matters, but their turnover time �ij (of
commodity j in process j (which is normally less than the physical and also the
economic life span of such commodities, due to a flexible financial management of
firms.13 Moreover, the distinction between funds tied up and consumed also mat-
ters for so-called circulating capital which in sum implies that we get from such
a procedure a flow matrix A (as before, but with respect to the year as time unit
now) and a stock matrixK; which is related to the flow matrix by means of turnover
times as follows: kij D �ijaij for all commodities i that enter the production of
commodity j (in the single output case).

The details of this approach to a definition of prices of production are explained
in Bródy (1970), who also discusses the importance that Marx gave to it in the sec-
ond volume of ‘Capital’. We will use such an approach in the remainder of this
chapter from the empirical point of view (for the German economy as it was al-
ready considered in Chap. 3 here). Another issue that should be mentioned in this
respect is the level of aggregation to which such calculation of prices of production
should be applied. Due to the co-existence of old and new techniques in industries
and sub-industries at each moment of time it seems that the industry level is the
lowest disaggregation level to which the concept of prices of production can be
meaningfully applied. People using the von Neumann approach (or Sraffians) nor-
mally assume that their input–output coefficients are physical magnitudes and thus
apply their approach on the highest level of disaggregation (and to an unspecified
period of production). They even assume that the choice of technique is driven by
prices of production on this no-aggregation level and thus assume that every action
is driven by this uniformity principle (for every vintage of fixed capital). This is an
assumption that is far beyond anything that is happening in reality. One need not go
as far as Farjoun and Machover (1983) in ones characterization of what is happening
on the level of actual price formation to see the purely hypothetical nature of such a
calculation of accounting prices of production.

13 With straight line depreciation and immediate reinvestment of depreciation turnover-time is one-
half of life span.
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Moreover, accounting prices of production, if applicable on a certain level of
aggregation, have not much to do with the actual choice of technique at least in
modern capitalist societies (not mirrored by the two sectoral treatment we gave at
the beginning of this chapter). Investment decisions primarily concern the choice
of most profitable new activities (in an environment where average and even more
old fashioned methods of production may still be applied for a considerable span of
time). Such investment criteria are much more complicated than the average rate of
return calculation offered by Classical prices of production. These prices of produc-
tion may show how successful firms were in the past compared to their competitors
in the same branch, but they have little to do with switches from one technique to
another on the level of aggregation where this concept may be a meaningful one.

In sum we would therefore conclude that the burden of proof of the meaningful-
ness of prices that are based on the principle of a uniform profitability throughout
the economy lies in the hands of those that use such prices for the discussion of the
evolution of capitalist economies. This concerns the level of aggregation to be cho-
sen, the use of their calculation as in Bródy (1970) augmented by output matrices
that exhibit subsidiary production, the demonstration that these prices are centers of
gravity of actual market prices and the empirical investigation of how close actual
economies are to the Classical situation of a uniform rate of profit as a meaningful
restriction for price formation. This last point will be the focus of interest of the now
following sections.

8.5 Differentiated Sectoral Wage and Profit Rates

An economy in the real world cannot be expected to be characterized by a uniform
rate of profit as it is formulated by the equations of the von Neumann model in the
circulating capital framework.14 One objection is the conceptual problems of differ-
ent sectoral turnover times of the intermediate inputs, that is, the time it takes until
these capital outlays are recovered. Moreover, the sectoral profitabilities will differ
from each other for various systematic reasons. Even if the profit rates were directly
comparable, some sectors will persistently maintain a profit rate above average as a
premium for a higher risk they incur, or because of certain oligopolistic or monopo-
listic features, which are mainly connected to the degree of concentration, the extent
of entry barriers, and the degree of collusion between firms.15

As an example for a systematic discrepancy of profit rates we may refer to a study
by Duménil and Lévy (2002) where, on the basis of several definitions of profits
accounting for interest, taxes and inventories, the authors find out that industries in

14 This part of the chapter is based on Flaschel and Franke (2008, Chap. 4) where further details on
its arguments can be found. I have to thank Reiner Franke for allowing to reuse the material from
there for the following sections. The reader is moreover referred to Bródy (1970) for the general
input–output methodology that is underling the following sections.
15 See, e.g., Semmler (1984, p. 106) for this classification.
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Table 8.1 Sectoral price components for Germany 1995
1 2 3 4 5 6 7 sum or average

Xi : 43,910 347,001 732,445 245,606 571,317 740,861 429,290 3,110,430
I Ii : 21,162 218,765 459,154 128,434 235,144 277,395 107,706 1,447,761
Wi : 9,382 99,663 196,801 78,819 180,355 178,708 253,172 996,900
Di : 7,871 17,267 46,502 5,860 52,430 94,088 42,452 266,470

�
.1/
i : 13,366 28,573 76,490 38,353 155,818 284,758 68,412 665,769
�
.2/
i : 5,495 11,306 29,988 32,493 103,388 190,670 25,960 399,299

r
.1/
i : 63.16 13.06 16.66 29.86 66.26 102.65 63.52 45.99
r
.2/
i : 18.93 4.79 5.93 24.20 35.95 51.33 17.29 23.29

Li : 1,117 2,301 6,216 3,266 6,272 9,449 8,761 37,382
wi : 8,399 43,313 31,660 24,133 28,756 18,913 28,898 26,668

Note: Xi , I Ii , Wi , Di are sectoral gross outputs, intermediate inputs, wage payments, and depreci-
ation, respectively (in mill. Euro; nominal and real values are identical in 1995). �.1/i and �.2/i are
total profits, where �.1/i = Xi � I Ii �Wi and �.2/i = �.1/i � Di . r

.k/
i are the corresponding profit

rates, here defined as r.1/i = �.1/i / I Ii and r
.2/
i = �.2/i / (I Ii + Di ). Li is the number of persons (in

1,000) working in the sector, wi is the sector’s (makeshift) average wage rate per year (in Euro),
wi = Wi / Li .

the U.S. with very large capital-labor ratios are totally different from other industries
in that they persistently earn an extremely low rate of profit.16

Evidently, wage rates are not uniform, either. This will even be true if they are
aggregated across larger sectors such as in our 7-sectoral standard aggregation. To
get a first impression of the sectoral differentiation of profits and wages, we compile
the basic data for Germany in Table 8.1, again for the year 1995 and with respect to
our standard aggregation.

We need not bother about real and nominal values in the table since for 1995 the
two are identical. The coincidence is especially convenient for depreciation, which
does not refer to the single capital goods installed in the sector but is only reported as
a monetary aggregate.17 Including depreciation in the specification of (gross) profits,
Table 8.1 makes clear that this item is of significant numerical importance. Its impact
is seen by a direct comparison of the two sums of sectoral profits �.1/i and �.2/i ,
where �.1/i are sector i ’s output minus intermediate inputs minus wages, and in �.2/i
costs include depreciation Di as an additional factor. The corresponding sectoral
rates of profit are r .1/i and r .2/i , which are obtained by relating these profits to the
intermediate inputs. The last entry in these two rows of Table 8.1 is the respective
average rate of profit.

16 A discussion of older studies on differential profit rates or profit margins is given in Semmler
(1984), especially in Chap. 4.
17 1995 is the last year for which presently real data on depreciation are available. This is the main
reason why in the empirical tables before we have not presented more recent data.
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The sectoral differences in the profit rates are conspicuous, both for r .1/i and r .2/i .
It is hardly imaginable that they could be explained by different turnover times
alone. Even if the low rates r .2/i for the industrial sectors i D 2; 3 are corrected
for their presumably short turnover times, we would still expect them to be below
average. On the other hand, this feature would be well compatible with Duménil
and Lévy (2002) result from above that sectors with large capital-labor ratios tend
to have low rates of profit. Though we do not know the capital-output ratios of sec-
tors 2 and 3, they should in any case not be too low, while the low labor-output ratios
have been observed earlier.

The differences in the sectors’ (average) wage rates as well as the order will not
come as a great surprise. It should nonetheless not go unnoticed that all wage rates
are somewhat downward biased. As already mentioned, the Li -statistics reproduced
in Table 8.1 include independent business men, too, whereas Wi are the wage pay-
ments to the employed persons only. Especially for i D 1 and, to a lesser degree,
i D 6, the agricultural and consumer services sectors, the ratios wi D Wi=Li will
thus involve a certain error. It can, however, be accepted in the wage variations we
will study below, since the wage rates relative to each will assumed to remain fixed.

Despite the strong dispersion of wage rates wi and profit rates r .1/i , there is a
remarkable correspondence to the standard wage-profit curve under the supposition
that the underlying wage basket has the same composition as the economy’s actual
consumption vector in 1995. If we assume a real wage rate equivalent to 26,668
Euro, then a uniform rate of profit r D 45:5% results. This value comes very close to
the average profit rate of 45.99% which we obtain in Table 8.1. So, is the assumption
of uniform wage and profit rates not too bad after all?

The astonishing numerical match of the theoretically motivated uniform rate of
profit and the empirical average profit rate notwithstanding, we take Table 8.1 and
the aforementioned paper by Duménil and Lévy (2002) as evidence that a nonneg-
ligible dispersion of wage and profit rates is a relevant empirical phenomenon. In
the following we entertain the view that the dispersion is not just temporary but,
for whatever reasons in details, exhibits some persistence. Accordingly, we seek to
incorporate it into the production price modeling approach, though we still neglect
capital depreciation and continue to divide profits by the intermediate inputs.

The formulation of differentiated wage and profit rates is straightforward. Con-
sidering both versions with wages paid ex-post and ex-ante, it reads

pi D .1C ri / .pA/i C wi `i (8.18)
pi D .1C ri / Œ .pA/i C wi `i � (8.19)

where, of course, i runs from 1 to n. We study this set of relationships from three
different angles. First the profit rates ri � 0 and the nominal wages rates wi > 0

are taken as exogenously given and we ask for the conditions on the profit rates that
permit an economically meaningful solution for the price vector p. Second, the real
sectoral wage rates are treated as given and we characterize the set of profit rates
r1; : : : ; rn for which a meaningful price vector p exists. Finally, in a third point,
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we postulate a fixed structure of the profit and wage rates, in the form of constant
ratios, and derive a wage-profit frontier in this setting.

To begin with the first question, it should be clear that here the real wage rates are
determined as residuals. As before, they should come out rather low in the presence
of large profit rates ri . In the special case of equal profit rates, we know that they
must fall short of the maximum rate of profit R. Dropping the equalization assump-
tion, it may be expected that some sectors may raise their rate above this boundary,
provided that the other sectors remain below it. But certainly, there should be other
upper-bounds (for the sectors producing basic commodities). The following propo-
sition, which we have borrowed from an Italian article by Grillo (1976), gives a
precise condition (we correct the quoted paper for a slight imprecision). What thus
comes about is also a nice connection to the quantity side.

Proposition 8.10. Let ri � 0 and wi > 0 be given in (8.18) and (8.19). Then each
of the two price systems has a meaningful solution p � 0 if and only if the sectoral
rates of profit are sufficiently low in the following sense: there exists a gross output
vector x � 0 together with a corresponding net output vector y D x�Ax � 0 such
that

ri �
yi

xi � yi
D

yi

.Ax/i
for all i

and in at least one component the inequality is strict (in the presence of non-basics,
the formulation admits the case .Ax/i D 0, when ri may become arbitrarily large).

In each sector i , therefore, the profit rate must not exceed the “surplus ratio”,
which is given by the ratio of the final demand yi for good i over the good’s material
inputs that are required by this and the other sectors to produce the economy’s entire
net product y 2 IR n

C. Note, however, that x and y need not be the quantities actually
produced and demanded but any skillfully chosen vectors may do. In particular, with
x D .I � A/�1y the condition for (8.18) and (8.19) to have a meaningful solution
p � 0 may be rewritten as

ri � Ri D Ri .y/ WD
yi

ŒA .I � A/�1 y�i
for all i , and ‘<’ for at least one i

(8.20)

Proof. To prepare the ground, put qi D 1Cri and observe that ri � yi=.xi � yi /
is equivalent to qi � xi=.xi � yi /. Furthermore, let Q be the diagonal matrix with
entries qi and abbreviate Q̀i D wi`i . Q̀ being the corresponding row vector, (8.18)
can then in compact form be written as p D p AQ C Q̀. As for (8.19), simply
specify Q̀i D .1Cri /wi`i . We use the fact that the solution p D Q̀ .I � AQ/�1

exists and is semipositive if and only if the dominant eigen-value of AQ is less than
unity.

Thus, to demonstrate that the proposition’s condition is necessary, suppose
	?.AQ/ < 1. Then there exists d 2 IR n, d � 0, such that .I � AQ/d � 0.
Next, put x D Qd and y D .I � A/x. We thus get 0 � .I � AQ/d D
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.I �Q/dC.I �A/Qd D .I �Q/dC.I �A/x D d�QdCy D Q�1x�xCy

and, by premultiplication with Q, x �Q.x � y/ � 0. Considering this vector in-
equality component-wise and dividing the components by xi�yi if the expression
is positive yields the condition (xi�yi is nonnegative anyway, so that the inequality
sign is maintained; if xi�yi D 0, qi and thus ri may be arbitrarily large).

To show the reverse, suppose the condition is satisfied. Accordingly, let x; y be
two semipositive vectors related by x D Ax C y that entail qi � xi=.xi � yi / for
all i , where one inequality is strict (and xi�yi D 0 is admitted). Since xi�yi D
.Ax/i � 0, it is easily seen that the inequalities are equivalent to x �Q�1x � y.
Putting d D Q�1x, this in turn is equivalent to y � .Q � I /d � 0. In this way we
obtain y D x � Ax D Qd � AQd D .Q � I /d C .I � AQ/d , and furthermore
.I � AQ/d D y � .Q � I /d � 0. Since d � 0, 	?.AQ/ < 1 follows. ut

It is intuitively clear that a situation where (8.20) is satisfied with equality for
all i corresponds to overall zero wages w1 D w2 D � � � D wn D 0 in (8.18) or
(8.19).18 With respect to an underlying (hypothetical) net output vector y, the sec-
toral rates of profit ri D Ri .y/ are maximal in the sense that no sector can possibly
achieve a higher profit rate, unless (presumably) another sector lowers its rate (this
presumption is verified below). In other words, a sector’s maximum rate of profit
depends on the other sectors’ profit rates, and generally also on their distribution; it
will make a difference whether two distinct profit rates ra and rb are, in that order,
prevailing in sector j and k, or in sector k and j .

The set R of all sectoral maximum rates of profit can be described by letting the
vector y vary over a suitable (by normalization) subset of the nonnegative orthant
in the IR n, a simplex let us say. We then have the characterization

R D f.r1; : : : ; rn/ W 9y 2 IR n
C with

P
j yj D 1 and ri D Ri .y/ for all ig (8.21)

A sector i ’s maximum of all its (conditional) maximum rates of profit is obtained if
all other sectors consent to zero profits. It can be immediately computed by substi-
tuting the i -th unit vector ei for y in the expression Ri .y/,

max
y

Ri .y/ D Ri .ei / (8.22)

which entails rj D Rj .ei / D 0 for all other sectors j ¤ i . Observe that normally
the Ri .ei / will not be equal across the sectors.

In a two-sector world, for example, the set R traces out a downward-sloping
curve in the .r1; r2/-plane from end-point .0; R2.e2// to the other end-point
.R1.e1/; 0/. The inner points of the curve can be computed by letting y1 vary
from 0 to 1 and putting y2 D 1 � y1, r1 D R1.y/, r2 D R2.y/. Since the Ri .y/
are fractions of the y-components, the connection between the two end-points will
not be straight line.

18 Formally, it suffices to replace the inequality signs with an equality sign in the proof of Proposi-
tion 8.10.
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Fig. 8.3 Differentiated sectoral rates of profit under exogenous real wage rates
Note: With respect to the two-sectoral aggregation forADAT , the outer curve is the set of sectoral
maximum rates of profit. The bold line represents the set R.!/ of Proposition 8.11, where ! D
.!1; !2/ are the empirical real wage rates expressed in the consumption basket c (see Table 8.2),
while the lower curve depicts the same set for a 25% increase in real wages. The dotted lines
indicate the empirical profit rates in 1995, r1Dr2 on the dash-dotted line, and r1 D r2 D 45:99%
at the cross, the empirical average rate of profit.

Applying this procedure to the empirical two-sectoral matrix AT , which we here
treat as matrix A in the formal expressions above, yields the upper curve in Fig. 8.3.
This geometric locus of the sectoral maximum rates of profit has obviously a con-
cave shape. The area below this boundary represents the set of all sectoral profit
rates .r1; r2/ that are a priori admissible in (8.18) and (8.19).

After the complete characterization of admissible sectoral rates of profit and their
upper boundary, we turn to the second point in the analysis of (8.18) and (8.19),
where it is now the real wages that are assumed to be exogenously given. Measuring
them again in a wage basket c 2 IR n

C, let !i be the corresponding real wage rates.
Real and nominal wages are related by

wi D !i pc (8.23)

Equations (8.18) and (8.19) can be more compactly written if we set up a matrix C
defined by

cij WD !j ci `j ; i; j D 1; � � � ; n (8.24)

Matrix C is helpful in that it allows us to write the row vector .w1`1; : : : ;wn`n/
conveniently as pC . Entry cij is the quantity of good i consumed by workers that
are occupied in producing one unit of good j , for which they spend a corresponding
fraction of their nominal wage wi`i .
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Furthermore, let Q be the diagonal matrix with entries 1Cri . To emphasize the
dependence on the profit rates, we introduce the notation r D .r1; : : : rn/ and write
Q D Q.r/.19 That is,

Q.r/ WD diag Œ1Cr1; 1Cr2; � � � ; 1Crn� (8.25)

Using (8.23), (8.24), (8.25) it is easily checked that (8.18) and (8.19) can be refor-
mulated as

p D p ŒAQ.r/C C � (8.26)
p D p Œ .AC C/Q.r/ � (8.27)

It is clear that for (8.26) and (8.27) to admit a meaningful solution, wages must not
be too high. This means a suitable production vector x should exceed the material
inputs and workers’ consumption associated with it. Expressed in more technical
terms, not only matrix A but the matrix augmented by the consumption coefficients,
ACC , is required to be productive. Beyond the existence of solutions, Proposi-
tion 8.11 establishes the trade-off of the sectoral profit rates that with respect to zero
wages has already been alluded to above: one rate can only rise at the cost of some
other. This relationship is strict if (not A but) A C C is assumed to be indecom-
posable, which, however, we consider perfectly plausible (at least at positive wages).

Proposition 8.11. Let the sectoral real wages ! D .!1; : : : ; !n/ be incorporated
in the matrix C as specified by (8.24) and suppose that ACC is productive as well
as indecomposable. Then the set R.!/ of all sectoral profit rates r D .r1; : : : ; rn/
fulfilling (8.26) or (8.27), respectively, is a non-empty one-dimensional manifold in
IR n
C, where for every r 2 R.!/ the corresponding price vector p is strictly positive.

Choosing any sector k, its rate of profit rk is represented by a differentiable function
fk of the other profit rates,

r 2 R.!/ if and only if rk D fk.r1; � � � ; rk�1; rkC1; � � � ; rk/:

In addition, all partial derivatives of fk are negative (given that rk > 0),

@rk=@rj D @fk=@rj < 0 for j ¤ k

We note that the proposition only says that a function fk with the stated prop-
erty exists, it does not claim that fk can be expressed by an explicit closed formula.

19 We should not, as it is possible with the other sectoral variables, use r to denote the profit rate
vector, because this might lead to confusion in other parts of the book where r as a uniform rate is
just a scalar. On the other hand, we do not wish to employ another letter for this purpose. Therefore
the compromise with the (otherwise unnecessary) vector arrow above the letter r , which we below
we equally apply to the vector of the differentiated real wage rates .!1; : : : !n/.
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In fact, the computation of rk involves (iteratively) solving an eigen-value equa-
tion, so that in practice one has to resort to special numerical methods requiring a
computer.

Proof. We formulate the proof with respect to (8.26). The treatment of (8.27) is
completely analogous.

The important thing to note is that, by virtue of the indecomposability assump-
tion, an increase (decrease) of any profit ri causes the dominant eigen-value of
AQ.r/C C to increase (decrease) strictly. Moreover, a solution of (8.26) exists if r
induces 	?ŒAQ.r/C C � D 1; p is then the left-hand eigen-vector, which we know
is strictly positive. Thus, one may begin with a sufficiently small vector r such that
	?ŒAQ.r/ C C � < 1, which is possible since the productivity assumption implies
	?ŒAQ.0/ C C � < 1. Then any sector i may be chosen and its profit ri increased
until the dominant eigen-value equals unity.

Increasing a rate ri in a situation where r 2 R.!/ raises the eigen-value above
1. It can be brought back to this level by sufficiently lowering rk . Existence of a
function fk and their partial derivatives follows from applying the Implicit Function
Theorem to the equation in r, F.r/ WD detŒ	I �AQ.r/�C � D 0, where the eigen-
value 	 is fixed at 	? D 1 (and since the determinant is differentiable to any desired
order). ut

If one has studied the proof of Proposition 8.10, one may note that the argument
goes equally through if vector Q̀ is replaced with the zero vector, the inequality
signs with the equality sign, and the matrix A with the augmented matrix ACC .
What is obtained in this way is the situation of (8.27). The profit rates satisfying
this equation can thus be readily characterized by the next proposition, where in
extension of Proposition 8.10 the concept of ‘net output’ now also means net of
workers’ consumption.

Proposition 8.12. Let the sectoral real wages ! D .!1; : : : ; !n/ be incorporated
in the matrix C as specified by (8.24) and suppose that matrix ACC is productive.
Then for the sectoral profit rates r D .r1; : : : ; rn/ a price vector p � 0 satisfying
(8.27) exists if and only if there exists a gross output vector x � 0 together with a
corresponding ‘net output’ vector y D x � Ax � Cx � 0 such that

ri D
yi

xi � yi
D

yi

.Ax/i C .Cx/i
: for all i

Curiously enough, it does not seem possible to derive a similar statement for
system (8.26) with wages paid ex-post, since the relationships showing up in the
proof cannot in a likewise manner be solved for ri on one side of the equation and
no other profit rates on the other side.

In the framework of a two-sectoral world, the frontier of the maximum sectoral
rates of profit of Proposition 8.10 has already been illustrated by the outer curve
in Fig. 8.3. We now want to do the same for Proposition 8.11, limiting ourselves
to wages paid ex-post. To this end we have to determine empirical values for the
two-dimensional vectors `, c and !, which are entering the proposition. On the
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Table 8.2 Empirical
two-sectoral data for (8.26)

1 2
ci : 32.95 67.05
`i : 9.42 14.06
wi : 29,819 25,008
ri : 18.95 82.06

Note: Data are from Germany 1995. The
components of the consumption vector are
in percent; `i are persons per 1 mill. Euro
output; the wi are given in 1,000 Euro per
job; (corresponding to the r.1/i in Table 8.1)
the profit rates ri are the thus resulting profit
rates, ri D r

.1/
i D Œpi�.pA/i�w`i � = .pA/i ,

where p D .1; 1/ for 1995, and A D AT
(rounding errors apart).

basis of the German data for 1995, this is done in Table 8.2. We also add the two-
sectoral rates of profit (which correspond to the r .1/i for the 7-sectoral aggregation
in Table 8.1, and which yield the same average rate of profit).

If the consumption basket c is normalized such that pc D p1c1 C p2c2 D 1

(p1 D p2 D 1 for 1995), then the wage rates wi reflect directly the real wages,
!i D 0:001 � wi (given that the quantities are measured in 1 mill. Euro in 1995-
prices). riDr

.1/
i are the thus resulting profit rates for wages paid ex-post.

Equipped with these data, we can determine the consumption matrix C and then
the set of sectoral profit rates R.!/ for (8.26). Concretely, we fix r1 successively at
different values and solve (8.26) for the corresponding value of r2, which is the value
that causes the dominant eigen-value of AQ.r/CC to be unity. In the notation of
Proposition 8.11, this procedure yields the function r2 D f2.r1/. Since the present
example is only two-sectoral, it would be possible to summarize it in an explicit
formula for f2.

It may, however, be noted that in a wider perspective another approach is more
useful, which applies an iterative method. To begin with, it-correctly-presupposes
that an algorithm is available to compute the dominant eigen-value of semipos-
itive matrices. Given r1, we exploit the fact that the function � D �.r2/ WD

	?ŒAQ.r1; r2/CC � � 1 is strictly increasing in r2 and choose two, possibly ex-
treme, values ra2 and rb2 that entail �.ra2 / < 0 and �.rb2 / > 0. Then a straight line
is drawn from .ra2 ; �.r

a
2 // to .rb2 ; �.r

b
2 // and the value rc2 is determined where it

intersects the zero line. If �.rc2 / < 0, ra2 is replaced with rc2 , if �.rc2 / > 0, it is rb2
that is replaced with rc2 . After that, a new round is started. In this way the points of
intersection approximate, step by step, the (unique) value r2 at which the function
�.r2/ vanishes up to any desired degree of precision.

The procedure just described is the regula falsi, which for well-behaved functions
such as our � is well-known to converge quite rapidly, and certainly. In practice,
it is a good investment to programme regula falsi once and then apply it to any
function, rather than develop an explicit formula (if this is possible at all) for every
new situation.
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In any way, using regula falsi the bold curve in Fig. 8.3 was obtained, which is
the geometric locus R.!/ of all pairs of profit rates r1 and r2 that are compatible
in (8.26) with the empirical wages and consumption structure. Of course, the curve
is situated considerably below the frontier of the sectoral maximum rates of profit.
The dotted lines indicate the two profit rates from Table 8.2 that were actually pre-
vailing in 1995. The dash-dotted line, which depicts equal rates of profit r1 D r2,
elucidates how much the empirical configuration deviates from the stylized uniform
rate of profit.

The cross outlines a situation where r1 D r2 D 45:99%, which is just the average
rate of profit in 1995. This point is very close to the bold curve. It is thus seen that
the error made by hypothesizing a uniform rate of profit in (8.26) is very small,
if we compare the resulting profit rate with the empirical average rate of profit.
By contrast, the associated prices will be quite different from the empirical prices
p1 D p2 D 1.

Finally, the lowest curve in Fig. 8.3, below the bold line, is the set R.!/ that re-
sults from a uniform 25% increase in the empirical real wage rates. It shows that the
sectoral profitabilities would be severely by such a (at present purely hypothetical)
event, unless it is not compensated by falling labor coefficients.

In the analysis of (8.18), (8.19) it now remains to take up the third point, which
is a study of the wage-profit relationship in this framework. If for that purpose profit
and wages are each to be represented by a single variable, we need to fix the structure
of either side. The most natural assumption in this respect is to postulate constant
ratios of the sectoral wage and profit rates.20

To formalize this idea, choose an arbitrary sector k which will serve as a refer-
ence. We hypothesize constant ratios d ri D ri=rk for the sectoral rates of profit, and
dw
i D wi=wk for the sectoral wage rates. Equation (8.18) can thus be rewritten as

pi D .1C rkd
r
i / .pA/i C wkdw

i `i (8.28)

Here and in the following, (8.19) can be dealt with in much the same manner, so
that we omit this case. Next, define the diagonal matrices

Dr
k D diagŒ d r1 ; d

r
2 ; : : : ; d

r
n � ; Dw

k D diagŒ dw
1 ; d

w
2 ; : : : ; d

w
n � (8.29)

for a more compact formulation (in order not be too cumbersome, the coefficients
d ri and dw

i themselves neglect the reference to k). In this way (8.28) becomes

p D p A .I C rkD
r
k/ C wk `Dw

k (8.30)

Evidently, sector k’s profit rate rk takes the role of the uniform rate of profit r , and
its wage rate wk the role of the uniform wage rate w. The sectoral distortions are
captured by the two diagonal matrices.

20 The basic idea of the following treatment can be found in Giannini (1976), though his wages are
still uniform.



214 8 In Search of Foundations for a Classical Theory of Competition

Before inquiring into the variations of the profit rate, the maximum value QRk that
rk can possibly attain has to be determined. In the notation we apply a tilde to Rk
because the context is distinct from that ofRi in (8.20). QRk will in fact be dependent
on the distribution of the other sectors’ profit rates, so that QRk D QRk.Dr

k
/ in general.

Despite the similarity with equations concerning uniform profitability, the formal
determination of QRk is slightly different from the determination of the maximum
uniform rate of profit. To derive QRk , put wk D 0 in (8.30) and isolate rk D QRk
on the right-hand side of the equation, which gives us p.I �A/ D QRk pAD

r
k

.
Postmultiplying both sides by .I �A/�1, QRk is seen to be the reciprocal of the
dominant eigen-value of the thus resulting (likewise semipositive) matrix,

QRk D 1 = 	
?ŒADr

k.I � A/
�1� (8.31)

The special case Dr
k
D I of uniform profit rates, in which we have R D QRk D

1 = 	?ŒA.I�A/�1�, should of course be equivalent to R D Œ1 � 	?.A/�=	?.A/. To
verify this, abbreviate Q	 D 	?ŒA.I �A/�1� and note that the eigen-value equation
Q	p D pA.I �A/�1 is equivalent to Q	p.I � A/ D pA , Q	p D .1 C Q	/ pA ,

Œ Q	=.1C Q	/� p D pA D 	?.A/p, from which Q	 D 	?.A/=Œ1 � 	?.A/� D 1=R can
be concluded.

Normalizing sector k’s nominal wage at wkD1 and treating rk as the exogenous
distribution variable, (8.30) can be solved for the prices, which are here prices in
terms of sector k’s labor commanded,

pw D pw.rk/ D `D
w
k Œ I � A .I C rkD

r
k/ �
�1 ; 0 � rk < QRk (8.32)

The corresponding real wage rate of sector k, measured in the consumption basket
c 2 IR n

C, is given by

!k D !k.rk/ D 1 =p
w.rk/ c (8.33)

Regarding an increase of rk , the argument from the uniform profit rate exactly car-
ries over. This change increases all entries of the inverse matrix in (8.32) if A is
indecomposable, which entails that the real wage rate !k is a strictly decreasing
function of rk . Representative of the whole economy, the antagonistic character of
wages and profits is thus succinctly summarized by the inverse relationship between
these two sectoral distribution variables.

To illustrate the wage-profit frontier brought about by (8.32), (8.33), we again
take matrixADAT from Flaschel and Franke (2008, Chap. 3) and similarly ` and c,
while the diagonal coefficients d ri , dw

i are obtained from Table 8.1 by dividing the
r
.1/
i through r .1/

k
and the wi through wk . With respect to the latter magnitudes, we

pick ‘other manufacturing’ as the reference sector, i.e., k D 3. For convenience, the
resulting coefficients are presented in Table 8.3.
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Table 8.3 Coefficients of Dr
k , Dw

k (derived from Table 8.1)
1 2 3 4 5 6 7

dri : 3.791 0.784 1.000 1.792 3.977 6.161 3.813
dw
i : 0.265 1.368 1.000 0.762 0.908 0.597 0.913

Fig. 8.4 Empirical wage-profit curves for differentiated ri and wi

Note: Computation of (8.32), (8.33) for the 7-sectoral aggregation with k D 3 as the reference
sector. Values for Dr

k , Dw
k from Table 8.3. The dotted lines indicate the empirical 1995-values

Employing the values of Table 8.3 forDr
k
D Dr

3 andDw
k
D Dw

3 , two benchmark
positions can be computed. First, the maximum rate of profit (8.31) of sector 3 turns
out to be

QRk D 36:79%

Second, if sector 3’s profit rate of 16.66% from Table 8.1 is substituted for r3 in
(8.32), the empirical situation of 1995 is recovered. Here the prices are all equal,
p1 D p2 D � � � D p7, and the real wage rate !3 buys 31.660 consumption baskets
worth 1,000 Euro in those prices of 1995.
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Figure 8.4 plots the entire !3-r3 relationship. The four underlying consumption
baskets are the same as for the uniform rates of profit. A comparison of the two
figures shows that the shape of the curve is different for the baskets containing only
good 1 or good 6, respectively, while it has not changed much in the other two cases.
Interestingly, if the real wages are measured in the actual consumption basket, the
relationship is almost linear.21

The dotted lines indicate the empirical situation prevailing in 1995, which has just
been described. Because of the uniform prices, the real wage rate is here independent
of the composition of the consumption basket. Hence all four curves depicted in
Fig. 8.4 go trough the same point r3 D 16:66% and !3 D 31:660.

8.6 Capital Stock Matrices and Sectoral Profit Rates

8.6.1 Capital Consumed and Capital Advanced

So far we have differentiated capital goods into fixed and circulating ones with re-
spect to a base period of one month (the time unit underlying wage payments due
to institutional arrangements in the economy). The time unit is therefore not cho-
sen on the basis of technological relationships and the separation of capital goods
into fixed ones (ı < 1) and circulating ones (ı D 1) is from this point of view
somewhat arbitrary, but also quite generally a fairly artificial one. Circulating cap-
ital can be as differentiated as fixed capital, since it can for example circulate on a
daily, a weekly and any other time basis, not well reflected by the choice of a sin-
gle parameter ı D 1. Furthermore capital goods should not be distinguished from
each other on a technological basis, but from an economic point of view concerning
capital advanced and capital consumed. Finally, rate of return calculations have a
definitely institutional characteristic, namely that they are basically calculated on
a yearly basis (which may change in the course of the evolution of capitalism and
under specific circumstances). ‘Natural’ prices thus should be investigated first of
all on the background of their ‘natural’ time period of calculation, i.e., on a yearly
basis. If this empirically motivated choice of ‘the period of production’ is accepted,
it follows – also by empirical reasoning – that it is no longer meaningful to assume
ex post payment of wages literally. Instead, wages as well as the so-called circu-
lating capital and, of course, the so-called fixed capital must all be advanced to a
certain degree, that is to be determined still. From the institutional perspective of a
yearly evaluation of the activities of firms, concerning their inputs and outputs and
the rate of returns to be calculated on this basis, the proper distinction is indeed

21 We have checked this by magnifying and also distorting the proportions of this panel. The phe-
nomenon is interesting since the consumption vector still differs (not too much but significantly)
from the right-hand eigen-value xk of the matrix ADr

k.I�A/
�1, where the relevance of this obser-

vation derives from the fact that the !k-rk relationship is linear if !k is expressed in terms of xk .
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between capital advanced (on an average) and capital consumed for any particular
year under consideration and this for any item that is used as an input in the yearly
evaluations of the returns of firms.

On the basis of these arguments we now reformulate our two sector economy as
follows. In the case of machines we still stick to our technological assumption of
radioactive decay and assume that all such machines always remain unchanged in
quality, but that the portion ı of them disappears without scrapping costs from the
sphere of production every year. Capital advanced (per unit of output and continu-
ously reproduced) is in this case now represented by k11 and capital consumed by
ık11 as far as the sector of machine production and his inputs are concerned. In the
case of machinery as the capital input into machinery production we thus have as
price equation (with p2 D 1 again):

rp1k11 C rwk01 C ıp1k11 C �0wk01 D p1;

where the k11 are just a new type of notation for input-coefficients a11, we have used
so far in their place, while the k01 are now different from a01.D �ok01/, since wages
advanced, broadly speaking, are now just 1=24 of wages consumed in the production
of one unit of machinery in the year under consideration, if wage payments continue
to be based on a monthly basis. Ex post payment of wages now at best applies to each
month, so that wage funds have to be accumulated during each month to allow wage
payments at the beginning or end of each such month. Approximately speaking,
firms thus keep 1=24 of yearly wage payments as average stock for these payments,
i.e., there is some capital tied up to guarantee the timely payment of wages within
each ‘production’ or better ‘accounting’ period. Besides ı we thus now also have a
parameter �o that relates wage funds wk01 held on an average to actual yearly wage
payments wa01 per unit of output. A similar relationship of course applies to the
consumption goods sector and gives there rise to

rp1k12 C rwk02 C ıp1k12 C �0wk01 D p2 D 1;

with �o, ı again assumed as uniform throughout the economy for reasons of
simplicity.

With

K D

�
k11 k12
0 0

�
; k0 D .k01; k02/;

we thus get for price determination now the matrix equation

.r C ı/pK C .r C �0/wk0 D p D .p1; p2/;

where we can use the numéraires p1 D 1, p2 D 1 or w D 1 depending on the focus
of the analysis. In terms of the former A, a0 matrices this equation would instead
read:

.r C ı/pAC .r=�0 C 1/wa0 D p:
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This equation shows again that part of wage payments must be considered as
advanced capital and to be used in this way in a proper calculation of the (uniform)
yearly rate of profit r . The solution to the first of the above equation is

.r C �0/wk0.I � .r C ı/K/�1 D p;

which allows a unique solution under standard productiveness assumptions and, for
example, given r and p2 D 1.

In the two-commodity economy of this chapter we cannot treat machinery and
intermediate inputs side by side, but have to present them as two separate aspects
of the circular flow of capital. We therefore now contrast the above consideration
of machinery and labor inputs into the production of machinery and consumption
goods with the situation where intermediate inputs are combined with labor in the
two production activities under consideration.

In the case of intermediate inputs or simply raw material, like ‘corn’ one has
to distinguish again the corn consumed in production in a given year per unit of
output from the ‘corn’ that must be kept as average inventory for an uninterrupted
process of production. If corn is ordered for example on a weekly basis in order to
allow continuous production, then average inventories of ‘corn’ are approximately
1=104 of the corn that is consumed in production during the course of a year. More
generally, we thus assume that k1j ; j D 1; 2 represent the amount of corn tied up on
an average in the production of commodity j D 1 and j D 2, while �1k1j (again
with uniform �1 for simplicity) is the amount of corn consumed per unit of output
(�1 D 104 in our example). As price equations for intermediate inputs j D 1 and
consumption goods j D 2 we now get on the basis of these observations .p2 D 1/:

rp1k11 C �1p1k11 C rwk01 C �0wk01 D p1;

rp1k12 C �1p1k12 C rwk02 C �0wk02 D p2 D 1;

or
.r C �1/pK C .r C �0/wk0 D p;

with

K D

�
k11 k12
0 0

�
; k0 D .k01; k02/:

This matrix equation is of the same formal structure as the one in the case of ma-
chinery, with the sole (stylized) distinction that ı < 1 holds in the earlier situation,
while we have �1 � 1 now. The former apparently technological distinction between
fixed and circulating capital is thus fairly besides the point and is to be replaced by
the distinction between capital advanced and capital consumed where the turnover
time 1=� or 1=ı may be larger or smaller than the accounting period of one year.
This proper distinction of capital goods turnover times will be further refined and
investigated in Part II of the book, as the alternative to Classical (Neo-Ricardian) or
Neo-Classical price and value theory.
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We conclude this subsection with the observation that we – due to our above
considerations – will spend no effort in discussing Classical or Neo-Classical treat-
ments of fixed capital goods (by means of hypothetical joint production approaches
to ‘natural’ price formation). The same applies to the treatment of semifinished
products (‘ocean liners’ not finished within year of production). Such things must be
subjected later on to the approach developed in this section and are not be included
in an output matrix B as if they would represent commodities that are to be valued
in the same way as the commodities that truly arrive at the market place. The way
firms calculate the value of used machinery and semi-finished product cannot be
identified without empirical justification with the values that may would be estab-
lished in a Classical world of production prices where resale markets are assumed
to exist for all vintages of machinery and all goods under construction.

8.6.2 Makeshift Construction of Empirical Depreciation
and Capital Stock Matrices

The two major shortcomings from which our empirical examples have suffered so
far22 are the neglect of replacement investment in the specification of profits, and
that in the profit rate definition profits were related to the flow of material inputs,
rather than to the sectors’ capital stock that ties up the money invested. The reason
for accepting the weaknesses was, of course, the lack of suitable data. We now take a
step further and see what we can nevertheless infer from the existing statistics. There
are two kinds of data available in the input–output tables that show at least a certain
relationship to what we need. On the one hand, the tables offer data on the sectors’
total depreciation. We can use them to get an indication of the different levels of
capital installed in the single sectors. On the other hand, the reported investment
vector as a component of final demand may give us a faint idea of the composition
of the sectoral capital stocks. Combining this information we can also construct
coefficients that, distinguished by goods and sectors, proxy replacement investment.
Clearly, a number of heroic assumptions have to be employed in this endeavor. They
are made explicit in the following five steps.
Step 1: Our first heroic assumption postulates that the capital stock has in all
sectors the same composition of capital goods. Formally, let the composition be
represented by proportions �1; : : : ; �n (which sum up to unity, though this is not
essential). If kij designates the capital good i installed in sector j per unit of its out-
put, the assumption says that in all sectors the capital good vector .k1j ; : : : ; knj / is

22 The following sections are based on Flaschel and Franke (2008) and the reader is referred to
this work for the flow matrices here referred to. The inclusion of the following discussion, taken
from Flaschel and Franke (2008), here serves the sole purpose to show that prices of production are
much too simplistic and restrictive in their formulation from the empirical point of view. Moreover
they are not needed for the analysis of the implications of factual average price changes as we have
shown in the second part of Chap. 3.
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proportional to the composition vector .�1; : : : ; �n/. Denoting the proportionality
factor in sector j by ˛j , the relationship reads

kij D ˛j �i ; i; j D 1; � � � ; n (8.34)

Step 2: The composition vector .�1; : : : ; �n/ is directly obtained from the compo-
sition of the economy’s investment vector (gross investment, inclusive of imports).
Regarding good i , the input–output tables distinguish between its investment as
plant, Iplti , and its investment as equipment, I eqti . I being overall investment,
I D

P
k .I

plt

k
C I

eqt

k
/, the proportions �i are specified as

�i D .I
plt
i C I

eqt
i / = I i D 1; � � � ; n (8.35)

Step 3: We hypothesize that a pure plant capital good deteriorates at a rate ıplt

per year, and a pure equipment capital good at rate ıeqt . The depreciation rate ıi of
good i is then supposed to be a weighted average of the two polar rates, where the
weight derives from the proportions of the two types of investment Iplti and I eqti .
Concretely,

ıi D �i ı
plt C .1��i / ı

eqt ; where �i WD I
plt
i =.I

plt
i C I

eqt
i / (8.36)

As we have no definite hints, the rates ıplt and ıeqt themselves are set free-hand.
The guideline for our choice will be the level of total capital in the economy to
which they eventually give rise.
Step 4: Although the depreciation of a firm’s accounting and the (theoretical con-
cept of the) physical depreciation of the capital stock are quite different things,
we put them on an equal footing. We determine the level of the capital goods in
sector j by the condition that the total depreciation resulting from the ıi equals
sector j ’s empirical depreciation. Relating the latter to sector j ’s output and des-
ignating this ratio as dj , the coefficients kij have therefore to fulfill the equationP
i ıi kij D dj .23 The proportionality factor ˛j in (8.34) is then easily obtained by

substituting ˛j �i for kij and solving the equation for ˛j , which yields

˛j D dj =
P
i ıi �i ; j D 1; � � � ; n (8.37)

Step 5: Accepting the above assumptions, it is now natural to suppose that replace-
ment investment is identical to the physical deterioration of the capital stock. Hence,
denoting replacement investment of good i per unit of output j by aıI ij , we have

aıI ij D ıi kij (8.38)

23 The coefficients kij can be added up in a column j if we recall that empirically they all have the
unit ‘worth 1 mill. Euro in prices of 1995’. Naturally, the same applies to the �i .



8.6 Capital Stock Matrices and Sectoral Profit Rates 221

On the basis of empirical data on di as well as Iplti and I eqti , our recipe of
constructing the coefficients kij and aıI ij thus goes at follows: obtain the compo-
sition vector .�1; : : : ; �n/ from (8.35); compute the depreciation rates ıi by means
of (8.36); use (8.37) to determine the ˛j ; get kij from (8.34); lastly, get aı; ij from
(8.38). The corresponding matrices are K, the capital stock matrix, and Aı , the re-
placement investment or, synonymously, the depreciation matrix.

Regarding the data on di , I
plt
i and I eqti , we again exploit the German input–

output tables. For depreciation we take the 1995 data because this is the last year
for which real data on depreciation and (which we need below) wage payments are
available. It is also convenient that for this year real and nominal data are iden-
tical. The investment data are taken from 2000 (the particular year is here rather
inessential since only the composition of the investment matters, which does not
vary much). With respect to our 7-sectoral aggregation, these data are reported in
the first three rows of Table 8.4.

Clearly, the vector of the weights �i in the fourth row is the sum of the two pre-
ceding rows (one rounding error apart); cf. (8.35). It appears perhaps somewhat pe-
culiar that agricultural products, consumer services and even social services (sectors
1, 6 and 7) can statistically become plant or equipment, but we do not mind since the
percentages are fairly low anyway. On the other hand, it certainly accords better with
common economic sense that the output of the construction sector 4 is exclusively
used as plant and makes up 43.06% of total investment. Similarly with the major
part of the investment goods produced by the two industrial subsectors 2 and 3.

The investment data are also employed do deduce the annual depreciation rates
ıi of the capital goods from (8.36). However, they require us first to decide on the
two polar rates ıplt and ıeqt for plant and equipment. The ıi reported in the fifth
row of Table 8.4 are based on ıplt D 1=20 D 5:0% and ıeqt D 1=8 D 12:5%
(values which are justified in a moment). The first value is exactly attained by ı4
and ı7 for construction and social services as capital goods, while almost all of the
capital goods bought from the industrial subsector 2 (the so-called export core) are
equipment, so that the aggregate depreciates at not much less than 12.5%.

The main idea of how to arrive at reasonable ‘guestimates’ of the two deprecia-
tion rates ıplt and ıeqt has already been indicated in a remark on (8.36), namely,

Table 8.4 Data underlying the construction of matrices K and Aı
1 2 3 4 5 6 7

P

di : 17.93 4.98 6.35 2.39 9.18 12.70 9.89
I
plt
i =I : 0.73 0.52 3.68 43.06 3.46 0.94 0.35 52.72
I
eqt
i =I : 0.02 17.14 19.96 0.00 7.11 3.04 0.00 47.28
�i : 0.74 17.66 23.64 43.06 10.57 3.98 0.35
ıi : 5.16 12.28 11.33 5.00 10.05 10.73 5.00

Note: All ratios in percent. di is depreciation per unit of output (Germany
1995); Iplti and I eqti are investment in plant and equipment, respectively, I is
total investment (in 2000); �i and ıi result from (8.35) and (8.36), given ıplt

and ıeqt from (8.39) below.
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Table 8.5 CVAR resulting
from different values of ıplt

and ıeqt

ıplt ıeqt CVAR
1=25 1=10 2.34
1=25 1=8 2.00
1=25 1=7 1.81
1=25 1=6 1.60
1=20 1=10 2.18
1=20 1=8 1.88

Note: CVAR stands for the
economy-wide capital / (gross)
value added ratio. See text for
more detailed explanation.

to look for the economy’s total capital stock that is implied by them. For the order
of magnitude that we would like to obtain we have the following information. In
1994, the economy-wide ratio of gross capital to (gross) value added was 2.9, while
in 1995 the net capital stock was 63.1% of the gross capital stock. The notion more
appropriate for us is the net capital stock, since here over the lifetime of the capital
goods depreciation is deducted from their initial value. This consideration gives us
a desired capital / value added ratio (CVAR) of 0:631 � 2:9 D 1:83.

Once the matrixK is determined from ıplt , ıeqt and (8.34)–(8.37), we therefore
have to compute the ratio CVAR D pKx=p.I � AT /x, where x and p are the
empirical vectors of 1995 (p simply being the summation vector). Table 8.5 reports
these ratios for several selected combinations of ıplt and ıeqt .

Our a priori idea of these rates is that plant deteriorates at a rate between
1=20 and 1=30 per year, while deterioration of equipment is 1=10 per year or
faster. Beginning with a pair ıplt D 1=25, ıeqt D 1=10, the table gives us a ratio
CVAR D 2:34; which is much too high. Higher values of ıplt and ıeqt would
increase this ratio even more (cf. (8.36), (8.37)), so the rest of the table is concerned
with lower rates. The small (incomplete) grid of pairs ıplt , ıeqt and the results are
self-explanatory. On this basis the two pairs with CVAR D 1:81 and CVAR D 1:88
are equally good. We have also checked that the differences in the sectoral rates of
profit are rather small. Since a depreciation rate of 1/8 appears slightly less arbitrary
than 1=7, and since a depreciation rate of 1=20 for plant is perhaps too low after all,
we decide on

ıplt D 1=20 D 5:0% ; ıeqt D 1=8 D 12:5% (8.39)

It has already been mentioned that the depreciation rates ıi in Table 8.4 are based
on these reference rates. Table 8.6 documents the capital stock matrix K that is
brought about in (8.34) by the values of �i and ıi in Table 8.4, together with the ˛j
computed in (8.37).

The last row in Table 8.6 computes the column sums. The number in column 2,
for example, indicates that per 1 mill. Euro output in prices of 1995, the sector has
capital goods installed that in prices of 1995 are worth 0.5823 mill. Euro. This be-
ing understood, the column sums can be said to represent the sectoral capital-output
ratios (the ratios of capital to gross output, more precisely). At first glance it is
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Table 8.6 Capital stock matrix K from (8.34)–(8.37)
1 2 3 4 5 6 7

1: 0.0156 0.0043 0.0055 0.0021 0.0080 0.0111 0.0086
2: 0.3,705 0.1,028 0.1,312 0.0493 0.1,897 0.2,625 0.2,044
3: 0.4,959 0.1,377 0.1,756 0.0660 0.2,539 0.3,513 0.2,736
4: 0.9,031 0.2,507 0.3,199 0.1,202 0.4,624 0.6,398 0.4,982
5: 0.2,217 0.0615 0.0785 0.0295 0.1,135 0.1,570 0.1,223
6: 0.0835 0.0232 0.0296 0.0111 0.0427 0.0591 0.0460
7: 0.0074 0.0020 0.0026 0.0010 0.0038 0.0052 0.0041P

: 2.0975 0.5,823 0.7,429 0.2,792 1.0739 1.4,861

Table 8.7 Empirical sectoral rates of profit (Germany 1995)
1 2 3 4 5 6 7 average

IIj : 48.19 63.04 62.69 52.29 41.16 37.44 25.09 46.55
Wj : 21.37 28.72 26.87 32.09 31.57 24.12 58.97 32.05
Dj : 17.93 4.98 6.35 2.39 9.18 12.70 9.89 8.57
Pj : 12.51 3.26 4.09 13.23 18.10 25.74 6.05 12.84
Kj : 209.75 58.23 74.29 27.92 107.39 148.61 115.72 100.21
rj : 5.97 5.60 5.51 47.39 16.85 17.32 5.23 12.81

Note: I Ij , Wj , Dj , Pj , Kj are intermediate inputs, wage payments, depreciation,
profits, and capital of sector j , all expressed in percent of gross output; rj is the
rate of profit, rj D 100 � Pj /Kj . Profits are output minus (I Ij + Wj + Dj ).

perhaps somewhat surprising that the three services sectors 5, 6 an 7 have signif-
icantly higher ratios than the two industrial subsectors 2 and 3. In fact, if a high
capital-output ratio were really an indicator of a high ‘degree of industrialization’,
then agriculture (sector 1) would be the most industrialized. We also draw attention
to the construction sector’s capital-output ratio, which is by far the lowest among
our seven macro sectors.

Our main motive for constructing the capital stock matrix K, however, was that
it enables us to work with the sectoral rates of profit proper, where in the denom-
inator the material inputs .pAT /j xj are replaced with the sectoral capital stocks
.pK/j xj . We have now all the information to compute them for the year 1995. The
relevant data are collected in Table 8.7.

The sectoral capital stocks per unit of output in the fourth row of Table 8.7, which
are temporarily denote by Kj , are given by the expressions .pK/j xj = xj . Since
empirically in 1995 nominal and real magnitudes coincide, so that p D .1; : : : ; 1/,
the numbers in the fourth row are nothing else than the column sums of Table 8.6
(multiplied by 100). It should be clear from the above discussion that they are strictly
proportional to the sectoral depreciation statistics Dj .

The figures in row 1–4 are the same as in Table 8.1, only that they are here di-
rectly measured as percentages of the sectoral outputs. In particular, Pj corresponds
to �.2/j in Table 8.1, meaning that now profits have not only the costs of material
inputs and labor deducted from the sales of output but, of course, also depreciation.
Nevertheless, the r .2/j in Table 8.1 are for some sectors totally different from the rj
computed in Table 8.7.
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Table 8.8 German sectoral rates of profit over the 1990s, computed from
(8.34)–(8.37)

1 2 3 4 5 6 7 average
1991: 3.75 7.79 11.51 51.56 19.49 16.84 4.68 13.82

92: 5.26 4.04 9.06 57.49 17.78 16.27 5.19 12.93
93: 4.70 �0.21 7.14 51.13 17.37 15.62 4.71 11.91
94: 5.62 1.87 7.17 52.52 17.84 16.24 5.67 12.72
95: 5.97 5.60 5.51 47.39 16.85 17.32 5.23 12.81
96: 7.05 4.28 6.56 42.56 16.46 17.97 5.20 13.05
97: 7.44 6.87 7.10 40.54 16.70 18.37 4.99 13.50
98: 6.77 7.86 7.71 39.88 17.76 18.17 5.05 13.84
99: 5.83 5.73 8.19 40.17 18.01 17.74 4.85 13.67

The most striking profit rate is the excessively high value for the construction
sector 4. It is mainly because of this phenomenon that we also document the data
in the first four rows. We thus see that the sector’s share of profit in gross output is
not very noticeable. Hence, what makes the sector’s profit rate so outstanding is its
comparatively low capital in use.

Although the rate might exhibit a certain upward bias, the large gap to the other
sectors remains a remarkable, even puzzling phenomenon. On the other hand, the
profit rates accruing to the two industrial subsectors 2 and 3 are remarkably low.

Table 8.8 employs the procedure of (8.34)–(8.37) to derive the sectoral rates of
profit over the 1990s, until 1999 as the last year for which all the data categories we
need are available.24 It demonstrates that regarding the order of magnitudes as well
as the sectoral order, the profit rates in 8.7 for the year 1995 are largely representa-
tive. One exception are sector 2 and 3, where 1995 is the only year in which sector 2
scores a higher profit rate.

On the whole, the profit rates are relatively stable over the 1990s. One exception
here is the steady decline of the rate of profit in the construction sector, after its
extraordinary peak in 1992. The profit rates reflect the general phenomenon, some
more and some less, that after 1991 (the short boom following the German unifica-
tion) the first half of the 1990s was for most sectors a rather poor period, while they
showed a substantially better output performance over the rest of the decade.25 In
contrast, for the construction sector it was just the other way round.

Having additionally available the coefficients of the technological matrix AT of
the intermediate inputs, the labor coefficients `j , as well as the sectoral wage rates
wj and the goods prices pi , the sectoral rates of profit are given by the following

24 Since after 1995 wages and depreciation are only available as nominal data, we used nominal
data for the whole decade. This, in particular, means that the capital stock coefficients here obtained
are nominal magnitudes, which does not matter as long as we are only interested in the profit rates.
25 The best year was 2000, for which unfortunately we have not sufficient data to continue our
computations.
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expression, where the profits are now related to the (replacement) value of the
sectoral capital stocks:

rj D
1 �

P
i pi .aT Iij C aıI ij / � wj `jP

i pi kij
; j D 1; � � � ; n (8.40)

8.7 Conclusions and Outlook

We have considered in this chapter the Classical theory of ruthless competition and
the assumption of prices of production (representing long-period prices) it leads to.
In models with only circulating capital goods one may be inclined to consider this
hypothesis as reasonably justified, since physical capital is then very mobile. Yet,
in the real world, we have plant and equipments on a large scale (at least in manu-
facturing) and thus generally find multiple activities producing commodities of one
and the same class at various levels of sophistication throughout the world. This
raises the question whether profit rates can indeed be assumed to equalize in the
longer run. Obviously it makes no sense to assume such a tendency on the level of
physical input–output data on a worldwide scale, since the markets that are operating
on such data cannot be assumed to solve or approximate billions of equations over a
certain time span (in particular since these data are also constantly changing in time).

Yet, we have also found no such tendency even on a very high level of aggre-
gation over a time span of ten years in the case of the German economy and may
indeed draw the conclusion from these findings that the three fundamental sectors of
the economy: ‘agriculture’, ‘manufacturing’ and ‘services’ are not subject to such a
tendency towards equalizing profit rates. It may therefore be that accounting prices
based on the principle of uniform profitability are a much too restricted concept to
provide insights into the actual working of capitalist economies on any of their ag-
gregation levels. However, more empirical work needs to be done in order to further
test the empirical relevance of prices of production.

There are two extreme attitudes in the literature with respect to this problem. In
their book ‘Laws of Chaos’ Farjoun and Machover (1983) completely reject the con-
cept of prices of production, while Han and Schefold (2006) apply this price concept
empirically to existing flow input–output matricesA in order to investigate by means
of them the empirical occurrence of reswitching and the like. Our judgment here is –
on the basis of the last two sections – that empirical investigation based on uniform
profitability that ignore durable means of production cannot be used for a significant
study of the implications of all blueprint combinations the considered flow matrices
give rise to. The existence of fixed capital prevents most of these combinations and
also alters the calculation of prices of production in a decisive way (including the
size of the profit rates to be measured). We would tend to accepting the approach of
Farjoun and Machover (1983), which stresses the applicability of labor value calcu-
lations, see here Part I, and which denies that the behavior of actual average prices
and their implications can be understood by production price accounting, which in
their view imposes too much regularity on price formation.
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The implication of this viewpoint, ironically, is that Samuelson’s (1971) ‘eraser
principle’ is to be applied to prices of production and not to labor values. The
‘detour’ argument of Steedman (1977) thus seems to apply more to prices of pro-
duction rather than to labor values, in a complete reversal of the arguments advanced
in Steedman’s book, compare also Gupta and Steedman (1971) in this regard. It may
very well be that there is nothing in between labor values, as characteristics of pro-
duction (Marx, Stone), and actual average market prices in terms of the wage unit,
used to characterize real effective demand and income distribution (Keynes, 1936),
that can be based on a single and uniform profitability accounting principle.

In the next Part III of the book we shall – despite this negative conclusion –
investigate Classical cross-dual dynamics as well as Keynesian dual ones. The find-
ings there however can be applied to Walrasian general equilibrium prices, to von
Neumann type production prices and growth rates modelling as well as to other
possibilities of determining a point of rest of this type of price-quantity adjustment
dynamics. These processes therefore describe how capital moves between sectors
and how prices react to such movements without being constrained to Neoclassical
or Neoricardian theories of price formation. The search for a theory of long-period
prices as foundation for a Classical theory of competition and point of rest of a
dynamical system that can applied to actual stock-flow input–output data stays
therefore an undecided issue, implying that the Classical theory of competition –
quite apart from the level of aggregation and averaging it must necessarily assume26

– is built on shaky foundations.
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Chapter 9
Two Concepts of Basic Commodities
for Joint Production Systems

9.1 Introduction

The concept of a basic commodity as introduced in Sraffa’s (1960) well-known
book: ‘The Production of Commodities by Means of Commodities’ has often been
treated and reformulated in the literature under the presupposition of a square single-
product system. Its various formulations in terms of direct and indirect – or solely in
terms of direct – relationships between the production accounts of the commodities
produced can be easily understood from a mathematical as well as from an economic
point of view. This situation, however, changes drastically once joint products are
taken into account. In this general case the various definitions at hand not only lose
their equivalence, but are – following a proposal made by Sraffa (1960, 60) and for-
malized by Manara (1980) – in fact replaced by a new and much more complicated
definition, which, in addition, does not give a complete generalization of the original
concept of basic commodities (as we shall see in Sect. 9.4).

The proposed new formulation of basic commodities for joint production sys-
tems is based on linear combinations of the direct relationships which describe
the production of commodities by means of commodities for this case, and Sraffa
(1960, 57) explicitly states that ‘the criterion previously adopted. . . (in terms of
direct and indirect relationships, P.F.) now fails, . . . ’. It is the aim of the present
chapter to demonstrate that this view need not be conclusive. In fact, we shall see in
Sect. 9.2 that our four equivalent ways of generalizing the single product approach
to the case of joint production (among them one which generalizes this approach in
a very natural way), give rise to a concept of ‘basics’ which differs from the Sraffian
one. Section 9.3 presents several properties of this alternative notion of basics and it
also provides a motivation for their denomination: Leontief-basics, to be suggested
in this chapter. In Sect. 9.4 we shall then briefly consider their known alternative, the
Sraffa-basics, by utilizing two simplifications of their original definition which have
been provided by Steedman (1980) and Pasinetti (1980). This section also completes
their up to now incomplete characterization if the set of singular output matrices is
excluded from consideration.

To ease the comparison of the two concepts of basics to be examined in the fol-
lowing, we shall restrict joint production to the same situation as it is considered in

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 9,
c� Springer-Verlag Berlin Heidelberg 2010

229
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Sraffa (1960, 51), i. e., we assume as given two nonnegative input matricesA D .aij/

and l D .lj / of physical capital and labor, respectively, and one nonnegative out-
put matrix B D .bij /, where i; j D 1; : : : ; k. The columns Bj and the rows Bi
of matrix B – referring to processes j and to the distribution of commodity out-
puts of type i , respectively – are supposed to be semipositive .� 0/ in each case.
We use e to denote the summation vector .1; : : : ; 1/0 2 IR k and a prime .0/ to de-
note transposition. The foregoing semipositivity can then be expressed equivalently
through

Assumption 1. The vectors e0B , Be are strictly positive (> 0).
Each process thus produces at least one commodity and each commodity is

produced by at least one process. A circumflex (ˆ ) will be used to denote the di-
agonal matrix bx which can be formed from a given vector x. Finally, to keep the
mathematical part of the chapter within reasonable bounds, we shall presume that
the reader is familiar with basic matrix operations and, in addition, with the decom-
posability properties of the single square matrices we shall employ in the following
(see Pasinetti (1977) and here Chap. 8 for a presentation of these mathematical
tools).

9.2 Basic Leontief-Commodities

The criterion for a basic commodity is whether this commodity ‘enters (no mat-
ter whether directly or indirectly) into the production of all commodities’, Sraffa
(1960, 6). This criterion, which is used by Sraffa in the elementary situation of a
square input–output table of physical type, will now be applied to the square and
nonnegative matrix L defined by AB 0, i.e., to a matrix where the columns Aj of
the given input matrix A have been aggregated by means of the output coefficients
bhj, j D 1; : : : ; k of commodity h to form the h-th column Lh of matrix L D .lih/
(h D 1; : : : ; k). This latter matrix thus shows a positive entry .i/ in its h-th col-
umn in exactly those cases where commodity i is an input into the production of
commodity h for at least one process j . The usefulness of this matrix L, which pro-
vides the foundation for the following definition, will become progressively clearer
from the equivalent formulations we shall derive for the definition of Leontief-basics
in this section.

Definition 9.1. A commodity i will be called a Leontief-basic (L-basic), if for all
commodity indexes h 2 f1; : : : ; kg there exists a sequence of commodity indexes
i1; : : : ; ir (of finite length r), such that the product:

li i1 � li1i2 � : : : � lirh is positive .A/

Commodities which do not fulfill such a condition are called non-basics (NL-
basics).
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This condition states the existence of a technological link between all commodi-
ties h and the commodity i under consideration. Commodity i , consequently, is
directly or indirectly involved in the production of any commodity, but in a way
which has still to be found out, because of the rearrangements of inputs by means
of outputs that have taken place in the formation of the table L.

Assumption 2. We shall assume throughout that the system A;B contains at least
oneL-basic commodity and that (after suitable relabeling) the set f1; : : : ; ng denotes
the set of L-basic commodities.

Proposition 9.2. The subdivision of table L which is implied by the number n
(of L-basics)

n k-n commodities

L11 L21 n commodities

L12 L22 k-n commodities

has the following three properties: the submatrix L12 is zero, the submatrix L11 is
irreducible (i.e., this matrix cannot be subdivided any longer in the way just de-
scribed), and there does not exist a commodity index m � n (and a relabelling of
NL-basics nC 1; : : : ; k/ such that the subdivision of the table L that is implied by
index m will fulfill L21 D 0.1

The first two parts of the proposition are well-known [see, e.g., Pasinetti (1977,
pp. 104 f.)], and they illuminate in a different way the fact that L-basics are di-
rectly or indirectly necessary for each other, while no NL-basic is used in their
production .L12 D 0/. The third part then adds that there is no sector of NL-basics
which is completely independent from the rest of the economy, a condition which
quite obviously is fulfilled because of the assumed existence of at least one L-basic
commodity.

Remark 9.3. It is easy to see that Proposition 9.2 in fact represents an equivalent
way of defining the set of basic commodities, also in the case of arbitrary square
matrices S (instead of our L � 0/, if ‘positive’ is replaced by ‘nonzero’ throughout.
In the following two propositions nonnegativity will, however, be crucial for the
results to be obtained.

1 This third condition – later shown to lead back to the existence of at least one basic – is normally
neglected when basics are represented in the form of Proposition 9.2; see, e.g., Pasinetti (1977,
pp. 104f.), Abraham-Frois and Berrebi (1979, pp. 39 f.), and also Varri (1979, pp. 57/58), in par-
ticular his (2) and the definition following it, where only the case n D m is considered, which,
however, is insufficient to allow his following direct/indirect characterization of ‘basics’ (compare,
e.g., the matrix B 0A in our Example 9.15).
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Proposition 9.4. The characteristics of table L as formulated in Proposition 9.2
imply that the underlying physical input and output tables A and B fulfill:

A11 A21

0 A12

B11 0

B12 B22

for some j 2 f1; : : : ; kg – to be chosen in a minimal way below and based on a
suitable rearrangement of the k processes at hand.

The matrix A11 will be irreducible, and there will not exist a number of commodi-
ties m � n and a number of processes j together with a rearrangement of the k
given activities and the NL-basic commodities, such that A21 D 0; B12 D 0 for the
then resulting subdivision of the tables A;B .

This proposition states in particular that the processes 1; : : : ; j which actually
produce the n L-basics defined above (by definition: the basic processes which form
the basic sector) have no physical input from the sector of NL-basic commodities
(which is as it should be), and that there does not exist a collection of processes Qj C
1; : : : ; k which are the only ones that produce a set of NL-basic commodities, and
which in turn suffice to operate this subsector of processes Qj C 1; : : : ; k.

Proof of Proposition 9.4: Let the last k � j processes be defined as those which do
not produce the first n (basic) commodities, i.e., we have B21 D 0 by definition and
no vanishing column or row in B11 (note that the case k D j.k� j D 0/ is included
here!). The product AB 0 then is of the form (where the blank parts are of no interest
in the following):

n k-n commodities

A11.B
1
1 /
0 n commodities

A12.B
1
1 /
0 k-n commodities

From Proposition 9.2 it follows that the matrix A11.B
1
1 / is irreducible and that the

matrix A12.B
1
1 /
0 must be zero. But in defining B11 we have noted that all columns

and rows of this matrix have to be semipositive. Therefore A12 must be identically
zero (as has been asserted).

To prove the last assertion it suffices to note that a subdivision of the kind shown
below:

A D

eA11 0 m

k-m
B D

eB11

0

m

k-m
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would imply the following situation:

m k-m

AB 0 D

eA11.eB11/0 0 m

k-m

which contradicts the last statement made in Proposition 9.2. ut

Proposition 9.5. A subdivision of commodities as considered in Proposition 9.4
is characterized by the following property: For any i 2 f1; : : : ; ng and any h 2
f1; : : : ; kg there exist finite sequences of commodity indexes i1; : : : ; ir and of pro-
cess indexes j1; : : : ; jrC1, such that

.aij1bi1j1/ � .ai1j2bi2j2/ � : : : � .airjrC1bhjrC1/ > 0: .B/

Note that this seemingly complicated expression simply states that commodity i is an
input for commodity i1 with respect to at least one activity, namely j1, that commod-
ity i1 similarly is an input for commodity i1 with respect to an activity j2, etc. . . . up
to commodity h. This situation represents a straightforward generalization to the
case of joint production of the direct/indirect relationship of the type shown in the
first table, i.e., of Sraffa’s intuitive notion of a commodity which enters (directly or
indirectly) into the production of all commodities.

Proof of Proposition 9.5: By definition, the element .AB 0/ih of the product AB 0 is
given by:

.AB/0ih D
X

j

AijBhj :

An element of the matrix AB 0, therefore, is positive if and only if there exists
an activity j such that AijBhj is positive. It follows that relationship (B) in fact de-
scribes the set of basics with regard to Sraffa’s simple definition, see (A), formally
applied to the square matrix AB . By assumption we know that the n � n matrix
A11.B

1
1 /
0 considered in Proposition 9.4 is irreducible, hence Proposition 9.5 is al-

ready known to be true for all i; h 2 f1; : : : ; ng. Suppose then, that a commodity
h 2 fn C 1; : : : ; kg exists, for which property (B) is not true. Consider the set of
these commodities: fmC 1; : : : ; kg (after suitably reordering them). Regarding this
set, a situation as described by Table AB0 must then be true, since all commodi-
ties 1; : : : ; m can be connected to the basics by way of (B). But the situation in
Table 9.6 can only be true if a renumbering of processes j D 1; : : : ; k exists, such
that Tables A,B will arise. This, however, contradicts the assumptions, on which
Proposition 9.5 was based. The assumed set fm C 1; : : : ; kg, therefore, must be
empty, i.e., formula (B) will hold for all h 2 f1; : : : ; kg. ut
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The following proposition is now obvious and it implies that our four character-
izations of L-basics in table L, Proposition 9.2, Proposition 9.4, and (B) are in fact
all equivalent to each other.

Proposition 9.6. The commodities i D 1; : : : ; n which fulfill condition (B) are ex-
actly the L-basics of Definition 9.1.

Including the qualifications made in each case, L-basics are consequently char-
acterized equivalently by direct and indirect relationships of kind (A) or (B) or by a
structure of direct relationships of the kind shown in Proposition 9.2, Proposition 9.4
with regard to tables L D AB 0 or A;B . They represent a uniquely determined set
of commodities defined in purely qualitative terms (where all quantitative rigidities
of joint production are excluded from consideration). And finally: the definition of
L-basics reduces to Sraffa’s definition in the case of B Dbe, i.e., in the case where
no joint production exists, as is obvious from Definition 9.1.

9.3 L-Basics: Further Discussion

Below we shall briefly describe some simple properties of L-basics and provide
some examples to illustrate this definition:

Proposition 9.7. (a) A change in the conditions of production of the L-basics
1; : : : ; n, i.e., in the basic sector f1; : : : ; j g (see Proposition 9.4), will have no tech-
nologically determined demand effect on the production of NL-basics. (b) If no
process exists which produces L-basics and NL-basics jointly, then Sraffa’s rate of
profit r can be obtained from a consideration of the production conditions of the
basic sector only.

Proof. (a) See Proposition 9.4. (b) By assumption, we now in addition have:
B12 D 0, i.e., the matrix B is completely decomposable with respect to the em-
ployed classification of commodities. From Sraffa’s well-known price equation

pB D .1C r/pAC wl .C /

where r is the uniform rate of profit, w the uniform rate of wages, and p D

.p1; : : : ; pk/ the corresponding prices of production [see, e.g., Abraham-Frois and
Berrebi (1979, pp. 65 f.) for further details], we then get

.1C r/p1A11 C wl1 D p1B11 ; p
1 D .p1; : : : ; pn/; l1 D .l1; : : : ; ln/;

i.e., the above assertion (note that we have suppressed primes (p0, etc.) in the last two
equations). The following example is designed to show that the above type of price
independence may even arise in the case where no NL-basics exist (all activities
may even be reported to consume all commodities directly with regard to the table
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AB 0), i.e., the above decomposition of price interdependence is not bounded by the
number of L-basics from below. ut

Example 9.8.

A D

0:1 0:1
::: 0:1 0:1

0:1 0:1
::: 0:1 0:1

. . . . . . . . . . . . . . . . . . . . . .

0 0
::: 0:1 0:1

0 0
::: 0:1 0:1

; B D

1 0
::: 1 1

0 1
::: 1 1

. . . . . . . . . . . . . . . . . .

0 0
::: 2 1

0 0
::: 1 2

We then have

AB 0 D

0:3 0:3 0:3 0:3

0:3 0:3 0:3 0:3

0:2 0:2 0:3 0:3

0:2 0:2 0:3 0:3

despite the fact that the prices p1; p2 obviously do not depend on the production
conditions of the last two processes.

Proposition 9.9. The L-basics of Schefold’s (1977) model of fixed capital are ex-
actly the ordinary basics of type (A) of his integrated system eA.r/ (or eA.0/) of
finished goods [see his p. 419] plus the machines which are used in the production
of these basics (if each newly begun process employs at least one basic finished
good).

According to Sraffa (1960,73) ‘Fixed Capital is the leading species’ of joint prod-
ucts. The above proposition thus indicates that L-basics may find useful application
in important parts of Sraffa’s analysis outside the narrow range of square single-
product systems.

We do not prove this proposition here, since this would lead us too far into a
formal presentation of Schefold’s fixed capital model (the proof, however, is simple
once this model has been established), but shall only illustrate this proposition by
means of a simple example:

Example 9.10. Let M stand for ‘machine’ and let C denote the consumption good,
the only further finished good that is assumed to exist besidesM . LetM0 denote the
one-year-old machine in the production of machines and M 00 that of C -production
(once installed machines are no longer transferable and will have a useful life of two
years in each case).
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A typical example of a Sraffian fixed capital model can then be represented as
follows

processes processes

A D

M 0
::: M 0

0 M
::: 0 0

. . . . . . . . . . . . . . . . . . . . . .

0 C
::: 0 0

0 0
::: 0 M 00

D

1 0
::: 1 0

0 1
::: 0 0

. . . . . . . . . . . . . . . . . .

0 1
::: 0 0

0 0
::: 0 1

commodities

B D

M M
::: 0 0

M0 0
::: 0 0

. . . . . . . . . . . . . . . . . . . . . .

0 0
::: C C

0 0
::: M 00 0

D

1 1
::: 0 0

1 0
::: 0 0

. . . . . . . . . . . . . . . . . .

0 0
::: 1 1

0 0
::: 1 0

commodities

i.e., ‘machines’ are used in the production of ‘machines’ as well as for ‘consumption
goods’, while ‘consumption goods’ only become necessary in the second stage of
the machine-producing process (which furthermore uses the one-year-old machine
turned out by its first stage).

In the light of Proposition 9.9 we should now expect all four goods to be

L-basics: The integrated system eA.0/ is of type
�
M M

C 0

�
, i.e., it is irreducible

(both finished goods are basics) and each newly begun process employs at least one
basic in this ordinary sense (the machine M ). And indeed, the calculation of AB 0

gives

AB 0 D

1 1 1 1

1 0 0 0

1 0 0 0

0 0 1 0

which allows the ’commodity-chain‘: 1 ! 2 ! 1 ! 4 ! 3 ! 1, which, despite
the many zeros contained in AB 0, shows that this matrix is irreducible. Note that in
the case of C D 0 (with respect to matrix A) there exist only two L-basics:M ,M0,
to which Proposition 9.7b may then be applied.

Definition 9.11. Let Q be a k � k matrix. Entries 1; : : : ; n .n � k/ are called
weakly basic, if the implied subdivision of Q
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n k � n

Q D
Q1
1 Q2

1

Q1
2 Q2

2

n

k � n

fulfills: Q1
1 is irreducible, Q1

2 D 0 and Q2
1 ¤ 0.

Remark 9.12. The above definition can be applied to any subset of entries of the set
f1; : : : ; kg after a suitable (simultaneous) reordering of the rows and columns of the
matrix Q. Note that – contrary to the set of basic entries – the set of weakly basic
entries need not be uniquely determined, as the following matrix Q immediately
exemplifies:

Q D

1 1 0

0 0 0

0 1 1

This again stresses the importance of the third part of Proposition 9.2 for a proper
definition of basic commodities, which, nevertheless, is normally neglected in the
standard formulations of this proposition (compare footnote 1).

Proposition 9.13. Assume with regard to Proposition 9.4: e0A11 > 0 .e 2 IR n and
A21 ¤ 0, i.e., the basic processes and the sector of NL-basics each employ at least
one basic commodity. It follows that the sets of L-basic commodities and processes
as described by n and j in the tabular representation of Proposition 9.4 are given
by the sets of weakly basic entries of AB 0 and B 0A, respectively, which both are
uniquely determined in this case.

Proof. With regard to the set of basic commodities this has already been proved in
Sect. 9.2 (note in this connection that the there assumed existence of at least one
basic commodity immediately implies that the matrix AB 0 will have only one set
of weakly basic entries, namely f1; : : : ; ng). Hence, it remains to be shown that the
processes 1; : : : ; j as determined in Proposition 9.4 implies a subdivision of the
kind

j k-j

B 0A D
.B 0A/11 .B 0A/21
0

j

k � j

where .B 0A/11 is irreducible and where .B 0A/21 is nonzero, and, furthermore, that
f1; : : : ; j g forms the only set of weakly basic entries with regard to the matrix
B 0A.D Q/. Starting from the tables in Proposition 9.4, it in fact follows:

1. .B 0A/12 D 0,
2. .B 0A/11 D .B11 /

0A11 is irreducible, since A11.B
1
1 /
0 is irreducible by Proposition

9.4,2 and

2 This can be seen by assuming the converse and by applying to this situation the argument of
Proposition 9.4 which we have used to show that A12 equals zero, a result which contradicts the
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3. .B 0A/21 D .B11 /
0A21 C .B12 /

0A22 � 0, since we have A21 � 0 and e0.B11 /
0 >

0; e D .1; : : : ; 1/0 2 IR n.

To prove the last part of the assertion, assume finally that a further subset f1; : : : ; j g
of f1; : : : ; kg of weakly basic entries exists – again brought in this canonical order
by a suitable renumbering of commodities. We thus have

Qj k

Q D B 0A =
Q1
1 Q2

1

0

Qj

k

where Q1
1 is irreducible and Q2

1 � 0 (see Definition 9.11).
In direct analogy to the proof of Proposition 9.4, we now choose indexes 1; : : : ; m

to represent those commodities which are not produced by processes j C 1; : : : ; k
(it is not yet excluded that this set of commodities can be empty). This choice again
implies a corresponding subdivision of matrices A;B such that we get the situation
shown below):

m Qj

Q D B 0A=
.B11 /

0 .B12 /
0

0 .B22 /
0
Qj

A11 A21
A12 A22

m

and .B22 /
0A12 D Q1

2 D 0, i.e., A12 D 0, because there is no vanishing column in
.B22 /

0 by choice of the set f1; : : : ; mg. For the product AB 0 we then get

m k

AB 0 =
m

k 0

and m � 1, because of .B11 /
0A11 D Q1

1 ¤ 0, which by Sect. 9.2 implies
f1; : : : ; mg � f1; : : : ; ng. From the definitions of j , Qj we consequently get fj C
1; : : : ; kg � f Qj C 1; : : : ; kg, which in turn implies that Q1

1 D .B11 /
0A11 cannot be

irreducible unless j D Qj (compare the above table and the assertions 1., 2. preced-
ing it). ut

Example 9.14.

A D

0:5 0:5 0:5

0 0 0

0 0 0

; B D

1 0 1

1 1 0

0 1 1

given irreducibility of A11.B
1
1 /
0! Note in this connection that the two matrices .B 0A/11 and .AB 0/11

can differ in dimension.
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i.e.,

AB 0 D

1 1 1

0 0 0

0 0 0

; B 0A D

0:5 0:5 0:5

0 0 0

0:5 0:5 0:5

which implies that the number of L-basics n is one (commodity 1) and that the
number of basic processes j is two (processes 1 and 3).

We therefore obtain presentation Proposition 9.4 simply by interchanging pro-
cesses 2 and 3, which gives:

A D

0:5 0:5 0:5

0 0 0

0 0 0

; B D

1 1 0

1 0 1

0 1 1

To find the arrangement f1; : : : ; ng � f1; : : : ; j g of basic commodities and pro-
cesses as described in Proposition 9.4 it is thus not necessary to treat the matrices
A;B in the simultaneous fashion presented there [which amounts to a simultaneous
application of the two notions of technological and economic decomposability in-
troduced and applied in Abraham-Frois and Berrebi (1979, pp. 118 f.)]. This task
can now be decomposed into two separate steps based on only one matrix in each
case, as we have shown by the Proposition 9.13.

Example 9.15.

A D

1 1 0

0 1 0

0 1 0

; B D

2 0 0

0 2 2

2 0 2

AB 0 D

2 2 2

0 2 0

0 2 0

i.e., n D 1 is the only basic commodity, and

AB 0 D

2 4 0

0 2 0

0 4 0

i.e., j D 1 is the only basic process.
Note that the entry j D 1 of matrixB 0A is not basic in the sense of Definition 9.1

but only in the weaker sense supplied by Definition 9.11, a fact which exemplifies
the necessity of the additional efforts made to prove the uniqueness of weakly basic
entries f1; : : : ; j g of matrix B 0A.
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Note finally, that by means of Definition 9.11 (and Proposition 9.6) our
Definition 9.1 can be reformulated in the following equivalent way: A set of
entries f1; : : : ; ng is L-basic if it is weakly basic and if there does not exist a subset
of entries of the set fnC 1; : : : ; kg which is weakly basic, too (always with regard
to the matrix L D AB 0).

Remark 9.16. On the notion of L-basic commodities.
We have seen in this and the preceding section how L-basics can be defined

and treated if a square physical joint production structure A;B is assumed to be
given. Such a structure – then, however, based on monetary aggregates and given
positive ‘prices’ of commodity groups instead of prices (C) – also represents the ba-
sic starting-point of today’s input–output methodology [see United Nations (1968,
pp. 48 ff.)]. But to make conventional input–output analysis applicable, it is in gen-
eral the unquestioned aim of this methodology3 to reduce the given situation of
multiple production U; V (instead of A;B!) to a single matrix of either commodity
� commodity or industry � industry type (though the original data U; V are clearly
recognized to be of institutionally or technologically determined commodity � in-
dustry type). For the case of joint production, the input–output table of commodity�
commodity type recommended for use [see United Nations (1968, 3.40)] is derived
in the following way:

1. Through appropriate choice of units the ‘prices’ pi of the given commodity
groups are all set equal to one, i.e., p D e 2 IR k .
The matrix X D Ube0V �1 thus represents the structure of average unit-costs of
the k given industries.

2. It is assumed that all commodities produced by an industry j have been produced
with its structure of unit-costs Xj on the basis of constant returns to scale.

3. To obtain the structure of average unit-costs of commodities – which may have
been produced by several industries in the assumed situation – averages which re-
late to the market shares of the industries in question are introduced. This can be
done very simply by forming the matrix Y D V 0cVe�1 – the columns of which
describe the market shares of the given industries – and by premultiplying it with
the above matrix X . The resulting matrix AI D XY is called an input–output ta-
ble of commodity � commodity type, which is based on the ‘industry technology
assumption’ (see point 2).

4. This table represents the final form of input–output table, to which conven-
tional input–output analysis can then be applied. We do not intend to judge this
methodology here, by which input–output analysis of conventional type is made
applicable;4 but rather our interest lies in establishing and evaluating the follow-
ing simple assertion:

Proposition 9.17. The basics of the matrixAI are exactly theL-basics of the origi-
nally given input–output data U; V , which therefore are given by the strictly positive

3 See Rosenbluth (1968) for an early, yet widely unknown critique of this attitude.
4 See again Rosenbluth (1968) for several critical remarks from a statistical as well as an analytical
point of view.
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rows of the Leontief inverse .I � AI /�1 of the matrix AI (which in general is also
published if AI has been calculated).

Proof. AI D XY D Ube0V �1V 0cVe�1 is equivalent to UV 0 as far as its distribution
of zeros is concerned (since the two diagonal matrices employed are, of course,
well-defined in any input–output application).

The above proposition shows that the results of Sect. 9.2 and 9.3 can be applied
to input–output tables of type AI as well [see, e.g., United Nations (1968, p. 43)
for a numerical example of this type], though they, of course, then relate to matrices
U; V based on monetary aggregates instead of facts of technology. This change
in framework, however, does not prevent their useful application in this field of
investigation, and it furthermore shows that (monetary) L-basics are in fact in use,
whenever input–output tables of type AI are examined with regard to their set of
basic sectors.

This analogy to empirically motivated methodology recommended for the case
of joint products also explains why the denomination ‘Leontief-basics’ has been
chosen to distinguish the basics of Sect. 9.2 and 9.3 from the following consideration
of Sraffa-basics. ut

9.4 Basic Sraffa-Commodities

The criterion of direct and indirect technological relationships of commodities,
which formed the basis of our investigation in Sect. 9.2 and 9.3, is characterized
as leading to ‘uncertainty’ in Sraffa (1960, 57), if joint products are present. Yet we
have seen that at least four very clear-cut descriptions of such relationships exist, if
the term ‘direct’ is used in the following weaker sense: commodity i is a direct input
with regard to commodity h if a process j exists, which both uses i and produces h.
Sraffa’s neglect of this possibility of generalizing the concept of basic commodities
finds explanation in our view, however, if the purpose of his alternative construction
of generalized basic commodities is taken into account, namely, to find a generalized
version for his Standard System. For this purpose, a different extension of the no-
tion of ‘basics’ is in fact more appropriate. This notion will be reformulated below
simply by utilizing the matrix AB�1 instead of AB , whereby the complete char-
acterization of basics as formulated in Proposition 9.2 again becomes exploitable
(but not that of Propositions 9.4 and 9.5), and it will be compared briefly with our
previous concept of L-basics.

To avoid more complicated mathematical investigations the following assump-
tion will be employed in this final section:

Assumption 3. The matrix B of Sraffa’s joint production system A;B is a regular
matrix .detB ¤ 0/.

This assumption may be justified as follows. Assume that detB D 0, but that
there exists a reordering of processes j D 1; : : : ; k such that the diagonal of the
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output matrix B becomes strictly positive, which means that some similarity with
single-product systems is still retained. From ‘Satz 12’ in Zurmühl (1964, p. 163) we
can then conclude that det.B C "be/ will be nonzero for all sufficiently small " > 0,
i.e., an arbitrarily small perturbation of, at most, n positive elements of the matrix B
will make this matrix regular. Assuming the possibility for a positive diagonal of
matrix B , we thus may conclude that Assumption 3 can be assured without any
change as far as the qualitative features of this output matrix B are concerned.

Remark 9.18. Yet, familiar examples of joint products exist, to which the above
procedure cannot be applied, e.g., in the case of wool and mutton [if produced by
only one process; see also Sraffa (1960, 59) for a similar example]. In such a case
small and perhaps inadmissible qualitative changes (of non-outputs into outputs)
have to be allowed for, in addition, to ensure the regularity of matrix B .

To motivate the following definition of Sraffa’s basics let us (despite better
knowledge) presume that there exists a unique single-product technology S (à la
Sraffa) behind our joint production system A;B from which this system is derived
by (e.g., institutionally determined) process mixes in the customary linear way.
Hence, matrix S times the output program of process j : Bj gives the inputs Aj

necessary to support this output program. The presumed conventional technology
underlying system A;B can then be determined in a very simple way: The assumed
equations SBj D Aj ; j D 1; : : : ; k, immediately imply the equation SB D A,
which by means of Assumption 3 in turn implies S D AB�1. With regard to this
hypothetical single-product technology S D .sih/ underlying system A;B we can
now define in complete analogy to Definition 9.1 of Sect. 9.2:

Definition 9.19. A commodity i will be called a Sraffa-basic (S -basic), if for all
commodity indexes h 2 f1; : : : ; kg there exists a sequence of commodity indexes
i1; : : : ; ir (of finite length r), such that the product

si i1si1i2 ; : : : ; sirh is nonzero

Commodities which do not fulfill such a condition are called non-basics (NS -
basics).

Note that the product shown in Definition 9.19 in contrast to what we considered
in (A) may now also become negative, since the employed ‘technology’ S generally
will not fulfill S � 0.

Assumption 4. The joint production system A;B contains at least one S -basic.
Commodities 1; : : : ; k are assumed to be relabelled in such a way that the set of
S -basics is given by f1; : : : ; ng.

Remark 9.20.

1. By Remark 9.3 of Sect. 9.2 we know that Proposition 9.2 applies to Defini-
tion 9.19 as well, thus leading to an equivalent description of S -basics solely in
terms of rearrangements of ‘direct’ relationships sih. This proposition completes
by its third condition the incomplete description of S -basics given in Pasinetti
(1977, p. 53).
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2. Assume, in addition to Assumption 3, that the matrix AB�1 does not have an
eigenvalue equal to one. In this case, the matrix AB�1.I � AB�1/�1 can be
formed and is equal to Pasinetti’s matrix H D A.B � A/�1 of ‘vertically inte-
grated units of productive capacity’, which thus can be used instead of matrix S
to characterize S -basics.

3. A proposal for making the original Sraffa–Manara approach to S -basics com-
plete (with regard to the third condition stated in Proposition 9.2) may be given
in the following way: (a) A set of (reordered) commodities i D m C 1; : : : ; k

is NS -basic if a regular matrix X exists, such that we get for the matrices
eA D AX;eB D BX the condition eA12 D eB12 D 0 with regard to the subdivi-
sion implied by the number m [see Manara (1980)]. (b) A set of NS -basics is
maximal if a set of NS -basics (as defined in (a)) which contains it as a proper
subset does not exist. (c) If there is only one such maximal set fm C 1; : : : ; kg,
then commodities 1; : : : ; m are called the S -basics of system A;B (no S -basic
commodity will exist in the opposite case). That points (a)–(c) in fact general-
ize our Definition 9.19 (as reformulated by means of Proposition 9.2) can easily
be seen as follows: By Assumption 3, the matrix eB must be regular, and from
Pasinetti (1977, p. 243) we know that eB and eB�1 are always block-triangular
matrices of the same type, a fact which then must also hold for the matrix
eAeB�1 D AB�1 D S as well.

4. Points 1–3 can be considered to present a similar set, yet no longer a set of in-
complete descriptions of S -basics as supplied by Pasinetti (1980) and Steedman
(1980), read in conjunction. With regard to the third description 3) it must, how-
ever, be noted that it has the disadvantage of making a complete examination
of all possible sets of NS -basics necessary first (as in this case no careful re-
formulation of the third condition of Proposition 9.2 is available as far as the
Sraffa–Manara procedure is concerned). The direct approach to S -basics by
means of matrices S or H thus may be preferable (in case the assumed regu-
larities can be assured), in particular since it is of customary type so that no new
definition of S -basics has to be learned.

Examples (in continuation of the Examples 9.8, 9.14, 9.15 of Sect. 9.3):

Example 9.21.

B�1 D

1 0 �1=3 �1=3

0 1 �1=3 �1=3

0 0 2=3 �1=3

0 0 �1=3 2=3

; AB�1 D
1

10

1 1 �1=3 �1=3

1 1 �1=3 �1=3

0 0 1=3 1=3

0 0 1=3 1=3

In contrast to the four L-basics found out in the last section, only two S -basics
(commodities 1 and 2) exist in this case.
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Example 9.22.

B�1 D

0:5 0:5 �0:5

�0:5 0:5 0:5

0:5 �0:5 0:5

; AB�1 D
1

4

1 1 1

0 0 0

0 0 0

The set of L-basics here coincides with the set of S -basics.

Example 9.23.

B�1 D

0:5 0 0

0:5 0:5 �0:5

�0:5 0 0:5

; AB�1 D

1 0:5 �0:5

0:5 0:5 �0:5

0:5 0:5 �0:5

i.e., three S -basics (but only one L-basic, see Sect. 9.3) exist. It follows that no
general relationship between the number of L- and S -basics is to be expected.

These examples make absolutely clear that our definition of S -basics has been
based on direct/indirect relationships of purely imaginary kind, generally with no
meaningful (technological) interpretation (see Pasinetti 1980, p. 54 for a similar
conclusion).

By their very definitions, S -basic and NS -basic commodities thus seem to be
only of a very artificial nature. However, Sraffa (1960, 65) claims that the ‘chief
economic implication’ of this distinction (with regard to prices and the rate of profit)
will still be found to be true under this new definition. This implication now reads:

Proposition 9.24. (compare Steedman 1980, pp. 47/48):

(a) A proportional change in the input or output of a non-basic commodity with
regard to all sectors will not influence the prices of basics and the rate of profit.

(b) Given the conditions of production, the relation between the prices of basics
and the rate of profit can be presented independently of the relation between the
prices of non-basics and the rate of profit, while the converse is not true (aside
from very exceptional cases).

Proof. The proof of these two assertions is a simple consequence of (C) rewritten
in the form

.1C r/pAB�1 C waB�1 D p

where commodities 1; : : : ; k are imagined to have been reordered such that
Proposition 9.2 [see Remark 9.3] can be applied. It will not be considered here
in its details. Note, however, that an equiproportional change in the i -th row of
both matrix A and B is equivalent to the imposition of an ad valorem tax on
commodity i . ut

Remark 9.25. In the presence of joint production, Proposition 9.24b is no longer ap-
plicable to changes in the conditions of production ofNS -basics as well [aside from
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the exceptional cases considered in 9a; see Steedman (1980) for further remarks on
this deviation from single-product systems]. Furthermore, it is not yet clear whether
Proposition 9.9 of Sect. 9.3 will apply to S -basics as well, a question which may be
of importance for a proper construction of Sraffa’s Standard Commodity in that case
(see Schefold 1977, pp. 432 f. for some investigations into this problem, and note
that in our examples 5/6 the set of S -basics is in fact equal to the set of L-basics in
the two cases considered). Finally, it should be noted that arbitrarily small changes
in the quantities of outputs actually produced .bij >0/ may cause the number of
S -basics to jump, e.g., from zero to k. A simple example of this type of behavior is
provided by

A D

1 2 2

1 1 2

2 2 1

B D

12C 2" 17C 2" 24C "

5 7 10

8C " 8C 2" 4C 2"

if " changes from zero to positive values, since AB�1 then changes from

AB�1 D

3 �7 0

�2 5 0

0 0 1=4

to a matrix with no zeros at all. This is due to the lack of non-negativity of the matrix
S and therefore cannot occur with regard to the matrix L.

Remark 9.26. (compare Remark 9.16): We have seen that L- and S -basics can be
defined in the same formal way, but that the first concept relates more to facts of
technology, while the second is meant to ease certain price-theoretic considerations.
Despite their differing contents there is, however, one further formal analogy which
should be mentioned here briefly.

Returning to the level of monetary aggregates, corresponding input and output
matrices U; V , and their input–output methodology as considered in Remark 9.16,
we should observe that a fundamental alternative to the ‘technology assumption’
employed there exists, i.e., the so-called ‘commodity technology assumption’ (see
United Nations 1968, pp. 48 f. for details). By means of this assumption the table
AI of Remark 9.16 is replaced by another fundamental type of final input–output
table, namely:

AC D X.BceB�1/�1 D AceB�1ceBB�1 D AB�1

where X is defined as in Remark 9.16. Hence, on the level of reported monetary
aggregates, the S -basics of observed make matrices and absorption matrices V;U
are exactly the ordinary basics of the input–output table AC derived from U; V (see
United Nations 1968, p. 42 for an example).
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9.5 Conclusion

Summing up, we can state that Sraffa’s notion of basic commodities for single
product systems gives rise to two different, both well-defined, notions of such com-
modities, if general joint production systems are immediately used in place of square
single-product technologies. This disparity arises because technologically based de-
compositions and price-theoretically motivated ones lose their equivalence in this
general case despite the fact that both notions can indeed be defined in the same for-
mal way (depending only on whether ‘input–output table’ AB 0 or AB�1 is chosen
as basis of their definition). However, the latter approach is confined to square joint
production, while the first one is also meaningful in general and firmly rooted in the
input–output methodology of the United Nations’ (1968) SNA.
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Chapter 10
Some Continuity Properties of a Reformulated
Sraffa Model

10.1 Introduction

In this chapter we provide some continuity results for Sraffa price system which
include subsistence consumption in the matrix of intermediate inputs, but which al-
low for wage level fluctuations around the subsistence wage level, assuming thereby
ex post wage payments only with respect to this deviation from the subsistence wage
level. These continuity results all concern a neighborhood of the maximum rate of
profit R derived from the subsistence wage situation.

An economic consequence of theses mathematical results is that the concept of
‘basic commodities’ needs reformulation from the empirical point of view, since
it may (on the physical level) include basics of very minor importance (‘pencils’).
These types of commodities must in some way or another be classified as non-
basics. They should also not be considered as giving rise to switches of techniques
when ball-pens are replacing pencils, in case this latter commodity is no longer
available.

From a broader perspective, these observation again suggest that the basic/non-
basic distinction cannot be meaningfully applied to the highest level of disaggre-
gation (the physical level), but must be reconsidered in its usefulness after some
aggregation for appropriately chosen aggregated sets of commodities and aggre-
gated methods of production. This again suggests that an input–output oriented
approach as in Bródy (1970), concerning fixed capital, semi-finished products, and
now also the notion of basic commodities will be the better choice compared to the
physical one that was chosen by Sraffa and his followers.

10.2 Limit Cases of Sraffian Models of Production Prices

In the following we shall consider the elementary Sraffian price equations

.1C r/pAC wl D p D .p1; : : : ; pn/ 2 <n; py D p.x � Ax/ D 1 (10.1)

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 10,
c� Springer-Verlag Berlin Heidelberg 2010
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in their dependence on the parameters A; r .1 Assuming A to be productive (cf.
footnote 1) it can be shown2 that I � .1C r/A is non-negative invertible for any r in
the interval Œ0; R/,3 where 	 D 1

1CR
< 14 is the dominant characteristic root of A.

This fact can be used to solve the above price equations in a unique way:

p D wl.I � .1C r/A/�1 D w �
1X

vD0

.1C r/vlAv > 0 (10.2)

w D
1

l.I � .1C r/A/�1.I � A/x
> 0 (10.3)

These two expressions define continuous functions

p W Œ0; R/ �! <n; w W Œ0; R/ �! <:

What we intend to show in the following is, that plausible assumption, which ensure
that the equation system

.1CR/pA D p; p.x � Ax/ D 1 (10.4)

has a unique and positive solution p.R/, will also be sufficient to prove that the
definitions

p WD p.R/; w.R/ WD 0

lead to a continuous extension of the above two functions to the interval Œ0; R�
(now including R). Furthermore, if An; ln is a sequence of input coefficients, which
converges to our given system A; l (with respect to each coefficient), then the
corresponding sequence of functions pn;wn will converge uniformly to the func-
tions p;w.

Such continuity properties are necessary ingredients for a sensible interpretations
of the prices p.R/ as a ‘pure capital theory of value’ (cf. Pasinetti 1977, pp. 78–80)
and the reinterpretation of the wage w as ‘surplus wage’.

Corresponding continuity properties can be established for the quantity side (the
right hand side) of the given input–output systemA; l; I (i.e., with respect to Sraffa’s
Standard Commodity especially), but there they also reveal that Sraffa’s distinction:
basics vs. non-basic commodities may declare commodities as basic which are of
minor interest only.

1 A � 0 is the quadratic matrix of physical inputs of a simple input–output system and is assumed
to be productive, i.e., y D x � Ax > 0 for a given x D .x1; : : : ; xn/

t (a column), the gross
industry output vector. l > 0 (a row) is the vector of direct labor inputs and p;w; r � 0 denote
the usual system of production prices (a row) and its wage and profit rate; for details see Pasinetti
(1977, Chap. 5) or Weizsäcker (1971, Part II).
2 I the identity matrix
3 	.A/;R.A/, if explicit reference to the matrix A is necessary.
4 This notation means that the point R is to be excluded.
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The two assumptions we shall employ in the following are already well-known
(cf. e.g. Zaghini 1967; Pasinetti 1977, p. 109).5 They can be expressed as follows:
(1) There exists at least one basic commodity, (2) the physical own rate of repro-
duction of the non-basic commodities is greater than the corresponding rate in the
sector of basics.

In mathematical terms these two conditions are equivalent to:
There exists a suitable ordering of the given commodities: 1; : : : ; n, such that the

input matrix A takes the form (see also Chap. 8):

A D

�
A1 X

0 A2

�

whereA1 is quadratic (of dimension s; 1 � s � n) and irreducible and whereX ¤ 0
(condition 1). Furthermore 	.A/ D 	.A1/ > 	.A2/, i.e., R.A/ D R.A1/ < R.A2/
(condition 2).6 While condition 1 can be defended easily with respect to developed
economies7, there may exist peculiar cases of (groups of) non-basic commodities,
whose own rate of reproduction will be less than that of the basic sector.8 But as this
simple model already neglects the consideration of fixed capital, pure joint produc-
tion, inhomogeneous labor and more, it can be regarded as reasonable or adequate
to neglect such peculiar situations too.

Lemma 10.1. Under the above two assumptions we have: The equations

.1CR/pA D p Œp.x � Ax/ D 1� (10.5)
.1CR/Aq D q Œlq D 1� (10.6)

(where R D R.A/ D R.A1// have uniquely determined solutions p; q with p > 0

and .q1; : : : ; qs/t > 0, .qsC1; : : : ; qn/t D 0 (f1; : : : ; sg the subsector of basic com-
modities; cf. condition 1).

Proof. The (10.5) imply .1 C r/.p1; : : : ; ps/A1 D .p1; : : : ; ps/ with respect to
the irreducible submatrix A1 of A. It is well-known that R D R.A1/ is a simple
characteristic value of A1, i.e., the vector .p1; : : : ; ps/ is uniquely determined – and
strictly positive.9 And because of R < R.A2/ we have

.psC1; : : : ; pn/ D Œ.1CR/.p1; : : : ; ps/X�.I � .1CR/A2/
�1 > 0; 10

which proves (10.5).

5 cf. also the exchange of views between Sraffa and Newman in Bharadwaj (1970).
6 The first s commodities then describe the basic sector of the given input–output system.
7 Example: Electric energy. This condition implies that R is finite and that the economy cannot be
decomposed into two unconnected parts.
8 cf. Sraffa (1976, Appendix B).
9 For details see Nikaido (1968, Chap. 2).
10 Cf. Appendix 6 in Sraffa (1976).
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The (10.6) on the other hand imply:

.1CR/A2

0

B@
qsC1
:::

qn

1

CA D

0

B@
qsC1
:::

qn

1

CA ; i.e.,

	 D .1CR/�1 must be a characteristic value ofA2, unless all qi D 0; sC1 � i � n.
This latter characterization indeed must be the case, since otherwise we would have
	.A/ � 	.A2/ in contradiction to our Assumption 2.

Now from .qsC1; : : : ; qn/
t D 0 there follows

.1CR/A1

0

B@
q1
:::

qs

1

CA D

0

B@
qsC1
:::

qs

1

CA

which implies (10.6) – again by the irreducibility of the non-negative matrixA1. ut

10.3 Some Propositions

On the basis of these preliminaries we are now able to formulate the main proposi-
tion of this chapter:

Proposition 10.2. For the considered Sraffa price system there holds:

(a) The functions p W Œ0; R� �! <n and w W Œ0; R� �! < we defined above are
continuous. There exists a unique continuous extension of p;w to an interval
Œ0;K�;K > R with respect to a fulfillment of (10.7), (10.8) (see below).

(b) For any sequence of non-negative matrices An sufficiently close to A and con-
verging to A the induced sequences pn.r/;wn.r/ converge to p.r/;w.r/ with
respect to a suitable chosen interval Œ0;K�;K > R.

Proof. Part a: It suffices to consider a neighborhood of r D R (for r < R these
continuity properties are already well-known, cf. (10.2) and (10.3)).

The following system of equations

p � .1C r/pA � wl D 0 (10.7)
p.I � A/x � l D 0 (10.8)

which has been used to define p.r/ and w.r/, can be written in the following func-
tional form:

H.r Ip;w/ D 0 keeping A; l constant
G.A; r Ip;w/ D 0 keeping l constant only,
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thereby defining continuously differentiable functions11

H W <nC2 �! <nC1 and G WM.n � nI </ � <nC2 �! <nC1:

Let us first employ the function H to prove part (a) of the proposition: Con-
sider the price vector p.R/ determined by (10.4), which therefore fulfills: H.RI
p.R/; 0/ D 0. Partial differentiation of H with respect to p;w gives:

@H

@.p;w/
.R; p.R/; 0/t D

0

B@
I � .1CR/A

::: .I � A/x
. . . . . . . . . . . .

::: . . . . . .
�l

::: 0

1

CA DW D2H t :

It is impossible that there exists a vector
�
x
0

�
2 <nC1 such that D2H t

�
x
0

�
D 0:

The product .I � .1CR/A/x would be zero then and by lemma (10.6) the vector x
would have to be equal to Sraffa’s Standard Commodity qt � 0, which would imply
�lx < 0.

The first n columns of D2H t therefore are linearly independent. But then all
nC 1 columns must be linearly independent, because otherwise we would have

0 � .I � A/ Qx/ D ŒI � .1CR/A� Qx with respect to a vector Qx ¤ 0:

If such a vector Qx 2 <n would exist, the equation system p.I � .1 C R/A/ D 0

would have no positive solution (cf. Stiemke’s Theorem in Nikaido 1968, p. 36)
contrary to lemma (10.5). Therefore, the matrix D2H t must be regular.

By the implicit function theorem (see Dieudonné 1960, p. 265) it then follows,
that there exists an open interval U around R and a unique continuous mapping
.p;w/ W U �! <nC1 such that .p;w/.R/ D .p.R/; 0/ and H.r; .p;w/.r// D
H.r; p.r/;w.r// D 0 for any r 2 U . But for r 2 U , r < R only p.r/;w.r/ as
defined by (10.2), (10.3) will fulfill this equation. This completes the proof of part
(a) of our proposition.

Part b: The function G (defined above) represents a continuously differentiable
extension of the function H with the same partial derivative with respect to .p;w/
(at .A;RIp.R/; 0/ now). Therefore the necessary assumptions for the application
of the implicit function theorem are fulfilled with respect to G too. The existence of
the above continuous mapping .p;w/ then extends to a connected neighborhood of
.A;R.A//, which implies Proposition 10.2(b). Note that all non-negative matrices
An sufficiently close to A must fulfill the same conditions as are assumed for our
given systemA, whereby lemma (10.5, 10.6) and Proposition 10.2(a) can be applied
to each of these matrices too. ut

Corollary 10.3. The price vector sequence pn.R.An// converges to the price vec-
tor p.R.A//.

11 M.n	 nI</ the vector-space of all n	 n-matrices with real coefficients.
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Proof. The function An �! R.An/ is continuous, see e.g. Blackley and Gossling
(1967, p. 430). Therefore .An; R.An// will lie in the domain of the above function
.p;w/ for any non-negative matrix An sufficiently close to the given A. The desired
result then follows by a suitable combination of continuous functions (including
.p;w/). ut

Corollary 10.4. The same continuity property holds with respect to qn – the right
hand characteristic vector of An; R.An/ – normalized by lqn D 1, i.e., with respect
to Sraffa’s Standard Commodity.

Proof. In this case we have to consider the equation system

q � .1C g/Aq � c � s D 0 (10.9)
1 � lq D 0; (10.10)

where g; c 2 < and s 2 <n; s > 0 (an exogenously given ‘consumption vector’).
As in the above proposition this set of equations defines a function G (regarding l
as constant again) with the following partial derivative, now with respect to .q; c/:

@G

@.q; c/
.A;R.A/I q.R/; 0/ D

�
I � .1CR/A s

�l 0

�
:

Now

det
�
I � .1CR/A �s

�l 0

�
D � det

�
I � .1CR/A s

�l 0

�
:

The proof of Proposition 10.2(a) then shows that both determinants must be non-
zero (both matrices are regular), i.e., the implicit functions theorem can again be
applied. As in Corollary 10.3 the continuous function An �! .An; R.An// can
then be used to complete the proof (since qn is uniquely determined by An; R.An/.

ut

Remark. From the continuity of the functions (10.2), (10.3), from the continuity
of the dominant characteristic root R.A/ with respect to the non-negative matrix
A and from the continuity property established in our proof of Proposition 10.2(b)
there further follows that the sequences considered in Proposition 10.2(b) will be
uniformly convergent, i.e., we even have:

lim
n!1

sup
r2Œ0;K�

jjpn.r/ � p.r/jj D 0 and lim
n!1

sup
r2Œ0;K�

jwn.r/ � w.r/j D 0:

Supplement. There exists a further sensible assumption on the coefficient matrix
A11

12 of the basic sector by which a certain stability result (cf. Nikaido 1968, p. 99)
can be established:

12 for simplicity written as ‘A’ in the following.
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Assumption 3. A is a primitive matrix.
There are several equivalent characterizations of this property (cf. Seneta 1973;

Varga 1962 or Nikaido 1968):

(a) The (irreducible) matrix A is not cyclic, i.e., there does not exist a renumbering
of the basic commodities such that A takes the form:

2

6666666664

0 C12 0 : : : : : : 0

0
::: C23 0 0

:::
:::

:::
: : :

:::
:::

:::
::: 0

0 0 0 : : : : : : Ck�1;k
Ck1 0 0 : : : : : : 0

3

7777777775

with square null submatrices in the diagonal of A.
(b) B WD limk!1.

A
�.A/

/k D limk!1.1 C R.A//
kAk exists and is equal to qp,

where the vectors p; q – defined in the above lemma, but restricted to the basic
vector – have been chosen such as to fulfill: pq D 1. It follows that the rows
(columns) of the matrix B all are proportional to p.q/.

(c) There exists k 2 @ such that Ak > 0.

We do not think it probable that the basic sector of any realistic input–output system
will be of the simple completely cyclical kind as described in (a), i.e., will be of the
Austrian linear type (Weizsäcker 1971, p. 32), but with its ‘final’ goods (and only
these) employed again on the first stage of production.

Furthermore there does exist an even simpler condition which will ensure the
primitivity of the irreducible matrix A:

Assumption 4. There exists a basic commodity that is used directly in its own pro-
duction, i.e., there exists a positive element ai i in A (cf. Varga 1962, p. 43).

If Assumptions 3 or 4 are accepted, the following proposition can readily be
established:

Proposition 10.5. For the considered Sraffa input–output system there holds:

(a) k

q
.Ak/ij �! 	.A/ D 1

1CR.A/

(b) . A
�.A/

/ky0�!˛ �qŒyt0.
A
�.A/

/k �!ˇ �p� for any y0 � 0 and some ˛ >0 Œˇ >0�.

(c) The mapping  :

A
 
�! lim

k!1
.
A

	.A/
/k DW B > 0

is continuous on the set of all primitive matrices (which is open and dense in
the set of all non-negative matrices).
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Proof.

(a) .Ak/ij

�.A/k
�! Bij > 0 implies that

k
p
.Ak/ij
�.A/

! limk!1
k
p
Bij D 1.

(b) limk!1
Ak

�.A/
y0 D By0 D .py0/q D ˛q.

(c) It suffices to examine the continuity of  under the additional assumption:
	.A/ < 1, since the mapping  is homogeneous of degree zero. But then
the claimed continuity follows from Corollaries 10.3, 10.4 in connection with
part (b) of the present discussion. ut

10.4 Conclusions

We have already stressed the importance of the above continuity results for a ‘pure
theory of capital’ (or a ‘surplus wage’ theory13) in our introductory remarks. In
addition we can now state that the qualitative behavior of Sraffa’s objects of in-
vestigations: the functions p.r/;w.r/ (and – if necessary – also: q.R/) can be
approximated as close as we like by using strictly positive input matrices only, i.e.,
by using Perron–Frobenius theory in its strongest form. This fact can be combined
with Schefold’s (1976) conclusion ‘that the normal case is one where all roots of the
system are simple’, whereby a simple expression for the vector of production prices
(in terms of the wage rate) can be obtained (cf. there p. 30).

But to restrict our attention to strictly positive matrices means that the differ-
ence between basic and nonbasic commodities has been abolished – or has been
transformed to a situation with major and minor basics (where the latter could be
described as the (largest) set of types of commodities whose technical conditions
do not exhibit a significant influence on the relative prices of the former). But such
a ‘definition’ – replacing ‘no influence’ by ‘no significant influence’ – is not eas-
ily rendered precise. And furthermore it may also contain a certain discontinuity:
the set of major basics may be a good deal smaller than the set of basics (defined
with respect to Sraffa’s original intention there may exist basics with neglectable
influence on the relative prices of the other basics).14 The question arises whether
Sraffa’s original dividing line within the set of all commodities must be regarded
as being too ‘ideal’, if quantitative dimensions are taken into account. Is it really
important to have a classification which regards ‘electric energy’ and ‘pencils’ as
being ‘equal’ but which normally excludes wage goods from the list of such basics?

To give the notion of a basic commodity operational significance as well as eco-
nomic content, it may be useful to look for criteria which help to eliminate ‘minor
basics’ from the list of basics, i.e., which serve to eliminate corresponding weak
price dependencies as far as possible. Such a procedure tries to go the opposite

13 We do not question here the analytical usefulness of such a theory.
14 One may think of a commodity which normally will be used as a consumption good only, but is
also used as an input in the production of a ‘true basic’ in a very small amount.
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way as compared to that followed in our text or by Schefold (1976). But it is not
without economic interest to look for such peculiarities of given input–output sys-
tems A; l; I .

This fact can be illustrated with respect to a further classification, the classifica-
tion of the different sectors of our system A; l according to the similarities in the
value composition pAj

wlj
of capital. These similarities can be used to eliminate cer-

tain price independencies (with respect to movements of the rate of profit r), thus
leading to non-distorting aggregation procedures (cf. e.g. Miyao 1977).

But here we have been interested mainly in the question whether the far reaching
properties of positive matrices can be expected for our given input–output system
A; l; I too, which especially meant, that we had to look for assumptions on A; l
by which discontinuities in the derived notions could be prevented. Fortunately the
necessary assumptions are well-known and of sensible nature too.
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Chapter 11
The Standard Commodity and the Theory
of Income Distribution

11.1 Introduction

Since the publication of Sraffa’s (1960) book: Production of Commodities by Means
of Commodities numerous comments have been published with regard to its
Chaps. 4 and 5, the construction and the proof of uniqueness of his Standard
Commodity. While most of the commentators have stressed the importance of
Sraffa’s Standard Commodity as an ‘invariable measure of value’, there are also
some, cf., e.g., Pasinetti (1977, pp. 119–120), Woods (1978, p. 92), who find that its
most remarkable theoretical implication lies in the demonstration that it is possible
to treat the distribution of income logically prior to and independently of prices.

Regarding these views we shall show in the following that this assertion is a com-
pletely misleading one. The Standard Commodity and the therewith derived linear
wage-profit curve ew.r/ do not simplify the theory of income distribution, but in
fact make it more obscure, i.e., either incomplete ore more complex, as compared
to its presentation by means of a conventional nonlinear w.r/-curve, e.g., based on
a numéraire which keeps national income fixed when changes in the distributional
variables w and r are considered. Furthermore, our way of demonstrating this claim
will to some extent indicate that Sraffa’s composite commodity may be of dubious
economic significance quite generally, i.e., will not serve as an appropriate ‘mea-
sure of value’, also cf. Burmeister (1968, p. 86–87) for an early remark on this and
Flaschel (1980). The present chapter thus should be conceived as a first argument to-
wards the conclusion that an analysis based on Sraffa’s Production of Commodities
by Means of Commodities should dispense with his hypothetical composite com-
modity, the ‘Standard Commodity’.

11.2 The Sraffian Approach to Income Distribution

To substantiate this claim as far as its application to the theory of income distribution
is concerned, we shall make use of simple examples which are similar to one used
by Sraffa (1960, Chap. 6) to criticize Böhm–Bawerk’s concept of an average period

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 11,
c� Springer-Verlag Berlin Heidelberg 2010
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of production. In reference to the Austrian school which thought of production as
a linear process with a finite number of stages, Sraffa considers two such processes
to show the possibility of a reversal in the direction of change of the relative price
of the assumed two final goods, a fact which ‘cannot be reconciled with any notion
of capital as a measurable quantity independent of distribution and prices’ (Sraffa
1960, p. 38).

This method of critique will now be applied to the above claims of Pasinetti
and Woods by employing the following examples of data on production. Consider
a standard single-product system with n processes where labor inputs are described
by the vector l D .l1; : : : ; ln/ 2 <

n and where the structure of physical inputs per
unit of commodity output is given by a matrix of type

A D

0

BBBBB@

0 1 0 0

0

0 1

x 0 0

1

CCCCCA
(11.1)

We thus assume as given an almost linear production structure, where commodities
pass through n stages, but a structure which exhibits one important circularity (rep-
resented by the number x) by which the final stage n is related with the first stage of
production. We must, of course, assume that 0 < x < 1 holds. The matrix A is then
productive as well as irreducible; all ‘intermediate’ goods 1; : : : ; n�1 and the ‘final’
good n are basic commodities, cf. Pasinetti (1977) with regard to the definition of
these concepts.

It is customary to normalize l by setting L D l1 C : : : C ln equal to ‘one’. We
may also assume that inputsA; l describe the production of commodities in absolute
terms. Net production is thus simply given by 1 � x units of commodity n and is
positive by assumption. On the basis of these data Sraffa’s prices p D .p1; : : : ; pn/
are then given by:

p D .1C r/pAC wl; pn.1 � x/ D L D 1 (11.2)

where r denotes the uniform rate of profit and w the uniform rate of wages.

Example 11.1. For A as in (11.1) and l D .1; 0; : : : ; 0/ we get for prices (11.2) the
expressions .i D 1; : : : ; n/:

pi D
.1C r/i�1w
1 � .1C r/nx

; pn.1 � x/ 	 1;

an equation system which can be uniquely solved if the rate of profit r is assumed
to be given.
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Note that by the very definition of the above prices pi the value of national
income is kept constant (equal to one), a fact which will be of importance, when
Sraffa’s change of numéraire by means of his Standard Commodity is considered.

11.3 The Standard Commodity

This Standard Commodity is defined by the corn-like property that it must be pro-
portional to the inputs needed for its production (Sraffa 1960, p. 20), i.e., it is given
by the right-hand eigenvector of the matrix A which fulfills

.1CR/Aq D q; lq D 1; q � 0 (11.3)

It is known that (11.3) has a unique and positive solution vector q 2 <n if – as here
is the case – the employed matrix A is irreducible. Furthermore, the scalar R gives
the maximum rate of profit, which can be obtained from (11.2) by setting w D 0.

Example 11.2. The Standard Commodity of Example 11.1 is given by

q D .1; x1=n; : : : ; x.n�1=n//t ; R D x�1=n � 1:

This can immediately be checked by inserting q and R into the above eigenvector
equation (11.3). Referring again to Burmeister (1968, p. 87) it is in fact difficult to
see why such particular weights qi D x.i�1/=n – which have not much in common
with actual net production y D .0; : : : ; 0; 1 � x/t , a column vector as is indicated
by the superscript ‘t ’ – should be singled out as a proper ‘measure of value’, i.e.,
here with respect to a better understanding of income distribution by means of the
linear wage-profit curve implied by them (see (11.5)).

11.4 Hiding Nonlinearities: The Role of the Standard
Commodity

It is mathematically easy to separate the two distributional variables w; r of (11.2)
from prices p. For 0 � r < R the first equation in (11.2) can be rewritten as
p D wl.I � .1 C r/A/�1, where I denotes the identity matrix. Post-multiplying
this equation with the column vector y D .0; : : : ; 0; 1 � x/t 2 <n we thus obtain
from the second equation in (11.2):

w D w.r/ D Œl.I � .1C r/A/�1y��1 (11.4)

which gives the well-known falling wage-profit curve of system A; l . The situation
described by (11.4) can be summarized as far as its qualitative characteristics are
concerned by means of the Fig. 11.1.
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r

py=1

rmax

w

w(r)

profit
share r∗

wage
share w∗ 

Fig. 11.1 Wages w measured in terms of net national product y W py D Y 
 1

With regard to a given rate of profit r� this diagram immediately informs us about
the actual share of wages and of profits: w� and 1�w� in income Y D py 	 1, and
this is true for all possible situations of income distribution within the range .0; R/.

Example 11.3. The wage-profit curve (11.4) of Example 11.1 is given by

w D .1 � .1C r/nx/=..1 � x/.1C r/n�1/;

which quite obviously is a strictly decreasing function of r � R D x�1=n � 1.
In what way will the application of the Standard Commodity (11.3) now improve

the situation? To show this, the conceded procedure is to replace the numéraire
commodity y by the Standard Net National Product y.q/ D q�Aq, i.e., to normal-
ize relative prices p D wl.I �.1Cr/A/�1 by Qpy.q/ 	 1 and no longer by py 	 1.
By this change in the choice of the employed numéraire commodity – leading to Qp,
eY , etc. – we immediately get (see (11.2) and (11.3):

.ep �epA/q D ep.q � Aq/ D 1 D repAq Cew and
RepAq D 1; i.e., 1 D r=RCew or

ew D ew.r/ D 1 � r=R (11.5)

This is the linear relation between wagesew (expressed in units of y.q/) and the rate
of profit r , which according to Pasinetti (1977, pp. 119–120) should enable us to see
the alternative possible distributions of net national income py between wages and
profits now under ideal conditions, i.e., independently of prices p (see footnote 1).

With regard to this latter point it should, however, be clear that – mathematically
speaking – this had already been the case with respect to (11.4), since prices p are
not explicitly involved in the representation of this relationship as shown there. Yet,
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prices p are, of course, implicitly contained in this functional relationship as can
be seen from its above derivation. It is from this fact that the alleged disadvantage
of (11.4) as compared to (11.5) seems to originate, since the latter curve no longer
contains the expression l.I � .1C r/A/�1 – which is proportional to prices p – as a
constituent part. Despite this true observation, however, there is no gain, but indeed
a loss of insight involved if we replace (11.4) by (11.5) in the study of questions of
income distribution. Instead of supplying ‘ideal conditions’ for such an investigation
this latter equation is characterized by a loss of information in this respect. The
following related points are intended to make this assertion obvious step by step.

It has been stated in commenting on Fig. 11.1 that for any given rate of profit r�

the related data w�, 1�w� will represent the actual share of wages and of profits in
national income py if y is chosen for numéraire. This conclusion, however, is not
true if the new standard y.q/ is adopted as numéraire commodity. In this case the
curve w.r/ of Fig. 11.1 must be replaced by the (‘ideal’) straight line which connects
the points ‘1’ and ‘R’ and its value ew.r�/ D ew� must now be used in place of the
former wage rate w�.r�/. This value ew� describes that proportion of the Standard
Net Product y.q/ which can be bought by wage-earners from their wage-income at
the rate of profit r�. However, this (hypothetical) proportion of Standard Net Product
y.q/ now used to measure wage-earners income is no longer related to the actual
wage share .w�/ or profit share 1�w� in any simple manner. This follows from the
fact that because of the change in numéraire commodity .y ! y.q// actual income
eY D epy will no longer be invariable with respect to changes in the rate of profit r
(since py 	 1 has been replaced byepy.q/ 	 1/. The distribution of income in the
new situation must thus be represented now by

ew�=epy; .epy �ew�/=epy;epy D eY

with an unknown value eY of actual national income in terms of the new standard
adopted. Hence, the description of income distribution must be regarded as rather
incomplete if the ‘ideal’ (11.5) is used in place of its ordinary counterpart (11.4).

It may, however, be claimed that we did not prove that the identity py 	 1 will
get lost if the numéraire y.q/ is adopted in place of y. To show that this is indeed
the case, i.e., that (1) the above is to the point, the calculations of Examples 11.1
and 11.2 can now be usefully employed. It is not necessary to recalculate the prices
pi of Example 11.1 by means of the vector q of Example 11.2 according to the
new normalization rule deriving from it, since we already know that its wage-profit
curve in contrast to that of Example 11.3 must be given by ew D 1 � r=R;R D

x�1=n � 1 (see (11.5)). Inserting this relationship into Example 11.1 gives for the
price of commodity n in terms of Sraffa’s Standard Net Product

epn D .1C r/n�1.1 � r=R/=.1 � .1C r/nx/

which shows that epn.1 � x/ D epy may be equal to one only in the case where r
is equal to zero. Choosing, e.g., n D 5 and x D 1=32 it can easily be calculated in
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r

lq=1=p(I–A)q

rmax

w(r)

w, py~

~

~

~

p  r y

^ ^

Fig. 11.2 The illusion of a linear subdivision of national income when Qw and QY are measured in
terms of the Standard Product y.q/

addition, that epy will be strictly increasing then for all rates of profit 0 � r < 1

(we have R D 1 in this case). The ‘ideal’ distributional relationship (11.5) must
consequently be completed as shown in Fig. 11.2.

This again demonstrates the incompleteness of a consideration that is based on
relation (11.5), i.e., the ew.r/-curve solely, as is usually the case. Furthermore, it
should be obvious by now that the dependency of income distribution on prices
which with regard to the old numéraire found its expression in the nonlinearity of the
wage-profit curve itself (see Fig. 11.1) has only been transferred here to the shape of
the national income curve eY .r/ of Fig. 11.2, which, however, remains unconsidered
if the ‘ideal’character of (11.5) is stressed. Alternative distributions of national in-
come between wages and profits – in contrast to what is claimed by Pasinetti (1977,
p. 120) – cannot be studied free from any interference due to price changes specific
to the commodity used as the unit of measurement even in the case of the Standard
Commodity. The opposite claim simply is an illusion generated by concentrating on
its wage-profit curveew D 1� r=R and neglecting the (formerly trivial) correspond-
ing curve of income determination with regard to this unit of measurement.

Let us consider finally the situation underlying Fig. 11.2, i.e., n D 5 and x D
1=32 .R D 1/, at the particular value r� D 0:25 and let us compare it with the
same numerical situation where, however, the vector of labor inputs now become
necessary only on the last instead of the first stage of production. Considering (11.3)
there follows that the scale of q has to be adjusted to this change in the distribution
of labor inputs. Yet, it is not necessary to make this change in scale explicit, since it –
as in point (2) – suffices to insert the relationshipew D 1� r into the first equation of
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(11.2) to get Sraffa’s prices in terms of his Standard Net Product, whatever its actual
form may be. In case of the vector l D .0; : : : ; 0; 1/ Sraffa’s prices are now given
by [see Example 11.1 for a comparison with those of the vector l D .1; 0; : : : ; 0/]:

epi D .1C r/iewx=.1 � .1C r/nx/; i D 1; : : : ; n � 1

epn D Qw=.1 � .1C r/nx/

At the particular values n D 5, x D 1=32, r� D 0:25, i.e., ew� D 0:75 .R D 1/

we therewith get in comparison to the situation defined by the labor input vector
l D .1; 0; : : : ; 0/:

l D .1; 0; : : : ; 0/ l = (0, 0, . . . , 1)
ep5 � 2:02 ep5 � 0:83
eY � 1:96 eY � 0:80
ew� � 0:75 ew� � 0:75

eY �ew� � 1:21 eY �ew� � 0:05
ew�=eY � 0:38 ew�=eY � 0:94

p .eY �ew�/=eY � 0:62 .eY �ew�/=eY � 0:06
We thus find quite different situations of income distribution (characterized by the
last two rows of this table) behind our harmless-looking distributional equation
(11.5):

ew D 1 � r; here W 0:75 D 1 � 0:25

There again follows that the information which can be obtained from (11.5) must be
considered as far too meager for a proper analysis of income distribution.

r

w(r)

w(r)

p(r)y

p(r)y

p(r)s=1

rmax

Fig. 11.3 Variable National Income and the implied wage-profit curve (based on the normalization
conditions l.I � A/�1s D 1 D p.r/s)
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11.5 Conclusions

Summing up, we can thus state that the analysis of income distribution is not
improved, but in fact obscured if the Standard Commodity is used for numéraire.
This obscurity may, of course, be avoided if the functional relationship eY .r/ is
added to its ‘ideal’ and universal counterpart ew D 1 � r=R, a relationship, for
which no qualitative characteristics have been established so far. A closer exami-
nation of this function in our view is, however, avoidable and of no great interest
since it is very questionable whether the then given tools (of the type considered
in Fig. 11.2) will inform us better on income distribution than the originally given
ones, i.e., (11.2) and Fig. 11.1, where there is not need to rack one’s brains over
Sraffa’s Standard Commodity. The Fig. 11.3 summarizes the problem consisting
for Sraffa’s Standard Commodity: We consider here an arbitrary basket of com-
modities s, for example the subsistence basket of workers (if an interpretation of it
is needed):

We see that in such a case both distributable income py and the wage rate w
will depend on the rate of profit r in a nonlinear fashion. A change in the numéraire
commodity can remove one of these nonlinearities, but never both of them simulta-
neously. We thus searched in vain for a worthwhile result to be obtained by use of
the Standard Commodity, and a similar conclusion seems to be drawn in Broome
(1977, p. 236). Yet, no ‘brute force’ as he claims is required to recognize that such
results cannot exist.
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Chapter 12
Sraffa’s Standard Commodity: No Fulfillment
of Ricardo’s Dream of an ‘Invariable
Measure of Value’

The construction of Sraffa’s Standard Commodity is often motivated by the claim
that it allows to isolate the price-movements of any other commodity, so that they
may be observed as in a vacuum. This chapter shows that

(a) A specific and complete solution to the problem of finding the conditions for
such a Standard is indeed available, yet that

(b) Sraffa’s Standard does not fulfill this list of conditions.

The source of Sraffa’s error is then isolated and the true set of ‘invariable measures’
is determined and shown to be devoid of economic content.

12.1 Introduction

The search for what has been called ‘the chimera of an invariable standard of value’ pre-
occupied Ricardo to the end of his life. However, the problem which mainly interested him
was not that of finding an actual commodity which would accurately measure the value of
corn or silver at different times and places; but rather that of finding the conditions which a
commodity would have to satisfy in order to be invariable in value . . . (Sraffa 1970, p. xli)

With regard to this quotation from Sraffa’s introduction into Ricardo’s Principles,
we shall demonstrate in the following:1 (a) that Sraffa (1960), Chap. 3 indeed of-
fers a specific solution to the above problem of ‘finding the conditions . . . , and (b)
that the construction of an actual commodity of this type in Sraffa (1960), Chap. 4
does not satisfy this very list of conditions. It therefore is to be expected – and it
will indeed be the case – that Sraffa’s actual commodity will not have the prop-
erties derived from the list of conditions preceding its construction. This logical
discrepancy escaped the notice of Sraffa and his followers and, as a consequence,

1 I am very grateful to E. Nell and B. Schefold for critical and helpful comments. The follow-
ing Sect. 12.2 – as should be stressed – owes much to the presentation given in Schefold (1976,
pp. 221–5), though my original motivation to reexamine Sraffa’s Chaps. 3 and 4 and the conclu-
sions reached differ very much from those of B. Schefold, see also the preceding chapter as well
as Flaschel (1986a,b).

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 12,
c� Springer-Verlag Berlin Heidelberg 2010

265



266 12 Sraffa’s Standard Commodity: No Fulfillment of Ricardo’s Dream

the properties (of the conditions) for an ‘invariable measure of value’ were ascribed
to a ‘commodity’ which in fact is not ‘more invariable’ in value with respect to
changes in income distribution than any other commodity. Hence, Ricardo’s dream
of an ‘invariable measure’ of value (cf. Pasinetti (1977, p. 120)) is not fulfilled by
Sraffa’s Standard Commodity!2

Below we shall first question Sraffa’s verbal descriptions which accompany the
construction of his standard of value. This will be done on the basis of a simple
two-sector example in particular. We then continue by laying bare the reason for his
dubious descriptions in the sense pointed out above, i.e., we shall show that one of
his two conditions for a commodity to be ‘invariable’ in value is in fact neglected
in his construction of the Standard Commodity. The true set of ‘invariable measures
of value’ will be determined in the final paragraph of this chapter. We will show
that this set is normally devoid of economic content. Sraffa’s search for an ‘invari-
able measure of value’ therefore fails to lead to a sensible solution of Ricardo’s
great problem. In contrast to recent reconsiderations of Sraffa’s Standard Commod-
ity (see, e.g., Burmeister (1984), Samuelson (1983)), this chapter consequently does
not consider problems of generalizing this commodity to input–output models of
the more complicated type. Instead, it already questions the meaningfulness of the
whole approach within the basic circulating-capital model of Sraffa’s analysis.

12.2 Flaws in the Interpretation of the Standard Commodity

The starting point of Sraffa’s (1960), Chap. 3 price theoretic considerations is the
assumption of a given input–output system A; l; I . A denotes the n � n matrix of
physical inputs of n given types of commodities (with columns as processes), l
denotes direct labor inputs (a row with l1 C : : : C ln D 1) by suitable choice of
unit) and I – the identity matrix – represents the matrix of outputs (e the vector
given by its diagonal). On the basis of these data Sraffa then considers the following
equations for prices p D .p1; : : : ; pn) measured in terms of net national product
e � Ae 2 <n:3

p D .1C r/pAC wl; p.I � A/e D 1: (12.1)

Here r and w denote the uniform rate of profit and of wages, respectively.
Let 	.A/ denote the dominant characteristic value of the matrix A and define

1CR by 	.A/�1. Under well-known assumptions it can be shown for any r 2 Œ0; R�
that the above system of n C 1 equations in the n C 1 unknowns .p1; : : : ; pn/, w
will have a unique and economically meaningful solution. The thereby introduced
mapping w W Œ0; R�! Œ0; l� is differentiable: w0.r/ < 0 and w.0/ D 1;w.R/ D 0.4

2 See however Schefold’s comments and my reply in the Zeitschrift für die gesamte Staatswis-
senschaft, 142, 1986, 603ff. for a further discussion of the issues treated in this chapter.
3 All gross output levels are set equal to one here and in the following.
4 For further details, cf. Pasinetti (1977), Chap. 5.
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It is the purpose of Sraffa’s construction of the Standard Commodity to help
to penetrate the complexities in the movement of relative prices p generated by
exogenous changes in the rate of profit r .

From Sects. 22 and 26 in Sraffa (1960) it can be seen that Sraffa’s ultimate defi-
nition of the Standard Commodity is that of a (normalized) right hand characteristic
vector q of the input matrix A, corresponding to its dominant characteristic value
	.A/ D .1CR/�1:

.1CR/Aq D q; lq D

nX

iD1

li D 1: (12.2)

Consider for an example:

A D

�
1=6 1=2

1=9 0

�
; l D .1=2; 1=2/:

As Standard Commodity we here get

q D

�
1:5

0:5

�
; R D 2 .lq D l1 C l2 D 1/

And as prices in terms of the chosen numéraire e � Ae D
�
1=3

8=9

�
we get:

p D w
1

14 � 5r � r2
.10C r; 12C 3r/; w D

14 � 5r � r2

14C 3r
(12.3)

In what respect does the introduction of Sraffa’s Standard Commodity now represent
an aid in the study of these prices?

For purposes of illustration, consider the price of commodity 1 of this example
in terms of the Standard Commodity q:

p1

pq
D

10C r

14C 3r
2

3

10C r

14C 3r
C
1

2

12C r

14C 3r

D

10C r

14C 3r
76C 13r

6.14C 3r/

D
60C 6r

76C 13r
: (12.4)

It is with regard to such a price relationship that the following quotation from Sraffa
(1960, p. 18) has to be analyzed:

‘It is true that, as wages fell, such a commodity (q, P. F.) would be no less suspectable than
any other to rise or fall in price relative to other individual commodities; but we should
know for certain that any such fluctuation would originate exclusively in the peculiarities of
production of the commodity which was being compared with it (here: commodity 1, P. F.),
and not in its own’.

The properties of the Standard Commodity therefore have to be of a kind that makes
it possible to ascribe the above dependency (12.4) of p1 as well as that of pq on the
rate of profit r wholly to the conditions of production of commodity 1. The change
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in p1=pq corresponding to a change in r is thus claimed to be due to the conditions
of production behind the numerator only and viewed to be independent from the
conditions which govern the denominator!

Yet, how is it possible to reach a causal conclusion from a pure system of general
interdependence?

Similarly, a r-dependent change in p.e � Ae/=pq should originate in the pecu-
liarities of production of e � Ae only. But, the vectors e � Ae and q often are both
positive, i.e., they depend on the same processes, though of course with different
scales of operation. The above discriminating conclusion consequently rests on a
difference in scales of operations only. Furthermore, Sraffa’s (1960), Chap. 3 analy-
sis of ‘invariability’ is based on the assumption that p.e�Ae/ equals ‘1’ throughout.
But his final construct, the Standard Commodity q, then reverses the order of ‘invari-
ability’: the change in pq with respect to p.e�Ae/ D 1 is now claimed to be due to
the peculiarities of actual net product e�Ae and not to the Standard product q. This
strange verbal discrimination between q and the commodities not proportional to q
seems to be the only possible ‘result’ with respect to the original price system 1.

This questionable result suggests that the simplifying use of Sraffa’s Standard
Commodity must be understood to derive from a change in numéraire: from actual
net product e�Ae to d D q�Aq, the Standard net product. But such a change has
nothing in common with the question of ‘invariability’; it is a change by definition.
Within the model in use the advantage of this new numéraire therefore has to be
explained in terms of something else.

This is normally done with respect to its property to imply a linear wage profit
relationship:

w D 1 �
r

R
; r 2 Œ0; R�

the only – possibly – relevant implication that can be drawn from the use of this new
numéraire d .

We have already shown elsewhere5 by means of the curve p.e �Ae/ that no ad-
ditional information – superior to that already contained in the original curve w.r/ –
can be gained from such an expression.6 The choice of the Standard Commodity for
numéraire thus only conceals that no useful implication can be reached by means of
this commodity.

5 cf. Flaschel (1984) and here Chap. 11.
6 Furthermore, it is simply not true that ‘the particular proportions of the Standard Commodity
. . . aid in comprehension of the connection that exists between changes in the distribution of income
and the system of relative prices’ as is argued in Roncaglia (1978, p. 75). With respect to our
example this would mean that the expression

p D

�
10C r

14C 2r
;
12C 3r

14C 2r

�

should give an aid in comprehending the originally given prices:

p D

�
10C r

14C 3r
;
12C 3r

14C 3r

�

(pd D 1 in the first and p.e � Ae/ D 1 in the second case).
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In addition to this result, one may wonder, however, what the exact reasons are
that no explicit formulation – in terms of the given model – of the usefulness of
the Standard Commodity can be given. We shall argue in the next paragraph that
it is in fact the unnoticed elimination of one of Sraffa’s sufficient conditions for a
commodity to be really ‘invariable in value’ from the construction of his Standard
Commodity that is responsible for its poor performance. The resulting failure of the
‘famous Standard Commodity – not to be – a commodity with a price completely
independent of changes in income distribution’ (see Bacha et al. (1977, p. 45) for
the opposite view) prevents it from becoming an analytical useful device.

12.3 Flaws in the Construction of Sraffa’s Standard of Value

Sraffa (1960, Chap. 3) analyzes the causes for relative prices to change (or not to
change) under the assumption of a constant net national income: p.e � Ae/ D 1!
By giving the wage rate w successive values between ‘1’ and ‘0’ Sraffa there es-
pecially determines certain watershed properties or critical ratios for ‘invariability’.
These conditions are subsequently used (in modified form!) in the construction of
his Standard Commodity (Chap. 4). Yet, we have already exemplified that this ‘com-
modity’ is not invariant in value with respect to changes in income distribution in the
surrounding where the conditions for ‘invariability’ have been established. Sraffa’s
conditions for an invariable measure of value and their relationship to the properties
of the Standard Commodity therefore have to be regarded anew to find the source
of this divergence.

‘We now revert to the ‘critical’ proportion which has been mentioned before (Sect. 17) as
constituting the borderline between ‘deficit’ industries and ‘surplus’ industries. Suppose
that there was an industry which employed labor and means of production in that precise
proportion, so that with a wage-reduction, and on the basis of the initial prices, it would
show an exact balance of wages and profits’. (Sraffa 1960, Sect. 21)

Utilizing (12.1) the output q of such an industry must fulfill (cf. also Schefold (1976,
pp. 221, ff.)):


rpAq C
wlq D 0 . on the basis of 
p D 0/; i.e.

w0.r/ D �
pAq

lq
for all w 2 Œ0; 1� or r 2 Œ0; R�: (12.5)

Note that this condition only makes sense if a numéraire commodity, i.e., p.I �
A/e 	 1 in the context of Sraffa’s Chap. 3, has already been adopted!

Equation (12.5) describes the critical proportion just mentioned, a proportion
which normally depends on the rate of profit r . We note that this condition has been
established by partial equilibrium analysis. It is therefore not immediately clear,
whether it already constitutes a sensible condition for the price measure looked
for. In addition, condition (12.5) is also not yet sufficient for the desired invariabil-
ity. Our quotation from Sraffa (1960, Sect. 21) therefore should continue: ‘suppose
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further . . . ’. The then following condition is well known. It suffices therefore to
describe it shortly by:

pAq

lq
D
pA2q

lAq
D
pA3q

lA2q
D : : : D c.r/ (12.6)

Proposition 12.1. Conditions (12.5) and (12.6) are sufficient to imply pq D con-
stant with regard to the prices (12.1).

Proof. By differentiating (12.1) we get for r 2 Œ0; R�:

p0 D pAC .1C r/pAC w0.r/l; i.e.
p0.I � .1C r/A/ D w0.r/l C pA; i.e.

p0 D .w0.r/l C pA/.I � .1C r/A/�1 D .w0.r/l C pA/
1X

vD0

.1C r/vAv

D

1X

vD0

.1C r/vŒw0.r/C c.r/�lAvq:

ut

From (12.6) we then get:

p0q D

1X

vD0

.1C r/vŒw0.r/C c.r/�lAvq:

Because of c.r/ D pAq
lq
D �w0.r/ (cf. (12.5)), we finally obtain

p0.r/q D 0 for all r 2 Œ0; R�:

‘The commodity produced by such an industry (which fulfills conditions (12.5), (12.6),
P. F.) would be under no necessity, arising from the conditions of production of the industry
itself, either to rise or to fall in value relative to any other commodity when wages rose or
fell (in fact we have proved that its output value is fixed, P. F.). . . . A commodity of this
type would in any case (a retreat?, P. F.) be incapable of changing in value relative to the
aggregate of its own means of production since the recurrence of the same ‘proportion’
would apply equally to them’. (Sraffa 1960, Sect. 21)

This last assertion

pq

pAq
D const .D1CR/ or

p.I � A/q

pAq
D R

is a simple consequence of the above proposition (or of its two assumptions (12.5),
(12.6)). We already know that

0 D p0q D rp0Aq C pAq C w.r/lq:
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Together with condition (12.5) this implies:

rp0Aq 	 0 or p0Aq 	 0:

Therefore pq and pAq (and pA2q : : :) are all invariant with respect to changes in
income distribution, which means that pq

pAq
has to be invariant, too,7 and equal to

1CR.
After stating these propositions, Sraffa (1960, Sect. 21) continues:

‘Two separate conditions have been assumed to obtain this result, namely, (1) that the ‘bal-
ancing’ proportion is used, and (2) that one and the same proportion recurs in all successive
layers of the industry’s aggregate means of production without limit. We shall, however,
find that the first condition is necessarily implied in the second for, . . . within any one sys-
tem complete ‘recurrence’ is only possible with the balancing proportion’.

We already know that this conclusion must be false in the context of the chapter from
which this quotation has been drawn: the Standard Commodity does fulfill condition
(12.6) but not (12.5) (cf. our Sect. 2 for an example). How can Sraffa nevertheless
succeed in ‘proving’ this last assertion? He can do so simply by redefining his former
‘critical proportions’ now as ‘balancing proportions’ by means of a ‘convenient’
non-hybrid ratio, i.e., by employing

p.q � Aq/

pAq
	 R instead of

pAq

lq
D �w0.r/

(see his Sect. 22; R the maximum rate of profit). Sraffa thereby implicitly reformu-
lates the conditions (12.5), (12.6) in the following way

pq

pAq
D

pAq

pA2q
D
pA2q

pA3q
D : : : 	 1CR: (12.7)

But since neither this nor the original condition (12.6) implies condition (12.5), the
replacement of the ‘critical proportion’ (12.5) by the non-hybrid ratio pq=pAq 	
1CR means that the correct ‘balancing proportions’ have got lost.

Therefore Sraffa gives a solution to the problem of ‘finding the conditions’ (cf.
the introduction), but when he proceeds to the problem of ‘finding the commodity’,
he indeed neglects one of these conditions, thereby singling out commodities which
are only partially connected to the initially raised question. By dismissing one con-
dition Sraffa consequently gains the necessary degree of freedom in construction
(but also in content) for his ‘invariable measure of value’.

Condition (12.6) – now in non-hybrid form (12.7) – implies

pAvŒq � .1CR/Aq� D 0 for all v 2 N:

7 For further (equivalent) properties, cf. Miyao (1977).
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This suggests that the equality q � .1 C R/Aq D 0 will then hold true, where-
from Sraffa’s Standard Commodity is finally obtained.8 But such a Standard is not
‘capable of isolating the price movements of any other product so that they could be
observed as in a vacuum’ (Sraffa 1960, p. 18), as it does not obey the assumption
(12.5) of Sraffa’s Chap. 3 investigation.

Proposition 12.2. The Standard Commodity q will fulfill condition (12.5) if and
only if the wage-profit curve (12.1) is of the form w D 1 � r

R
;w 2 Œ0; R�.

Proof. With respect to pAq
lq
D pAq D 1

1CR
pq one can easily calculate

pAq

lq
D

w.r/
1CR

l.I � .1C r/A/�1q

D
w.r/
1CR

1X

vD0

.1C r/vlAvq D
w.r/
1CR

1X

vD0

�
1C r

1CR

�v

D
w.r/
1CR

1

1 � 1Cr
1CR

D
w.r/
R � r

:

The curve w D 1 � r
R

consequently fulfills

w0.r/ D �
1

R
D �

1 � r
R

R � r
D �

pAq

lq
:

It remains therefore to prove that the equation

w0.r/ D �
pAq

lq
D

w.r/
R � r

; i.e.,
w0.r/
w.r/

D
1

r �R

in turn implies that w.r/ must be equal to 1 � r
R

.
By integrating the last equation we get

ln w D
Z r

0

1

t �R
dt . for r < R; i.e., w > 0/:

Now, the integral on the right hand side is equal to ln
�
1 � r

R

�
as can be proved

by taking derivatives and by paying attention to the condition ln w.0/ D ln 1 D 0.
This completes the proof of the above proposition. ut

From the above proposition it follows that the two types of ‘balancing ratios’
considered in Sraffa (1960, Chap. 3) have to be kept apart very carefully: while the
‘balancing-ratio’-condition

8 We neglect here minor problems of non-uniqueness (cf. Miyao (1977) in this regard).
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p.q � Aq/

pAq
D
p..1CR/Aq � Aq

pAq
D R (12.8)

is a trivial consequence of the definition (12.2) of q, the ‘balancing ratio’-condition
(12.5)

w0.r/ D �
pAq

lq
.q the Standard Commodity /

represents a further and severe restriction on the given input–output system:9 the
wage-profit curve then has to be linear in its original setting (12.1) already.10 This
implication will not be fulfilled in most of (especially the relevant) input–output
systems. Therefore (12.5) had to be dismissed by Sraffa to avoid that the search for
an actual commodity of the desired kind would become a hopeless task.

The switch from hybrid to non-hybrid conditions is, however, damaging to
Sraffa’s intended interpretation of commodity q. What originally seemed to emerge
as an implication now has to be regulated by assumption:

p.q � Aq/ 	 1:

‘Particular proportions, such as the standard ones, may give transparency to a system and
render visible what was hidden, but they cannot alter its mathematical properties’. (Sraffa
1960, p. 23)

This purpose of simplification is not fulfilled by this change in numéraire.
The theory of income distribution as is now well known, cannot be simplified by

use of ‘surrogate capital’ – but by use of ‘surrogate corn’ neither (cf. also Flaschel
(1984)). Contrary to Bacha et al. (1977, p. 40), who declare the Standard System as
Sraffa’s main analytical contribution, we accept Steedman’s (1979, p. 72) position
that the Standard Commodity is not a central part of Sraffa’s work. Yet, central or
not, our final conclusion is that the Standard Commodity is of no use in the analysis
of prices and distribution, i.e., it must be characterized as being redundant.

12.4 On the Non-Existence of an ‘Invariable Measure of Value’

We have shown in the preceding paragraph why Sraffa’s Standard Commodity does
not give an answer to the problem of ‘invariability’ considered in Sraffa (1960,
Chap. 3): ‘Ricardo’s dream’ does not find its fulfillment in Sraffa’s pseudocorn
commodity (12.2). There exists one important reason which contributes to an un-
derstanding of the delayed occurrence of this negative result: the problem which is

9 This fact is ignored most explicitly in Bacha et al. (1977, p. 45), there leading to the absurd
conclusion – not supported by Sraffa – that the price of the Standard Commodity is ‘completely
independent of changes in income distribution.’
10 For consequences of this property, cf. Miyao (1977).
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to be solved by such a commodity simply has not been stated clearly in the literature
so far. The first thing which should be noticed in this regard is, that the problem of
invariability cannot be described unless a measure of value has already been as-
sumed. This fact is implicitly taken into account by Sraffa (1960, Chap. 3) by his
assumption p.e � Ae/ 	 1. The question of ‘invariability’ consequently is of a
relative nature only: the search for (conditions for) a ‘measure of value’ relative to
an already given measure of value! But what can be expected from the solution of
such a problem? Commentators on Sraffa’s Standard Commodity have been aston-
ishingly silent in this regard.

Let q 2 Rn; q >
D 0 be any bundle of commodities. It is well-known that the value

pq of this bundle as a function of the rate of profit (see (12.1)) can be quite irregular
in its behavior, depending on the choice of both q and the numéraire (e �Ae in our
case).

Following Sraffa we have, however, found out two conditions (see (12.5), (12.6))
which imply that commodity bundles q which fulfill these conditions will be in-
variant in value (pq) relative to e � Ae. Such commodities q thus would provide
the ideal yardstick whereby changes in income distribution can be analyzed without
running into the problem of a simultaneous change in the amount of income to be
distributed.

Below we shall give a description of the complete set of such ‘measures’ q 2 Rn.
We shall contrast this set with the set of all Standard Commodities as determined
by Miyao (1977). The set of all vectors q >

D 0 which fulfill Sraffa’s original condi-
tions for invariability (12.5), (12.6) is then determined as the intersection of these
two sets, i.e., Sraffa’s original conditions for ‘invariability’ are more restrictive than
necessary. Yet, the complete set of ‘invariable measures of value’ also is of no inter-
est, since it will normally consist of the vector e � Ae only. Furthermore, it is not
admissible to consider Miyao’s Standard Commodities as exponents of such ‘mea-
sures’. The search for an ‘invariable measure of value’ therefore generally fails to
lead to a sensible solution.

Proposition 12.3. A vector q >
D 0 will be an ‘invariable measure of value’, i.e.,

pq 	 1 with regard to equations (12.1), if and only if q is proportional to

.e � Ae/C z >
D 0 (12.9)

where z is any vector orthogonal to the set of vectors:

fl; lA; lA2; lA3; : : :g:

Proof. 11 From Miyao (1977, Lemma 6) we know that the set of vectors z, which
fulfill lAvz D 0 for all v D 0; 1; 2; : : : is identical to the set of vectors z, which fulfill

11 Following Miyao (1977) we shall assume for simplicity that A is irreducible.
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pz D 0 for all r 2 Œ0; R�. It suffices to consider those q >
D 0 where p.0/q D 1 holds

true. But then pq �p.e�Ae/ 	 0 is equivalent to q � .e�Ae/ 	 z, which proves
the proposition. ut

Proposition 12.4. The set of vectors q >
D 0 which fulfill (12.6) coincides with the

set of (generalized) Standard Commodities as defined in Miyao (1977):

q D q� C z >
D 0; (12.10)

where z is determined as in Proposition 12.3 and q� > 0 is determined by .1 C
R/Aq� D q�.

Proof. It suffices to consider

p.R/Aq

lq
D
p.R/A2q

lAq
D
p.r/A3q

lA2q
D : : : D c.R/: (12.11)

From p.R/ D .1CR/p.R/A we get:

pAvC1q

lAvq
D
p.1CR/�.vC1/q

lAvq
D

pq

l.1CR/vC1Avq
D const;

which in turn implies

l.1CR/vC1Avq

l.1CR/vC2AvC1q
D 1 or

lAvq

lAvC1q
D 1CR for v D 0; 1; 2; : : : :

This latter situation is identical to condition (12.7) in Miyao (1977, p. 154), which
implies that q must be of the form q� C z. Conversely, such a vector q evidently
fulfills condition (12.6), since it fulfills

lAvq D lAvq� D lq�.1CR/�v

p.r/Avq D p.r/Avq� D p.r/q�.1CR/�v

because of p.r/ D w.r/l.I � .1C r/A/�1, w.r/ D Œl.I � .1C r/A/�1.e�Ae/��1.
ut

Proposition 12.5. The vectors q which fulfill Sraffa’s conditions (12.5) and (12.6)
(and p.0/q D 1) are of the form

q D

(
.e � Ae/C z >

D 0

q� Cez >
D 0

(12.12)

where z;ez are given as in Proposition 12.3.
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Proof. From (12.6) there follows that q must be of the form q D q� Cez (cf.
Proposition 12.4). And from (12.5) to (12.6) there further follows that pq D const.
must be fulfilled, which implies q D .e � Ae/C z by Proposition 12.3.

Conversely, let q be given by (12.12). Then q must fulfill condition (12.6), cf.
again Proposition 12.4. And from Proposition 12.3 we know furthermore p0q 	 0.
The vector Aq consequently is of type q� Cez, since Aq� is proportional to q� and
.lAv/.Az/ D lAvC1z D 0 for all v 2 N . We therefore have p0Aq 	 0.

Differentiation of the (12.1) (with respect to r) then especially gives:

.1C r/p0.r/AC pAC w0.r/l D p0; i.e.

.1C r/p0.r/Aq C pAq C w0.r/lq D p0.r/q or

pAq C w0.r/lq D 0; i.e. condition (12.5) must hold true.

ut

Proposition 12.6. There exist vectors q which fulfill conditions (12.5) and (12.6) iff

(a) e � Ae is a generalized Standard Commodity, i.e.: e � Ae D q� C z >
D 0

(cf. Proposition 12.4) or:
(b) the wage-profit curve w.r/ of (12.1) is of the form w D 1 � r=R.

Proof.

(a) cf. Proposition 12.5.
(b) cf. Miyao (1977, p. 154).

We conclude from the above assertions that the ‘invariable measures of value’ (12.9)
will in general not fulfill conditions (12.5) and (12.6) and that the (generalized) Stan-
dard Commodities .10/will not satisfy condition (12.5). While all commoditiesAvq

and .I � A/�1q will be Standard Commodities, if q is of this type, such a property
cannot be established for ‘invariable measures of value’ (12.9), since Av.e � Ae/

will not be proportional to e � Ae in general.
A number of conclusions can be drawn from the above propositions:

(1) Sraffa’s original conditions (12.5), (12.6) are unnecessarily restrictive with re-
spect to the search for an ‘invariable measure of value’ (12.9): net national
product has to be of Standard Commodity type (12.10) in this case, a condi-
tion which is nearly as special as

.1CR/lA D l;

the case where labor values coincide with the above price theory (in both cases
the wage-profit curve w.r/ of (12.1) will be a linear curve).

(2) Though the imposition of (12.5) and (12.6) is more restrictive than necessary
with respect to the determination of a ‘measure of value’ q, the reduction to only
one of these two conditions will not give an admissible generalization. There-
fore Sraffa’s (1960, Sect. 21) procedure – to consider the commodities which
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obey condition (12.6) or (12.7) – as the candidates for a ‘measure of value’ –
is misleading. The thereby determined (generalized) Standard Commodities
(cf. Proposition 12.4) in general have nothing in common with the originally
raised question of ‘invariability’, but do generalize input–output relations of
corn-type only.

(3) The complete set of ‘invariable measures of value’ (12.9) has up to now been
neglected in the discussion of Sraffa’s work. This discussion has been concen-
trated on Standard Commodities .1; 0/ which satisfy (12.6), cf. Miyao (1977).

(4) The final situation now presents itself as follows: The set of ‘measures of value’
(12.9) normally will be of a very uninteresting or even trivial type, i.e., it will
be identical with e�Ae, its definitional element, in essence. On the other hand,
the set of Standard Commodities always contains a non-trivial element: Sraffa’s
Standard Commodity q�, but such a commodity is devoid of economic content.

ut

12.5 Conclusions

We have seen that – given a numéraire commodity, e.g., net national product e�Ae –
Sraffa’s Standard Commodity q will be an ‘invariable measure of value’ if and only
if the wage-profit curve w.r/ for the above numéraire is a linear curve. Sraffa’s
proposal to choose his Standard Commodity q � Aq for numéraire may thus be
characterized as follows: Assuming this numéraire, i.e., p.q�Aq/ 	 1, establishes
conditions (12.5), (12.6) which indeed imply that this commodity q � Aq will be
invariant in value, which, however, is already true by assumption! This type of cir-
cular reasoning identifies the problem of choosing a numéraire with the question
of invariability, which thereby becomes an impenetrable whole. This explains why
there are no useful implications for Sraffa’s Standard Commodity (see Sect. 12.2).

The original question of Sraffa’s Chap. 3 was, however, whether there exists a
non-trivial commodity which does not change in value when the distribution of a
given value of net national product is changed. This question has been answered in
the negative. We have shown that Sraffa’s implicit change in the conditions which
characterize ‘invariability’ represents the basic explanation for the result and for the
meager performance of his Standard Commodity. There is consequently no need to
consider additional complications as, e.g., multiple activities, fixed capital, further
primary factors, etc. (as is done in Burmeister (1984), Samuelson (1983), cf. also the
discussion in the Zeitschrift für Nationalökonomie between Samuelson and Baldone
in 1985) to prove that Sraffa’s Standard has no real analytical meaning.

The failure of the Standard Commodity of not fulfilling the true conditions
for ‘invariability’ should, however, not be confused with the problem of properly
generalizing to general models of production the classical concepts of prices of
production and labor values (indexes of labor productivity), such that in particular
certain classical insights into their relationship remain true. This latter task can be
attacked in an economically meaningful way, if attention is paid to factual methods
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of cost-accounting as well as rate-of-return calculations. It is not meaningful in this
regard, however, to concentrate solely on the ‘reference case’ of a uniform compo-
sition of capital and this with respect to the perfect von Neumann world of capital
depreciation and the like (see e.g., Samuelson (1983)), if a proper study of the clas-
sical theories of value and price is intended. To show the inadequacy of this latter
approach and the superiority of the first more factually-oriented one would, how-
ever, demand more than just another chapter.
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Part III
Gravitation or Convergence in Classical

Micro-Dynamics

In this part of the book we demonstrate that the Classical process of ruthless
competition, formulated so far in terms of algebraic equations, representing prices
of production, can also be investigated from the perspective of dynamics, in addi-
tion to the simultaneous equations determination of these long-period equilibrium
positions considered in the preceding part of the book. There is a description avail-
able in the Classical theory of capital flows and market price dynamics that can be
rigorously modeled and also analyzed in detail and that may – or may not – imply
convergence to the Classical long-period prices of Neoricardian theory (with their
uniform wage and profit rates).

It may however also be the case that only gravitation around such long-period
positions is implied, which would then loose their character as attracting equilibrium
positions. Of course, there may in addition exist fairly stable profit rate differentials
in actual economies (as was shown in ch. 8), a situation which would then demand
for a significant revision of the concept of prices of production. In sum, this means
that the cross-dual dynamics which we shall investigate in this part of the book re-
main still somewhat ambiguous with respect to the steady state position they are to
be anchored to. And from a Schumpeterian perspective it may even be possible that
Classical capital movements and the gravitation processes suggested by them may
not have a point of rest at all, but are subject to perpetual shifts into new technologi-
cal environments, via more or less basic innovations, their subsequent bunching and
their diffusion, until new basic innovations change the world again.

The Classical adjustment process towards or around prices of production is in its
baseline formulation of cross-dual type, like the predator-prey interaction of popu-
lation dynamics. Capital is suggested to flow into highly profitable sectors and the
resulting increases in the supply of the commodities of these sectors are supposed
to act negatively on prices and profitability and therefore provides a check for the
further inflow of capital or even a reversal of these flows when other sectors of the
economy have become more profitable thereby. This process can exhibit overshoot-
ing characteristics and may thus initiate persistent capital flows between industries
with no tendency towards the establishment of a uniform profit rate across these
industries.
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In addition, within the industries of actual economies, there always exists side by
side newly established, modern, but also outdated, more or less rapidly dying meth-
ods of production which of course prevents the establishment of uniform profit rates
inside these industries. Finally, the fundamental sectors of the economy (agriculture,
manufacturing, services) may be subject to conditions that establish definite profit
rate differentials between them. The Classical process of gravitation may therefore
only represent a starting point for a further analysis of the laws of motion of capi-
talist competition within the setup of a variety of market structures.

Profitability driven capital flows between industries, the conflict over market
shares and the implied pricing decisions of firms, also constitute a dynamic in-
teraction between quantities and prices in such market economies which differ
significantly from the market dynamics that is – if at all – generally considered
in mainstream economics.1

We know from Lotka – Volterra predator-prey dynamics (the pure crossover type
of dynamics where one group of state variables is acting positively on another group
of state variables, while this latter group is acting negatively on the former one) that
these interactions will produce cyclical stability, but not asymptotic stability. We will
however show that – when the direction of change of profitability differentials and
market excess demands is taken into account in these dynamics in addition (where
increases in excesses are assumed to have stronger dynamic effects than decreases)
– we get convergence as a fairly robust result. This will be considered in Walrasian
production economies in chs. 13 and 14 and for the Classical von Neumann model
in ch. 15.

In a final chapter we add Keynesian dual forces to the Classical cross-over pro-
cess of ruthless competition, in fact basically a dynamic multiplier story in the case
of quantities and a dynamic markup pricing procedure in the case of prices. These
additions may be considered the short-run or fast forces within the dynamics of
capital flows, market shares and market prices, while capital flows and their impli-
cations for profitability may be considered as working slower and thus only in the
medium run if not even only in the longer run.

Summing up we thus get in this part of the book somewhat mixed results where,
on the one hand, convergence to so-called long-period prices can be shown to exist
in certain idealized economic structures. On the other hand, capitalist economies
are subject to rapid and radical changes in technology, in particular in a globalized
world, so that the idea of getting in the average or on the margin significant con-
vergence to uniform rates of profit and to the production prices they imply may be
completely illusionary from the empirical perspective. While labor values represent
an accounting scheme which allows to discuss technological change in a rapidly
changing world, prices of production rely on an accounting framework that may be
purely academic from the applied perspective (as the empirical analysis conducted
in ch. 8 has exemplified).

1 There are exceptions, most notably Walras himself, who indeed reformulated a cross-over
tâtonnement process in the case of production economies as we shall see in chs. 13 and 14.
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Sraffa’s (1960) production price accounting schemes therefore, in the minimum,
need revision from the perspective of input-output theory as suggested in Bródy
(1970), but may even need to be further modified as in Flaschel, Franke, and
Veneziani (2009) in order to allow for the discussion of a stable distribution of profit
rate differentials as moving centers of market prices. The dynamical price-quantity
adjustment processes we have discussed in this part of the book can be applied to all
of these approaches to long-period or average price determinations and are thus not
proving anything special for the Neo-Ricardian theory of long-period production
prices.
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Chapter 13
Dressing the Emperor in a New Dynamic Outfit

13.1 Introduction

This chapter shows that there is a natural extension of the conventional price
tâtonnement procedure of pure exchange economies which significantly increases
the stability properties of such adjustment processes from a local as well as a global
point of view. This extension is motivated by the observation that market price
adjustments should not only depend on the levels of excess demand, but also on
their direction (and magnitude) of change. Taking these additional forces appropri-
ately into account implies an adjustment process which is formally similar to the
Generalized Newton Methods which have been construed in the search for price
mechanisms that are ‘universally stable’. Furthermore, this adjustment process also
generalizes the stability proof for the ordinary tâtonnement procedure in the case
of gross substitutes (by means of a suitable Liapunov function) in a straightfor-
ward way.

Since the late sixties the stability properties of Walrasian general equilibrium
models have been regarded with more and more skepticism or even strong pes-
simism with regard to their relevance and generality. Dierker (1974) and Hahn
(1984, Chap. 4) provide important examples of judgments of a fairly skeptical
type.1 Furthermore, many publications on Walrasian Economics which have ap-
peared since Arrow and Hahn’s (1971) extensive presentation of the stability of
general equilibrium have treated this topic as one of only very secondary impor-
tance. Kirman (1988, 1989) has recently reconsidered the state of art in this field
of investigation and finds that ‘instability’ is a far better description of this state
than ‘stability’. He discusses some new ways out of this instability problem which,
however, are not convincing enough to allow for a revision in the prevailing skepti-
cism. Yet, this state of stability analysis is considered by him to be a severe problem
for modern economic theory: ‘Introducing more sophisticated adjustment processes
does not, unfortunately, help.’: The emperor has no clothes.

1 See also Ingrao and Israel (1990) for a recent survey on the dynamic properties of the ‘invisible
hand’.
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There are others, Hildenbrand (1983) in particular, who have shown that the
equilibria of distribution – as well as exchange-economies2 can be uniquely de-
termined and globally stable with respect to the standard tâtonnement procedure
under appropriate assumptions on the distribution of incomes or endowments.3 Fur-
thermore, such an approach also allows for useful comparative static results, since it
gives rise to the so-called ‘Law of Demand’.4 It is stressed in Hildenbrand (1989) in
this regard that one should strive for such definite results because it is the ordinary
job of the economist to make use of comparative statics – and not to contemplate
very general relationships solely.

Yet, from a purely theoretical perspective the following ranking of analytical
necessities and objectives seems adequate and should be adopted:

1. Supplying proofs of existence and characterizations of the set of equilibria,
2. Establishing necessary and sufficient conditions for the stability of such

equilibria,
3. Finding conditions for the uniqueness of general equilibrium,
4. Formulating conditions which allow for meaningful comparative static results.

In considering these four points it should be obvious that the first two are indis-
pensable steps for any kind of equilibrium analysis in order to make it meaningful
(nevertheless stability is generally only assumed instead of being proved), while the
remaining two must be considered as a result of special circumstances which may
or may not represent a good model of ‘reality’.

It is a well known fact in micro- as well as in macro-dynamics that conceivable
types of disequilibrium reactions have been investigated much less than the concepts
of equilibrium that are in use. In the case where one observes instability for a chosen
adjustment mechanism there is therefore much room left for changing the dynamic
structure in order to increase its stability properties. In our view it is sensible and
often also necessary to start from a conventional Walrasian (1954) tâtonnement –
as it is formalized in Arrow and Hahn (1971, 11.2) – as the (appropriately purified)
basic type of price adjustment procedure and add further disequilibrium price re-
actions to it. In addition, since Walrasian demand and supply functions neglect the
existence of quantity constraints in disequilibrium it is even methodologically ad-
equate to make use of a tâtonnement in order to formulate and test basic dynamic
features of conceivable market price reactions (the ‘pure price effects’ according to
Arrow and Hahn (1971, p. 265)) as simply as possible.

In addition to the necessity of looking for further and more reliable economic
forces in case of a weak performance of the disequilibrium adjustment processes
under consideration, it is, of course, also possible to assume or prove further

2 With finitely many commodities and a continuum of individuals.
3 See Kirman (1988, 1989) for an evaluation of these results in view of a related theorem of the
Sonnenschein-Debreu variety.
4 cf. Hildenbrand (1989) for a detailed description of this ‘Law’.
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restrictions for the excess demand function that are used5 in order to obtain better
stability results. As already stated it is, however, not an absolute necessity here that
theoretically or empirically motivated refinements of the assumed givens of general
equilibrium analysis must also lead to global uniqueness6 or clear-cut reactions of
equilibria to exogenous shocks or endogenous evolution.

We shall concentrate here on the issue of stability and propose an extension of the
conventional Walrasian tâtonnement process which significantly increases the sta-
bility properties of this process. This extension can be briefly described as follows:
Consider two identical states of excess demand which are changing in opposite di-
rections, one towards a higher level of excess demand, the other towards a lower
level. Assuming that this fact is observed by the ‘auctioneer’ it seems plausible to
integrate this into his reaction and to assume that his revision of prices p will be dif-
ferent in these two situations. A natural proposal here is that price changes should be
more pronounced in the case of increasing market disequilibria than in the opposite
case (for a given state of excess demand). This idea gives rise to a simple extension
of the auctioneer’s rules used for tâtonnement as they are formulated in Arrow and
Hahn (1971) with interesting local as well as ‘global’ stability results.7

This extension of the standard Walrasian tâtonnement process will in addition
show that the conditions which guarantee the stability of such price adjustment pro-
cesses are of a quite different nature than those needed for establishing the existence
or uniqueness of equilibrium (more disequilibrium information for the ‘auctioneer’
instead of more structure for the given economy in the case of uniqueness for ex-
ample). And – since this revised tâtonnement indirectly incorporates information on
the Jacobian of the excess demand function by its use of the time rate of change of
excess demands – it will in addition provide a new route of escape from the insta-
bility problem of Walrasian Economics in line with the conditions that have been
stressed by Saari and Simon (1978) and others as being absolutely necessary for
a tâtonnement to work ‘universally’. Our approach will thus improve the Walrasian
tâtonnement procedure as an economic adjustment method in a way that provides an
example for a so-called Generalized Newton Method as defined in Jordan (1983).
Introducing a more sophisticated adjustment process in the above way may thus
indeed help to provide the emperor with clothes.

The following Sect. 13.2 will give a brief presentation and motivation of the in-
tended extension of the standard tâtonnement mechanism in the context of exchange
economies. Section 13.3 will then show that this more sophisticated adjustment
mechanism exhibits strong local as well as ‘global’ stability properties. These
properties are illustrated in the final Sect. 13.4 by means of simple examples and
numerical simulations.

5 See Keenan (1990) for a recent attempt which starts immediately on the level of excess demand
functions and Hildenbrand (1983, 1989) for a micro-justifications of such approaches.
6 See Kaldor (1940) for an interesting dynamic exploitation of the non-uniqueness of equilibria.
7 See Flaschel (1991) with respect to possible modifications for production economies and an al-
ternative analysis of the local stability properties of such an extension.
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13.2 An Extension of the Walrasian Tâtonnement Process

We shall consider in this chapter a standard pure exchange economy and assume as
given in this context the following kind of a tâtonnement procedure:

Ppi D X
i .p/; i D 1; :::; n; p 2 <nCC (13.1)

where X denotes the excess demand function of the given exchange economy,8 and
where – in line with the approach chosen in Jordan (1983) described below – the
numéraire pnC1 has already been excluded from consideration: p D .p1; :::; pn/

09

We briefly remark that – up to certain boundary conditions – the excess demand
function X may be an arbitrary vector field according to theorems of Sonnenschein,
Debreu and others and may therefore be assumed as non-linear as desired and to
exhibit a given finite set of points of <nCC as its equilibrium set and thus as points
of rest of the dynamics (13.1).

Due to this last fact there is, of course, no hope, that the above price adjustment
mechanism will allow for general propositions on its stability. As Scarf (1960) has
shown this process can fail to be even locally stable at a unique equilibrium (cf.
Sect. 13.4). Such observations have lead to various reactions of how to deal with this
‘instability problem’. One particularly interesting approach – which developed from
an important paper by Saari and Simon (1978)10 – is to look for modifications of the
above dynamics (for example by using the Jacobian of X in some way in addition)
such that it will become locally ‘universally stable’, i.e., asymptotically stable at
p� for all excess demand functions X which have p� as a regular equilibrium. An
important mathematical example for such a mechanism is given by the following
Generalized Newton Method:

Pp D



�X 0.p/�1X.p/ W detX 0.p/ ¤ 0

X.p/ W detX 0.p/ D 0

Since, however, this Newton Method has no economic meaning, it is natural to ask
whether there exist equally potent and economically interesting price mechanisms.
This question is also posed at the beginning of Jordan’s (1983) article on (univer-
sally) locally stable price mechanisms. The object of his paper then is to provide
‘some strong, necessary conditions characterizing price mechanisms which achieve
local stability’. To this end Jordan (1983) defines the concept of a price mechanism
in the following way:

Let E denote the space of C 2 excess demand functions of the above kind (with
the topology of C 1 uniform convergence on compact subsets of <nCC and let Ep

8 See the next section for a brief explanation of the employed notation.
9 See Arrow and Hahn (1971) and Hahn (1982) for details and various special stability results that
exist for such ‘numéraire processes’ and note here that variable adjustment speeds – as they are
assumed by these authors – make the use of the conventional numéraire p � p D 1 much less
plausible.
10 See Jordan (1983) in particular.



13.2 An Extension of the Walrasian Tâtonnement Process 287

be defined by fX 2 E W X.p/ D 0 and detX 0.p/ ¤ 0g : A price mechanism is a
function M W <nCC � E ! <n such that for each (p,X) we have:

(a) M.p;X/ D 0 if and only if X.p/ D 0.
(b) There is an open set U � <nCC � E with p � Ep � U such that (1) M is

continuous on U, and (2) M.�; X/ is C 1 on the open set fq W .q;X/ 2 U g.

Such a price mechanism is then viewed to give rise to the following ordinary differ-
ential equation

Pp DM.p;X/; p.0/ D p0

for any given excess demand function X 2 E and the initial condition p0 2 <nCC.
Finally, a price mechanism will be called a Generalized Newton Method if there

is a C 1 function A W <n � L ! <n, where L is the space of non-singular n � n
matrices, such that

M.p;X/ D A.X.p/;X 0.p// for all .p;X/ 2 <nCC � E

with detX 0.p/ ¤ 0.
Such Generalized Newton Methods will give rise to (hyperbolically) locally

stable price mechanisms if A1.0; `/` is non-singular for every ` 2 L and if all
eigenvalues of A1.0; `/ have negative real parts.

The above Generalized Newton Method provides an example for such a price
mechanism, but – as noted – not one of economic interest. This method, however, il-
lustrates why the regularity conditions in (b) are not imposed on all of<nCC�E . This
fact will also apply to the dynamics introduced and studied in this chapter, which
indeed provides an – economically motivated – example for the various concepts of
price mechanisms formulated above.

Our version of a price mechanism is obtained from the simple economic obser-
vation that the differences in the time rates of change of excess demands which
accompany the above type of tâtonnement dynamics should in fact play a role in its
formulation and should thus be incorporated into the rules followed by the auction-
eer as they are described in Arrow and Hahn (1971, 11.2/3). In this way we provide
just another example11 of what these two authors call a tâtonnement in order to an-
alyze the working of ‘pure price effects’ in the same way as they propose it for their
basic kind of such a tâtonnement12 – in the hope that ‘to understand these price
effects in a full story, it is reasonable to suppose that a study of them in isolation
is a hopeful procedure’ (cf. their page 265). Our aim here is to provide thereby an
economically motivated example for a locally ‘universally stable’ price mechanism
as in Jordan (1983) which has even certain global stability properties.

11 We shall neglect here their adjustment rule for boundary values of<n
CC

for simplicity.
12 Note here, that they, too, employ a numéraire tâtonnement approach – due to the fact that they
use adjustment functions Gi instead of fixed parameters for the various components of the excess
demand function.
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It is a common belief that process (13.1) is something like the skeleton of the
dynamics of a market economy – even when formulated in a tâtonnement environ-
ment. Such a view, however, neglects that there is further basic ‘information’ that has
to be taken into account in disequilibrium (here by the ‘auctioneer’) along the price
adjustment path generated by the dynamics (13.1). In a continuous framework such
basic information is contained in the time-derivative of the excess demand function
X along the price trajectories: PX.p/, which in our view should be integrated into
the dynamics (13.1). This proposal can be motivated as follows:

Compare two hypothetical situations where X i .p/, the excess demand on the ith
market, is a given magnitude, but where its time rate of change PX i .p/ differs in sign
and in magnitude. If tâtonnement dynamics is not just purely mathematical in na-
ture, but if it is believed that it can, however remotely, mimic what goes on in actual
markets [so that this method allows to test disequilibrium adjustment processes of
the real world and their complicated set of feedback mechanisms as in a vacuum],
then it should appear as a natural suggestion that the price reaction Ppi is to be for-
mulated differently for these two hypothetical situations. Already in the setup of
Walrasian tâtonnement we should thus have that the same level of excess demand
will lead to more pronounced reactions when it is still increasing in comparison to
the situation where it is instead decreasing. This simple idea (and critique) of the
standard formulation of tâtonnement processes (13.1) – where only the levels of ex-
cess demand are taken into account as forces which act on prices p – leads to their
following reformulation:

Ppi D X
i .p/C gi

PX i .p/; gi > 0; i D 1; :::; n; or (13.2)
Pp D X.p/ C < g > PX.p/ (13.3)

Here, < g > denotes the diagonal matrix obtained from the set of adjustment co-
efficients gi > 0. Note, that we have suppressed all adjustment parameters di in
front of the level magnitudes by an appropriate choice of units.13 The parameters gi
are consequently to be interpreted as being determined relative to the given di of a
standard tâtonnement procedure and should – as the di – be made variable in the end
(cf. Sect. 13.4, Fig. 13.4). Note also, that our motivation for changing the standard
tâtonnement procedure has been guided by economic reasons. We did not modify
this process from a mathematical point of view with the aim of obtaining a more
reliable calculation method for equilibrium prices as, for example, in a recent paper
by Kamiya (1989) where a weighted average of the conventional tâtonnement and
Smale’s global Newton method is used for this purpose. It came therefore as a sur-
prise when eigenvalue calculations showed that this process is closely related to the
abstract discussion of effective price mechanisms and (hyperbolically locally stable)
Generalized Newton Methods as in Saari and Simon (1978) and Jordan (1983) and
that it shared their power to serve as universal adjustment mechanisms.14

13 or by a suitable redefinition of the function X.
14 See Flaschel (1991) for details in this matter.



13.3 Global Stability by Derivative Control 289

We shall, however, not make use of such eigenvalue calculations in our following
analysis of this price dynamics. Instead, we are here interested in formulating certain
‘global’ properties of this dynamics (with multiple equilibria) by means of a suitably
chosen Liapunov function.

The dynamics (13.3) can be reformulated locally as follows:

Pp D X.p/C < g > X 0.p/ Pp; i.e., (13.4)
Pp D .I� < g > X 0.p//�1X.p/; (13.5)

under the assumption that the matrix I� < g > X 0.p/ is regular at the various
equilibrium points p D p�.

We shall show in the following that this system of differential equations exhibits
strong stability properties despite the described arbitrary nature of excess demand
functions. This demonstrates in particular that the negative definiteness of the
Jacobian matrix X 0.p�/ (or any other restriction of this kind) is of no importance as
far as questions of stability are concerned – if the above basic extension of the con-
ventional tâtonnement dynamics is accepted as an indispensable component of pure
price adjustment processes, i.e., if one agrees that disequilibrium adjustment pro-
cesses should be based on more information for price revisions than just the levels of
prevailing disequilibria – even in the remote perspective of a tâtonnement analysis.

13.3 Global Stability by Derivative Control

Let k � k denote the Euclidean norm on <n (obtained from the Euclidean product

 :; : �), and let <nCC � <

n be the positive orthant of <n. We denote by Pp;X 0

(time) derivatives and by < g > the diagonal matrix corresponding to a given
vector g. Let X W <nCC ! <

n be the excess demand function of a (n+1)-goods
exchange economy. We assume for the following that X is C 2 and that it exhibits a
finite number of strictly positive equilibria p�, each with a regular JacobianX 0.p�/.

Continuing the approach of the last section we have now to investigate the stabil-
ity properties of the following autonomous system of differential equations

Pp D .I� < g > X 0.p//�1X.p/; g D .g1; :::; gn/ 2 <
n
CC: (13.6)

We start with the local stability analysis of an arbitrary equilibrium p� of the
given excess function X: X.p�/ D 0. Assuming det.I� < g > X 0.p�// ¤ 0,15

15 Note that this regularity condition must hold true for all sufficiently large parameter values gi .
This can be shown by means of continuity arguments applied to the expression det.< g >/ det.<
g >�1 I � X 0.p�// – due to the assumed regularity of the matrix X 0 at each of the equilibrium
points of X.
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where I denotes the identity matrix, implies16 that the dynamical system (13.6) is
well defined and C 1 in a neighborhood of p�. In order to investigate the local sta-
bility of (13.6) at each p� we will make use of the following auxiliary function L:

L.p/ D kp � p�� < g > X.p/k
2 (13.7)

which is well-defined and C 2 on <nCC. This function provides a Liapunov function
at p� for the above dynamical system and is a direct generalization of a Liapunov
function used in the special case < g >D 0:

Proposition 13.1. The given equilibrium vector p� is an asymptotically Liapunov-
stable point of rest of the dynamical system (13.6) if all parameters gi are chosen
sufficiently large (such that det.I� < g > X 0.p�// ¤ 0 is again assured in
particular).

Proof. This assertion is proved as follows: By the definition of L we have
L.p�/D 0. Consider now the following function Z.p/ D p � p�� < g > X.p/.
Since the Jacobian of this function Z is by assumption regular at p� we know that
this mapping is a homeomorphism for an open neighborhood U of p� such that the
inverse mapping of Z is C 2 on the open set Z(U). And since Z.p�/ D 0 we know
that Z(p) must be different from zero in a neighborhood of p�, i.e., L.p/ > 0 must
hold true in U � p� for such a neighborhood U of the equilibrium p�.

According to Liapunov’s stability theorem17 there remains to be shown that the
condition

�

L< 0 is true for a neighborhood V � p� of the given equilibrium.
Since p� is a regular point of X there exists a positive constant c 2 < such that

kX�1.q/ �X�1.0/k � c � kq � 0k or kp � p�k � c � kX.p/k

is true for suitably chosen neighborhoods U 0 � U , V’ of 0 D X.p�/ – due to
the mean value theorem applied to the mapping X�1 on the open set V’.18 Let
gmin WD minfgi=i D 1; :::; ng. By assumption we have gmin > 0. Differentiating
L along the trajectories of (13.6) then gives (cf. Dieudonné (1960, p. 144)):

�

L D 2
 .I� < g > X 0.p//
�
p ; p � p�� < g > X.p/�

D 2
 X.p/; p � p�� < g > X.p/�

D 2Œ
 X.p/; p � p� � �
 X.p/;< g > X.p/��

� 2ŒkX.p/kkp � p�k � gminkX.p/kkX.p/k�

� 2.c � gmin/kX.p/k
2 < 0

16 cf. for example Dieudonné (1960, pp. 268/9).
17 cf. Hirsch and Smale (1974, p. 193).
18 cf. Dieudonné (1960, p. 155).
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for all p 2 U 0 � p� if gmin > c. We have thus shown that L is a strict Liapunov
function at p�, i.e., p� is a sink for suitably chosen parameters gi . ut

Corollary 13.2. All the equilibria p� of the given economy can be made simulta-
neously asymptotically Liapunov-stable points of rest of the dynamical system(s)
(13.6) if the parameters gi are chosen sufficiently large.

Note here, that this means the manipulation of a different Liapunov function for
each of the given equilibria p� just as in the proof of Proposition 13.1. The corollary
reformulates and generalizes a theorem in Flaschel (1991) where it has been shown
by means of eigenvalue calculations for the special case g WD g1 D ::: D gn > 0

that the real parts of all eigenvalues of all the equilibria of the given economy can
be made negative simultaneously by the choice of a sufficiently large value for the
parameter g. It follows from the index theorem, cf. e.g., Mas-Colell (1985), that this
cannot be done by a smooth modification of the original dynamics (13.1). This is
easily exemplified in the case of our process (13.6), see Fig. 13.1 in the next section.

dp/dt=X(p)

dp/dt=X(p)/(1–gX′ (p))

1=gX′ (p)

p1
∗ p2

∗ p3
p

p

∗

Fig. 13.1 An illustration of the two-goods case



292 13 Dressing the Emperor in a New Dynamic Outfit

We have considered in Sect. 13.2 a mathematical example of a price mechanism,
namely the following Generalized Newton Method (GNM):

Pp D



�X 0.p/�1X.p/ W detX 0.p/ ¤ 0

X.p/ W detX 0.p/ D 0

Our proposal for an economic example of such a price mechanism obviously is
fairly similar to this basic form of a GNM:

Pp D



.I� < g > X 0.p//�1X.p/ W det.I� < g > X 0.p// ¤ 0

X.p/ W det.I� < g > X 0.p// D 0

This is indeed a price mechanism and a GNM as they were defined in Sect. 13.2
and it is furthermore (hyperbolically) locally stable and thus also locally stable as
in Jordan (1983).19 In contrast to further mathematical alternatives to the above
basic example of a GNM (such as the orthogonal Newton method, cf. Jordan (1983,
p. 247)), the above provides for the first time an economically motivated example for
such a universally stable price mechanism. This shows that the search for interesting
price mechanism is not without hope – in particular since the various concepts of
‘universal stability’ that exist may still be too demanding for a proper economic
characterization of such processes.20

It is not our aim to pursue these local approaches to universal stability any further
in this chapter. We are here instead interested in somewhat global results for our
example of a price mechanism – now again for a given excess demand function X –
by exploiting further the properties of the above Liapunov function at the various
isolated equilibria of the function X. The strongest result into this direction is given
by the following:

Proposition 13.3. Let us denote by P – in place of p – the situation where all n+1
goods are considered (PnC1 D 1). Assume that all goods are gross substitutes at
all price vectors P, i.e., according to Arrow and Hahn (1971, p. 230) we in partic-
ular have � 
 X.P /; P � � < 0 for all P which are not equilibria. Assume
furthermore that the set <nCC is positively invariant with regard to the dynamics
(13.6) – whenever it is defined.21 The given economy then has exactly one equilib-
rium which is furthermore globally stable with regard to the dynamics (13.6) for any
choice of positive parameters gi .

19 for suitable choices of the parameters gi for each excess demand function X, see Flaschel (1991)
for details.
20 An obvious example for a too demanding definition is Jordan’s (1983, p. 253) concept of a
market mechanism which keeps markets in equilibrium once they have reached it – independent of
what happens in the other markets. If this definition were economically sensible it would exclude
our proposal for a price mechanism – and indeed any derivative feedback mechanism – from the
set of economically meaningful adjustment processes.
21 We shall see in the proof of this proposition that (13.6) is well-defined on <n

CC

. The invari-
ance of <n

CC

can then be obtained from the condition that kX.pn/k ! 1 if the sequence pn

approaches the boundary of<n
CC

.
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Proof. The uniqueness of equilibrium is a well known fact in the case of gross sub-
stitutes, see Arrow and Hahn (1971, p. 222). Note next, that all matrices I� < g >
X 0.p/ must be regular in this particular situation – for any choice of the parame-
ters gi . This can be seen as follows: Let us denote by S the excess supply function
corresponding to the excess demand function X: S.p/ D �X.p/. It is a known fact
that S 0.p/ will possess a dominant diagonal in the gross substitute case, cf. e.g.,
Hahn (1982, pp. 758/9). A straightforward calculation then shows that the matrix
IC < g > S.p/ will possess a dominant diagonal as well. According to Kemp and
Kimura (1978, p. 7) this matrix must therefore be nonsingular.

From our proof of Proposition 13.1 we furthermore get
�

L< 0 for all admissible
g and all p ¤ p�, since we have for such p


 X.p/; p � p� �D
 X.P /; P � P � �D �
 X.P /; P � � < 0

due to Walras’ Law.22

And this inequality also implies that L.p/ > 0 must be true for p ¤ p�. Other-
wise we would get p � p� D< g > X.p/, i.e., a contradiction with respect to the
preceding paragraph.

By Theorem 2 in Hirsch and Smale (1974, p. 196) we thus know that all trajec-
tories of (13.6) must converge to the unique equilibrium of this economy, since the
inequality

�

L< 0; p ¤ p� does not allow for a entire orbit in the set <nCC � p
� on

which L is constant. ut

The above two propositions and their proofs show that our dynamics strengthens
the qualitative properties of the conventional Walrasian process (13.1) in a fairly
direct way. It, of course, must confirm these properties for < g >D 0 and it other-
wise adds to the well-known situation of gross substitutability a further stabilizing
influence for any choice of the excess demand function X.

Proposition 13.4. Let p� be an equilibrium of the function X and let C be a com-
pact domain in <nCC on which the dynamics (13.6) is well defined and which
contains p� as the only equilibrium of X. Let 0 � k denote an upper bound for

 X.p/; p � p� � on C ,23 let c; U 0 � C be determined as in the proof of propo-
sition 13.1, i.e., we have kp � p�k � c � kX.p/k for all p in U’ and let � be defined
by inffkX.p/k=p 2 C � U 0g.24 Assume furthermore that gmin D minfgi=i D
1; :::; ng > maxfc; k=�2g holds true and that b > 0 has been chosen such that the
set Lb D L�1.Œ0; b�/ is contained in C , where L is the Liapunov-function (13.7).

22 Note that these expression are in addition equal to� X.p/�X.p�/; p�p��D� X.P /�
X.P �/; P � P �� and are thus related to the notion of monotonicity.
23 See Fig. 13.1 for an example where such an upper bound will exist for the whole positive orthant
<n
CC

and not only for sets C of the above kind and note that we had k D 0 in the preceding
proposition.
24 � > 0, since C is a compact set which contains no other equilibrium of X.



294 13 Dressing the Emperor in a New Dynamic Outfit

With regard to the basin of attraction B.p�/ � <nCC of the equilibrium p�25 we
then have:

Lb � B.p
�/

Proof. From the proof of Proposition 13.1 we know that

�

LD 2Œ
 X.p/; p � p� � �
 X.p/;< g > X.p/��

must be negative for all p 2 U 0 � p� if gmin > c. And for the set Lb � U 0 we get
by assumption

�

LD� 2Œk � gminkX.p/kkX.p/k� < k � .k=�
2/�2 D 0:

There follows that
�

L< 0 must hold true in Lb � p� for the above choice of gmin.
The set Lb is thus positively invariant and must be contained in B.p�/ – again due
to Theorem 2 in Hirsch and Smale (1974, p. 198). ut

13.4 Examples

The simplest way to illustrate the results of the foregoing section is given by a two-
goods exchange economy, i.e., by assuming n D 1 for the model of Sect. 13.2.
A typical excess demand function is shown in the upper part of Fig. 13.1 which also
shows two asymptotically stable price equilibria of the conventional tâtonnement
process (and one unstable equilibrium).

The lower part of this figure depicts our revision of this tâtonnement procedure
on the assumption that there are exactly two points (here one to the left and one two
the right of p�2 ) where gX 0.p/ D 1 holds true. The new dynamics is therefore no
longer well-defined and smooth on the set of all positive prices p, but gives rise
here to three vector fields, one for each equilibrium (which must be global sinks in
this simple case with respect to the vector field they correspond to). Note here that
the two border lines which separate the domains of definition of these vector fields
need not enclose the formerly unstable equilibrium point p�2 and that they need not
exist at all (if g < 1=X 0.p/ for all prices p where X 0.p/ � 0 holds true). The area
enclosed by the two lines may therefore exhibit no equilibrium at all (and may thus
give rise to falling or rising prices throughout). In such a case the equilibrium in the
middle remains an unstable one. It is obvious, however, that g can always be chosen
large enough (> 1=X 0.p�2 /) so that p�2 will become a sink for the vector field to
which it corresponds.

25 cf. Hirsch and Smale (1974, p. 190) for a description of this intuitive concept.
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The choice of the parameter g may consequently be used for various purposes.
We know that it can always be chosen sufficiently large such that all equilibria be-
come asymptotically stable simultaneously. This implies the necessity of cutting the
original vector field (13.1) by its extension (13.2), (13.5) in at least as many pieces
as there are equilibria. The range of definition of each vector field, of course, de-
pends on the exact choice of g which gives this choice further importance, since the
basins of attraction of the various equilibria will depend on it. And finally, the pa-
rameter g may also be used26 for increasing the speed of adjustment toward the
various stable equilibria of (13.1) solely without any change in the range of defi-
nition of the original vector field. There is therefore no need to accept only large
parameter values gi . Instead, the whole range of these gi may be worth while for
further consideration.

Such possibilities may also be of help in overcoming some objections which –
quite plausibly – can be raised against the above rigid type of a derivative control
mechanism. Though this mechanism removes an implausible feature from the or-
dinary tâtonnement procedure, 27 namely that the kind of change of disequilibrium
does not count in the adjustment of market prices, it has its own and new problems.
It may thus happen, e.g., that prices will fall in our revised adjustment procedure
though there is excess demand in their markets. Also, points near the separating
lines in the above Fig. 13.1 may give rise to extraordinary strong price reactions.
These simple examples suggest that our reformulation of Walrasian tâtonnement is
not yet really satisfactory from a global point of view. This is, however, not aston-
ishing since the role of adjustment speeds is not considered very thoroughly in this
first attempt towards an analysis of derivative forces.28

A famous example of global instability of a unique equilibrium of the Walrasian
tâtonnement process has been provided by Scarf (1960). For an economy with three
consumers and three commodities he in particular derived the following form for
the adjustment process (13.1) – by choosing utility functions and endowments in a
certain circular way (and by putting p3 	 1):

Pp1 D
�p2

p1 C p2
C

1

1C p1

Pp2 D
p1

p1 C p2
C
�1

1C p2

This dynamical system gives rise to the closed orbit structure shown in Fig. 13.2
(which is characterized by p1p2e�0:5.p

2
1
Cp2

2
/ D const.):

26 not necessarily by increasing it further!
27 When it is believed that it can, however remotely, mimic what goes on in actual markets, see
Arrow and Hahn (1971, p. 265)!
28 See, however, Fig. 13.4 for a simple, more elaborate choice of adjustment speeds.
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Fig. 13.2 Scarf’s Example (x D p1; y D p2)

This figure exemplifies Scarf’s claim of global instability in the particular case
where commodity 3 has been taken for numéraire (which – following Jordan
(1983) – is the choice of this article, but not typical for Scarf’s paper).

Dierker (1974, pp. 54/5) remarks: ‘One might object that the phenomenon of
Scarf’s (or Gale’s) example perhaps would not happen for other or more realistic
adjustment processes. ... If we find out, however, that each differentiable vector field
on S can be approximated by the excess demand of some economy, then we can no
longer put the blame on the specification of the price adjustment rule and we have to
expect the worst in dimensions high enough to provide space for various ‘pathologi-
cal’ features.’ In contrast to this statement we have been able to show in this chapter
– and from another perspective also in Flaschel (1991) – that this pessimistic conclu-
sion need not be accepted. There are adjustment rules which work well ‘universally’
– without the need of putting more structure into the economic model at this level
of their formalization. This is now exemplified by means of Scarf’s example.

Calculating the eigenvalues of this dynamics at its unique equilibrium (1,1)’
gives ˙0:25 which confirms the situation of a center dynamics as it is depicted
in Fig. 13.2. On the basis of propositions provided in Flaschel (1991) we should ex-
pect that any g D g1 D g2 > 0 will turn the above equilibrium into a sink. This
expectation is indeed confirmed by simulations of the dynamics (13.1) for this ex-
ample, see Fig. 13.3. Furthermore, increasing the parameter g over a certain range



13.4 Examples 297

p2

p1

0.97

1.
04

1.
03

1.
02

1.
01

1.
00

0.
99

0.
98

0.
97

0.
96

0.98 0.99 1.00 1.01 1.02 1.03 1.04 0.995 1.005 1.015 1.025 1.0350.
99

4
1.

00
2

1.
01

0
1.

01
8 p2

p1

Fig. 13.3 Scarf’s Example with Derivative Control (g D 0:2; g D 2, respectively)

Fig. 13.4 A Variable
Derivative Feedback
Mechanism
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leads systematically to increased stability away from cyclical convergence towards a
monotonic kind of behavior. This fact was also observed for various other examples
and may thus represent an important feature of this new price adjustment procedure.

Finally, a plausible modification of the dynamics (13.5) is implied by the observa-
tion that the derivative influence should increase in strength the larger the deviations
from equilibrium become. A simple example of this idea is given by the following
now endogenous determination of the value of g D g1 D g2:

g D .10p1 � 10/
4 C .10p2 � 10/

4:
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For the above illustration of the dynamics (13.5) one would here expect that there
is a nearly monotonic movement towards the equilibrium for larger discrepancies
in demand and supply which changes into the original cyclical movement as it ap-
proaches the equilibrium. This expectation is indeed confirmed by the simulation
shown in Fig. 13.4:

Such a result in our view has important methodological consequences. To ex-
emplify this assume for simplicity that the derivative mechanism is absent for very
small deviations from equilibrium (which is very plausible in the light of its mo-
tivation given in Sect. 13.2), and that it is then changed in a smooth way as in the
preceding example. Local stability analysis can in such a case be totally mislead-
ing by telling, for example, that the given equilibrium is not at all supported by
stability and should thus not be used for comparative static purposes. Neverthe-
less, depending on how quick derivative forces come into being as we move away
from the equilibrium, this equilibrium may nevertheless be a ‘center of gravity’ of
market prices and may consequently be used for comparative statics – though it
is not asymptotically stable! It is obvious that this only an extreme example in a
larger variety of cases questioning the value of local stability analysis in a nonlinear
environment.

13.5 Conclusions

We have argued in this chapter that the standard tâtonnement price dynamics should
be augmented by derivative effects in order to make it more convincing from an
economic point of view. Such an extension may give rise to quite potent stability
properties if the derivative feedbacks are sufficiently pronounced. The magnitudes
of the parameter values gi needed for the proof of the propositions in Sect. 13.3
or in numeric simulations (where smaller values already account for a good per-
formance) are, however, still be much too high from an economic point of view in
many situations. Weaker results may be obtainable from a more detailed analysis
of the stabilizing potential of the parameters gi for an appropriately chosen subset
of the whole set of equilibria. Under certain circumstances – in other economic
environments – it may also be sensible to assume gi D 0 for certain compo-
nents i . The question of how much derivative control is necessary or plausible must,
however, be left as an open question here. Yet, setting all gi D 0 as in the conven-
tional tâtonnement analysis, should no longer be regarded as a sensible procedure:
derivative feedbacks are part of any general disequilibrium analysis, which therefore
differs substantially in its approach from general equilibrium analysis!

Revising what might be conceived of as the skeleton of market adjustment pro-
cesses has led here to the conclusion that it is not absolutely necessary that the
structure of general equilibrium models must be much more specific in order to al-
low equilibrium analysis to be backed up by stability assertions. Highly complex
economic systems and their probably fairly nonlinear adjustment dynamics need
not give rise to very complicated dynamics (chaos) as it is the fashion today. The
emperor may thus be dressed in a dynamic outfit which suits his interest.
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Dieudonné, J. (1960). Foundations of modern analysis. New York: Academic
Flaschel, P. (1991). Stability – independent of economic structure? A prototype analysis. Structural

Change and Economic Dynamics, 2, 9–35
Hahn, F. (1982). Stability. In K. J. Arrow & M. D. Intrilligator (Eds.), Handbook of mathematical

economics, II (pp. 745–793). Amsterdam: North Holland
Hahn, F. (1984). Equilibrium and macroeconomics. Oxford: Basil Blackwell
Hildenbrand, W. (1983). On the ‘Law of Demand’. Econometrica, 51, 997–1019
Hildenbrand, W. (1989). Facts and ideas in microeconomic theory. European Economic Review,

33, 251–276
Hirsch, M. W. & Smale, S. (1974). Differential equations, dynamical systems, and linear algebra.

New York: Academic
Ingrao, B. & Israel, G. (1990). The invisible hand. Economic equilibrium in the history of science.

Cambridge, MA: MIT
Jordan, J. S. (1983). Locally stable price mechanisms. Journal of Mathematical Economics, 11,

235–259
Kaldor, N. (1940). A model of the trade cycle. Economic Journal, 50, 78–92
Kamiya, K. (1989). A globally stable price adjustment process. Osaka University
Keenan, D. (1990). Morishima systems and global stability. International Economic Review, 31,

11–16
Kemp, M. & Kimura, Y. (1978). Introduction to mathematical economics. Heidelberg: Springer
Kirman, A. (1988). On the instability of Walrasian Economics. In M. Galeotti et al. (Eds.), Non-

linear dynamics in economics and social sciences. Bologna: Pitagora Editrice
Kirman, A. (1989). The intrinsic limits of modern economic theory: The emperor has no clothes.

Economic Journal, 99, 126–139
Mas-Colell, A. (1985). The theory of general equilibrium. A differentiable approach. Cambridge,

UK: Cambridge University Press
Mas-Colell, A. (1986). Notes on price and quantity tâtonnement dynamics. In H. Sonnenschein
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Chapter 14
Stability: Independent of Economic Structure?
A Prototype Analysis

14.1 Introduction

Since the early investigations of Arrow et al. in the late fifties and early sixties with
their optimistic views on the stability properties of general equilibrium systems,
there have been numerous contributions which have favored the opposite view –
due to the counterexamples found shortly afterwards and due to the theorems of
‘Debreu-Sonnenschein’ type which have been formulated in the sequel. A typical
statement in this regard is that of Frank Hahn (1970, p. 2): ‘What has been achieved
is a collection of sufficient conditions, one might almost say, anecdotes, and a
demonstration by Scarf and later by Gale, that not much more could be hoped for.1’ 2

Similar statements can be found in a variety of publications on the stability issue,
cf. for example Dierker (1974, p. 115) and in particular the recent survey article of
Kirman (1989)3. This latter article also discusses one important possible route of
escape from (non-uniqueness and) instability in the context of general equilibrium
models, i.e., the approach by Hildenbrand and others who introduce further restric-
tions on the distribution of the characteristics of economic agents in order to avoid
the above problems.

There are, however, also two further routes on which some progress has been
achieved for stability analysis of exchange and production economies. These at-
tempts concern:

� The characterization of the properties of adjustment mechanisms which are
universally stable for appropriately specified (sub-)spaces of all conceivable ex-
change economies

1 See, however, Keenan (1990) for a quite new attempt to obtain global stability for pure price
mechanisms on the basis of a Morishima-type sign pattern of the Jacobian of the excess demand
function (for all prices).
2 I thank Dierker and Saari for helpful comments during the period when this chapter took shape.
Of course, usual caveats apply.
3 cf. also Kirman (1988).

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 14,
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� The recognition of the fact that Walras’ (1954) tâtonnement procedure must be
formulated in a different way in the case of production economies than it is done
for pure exchange economies.

Investigations of the first type date back to the discussion of the so-called Newton
Method and its generalization as in Saari and Simon (1978). And advocates of the
second type of approach have since long been Morishima and Goodwin. Their de-
tailed work on such adjustment mechanisms has now also found entrance into the
writings of general equilibrium theorists, cf. in particular Mas-Colell (1986).4

In the following an attempt is made to unify and extend the above two types of
investigations of the stability question in the context of general equilibrium models

� By showing that the introduction of production does in fact improve the adjust-
ment mechanism in its range of applicability

� By demonstrating how this mechanism can be further enriched – by making use
of the recent and classically oriented discussion of this price/quantity reaction
pattern5 – such that its stability properties become fairly universal

� By showing that this originally classical adjustment method provides an in-
teresting economic example for the formal discussion of universally effective
mechanisms as in Saari and Simon (1978).

These three topics are treated in Sects. 14.2, 14.3, and 14.4, respectively. In
Sect. 14.5 we shall finally consider weaker forms of our adjustment process in
order to indicate that its ultimate design is presently by no means clear, but will
demand further reflection and analysis. A concluding section then attempts to sum-
marize the achievements of the chapter and enumerates a variety of topics for future
research which should further enhance our understanding of this ‘new’ type of
adjustment process for (capitalistic) market economies.

In order to avoid possible misinterpretations of what follows let us finally stress
the following points:

� All assertions (and proofs) of this chapter – with the exception of Sect. 14.5
(Ignorable components) – immediately generalize to the case of n commodities,
i.e., to the case treated in Mas-Colell (1986). The one-input one-output case of
the present chapter is therefore in general only used to simplify its presentation.

4 It has also been noticed recently, that there exists a close relationship between Walras’ price-
quantity tâtonnement process for production economies and the stability analysis for so-called
classical long-term positions, cf. in particular Duménil and Lévy (1989), Goodwin (1989), e.g.,
Essay 1, and Flaschel and Semmler (1987) for such observations. This (formal) similarity in the
type of price-quantity adjustment considered by Walras’ and the Classics allows that results which
have been obtained with respect to one approach may be applicable to the other approach if the
differences in their concepts of ‘equilibrium’ are taken into account in an appropriate way. In the
present article we shall study this cross-dual price-quantity adjustment process within the frame-
work of Walrasian equilibrium analysis. [For the alternative approach the reader is referred to
Flaschel and Semmler (1987, 1988)].
5 cf. e.g., Flaschel and Semmler (1987).
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� The adjustment process considered here is not confined to Walrasian models of
general equilibrium. It can also be easily applied, for example, to the classical von
Neumann model (if there are only pure joint products6) – due to its assumption
of fixed proportions (see, however, Mas-Colell (1986) for problems in the case
of joint production systems with smooth substitution possibilities).

� Our use of a tâtonnement procedure in order to test for universal stability should
be understood as a preliminary step in the investigation of a new micro dy-
namic adjustment mechanism. If interesting and strong properties come about
in a tâtonnement-like environment, then it might be hoped that these properties
will survive when the characteristics of this new process are applied to more re-
alistic types of disequilibrium analysis. This task, however, cannot be solved in
the present chapter.

� The stability results of the present chapter are not confined to local consider-
ations and the assumption of a uniform adjustment parameter � . In a paper the
author has shown meanwhile by means of a simple Liapunov function that global
stability of the considered (non-linear) adjustment process can also be assured –
even if this process is locally unstable.

14.2 Cross-Dual Dynamics in Walrasian Production Economies

In Mas-Colell (1986) the one-input/one-output case of general equilibrium models
is used as an example to illustrate some global stability properties of a cross-dual
type of Walrasian tâtonnement procedure whose formulation can be directly derived
from Walras’ writings on disequilibrium in production economies. Nevertheless,
this extended tâtonnement procedure has been fairly neglected in the literature on
general equilibrium systems so far. This process is formulated and analyzed in Mas-
Colell’s article in great generality and detail. In the following we shall reconsider
it, however, for the above simplest general equilibrium model with production – in
order to design and explore a quite natural and important extension of it in a way
as instructive as possible (we have already noted that our analysis is not confined to
this simple case which, however, has the advantage that it allows for diagrammatic
representation). In contrast to Mas-Colell’s findings on the stability of Walras’ cross-
dual dynamics our extended adjustment process will exhibit astonishingly universal
stability properties (as we shall show in Sects. 14.3, 14.4).

Let us start by briefly summarizing the one-input/one-output case of general
equilibrium analysis and its Walrasian price/quantity adjustment procedure (a more
detailed, but also still partial version of it can be found in Beckmann and Ryder
(1969), cf. also Mas-Colell (1986, pp. 64–67)).

We assume as given an economy where commodities are produced solely by
means of labor subject to a smooth production function f .ld / D ys which may

6 i.e., fixed capital and the like is here excluded from consideration.
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exhibit decreasing, constant or increasing returns to scale. Furthermore, we assume
as given a smooth demand function d.p; �/ for the one produced commodity, where
profits � are defined by � D pf .ld /�wld (p the commodity price and w the nom-
inal wage rate, by choice of numéraire we assume w D 1)7. Households’ initial
endowments consist of labor only and labor supply can be derived from the above
demand function by means of Walras’ Law

pd.p; �/ D ls.p; �/C � D ls.p; �/ � ld .p/C pys.p/:

Due to this law (and our choice of numéraire w D 1) we shall neglect the labor
market in the following and will investigate the question of stability by reference to
the market for goods.

The above demand function d can obviously be rewritten as a function of the
two variables p and ld and will be denoted by d.p; ld / for simplicity. According to
Mas-Colell (1986, p. 65) we have for the partial derivative of this function dp � 0 if
and only if the weak axiom of revealed preferences holds true, a situation normally
not assumed as given in the following. We denote by ld D l.ys/ the inverse of
the production function (i.e., planned employment as a function of planned output)
and will abbreviate from now on ld and ys by l and y for simplicity. The function
l D l.y/ thus represents the (minimum) cost function in the present simple model.

Assume now as given an interior equilibrium of the above model, i.e., a situation
of the following type

d.p�; l.y�// D y� > 0 (14.1)
l 0.y�/ D p� > 0 (14.2)

such that 0 � l 00.y/ holds true for the second derivative of l(y) in a neighborhood
of y� (i.e., locally decreasing or constant returns to scale). Due to the assumption
of (dynamic) profit maximization we shall generally not consider those points of
rest where increasing returns to scale prevail, though of course segments with such
returns to scale may exist for the assumed production function.8

Out of equilibrium y�; p� the following type of tâtonnement adjustment process
has been suggested by Mas-Colell (1986) as a formalization of Walras’ views on
market dynamics in a production economy:

�
pD ˛ � Œd.p; l.y// � y� D ˛ � F 1.p; y/; ˛ D const > 0 (14.3)
�
yD ˇ � Œp � l 0.y/� D ˇ � F 2.p; y/; ˇ D const > 0 (14.4)

7 Profits � are neglected in Mas-Colell’s disequilibrium investigation of this basic situation.
8 Note here, that our stability results can also be applied to such points of rest (which are no
equilibria, since profits are at minimum here). These points of rest are of importance in the literature
on public utilities and marginal cost pricing.
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Verbally stated the dynamics (14.3), (14.4) claims that prices are adjusted ac-
cording to the excess demand on the market for goods and that supply is adjusted
following the discrepancy between the current price for that good and the marginal
wage costs of producing this current supply. Such a process has since long been
related with the writings of Walras by a few authors, most notably by Morishima
(1959, 1977) and Goodwin (1953, 1989), cf. also the exegetical reconsideration of
Walras’ disequilibrium-production model in Walker (1987). However, most of the
literature on tâtonnement processes has neglected this cross-dual type (Morishima)
or cross-field type (Goodwin) of adjustment process for production economies
despite its long tradition in classical ass well as neoclassical non-mathematical anal-
ysis. Neoclassical analysis has used instead the pure price dynamics of exchange
economies also in the context of production economies (assuming thereby that all
produced quantities will always be adjusted with infinite speed to the profit maxi-
mum throughout the adjustment procedure).

For a single market model, see Fig. 14.1, the above dynamics has been explored
in a variety of ways in Beckmann and Ryder (1969) and also in Mas-Colell (1986),
there on the assumption � 	 0, which however is not true in disequilibrium. We
shall therefore briefly reconsider the above dynamics for � D pf .l/ � l 6D 0 and
compare it to the conventional type of Walrasian tâtonnement analysis where profits
are always maximal and where only prices adjust in order to remove any goods
market disequilibrium.

For the Jacobian J of the process (14.3), (14.4) we get at the equilibrium point
p�; y�

J D

�
˛ 0

0 ˇ

��
dp �1

1 �l 00

�
(14.5)

U

Uy*
y

l /p

π /p

l /p

y–l /p

l*
l

Fig. 14.1 The one-input/one-output case
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since dy D d��
0.l/l 0.y/ D 0 at l�.y�/.9 Note here, that we will consider only

equilibria with det J 6D 0 in the following10. In the case of the weak axiom we
therefore have trace J � 0 (since l 00.y�/ � 0) and det J > 0 and thus get local
asymptotic stability if either dp < 0 or l 00.y/ > 0 holds true,11 i.e., in case of a
negatively sloped d.�; y/-curve or for strictly increasing marginal costs.12

Because of (14.5) the (in-)stability analysis is exactly the same as in the par-
tial model of Beckmann and Ryder (1969) and thus need not be repeated here in
its further details. However, the above model can be considered as being entirely
Walrasian (see again Walker (1987)) and need not be characterized as a combina-
tion of ‘Walrasian’ and ‘Marshallian’ features as these two authors have suggested.

It is illuminating to compare the cross-dual adjustment (14.3), (14.4) with the
conventional one-sided tâtonnement process of general equilibrium theory which in
the present situation is given by

�
pD ˛ � Œd.p; l.y// � y� D ˛ �X.p/; y D l 0�1.p/ (14.6)

Here, output y is determined as the profit-maximizing output (p D l 0.y/) with
regard to given prices p. Because of this, output y is now an upward sloping function
of prices p in the case of decreasing returns to scale: y0.p/ D 1

l 00.y.p//
. For l 00 > 0,

the local stability condition for (14.6) is consequently given by

dp � y
0 D dp � .

1

l 00
/ D

.dpl
00 � 1/

l 00
< 0 (14.7)

since the second partial derivative of the function d with respect to p is zero [again
due to the profit maximum condition.] Condition (14.7) therefore simply represents -
in the case of decreasing returns – one of the two necessary and sufficient condi-
tions for the asymptotic stability of the above cross-dual type of dynamics, namely
det J > 0, which in the case of (14.6) is already sufficient for local asymptotic
stability. And: For any given demand function d this stability condition can always

9 The second of the above two matrices will in general be of the form:
�
A �B

B 0 C

�
;

cf. Mas-Colell (1986, p. 55) for further details. Note also, that we will make use of subscripts in
order to denote partial derivatives in the following.
10 which can be shown to be finite in number under certain simple additional conditions, cf. Dierker
(1974, Chaps. 1,10) and Kirman (1989) for details.
11 which in this case is independent of adjustment speeds (D-stability) because of the negative
quasi-definiteness of the matrix J . In the case dp > 0 we will have a unique bifurcation point with
regard to the parameter ˇ for any ˛ – instead of D-stability – which separates stable from unstable
spirals.
12 In the case of dp > 0 the second adjustment coefficient ˇ must be chosen sufficiently large in
order to obtain local asymptotic stability (if l 00.y/ > 0 holds true).
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be ensured by assuming decreasing returns (at the equilibrium point) sufficiently
close to the case of constant returns, i.e., the one-sided neoclassical tâtonnement
procedure (14.6) can always be stabilized through appropriate assumptions on the
production side of our economy. This is due to the – empirically implausible – fact
that output reactions with respect to price changes approach infinity when the tech-
nology approaches the constant returns case (whereby the destabilizing influence of
income effects on the side of demand can always be overcome).

Yet, though process (14.6) may at first appear to be the more convincing one,
because the more stable type of dynamics it guarantees in comparison to process
(14.3), (14.4) in the case of a production economy, the limit properties of (14.6)
in our view nevertheless support the original approach of Walras to disequilibrium
production models, i.e., the dynamics (14.3), (14.4), as the more promising route
toward the determination of the skeleton of the dynamics of market economies.
This latter dynamics – in contrast to (14.6) – is not ill-defined in the limit case of a
constant returns economy, but has in this case as Jacobian the matrix

J D

�
˛dp �˛

ˇ 0

�
(14.8)

i.e., it is stable whenever dp < 0 holds true. It thus does not lead to an undefined
situation for this often employed basic case of economic model building.

Figure 14.2 provides a simple illustration of the arbitrary dynamic behavior that
can be expected even in the above simple one-input/one-output economy with regard

p

y, d

Stable focus or node

p=l′ (y)–isocline

y=d (p/.)– isocline

Equilibria

Stable focus or node

Saddlepoint

Fig. 14.2 Local cross-dual dynamics at Walrasian equilibria
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to its various equilibrium situations (if only standard restrictions are imposed on the
properties of such a production economy):13

This picture seems to suggest that not too much can be gained from using a
cross-dual stability analysis à la Walras instead of the standard one-sided pure price
dynamics – even though this type of dynamics appears as more convincing from
an economic point of view than the conventional tâtonnement procedure (14.6)
of neoclassical general equilibrium theory. However, important similarities in the
formulation of Walrasian cross-dual dynamics with the cross-field processes as for-
mulated by the Classics and Marx (their ‘tendency of profit-rates to equalize’, cf.
Flaschel and Semmler (1987) for details) suggests, on the one hand, that this dynam-
ics has a much wider economic background and plausibility than its neoclassical
one-sided counterpiece. And, on the other hand, the long tradition that this lat-
ter process now has in economic theorizing opens up the possibility that further
modifications of it can be found – by a careful reflection of the features of, e.g., a
classical type of dynamics – which will increase its stability properties. A sugges-
tion of this kind is the natural idea that rising profit-rate differentials will exercise a
stronger influence on the conditions of supply than falling ones, cf. again Flaschel
and Semmler (1987) in this regard. This idea will now be applied in an extended
form to the Walrasian dynamics here under consideration.

14.3 Universal Stability

In this section we shall attempt to improve the stability properties of the above
cross-dual dynamics by introducing further plausible reaction patterns into it. These
additions concern effects that are caused by the direction of change of excess-profits
and -demands and will give rise to a radical improvement in the stability behavior
of the considered dynamics. This new dynamics will be investigated further in the
following sections.

It has been shown by Kose (1956, Sect. 14.2) for the special situation of purely
imaginary eigenvalues (the case of neutral stability), that it is possible to obtain
asymptotic stability in such a case by a fairly natural modification of the given center
dynamics. To make such a center case converge he extended this type of dynamics
as follows .� D const > 0 a given parameter):

�
p D ˛ � Œ.d.p; l.y// � y/C � �

�‚ …„ ƒ
.d.p; l.y// � y/ � (14.9)

�
y D ˇ � Œ.p � l 0.y//C � �

�‚ …„ ƒ
.p � l 0.y// � (14.10)

13 Note that we have neglected – as in Mas-Colell (1986, pp. 64/4) – the influence of � on d in our
Fig. 14.2. Due to this fact we could make use of ‘Debreu-Sonnenschein’ theorems on the arbitrary
nature of demand functions as they are formulated in the context of pure exchange economies,
cf. Dierker (1974, pp. 56 ff.) for example and also Kirman (1989). Note further, that there can be
no equilibrium in the presence of increasing returns due to the neoclassical assumption of a pure
price-taker behavior.
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Note, that the points of rest of this new dynamics are the same as in our original
dynamics (14.3), (14.4).

In this revised dynamics, prices and quantities do not only react with respect to
the level of excess demands and the excess of prices over costs (i.e., a proportional
type of automatic control), but also with regard to their time rates of change (i.e.,
a derivative kind of automatic control), which in economic terms says that rising
discrepancies or disequilibria exercise a different influence than falling ones on the
dynamics of prices and quantities.

Partial derivative control, i.e., on the one hand, the influence of the rate of change
of excess profitability on supply conditions, and on the other hand, the impact of the
rate of change of excess supply on prices, has already been used in Flaschel and
Semmler (1987) in the context of a linear Sraffa/von Neumann model there giving
rise to global stability results with process extinction or product extinction. The
following study differs from this earlier approach insofar as

� It also allows for decreasing returns to scale
� It neglects ‘normal profits’
� It considers the joint effect of above two derivative forces
� It allows for stability even if the original cross-dual dynamics itself is unstable
� It stresses the importance of adjustment speeds for obtaining stability for one or

all equilibria of a given economy or even for all conceivable economies.

The following analysis attempts to demonstrate to the reader the strong stabilizing
influence supplied by economic forces which relate to the impact of differing rates
of change of the two situations of excess here considered and which are thereby
characterized as important components of real economic adjustment mechanisms.

Making use of the approach of Kose (1956) the above extension of the dynam-
ics (14.3), (14.4) gives rise to the Proposition 14.1 (which is a special case of the
Proposition 14.3 and which already supplies part of the proof for the latter):

Proposition 14.1. Assume l 00.y�/ D dp.p
�; y�/ D 0. The dynamics (14.9),

(14.10) then is locally asymptotically stable at any p�; y� and for any � > 0.

Proof. We will make use of the following notation:

D D

�
˛ 0

0 ˇ

�
; Q D

�
dp.p

�; l.y�// �1

1 �l 00.y�/

�
; z D

�
p

y

�
:

Equations (14.9), (14.10) can then be rewritten as

�
zD DŒQ.z � z�/C �Q

�
z� D .I � �DQ/�1DQ.z � z�/ (14.11)

as far as their linear part is concerned.
In order to demonstrate this we consider (14.9), (14.10) in the following abbre-

viated form (cf. (14.3),(14.4),z D .p; y/0):

�
zD DŒF.z/C � �

�‚…„ƒ
.F.z//� D DŒF.z/C � � F 0.z/

�
z�:
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From this we obtain
�
zD .I � � �DF 0.z//�1DF.z/ (14.12)

for those � > 0 for which the employed inverse matrix is well-defined.14 According
to (Dieudonné, 1960, p. 146) we get for the derivative of the product operator ı of
matrices v0 ı u0 an expression of the type:

.s; t/ 7�! v0 ı s C t ı u0:

Yet, in our case, we have u0 D DF.z�/ D 0, so that the Jacobian J of (14.12) is
simply given by

J D .I � �DF 0.z�//�1DF 0.z�/

This indeed shows that (14.11) gives the linear part of (14.9), (14.10). [Note,
that the matrix J is well-defined in our specific situation for all � > 0, because
det.I � �DF 0.z�// equals 1 C ˛ˇ�2 for the particular type of neutral equilibrium
here considered].

Consider next an arbitrary eigenvalue � of the matrix J D .I � �DQ/�1DQ and
an associated eigenvector x, i.e., the following equation:

.I � �DQ/�1DQx D �x; x ¤ 0: Then W

DQx D .I � �DQ/�x or

.1C ��/DQx D �x or DQx D
�

1C ��
x

if � ¤ �1
�

(which is impossible, cf. the following calculations). The expression
�

1C��
consequently is an eigenvalue of DQ. By assumption it is purely imaginary,

i.e., we have �
1C��

D bi . This gives

�.1 � �bi/ D bi or � D
bi

1 � �bi
D
bi.1C �bi/

1C �2b2
D
��b2 C bi

1C �2b2
:

Since the value b D 0 is impossible in the present situation, we get

Re � D
��b2

1C �2b2
< 0;

which proves the proposition. ut

14 The region where the expression (14.12) is not defined may be a complex domain for general
excess functions F and in higher dimensions (cf. Fig. 14.3 for a particularly simple illustration of
this remark).
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Remark 14.2. We have formulated the above proof in such a way that its generaliza-
tion to any number of commodities should be obvious. Furthermore, its extension
to arbitrary equilibria is now a fairly easy matter:

Proposition 14.3. Consider an interior equilibrium of system (14.9), (14.10). There
exists �0 > 0 such that .p�; y�/ will be locally asymptotically stable for all � > �0
with regard to the adjustment process (14.9), (14.10).

Proof. We apply the same arguments as in the preceding proof which now gives the
relationships

�

1C ��
D 	 or � D

	

1 � �	
(14.13)

between the eigenvalues � of the matrix .I � �DQ/�1DQ and 	 of the matrixDQ
(of course, � has to be chosen in such a way that �� ¤ �1 and �	 ¤ 1 will hold
true). Note, that the mappings (14.13) are inverse to each other and that they define
one-to-one linear transformations of the extended complex plane onto itself (see
Ahlfors (1953) for details). Using the expression on the right hand side of (14.13)
we get for 	 D aC ib:

� D
	.1 � � N	/

j1 � �	j2
D

	 � �	 N	

j1 � �	j2
D
a � �.a2 C b2/C ib

j1 � �	j2

where j	j D
p
	 N	 denotes the absolute value of a complex number.

Since .p�; y�/ has been assumed as regular [see Sect. 14.2], we have a2jCb
2
j > 0

for all eigenvalues 	j of the matrix DQ (j = 1, 2 here). Hence, for each 	j , we
can choose �j > 0 such that the corresponding �j fulfills Re �j < 0 for all
� > �j W �j D

aj

.a2
j
Cb2

j
/
. Defining �0 by

�0 D max
j
�j

then implies the assertion of the proposition, since the number of eigenvalues ofDQ
is finite ( = 2 in the present case). Note here, that we have det.I � �DQ/ ¤ 0 for

� > �0 D max
j

"
aj

.a2j C b
2
j /

#
;

either because of bj ¤ 0 or because of � > 1
aj

in the case of a real root (bj D 0) ut

The above proposition shows how market pressures – in combination with
price/cost-comparisons – can be reformulated in such a way that the stability of
all economic equilibria comes about. Yet, this proposition also shows that the in-
formation which ‘markets’ need in order to allow for generally stable adjustment
processes exceeds the information that they have to provide for the derivation of the
existence of equilibria.
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Remark 14.4. (1) We have shown for 	j D aj C bj � i that the equation

Re �j D
aj � �.a

2
j C b

2
j /

.1 � �aj /2 C .�bj /2

must hold true. This expression however shows – in addition to the result that
these real parts must all become negative for � > �0 - that this property does not
behave too nicely for larger and larger � . In fact, Re �j shrinks to 0 (from be-
low) for � ! C1, which means that the proven asymptotic stability becomes
weaker and weaker for a rising value of the parameter � .15

(2) The �0 we have chosen in the proof of the last proposition still depends on the
given equilibrium. It may, however, also be chosen large enough to be inde-
pendent of the particular equilibrium of the given regular economy, since the
number of these equilibria is finite. Yet, as noted under 1), this will further
weaken the exponential degree of stability of the equilibria of the given eco-
nomic model. Note also, that � cannot be chosen independently of the functions
d and l 0, i.e., independently of the particular economy considered.

(3) In (14.9), (14.10) we have added terms which represent a kind of derivative
control for the system (14.3), (14.4). Similarly, one might be tempted to add
an integral control (based on the integral of past deviations from equilibrium)
or a derivative control of second order to the initial dynamics (14.3), (14.4).
Both approaches, however, do not seem to improve the situation of the simple
derivative control analyzed above.

The process which we have introduced with (14.9), (14.10) has been obtained by
the inclusion of further economic forces into the Walrasian process (14.3), (14.4).
We have seen that the added feedbacks greatly improve the stability of the original
process (14.3), (14.4). Yet, there also exist features of this dynamics which at the
present stage of its investigation appear as somewhat perplexing. Examples of this
kind are given by: (a) Larger positive real parts of the dynamics (14.3), (14.4), i.e.,
greater instability in the original system, demand less of the new stabilizing force
(a smaller � ) in order to be turned into stable roots, and, (b) not only the equilibria,
but also the other points of rest (see Fig. 14.2 for examples) are stabilized by such
an integration of derivative dynamic forces.16

Figure 14.3 provides an intuitive illustration of the change in the dynamics that
is implied by our addition of a derivative control mechanism to the Walrasian cross-
dual tâtonnement procedure. For simplicity, we consider in this figure the case of a
one-sided price adjustment mechanism (14.6) solely, in which case the comparison
between the original type of adjustment and its enrichment by means of derivative

15 Such an observation quite naturally gives rise to the question of global stability (treated in
Flaschel (1990) for stable as well as unstable types of equilibria), since it appears as plausible
that adjustment speeds � should not be chosen to large in order to make sense economically.
16 The proposed dynamics is therefore also of interest for studies of marginal cost pricing in the
presence of increasing returns to scale.
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p° = X (p)

p° = X (p) / (1–g X′ (p))

p

p
p1* p2* p3*

1 = X′ (p)

Fig. 14.3 Universal stability for pure price adjustment

feedbacks is particularly illuminating and easy to depict: 17 This figure shows that
universal asymptotic stability is obtained through the partitioning of the domain of
definition of the original dynamics into isolated basins of attraction for each point
of rest.18 And: there may also exist isolated regions which do not contain a point of
rest. These facts are, however, presently of no great importance, because of the local
viewpoint we have adopted in this chapter.

The type of universal stability introduced above thus is to some extent still of a
questionable type. Despite its problematic features, it is nevertheless of great inter-
est, since

� It provides a first truly economic example for a so-called Generalized Newton
Method, cf. Jordan (1983).

� It shows how economic agents can economize the information that is claimed to
be necessary for universally convergent adjustment processes (they only need to
reflect certain rates of change to this end).

� It thus demonstrates the fact that mathematical conditions which have been
proved to be absolutely necessary for universal convergence (i.e., the inclusion
of the whole Jacobian of the excess-function into the formulation of such mech-
anisms) cannot be viewed as implying that agents must have this huge amount
of knowledge at their disposal in order to be able to implement such quite potent
market mechanisms, cf. Saari and Simon (1978) and the following Sect. 14.4.

17 cf. Dierker (1974) and Kirman (1989) for the details of the conventional upper part of this dia-
gram and its dynamics.
18 Note here, that the Jacobian at points of rest in the lower part of Fig. 14.3 is given by X 0.p�/

1��X 0.p�/

which must be negative for each � larger than 1
X 0.p�/

.
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Derivatives are important ingredients in the formulation of workable economic
adjustment processes, but – as we have seen – they may be involved only in a fairly
indirect way as far as their economic representation is concerned.

14.4 Newton Methods: Old and New

In Saari and Simon (1978) the concepts of locally effective price mechanisms
(LEPM) and of effective price mechanisms (EPM) are introduced and analyzed in
the context of pure exchange economies. Due to the already mentioned results of
Debreu-Sonnenschein and others on the arbitrary nature of (excess) demand func-
tions in such economies, they see the necessity of designing more reliable and
powerful price mechanisms than the conventional neoclassical price tâtonnement
[see (14.6) for an example of this process] which in their view too often yields un-
satisfactory results.

The starting point of their investigations are methods which had been invented to
compute the fixed points of a map from any point near the boundary of its region
of definition. One such method is discussed in Smale’s (1976) paper on convergent
price adjustment through ‘Global Newton Methods’ (GlN) applied to the excess
demand functions of general equilibrium systems. Making use of certain boundary
conditions, Smale’s approach does not only offer a new method of computing price
equilibria, but it also attempts to bridge the gap between the early optimistic views
of Arrow, Hurwicz et al. on the stability of general equilibrium systems and the
subsequently developing pessimistic characterizations of this problem based on the
examples by Scarf and Gale and the theorems of ‘Debreu-Sonnenschein’ type.

For regular points p of the excess demand function X Smale’s GlM is given by
the following system of differential equations

�
pD �	.p/X 0.p/�1X.p/ (14.14)

where 	.p/ is often assumed to be determined by det X 0.p/ (see Keenan (1981,
p. 160) for an extended definition of this process which also includes the singular
points of X ). The boundary restrictions of Smale’s approach have been improved
with regard to their economic content in Varian (1977), yet as shown in Keenan
(1981) this process is not really of interest as an adjustment mechanism toward
price equilibria, as it does not behave very well in the interior of relevant regions of
the price-domain (in particular it is not an LEPM in the sense of Saari and Simon,
see below). Though the GlM may have some advantage over the following so-called
‘Generalized Newton Method’ (GeN)

�
pD �X 0.p/�1X.p/ (14.15)

– since it (through sign reversal) can pass certain singular points without coming
to a halt – it is only this GeN which is of potential interest for designing more
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potent price mechanisms, since only this latter procedure allows for local stability
in general [see Saari and Simon (1978, p. 1103) for a proof].

In the main part of their paper Saari and Simon (1978) investigate, however,
whether the informational content for so called (locally) effective price mechanisms
can be substantially lower than that of the GeN (which is an LEPM, i.e., all equi-
libria are turned into sinks by this modification of the conventional excess demand
price dynamics). The GeN-Method (14.15) requires knowledge of X.p/ and of all
partial derivatives Xji .p/ of X.p/ and it furthermore has the unpleasant property
that it reduces all excess demands monotonically and in a very strict way (leaving in
particular all markets which are already in equilibrium in this position). This implies
that it must be considered as a too powerful method from an economic perspective.
It is therefore of great interest to ask whether there exist other types of locally effec-
tive price mechanisms, which are more plausible from an economic point of view
and need less information on the Jacobian of excess demand functions than the Gen-
eralized Newton Method.

As shown above, the GlN and the GeN have stimulated renewed interest in the
search for alternative effective price mechanisms which behave well universally,
i.e., independently from any a priori knowledge concerning excess demand situa-
tions. Yet, as Saari and Simon prove, the informational content of the GeN cannot
be substantially relaxed in the construction of such alternative effective price mech-
anisms. Furthermore, it is also generally regretted that all known alternatives to the
GeN (see Jordan (1986), e.g.) lack an economic interpretation and are thus no good
candidates from an economic point of view in the search for more reliable adjust-
ment processes.19

In contrast to these findings on effective adjustment processes, our extended
Walrasian tâtonnement dynamics (14.9), (14.10), which also pays attention to ad-
justments on the side of production and to derivative effects, has been obtained from
purely economic considerations, firstly, by taking serious the original approach of
Walras for a production economy and, secondly, by observing that the direction of
change of the two excess situations that can exist in a production economy should
both count in the determination of the price and quantity reactions of such an econ-
omy. Furthermore, our process is surprisingly similar from a formal point of view
to the GeN (compare (14.12) and (14.15)), so that in the light of Saari and Simon’s
investigations and results the question as to its degree of effectiveness arises.

We have seen that the dynamics (14.9), (14.10) can be reformulated as follows 20

�
zD

" �
p
�
y

#
D .I � � � F 0.z//�1F.z/; z D

�
p

y

�
(14.16)

where F denotes our extended excess-function [see (14.3), (14.4)]. Note, that we
now make use of the original function F and not of its linear approximation as in

19 See Kamiya (1989) for a recent example of this kind.
20 The matrix of adjustment coefficients [see (14.12)] is now suppressed in the above presentation
by an appropriate choice of the function F.
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the proof of Proposition 14.1. Note furthermore, that (14.16) is also applicable to
ordinary excess demand functions X.p/ of pure exchange economies. Note finally,
that in order to have a well-defined mechanism we should make the parameter �
dependent on the excess function F , i.e., on the particular economy, in such way that
.I � � �F 0.z//�1 is always well defined for regular economies (cf. Proposition 14.3
in the last section and Proposition 14.5 in this one).

We have shown in the proof of Proposition 14.3 that an appropriate choice of �
will turn all equilibria z�ŒF .z�/ D 0� of a given regular economy into sinks of the
modified system (14.9), (14.10), but have also seen that the adjustment parameter
cannot be chosen independently of the particular economy and its excess demand
and excess price function F . Despite these difficulties, we can nevertheless prove
the local effectiveness of our mechanism (14.9), (14.10) by making use of certain
definitions and results from Jordan (1983).

According to Jordan a Generalized Newton method (GNM) is an adjustment
mechanism (in his case: price mechanism) of the following kind

�
zD A.F.z/; F 0.z//; detF 0.z/ ¤ 0 (14.17)

where the function A W <n �˝ �! <n is C 1.21

Our process (14.15), i.e.,
�
zD .I � � � F 0.z//�1F.z/;

obviously is of this type.
However, this process must now be defined for all regular matrices l D F 0.z/

which demands that � must be made dependent on l in a smooth way (see the
following proposition). Furthermore, the above definition of a GNM also demands
that it should have the general continuity properties of a price mechanism as defined
in Jordan (1983, p. 241). These properties may be briefly summarized as follows:

Let us denote by � the space of C 1 excess-functions F (with the topology of C 1

uniform convergence on compact subsets) and by �p the subset of those functions
which have p as a regular equilibrium. Price mechanisms à la Jordan

�
pDM.p;F /

then have the following two properties

(1) They have the same equilibrium set as the original function F .
(2) They are continuous on open neighborhoods U of fpg��p and C 1 on the open

set Uf D fp=.p; F / 2 U g.

Furthermore, these mechanisms are conceived as being defined (but not necessarily
in a continuous fashion) on a domain as large as possible. The reason behind this
fact can be exemplified by means of the GeN as follows

�
zD �F 0.z/�1F.z/ for det.F 0.z// ¤ 0;

�
zD F.z/ otherwise:

21 ˝ denotes the set of regular n	 n matrices l W det l ¤ 0.
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The GeN – applied to the excess function F.z/ – has all the properties of a price
mechanism à la Jordan and it is, of course, also a GNM as defined above. And with
regard to our own approach (14.15) we are now able to show:

Proposition 14.5. Define �.l/ by kl�1k � .1 C �/ for all regular l by making use
of a C 1 matrix norm k::k and an arbitrary � > 0. 22 The following adjustment
mechanism

�
zD .I � �.F 0.z///�1F.z/ for det.F 0.z// ¤ 0;

�
zD F.z/ otherwise (14.18)

is then well-defined and a GNM.

Proof. We abbreviate the matrix F 0.z/ by l in the following. We need to consider
regular matrices l only, i.e., 0 is not an eigenvalue of l . To the real eigenvalues of
l there correspond the real eigenvalues 1

a
of its inverse l�1 . It is well-known [see

Zurmühl (1964, p. 204) for example] that all matrix norms provide upper bounds for
the absolute value of the eigenvalues of matrices l . From this fact we immediately
get the inequality 1

a
< �.l/, which means that we have 1 D 1

a
�a < �.l/�a for all real

eigenvalues �.l/ � a of �.l/l . This implies that no eigenvalue of I � �.l/l D I � �
.F 0.z//F 0.z/ can be zero, i.e., the inverse of this matrix exists. The above GNM-
mapping is therefore well-defined and it isC 1 on the space of regular matrices l . ut

Remark 14.6.

(1) Note, that the above does not imply that the real parts of all complex eigenvalues
of I � �.l/l must be negative, too.

(2) Note also, that the above dynamics reduces to the Walrasian one if we set � 	 0
and that it gives some sort of GeN if � approaches infinity [as is obvious from
its reformulation in the form 1

�
� . 1
�
I � l/�1l �.

A GNM
�
zD A.F.z/; F 0.z// is called hyperbolically locally stable in Jordan

(1983, p. 247) if we furthermore demand that its first partial derivative A1.0; l/l
is non- singular for all regular matrices F 0.z/ D l and if all eigenvalues of A1.0; l/l
have negative real parts. It is then proved in Jordan that such a mechanism is also lo-
cally stable, i.e., it is Liapunov-stable and asymptotically stable in the small for each
admissible state z and a given neighborhood U � of z with regard to an open neigh-
borhood V of z��z of those excess dynamics which have z as a regular equilibrium
(see Jordan (1983, p. 242) for the details of this and the preceding definition).

Proposition 14.7. The adjustment process (14.17) is locally hyperbolically stable
and thus also locally stable in the sense of Jordan (1983).

Proof. In the case of process (14.17) we get for the above partial derivative
(F 0.z/ D l):

A1.0; l/ D .I � �.l/l/
�1

22 See, e.g., Zurmühl (1964) for a list of such norms.
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which by our choice of �.l/ must be nonsingular. Furthermore, A1.0; l/l D .I �

�.l/l/�1l equals the matrix that we have employed in the dynamics (14.11). And
we know (by definition) that �.l/ > 0 must be larger than

�0 D max



a

a2 C b2
=aC bi eigenvalue of l

�

since a
a2Cb2

gives the real part of the eigenvalues of l�1
h
1
�
D

N�

.� N�/

i
: By

Proposition 14.3 we therefore get in addition to Proposition 14.5: all eigenval-
ues of .I � �l/�1l must have negative real parts. Our adjustment process (14.9),
(14.10) (as modified above) is thus a hyperbolically locally stable process, and
therefore also locally stable in the sense of Jordan. ut

Since neither the Generalized Newton Method nor any other known approach,
as for example the Orthogonal Newton Method (Jordan 1983), represent processes
which mirror actual market behavior, it is of great interest that a dynamic process
has been found which shares many formal properties with these quite potent mecha-
nisms, but which at the same time has been obtained from economic considerations.
Furthermore, this mechanism clearly shows that the criterion which Jordan (1983,
p. 239) himself uses to characterize true market adjustment processes, i.e.,

‘Excess demand for commodity j D 00)0
�
pjD 0

0 23

does not represent a good choice This criterion is, on the one hand, very partial in
nature (markets in equilibrium cannot be disturbed by the adjustments taking place
on all other markets). On the other hand, it provides a rather static view of economic
adjustment processes by its assumption that price changes do not depend on the time
rate of change of excess demand X.p/. In the light of the preceding discussion it is
therefore not astonishing that Jordan’s definition of a proper market process leads
to the seemingly strong result, that there does not exist such a mechanism which
is locally stable (if the number of commodities of the given exchange economy
exceeds 2, see his p. 254). Yet, in contrast to this statement, our type of adjustment
process shows that there is scope for a universal market mechanism if a sufficiently
rich reaction pattern is used for the modeling of adjustment behavior.

As defined in Saari and Simon (1978, 1.1) our dynamics does not seem to pro-
vide a price mechanism in their use of this word. This, however, is not a weakness
of our approach, but one of their concept of such a mechanism, for which indeed
too much smoothness has been assumed (cf. also Proposition 6.2 in Jordan, which
shows that care must be taken with regard to the singular derivatives of the excess
functions). If Definition 1.1 in Saari and Simon is appropriately reformulated with
regard to this problem, then it should be true that our mechanism (14.17) will also
provide a locally effective adjustment mechanism (LEPM) in the sense of Saari

23 See also Woods (1978, Sect. 8.5) for remarks on the limitations of this approach.
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and Simon (1978). As a mechanism or adjustment method our type of dynamics is
indeed generally effective, though – as we have seen – its parameters, i.e., here: � ,
cannot be chosen independently of the particular economy in question. 24

The above questionable feature of Saari and Simon’s early definition of effective-
ness is also considered in Saari and Williams (1986), where it is shown that local
information should and can be used to select the proper adjustments for particular
types of ‘economic environments’. Note in this respect, that our procedure (14.17) as
an economic adjustment method works for all such environments, so that the dynam-
ical system we employ needs only a minor parameter adjustment with regard to each
local situation. This generality of our approach may, however, also represent a disad-
vantage of our adjustment method. As discussed in Saari and Williams (1986) it may
therefore be of interest to tailor the proper adjustment method still closer to the spe-
cific types of the economies under consideration. It is indeed not very plausible that
an economic adjustment process can be found that works properly in all conceiv-
able economic environments, i.e., in all regular exchange or production economies
with only slight modifications in its adjustment parameters. Furthermore, as seen in
Sect. 14.3, the use of a universal factor � for the formulation of the derivative feed-
back mechanism may be too strong (as an assumption and in its implications). More
general mechanisms with weaker stability properties may therefore still be desirable
and can indeed be found, cf. the introduction.

14.5 Ignorable Components?

From an economic viewpoint it is very natural to consider the dynamics (14.9),
(14.10) with differing adjustment speeds �1 ¤ �2 for the influences of the rate of
change of excess demand and excess price. Furthermore, it is tempting to inves-
tigate whether the situations �1 D 0 < �2 or �1 > �2 D 0 , where only one of
these additional forces is at work, will suffice for designing a particular type of
universal mechanism. For example, from a classical perspective, one could argue
that the adjustment of supply due to excess profitability and its time rate of change
may be the essential element which together with the conventional law of demand
.�1 D 0/ will suffice to guarantee something like universal stability (in the small),
fairly independent of whether demand is also a stabilizing factor or not. In this final
section we will consider this claim as well as other aspects which are introduced
by the use of arbitrary and differing adjustment parameters for the two equations
(14.9), (14.10).25

24 A formulation of the general kind: �.F; F 0/ – together with appropriate assumptions on such a
function � – may also be of use in developing this matter further.
25 Note here, that part of the results of this section will depend on the particularly simple economy
chosen to discuss these matters (cf. Flaschel and Semmler (1987) for more general investigations).
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Case 14.8. �1 D 0 < �2
In this case (14.9), (14.10) can be transformed into an explicit system of differ-

ential equations in the following simple way. Equation (14.4), extended by means
of �2 > 0, gives rise to [see (14.10)]:

Œ1C �2ˇl
00.y/��

�
yD ˇ.p� l 0.y//Cˇ�2

�
pD ˇ.p� l 0.y//C �2ˇ˛.d.p; l.y//�y/

The dynamic system thus reads in this case:

�
p D ˛..d.p; l.y// � y/ (14.19)
�
y D

ˇ.p � l 0.y//C �2˛ˇ.d.p; l.y// � y/

1C �2ˇl 00.y/
(14.20)

which is well-defined around equilibrium values where decreasing or constant re-
turns to scale prevail. Calculating the Jacobian at equilibria .p�; y�/ gives

J D

0

B@
˛dp �˛

ˇC�2˛ˇ�dp
1C�2ˇ�l 00

�ˇl 00��2˛ˇ

1C�2ˇ�l 00

1

CA (14.21)

We consequently get in this case:

trace J D ˛dp �
ˇl 00 C �2˛ˇ

1C �2ˇl 00
; det J D

˛ˇ.1 � dpl
00/

1C �2ˇl 00

We can see from these expressions that not all equilibria can be stabilized by the
choice of a sufficiently large parameter �2 > 0, e.g., if 1 < dpl

00 holds true at
the equilibrium. Stability is, however, possible if constant returns are assumed to
prevail, in which case the above two expressions reduce to

trace J D ˛dp � �˛ˇ; det J D ˛ˇ:

For constant returns economies we thus simply need

�2 >
dp

ˇ

to obtain (with appropriate qualifications) all the results of the preceding section.26

A sufficient sensitivity to changes in price/cost-differentials is thus capable of sta-
bilizing the possibly destabilizing influences of the demand component of a given
economy.

26 In the present case, only one of the two eigenvalues of J will tend to zero as �2 approaches
infinity.
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Case 14.9. �1 > �2 D 0
In this opposite case [of a derivative influence of excess demand on price

changes] we get instead of (14.9)

.1 � �1˛dp/
�
p D ˛.d.p; l.y// � y/ � �1˛

�
y

D ˛.d.p; l.y// � y/ � �1˛ˇ.p � l
0.y//

and thus

�
p D

˛.d.p; l.y// � y/ � �1˛ˇ.p � l
0.y//

1 � �1˛dp
(14.22)

�
y D ˇ.p � l 0.y// (14.23)

which is a well-defined system of differential equations in the neighborhood of equi-
libria if �1 is chosen sufficiently large. For the Jacobian at such equilibria we get this
case:

J D

0

B@

˛dp��1˛ˇ

1��1˛�dp

�˛C�1˛ˇl
00

1��1˛�dp

ˇ �ˇ � l 00

1

CA (14.24)

i.e.,

trace J D �ˇl 00 C
˛dp � �1˛ˇ

1 � �1˛dp
; det J D

˛ˇ � ˛dpˇl
00

1 � �1˛dp

which again allows for instability even if �1 is chosen sufficiently large. In this case,
however, assuming constant returns is of no help:

trace J D
˛.dp � �1ˇ/

1 � �1˛dp
; det J D

˛ˇ

1 � �1˛dp

We see from these two expressions that an instability which originates in the demand
component of the system .dp > 0/ cannot generally be removed by the inclusion of
a sufficiently strong derivative influence in the law of demand, since the set

˚
�1 > 0=�1˛dp < 1; dp < �1ˇ

�

may be an empty set. Derivative feedbacks from the production side of the economy
therefore appear as being more effective (successful) than the more direct derivative
feedback of excess demand on prices p in the stabilization of an unstable demand
component. This represents an important asymmetry in the analysis of partial deriva-
tive controls.

Case 14.10. �1; �2 > 0
Analogously to (14.15) one gets in this case the following explicit form of a

system of differential equations
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�
zD .I �

�
�1 0

0 �2

�
F 0.z//�1F.z/ (14.25)

The Jacobian of this system at an equilibrium z� D .p�; y� ) is given by

J D .I �

�
�1 0

0 �2

�
F 0.z�//�1F 0.z�/ (14.26)

As can be seen from this expression the method of the proof of Proposition 14.3 is
no longer applicable in this more general situation in order to show that J will be a
stable matrix for all �1; �2 sufficiently large.

Yet, in our simple two-dimensional model we can immediately derive an explicit
expression for J , e.g., in the case of constant returns:

J D
1

1 � �1˛dp C �1�2˛ˇ

�
˛dp � �1˛ˇ �˛

ˇ.1 � ˛dp.�1 � �2// �˛ˇ�2

�

which gives

traceJ D
˛dp � ˛ˇ.�1 C �2/

1 � �1˛dp C �1�2˛ˇ

det J D ˛ˇ

These calculations show that �2 must be chosen larger than dp
ˇ

to ensure that all
positive �1 allow for asymptotic stability in this extended model of a proportional
plus a derivative control.

Returning to our Case 14.8 we can use (14.26) to rewrite this dynamics as follows
.F 0.z/ D l/:

�
zD .I �

�
0 0

0 �2

�
F 0.z//�1F.z/ (14.27)

In Jordan (1983, p. 256), cf. also Saari and Simon (1978, p. 1105) in this regard, an
entry ij of such a generalized Newton process (where �2.�/ has to be determined
appropriately, see below) is called an ignorable entry of this Newton method

.z; l/
A.z;l/
�! .I �

�
0 0

0 �2

�
l/�1z D

1

1 � �2l22

�
1 � �2l22 0

�2l21 1

�
z

if the lij -component of the matrix l can be varied without influencing the values
A.z; l/ obtained from this method.27

27 det.l/ ¤ 0 and also det.I �
�
0 0

0 �2

�
l/ ¤ 0.
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It is then stated in Jordan (1983, p. 256) that a locally stable generalized Newton
method admits no ignorable entries. In the light of this assertion and the fact that
our Case 14.8 has ignorable coordinates one may ask in what respect the stability
properties of this case are not of the locally stable type that is considered by Jordan.

To answer this question consider again the Jacobian (14.20) in the case of con-
stant returns:

J D

�
˛dp �˛

ˇ C �2˛ˇdp ��2˛ˇ

�
D A1.0; l/l;

trace D ˛dp � �2˛ˇ; det J D ˛ˇ

which is a stable matrix for all �2 >
dp
ˇ

.
Due to the special structure of the matrix J we see that this matrix can easily be

turned into a stable matrix through an appropriate choice of �2. Yet, the properties
of being hyperbolically locally stable (and the implied local stability) demand that
any regular matrix l should lead to a stable matrix of the type

.I �

�
0 0

0 �2

�
l/�1l

(see Jordan (1983, p. 255)). This, however, is obviously not true, since we have

.I �

�
0 0

0 �2

�
l/�1l D

�
1 0

��2l21 1 � �2l22

��1 �
l11 l12
l21 l22

�

D

�
1 � �2l22 0

�2l21 1

� �
l11 l12
l21 l22

�
=.1 � �2l22/

D

�
.1 � �2l22/l11 .1 � �2l22/l12
l21 C �2l21l11 l22 C �2l21l21

�
=.1 � �2l22/

For example, choosing a regular matrix l of the form
�
C C

C 0

�
implies for this matrix

the sign structure
�
C C

C C

�
which clearly describes an unstable matrix.28 Hence,

though, e.g., the choice
�2 D .1C l

2
22/
� 12

defines a generalized Newton method

A.z; l/ D .I �
�
0 0

0 �2

�
l/�1z

28 Note, that the above choice of l is not possible for the system (14.3), (14.4) from which the
dynamic analysis of this chapter has started.
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in the sense of Jordan (1983, p. 255), the domain of definition of this method is left
too unrestricted in Jordan in order to allow for his stability concepts in the presence
of only a partial derivative adjustment by means of the component �2 .

This situation is not changed if one applies the less restrictive concept of lo-
cal stability at unique equilibria which stabilizes only those equilibria for which a
global demand function exists which near the equilibrium is identical to the given
one and which has this equilibrium as a unique equilibrium. These equilibria are
equivalently characterized by det.�l/ > 0 instead of only det l ¤ 0 [see Jor-
dan (1983, pp. 251 ff.) for details]. As is obvious from the above this restriction
on the Jacobians of our basic dynamics (14.3), (14.4) is still insufficient to imply

asymptotic stability for all matrices .I �
�
0 0

0 �2

�
l/�1l as it could be proved for the

extended dynamics of Sect. 14.4.
To obtain stability in the above situation the reference matrices l must be

additionally restricted by the ‘cross-dual’ sign conditions
�
�

C

�
. These side-

conditions define an open subset of the matrices l with det l ¤ 0.> 0/. Using
this additional information on the Jacobian J of our basic dynamics (14.3), (14.4)
[which is not available in the equivalent situation of the exchange economies con-
sidered by Jordan] one can show then:

Proposition 14.11. The matrix

J D .I �

�
0 0

0 �2

�
l/�1l

is a stable matrix .Re �i < 0/ for all �2 > 0 chosen sufficiently large, if l is the
matrix of a unique equilibrium and if either l22 D 0 (constant returns) or l11 <
l21l12
l22

(in the case of decreasing returns to scale) holds true in addition.

Proof. The matrix J is known to equal

1

1 � �2l22

�
.1 � �2l22/l11 .1 � �2l22/l12
121 C �2l21l11 122 C �2l21l12

�

which gives

trace J D l11 C
l22 C

�‚ …„ ƒ
�2l21l12

1 � �2l22„ ƒ‚ …
C

det J D
det.l/

.1 � �2l22/„ ƒ‚ …
C

> 0 if det.l/ > 0:
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This implies

traceJ D l11 �
l21l12 C

l22
�2

l22 �
1
�2

and thus the assertion, if �2 is chosen sufficiently large.

Remark 14.12. To obtain local stability at unique equilibria on the basis of hy-
perbolic local stability at unique equilibria as in Jordan (1983) it is consequently
necessary to restrict the set of vector fields allowed for in the definition of local sta-
bility in the way indicated by the above proposition. This possibility shows that
locally stable universal price mechanism may be found despite the existence of
ignorable components in the Newton method that is used. This is true, if these
ignorable entries can be supplemented by suitable restrictions on the set of vec-
tor fields at the various admissible equilibria (in correspondence to the dynamics
deriving from conditions of excess which drive the system). In the case of our cross-
dual price/quantity-dynamics (14.3), (14.4) these restrictions can be taken from the
Jacobian of this dynamics at an equilibrium which is given by

J D

�
˛dp �˛

ˇ �ˇl 00

�

and which obviously has a fairly definite structure up to the demand component dp
(cf. also footnote 2).

14.6 Conclusions

In this chapter we have analyzed the local properties of Walras’ cross-dual adjust-
ment procedure for production economies. We have seen how this simultaneous
price/quantity adjustment enlarges the range of applicability for a tâtonnement sta-
bility analysis and how it very typically modifies the structure of the Jacobian matrix
at equilibrium points. By adding a particular type of dual derivative control to this
Walrasian adjustment procedure we found universal stability for this adjustment
process which made this extended cross-dual dynamics nearly independent of the
particular kind of economic structure on which it is supposed to work.

In our view this is, however, too strong a result from two related points of view:

� The stabilizing contribution from the side of production which this – in the end
classical – cross-dual approach to stability is supposed to lay bare is again ob-
scured by the fact that our special choice of derivative forces will work equally
well for all conventional kinds of tâtonnement processes which therefore at
present must be viewed as the main carriers of the stability results obtained.

� The choice of adjustment parameters we have allowed for in Sects. 14.3, 14.4 is
still too ideal (thus supporting a too universal character of the proposed dynamic
process).
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We have indicated in the last section how less capable but more realistic processes
may be designed, but have also remarked that the obtained results have no general
validity in their present formulation. They only serve to illustrate directions for a
future analysis of the proper design of the adjustments that are basically taking
place in a capitalistic market economy.

In addition, a treatment of the following list of topics may then be added and
should be of help in the further refinement of the adjustment mechanisms we have
analyzed in this chapter:

� The consideration of multiple activities and of process extinction,
cf. Flaschel and Semmler (1987) for an example,

� The formulation of output reactions in joint production systems,
cf. Mas-Colell (1986) for a discussion of the problems to be solved in this case,

� The integration of Keynesian price/quantity reaction patterns,
cf. Mas-Colell (1986) and Flaschel and Semmler (1988) for their formulation and
problems,

� The design of systems with effective functions for demand and supply,
cf. Duménil and Lévy (1989),

� The investigation of global stability and its ranges, and the implications of such
a topic for an evaluation of short-run vs. long-run theories of value,
cf. Mas-Colell (1986) and Flaschel and Semmler (1987) with regard to some
results,

� The treatment of discrete time models,
cf. Saari (1985) for the implied increase in complexity,

� The question of the entry and exit of firms in the long run,
cf. Novshek and Sonnenschein (1987) for simple examples of this additional dy-
namics.

This list indicates that much remains to be done, in particular in the search for
and the testing of more sophisticated tâtonnement procedures than those that have
been studied here.
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(Ed.), Models of Economic Dynamics. Heidelberg: Springer
Morishima, M. (1959). A reconsideration of the Walras-Cassel-Leontief models of general equi-

librium. In K. Arrow et al. (Eds.), Mathematical Social Sciences. Stanford: Stanford University
Press

Morishima, M. (1977). Walras’ Economics. Cambridge: Cambridge University Press
Novshek, W. & Sonnenschein, H. (1987). General equilibrium with free entry: A synthetic ap-

proach to the theory of perfect competition. Journal of Economic Literature, 25, 1281–1306
Saari, D. G. (1985). Iterative price mechanisms. Econometrica, 53, 1117–1131
Saari, D. G. & Simon, C. P. (1978). Effective price mechanisms. Econometrica, 46, 1097–1125
Saari, D. G. & Williams, S. R. (1986). On the local convergence of economic mechanisms. Journal

of Economic Theory, 40, 152–167
Smale, S. (1976). Exchange processes with price adjustment. Journal of Mathematical Eco-

nomics, 3, 211–226
Varian, H. R. (1977). A remark on boundary restrictions in the Global Newton Method. Journal of

Mathematical Economics, 4, 127–130
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Chapter 15
Classical and Neoclassical Competitive
Adjustment Processes

15.1 Introduction

In recent neoclassically and classically oriented literature on competitive processes
several models have been presented which work not only with the ‘law of demand’
but also with the ‘law of profitability’. In such dynamical models a cross-dual pro-
cess is stylized in which price changes are initiated by imbalances in supply and
demand and changes of outputs are caused by profitability differentials. Such cross-
dual dynamics can now be found in neoclassical tradition (Morishima 1976, 1977;
Mas–Colell 1974, 1986) and in classical tradition. In classical tradition the analysis
of such a cross-dual adjustment process was initiated particularly by some recent
publications of Nikaido (1978, 1983, 1985) who questioned the stability of classical
competition. In comparison to his results it is the purpose of this article to show
that the classical approach to the dynamics of competition may be able to produce
stability results which are of at least comparable interest to those of neoclassical
stability theory.1

To this end, both traditions will be briefly surveyed in Sects. 15.2 and 15.3.
The formal treatment of the classical competitive process is currently in an early
phase of development (see, e.g., Steedman 1984, in this regard). Definite results are
rare and of a somewhat heterogeneous nature regarding the basic components of the
process that is to be modeled (see Sect. 15.2). It therefore cannot be expected that our
own approach will provide already a fully acceptable formalization of these forces
of economic dynamics. Its advantages in comparison to alternative formal investiga-
tions of this dynamical process however are, first, that it formulates the classical pro-
cess of cross-dual dynamics in a more plausible way than e.g., Nikaido (1978, 1983,
1985). Second, it formulates more than other models the dynamics from the point of
view of production and the behavior of the firm. Third, it is able to provide a treat-
ment of joint production, multiple activities, process extinction, as well as a proof of
global stability for Sraffa as well as von Neumann joint production technologies. We
are able to show that a dynamic version of the ‘law of demand’ in combination with

1 We thank V. Caspari, K. Dietrich, G. Duménil, D. Foley, R. Franke, M. Glick, D. Lévy and
A. Shaikh for helpful comments on an earlier version of this chapter.

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 15,
c� Springer-Verlag Berlin Heidelberg 2010
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supply changes caused by profit rate differentials will produce a stable movement
around specific balanced growth paths of input–output models and, furthermore, that
this cross-dual adjustment process will be asymptotically stable if the direction of
the change of profit rate differentials is also taken into account. These results stand
in stark contrast to problematic stability propositions of standard neoclassical eco-
nomics, whether of short-run Walrasian nature or of the long-run type of efficient
capital accumulation. Our formalizations are intended to provide a simple answer to
an important question raised, for example, by Nikaido (1978, 1983) and Steedman
(1984) concerning the stability properties of classical dynamics.

A final word of warning should be added, however. The following remarks about
the classics and Marx are not concerned with a detailed textual support for our
suggested cross-dual dynamics; in particular, we shall not investigate thoroughly
whether there exist great differences between the views of the classics, Marx and
other writers such as Walras and Marshall. The interested reader is referred to
Steedman (1984); Duménil and Lévy (1983); Flaschel and Semmler (1985, 1986a);
Semmler (1985); and, for the Walrasian tradition, to Yaffé (1967).

15.2 Neoclassical Stability Analysis in the Short
and in the Long Run

Neoclassical short-run equilibrium analysis, operating with excess demand func-
tions, considers also cases where planned supply deviates from planned demand.
Walras already noted in his Elements (1954):

‘Generally, however, the total demand will not equal the total offer of each and every com-
modity, . . . . What will happen on the market then? If the demand for any one commodity is
greater than the offer, the price of that commodity in terms of the numéraire will rise; if the
offer is greater than the demand, the price will fall. What must we do in order to prove that
the theoretical solution is identically the solution worked out by the market? Our how that
the upward and downward movements of prices solve the system of equations of offer and
demand by a process of groping (‘par tâtonnement’)’. (pp. 169–170).

This process of groping has become the most popular form of adjustment process
within the neoclassical analysis of (temporary) general equilibrium.2 The working
of this Walrasian price-tâtonnement or so-called ‘law of demand and supply’ is mod-
eled by constructing Walrasian (or notional) excess demand functions Zi .p/ and by
stipulating, for example,

Ppi D diZi .p/; i D 2; : : : ; n (15.1)

2 We should stress however that there also exists an established body of literature which dispenses
with this type of anonymous market price adjustment by allowing individuals to set prices (see
Hahn 1982; Fisher 1983 for details). Yet from a classical perspective, the interaction between
natural and market prices was the important one, which is the reason why we neglect this part of
the literature on the stability of market economics.



15.2 Neoclassical Stability Analysis in the Short and in the Long Run 331

where the di > 0 denote certain adjustment coefficients and where p denotes the
vector of prices of the n given commodities (p1 D 1; see Hahn 1982, pp. 759 f. for
further details).

However, it is well known that the dynamic process (15.1) generally does not
behave well even in the simple exchange economy which underlies the above quo-
tation from Walras’s Elements of Pure Economics. Hahn (1970, p. 2), e.g., admits
that the study of the Walrasian groping has not been very fruitful. Even for the dras-
tically simplified situation of a Walrasian tâtonnement in the context of an exchange
economy, the exclusion of trading at false prices was not sufficient ‘to lay bare the
essentials of the law of ‘supply and demand” and to reveal thereby the validity of
the working of the ‘invisible hand’.

‘What has been achieved is a collection of sufficient conditions, one might almost say,
anecdotes, and a demonstration by Scarf and later by Gale, that not much more could be
hoped for.’ (Hahn 1970, p. 2).

In the light of such results it has become fairly common for neoclassical equilibrium
theorists to avoid such problems completely by restricting their attention exclusively
to equilibrium situations. That is, to support their equilibrium notions they simply
assume that there exists some ‘law of demand and supply’ in operation which works
with infinite speed in an asymptotically stable manner. Viewed from the perspective
of growth theory, this also means that ‘time’ becomes dichotomized into hypothet-
ical time, where adjustment to short-run equilibrium position takes place, and real
time, where the evolutionary forces of the system supposedly work to adjust the
economy to a long-run steady–state position. In view of this fact we therefore have
to examine briefly whether neoclassical economics has demonstrated successfully
the stability of this latter type of adjustment.

It has been shown, e.g., in Hahn (1966), that the trajectories of momentary equi-
libria with myopic price-expectations of the perfect foresight variety will not, in
general, approach the steady state. In contrast to such results, it is demonstrated in
Burmeister et al. (1968) for a multigood version of Solow’s growth model that such
a model can be globally stable if particularly simple saving functions are assumed.
Subsequent investigations within the context of neoclassical growth models with
heterogeneous capital goods have, however, generally revealed the possibility of a
saddlepoint behavior of their dynamics. An example of this is provided in Hahn
(1970, pp. 12 f.) by means of temporary equilibrium prices of a two-capital-goods
model with static price expectations. He concludes from his investigations

‘that there is no theoretical evidence to suggest that the invisible hand performs better
‘asymptotically’ than it does ‘momentarily’ at least in the role in which it has been cast
by the recent literature.’ (p. 9).

Such unpleasant implications also flow from the works of Burmeister et al. (1973) as
well as Caton and Shell (1971), which differ from Hahn’s approach in that quantities
and prices simultaneously evolve or adjust in real time in these models.

Burmeister et al. (1973) consider the following extension of a multigood
Solovian model

Pki D yi � .nC ıi /ki
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by means of a price-dynamics of type

Ppi D �wi C .r0 C ıi / D pi

where r0 is the rate of interest determined by flow equilibrium conditions of the cap-
ital market. The dynamics of this model is fairly complex and fully interdependent.

Assuming that per capita outputs yi and gross rental rates wi are determined by
the usual competitive conditions of neoclassical economics (for given capital inten-
sities ki and given prices pi at each moment of time), it is shown by Burmeister et al.
(1973) that the above dynamics need not imply asymptotic convergence to its equi-
librium point. A ‘saddlepoint property’ may typically be involved. Efficient capital
accumulation (of the perfect foresight variety) consequently does not guarantee a
stable economic evolution.

From the point of view of input–output analysis a related situation is described by
the so-called dual (in) stability theorem of (closed) Leontief models with fixed coef-
ficients. In such models one assumes as quantity- and price-determining equations,
for example

x D Ax C C Px (15.2)
p D pAC rpC � PpC (15.3)

where the matrix A represents capital consumed and matrix C capital advanced
(see Jorgenson 1960; Woods 1978, pp. 189 ff. for further details). As noted by
Morishima (1977), such adjustment processes are dual processes only. The dynamic
adjustments of outputs and prices are uncoupled, i.e., each is determined by an inde-
pendent differential equation system. It can be shown for (15.2), (15.3) that the price
and output system of such a dynamic Leontief model cannot be simultaneously rel-
atively stable. This behavior of the model (15.2), (15.3) is, however, understandable
if two of its underlying assumptions are made explicit: that ‘capital’ is always fully
utilized and that price-expectations are of the perfect foresight type. By removing
these two assumptions, Fukuda (1975) shows that price and quantity adjustments
can be simultaneously stable (see Aoki 1977 for a similar investigation).

We conclude from all this that the perfect world of neoclassical economics is far
from perfects with regard to its stability analysis. Yet neoclassical equilibrium anal-
ysis lacks any scientific foundation if the belief in a strong tendency to the assumed
type of equilibrium is unfounded.

‘The study of equilibria alone is of no help in positive economic analysis. . . . The most
intellectually exciting question of our subject remains: is it true that the pursuit of pri-
vate interest produces not chaos but coherence, and if so, how is it done?’ (Hahn 1970,
pp. 11–12).

The section which follows will approach this question from the classical rather than
the neoclassical point of view. The results obtained in the subsequent parts of the
chapter, though still crude with regard to real world complexities, will nevertheless
bear comparison with the stability properties of neoclassical models that we have
sketched above.
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15.3 Classical Competition: Notes on the Literature

Astonishingly, some sort of classical approach to competition3 may even be ‘read’
in the work of Walras. When he considers the process of groping in a production
economy he, in fact, states (Walras 1954, p. 242) that

‘. . . entrepreneurs use tickets [‘bons’] to represent the successive quantities of products
which are first determined at random and then increased or decreased according as there
is an excess of selling price over cost of over cost of production or vice versa, until selling
price and cost are equal.’

If one adds that prices themselves are determined by the ‘law of demand’, as stated
in Sect. 15.2, and if one interprets the notion ‘cost of production’ appropriately than
at least some similarity can be claimed to exist between Walras’s and the classical
view of the adjustment of prices and quantities. Walras realized that the response of
firms to profitability differences had to be included in the process of tâtonnement.
He writes in the fourth edition of the ‘Elements’ published in 1900 (which is iden-
tical to the edition of 1954 used here) that ‘the process of groping (tâtonnement) in
production entails a complication which was not present in the case of exchange. . . ’
(Walras 1954, p. 242). In this edition, however, Walras does not explain any longer
why this should constitute a ‘complication’. In the second edition of 1889, he still
had described these difficulties:

‘In production (on the other hand) productive services are transformed into products. After
certain prices for services have been cried and certain quantities have been manufactured, if
these prices and quantities are not equilibrium prices and q quantities, it will be necessary
not only to cry new prices but also to manufacture other quantities of products. Taking this
necessity into account we must suppose that at each renewal (‘reprise’) of tâtonnement our
entrepreneurs will find in the home countries landowners, workers and capitalists possessing
unchanged (‘les mêmes’) quantities of services and having unchanged (‘les mêmes’) needs
for services and products.’ (cited in Yaffé 1967, p. 10).

Surprisingly, in the fourth edition Walras avoids describing those complications by
writing in the Preface:

‘In the theory of production, I no longer represented the preliminary groping toward equi-
librium as it takes place effectively, but I assumed, instead, that it was done by means of
tickets (‘sur bons’) and I then carried this fiction through the remainder of the book.’ (cited
in Yaffé 1967, p. 12).

This cross-dual dynamical process and the problems associated with it. were al-
ready well known in Marx. Some similarities of Walras’s and Marx’s view on the
functioning of capitalist competition can, e.g., be seen from the following:

‘This movement of capitals is primarily caused by the level of market prices, which lift prof-
its above the general average in one place, and depress them below it in another.’ (p. 208).
And on the other hand: ‘Supply and demand determine the mark et price. . . ’ (p. 191).

3 This, for reasons of simplicity, is used to denote the corresponding theories of Smith, Ricardo and
Marx as well as their followers.
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Of course, there are also considerable differences in the approaches to dynamics
between Walras and Marx, most notably between Walras’s groping procedure and
Marx’s considerations of the real difficulties of the transfer of capital from one
sphere to another through entry and exit of firms (Marx 1959, p. 208). Yet the
important common element is that both authors formulate some sort of cross-dual
dynamics: price/cost- or profit-rate-differentials determine the conditions of supply,
while demand and supply discrepancies determine price changes, and these in turn
again determine changes in profit-rate differentials.

Without claiming that the following investigation of cross-dual dynamics is a
consistent interpretation of Marx’s or the classics’ (or Walras’s) views on dynamics,
we derive from the above considerations the confidence that it may be worthwhile
to examine, instead of the popular one-sided process (15.1), an adjustment process
which leads from profit-rate discrepancies to changing supply conditions and, via
the ‘law of demand’, back to changing market prices and changing profit-rate dif-
ferentials (and so on). The question is whether such a dynamic process will be stable
or even asymptotically stable under economically plausible conditions. Marx (1959,
p. 208) himself was realistic enough not to claim that his consideration of the equal-
ization of profit rates through competition would necessarily imply the latter:

‘Experience allows, moreover, that if a branch of industry, such as, say, the cotton industry,
yields unusually high profits at one period, it makes very little profit, or even suffers losses,
at another, so that in a certain cycle of years the average profit is much the same as in other
branches. And capital soon learns to take this experience into account.’

For the Walrasian as well as for the classical tradition there exist meanwhile sev-
eral studies that have attempted to formalize this cross-dual dynamics. An attempt
to formalize the dynamics of competition in the spirit of Walras can be found in
Morishima (1976, 1977) who had already in his earlier work surpassed the one-sided
view of Walrasian dynamics as represented by the ‘law of demand’ in neoclassi-
cal general equilibrium theory (see Sect. 15.2). For example, in Morishima (1977,
pp. 60 ff.) the model of Walras’s rules of price and quantity adjustments is described
as follows: goods prices pi and factor prices vk adjust according to excess demand
�i and 
k , respectively:

Ppi D u�i .i D 1; : : : ; n/; (15.4)
Pvi D u
k .k D 1; : : : ; n � 1I vn 	 1/ (15.5)

unless these prices are zero (in which case excess demand is replaced by ‘zero’ if it
is positive). This law of (excess) demand is (and has to be) supplemented by a rule
which describes how quantities are adjusted, particularly in the case of a constant
returns production economy:

Pxj D wyj .j D 1; : : : ; m/ (15.6)

Here, xj denotes the activity level of process j and yj -according to Morishima –
the excess profit from process j (or ‘zero’ if certain boundary values are reached).

Morishima then assumes that consumption demand and factor supplies are
continuous functions of goods and factor prices as well as of aggregate income.
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In equilibrium, no positive excess demand exists in any commodity or factor mar-
ket, and no process can earn positive excess profits with regard to the single product,
multiple activity technology assumed. Finally, Morishima also assumes that the
equilibrium is uniquely determined. By means of an appropriate distance function
as Liapunov function he then shows that the equilibrium is asymptotically stable,
as long as substitution effects dominate over income effects (in the household’s
demand-supply Jacobean).

Hence, Morishima has formulated a cross-dual process which seems to be more
classical than neoclassical in nature, particularly if it is restricted to the goods market
and long-run equilibrium positions, i.e., if it is freed from the need to divide stability
investigations into short-run and long-run adjustment processes as is done in the
theory of temporary equilibria.

For the classical tradition, Steedman (1984) provides a brief survey concerning
modern formalizations of the cross-dual dynamics. Some comments with regard
to the literature considered by him are necessary, however, in order to correct the
relatively pessimistic conclusions he draws. Nikaido (1978), for example, does not
really consider the above type of ‘classical’ cross-dual dynamics. Instead he as-
sumes a quantity system of type (15.2) which grows at full capacity in complete
independence of the development of prices and profit-rate differentials. He then
shows that quantity growth in itself is unstable (a known result, see Jorgenson 1960)
and that this fact carries over to the dynamics of prices (whether determined through
equilibrium and disequilibrium) and resulting profit rates. The lack of any feedback
of differentials between the latter with regard to the conditions of supply implies,
however, that such a construction cannot refute the conjectured tendency towards
equalizing profit rates of the classics and Marx. This type of dynamic instability
is modified and refined in Nikaido (1983). The independent movement of capital
stock accumulation now appears only as a subcase (the third case on his p. 349).
Two further cases exist where potential growth is not fully realized and where
price reactions are induced by the price-dependent reallocation of a given money
capital (see his equations (21) and (25)). These price-reactions, however, are not
really governed by the ‘law of demand’ (see his equations (50), (53) and (54)) and
thus represent another unmotivated departure from the basic features of classical
competition. Nikaido’s (1983) dynamic model undoubtedly represents an important
contribution to dynamic analysis in general, but it does not seem to model properly
the classical competitive process. An additional weakness of his approach is that he
studies a system which is able to grow on the basis of a fixed vector of final demand
and a fixed fund of money capital.

In Nikaido (1985) the classical dynamics of competition is finally modeled for
a growing economy and capitalist consumption expenditure is endogenized. Yet,
here again, Nikaido does not really model a classical cross-dual adjustment process,
since the quantity-side of his dynamics remains basically of the type (15.2) of the
dual instability situation (see his equation (19)), only modified insofar as there is a
weak feedback from the price side if the savings rate s of capitalists is less than one.
In the extreme case s D 1 (which is often referred to in Nikaido’s paper) the quantity
system simply grows because all net outputs are ploughed back into production such
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that they are fully utilized (see (15.2)). This has, of course, little to do with the
classical view on competition, yet lies at the heart of the instability results which
Nikaido obtains. Hence, even his latest contribution cannot be considered as a full
investigation of the workability of classical cross-dual dynamics.

We shall approach Nikaido’s theme in the following by Sraffa/von Neumann
growth models with no capitalist consumption, but joint instead of only single prod-
uct industries. The question will be examined whether pure movements of capital
(with no inventory and financial constraints) into sectors with profit rates above the
norm and the (sooner or later) induced falling prices of these sectors (and rising
prices of other sectors) will produce convergence to the equilibrium ray of quanti-
ties and prices. Such a starting point has the advantage that it concentrates on the
process of surplus distribution and activity redistribution and abstracts from all addi-
tional complexities such as flexible consumption, quantity constraints, and the like.

The situation of maximum growth and its stability is also investigated in Duménil
and Lévy (1983, pp. 21 f.), now with a true process of cross-dual dynamics. There
it is found by local analysis and with regard to single production that their type
of crossover dynamics will not be asymptotically stable. (In a more recent paper,
Duménil and Lévy 1983, obtain an asymptotically stable growth path, but in contrast
to their earlier version this result is based mainly on a simulation study.) Yet we have
already indicated that asymptotic stability is not necessarily what we should expect
to find in the first instance. Stability, i.e., a self-restricted movement of quantities,
prices and profit-rate differentials, may also represent an important analytical result,
e.g., as a reference situation for further dynamic investigations (see Sect. 15.4).

Finally, though standard neoclassical theory mainly rests on pure price dy-
namics (the ‘law of demand’) as the proper formalization of Walras’s process of
tâtonnement, recent contributions even in neoclassical theory have also attempted
to shift the attention to the ‘law of profitability’ and Walras’s process of groping
for a production economy in which the excess of prices over costs initiates sup-
ply responses of firms (Sonnenschein 1981, 1982; Mas–Colell 1986). Alternatively,
Marshall’s notion of the difference of demand and supply price is utilized to explain
quantity responses on the supply side (Svensson 1984). In those studies the ‘law of
profitability’ is taken into account in the formalization of the competitive process
and Walras’s price dynamics is referred to as a fast dynamics either equating supply
and demand in each instant of time (Sonnenschein 1981, 1982) or occurring simul-
taneously with the dual dynamics, i.e., the quantity dynamics (Mas–Colell 1986).
Therefore, the analysis of a cross-dual dynamics seemingly becomes more interest-
ing even among neoclassical theorists:

‘Much of the research. . . has concentrated on the limit pure price dynamics (with produc-
tion, if at all there, automatically adjusted to equilibrium) or, to a lesser extent, on the limit
pure quantity dynamics. . . The general case. . . , where prices and quantities stand on the
same footing, is much less familiar and this in spite of the fact, as we shall see, it displays
interesting and, relative to the two limit cases, novel and illuminating dynamic features.’
(Mas–Colell 1986, pp. 49).

A revival of such a cross-dual dynamics is also intended with the proposed models
of dynamic adjustments which we shall investigate in the following section, here
however from a classical long-run equilibrium perspective.
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15.4 A New Approach to the Stability of Market Economies

15.4.1 Square Joint Production Systems

Let A;B be the n� n (augmented) input and output matrices of a square joint com-
modity production system where workers’ consumption is included in the inputs aij

of goods i into sectors j . This input–output system may be regarded as a particular
type of Sraffa (or von Neumann) model, where constant returns have been added as
far as Sraffa’s analysis is concerned. We assume for this linear model of production
that there exists an equilibrium R�; x�; p�:

.B �R�A/x� D Cx� D 0; p�.B �R�A/ D p�C D 0 (15.7)

such that both the vector of activity levels x� (a column vector) and the vector of
prices p� (a row) are strictly positive (>0) and are uniquely determined thereby and
that R� > 1 holds true for the gross rate of return R�.

We shall use a prime (0) to denote the transposition of vectors and matrices. The
symbol < � > is used to denote the diagonal matrix < x > which is formed by
means of given vectors x. We use a dot (�) to denote time derivatives of curves in
IR k and shall abbreviate vectors of growth rates . Pxi=xj /jD1;:::;n D< x >�1 Px

bybx D .bxj /jD1;:::;n. Rows of matrices X are denoted by Xi and columns by Xj .
Finally, ˝k

C is used to denote the positive orthant fx 2 IR k=x > 0g of IR k and ˝k

the non-negative orthant .x � 0/; x � 0 is used for semi-positivity.
Our first problem is to study the stability of the above type of equilibrium

R�; x�; p�. (A famous and extreme kind of example for such an equilibrium is
provided in Steedman’s 1977, Chap. 11, discussion of positive profits with negative
surplus value.) We stipulate the following price and supply dynamics for the above
input–output system and given activities x and prices p in ˝n

C:

Px D C < d1 >< x > .B �R�A/0p0 D C < d1 >< x > C 0p0 (15.8)
Pp0 D C < d2 >< p > .B �R�A/x D � < d2 >< p > Cx (15.9)

where d1; d2 2 ˝n
C are given vectors of adjustment coefficients.

The first equation states that the time rate of change of activity levels xj is of
the same sign as the term p.B �R�A/jxj D pC

jxj , i.e., proportional to the sum
of extra profits of sector j measured by reference to the equilibrium rate R�.4 The

4 Though in our chapter the proofs of the stability properties of the proposed dynamical systems are
provided by referring to the equilibrium or natural profit and growth rateR�, computer simulations
have shown that the results are not invalidated if the average profit and growth rate R.x; p/ D
pBx=pAx instead of R� is used as benchmark in our dynamical systems (see Flaschel and
Semmler 1986a, 1986b). This actual rate, of course, constitutes the more important benchmark and
should be used for this purpose in the end (see Steedman 1984, p. 135, for a related observation).
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second equation says that market prices react positively (negatively) if the supply
Bix of commodity i falls short of (exceeds) the demand R�Aix for commodity i ,
which is here defined by the current input requirementsAix multiplied by the steady
growth factor R�. Note that the above price changes are percentage changes.

The system (15.8), (15.9) is defined for all x; p0 2 <n. Since, however, situations
where xj and pi are equal to zero imply xj ; pi D 0, respectively, the hyperplanes
which are tangent to the positive orthant ˝2n

C of <2n are all invariant sets of the
vector field (15.8), (15.9), i.e., none of its solution curves which start in such a hy-
perplane can leave this set. This implies that the positive orthant is an invariant set,
too. The discussion of the stability of the equilibrium x�; p� > 0 can therefore
safely be restricted to the positive orthant˝2n

C where (15.8), (15.9) can be reformu-
lated in the following way

bx D C < d1 > .B �R�A/0p0 D C < d1 > C 0p0 (15.10)
bp0 D C < d2 > .B �R�A/x D � < d2 > Cx (15.11)

Our cross-dual adjustment differs from Morishima’s approach (15.4), (15.5), (15.6)
in three regards:

(1) We use growth rates instead of time derivatives for x and p, which makes the
use of non-negativity constraints redundant.

(2) We represent normal growth and profit rates explicitly in the adjustment equa-
tions (whereby we also indicate the difficulty of integrating better proxies for
extra profits and excess supplies for a growing system).

(3) We do not use Morishima’s numéraire vn D 1, since we have included workers’
consumption in the input matrix A. In addition, Morishima’s problem of upper
constraints on activity levels is ignored here, since an integrated treatment of
shortages in factor supplies should be made from the perspective of real-time
dynamics by making use of a growth cycle dynamics à la Goodwin.5 Finally,

5 Since our classical-oriented model in prices and quantities still (1) abstracts from the role of non-
reproducible inputs, inventory and financial constraints, and (2) formulates demand functions (for
a growing system) in a preliminary way, our cross-dual competitive process does not yet present a
dynamical process in ‘real time’. As discussed above, similar complications also have led Walras
to describe his process of groping in a production economy not as a process ‘as it takes place effec-
tively’. Our proposed cross-dual process however, lends itself to two possible interpretations. First,
the suggested cross-dual dynamics allows an application to the Taylor–Lange iteration to an equi-
librium in a planned economy, see also the remarks of Mas–Colell (1986, pp. 60) on the iterative
determination of an equilibrium in a planned economy by means of the ‘indirect’ Walrasian instead
of the ‘direct’, more Keynesian, method. Second our proposed dynamics provides a framework for
comparing corporate quantity, price and financial planning with classical competitive adjustment
processes (see, in this regard also the remarks of Clifton 1983, pp. 30/31 on ‘dynamic tâtonnement’
and corporate planning, and also Semmler 1985, Chap. 6). In fact, the actual pricing procedures of
large multi-plant and multi-product firms can be viewed as two stage procedures where first, ‘base
prices’ including a normal rate of return on investments are computed to be modified flexibly in a
second stage by responding to changing market conditions (capturing the imbalances in the mar-
kets where the firms operate).
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Morishima’s consumption demand functions are also ignored in this basic treat-
ment of adjustment for a production economy with positive rates of profit and
growth.

Definition 15.1. An equilibrium z� of a differential equation system Pz D f .z/ is
called stable if for every neighborhood U of z� there is a neighborhood U1 of z� in
U such that every solution z.t/ which starts in U1 is in U for all t > 0.

A sufficient condition for this type of stability is the existence of a so-called
Liapunov function for z�, i.e., a continuous function on U (differentiable on U �
fz�g/ such that V.z�/ D 0, V.z/ > 0 if z ¤ z� and PV D grad V.z/ � Pz.t/ � 0 in
U � fz�g (see Hirsch and Smale 1974, pp. 185 ff., for some further technical details
and explanations). Such a function will now be introduced to prove the following:

Proposition 15.2. Any equilibrium (15.7) of system (15.10), (15.11) is stable.

Proof. Making use of the new notation z D .x; p0/0 2 ˝2n
C we can represent the

differential equations (15.10), (15.11) in the compact form

Pz D< d >< z > Qz orbz D< d > qz (15.12)

where d is given by .d1; d2/0 and where Q stands for the matrix

�
0 C 0

�C 0

�
D

�
0 .B �R�A/0

�.B �R�A/ 0

�
:

We note that matrixQ is skew-symmetric and that it does not depend on the vectors
x; p (in contrast to the case where the average rate of profit is used instead of the
equilibrium rate R�).

We propose as Liapunov function around the given equilibrium z� the function
V W ˝2n

C ! < which is defined by

v.z/ D q0Œ.z� < z� > ln z/ � .z�� < z� > ln z�/� (15.13)

where q 2 ˝2n
C is defined by qk D d1k and .ln z/i by lnzi . By calculating the partial

derivatives of first and second order of this differentiable function it can easily be
shown that the equilibrium z� of (15.12) is a strict local minimum of the function V
and that grad V.z/0 D q0.E� < z > �1 < z� >/, E the identity matrix.

For the derivative PV of V along the trajectories of (15.12) we thereby get

PV D q0.E� < z >�1< z� >/Pz

D q0.E� < z >�1< z� >/ < z >< d > Qz

D q0 < d > .< z > � < z� >/Qz

D .z � z�/0Qz

D z0Qz D 0
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since z�
0

Q D 0 (see (15.4)) and since Q is skew-symmetric. The function V is
therefore constant along all trajectories of (15.12) in˝2n

C , which in particular means
that V is a Liapunov function for z�. ut

Cross-duality in its simplest form hence gives rise to stability, but not to asymp-
totic stability for the equilibrium assumed. This differs from Morishima’s result
which, in our view, is to be attributed to the differences in the formulation of the ex-
cess supply function. To get also asymptotic stability we, however, will not introduce
below a modification of the law of demand, but shall apply instead a reformulation
of the law profitability, i.e., of the other part of this cross-dual adjustment process,
to obtain convergence to the equilibrium z�. To this end we assume that capitalists
also take account of the sign of change of extra profits (or losses) when moving
their capitals between sectors. We suggest that rising extra profits will speed up the
growth rate of the respective sector, while falling extra profits will tend to reduce
the growth effect of supernormal profits. Generally speaking, the growth rates of
activity levels consequently should also be influenced by the distribution of signs
within the vector

s D
d

dt
.B �R�A/0p0 D .B �R�A/0 Pp0 2 <n (15.14)

This vector shows the direction into which extra profits (or losses) will change at
a point in time t . Integrating (15.14) into (15.8), (15.9) we get as new dynamical
system

Px D C < d1 >< x > ŒC 0p0 C �s� (15.15)
Pp0 D � < d2 >< p > Cx (15.16)

where � > 0 is an adjustment parameter.
To investigate the asymptotic stability of this modified cross-dual adjustment pro-

cess we shall make use of the following stability concept (see Hahn 1982, pp. 749
f., and Fisher 1983, pp. 220 f., for related formulations):

Definition 15.3. The equilibrium z� of the system (15.15), (15.16) is globally
asymptotically stable if, and only if, for any z.o/ 2 ˝2n

C and the trajectory z.t; z.0//
of (15.15), (15.16) which starts at z.0/ there exist scalars ˛1; ˛2 > 0 such that

lim
t!0

z.t; z.0// D .˛1x�; ˛2p�
0

/:

We should note here that this stability definition is a special case of what Hahn
and Fisher call quasi-global stability, appropriately applied to our present case of an
equilibrium z� which is uniquely determined up to scale factors by the rate R�.

Proposition 15.4. The dynamical processes (15.15), (15.16) are globally asymptot-
ically stable with respect to their interior steady state position.



15.4 A New Approach to the Stability of Market Economies 341

Proof. Equation (15.14) inserted into (15.15) gives

s D �C 0 < p >< d2 > Cx D Sx D �T 0T x (15.17)

where C D B � R�A and T D
p
< p >

p
< d2 >C . The matrix S is therefore

negative semi-definite, i.e., x0Sx D �.T x/0.T x/ � 0 for all x 2 <n. Furthermore,
x0Sx D 0 if, and only if, Cx D 0, i.e., x D ˛1x� for some ˛1 > 0, as long as
p > 0 and x > 0 can be ensured. With the above notation, the dynamics (15.15),
(15.16) can therefore be represented in compact form by

bz D< d >
�
�S C

�C 0

�
z D< d > Q.�/z (15.18)

where as before z D .x; p0/0; d D .d1; d2/0 and where Q D Q.0/ represents the
case we have treated in Proposition 15.2. For the more general system (15.18) we
now have the property

Q.�/ WD
1

2
.Q.�/CQ.�/0 D

�
�S 0

0 0

�
(15.19)

where Q.�/ is negative semi-definite.
Utilizing the Liapunov function (15.13) we get, with regard to (15.18),

PV D q0.E� < z >�1< z� >/Pz

D .z � z�/0Q.�/z D z0Q.�/z � z�
0

Q.�/z

D zQ.�/z D z0Q.�/z

D yx0Sx � 0:

since z�
0

Q.�/ D O because of S D �C 0 < p >< d2 > C . This inequality implies
that the sets V �1.Œ0; c�/; c > 0 are positively invariant with regard to the dynamics
(15.18), i.e., no trajectory which enters such a set can leave it later on. We note
that each set V �1.Œ0; c�/ is a compact subset of ˝2n

C . This is easily deducted from
(15.13), since (15.13) is an additive combination of the strictly convex functions.

V i .zi / D qi .zi � z�i � ln zi � .z�i � z�i � ln z�i // (15.20)

Following Hahn (1982, p. 750) it is now easy to demonstrate that process (15.18)
is quasi-globally stable, i.e., that all limit points of its trajectories are points of rest
(equilibria). To this end we have to show that Voz is convergent for the trajectories
z of (15.18) and constant if, and only if, such a trajectory describes a point of rest.
The first of these conditions has already been shown (since V is monotonically
decreasing along all solution curves z of (15.18) and bounded from below. To show
the second condition, let us assume that Voz is constant for an entire orbit z.t/ D
.x.t/; p.t/0/0; t � 0 in ˝2n

C . The condition PV D 0 implies x0Sx for this orbit,
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which because of the properties of the sets V �1.Œ0; c�/ (i.e., because of x; p > 0

throughout) implies 0Cx D 0 and thus x D ˛1x� for a positive scalar ˛1. Inserting
this result into (15.16) gives Pp 	 0, i.e.,

bz D< d1 > .B �R�A/0p0 D const.

Multiplying this equation from the left by !1 D x�
0

< d1 >�1 gives !1bx D 0.
Since, however, a constant growth ratebxj > 0 is incompatible with our result that
the compact sets V �1.Œ0; c�/ are invariant, we getbxj D 0 for all j . Hence: Px 	 0,
since !j > 0 for all j . By Theorem T.1.4 in Hahn (1982, p. 751) the process (15.18)
is therefore quasi-globally stable.

By our uniqueness assumption we furthermore know for these limit points of
orbits and points of rest z D .x; p0/0 > 0:

z D .˛1x�; a2p�
0

/0 for some ˛1; ˛2 > 0:

The scalars ˛1; ˛2 are uniquely determined by the expressions

!1 ln x.0/=!1 ln x� and !2 lnp.0/0=!2 lnp�
0

where !1 D x�
0

< d1 >�1 and !2 D p� < d2 >�1, cf. also the following remark.
Process (15.18) is thus globally asymptotically stable. ut

If capitalists also pay regard to the time rate of change of extra profits where
moving their capital from) one sector to another, we consequently know that the
stipulated price reaction of the ‘market’ will lead to uniform profitability and growth
in the limit and to relative prices and activity levels which are those of the given
equilibrium x�; p� > 0. Our cross-dual adjustment process is convergent if � > 0

holds true (it will be divergent if � < 0 is true.

Remark 15.5. The dynamics (15.15), (15.16) determines only relative activity levels
and relative prices which is as it should be in an approach which neither includes
a disequilibrium theory of growth nor of inflation. Furthermore, the above defined
two vectors !1, !2 are easily shown to fulfill

!1bx D 0; !2bp0 D 0; ; i.e., !1 ln x D c1; !2 lnp0 D c2

where c1; c2 > 0 are given constants which depend only on the initial values
x.0/; p.0/ of each trajectory (cf. the definition of the two scalars ˛1; ˛2 in the
preceding proof). The above conditions of invariance state that certain weighted
averages of the percentage changes of activity levels or prices are zero through-
out or that activity levels and prices stay within the sets f exp x=!1ex D c1,
f expep0=!2p0 D c2, which are the images of the hyperplanes perpendicular to
!1; !2 under the exponential mapping. Such normalization rules differ from the
usual ones which restrict prices or activity levels to certain simplices. They are,
however, not inferior to these alternative ways of normalizing activities and prices
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as there is no natural condition of invariance (and since ‘boundedness’ of prices and
activities is ensured because of the invariance of V �1.Œ0; c�/).

Because of this last fact it might even be claimed that the explicit or implicit ex-
istence of a numéraire is unnecessary for an investigation of the stability properties
of adjustment processes with regard to relative prices and activity levels. Following
Fisher (1983, cf. in particular p. 25), a proof of quasi-global stability, a compactness
argument, and a demonstration of (local) uniqueness of rest points can be regarded
as sufficient to provide an analysis of the asymptotic properties of adjustment pro-
cesses. The stability properties of adjustment processes may change if an a priori
condition on invariance is added and if the adjustment process is modified accord-
ingly to suffice this invariance condition. Yet, such a procedure is arbitrary as long
as the true conditions which restrict prices and activities in such an economy are not
revealed thereby. The adoption of a numéraire commodity or of another condition of
invariance (e.g., of the above type) therefore only contributes to an analysis of the
robustness of the analyzed stability with regard to such additional (and arbitrary)
restrictions. Such an analysis will be bypassed in this chapter, which concentrates
on the above three steps of stability analysis in the same way as they are applied by
Fisher (1983).

15.4.2 Process Extinction

The results of the preceding section can be applied to both Sraffa’s and von
Neumann’s types of analysis (if wages are paid ex ante in both cases). In principle,
this remains true also for the following more general equilibrium of a rectan-
gular n � m linear input–output model A;B (with Aj ; Bj � 0 for all sectors
j D 1; : : : ; n).

Assume, that the linear model of production A;B has an equilibrium R� > 1;

x�; p� � 0 which fulfills p� > 0, i.e., which is characterized by

o�C � 0; Cx� D 0; p�Bx� > 0 (15.21)

The number of commodities (rows) n may now differ from the number of
activities m.

An important special case of this situation is the case of multiple, but single prod-
uct activities where the non-substitution theorem holds true. In this case, as well as
in the above more general case, an important question is whether the adjustment
processes considered in the last section will not only tell something about the pro-
cess of equalizing profit rates but also about the extinction of inferior processes
p�C j < 0 (where x�j D 0 holds true). Note that we do not allow for product ex-
tinction (free goods) in the present section and that a uniqueness assumption has no
longer been made.

One analytical difficulty in treating this case along the lines of the preceding
paragraph is that the domain of definition of the Liapunov function (15.13) must
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now be extended in a relatively complex fashion. To examine asymptotic stability
it should at least include our reference equilibrium (15.21), i.e., boundary values of
˝nCm for those components where process extinction may occur. It is easily seen,
however, that the function (15.13) – which depends on the choice of z� – has a
well-defined continuous extension with regard to this new situation, since z�j � ln zj
is identically zero for these components (and zj > 0). The functions (15.20) must
therefore be supplemented by the following functions to provide a full picture of the
component-by-component forms of the function V :

vi .zi / D qi zi for z�i D 0

On the other hand, function (15.13) cannot be extended to situations zi D 0 with
z�i ¤ 0. As domain of definition for (15.13) we consequently now have

˝nCm
C;0 D fz 2 <

nCm=zj > 0 if z�j > 0; zj � 0 if z�j � 0g

(cf. Rouche et al. 1977, pp. 263 f., for a related approach).

Proposition 15.6. The equilibrium (15.21) is stable with regard to the adjustment
process (15.8), (15.9) and the domain of definition˝nCm

C;0 . The stability is asymptotic
for all components j where p�C j < 0 holds true (which may be a proper subset of
fj=x�j D 0g).

Proposition 15.7. The adjustment process (15.15), (15.16) is quasi-globally stable,
i.e., all trajectories which start in ˝nCm

C;0 have only equilibria as limit points.6

The limit set of each trajectory (i.e., the set of points where the trajectory con-
verges to) thus consists of rest points only, but it may now contain different economic
equilibria.

Proof. Recall first that there is a well-defined continuous extension of the Liapunov
function (15.13) to the domain ˝nCm

C;0 which contains the given equilibrium
z� D .x�; p�

0

/0. This function allows the same calculations as in the proofs of
Propositions 15.2, 15.4 except that we now get:

z�
0

Q.�/ D z�
0

�
�S C 0

�C 0

�
D .�p�C; 0/ � 0 (15.22)

This implies z�
0

Q.�/z D �p�Cx which gives

PV D .z � z�/0Q.�/z � z0Q.�/z D �x0Sx D 0 (15.23)

i.e., an additional inequality term in the estimation of the behavior of V along z. The
proof of Proposition 15.6 is then completed by observing that the case � D 0 now
gives rise to PV < 0 as long as p�Cx < 0, i.e., xj > 0 for p�C j < 0.

6 See Fisher (1983, Appendix) for further details on quasi-global stability.
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In the case � > 0 (Proposition 15.7), we first note that x0Sx D 0 is again
equivalent to Cx D 0. This remains true since V �1.Œ0; c�/ is still compact and
invariant and since it has a positive distance from the boundary of ˝nCm

C for all
those components zj where z�j > 0 is true. The limit points of trajectories which
start in V �1.Œ0; c�/ therefore must have positive components for all j where z�j > 0,
i.e., in particular all prices must stay positive even in the limit. Hence: x0Sx D
�x0C 0 < p >< d2 > Cx D O iff Cx D 0. Note, however, that Cx D 0 no longer
implies that x is proportional to x�, as is obvious from the possibility of switches of
techniques.

To show the quasi-global stability of process (15.15), (15.16) in this generalized
situation there remains again to be shown that V is constant if, and only if, z is a
point of rest of (15.15), (15.16), (cf. Hahn 1982, p. 751). Note that Hahn’s proof of
quasi-global stability also applies to the special type of ‘orthant’ ˝nCm

C;0 on which
the above Liapunov function had to be defined, since all limit points of solution
curves which start in V �1.Œ0; c�/ must be contained in this set.

Assume now that PV D 0 for an entire orbit z.t/ D .x.t/; p.t/0/0; t � 0: By
(15.23) we then get

z�
0

Q.�/z D 0 and x0Sx D 0:

This implies p�Cx D 0, i.e., xj D 0 for all j with p�C� < 0. Because of Cx D 0
we get from (15.16) the result p 	 0 or p 	 const and s D 0, cf. (15.15). There
remains the dynamics

Px D< x >< d1 > C 0p0
�

< 0 for pC �< 0

(if xj > 0; the cases xj D 0 imply already a situation of no change with regard
to these components). The case pC j > 0 can, however, be excluded by observing
that a constant vector of prices p would then imply a constant and positive rate of
growth for xj in contradiction of the fact that z.t/; t � 0 cannot leave V �1.Œ0; c�/.
And the remaining possibility pC j < 0; xj > 0 is then also not compatible with
the assumed circumstances, since it would imply

PV D
X

xj>0

qj .xj � x
�
j / �bxj ¤ 0

because ofbxj D const < 0 for these components j , i.e., RV D
P
qj � Pxj �bxj < 0.

In sum, we therefore get Pz D 0 for the above orbit z.t/, i.e., this orbit describes a
point of rest z��, which – as the proof has shown – fulfills p��C � 0, Cx�� D 0,
p�� > 0, x�� � 0 and p��Bx�� > 0. ut

Corollary 15.8.

(1) The equilibria x��; p�� of the systemA;B which are limit points of the solution
curves of process (15.15), (15.16) are of the same type as the given equilibrium
x�; p� (see (15.21)).
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(2) The combinations .x�; p��/ and .x��; p�/ are also equilibria with regard to
the rate R�. They form a convex subset Z� of the set of all equilibria of the
natural rate R�.7

(3) An activity which is inferior with regard to an equilibrium z 2 = Z � will not be
operated by any equilibrium z 2 = Z �.

(4) Denote by T � the (uniquely determined) maximum set of activities which are
operated by the set of equilibria Z�. Then: j 2 T � ! x��j > 0 for the equilib-
ria which are limit points of (15.15), (15.16). This adjustment process therefore
does not (and cannot) discriminate between the optimum activities of the dif-
ferent equilibria in the set Z�, but leads always to an equilibrium where these
activities are all jointly operated.

Proof. The above assertions follow from the facts (1) that the functions (15.20) are
strictly convex with the absolute minimum z�i , (2) that they approach infinity if z
approaches zero (for z�i > 0/ and that (3) the invariant sets V �1Œ0; c�/ around the
equilibrium (15.21) are all compact. This implies that positive components z�i must
lead to positive components z��i by our adjustment process (15.15), (15.16) which
is independent of the particular choice of the equilibrium z�. Note here that the
function V depends on this choice, yet in a manner which is irrelevant for the truth
of Proposition 15.7. ut

15.4.3 Product Extinction

We have shown stability and even global asymptotic stability for general joint pro-
duction where free goods have been eliminated from consideration (if the considered
equilibrium is uniquely determined). It will be shown below that these assertions
cannot be extended to the case of free goods .p�j D 0/ where indeed a modification
of the law of excess demand is needed (instead of the law of profitability) to imply
their extinction by such a disequilibrium dynamics.

Because of p� > 0, i.e., Cx� D 0 we had the following simple equation in
Sect. 15.4. to prove the monotonicity of V along the orbits of (refad10), (15.16), cf.
(15.22):

z�
0

Q.�/z D �p�Cx � 0

In the general case x� � 0, p� � 0 the expression for z�
0

Q.�/z however reads

� p�Cx C pCx� � �x�C 0 < p >< d2 > Cx (15.24)

Here, only the first two vectors will be unambiguously non-negative, while for the
last vector it can, in fact, be shown that it must be non-positive in a small neigh-
borhood of .x�; p�

0

/0, since Cix and Cix� will be of the same sign for all i where
Cix

� < 0 in such a neighborhood.

7 According to Fujimoto (1975), the natural rate R� is uniquely determined, because of our as-
sumption p� > 0.



15.5 Conclusions 347

The expression (15.24) shows, however, that Proposition 15.6 can be generalized
to this most general type of equilibrium situation Cx� � 0, p�C � 0, p�Bx� > 0
of the joint product system A;B , i.e., the original kind of adjustment process y D 0
is stable for any equilibrium R�; x�; p�. To obtain asymptotic stability in the pres-
ence of free goods the following modification of this original process is appropriate
(this modification has been proposed to us by R. Franke) :

Px D C < d1 >< x > C 0p0 (15.25)
Pp0 D � < d2 >< p > ŒCx C ıv� (15.26)

where v D d
dt
Cx D C Px and ı > 0. The time rate of change of excess supplies is

here assumed to exercise an extra influence on our original dynamics (15.8), (15.9) –
now with regard to price instead of quantity adjustments. Instead of (15.18) we here
get

Pz D< z >< d >
�
0 C 0

�C ıU

�
z

with a matrix U which is given by U D �C < x >< d1 > C 0. In the case of no
inferior activities .x� > 0/ this dynamics may then be treated in the same way we
have treated the opposite case p� > 0, i.e., this adjustment will be quasi-globally
stable and will now exhibit product- instead of process-extinction. Modifications
of our simple version of the law of demand may therefore be exploitable for the
treatment of free goods. Such modifications are, however, not of central importance
in this chapter which focuses on capital movements and their stabilizing properties.
Furthermore, the analysis of both, (15.15) and (15.26). i.e., the investigation of a
simultaneous operation of the two additional influences is not straightforward and
must be left aside in this chapter.

15.5 Conclusions

We have derived in Sect. 15.4 some stability results for processes of ‘classical
competition’ around von Neumann equilibria of the multiple activity type. These
processes are also related to some ideas of Walras (but not of Walrasian economics)
on the adjustment to equilibria in a production economy, now, however, from a long-
run perspective. In contrast to other dynamical processes as, for example, formulated
by Morishima (1976, 1977); Mas–Colell (1974, 1986), our cross-dual process is sta-
bilized through the ‘law of profitability’ and the sensitivity of the producers to profit
changes. Such an approach may be helpful to overcome the problematic separation
into short-run and long-run equilibrium dynamics of the standard neoclassical type
as discussed in Sect. 15.2. To prove the stability of such unified adjustment processes
to prices of production (and to steady growth) may be of great importance, since ‘the
theory of value is not satisfactory without a description of the adjustment processes
that are applicable to the economy and the way in which individual agents adjust
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to disequilibrium. In this sense, stability analysis is of more than merely technical
interest. It is the first step in a reformulation of the theory of value.’ (see Fisher 1983,
p. 16) – which need not be the theory of value which Fisher has in mind.

On the other hand, our results can bear comparison with stable dual adjustment
rules of Keynesian origin. A modern version of such dual adjustment rules from
the perspective of input–output models has, e.g., been provided by Fukuda. Fukuda
(1975) avoids the saddlepoint property of dynamic Leontief models by claiming that
two of its implicit (and ideal) assumptions, those of a fully utilized capital stock and
of expectations of the myopic perfect foresight variety should be modified. As an
alternative to (15.2), (15.3) he therefore considers, e.g., the following stable adjust-
ment process

Px D < d1 > ŒAx C gBx C f x�

Pp0 D < d2 > ŒA0p0 C rB 0p0 C w � p0�

where < d1 >< d2 > are again diagonal matrices of adjustment coefficients
and where the rates g; r , final demand f 2 <n and primary costs w 2 <n are
given exogenously. This attempt that avoids the instability results of efficient capital
accumulation described in Sect. 15.2 (for sufficiently small r; g/ is, however, im-
mediately addressed to quite modern conditions: output adjusts solely according to
excess capacity and pricing is based on full-cost calculations (including a target rate
of profit). There is no crossover dynamics involved.

Dynamical processes of the above dual type can be considered to follow a fast
dynamics of Keynesian type where quantity imbalances are mapped into quantity
changes and differences of price and cost are mapped into price changes. These
processes appear, if written in an appropriate form (Flaschel and Semmler 1986a), in
the diagonal of the system’s matrix (when the system is written in the compact form
bz D Qz/ whereas our proposed dynamics appears in the side diagonal, since it is a
cross-dual dynamics. In comparison to the dual (Keynesian) dynamics we propose
therefore to interpret our dynamics as slow and long-run dynamics whereas the dual
dynamics can be called a fast and short-run dynamics. Both types of dynamics do
not seem to be exclusive but rather complementary (though the stability properties
of a system including both types of dynamics has not been explored so far).

Finally, this chapter also provides a basis for considering the stability of von
Neumann equilibria which to our knowledge has been rarely investigated in the
literature (see Burley 1974, for an isolated attempt to test the stability properties
of a purely formal feed-back mechanism for the von Neumann model by means of
computer simulations). And since von Neumann solutions are generalized eigen-
systems, our procedure therefore also suggests a mathematical method of finding
the right- and left-hand eigen-solutions of general input–output systems by means
of a single iterative procedure if the maximum eigenvalue is already known or if this
value is also iterated by means of the reciprocal value of the average rate of profit
(see Flaschel and Semmler 1986b, for details and computer simulations and note
that no proof of convergence of the latter process has been supplied so far).
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(Ed.), Models of economic dynamics (pp. 49–68). Heidelberg: Springer
Morishima, M. (1976). The economic theory of modern society. Cambridge, UK: Cambridge

University Press
Morishima, M. (1977). Walras’ economics. Cambridge, UK: Cambridge University Press
Nikaido, H. (1978). Refutation of the dynamic equalization of profit rates in Marx’s scheme of

reproduction. Mimeo: University of Southern California
Nikaido, H. (1983). Marx on competition. Zeitschrift für Nationalökonomie, 43, 337–362
Nikaido, H. (1985). Dynamics of growth and capital mobility in Marx’s scheme of reproduction.

Zeitschrift für Nationalökonomie, 45, 197–218
Rouche, N. et al. (1977). Stability theory by liapunov’s direct method. Heidelberg: Springer



350 15 Classical and Neoclassical Competitive Adjustment Processes

Semmler, W. (1985). Competition, monopoly and differential profit rates. New York: Columbia
University Press

Sonnenschein, H. (1981). Price dynamics and the disappearance of short-run profits. Journal of
Mathematical Economics, 8, 201–204

Sonnenschein, H. (1982). Price dynamics based on the adjustment of firms. American Economic
Review, 7, 1088–1096

Steedman, I. (1977). Marx after sraffa. London: NLB
Steedman, I. (1984). Natural prices, differential profit rates and the Classical competitive process.

The Manchester School, 52, 123–140
Svensson, L. E. O. (1984). Walrasian and Marshallian stability’. Journal of Economic Theory, 34,

371–389
Walras, L. (1954). Elements of pure economics. London: George Allen and Unwin
Woods, J. E. (1978). Mathematical economics. London: Longman
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Chapter 16
Composite Classical and Keynesian
Adjustment Processes

16.1 Introduction

This chapter attempts an integration of Keynesian dual and Classical cross-dual
micro-dynamic adjustment processes in the framework of a standard Leontief
model. It investigates why strategies which are capable of proving stability for each
separate case cannot in general successfully be applied to the composite system,
where both prices and quantities are each revised on the basis of two instead of
only one principle, namely supply/demand – as well as price/cost – discrepancies.
It will be shown that significant limits to the adjustment speeds in the Classical do-
main have to be postulated in order to prove stability for the composite dynamics by
means of the standard tools of the Walrasian tâtonnement literature. In view of these
results an alternative approach to the stability of such composite systems is then
introduced and applied to this system. This approach takes explicitly into account
the type of composition of our dynamic system, i.e., its set of negative feedback
mechanisms and the various interactions that may in addition exist between such
substructures, which makes this approach of great methodological interest.

Our central findings are that there exist three different ways which allow to
prove stability for our composite Keynesian/Classical structure (diagonal domi-
nance, quasi-negative definiteness and the above new approach with a two-level
type of stability analysis). In each of these approaches, however, we have to assume
relatively narrow limits for the strength of the Classical component to obtain a stable
composite dynamics. In contrast, no such narrow restrictions can be detected when
the eigenvalues of numerical examples are calculated for a wide range of adjustment
coefficients, even though counterexamples to stability do indeed exist then as well
in other cases (see the mathematical appendix, subsection 1).

The exact limits for the stability of our composite system therefore remain
an open question in the present chapter. Their determination may, however, be
subordinate to another problem, which is the need for a more developed analysis
of Classical dynamics itself before the stability properties of its integration with
Keynesian types of adjustments processes are discussed in more depth.

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 16,
c� Springer-Verlag Berlin Heidelberg 2010
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16.2 Notes on the Literature

This chapter deals with the stability properties of different types of micro-dynamic
adjustments which arose from different theoretical traditions in the history of
the economic analysis of market systems. In particular it will treat Classical and
Keynesian micro-dynamic adjustment processes.

Already in Classical Political Economy an important type of micro- dynamical
adjustment for competitive market systems was considered. This competitive pro-
cess was later stylized as an adjustment process called ‘cross-dual’ by Morishima
(1976, 1977) and ‘cross-field’ dynamics by Goodwin (1970).

According to the Classicals the dynamics of market systems can be formulated
as follows: (a) the output of a commodity is expanded or reduced (through entry
or exit of firms) whenever the excess of price over cost (including normal prof-
its) is positive or negative (‘law of excess profitability’); and, (b) the price of a
commodity is raised or lowered whenever there is an excess demand or supply
on the market (‘law of excess demand’). Extensive verbal formulations of this dy-
namics can be found not only in Smith (1974, Chap. 7), Ricardo (1951, Chap. 4),
Marx (1967, Chap. 10) , but also in Walras (1977, Chaps. 12, 18) and in Marshall
(1947, Chaps. 3 and 5). Mathematical formulations of such dynamics have been pro-
vided, for different variations of this Classical dynamics, in more recent times, for
example by Goodwin (1953, 1970, 1988), Goodwin and Punzo (1986), Morishima
(1960, 1976, 1977), Duménil and Lévy (1987a,b), Franke (1987), and Flaschel and
Semmler (1986, 1987) (cf. also Mas–Colell (1986) who discusses the stability of the
two components of our composite system from the perspective of Walrasian general
equilibrium theory).

In modern neoclassical theory, however, since J. Hicks’s and P. Samuelson’s writ-
ings in the 1930s and 1940s this two-sided dynamical process is generally reduced
to a one-sided process of price adjustment, i.e., the ‘law of (excess) demand’, only.
This price dynamics has been shown to be asymptotically stable, e.g., under the as-
sumption of gross substitutes. However, due to the possibility of very general excess
demand functions, it proved to be unstable for a wide class of economies.

This type of price dynamics is motivated by means of the celebrated price-
tâtonnement dynamics. Quantities, i.e., supply and demand – in contrast to prices –
are assumed in this mechanism to adjust infinitely fast to each new price vector.
There is in particular no dynamics formulated for the adjustment of supply, i.e.,
the ‘law of excess profitability’ is neglected, and out of equilibrium behavior of
economic agents – facing possibly quantity or income constraints – is not allowed
for. Economic systems with this dynamic adjustment rule for the short run have
been called by J. Hicks ‘flexprice’ systems, cf. Hicks (1965, Chap. 6). In temporary
equilibrium theory it is then simply assumed that this short-run price dynamics is
sufficiently stable, so that supply and demand can be thought to be in equilibrium
in every single period, while in the long-run the capital stock will be adjusted to
its steady state value. Time is thereby dichotomized into hypothetical time where
fast adjustments to temporary equilibria are taking place and real time where the
dynamical forces of evolution are supposed to work adjusting the economy toward
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a long-run growth path. Such formulations of short-run dynamic adjustments – and
more so its long-run version – are considered unsatisfactory, however, particularly
in the Keynesian and post-Keynesian tradition.

In Keynesian economics another dynamic process has been favored. This type
of dynamic process has been called ‘dual dynamics’ by Morishima (1976, 1977).
The dynamic process can basically be stylized as follows: (a) quantities change due
to excess demand (the output reaction of already established firms) and (b) prices
change due to the difference of prices and (marked-up) costs. This latter price adjust-
ment procedure is based on the assumption of a discretionary price setting behavior
of large firms (oligopolized industries). Such a system has been called by Hicks a
‘fixprice’ system where ‘we no longer assume that the system is in equilibrium in
every single period’, Hicks (1965, p. 82). In the fixprice system imbalances of sup-
ply and demand cause quantities to change and prices are determined from ‘outside
the model. All that is said about prices is that they must cover cost; more strictly,
that a thing will not be produced unless it is profitable to produce it’, Hicks (1965,
p. 78). This type of price dynamics has been formalized later on by means of the
aforementioned mark-up or target rate of return pricing according to which prices
respond solely to the difference of marked-up costs and current prices [for details of
such a pricing procedure, cf. Kaldor (1985) and Semmler (1984)].

Though there is considerable doubt of whether this dual dynamics can already be
found in Keynes’ ‘General Theory’, the ‘Keynesian Revolution’, however, is usually
associated with it and as Hicks already mentions ‘there is no question that . . . Keynes
was moving in the direction of the new method’, Hicks (1965, p. 77). Leijonhuvud
goes a step further than Hicks and writes more distinctively that ‘The main innova-
tion – and virtually the only major innovation – attempted in the ‘General Theory’
was the effort to provide a systematic analysis of the behavior of a system that re-
acts to disturbances through ‘quantity adjustments’ rather than through price-level
or wage-rate adjustments’, Leijonhuvud (1968, p. 24). This quantity adjustment pro-
cess has become an essential element in non-Walrasian models on quantity rationing
and disequilibrium analysis, yet, as Drazen states ‘dynamics in non-Walrasian mod-
els is an open area deserving extensive further study’, Drazen (1980, p. 303).

Early dynamic formalizations of Keynesian quantity adjustments – decoupled
from (but contrasted with) a corresponding type of price dynamics – were given
for Leontief-systems by Jorgenson (1960) and others in the form of the so-called
dual instability theorem. However, it has been recognized meanwhile that two very
restrictive assumptions: (a) full utilization of capacity and (b) perfect foresight, are
the basis for the dual instability assertion put forward in this literature.1 Recon-
siderations of this formalization of a dual dynamics of Keynesian type are found
in the work of Morishima (1976, 1977), Goodwin (1970, 1988), Aoki (1977),
Fukuda (1975) [cf. again also Mas–Colell (1986) for a different interpretation of
this dynamics]. Here, for the most part, the two aforementioned assumptions are

1 This is an early example of a saddle-point instability, the now favored type of dynamics in ap-
proaches which make use of ‘rational’ expectations.
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dropped. Our formalization of the dual dynamics in this chapter is based on the
work of these authors, in particular on Morishima’s and Fukuda’s analysis of this
dynamics.

In the remainder of the chapter, in Sect. 16.2, the dual dynamics will be in-
troduced formally and its relation to the cross-dual dynamics is considered.
Section 16.3 of the chapter elaborates composite or aggregate versions of the cross-
dual and dual dynamics generally separately discussed in the history of economic
analysis. As will be shown, traditional methods of stability analysis can demonstrate
stability for the dynamic behavior of our composite system only under restrictive
assumptions on the reaction coefficients and also on the structure of the model.
Section 16.4, a new stability method in the tradition of Liapunov’s direct approach
is therefore introduced for studying the dynamics of such composite systems. This
method works with vector Liapunov functions and shows how conclusions may
be drawn with respect to the aggregate system by means of its subsystems and its
interconnections. In this way, in Sect. 16.5, an alternative stability formulation for
our composite Keynesian-Classical system can be provided for certain combina-
tions of adjustment speeds. Computer studies in Sect. 16.6 explore some further
conjectures and suggest (in combination with the experience from many eigenvalue
calculations) that stability regions with regard to adjustment speeds may be much
larger than we are able to prove in the main part of the chapter. Nevertheless – as
will become clear from the mathematical appendix, subsection 1, to this chapter –
counterexamples to stability do exist, even if asymmetries due to differences in
profit- and growth rates and different speeds of adjustment are assumed away.

The proposed integration of Keynesian and Classical views on micro-economic
dynamics is therefore not without problems. In this regard the various difficulties
which we encounter in the following sections in our view suggest in the end that the
next important step should not be the determination of the exact limits of stability for
our present form of composite system but should rather attempt an improvement of
the stability properties of the Classical cross-dual component first. In the course of
writing this chapter it became more and more apparent that the Classical dynamics
is still so unfinished in its basic formulation that the addition of the stable Keynesian
feedback mechanism – which is not so intimately related to the Classical one as it
appeared at first – is generally insufficient to imply overall stability in cases where
the Classical component is sufficiently pronounced.2

16.3 Dual Dynamics

Following Morishima’s work on dual adjustment processes, Fukuda (1975) (cf. also
Aoki 1977) investigated further the stability properties of such output and price
adjustment mechanisms of the Keynesian type for a multi-sectoral economy. In the

2 See Flaschel and Semmler (1987) for a more detailed analysis of the Classical dynamics.
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second part of his chapter he, in particular, explores the stability of the following
dual process (his stock matrix K D A for simplicity):

Px D d11.Ax C gAx C c � x/ D d11.C.g/x C c/ (16.1)
Pp0 D d22.A

0p0 C rA0p0 C w0 � p0/ D d22.C.r/0p0 C w0/; (16.2)

Here, d11; d22 are diagonal matrices with positive diagonals, representing adjust-
ment speeds. The n?n-matrix A is the usual intermediate input matrix, g the rate of
growth, c (a column) the n-vector of final consumption, and r and w denote the
rate of profit and the n-vector of wage payments per unit of output (a row). The
n-vectors x; p (corresponding to c;w) as usual stand for activity levels and prices,
respectively, and Px; Pp denote their time derivatives. Note finally that we shall make
use of the abbreviations C.i/ D .1C i/A � I; i D r; g in the following.

For the output dynamics (16.1) thus holds that a positive (negative) excess
demand – demand (given by .1 C g/Ax C c) minus supply x – will increase (de-
crease) output and for the price equation (16.2) a markup (or target rate of return)
pricing is assumed where an excess of computed prices .1Cr/A0p0Cw0 over actual
prices p0 will lead to a price increase (and vice versa).

We assume that c � 0, w > 0 and 0 < r; g < R� � 1 D r� > 0 are given
exogenously. The scalar 1=R� D 	.A/ D 	.A0/ D 1=.1 C r�/ is the maximum
eigenvalue of the matrix A and A is assumed indecomposable for simplicity, i.e.,
	.A/ is a simple characteristic root. The same holds for A0. In a simulation study
below we will partly make r variable such that it will be determined endogenously
in each period of time.

Under the above assumptions the stability of both the quantity reaction to demand
and supply imbalances as well as the price reaction to the discrepancy between full
cost prices (with a target rate r) and actual prices is a very simple matter. Utilizing
the spectral displacement property of the eigenvalues ˝ of arbitrary matrices A;B
(Zurmühl 1964, p. 209), i.e.,

˝B D ˝A � z if B D A � zI;

we get for C D C.g/ D .1C g/A � I and all eigenvalues ˝C of C.g/:

˝C D .1C g/˝A � 1; and thus
Re ˝C D .1C g/.Re ˝A/ � 1 � .1C g/	.A/ � 1

D .1C g/=R� � 1 < 0; since 1C g < R�:

The same considerations hold for the dynamics (16.2).
The matrices C.g/; C.r/0 are thus stable Metzler-matrices and consequently also

diagonal-stable. The first property means that all off-diagonal elements of C;C 0 are
nonnegative (and all eigenvalues have negative real parts) and the second property
says that C;C 0 will always give rise to stable matrices when multiplied by diagonal
matrices with a positive diagonal, cf. Kemp and Kimura (1978, pp. 134 ff.).
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For the unique and strictly positive equilibrium of (16.1), (16.2) we have

x� D .I � .1C g/A/�1c D �C.g/�1c (16.3)

p�
0

D .I � .1C r/A0/�1w0 D �C.r/0�1w0: (16.4)

Fukuda contrasts the foregoing results on stability with the dual instability theorem
of Leontief models mentioned above. He notes that stability is obtained, because
the full utilization assumption for the capital stock is dispensed with and the perfect
foresight assumption removed from the price dynamics. Less ideal and stringent as-
sumptions therefore increase the stability of the dual adjustment of quantities and
prices (given the ‘factor prices’ w; r). The cost of his approach is, however, that
certain imbalances are introduced into the dynamics of the model, the full conse-
quences of which are not thoroughly analyzed. Examples for such imbalances and
unanalyzed feedbacks are in particular given by:

1. The creation of inventories
2. Supply-constraints
3. Effects of activities levels on employment, money wages and consumption
4. The existence of profit-rate differentials among activities (measured by
�C.r/0p0 � w0, cf. (16.2))

5. Price reactions due to demand and supply imbalances (measured by C.g/x C c,
cf. (16.1)).

Of particular interest, in our opinion, are points 4. and 5., since they represent a
fundamental incompleteness of the approach given by (16.1), (16.2) and since these
aspects can also be integrated into (16.1), (16.2) in a fairly obvious way.

Dual adjustment processes of type (16.1), (16.2) are indeed very implausible
because they in particular suggest that quantities change only due to quantity im-
balances and prices change only due to differences between actual and marked-up
prices. The two systems are considered in complete independence of each other and
a mark-up which is ‘too high’ (or low) with regard to the actual does not at all
modify the quantity mechanism. Yet, at least weak or slow influences of profit-rate
differentials on the conditions of supply (through entry and exit of firms) and of
supply and demand discrepancies on prices should be allowed for. Even if one as-
sumes a target rate of return pricing as formalized in (16.2) one has to admit that
the imbalances in (16.1) will have influence on the formation of prices (16.2). Mod-
ern corporations, for example, do not only pay attention to certain price targets,
but, of course, also consider the state of demand and supply when revising their
prices. The above two modifications 4., 5. should therefore be incorporated into the
model (16.1), (16.2) of price-quantity adjustments. This will be done in Sect. 16.3
in a way as simple as possible. Nevertheless, considerable complexity will be intro-
duced through our extension of this separable dual adjustment à la Keynes-Leontief
(Morishima 1976, 1977) which introduces cross-dual elements and reaction patterns
into it.

In closing this section, let us briefly consider an important limit case of the above
model (16.1), (16.2).
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Assume: c;w D 0; r D g D R� � 1;R� D 	.A/�1. Then:

Px D d11.R
�Ax � x/ D d11C �x .�/

Pp D d22.R
�A0p0 � p0/ D d22C �

0

p0 .��/

can, e.g., be interpreted as adjustment rules within the context of a very simple
closed von Neumann model [labor inputs included in the A-matrix]. In contrast to
(16.1), (16.2) the equilibrium x�; p� is now uniquely determined only up to scalars
˛, ˇ applied to x�; p�.

Though our following considerations will not immediately be applicable to this
limit case as well, the results that we will obtain for system (16.1), (16.2) and its ex-
tensions will – suitably reformulated – also carry over to (�), (��) and its analogous
extensions since instead of only negative real parts of eigenvalues we will here have
zero as an additional eigenvalue (of multiplicity 1 or 2) as the sole exception.

16.4 The Composite System

Integrating the two cross-dual adjustment components 4., 5. of Sect. 16.2 into sys-
tem (16.1), (16.2) gives the following new and more complete type of dynamics

Px D d11C.g/x � d12C.r/
0p0 C q1 (16.5)

Pp0 D d21C.g/x C d22C.r/
0p0 C q2 (16.6)

with q1 D d11c�d12w0; q2 D d21cCd22w0 (d12; d21 of the same type as d11; d22).
This composite dynamics can be interpreted as follows. Concerning the output re-
action, formalized in (16.5), one can realistically hypothesize that firms do not
respond solely to imbalances of supply and demand when revising their production
(and investment) decisions but that output is also scaled up (or down) according
to whether the actual rates of return are above (or below) the norm or target rate r .
Compared with the (Keynesian) quantity reaction due to quantity imbalances the ad-
ditional (Classical) quantity reaction due to profitability differences may, however,
be considered a slow dynamics – mainly initiated through entry and exit of firms
(d12 << d11). Furthermore, it also adds realism to our dynamics if we assume that
the price setting behavior of firms formalized in (16.6) follows two decision criteria:
first, prices are provisionally set on the basis of a mark-up (or target rate of return)
calculation and secondly, are further revised according to the imbalances of supply
and demand in the various markets.

Before discussing the dynamics of this composite system, however, existence and
uniqueness of the equilibrium must be briefly considered.

Existence of Equilibrium: The equilibrium of (16.5) and (16.6) is the same as
the one for (16.1) and (16.2), cf. (16.3) and (16.4).
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Uniqueness: For the homogeneous part of (16.5), (16.6) we get

0 D d�112 Px C d
�1
22 Pp

0 D d�112 d11Cx C d
�1
22 d21Cx D .d

�1
12 d11 C d

�1
22 d21/Cx:

This implies Cx D 0, i.e., x D 0, which by (16.6) also implies p D 0.
System (16.5), (16.6) can be written in compact form as:

Pz D
�
Px

Pp0

�
D

�
q1
q2

�
C

�
d�121 d11 �I

I d22d
�1
12

� �
d21C.g/ 0

0 d12C.r/
0

� �
x

p0

�
D

�
q1
q2

�
CSKz

with the following properties of the above two matrices S;K:
S C S 0: a diagonal matrix; S � S 0: a skew-symmetric matrix
S : a positive definite matrix

S�1 D

�
d22d

�1
12 I

�I d11d
�1
21

� �
.I C d22d

�1
12 d11d

�1
21 /
�1 0

0 .I C d22d
�1
12 d11d

�1
21 /
�1

�

K: a block-diagonal, stable Metzler matrix.
Yet, despite these (and probably further) basic properties of the two matri-

ces S;K a direct proof of asymptotic stability for (16.5), (16.6) does not seem to be
easy, despite the fact that the diagonal blocks have already been shown to imply an
asymptotically stable dynamics and that the skew-symmetric off-diagonal terms –
taken by themselves – imply a stable dynamics in the sense of Liapunov (as we shall
show below).

To further analyze the type of stability of the two subsystems just considered and
to indicate various difficulties for proving the stability of the composite system is
the purpose of the remainder of this section. We shall first reformulate the stability
properties of the dual system (16.1), (16.2) by means of suitable Liapunov functions
(which will be of use later on). Thereafter we will consider a Liapunov-function for
the cross-dual subsystem of (16.5), (16.6). Both Liapunov-functions will, however,
fail to provide a stability proof for the complete system (16.5), (16.6).

16.5 Some Preliminaries

Let the 2n-vector z� denote the equilibrium of (16.1), (16.2), and (16.5), (16.6).
Decompose S into S1; S2 ŒS D S1 C S2�.

S1 (the diagonal terms) W
�
d11d

�1
21 0

0 d22d
�1
12

�

S2 (the off-diagonal terms) W
�
0 �I

I 0

�
:



16.5 Some Preliminaries 359

Equations (16.5), (16.6) thereby become:

Pz D q C SKz D q C .S1 C S2/Kz with q D
�
q1
q2

�
:

The corresponding homogeneous system is:

Py D SKy D .S1 C S2/Ky; y D z � z�:

The solution of this homogeneous system is (with SK D Q):

y.t/ D eQty0; y0 D y.0/

whereas for the nonhomogeneous system with the constant term q we get:

z.t/ D eQt .z0 � z�/C z� .z0 D z.0//

Because of these relationships we need to study only the stability properties of
the homogeneous system in the following. This remark also holds true for the sub-
systems S1K;S2K of SK, i.e., the Keynesian system (16.1), (16.2) as well as the
Classical cross-dual dynamics. There, q is replaced by

�
c

w0

�
and

�
�w0

c

�
respectively :

16.5.1 Stability of the Keynesian Case and the Composite System

For the homogeneous system of the Keynesian variety

�
Px

Pp0

�
D Pz D S1Kz D

�
d11C.gg/ 0

0 d22C.r/
0

� �
x

p0

�
(16.7)

the following theorem holds:

Theorem 16.1. Let H1;H2 be the Liapunov matrices of the stable systems
d11C.g/; d22C.r/

0, i.e., these two matrices are symmetric, positive definite and
they fulfill

C.g/0d11H1 CH1d11C.g/ D �I; and C.r/d22H2 CH2d22C 0.r/ D �I;

respectively (see Lancaster (1969, pp. 267 ff.) and Kemp and Kimura (1978, pp. 124
ff.) for their derivation). The composite function

V.x; p0/ D x0H1x C pH2p
0

is a Liapunov-function for the system (16.7).
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Proof. The method of proof for each component immediately applies to the whole
system, too, there giving rise to:

PV D Px0H1x C x
0H1 Px C PpH2p

0 C pH2 Pp
0

D x0C.g/0d11H1x C x
0H1d11C.g/x C pC.r/d22H2p

0 C pH2d22C.r/
0p0

D x0ŒC.g/0d11H1 CH1d11C.g/�x C pŒC.r/d22H2 CH2d22C.r/
0�p0

D �x0x � pp0 � 0ŒD 0 iff x D p0 D 0�:
ut

Remark 16.2. The Liapunov-matrix for (16.7) is thus simply given by

H D

�
H1 0

0 H2

�

Lemma 16.3.

1/ .S1K/0.S1K/ D

�
C.g/0d211C.g/ 0

0 c.r/d222C.r/
0

�

.S1K/S1K/0 D

�
d11C.g/C.g/

0d11 0

0 d22C.r/
0C.r/d22

�

2/ .SK/0.SK/ D�
CC.g/0d11d11C.g/C C.g/

0d21d21C.g/ �C.g/
0d11d12C.r/

0 C C.g/0d21d22C.r/
0

�C.r/0d11d21C.g/C C.r/d22d21C.g/ CC.r/d12d12C.r/
0 C C.r/d22d22C.r/

0

�

.SK/.SK/0 D�
Cd11C.g/C.g/

0d11 C d12C.r/
0C.r/d12 Cd11C.g/C.g/

0d21 � d12C.r/
0C.r/d22

Cd21C.g/C.g/
0d11 � d22C.r/

0C.r/d12 Cd21C.g/C.g/
0d21 C d22C.r/

0C.g/d22

�

It follows that the following assumptions will not be satisfied in general.

Theorem 16.4. The conditions .S1K/0.S1K/ D .S1K/.S1K/0 and .SK/0.SK/ D
.SK/.SK/0 as well as d21 D d12 and r D g imply that V is also a Liapunov-
function for SK, i.e., for the composite dynamics. (Fig. 16.1)

x -Keynesian

x -Classical

p -Classical

d11C(g)

p -Keynesian

d22C(r )

d21C(g)

–d12C(r )q1

x

q2

p ′

Fig. 16.1 The composite dynamics
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Proof. It is well-known that the matrix H can be expressed as

H D

1Z

0

e.S
1K/0te.S

1K/tdt;

cf. Lancaster (1969, p. 263) or Kemp and Kimura (1978, p. 124). Furthermore, if
.S1K/0 and S1K commute, we get (cf. Kemp and Kimura 1978, p. 116):

H D

1Z

0

eŒ.S
1K/0CS1K�tdt D

1Z

0

eŒ.SK/
0CSK�tdt;

if d21 D d12; r D g). And finally:

H D

1Z

0

e.SK/
0teSKtdt

if .SK/0.SK/ D .SK/.SK/0, which implies .SK/0H CH.SK/ D �I .
The above Liapunov stability proof therefore carries over to the system SK. ut

Remark 16.5. The above Lemma and Theorem suggest that a general proof of the
assertion that V is also a Liapunov function for the composite system SK may be
difficult to establish. The proof of stability for the composite system therefore de-
mands more than only an application of the Liapunov technique which characterizes
the stability of S1K. The two subsystems S1K;S2K are in this respect not com-
patible with each other.

A weak positive result is provided by part of the following

Proposition 16.6. Let r; g be smaller than r�

(a) The Keynesian system S1K as well as the composite system SK are Hicksian
(but only the former is also Metzlerian).

(b) All real eigenvalues of SK are negative.
(c) D.SK/ is stable for at least one positive diagonal matrix D of dimension

2n ? 2n.
(d) Since SK is only Hicksian (but not Metzlerian), it need not be a stable matrix.
(e) S1K has a negative dominant diagonal. This property holds also for the com-

posite system if the off-diagonal part S2K is properly limited.

Proof.

(a) Theorem 14 in Kemp and Kimura (1978, p. 143) states that the stable Metzlerian
matrix S1K is Hicksian. And with regard to SK it suffices to show that the
negative of this matrix is a P -matrix, cf. the lemmata on pp. 88 ff. in Kemp and
Kimura (1978). According to Sect. 16.3 the matrix �SK can be rewritten as
�DQ D D.�Q/, so that it remains to be shown that �Q is a P -matrix, where
�Q is equal to
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�
�d1C.g/ CC.r/0

�C.g/ �d2C.r/0

�
;

d1; d2 arbitrary positive diagonal matrices. For the determinant of �Q we get
up to positive scalars the following expressions

ˇ̌
ˇ̌
ˇ
�.d2d1 C I /C.g/ 0

�C.g/ �d2C.r/0

ˇ̌
ˇ̌
ˇ
^
D

ˇ̌
ˇ̌
ˇ
�.d2d1 C I /C.g/ 0

�.d2d1 C I /C.g/ �.d2d1 C I /d2C.r/0

ˇ̌
ˇ̌
ˇ
^
D

ˇ̌
ˇ̌
ˇ
�.d2d1 C I /C.g/ 0

0 �.d2d1 C I /d2C.r/0

ˇ̌
ˇ̌
ˇ
^
D

ˇ̌
ˇ̌
ˇ
�C.g/ 0

0 �C.r/0

ˇ̌
ˇ̌
ˇ :

This shows how the composite system can be reduced to a Hicksian matrix and
its determinant. Since the above calculation is also applicable to any principal
minor of �Q it follows that �Q must be a P -matrix, since S1K is of this type.

(b) Woods (1978, p. 36).
(c) Woods (1978, p. 307).
(d) See the counterexamples in the mathematical appendix, Sect. 16.1.
(e) Theorem 14 in Kemp and Kimura (1978, p. 143) again implies the assertion for

A D S1K, i.e., we have for this matrix the well-known inequalities

di jai i j >
X

j¤1

dj jaij j .i D 1; : : : ; 2n/:

These inequalities are modified through the inclusion of S2K into the composite
system as follows

di jai i j >
X

j¤i

.dj C ej /jaij j

where ei ; ej depend on the magnitude of the adjustment coefficients d21; d12. It
follows that ranges for these coefficients can be determined such that the above
second set of inequalities will be fulfilled. ut

16.5.2 Stability of the Classical Case and the Composite System

The cross-dual system reads in the case of r D g:

Pz D
�

0 �d12C.r/
0

d21C.r/ 0

�
z (16.8)
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Take as Liapunov-function the function V.z/ D z0Q0DQz where

Q D

�
0 �C.r/0

C.r/ 0

�
; D D

�
d13 0

0 d21

�

and note that Pz D DQz.
V is based on a symmetric matrix Q0DQ which by construction is also positive

definite. And finally:

PV D Pz0Q0DQzC z0Q0DQPz D z0Q0DQ0DQzC z0Q0DQDQz

D z0Q0DŒQ0 CQ�DQz D 0

The origin is therefore stable (but not asymptotically stable) with regard to the
Classical system S2K.

Remark 16.7. Asymptotic stability can be obtained again if a term of the form

ıC.r/0 Pp D ıC.r/0d21C.r/x.r D g; ı an adjustment parameter /;

indicating the direction of change of profit-rate differentials, is integrated into the x-
component of this dynamics, since this additional component will imply a sufficient
degree of negative definiteness for the new system matrix

Q D

�
�d12ıC

0d21C �d12C
0

d21C 0

�

For a demonstration of this assertion, cf. Flaschel and Semmler (1987). The purely
cyclical behavior of the simple Classical process (16.8) is thereby turned into
damped oscillations, which indicates that (16.8) can only be considered as a starting
point for further considerations of this Classical dynamics.

Theorem 16.8. The Liapunov function V.z/ D z0Q0DQz of the system S2K above
does not supply a Liapunov function for the composite dynamics Pz D SKz.

Proof. In the case of the composite system we have:

SK D

�
d11d

�1
21 �I

I d22d
�1
12

� �
d21C.g/ 0

0 d12C.r/
0

�

D

�
d12 d11
�di22 d21

� �
0 �C.r/0

C.g/ 0

�

D

�
di12 0

0 d21

� �
d11d

�1
12 C.g/ �C.r/0

C.g/ d22d
�1
21 C.r/

0

�
D DQ:
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The most natural type of decomposition of the matrix SK to be used to define V
seems to be the third from the above .SK D DQ/, which as in the preceding proof
and with regard to the new decomposition DQ gives for r D g (with d11d�121 D d1
and d22d�121 D d2).

Simplifying further .d1 D d2 D I / gives for the matrix in the middle of this
expression

2

�
.1C r/.A0 C A/=2 � I 0

0 .1C r/.AC A0/=2 � I

�
:

The maximum eigenvalue of .A0 C A/=2 D .AC A0/=2 is, however, in general
greater than .	.A0/ C 	.A//=2 D 	.A/, i.e., 	..1 C r/.A0 C A/=2/ can be larger
than 1 (see the examples in the mathematical appendix, Sect. 16.1). The spectral
displacement .1C r/.A0 C A/=2 � I D F does therefore in general not imply that
the eigenvalues of this matrix all have negative real parts. This implies that F is
generally not negative definite (C is not quasi-negative definite) and that V � O

need not hold true.
The above considerations have shown that the stability of S2K is not obviously

turned into asymptotic stability by the addition of the two asymptotically stable
block-diagonal terms in the matrix SK. The complete structure (16.5), (16.6) cannot
be treated simply by means of the Liapunov techniques that are available for the
diagonal or the off-diagonal terms of the block-matrix

�
d11C.g/ �d12C.r/

0

d21C.g/ d22C.r/
0

�

Alternative approaches are thus needed to further study the stability of this inte-
grated dynamical system. To introduce and apply such an alternative is the task of
the following sections.

However, before closing this section let us briefly state as a proposition the posi-
tive contribution it contains for the stability analysis of our composite system: ut

Proposition 16.9. Assume that r D g < r�.
The composite system SK will be stable if the maximum eigenvalues 	i of

.1C r/.
p
diA
p
d�1i C

p
d�1i A0

p
di /=2; di D di id

�1
ij ; i D 1; 2; j ¤ i

are both less than one.

Proof. The matrix Q CQ0 in the preceding proof is composed of matrices of the
type

C 0d1 C d1C D 2Œ.1C r/.d1AC A
0d1/ � d1/�

D 2
p
d1Œ.1C r/.

p
d1A
p
d�11 C

p
d�11 A0

p
d1/ � I �

p
d1
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The assumption of the proposition then implies that the eigenvalues of the term in
square brackets have all negative real parts, which in turn implies that V < 0 must
hold true for z ¤ z� and the function V of the preceding theorem. ut

Example. Assume as matrix A

�
0:34 0:44

0:35 0:30

�

Assume furthermore d11 D< .0:6; 0:8/ >; d22 D< .0:7; 0:6/ >;
d12 D< .0:3; 0:6/ >; d21 D< .0:6; 0:5/ >, and R D G � 1:20 < R� � 1:40.
We then have: 	1 � 0:88; 	2 � 0:86:, and

Eigenvalues of S1K W �0:77;�0:70;�0:092;�0:096,
Eigenvalues of S2K W 5:56i; 0:65i , and finally:
Eigenvalues of SK W �0:745:55i;�0:090:65i .

Remark 16.10. Note that the real parts of the eigenvalues of the matrix C.r/ change
monotonically with r , but that this need not be true for the composite system.

16.6 A New Approach to the Stability of Composite Systems

The subsequent part of the chapter will utilize vector differential inequalities and
vector Liapunov functions as, e.g., put forward in Siljak (1978)3 by which it can be
shown in an alternative way that a composite system such as (16.5), (16.6) (and its
admissible substructures) may be stable if the magnitude of the interactions of its
subsystems is again limited in a specific way. The type of stability analysis which
is here involved is termed connective stability. Before this concept is introduced in
more detail it requires, however, that some definitions which are basic for the notion
of connective stability should be briefly explained. Thereafter this new technique of
stability analysis is introduced and applied. (Fig. 16.2).

(1) Directed graphs and interaction matrices: The interaction of subsystems can
be described by means of directed graphs and interconnection matrices. In our
case the directed graph, which represents the complete interconnection of our
subsystems, exhibits the following structure where q1 and q2 indicate how the
external world affects this production oriented interaction (x- and p-Classical
give the direction of Classical output and price dynamics, and x- and p-
Keynesian the Keynesian output and price dynamics). For our case with two
interacting subsystems, for example, the range of interconnection matrices con-
sidered so far is as follows

3 Further useful references on this topic are Berussou and Titli (1982), Medio (1987), Michel and
Miller (1977), and part I in Singh and Titli (1979).
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a
x-Cl

xK p-K

p ′x

b

x-K p-Kp-Cl

x p ′

d

x

x-K p-K

p ′

c x-Cl

x-K

p ′x

e x-Cl

x

p-K

p ′

f

x p ′

Fig. 16.2 Substructures

Full interaction E W

�
1 1

1 1

�

Keynesian subsystem E1 W

�
1 0

0 1

�
W Classical subsystem E2 W

�
0 1

1 0

�
:

In general, the interaction of two subsystems S1 and S2 can be represented as
follows:

S1 W Pz1z1 D A11z1 C e11A11z1 C e12A12z2
S2 W Pz2z1 D A22z2 C e21A21z1 C e22A22z2 (16.9)

with eij



1; Sj can act on Si
0; Sj cannot act on Si

where eij are the elements in the interaction matrix E, Aij are the interacting
matrices with regard to the dynamic relationship between the variables of Si
and Sj and A11; A22 represent the self-interacting part of the system when all
secondary feedbacks between variables have been removed from (16.9). In gen-
eral there could be a changing on–off participation and interaction between the
variables of the various subsystems of a composite system (to be represented
then by a time-dependent matrix E).

(2) Structural perturbations: The aforementioned changes in the system’s structure
by means of changing interaction matricesE are called structural perturbations.
They in general can destroy the system’s stability properties. Desirable stability
properties, however, are such that they remain invariant under structural per-
turbations. Here it will suffice to introduce possible perturbations by referring
to our Classical and Keynesian subsystems. Disconnection and interconnection
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resulting in structural perturbations can be illustrated by the following directed
graphs (leaving aside the ‘environment’ q1; q2): Here, the directed graph (a) rep-
resents the interconnection of the Classical and the Keynesian output dynamics
(price dynamics remaining solely Keynesian), (b) is the interaction of Classical
and Keynesian price dynamics (quantity dynamics solely Keynesian), (c) is the
Classical and Keynesian output dynamics (price dynamics set zero) and (d) the
decoupled Keynesian output and price dynamics. We have used here x � K,
p �K to denote Keynesian output and price dynamics and x � Cl; p � Cl for
the Classical output and price dynamics.

(3) Connective stability: One-shot stability analysis attempts to prove stability for
a dynamic system without going through an analysis of its basic component
parts first. In a composite system with interconnected basic subsystems, how-
ever, a composite type of stability analysis may be more appropriate than the
well-known single step approaches to stability by means of single Liapunov
functions. Here, one attempts to show that a dynamic interconnection, properly
limited, will remain stable when stable, isolated subsystems are aggregated in
various ways. This type of stability analysis is termed connective stability in
Siljak (1978). Possible interconnections have already been visualized above for
the dynamic model of this chapter by means of the directed graphs (a)–(d).
Inspecting these graphs again, one notes, however, that the case c does not
represent a meaningful dynamic system in the context of our model. Roughly
speaking, connective stability therefore here means that the fully connected sys-
tem (described by the full interconnection matrix E) is stable as well as all
of its structural perturbations which do not remove one of the self-contained
subsystems from this structure, i.e., which contain at least the initially given de-
coupled substructure. Note, that this means that we now consider the Keynesian
subsystem as the more ‘basic’ one and the Classical system as introducing the
interactions. Switching on (or off) Keynesian types of adjustment in the Classi-
cal context demands an analysis of partially stable composite systems which –
due to space limitations – will not be attempted in this chapter.

Interesting methods for studying connective stability for composed systems by a
decomposition-aggregation procedure are provided by the concepts of vector dif-
ferential inequalities and vector Liapunov functions as elaborated in Siljak (1978,
Chap. 2). In what follows we want to briefly outline this decomposition-aggregation
method of connective stability analysis following Siljak and then apply this method
to our composite Keynesian-Classical system.

The connective stability of the equilibrium z� D 0 of a system composed by
connecting stable, initially isolated systems can be investigated in three steps.

Step a:

One formulates an interconnected dynamical system from the knowledge of its basic
components, their internal dynamic structure and various conceivable interactions
between these basic components. In general this may result in a system such as
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(16.9). In our case (16.5), (16.6) this general approach can, however, be reduced to
the following system:

S1 W Pz1 D A11z1 C e12A12z2
S2 W Pz2 D A22z2 C e21A21z1 (16.10)

In this system the matrices A11; A22 represent the independent Keynesian subsys-
tems. The first part of (16.10) thus represents the decoupled system which is not
modified by the structural perturbations allowed for [note here, that Siljak (1978,
p. 33) uses a different notation to represent this case and that he in general allows
for further feedbacks of zi on zi which may be switched on and off through ei i and
structural perturbations].

Step b:

The asymptotic stability of each decoupled system in (16.10): Pz1 D A11z1; Pz2 D
A22z2 is assumed as given (or proved). As Liapunov functions for the isolated sub-
systems A11; A22 we can then take (cf. also Sect. 16.3)

v1.z1/ D .z01H1z1/1=2; v2.z2/ D .z02H2z2/1=2 (16.11)

where the positive definite and symmetric matrices H1;H2 are determined by

A
0

11H1 CH1A11 D �I; A
0

22H2 CH2A22 D �I (16.12)

The total time derivatives of (16.11) are [see (16.12), .i D 1; 2/]:

Pvi D . grad vi /Pzi D . grad vi /0Ai i zi
D .v1iHi zi /

0Ai i zi D �.1=2/v�1i .z0i zi /: (16.13)

From (16.11) and (16.13) estimates for these Liapunov functions are then produced
as follows (i D 1; 2; note the minus sign in (16.13)):

�11jjzi jj � vi � �i2jjzi jj; Pvi � ��i3jjzi jj; jj grad vi jj � �i4; (16.14)

with the following positive scalars �ij

�i1 D ˝
1=2
m .Hi /; �i2 D ˝

1=2
M .Hi /;

�i3 D
1

˝
1=2
M .Hi/

; �i4 D
˝M .Hi /

˝
1=2
m .Hi /

Here˝m and˝M denote the minimum and maximum eigenvalues of the symmetric
and positive definite matrices H1;H2.
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Step c:

The functions v1; v2 are representatives of the stability of each subsystem A11; A22
and we can now study the stability of the aggregate system S composed of S1; S2

by considering appropriate compositions of these two stability indicators, no longer
considering the dynamic interaction within each subsystem in its details. The total
time derivative along the solutions curves of each interconnected subsystem Si of
(16.10) is (i; j D 1; 2):

Pvi D .grad vi /0ŒAi i zi C eijAij zj � D Pvi .13/C .grad vi /0eijAij zj (16.15)

where Pvi .13/ is given by (16.13). This gives rise to

Pvi � ��i3jjzi jj C eij jj grad vi jj jjAij zj jj (16.16)

which together with the constraint on the nonsymmetric interaction matrix Aij

jjAij zj jj � "ij jjzj jj; "ij D ˝
1=2
M .A0ijAij / (16.17)

finally gives (because of the minus sign in (16.16)):

Pv1 � ���112 �13v1 C e12"12�14��121 v2;

Pv2 � e21"21�24��111 v1 ���122 �23v2 (16.18)

This system can be rewritten by means of the vector Liapunov function v D .v1; v2/0

as one vector inequality
Pv � W v (16.19)

where the aggregation matrix W is defined by (i; j D 1; 2):

wij D

(
���1i2 �i3; i D j;

eij "ij�
�1
j1 �i4; i ¤ j

(16.20)

The connective stability of the overall system then follows from a stability proof for
the aggregated system (16.19).

In order to prove this result Siljak (1978, Chap. 2) introduces the comparison
principle for vector differential inequalities by majorizing the function v appropri-
ately. This principle uses for comparison the differential equation

Pr D W r

with the initial condition v0 D r0, and W the aggregation matrix corresponding to
the fundamental interaction matrix E

wij D

(
���1i2 �i3 i D j

"ij�
�1
j1 �i4; i ¤ j

(16.21)
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If the matrix W is stable and if we know (for all our interconnections E)

v.t/ � r.t/; t � t0;

then one can conclude that limt!1 v.t/ D 0 holds true for all such E.
We thus obtain connective stability, as defined above, for the whole system S

[see Siljak (1978, pp. 37ff.) for further details].
The above type of decomposition-aggregation analysis by means of vector

Liapunov functions consequently gives rise to the following.

Theorem 16.11. Given (1) that asymptotic stability of each decoupled subsystem
is established and described by the estimates (16.14) obtained for the Liapunov
functions v1 and v2, (2) that the constraints (16.17) on the interactions A12z2 and
A21z1 between the subsystems S1 and S2 hold, and (3) that stability of the aggregate
matrix W corresponding to the fundamental interconnection matrix E has been
proved, then the system S is stable for all interconnection matrices E, that is, it is
connectively stable.

A variety of related stability concepts and theorems are in addition to the above
investigated in Siljak (1978) – and also in the book of Michel and Miller (1977).
We cannot go into the details of all these variants here, yet want to supplement the
above theorem by an alternative version of it from in Michel and Miller (1977),
p. 49). These authors employ in this version the same constraints (16.14) as in the
above theorem (see their property eA for the isolated subsystems and note that �i D
�1;Li D �i4 holds with regard to the notation used by them). The authors then
formulate the following variant of the above theorem:

Theorem 16.12. If in addition to property eA there exist constants qij � 0.i; j D
1; 2/ such that

jzi j �
2X

jD1

qij�j3jzj j; i D 1; 2

and if the leading principal minors of the 2? 2 test matrixW are all positive, where

wij D


�.�i C Liqi i / i D j

�Liqij i ¤ j;

then the composite system is (uniformly) asymptotically stable (in the large).
Two important observations with regard to applications of this theorem should

be added: (1) The above parameters �i ; qij ; Li must not be determined by the def-
initions following (16.14), but need only have the properties assumed in the above
theorem, and (2) the real parts of the eigenvalues of W can be used to estimate the
margin of stability of the composite system, i.e., the degree to which the isolated sub-
systems may be modified and still leave the composite system asymptotically stable
(see Michel and Miller (1977, p. 53) in this regard).



16.7 An Alternative Investigation of the Stability of Composite Systems 371

The above theorems decompose a stability analysis of dimension 2n into two
stability problems of dimension n and one of dimension 2 (the choice of dimensions
is of course only due to the special type of problem here considered). They will be
applied to our composite system in the next section.

Two final remarks may be added in concluding this section.

Remark 16.13. For a dynamically reliable large-scale system one would expect that
the system is allowed to disintegrate itself and then to reintegrate itself during its
functioning. The above discussed class of structural perturbations can be generalized
into this direction by means of time-dependent interconnection matrices E.t/ to
allow for on–off participations of subsystems in the course of time (see Siljak 1978).

Remark 16.14. In even more general terms, it is also not necessary that all con-
nected subsystems are stable when isolated. Unstable subsystems may be permitted
to be parts of a large composite system, provided, of course, that sufficiently strong
stabilizing cross-feedbacks are present at all times. When interconnection matrices
are carefully chosen, unstable subsystems4 can be allowed for and the system may
nevertheless exhibit connective stability, cf. Siljak (1978, Chap. 2.6).

16.7 An Alternative Investigation of the Stability
of Composite Systems

From our earlier discussion it is known that the problem we are facing concerning
the stability of system (16.5), (16.6) is less severe than the one indicated in the
second remark above. Our composite system (16.5), (16.6) is of the form (16.10)
with two stable decoupled subsystems A11 D d11C.g/; A22 D d22C.r/0 for which
therefore the above two Liapunov functions exist.

In order to investigate the asymptotic stability of the totally interconnected sys-
tem and the interconnection matricesE here allowed for there consequently remains
to be considered according to the above theorem:

.wij / D

2

4
�.˝

1=2
M .H1//

�11=2 1

˝
1=2
M

.H1/
"12.˝

1=2
m .H2//

�11=2 ˝M .H1/
˝
1=2
M

.H1/

"21.˝
1=2
m .H1//

�11=2 ˝M .H2/
˝
1=2
m .H2/

�˝
1=2
M .H2/

�11=2 1

˝
1=2
M

.H2/

3

5

D

2

4
�1=2.˝M .H1//

�1 "12
˝M .H1/

˝
1=2
m .H1/˝

1=2
m .H2/

"21
˝M .H2/

˝
1=2
m .H1/˝

1=2
m .H2/

�1=2.˝M .H2//
�1

3

5 (16.22)

with "12 D ˝
1=2
M .C.r/d212C

0.r// and "21 D ˝
1=2
M .C.g/d221C.g// > 0.

Sufficient for the stability of our composite system is that the Metzlerian matrix
(16.22) is Hicksian, cf. Kemp and Kimura (1978, pp. 141 ff.).

4 e.g., the price reaction Pp due to excess demand in its dependence on prices p.
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Since w11;w22 are negative we therefore have to explore only whether Det .W /
is positive. We have

Det .W / D 1=4
1

˝M .H1/˝M .H2/
� "12"21

˝M .H1/˝M .H2/

˝m.H1/˝m.H2/

D 1=4
1

˝M .H1/˝M .H2

�
1 �

.2˝M .H1/˝M .H2//
2

˝m.H1/˝m.H2/
"12"21

�
(16.23)

In order to explore situations where Det .W > 0 holds true we consider the
following scalar variations of our reaction coefficients d11; d22; d12; d21:

˛11d11; ˛22d22; ˛12d12; ˛21d21 with ˛ij > 0:

In this case H1;H2 are to be substituted by H1=˛11;H2=˛22 as can be seen
immediately from the following explication of (16.12)

C.g/0d11H1 CH1d11C.g/ D �I; C.r/d22H2 CH2d22C.r/
0 D �I:

The elements of matrix W are thus determined in nearly the same way as before –
with the provision that the scalars ˛ij appear as multipliers at the appropriated
places. There remains to be shown therefore that the expression in square brackets Œ��
in the determinant (16.23) becomes positive for appropriate variations of adjustment
speeds, i.e., that we can have

1 �
˛�211 ˛

�2
22

˛�111 ˛
�1
22

.2˝M .H1/˝M .H2//
2

˝m.H1/˝m.H2/
˛12˛21."12"21/ > 0 (16.24)

for a suitably chosen range of ˛ij .
Now, it is obvious from (16.24) that for given ˛12; ˛21, for example, scalars

˛11; ˛21 chosen sufficiently large will render the system asymptotically stable (or
for given ˛11; ˛22 there exist always sufficiently small ˛12; ˛21 which will generate
connective stability for system (16.5), (16.6)). This shows again the already known
fact that the composite system will be asymptotically stable if the Classical dy-
namics is made sufficiently weak or long run in nature. Furthermore the expression
(16.24) can be equivalently rewritten as follows

.˝m.H1/˝m.H2//=.2˝M .H1/˝M .H2// > ."21˛12"21˛21/=.˛11˛22/ (16.25)

In this form it very clearly shows how the stability characteristics of the Keynesian
subsystem (as they are expressed by the two Liapunov matricesH1;H2) must dom-
inate the off-diagonal interaction coefficients to obtain overall stability: The larger
the interaction delimiters "ij are, the smaller we have to choose the ˛ij to make the
approach of Sect. 16.4 applicable (the ˛i i can be set equal to one without loss of
generality).
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However, the above calculations also show that estimates for˝m.Hi /,˝M .Hi /,
"ij have to be produced first to obtain more than the above very general statements
(cf. Siljak (1978, pp. 110/111) for a simple numerical example in this regard). To this
end Kronecker products and their application to matrix equations of type (16.12) can
be of use (see Lancaster and Tismenetsky (1985, Chap. 12) for details). Yet, an in-
vestigation of the numerics of the above approach is beyond the scope of the present
chapter. It should however be noted that neither Siljak’s nor Michel and Miller’s
book does offer much help in this regard. Furthermore, a second problem with this
approach is that it – by its very formulation – is insensitive to the typical sign struc-
ture of our cross-dual interconnection. The advantage of this method over one-shot
approaches must therefore be considered as somewhat limited in the present case.
It may, however, be improved either (a) by decomposing the system further into
substructures (basic vs. non-basic commodities e.g., cf. Siljak (1978, Chap. 4) for
related considerations), or (b) by adding more features to the interconnective (or
Classical) part of the dynamics so that its influence on the stability of the system
becomes more apparent.

Making use of the extension of Classical dynamics sketched in III.3 we shall
indicate here briefly how this latter alternative can be pursued: In the second remark
there we have proposed to consider the refined adjustment

Px D �d12ŒC
0p0 C �C 0 Pp0� instead of only Px D �d12C 0p0

where the new term takes account of the fact that equal profit-rate differentials will
have different effects on the conditions of supply when these differentials are rising
than when they are falling. With regard to such an extension we get for the composite
system in terms of (16.10) – due to its more complex price dynamics:

S1 W Pz1 D A11z1 C e12A12z2 C e012�A12Pz2
S2 W Pz2 D A22z2 C e21A21z1

which gives rise to:

S1 W Pz1 D A11z1 C e012e21�A12A21z1 C e12A12z2 C e012�A12A22z2
S2 W Pz2 D A22z22 C e21A21z1: (16.26)

Making use of the concrete form (16.5), (16.6) of this system (for r D g) gives for
A12A21 the expression �d12C 0d21C D d12Q11, whereQ11 is symmetric and neg-
ative definite. With e012 D e21 D 1 we therefore have introduced an extra stabilizing
term into the diagonal of S1; S2. This new stabilizing term is to be contrasted in
its influence with the new off-diagonal term A12A22 D �d12C

0d22C
0 and the new

limit this term imposes on the cross-dual interaction.
Several conclusions may be drawn from this brief extension of system (16.5),

(16.6). First, the above argument for increased stability is only valid if the pertur-
bations e012; e21 D 0 are no longer allowed for in the notion of connective stability.
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Secondly, excess demand functions (as they appear in Walrasian tâtonnement
analysis) are here represented through the terms A11; A21. More general excess
demand functions – known to create problems for the one-sided conventional
tâtonnement process – are thereby made less central in (16.26) for two reasons: (a)
Their influence on price dynamics (given by Pz2 D e21A21z1) is now off-diagonal
and thus need only be properly limited (but no longer be stable itself ), and (b) their –
possibly destabilizing – influence on quantity dynamics is now partly compensated
for through the new stabilizing term in S1.

16.8 Some Simulations Studies

It has been our aim in the preceding section to provide a meaningful application for
the new type of stability analysis considered in Sect. 16.4 to indicate its usefulness
for economic analysis. We have seen that this method gives rise to definite stability
criteria which limit the adjustment speeds dij in a specific way.

In what follows some simulation results will be presented that exhibit the proven
stability properties also for less stringent restrictions on adjustment speeds in the
limit case r D g D r� and in the case of a time dependent rate of profit for the
Classical cross-dual, the Keynesian dual dynamics and the composite dynamics.

The Classical cross-dual dynamics was simulated in the following time discrete
form �

xtCh
ptCh

�
D

�
xt
pt

�
C h

�
0 �d12C

0

d21C 0

� �
xt
pt

�

with h D 0:1 the step size. As input–output matrix A and as matrices of reaction
coefficients we used

A D

�
0:35 0:55

0:25 0:45

�
; d12 D

�
1 0

0 2

�
; d21 D

�
1 0

0 2

�
:

Whereas Fig. 16.3 represents the graphs for the time path of relative prices and
relative outputs of Classical dynamics for 1C r D 1C g D R� D 1:29 D 1=	.A/,
Fig. 16.4 depicts the relative price and output dynamics for the average and time-
dependent rate of profit Rt D ptxt=ptAxt .

Both relative prices and relative outputs exhibit stability for the cases R� as
well as Rt . (The slightly increasing amplitude results from the fact that our time
continuous-dynamics is approximated by the above type of a time-discrete system).5

5 See also the observations on Euler’s method in Ortega and Poole (1981, pp. 38 ff.), there with
regard to models of predator-prey type.



16.8 Some Simulations Studies 375

x,p,R

R

x

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501

2
1

0.

p

Fig. 16.3 Price-quantity business fluctuations

x,p,R

1 21 41 61 81 101 121 141

x

p

161 181 201 221 241 261 281 301

2
3

3
2

1
1

0.

R
t

Fig. 16.4 Price-quantity business fluctuations



376 16 Composite Classical and Keynesian Adjustment Processes

The Keynesian dual dynamics is captured in the following time discrete version:

�
xtCh
ptCh

�
D

�
xt
pt

�
C h

�
d11C 0

0 d22C
0

� �
xt
pt

�

with the same matrix A in C;C 0 and reaction coefficients as follows

d11 D

�
0:2 0

0 0:2

�
; d22 D

�
0:5 0

0 0:4

�
:

As Figs. 16.5 and 16.6 demonstrate asymptotic stability prevails for both the price
dynamics and the quantity dynamics.

Asymptotic stability of the composite system of Classical and Keynesian dynam-
ics is demonstrated in the simulation results depicted in Figs. 16.6 and 16.7. In this
simulation run the reaction coefficients for the cross-dual dynamics were chosen
much larger than those for the dual dynamics. Yet, this (and many similar) simula-
tion results show that stability can be expected even in such cases. This (and further
simulation studies) support, therefore, the conjecture that the region of stability is
much larger than indicated in the proofs of Sects. III, V. Similar results were ob-
tained for composite systems of dimension 6 (with three prices and three outputs,
cf. Fig. 16.8 for the Classical dynamics, and Fig. 16.9 for the composite system).
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Fig. 16.5 Price-quantity dynamics: Monotonic convergence
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Fig. 16.8 Price-quantity dynamics: Composite systems
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Fig. 16.9 Price-quantity dynamics: Composite systems

16.9 Conclusions

In this chapter we have reconsidered and combined two formulations of micro-
dynamic adjustment processes. We have discussed the stability properties of Clas-
sical cross-dual and Keynesian dual adjustment processes first isolated for each
approach and then in aggregate form. In our view it adds realism to micro-dynamic
studies if both approaches are synthesized and their dynamics studied in a com-
posite model. In this way we may move closer to the study of empirically relevant
adjustment processes as observed by many econometric studies (cf. Gordon 1983
and Semmler 1984, Chap. 3 for a summary of such studies). We have found sta-
bility of the Hicksian kind and furthermore also full stability when the Classical
part of the dynamics is limited in such a way that the dominant diagonal of the
Keynesian substructure is preserved. We have also seen that quasi-negative definite-
ness may be utilized in certain other situations to prove composite stability. And,
we have applied a fairly new approach to the stability of large scale systems which
seemed to be particularly well-suited for the type of composite system we had to an-
alyze (in another respect it was however fairly insensitive to the details of the given
composite structure). The obtained results have been extended by means of com-
puter simulations which suggest that stability will also prevail even if a much more
general parameter variety than considered, for example, in the above application
of the decomposition-aggregation method is allowed for. Yet, as the mathematical
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appendix will show, there are also definite limits for such a generalizing conjecture –
at least at the present stage of the formulation of the Classical part of this composite
dynamics.

With regard to the realism of such composite adjustment processes one should
also express some caution since our modeled dynamics builds on a fairly simpli-
fied version of effective demand. Moreover, we have not analyzed the feedbacks
resulting from supply constraints (labor, other inputs, or finance) to the output and
price dynamics and the like. However, the proposed synthesized dynamics of Clas-
sical and Keynesian tradition should allow for such extensions and generalizations
in future research. In that regard particularly the stabilizing aspects of Classical
competition for the overall structure should be investigated in more detail than was
possible in this chapter, especially in those cases where our composite dynamics
might give rise to local stability. In such situations the introduction of (classically
motivated) nonlinearities may provide an appropriate method for keeping the system
within certain bounds. This final remark also shows that the analysis of the present
chapter is in so far limited as it is still more of a local than of a global character.

Mathematical Appendix

Counterexamples

In the case where r ¤ g .R ¤ G/ we get for the classical substructure QC of our
system Q (here with dij D I; i; j D 1; 2):

QC CQ
0
c D

�
0 .G �R/A0

.G �R/A 0

�

that is, this matrix is no longer skew-symmetric. This loss of anti-symmetry suggests
that examples may be found where such aQC will exhibit eigenvalues with positive
real parts. This implies that also matrix Q has such eigenvalues if the adjustment
coefficients of the classical substructure dij ; i ¤ j are made sufficiently large. The
following example shows that this is indeed the case.

Example 1. C D RA � I; C 0 D GA � I;R D 5:71;G D 1:31 < R�.D 5:81/:

A D

2

664

0:00 0:56 0:00 0:00

0:00 0:00 0:12: 0:00

0:00 0:00 0:00 0:10

0:14 0:00 0:00 0:00

3

775
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For this example we get the following list of eigenvalues:

QK QC Q

Real Part Im.Part Real Part Im.Part Real Part Im.Part
�1:23 0:00 0:00 12:29 �1:56 4:67

�1:00 0:23 0:00 �12:29 �1:56 �4:67

�1:00 �0:23 0:00 0:58 ! 0:04 3:81

�0:77 0:00 0:00 �0:58 ! 0:04 �3:81

�1:98 0:00 �1:22 6:76 �0:50 0:00

�1:00 0:98 �1:22 �6:76 �0:36 0:00

�1:00 �0:98 ! 1:22 6:76 �2:05 2:98

�0:02 0:00 ! 1:22 �6:76 �2:05 �2:98

Note that QC has eigenvalues with positive real parts as does Q. However, we
had to choose 6�QC in the off-diagonal of Q, i.e., a factor ‘6’ as adjustment co-
efficient to ensure that the positive real part of the eigenvalue of QC was in fact
transferred to an eigenvalue of the matrix Q. Our general impression here was that
counterexamples are only found under relatively exceptional conditions. For exam-
ple, we had to choose r D R � 1 D 471% and g D G � 1 D 31% to produce the
above counterexample to the stability of Q.

Example 2. G D 1:11 < R D 3:71 < R� D 3:81.

A D

2

664

0:000 0:083 1:500 2:520

0:083 0:000 1:200 3:860

0:000 0:000 0:080 3:310

0:000 0:000 0:000 0:000

3

775 :

This matrix leads to the following list of eigenvalues (without any support from
increased adjustment coefficients, dij ¤ I ):

QK QC Q

Real Part Im.Part Real Part Im.Part Real Part Im.Part
�1:00 0:00 0:00 11:85 ! 0:86 12:01

�0:70 0:00 0:00 �11:85 ! 0:86 �12:01

�0:70 0:00 0:00 3:09 �2:74 3:60

�1:29 0:00 0:00 �3:09 �2:74 �3:60

�0:03 0:00 0:00 2:10 �1:92 2:08

�1:97 0:00 0:00 �2:10 �1:92 �2:08

�0:91 0:00 0:00 0:01 �0:01 0:01

�1:00 0:00 0:00 �0:01 �0:01 �0:01
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This example is in so far more interesting than the preceding one as it shows
that Q can be unstable even if all eigenvalues of the two subsystems behave quite
normal, i.e., as if the case where QC is skew-symmetric were given. And again:
Counterexamples could only be produced by making the difference between R and
G implausibly large. Instability only came about when extreme situations were as-
sumed, at least for the low dimensions here investigated.

Remark 16.15. That stability of Q can get lost even though QC is of pure center
type and thus in a way ‘neutrally stable’ (as our last example shows) suggests that
stability may also get lost in cases where we have r D g, but where the adjust-
ment speeds of the off-diagonal terms d12; d21 differ significantly from each other
(and are sufficiently large in comparison to d11; d22). Differences between d12 and
d21 also destroy the skew-symmetry in the off-diagonal of the matrix Q, but do this
in a way which does not modify the purely imaginary character of the eigenvalues of
QC [see Sect. 16.3 in this regard]. Nevertheless – as the following example shows
– some roots of Q may (not typically, but) in certain cases exhibit eigenvalues with
positive real parts.

Example 3. The Matrix A and the adjustment coefficients dij are:

A D

2

66666666666666666666664

0:0 0:2 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:2 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:8 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:1 0:0 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:3 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:9 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:3 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:2 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 6:4 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 8:7 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:3

0:4 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

3

77777777777777777777775

I

d11 D < .0:1; 92; 0:3; 0:1; 0:1; 0:5; 0:4; 0:3; 0:7; 0:3; 0:1; 0:6/ >

d22 D < .13; 0:4; 15; 0:4; 0:2; 0:4; 14; 0:2; 24; 0:6; 0:1; 13/ >

d12 D < .91; 5; 0:1; 0:5; 0:17; 0:5; 0:1; 33; 0:5; 0:5; 0:3; 25/ >

d22 D < .0:2; 0:7; 0:3; 0:9; 0:3; 0:5; 0:3; 0:1; 4; 0:4; 0:2; 0:9/ > :
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The eigenvalues of this example are:

QK QC Q

Real Part Im.Part Real Part Im.Part Real Part Im.Part
0:70 0:00 0.00 11:08 �91:96 0:00

�0:62 0:00 0.00 �11:08 �11:54 5:22

�0:07 0:00 0.00 7:23 �11:54 �5:22

�0:09 0:04 0.00 �7:23 �14:99 0:00

�0:09 �0:04 0.00 3:66 �13:20 1:78

�0:50 0:00 0.00 �3:66 �13:20 �1:78

�0:16 0:00 0.00 2:89 �13:89 0:00

�0:41 0:00 0.00 �2:89 ! 0:30 4:32

�0:23 0:00 0.00 1:86 ! 0:30 �4:32

�0:32 0:05 0.00 �1:86 �1:82 0:78

�0:32 �0:05 0.00 0:23 �1:82 �0:78

�92:00 0:00 0.00 �0:23 �0:16 1:89

�24:00 0:00 0.00 2:15 �0:16 �1:89

�15:00 0:00 0.00 �2:15 �0:13 0:20

�14:00 0:00 0.00 0:77 �0:13 �0:20

�0:60 0:00 0.00 �0:77 �0:25 0:65

�0:46 0:00 0.00 0:58 �0:25 �0:65

�0:38 0:06 0.00 �0:58 �0:00 0:01

�0:38 �0:06 0.00 0:15 �0:00 �0:01

�0:19 0:04 0.00 �0:15 �0:32 0:35

�0:19 �0:04 0.00 0:13 �0:32 �0:35

�13:00 0:00 0.00 �0:13 �0:44 0:00

�13:00 �0:00 0.00 0:01 �0:98 0:00

�0:10 0:00 0.00 �0:01 �0:30 0:00

In this example we have made use of a profit rate R.D G/ D 1 C r � 1:21

in view of a maximal profit rate R� � 1:94 (whereas the maximum profit rate of
.ACA0/=2 is� 0:19, i.e., this symmetric part ofA has a maximal eigenvalue which
is much larger than one, see the theorem in Sect. 16.3 for the meaning of this fact).

Remark 16.16. Since we have by now obtained counterexamples for the stability of
our composite system Q even in the case where r D g, but d12 ¤ d21, it seems
high time to test whether these types of counterexamples can be modified in such a
way that even an unstable situation for our basic case

Q D

�
C �C 0

C C 0

�

can be found .n > 2, see Appendix 2). The difficulties we have experienced in the
main part of the chapter and the above last counterexample suggest that difficulties
for our composite Keynesian/Classical system may also arise in this most basic situ-
ation – due to the incompatible and weak stability properties of the Classical subsys-
tem QC . And indeed, our next and final example shows that even then eigenvalues
with positive real parts can be generated by the integration of an asymptotically
stable Keynesian and a purely ‘cyclical’ Classical type of adjustment process.
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Example 4. R D G � 1:54 < R� � 1:64 .R� D 0:12with regard to .ACA0/=2):

A D

2

66666666666666666666664

0:0 10:2 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:2 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:8 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:1 0:0 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:3 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:9 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:3 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:2 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:4 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:7 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:3

0:4 0:0 0:0 10:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

3

77777777777777777777775

The composite system is given by:

Q D

�
C �C 0

C C 0

�
with C D RA � I:

The eigenvalues of this example are:

QK QC Q

Real Part Im.Part Real Part Im.Part Real Part Im.Part
�1:92 0:00 0:00 22:31 �7:10 20:65

�1:81 0:46 0:00 �22:31 �7:10 �20:65
�1:81 �0:46 0:00 15:75 ! 3:79 19:49

�1:47 0:81 0:00 �15:75 ! 3:79 �19:49
�1:47 �0:81 0:00 1:94 �1:62 2:02

�0:99 0:93 0:00 �1:94 �1:62 �2:02
�0:99 �0:93 0:00 1:74 �1:58 1:82

�0:54 0:80 0:00 �1:74 �1:58 �1:82
�0:54 �0:80 0:00 1:44 �1:25 1:69

�0:06 0:00 0:00 �1:44 �1:25 �1:69
�0:20 0:47 0:00 1:26 �1:15 1:35

�0:20 �0:47 0:00 �1:26 �1:15 �1:35
�1:91 0:00 0:00 1:12 �1:00 1:23

�1:81 0:46 0:00 �1:12 �1:00 �1:23
�1:81 �0:46 0:00 1:00 �0:85 1:14

�1:47 0:81 0:00 �1:00 �0:85 �1:14
�1:47 �0:81 0:00 0:62 �0:43 0:79

�0:99 0:93 0:00 �0:62 �0:43 �0:79
�0:99 �0:93 0:00 0:57 �0:44 0:77

�0:54 0:80 0:00 0:57 �0:44 �0:77
�0:54 �0:80 0:00 0:42 �0:37 0:51

�0:06 0:00 0:00 �0:42 �0:37 �0:51
�0:20 0:47 0:00 0:01 �0:01 0:01

�0:20 �0:47 0:00 �0:01 �0:01 �0:01
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Thus Q is not stable even in this simplest case of a composite Keynesian/
Classical system.

This final example as well as the former ones in our view imply that a re-
formulation of the Classical process is the most urgent task with regard to an
improved stability analysis of such composite systems. The negative feedback of
the Keynesian system is in general insufficient to turn the center-type stability of the
Classical substructure into asymptotic stability. An improvement of Classical dy-
namics therefore has to be undertaken first [see Flaschel and Semmler (1987) for an
attempt into this direction]. On the basis of this a further attempt of integrating these
two different approaches to a stable composite dynamics may be more successful
with regard to the formulation of general stability assertions.

Remark 16.17. Goodwin considers in Goodwin and Punzo (1986, pp. 78 ff.) various
control mechanisms of market systems, which are closely related to the structures
here investigated [which he, however, relates more to the Walrasian approach than
to a mixture of Keynesian and Classical views]. On p. 81 he introduces a composite
system such as ours which there is of the simple form

�
Px

Pp

�
D

�
˝ � I �.˝ � I /

˝ � I ˝ � I

� �
x

p

�

where ˝ denotes the diagonal matrix of eigenvalues of a given linear production
technology CDRA� I , R the gross rate of profit. The counterexamples of this ap-
pendix show, however, that the stability analysis of such a system is problematic,
if the original production data are used in place of such an eigenvalue composition
[which is not mathematically ‘similar’ to the structureQ]. Therefore, though a com-
posite control structure such as the above appears as a very interesting and natural
one, our examples have shown that the eigenvalues ˝ of its submatrices QC ;QK
(or C , C 0) do not give us immediate information on the stability of the composite
structure Q.

An Application of the Routh–Hurwitz Theorem

We shall here consider and prove the stability of the 2n-matrix

Q D

�
C �C 0

C C 0

�
D QC CQK ; C D RA � I; R D 1C r < R�

by means of the Routh–Hurwitz conditions for the case n D 2.
By well-known theorems on such block-matrices Q, cf. e.g., Gantmacher

(1970, II. par.5), we get for the characteristic polynomials of the above matri-
ces QK ;QC ;Q the following simplified expressions (j : : : j the determinant of
these matrices):
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Lemma 16.18.

(a) jQK˝I j D j.C �˝I/.C 0 �˝I/j D jC �˝I j2

(b) jQC �˝I j D jCC 0 C˝2I j

(c) jQ �˝I j D j.2C �˝I/.2C 0 �˝I/C˝2I j � 2�n

D j.C �˝I/.C 0 �˝I/C CC 0j

D j2CC 0 C˝2I �˝.C C C 0/j

Proof. Case (c) (the two other cases are shown in the same way):

jQ �˝I j D

ˇ̌
ˇ̌
ˇ
2C �˝I �˝I

C C 0 �˝I

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
2C �˝I �˝I

2c 2.C 0 �˝I/

ˇ̌
ˇ̌
ˇ � 2
�n

D

ˇ̌
ˇ̌
ˇ
2C �˝I �˝I

C˝I 2C 0 �˝I

ˇ̌
ˇ̌
ˇ � 2
�nD2�nj.2C �˝I/.2C 0 �˝I/C˝2I j;

since 2C �˝I and ˝I or ˝I and 2C 0 �˝I are commutative. We thus get:

jQ �˝I j D 2�n � 2nj2CC 0 �˝.C C C 0/C˝2I j

D j.C �˝I/.C 0 �˝I/C CC 0j

D j2CC 0 C˝2I �˝.C C C 0/j: ut

Remark 16.19.

(1) Assertion (c) again implies that all eigenvalues of QC are purely imaginary,
since CC 0 is symmetric and positive definite which means that �� D ˝2 gives
rise to positive numbers � as solutions of jCC 0 � �I j D 0.

(2) The matrix C (and therefore alsoQK) by assumption has only eigenvalues with
negative real parts. To prove the same for the structure Q means that the pertur-
bation terms CC 0 (or ˝2I ) have to be taken into consideration appropriately.
In the following we shall follow this approach in the special case where n D 2.

Lemma 16.20. Let n be equal to 2 and let tr C denote the trace of matrix C .

(a) The characteristic polynomial of QK is given by

˝4 � 2tr C˝3 C .tr.CC 0/C jC C C 0j/˝2 � 2tr C jC j˝ C jC j2

(b) The characteristic polynomial of QC is given by

˝4 C tr .CC 0/˝2 C jCC 0j

(c) The characteristic polynomial of Q is given by

˝4 � 2tr C˝3 C .2tr .CC 0/C jC C C 0j/˝2 � 4tr C jC j˝ C 4jC j2
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Proof.

(a) The assertion follows from

jC �˝I j2 D .˝2 � tr C˝ C jC j/2

D ˝4 � 2tr C˝3 C .tr .C /2 C 2jC j/˝2 � tr .C /jC j˝ C jC j2;

since tr .C /2 C 2jC j D tr .CC 0/C jC C C j0 (as can be checked immediately
for n D 2).

(b) straightforward
(c) From Lemma 2 we know

0 D jQ �˝I j D jCC 0 �˝.C C C 0/C˝2I C CC 0j

D jQK.˝/C CC
0j

D jQK.˝/j C

ˇ̌
ˇ̌ .CC 0/1
.QK.˝//2

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ .QK.˝//1
.CC 0/2

ˇ̌
ˇ̌C jCC 0j

D jQK.˝/j C 3jCC
0j > �˝

ˇ̌
ˇ̌ .CC 0/1
.C C C 0/2

ˇ̌
ˇ̌ �˝

ˇ̌
ˇ̌ .C C C

0/1
.CC 0/2

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ .˝

2I /1
.CC 0/2

ˇ̌
ˇ̌

C

ˇ̌
ˇ̌ .CC

0/1
.˝2I /2

ˇ̌
ˇ̌ ;

where subindices denote the rows of the corresponding matrices. Further calcu-
lations then give

D jQK.˝/j C 3jC j
2 �˝

�ˇ̌
ˇ̌ .CC 0/1
.C C C 0/2

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ .C C C

0/1
.CC 0/2

ˇ̌
ˇ̌
�
C˝2 tr.CC 0/:

Since jQK.˝/j is the characteristic polynomial ofQK there remains to be shown
that the bracket following �˝ is equal to 2tr C jC j to obtain (c) from (a). With
regard to this term we get:

.C 211 C C
2
12/ � 2C22 � .C11C21 C C12C22/ � .C13 C C21/

C 2C11.C
2
21 C C

2
22/ � .C11C21 C C12C22/ � .C12 C C21/

D 2C22C
2
11 C 2C22C

2
12 C 2C11C

2
21 C 2C11C

2
22

� 2C11C
2
21 � 2C22C

2
12 � 2C11C21C12 � 2C12C22C21

D 2C11.C11C22 � C21C12/C 2C22.C11C22 � C12C21/

D 2tr C jC j:

ut
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Theorem 16.21. The characteristic polynomial ˝4 C a1˝
3 C a2˝

2 C a3˝ C a4
of Q is a Hurwitz polynomial, i.e., it fulfills:

a1 > 0; a1a2 � a3 > 0; a3.a1a2 � a3/ � a4a
2
1 > 0; a4 > 0

which implies that all of its roots have negative real part, so that matrix Q is a
stable matrix [see, e.g., Gantmacher (1971, p. 172)].

Proof. By Lemma 2 (a) and the properties of the matrix jC j we already know that
jQK �˝I j is a Hurwitz polynomial, i.e., it fulfills the above three inequalities with
regard to its coefficients b1,. . . , b4.

Case 16.22. jC C C 0j � 0. In this case we get from Lemma 3 for the coefficients
a1,. . . , a4 of jQ �˝I j the (in)equalities:

a1 D b1; a2 � 2b2; a3 D 2b3; a4 D 4b4:

This immediately implies that a1; : : : ; a4 must satisfy the same set of inequalities
as b1; : : : ; b4 which proves the assertion.

Case 16.23. jC CC 0j > 0. In this case we get from tr .C CC 0/ D 2 tr C < 0, that
both eigenvalues of C C C 0 must be negative (and, of course, real, since C C C 0 is
symmetric). The matrix C C C 0 – and also .C C C 0/=2 – is in this case negative
definite, i.e., the theorem in Sect. 16.3 then leads to a positive conclusion with regard
to the stability of Q, cf. also Hahn (1982, p. 752). All roots of jQ �˝I j D 0 must
therefore have negative real parts. ut

Remark 16.24. In the case r D r� of a maximal profit rate we have in particular
jC j D 0, i.e., a3 D a4 D 0.b3 D b4 D 0). In this special case the roots of Q are
simply given by the summation of the real roots of QK and the imaginary roots of
QC (as can be easily shown). In general, however, no such summation rule is true
and the roots of Q bear no simple relationship to the real or complex roots (n � 3)
of QK and the purely imaginary roots of QC . In particular, they are not necessarily
‘in between’ these extremes. Yet, numerical calculations have shown that the above
summation property may be approximately true if 	.A/ and 	..AC A0/=2/ are not
very different from each other.
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Zurmühl, R. (1964). Matrizen und ihre technischen anwendungen Heidelberg: Springer



Part IV
Gravitation or Convergence in Classical

Macro-Dynamics

What we have established in the preceding part for prices of production (and
basically a given average rate of profit) in principle also characterizes the macroe-
conomic level, i.e., the conflict over income distribution between capital and labor
and therefore the dynamics around the wage–profit curve of the Classical system of
production prices. These dynamics are described by Marx in his formulation of the
general law of capitalist accumulation and has been formalized for the first time in
a seminal paper by Richard Goodwin (1967) with explicit reference to the Lotka–
Volterra predator–prey type of population dynamics. This type of dynamics thus not
only applies to the micro-adjustment processes of quantities and prices of a capital-
ist economy, but also to the macrodynamics of the distribution of income between
capital and labor.

Goodwin’s growth cycle model is indeed exactly of the type that was investigated
by Lotka and Volterra for predator–prey systems and it therefore implies the struc-
turally unstable center type dynamics of the predator–prey model for Goodwin’s
growth cycle model as well. This means that nearly any modification of these
dynamics will destroy their closed orbit structure. A typical example for such an oc-
currence is presented in Chap. 17, where the wage level and the price level dynamics
are formulated separately and not just as real wage dynamics as in Goodwin’s (1967)
original approach. Nevertheless, the basic message of the Goodwin growth cycle
model remains intact there in general (under realistic conditions), namely the over-
shooting mechanism in the conflict between capital and labor, which is characterized
by excessive distribution towards labor income in prosperity phases and excessive
redistribution to capital in phases of economic depression (and where both processes
continue to work for some time even when prosperity is already faltering or when
there is already economic recovery under way). From the macro-perspective, order
is therefore generated in this framework by persistent (overshooting) fluctuations
in the conflict over income distribution and not by convergence to some sort long-
period equilibrium as it was in part suggested by the stability investigations of the
preceding part.

We generalize the Goodwin approach in various respect, most notably by
assuming – besides unskilled workers – a skilled labor force which can either
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cooperate with unskilled workers or with capital. The question then is of course
what this implies for the Goodwin overshooting mechanism in both cases. We also
confront the Goodwin model with the facts, first in the same way as Solow (1990)
by just showing the phase plots of the wage share and the employment rate for a
number of actual economies and then, in a new contribution, by employing modern
econometric techniques which allow to separate the long phase Goodwin cycle from
the Keynesian business cycle (applied to the case of the US economy). The general
result in this part of the book will be that the Goodwin growth cycle dynamics
represents a significant contribution to the analysis of the working of capitalist
economies on the macro-level.

We close this final part of the book by positioning the Goodwin (1967) ap-
proach to cyclical growth within a larger framework, the so-called Keynes–Wicksell
approach to macrodynamics which is basically however still of a supply side
type, apart from a Wicksellian approach to inflation dynamics. The integration of
Keynesian quantity adjustment processes must here be left to other contributions,
see in particular Chiarella et al. (2005) in this regard.
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Chapter 17
Some Stability Properties of Goodwin’s Growth
Cycle Model

17.1 Introduction

This chapter generalizes Goodwin’s (1972) growth cycle model as reconsidered in
Velupillai (1979) and it also extends the proofs of some assertions made by the lat-
ter author. This extended version which we shall introduce in Sect. 17.2 depends on
a money-illusion parameter � in such a way that the Goodwin case becomes a bi-
furcation point between those parameter values .� > 0/ where the extended model
is globally asymptotically stable and those where it is totally unstable .� < 0/.
A by-product of this result is that Goodwin’s dynamical system obviously cannot be
structurally stable. This method of demonstration replaces Velupillai’s formal proof
by economic reasoning. Section 17.3 then shows why Velupillai’s demonstration of
the closed-orbit structure of Goodwin’s model is not yet complete and it briefly indi-
cates how to fill the existing gaps. Since this chapter is supplementary to Velupillai’s
(1979) article, the reader should consult his paper for further explanations of the
model and the symbols used.

Apart from providing some improvements of the original contribution by
Velupillai (1979), the chapter also considers a generalization of Olech’s theorem to
the case of growth dynamics. Economic models are normally based on growth laws
of motion and thus only well-defined in the positive orthant of the mathematical
phase space <2. Yet such models can be expanded from the positive orthant <2C to
the whole of<2 by the use of a variable transformation by means of logarithms. The
chapter provides a proposition for the situation after this variable transformation
that imply that the original growth dynamics is globally asymptotically stable in its
phase space <2C:

17.2 An Extended Goodwin Cycle

The core variables of both Goodwin’s 1972 and the following growth cycle model
are: u (labor’s share) and v (the employment rate). By definition these two variables
must fulfill the following two identities:bu D bw � ˛;bv D bY � .˛ C ˇ/, where w
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denotes the real wage, Y output, ˛; ˇ the given growth rates of labor productivity
Y=L and the labor force, and wherebw is used to symbolize the growth rate, here for
example of real wages w.

Consider now the following generalization of Wolfstetter (1977, pp. 147ff.) re-
formulation of Goodwin’s model:1

bwC �� D f .v/; f 0 > 0 (17.1)
� D Pp=p D g..1C r/wL=Y � 1/; g0 > 0; g.0/ D 0; r constant (17.2)

� D K=Y; � constant (17.3)
bK D s.u/Y=K D s.u/=�; s0 < 0: (17.4)

Equation (17.1) is Goodwin’s Phillips-curve, now in general nonlinear and aug-
mented by a term which accounts for money-illusion .��/, i.e., workers receive a
real wage which is lower for � > 0 (higher for � < 0/ than the target f .v/ they
did actually bargain for. Equation (17.2) – a mark-up equation – describes how the
rate of inflation � is formed. Both equations are also applied and further explored
in Wolfstetter (1977), there in linearized form and for � >

D 0 solely.2 Assumptions
(17.3) are standard for the Goodwin model. Equation (17.4), finally, simply general-
izes Goodwin’s accumulation formula OK D .1� u/=� by assuming a more flexible
savings behavior.

Combining (17.1)–(17.4) on the basis of the two foregoing identities gives the
following autonomous system of ordinary differential equations

bu D f .v/ � ˛ � �g..1C r/u � 1/ D ef .u; v; �/; (17.5)
bv D s.u/=� � .˛ C ˇ/ Des.u/: (17.6)

We assume that this system exhibits a sufficient degree of differentiability on <2C
and that it has an economically meaningful steady-state solution 0 < u�; v� < 1 (at
whichbv�;bu� D 0 and which by (17.1)–(17.4) is uniquely determined).

To explore the dynamics of this parametrized family of vector fields (17.5), (17.6)
a slightly modified version of Olech’s Theorem which directly applies to a system
formulated in rates of change3 and not in terms of time derivatives is now very
comfortable:

1 r is a constant mark-up on labor unit-costs wL=Y 0 D u per $.
2 Note that we here have used the term “money-illusion” for the case � < 0 as well. This is justified
in our view since the case � D 0 can be interpreted to represent “perfect foresight”, i.e., there is
no need to restrict the outcome of the wage-bargain to cases where �

>
D 0 holds true. Furthermore,

the parametrized family of deterministic differential equations considered in this chapter can be
reinterpreted by stochastic methods employing a random coefficient � 2 .��;C�/; � > 0.
3 This fact and the known direction of motion of the variables u; v (cf. the following figure) imply
the u; v-axes of <2

C

are trajectories of (17.5), (17.6) which cannot be approached by those trajec-
tories which start in<2

C

. Our restricted consideration of the invariant set<2
C

, which excludes the
singular point .0; 0/, consequently is legitimate.
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Proposition 1. Assume that the Jacobian J D .Jik/ of system (17.5), (17.6) fulfills:
trace J < 0, det J > 0 and J12; J21 ¤ 0 everywhere in <2C. Then, the equilibrium
u�, v� of system (17.5), (17.6) is asymptotically stable in the large, i.e., each trajec-
tory which starts in <2C will approach the equilibrium point .u�; v�/ without hitting
the boundary of R2C.

Proof. By means of the diffeomorphism D W <2 ! <2C defined by D.x; y/ D
.ex ; ey/ we get the following equivalent system of differential equations on <2:

Px D ef .ex ; ey ; �/; Py Des.ex/: (17.7)

The linear part or the Jacobian of this system reads

J.x; y/ D

�
J11e

x J12e
y

J21e
x 0

�

and it fulfills the same conditions as were postulated with regard to J . The above
transformed system (17.7) consequently allows the application of Olech’s original
theorem, cf. Ito (1978, p. 312), i.e., it – and therefore also system (17.5), (17.6) – is
asymptotically stable in the large.

Corollary. The systems ef ;es and �ef ;�es fulfill the assumptions of the above propo-
sition for � > 0 and � < 0, respectively.

The interaction between the share of wages u and the employment rate v will thus
always lead to or away from4 the steady-state equilibrium depending on what type of
money-illusion prevails in the economy. Figure 17.1 roughly summarizes these two
results together with an obvious conjecture on what will happen in the limit case
� D 0, i.e., the case which we shall briefly reconsider in the next section (despite
the presence of nonlinear terms this type of Hopf-bifurcation is qualitatively of a
degenerate type).

This diagram shows that the Goodwin-case � D 0 cannot be structurally stable,
since the topological properties of its dynamics are not preserved if this system
is slightly disturbed by the money-illusion term �� . This proves Corollary 1.5 in
Velupillai (1979) which is not fully proved by his mathematical Theorem A.1.4
since his dynamical system (17.4), (17.8) does not lie in the restricted set of vector
fields considered in this theorem (f W W ! <2 does not point inward on D2). The
above situation provides a simple example of a Hopf bifurcation which allows to
deduct Velupillai’s (1979) stability properties (i)–(iii)5 and also further results for
the case � D 0 by means of the Hopf theorem (cf., e.g., Marsden and MacCracken
1976, p. 96).

4 � < 0 implies a totally unstable system, since the trajectories of this system – when running them
backwards: .u.�t /; v.�t //; t !1 – are globally asymptotically stable.
5 Note in this connection that Velupillai’s presentation still allows for cases where f 0 
 0; s0 
 0

(constant proportional savings) holds true around the equilibrium point u�; v�, i.e., where the fea-
tures of Goodwin’s phase diagram will not be preserved.
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Fig. 17.1 The growth cycle
as a degenerate Hopf
bifurcation

Remark. By definition of the variables u; v it is, of course, desirable to point to
some basic additional mechanisms which ensure that any trajectory which starts in
the interval .0; 1/ � .0; 1� cannot leave this subset of <2C. A possibility to obtain
such a behavior is given by the following modification of system (17.5), (17.6):

bu D f .v; u/ � ˛ � �g..1C r/u � 1/; �
>
D ��; (17.8)

bv D



minf0; s.u/=� � .˛ C ˇ/g for v D 1
�.u/=� � .˛ C ˇ/ for v < 1

; (17.9)

where the modified function f is assumed to depend of u if and only if u is close
to unity, in which case it may be assumed that the conflict over income distribution
will imply that f .v; u/ < 0 must be fulfilled then. The vector field (17.8), (17.9)
thereby is perturbated in such a way that it points inward at the right hand side of
.0; 1/� .0; 1� for � > 0 sufficiently small. And (17.9) implies that v D 1 now acts as
an upper ceiling, i.e., the implied cycles may hit the upper boundary of .0; 1/�.0; 1�,
but they cannot cross it (a similar – Hicksian – idea was first communicated to me
by Christian Groth). Hence, (17.8), (17.9) indicate how economically meaningless
values u >

D 1; v > 1 can be avoided for cycles which start in .0; 1/ � .0; 1�. Yet,
the assumed new shape of the function f still represents a very crude extension
of Goodwin’s approach to accumulation theory, since it is not sensible to consider
cycles which approach u D 1 without questioning the assumed product market
situation of this model. This, however, is a problem which cannot be solved in a
brief chapter like the present one.6

6 Cf., however, Cugno et al. (1979) for various modifications of the original Goodwin growth cycle
which can be related to the above made proposals (17.8), (17.9).
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17.3 The Goodwin Case Reconsidered

Though it is claimed in Velupillai (1979, p. 249) that every non-stationary trajectory
of the Goodwin cycle .� D 0/ is closed, his proof (pp. 249ff.) cannot be regarded
as being complete. A minor weakness in the demonstration of his claim is that the
exclusion of limit cycles (p. 250 below) is not well formulated: closed sets may
contain open sets, i.e., it must be shown there, that function H will not be constant
on more than one trajectory. Furthermore, the initial argument on the top of p. 251
applies to a neighborhood of his singular point P2 D .v2; u2/ solely and is thus
at best adequate for sufficiently small RMG-cycles, cf. Hirsch and Smale (1974,
pp. 259–261) who show that the doubly infinite sequence they exploit on p. 262 in
fact exists – a part of their proof which is not reproduced with regard to his general
case by Velupillai (1979). We show in the following that Velupillai’s claim, that
every trajectory of his extended RMG-cycle is closed, is correct. We do this partly
in following his (and Hirsch and Smale’s) arguments, but shall also introduce some
new aspects to indicate the formal difficulties involved in providing a proper global
proof for this theorem.

Proposition 2. The system (17.5), (17.6) taken at � D 0, i.e.

bu D f .v/ � ˛; bv D s.u/=� � .˛ C ˇ/ (17.10)

exhibits a closed-orbit structure as in Goodwin (1972).

Proof. Let G;H be the primitives of x.u/ D �.s.u/=� � .˛ C ˇ//=u and y.v/ D
.f .v/ � ˛/=v, respectively, which fulfill G.u�/ D 0 and H.v�/ D 0, i.e., G0.u/ D
x.u/ and H 0.v/ D y.v/. Interpret the functions G;H as functions which are de-
fined on R2C and define the function K by G C H . It is easy to show then that
K.u�; v�/ D 0 is a global minimum of the function K and that K.<2C/ D Œ0;1/.
Furthermore, K�1Œ0; c� is compact and invariant for each c > 0 (cf. Hirsch and
Smale 1974, p. 198, with regard to the definition of this latter property). These two
properties are also true for the subset K�1.c/ of K�1Œ0; c�. Finally, it should be ob-
vious that the functionK cannot be constant on any open set in<2C, since this would
imply that G and H would be locally constant. This entitles us to apply Velupillai’s
(1979, p. 250) conclusion that <2C cannot contain a limit cycle. Consider now an ar-
bitrary point x of the compact, invariant setK�1.c/; c > 0. According to Hirsch and
Smale (1974, p. 198) the !-limit set L!.x/ of x is compact – and thus nonempty
(since it is contained in K�1.c/). By the Poincaré–Bendixson Theorem, cf. Hirsch
and Smale (1974, p. 248), there then follows that L!.x/ is a closed orbit, a fact
which by the very definition of a limit cycle – the nonexistence of which is already
known – implies x 2 L!.x/, i.e., each such x lies on a closed trajectory (which
must enclose the equilibrium point u�; v�, see Hirsch and Smale 1974, p. 251). This
completes the proof of the above proposition, here without the construction of a
doubly infinite sequence as in Hirsch and Smale (1974, p. 259f.).
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Remark. Though of exceptional kind (structurally unstable), the above case � D 0

may nevertheless be very useful as a reference case, e.g., if system (17.8), (17.9) is
considered in more detail than was possible in this brief chapter.
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Chapter 18
Endogenous Aspirations in a Model
of Cyclical Growth

18.1 Introduction

This chapter provides an analysis of the effects on Goodwin’s (1967) process of
the cyclical accumulation of capital which follow from employing a money wage
Phillips-Curve that depends both on the rate of employment and on the rate of
growth of the considered economy. This latter influence enters the scenario when the
objective of the wage bargaining process is formulated in more detail. Our simple
approach here is to assume that this objective is determined by the rate of inflation
plus the rate of labor productivity growth and to assume additionally that more will
be demanded in periods of very rapid growth, while the opposite occurs in times
of subnormal growth. The target of workers’ wage claim will therefore be treated
as endogenous, i.e., depending on the particular phase of the growth cycle to be
analyzed below.

Our above assumption represents one main modification to be incorporated into
Goodwin’s well-known growth cycle model, whose real wage Phillips-curve is
thereby reformulated in a twofold way (besides assuming that the rate of change
of money wages depends on employment and the benchmark of a constant share of
wages in an endogenous manner). We now have to formulate a hypothesis concern-
ing the price-level, too. For the sake of simplicity we shall adopt a post-Keynesian
mark-up equation here, but shall neglect – as in the original Goodwin model – all
influences of effective demand. This is not to say that we regard these latter influ-
ences as purely secondary, but in the present chapter we prefer to concentrate on
the interaction of wage-bargaining, mark-up induced inflation, accumulation, and
employment without offering an explanation of the limits for the chosen mark-
up. Focusing on the conflict over income-distribution and its effects on capital
accumulation is – at least in our opinion – of some theoretical interest, since this
conflict is, e.g., largely neglected in the monetarist approach to the phenomenon of
stagflation, where a monotonic relationship between inflation and (un)employment
is generally postulated. As we shall see in the following sections this monetarist
viewpoint seems to be overly simplified.
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To demonstrate this assertion is not, however, our main point of interest in this
chapter. What we shall mainly strive to show is that:

1. Our proposed modification of Goodwin’s model will establish an asymptotically
stable equilibrium solution in the large without depriving the model of its cyclical
characteristics with respect to its medium term implications.

2. Goodwin’s original growth cycles are analytically important to the extent as they
will serve as reference cycles in the proof of assertion (1).

This result questions the validity of the claim that Goodwin’s approach is useless
because of the structural instability of the model. Endogenizing the target of wage-
bargaining in the above mentioned sense therefore implies the existence of certain
additional stabilizers which “point inward” with regard to the cyclicity of the origi-
nal model, implying that it still remains useful, at least as a point of departure.

We shall discuss our model and its new assumptions in detail in the next sec-
tion. Section 18.3.2 then investigates the steady state of the system and it provides
a proof of local as well as global asymptotic stability (on the basis of an additional
steady state assumption in the latter case). We conclude that the proposed modifica-
tion of the wage-price-sector of Goodwin’s model by means of two post-Keynesian
hypotheses implies a structurally stable model of cyclical growth à la Goodwin.
Our model offers a more enriched story of the inflation-unemployment relationship
than the mainstream expectations-augmented models of the interaction of this pair
of variables.

18.2 A Model of Cyclical Growth

Our model consists of five definitional equations, six behavioral equations, and one
“equilibrium condition” for the product market. Let us begin with definitions which
are all well-known.

Average labor productivity .y/ is defined as the ratio of national product .Y / to
employment .L/:

Y D Y=L: (18.1)

The wage share .u/ is given by the product of money wage .w/ times employment,
divided by the nominal value of national product .pY /:

u D wL=.pY /; u 2 .0; 1/: (18.2)

The ratio of employment to total labor supply .Ls/ is called the rate of employ-
ment .v/:

v D L=Ls; v 2 .0; 1C "/; " > 0: (18.3)

The positive number " indicates that the state of “full employment” .v D 1/ should
not be interpreted as a state of a completely exhausted labor supply, since some
frictional unemployment will always remain.
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Our two final definitions concern savings .S/ and the capital stock .K/:

s D S=Y; (18.4)
g D PK=K D bK: (18.5)

Equations (18.4) and (18.5) define the average savings ratio .s/ and the accumula-
tion rate .g/ respectively.

We turn now to the assumptions on the technology and on economic behavior.

by D m; 0 < m D const. (18.6)

Labor productivity .y/ grows with a constant, positive rate.

k D K=Y; 0 < k D const. (18.7)

We assume a constant capital–output ratio. Equations (18.6) and (18.7) represent
standard assumptions of growth theory, i.e., neutral technical progress in the sense
of Harrod.

These assumptions are supplemented in the usual way by an exogenously deter-
mined constant rate of growth of labor supply .n/:

bLs D n; 0 < n D const. (18.8)

Note that our set of assumptions is made for convenience, since effects of technical
progress and growing labor supply are not essential for the ideas presented here.
Next, we stipulate that the savings ratio s is a strictly falling function of the wage
share:

s D h.u/; h0.u/ < 0 for all u 2 .0; 1/: (18.9)

With respect to money wage determination we postulate

bw D f .v/C �.g/.bp Cm/; f 0.v/ > 0 for all v 2 .0; 1C "/: (18.10)

The factor �.g/, which depends positively on the rate of accumulation g.�0.g/> 0/,
will be called the aspiration factor. Its multiplicative basis is the benchmark: infla-
tion .bp/ + productivity growth .m Dby/. We assume �.g0/ D 1 for a rate g0 which
may be called “normal”, in other words g0 is near or even equal to nCm, the steady
state growth rate of the system. Our final behavioral assumption concerns mark-up
pricing

bp D �Œ.1C a/u � 1�; 0 < �0.u/; �.0/ D 0: (18.11)

It has been pointed out that we neglect all kinds of problems of effective demand.
Thus we apply the standard assumption

PK D S: (18.12)
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Equation (18.12) may be interpreted as an equilibrium condition for the commodity
market. Since we abstract from problems concerning the rate of interest and the
money market, it is obvious that the mark-up factor (a) of (18.11) must be given
exogenously.

Equations (18.1)–(18.12) constitute the model we are going to study in the re-
mainder of this chapter. Its less common assumptions are given by (18.9)–(18.12)
which may therefore deserve some further comments.

The term .1C a/u � 1 in (18.11) can be rewritten in the form Œ.1C a/wL=Y �
p�=p. Thus it represents the deviation of the price target .1 C a/wL=Y from the
actual price p as a percentage of this latter price. It is assumed by (18.11) that the
rate of inflation depends positively on this percentage deviation.

In addition to earlier comments on (18.10) we may interpret �.g/.bp C m/, i.e.,
the sum of the rate of inflation and productivity growth, weighted by the aspiration
factor, as the target of the wage earners which depends positively on the prevailing
rate of accumulation and on the “core target” bp C m of maintaining their share
in national income. The term f .v/, on the other hand, expresses the strength with
which the assumed target can be pursued. Finally the (18.9) is but a generalization
of the Kaldorian savings function

s D sw C .sp � sw/.1 � u/; 0 � sw < sp � 1:

Equations (18.9)–(18.11) are therefore nonlinear generalizations of the usual as-
sumptions with respect to the savings function, the money wage determination, and
mark-up pricing.

The relationship (18.11) can be supported by econometric studies (see, for exam-
ple, Rahmann 1977, pp. 374–376). Note, too, that this positive correlation between
the wage share u and the inflation rate bp does not imply anything definite for the
customarily considered inflation-unemployment trade-off .bp; .1�v//, which will be
fairly complex even if the problem of expectations about inflation is short-circuited
by adopting a Phillips curve of type (18.10). A relation which looks rather similar
to (18.10), namely bw D f .v/C �bp, has been interpreted in the recent literature as
expressing money illusion by means of the parameter �, see the preceding chapter.
Depending on whether � > 1 or � < 1; the Goodwin cycle which can be derived
from such a relationship has been found to be totally unstable or asymptotically sta-
ble (see the preceding chapter). Such a bifurcation in behavior cannot arise in the
present model by the very method of our approach. Instead of using the target ratebp
we assume that wage earners also aim at receiving their share in productivity growth
which, under normal conditions of accumulation .g0/, is given by m. Our approach
to their respective target �.g/.bp C m/ – which is not due to money illusion – then
asserts that periods of subnormal growth imply an endogenous reduction in this tar-
get (due to a variety of causes), while the opposite occurs in periods of rapid growth.
Neutrality with respect to distribution and growth-dependent deviations from this
type of behavior consequently represent the basis of our Phillips curve approach
(18.10). We shall show in the next section the resulting direction of redistributional
effects will generate “centripetal” forces within Goodwin’s growth cycle.
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18.3 Discussion of the Model

In a first step we shall reduce the system (18.1)–(18.12) to two nonlinear differential
equations in the variables u and v. In Sect. 18.3.2 we analyze the steady state of
the system, while Sect. 18.3.3 offers a first impression of the interaction of the wage
share, the rate of employment, and the rate of inflation by means of a phase diagram.
Subsequently, we shall first consider local stability of the steady state with respect
to the dynamic variables u and v (Sect. 18.3.4) and then its stability properties in
the large, i.e., for a sufficiently large reference cycle of the original Goodwin model
(Sect. 18.3.5).

18.3.1 The Implied Dynamics

Let us derive the differential equation for v first. Logarithmic differentiation of
(18.3) gives

bv D bL �bLs D bL � n; see (18.8) :

Furthermore, logarithmic differentiation of (18.1) in connection with (18.7) yields

bL D bY �m D bK �m; i.e. ;
bv D bK � .nCm/:

Finally the (18.4), (18.9), and (18.12) imply the following chain of equations:

bK D PK=K D S=K D s=k D h.u/=k; i.e. ;
bv D h.u/=k � .nCm/: (18.13)

This is our first dynamic equation.
In order to derive the second differential equation, for u; we start with expressing

(18.2) in terms of growth rates:

bu D bw �bp �m:

Inserting (18.10) and (18.11) yields

bu D f .v/C �.g/.bp Cm/ � .bp Cm/
bu D f .f / � .1 � �.g//.e�.u/Cm/:

The term �.u/ is an abbreviation for �..1C a/u � 1/. We wish to rewrite the term
�.g/ in a slightly different way: g D h.u/=k and we abbreviate �.h.u/=k by �.eu/.
Our second differential equation can then be written in the form

bu D f .v/ � .1 �e�.u//.e�.u/Cm/: (18.14)

Note thate�0.u/ < 0 and e�0.u/ > 0 for all u 2 .0; 1/.
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18.3.2 Properties of the Steady State

It is known from Goodwin’s model that the parameters involved in the equations
have to fulfill certain restrictions in order to establish economically meaningful so-
lutions for the steady state (and the disequilibrium solutions as well). This fact, of
course, extends to our system (18.13) and (18.14). We therefore assume that the
functions h; f;e�;e�, and the parameters k; n and m are given such that

bv D 0; i.e. ; u0 D h�1.k.nCm// (18.15)
bu D 0; i.e. ; v0 D f �1..1 �e�.u0//.e�.u0/Cm// (18.16)

do have solutions belonging to the open intervals .0; 1/ and .0; 1C"/, respectively. In
this case the uniqueness of the solution .u0; v0/ 2 <2C follows immediately, because
v0 D f �1..1�e�.u//.e�.u/Cm// is a well-defined function. The solution of (18.15)
and (18.16) reduces to u0; v0 D f �1.0/ if g0 D nCm, sincee�.u0/ D �.g0/ D 1.

The steady state (18.15), (18.16) exhibits some well-known facts of growth
theory: bY 0 D bK0 D n C m;bw=p D bw � bp D m; .1K=L/0 D m, and:
r0 D .1 � u0/=k0 D const., i.e., in particular: real wages and the average capi-
tal intensity grow in line with the rate of growth of labor productivity. Note that the
steady state is consistent with a positive rate of unemployment 1� v0 and a positive
rate of inflation.

Since the steady state characterizes to some extent the average behavior over the
growth cycles which we shall study in the next section, it might be interesting to
report some results of comparative statics for u0 and v0. As in Goodwin’s case,
the wage share u0 reacts negatively with respect to a rising rate of growth of labor
productivity. A rising capital–output ratio will – in contrast to Goodwin’s case –
induce a change of the equilibrium rate of profit, but it is not clear, whether r0 will
tend to rise or to decline. Another difference stems from the fact that the equilibrium
rate of employment v0 is invariant with respect to changes of productivity growth
if �.g0/ D 1, whereas in Goodwin’s case v0 must necessarily rise if m is rising.
This latter property will be preserved in our model if and only if �.g0/ < 1, i.e.,
if workers demand less than bp C m at the steady state of accumulation. Finally
we observe a rising rate of employment in response to a rising mark-up whenever
�.g0/ < 1. Thus a higher equilibrium rate of inflation may induce a higher level of
employment.

18.3.3 The Phase Portrait of the Model

In order to gain a first qualitative insight into the dynamics of the model (18.1)–
(18.12) we shall represent the motion of the rate of employment and the wage share
plus the rate of inflation, by constructing the partial equilibrium curves Pu D 0,
Pv D 0, and Pp D 0. Inspecting (18.11), (18.13) and (18.14) – compare also (18.15)
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and (18.16) – it is obvious that Pv D 0 and Pp D 0 must be vertical in the phase-plane
spanned by v and u. Moreover, it is clear that Pp D 0 must lie to the left (right) of
Pv D 0 for sufficiently high (low) mark-up levels. Furthermore, the curve Pu D 0must
be strictly increasing in a neighborhood of the “equilibrium wage share” u0 if, e.g.,
the mark-up .a/ is sufficiently high and �.g0/ De�.u0/ � 1 (compare Sects. 18.3.4
and 18.3.5 for further details). We are now prepared for a graphical representation
of the wage share/employment rate interaction and its implications for inflation, at
least in a neighborhood of the steady state .u0; v0/.

The phase plane is divided into four parts by the curves Pu D 0, Pv D 0, each
with a typical direction of the moving variables .u; v/. This can be determined from
the partial equilibrium curves in the usual way. The result is depicted in Fig. 18.1.
Figure 18.1 shows also the domain of inflation (to the right of Pp D 0). Now the
phase diagram suggests that the dynamics of the variables u; v exhibit cyclical fluc-
tuations, predominantly accompanied by inflation if the mark-up .a/ per unit wage
costs is sufficiently high. The depicted process is of the same qualitative type as that
of Goodwin’s original model, i.e., it exhibits the same kind of overshooting of the
wage share .u/ and the employment rate .v/ over their equilibrium values – consult
the next section for a formal proof of this proposition. Figure 18.1 shows that – un-
der the set of assumptions described above – only low shares of wages in national
income will give rise to situations of a temporarily falling price level, i.e., deflation.
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Fig. 18.1 The phase portrait regions of the dynamics
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Our simple mark-up hypothesis (and the size of the mark-up chosen) imply that
falling employment is always accompanied by inflation (see areas III and IV). This
fact (stagnation implies stagflation) is, however, due to the assumed rigidity of the
mark-up and thus need not hold true in more general versions of the model.

18.3.4 Local Stability

Let us now turn to the details of stability analysis of our model (18.1)–(18.12), i.e.,
of the (18.13), (18.14):

bu D f .v/ � .1 �e�.u//.e�.u/Cm/; .�/
bv D h.u/=k � .nCm/;

The functions are assumed to be continuously differentiable, h0.u/ < 0, f 0.v/ > 0,
e� 0.u/ < 0, e�0.u/ > 0. Recall that the function f is the first component of the
assumed Phillips curve, thate� expresses the aspiration factor in its relation to the
wage share, and thate�; h summarize mark-up and savings behavior respectively.

It should be pointed out explicitly that the system (*) does not fulfill Olech’s
theorem since the linear part J of the right hand side does not fulfill the con-
ditions: trace J < 0, detJ > 0, J12J21 ¤ 0 everywhere in <2C (see Flaschel
1984, p. 65, for the formulation of Olech’s theorem for dynamical systems in terms
of growth rates instead of time derivatives). The system (*) therefore cannot be
proved to be asymptotically stable in the large by means of this standard approach
to global stability. The reason can briefly be stated by observing that the function
.1 �e�.u//.e�.u/Cm/ is not monotonic on <C.

For local asymptotic stability it suffices to have a negative trace of the Jacobian
and a positive Jacobian determinant, evaluated at the equilibrium point .u0; v0/, or,
to put it into formal terms:

e� 0.u0/.e�.u0/Cm/ � .1 �e�.u0//e�0.u0/ < 0 and � f 0.v0/h0.u0/=k > 0:

While the latter conditions is always fulfilled, the former represents an additional
assumption for the functionse� and e�. For the purposes of our next section we like
to stress the following important particular case of this assumption:

e�.u0/ D �.nCm/ D 1; e�.u0/Cm > 0: .A/

The conditions (A) can be motivated as follows: Assuming �.n C m/ D 1 in
particular means that the aspiration of workers will be neutral with respect to dis-
tribution if the steady state applies. Thus the condition is a type of consistency
condition (as it, e.g., is often applied in the monetarist approach to the Phillips
curve and the stagflation phenomenon with respect to the factor which describes
the effect of expectations about inflation on the rate of inflation; see however our



18.3 Discussion of the Model 407

Fig. 18.2 Convergent dynamics

concluding remarks for a critique of this particular approach). Assuming in addition
e�.u0/Cm D �..1C a/u0 � 1 > 0 means that the equilibrium wage share .u0/ and
the mark-up .a/ do not allow for a rate of deflation, �e�.u0/, which exceeds the rate
of productivity growth. This is an assumption about the intensity of the conflict over
income distribution at the equilibrium value .u0/. It has to be taken into account if
the steady state is accompanied by deflation.

Assumption (A) implies that the steady state .u0; v0/ is a stable focus, and not
a stable node) if �e�0 is sufficiently flat relative to the slope of the curves f 0 and �h0

so that the condition . trace J /2=4 < det J will be fulfilled. Such an assumption
seems plausible in the light of our interpretation of e� (or �) as an aspiration fac-
tor and regarding the fact that � has often been treated as constant in the literature
(but see Schlieper and McMahon 1981 for a somewhat similar treatment of a non-
constant target). Figure 18.2 shows a typical trajectory of the system (*) under the
assumptions of our model:

It might be interesting to have a look at the domain of asymptotic stability in the
interval .0; 1/ � .0; 1C "/. This question will be examined in the next subsection.

18.3.5 Asymptotic Stability in the Large

We already know that Olech’s criteria for global asymptotic stability cannot be ap-
plied to the model presented in this chapter. Therefore a different method has to
be applied to show that the basin of attraction of the equilibrium point .u0; v0/ can
be extended to a domain which is of real economic interest. To know that there
is a neighborhood of .u0; v0/ where asymptotic stability holds true is only of eco-
nomic interest if there are no limit cycles “near” to .u0; v0/ – which then would
contain our unique equilibrium point in their “interior” – since the properties of
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such limit cycles would then govern the economics of the wage share/employment
rate interaction. That such limit cycles cannot exist if an assumption of type (A) is
true will be shown now by using the original Goodwin model for reference.

Assertion 1: The assumption �.n C m/ D 1 implies that the equilibrium point
.u0; v0/ of system (�) is identical to that of the following system

bu D f .v/; bv D h.u/=k .��/

This latter system is of the same type as Goodwin’s model (Goodwin 1967), (see
Flaschel 1984, Sect. 18.2, for the details of the proof), i.e., its trajectories which
start in <2C are all closed orbits around the steady state .u0; v0/. Note that – due
to our assumption on workers’ “average target” bw D bp C m – the term .m/ does
not appear in the first differential equation, in contrast to Goodwin’s result. Each
of the orbits of system (**) determines a simply connected region which contains
.u0; v0/ for which assumption (A) holds true. Let us denote by T , the interior of the
largest of these regions in whiche�.u/Cm > 0 remains true, i.e., in which deflation
cannot neutralize or even reverse the inequality implied by the rate of growth of
labor productivity .m > 0/.

Assertion 2: The region T is an invariant set of the system (*), i.e., all trajectories
of system (*) which start in this set cannot leave it, and the point .u0; v0/ is a global
attractor with respect to region T .

The idea of proving assertion 2 is based on the fact that the dynamics of our
system (*) essentially point inward with respect to the closed orbits of system (**)
which surround the point .u0; v0/. This implies that the trajectories of (*) which
start in T must converge to this point since they must, so to speak, cross every orbit
of system (*). The details of a formal proof are given in the mathematical appendix
to this chapter.

We have thereby shown that system (*) is asymptotically stable for a simply con-
nected region T around the equilibrium state .u0; v0/ which should be reasonably
large whenever the conflict over income distribution (based on the conflicting claims
(18.10) and (18.11) is sufficiently intense so that bp C m remains positive on T . In
other words we do not observe a falling nominal value of net national income per
head within this region T . Furthermore, closed orbits à la Goodwin are useful for the
observation that the new elements of our model (18.1)–(18.12) will generate extra
forces on the development of the share of wages and the rate of employment which
drive the system inward with respect to its “core dynamics” (**) of closed cyclicity.
The geometry of assertion 2 is summarized in Fig. 18.3.

Recall that T � .0; 1/ � .0; 1 C "/ � <2C. Now it should be observed that
under the assumptions of our model the dynamics of the system point inward on the
boundary @T except at the pointsX1 andX2. It is because of the dynamical behavior
of the system at X1 and Xi2 that we have to introduce the concept of quasi-global
stability (see the appendix).
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Fig. 18.3 Global stability

18.4 Conclusions

Though neglecting problems arising from effective demand, our model is useful
in raising doubts on the robustness of the Phillips curve in the standard expecta-
tions augmented version. In conformity with empirical observations we have used
a monotonically rising relationship between the rate of inflation .bp/ and the wage
share .u/ as it may result from mark-up pricing behavior. Furthermore, our money
wage Phillips curve (18.10) implicitly assumes that workers have perfect knowledge
of the rate of inflation .bp/, though they may be willing to strive for less (or more) in
the wage bargaining process. These two components of our model do not, however,
imply a positive relationship between the rate of employment .v/ and the inflation
rate .bp/, since the relationship between the wage share and the employment rate is
intrinsically cyclical. This is confirmed by observations (see Rahmann 1977, pp. 376
ff.) and is comprehensible even from the simple analysis of our model of capital
accumulation. Now, as the v � u relationship is cyclical and since the bp � u rela-
tionship can be shown to be monotonic, the p� v relationship must be cyclical, too.
This is obvious from our figure 18.1 and is also confirmed by empirical estimations.
A monotonic relationship of the standard monetarist version must therefore be re-
jected as overly simplified if the effects of capital accumulation are really taken into
account.

Mathematical Appendix

Proof of assertion 2 of Sect. 18.3.5. Denote by G;H the first integrals of g.u/D
�.h.u/=k � .nCm//=u and of f .v/=v on<C which fulfill the conditions G.u0/D
0;H.v0/ D 0. By definition we have G0.u/ D g.u/ and H 0.v/ D f .v/=v on <C.
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Define – by means of a suitable reinterpretation of the functionsG;H – the function
K D G CH W <2C ! <. Flaschel (1984, Sect. 18.2), see the preceding chapter, has
shown that K is a Liapunov function of the dynamical system (**). Furthermore,
K�1Œ0; c� is compact and invariant for each c > 0. These two properties hold true
forK�1.c/, too. The trajectories of system (**) are given byK�1.c/ and are shown
to be closed orbits.

Consider now a trajectory .u; v/ of our system (*) which starts in the set T . Using
the partial derivatives Ku; Kv of K then gives

P
2K.u; v/ D ku PuCKv Pv D .Kuu/buC .Kvv/bv

D �.h.u/=k � .nCm//buC f .v/bv
D �.h.u/=K � .nCm//.bu � f .v//C f .v/.bv � .h.u/=k � .nCm///
D Œ�h.u/=k � .nCm/�Œ�.1 � �.h.u/=k// � .�..1C a/u � 1/Cm�:

This product is of type Œ�� � ŒC� if u < u0 and of type .C/ � .�/ if u > u0 and
it is zero for u D u0. Note that �..1 C a/u � 1/ C m D e�.u/ C m is positive
within the region T . The function K therefore is a Liapunov function in the sense
of Definition D.1.7. in Hahn (1982, p. 751), since it is bounded from below. Fur-
thermore, the assumptions of Hahn’s theorem T.1.4. (on p. 751) are quite obviously
fulfilled by the function K and the region T . the system (*) therefore is quasi-
globally stable with respect to T (for a definition of quasi-global stability see Hahn
(1982, p. 750, D.1.6). Since there is only one equilibrium point in T , the system
must be globally stable in addition. For all initial conditions .u.0/; v.0// 2 T the
trajectory .u; v/ determined by one initial value .u.0/; v.0// 2 T thus converges to
the equilibrium point .u0; v0/ (see again Hahn 1982, pp. 751 f.). ut
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Chapter 19
Partial Cooperation with Capital vs. Solidarity
in a Model of Classical Growth

19.1 Introduction

Goodwin’s (1967) model of a growth cycle has since long been regarded as a
model of class struggle and the conflict over income distribution which mirrors ba-
sic aspects of Marx’s “General Law of Capitalist Accumulation” in Volume I of
“Das Kapital”. When rereading this chapter (Marx 1954, Chap. 25) with Goodwin’s
model and its various extensions in mind, one indeed finds many observations of
Marx – in particular in its Sect. 19.1 – which are strikingly similar to the assump-
tions and conclusions which this growth cycle model exhibits. However, Marx also
very often stresses aspects of the behavior of “capital” which are not covered by
this approach to cyclical growth (where profits are more or less mechanically in-
vested by “capitalists”). These aspects typically concern the strategic possibilities
of capitalists when faced with the profit squeeze mechanism due to a low number of
unemployed workers in the reserve army.1

Such strategic considerations have, by and large, not found inclusion in the for-
mal discussion of the Goodwin growth cycle. There exist attempts of Balducci et al.
(1984), Ricci (1985) and in particular Mehrling (1986) where the theory of differen-
tial games is applied to this type of growth cycle model, but this seems to represent
all efforts made to incorporate game-theoretic aspects into this conflict over income
distribution. In this respect K. Lancaster’s (1973) related model on the dynamic in-
efficiency of capitalism has received much more attention in recent years, cf. Haurie
and Pohjola (1987) for a typical article on this subject.

Mehrling’s (1986) game-theoretic approach to Goodwin’s classical model of the
class struggle starts from the following simple generalization of the basic features
of this model:

bw D Pw=w � �aC bV orbu � bV � a �m; (19.1)
0 � bK � �.1 � u/ or � .nCm/ � bV � �.1 � u/ � .nCm/; (19.2)

u � 1; V � 1; uY � cLs : (19.3)

1 I am grateful to R. Neck, J. Rosenmüller and E. Wolfstetter for helpful comments as well as
suggestions for (future) extensions of this chapter. Usual caveats apply.

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 19,
c� Springer-Verlag Berlin Heidelberg 2010
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The meaning of the notation used in these equations is the following

Ow the growth rate of real wages;
u D w=y D .wL/=.yL/ D wL=Y the share of wages;
V D L=Ls the rate of employment;
m D by the growth rate of labor productivityy;
� D Y=K the output–capital ratio;
n D bLs the growth rate of the labor force;

a; b; c parameters.> 0/:

Equation (19.1) says that the growth rate of wages is limited by a labor market
reaction curve �aC bV , i.e., a real-wage Phillips curve (note that there is no differ-
ence betweenbu and bw in Mehrling’s paper because he excludes technical progress:
m D 0). Next, (19.2) states that the growth rate g of the capital stock K is limited
from above by the amount of profits per unit of capital and from below by zero (be-
cause there is no depreciation of existing capital). Finally, the first two inequalities
in (19.3) are obvious, while the third is an assumption which is needed in Mehrling’s
modifications of this growth cycle model to allow the analysis of workers’ and capi-
talists’ control problems in this model. This assumption states that the sum of wages
must cover the subsistence requirements cLs of the total workforce and it will play
no role in the present chapter (note in this regard, that the inequalities w > 0, u > 0,
V > 0 will always be fulfilled due to the growth rate formulations used in this
dynamic model).

Mehrling assumes that the right hand side inequalities in (19.1), (19.2) are turned
into equalities when agents act as isolated atoms and thus neglect their impact on
the economy-wide variables in their “optimization” problem. In this case the known
cyclical solutions of the Goodwin model are obtained if none of the other restrictions
come into effect (see our Sect. 19.6 for an analysis of how the conditions u � 1,
V � 1 can be avoided). This standard version of Goodwin’s growth cycle will also
be the starting point of our own modifications of this model.

If workers or capitalists – or both – act as a group then solutions different from
the above are derived in Mehrling’s paper with respect to the given constraints
of the model. He discusses as alternative solutions a workers’ control problem, a
capitalists’ control problem and a codetermination equilibrium. All these solutions
look appealing in their ideality which is based on the assumption that both workers
and capitalists maximize their discounted income stream from now to infinity when
choosing the variable under their control, i.e., the change in the share of wages Pu on
the one hand and the change in employment PV on the other hand. In the context of
a growth cycle model such as Goodwin’s – which already through minor extensions
generates solutions that cannot be determined explicitly – the attempt to behave in
such a way must be based on a huge amount of knowledge, which indirectly also
involves costly learning processes, corrective actions, etc. We therefore shall make
use of the opposite approach and will start from a very myopic type of behavior of
the agents (which only later on should be extended toward more elaborate types of
behavior).



19.1 Introduction 413

Fig. 19.1 Maarek’s model of the conflict over income distribution

A simple further game-theoretic approach to the Marxian analysis of class strug-
gle that we have not mentioned so far is provided in Maarek’s (1979) book on Marx’s
“Capital”. In Sect. 8.4 of this book he makes use of a model of bilateral monopoly to
describe a Robinson/Friday example where Robinson owns the means of production
and subsistence and exploits the labor power of Friday in such a way that the initial
conditions for exploitation are always set anew.

A simple presentation of Maarek’s model is given by the graphical representation
shown in Fig. 19.1:

Y W Output corresponding to Friday’s remuneration
s W Friday’s salary
d W Minimum amount for Robinson which induces him to pay and feed Friday

for a workweek instead of working himself
A W Range where “power” decides on the distribution of Friday’s product

The great disadvantage of this model is that it only sets limits to the conflict over
income distribution, but does not say anything more definite on this matter. It is thus
not well-suited for an application to the conventional modeling of the growth cycle
related with this conflict.

A way out of this difficulty may be found in the approach of Güth and Selten
(1982) who derive a wage-bargaining equation from certain axioms on the bar-
gaining process. This bargaining equation is then used in an extended linear
multiplier-accelerator model to investigate the implications of this modification
for this standard model of a business cycle. Unfortunately, it does not appear to be
an easy task to apply their considerations to a nonlinear model such as Goodwin’s.
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Our approach to introduce aspects of the theory of games into this growth cycle
will therefore be much simpler, in that we shall make use of the Nash bargaining
solution for the labor–capital relationship in order to close the degree of freedom of
the above model of Maarek. We shall make use of a simple extension of Friedman’s
(1986, pp. 179–180) example of labor/management negotiations in order to apply
it to a class-struggle model as in Goodwin (1967). Our approach of modifying this
model will consequently be a cooperative one and it will be confronted with an al-
ternative view where cooperation does not take place between capitalists and (part
of) the labor force, but where the labor force acts as a single unit. The aim of this
chapter thus simply is to explore some aspects of cooperation (or of conflict) be-
tween capital and labor in the otherwise harmonious setup of Goodwin’s model
where capital always fulfills its social role and invests all profits (see also our con-
cluding remarks in this respect). This last observation also indicates that, of course,
much work remains to be done if one truly attempts to exploit the (non-) cooperative
aspects that can be associated with the Marxian background of Goodwin’s approach
to cyclical growth.

In contrast to the pessimistic views that Marx was forced to adopt in view of the
situation he faced at his times, let us add here, that also his own model of cyclical
accumulation exhibits at least two features which he did not analyze very thoroughly
in their potential of implying less negative conclusions on the future of capitalism:

1. Labor itself is one of the driving forces in his analysis of the cyclical nature of
accumulation.

2. Without the assumption of an ever increasing organic composition of capital
his model implies that real wages must grow (on average) in line with labor
productivity.

In particular this latter aspect implies that there is considerable scope for coop-
eration among capitalists and workers which, however, has not yet been analyzed
formally in the context of Marx’s growth cycle analysis.

To start our own investigations of this approach to cyclical growth we shall show
in Sect. 19.2 that the Goodwin growth cycle will not be modified by the assump-
tion of two groups of workers which exhibit a productivity differential (instead of
the usually assumed homogeneous type of labor) – as long as these two groups can
enforce conditions of equity which exactly mirror their productivity differential. In
Sect. 19.3 we then assume that there is cooperation between capital and the more
productive segment of the labor force by making use of Friedman’s (1986) example
of labor – management negotiations in this dynamic setup. A check of the suffi-
ciency conditions for the Nash-solution used will reveal that this solution must be
situated on the boundary and not in the interior of the admissible domain. Incor-
porating this contract between capital and part of the workforce into the Goodwin
model will then imply an increase of stability for this model accompanied by a re-
distribution of income from low skilled workers to high skilled ones. Section 19.4
then attempts to remove an important weakness from the above original Goodwin
model – which is comparable to the weakness of the border case of neutral stability
of the linear multiplier – accelerator model. In our view, a Marxian completion of
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Goodwin’s cycle must – even in simple situations – give rise to a kind of limit cycle
behavior instead of the three types of dynamics usually associated with this model
(i.e., center-type, purely implosive or purely explosive dynamics). We shall estab-
lish conditions which will imply such a behavior. On the basis of such a completion
we will then also be in the position to show that the partial cooperation considered
in this chapter will even be capable of removing such a structurally stable cycli-
cal pattern from this model and again lead to asymptotically stable cyclical growth.
This pronounced improvement in stability will again be accompanied by a shrink-
ing average income share of the second group of workers in comparison to the case
where there is solidarity between the two groups in the sense of Sect. 19.2. In an
appendix we finally will attempt to incorporate into the model a less myopic type of
the behavior of firms than has been assumed so far.

19.2 Solidarity Among Workers

As Mehrling (1986) we start from the well-known Goodwin model of cyclical
growth

bu D f .V / �m; (19.4)
bV D �.1 � u/ � .nCm/; (19.5)

where the Phillips curve f will for simplicity be assumed to be a linear function of
the rate of employment V W f .V / D �aC bV: We extend this model by assuming
in addition that there exist two types of workers, one with productivity index y1 and
one with productivity index y2. We denote the productivity differential by

�y D y1=y2 (19.6)

and assume �y > 1 (all other assumptions of the model remain as before, i.e., in
particular bLs1 D bLs2 D n for the now two natural rates of growth of the model;
�y D 1 will reduce the model to Goodwin’s original case). Finally, we shall make
use of the following abbreviations:

�i D �K=yi ; ki D �i=L
s
i D �K=yiL

s
i .i D 1; 2/ and �L D L

s
1=L

s
2 .b�L D 0/:

Having assumed two types of labor, demands that individual and average shares of
wages, of productivity indexes, and of rates of employment have to be distinguished.
We denote the individual magnitudes by

u1; u2; V1; V2 (and y1; y2/;

where ui D wi=yi is defined as the share in individual (not average) productivity.
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For the corresponding averages we then get

w D
w1L1 C w2L2
L1 C L2

D w2 �
�yL1 C L2

L1 C L2

y D
y1L1 C y2L2

L1 C L2
D y2 �

�yL1 C L2

L1 C L2
;

i.e., u D w=y D w2=y2 D u2 D w1=y1 D u1 if we assume w1 D �yw2, i.e., if
relative remuneration corresponds to relative productivity for the two given types of
workers. Furthermore

V D
L1CL2

Ls1 C L
s
2

D
L1

Ls1
�

Ls1
Ls1 C L

s
2

C
L2

Ls2
�

Ls2
Ls1 C L

s
2

D V1q1 C V2.1 � q1/ D V1

if we assume V1 D V2. Under the same assumption, output Y can be rewritten as
follows

Y D y1L1 C y2L2 D y1V1L
s
1 C y2V2L

s
2

D V2L
s
2y2.�y�L C 1/ D VL

s
2y2.�y�L C 1/ (19.7)

which finally gives

bY D bV C nCm (19.8)

since �y�L C 1 is a constant.
If now the two groups of workers are conjointly responsible in that they only

accept employment under the conditions:

1. w1.0/ D �yw2.0/ (fair relative remuneration at t D 0)
2. bw1 D bw2 (equality in the results of each wage bargain)
3. V1 D V2 (equality of employment opportunities)

then it is easily shown that not only the assumptions (up to �y > 1), but also the
implications of the present model are the same as that of the original Goodwin
cycle:2

1. bu D bw=y Dbu1 Dbu2 D f .V2/ �m D f .V / �m
2. bV D bY � .nCm/ D bK � .nCm/ D �.1 � u/ � .nCm/; see (19.7)

The above assumptions on the type of solidarity among workers consequently
produce the same cycle model as before and thus again imply the known kind of
neutral cyclical stability which characterizes the interaction between income distri-
bution and accumulation in the Goodwin growth cycle.

2 Savings S D .1� u/Y D PK.
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19.3 Partial Cooperation Between Labor and Capital

In contrast to the preceding situation let us now assume that there is an inclination
to cooperate between capital and the more productive type of labor (while the con-
ditions for the second type of labor remain the same as before). We also assume that
the first type of labor is indispensable for production, i.e., Y D 0 for L1 sufficiently
small (depending on the amount of capital that is employed). In formal terms we in
fact make the assumption that

Lmin
1 D k

min
1 � �K=y1; kmin

1 D const. > 0

describes the minimum amount of labor necessary to operate the economy if the
capital stock is presently at the level K. The assumed Leontief technology therefore
exhibits a discontinuity for shrinking L1 > 0. Finally – due to “legal restrictions” –
binding contracts are considered as admissible only for the above type of restricted
cooperation.

To model the basic case of such a cooperation we shall make use of the example
of wage negotiations in Friedman (1986, pp. 179–180) and assume for our present
case:

(a) U.w1; L1/ D w˛1L
1�˛
1 ; ˛ 2 .0; 1/ (19.9)

as utility function of (the union of) the first type of workers and

(b) ˘.w1; L1/ D Y � w1L1 � w2L2; (19.10)

i.e., profits as the firm’s “utility function”.
We assume that capital controls the wage rate w1 and that workers (of type 1)

control employment L1, so that the point . Nw1; NL1/ D .0; 0/ can be considered to
describe the case where no contract on .w1; L1/ comes about (see our above as-
sumption) implying .U; �/ D .0; 0/ in this case.

Note with respect to the above, that the wage w2 is given in each moment of
time (its motion is governed bybw2 D f .V2/, V2 D L2=Ls2). Note furthermore, that
output Y is determined by �K in the context of Goodwin’s model. Note finally, that
the volume of employment L2 depends on the decision that is made with regard to
L1 in the following way

L2 D
�K

y2
�
y1

y2
L1 D �2 � �yL1: (19.11)

We consider this game as a Nash bargaining game. The Pareto optimal curve may
be found by maximizing

ı w˛1L
1�˛
1 C .1 � ı/Œ�K � w1L1 � w2.�2 � �yL1/� (19.12)
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for ı 2 Œ0; 1� with respect to the wage w1 and employment L1. Solving the first
order conditions and equating the resulting two equations then gives the expression

w�1 D
˛

2˛ � 1
�yw2 .L�1 indeterminate) (19.13)

which only gives a meaningful expression if ˛ > 1=2 holds true.
The Nash bargaining solution may now be found by maximizing

w�1L
1�˛
1 � Œ�K � w�1L1 � w2.�2 � �yL1/�

with respect to L1 which gives

L�1 D
2˛ � 1

2 � ˛

�
�K ��2w2
�yw2

�
D
2˛ � 1

2 � ˛
�1

�
1 � u2

u2

�
; �1 D

�K

y1
: (19.14)

This “bargaining solution” has the nice property that w�1 exceeds the wage which
group 1 received in the preceding section, since ˛

2˛�1
is always larger than one (for

˛ > 1=2 it is monotonically falling,C1 at ˛ D 1=2, and 1 at ˛ D 1). Furthermore,
w1 and w2 exhibit the same rate of growth which makes it easy to incorporate this
solution into the Goodwin model in order to analyze the effects of the above type of
cooperation.

However, in our two step procedure of analyzing the Nash bargaining solution
we did not pay attention to second order conditions and thus did not yet test for true
maxima.

With regard to the first step H D ıU C .1 � ı/˘ �! max [see (19.9), (19.10)]
we get as second order conditions .w1 the first, L1 the second variable):

H11 D �ı
˛

w21
u.1 � ˛/;

H12 D H21 D ı
˛.1 � ˛/

w1L1
� .1 � ı/; and

H22 D �ı
1 � ˛

L21
˛:

The symmetric matrix .Hij / has a negative trace, so a positive determinant would
imply negative real eigenvalues and thus negative definiteness. However,

det.Hij / D .1 � ı/Œı.2w˛�11 L�˛1 ˛.1 � ˛/C 1/ � 1�

which gives

det D 0 for ı D 1
det > 0 for ı < 1; sufficiently close to “1”
det < 0 for ı < 1; sufficiently close to “0”
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The technique used to determine the Nash contract is therefore problematical.
And indeed, when one checks the second order conditions for the above “Nash
solution” (19.13), (19.14) of eH D U �˘ one finds:

eH11 D �U
�.1 � ˛/

L�1
w�1
;

eH22 D �U
� w�1
L�1

�
1 � ˛

˛
.2 � ˛/

�
;

eH12 D eH21 D �U
�.2 � ˛/; i.e.,

det e.Hij / D .U �/2
.2 � ˛/.1 � 2˛/

˛
< 0 for ˛ > 1=2

(and again trace < 0), i.e., indefiniteness. The problem of finding a Nash bargaining
solution hence must be considered anew.

To obtain the proper Nash solution the characterization of the admissible
.w1; L1/-domain is of help (as shown in Fig. 19.2).

In this figure Lmin
1 denotes the minimum amount of labor of type 1 necessary

to operate the technology in view of the level of capital K presently in existence.
Furthermore, the maximum amount of employment of type 1 is Lmax

1 D �K=y1
which may be larger or smaller than the supply of labor Ls1, giving rise to full or
less than full employment of type 1 under such conditions. Finally, the curve � D 0
is given by w1 D �K.1 � u2/=L1 C u2y1.

Fig. 19.2 A graphical representation of the admissible domain in the .w1; L1/ space
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Since we already know that there is no interior Nash solution w�1 ; L
�
1 for

max
.w1;L1/2D

U �˘ (19.15)

the solution to this problem can only lie on the right hand or on the left hand bound-
ary of the domain D.

Case A:
Assume that the right hand boundary of D is the relevant one for the above

maximum:

1. If we have L�1 D L
s
1.k1 D �K=y1 � L

s
1, i.e., V �1 D 1/, we get by inserting this

into (19.15) and by maximization:

u�1 D w�1=y1 D
˛

1C ˛
Œk1.1 � u2/C u2� >

˛

1C ˛
. if u2 < 1/: (19.16)

2. In the opposite case Ls1 > L
max
1 (unemployed workers of type 1 and V2 D 0) we

get for the wage rate w�1 on the right hand side of D:

u�1 D w�1=y1 D
˛

1C ˛

�
and V �1 D

�K

y1L
s
1

D k1 < 1

�
: (19.17)

Considering the dynamic implications of the second situation first, we get (be-
cause of V2 	 0):

bV �1 D bK � .mC n/ D �.1 � u�1/ � .mC n/ D �=.1C ˛/ � .mC n/

which with respect to values of �;m; n corresponding roughly to empirical mag-
nitudes can be assumed to be a positive scalar. This situation can consequently be
regarded as being of a temporary nature only, so that sooner or later the situation (1)
we have depicted in Fig. 19.2 will come about.

In this latter case we have

u�1 D
˛

1C ˛
Œk1.1 � u2/C u2�; V �1 D 1 .see 3.8/;

V2 D k2 � �y�L D �y�L.k1 � 1/ D k2.1 � 1=k1/;

u D u�1=k1 C u2V2=k2 D
˛

1C ˛
.1 � u2 C u2=k1/C u2.1 �

1

k1
/ D h.u2; k1/;

(since V1 D 1, k1 > 1; h1;2 > 0) and because of the following relationships:

u D
w1L1 C w2L2
y1L1 C y2L2

D u1V1
y1L

s
1

�K
C u2V2

y2L
s
2

�K
D u1V1=k1 C u2V2=k2;

V2 D k2 � �y�LV1 and k2 D k1�L�y �:
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The above equations now imply

bu2 D f .V2/ �m D f .�L�y.k1 � 1// �m; (19.18)
bk1 D bK � .mC n/ D �.1 � u/ � .mC n/

D �.1 � h.u2; k1// � .mC n/ (19.19)

as the final dynamics for Case A [where Ls1 < �K (or k1 > 1) holds true].
For the Jacobian of this system we consequently get by our above calculations

J D

�
0 C

C �

�

which implies the asymptotic stability of the steady state of our model (19.18),
(19.19). The steady state values of (19.18), (19.19) are:

u02 D
Œ.1 � .mC n/=�/.1C ˛/ � ˛�k01

k01 � 1
D
Œu0.1C ˛/ � ˛�k01

k01 � 1
; (19.20)

k01 D 1C
aCm

b�L�y
Œf .V2/ D �aC bV2�; (19.21)

V 02 D
aCm

b
ŒV 01 D 1�; (19.22)

u0 D 1 � .mC n/=�; (19.23)

u01 D
˛

1C ˛
Œk01.1 � u02/C u02� D ˛k

0
1.1 � u0/ D ˛k01 �

mCm

�
: (19.24)

Note here, that u02 > 0 if u0 D 1 � nCm
�

> 1=2 .> ˛=.1C ˛/, ˛ > 1=2/.
Case A thus exhibits an asymptotically stable steady state, where the first group

of workers is fully employed at the wage contract w�1 D
˛
1C˛

Œk01.1 � u02/C u02�y1.
For the parameter values ˛ D 2=3, � D 1=5, m D 0:06, n D 0:04, b D 1,

a D 0:9; �y�L D 1=0:96, we for example have:

k01 D 2; V 02 D 0:96; u0 D 0:5; u02 D 1=3; u01 D 2=3;

i.e., a significant difference to the situation we have considered in Sect. 19.2.
And in the second case, i.e., the temporary situation u�1 D

˛
1C˛

(and V �1 D
k1 � 1, see (19.17)) we get as share of wages u�1 D 0:4 .
 2=3/ and as dynamics
the equation

OV �1 D �=.1C ˛/ � .mC n/ D
1

5
�
3

5
�
1

10
D 0:02

which again demonstrates that this situation will lead us to full employment for the
first group of workers.
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When this state is reached a regime switching takes place which, however, will
not be analyzed in this chapter in greater depth due to the preliminary type of the
above model. Instead, we simply note that the model (19.18), (19.19) will also
be globally stable (see the generalization of Olech’s theorem in Ito 1978), but we
have to stress also that care must be taken with regard to initial, intermediate and
boundary conditions to obtain an economically meaningful path leading from

u�1 D
˛

1C ˛
D 2=5; V �1 � 1 to the final values uo1 D 2=3; V �1 D 1:

For the purpose of comparison with Sect. 19.4 let us add here a simulation ex-
ample which is based on the same numerical values as those in Sect. 19.4. This
example shows – in Fig. 19.3 – the regime switching process from k1 D V1 � 1

to k1 > 1 and V1 D 1. This figure also exemplifies that despite a very rapid and
in the end cyclical process toward high employment of the second segment of the
labor force, the ratio u2 D w2=y2 of their share in their individual productivity is
not much higher than the minimum level u2;min D 0:2 which we have assumed here
as starting value for an initial employment of this type of labor (Such a minimum
level is necessary to allow for a proper regime switching from the employment rate
V2 D 0 to rates where V2 > 0).

Note with regard to Fig. 19.3 that the V2-curve must be steeper than the k1-curve,
since the later measures the employment effects with regard to the first type of labor
(which has a higher productivity y1 > y2). Note furthermore, that this model is
asymptotically stable, but that there is a long phase of absorption with regard to
the second group of laborers before their effect on income distribution becomes a

Time

0<u, u2<1, 0<V2<1, 0<k1 <6

0

V2k1

u2

u

.2

.5

5

.95

2000

Fig. 19.3 Various adjustment paths
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matter. Note finally, that the implied effect on the average share of wages is mainly
due to the strong and positive effect on the individual share u�1 of the first group of
workers.
Case B:

We have assumed until now that the solution to (19.15) will always lie on the right
hand boundary of the domain D. Let us briefly consider also the other possibility
that it is situated on the left hand side of D. In this situation we have instead of the
equations which characterize case A.1 (A.2 does no longer exist):

bu2 D f .V2/ �m D f .�L�y.k1 � 1// �m D g.k1/; g0 > 0;
bk1 D bK � .nCm/ D �.1 � u2.1 � 1=kmin

1 /=.1C ˛/ � .nCm/ D h.u2/; h0>0;

because of kmin
1 D �K=.y1L

min
1 / .> 1/ and because of the following equations:

k1=V1 D k
min
1 ;

k2=V2 D 1 � k
min
1 ;

u D u�1V1=k1 C u2V2=k2;

u�1 D
˛

1C ˛
Œ.1 � u2/kmin

1 C u2�:

The above two dynamic equations immediately show that this case will lead us
back to the original type of Goodwin’s growth cycle. In this case the new behavior
of the first group of workers does not add anything new to this growth cycle model.

19.4 A Simple Completion of Goodwin’s Growth Cycle
and the Implications of Cooperation

Goodwin’s growth cycle has often been criticized because of its structural instability,
i.e., its property of having only closed orbits as solution curves of its dynamics.
Furthermore, in view of Marx’s (1954, Chap. 25) descriptions of such a cycle, it
appears much more adequate to model such a conflict over income distribution in
a way such that a limit cycle will come about, i.e., by means of an unstable steady
state solution which at the same time does not lead to a purely explosive behavior.
Instead, as has already been suggested by Marx, reproductive forces will come into
being when employment and income distribution depart too much from their steady
state values:

The rise of wages therefore is confined within limits that not only leave intact the foun-
dations of the capitalistic system, but also secure its reproduction on a progressive scale.
(Marx 1954, p. 582)

In the context of a model which centers on the labor market only it is, however,
difficult to obtain such a limit cycle behavior purely from the conflict over income
distribution. Lags in production would suffice to destabilize the steady state, but
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would give rise to a complicated delayed differential system. Following Flaschel
(1988) we will therefore choose a simpler way to obtain such an instability and
we shall only make use of very crude mechanisms to keep the interior explosive
behavior within economically meaningful bounds. The purpose of this exercise
will be to test whether the results of the preceding section on the partial cooperation
between capital and labor can be extended to this more complete type of dynamics
and whether this cooperation will give rise to significant changes of its limit cycle
behavior, in particular whether it is capable of generating asymptotic stability, i.e.,
of removing the permanently cyclical nature of the conflict over income distribution
governing the case of atomistic competition.

To provide a basis for such a test the following modifications will be assumed
with respect to Goodwin’s original cycle (see Sects. 19.1 and a19.2):

bwm2 D f .V2/Ce�.g.u//bp; (19.25)
Pp D 	.u/ŒA.wm1 L1 C wm2 L2/=.�K/ � p�; A > 0; (19.26)
bK D i.V2/�.1 � u/; (19.27)

where:

1. e�.g.u// D �.u/ fulfills �.u0/ > 1; �0.u/ < 0 and �.u/ < 1 for u > 0 sufficiently
large, u0 the steady state value of the wage share u

2. 	.u/ fulfills 	0.u/ � 0, 	.u/ ! 1 for u ! 1 [and 	.u/ 	 0 for u � u0 � ı,
some ı > 0]

and where

3. i.V2/ D 1 for 0 � V2 � 1 � �; � > 0 small andD 0 for V2 D 1

(all functions are supposed to be sufficiently smooth).
Since we only want to treat the dynamics (19.18), (19.19) – where V1 equals

1 – in this extended model we have formulated the above modifications only with
respect to V2, i.e., with respect to that group, which is excluded from cooperation.
Equation (19.25) then says that the rate of change of money wages wm2 depends on
the rate of employment V2 of this group and by means of a factor e�.:/ on actual
inflation bp D Pp=p. This factor e�.:/ in turn is assumed to depend on the growth
rate g of output Y (and capitalK/ and is larger than “1” when g equals the “average”
conditions g0 D g.u0/, i.e., the steady state value. Note that this rate g is always
equal to �.1 � u/ in this growth cycle model, so that a positive dependence ofe� on
the rate of growth g is turned into a negative dependence � on the share of wages u.
This is the central component used here to obtain an unstable dynamics around the
steady state. Note in addition, that the assumption � 	 1 will lead us back to the
original growth cycle model.

Equation (19.26) claims that prices Pp change according to the discrepancy be-
tween marked-up average wage costs and actual prices p. In addition, the speed
of adjustment with regard to these target prices becomes larger and larger if the
wage share approaches “1”, i.e., inflation will accelerate then. Furthermore, the
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assumptions on 	.u/ exclude “significant” deflation (i.e., 	 	 0 for target prices
“significantly” less than actual ones) to avoid certain complications which are asso-
ciated with such an occurrence.

Finally, (19.27) simply states that capital accumulation will stop if there is no
further labor available. This, of course, is a very crude, but necessary assumption in
a model in which the only alternative to direct investment is consumption.

Equations (19.25) and (19.26) imply

bw2 D f .V2/ � .1 � �.u//	.u/.Au � 1/ (19.28)

as new form of the real-wage Phillips curve .bu2 D bw2 � m/. And from (19.27) we
get as our second differential equation [see (19.19) in Sect. 19.3]

bk1 D i.V2/�.1 � u/ � .mC n/: (19.29)

This dynamical system can be transformed into an autonomous one in exactly the
same way as the one in Sect. 19.3 [see the equations preceding (19.18), (19.19)],
i.e., by making use of the relationships

u D
1

1C ˛
Œ.1 � 1=k1/u2 C ˛� and V2 D .k1 � 1/�y�L:

Let us assume finally that the steady state wage share uo D 1 � .mC n/=� can
be obtained without inflationary pressures, i.e., the parameter A is set equal to 1=u0

in the following. This implies that our new dynamical system

bu2 D f .�L�y.k1 � 1// � .1 � �.u.u2; k1//	.u.:; ://.Au.:; :/ � 1/ �m (19.30)
bk1 D i.�L�y.k1 � 1// � �.1 � u.u2; k1// � .mC n/ (19.31)

has the same steady state values as the one of Sect. 19.3.
It suffices therefore to check the Jacobian of this system to see whether the coop-

erative element introduced in Sect. 19.3 will make any difference in comparison to
the “solidarity version” of this model. This latter version is obtained from the above
model by setting u D u2 D u1, V D V2 D V1 and by noting thatbk1 equals bV D bV 1
in this case .k1 D V1/ (note that V2 is then no longer determined as a residual with
regard to V1, so that �L�y.k1 � 1/ must be replaced by V1 D V2 in this case). We
then get

bu D f .V / � .1 � �.u//	.u/ŒAu � 1�; (19.32)
bV D i.V /�.1 � u/ � .mC n/: (19.33)

This is the more complete version of a Goodwin growth cycle that we would asso-
ciate with our above quotation from Marx’s Capital and the comments we related
with it. Note that this more refined dynamics also exhibits the same steady state
values as the model of Sect. 19.2 (because of A D 1=u0/:
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Fig. 19.4 The phase diagram
of the generalized Goodwin
growth cycle model

Fig. 19.5 A simulation
example of the limit cycle of
the model
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The dynamics (19.32), (19.33) gives rise to the following phase portrait (see
Fig. 19.4) which already indicates that the model (19.32), (19.33) will exhibit a limit
cycle (see Fig. 19.5).3

The Jacobian of this model at the steady state is given by

J D

�
�.1 � �.u0//bp0.u0/u0 f 0.V 0/u0

�V 0 0

�

which shows that this steady state is an unstable node or focus (trace > 0; det > 0),
as it was intended by the assumption made.

3 The parameter values are: m D 0:03, n D 0:02, � D 0:2, A D 4=3, f .V / D �a C bV

with a D 0:9, b D 1, i.V / D �50V C 50 on [0.93,1], 1 � �.u/ D h.u/ piecewise linear with
h.0/ D �0:5, h.0:72/ D �0:05, h.0:78/ D �0:05, h.1/ D 0:5 and 	.u/ 
 0 on Œ0:0N6�, 	0 
 4

on .0:N6, 0.75], 	0 
 400 on (0.75,1].



19.4 A Simple Completion of Goodwin’s Growth Cycle 427

Figure 19.5 provides a simulation of this modified Goodwin model for the above
parameter values. It (as well as Fig. 19.4) clearly exemplify the forces which keep
this unstable dynamics within bounds: Inflation is the means by which the rate of
profit is defended against a wage share which is rising too high and a marked fall in
the rate of growth of capital accumulation prevents that the full employment barrier
can be crossed.

The model therefore provides a simple example for Marx’s view on the cyclical
nature of capitalistic accumulation as well as on the reproduction of its basis of
existence, i.e., a rate of profit that is positive throughout.

Let us now turn to the model (19.30), (19.31) and the possible role the cooper-
ative aspect may play in the above type of accumulation dynamics. Calculating the
Jacobian at the steady state gives

J D

 
�.1 � �.u0//bp0.u0/u0uu2 f

0.�/�L�y � .1 � �.u0//bp0.u0/u0Uk1
��uu2 � k

0
1 ��uk1 � k

0
1

!

D

�
C C

� �

�
:

The question now is whether there exist plausible situations in which the destabi-
lizing effect of the first term in the diagonal of J is overcome by its new second
term, so that the trace of J will become negative (which together with det > 0 then
implies local asymptotic stability). Obvious assumptions – which will lead to such
a result – are given by

(a) 1 � �.u0/ small
(b) 	0.u0/ small Œbp0.u0/ D 	0.u0/.Au0 � 1/C 	.u0/A � A	.u0/�
(c) k0i close to 1 Œ� ˛=.1C ˛/�

On the basis of these observations the factual disappearance of the limit cycle of
Fig. 19.5, left side, can, e.g., be obtained if we add the following parameter values
to this example: �L D 0:2, �y D 1:2, and ˛ D 2=3. Note that Fig. 19.6 depicts this
result for the average wage share u on the horizontal and the employment rate V2 on
the vertical axes:

Figure 19.6, right side, finally shows the time paths for the variables: u (average
share of wages), V2 (employment rate of the second group of workers), k1 (capacity
to employ workers of type 1) and u2 (the ratio w2=y2/. It in particular demonstrates
that k1 remains near to its initial value k1.0/ D 5, so that the full employment
of the first group of workers is always ensured .k1 2 Œ4:7; 5:1�/. And because of
u�1 D Œu2.1�k1/Ck1�

˛
1C˛
� �1:6 u2C2 we know that u�1 must follow a time path

exactly opposite to that of u2 (with a higher amplitude and an upward displacement
term). Nevertheless, u2 and u run parallel to each other because of the relative low
number of workers of type 1 .�L D 0:2/.

In addition to the steady state results of Sect. 19.3 we thus get that even cy-
cles of a persistent nature will be turned into an asymptotically stable dynamics if
the assumed type of cooperation between capital and the first type of workers is
established.
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Fig. 19.6 Convergence: phase plot and time series representation

19.5 Conclusions

In Marx’s (1954) Chap. 25 on the “General Law of Capitalistic Accumulation” a
variety of aspects are considered which influence and modify the basic growth cy-
cle mechanism that he formulates in the first section of this chapter as a critique of
the Classical Theory of Accumulation and in particular of the Malthusian Popula-
tion Law. Among these qualifications of the basic form of his analysis of cyclical
accumulation we, for example, find:

(a) The influence of financial asset holdings
(b) The problem of capital export
(c) The influence of “capital” on labor demand (through technical change) as well

as on labor supply (migration)
(d) Problems of labor market segmentation

We have attempted in this chapter to integrate this last aspect into the well-known
growth cycle of R. M. Goodwin, but have done this in a way which at the present
stage does not resemble any of the problems which Marx discusses in his analysis
of the typical labor market segments of his time. Instead, we have simply assumed
two types of labor characterized by different productiveness per “workweek” and
have attempted to analyze what new aspects may come about if the more productive
group in fact cooperates with “capital” in contrast to the case where it exercises
solidarity with the other group of workers.

Our main findings were that the first group will gain from such a cooperation –
and the second will loose – and that this cooperation will contribute to the stabiliz-
ing features of Goodwin’s growth cycle model. Such findings should not, however,
come as a surprise to those who use Goodwin’s context for a modeling of the
class struggle and the conflict over the distribution of income. As recently stated
by Wörgötter (1986, p. 225):
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Capitalists . . . join the class struggle over income and employment possibilities between
different parts of the labor force only indirectly. One could even say that capitalists act as
agents for the unemployed part of the labor force. Insofar capitalists resist higher wage de-
mands for the already employed, the rate of accumulation can increase and new employment
possibilities arise.

This quotation concerns the time structure of employment possibilities as it is influ-
enced by the conflict over income distribution. What we have done in this chapter
is that we have added a further – vertical – component to this structure which – on
closer inspection – may reveal a similar type of conflict as the one quoted above.
We consider it too early, however, to draw definite conclusions on this matter from
the investigations we have made so far.

Nevertheless, it is clear that Goodwin’s growth cycle is still fairly incomplete
(see our Sect. 19.4), in particular as a model of Marx’s views on cyclical accumu-
lation. Much work remains to be done to obtain a more convincing picture of the
conflict over income distribution (be it Marxian or otherwise) from this prototype of
a growth cycle model. Yet, despite this critique of its preliminary nature, Goodwin’s
model rightly deserves the attention it has received in the past and hopefully also
will receive in the future, since it is explicitly or implicitly involved in a variety of
growth models of very different economic schools of thought.

Malinvaud (1980) assumes that the negative effect of rising wages on investment
is less severe than their positive effect on consumption in order to obtain a model of
a Keynesian depression (instead of a variant of a Goodwin cycle when appropriate
modifications of the model are assumed, see Flaschel 1993, Chap. 5, for details).

Marglin (1984) discusses the Neo-Marxian model of the interaction of growth
and income distribution verbally, which – when modeled – would have led him to
some variant of the Goodwin model, too.

From all this – and also from many other models of cyclical growth – it can be
concluded that the problem of integrating questions of income distribution into the
macroeconomic analysis of economic evolution must at present be characterized as a
very underdeveloped topic, where often aspects of the Goodwin model are involved,
yet are not systematically explored.

Appendix: An Extended Objective Function of Firms

Regarding the assumed “utility function” of firms (19.10) an obvious objection
against its form is the following: Due to the existence and employment of a sec-
ond type of labor which gives rise to changing wages according to the labor market
reaction curve Ow2 D f .V2/ it is not plausible that firms will only pay attention to the
present levels of wages w2 and w1. Instead, they of course will also try to take their
future development appropriately into account. In the context of Goodwin’s growth
cycle model this is, however, in general a very difficult task – due to the fact that this
model does not allow for an explicit solution if slight complications are introduced
into it.
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Because of this fact and because of the in principle myopic perspective which
we shall continue to assume with regard to the behavior of the agents of our model,
we propose the following simple generalization of the objective functional (19.10)
of firms:

Z h

0

.�K.t0 C �/ � w1.t0 C �/L1.t0 C �/ � w2.t0 C �/L2.t0 C �//d�: (19.34)

This new function now allows for the fact that firms may try to choose employ-
ment L1 and thus also L2 in such a way that they can benefit from the future
development of wages with regard to the aggregated profits (19.34). To keep the
model tractable we shall furthermore assume that firms use current rates of change
(as constants) to calculate the future development of profits. This gives rise to

�K.t0/

Z h

0

.1C g�/d� � w1.t0/L1.t0/
Z h

0

.1C x�/.1C g�/d�

�w2.t0/L2.t0/
Z h

0

.1C f .V2.t0//.1C g�/d�

if we use .1 C ::�/ instead of e::� as an approximation (g the rate of growth of K
and x the rate of growth of wages w1 assumed by firms). Solving the above integrals
and neglecting all terms of type xg, f .�/g, etc., then gives rise to

�
�K.t0/.1C gh=2/ � w1.t0/L1.t0/.

x C g

2
h/ � w2.t0/L2.t0/.1C

f .V2/C g

2
h/

�
� h:

An average expected rate of profit r may therefore be obtained from this expres-
sion by dividing it byK.to/.1Cgh=2/h (neglecting again all terms where products
of growth rates are involved). This finally gives

r D �f1� Œu1.to/V1.to/=k1.to/�.1C xh=2/� Œu2.to/V2.to/=k2.to/�.1C f .V2.to//h=2/g;

where as before we use the abbreviation ki D .�K/=.yiL
s
i /, i D 1; 2: Note, that

uiVi=ki is equal to .wi=yi /.Li=Lsi /.yiL
s
i /=.�K/ by definition.

This is the final form of function which we shall take as the objective functional
of firms in this section. Suppressing the time index and setting for simplicity h D 1
it reads

r D �Œ1 � .u1V1=k1/.1C x=2/ � .u2V2=k2/.1C f .V2/=2/�: (19.35)

It should be stressed here that we did not say anything on the growth factor 1Cx=2
of wages w1 so far. This factor will be regarded as exogenously given in this chapter.
The main difference between (19.10) and (19.35) thus is the integration of the wage
effect Ow2 which results from the choice of V1 and its influence on V2 D k2��y�LV1.
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The question now is whether firms can gain from taking into account the future
development of capital growth and of market wages w2 in comparison to the situa-
tion we have analyzed in Sect. 19.3.

Let us first investigate here the analog to the situation we have considered on the
pages following Fig. 19.2, i.e., the case where the Phillips curve f .V2/ D �aCbV2
is sufficiently flat so that the assertion of no interior equilibrium will hold true in
the present context, too. Calculating as before the upper boundary of the region
D.r 	 0/ now gives rise to

u1 D
1 � u2V2=k2.1 � a=2C bV2=2/

.V1=k1/.1C x=2/
(19.36)

with V2 D k2 � �y�LV1, i.e., V2=k2 D 1 � V1=k1. For 1 � u2 > 0 this is again a
strictly decreasing function of V1.k1; k2 given).

In principle we therefore get the same figure as in Sect. 19.3 (where we had a D
b D x D 0), but now with respect to the variables u1; V1 (and the like).

Let us assume again that V �1 D 1 is the typical situation to be investigated for a
solution of

max
u1;V1

H D max
u1;V1

u˛1V
1�˛
1 � r.u1; V1/ (19.37)

[in the case V �1 D k1 D V max
1 < 1 we again immediately get u�1 D ˛=.1 C ˛/ –

because of V2 D 0 – and the same result on the temporary nature of such a situation].
When also part of the second type of work force is employed, however, we get

(besides V �1 D 1/:

u�1 D
1 � u2.V2=k2/.1 � a=2C .b=2/V2/

.1=k1/.1C x=2/
�

˛

1C ˛
(19.38)

with V2 D k2 � �L�y D �L�y.k1 � 1/, i.e.

u�1 D
˛

1C ˛
�
k1 � u2.k1 � 1/.1 � a=2C .b=2/�L�y.k1 � 1//

1C x=2
:

For the average wage share u D u�1=k1 C u2V2=k2 we thereby get in analogy to
the preceding section the equation:

u D
˛ C u2.1 � 1=k1/Œ�˛.1 � a=2C .b=2/�L�y.k1 � 1//C .1C x=2/.1C ˛/�

.1C ˛/.1C x=2/
:

(19.39)

Near the steady state the expression in square brackets is approximately equal to
.1 C x=2/.1 C ˛/ � ˛.1 � m=2/ and thus positive. We therefore again get the
following functional relationship .k1 > 1/:

u D u.u2; k1/; u1; u2 < 0
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and consequently again a dynamical system of the type:

Ou2 D f .�L�y.k1 � 1//;
Ok1 D �.1 � u.u2; k1// � .mC n/

which is locally asymptotically stable.
We note that the steady state values V 02 , k01 , u0 are the same as in the preceding

section. This implies by (19.39) that u02 will be somewhat lower and therefore that u01
will be somewhat larger than the corresponding values of the case a D b D x D 0.

The extension (19.34) thus does not seem to give rise to substantial modifications
of the conclusions that we have obtained in Sect. 19.3. Nevertheless, there is a new
aspect involved when moving from (19.10) to (19.34) – in the case where the labor
market reaction curve Ow2 D f .V2/ becomes sufficiently steep. Yet, we are only able
to treat this aspect in a very preliminary way in this chapter (as follows):

When one investigates the first-order conditions of the Nash solution (19.37) for
interior points of the domain D one finds (for a linear curve f .V2/ D �aC bV2):

r D
u1V1.1C x=2/�

˛k1
(19.40)

and

r D
�V1.u1.1C x=2/ � u2.1 � a=2C bV2//

.1 � ˛/k1
(19.41)

(note, that these conditions have already been solved for the variable r and recall,
that V2 D k2 � �y�LV1). Equating these two expressions gives

u1 D
˛

2˛ � 1
� u2 �

1 � a=2C bV2

1C x=2

as a necessary relationship between the optimal values u�1 , V �2 .V
�
1 /, ˛ > 1=2. And

for the second order conditions we obtain at the optimal values u�1 ; V
�
1 by means of

(19.40), (19.41) the expressions .H D U � r/:

H11 D �
˛

u1
U Œ.1 � ˛/r=u1 C 2.V1=k1/.1C x=2/��

D �U.1C ˛/.V1=u1/.�=k1/.1C x=2/;

H22 D �U Œ.2 � ˛/
1 � ˛

˛
.u1=V1/.�=k1/C u2�L�y�b=k1�;

H12 D H21 D �U�.2 � ˛/=k1:

This again implies trace .Hij / < 0. And for the determinant of this matrix we get
(up to a positive scalar)

.2 � ˛/.1 � 2˛/

˛
C
V1

u1
.1C ˛/u2�L�yb: (19.42)
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As is obvious from (19.42) this expression can be made positive if, e.g., the
parameter b is chosen large enough [Note again, that the first term is negative for
˛ 2 .0:5; 1/]. The matrix .Hij / thus can be made negative definite, so that there is
now scope for an interior solution of (19.37). Such an interior “Nash solution” is,
however, difficult to calculate because of the various quadratic terms involved in its
determination. In addition, it is not clear whether a global maximum is given by this
new type of solution. And a final problem in the treatment of such a “Nash solution”
is that its derivation by means of the Pareto frontier

ıU C .1 � ı/r ! max
u1;V1

; ı 2 Œo; 1�

still faces the problem we noted in Sect. 19.3. The first order conditions (solved
for ı) are given by

ı D
.V1=k1/�

.˛=u1/U C �V1=k1
;

ı D
.u1=k1/� � .u2=k2/��L�y Œ1 � a=2C bV2�

U.1 � ˛/=V1 C .u1=k1/� � �.u2=k2/�L�y.1 � a=2C bV2/
:

Instead of (19.13) these two equations now imply a negatively sloped straight line
A1 � A2V1 D u1 with

A1 D
˛

2˛ � 1
Œu2�y �.1 � a=2C bk2/ and A2 D

˛

2˛ � 1
Œu2�y �2b:

Yet, in contrast to the results on the second order conditions ofU �r derived above,
one here finds in analogy to the results in Sect. 19.3 that these conditions will allow
for negative definiteness only if the parameter ı is again chosen sufficiently large in
the interval .0; 1/.
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Chapter 20
The Classical Growth Cycle: Reformulation,
Simulation and Some Facts

20.1 Introduction

In this chapter, we confront a simple extension of the Goodwin growth cycle model
and its numerical investigation with corresponding phase plots of data on the wage
share, the employment rate, the inflation rate, the profit rate and the output–capital
ratio for eight OECD countries. Our modification of this growth cycle model gives
rise to a locally unstable growth pattern which is turned into overall stability by an
appropriate boundary behavior of investment and the inflation rate. The main finding
of the chapter is that for some countries there are some similarities between the plots
generated by the model and the data. This suggests that its long swing implications
should be investigated further.

Whenever it comes to a consideration of the work of Richard Goodwin there is
one particular paper which is most often given special attention: his 1967 growth
cycle treatment of the “inherent conflict and complementarity of workers and cap-
italists”.1 A recent example for this observation is Solow’s (1990) contribution to
a collection of essays in honor of R. Goodwin where he not only provides a char-
acterization of the merits and weaknesses of this prototype model, but also briefly
discusses whether this employment-cycle model of the conflict over income distri-
bution “fits the facts” (and what such a question may mean here).

One of Solow’s findings in this article (on p. 39) is that there is a suggestion in
the data of a predominantly clockwise motion, but in three separate episodes as far
as the phase plot of annual US-data, 1947–1986 of the share of wages and the rate of
employment is concerned. On p. 40 he adds: “It is also worth noting that the phase
diagram contains the bare hint of a single large long-period clockwise sweep. It is
only a hint, at best a hint. One cycle is not a periodic motion”.

There are many authors who have questioned the empirical relevance of the
period length that is implied by Goodwin’s growth cycle model, when its param-
eters are given empirical content, see in particular Atkinson (1969). Solow himself
calculates a period length of 8–10 years even for (linear) Phillips curves that are

1 See Goodwin (1967, p. 58).

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 20,
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very steep. He then concludes (p. 38) that “Goodwin cycles are something else.
What could that something be? Here I presume that we must take seriously the story
that the model tells: . . . ”.

We can add here to Solow’s subsequent arguments the fact that Goodwin’s model
has the Marxian theory of the reproduction of capitalism as its background, see
Goodwin (1967, p. 58), i.e., in this case: Marx’s (1954) analysis of Chap. XXV,
Sect. 1. There it is in particular stated by Marx (p. 582):

The rise of wages therefore is confined within limits that not only leave intact the founda-
tions of the capitalistic system, but also secure its reproduction on a progressive scale

This is definitely a statement on the stability, but not on asymptotic stability of a
capitalistic economy.

Though it is true that Marx relates this observation to the industrial cycle, as he
calls it, it is a fairly compelling conclusion here that a growth cycle which recreates
endogenously the conditions for rapid capital accumulation may exhibit a phase
length (and an amplitude) that not only varies considerably with the social environ-
ment in which it operates, but which may also become very large. It is in particular
to be expected under modern postwar conditions that the large changes in income
distribution among capital and labor which this reproduction process calls for will
use up an amount of time which can be drastically higher than the 8–10 years that
Solow calculated by means of a steep real-wage Phillips curve.

From our point of view, the attempts in the literature which modified the
Goodwin growth cycle in such a way that it comes close to observed business
cycles take the wrong track, since they relate this cycle to observations which
have not much to do with a far-reaching removal or replacement of economic and
social conditions which “seriously imperil the continual reproduction on an ever-
enlarging scale, of the capitalistic relation” (Marx 1954, p. 582). Goodwin cycles
are something else!

The Goodwin model has often been criticized because of its structural instabil-
ity, see Farkas and Kotsis (1992, p. 514) for an example. These two authors then
proceed to revise this model by introducing aspects of logistic saturation, delays
and various types of memory into it which give it a three- or four-dimensional dy-
namic structure. These reformulations are very interesting, also from a mathematical
point of view. They are used by Farkas and Kotsis to analyze in particular the cy-
cle length that is generated by them when supplemented by Hungarian data of the
period 1950–1980. In this way they generate a 12 years cycle-length that can be re-
lated with an observed “equipment cycle” and a 4 years cycle-length which is close
to “inventory cycle time”.

It is not the aim of the present chapter to devaluate these extensions of the
Goodwin model, but to contrast them at the present stage of only very preliminary
investigations of its empirical content with an alternative approach which attempts
to argue for a large phase length and amplitude of this growth cycle (at least as far
as the development of industrialized countries after World War II is concerned).

As far as the case of no active fiscal policy is considered, we shall favor here
the view, that an appropriately modified Goodwin model can only explain the
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explosive cyclical pattern around its steady-state (through the cross-dual Lotka–
Volterra mechanism it contains), and that appropriate mechanisms have to be added
to it far off the steady-state to establish its viability in the large. Since capital is
always fully utilized in the Goodwin as well as in our following model, the destabi-
lizing role of conflicting income claims is modeled with respect to wage formation in
this chapter solely. Missing here as in Goodwin’s original formulation is a theory of
effective demand which explains the rate of capacity utilization in each moment of
time on the basis of which a second Phillips-curve mechanism (relating the rate
of price-inflation with the rate of capacity utilization and expected wage inflation)
could be added to it. By neglecting this, the instability of the steady-state of our
model is therefore achieved in a very preliminary way.

Similarly, the forces which will guarantee the viability of the considered dynam-
ics will also be introduced here in a very preliminary way. The rate of growth of the
capital stock falls to (or below) the “natural rate” of growth (including productivity
growth) near the absolute full employment ceiling, giving rise to “steady” growth
for some time – in an essentially unsteady situation (due to the increase in the share
of wages that accompanies this temporarily “steady” growth). Furthermore, if this
increase in the wage share goes very far, price inflation in excess of wage inflation
will be generated which prevents further increases in the wage share (in particular
if this share approaches “one” which is possible in the original Goodwin model).
This second barrier to the explosive dynamics of our modified Goodwin growth cy-
cle will remain secondary in our following simulations of such a model, where we
mainly rely on the full employment ceiling in order to get viable trajectories for
suitably set initial conditions. The present approach is therefore similar in method
to the Hicksian multiplier-accelerator theory of the trade cycle, see Hicks (1950),
i.e., it does not explain cycles and viability by a single mechanism.

To put it in a different way: We basically retain the “linear” growth structure of
the Goodwin model. Beyond locally bifurcating limit cycles, we use forces that
only come into being far-off the steady-state growth path (and which in general can
only be treated analytically for dynamical systems of dimension 2 by means of the
Poincaré–Bendixson theorem).

Such an approach is mathematically seen much cruder and simpler than the
model extensions chosen by Farkas and Kotsis. It aims at the construction of a
very basic growth cycle model and its simulation which is capable of generating
the bare hint of a single large long-period clockwise sweep that Solow observed for
the postwar development of the US-economy.

In the next section we shall introduce our reformulation of the Goodwin growth
cycle. We shall do this by also integrating into it a government sector allowing
for a discussion of the effects of Classical or Keynesian fiscal policy rules as in
Wolfstetter (1982). Such policy rules must, however, be interpreted with care in
the present context, since we do not question the use of Say’s Law of the origi-
nal Goodwin model.2 They only mean here that government can influence capital

2 See Flaschel (1992, 1993) for the introduction of IS- and also LM-components into such a frame-
work and Solow (1990, 3) on the importance of such extensions.
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accumulation by means of certain bond market operations while effective demand
problems, an “independent” formation of the rate of interest, as well as money and
liquidity considerations are completely ignored. We therefore investigate from a
very limited perspective the role of government in its role of helping or hindering
a Marxian “Bereinigungskrise” to run its course. Nevertheless, the model provides
interesting and provocative implications of the use of active fiscal policy in such
a growth cycle context which deserve further discussion as to their survival in
Keynesian reformulations of the Goodwin model.3

Section 20.3 then considers some simulation runs of this model without and with
fiscal policy (and also with certain supply side shocks). The aim here is to show
that the model can be used to describe (transient) regimes or longer periods of full
employment (with a rising share of wages) as well as regimes or longer periods
of stagflation with a length that is similar to Solow’s observation of a single long-
period clockwise sweep. These simulations also serve to illustrate the dynamics of
the model and to provide a background with which the data of the following section
can then be compared.

The next section performs Solow’s “crudest sort of comparison with data” for
eight countries of the OECD in order to see whether there is something typical in
the pattern observed by Solow for the USA. The conclusions will be the same as in
Solow’s article (we quoted above) and which he continuous as follows (on p. 40):

There may be work for Goodwinians here too, theoretical as well as applied. It would make
more sense to me if the Goodwinian mechanism were to apply on a time scale considerably
longer than the ordinary business cycle. Since the model determines its own period, there is
room for some interplay between facts and the theoretical structure.

In this respect, the present chapter provides some preliminary material of theoretical
as well as of statistical kind, from which, however, at the present stage no definite
conclusions can and should be drawn. It follows Solow’s (1990) proposals by ex-
tending the model as well as the data set in the hope that this may initiate further
work from a theoretical as well as an empirical point of view which – even if the
Goodwin growth cycle approach is thereby found to be only partly correct – would
be of utmost importance in judging the evolutionary power of capitalistic societies.

The last section of the chapter, finally, lists important exogenous elements of our
model which have been kept constant in its present form, but which are definitely not
constant in reality, in particular in light of the long period view adopted in this chap-
ter. This list in particular shows that the present model is still much too simple in
order to allow for a close resemblance between its simulations and the factual data.
We close this chapter by a brief consideration of the wage-share/employment-rate
phase plot for the United Kingdom, 1855–1965 which again gives a bare hint that
the discussed post-war development may have been uniquely related to this period
and that the interaction of the wage share and the rate of employment may have been
quite different before World War I.

3 See Flaschel (1993, 4.7) for an example of this.
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20.2 A Growth Cycle Model with a Government Sector

The model we shall make use of employs the following macroeconomic variables.
As is customary, we here make use of Px to denote the time derivative of a variable
x and Ox for its rate of growth:

Y Gross output
K Capital stock
L Employment
Ls Labor supply
V D L=Ls Rate of employment
w Nominal wages
p Price level
! D w=p Real wages
� Output–capital ratio (a constant)
y D Y=L Labor productivity
u D !=y Wage share
r D �.1 � u/ Profit rate
m D Oy Productivity growth (a constant)
n D OLs Labor force growth (a constant)
ı Rate of depreciation (a constant)
Op Rate of price inflation
Ow Rate of wage inflation
t Tax rate (a constant, T D t .Y C rB/ total taxes)
G Government expenditures
B Outstanding government debt

The model is of the same one-sector type as Goodwin’s original approach, but it
integrates a government sector and assumes more complicated reaction patterns in
its wage-price sector as well as for investment behavior:

Ow D f .V /C �.u/ Op; f
0

> 0; �
0

� 0; (20.1)

Op D 	.u/ŒAu � 1�; 	
0

� 0;A > 1; (20.2)
PK D i.V /Œ.1 � t /.Y C rB � !L/ � PB� � ıK; i

0

� 0; (20.3)

G=Y D t C �. NV � V /; �
>
D
<
0; NV 2 .0; 1/; (20.4)

G D T � rB C PB; T D t .Y C rB/: (20.5)

Equation (20.1) describes a money-wage Phillips curve. The strictly increasing
function f of the rate of employment V is assumed to vanish at a (unique)
V0 2 .0; 1/; where the rise in money-wages is equal to the rate of price-inflation
Op times an aspiration factor � which depends negatively on the share of wages

u. Lower (higher) rates of employment lead to less (more) money-wage inflation.
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Equation (20.2) describes price inflation as being of a delayed markup type Pp D

	.u/ŒAwL=Y � p� with a given markup factor A on average wage costs per unit
of output and a speed of adjustment 	 that increases with the share of wages u.
Equation (20.3) describes capital formation. It assumes that all wages (after taxes)
are consumed and that profit and interest income (after taxes) is invested in the
new bond supply PB of the government and in capital goods. The type of bond as-
sumed here is of the fix price variety .pB D 1/ and it is furthermore assumed that
government makes bonds perfect substitutes for real capital formation by always
equating the rate of interest to the actual rate of profit. The value of the function
i.V / is normally equal to 1, but it begins to fall near “full employment” V D 1

reaching zero for some level of overemployment V > 1: This means that firms
reduce gross investment significantly (step by step) near and above the full employ-
ment barrier. This behavior may be motivated by an increased investment of capital
goods in R&D, i.e., in the search for labor-saving techniques which may increase
the growth rate m of labor productivity when the economy comes near to the full
employment level. For reasons of simplicity we assume m as constant nevertheless.
Alternatively, one could have also assumed a positive relationship between the rates
n;m and the rate of employment V .

Equation (20.4) describes the fiscal policy rule adopted by the government. For
� D 0 it gives the case of a neutral government. A given parameter � > 0 de-
scribes a Keynesian policy rule (in a non-Keynesian setup), since it implies that the
government will increase (decrease) its expenditures when the rate of employment
V is below (above) its target level NV . By contrast, � < 0 represents a (neo)classical
policy rule where government reduces expenditures in the depression and increases
them in the boom. Equation (20.5), finally, is the government budget equation. It
allows to remove the expressions B; PB from the final presentation of the model (see
below) and also implies (together with the assumed consumption and investment
behavior) the validity of Say’s Law.

A special case of the above model is treated extensively in Wolfstetter (1982)
and a related one in Flaschel (1993, Chap. 4, Sect. 5). The following extends this
section (where stability was investigated by means of a suitably chosen Liapunov
function) to a study of local and global limit cycles via the Hopf-bifurcation and the
Poincaré–Bendixson theorem.

Equations (20.1)–(20.4) can be easily reduced to the following two-dimensional
dynamic system in the variables u; V W

Ou D f .V /C .�.u/ � 1/	.u/ŒAu � 1� �m (20.6)

OV D i.V /�Œ.1 � t/.1 � u/C �.V � NV /� � .nCmC ı/ (20.7)

since we have Ou D O! � Oy; O! D Ow � Op and OV D OK C O� � Oy � OLs by the definition
of V.D K � �=y=Ls/ and since (20.4), (20.5) give rise to

PB � .1 � t /rB D �. NV � V /Y:
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The steady state u�; V � of this dynamics is given by

f .V �/ D mC .1 � �.u�//	.u�/ŒAu� � 1�

u� D 1 � Œ.nCmC ı/=�/C �. NV � V �/�=.1 � t /;

if i.V �/ D 1 is assumed by an appropriate choice of the function i.:/:
The isoclines Pu D 0; PV D 0 of system (20.6), (20.7) read

Pu D 0 W V D f �1..1 � �.u//	.u/ŒAu � 1�Cm/;
PV D 0 W u D 1 � Œ.nCmC ı/=.i.V /�/C �. NV � V /�=.1 � t /:

For the simulations in the next section we assume for simplicity that f is linear:
f .V / D �V � �; �; � > 0: Furthermore, the monotonic functions i; 	; � are there
given by simple step functions which are chosen such that the following character-
istics of the phase diagram of the above dynamics are implied (for � D 0/ over the
economically relevant range of the wage share u:

This diagram assumes i.V3/ < .nCmC ı/=.�.1� t // and �.u/ > 1 for u < u2
and �.u/ < 1 for u > u2; which implies that the Pu D 0�isocline must be declining
to the left of u2 and rising to its right. A positive � gives each of the segments of
PV D 0 a positive slope and a negative � a negative one.

Figure 20.1 exemplifies in a simple way the two bounds that we want to impose
on our variant of the Goodwin model, namely:

1. That the rate of growth of the capital stock falls below the rate nCm if V is close
to its maximum value Vmax > 1.

Fig. 20.1 The construction of the isoclines of the phase plot
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Fig. 20.2 A smooth version of the phase plot

2. That the adjustment speed 	 of prices towards their target value becomes suffi-
ciently high for very low rates or shares of profit, i.e.,

	.1 � �/.Au � 1/ > �Vmax � � �m

holds for all u sufficiently close to 1.

The above situation of step functions i; �; 	 will underlie the simulations of the
following section. It is there used as a crude approximation to the following smooth
situation where we have also added the directions of motion for phase points off the
isoclines .� > 0 here) (Fig. 20.2). Smoothness assumptions are needed when one
wants to apply the Poincaré–Bendixson theorem to situations as the above to show
the existence of limit cycles.

In order to simplify further computations, we now assume A D 1=u� and
NV D V �: The latter assumption states that government takes the long-run aver-

age when formulating its objective concerning the employment rate. We then get
for the Jacobian J of system (20.6), (20.7) at the steady state:

J � D

�
�.1 � �.u�//	.u�/ f

0

.V �/ � u�

��.1 � t /V � ��V �

�
:

Keeping in mind our assumption �.u�/ > 1 we come to the following results:

Proposition 1. For all � > .1�	.u�//�.u�/
�V �

the trace of J � is positive, so that the

steady state is locally asymptotically unstable. For � < .1�t/f
0

.V �/u�

.1�	.u�//�.u�/ the determi-
nant of J � becomes negative and thus the instability is of the saddlepoint type.
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Proposition 2. If .1�	.u
�//�.u�/
�V �

> .1�t/f
0

.V �/u�

.1�	.u�//�.u�/ holds, at �H D .1�	.u�//�.u�/
�V �

a
Hopf-bifurcation takes place, so that we get a limit cycle for a small range of u’s
either lower or larger than �H or a center-type dynamics at � D �H : This will be
the case, if, given all the other parameter values, the adjustment speed of the wages
in the steady state is sufficiently high, i.e., if the slope of the function f is sufficiently
steep in V �.

This can easily be verified by inserting the special linear form for f .V / used for
the simulations: f .V / D �V � �; �; � > 0: Then the condition in Proposition 2
can be rewritten in the following way:

� Cm >
Œ.1 � �.u�//	.u�/�2

.1 � t /�u�
:

So � has to be large enough to fulfil this inequality. On the other hand, V � D
�Cm



< 1; so that we get a lower boundary for � W

� > � Cm >
Œ.1 � �.u�//	.u�/�2

.1 � t /�u�
:

The existence of limit cycles, however, is not restricted to this case. Note that the
boundary of the positive orthant is an invariant subset of the phase space of (20.6),
(20.7) [which therefore cannot be crossed by the trajectories of (20.6), (20.7)] and
that the assumed full employment ceiling guarantees that the dynamics must point
into the rectangle D for (nearly all) values of V close to Vmax. Furthermore, since
inflationary processes will diminish the share of wages u for values of it close to 1
(and V < Vmax/, the dynamics is also directed into D for all V � Vmax close to
u D 1. The rectangleD therefore determines an invariant subset of the whole phase
space of (20.6), (20.7) which gives the standard situation for the application of the
Poincaré–Bendixson theorem. We therefore get

Proposition 3. All trajectories of (20.6), (20.7) which start in D must be closed
orbits or tend to one (which is then called a limit cycle), if the steady state of the
model is locally unstable.

We consequently have that our modification of the Goodwin growth cycle cre-
ates a dynamics which is viable (i.e., stays within economically meaningful bounds
when started within these limits) and which comes close to persistent economic fluc-
tuations after some suitable chosen time-interval. Goodwin-like forces here create –
due to the steady state assumption �.u�/ > 1 – explosive motions (cycles near or
at the bifurcation value �H ), which latest are turned into cyclical motions when the
two ceilings Vmax or u D 1 are approached.

Keynesian fiscal policy cannot remove this cyclical pattern, however large it is
exercised. Classical fiscal policy, on the other hand, may make the steady state
asymptotically stable if it is used with sufficient strength. This asymmetry in the
stabilizing potential of the two considered policies also exists for small variations



444 20 The Classical Growth Cycle: Reformulation, Simulation and Some Facts

in the parameter � as simulation runs of the model can show, see the next section.
It can also be shown to exist for models with Keynesian demand restrictions, see
Flaschel (1993, Chap. 4) for example, and thus provides a further argument – from a
quite different angle than more usual ones – why Keynesian full employment poli-
cies may be problematic in the long run.

20.3 Some Simulation Results

In order to study the model numerically we shall make use of the following discrete
time version of it (which at one and the same time can be interpreted from an eco-
nomic and a numerical point of view, h being the period length as well as the step
length of the iteration procedure):

utCh D ut C uthŒf .Vt /C .�.ut / � 1/	.ut /.Aut � 1/ �m�;

VtCh D Vt C VthŒi.Vt /�..1 � t /.1 � ut /C �.Vt � V �/ � .nCmC ı/�:

This discrete-time dynamics will be used in the situation we depicted in Fig. 20.1 in
order to investigate the limit cycle result we have sketched for the smooth case in
the preceding section. Our aim here is to show that this simple model is capable of
generating trajectories which at least faintly mirror the full employment regime and
the stagflation regime of industrialized post-war economies.4

Our choice of the parameters � and ı is such that a time period of approximately
1 year is involved. The model is simulated (by means of the above Euler method)
by choosing for the step length the value h D 0:1. Choosing h D 0:01, instead,
for example, removes some of the kinks from the following simulations, but does
not change their overall outlook. However, only each tenth point in time is plotted
actually, so that the plots can be interpreted as showing yearly data throughout. The
simulations start with the steady-state values which are shocked after some time
.ut ! ut � 0:9/ in order to create the starting value for the phase plot.

Figure 20.3 shows the behavior of our simulated economy “T-land” over 75 years.
The artificial shock occurs at t D 15 . OD1960/ which, however, is of no real sig-
nificance for the interpretation of the results.

In the present simulation the stable limit cycle is created by the full employment
ceiling only (since � > 1 over the shown range of the wage share). The orbit remains
near full employment for 10–12 years. Thereafter declining employment rates are
coupled with further rising inflation rates, i.e., a stagflationary episode is then gen-
erated because of the high employment that preceded it. The following limit cycle

4 The numerical specification of the above model is as follows .A D 1=u�/ W n D 0:01; m D
0:03; ı D 0:16; � 
 0:6; t D 0:25: u� 
 0:555; V � D 0:96; f .V / D 0:2V � 0:162;
�.u/ D 1:05; 0:8; 0:5 on .0:4; 0:6/; .0:6; 0:65/; .0:65; 0:9/; respectively. 	.u/ D 0:1; 1:8; 4

on .0:4; 0:55/; .0:55; 0:65/; .0:65; 0:9/; respectively. i.V / D 1; 0:99; 0:95; 0:5 on
.0; 0:99/; .0:99; 1/; .1; 1:01/; .1:01;1/; respectively.
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Fig. 20.3 The model without fiscal policy (� D 0)

behavior allows for wage share variations crudely speaking between 51% and 58%
and rate of employment variations between 90% and 100% (D full, but not absolute
full employment). The period length of the cycle is approximately 30 years.

The other pictures in the figure show our simple kind of markup theory of infla-
tion (top, right), the behavior of the share of wages and the rate of profit over time
(based on our assumption of a constant output–capital ratio: bottom, left) and the
phase plot of the unemployment rate against the rate of inflation which is the typical
diagram for the standard presentation of stagflation (bottom, right). In sum, these
figures show some details of an explosive growth cycle model of Goodwin type
in which one further nonlinearity is operating: the full employment ceiling, which
keeps the model within economically meaningful bounds. Figure 20.4 provides an
example of the working of the Keynesian fiscal policy rule in this context. We here
once again stress that this type of behavior can also be shown for models with an
IS- or IS-LM-part.
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Fig. 20.4 Keynesian fiscal policy (� D 0:13)

Such a policy increases the amplitude of the cycle and decreases its phase length
significantly.

By contrast, a classical fiscal policy can even make the steady-state an asymptot-
ically stable one as the Fig. 20.5 shows.

The phase length as well as the amplitude of the cycle are both decreased con-
siderably in comparison to the case of a neutral policy and the cycle now disappears
in the long run.

Oil price-shocks can be interpreted as sudden changes in the markup factorA > 1
if there is a fixed ratio x (and y/ between the oil price and wages (and oil usage and
employment) and if the original markup A is applied to both unit-costs. The factor
A is then simply replaced by A.1 C x/.1 C y/, if it is furthermore assumed that
all income from this source is used for investment, just as all other profit income.
Adding three such shocks (two positive and a negative one) to the model without
fiscal policy then gives rise to the following dynamics which is our final illustration
of the working of the model of Sect. 20.2.
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Fig. 20.5 The classical regime (� D �0:13)

Figure 20.6 show that its first and larger “Goodwin” cycle owes its shape to the
three markup shocks and will only give way to the final limit cycle after reaching
it again from the full employment ceiling. This indicates that the limit cycle itself
may be fairly misleading regarding the long run outcome, if such shocks continue
to occur from time to time.

We have shown in this section a few possible outcomes for the model of
Sect. 20.2 under highly stylized assumptions on reaction patterns. These few
simulations nevertheless clearly indicate that complex patterns may be generated
from this simple model if its behavioral underpinning is subject to considerable
shifts from time to time.

20.4 A Look at the Data

In this section we confront the behavior of the economic variables considered in the
last section with corresponding data for the eight OECD-countries FRG, France,
Italy, Belgium, United Kingdom, Ireland, USA and Japan (Figs. 20.7–20.14). It will
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Fig. 20.6 Three exogenous price shocks (� D 0)

be, however, a very crude comparison, because in reality much more variables and
interdependencies have been relevant than are taken into consideration by the above
model. So it is already the raw material of the data, which, strictly speaking, should
be corrected with regard to the influence of such effects like, e.g., oscillations in the
capacity-utilization-rate or the shortening of working-hours per man in the period
considered; by the first effect the output–capital ratio and the rate of return of capital
are biased in comparison to the underlying model, and by the second one the rate
of employment. Only the elimination of these influences from the raw-data would
therefore provide an appropriate basis for the application of more advanced sta-
tistical and econometric methods, by which, perhaps, some conclusions about the
significance of the model’s set of variables could be drawn, see M. Desai (1984) for
an econometric analysis in this direction. There it is also shown, that the inclusion
of additional variables is necessary not only for the sake of a higher degree of com-
pleteness but also for technical reasons, i.e., to make the model an econometrically
measurable one.
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Fig. 20.7 Germany (FRG)

Nevertheless, the empirical results for some of the countries considered seem to
confirm the outcome of the model, at least with regard to the interaction between
the wage share and the rate of employment. This, of course, does not mean, that
reality can be reduced to Goodwin’s predator–prey-mechanism and that the story
behind the data is necessarily of the same “nice conservative property” that Solow
(1990, p. 38) attributes to the Goodwin model. On the other hand, Goodwin-like
forces might be one of the factors influencing the long-run outcome of a capitalistic
economy.

As the subsequent presentation of the empirical results should offer the possibil-
ity for a comparison with the simulations of Sect. 20.3 and the model discussed, the
data have been chosen in analogy to the definitions of the variables in Sect. 20.2.
Thus, the employment rate is represented by total employment in percent of to-
tal working population and the wage share by the compensation of employees in
percent of GDP. The inflation rate is computed on the basis of the CPI in the ex-
pectation, that it will not differ too much from the more adequate GDP-deflator.
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Fig. 20.8 France

Profit-rate and output–capital ratio finally have been ascertained with the help of the
stock of fixed capital, as far as corresponding data could be found. In these cases the
profit rate was derived as

(1�wage-share) � output–capital ratioD (1�wage-share) � GDP/fixed capital.

In order to plot wage-share, profit-rate and output–capital ratio in one diagram, the
latter was multiplied by 100, too.

In the other cases, i.e., those, where capital-stock-data were either missing or
of insufficient quality, a “gross-rate of return of the business-sector” was chosen
as a proxy for the profit-rate. The corresponding output–capital ratio could then be
obtained by dividing the rate of return of the business-sector by the (overall) profit-
share (D 1�wage-share) in the hope, that the wage-share will not differ too much
between the business-sector and the economy as a whole.

A great part of the data was taken from the database “International Statistical
yearbook 1992” on CD-ROM, which contains statistics from several organizations
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Fig. 20.9 Italy

like the “eurostat/cronos”-statistics from the Statistical Office of the EC, the
“International Financial Statistics (IFS)” from the IMF, OECD-statistics and others.
So the time-series for the GDP (in current and – as far as needed – in constant prices)
and the wage-share, which originate from the “National Accounts – Aggregates
(CRONOS/SEC1/Coll. 1–3)”, are part of the eurostat-database as well as the com-
ponents for the employment-rate, which can be found in the “social statistics
(CRONOS/SOCI)”, whereas the CPI-data for the inflation rate were taken – with
the exception of Japan – from the IFS. For Japan, the IFS-data of the annual growth
rate of the CPI contained obviously unrealistic values, so that they had to be substi-
tuted by corresponding numbers based on the CPI-data in the “ICG-part (General
Economic Information)” of the “CRONOS”-statistics.

In order to get – as far as possible – a uniform time-horizon for all countries
considered here, which additionally, should not be too short, data were taken from
1960 to 1990; only variables involving the capital-stock have not been available for
this range in all cases. For Belgium, the USA and Japan, however, the employment-
data from the “CRONOS”-statistics had to be supplemented by another data-source,
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Fig. 20.10 Belgium

because in the case of Belgium the value for 1990 was simply nonsensical, and
for the latter two countries it was missing at all. Thus, the time-series for the
employment-rate of these three countries were completed in the following way:

At first, the values for the “total working population” as well as for the “to-
tal employment” were compared with the corresponding series of “civilian labor
force total” and “civilian employment” from the journal “Eurostatistik – Daten zur
Konjunkturanalyse” (12/92 p. 38 and p. 41) published by the Statistical office of
the EC. While for Japan the values from both sources agreed completely, there was
a difference in level in the other two cases, possibly caused by the involvement
of the armed forces in the “CRONOS”-statistics. The annual absolute changes in
numbers, however, did not differ very strongly, so that the “CRONOS”-data could
be supplemented for 1990 with the help of these differences. On this basis the
employment-rate for 1990 was calculated. The main problem, however, consisted
in the search for data of the stock of fixed capital, because such statistics are not
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Fig. 20.11 United Kingdom

published in the Annual National Accounts and are generally difficult to obtain. So
finally two different data-sources had to be required: For Germany, Belgium, the UK
and the USA time-series of the net-capital-stock in current prices (or, in the case of
Belgium, in constant prices of 1985) from 1960–1985 and from 1964–1989 were
available in the respective journals “Flows and Stocks of Fixed Capital”, published
by the department of Economics and Statistics of the OECD.

For France and Italy the “Fixed Capital Stock”-data of the “CRONOS/Sec.2
(National Accounts-Goods & Services)”-statistics were chosen, because in the case
of France the OECD-statistics turned out to have the disadvantage of beginning
not before 1970, and for Italy these values were missing at all. Unfortunately
the “CRONOS”-data refer to the gross-capital-stock, which in contrast to the net-
stock does not take into account the depreciation with regard to the declining
income-generating-capacity of fixed capital assets through age and additional wear,
depending on the extent of its use (see M. Ward 1976, p. 22f. and, especially,
p. 31 for further discussion of this item). Therefore, the application of the net stock
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Fig. 20.12 Ireland

concept usually makes more sense, because the definition of depreciated capital is
more inclusive and therefore often more appropriate than the gross concept (see
“Europäische Wirtschaft”, No. 50, Dec. 1991, p. 135 and note that depreciation is
explicitly considered in the model discussed in this chapter). So the capital-stock
is systematically overestimated in the cases, where the gross-stock concept is used.
However, in the fixed-capital-data for the above two countries the sector of non-
market-services is missing, in contrast to GDP measurement and the profit-income
concept derived from it, which both refer to the whole economy.

With regard to Japan, only gross-capital-stock-data with some sectors missing
were available in the OECD-source and no data at all in the “CRONOS”-statistics.
For Ireland, in none of these sources a time-series of fixed capital could be found.
In order to obtain such data for these countries, the “gross rate of return of the
business-sector”, published in the already quoted journal “Europäische Wirtschaft”
(Table 3, p. 130) has been taken as the profit-rate. This proportion is defined as the
gross operating surplus divided by the gross-capital-stock, both with regard to the
business sector; the difficulty, which arose from this restriction for the calculation
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Fig. 20.13 USA

of the output–capital ratio, was already mentioned above. All this shows, that for a
given year these data and coefficients should not be taken for a comparison between
countries; only the patterns of the time-paths may give some kind of foundation for
considerations in this direction (comp. also: “Europ. Wirtschaft”, p. 136).

Finally, we should point to the fact, that all capital-stock-data are not really
“sound” data, but only estimations of the publishing organizations. The method
applied in this context is that of the “perpetual inventory” approach, which tries,
crudely speaking, to derive the gross-capital-stock-data from the formation of fixed
capital in the past with the aid of a so-called “survival function” employed to gener-
ate the weights for the investments of the various years under consideration. These
weights “represent the probability, as a function of age, of a capital good still be-
ing in operation at a given point in time” (see Keese et al. 1991, p. 13). The net
stock of a given year, which takes into account not only the probability of obsoles-
cence, but the whole range of depreciation as described above, can be obtained by
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Fig. 20.14 Japan

multiplying the gross-investment-data not only by their “survival-rate” but also by
an appropriate capital consumption coefficient (see Ward 1976, p. 31 and p. 56ff.)

After these preliminary remarks we can now focus our attention on the empirical
results for each country. In order to make them directly comparable to the simula-
tions of Sect. 20.3, the plots of the time-series are designed and grouped in the same
way as in this earlier section. We stress once again that all following considerations
are very crude and preliminary, attempting mainly to exemplify that there may be a
common mechanism behind the presented observations.

At first, with regard to the depicted “three-quarter” employment-rate and the
wage-share “cycle” of Fig. 20.7, one can crudely see an analogy to the correspond-
ing scenario of Fig. 20.5,5 where the Classical policy regime prevails and where it is
shown that each following cycle will be further and further away from the full em-
ployment ceiling that dominated the evolution of the economy in the first 15 years.

5 Note for all our comparisons of data and simulations that there is a significant difference in the
length of the periods that are plotted in the two cases.
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Yet, since the output–capital ratio � has declined most of the time during the con-
sidered period, part of the movement in the wage share may also be attributable to
this fact. Therefore, both Figs. 20.3 and 20.6 can also be related to this “bare hint
of a single large long-period clockwise sweep” as it was already observed in Solow
(1990, p. 40). It appears as if the fall in the share of wages and the revival in the rate
of profit is too weak – in particular in the light of the movement of the output–capital
ratio – to allow for an upswing as in Goodwin’s growth cycle approach.

The phase plots of the rate of employment against the share of wages are of
basically the same quality as for The FRG in the case France, Belgium and Ireland,
see Figs. 20.8, 20.10, 20.12. A look at the plots on the right-hand side of Fig. 20.7
furthermore crudely reveals some similarity to the corresponding plots of the “oil-
shock-simulation” of Fig. 20.6. The tendency that the relationship between the wage
share and inflation rate shifts to the right in the 1980s is again similar in the case of
France, Belgium and Ireland.

In the lower left hand plot of Fig. 20.7, the time series of u; r; � , we have some-
thing like a “tendency to fall” for the rate of profit r , which comes to an end after
1981. The situations in Figs. 20.3 and 20.6 come closest to this observation.6 Note
however, that these figures are based on a given output–capital ratio, while we have a
rising wage-share in combination with a falling “productivity of capital” � in the
real economy. This demonstrates the need to separate influences of the conflict over
income distribution from medium run trends in the output–capital ratio in a more
detailed investigation of the observed facts. The above tendentious fall in the rate
of profit is by and large confirmed by the time series of the other countries, though
there are also considerable differences between them.

The first plot in this figure seems again to have some similarity – perhaps here
the closest one – to the case of a “classical fiscal policy rule”, since this long period
swing possibly will not come up to same high employment rates as prevailed in the
1960s. The fall in the share of wages is here much too weak to allow for a recovery
of the Goodwin type. The third plot again shows a striking similarity between the
time-paths of profit-rate and output–capital ratio, which in comparison to the FRG,
however begin to fall about 10 years later. The last plot, finally, is not so far away
from the corresponding simulation of Fig. 20.6, with the exception of the period
between 1975 and 1980. It shows in comparison to the other countries in the clearest
way that high unemployment may have played a significant role in the cure of the
inflation problem, yet so far at the cost of making such high unemployment rates
persistent.

While the first two countries exhibited some characteristics comparable to our
simulations, this is much harder to assert in the case of Italy. There is a markedly
positive correlation between wage-share and employment movements after 1975
and the (still weak) Goodwinian upturn after 1985 is here completely missing. Fur-
thermore, the shift in the u; Op plot is here more of the opposite type than in Fig. 20.9.

6 It is important to note that the data (1960–1990) correspond to the time-interval 15–45 in the
Figs. 20.3, 20.6 of Sect. 20.3.
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Remarkably is again the parallel movement of the profit-rate and the capital–output
ratio and the persistence of high unemployment rates in the 1980s.

Belgiummaybeconsideredasthecasewhichcomesclosest tothesituationdepicted
in Fig. 20.3, i.e., to the pure form of the cycle. There is nevertheless a significant
similarity to the case of France, Ireland and the FRG, as we have already stressed.
Again, a strict markup-pricing is not underpinned by the data, although a positive
correlation between wage-share and inflation seems to hold in two different phases
again. As in most of the other countries, the development of the profit-rate does not
stand in contradiction to the simulation, but seems to be strongly influenced by the
output–capital ratio, which again behaves in the same way as the profit rate.

Like in the case of Italy and similar to it, no convincing similarity to the sim-
ulations can be observed. Again, we have a strong positive correlation between
the wage-share and the employment-rate. A unique markup-relation between wage-
share and inflation-rate is given a little bit more support here than in the case of the
other countries. Again the close relationship between the movement of � and r is
remarkable.

Remarkable in the case of Ireland is the depth of downturn of the employment
cycle and its shape. It is tempting to relate this with a Keynesian regime as shown in
Fig. 20.4 of the simulations. Yet this may be very premature, in particular, since we
do not investigate here the policy regimes that actually prevailed in Ireland during
this period.7 Recall also that our model does yet not allow for a proper treatment of
Keynesian demand management. A fall of the profit-rate within the considered time-
period, as suggested by the simulations cannot be observed in the case of Ireland.

With regard to the model as well as to the other countries the empirical results for
the USA appear as fairly atypically. Although the “full-employment-ceiling” during
the second part of the 1960s can be clearly identified in the first plot, these plots
have otherwise not much in common with the simulations (they are closest to the
case of a Classical policy rule). The most striking result here is, that the wage-share
only oscillates only between 60% and 61.5% after 1969, i.e., has remained nearly
constant, whereas in all other countries considered (as well as in the simulations)
the corresponding difference is over three times as much. Thus, the variation in
employment seems here to be mainly caused by factors outside the model. Recall,
however, that Solow found a bare hint for a long-period clockwise sweep in his
data for the USA and that this is indeed much more visible from his wage share –
employment plot than from ours (the source of his data and their exact definition –
for US non-farm business – is not given in his article).

There thus remains scope for a Goodwin-type cycle also in the case of the
US-economy. Here, the plot of the inflation rate against the unemployment rate is
remarkable, since it very neatly appears as a clockwise loop for the 1970s and the
1980s. Note here also that the large swings in the output–capital ratio are here not
closely mirrored in the movement of the profit rate.

7 One may however conjecture that “Keynesian” governments have been rarely in power after 1975.
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As in some of the previous cases, a breakdown of employment in Japan follows
after a – nearly – “full-employment-ceiling”. So we can also in this case interpret
the development up to 1990 as two to three quarters of a long-run cycle, although a
significant fall in the wage-share did not take place yet. In this respect the situation
is very similar to the USA, though employment rates are much larger than in the
US-case. In this last data set we have again the close correspondence between the
movements in r and � . Like in the case of Ireland, it should be remembered here,
that in the time series plot the profit-rate and the denominator of the output–capital
ratio refer to the business-sector, the wage-share and the numerator of � , on the
other hand, to the whole economy. With respect to the movements of the rate of
inflation there is no close correspondence to the other countries we have considered
in this section.

One of the authors has considered the above graphical presentations for the eight
chosen OECD-countries already 10 years ago and has, of course, found a still much
weaker evidence than is now available for the Goodwin growth cycle as a long swing
(under modern conditions of capitalist production). The most basic implication of
the investigations of this section thus surely is that one should continue this attempt
of looking at the data from a Goodwinian perspective latest at the turn of this century
in order to see how many of the conjectures it gives rise to (exemplified by our
simulations of Sect. 20.4) have materialized by then or have not. Of course, some
intelligently controlled econometrics – as Solow (1990, p. 40) calls it – may be of
great help then or even right now.8

20.5 Concluding Remarks and Outlook

Following Solow (1990, Sect. 6) we have confronted our version of the Goodwin
growth-cycle of Sects. 20.2, 20.3 with the facts by making use of the same 4 phase
plots or time series that were used in Sect. 20.3 to illustrate the working of the
model. As Solow we have made this comparison with data on the crudest level
to see whether there is some correspondence between the simulated and the factual
dynamics. Our findings have been that there is indeed a hint of a single large long-
period cycle which, however, cannot be expected to become really a closed orbit
before the start of the next century. We have plotted the data for eight OECD coun-
tries and have found similarities as well as significant differences. Taking all this
into account in our view suggests at the present stage of the investigation that there
is something important to be gained in trying the Goodwin model out for further
countries, for the 1990s, with more refined data techniques, etc.

In addition, the model of Sects. 20.2, 20.3 can be criticized in many respects and
thus may be subject to significant revisions before it can be really taken as a good
starting point, since:

8 See Desai (1984) for a first attempt of this kind.
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� It assumes too many things as constant which have not been constant at all in
the considered time span: labor supply growth n; labor productivity growth m;
the capital–output ratio �; the depreciation rate ı; the mark-up factor A; and the
fiscal policy parameter � among others.

� It allows for only two factors of production: capital and labor (no substitution
between them), with capital being always fully employed.

� It completely neglects effective demand problems (“independent” investment
behavior, IS-problems) as well as money and other financial assets (“indepen-
dent” interest rate behavior, LM-problems).

� It makes use of very primitive and limited adjustment functions f .V /; i.V /; �.u/;
	.u/ in particular in the attempt to limit the explosive behavior of our version of
the Goodwin growth cycle model.

� It is a model of a closed economy.

It is, e.g., apparent from the plots of Sects. 20.3, 20.4 that our simple representa-
tion of markup pricing does not show too much similarity with the actual phase plot
of the share of wages against the rate of inflation. But once again, since the model
seems to mirror something in the data, it is worthwhile to consider the Goodwin
growth-cycle model further as a possible explanation of the very long run aspects of
post-war development.

In addition to this, one should, of course take earlier time periods into ac-
count than only from the 1960s to the present if data – in particular on the wage
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share – are available. For the United Kingdom there exist such long time-series 9

from 1855 up to 1965 which are summarized by the phase plot and time series dia-
gram shown in Figs. 20.15 and 20.16.

These data10 seem to indicate that there have been two different types of
dynamics with respect to the interaction of the rate of employment and the share of
wages:

� The period before 1914 where the employment rate exhibits significant fluctua-
tions of less than 10 years in phase length

� The period after world war II (1945–1965–. . . ) where no such fluctuations can
be observed any more

Of course, fluctuations in the employment rate need not be accompanied by
Goodwin-type fluctuations in the share of wages. This is to some extent visible
when the data of Figs. 20.15 and 20.16 are divided into appropriate subsets as in
the Fig. 20.17. The important thing that can be obtained from these diagrams for
Great Britain (1855–1965) is that the Goodwin cycle – if it exists – must have been
significantly shorter before 1914 (with larger fluctuations in employment during
each cycle), and that there has been a major change in it after 1945. This may be ex-
plained by significant differences and changes in the adjustment processes of market
economies for these two periods: primarily price adjustment before 1914 and pri-
marily quantity adjustments after 1945. Again, this very tentative judgment must be
left for future investigations here.
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Chapter 21
The Goodwin Distributive Cycle After Fifteen
Years of New Observations

21.1 Introduction

In this chapter, we reconsider the simple empirical evidence for the existence of a
long-phased cycle in the state variables employment rate e and wage share v that we
have collected in Flaschel and Groh (1995) for a number of industrialized market
economies, see the preceding chapter. We do this on the basis of 15 years of further
observations and now also with quite modern econometric techniques. Our findings
will be that – in the case of the US economy – the only three-fourths closed long
phase loops we observed in this earlier paper1 can now be confirmed as by and large
closed, giving in sum an approximately 50 years long cycle in employment rates and
the wage share in its interaction with the six to seven business cycles observed in
the US economy between 1960 and 2006.

As basic theoretical explanation for the occurrence of such long-phased cycles
the reference to the seminal papers by Richard Goodwin (1967), augmented by Rose
(1967) type limit cycle considerations, and the many papers that are based on this
work suggests itself. By and large this means that we consider a growth cycle model
where the steady state of the model is repelling and where there are forces far off this
steady state which imply constant or falling employment rates at the full employ-
ment ceiling e D 1 and falling wage shares in situations where income distribution
squeezes profitability to a significant degree. We have supplied in Flaschel and Groh
(1995) a model example for such a situation and will recapitulate in this chapter only
the absolutely necessary ingredients that make a Goodwin–Rose growth cycle dy-
namics repelling at their interior steady state and bounded within the phase space
Œ0; 1�2. The implication of such a scenario will be a clockwise motion of the state
variables .v; e/ in the phase space Œ0; 1�2 as it has been observed for a number of
countries in Flaschel and Groh (1995).

Another example for such an observation is Solow’s (1990) contribution to
a collection of essays in honor of R. Goodwin where he not only provides a
characterization of the merits and weaknesses of this prototype model, but also

1 See the preceding chapter for a revised version.

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 21,
c� Springer-Verlag Berlin Heidelberg 2010
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briefly discusses whether this employment-cycle model of the conflict over income
distribution “fits the facts” (and what such a question may mean). One of Solow’s
findings in this article (on p. 39) is that there is a suggestion in the data of a pre-
dominantly clockwise motion, in three separate episodes as far as the phase plot of
annual US-data, 1947–1986 of the share of wages and the rate of employment is
concerned. On p. 40 he adds:

It is also worth noting that the phase diagram contains the bare hint of a single large long-
period clockwise sweep. It is only a hint, at best a hint. One cycle is not a periodic motion.

There are many authors who have stressed the empirical relevance of the period
length that is implied by Goodwin’s growth cycle model, when its parameters are
given empirical content, see in particular Atkinson (1969). Solow himself calculates
a period length of 8–10 years, however for an assumed linear real-wage Phillips
curve that is very steep. He then concludes (p. 38) that:

Goodwin cycles are something else. What could that something be? Here I presume that we
must take seriously the story that the model tells: . . . .

The conclusions of this chapter will be the same as in Solow’s article (we quoted
above) and which he continuous as follows (on p. 40):

There may be work for Goodwinians here too, theoretical as well as applied. It would make
more sense to me if the Goodwinian mechanism were to apply on a time scale considerably
longer than the ordinary business cycle. Since the model determines its own period, there is
room for some interplay between facts and the theoretical structure.

Last but not least, in addition to the theoretical considerations, the model’s contribu-
tion to economic policy issues should be recognized as well. Up to the present day,
the question regularly comes up in political discussions whether rising wages and
an increasing wage share are good or bad for employment. On the one hand, there is
the traditional view which claims a negative relationship between both magnitudes
due to higher production costs or a lower investment demand which additionally
reduces the growth of the capital stock in the future. This is also the view adopted
by the Goodwin model and its successors (see below). The opposite view, normally
put forward by trade unions, is that in a demand-constrained economy an increas-
ing wage share leads to more purchasing power for those people who have a higher
propensity to consume. This effect is perceived to be stronger than the adverse effect
on investment demand, provided that the latter is taken into account at all.

The interesting point is now, that the “long-period clockwise sweep” described
above contains four different phases two of which supporting the first and the other
two supporting the second view, at least at the first glance:

� Phase 1: declining v and rising e
� Phase 2: rising v and rising e
� Phase 3: rising v and declining e
� Phase 4: declining v declining e
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Obviously, the first and the third phase – if considered in isolation – are in line
with the first view, while the second and the fourth seem to support the second
standpoint. Given such a cycle without the concrete “background story” provided
by the Goodwin model, one might be tempted to conclude that there are – or have
been – times in which the “purchasing-power-effect” dominates and other periods in
which the “cost-effect” (or “Rose-effect”) overcompensates the former. In the light
of the approach considered here, however, the Rose-effect is dominant all of the
time and the apparently deviating phases have quite a different explanation. During
the second phase, characterized by v " and e ", the growth rate of effective de-
mand – triggered, among others, by high multiplier effects caused by supernormal
investment demand (due to the low wage rate) – is still higher than the growth rate
of labor supply, despite the fact, that the increasing wage share already has a damp-
ening effect on the demand side. In the fourth phase, in which v # and e # can be
observed, aggregate demand is already stimulated by the increasing investment, but
its growth rate is still too weak to cope with that of labor supply (caused, as in the
previous case, by a constant rate of Harrod-neutral technical progress or population
growth).

Against this background, the question about the empirical relevance of the model
considered here is of utmost importance. If it turns out not to contradict the data, a
straightforward policy implication is that there exists no cogent reason to abandon
a restrictive wage policy even in times where a falling wage share goes hand in
hand with a further increasing rate of unemployment. This follows because the true
reason – according to the model – for the ongoing deterioration on the labor market
is not the decline of the wage share, but the fact that the latter does not decline
sharply enough. Consequently, policy makers would be well-advised to resist the
political pressure resulting from an apparent failure of moderate wage policy, at
least as far as the link between wage share and unemployment is concerned.2 This
view is further underpinned by the fact, that due to the long-run nature of the model
also prolonged phases with falling v and falling e are not at odds with the model’s
predictions.

On this background, we shall introduce in the next section a general formulation
of the Goodwin growth cycle model. Section 21.3 then summarizes some time se-
ries evidence for the Goodwin cycle from the work of Flaschel and Groh (1995).
In Sect. 21.4 we provide basic econometric evidence for the existence of this cycle.
Section 21.5 makes use of more refined techniques that establish evidence for the
Goodwin growth cycle and its mirror image, the unemployment–inflation cycle.
Section 21.6 concludes.

2 This does not deny that restrictive wage policy (if not accompanied by additional measures) might
have side-effects which are not desirable with regard to its social or distributional consequences.
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21.2 The Growth Cycle Model: Basic Ingredients for a Limit
Cycle Result

In this section we sketch the bare essentials that allow for the derivation of a stable
limit cycles in the state space .0; 1/2. We start from a general 2D dynamical system3

of the form:4

Ov D Pv=v D f .v; e/; (21.1)
Oe D Pe=e D g.v; e/; (21.2)

where the state variables v; e denote the wage share and the rate of employment,
respectively, and where Ox is used to denote the growth rate of a variable x: In this
general form the model can be interpreted in the spirit of the original Goodwin
model as well as in terms of an approach where the demand constraint determines
output and employment. Thus, in the case of fv D 0 and ge D 0 one might think
of the classical variant with Say’s law applying and a fixed proportions technology
which makes employment dependent on the current capital stock. Combined with
classical saving behavior (i.e., with savings only stemming from capital income
while all wage earnings are devoted to consumption) this leads to the well-known
profit-squeeze which occurs if a rising wage share does no longer allow for enough
savings and thus investment in order to let the capital stock increase by a sufficient
amount to absorb labor supply. The resulting higher unemployment will then exert
a dampening effect on further increases of the wage share. Alternatively, as already
mentioned, one can interpret the above model in terms of a demand-constrained
economy with the wage share affecting consumption and investment demand; this
is also the variant pursued here.

Equation (21.1) can be derived from the general two wage/price Phillips curve
approach of Chiarella et al. (2005) and we may assume that fv < 0 holds true if
a Blanchard and Katz (1999) error correction approach is chosen as foundation of
the employed wage and price Phillips curves. The other partial derivative, fe , is due
to the role which employment plays in conjunction with the wage Phillips curve.
Since, however, increases of the nominal wage rate have a corresponding impact
on the development of prices (via the price Phillips curve), the net effect on the
development of the wage share is not unique. Thus, one might think of situations
where the wage-effect is dominant and others where the price-effect is stronger. In
the following, we will call the case fe > 0 a labor market led situation (since real
wage movement is then dominated by nominal wage movements) and the opposite
case (where price movements dominate) a goods market led situation.

3 See Barbosa Filho and Taylor (2006) and Taylor (2004) for detailed analyzes of systems of this
type.
4 The model underlying these two differential equations is typically formulated such that it includes
natural growth as well as Harrod-neutral technical change, assumptions that are not visible in the
reduced form we use here as a starting point.
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Equation (21.2) can be interpreted as a dynamic IS-relationship where income
distribution matters in aggregate demand and where the dynamic multiplier process
is characterized by the derivative ge (which can be positive or negative). The case
gv > 0 mirrors a situation in which the “purchasing-power-effect” of higher wages
(i.e., higher consumption demand due to a higher income share of people with a
higher propensity to consume) dominates the “cost-” or “Rose-effect”, according to
which higher real wages lead to a decline in investment demand. We call the case
where gv > 0 holds wage-led and the opposite case profit-led, in line with what is
used in the literature.

In sum we thus get the scenario of basically four different interactions of the rate
of employment with income distribution as shown in Table 21.1.5

From a partial perspective we thus get two cases where real wage or wage share
adjustment is stable and two cases where it is not, see Chen and Flaschel (2006) for
details on this.

We assume for the phase plot of the considered dynamical system that e D 1

is the full employment rate ceiling and that the motion along this ceiling is hori-
zontal for low wage shares and pointing inwards to lower rates of employment for
all v sufficiently large, as shown in Fig. 21.1. Similarly, we assume that the rate of

Table 21.1 Four types of real wage or wage share feedback mechanisms
Wage-led goods demand Profit-led goods-demand

Labor-market-led Adverse Normal
real wage adjustment D divergent D convergent

Goods-market-led Normal Adverse
real wage adjustment D convergent D divergent

Fig. 21.1 Basic ingredients
for persistent and attracting
growth cycle dynamics

e

v

v=0

e=0

1

1

⋅

⋅

5 A labor market led situation is basically of a Marx–Goodwin–Kalecki profit squeeze type and is
the generally observed situation in the literature, see also the discussion on pro-cyclical real wages
(here real wage growth).
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change of the wage share is negative (latest) for wage shares equal to one, see again
Fig. 21.1. The basic implication of these two assumptions is that Œ0; 1�2 is an invari-
ant set of the considered dynamics (cannot be left by it), since the vertical as well as
the horizontal axis cannot be crossed by it (are invariant sets themselves).

Next we assume that there is an interior steady state – representing a balanced
situation for the economy – around which the right hand sides of the above dynamics
can be considered as (locally) linear. We assume for this steady state position that
the dynamic multiplier is unstable there (ge > 0) and that the economy is as in
Goodwin’s original model a labor market led and profit-led one (fe > 0; gv < 0).
Moreover, the Blanchard and Katz error correction terms, see Flaschel and Krolzig
(2006) for their discussion, are still absent around this steady state, i.e., fv D 0

holds.6 For the Jacobian matrix at the steady state we get in this situation:

J D

�
0 C

� C

�
:

The considered steady state is therefore unstable and of the type shown in Fig. 21.1.
It then follows from the Poincaré–Bendixson theorem, see Hirsch and Smale (1974),
that each trajectory which does not have a steady state as limit point must converge
to a closed orbit. In particular, if there is no further steady state than the one con-
sidered in Fig. 21.1, this statement holds true for every trajectory that starts in the
invariant domain .0; 1/2 of positive wage shares and positive rates of employment.
An example of such a situation was provided in Flaschel and Groh (1995).7

21.3 Exploring Growth Cycles for the US Economy:
A Brief Reconsideration

In Flaschel and Groh (1995) we have confronted the behavior of the state vari-
ables v; e; the wage share and the rate of employment, in their bounded phase space
with corresponding yearly data for the eight OECD-countries FRG, France, Italy,
Belgium, United Kingdom, Ireland, USA and Japan. We repeat their results here for
the case of the US economy in order to show in subsequent sections how these still
tentative results have indeed been further confirmed by the evolution in the USA
over the past 15 years.

6 Blanchard and Katz (1999) error correction is only one possibility to justify a negative influence
of the wage share on its rate of growth, see for example Barbosa Filho and Taylor (2006) and
Taylor (2004) in this regard.
7 Note however that the model in the general form presented here may allow for a variety of further
dynamic outcomes.
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Fig. 21.2 Time series phase plots: the Goodwin growth cycle and the inflation–unemployment
nexus

The plot on the left-hand side of Fig. 21.28 shows the US time series phase plot
that corresponds to Fig. 21.1. There is the indication of a long clockwise loop with
one-fourth of the loop however still missing. Nevertheless the figure suggests that
the Goodwin growth cycle model and its reformulation in the present chapter is
not contradicting the data. In Flaschel and Groh (1995) we have in addition also
considered the unemployment/inflation loop as it is generally investigated even in
basic textbooks, see Mankiw (1992) for an example. The idea was that price infla-
tion is by and large generated by a constant markup over wage inflation. If this is
correct, the Goodwin cycle should be accompanied by a similar nominal cycle in
(un)employment and inflation, since the wage share can be reinterpreted as unit real
wage costs. We show this loop – following textbook presentations – in the .1�e; Op/
phase space in the right-hand plot in Fig. 21.2 and see indeed even on this simple
phase plot an also clockwise orientation that follows the left hand cycle to a certain
degree.

We conclude from these plots as in Flaschel and Groh (1995) that both phenom-
ena are worthwhile to be considered further and will indeed pursue exactly this in
the now following sections.

8 From Data Source & Information GmbH (1992) International Statistical Yearbook 1992 (on
CD-ROM).
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21.4 The US Economy: Extended Data Set and Basic
Econometric Issues

In this section we will only consider the Goodwin growth cycle model. We will
again consider its mirror image, the unemployment–inflation nexus, in the next sec-
tion where more powerful econometric techniques will be applied to study both
cycle mechanisms. Let us here however first consider a simple 2SlS estimate of
a linear version of the Goodwin model (21.1)–(21.2). In this way we estimate the
model linearly over the whole phase space and expect that its global features will
dominate the outcome, and not its local instability presentation in Fig. 21.1. The es-
timation result is shown in Fig. 21.3 and it is based on the data set (US Department

Sample: 1958:2 2004:3 

Included observations: 186

Total system (balanced) observations 372

Coefficient Std. Error t-Statistic Prob.

C(11) 0.142975 1.601940 0.1100

C(12) 0.136181 4.133876 0.0000

C(13) 0.177445 –2.095377 0.0368

C(21) 0.071240 7.171027 0.0000

C(22) 0.067854 3.294048 0.0011

C(23)

0.229038

0.562955

–0.371814

0.510863

0.223516

0.563353 0.088415 6.371704 0.0000

Determinant residual covariance 1.10E-07 

Equation: 4*@DLOG(V1)=–C(11)*V1(–1)+C(12)*E1(–1)+C(13)

Instruments: E1(–1) V1(–1) C 

Observations: 186 

R-squared 0.113698 Mean dependent var –0.000480

Adjusted R-squared 0.104011 S.D. dependent var 0.027606

S.E. of regression 0.026131 Sum squared resid 0.124959

Durbin-Watson stat 1.785956 

Equation: 4*@DLOG(E1)=–C(21)*V1(–1)–C(22)*E1(–1)+C(23) 

Instruments: E1(–1) V1(–1) C 

Observations: 186 

R-squared 0.230329 Mean dependent var 0.000198

Adjusted R-squared 0.221918 S.D. dependent var 0.014761

S.E. of regression 0.013020 Sum squared resid 0.031024

Durbin-Watson stat 1.013713

Fig. 21.3 The Goodwin growth cycle: two-stage least-squares estimation
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of Labor: Bureau of Labor Statistics) employed in the empirical study of Kauermann
et al. (2008), see also the next section. The estimation shown in Fig. 21.3 exhibits an
acceptable t-statistics, but may be considered as insufficient as far as R-squared and
the Durbin Watson coefficient (in the second equation) is concerned. Yet, with this
estimate we only intend to provide a first insight into parameter signs and sizes in the
case where the typical nonlinearity in our reformulation of the Goodwin growth cy-
cle model is ignored. The estimated coefficients give rise to the following Jacobian
matrix for the 2D dynamics in the state variables v; e:9

J D

�
�0:23 0:56

�0:51 �0:22

�
D

�
� C

� �

�
:

Since the linear model represents the average behavior of the original nonlinear model
(21.1)–(21.2),weseethatstabilityischaracterizingthematrixJ (det J > 0;traceJ < 0:
The Blanchard and Katz (1999) error correction mechanism is working with signif-
icant strength .J11 < 0/ and the dynamic multiplier process behind the reduced
form presentation of the law of motion (21.2) is stable .J22 < 0/: The eigen feed-
back effects thus indeed work in this overall fashion in a stabilizing way. In the
off-diagonal of the matrix J we have the typical sign structure of the Goodwin
growth cycle model which is working with considerable strength. With regard to
J21 the negative sign indeed confirms the dominance of the “Rose-effect” over the
“purchasing-power-effect” and thus gives a first answer to one of the key questions
raised in the introduction.

On the basis of this matrix J and the estimated constants we can moreover cal-
culate the interior steady state position of this numerical example of the Goodwin
model and get approximately .vo; eo/ D .0:70; 0:93/: This is a sensible steady state
position, though one whose confidence interval may be large. Nevertheless our sys-
tem estimate provides us with an idea of how the numerical magnitudes behind a
linearized version of model (21.1)–(21.2) may look like.

We next consider the Hodrick–Prescott decomposition into trend and cycle in
order to remove the business cycle component from the data. This should allow
us to see how the empirical Goodwin cycle indicated in Fig. 21.2 looks like in the
case of our extended data set. However determining cyclical trends by means of
the Hodrick–Prescott filter leads to the loss of data and this the more the larger
the parameter 	 in this procedure is set. In Fig. 21.4 we show on its left the usual
choice 	 D 1,600 and on its right the choice 	 D 4,800. By and large we see in
both figures a Goodwin growth cycle that is significantly more closed than the one
shown in Fig. 21.2.

We conclude from these basic econometric treatments that the vision of the
Goodwin (1967) growth cycle model – when augmented as in Rose (1967) to lead to
attracting limit cycle results as described in Sect. 21.2 – is further confirmed when
now available data for the US economy after World War II are employed.

9 See Barbosa Filho and Taylor (2006) for estimates of the here considered growth dynamics that
can be usefully contrasted with the results of this chapter.
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Fig. 21.4 The Goodwin growth cycle: HP-trend visualization

21.5 Business Cycles and Long Phase Cycles in the US
Economy: Bivariate P-SPLINE Testing

Econometric studies often investigate on the methodological level as well as in em-
pirical research the problem of how to separate the business cycle from the trend in
important macroeconomic time series. Yet, economic growth theory in its advanced
form provides us with insights on which economic ratios may exhibit a secular trend
(like capital intensity when not measured in efficiency units) and which ones will
not (like the output capital ratio or the rate of employment as two measures of
macroeconomic factor utilization). In contrast to a variety of econometric studies
macrodynamic theory therefore uses appropriate ratios or growth rates in its analyt-
ical investigations and there in particular the ones that allow for the determination
of steady state positions and which therefore should not exhibit a trend in the very
long run when the macrodynamic theory is formulated in a sufficiently general way.

In applying a methodology developed in Kauermann et al. (2008) we will in
line with the formulation of the Goodwin growth cycle model (21.1)–(21.2) use
secularly trendless magnitudes, namely the employment rate on the external labor
market, the wage share in national income and the inflation rate (here of producers’
prices). There are a variety of smaller as well as larger macrodynamic models in
the tradition of Goodwin (1967) and Friedman (1968) which show the existence of
persistent cycles in the interaction between the employment rate and the wage share
on the one hand and the employment rate and the inflation rate on the other hand
which tend to be long phased when simple constant parameter estimates are used for
their numerical investigation. In these models the usual business cycle fluctuations
must therefore be explained by systematic variations in the parameters of the model
which then add cycles of period lengths of about 8 years to the 50 years cycles these
models generate when used with average constant parameter values.

We have considered in Flaschel et al. (2005) models of the employment/income
distribution cycle and the employment/inflation cycle in isolation as well as in their
direct interaction or more indirect ones in a five dimensional model of goods market,
labor market and interest rate dynamics and have calculated numerically the long
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phase cycles these models generate under plausible parameter values. We take from
these models and from the earlier sections of this chapter the working hypothesis
that there should be long phase cycles interacting with business cycles in the data
as far as employment, income distribution and inflation is concerned. The method
developed in Kauermann et al. (2008) now in fact allows us to test this hypothesis
in a way much more refined than just by using Hodrick–Prescott filters with an arbi-
trarily given 	 parameter. Moreover it can do this by using an econometric approach
that is close in spirit to the two-dimensional phase plots of the employment–income
distribution and the employment–inflation cycle of the literature on the Goodwin
growth cycle and the Friedman inflation cycle, see Flaschel et al. (2005) for details.
The technique developed in Kauermann et al. (2008) can be sketched in the fol-
lowing way. We decompose wage share v and employment rate e in a long phase
cycle and business cycle model, that is v D cv.t/ C bv.t/ and e D ce.t/ C be.t/,
with c.t/ as long phase cycle and b.t/ as business cycle. The cycles themselves
are understood as function in time, which ought to be estimated. We pursue a so
called non-parametric approach by assuming smoothness for c.t/ and b.t/, but no
specified parametric structure. The functions are then estimated using the technique
of penalized splines (p-splines) as generally described in Ruppert et al. (2003). This
means, a high dimensional basis is used to capture the shape of the functions, but for
fitting a penalty is imposed which leads to smooth fits as those shown in Figs. 21.5
and 21.6. The business cycle itself is fitted in radial basis coordinates, which in fact
allows to decompose long phase and business cycle accordingly. Both cycles are
shown in Figs. 21.5 and 21.6.
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Fig. 21.6 Exploring US inflation cycles with bivariate loops using penalized spline regression

With respect to the long phase real cycle model, the Goodwin (1967) growth
cycle model, we have in Fig. 21.5 the following situation. As far as the evolution of
the wage share, shown top-left, is concerned we have more volatility as is the case
with the inflation rate. This may be due to the involvement of labor productivity
as constituent part of the definition of the wage share. Nevertheless one can see a
single long phase cycle in the solid line shown in the time series presentation of the
wage share. The employment rate is leading with respect to this long phase cycle
in the wage share. We know from Goodwin (1967) and the numerous articles that
followed his approach that the interaction of the employment rate with the wage
share is generating a clockwise motion in the v; e phase space, see again Flaschel
et al. (2005) for details. In Fig. 21.5 we can in this regard see that the cycles of
business cycle frequency are also moving in a clockwise fashion (bottom left plot).
We see (if minor cycles are neglected) by and large seven business cycles overlaid
over the long phase cycles as they are also shown in the figure top-right. Figure 21.5
bottom right shows the long phase cycle in isolation.

We stress that our extraction of the business cycle component (the “short” cycle)
as shown in Fig. 21.5 is an integral part of our treatment of the long phase evolution
of the economy. This differs significantly from the Hodrick–Prescott trend vs. cy-
cle separation shown in Fig. 21.4 which is enforced by an exogenous choice of the
parameter 	 used in this cycle extraction procedure.

With respect to the mirror image of the real growth cycle, the inflation–
unemployment dynamics, we see that the unemployment rate is also leading
compared to the inflation rate in the long phase cycle (the solid lines in the two
time series plots top-left in Fig. 21.6). Looking closer to the business cycle plot
(bottom left), as done in Kauermann et al. (2008), we see moreover that there are
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now approximately six business cycles surrounding these long phase cycles, in line
with what is shown to hold for the US economy in Chiarella et al. (2005). We also
get a clockwise rotation of the long phase cycle that is by and large also character-
izing the business cycles surrounding it, though there are exceptions to this rule, see
also the figure top-right in this regard. Note that we use, as is customary, the un-
employment rate in place of the employment rate on the horizontal axis. Using the
latter would give rise to an anti-clockwise orientation of the business and the long
phase cycles shown in these figures. Figure 21.6 in the present section also shows
for better visibility the long-phase cycle in isolation and it indicates that indeed
50 years of data are needed in order to at least indicate the existence of such a cycle.

As in the preceding sections we therefore see again a cycle that is nearly closed
(and thus approximately of 50 years length) and that is moving clockwise as sug-
gested by the simple Goodwin (1967) growth cycle model when extended by
markup inflation procedures and the like, see Desai (1973) for an early example. The
same cyclical pattern therefore holds true for the accompanying unemployment–
inflations cycle, the Friedmanian nominal side of the real cycle so to speak. We
conclude that the method developed in Kauermann et al. (2008) provides an im-
portant approach to the separation of long-phased cycles that describe the evolution
from high to low inflation regimes and from high to low wage share regimes from
cycles of business cycle frequency. This method therefore allows in a distinct way
the discussion of long waves in inflation and income distribution in modern market
economies after World War II.

21.6 Conclusions

In this chapter we have provided new empirical evidence for the existence of a
long-phased cycle concerning the wage share and the employment rate after World
War II along the lines of the original Goodwin (1967) model and later modifica-
tions of it. Taking an approach of Flaschel and Groh (1995) as a starting point,
the time horizon for the investigation was now extended to 50 years, based on data
for the US-economy. For the empirical analysis three different techniques have been
applied. First, the two dynamic equations constituting the model have been esti-
mated in their linearized form around the steady state by means of a two-stage
LS-estimation. It turned out that at least the signs of the model’s “core”, the two off-
diagonal elements of the Jacobian, have in fact the signs suggested by the model.
This means that the assumptions of a “labor-market-led” real wage adjustment as
well as of “profit-led” goods demand are not rejected by the data.

In a second step, a Hodrick–Prescott decomposition into trend and cycle was ap-
plied in order to remove the business cycle component from the data. As a result, a
cycle emerged that was already closed to a higher degree than the one presented in
Flaschel and Groh (1995). Thus, the use of new observations led to a further confir-
mation of the underlying growth cycle model. The issue of separating the business
cycle from the trend was then further investigated in a third step by means of a
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technique developed in Kauermann et al. (2008). It turned out that a single long-
phased cycle in the wage share and the employment rate could be detected which
was overlaid by approximately seven business cycles. Furthermore, the long-period
cycle was indeed characterized by a clockwise motion of the two variables just men-
tioned in the phase plane as predicted by the theoretical model.

A similar picture emerged with regard to the interaction between unemployment
and inflation. Once again, a closed long-phased cycle, moving in a clockwise way,
could be established with about six business cycles surrounding it. Thus, earlier
theoretical approaches in the tradition of Friedman (1968) could be confirmed as
well as recent empirical findings by Chiarella et al. (2005). Furthermore it turned
out that a time horizon of 50 years is indeed necessary to derive the results just
mentioned.

In addition to what has been shown in this chapter, one should, of course, also try
to take earlier time periods into account than just the 1960s to the present if data –
in particular on the wage share – are available. For the United Kingdom there exist
such long time-series10 from 1855 up to 1965 which are summarized by the phase
plot diagram shown in Fig. 21.7.
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Fig. 21.7 UK income distribution cycles 1855–1965

10 See Desai (1973) for the sources of these data and for an econometric approach on the basis of
these data with respect to the Goodwin growth cycle model.
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These data11 seem to indicate that there have been two different types of
dynamics with respect to the interaction of the rate of employment and the share of
wages:

� The period before 1914 where the employment rate exhibits significant fluctua-
tions of less than 10 years in phase length.

� The period after world war II (1945–1965) where no such fluctuations can be
observed any more.

The important insight that can be obtained from these diagrams for Great Britain
(1855–1965) is that the Goodwin cycle – if it exists – must have been significantly
shorter before 1914 (with larger fluctuations in employment during each cycle),
and that there has been a major change in it after 1945. This may be explained by
significant differences and changes in the adjustment processes of market economies
for these two periods: primarily price adjustment before 1914 and primarily quantity
adjustments after 1945. This very tentative judgment must be left for future research
here however.
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Chapter 22
Classical Dynamics in a General
Keynes–Wicksell Model

22.1 Introduction

In this chapter, we introduce a general model of monetary growth which contains
several existing models as special cases. The model is complete in the sense that
it allows for a full interaction among the three major markets (goods, labor and
assets), and consistent in that the budget constraints for households, firms and the
government are all respected. This gives rise to a four-dimensional differential equa-
tion system. The stability properties of some special lower dimensional cases of the
model are characterized analytically, and the unrestricted model is then briefly ex-
amined numerically.

Stein (1982, p. 191) defines a “Keynes–Wicksell model of money and capacity
growth” as “one where there are independent savings and investment functions, but
output is always at capacity”. The dynamic properties of general models of the
Keynes–Wicksell type, consisting of fully interacting money, goods and labor mar-
kets, have not been systematically explored in the literature to date. Such models
are of a very neoclassical nature with respect to their building blocks. Yet, despite
their supply side orientation, our analysis reveals that a monotonic adjustment of
real wages to the long-run full employment level cannot be expected to occur once
the complexity of the various feedbacks and interactions between the major markets
in a capitalist economy are adequately taken into account. This is the main finding
of the chapter.

The general model is introduced in Sect. 22.2. We allow for goods market dise-
quilibrium, which means that if goods demand is to be satisfied, then firms must
have either unintended inventory changes or unintended changes in the capital
stock (or both). In order that their budget constraints are satisfied, these unin-
tended changes in the stocks of firms must be financed in some way. We assume
that this is done solely by issuing new equities in balance with the new equity
demand of the household sector. Section 22.3 provides a brief presentation of the
comparative static properties of the temporary equilibrium positions of the model.
In addition, the dynamic laws are derived and their point of rest characterized. In
Sect. 22.4 the dynamics of the model are investigated from a medium run perspec-
tive where the consequences of growth in factor supplies are neglected. The local

P. Flaschel, Topics in Classical Micro- and Macroeconomics: Elements of a Critique
of Neoricardian Theory, DOI 10.1007/978-3-642-00324-0 22,
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stability of the resulting three-dimensional system is studied. It is shown that the
strength of the Keynes effect (the negative dependence of the aggregate demand
schedule on the price level) relative to the Mundell effect (the positive dependence
of the aggregate demand schedule on the expected rate of inflation) is an important
determinant of stability, as is the adjustment speed of wages relative to that of prices.
The emergence of cycles in the model is explored by means of the Hopf bifurcation
theorem. Here the role of the adjustment speed of inflationary expectations is of par-
ticular importance. The stability preserving role of regressively formed expectations
is also briefly considered.

In Sect. 22.5 we suppress the stabilizing role of the Keynes effect and the desta-
bilizing role of the Mundell effect by simple assumptions on interest rate flexibility
and inflationary expectations. This allows us to discuss the global features of the
wage-price adjustment mechanism in isolation, though now in the context of a
growing economy. We find that wage flexibility and price inflexibility support lo-
cal asymptotic stability. The latter effect is important if there is a negative influence
of real wage increases on excess demand in the market for goods. This negative in-
fluence, which arises whenever investment is more sensitive than savings to changes
in the real wage, may be called the orthodox view of real wage effects on the aggre-
gate demand for goods. If price flexibility is strong enough near the steady state to
destabilize it locally, this model can nevertheless be made an economically viable
one by assuming that money wages become sufficiently flexible for large devia-
tions of the economy from its steady state path. The degree of wage flexibility may
even be tailored in such a way that the viability domain exhibits given boundaries
for the fluctuation of the rate of employment. Section 22.6, finally, briefly presents
some numerical simulations of the complete model to illustrate the type of cyclical
dynamics it generally gives rise to.

22.2 The General Model

Models of the Keynes–Wicksell type were introduced into the macrodynamics liter-
ature by Rose, Stein and others in the late 1960s (see Orphanides and Solow 1990 for
a brief survey of this literature). In this section, we develop a generalization of such
models which resembles that presented in Rose (1990), but with a complete set of
budget restrictions for households, firms and the government. Furthermore we shall
make use of very specific nonlinearities, namely a nonlinear money wage Phillips
curve and a neoclassical production function. These nonlinearities appear also in
Rose (1967), and we therefore obtain his employment cycle result as a special case
of the present model. All other relationships are kept linear (up to certain growth
rate formulations) in order to present the role that these two nonlinearities can play
in its purest possible form.
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Since the model contains a large number of variables and parameters, we begin
with a list of the symbols used:1

List of endogenous variables
Statically endogenous Dynamically endogenous
Y > 0 Output K > 0 Capital stock
L > 0 Employment w > 0 Nominal wages
C > 0 Consumption p > 0 Price level

I Net investment � Expected inflation
� > 0 Rate of profit M > 0 Money supply
r > 0 Rate of interestLs > 0 Labor supply

pE > 0 Price of equitiesB � 0 Bonds
S > 0 Total savings E > 0 Equities
Sp Private savingsW > 0 Real wealth
Sg Government savings! > 0 Real wage

T > 0 Real taxes Q > 0 Inventories
G > 0 Government expenditure

List of exogenous variables and parameters
ı D ı1 C ı2 > 0 Depreciation plus inventory accumulation rate
ci > 0; i D 1; 2; 3 Consumption function parameters

ˇI > 0 Investment parameter
n; g Natural growth rates
� Growth rate of money supply

ˇw � 0 Wage adjustment parameter
�w 2 Œ0; 1�; �w � �p ¤ 1 Wage adjustment parameter

ˇp � 0 Price adjustment parameter
�p 2 Œ0; 1�; �w � �p ¤ 1 Price adjustment parameter

ˇ1� � 0 Adaptive expectations parameter
ˇ2� � 0 Regressive expectations parameter

Given the above notation, the equations of the model are as follows:

Y D F.K;L/; FK ; FL > 0; FKK ; FLL < 0 (22.1)
FL D ! D w=p (22.2)
C D c1.Y � ıK � T / � c2.r � �/C c3W C c4; ci � 0; i D 1; 2; 3; 4 (22.3)
I D ˇI .� � .r � �//K C gK; ˇI > 0; � D FK � ı (22.4)
S D Sp C Sg D .Y � ıK � T � C/C .T �G/

D Y � ıK � C �G (22.5)
T=K D � D const; G=K D � D const (22.6)
M D h1pY C h2.r0 � r/pK; r0 D �0 C �0 (22.7)

1 In addition, the following notation is adopted: for any variable x, we use Px to denote its time
derivative, Ox to denote its growth rate, x0 to denote its steady state value, and x0 and xy to denote
total and partial derivatives respectively.
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W D .M C B C pEE/=p (22.8)
pEE D .FK � ı/pK=.r � �/ (22.9)
OM D � D const (22.10)
OLs D n (22.11)
OK D I=K (22.12)
Ow D ˇw.L=L

s � 1/C �w Op C .1 � �w/� (22.13)
Op D ˇp.I=K � S=K/C �p OwC .1 � �p/� (22.14)
P� D ˇ1�. Op � �/C ˇ

2
�.� � n � �/ (22.15)

PQ D ı2K C S � I; 0 < ı2 < ı (22.16)
S D Sp C Sg D . PM C PB C pE PE/=p � . PM C PB/=p D pE PE=p (22.17)
I D pE PE=p � .S � I / (22.18)

Equation (22.1) is the conventional neoclassical production function and (22.2)
the marginal productivity postulate based on (22.1). We have thus assumed that
firms are profit-maximizing price-takers operating on their supply curves (referred
to as the classical regime in neo-Keynesian fix-price approaches). Equation (22.3)
is a standard consumption function with disposable income YD D Y � ıK � T , the
real interest rate r � � , and real wealth W as arguments. Equation (22.4) refers to
(net) investment behavior, which is a linear function of the difference between the
real rate of return to capital FK � ı and the real rate of interest r �� . In addition, it
is assumed that there is a trend growth rate g of the capital stock, which is here set
equal to the natural rate of growth n for simplicity.2 Saving S , in (22.5), is defined
as the sum of private and government saving (both obtained from the flow budget
constraints of the two sectors) and is equal to the demand gap Y � ıK � C � G
by definition.3 We assume, following Sargent (1987, Chap. V), that taxes and gov-
ernment expenditures are a constant proportion (� and � respectively) of the capital
stock, and that the money supply grows at an exogenously given rate �. These as-
sumptions are reflected in (22.6) and (22.10). The behavior of the government is
modeled in this very rudimentary manner since the focus of the present investigation
is elsewhere. The government budget constraint is fulfilled through an appropriate
adjustment of the rate of change of government debt PB:

PB D pŒG � T � � PM D pŒ�K � �K� � �M:

2 This device saves one further adjustment equation; for an attempt at justification, see Sargent
(1973, p. 429).
3 Real taxes T are calculated net of government interest payments. Taxes are lump-sum and thus
do not modify rate of return differentials.



22.2 The General Model 485

If we assume that c3 D 0 in (22.3), there will be no feedback of the evolution of
government debt on the rest of the system since the stock of government debt is
not a determinant of money demand and since we have assumed particularly simple
rules for tax collection and government spending.

Equation (22.8) defines real household wealth, which is composed of money
holdings, bonds, and equities. In view of this, it might be considered appropriate
to specify the demand for money as M d D pWh.r/, which would imply that for
any given value of the interest rate, households wish to hold a fixed proportion of
their real wealth in the form of real balances. However, in order to stay close to
the specification of Sargent (1987), where pYh.r/ is used for representing money
demand, we adopt the specification of money demand shown in (22.7). Here real
money demand is a linear function of real income and the rate of interest. We assume
that equities E and bonds B are perfect substitutes and that all expected profits are
distributed as dividends. In this case the rate of return on shares must equal the real
rate of interest on bonds. Setting the price of bonds pB D 1, we have the following
relation:

p.Y � ıK � !L/

pEE
D
p.FK � ı/K

pEE
D r � �

which yields (22.9). Money market equilibrium implies that all other asset markets
are in equilibrium and can therefore be neglected in the explicit development of
the model. Labor supply Ls grows at an exogenously given rate n in (22.11), while
(22.12) states that intended net investment is realized and hence leads to the intended
growth rate in the capital stock.4

Equations (22.13)–(22.15) describe the wage-price sector and have been adopted
from Rose’s (1990, Chap. 3) general framework. The growth of money wages is
driven by excess demand on the labor market (the demand-pull component), aug-
mented by a weighted average of expected medium-run price inflation � and current
price inflation Op (the cost-push components). Analogously, price inflation is driven
by excess demand on the goods market, augmented by a weighted average of ex-
pected medium-run price inflation � and current wage inflation Ow. Medium-run
expectations � in turn are revised partly in an adaptive way .ˇ1�/ and partly in a
regressive fashion .ˇ2�/ as shown in (22.15). This expectation revision rule has a
forward looking and a backward looking aspect. Note that � � n represents the
steady state inflation rate (this is established formally below). When expectations
are above (below) current inflation as well as the steady state inflation rate, they are
revised downwards (upwards). However, when expectations are above one of these

4 An alternative specification, requiring that the growth rate of the capital stock be consistent with
the savings plans of households (rather than the investment plans of firms) is also explored below.
Since we allow for goods market disequilibrium through the adjustment of inventories, these two
approaches yield different results.
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magnitudes but below the other, the direction of expectation revision is ambiguous.
Note that despite this forward looking component of expectation revision, inflation-
ary expectations are self-fulfilling only in the steady state.5

We have labor-market disequilibrium as well as goods-market disequilibrium in
this model. Labor market disequilibrium is represented here through the use of ac-
tual (rather than notional) income YD D Y � ıK � T in the consumption function,
and the possibility that actual employment L may deviate from normal employ-
ment Ls . Goods market disequilibrium is reflected in two ways in this model of
price-taking firms, through changes PQ in inventories Q and through changes in the
financing of investments caused by such unintended inventory changes.

Firms operate in a growing economy here, and are assumed to add ı2K to their
inventories in the steady-state in order to keep their inventories growing in line with
production.6 In addition, inventories change by an (unintended) amount equal to
the excess demand on the goods market, which yields (22.16). The steady state
inventory–capital ratio q0 D .Q=K/ is easily determined by recalling (22.16) and
solving:

0 D Pq D
PQ

K
� OKq D

S � I

K
C ı2 � OKq

for q, which yields q0 D ı2=n since S D I in the steady state. In this steady state
firms retain PQ D ı2K from current production in order to protect themselves against
unforeseen demand when the economy departs from the steady state. It is assumed
in the following that the ratio Q=K stays in the neighborhood of q0 even when the
economy is outside the steady state, i.e., goods market disequilibria stay within such
limits that inventories are not exhausted or exceed reasonable bounds. Rationing
on the goods market is avoided by assuming appropriate inventory changes in a
corridor q 2 .ı2=n � ˛; ı2=n C ˛/, with ˛ sufficiently small. Note that such a
condition is normally not made explicit in models which consider the above type of

5 This method of modeling forward-looking expectations appears, for example, in the influential
paper by Dornbusch (1976) where, under certain conditions, it yields self-fulfilling forecasts. Gray
and Turnovsky (1979) refer to this as “regressive expectations” and we adopt their terminology
here. The same rule is referred to by Stein (1982) as “asymptotically rational expectations” and by
Groth (1988) as “monetarist expectations”. In the literature on speculative markets, such expecta-
tion formation rules are identified as “fundamentalist” (Frankel and Froot 1986; Chiarella 1992).
It is important to emphasize that expectations can be forward-looking without being self-fulfilling.
There are a number of reasons, such as the costs associated with the expectation calculation tech-
nology (Evans and Ramey 1992) or optimization costs in general (Conlisk 1988; Sethi and Franke
1995) why simple forward (or even backward) looking rules might yield higher returns to forecast-
ing than expensive means of obtaining unbiased forecasts. Note that unlike adaptive expectations,
a regressive expectations rule does induce instantaneous responses to announcements and news of
future events.
6 Assuming ı2Y as inventory accumulation rule instead of ı2K would only modify the model
slightly; our choice allows us to treat planned inventory accumulation as part of depreciation.
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goods-market disequilibrium.7 Inventory changes ı2K are a deduction from gross
income just as depreciation ı1K is; hence they do not enter disposable income.
We use the composite parameter ı D ı1 C ı2 to represent the “depreciation and
inventory accumulation” rate.

Private savings Sp are assumed in (22.17) to absorb the new supply of money
and government bonds: . PM C PB/=p, with the remainder being directed to the pur-
chase of perfectly substitutable equities pE PE=p. Since firms have to finance net
investment I as well as unintended inventory accumulation, their supply of equities
is determined by

pI C p.S � I / D pS D pE PE

which gives rise to (22.18). New equity issues by firms are thus equal to (consistent
with) the demand for new equities on the part of households. This completes the
model, which is basically classical in nature (supply side driven), yet with Keynesian
components in the market for goods and the market for money. It is a complete and
consistent macroeconomic model of a closed economy.

The literature on Keynes–Wicksell models has often used, instead of (22.12), the
equation

OK D PK=K D S=K

to describe capital accumulation. Such a modification makes the outlook of the
above model still more classical, since it says that accumulation is supply side
driven so that inventory changes (22.16) may be neglected. This comes about by
interpreting the case S > I as involuntary additional investment which is financed
by voluntary equity demand .S D pE PE=p/. In the opposite case I > S we have
that firms have to cut down their investment plans by I �S to be in line with equity
demand. Since we can neglect inventory changes, this case reduces the number of
dynamic equations by one. A modification of our model which encompasses both
cases is the following:

OK D ˇkI=K C .1 � ˇk/S=K; ˇk 2 Œ0; 1�

in which case a discrepancy between intended savings and planned investment
shows up both as an involuntary change in the capital stock as well as an unin-
tended change in the stock of inventories. We shall not consider this general form
in the following, but shall make use of the parameter ˇk only to denote which of the
two extreme cases we are considering: when ˇk D 1 we have PK D I as in (22.12),
while ˇk D 0 indicates the use of PK D S .

7 We owe this observation to Reiner Franke, though he is not responsible for this particular solution
to the I 6D S problem. We use ˛ D 0:2 and q0 D 0:2 in the numerical simulations in Sect. 22.6.



488 22 Classical Dynamics in a General Keynes–Wicksell Model

The structure of various well-known models of the Keynes–Wicksell type as well
as a variety of other models of cyclical growth can be obtained from the above
general approach by specializing it appropriately. The following table provides a
brief summary of this claim.8

Model type ˇp ˇ
1
� ˇ

2
� �w �p ˇw ˇk CES.�/ r

Goodwin (1967) 0 0 0 1 0 C 1 0 r0

Fischer (1972) C C 0 0 0 0 C � r0

Rose (1967) C 0 0 0 0 C 0 � r0

Sargent (1987) 1 C 0 0 0 C I D S � r

Sargent (1987) 1 1 0 0 0 C I D S 1 r

Stein (1971) C C 0 0 0 0 C � r0

Stein (1971) C 0 C 0 0 0 C � r0

Stein (1982) C 0 C 0 1 C 1 � r

The models by Goodwin (1967), Rose (1967), and Stein (1971) are two-
dimensional dynamical systems and thus fairly standard, while Fischer (1972)
is three-dimensional and solved (locally) by examining the Routh–Hurwitz condi-
tions. Sargent’s adaptive expectations case is treated in its details in Franke (1992),
while an extensive discussion of his perfect foresight case .ˇ1� D 1/ is provided
in Flaschel (1993). The general model of Stein (1982) is treated comprehensively
in Flaschel et al. (1994). We stress once again that the present general model of the
Keynes–Wicksell type owes part of its structure (the wage-price sector) to Rose’s
(1990) general framework, although, unlike Rose, we do not go into a treatment of
windfall profits.

22.3 Comparative Statics, Dynamics and the Steady State

The model can be easily reduced to intensive form by making the usual homogene-
ity assumptions and by employing lower-case letters to denote the corresponding
ratios. Hence y D Y=K, l D L=K, etc., (although m D M=.pK/). For simplicity,
assume further that c2 D c3 D 0 in the consumption function (22.3), so that we
may write C D c.Y � ıK � T /; c 2 .0; 1/ as in Sargent (1987, Chap. V). Using

8 We assume for this categorization of various monetary growth models that the production func-
tion is of the CES type so that we can use the constant elasticity of substitution expression �
to denote special cases: � D 1 corresponds to the Cobb–Douglas case, while � D 0 represents
fixed proportions. Blank entries in the table mean that this parameter does not matter in the con-
sidered model, while a C indicates that the parameter is positive and finite. Note finally that
ˇ1� D 0; ˇ2� D 0 should be interpreted as � 
 0, and r D r0 as the prevalence of an infinite
interest rate elasticity of money demand (h2 D 1). In the case of the Goodwin model, only its
structure is obtained in this way, not its concrete form, since this model relies on Say’s Law in the
form I 
 S .
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y D f .l/ D F.1;L=K/ to denote the production function in intensive form, the
marginal productivity condition (22.2) leads to:

! D f 0.l/ or l D .f 0/�1.!/ D l.!/:

Given the real wage, the output–capital ratio y.!/ D f .l.!// is also determined,
as is the profit rate:

�.!/ D FK � ı D f .l/ � lf
0.l/ � ı D y.!/ � l.!/y0.!/ � ı:

The money market equilibrium condition (22.7) in intensive form reads:

r D r0 C
h1y.!/ �m

h2
D r.!;m/:

Under the standard assumptions placed on the production function (22.1), the fol-
lowing hold:

l 0.!/ < 0; y0.!/ < 0; r! < 0; rm < 0:

Note also that �0.!/ D �f 00.l/l!l < 0 since f 00.l/ < 0; Œl! D l
0.!/�.

We shall describe the dynamics of the model (22.1)–(22.18) as an autonomous
differential equation system in the variables !, ls ,m, and � . For notational simplic-
ity, define

s.!/ D S=K D .1 � c/y.!/ � ı � � C c.ı C �/

as the savings–capital ratio from (22.5), and

i.!;m; �/ D I=K D ˇI � .�.!/ � .r.!;m/ � �/C n

as the investment–capital ratio from (22.4). It is a straightforward matter to verify
the sign of the following partial derivatives:

s! < 0; im > 0; i� > 0

while i! D �0.!/ � r! is indeterminate in sign. In addition, define the following
excess demand functions:

Xw.!; ls/ D ˇw.l.!/=l
s � 1/;

Xp.!;m; �/ D ˇp.i.!;m; �/ � s.!//:

The partial derivatives of these two functions satisfy:9

Xw. !
�
; ls

�
/; Xp.!

‹
; m
C
; �
C
/

9 Xw
! D ˇwl!=l

s is obviously negative while the sign of Xp
! D ˇp.i! � s!/ is ambiguous, since

i! is of ambiguous sign. The partial derivative Xp
! will be positive if the production function is

approximately characterized by fixed proportions, that is, if f 00.l/ is sufficiently close to zero,
since we would then have i! 
 �r! > 0 which is of the same sign as s! .
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The first of these excess demand functions is typical for growth (cycle) models of
the Solow–Goodwin type (smooth factor substitution combined with a real wage
Phillips curve), while the second excess demand function summarizes the indeter-
minate Rose real wage effect on the excess demand for goods, the contractionary
Keynes or nominal rate of interest effect and the expansionary Mundell or real rate
of interest effect.

Given the above notation, the four dynamic equations in compact form are as
follows (see appendix for derivation):

O! D �..1 � �p/X
w C .�w � 1/X

p/; (22.19)

Ols D

8
<

:

n � i.!;m; �/ if ˇk D 1

n � s.!/ if ˇk D 0

; (22.20)

Om D � � n � � � �.Xp C �pX
w/C Ols; (22.21)

P� D ˇ1��.X
p C �pX

w/C ˇ2�.� � n � �/; (22.22)

where � D .1 � �w�p/
�1 in the above.

For the case ˇk D 1 . PK D I /, to be considered later, the following is appended
as an additional dynamic equation:

Pq D
I � S

K
C ı2 � OK � q

D .1 � q/i.!;m; �/ � s.!/C ı2:

The steady state of the model is determined by setting O! D Ols D Om D P� D 0

in (22.19)–(22.22). It is uniquely determined and given by (the solution to) the fol-
lowing set of equations:

y0 D f .l0/ D
n � c� C �

1 � c
C ı;

r0 D f .l0/ � f
0.l0/l0 C � � n;

!0 D f
0.l0/;

m0 D h1y0;

ls0 D l0;

�0 D � � n:

In addition, observe that (22.21)–(22.22) and the steady state conditions Ols D Om D
P� D 0 imply thatXpC�pXw D 0. Imposing the condition O! D 0 on (22.19) yields
.1 � �p/X

w C .�w � 1/X
p D 0. Together, these conditions imply Xw D Xp D 0

for �p � �w ¤ 1, so excess demand in both product and labor markets is zero in
the steady state. From (22.20), this implies that the steady state growth rate of the
capital stock equals n, the growth rate of labor supply. Since the output–capital and
labor–capital ratios are constant in the steady state, this implies the following:

OK0 D OL
s
0 D
OL0 D OY0 D n:
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Furthermore, the rates of wage and price inflation are equal to each other and to the
expected rate of price inflation, which is given by the difference between the rate of
monetary expansion and the rate of growth of the economy:

Op0 D Ow0 D � � n:

The stability of the steady state of this four-dimensional dynamical system will
be investigated in the following sections for special medium-run and long-run cases.
The properties of the complete system will be investigated numerically in a subse-
quent section.

22.4 Medium Run Dynamics

In this section we abstract from growth in the labor supply and in the capital stock,
and assume that ls D ls0 holds at all moments in time. This allows us to consider the
real wage dynamics in conjunction with the dynamics of the nominal variables m
and � , first for the case of adaptive and then for the case of regressive expectations.
The choice between ˇk D 0; 1 (whether it is desired savings or planned investment
that is equated with the change in the capital stock) is thus irrelevant in the present
section. The resulting system is now three-dimensional, with the dynamic variables
being !, m, and � .

22.4.1 Adaptive Expectations

Setting ˇ2� D 0 in (22.22) yields an expectation formation rule that is purely adap-
tive. The resulting Jacobian of the three-dimensional dynamics (22.19), (22.21),
(22.22), evaluated at the steady state, is the following:

J D

0

BBBB@

�!Œ.1 � �p/X
w
! C .�w � 1/X

p
! � �!.�w � 1/X

p
m �!.�w � 1/X

p
�

��mŒX
p
! C �pX

w
! � ��mX

p
m ��mX

p
� �m

ˇ1��ŒX
p
! C �pX

w
! � ˇ1��X

p
m ˇ1��X

p
�

1

CCCCA
:

Furthermore, from Sect. 22.3 we obtain

Xw
! D ˇwl!=l

s < 0 (Marginal Productivity Effect);

Xp! D ˇpŒˇI .�! � r!/C cy! � y! �
>
D
<
0 (Rose Effect);

Xpm D �ˇpˇI rm > 0 (Keynes Effect);
Xp� D ˇpˇI > 0 (Mundell Effect);

where �.!/, the net rate of return to physical capital, is defined by �.!/ D y.!/ �
y0.!/l.!/ � ı as in Sect. 22.3 above.
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The negative effect of the real wage on the excess demand for labor mirrors
the conventional marginal productivity relationship and has been called the first
fundamental postulate of Classical theory by Keynes (1936, p. 5). The sign of Xpm
is positive, since we have the usual positive Keynes effect of a falling price level
p (a rising value of m D M=.pK/) on the rate of interest r via the money market
equilibrium condition; this translates into an increase in excess demand for goods.
The sign of Xp� is also positive, since investment demand depends positively on
the expected rate of inflation. This effect has been called the Mundell effect or the
real rate of interest effect in the literature. The sign of Xp! , however, is ambiguous,
since an increase in real wages depresses both investment and savings. It will be
negative if the impact is stronger on investment than on savings, which then creates
a potentially unstable situation investigated in its details by Rose (1967). We call
this effect the Rose effect (of real wage changes on the excess demand for goods).
Note that all these effects are formulated in the context of disequilibrium, while they
are generally used in equilibrium situations in the literature.

The stability properties of the system may be characterized as follows:

Proposition 1. Consider the dynamical system (22.19), (22.21), (22.22) under the
assumption that ˇ2� D 0. Then:

(a) There exists exactly one parameter value ˇH� � 0 such that the unique steady
state of the system is locally stable for all ˇ1� < ˇH� and unstable for all
ˇ1� > ˇ

H
� .

(b) This value ˇH� is positive if x D Œ.1 � �p/X
w
! C .�w � 1/X

p
! �! � X

p
mm < 0

holds at the steady state (that is, if the marginal productivity effect and the
Keynes effect outweigh in the sense of this inequality the Rose effect, assuming
the latter to be negative. If the Rose effect is positive, the inequality always
holds).

(c) The steady state loses stability in a cyclical fashion at ˇH� by way of a Hopf-
bifurcation.

(d) The unstable cases ˇ1� > ˇH� are either characterized by one negative char-
acteristic value and two complex conjugates with positive real parts, or by one
negative characteristic value and two positive ones.

Remarks. 1. The condition x < 0 which allows for the stability of the model for
a bounded set of adjustment coefficients ˇ1� > 0 can always be established by
choosing ˇwX

w
! sufficiently large and ˇpX

p
! sufficiently small, since Xpm > 0

holds. Wage flexibility and price inflexibility (if Xp! < 0) thus prove favorable
for the stability of the steady state.

2. Nevertheless, this stability can always be destroyed by choosing the speed of ad-
justment of adaptive expectations sufficiently large (for given values of ˇp; ˇw),
since J33 D ˇ1��X

p
� is positive and since J11; J22 do not depend on ˇ1� .

3. The previous remark indicates that the case ˇ1� D 1 (myopic perfect foresight)
may be problematic. Indeed, we then have the following equations for the wage
price sector:
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� D Op;

Ow D Op C ˇw.l= l
s � 1/ or O! D ˇw.l= l

s � 1/;

Op D Op C ˇp.i.!;m; �/ � s.!//C �p. Ow � Op/:

There is an obvious contradiction between the last two equations if �p > 0 holds,
since the last equation then gives rise to a second, seemingly independent law for
the dynamics of the real wage:

O! D �
1

�p
ˇp.i.!;m; �/ � s.!//

unless it is assumed that goods market disequilibrium always stays in a fixed
(inverse) relationship to labor market disequilibrium. If this proportionality is
added as a restriction to the model, we get, on the one hand, that the real wage
must always adjust monotonically to its steady state value, since there is then an
independent real wage dynamics described by the Phillips curve of the model,
while on the other hand the dynamic law for the rate of inflation must obey a
rule that guarantees the above fixed relation at all moments in time. The model
therefore has a very strange limit case ˇ1� D 1 if �p > 0 and ˇw; ˇp 2 .0;1/

holds. Note that this case no longer draws a distinction between a medium-run
expected rate of inflation and the actual short-run rate.10

4. This implicit disequilibrium determination of the rate of inflation is avoided or
made an equilibrium determination of the rate of inflation if either �p D 0 is
assumed or ˇp D 1, which both imply that I D S . This limit case is the
myopic perfect foresight case which Sargent (1987, Chap. V) analyzes to prove
some Friedmanite propositions. However, this case is also of a very exceptional
nature, since real wage movements then only depend on the state of the labor
market and not, as in our general model, on the state of the goods market as well
[see (22.19)]. With respect to our medium-run type of analysis we have, in this
case:

O! D ˇw.l.!/=l
s
0 � 1/; l 0 < 0

that is, a stable single equation for the real wage dynamics which is independent
of the rest of the system. Note again that the distinction between a medium-run
expected rate of inflation and the actual short-run rate is no longer present under
myopic perfect foresight.

5. The case of adaptive expectations behaves as might be expected in view of ear-
lier results on Keynes–Wicksell or Tobin type monetary growth models (see

10 The case of myopic perfect foresight is reconsidered from the viewpoint of nonlinear dynamics
in the simple Cagan model of money market dynamics in Flaschel and Sethi (1998). We here
extend Chiarella’s (1990, Chap. 7) investigation of this case by including an accelerator term into
the price dynamics that is employed by him.
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Orphanides and Solow 1990 in this regard). The expected instability for large
adjustment speeds ˇ1� of inflationary expectations is in the present context given
in a particularly simple way, since we have J33 D ˇ1��X

p
� > 0; a positive feed-

back of the expected rate of inflation onto itself via the excess demand function
in the market for goods and the Mundell effect.

6. We leave open the question of whether the local explosiveness of the model for
ˇ1� ! 1 can be tamed by global considerations by way of the method of so-
called relaxation oscillations.

7. We have excluded the case �p D �w D 1 from of all of our considerations,
since it again leads to two different rules for real wage changes. Here too, this
“contradiction” can be suppressed by assuming ˇp D1, which again gives rise
to Sargent’s (1987, Chap. V) perfect foresight case.

22.4.2 Regressive Expectations

Setting ˇ1� D 0 in (22.22) yields an expectation formation rule that is purely regres-
sive: regardless of current and historical experience, inflation is expected to move at
all times in the direction of its steady state value. This specification captures forward
looking aspects of the expectation formation process without adopting the extreme
requirement that expectations be self-fulfilling even outside the steady state.

Intuitively, it might be expected that such a specification would lend stability
to the dynamics. To explore this question, we require the Jacobian of the three-
dimensional dynamics (22.19), (22.21), (22.22), evaluated at the steady state:

QJ D

0

BBBB@

�!..1 � �p/X
w
! C .�w � 1/X

p
! / �!.�w � 1/X

p
m �!.�w � 1/X

p
�

��m.X
p
! C �pX

p
! / ��mX

p
m ��mX

p
� �m

0 0 �ˇ2�

1

CCCCA
:

Note that the positive (destabilizing) Mundell effect disappears from the entry J33
of the Jacobian J .

Proposition 2. Consider the dynamical system (22.19), (22.21), (22.22) under the
assumption that ˇ1� D 0 and let x be given as in Proposition 1(b). Then the steady
state is locally asymptotically stable if and only if x < 0.

Remarks.

1. A corollary of the above proposition is that the case �w D 1will always be locally
asymptotically stable.

2. Consider the case of a Cobb–Douglas production function y D l1�a; a 2 .0; 1/

which gives rise to a net rate of return to capital � D ay � ı. Given our linear
money demand function, the Rose stability condition Xp! > 0 reads

a < h1=h2 C .1 � c/=ˇI :
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A sufficiently small parameter a or a small ˇI (or a small h2) will thus establish
stability in this regressive expectations case.

3. The considered dynamics will give rise to growth cycles if and only if
.�x/2 < 4J1 holds true. Also, the Hopf theorem is again applicable here, now
with respect to the parameter ˇp:

Summing up, we have in the case of regressive expectations that ˇw ! 1 will
be good for stability .Xw

! < 0/, while ˇp ! 1 may be bad for it, if �w < 1 and
X
p
! < 0 hold. Increasing price flexibility may thus lead to stability problems, at least

near the steady state of this economy.11 Note that the size of the parameter ˇ2� is not
a problem in the regressive expectations case. Note finally that the results obtained
separately for ˇ2� D 0 and ˇ1� D 0 can be easily generalized to the situation where
both ˇ1� and ˇ2� are positive.

22.5 Long Run Dynamics and Global Stability

In this section we shall explore the unstable cases considered in the preceding sec-
tion from a global perspective which includes factor growth. The variable ls D
Ls=K thus is no longer fixed at its steady state value, but evolves according to
(22.20) of Sect. 22.3. Of this equation, we shall only consider the case PK D

S .ˇk D 0/ in the following and only note here that the alternative case PK D I

can be treated in the same way as a consequence of assumption 1 to be introduced
below.12

In order to treat the long-run dynamics of the model (22.1)–(22.18) from a global
perspective we have to simplify considerably the four-dimensional dynamics it gives
rise to. The following two assumptions are sufficient to reduce the dimension of the
dynamics to two. This two-dimensional system can then be studied by means of the
Poincaré–Bendixson Theorem when the money–wage Phillips curve of the model
is made nonlinear in a manner proposed by Rose (1967). The development of the
monetary magnitudem DM=.pK/ can then be derived from the real dynamics, but
will not be investigated here in its details.

Assumption 1. The interest elasticity of money demand is (approximately) infinite
at the steady-state value r0 of the rate of interest r (h2 D1)

This assumption implies that the nominal interest rate is (approximately) constant
(r � r0) over the cycle to be considered below. In addition, we impose:

11 As in earlier situations, stability problems arise if excess demand in the market for goods re-
sponds negatively to real wage increases, giving rise to price “decreases” which provide a further
stimulus to real wage “increases”.
12 Of course, the case PK D I .ˇk D 1/ requires us to keep track of movements in the inventory–
capital ratio q; this is done in the next section.
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Assumption 2. ˇ1� D 0; ˇ2� D1

This implies that the expected rate of inflation is at all times equal to its steady
state value (� D ��n). While this would necessarily be the case in the steady state,
we assume that it holds even in disequilibrium.13

It is obvious that these assumptions describe an unrealistic limit case of the gen-
eral model. Nevertheless computer simulations presented in the section to follow
indicate that this limit case gives rise to results that are typical also for dynamics of
the general model. Furthermore, the results we obtain below for the special case are
of independent interest since they question the neoclassical view of the workings of
the labor market in a dynamic setup which consists of fairly standard neoclassical
building blocks.

We follow Rose (1967, p. 159) in assuming that the money–wage Phillips-curve
(22.13) has a nonlinear shape as far as its first term ˇw.L=L

s � 1/ is concerned.
Specifically, let V D L=Ls D l= ls denote the employment ratio, and write the
excess demand in the labor market, Xw, as the function ˇw.V /. Note that the em-
ployment ratio can be expressed as a function of ! and ls since V D l.!/=ls; hence
we may write V.!; ls/. We assume that there exist a; b such that 0 < a < 1 < b and
ˇw.1/ D 0; ˇw.a/ D �1; ˇw.b/ D C1. As before ˇ

0

w > 0 Œ0 < a < 1 < b�:

Some examples of such functions are shown in Fig. 22.1.14

Assumptions 1 and 2 allow us to work with the following two-dimensional
system:

O! D �..1 � �p/X
w C .�w � 1/X

p/; (22.23)
Ols D n � s.!/; (22.24)

Fig. 22.1 Rose type Phillips
curves

13 We have already seen that the less extreme assumption ˇ2� <1 does not make much difference
to the results.
14 Although the figure shows functions that are symmetric, this is not required for the results to
follow.
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Fig. 22.2 Phase diagram for
the two-dimensional
dynamics (x D !; y D l s)

where Xw D ˇw.V .!; l
s//, and Xp D ˇp.ˇI .�.!/� r0C�Cn/�n� s.!// and

�.!/ D y.!/ � y0.!/l.!/ � ı as in Sect. 22.3 above. Note that excess demand in
the product market now depends only on the real wage, !.

This dynamics gives rise the phase portrait shown in Fig. 22.2 (for the interpre-
tation of l.!/=a; l.!/=b see Fig. 22.1 and the comments preceding it).

Assume, for simplicity, that the production function y D f .l/ fulfills

f
0

.0/ <1; f
0

. Nl/ D 0 for some Nl <1:

In this case, the function l.!/ D .f
0

/�1.!/ cuts both axes of the positive orthant of
<2. The two functions l.!/=a and l.!/=b of !, of course, have the same properties
as the strictly decreasing function l.!/ and they determine (part of) the boundary
of the domain of definition of the dynamics (22.23)–(22.24). To see this, observe
that the nonlinearity of the Phillips curve implies that the domain of definition of
the dynamics (22.23)–(22.24) requires the condition l.!/=b � ls � l.!/=a to be
met. Note in addition that the two segments AD and BC cannot be crossed by
the trajectories of (22.23)–(22.24), which implies that the open set U determined
by ABCD is an invariant subset of the full domain of definition of the dynamics
(22.23)–(22.24): no trajectory which starts in this set can leave it.

Figure 22.2 also depicts the two isoclines of the dynamics (22.23)–(22.24). The
calculation of the Pls D 0 locus is straightforward, since the right-hand side of
(22.24) only depends on !. For P! D 0, in the case �p < 1, we get:15

l.!/=b < ls D
l.!/

ˇ�1w . 1��w
1��p

Xp.!//
< l.!/=a

15 In the case �p D 1, the system (22.23)–(22.24) dichotomizes and thus becomes uninteresting
from an economic point of view. the case �w D 1 leads us back to the Goodwin growth cycle
model.
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since 0 < a < ˇ�1w .�/ < b. This gives a well-defined function ls.!/ over <C, the
relevant portion of which is shown in Fig. 22.2. Note that this function need not be
a decreasing one. We shall assume �p < 1 for the remainder of this section.

We state here without proof the following lemma (see Benassy 1986 for a proof
in a closely related situation):

Lemma 1. Any trajectory which starts in the set U (see Fig. 22.2) stays in a com-
pact set K of <2 contained in U .

An immediate consequence of this lemma is that all trajectories of (22.23)–
(22.24) in U can be continued up to t D1 (see the theorem on p. 171 in Hirsch and
Smale 1974). Furthermore, the set of all limit points of any trajectory for t ! 1,
its !-limit set L! , must then be nonempty and compact. This implies (see Hirsch
and Smale 1974, pp. 248 ff. for proof)

Theorem 1 (Poincaré–Bendixson). Every set L! of the above dynamics (in U ),
which contains no equilibrium point of (22.23)–(22.24), is a closed orbit.

Corollary 1. Assume that at the steady state !0; ls0 of the dynamics (22.23)–(22.24)
the following holds:

x D .1 � �p/X
w
! C .�w � 1/X

p
! > 0

Then any nonstationary trajectory in the set U is a closed orbit or converges to one.

Remarks.

1. It is not excluded here that the stable case x < 0 can give rise to limit cycles too.
Should this occur we have corridor stability in this model type; see Groth (1992)
for such an occurrence in a model of Keynes–Friedman type.

2. The main message of the theorem and its corollary is that wages may be inflexible
near the steady state and may thus allow for the condition x > 0 and local insta-
bility. If wages, however, become very flexible far away from the steady-state, as
in Fig. 22.1, the system can be rescued from global instability, thus making the
dynamics viable from an economic point of view. This shows that certain types
of wage flexibilities may create endogenous cycles rather than convergence to
the long-run position in supply-side oriented models.

3. As Fig. 22.2 shows, the viability domain within which all trajectories are attracted
by closed curves (or are closed curves) can be made as small as desired by reduc-
ing the size of the interval .a; b/: The amplitude of the resulting growth cycles
can therefore be easily tailored should the need for calibration arise (for example
in empirical investigations of the model).

4. The model has been introduced as a general type of Keynes–Wicksell monetary
growth model. The results obtained, as well as the model’s structure, show that
the Keynesian part of the model is underdeveloped, since:

(a) Wage flexibility is required to rescue the dynamics at least from global
instability.
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(b) Sufficient flexibility will establish local asymptotic stability of the full
employment steady growth path of the model for any given degree of price-
flexibility.

(c) Production is supply-determined in this approach.
(d) The IS-LM block of the model mainly serves to determine the rate of price

inflation.

By contrast, the model has a definite Wicksellian flavor due to the choice of in-
vestment function and goods-market behavior, as well as the property that sufficient
price flexibility will destroy at least the local stability of the steady state.16 We have
thus obtained results that conflict with Keynes’ (1936, p. 269) claim:17

To suppose that a flexible wage policy is a right and proper adjunct of a system which on
the whole is one of laissez-faire, is the opposite of the truth.

Here it is price rather than wage flexibility which may endanger the workings of the
economic mechanism. This extends analytical results obtained by Tobin (1975) and
confirms the intuition expressed in Tobin (1993) that, contrary to the popular view
that rigid prices are the defining characteristic of Keynesian economics, increased
price flexibility can destabilize movements in output.

22.6 Some Numerical Results

We have seen in the preceding section that the long-run dynamics (22.23)–(22.24)
can be made globally stable within a predetermined range Œa; b� for the rate of em-
ployment V by means of assumptions on money demand, inflationary expectations,
and the production function. Unlimited money wage flexibility for V approaching a
or b was crucial to making the dynamics viable. It is also obvious from Fig. 22.2 of
the preceding section that perfect downward flexibility (at V D a) is more impor-
tant than perfect upward flexibility (at V D b), since a > 0 (though not b < 1) is
crucial for the application of the Poincaré–Bendixson theorem.

The following numerical investigations of the Keynes–Wicksell model are based
on the CES production function y D .a C .1 � a/l�%/�1=% where a 2 .0; 1/ and
% 2 .�1;1/.18 Also, we shall only consider the case PK D I in this section, instead
of PK D S as in the preceding section. The simulations start at the steady state of
the model which receives a supply-side shock at time t D 1. This procedure allows
a simple illustration of whether the dynamics returns to the steady state or cycles
around it.

16 For any given degree of wage flexibility and �w < 1 if Xp
! < 0 holds.

17 In our model short-run causality still runs from marginal productivity to real wage determination
and not the other way round as was intended by Keynes in his theory of effective demand. Goods
demand here only helps to determine the rate of inflation in a Wicksellian fashion.
18 The constant elasticity of substitution of the production function is given by the term � D
1=.1C %/.
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Let us first state that numerical investigations of the dynamics (22.23)–(22.24)
generally show rapid cyclical adjustment towards the steady state in the special case
where �w D 1 holds, i.e., where we have the two-dimensional Goodwin growth
cycle structure embedded in a model with neoclassical factor substitution and thus
a combination of Goodwin’s and Solow’s views on capital accumulation (even for
elasticities of substitution as low as 1=4). If we add the Rose goods-market mecha-
nism to the real wage dynamics of the preceding situation and choose a specification
where investment is more responsive to real wage changes than savings we get for a
linear money–wage Phillips curve the global non-viability of resulting cycles if the
adjustment speed of money wages is sufficiently low in relation to the adjustment
speed of the price level. The resulting dynamics can be interpreted as an enhanced
Goodwin growth cycle where the overshooting mechanism regains (more than) its
original power – despite smooth factor substitution – through destabilizing price
flexibility as in Rose (1967), reinforced by a sufficiently sluggish adjustment of
nominal wages. The result obtained here reveals that the neoclassical argument of
the stabilizing role of money and real wage adjustments implicitly relies on the as-
sumption that goods prices are sluggish during the adjustment process. Note that the
flexibility of prices is generally assumed as very high (or infinite) in the literature.

Next, we replace the linear Phillips-curve with the nonlinear type considered in
the preceding section. This allows us to tame the explosive nature of the preced-
ing growth cycle situation leading to the limit cycle behavior shown in Fig. 22.3.
The basic idea behind this employment cycle is that wage changes dominate price
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changes far from the steady state and can thus exercise their stabilizing potential in
the manner assumed by the marginal productivity theory of real wages. Note here
that the amplitude of the fluctuations of the rate of inflation is considerable in the
present simulation, which is not implausible since this model type relies mainly on
price and wage adjustments. The shape of the Phillips curve that is in use here is
revealed to some extent by the upper right hand panel where the rate of change of
nominal wages is plotted against the rate of employment.

Adding sufficient interest rate flexibility to this situation implies that its limit cy-
cle will disappear and that convergence to the steady state is again obtained. Since
such a choice strengthens the static Keynes-effect it is not surprising to see that lower
values of h2 will increase the stability of the dynamics, although this is far from be-
ing obvious from a mathematical point of view in this now three-dimensional growth
context. Sufficiently low values for h2 thus make the steady state asymptotically sta-
ble, no longer allowing for the persistent business cycle of Fig. 22.3. Wage flexibility
and, even more so, interest rate flexibility are thus good for economic stability in the
present context.

Simulations of the four-dimensional case with backward looking adaptive ex-
pectations, however, show that these two stabilizers are insufficient for ensur-
ing even the boundedness of the dynamics (not to speak of convergence to the
steady state). This confirms the results for the medium run dynamics considered
in Sect. 22.4. Adaptive expectations, if adjusted sufficiently fast, always destroy the
viability of the model. The simulation depicted in Fig. 22.4, where an adjustment
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speed ˇ1� of only 0:15 is used, leads us back to a limit cycle result. Note that we have
made use here of a monetary shock (which doubled the growth rate of the money
supply), which leads to a long transition phase until the limit cycle is approached.
The assumed nonlinearity in wage-adjustment is no longer (close to being) suffi-
cient for making the dynamics (22.23)–(22.24) viable even for smaller sizes of the
parameter ˇ1� . It appears to be necessary to add further appropriate nonlinearities to
the model in order to ensure its viability in general. This, however, is not an easy
task and is not pursued here.19

Taken together, the analysis of Sects. 22.4 and 22.5, and the shown and further
numerical results (not shown) suggest that the common belief in wage-flexibility
as the appropriate means of ensuring convergence to full employment steady state
growth in a monetary economy cannot be considered as being well-founded even
in a “Keynesian” model with as many neoclassical features as possible, i.e., a
model which provides a favorable environment for the proof of such a propo-
sition. Of course, most favorable for neoclassical views on the relevance of the
full-employment growth path are the assumptions ˇp D ˇw D1 D ˇ

1
� .ˇ2� D 0/

which establish the Classical model of Sargent (1987, Chap. I), since these assump-
tions imply for the model (22.1)–(22.18) that I D S , V D 1 and Op D � . Yet, the
relevance of the full employment position is then given by assumption and not by
the proof that similar situations with high, but still finite adjustment speeds will give
rise to the same qualitative results.

22.7 Conclusions

This chapter has developed and analyzed a monetary growth model of the Keynes–
Wicksell type that is more general that any that has appeared in the literature to
date. Analytical results obtained for the medium-run dynamics reveal that conver-
gence to the steady state may be endangered if wages are sufficiently inflexible
and prices are sufficiently flexible. Moreover, if the adjustment of inflationary ex-
pectations is adaptive and sufficiently rapid, local instability of the steady state
is inevitable. Forward-looking expectations make stability more likely, but do not
guarantee it. Specifically, if the stabilizing Keynes and marginal productivity effects
are outweighed by the potentially destabilizing Rose effect, the steady state even
under regressive expectation is unstable. For the case of long-run dynamics with
capital accumulation, it is again found that wage inflexibility and price flexibility
are destabilizing. The results obtained analytically for special cases of the model
are confirmed by simulation results obtained for the complete four-dimensional sys-
tem, some of which have been considered in the preceding section. Local instability
need not imply economic nonviability of trajectories, provided that the model has a

19 Among the various nonlinearities that might serve to constrain the dynamics at a distance from
the steady state are the liquidity effects modeled in Foley (1987) or the balance of payments effects
considered in Sethi (1992).
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nonlinear structure: the specific type of nonlinearity explored here takes the form of
rising wage flexibility as the economy moves away from the steady state employ-
ment level.

The destabilizing effects of price flexibility accord with the conjectures of
Keynes and “unreconstructed” Keynesians such as Tobin, although the stabilizing
effects of wage flexibility do not. This latter feature should not necessarily be sur-
prising due the supply-side nature of Keynes–Wicksell models in which output is
always at full capacity and the real wage continuously equals the marginal product
of labor. Allowing for excess capacity and the possibility that firms are off their la-
bor demand curve in the short run may well give rise to different results, but this
extension is beyond the scope of the present work.

Mathematical Appendix

Derivation of the Dynamic Equations (22.19)–(22.22)
To obtain the dynamic equations of the model, begin by solving (22.13)–(22.14)

for the variables Ow � �; Op � � to get

Ow � � D ˇw.l= l
s � 1/C �w. Op � �/

Op � � D ˇp.i.!;m; �/ � s.!//C �p. Ow � �/

which for �w � �p ¤ 1 imply

Ow � � D
1

1 � �w�p
.ˇw.l= l

s � 1/C �wˇp.i.!;m; �/ � s.!///;

Op � � D
1

1 � �w�p
.ˇp.i.!;m; �/ � s.!//C �pˇw.l= l

s � 1//:

These two equations in turn give rise to our first differential equation:

O! D
1

1 � �w�p
..1 � �p/ˇw.l.!/=l

s � 1/C .�w � 1/ˇp.i.!;m; �/ � s.!///:

The next differential equation (for the dynamics of ls D Ls=K/ is given by

Ols D n � OK D

8
<

:

n � i.!;m; �/ if ˇk D 1;

n � s.!/ if ˇk D 0:

For Om D OM s � . Op � �/ � � � OK we get the following, when ˇk D 0:

Om D � �
1

1 � �w�p
.ˇp.i.!;m; �/ � s.!//C �pˇw.l.!/=l

s � 1// � � � s.!/:
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The corresponding equation when ˇk D 1 is obtained simply by replacing the last
term by i.!;m; �/. Finally, for P� , (22.15) yields

P� D ˇ1�.
1

1 � �w�p
.ˇp.i.!;m; �/ � s.!//C �pˇw.l.!/=l

s � 1///

Cˇ2�.� � n � �/:

Given the definition of the excess demand functions Xw.!; ls/ and Xp.!;m; �/ in
the text, the four dynamic equations above are equivalent to (22.19)–(22.22).

Proof of Proposition 1.
Parts a/b: By means of the many proportionalities that exist between parts of the
rows of the Jacobian matrix, the following expression for the determinant of J is
easily obtained

det J D �2!mˇ1�..1 � �p/C �p.1 � �w//X
w
!X

p
m < 0;

since we have �p; �w 2 Œ0; 1�; �p�w ¤ 1: Note that the sign of the determinant
depends only on the sign of the marginal productivity effect and the Keynes effect.
Next, for the three principal minors of J , we get

J3 D

ˇ̌
ˇ̌J11 J12
J21 J22

ˇ̌
ˇ̌ D ��2!mŒ..1 � �p/C �p.1 � �w//X

w
!X

p
m� > 0;

J2 D

ˇ̌
ˇ̌J11 J13
J31 J33

ˇ̌
ˇ̌ D �2!ˇ1� Œ..1 � �p/C �p.1 � �w//X

w
!X

p
� � < 0;

J1 D

ˇ̌
ˇ̌J22 J23
J32 J33

ˇ̌
ˇ̌ D �2mˇ1�Xpm > 0:

Note that the signs of these minors are again dominated by the signs of the marginal
productivity effect and the Keynes effect, except for J2 where the Mundell effect is
also present. Provided that ˇ1� ¤ 0, however, the sign of this minor remains negative
as a result of the marginal productivity effect.

For the trace of J we have the expression

trace J D �Œ.1 � �p/X
w
!! C .�w � 1/X

p
!! �X

p
mmCX

p
� ˇ

1
� �;

which shows that the stability condition trace J < 0 is supported by the marginal
productivity effect and the Keynes effect and endangered by the Rose and Mundell
effects. Note also that the marginal productivity and the Rose effect can be sup-
pressed by choosing �p or �w equal to 1, while the presence and strength of the
Mundell effect depends on the size of the parameter ˇ1� . The expression for the trace
of the matrix J thus shows that there are two real and two monetary forces present
which work in opposite directions with respect to the stability of the steady state.
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Let x denote the term .1��p/X
w
!!C.�w�1/X

p
!!�X

p
mm in the trace of J . The

Routh–Hurwitz conditions, which are necessary and sufficient for the local asymp-
totic stability of the steady state, are

a1 D � trace J > 0; a2 D J1 C J2 C J3 > 0;

a3 D � det J > 0; b D a1a2 � a3 > 0:

Case 1 x � 0 at the steady-state H) ˇH� D 0; since we then have trace J > 0

for all parameter values ˇ1� > 0.
Case 2 x < 0 at the steady state. We then have at ˇ1� D 0 the situation

a1 > 0; a2 > 0; a3 D 0; b > 0, so the steady state is stable. By continuity of these
expressions with respect to changes in the parameter ˇ1� , all Routh–Hurwitz condi-
tions are fulfilled for ˇ1� positive and sufficiently small. Furthermore, there exists
exactly one ˇtr� > 0 such that trace J D 0 at this ˇ1� value (trace J < 0 below it, of
course). Note that b must be negative when the trace vanishes because a3 D �detJ
is always positive. Also, since b is a quadratic function of ˇ1� , there thus exist at
least one and at most two values 0 < ˇH1� � ˇH2� such that b.ˇ1�/ D 0 holds (since
b.0/ > 0 and b.ˇtr� / < 0). It follows that b is negative between ˇH1� and ˇH2� (or
above ˇH1� if there is only one positive root of b.ˇ1�/ D 0/. Since b.ˇtr� / < 0, the
value of ˇH� we are looking for must be smaller than ˇtr� . On the other hand, should
there exist a second zero ˇH2� of b.ˇ1�/ it must be greater in value than ˇtr� . The
choice ˇH� D ˇH1� thus proves parts (a) and (b) of the proposition, since a2 D 0

implies b < 0 which can only happen when ˇ1� > ˇ
H
� .

Part c: Since a3 D � det J > 0 holds throughout, there can be only two purely
imaginary eigenvalues .¤0/ at ˇH� together with one real and negative one, due to
Orlando’s formula for the eigenvalues 	i of the matrix J (see Gantmacher 1954,
pp. 173–174):

0 D b.ˇH� / D �.	1 C 	2/.	1 C 	3/.	2 C 	3/

Below ˇH� , but sufficiently close to ˇH� we thus have that all eigenvalues have neg-
ative real part with two of them being complex (non-real) numbers, while beyond
ˇH� , and sufficiently close, we have one negative real eigenvalue and two complex
ones with positive real part. This proves part (c) of the proposition.20

Part d: Due to Orlando’s formula and the fact that det J is negative throughout,
the negative eigenvalue of J must remain negative for all ˇ1� > 0, since the other
two eigenvalues cannot cross the imaginary axis a second time.

20 We do not present an elaborate account of the conditions which establish a Hopf bifurcation here
since, as is usually the case, one cannot decide whether the bifurcation occurring in the present
model is subcritical, supercritical or of a linear (vertical) type. See Benhabib and Miyao (1981) for
further details.
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Proof of Proposition 2. With respect to the notation employed in the proof of the
preceding proposition, we have:

(a) det QJ D J3 � .�ˇ2�/ < 0 .sinceJ3 > 0/
(b) QJ2 D �ˇ2��!Œ.1 � �p/X

w
! C .�w � 1/X

p
! �

(c) QJ1 D ˇ2��mX
p
m > 0

(d) QJ3 D J3 > 0
(e) trace QJ D �Œ.1 � �p/Xw

!! C .�w � 1/X
p
!! �mX

p
m� D �x

We thus get QJ1 C QJ2 D �ˇ2��x and both a2; a1 > 0 if and only if x < 0 holds.
Furthermore, b D a1a2 � a3 is always positive if both a1 and a2 are positive. This
proves the proposition.

Proof of Corollary 1. The Jacobian J of (22.23)–(22.24) at the steady state is
given by

0

@
�x! �.1 � �p/X

w
ls
!

�.1 � c/y! 0

1

A D

0

@
‹ �

C 0

1

A

which shows that the unique equilibrium !0; l
s
0 is unstable if x > 0 and asymptot-

ically stable if x < 0. The set L! thus cannot contain the point .!0; ls0/ if x > 0

holds, if it is derived from points different from the point of rest itself.
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