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Supervisor’s Foreword

The prospects of quantum optics for biological measurements and imaging have
been recognized since the birth of the field in the 1980s. They arise from the
capacity quantum measurements offer to extract more information per photon than
is allowed classically. In biological measurements, and especially measurements at
the nanoscale, the weak interaction between light and matter demands the use of
bright tightly focused laser fields for many important imaging applications.
However, biological systems are often highly sensitive to light, with optical fields
both intruding on photochemical processes and ultimately terminating biological
function. Quantum optics techniques circumvent this otherwise unavoidable com-
promise between specimen damage and measurement performance.

While applications in biology have long been recognized as a milestone for
quantum measurement, progress has been limited due to the complexities of inte-
grating fragile quantum states with the nonideal environments typically associated
with biological specimens. Indeed, the most substantial contribution in this thesis
was to demonstrate for the first time that quantum-enhanced microscopy of living
biological systems is possible. A range of technical developments were required to
achieve this outcome, including the development of new quantum measurement
techniques capable of resolving low frequency signals relevant to biological sys-
tems, but immune to low frequency noise sources; the development of a microscope
capable of imaging microscale biological structure and tracking nanoscale biolog-
ical motion and compatible with the quantum correlated photons necessary for
quantum enhanced measurements; theoretical understanding of the quantum limits
to measurements of nanoscale motion; and the development of new modalities for
optical nanoparticle tracking.

Ultimately, in this thesis Michael Taylor demonstrates for the first time that it is
possible to track the motion of nanoparticles with a precision beyond the quantum
shot noise limit imposed when using classical light. This technique is then applied
to track lipid particles within living cells, allowing the viscoelasticity of the cellular
medium in the vicinity of the particles to be monitored with enhanced precision and
bandwidth. As the lipid particles diffuse around the cell, spatial structure could be
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probed with sub-diffraction limited resolution via a form of quantum-enhanced
photonic force microscopy. This first one-dimensional demonstration of quantum-
enhanced sub-diffraction-limited imaging achieved resolution comparable to state-
of-the-art classical systems and is significant since most subcellular structures have
length scales far below the diffraction limit.

This thesis sets the stage for future applications of quantum microscopy in
biological imaging. Combined with three-dimensional particle tracking and an
improved source of quantum-correlated light, full sub-diffraction-limited images
with Angstrom-scale resolution may be possible. This would provide access to
some of the smallest features within a cell, many of which have so far evaded
observation.

Brisbane, Australia Assoc. Prof. Warwick Bowen
March 2015
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Abstract

This thesis reports the development of a quantum enhanced microparticle tracking
technique, which applied to measurements within living cells, allowed the first
demonstrations of both biological measurements beyond the quantum noise limit
and quantum enhanced spatial resolution within biology.

The sensitivity of any optical measurement is limited by noise which follows
from quantization of the electromagnetic field. This thesis theoretically character-
izes the resulting quantum limit on particle tracking precision, both in the limit of
perfect measurements and for the measurements used in real experiments, and
theoretically establishes an experimental strategy which could allow the quantum
limit to be surpassed via the application of nonclassical light. Further, a compu-
tational tool is developed which allows rapid characterization of particle tracking
experiments, thus providing researchers the benefit of rigorous theoretical predic-
tions without requiring detailed calculations.

Following this, classical technologies are developed which can improve micro-
particle tracking sensitivity and which are enabling steps toward integration of
nonclassical light. An interferometric strategy is described whereby signal-to-noise is
improved by removing unwanted light from the detector. An optical lock-in technique
is developed which eliminates low-frequency noise, thus allowing quantum noise
limited performance at low frequencies. This is a crucial requirement for quantum
enhanced measurements, and can also improve precision in classical experiments.
Dark-field illumination is also explored as a method to remove unwanted background
light, and the optimal illumination angle is calculated for our intended experiments.

These advances are then applied in the development of the first quantum
enhanced particle tracking apparatus. Squeezed states of light are used to improve
particle tracking precision by 2.7 dB, demonstrating quantum enhanced microscopy
for the first time. This was applied to perform the first measurements of living
systems with quantum enhanced precision. Naturally occurring lipid particles were
tracked within the cytoplasm of Saccharomyces cerevisiae yeast cells, with
squeezed light enhancing precision by 2.4 dB. The thermal motion of these particles
could then be analyzed to infer the viscosity and elasticity of the local environment,
with squeezed light allowing 64 % faster observations, thus improving the
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sensitivity to dynamic biological changes. This experiment was then extended to
spatially resolved quantum imaging, with lipid particles used as scanning probes in
a technique called photonic force microscopy. The particles sample variations in the
local environment with resolution limited by measurement precision rather than the
diffraction limit. The use of squeezed light was found to enhance spatial resolution
by 14 % at an absolute resolution level of 10 nm, comparable to leading classical
experiments. This was the first demonstration of both sub-diffraction limited res-
olution and quantum enhanced resolution in biology, and places practical appli-
cations of quantum imaging within reach. Finally, the future challenges and
prospects of quantum enhanced particle tracking are outlined.

x Abstract
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Chapter 1
Introduction

1.1 Thesis Aims

1.1.1 Overview

The quantum nature of light fundamentally constrains the sensitivity of any optical
measurement [96]. This constraint is an important consequence of quantummechan-
ics which is highly relevant to practical measurement applications. When a detection
apparatus is limited by quantum noise, commonly known as shot noise, its sensi-
tivity can only be improved by increasing the optical power. Quantum metrology
offers an alternative approach in which non-classical correlations between photons
are engineered to suppress the quantum noise, thus allowing more information to be
extracted per photon [66]. For experiments where optical power must be constrained,
this approach offers sensitivity which can outperform any classical competitor. In
most experiments, however, power can simply be increased when improved preci-
sion is required. So far the only practical application of quantum metrology is in
gravitational wave observatories, which already operate with sensitivity that exceeds
the classical limits of existing technology [1, 2].

Another frontier where quantum metrology is anticipated to have important ap-
plications is in biological measurements [27, 44, 172], where photochemical inter-
actions often disturb biological processes and can damage the specimen [122, 131].
Despite over a century of intense study, the mechanics of a living cell still holds im-
mensemystery. The answers tomany basic questions remain incomplete, such as how
DNA is packed into a chromosome [174], whether or not motor proteins exist in the
cytoskeleton of bacteria [18], and how cells respond to changing temperatures [99].
Biological measurements have improved with the development of modern technol-
ogy, which has enabled observation of a vast collection of previously unobservable
phenomena, with further technological advances expected to allow similar advances
in understanding. For instance, the advent of optical tweezers based particle tracking
microscopy provided a window to the microscopic world which allows the dynamics
and response of single molecules to be studied. Since this was first developed by

© Springer International Publishing Switzerland 2015
M. Taylor, Quantum Microscopy of Biological Systems, Springer Theses,
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2 1 Introduction

Fig. 1.1 The aim of this thesis is to apply quantum correlated light to enhance biological measure-
ments. In this representation, a living cell is probed with light in the quantum state |�〉

Ashkin in 1986 [10], it has become one of the most widely used and versatile tools
of biophysics, and has enabled a vast array of discoveries. These include both the
dynamics and magnitude of the forces applied by biological motors [35, 60, 158],
the stretching and folding properties of DNA and RNA [33, 35, 71], the dynamics of
virus-host coupling [102], and the mechanical properties of cellular cytoplasm [148,
170, 187].

Although in principle quantum metrology offers a route to improved observation
of such biological properties, so far it has lacked the appropriate technology, and all
attempts to apply quantummetrology to biology have relied on instruments incapable
of biologically relevant measurements [44, 121]. The broad aim of this thesis was to
introduce the techniques of quantum metrology to practical biological experiments.
The specific goals of this thesis was to develop quantum enhanced particle tracking
in optical tweezers, and then to apply it in biological measurements. This technology
would make quantum metrology capable of improving observations of a vast range
of practical biophysical phenomena. As such, developing this tool and using it to
demonstrate a practical improvement in biological measurements is an important
step towards establishing the field of biological quantum metrology (Fig. 1.1).

1.1.2 Thesis Structure

This thesis describes the development and application of quantum enhanced par-
ticle tracking. It is separated into three main parts, which respectively address the
following goals:

• Theoretically determine the quantum noise limit to particle tracking precision.
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• Establish experimental strategies to provide the best sensitivity classically possible.
• Introduce non-classical light to overcome the quantum noise limit, and apply this
in biological applications.

Part I describes theoretical tools to characterize the quantum limit to sensitivity.
These can help to characterize an experimental setup, and provide theoretical insight
to the problem of building a classically optimized experiment. Part II then describes
strategies which can classically improve the measurement sensitivity, and which can
also make optical tweezers compatible with quantum metrology. Although these
strategies are developed with quantum enhanced particle tracking in mind, they are
also important for classical experiments which require high precision. Finally, in
Part III the first quantum enhanced particle tracking apparatus is built, characterized,
and applied in biological experiments.

1.2 Quantum Measurements

The over-arching goal of this thesis is to enhance biological measurements by using
non-classical states of light. More specifically, we aim to apply squeezed light to
enhance the sensitivity of optical tweezers based particle tracking, and to use this
device to perform biophysical experiments. This section provides an overview of the
broader field of quantum metrology, which this quantum technology will belong to,
and describes the status and outlook for real-world biological applications of quantum
metrology. This section includes material from the following review paper [164].

1.2.1 Overview

Biological measurements are influenced in a number of important ways by quantum
physics. This is usually limiting, with quantumnoise placing fundamental constraints
on the measurement precision. However, quantum effects can also be harnessed to
enable non-classical measurement technologies. For instance, magnetic resonance
imaging (MRI) is a particularlywell established technique that is based on populating
and manipulating spin states of the Hydrogen nuclei within water [81]. Positron
emission tomography (PET) relies upon detection of entangled photon pairs to image
cancerous tumors and to observe brain function [133]. Superconducting quantum
interference devices (SQUIDs) are also used clinically to measure biomagnetic fields
for medical diagnosis [41]. Early advances in quantum theory and control have
revolutionized biological imaging by enabling such technologies. However, PET is
the only such technology to utilize truly non-classical states, as quantum coherence
can be understood entirely with classical wave theory.
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Although entangled photon pairs have been utilized in PET since the 1960s [101,
135], these are generated uncontrollably via β+ decay. Recent advances now allow
quantum correlated states to be engineered. Control of these states provides access to
a new range of non-classical phenomena and opens fundamentally new capabilities
in diverse fields such as computing [19], data encryption [68], andmeasurements [66,
67]. The emerging field of quantum metrology can be broadly defined as the use of
quantum correlations to improve measurements [67].

This section aims to summarize both the advances already achieved and the future
potential for quantum metrology in biological systems. Prior to the work reported
in this thesis, only two proof-of-principle experiments had demonstrated the use
of engineered quantum correlations in biological measurements [44, 121]. Both of
these applied entangled photon pairs, which allowed some improvement in tissue
imaging [121] and in refractive index sensing of a protein solution [44]. Although
these experiments have demonstrated that quantum correlated states can improve
biological measurements, the sensitivity achieved was not comparable to existing
classical technology, and they do not provide a clear route to practical quantum
measurements in biology. In principle, however, quantum metrology can enable un-
rivalled precision in practical biological measurements. Numerous technologies have
already been demonstrated in non-biological measurements which could soon have
important applications in biology. These near-future applications include cellular
imaging with both multi-photon microscopy [168, 175] and super-resolution of flu-
orescent markers [45, 146], and measurement of biomagnetic fields [184]. An even
more promising application is the use of squeezed states of light in optical measure-
ments of biology, as squeezed light is the only quantum state which has been used
to outcompete state-of-the-art classical technology. However, prior to the advances
reported in this thesis, no method to integrate squeezed light into biological sensing
had been demonstrated.

1.2.2 Concepts of Quantum Metrology

Although quantumphysics ultimately underlies all forms ofmeasurement,mostmea-
surements can be modeled semi-classically. For instance, a classical wave treatment
can reproduce almost all optical interactions. However, there are some phenomena
which exhibit classically forbidden behavior, such as two-photon interference in a
Hong-Ou-Mandel (HOM) interferometer [83] (see Fig. 1.2). Such non-classical phe-
nomena rely on quantum correlations. With recent advances, quantum correlations
have been engineered in a range of systems, and are expected to enable numer-
ous technological advances. In quantum metrology, these correlations are applied in
measurements, either to improve a classical system or to enable fundamentally new
capabilities.

One particularly commonclass of quantummetrology experiments aim to improve
the precision of optical measurements by using non-classical photon correlations.
The measurement process generally involves preparing a probe, interacting it with
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Fig. 1.2 Layout of a Hong-Ou-Mandel interferometer [83]. A nonlinear crystal is pumped to
produce entangled photon pairs by parametric down-conversion. These photons are then recombined
with a beamsplitter and detected. A classical treatment would predict that the relative phase would
dictate the detection events, and would determine whether the photons are more likely to arrive at
detector A or detector B. In reality, non-classical interference ensures that both photons arrive at
one detector, with equal probabilities that the photon pair arrives at detector A and B. This violates
the classical wave treatment of light, and can only be predicted with quantum theory

Fig. 1.3 The layout of a phase sensing experiment based on a Mach-Zehnder interferometer.
Interference between the fields modulates the intensity at the two detectors, and therefore allows
the relative phase shift φ to be estimated

a system of interest, and then reading out the probe. In practice, this might involve
generating an optical field, propagating it though a Mach-Zehnder interferometer
and measuring the power in the two output ports to estimate a phase shift φ applied
within one arm of the interferometer (see Fig. 1.3). Even if all sources of technical
noise are eliminated, the quantization of the optical field introduces noise which sets
a lower limit on the achievable precision. Here we provide a qualitative introduction
to quantum limits; for a more detailed discussion see Ref. [164].

1.2.2.1 The Quantum Noise Limit

Quantumnoise can be understood in an intuitiveway by considering photon statistics;
for a more rigorous treatment, see Chap. 3. An ideal measurement of optical intensity
reveals the total photon flux n which arrives at the detectorwithin a certain timeframe.
For coherent laser light, all photons arrive independently so that themeasured photon
number fluctuateswith the randomphoton spacing. Photon arrivals are then described
by Poissonian statistics, which states that the measured photon variance �n2 will
be given by 〈n〉. This number fluctuation is commonly known as shot noise, and
constrains the precision of any optical measurement that does not utilize quantum
correlations [66]. This can be seen for the specific example of interferometric phase

http://dx.doi.org/10.1007/978-3-319-18938-3_3
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sensing, as shown in Fig. 1.3. For an ideal interferometer, the photon numbers to
reach the two detectors are given by

〈n A〉 = 〈n〉 cos2(φ/2) (1.1)

〈nB〉 = 〈n〉 sin2(φ/2), (1.2)

for the total photon flux n and relative phase shift φ. Consequently, the phase can
be estimated from measurements of n A and nB , with sensitivity maximized when
φ = π/2. For small displacements about this point, the phase is estimated as

φestimate = π

2
+ nB − n A

〈n〉 . (1.3)

The statistical fluctuations on the photon numbers then introduces statistical uncer-
tainty in the phase estimate of

�φ2 = 〈δn2
A〉 + 〈δn2

B〉 − 2〈δn A δnB〉
〈n〉2 , (1.4)

where δn A = n A −〈n A〉 and δnB = nB −〈nB〉. If the light is in a coherent state, the
photon statistics are completely uncorrelated so that 〈δn A δnB〉 = 0, and the number
fluctuations at each detector are given by 〈δn2

A〉 = 〈δn2
B〉 = 1

2 〈n〉. Consequently, the
achievable phase precision is given by

�φ = 〈n〉−1/2. (1.5)

Examination of Eq.1.4 suggests that precision can be improved if the detection events
are correlated, such that 〈δn A δnB〉 > 0. Fluctuations in the intensity can provide
such correlations, though this also increases the photon number variance 〈δn2

A〉 so
that precision is not improved. In fact, the sensitivity achieved with a coherent state
corresponds to the best precision achievable without quantum correlations; a result
which holds for any experiment, not just phase estimation [66]. Consequently, the
sensitivity achievable using coherent light of a given power is typically used as a
benchmark in quantum metrology experiments. For any given measurement proce-
dure and optical efficiency, the precision limit set by quantum shot noise is referred to
as the quantum noise limit,1 while the more stringent standard quantum limit defines
the precision which would be achievable with no loss and a perfect measurement.2

As such, Eq.1.5 corresponds to the quantum noise limit if n is the photon number

1Although this limit is widely used, there is no clear consensus as to its name. It is most often
referred to as either the quantum noise limit [156, 165, 171] or the shot noise limit [27, 72, 184],
often interchangeably [1], though other names are also used [84, 172].
2Note that the phrase “standard quantum limit” carries two distinct meanings in different communi-
ties. While much of the quantummetrology community uses the definition here, the optomechanics
community defines it as the best sensitivity possible with arbitrary optical power, which occurs
when quantum back-action from the measurement is equal to the measurement imprecision [66].
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at the detector, while it corresponds to the standard quantum limit if n is the inci-
dent photon number. These differing limits are generally used in different contexts,
with continuous measurements on bright fields often compared to the quantum noise
limit and photon countingmeasurements typically compared to the standard quantum
limit.

Inmany cases, the quantumnoise limit is described as the best precisionwhich can
be achieved classically [48, 163]. Coherent light, which saturates the quantum noise
limit, is sometimes even referred to as “classical light” [66, 165, 171]. This can be
confusing, as a classical field can be perfectly noiseless. However, one can derive the
limit of Eq.1.5 without assuming the optical field to be quantized. The measurement
procedure requires an electronic record of the light intensity; typically a photocurrent
produced in a photodiode. This photocurrent consists of discrete electrons which
are themselves subject to electronic shot noise. If a perfectly noiseless optical field
were to probabilistically excite photoelectrons, the electron statistics would maintain
the quantum noise limit derived above [61]. Violation of the quantum noise limit
requires electron correlations in the detected photocurrents which can not follow
from probabilistic detection.

1.2.2.2 Squeezed Light

For interferometric phase sensing, the quantum noise limit can be surpassed by in-
jecting a squeezed vacuum state into the unused input port of the interferometer [37].
This entangles the detected fields, and can allow the variance in the difference signal
nB −n A to be suppressed. A squeezed vacuum state can be visually represented with
a phase space diagram, as shown in Fig. 1.4. It is related to the vacuum fluctuations
of the electromagnetic field, though its variance along one quadrature is reduced at
expense of the other. More generally, any field with fluctuations squeezed below the
level of vacuum fluctuations is called a squeezed state. Squeezed light is an impor-
tant resource in quantum metrology, and can be applied to enhance the precision
of any optical measurement. If the amplitude is squeezed, for instance, the photons
tend to arrive more evenly spaced than in a coherent field, which is a phenomena
known as photon antibunching. This can be used to reduce the variance in amplitude
or intensity measurements, and thus enable precision which surpasses the quantum
noise limit.

1.2.2.3 Heisenberg Limit

As described above, non-classical correlations can be used to enhance precision.
Taken to its extreme, perfect entanglement may allow elimination of all statistical
noise in Eq.1.3; in this case, the phase precisionwould only be limited by the require-
ment that n A and nB be integers. A phase shift can only be resolved if it changes the
difference signal nB − n A by at least one photon, which limits the possible precision
to
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Fig. 1.4 A phase space diagram, illustrating a noiseless classical optical state, and a coherent,
squeezed, and vacuum quantum states. The X and Y axes can be interpreted as real and imaginary
components of the optical field. An uncertainty relation enforces a minimum phase space area for
any quantum state of light (see Chap. 3); in the absence of illumination, this results in the vacuum
fluctuations of electromagnetic fields. A coherent field is reached by adding this vacuum noise to a
classical field, which is one reason that it is often described as “classical light”. These fluctuations
establish the minimum resolvable phase (�φ). Squeezed states have reduced variance along one
quadrature at the expense of the other. The example shown here is phase squeezed, and can be used
to enhance phase precision

�φ ≥ 〈n〉−1. (1.6)

Once again, this qualitative derivation reproduces an important and fundamental
result; Eq. 1.6 represents the Heisenberg limit on precision, which sets a lower limit
on precision for any quantum state. Heisenberg limited sensitivity is achieved by the
NOON state, in which the constituent photons are in a superposition of all occupying
one arm of the interferometer, with the other unoccupied [48]. Eachmode is therefore
occupied by a superposition of 0 and n photons, also known as a cat state. In contrast
to the qualitative derivation here, NOON states do not enhance phase precision by
reducing measurement noise, but instead amplify the relative phase shift by a factor
of n [48].

1.2.2.4 Application to Measurements

While squeezed light and photonic NOON states can both be applied in similar
phase sensing applications, they have markedly different characteristics. In principle
the NOON state allows measurement at the fundamental Heisenberg limit, while in
most implementations, squeezed light does not [66]. Furthermore, a NOON state

http://dx.doi.org/10.1007/978-3-319-18938-3_3
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contains a definite number of photons, which can allow measurement statistics to be
characterized extremely accurately [185]. However, applications of NOON states to
precision sensing are constrained because it is technically challenging to generate
NOON states with large photon numbers, and such states are generated probabilisti-
cally with extremely low flux. The largest NOON state generated to date contained 5
photons, with an average photon flux of order 1 s−1 [3]. This co-propagated with well
over 1000 s−1 photons in other states, such that the optical field was dominated by
unwanted light. Squeezed states, by comparison, have been generated with an optical
power of 40 kW, or a flux of 1023 s−1 [1]. Since precision improves with the photon
flux, NOON states only offer a practical benefit in those measurements for which the
optical power must be constrained to the photon counting regime. The low photon
numbers in photonic NOON states also constrains themaximum enhancement which
is achievable, such that even a perfect measurement using 5-photon NOON states is
limited to 7 dB of quantum enhancement, with real experiments achieving far less.
By contrast, 12.7 dB of enhancement has been experimentally demonstrated using
squeezed light [50]. Squeezed states also have superior tolerance to inefficiencies, and
in the limit of high photon flux and non-negligible losses, can offer the best possible
sensitivity [47]. However, squeezed light has a finite frequency band of enhance-
ment, and low frequency signals often fall outside of this squeezing band. Although
state-of-the-art squeezed light sources reach down to 10Hz [115, 156], such sources
are extremely challenging to construct, and many sources only provide squeezing
in the MHz regime [82, 189]. This can seriously constrain practical applications, as
most biological processes studied to date occur in the Hz–kHz regime.

In addition to enhancing sensitivity, non-classical states are also used in quantum
metrology to enable new approaches to measurement for which there is no imme-
diate classical analogue. Often such measurements utilize photon pairs produced by
parametric down-conversion [19]. These are entangled since detection of one photon
always indicates that a second photon was generated. Entangled photon pairs can
enable such phenomena as entanglement mediated two-photon absorption [168], or
two-photon interference in a Hong-Ou-Mandel (HOM) interferometer [83].

In the field of quantum metrology, quantum correlated states are applied to en-
hance or enable measurements. This is broadly motivated by two distinct goals.
One aim is to establish the fundamental consequences of quantum mechanics for
a measurement. Toward this end, the quantum limits and the strategies required to
overcome them are both studied. These experiments often aim to breach the standard
quantum limit, as this establishes that the measurement procedure is in a classically
inaccessible regime. However, this is typically achieved at an extremely low photon
flux and with sensitivity far worse than any classical competitor. They can also in-
clude post-selection, in which individual measurements are discarded if the light is
prepared in the wrong state or disrupted by loss [118]. Overall this degrades sensi-
tivity by discarding information, but improves the comparison between quantum and
classical strategies. Such approaches are incompatible with the other aim of quantum
metrology, which is to build highly precise sensors for practical applications. The
primary motivation for these experiments is to out-compete their classical counter-
parts in somemanner, rather than to overcome a fundamental limit. The best example
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of this is in gravitational wave observatories, where squeezed light is used to achieve
sensitivity below the quantum noise limit [1, 2]. This is now routinely employed
because it has proven to improve performance in absolute terms [72].

From the earliest stage of quantum metrology, the two primary applications dis-
cussed were gravitational wave detection and biological measurements [144, 153,
154, 167, 180], since both are fields in which quantum noise can constrain observa-
tions and prevent important new discoveries. In the past few years, quantum metrol-
ogy has seen spectacular progress toward both of these key goals. While quantum
measurements in biology do not yet outperform state-of-the-art classical technology,
the groundwork has been laid for future quantum sensors with capabilities beyond
that which is classically achievable. This section now turns to those technologies,
and the practical biological applications which are likely to follow.

1.2.3 Biological Measurements with Entangled Photons

1.2.3.1 Quantum Optical Coherence Tomography

The first application of quantum metrology in biology was in a demonstration of op-
tical coherence tomography (OCT) with entangled photons [121]. Classical OCT is a
technique that is widely used for medical diagnosis [85, 143], where it is employed to
generate high-resolution 3D images of such structures as the eye and the retina [57],
and for dermatology [182] and cardiology [64]. OCT is based on a Michelson inter-
ferometer, with interference measured between a reference arm and backscattered
light from a specimen. Axial resolution is typically provided by using white light
with a short coherence length, such that interference only occurs for light which
has backscattered at a specific depth in the sample. Since this relies on broadband
white light to provide ultrashort coherence lengths, dispersion within the sample can
substantially broaden the axial sectioning resolution.

In quantumOCT entangled photon pairs produced in parametric down-conversion
are used instead [119, 120, 169]. Axial resolution is provided by HOM two-photon
interference [83], which occurs when the back-scattered and reference arms are
of equal length. Scanning of the reference arm therefore scans the depth of the
measured image (see Fig. 1.5). When compared to the use of low coherence light,
this can provide both superior axial resolution and immunity to dispersion [119,
120]. This quantum approach to OCT was applied to imaging of onion skin cells in
Ref. [121]. However, shortly afterwards Ref. [106] demonstrated that the improved
resolution and immunity to dispersion demonstrated in quantum OCT could also be
achieved with uncorrelated light. The use of classical illumination could also allow
a much higher photon flux and corresponding improvement in sensitivity. On a per
photon basis, however, the classical technique falls short of quantum OCT. As such,
quantum OCT may see revived interest once the technologies required to produce
andmeasure a high flux of entangled photons are developed. In its current form, it has
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Fig. 1.5 Layout of quantum OCT. The nonlinear crystal (NLC) generates entangled photon pairs,
with one photon passing through a reference arm while the other illuminates the scattering sample.
When the photons are recombined, two-photon interference only occurs for photons which follow
a similar optical path length. Measurement of this interference thus allows an image to be con-
structed only using photons which have scattered from a specific depth in the sample. Conventional
OCT applies short coherence length light to achieve a similar depth resolution. Reproduced with
permission from Ref. [169]

primarily been useful for the innovations it brought to both quantum measurements
and OCT [169].

1.2.3.2 Sensing Proteins with NOON States via Refractive Index
Measurement

Following this application in OCT, entangled photons were applied to measurements
of protein concentration in a microfluidic device [44]. A 2-photon NOON state was
passed through a Mach-Zehnder interferometer with a microfluidic channel passing
through one arm. A standard interferometric phase measurement was then used to
infer the refractive index of the fluid within the channel. Proteins within solution
were measured via the increase in the fluid refractive index.

In this case, the use of entangled photons increases the phase sensitivity, in prin-
ciple allowing measurement precision which would classically require increased
photon flux. Biological samples are generally photosensitive, and in some cases in-
creasing the photon flux could damage the specimen.While entanglement was shown
to improve the interferometer visibility beyond the threshold for supersensitivity,
the experiment suffered from low detection efficiency and was unable to overcome
the standard quantum limit. More importantly, the flux of measured photon pairs
(0.1 s−1) was far below any known damage threshold in biology. Consequently,
even with improved technology, similar experiments are not likely to out-compete
classical sensors which use high flux coherent light. This demonstration helped to
show that quantum correlated light can benefit biological sensing, though it does
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not establish a clear route toward practical applications of quantum measurement in
biology.

With these demonstrations, quantum measurements of biology are not a future
perspective but are a current reality. From a practical point of view, the primary
weakness of both quantum OCT and the protein measurement discussed above is
the use of low flux sources of entangled photons. Quantum OCT might see wide-
spread applications if it could be performed with the high flux used in classical
experiments. Likewise, with a higher photon flux the refractive index measurements
could be competitive with classical measurements, which would make it useful in
chip-based microfluidic sensing. However, given that neither the light sources or
detectors for such measurements are currently available, this thesis adopts a more
practical approach which is to use squeezed states of light, which can be applied
and detected with arbitrary optical power. In addition to such a squeezed light based
measurement, there are a range of other quantum measurements which could also
soon hold important applications in biology. This introduction now turns to these
future applications.

1.2.4 Entangled Two-Photon Microscopy

Two-photon microscopy is an area in which entangled photons could provide a sub-
stantial practical advantage [55, 168]. In two-photon microscopy, two-photon ab-
sorption within a sample is studied via its specific fluorescent signature. Since this is
a third-order nonlinear optical process, two-photon absorption will typically occur
only near the central focus of the illumination. When compared to one-photon ab-
sorption, this both sharpens the spatial resolution and suppresses fluorescence away
from the focal plane. However, classical two-photon absorption is an extremely in-
efficient process requiring a very high input flux of photons. The peak power is
typically maximized by use of high-peak-intensity pulsed lasers, which can damage
the specimen [80].

If highly correlated photon pairs are used instead of classical light, the two-
photon absorption rate can be vastly enhanced, with the absorption process depend-
ing linearly rather than quadratically on the photon-flux density [129]. This allows
multiphoton fluorescence microscopy to proceed with intensities more suited to bi-
ological samples (Fig. 1.6). For instance, recent demonstrations in non-biological
organic chemistry have found that two-photon absorption and two-photon fluores-
cence measured with an entangled photon flux of 107 s−1 is comparable to similar
measurements with 1017 s−1 coherent photons, allowing a 10 order of magnitude
reduction in power from tens of mW to a few pW [75, 107].

Furthermore, entangled photons reveal information about the nonlinear absorption
mechanism which is inaccessible to classical light sources. Two-photon absorption
can occur either via a permanent dipole transition or via a virtual state transition [89].
While these transitions are classically indistinguishable, the different mechanisms
have amarkedly different response to entangled photons; dipole transitions are not en-



1.2 Quantum Measurements 13

Fig. 1.6 An entangled two photon microscope. A pair of entangled optical fields are generated
with a nonlinear crystal, and recombined at the specimen. The entanglement enhances two-photon
absorption where the fields recombine, as can be observed by measuring the resulting fluorescence.
Adapted from Ref. [168]

hanced by the entanglement [175], while entangled photons that are phase-matched
to virtual states are absorbed at a vastly enhanced rate [129, 139]. Even among
transitions mediated by virtual states, the entangled photon absorption cross sec-
tion is not proportional to the classical absorption cross section, as the enhancement
depends on the detuning and linewidth of the virtual state [137]. The two-photon
transition amplitudes contributed by the entangled photons can also interfere, pro-
ducing “entanglement-induced transparency”, analogous to electromagnetically in-
duced transparency [55]. An entangled two-photon microscope may prove the only
tool capable of probing the properties of virtual states.

Although this has not yet been applied in biological measurements, these pre-
liminary results suggest that entanglement could be extremely promising in future
two-photon microscopy applications. It could both enhance the visibility in two-
photon fluorescent microscopy, and reveal classically inaccessible information.

1.2.5 Quantum Super-Resolution in Fluorescence Microscopy

While the non-classical states used in most quantum metrology experiments require
sophisticated state preparation, systems such as fluorescent particles naturally emit
non-classically correlated light. These quantum correlations are ignored in classical
experiments, though recent results have shown that measurement of the correlations
provides additional information that can be used to enhance spatial resolution [145].
In classical fluorescent microscopy, the optical diffraction limit restricts the reso-
lution with which fluorescent particles can be distinguished to approximately half
the wavelength of light. This limits the use of fluorescent imaging in living cells. To
overcome this limit, a number of fluorescent super-resolution techniques were devel-
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oped for photo-switchable particles, including stimulated emission depletion (STED)
microscopy [142, 183], photoactivated localization microscopy (PALM) [152], and
stochastic optical reconstruction microscopy (STORM) [138]. These have enabled
great progress in biological research by allowing cellular structure to be characterized
at the nanometer level. In some applications, however, photo-switchablemarkers can-
not be used. In this case, structured illumination has instead been used to sample the
fluorescent emission over a wider range of spatial frequencies. In this approach, the
fluorescent emission is spatially modulated with a high spatial frequency via struc-
ture in the illumination field. This down-shifts some of the high spatial frequency
information which would not usually be measured. By capturing information from
the fluorescent field which is typically neglected, this approach allows the resolution
to be approximately halved [105].

In a similar manner, photon statistics can also be measured to capture more of the
information from the fluorescent emission. In fluorescence microscopy, a fluorescent
particle absorbs energy as it is excited to a higher state, and is then imaged as it decays
back to the ground state by re-radiating at another wavelength. This mechanism
generally only allows emission of one photon at a time, which results in photon
antibunching and associated non-classical photon correlations. As such, coincident
photons must originate from separate fluorescent centers.

This concept has been applied in two separate approaches to resolve fluorescent
particles below the diffraction limit. In Ref. [45] the photon statistics were measured
in a scanning confocal microscope to provide an additional channel of information,
which thus improved the statistical estimation of the positions of the fluorescent
particles. Such an estimation procedure is a class of image deconvolution [128],
with the measurement of photon coincidences improving resolution by providing
information that is not available in classical deconvolution methods.

A related approach was also demonstrated in Ref. [146]. In that work, however,
a large collection of fluorescent particles were excited with pulsed light and simul-
taneously measured in wide-field imaging (Fig. 1.7). With this configuration, the
fluorescent particles could only emit one photon each per excitation pulse. By mea-
suring the N photon coincidences at each pixel and analyzing the correlations, an
image of the fluorescent particles can be constructed with the resolution enhanced
by a factor of N 1/2 [145]. The experimental demonstration measured photon coin-
cidences up to N = 3, and allowed the spatial resolution to be enhanced from 272
to 181nm [146]. This enhancement could hold practical significance, just as struc-
tured illumination is already used in important biological applications. Furthermore,
applying this method in conjunction with structured illumination could potentially
combine the resolution enhancements, which would allow this technique to resolve
smaller features than any directly comparable classical technique.
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Fig. 1.7 Super-resolution via measurement of photon coincidence statistics. Fluorescent particles
are illuminated with short pulses of laser light, and the resulting fluorescence is measured on a
high efficiency camera. Each pulse is sufficiently fast that a particle can only be excited once per
pulse, and each coincident photon must originate from a different fluorescent particle. An analysis
of the N photon coincidences then allows a N 1/2 enhancement in resolution, with example data
shown at the right. This shows the N = 1, which is simply the intensity profile, the N = 2 and the
N = 3 data. As N increases the resolution is visibly improved, though the contrast is degraded.
Reproduced with permission from Ref. [146]

1.2.6 Phase Contrast Microscopy

Quantum metrology could also provide enhanced sensitivity in phase contrast mi-
croscopy, which is another technique that is widely used for biological imaging. In
such measurements, a light beam is split and focused through two slightly different
sections of a sample. The phase difference between the paths is then measured to
determine differences in the refractive index along differing paths. This can then be
used to reconstruct the spatial profile of the refractive index within the sample [92].

Phase measurements have been enhanced with quantum correlated light for some
time, which suggests that phase contrast microscopy can also be enhancedwith quan-
tum correlated light. The feasibility of this was demonstrated in Ref. [125], where
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two photon NOON states were used to allow sub-shot noise imaging.3 This demon-
stration did not achieve either sensitivity or spatial resolution which was comparable
to classical techniques, partly because ultra-low photon flux was used and partly
because the specimen could not be imaged at the focus of the imaging optics. How-
ever, an extension of this technique which applies high flux quantum correlated light
with diffraction limited spatial resolution would provide an extremely useful tool for
biological research.

1.2.7 Atomic Magnetometers

The development of high sensitivity magnetometers capable of measuring biomag-
netic fields has both advanced biological research and enabled new methods in med-
ical diagnosis. In particular, such studies have provided rich information about the
function of the heart [56] and brain [76], which both produce a relatively large bio-
magnetic field. Initially the SQUID was the only magnetometer capable of useful
biomedical applications, but with recent advances atom based magnetometers can
now provide the sensitivity of a SQUID while operating at room temperature [32,
46, 98]. As such, atomic magnetometers are used in the above mentioned biological
applications, measuring both the dynamics and spatial profile of the biomagnetic
field generated by a beating heart [21–23], and the field generated from neural activ-
ity in the brain in response to stimuli [186]. Atomic magnetometers are also used in
applications beyond those investigated with SQUIDs, including multichannel mea-
surements of neural activity in a brain [91], cryogen-free low-field MRI [141], and
in attempts to measure biomagnetic fields in plants [43].

1.2.7.1 Quantum Limits to Sensitivity

Atomic magnetometers are based on optical manipulation and readout of the spin
state of an atomic ensemble in the presence of a magnetic field. Light that is near-
resonant with an optical transition spin polarizes the hyperfine levels of the ground
state, which subsequently undergo Larmor spin precession in the magnetic field. The
phase and amplitude of the transmitted light then encodes information about the spin
precession, from which the magnetic field can be estimated.

The sensitivity of this measurement is fundamentally limited by quantum noise
in both the optical readout and the spin of the atomic ensemble. Quantum noise
in the spin states, referred to as projection noise, results from the projection of the
atomic spin onto the measurement axis. The mean spin is oriented orthogonal to the

3This experiment was published after the quantum enhanced microscopy experiment reported in
Chaps. 10 and 11 of this thesis (Ref. [165]), but before this was extended to spatially resolved
imaging as described in Chap.12 (Ref. [166]). Consequently, this thesis reports the first experiment
to achieve quantum enhanced microscopy, though Ref. [125] was the first to demonstrate quantum
enhanced microscopic imaging.

http://dx.doi.org/10.1007/978-3-319-18938-3_10
http://dx.doi.org/10.1007/978-3-319-18938-3_11
http://dx.doi.org/10.1007/978-3-319-18938-3_12
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measurement axis to provide optimal estimation of the spin precession. Projection
noise then follows from the statistical fluctuations in the measurement. The opti-
cal readout can also be limited by quantum shot noise. While the dominant source
of quantum noise depends on the details of the measurement, the contributions of
projection noise and optical shot noise are comparable when the measurement is
optimized [15].

1.2.7.2 Enhancement with Entangled Atoms

There has been much interest in the possibility to improve sensitivity beyond the
projection noise and shot noise limits. Optical readout of the Faraday polarization
rotation is a quantum non-demolition (QND) measurement of the spin polarization
state along one axis [150] (Fig. 1.8). In a QND based magnetometer, each measure-
ment both provides information about the magnetic field and projects the system
onto a spin-squeezed state, increasing the sensitivity of subsequent measurements
(Fig. 1.9).

An early theoretical analysis suggested that quantum correlations within the spin
ensemble would be destroyed by spin relaxation, rendering spin squeezing effective
only formeasurementsmuch shorter than the spin-relaxation time [15]. Later analysis
has shown that the spin relaxation preserves quantum correlations, and that spin
squeezing could be used to vastly improve the sensitivity on any timescale [97].
This has then been applied experimentally, with QND measurements used to induce
spin squeezing in an atomic ensemble, resulting in improved sensitivity to magnetic
fields [100, 149]. One variation of this approach is to use QND measurements to
induce anticorrelated noise in two separate vapor cells, such that the resulting two-
mode squeezing (or equivalently, entanglement) suppresses the measured projection
noise [179]. This approach enabled an absolute sensitivity approaching that achieved
in state-of-the-art atomic magnetometers. Another related approach applied QND
measurements to a scalar atomicmagnetometer and achieved themost sensitive scalar
magnetic field sensitivity to date, even without demonstrating spin squeezing [151].

Fig. 1.8 Layout for QND atomic magnetometry. A pump field is used to spin polarize an atomic
vapor. After this a probe field is passed through the cell, and the magnetic field estimated from the
Faraday polarization rotation. Reproduced with permission from Ref. [150]
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(a) (b) (c)

Fig. 1.9 Measurements with spin squeezing. The measurement statistics of QND measurements
were studied, first with no atoms in the trap to characterize the readout noise (a) and then inde-
pendently prepared coherent spin states (b), with the measured distribution corresponding to the
projection noise. The solid curves indicate 2σ radii for Gaussian fits. c When a single coherent spin
state is prepared and sampled sequentially, the successive measurements squeeze the spin variance
below the projection noise limit (dashed circle) along one axis. Reproduced with permission from
Ref. [149]

1.2.7.3 Use of Quantum Correlated Light

In addition to the enhancement by spin squeezing, non-classical states of light
have also been used to overcome the quantum noise on the optical readout [84,
184, 185]. The optical magnetometer in Ref. [184] achieved sensitivity better than
the shot-noise limit using a polarization-squeezed probe tuned near the atomic reso-
nance (Fig. 1.10). In that work, however, the atomic vapor was not spin polarized, but
instead kept in a thermal state, which resulted in poor absolute sensitivity. A similar
experiment was reported later in Ref. [84], though there the absolute sensitivity was
vastly improved and the frequency range of squeezing was extended into the biologi-
cally relevant sub-kHz regime. Such an enhancement could be particularly important
once it is applied in a QND based magnetometer, because it acts both to improve

Fig. 1.10 Magnetic field
measurements with squeezed
(dark green line) and
coherent (black line) light.
The use of squeezed light
lowers the detection noise
floor without affecting the
applied signal field at
120 kHz, and thus improves
the field sensitivity by
3.2 dB. Reproduced with
permission from Ref. [184]
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the measurement sensitivity and also to improve the spin squeezing. Overall, this
improves the fundamental limit on sensitivity for a QND based magnetometer [15,
184]. To achieve this, it is important that there is no increase in spin decoherence
induced by the probe when using quantum correlated light. To test for this, Ref. [185]
applied two-photon NOON states to perform optical readout in atomic magnetome-
try. By characterizing the photon scattering and atomic excitations, they could verify
that entangled light induced less decoherence in the spin state than coherent light
which achieved the same sensitivity.

By using squeezed light in a QND measurement to condition the spin-states of
the atomic ensemble, it should be possible to achieve extremely high sensitivity.
Once this is achieved in state-of-the-art magnetometers, it should allow magnetic
field sensors which outcompete SQUIDs, and can be expected to have important
biological and clinical applications.

1.2.8 Conclusion

Measurements which apply engineered quantum correlations are a newly emerging
technology. Though no practical biological applications of such measurements have
been demonstrated, they have been shown to have much potential and are likely to
be important in the coming years. In particular, squeezed states of light have been
proven to enable unprecedented sensitivity in non-biological measurements [1], and
could hold important applications in biological sensing. However, no technology has
been demonstrated which could apply squeezed light in optical measurements of
biology; a challenge which is addressed in Part III of this thesis.

1.3 Introductory Theory of Optical Tweezers

Optical tweezers combine single particle tracking with controlled micro-
manipulation. Particles are tracked with sub-nanometer sensitivity [40] within a con-
fining optical trap. With suitable calibration, this allows forces to be characterized
with sub-piconewton precision [60, 117]. This allows dynamic characterization of
both forces and displacements at the single molecule level, which has led to a vast
range of biophysical discoveries. This section introduces the field of optical tweez-
ers, briefly overviews some of the key achievements of the field, and introduces the
theory of optical confinement of particles. This provides the background informa-
tion, context, and relevance of quantum enhanced precision in particle tracking. This
section incorporates the following publication [163].
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1.3.1 Relevance of Optical Tweezers

Following the development of optical tweezers in 1986 [10], optical tweezers rapidly
became a key tool in a wide range of biophysical experiments. These started with
trapping of single cells [11] and viruses [8], and soon after the manipulation of intra-
cellular organelles [9]. Such intracellular studies could then reveal the biophysical
forces which propel organelles through the cellular cytoplasm [12]. For instance, it
enabled characterization of themolecular motor kinesin, which carries cargo through
cells along microtubule structures. In these experiments, kinesin would move down
a microtubule while dragging a larger bead. This bead was tracked using optical
tweezers, with the measured motion revealing both the molecular motion [24] and
the applied molecular force [103]. When measured with sufficient precision, this
has revealed that the induced motion is not continuous, but follows a step-like pat-
tern [158].

Another notable application of optical tweezers is in microrheology, where the
viscous and elastic properties of a medium are studied via their influence on the
motion of an embedded test particle [26, 188]. Such micrometer scale measurement
of the viscoelasticity can reveal information not available to bulk rheometers, such as
the properties ofmicroscale objects such as living cells [170], or directional properties
of materials with nanoscale structure [51]. Materials are typically characterized by
the complex shear modulus G∗ = G ′ + iG ′′, where G ′ and G ′′ are the loss and
storage moduli corresponding to viscosity and elasticity respectively. A Newtonian
fluid is incompressible (G ′′ = 0) and has constant viscosity G ′. In general, however,
both moduli are non-zero and vary with frequency. By characterizing the thermal
motion of a bead, the viscoelasticity can be characterized over the full bandwidth of
the detection system [134, 162].

The thermal motion of particles in a Newtonian fluid such as water follows well-
knownBrownianmotion. If themedium also exhibits elasticity, this partially confines
the particle by introducing a path-dependent force which opposes its motion [73].
Optical tweezers can be used to characterize the resulting “subdiffusive” motion
within living cells, thus determining both the viscosity and elasticity of the cellular
cytoplasm [70, 113].Within the cytoplasm, almost all thermal motion is subdiffusive
because proteins and other macromolecules resist the movement of particles [181].
Subdiffusive motion is extremely important to the operation of a cell, as it medi-
ates important processes such as chemical reactions [42], protein folding [63], and
structural changes in DNA [157]. The extent of the particle confinement can strongly
effect chemical reactions, for instance, as it slows the initial approach of chemical
reactants to one another but also decreases the likelihood that they will pass without
interacting. In some regimes this improves the efficiency of the reaction, while in
others it can suppress reactions [74, 148]. The viscoelasticity is not a simple static
parameter, but has been found to follow nanoscale structure in places [173], and to
vary as the cell undergoes reproduction [147]. However, more study is still required
to establish the full biological implications of these mechanical properties [74].
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In addition to allowing the mechanical properties of a bulk fluid to be charac-
terized, optical tweezers are also capable of probing the elastic response of single
molecules such as DNA. The mechanical properties of DNA are far from trivial, and
are heavily effected by bending, stretching, wrapping and unwinding. These prop-
erties have significant biological relevance to such cellular processes as replication
and transcription [30]. Optical tweezers have provided a key tool in the study of such
mechanical properties. By using DNA to tether a bead to a fixed surface, optical
tweezers can be used to move the bead and stretch the DNA. This has allowed the
elasticity of the DNA to be measured, and when using large forces, revealed the
existence of a stable overstretched form of DNA [155, 178]. Further studies revealed
several other force-induced mechanical transitions [34]. The attractive force which
binds the complementary strands in the double-helix of DNA together has also been
measured by immobilizing one strand on a fixed surface and the other strand to a
bead, and applying a force to the bead [108]. Further extensions of this method have
allowed measurement of the forces associated with unzipping the double-helix of
DNA base-by-base [52], which is found to be substantially smaller than the force
required to pull the entire DNA molecule apart at once. In addition to these lateral
forces, optical tweezers have also been used to study the response of DNA to an
applied torque by rotating the immobilized section of DNA, which has revealed even
more structural transitions [30]. Similar studies have also been performed with RNA,
and these have also revealed vast levels of molecular complexity [33]. Despite these
advances, the mechanical properties of DNA and RNA still raise many unanswered
questions. For instance, it is not yet known how DNA is wrapped into the com-
pact form of a chromosome [174], and the mechanical response of DNA is not well
understood in the presence of inhomogeneities which exist in biological environ-
ments [29]. The biological significance of these mechanical properties also raises
many questions, including the role they play in gene expression [176]. Furthermore,
numerous RNA strands have been discovered which act as thermometers, with tem-
perature sensitivity via poorly understood effects that appear to rely on mechanical
compliance [99]. These molecular thermometers play an important role in cellular
function by regulating cellular activity in response to changing temperatures, and are
also believed to stimulate bacterial pathogenic activity [99]. These open questions,
and many more like them, are likely to be answered only with new technology and
improved observations [29].

In addition to the many biological applications of optical tweezers, they have also
been used to resolve a number of questions in fundamental physics. For instance,
optical tweezers have also been used to demonstrate the non-trivial of thermody-
namics of a microscale systems [114]. Macroscopic systems follow the second law
of thermodynamics, which states that the entropy of any closed system must always
increase. On a microscopic scale, however, all interactions are time-reversible, and
individually are not constrained by this law. On average, each microscopic inter-
action increases the entropy, such that the second law holds when considering a
system that is sufficiently large that the microscopic variability in the entropy is un-
measurable. This transition between the microscopic and macroscopic nature of the
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second law was confirmed experimentally by studying the entropy of optical trapped
particles [36, 177].

Optical tweezers also allow characterization of the thermal motion of a particle
in a purely viscous fluid. The usual description of this, termed Brownian motion,
assumes that the particle follows a random walk through the medium with no mem-
ory of its past trajectory. This requires velocity to be dissipated instantly [111]. At
sufficiently short timescales, however, the motion deviates from this and thermally
driven particles have a measurable velocity [86, 109]. In addition to this, motion in
water also deviates from Brownian motion due to hydrodynamic effects. Since any
surrounding fluid must be displaced in order for the particle to move, the surround-
ing fluid contains some memory of the past motion of the particle, which results in
an effective modification to the thermal forces [90], and with a sufficiently strong
optical trap produces a mechanical resonance in the particle motion [62].

Quantum physics can also be studied by optically trapping particles in vacuum
and cooling the motion [6, 110]. With some improvements over current technology,
this is expected to allow cooling to the quantum ground state [94]. Furthermore,
the inherent optical control is expected to allow the quantum state to be engineered,
enabling generation of mechanical entanglement [38]. Provided a levitating system
could be controlled and measured with sufficient accuracy, it could then be used
to resolve some of the central questions in quantum mechanics, including tests for
non-Newtonian gravity at short distances [65], and the gravitationally induced wave-
function collapse predicted for a superposition state [16].

In addition to the important applicationsmentioned here, there are alsomanymore
which are not discussed. A comprehensive review of such experiments is beyond the
scope of the current work. However, this brief overview allows the vast range and
importance of the applications of optical tweezers to be appreciated. There are many
reviews which can provide a more complete discussion of the biological applications
of optical tweezers. For instance, Ref. [35] provides a thorough description of bio-
molecular force sensing experiments. For a thorough introduction to the underlying
physics and capabilities of optical tweezers, see Ref. [25].

1.3.2 Optical Forces

An optical tweezers experiment fundamentally involves focusing a laser beam near a
particle, and afterward measuring the light to infer particle position (see Fig. 1.11a).
The focused laser field exerts an optical force on the particle which confines it
near the focus. This interaction involves momentum exchange between the light and
particle which therefore deflects the laser beam. The particle position is generally
measured by estimating change inmomentum of the transmitted light. This change in
optical momentum is observable as a deflection of the laser beam, which is typically
measured by collecting the transmitted light with an objective lens and directing it
onto a quadrant detector [69]. To understand such a measurement, we now consider
the optical forces exerted.
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(a) (b)

Fig. 1.11 The most basic elements of an optical tweezers experiment. a Laser light is focused to a
point to trap particles, and then collected for measurement. In most cases, this measurement occurs
on a quadrant detector as shown here. Microscope illumination is also used to allow visualization of
the trapping region on a CCD (charge-coupled device) camera, which is not fundamentally required
but is necessary for its practicality. b Provided the particle has greater refractive index than the
surrounding fluid, it is trapped near the focus of the beam and is subject to two forces: a gradient
force Fgrad which points toward the intensity maxima (see Eq.1.7), and radiation pressure FRP
which pushes in the direction of light propagation (see Eq.1.8)

1.3.2.1 Dipole Approximation

The optical force exerted is simple to evaluate if the trapped particle is approximated
as a point dipole [77]. In this case, the optical field E induces an oscillating dipole
with polarization p = αE, where α is the polarizability. Neglecting components at
optical frequencies, the optical gradient force on the dipole is given by

Fgrad = (p · �) E = 1

2
α � E2, (1.7)

where the vector identity �E2 = 2 (E · �) E + 2E × (� × E) has been used, along
with�×E = 0 fromMaxwell’s equations [77]. The force described in Eq.1.7 points
toward maxima in intensity for particles with positive polarizability, or equivalently,
a higher refractive index than the surrounding medium. In addition to this force, the
radiation pressure of the trapping laser also pushes the particle along the optical axis
ẑ, which tends to destabilize the trap (see Fig. 1.11b). This force is given by

FRP = k4α2

12πn2ε0
E2 ẑ, (1.8)



24 1 Introduction

where k is the wavenumber, n the refractive index of the surrounding medium, and
ε0 the vacuum permittivity [77]. To enable stable trapping, the trapping force must
dominate the radiation pressure. To achieve this, the laser is focused to the smallest
spot possible,whichmaximizes the intensity gradient. The scattering rate is important
because the gradient force scales as α while the radiation pressure scales as α2. The
scattering rate therefore should not be vanishingly small, as this produces minimal
optical forces, but it also cannot be very large, as this produces large radiation pressure
forces which destabilize the optical trap. Both the gradient and radiation pressure
optical forces scale linearly with the light intensity, so within this analysis there is
no upper limit on the optical power which can be used to trap particles. In practice,
particles cannot be trapped in water if the trapping light causes excessive heating of
the surrounding water.

1.3.2.2 Ray Optics Regime

While the dipole approximation described optical forces on particles much smaller
than the wavelength, the ray optics approximation can be applied for particles much
larger than the wavelength. Within the ray optics approximation, light is considered
to propagate in rays, with deflection of the light occurring only through refraction at
interfaces. In an optical trapping experiment, the only relevant interfaces are at the
surface of the trapped particle. By considering the deflection of each ray of light that
passes through the particle, the change in momentum of the trapping field can be
estimated. Since momentum is conserved, a force is imparted on the particle which
opposes the change in optical momentum [7]. When this force is estimated for a
spherical particle of greater refractive index than its medium, the force is found to
oppose small displacements such that the particle can be trapped at the focus; see
Fig. 1.12.

Within the ray optics regime, the optical deflection is independent of the trapping
wavelength. Although the optical momentum per photon depends on the wavelength,
this is compensated by the energy per photon, so the momentum depends only on the
optical power. Consequently, the force applied in the ray optics regime is independent
of the trapping wavelength.

1.3.2.3 General Trapping Forces

If the particle size is comparable to the wavelength, the dipole approximation and ray
optics analysis are both invalid. If the particle is a homogeneous sphere, the forces
can be calculated with extended Mie theory. An exact solution for the scattered
field (and hence the force) exists, though this solution is expressed as an infinite
series of spherical harmonic functions [87]. The series is generally truncated to
allow numerical evaluation of the scattered field, with precision limited only by
the number of terms included in the analysis. For a more complete description of
optical forces in the Mie scattering regime, see Ref. [136]. Alternatively, the Optical
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Fig. 1.12 Forces on a particle in the ray optics regime. The trapping light is deflected as the particle
is displaced from the optical focus (indicated by dashed lines), which changes its momentum. The
total momentum is conserved via an optical force on the particle which opposes the change in optical
momentum. The particle refractive index is greater than the surrounding fluid in these diagrams,
which leads to a trapping force that opposes small displacements. Particles with lower refractive
index are not stably trapped

Tweezers Toolbox provides a numerical tool to allow rapid calculation of the forces
exerted in an optical tweezers experiment [123, 124]. While the analysis for larger
particles is more involved than that presented above, the qualitative conclusions
remain similar. Particles can only be trapped if they have a higher refractive index
than the surroundings. Traps are more stable when the light is more tightly focused,
and when the refractive index contrast is small. Although the qualitative conclusions
hold, neither the dipole approximation nor ray optics can correctly predict either
the magnitude of the predicted forces or their scaling with experimental parameters
within the Mie scattering regime.

1.3.3 Trapped Brownian Motion Spectra

Herewe derive the expected thermal trajectory x(t) of a trapped particle in the simple
case of a purely viscous medium with no elasticity or hydrodynamic interactions. In
this case, the equation of motion along one dimension is given by

mẍ(t) = −γ ẋ(t) − koptx(t) + FT + Fext, (1.9)
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for a particle mass m, friction coefficient γ, a harmonic optical force −koptx(t), an
external force Fext, and a fluctuating thermal force FT = (2kB T γ)1/2ξ(t), with T
the temperature and kB Boltzmann’s constant [20]. The fluctuating function has the
properties 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = δ(t − t ′). By taking the Fourier transform of
Eq.1.9 and rearranging, we find that

x(ω) = (2kB T γ)1/2ξ(ω) + Fext(ω)

−mω2 + iωγ + kopt
. (1.10)

Many experiments aim to measure an external force, such as those produced by
protein motors. In such experiments, the external force directly competes with the
fluctuating thermal force.

We can see that the inertial contribution mẍ(t) to Eq.1.10 is negligible at frequen-
cies far below the rate at which the kinetic energy is lost through friction, ω � γ/m.
The friction is given by Stokes’ law as γ = 6πμR, where R is the particle radius
and μ is the fluid viscosity. Using this, it can be seen that the inertial contribution is
measurable only at very short timescales; for instance, a 1 µm diameter silica mi-
crosphere in water hasm/γ = 120 ns. This term is therefore typically neglected [20],
with the resulting power spectra of trapped Brownian motion given by

〈|x(ω)|2〉 = 2kB T/γ + 〈Fext(ω)〉/γ2

ω2 + ω2
c

, (1.11)

where we have used 〈|ξ(ω)2|〉 = 1 and introduced the corner frequency ωc ≡ kopt/γ.
Any measurement of this thermal motion will also include a detection noise floor.
Without an external force Fext = 0, this results in spectra such as that shown in
Fig. 1.13.

Fig. 1.13 This is the
mechanical spectra which is
typical for measurements of
trapped Brownian motion.
This follows the expectation
value (thick red line), given
by a Lorentzian mechanical
profile (Eq.1.11), along with
a white noise floor (dashed
green line)
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1.3.4 Application to Sensing

In many optical tweezers experiments, a biological molecule exerts a force on a
trapped particle, and the particle position is measured to determine the biomolecular
force. Since such experiments are performed in an aqueous environment at room
temperature, the desired force competes with the stochastic thermal force on the
particle. Force resolution is therefore limited by both the absolute sensitivity of the
apparatus and the background of thermal forces. These experiments are typically
limited by detection drifts at sub-Hz frequencies, thermal noise over the bulk of the
detection range, and are shot-noise limited only above a few tens of kHz [132]. For the
example inFig. 1.13, the characteristicLorentzian spectral shapeof trappedBrownian
motion dominates over the measurement noise for frequencies below 10 kHz. In this
frequency range, thermal forces limit any determination of the external force Fext,
and reduction in the measurement noise floor offers no improvement in the force
sensitivity. At frequencies above 10 kHz, however, measurement noise dominates the
imprecision in force sensing. Thus an improvement in measurement noise primarily
increases the measurement bandwidth available for force sensing applications.

Although thermal fluctuations can limit the resolution of non-thermal forces, they
also provide a method to probe the mechanical nature of the fluid surrounding the
particle, since thermal motion of a particle is determined both by the thermal force
and themechanical properties of its surroundingmedium. Provided the particle size is
known, both the temperature and viscosity of the surrounding fluid can be determined
easily from Eq.1.11. In addition to this, several effects can also be characterized
which are neglected in the derivation of Eq.1.11. For instance the inertial term mẍ(t)
was neglected, although this dominates at fast time-scales [86, 93], as described in
Sect. 1.3.1. By characterizing the particle velocity in this regime, one can directly test
the Maxwell-Boltzmann distribution for particle velocities [93, 109]. Furthermore,
the thermal force FT is assumed to be a white noise process, which requires it
to be completely memoryless. However, the surrounding fluid must be displaced
to allow particle motion, which results in correlations between the fluid flow and
particle motion, effectively causing the Brownian force to be non-white [62, 90,
112]. Similar hydrodynamic effects also couple the particle motion to surrounding
walls [49, 130] and other particles [116]. Additionally, the surrounding fluid can
exhibit elasticity, which effects both the damping and thermal force and thereby the
thermal motion [70, 113]. This effect is common in complex fluids such as within
biological systems, and has a profound effect on all chemical processeswithin the cell
which are mediated by thermal motion. All of the above effects can be characterized
by determining the profile of the thermal motion. The sensitivity of such experiments
is limited by detection noise at all frequencies, so reducing the measurement noise
allows characterization of such effects with improved bandwidth and precision. For
a more detailed explanation of such experiments, see Ref. [188].
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1.3.5 Applications for Quantum Enhanced Sensitivity

The use of non-classically correlated light in optical tweezers can allow enhanced
sensitivity. As described in Sect. 1.2, this can increase the bandwidth and improve
the precision of practical experiments. Here, several applications which are already
known to require such improvements are discussed. This list is far from exhaustive,
and we anticipate that quantum enhanced sensitivity could also hold relevance to the
investigation of many other phenomena.

In the field of microrheology, the viscoelastic properties of a material are studied
by the way they influence the motion of an embedded particle. This reveals mechan-
ical properties of the medium, with important applications in understanding both
biological structures and in the study of nanofluidic mechanics. Improved sensitivity
would allow the viscoelastic response to be probed on shorter timescales, revealing
both the properties of the cytoplasm and biological processes at higher frequency [31,
134]. For instance, the cytoskeleton is responsible for cell shape and movement, and
intracellular transport of organelles and chromosomes for protein synthesis and cell
division. It consists of a complex structure of interconnected semiflexible protein
filaments, and exists in a dynamical non-equilibrium state due to the action of mo-
tor molecules and actin filament polymerization. To date, this has made quantitative
measurements of its behavior challenging [13]. The recent development of low noise
two-particlemicrorheologywith 100 kHz bandwidth represents a significant advance
in this area, and has allowed the observation of rich dynamical behavior in actin fila-
ments, including new relaxation processes unique to semiflexible polymers [14, 95].
Using quantum optics techniques we expect that it will be possible to extend the
bandwidth of such techniques well into the MHz frequency range, and potentially
even into the GHz regime. This would open up a new window on the biological
world.

The high bandwidth achievable with quantum enhancement could also enable the
first observationof ultrafast biological processes. For instance, nanopores in themem-
brane of a cell can open and close on nanosecond timescales [126]. These nanopores
are of approximately 1nm size [127], and provide extremely effective control of
the membrane permeability to water and ions [88]. Nanopores have been indirectly
observed via measurements of membrane permeability [17, 127], and their function
studied by characterizing synthetic nanopores [104]; however, due to their small size
and transient nature, they have never been directly observed. Their exact structure and
function is not fully understood, and the formation process is unknown [17]. Direct
observation of nanopores forming and closing could provide a significant advance in
the understanding of cell membranes. These dynamics can only be characterizedwith
nanosecond time resolution, which is beyond the range of existing technology. The
use of quantum technology to enter the high frequency regime may therefore enable
this observation, and provide new insight into the structure of a cell membrane.

Furthermore, there is currently debate in the neurobiology community regard-
ing the contribution of acoustic waves, rather than pure electrical signaling, to the
propagation of signals down axons in nerve cells [5]. Although neural signaling
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undoubtedly includes propagating electrical excitations, this excitation is accom-
panied by many other measurable effects, including rapid heating and cooling and
volume changes in the axon [159, 161], stimulation of unconnected cells nearby [58],
and changes in the axon’s optical properties [160]. Although these changes have been
shown to co-propagate with the electric signal [161], and both electrical andmechan-
ical stimulation can produce neural activity [28, 39, 140], the biological role of these
mechanical effects is not yet known. Some hypothesize that neural signaling occurs
via transmission of a electric-acoustic soliton, with the electric pulse a side-effect
of the mechanical signal [78, 79], while others maintain that the mechanical ef-
fects are a side-effect of the electrical signal [5]. This question lies at the very heart
of neuroscience, which makes it extremely important to test the predictions of the
hypotheses. The predicted mechanical vibrations, and particularly the dissipation,
differ significantly between the models [4]. Although direct imaging allows some
characterization of the mechanical excitation, it lacks the precision and bandwidth
required to distinguish between the competing models. Laser tracking has also been
used as this offers far greater sensitivity [28, 53, 54], though this approach is lim-
ited by the extreme photosensitivity of nerve cells [190], and observations to date
have also lacked the required precision. By using quantum resources to improve the
sensitivity, it may be possible to finally resolve the role of mechanical excitations in
neural activity.

Quantum enhanced particle tracking could also hold important applications in
investigations of the non-Brownian thermal motion of particles in water on very
short timescales, as described earlier in Sect. 1.3.1. Observation of the instantaneous
velocity of a particle in liquid requires exquisite precision, and was only reported in
2014 [93]. The ability to access this regime allows characterization of single-particle
thermodynamic properties, which could provide new insights into non-equilibrium
processes [93]. Furthermore, when a particle moves in liquid, it carries with it an
envelope of the surrounding fluid [86]. At very fast time-scales the envelope motion
decouples from the particle motion in a manner governed by the compressibility of
the fluid [191]. Although water is close to incompressible, it does have an elastic
component, which is required for the propagation of sound waves [59]. If the de-
coupling of the fluid envelope could be measured, this would both test longstanding
theoretical predictions and allow a novel way of probing the mechanical properties
of the liquid. The use of quantum correlated light could allow the improvement in
sensitivity required to observe these phenomena.

As we see here, there are many important applications which could benefit from
the use of quantum enhanced particle tracking. More generally, non-classically cor-
related light can also enhance a range of different biological measurements tech-
niques, such as two-photon microscopy, super-resolution imaging, and absorption
imaging [27, 66]. By demonstrating quantum enhancement in optical tweezers, we
hope to lead the way for a broad range of biological applications of non-classically
correlated light.
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112. B. Lukić, S. Jeney, C. Tischer, A.J. Kulik, L. Forró, E.-L. Florin, Direct observation of non-

diffusive motion of a Brownian particle. Phys. Rev. Lett. 95, 160601 (2005)
113. T. Mason, K. Ganesan, J. Van Zanten, D. Wirtz, S. Kuo, Particle tracking microrheology of

complex fluids. Phys. Rev. Lett. 79(17), 3282–3285 (1997)
114. L.I. McCann, M. Dykman, B. Golding, Thermally activated transitions in a bistable three-

dimensional optical trap. Nature 402(6763), 785–787 (1999)
115. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, R. Schnabel, Observation of squeezed

states with strong photon-number oscillations. Phys. Rev. A 81(1), 013814 (2010)
116. J.-C. Meiners, S.R. Quake, Direct measurement of hydrodynamic cross correlations between

two particles in an external potential. Phys. Rev. Lett. 82(10), 2211–2214 (1999)
117. J.R. Moffitt, Y.R. Chemla, S.B. Smith, C. Bustamante, Recent advances in optical tweezers.

Annu. Rev. Biochem. 77, 205–228 (2008)
118. T. Nagata, R. Okamoto, J. O’Brien, K. Sasaki, S. Takeuchi, Beating the standard quantum

limit with four-entangled photons. Science 316(5825), 726–729 (2007)
119. M.B. Nasr, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Demonstration of dispersion-canceled

quantum-optical coherence tomography. Phys. Rev. Lett. 91, 083601 (2003)
120. M.B. Nasr, B.E. Saleh, A.V. Sergienko, M.C. Teich, Dispersion-cancelled and dispersion-

sensitive quantum optical coherence tomography. Opt. Express 12(7), 1353–1362 (2004)
121. M.B. Nasr, D.P. Goode, N. Nguyen, G. Rong, L. Yang, B.M. Reinhard, B.E. Saleh, M.C.

Teich, Quantum optical coherence tomography of a biological sample. Opt. Commun. 282(6),
1154–1159 (2009)

122. K.C. Neuman, E.H. Chadd, G.F. Liou, K. Bergman, S.M. Block, Characterization of photo-
damage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999)

123. T. Nieminen, V. Loke, A. Stilgoe, G. Knöner, A. Brańczyk, N. Heckenberg, H. Rubinsztein-
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129. J. Peřina, B.E. Saleh, M.C. Teich et al., Multiphoton absorption cross section and virtual-state
spectroscopy for the entangled n-photon state. Phys. Rev. A 57(5), 3972 (1998)

130. G. Perkins, R. Jones, Hydrodynamic interaction of a spherical particle with a planar boundary:
II. Hard wall. Phys. A 189(3), 447–477 (1992)

131. E.J. Peterman, F. Gittes, C.F. Schmidt, Laser-induced heating in optical traps. Biophys. J.
84(2), 1308–1316 (2003)

132. E.J. Peterman, M.A. van Dijk, L.C. Kapitein, C.F. Schmidt, Extending the bandwidth of
optical-tweezers interferometry. Rev. Sci. Instrum. 74(7), 3246–3249 (2003)

133. M.E. Phelps, Positron emission tomography provides molecular imaging of biological
processes. Proc. Natl. Acad. Sci. USA 97(16), 9226–9233 (2000)

134. D. Preece, R.Warren, R. Evans, G.M. Gibson, M.J. Padgett, J.M. Cooper, M. Tassieri, Optical
tweezers: wideband microrheology. J. Opt. 13(4), 044022 (2011)

135. S. Rankowitz, J. Robertson, W. Higinbotham, M. Rosenblum, Positron scanner for locating
brain tumors. Technical report, Brookhaven National Lab., (BNL) Upton, NY (1961)

136. A. Rohrbach, E. Stelzer, Trapping forces, force constants, and potential depths for dielectric
spheres in the presence of spherical aberrations. Appl. Opt. 41(13), 2494–2507 (2002)

137. O. Roslyak, C.A. Marx, S. Mukamel, Nonlinear spectroscopy with entangled photons: ma-
nipulating quantum pathways of matter. Phys. Rev. A 79(3), 033832 (2009)

138. M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical recon-
struction microscopy (STORM). Nat. Methods 3(10), 793–796 (2006)

139. B.E. Saleh, B.M. Jost, H.-B. Fei, M.C. Teich, Entangled-photon virtual-state spectroscopy.
Phys. Rev. Lett. 80(16), 3483 (1998)

140. M.J. Sanderson, A. Charles, E.R. Dirksen, Mechanical stimulation and intercellular commu-
nication increases intracellular Ca2+ in epithelial cells. Cell Regul. 1(8), 585–596 (1990)

141. I. Savukov, V. Zotev, P. Volegov, M. Espy, A. Matlashov, J. Gomez, R. Kraus Jr, MRI with
an atomic magnetometer suitable for practical imaging applications. J. Magn. Res. 199(2),
188–191 (2009)

142. R. Schmidt, C.A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S.W. Hell, Spherical nanosized
focal spot unravels the interior of cells. Nat. Methods 5(6), 539–544 (2008)

143. J.M. Schmitt, Optical coherence tomography (OCT): a review. IEEE J. Sel. Top. Quant.
Electron. 5(4), 1205–1215 (1999)

144. M. Schubert, The attributes of nonclassical light and their mutual relationship. Ann. Phys.
499(1), 53–60 (1987)

145. O. Schwartz, D. Oron, Improved resolution in fluorescence microscopy using quantum cor-
relations. Phys. Rev. A 85(3), 33812 (2012)

146. O. Schwartz, J.M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, D. Oron, Superresolution mi-
croscopy with quantum emitters. Nano Lett. 13(12), 5832–5836 (2013)

147. C. Selhuber-Unkel, P. Yde, K. Berg-Sørensen, L.B. Oddershede, Variety in intracellular dif-
fusion during the cell cycle. Phys. Biol. 6(2), 025015 (2009)

148. E.N. Senning, A.H. Marcus, Actin polymerization driven mitochondrial transport in mating
S. cerevisiae. Proc. Natl. Acad. Sci. USA 107, 721–725 (2010)

http://www.physics.uq.edu.au/people/nieminen/software.html


36 1 Introduction

149. R. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N. Behbood, M. Mitchell, Magnetic
sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109(25),
253605 (2012)

150. V. Shah, G. Vasilakis, M. Romalis, High bandwidth atomic magnetometery with continuous
quantum nondemolition measurements. Phys. Rev. Lett. 104(1), 013601 (2010)

151. D. Sheng, S. Li, N. Dural, M. Romalis, Subfemtotesla scalar atomic magnetometry using
multipass cells. Phys. Rev. Lett. 110(16), 160802 (2013)

152. H. Shroff, C.G. Galbraith, J.A. Galbraith, E. Betzig, Live-cell photoactivated localization
microscopy of nanoscale adhesion dynamics. Nat. Methods 5(5), 417–423 (2008)

153. R. Slusher, Quantum optics in the 80’s. Opt. Photonics News 1(12), 27–30 (1990)
154. R. Slusher, A. Porta, B. Yurke, P. Grangier, Squeezed states, interferometric limits and back-

action evasion, in Frequency Standards and Metrology, ed. by A. Marchi (Springer, Berlin
Heidelberg, 1989), pp. 343–348

155. S.B. Smith, Y. Cui, C. Bustamante, Overstretching B-DNA: the elastic response of individual
double-stranded and single-stranded DNA molecules. Science 271(5250), 795–799 (1996)

156. M. Stefszky, C. Mow-Lowry, S. Chua, D. Shaddock, B. Buchler, H. Vahlbruch, A. Kha-
laidovski, R. Schnabel, P. Lam, D. McClelland, Balanced homodyne detection of optical
quantum states at audio-band frequencies and below. Class. Quant. Grav. 29(14), 145015
(2012)

157. O. Stiehl, K. Weidner-Hertrampf, M. Weiss, Kinetics of conformational fluctuations in dna
hairpin-loops in crowded fluids. New J. Phys. 15(11), 113010 (2013)

158. K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Direct observation of kinesin stepping
by optical trapping interferometry. Nature 365, 721 (1993)

159. I. Tasaki, T. Nakaye, Heat generated by the dark-adapted squid retina in response to light
pulses. Science 227(4687), 654–655 (1985)

160. I. Tasaki, A. Watanabe, R. Sandlin, L. Carnay, Changes in fluorescence, turbidity, and bire-
fringence associated with nerve excitation. Proc. Natl. Acad. Sci. USA 61(3), 883 (1968)

161. I. Tasaki, K. Kusano, P. Byrne, Rapid mechanical and thermal changes in the garfish olfactory
nerve associated with a propagated impulse. Biophys. J. 55(6), 1033–1040 (1989)

162. M. Tassieri, G.M. Gibson, R. Evans, A.M. Yao, R. Warren, M.J. Padgett, J.M. Cooper, Mea-
suring storage and loss moduli using optical tweezers: Broadband microrheology. Phys. Rev.
E 81, 026308 (2010)

163. M.A. Taylor,W.P. Bowen, Quantum noise in optical tweezers. J. Phys.: Conf. Ser. 467, 012007
(2013)

164. M.A. Taylor, W.P. Bowen, Quantum metrology and its application in biology.
arXiv:1409.0950, 2014

165. M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen, Biological
measurement beyond the quantum limit. Nat. Photon. 7, 229–233 (2013)

166. M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen,
Subdiffraction-limited quantum imagingwithin a living cell. Phys. Rev.X 4(1), 011017 (2014)

167. M.C. Teich, B.E. Saleh, Squeezed and antibunched light. Phys. Today 43, 26–34 (1990)
168. M.C. Teich, B.E. Saleh, Entangled-photon microscopy. Česk. Čas. Fyz. 47, 3–8 (1997)
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Part I
The Quantum Limit to Particle

Tracking Sensitivity

Part I of this thesis consists of three chapters which characterize in detail the
quantum limit to particle tracking sensitivity. The first of these chapters determines
the total information content of the measured light, assuming it is in a coherent
state. Even a perfect measurement cannot extract more information than this, so it
establishes an ultimate limit for classical experiments. This chapter does not,
however, determine how the derived limit applies to nonclassically correlated light.

Particle tracking relies on extraction of information from a scattered field, and no
particle tracking scheme to date can capture the complex spatial structure of the
field which carries this information. As such, real experiments are unable to
approach the ultimate limit, and Chap. 3 derives the limit imposed by quantum
noise in real experiments. It also establishes how the use of quantum correlated light
can improve the measurement sensitivity, and increase the per photon information
content of the scattered light. By determining the sensitivity limit in the regime of
real experiments, this chapter also provides insight into how to classically optimize
the measurement to extract all of the information.

Finally, Chap. 4 presents a computational tool which characterizes particle
tracking measurements with the commonly used quadrant detection scheme. This
tool allows researchers to theoretically characterize the sensitivity and signal
amplitude in their experiments without requiring any technical calculations, and can
thus provide a wide range of researchers with the benefit of rigorous theoretical
predictions.

Altogether, these theoretical tools allow a thorough characterization of the
capabilities of existing technology, how to improve upon this, and what such
developments could allow.

http://dx.doi.org/10.1007/978-3-319-18938-3_3
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Chapter 2
The Total Information Carried by the Light

This chapter theoretically establishes the quantum limit on the total information
carried by the collected light, using a simple approach analogous to the Heisenberg
microscope. This sets a limit on the sensitivity attainable with a perfect measurement
within a given optical setup. This ultimate limit provides a view to what may be
possible in future; real experimental systems cannot perfectly capture the complex
spatial profile of the scattered light, so the limit derived here is not achieved in
any experiment, even when the sensitivity is limited by quantum noise. The theory
presented in this chapter was published in the following paper [25].

2.1 Introduction

The position sensitivity in optical tweezers is usually limited by technical noise
sources, such as laser noise, electronic noise in the detector, or drifts of mirrors
in the experiment. Substantial efforts have been made to minimize such technical
sources of error [2, 14, 17]. With sufficient improvements in the technical noise, the
sensitivity per photon must eventually be limited by noise due to the quantization
of light [13]. The resulting quantum noise limit is an important consequence of
quantummechanics, and is becoming increasingly relevant in experiments. So, what
is the precision at the quantum limit? And how closely are experiments approaching
this? The quantum limit has previously only been derived in the paraxial optics
regime with Rayleigh scattering [3, 23], making the calculated limit inapplicable to
most experiments.

Here we follow the simple principles of the Heisenberg Microscope to derive
the maximum information content of a scattered optical field, and the correspond-
ing quantum sensitivity limit for particle tracking in optical tweezers. A more
detailed analysis of the quantum limit following standard quantum formalism is
given in Chap.3. The simple approach followed here can be straightforwardly
applied to particles with arbitrary shape and size, yields analytic solutions in the
Rayleigh scattering regime, and allows analysis of a wide range of optical setups.
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The approach is also relevant to other measurements such as microscopy with flu-
orescent particles [7]. Our results show that leading experiments are already within
two orders of magnitude of the quantum noise limit.

2.2 How Much Information Can a Photon Carry?

Particles in optical tweezers are tracked by measuring their perturbing influence
on the electric field as they scatter photons. The scattered light is collected with
a high numerical aperture lens, providing an image of the particle. Motion of the
particle displaces the image, with the displacement typicallymeasured via a resulting
power imbalance on a quadrant detector [9]. Each scattered photon carries some
information about the position of the particle fromwhich it scatters. This information
is fundamentally constrained by the Heisenberg uncertainty relation, which places a
limit on the localization of a photon [8] of �qi ≥ �

2�pi
, where �pi is the photons

momentum uncertainty for each axis i ∈ {x, y, z}, z is the direction of optical
propagation, x the axis of linear polarization, and � is the reduced Planck constant.
Consequently, the location of the scattering event which produced the photon can be
establishedwith aminimumuncertainty of�qi . This also defines the particle position
uncertainty when the scattered field originates from the center of the particle, as is
the case for Rayleigh scattering. In general, however, the origin of the scattered field
may be offset, lying between the center of the particle and that of the optical trap.
For example, if the trapped particle is larger than the trap width and displaced such
that its center lies outside the trap, scattering can only originate from the part of
the particle contained within the trap field. This leads to a smaller displacement in
the scattering origin than that of the particle itself. Such effects increase the absolute
uncertainty in the particle position, so that in this case,�qi establishes a lower bound
on particle position uncertainty.

Auseful constraint onmomentumuncertainty�pi is that itmust bewithin the total
photon momentum pph = 2πnm�

λ , where nm is the refractive index of the medium1

and λ is the vacuum wavelength, because

�p2i = 〈p2i 〉 − 〈pi 〉2 ≤
∑

i=x,y,z

〈p2i 〉 − 〈pi 〉2 = p2ph −
∑

i=x,y,z

〈pi 〉2. (2.1)

We introduce parameters fi to characterize �pi along each axis, such that

�pi = fi pph, (2.2)

1The momentum flux of light in a medium has been highly controversial, with Abraham and
Minkowski separately deriving it to be P0

nm c and nm P0
c respectively, and with both forms confirmed

by experiments [16]. The different forms have been shown to describe different physical quantities,
as described in detail in Ref. [16]. It is the Minkowski form nm P0

c which is appropriate to this
problem, as this conserves kinetic momentum in light-matter interactions.
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leading to the condition f 2x + f 2y + f 2z ≤ 1. This relation becomes an equality for
a photon which is scattered with no preferred direction (〈pi 〉 = 0). Using this, a
position measurement is limited to an uncertainty of

�qi ≥ λ

4πnm fi
. (2.3)

Perhaps unsurprisingly, this condition has a similar form to the Rayleigh criterion [4],
which establishes an approximate limit to the resolution of a givenmicroscope system
without regard for the exact features of the scattering process. By contrast, Eq.2.3
provides a rigorous bound which accounts for the scattered field profile. This is
crucial for establishing accurate quantum limits to the precision of particle tracking
experiments, particularly in the Mie scattering regime where the scattering exhibits
both complex spatial structure and resonance phenomena.

In particle tracking experiment, the position of a particle is measured with 〈Ns〉 =
κ〈N0〉 scattered photons, where N0 incident photons have a scattering probability of
κ. Without quantum correlations in the light, each photon detection event provides
an independent measurement of the particle position with uncertainty �qi . While
the standard deviation of these position measurements will be limited to �qi , the
particle position can be reliably established with a much smaller standard error δqi

given by

δqi ≥ λ

4πnm fi
√

κ〈N0〉 . (2.4)

This places a lower limit on the particle position sensitivity achievable with uncorre-
lated photons. To derive the value of this limit, we only need to calculate the scattering
probability κ and the momentum parameter f . As these parameters depend on the
trapping field, the particle being tracked, and the refractive index of the surrounding
medium, they must be evaluated for specific cases, although neither may ever reach
unity. The condition that κ and f remain below one places a general lower bound of
δq ≥ λ

4πnm
√

N0
on the precision, which is imposed even if the scattering properties of

the particle were cleverly engineered [12] and the measurement performed perfectly;
for all realistic situations, the minimum resolvable displacement is larger than this.
To determine the limit for real experiments, we evaluate the quantum limit for the
common case of homogeneous spheres in a Gaussian trap.

2.3 Optimal Tracking of a Rayleigh Particle

Both the scattering rate κ and momentum distribution parameter f can be calculated
analytically in the Rayleigh scattering regime, in which the particle diameter d � λ.
If an incident TEM00 mode is focused on the particle to a waist of w, the scattering
rate is
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κ = 128π4a6

3λ4w2

(
n2

p − n2
m

n2
p + 2n2

m

)2

, (2.5)

where n p is the refractive index of the particle [11]. For Rayleigh scatterers polarized
along the x axis, the scattered photons enter the mode ψ, with amplitude given by

|ψ|2 = 3

8π

1 − (x/r)2

r2
, (2.6)

where r is the radial distance [11]. Assuming the photons to be moving radially
outward, this mode determines the momentum profile of the scattered light. In most
experiments, any scattered photon which reaches the detector has passed through
the aperture of an objective. This constrains the momentum range of the detected
photons, thereby increasing the position uncertainty. The measurement then only
includes the light present in the area A of this aperture. For this measurement, the
parameter f is calculated to be

f 2x =
∫

|ψ|2(x/r)2d A −
(∫

|ψ|2(x/r)d A

)2

. (2.7)

The second term in Eq.2.7 is zero for all cases considered here, as photons scattered
from centered particles have no preferred transverse direction. The ultimate sensitiv-
ity limit is given when we evaluate this over a spherical shell; here this gives f 2x = 1

5 ,
f 2y = 2

5 and f 2z = 2
5 . Since the sensitivity predicted from this can only be achieved

with perfect imaging of all scattered photons, it also determines the measurement
back-action upon the particle. For measurements subject to a limited aperture size,
Eq. 2.7 can be integrated analytically, with the corresponding quantum limit plotted
in Fig. 2.1. In this, the aperture size is expressed in terms of the NA for a particle sus-
pended in water. This shows near-perfect agreement with the equivalent numerical
calculations performed in Ref. [23].

2.4 Sensitivity in the Mie Scattering Regime

Optical tweezers experiments usually operate with particles which are too large to
be accurately approximated as Rayleigh scatterers. For these particles, the scattering
profile is complicated by such effects as multiple internal reflections and the inter-
ference between optical paths of different length. For spherical particles in focused
optical fields, this scattering regime is described mathematically by extended Mie
theory [11].We evaluate the scattering profiles numericallywith theOptical Tweezers
Toolbox [19]. These profiles are integrated as described in Eq.2.7 to find the quan-
tum sensitivity limit for particle tracking. The quantum limit is shown in Fig. 2.2 for
polystyrene beads suspended in water, measured with 1064nm light and anNA= 1.3
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Fig. 2.1 Light scatters from a small particle with a defined spatial profile, shown here as Rayleigh
scattering. The field which enters the objective aperture is measured to determine the particle posi-
tion. The scattered photons which propagate towards the aperture (θ > θmin) have a momentum
distribution �p which defines the fundamental lower bound on sensitivity with which the particle
position can be determined, as plotted here as a function of the condenser NA for Rayleigh parti-
cles suspended in water, illuminated by linearly polarized light. The sensitivity limit is shown for
motion both perpendicular (solid line) and parallel (dashed line) to the polarization axis. Sensitivity
improves with NA, as high NA lenses collect scattered photons with a larger momentum range.
Because of the anisotropic scattering profile, this improvement is greatest for motion which is per-
pendicular to the polarization axis. Together with the scattering rate κ, this sensitivity defines the
quantum limit on displacement resolution per incident photon

objective and condenser. Examining this, we see a number of noteworthy features.
For small particles, where Rayleigh scattering is valid, forward and back scatter offer
an equally sensitive measurement. However, as the particle size increases, the scat-
ter becomes preferentially forward, with less information carried by back-scattered
photons. Polarization has little effect on the sensitivity for beads larger than thewave-
length. Two different resonant effects are evident in Fig. 2.2 for large particles. The
direction of scattering is periodically modulated by an effect which is approximately
given by thin-film interference. This causes a significantmodulation of the sensitivity
available through back-scatter measurements; however, maximizing back-scattered
sensitivitymay not be advantageous for high-refractive index particles, as this regime
also has the weakest trapping potential [22]. In addition to this, Mie resonances sup-
press the particle position information encoded in the phase of the outgoing field
when propagation through the particle increases the optical path length by an integer
multiple of the wavelength (see Fig. 2.2 insets). This degrades the measurement sen-
sitivity without affecting the trapping potential, as the trapping is determined purely
by the optical amplitude.
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Fig. 2.2 The quantum limit on position sensing polystyrene beads (n = 1.58) suspended in water
with a 1.3 NA objective as a function of diameter. The faint and dark lines representingmeasurement
of back-scatter and forward-scatter respectively, and dashed and solid lines representing measure-
ments parallel and perpendicular to the plane of polarization. The axis on the right shows the best
sensitivity possible for a measurement based on 1 mW of optical power. Insets Logarithmically
scaled scattered field intensity profiles for bead diameters of 2.5, 4.3 and 6.2 µm, calculated in the
plane of polarization. The 4.3 µm bead forward-scatters far less light than either of the other two,
because resonant effects reduce the interaction of the incoming field with the bead, such that most
of the light remains in the incident mode. However, the back-scatter is of a similar magnitude for
all three

2.5 Relevance of This Limit

2.5.1 Resolving Zero-Point Motion

One application of this calculation is to determine the conditions required to observe
the zero-point motion of a levitating sphere.When this can bemeasured, it is possible
to generate squeezed mechanical states or cool to the ground state [1], and also pro-
vides a means to search for the non-Newtonian gravity predicted at small scales [6].
The average amplitude of zero-point motion is given by [1]

�qzpm =
(

�

2m�

)1/2

(2.8)

for a mechanical frequency � and mass m. For most interesting applications, the
measurement time must be short compared to the average time for one bath phonon
to enter or leave the mechanical mode [1], which is given by τ = 2π

�n for a mean

phonon occupancy n = kB T
��

and decay rate �. Although feedback is often used to
cool motion, it does not influence this coupling rate, as feedback can only reduce
the phonon occupancy by introducing mechanical dissipation which increases �,
keeping the product unchanged. In order to measure the movement �qzpm over a
time τ , the incident power must exceed the minimum threshold which we calculate
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Fig. 2.3 This is the optical power required to observe the zero-point motion of a levitating silica
bead in vacuum, for six different laser wavelengths. A refractive index of 1.46, a temperature of
T = 298K, and a decay rate of� = 2π×0.1Hz have been used, alongwith NA= 0.8 objective and
condenser. This plot can be easily extrapolated to other physical parameters because the required
power scales linearly with both the decay � and temperature T . Although the decay rate used for
this calculation is similar to that in recent experiments [15], future experiments may attain much
lower decay rates, with predicted rates of order 10−6 Hz [1, 6]

here. Conveniently, an increase in the mechanical frequency � reduces both the
mechanical amplitude�qzpm and phonon occupancy n such that the power threshold
is independent of the frequency. This means that the trapping potential need not be
considered, and the derived power limit is valid even if there are additional trapping
fields. The power threshold is calculated as a function of sphere radius and shown
in Fig. 2.3. This shows that for a given laser, the optimal bead diameter is somewhat
smaller than the wavelength. In the Rayleigh scattering regime, the required power
scales as λ7, making a short wavelength laser a practical choice. For large beads, the
preferred wavelength is determined entirely by the Mie resonances. The dependence
of the zero-point motion on particle mass generally makes its observation more
difficult in larger beads. To observe zero-point motion in any silica bead with a
diameter larger than 6 µmwould be prohibitively difficult at the assumed decay rate
of 0.1 Hz, as it requires a quantum limited measurement of over 10W of optical
power.

Although the power predicted in Fig. 2.3 should make the zero-point motion
observable, it will also impart back-action onto the bead motion. The back-action
will be greater than the zero-point momentum, since only the forward-scattered pho-
tons are included in the measurement. This consideration is particularly severe in
the Rayleigh scattering regime, where the back-scatter carries as much information
as the forward-scatter. If zero-point motion of a Rayleigh particle were resolvable
with the NA= 0.8 condenser considered here, back-action will exceed the zero-point
momentumby a factor of 2.9. By contrast, deepwithin theMie scattering regimemost
of the information is in the forward-scattered light, and the zero-point motion can be
resolved while imparting back-action which only exceeds the zero-point momentum
by a factor of 1.06. However, if the measurement is in any way non-optimal, this
will enlarge the relative back-action. In real experiments, optical loss and the use of
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split detectors [23] ensure a non-optimal position measurement. This is a significant
limitation, as non-optimal measurement prevents ground state cooling and minimum
uncertainty squeezing [18].

2.5.2 Experimental Sensitivity

With our calculations, we can characterize the gap between experimental results and
the quantum limit.A recent experiment achieved a sensitivity of 1.7×10−14 mHz−1/2

when tracking 1 µm diameter polystyrene beads in water with 700 mW of 1064nm
light, and collecting only the forward-scatter [2]. Assuming the objective and con-
denser have NA = 1.3, we find that κ1/2 fx = 0.380, and the 3.7 × 1018 incident
photons per second should limit the sensitivity to 1.1 × 10−16 m Hz−1/2, which is
within a factor of 145 of the demonstrated result. Not all of the photons were mea-
sured, however, as the field was attenuated by 70% before the detector, such that
the remaining photons were measured with sensitivity within a factor of 80 of the
quantum limit. In another recent experiment, silica beads in vacuum were tracked
at 3.9 × 10−14 m Hz−1/2 using 120 mW of 1064nm light, and NA = 0.68 objec-
tive and condenser [15]. For this case, κ1/2 fx = 0.203 and the quantum limit is
5.2× 10−16 m Hz−1/2, only 75 times lower than the experimental sensitivity. In this
experiment, the measurement for each axis was performed on separate detectors, so
each detector had fewer photons available for measurement. Although both of these
experiments used non-optimal split detectors, they operate well within two orders of
magnitude of the quantum limit. If further improvements to sensitivity are required,
it would be useful to characterize the contributions to this gap arising from optical
loss, non-optimal detection, and various noise sources. This characterization would
indicate the aspects of the measurement which could be most effectively improved.
Some classical strategies to reduce this gap are discussed in Part II of this thesis. The
quantum limit derived can only be overcome by using quantum correlated light to
achieve sub-shot noise performance in a classically near-optimal measurement.

2.6 Lessons to Learn

The quantum limit calculated here has important implications for future experiments
requiring better sensitivity than currently available. The thermal motion of particles
in water has been observed to deviate from Brownian motion on very short time-
scales, due to hydrodynamic resonances [5] and ballistic motion [10]. However,
there are further predicted effects which remain unobserved, such as oscillations
arising from the elastic compressibility of water [10]. Direct observation of this
phenomenon requires sensitivity of around 2 × 10−17 m Hz−1/2 [10], which even
with a quantum limited measurement requires 19W of 1064nm light. This presents
a problem, as the surrounding water is heated by approximately 8K/Watt of 1064nm
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trapping light [20], such that the boiling point is reached when the optical power is
around 10W. The only way to surpass the quantum limit is to use correlated photons
which allow more information to be extracted per photon [8, 13]. Such quantum
resources can be integrated into particle tracking experiments [24], and with existing
technology, offer up to 10 dB of enhancement [21]. With this quantum enhancement,
measurement of the elastic compressibility of water would require a more achievable
2W of optical power. Based on our calculations, and the advanced state of recent
experiments, we conclude that quantum resources will play an important role in the
next generation of high precision tracking experiments.

From the calculation presented here, it is clear that the minimum resolvable dis-
placement improves as the objective NA increases, and as more scattered photons
are measured. High sensitivity experiments should therefore utilize high NA objec-
tives and capture as many scattered photons as possible. Neither of these conclusions
should come as a surprise. The particles tracked in optical tweezers are assumed to
be located at the centroid of the optical image, which is well known to improve with
both of these parameters. This principle is applied in Chap.5, where a method is
presented to remove unscattered trapping light from the detection, and thus increase
the scattered photon number which can be measured without saturating the detector.
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Chapter 3
The Quantum Noise Limit for a Specific
Measurement

In this chapter, we follow a full quantum treatment of the optical fields to derive
the quantum noise limit to real particle tracking experiments. Unlike the limit in
Chap.2, which can only be attained with a perfect experiment, the limit derived
here is achieved for any quantum shot-noise limited experiment. This also provides
an aid in designing new experiments by predicting the sensitivity achievable with
any experimental procedure. This chapter expands on the theory presented in the
supplementary information of the following paper [7].

3.1 Quantum Treatment of Fields

The quantum noise which is present in all optical measurements is a direct result
of the commutation relation between the operators which describe an optical field.
Here we introduce the conventions of quantum optics [4] which are then followed in
calculation of this quantum noise. It is useful to decompose the optical electric field
amplitude Ē at position X on the detector into a collection of modes,

Ē(X) =
∞∑

n=0

Ên(X) = i

√
�ω

2cε

∞∑

n=0

ânψn(X)zn, (3.1)

where the nth mode has a normalized mode shape of ψn , polarization zn and the
annihilation operator ân . This operator can be expressed as a mean value αn and a
fluctuating operator δ̂an ,

ân = αn + δ̂an . (3.2)

Here we work in the limit that quantum fluctuations are much smaller than the mean
amplitude (δ̂an � αn), such that the mean photon number n of the mode is given
by nn = |αn|2. We also define quadratures in the usual way as
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X̂+
n =

(
δ̂an + δ̂a

†
n

)
, (3.3)

X̂−
n = −i

(
δ̂an − δ̂a

†
n

)
, (3.4)

The variance of any state must always satisfy the Heisenberg uncertainty principle,
which in this case is given by

〈(
δ X̂+

n

)2〉 〈(
δ X̂−

n

)2〉 ≥
(〈

1

2i
[X̂+

n , X̂−
n ]

〉)2

(3.5)

=
(〈

[δ̂a
†
n, δ̂an]

〉)2
(3.6)

= 1, (3.7)

where we have used [δ̂an, δ̂a
†
n] = 1. For any of these quadratures, the fluctuation

statistics for coherent, quantum noise limited modes and unoccupied vacuum modes
are therefore given by

〈
δ X̂±

n (ω)
〉
= 0 (3.8)

〈(
δ X̂±

n (ω)
)2〉 = 1. (3.9)

In most real optical states, there is additional laser noise on the state which increases
the variance. A state can, however, have a lower variance than Eq. (3.9) in one
quadrature, provided the other quadrature has a higher variance. This is termed a
“squeezed” state, and requires non-classical photon correlations [4]. To simplify the

notation, we represent the variances of the quadratures as V ± ≡
〈(

δ X̂±(ω)
)2〉

. The

uncertainty relation in Eq.3.5 is then represented as

V +V − ≥ 1. (3.10)

Loss along the optical path can be represented with a beamsplitter which couples out
some of the occupation of the mode, while introducing some vacuum fluctuations.
When fields are detected with an efficiency of η, this is represented as a beamsplitter
with transmission η followed by perfect detection. The measured field is thus given
by

αdet
n + δ̂a

det
n = η1/2αn + η1/2δ̂an + (1 − η)1/2δ̂a

0
n (3.11)

where δ̂a
0
n is the vacuum fluctuation and the superscript “det” is used to denote a

field at the detector.
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3.2 The Quantum Limit for Position Sensing

In a typical particle tracking experiment, the two fields which are occupied at the
detector are the trapping field ET and the scattered field Escat (see Fig. 3.1). The trap
field acts to confine the particle, produce the scattered field, and also as the local
oscillator for measurement. The particle is then tracked via a measurement of the
interference between the trap and scattered fields. To find the dependence of the
scattered field on a small particle displacement x , it can be expanded to first order as

Êscat = Êscat|x=0 + x
d Êscat

dx

∣∣
x=0. (3.12)

The component Êscat|x=0 can be considered as a stationary perturbation to the trap-
ping field, such that at the detector this field is given by

Êdet
T = η1/2

(
ÊT + Êscat|x=0

)
+ (1 − η)1/2 Ê0

T , (3.13)

where Ê0
T = δ̂a

0
T ψT is a vacuum fluctuation introduced with the optical losses into

the detected trap mode ψT . All particle position information is within the component
x d Escat

dx

∣∣
x=0 = âscatψ′

scatx , where ψ′
scat = dψscat

dx

∣∣
x=0, so this defines the ideal mea-

surement mode shape. When these fields are measured on a detector, the resulting
signal photocurrent is given by

i = 2ε

�ω

∫ ∞

−∞
U (X)|

∞∑

n=0

Êdet
n |2dX (3.14)

= 2ε

�ω

∫ ∞

−∞
U (X)|Êdet

T + Êdet
scat + Êdet

0 |2dX. (3.15)

(a) (b)

Fig. 3.1 This shows the relevant fields in a particle tracking measurement. a The incident trapping
field ET generates a scattered field Escat , and these fields propagate together toward the detector.
b Since the particle introduces the scattered field to the measurement, it is analogous to a highly
transmissive beamsplitter which couples illuminating light onto the detector
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Here the polarization vector has been dropped because the trap and scattered field
are assumed to share polarization. This is a very close approximation provided the
particle is rotationally symmetric and located near the optical focus, and the trapping
field carries uniform polarization outside the objective [5]; all of which are typical of
experimental conditions. Vacuum fluctuations in all unoccupied modes are included

in the field Êdet
0 = ∑∞

n=0 δ̂a
0
nψn . These are only detectable via their interference

with the occupied modes, and fluctuations orthogonal to the detection mode can be
neglected. The spatial variation in the gain of the detector is described by U (X); for
a bulk detector, this is always 1, while for split detection, this is −1 on the left side
and 1 on the right side. Defining the detection mode as ψdet = U (X)ψT , the detected
photocurrent is found to be

i = |η1/2αT + η1/2δ̂aT + (1 − η)1/2δ̂a
0
T |2〈ψT |ψdet〉

+η1/2αT δ X̂+
0 〈ψ0|ψdet〉 + 2ηαT αscatxRe{〈ψ′

scat|ψdet〉}, (3.16)

where the scattered field amplitude is assumed to be much smaller than the trap
amplitude.The integral 〈ψn |ψdet〉 = ∫ ∞

−∞ ψ∗
detψndX thendefines the overlapbetween

themoden and the detectionmode. If using a bulk detector,U (X) = 1 throughout and
ψdet = ψT . Consequently, we see that 〈ψT |ψdet〉 = 1, while 〈ψ0|ψdet〉 = 0 because
the field Ê0 only includes vacuum fluctuations which are in unoccupied modes, all
of which are orthogonal to ψT . By contrast, a split detector has U (X) = sign(X);
provided the trapping field is centered on the detector, this results in 〈ψT |ψdet〉 = 0.
One of the unoccupied vacuum modes then overlaps perfectly with the detection
mode, such that ψ0 = ψdet and 〈ψ0|ψdet〉 = 1. This can be used to simplify the
photocurrent in Eq.3.16 for the specific case of a split detector, with

i = η1/2αT δ X̂+
0 + 2ηαT αscatxRe{〈ψ′

scat|ψdet〉}. (3.17)

The expectation value of this is

〈i〉 = 2ηαT αscat 〈x〉Re{〈ψ′
scat|ψdet〉}, (3.18)

= 0, (3.19)

which uses 〈x〉 = 0. Taking the Fourier transform of Eq.3.17 and calculating the
variance, we find

〈
i2(ω)

〉
= ηnT + 4η2nT nscat

〈
x2(ω)

〉
Re{〈ψ′

scat|ψdet〉}2, (3.20)

where we have used

〈(
δ X̂+

0 (ω)
)2〉 = 1, and neglected the small cross term. The

displacement x is resolvable when the noise term (ηnT ) is equal to the signal (the
last term in Eq.3.20), giving the quantum noise limit
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〈
x2(ω)

〉

QNL
= 1

4ηnscatRe{〈ψ′
scat|ψdet〉}2 , (3.21)

= 1

4κηnTRe{〈ψ′
scat|ψdet〉}2 , (3.22)

where we have used nscat = κnT . Although this equation was derived for split
detection, the approach used is general and can be applied to any detection scheme.
It is important to note that the scattered mode ψscat is normalized, but its derivative
ψ′
scat is not. A comparison with the limit derived in Eq.2.4 shows that the minimum

resolvable displacement is arrived at if the measurement overlap 〈ψ′
scat|ψdet〉 = k fi ,

where k = 2πnm
λ is the wavenumber.

3.3 Particle Tracking with Squeezed States of Light

The above analysis reached the quantumnoise limit following the assumption that the

fluctuations in the detection mode followed the vacuum noise, with

〈(
δ X̂+

0 (ω)
)2〉 =

V +
0 = 1. It should be possible to overcome this limit by replacing these vacuum fluc-

tuationswith a squeezed vacuum (V +
0 < 1). Thiswould thenmodify the photocurrent

variance previously shown in Eq.3.20 to

〈
i2(ω)

〉
= ηnT

(
ηV +

0 (ω) + (1 − η)
) + 4η2nT nscat

〈
x2(ω)

〉
Re{〈ψ′

scat|ψdet〉}2,(3.23)

with a resulting minimum resolvable displacement of

〈
x2(ω)

〉

min
= [

1 − η(1 − V +
0 )

] 〈
x2(ω)

〉

QNL
. (3.24)

This shows that quantum enhanced particle tracking is possible. However, this con-
figuration presents some technical problems.Most importantly, it is difficult to ensure
that the squeezed vacuummodewill coincidewith the detectionmode, as propagation
through microscope objectives and biological samples will cause a large unknown
distortion. Distortion will be particularly significant around the discontinuity in the
detection mode at X = 0. Furthermore, split detectors typically lack the bandwidth
and efficiency required for such quantum enhanced measurements.

Instead of confining the analysis to split detection, we now consider particle
tracking with a shaped local oscillator field ELO and a bulk detector, such thatψdet =
ψLO. Using this, the photocurrent in Eq.3.16 simplifies to

i = ηnLO + ηαLOδ X̂+
LO + (η(1 − η))1/2 αLOδ X̂0+

LO

+2ηαLOαscatxRe{〈ψ′
scat|ψdet〉}, (3.25)
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where the trapping field ET has been renamed the local oscillator ELO, and the small

terms |δ̂aLO|2 and |δ̂a
0
LO|2 have been neglected. Unlike split detection, the mean

photocurrent is now non-zero, with 〈i〉 = ηnLO. However, if the local oscillator is in
a coherent state (V +

LO(ω) = 1), this results in an identical photocurrent variance to that
derived in Eq.3.20 for all non-zero frequencies. Correspondingly, the quantum noise
limit for this measurement approach is identical to that derived in Eq.3.22 for split
detection. Similarly, if the local oscillator is amplitude squeezed, with V +

LO(ω) < 1,
we find the minimum resolvable displacement to be

〈
x2(ω)

〉

min
= [

1 − η(1 − V +
LO)

] 〈
x2(ω)

〉

QNL
, (3.26)

similar to the result in Eq.3.24 for split detection. In this scheme, the detection mode
and squeezed mode are both defined by the local oscillator, which ensures that the
squeezing ismeasured perfectly. This also ensures that the phase of the squeezed field
perfectly matches the detection, with no anti-squeezing entering the measurement.
In standard interferometric measurements, the anti-squeezing cannot be perfectly
eliminated from detection, and this can substantially limit the achievable quantum
enhancement [3]. However, it requires that the local oscillator be spatially engineered
to overlap with the mode ψ′

scat which contains the particle position information.
This mode has previously been calculated for Rayleigh scattering particles [6], for
which it is approximately given by the TEM01 mode. However, the TEM01 mode
is poorly suited to trapping of particles, so an additional trapping field could be
required to confine the particle. Provided the trapping field is kept orthogonal to
the measurement, it will not interfere with the other optical fields. The resulting
photocurrent is then a linear combination of the photocurrent due to the detection
fields (Eq.3.25) and the photocurrent due to the trapping field, such that

i = ηnLO + ηαLOδ X̂+
LO + (η(1 − η))1/2 αLOδ X̂0+

LO

+ηnT + ηαTδ X̂+
T + (η(1 − η))1/2 αTδ X̂0+

T

+2ηαLOαscatxRe{〈ψ′
scat|ψdet〉}. (3.27)

Following similar reasoning to above, and assuming the trapping field is in a coherent
state (V +

T (ω) = 1), this then results in a minimum resolvable displacement of

〈
x2(ω)

〉

min
= nLO

(
ηV +

LO(ω) + (1 − η)
) + nT

4nLOηnscatRe{〈ψ′
scat|ψdet〉}2 , (3.28)

= nLO
(
ηV +

LO(ω) + (1 − η)
) + nT

nLO

〈
x2(ω)

〉

QNL
. (3.29)

This shows that the trapping photons which reach the detector contribute additional
quantum noise to the measurement which can substantially degrade the improve-
ment achievable via squeezing. However, this approach does allow the local oscil-
lator to be shaped to optimize its overlap with the information in the scattered field
(Re{〈ψ′

scat|ψdet〉}) without disrupting the optical trap.
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3.4 Relation to the Quantum Limit for Phase Estimation

The expression in Eq.3.22 generalizes the quantum noise limit imposed in phase
estimation interferometry to situations in which information is included in spatial
changes as well as phase shifts. For the case where no information is contained in the
spatial profile, the limit in Eq.3.22 reduces to the usual phase estimation quantum
noise limit. Such a situation occurs if the motion x is movement of an interferometer
mirror, as shown in Fig. 3.2, with the “scattered” field given by a phase modulated
input mode ψin,

ψscat = ψineikx . (3.30)

With this definition of the scattered mode,

ψ′
scat = dψscat

dx

∣∣
x=0 = (ik)ψineikx ≈ (ik − k2x)ψin. (3.31)

Choosing the optimum phase for the detection mode, one has Re{〈ψ′
scat|ψdet〉} =

k〈ψin|ψdet〉 = kη
1/2
homo, where ηhomo is the overlap efficiency between the incident

signal field and the local oscillator field. Since the the momentum is completely
changed by the reflection, the momentum parameter fx = 1 in the absolute quan-
tum limit of Eq.2.4. Thus, the limits in Eqs. 3.22 and 2.4 converge for an optimal
measurement with ηhomo = 1.

Substituting these expressions into Eq.3.22, we find that the quantum noise limit
is given by 〈

x(ω)2
〉

QNL
= 1

4ηηhomonscatk2
= 1

4ndetk2
, (3.32)

where ndet is the number of scattered photons arriving in the homodyne detector in
the correct detection mode ψdet. As the phase being measured is given by φ = kx ,
Eq. 3.32 can be rearranged to

〈
φ(ω)2

〉

QNL
= 1

4ηηhomonscat
= 1

4ndet
, (3.33)

Fig. 3.2 This shows a
simple setup in which the
quantum noise limit derived
here for particle tracking
reduces to the usual quantum
noise limit for phase
estimation

http://dx.doi.org/10.1007/978-3-319-18938-3_2
http://dx.doi.org/10.1007/978-3-319-18938-3_2
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which is the usual quantum noise limit for phase sensing of a weak signal field [1].

An alternative limit of
〈
φ(ω)2QNL

〉
= 1/ndet is used when the total photon number is

constrained, rather than the signal photon number, with these photons divided equally
between the signal and local oscillator fields [1]. In our case, since the measurements
rely on a relatively weak scattered field and a much brighter local oscillator, Eq. 3.33
is the relevant limit.

3.5 Conclusion

This chapter shows that it is possible to enhance particle tracking measurements with
squeezed states of light. As shown in Sect. 3.3, particle tracking via split detection or
quadrant detection can be enhanced with the addition of a squeezed vacuumwhich is
spatially engineered tomatch the detectionmode.Alternatively, a local oscillator field
which is spatially shaped to extract information can be used with a bulk detector.
In this case, using a bright amplitude squeezed field for the local oscillator will
offer enhanced performance. This approach has the advantage of ensuring perfect
detection of the squeezed field, and also allowing the detection mode to be spatially
optimized. We can also see that the classical sensitivity improves as the detection
mode is optimized to extract information from the scattered field. Although previous
research has sought to improve trapping forces by shaping the trapping field [2], no
experimental procedure has been developed to optimize the detection mode.
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Chapter 4
Characterizing Quadrant Detection

The preceding chapter established a method to calculate the shot-noise limit to par-
ticle tracking sensitivity. While the theory is relatively straightforward, the scattered
fields can be tedious to determine, and few researchers actually perform such calcu-
lations for their own experimental conditions. This chapter presents a computational
tool which allows rapid characterization of quadrant detection based particle track-
ing, without requiring any manual calculations. This was presented in the following
publication [18].

4.1 The Relevance of Computational Tools

Optical tweezers have proven an indispensable tool for modern biophysics, and have
advanced our understanding of a wide range of single particle dynamic processes
[1, 9]. Consequently, the optical forces exerted in optical tweezers have been exten-
sively studied and calculated [6, 8, 15]. While it can be difficult and time-consuming
to manually calculate the forces in a specific experiment, researchers can perform the
difficult calculations with the freely available Optical Tweezers Toolbox [11, 12].
This determines the optical force for arbitrary incident fields and trapped particles,
using a full vectorial field calculation, and allows researchers to rigorously model the
trapping in their experiments in an easy and convenientmanner. The theory of particle
tracking has also been well established for quadrant detection [5, 16]. Additionally,
the quantum limit to measurement sensitivity has been derived [17, 20], though
this is only accessible with a perfect measurement which includes both the phase
and amplitude of the light. Accurate calibration of an optical tweezers apparatus is
important in almost all applications. Although particle tracking is well understood
theoretically, currently no computational tool equivalent to the Optical Tweezers
Toolbox is available to predict the response or sensitivity of such a system. Instead,
researchers are required to repeat literature calculations for their specific apparatus.
As a consequence, the use of theoretical tools to model detection is currently limited
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to a small subset of the community. The availability of a straightforward tool to per-
form such calculations would enable optimization of experiments and quantitative
comparisons with theory.

Here we present a computational tool for optical tweezers which calculates the
position signal measured with a quadrant detector, and the corresponding shot-noise
limit to position sensitivity. This piece of Matlab code is designed to function within
the Optical Tweezers Toolbox [11, 12], and allows users to theoretically determine
the measurement properties of their experiments without manually performing any
calculations. Because the Optical Tweezers Toolbox can calculate the scattering
of arbitrary optical fields from any trapped particle, this code inherits the same
versatility. The source code is included in Appendix A, and was also published in
the supplementary information of Ref. [18] which this chapter is based on.

The calculations performed by this code have several applications. For instance,
in most optical tweezers measurements it is important to be able to determine the
range over which the measurement is linear. The code allows this range to be directly
predicted, and through this provides a convenient tool to optimize the linearity by
varying experimental parameters such as numerical aperture or particle size. By
providing the signal amplitude retrievable from a given apparatus, the code also
makes it possible to determine whether a given phenomena will be measurable, and
to optimize the experimental apparatus to maximize signal-to-noise where required.

4.2 Principle

In an optical tweezers experiment, an objective focuses an incident field to a spot,
where particles are trapped by optical forces. This interaction includes a momentum
exchange between the field and the particle, which therefore changes the propagation
direction of the light. This has an overall effect of deflecting the transmitted field.
To measure this deflection, the transmitted light is collected with a high numerical
aperture (NA) condenser lens and measured at the back focal plane with a quadrant
detector [5] (see Fig. 4.1). The condenser changes the spatial distribution of the light
which passes through its aperture, without changing the photon flux arriving in each
quadrant. Therefore, the signal measured on the quadrant detector can be evaluated
by calculating the power within the four quadrants of the condenser aperture at the
farfield of the particle [16] (see Fig. 4.1b).

Many real experiments do not place the detector at the back focal plane as shown
in Fig. 4.1a, but use an additional lens to image the field at the back focal plane onto
the detector. This additional lens also has a finite aperture width which introduces
additional clipping, effectively reducing the condenser NA. In order to accurately
model the measurement, the effective condenser NA which includes any additional
clipping must be used.
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(a)

(b)

Fig. 4.1 This schematic describes the particle tracking setup which the code calculates. a The
incident field is focused by the objective, and then interacts with a particle. The transmitted field
is then collected by a condenser and directed onto a quadrant detector at the back focal plane. b
The transmitted light which is in one quadrant at the condenser remains in this quadrant until it
reaches the detector. The signal measured on the quadrant detector can be evaluated by calculating
the intensity profile at the farfield of the particle, and integrating over the area within the condenser
aperture in the relevant quadrants. The measurements are the two subtraction currents ix and iy ,
and the total photocurrent iT which are defined as shown here

4.3 Calculation of the Signal

To use the supplied code, the user needs only to define the experimental parameters.
The relevant parameters are the optical wavelength in vacuum, the refractive indices
of the medium and particle, the particle radius (assuming spherical particles), the NA
of the objective and condenser, the measured optical power, the optical polarization,
and the spatial profile of the incident field in the Laguerre-Gaussian basis. Once these
are defined, the code uses functions present in the Optical Tweezers Toolbox [11, 12]
to decompose the incident field into an expansion of spherical harmonics, given by the
coefficients a and b. Then the T-matrix is calculated for the scattering particle [10].
The location of the axial trapping point is determined following the examples in the
toolbox. To find the measured signal, the scattered field coefficients p and q are
calculated with the particle at a range of transverse displacements from the trapping
point. The coefficients a, b, p and q fully determine the transmitted optical field,
and therefore allow calculation of the optical force (which the Optical Tweezers
Toolbox was designed for) and the intensity profile which is measured on the
detector. The particle tracking response can also be calculated for scatterers which
are not homogeneous spheres, with the files “Quadrant_measurement_layered.m”
and “Quadrant_measurement_cube.m” respectively calculating the particle tracking
response for a layered sphere and a cube.
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The optical field is then calculated over an angular grid of points to find the pho-
tocurrent in each quadrant. This calculation can be performed with the “farfield”
function in the toolbox, although this is not efficient when running a sequence of cal-
culations with the same particle. To reduce the computation time, we use a modified
version of this function which calculates two matrices Ap and Bq which implicitly
contain the angular grid. The transmitted electric field is determined by the matrix
multiplications

E(θ,φ) = Ap(θ,φ) × (a + 2p) + Bq(θ,φ) × (b + 2q) . (4.1)

Then, the light intensity is integrated to determine the photon flux present in each of
the quadrant detector signals. The particle tracking signals ix and iy are determined
by subtracting the light incident on one half from the other, as defined in Fig. 4.1b.
Additionally, the total photocurrent iT is calculated as this can be used to determine
the particle position along the z axis [3, 14]. These are calculated as photon numbers,
so the total photocurrent iT = P/(�ω), where P is the detected optical power and
�ω is the energy per photon. Since detectors in real experiments are not perfectly
efficient, not every incident photon is measured. To account for this, the theoretical
power P should be lower than that used in experiments by a factor given by the
detection efficiency. Examples of the calculated photocurrent signals are shown in
Fig. 4.2, which agree well with previously published calculations [5, 16, 17].

4.4 Measurement Sensitivity

The sensitivity ofmost real experiments is limited by electronic noise in the detectors,
though there are methods to improve this [2, 21]. With sufficient improvements,
the detection will eventually be shot-noise limited. At this point the sensitivity can
no longer be improved by reducing the electronic noise, and further improvements
require use of alternative strategies [19, 22]. The code presented here determines this
shot-noise limit from the calculated detector response to particle displacements, and
thus allows the gap between the shot-noise limit and the experimentally achieved
sensitivity to be quantified. This also provides a straightforward method to compare
the strength of the detection signal that different particles or trapping configurations
produce.

The subtraction photocurrent ix responds linearly for small displacements along
x , so in this limit we can define a gain Gx by

〈ix 〉 = 〈iT 〉Gx x, (4.2)

where 〈iT 〉 is the mean total number of photons measured on the detector. If the
light is in a coherent state, and there is no additional noise, then the photons follow
Poissonian statistics [4] and the quantum shot noise of this measured signal is given
by
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(a) (b)

(c) (d)

Fig. 4.2 The particle tracking signals photocurrents are shown for a measurement of a 10nm
(a, b) and a 1 µm (c, d) diameter polystyrene (n = 1.58) sphere in water (n = 1.33) as it moves
transversely along the x axis (a, c) and axially along the z axis (b, d). The setup uses 1064nm light
polarized linearly along the x axis, and with objective and condenser NA of 1.2 and 1.0 respectively.
The subtraction signal ix/〈iT 〉 (solid blue line) provides effective tracking of particle displacements
along the x axis, where 〈iT 〉 is total photocurrent for the centered particle. The total collected light
(iT − 〈iT 〉) /〈iT 〉 (dashed red line) provides information about the displacement along the z axis,
although this is also affected by transverse motion, particularly for large beads (c)

〈�i2x 〉 = 〈iT 〉. (4.3)

Combining Eqs. 4.2 and 4.3, we find that the signal-to-noise ratio is given by

〈ix 〉2
〈�i2x 〉 = 〈iT 〉G2

x x2. (4.4)

A displacement is resolvable when it yields a signal-to-noise ratio greater than 1, so
the minimum resolvable displacement in units of m/Hz−1/2 is

xmin = 〈iT 〉−1/2G−1
x . (4.5)

The gain Gx is defined by the calculated detector response, and this is used in
the presented code to reveal the shot noise limit to position sensitivity. A simi-
lar calculation finds the shot noise limit along the y and z axes. For the data in
Fig. 4.2c, d, for instance, a quadrant measurement which perfectly captures 1 mW of
optical power should have a displacement sensitivity at the levels 9.3 × 10−15 and
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Fig. 4.3 The best displacement resolution possible with a quadrant detector, for a 1µmpolystyrene
sphere in water tracked with 1 mW of 1064nm light polarized linearly along the x axis, which is
focused with an NA=1.2 objective. As the effective condenser NA increases, the sensitivity along
the x (solid blue line) and y (green dotted line) axes improves. The axial sensitivity (red dashed
line), however, improves with decreasing condenser NA. The proportion of the trapping power
which can be collected (yellow dash-dot) rises with increasing condenser NA, as this increases the
angular range which can enter the detector

1.7 × 10−14m/Hz−1/2 along the x and z axes respectively. If this is measured with
1 µs time resolution, then the measurement bandwidth is 1 MHz and the minimum
resolvable displacements along x and z are respectively 9.3 and 17 pm. Although
such sensitivities are impressive, recent experiments have demonstrated a position
sensitivity within a factor of 2 of the transverse prediction [2]. It is important to note
that both axial and transverse motion effect the sum photocurrent iT (see Fig. 4.2c),
so the axial position cannot be accurately determined without accounting for a trans-
verse displacement. Also, the sum photocurrent is sensitive to laser amplitude noise
which cancels from the subtraction signals ix and iy . This means that the axial posi-
tion sensitivity is likely to be further from optimal in a real experiment than the
corresponding transverse sensitivities.

The code allows the shot noise limit to sensitivity of particle tracking in all three
axes to be quantified for particles of any size, trapped in arbitrary optical fields, and
measuredwith any condenserNA. For instance, the sensitivity attainable is calculated
as a function of effective condenserNA, for a fixed objective (NA = 1.2) and 1mWof
measured optical power (shown in Fig. 4.3). In this case, the position sensitivity along
the transverse directions improve with NA, while the axial sensitivity per measured
photon degrades, as demonstrated in Refs. [3, 16]. As such, the optimal method for
three-dimensional particle tracking is to use a quadrant with a large capture angle to
monitor the transverse position, while a second bulk detector with a small capture
angle monitors the axial position.

4.5 Particle Tracking Beyond Homogeneous Spheres

Although the particles studied in most optical tweezers experiments are homoge-
neous spheres, it can also be useful to track other types of particles. For instance,
multiple layers on a sphere can act as an anti-reflection coating, suppressing back-
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Fig. 4.4 This shows the minimum resolvable displacement with a quadrant detector for an anti-
reflection coated bead in water, as a function of the shell thickness. The core diameter (500 nm)
and refractive index (2.3), and the shell refractive index (1.78) match those from the experiments in
Ref. [7]. In that work, a shell thickness of 230nm was found to optimize the trapping forces. The
calculations here show that this condition also optimizes the particle tracking sensitivity

reflection and improving the trap stability. Such layering allows the stable trapping of
high refractive index materials which cannot be trapped in a typical optical tweezers
experiment, thus allowing improved trapping forces [7]. Alternatively, some exper-
iments benefit from particles without rotational symmetry. For that case, the code
presented here is also capable of characterizing particle tracking with cubic particles.

An example is shown in Fig. 4.4 which shows the minimum resolvable displace-
ment for a layered sphere as a function of the shell thickness. The refractive indices
and core size match those of the anti-reflection coated titania bead described in
Ref. [7], while the shell thickness is varied. The optimal shell thickness for particle
tracking is found to be 230 nm, which coincides with the optimal thickness deter-
mined for the trapping force [7]. This is not surprising, as an increased force results
in an increased laser deflection, and consequently an improved measurement.

In other experiments, angular momentum is imparted to particles via higher order
Laguerre-Gauss modes, which carry orbital angular momentum. Since spherical par-
ticles have complete rotational symmetry, the exerted torque is relatively weak com-
pared to the torque exerted on non-symmetric particles [13]. However, because the
quadrant detection signal is not trivially related to the particle position in such exper-
iments, a separate field with a camera is typically used to infer its motion. The code
presented here allows the quadrant detection signal to be estimated and characterized,
as shown in Fig. 4.5. This characterization could allow non-spherical particles to be
tracked with the higher bandwidth and sensitivity of quadrant detection. Addition-
ally, this code could also be extended to birefringent particles, provided the scattering
T-matrix could be calculated.
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Fig. 4.5 The particle tracking response for a cubic particle trapped inwaterwith circularly polarized
light in the LG01 mode, similar to the optical setup of an “optical spanner”. The cube has 1 µm
side length and refractive index of 1.58, and is shown for cube orientations which are straight on
(�, blue line) and rotated about the optical axis by 45◦ (�, dashed line). In this case, the signal ix
provides a poorer particle tracking response than does iy for displacements along the x axis

4.6 Measurement Mode in Quadrant Detection

Although the sensitivity limit derived in Eq.4.5 appearsmathematically distinct from
the limit of Eq.3.23 in Chap. 3, the two are identical. To show this, we express the
terms found in Eq.4.5 in a way which follows the the framework of Chap. 3. The
particle is tracked via the subtraction photocurrent, which can be expressed as

〈ix 〉 = 2η
∫ ∞

−∞
α∗

T ψ∗
det (αT ψT + αscatψscat) dX, (4.6)

where αT and αscat are the trapping and scattered amplitudes respectively and η is
the detection efficiency. In this case, the detection mode is given by

ψdet(X, Y ) = sign(X)ψT (X, Y ). (4.7)

It is not the absolute value of this subtraction photocurrent which defines the sensi-
tivity, but rather its derivative, given by

d〈ix 〉
dx

∣∣
x=0 = 2ηα∗

T αscat

∫ ∞

−∞
ψ∗
detψ

′
scatdX (4.8)

= 2κ1/2η|αT |2Re{〈ψ′
scat|ψdet〉}, (4.9)

http://dx.doi.org/10.1007/978-3-319-18938-3_3
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where we have used dψT
dx = 0, dψscat

dx

∣∣
x=0 = ψ′

scat and αscat = κ1/2αT . Rearranging
the photocurrent found in Eq.4.2, and using 〈iT 〉 = η|αT |2, we can now express the
photocurrent gain as

Gx ≡ 1

〈iT 〉
d〈ix 〉
dx

∣∣
x=0, (4.10)

= 2κ1/2Re{〈ψ′
scat|ψdet〉}, (4.11)

Using this definition of Gx , Eq. 4.5 converges to the limit already found in Eq.3.23.
As expected, although the approach here is simpler and more intuitive than the
mathematical framework of Chap.3, the limit derived is equally rigorous.

4.7 Conclusion

In this chapter we have presented a piece of Matlab code which operates alongside
the Optical Tweezers Toolbox to calculate the response of a quadrant detector to
particle displacements, and the associated shot-noise limit to displacement sensitivity.
The calculation supports particles with arbitrary size, any optical fields and any
combination of objective and condenser.

This concludes Part I of the thesis. At this point, the quantum noise limit in particle
tracking is well established theoretically, and we turn our attention to developing
experimental strategies which can both classically improve the sensitivity, and make
optical tweezers compatible with non-classically correlated light.
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Part II
Classically Optimizing Sensitivity

Shot noise in particle tracking arises due to quantum noise in the optical fields.
Without resorting to quantum resources, it may be suppressed by efficiently mea-
suring the scattered photons which carry information about the desired biological
process while minimizing detection of background photons. Many biological
imaging techniques implicitly rely on this principle, including dark-field micros-
copy and florescence imaging, where background photon counts are greatly sup-
pressed by spatially or spectrally separating the illumination field from the light
carrying the desired signal.

Part II of this thesis presents techniques to improve the detection efficiency of the
scattered photons. Chapter 5 demonstrates that the background photons can be
suppressed through use of interferometry, without degradation of the scattered field.
This allows higher field intensities without saturation of the detector, and conse-
quently, an increased flux of scattered photons. Following this, Chap. 6 presents a
new particle tracking method based on homodyne measurement, which thus allows
tailoring of the detection mode for improved measurement efficiency. This method
also improves the prospects for quantum enhanced particle tracking, as discussed
earlier in Chap. 3.

In Chap. 7, a novel lock-in measurement is demonstrated which evades low
frequency laser and electronic noise which could otherwise obscure the particle
tracking signal. This allows shot-noise limited measurements at low frequencies,
which could be beneficial to a wide range of classical experiments, and is essential
in any attempt to achieve sub-shot noise limited sensitivity.

Chapter 8 then discusses the use of dark-field microscopy. Dark-field micros-
copy spatially separates the illuminating field from the detection, and allows a vast
improvement in contrast. However, while the illumination can be completely
suppressed at the detector, some background photons from extraneous scattering
centers still remain. In this chapter, we show that the scattering background can also
be suppressed by optimizing the illumination angle.

Finally, Chap. 9 provides an overview of the strategies used in the field to
achieve high sensitivity measurements in optical tweezers. The field of optical
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tweezers has seen tremendous progress over the past three decades, and a great
number of the problems which any high precision experiment will face have already
been addressed elsewhere. This chapter summarizes some of the expertise of the
field. If a quantum enhanced particle tracking system is to be built which can
outperform its classical competitors, it will be essential to avoid the pit-falls which
have already been resolved in classical experiments.
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Chapter 5
Interferometer Enhanced Particle Tracking

This chapter presents a novel interferometric method to filter unwanted light from
detection. This allows a corresponding increase in the flux of scattered photons
which can bemeasuredwithout saturating the detector. This chapter containsmaterial
included in the following publication [12].

5.1 Basic Concept

Particle tracking sensitivity in optical tweezers is often optimized by using the max-
imum optical power which the sample under study can permit. In many cases this
incident power exceeds the saturation threshold of the detector, and particle tracking
measurements require an attenuator to be placed in the beam between the optical
tweezers and the detector. While this attenuates the trapping beam and enables mea-
surement, it also discards some of the light which scattered from the particle, degrad-
ing the detection sensitivity. An equivalent method is to add a second beam for use
in particle tracking which is orthogonal to the trapping field either in polarization [8]
or frequency [9]. Here we present an alternative approach, in which interferometry
is used to filter unscattered photons from the detection, thus increasing the scattered
photon number which can be measured without saturating the detector.

This is related to a method already used to improve the sensitivity of optical
tweezers, in which the particle is tracked from measurement of the back-scattered
rather than forward-scattered light. The bulk of the trapping light is then separated
from the detector, with a weak back-reflection from the sample chamber acting
as the local oscillator. This substantially reduces the detected trapping field inten-
sity, reducing the shot noise with relatively little degradation of the detected signal
[4, 6]. However, this technique does not allow classically optimal measurement, as
the forward-scattered light contains the bulk of the information (see Chap.2). Also,
the local oscillator will be divergent with respect to the scattered field, as the stable
trapping point is further from the objective than the focus of the reflected trapping
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field. This will necessarily ensure non-optimal mode overlap and will limit the effi-
ciency with which information can be extracted.

We apply Sagnac interferometry to enhance the detection of particles in optical
tweezers, extending a recent demonstration of Sagnac interferometer based phase
plate characterization [11]. In principle, this approach allows near-optimal measure-
ments of bright optical fields. It requires the use of counter-propagating trap fields
which are not typically used, but which improves the trap stability, as is necessary
in some instances. One such situation is when trapping high refractive index par-
ticles [13, 14], which are strong scatterers. The use of counter-propagating traps
cancels the radiation pressure in the direction of propagation and enables axial trap-
ping. Also, since counter-propagating traps are typically much longer than the size of
the particles they hold, they can confine multiple particles to a single trap and allow
study of the multiparticle dynamics. In this case, the interaction of a single optical
mode with multiple particles can give rise to an effective optical force between the
particles which is stronger than the optical trap for a single particle [2, 10]. Another
situation where a counter-propagating trap is necessary is when imaging the sample
from the side [7]. In this case, lower numerical aperture (NA) lenses are required to
increase the sample-objective separation. This reduces the trapping force, particularly
in the axial direction, which can make a single-beam trap unstable.

With optical tweezers embedded in a Sagnac interferometer, selective interference
attenuates the trapping field and hence reduces the detection shot noise, substantially
improving the detection SNR when compared to using a standard attenuator. The
particle tracking SNR is enhanced by a factor which increases as the interferometer
visibility approaches 100%, up to a maximum enhancement defined by the ratio
of the trapping field power to the detector saturation threshold. In an experimental
demonstration of this, optical tweezers were embedded within a Sagnac interferom-
eter with a visibility of 93%. This should allow the signal-to-noise ratio (SNR) to be
enhanced by a factor of up to 29, which in the dipole scattering regime would enable
tracking of 1.7 times smaller particles than the equivalent standard optical tweezers
scheme.

5.2 Sensitivity of Particle Tracking

To compare the sensitivity achievable with direct detection of the field (Fig. 5.1a)
to that achievable with Sagnac interferometry (Fig. 5.1b), we first calculate the sen-
sitivity achievable with direct detection. The Ẑ axis is defined as the direction of
propagation of the laser beam, Ŷ as normal to the plane of the diagrams in Fig. 5.1,
and X̂ by X̂= Ŷ × Ẑ, with the input field polarized along X̂. We also assume that the
input trapping field E0 is symmetric on reflection, so E0(X, Y ) = E0(−X, Y ).

Throughout this work it is useful to separate the electric fields into normalized
real modes ψ(X, Y ) and complex amplitudes A, such that

En(X, Y ) = Anψn(X, Y ), (5.1)
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(a) (b)

Fig. 5.1 Layout of the two optical tweezers detection schemes under comparison. a Direct detec-
tion, where the field enters the optical trap, interacts with the particle, and is then attenuated by a
factor γ before detection on a quadrant detector. b Sagnac interferometer enhanced particle tracking,
by contrast, uses interferometry instead of an attenuator to reduce the field intensity. The trapping
field is split at the beamsplitter (50/50), with the transmitted field Eccw traveling counterclockwise
around the Sagnac interferometer, and the reflected field Ecw traveling clockwise. A half waveplate
is used to prevent the fields from forming a standing wave in the optical trap. Once the fields reach
the beam splitter again they recombine and interfere. The quadrant photodiode detects the light,
producing sum and difference photocurrents iN and ix

where n is an arbitrary subscript, and ψn is normalized such that

∞ ∞∫∫

−∞−∞
ψn(X, Y )2d X dY = 1. (5.2)

To begin with, we consider the fields involved in an experiment which utilizes
direct detection, as shown in Fig. 5.1a. In this case, the field E0(X, Y ) enters the
optical trap, where it is distorted by the trapping optics and the particle into E ′

0(X, Y ),
and where some light scatters from the trapped particle into an antisymmetric field
component E p(X, Y ). The symmetric component of the scattered field is to first
order independent of particle position, and is included as part of the distortion of the
trapping field. After this interaction the field propagating to the detector is given by

E(X, Y ) = (
E ′
0(X, Y ) + E p(X, Y )

)
X̂ (5.3)

It is useful to separate the distorted trapping field into symmetric and antisymmetric
components with mode shapes ψ0,s and ψ0,a respectively. Using the notation of
Eq.5.1, and neglecting the common polarization, the distorted trapping field and
scattered field are respectively given by

E ′
0(X, Y ) = A0

(
σsψ0,s(X, Y ) + σaψ0,a(X, Y )

)
, (5.4)

E p(X, Y ) = κaψp(X, Y ). (5.5)
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Here, σs , σa and κa respectively represent the proportion of the incident trapping
field which enters the symmetric and antisymmetric components of the trap mode,
and the antisymmetric scattered mode. The scattered field depends on the particle
position x implicitly, with κa ∝ x for small particle displacements. Here we work
in the experimentally relevant limit that the proportion of the trapping field which
enters the antisymmetric modes is very small, or equivalently, {κa, σa} � 1. Due
to their symmetry, the modes have the properties

ψ0,s(X, Y ) = ψ0,s(−X, Y ) (5.6)

ψ0,a(X, Y ) = −ψ0,a(−X, Y ) (5.7)

ψp(X, Y ) = −ψp(−X, Y ). (5.8)

The fields then propagate through an attenuator with transmission of γ, which for
simplicity includes the loss of both the optical trap and the attenuator. After this, the
mean photon number flux reaching each position in the detector is given by

〈n(X, Y )〉 = ε0λ

2h
γE∗(X, Y )E(X, Y ), (5.9)

where h is Planck’s constant and ε0 is the vacuum permittivity. This is detected
on a quadrant detector, and subtraction of the resulting photocurrents is performed
in the standard manner to infer the position. We assume that the detector size is
large compared to the beam size, such that clipping can be neglected. The sum and
difference photocurrents are then given by

〈iT 〉 =
∞ ∞∫∫

−∞−∞
〈n(X, Y )〉d X dY (5.10)

and

〈ix 〉 =
∞ ∞∫∫

−∞ 0

〈n(X, Y )〉d X dY −
∞ 0∫∫

−∞−∞
〈n(X, Y )〉d X dY, (5.11)

where the photocurrents 〈iT 〉 and 〈ix 〉 are in units of electrons per second. 〈iT 〉 is
the mean total photocurrent generated by the light hitting the detector. This also
defines the shot noise variance �2iT , which for shot noise limited detection is the
noise on the position measurement. This follows from a quantum treatment of the
optical fields, as described in Chap.3, and also follows from a simple assumption of
Poissonian statistics for the detected photons [3]. Since the distortion of the field at
the optical trap is represented as a lossless process, the total mean photocurrent is
given by

http://dx.doi.org/10.1007/978-3-319-18938-3_3
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�2idirT = 〈idirT 〉 = ε0λ

2h
γ A2

0, (5.12)

with A0 set to be real without loss of generality. An identical result also follows from
a quantum treatment of the optical fields with shot noise being the result of vacuum
noise, as described in Chap.3. The mean photocurrent difference can be found in a
similar manner. Since it is obtained by subtracting the flux on one half of the detector
from that on the other, intrinsically symmetric terms such as ψ2

0,s and ψ2
0,a can be

ignored. The result is that

〈idirx 〉 = 2
ε0λ

h
γ A2

0

⎛

⎝
∞ ∞∫∫

−∞ 0

Re{σ∗
s (κaψp + σaψ0,a)ψ0,s}d X dY

⎞

⎠ , (5.13)

where only one integral is explicitly included because of the symmetries of the fields.
To simplify this expression, we define overlap integrals ηp and η0 as

ηp = 2

∞ ∞∫∫

−∞ 0

ψpψ0,sd X dY, (5.14)

and

η0 = 2

∞ ∞∫∫

−∞ 0

ψ0,aψ0,sd X dY. (5.15)

Using these, Eq. 5.13 simplifies to

〈idirx 〉 = ε0λ

h
A2
0

(
ηpRe{κaσ∗

s } + η0Re{σaσ∗
s }) . (5.16)

The integrals ηp and η0 determine how effectively the measurement captures the
antisymmetric component of the scattered field and the objective distortion, respec-
tively. Provided the distortion introduced by the objectives is static, its contribution
to the subtraction photocurrent is to add a constant offset which effects the device
calibration but does not influence the position sensitivity. Neglecting the offset due
to distortion, this expression provides the measurement signal and Eq.5.12 the shot
noise variance, such that the shot noise limited SNR for particle tracking in the x
direction is

SNRdir
x = 〈idirx 〉2

�2idirN

= ε0λ

2h
γ A2

0η
2
pRe{κaσ∗

s }2. (5.17)

http://dx.doi.org/10.1007/978-3-319-18938-3_3
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5.3 Theory of Sagnac Enhancement

The scheme proposed here utilizes optical tweezers embedded within a sagnac inter-
ferometer, as shown in Fig. 5.1b. The input optical field E0 is split by a beam splitter,
resulting in two optical fields propagating through the Sagnac interferometer, Eccw
traveling counterclockwise and Ecw traveling clockwise. These fields form an optical
trap at the focus of the objective lenses. In a typical Sagnac interferometer, the two
fields would form a standing wave, although here one polarization is rotated by 90◦
with a half waveplate to prevent this. For an optical trap, a standing wave provides
some advantages; it greatly increases the axial field gradient, thereby improving the
axial trap strength [15]. Since particles are trapped atmaxima of the field, the trapping
point will be at an antinode of the field. This intensifies the field at the particle, gen-
erating more scattered light and improving the measurement sensitivity. However,
any phase drift within the interferometer will shift the position of the trapping point,
effectively dragging the particle in and out of focus. If the phase drift is controlled
to keep the trapping location stable, the waveplate is unnecessary, with the correct
treatment included in the paper published on this method [12]. Here, we include it
to reduce the experimental complexity required for stable trapping.1

When a particle is trapped, it will scatter light from both fields, modifying their
spatial profiles. The fields then recombine at the beam splitter, with the trapping field
constructively interfering when returning out the beam splitter port of incidence,
henceforth termed the light port, as is standard for a Sagnac interferometer. The
quadrant detector used to extract particle position information is placed at the other
dark port, where the trapping field destructively interferes. By contrast, the com-
ponent of the scattered field containing particle position information constructively
interferes when leaving the dark port, provided the interferometer has an odd number
of internal reflections.

The number of interferometer mirrors is kept general in the following theory
to illustrate the necessity for an odd number of internal reflections. Phase shifts
upon hard boundary reflection from mirrors have no effect on the interference of the
clockwise and counterclockwise fields, as both fields experience the same number
of reflections. For simplicity we therefore neglect them.

We now calculate the particle tracking sensitivity achievable with sagnac inter-
ferometry, following a similar approach to that used above for direct detection. The
enhancement achievable with interferometry depends crucially on the interferometer
visibility. Although there are several experimental constraints which can degrade the
visibility, here we represent these with imperfection in the beamsplitter ratio, and
also the field distortion due to the optical trap. The transmittance and reflectance
of the beam splitter are given by T and R respectively, so that the transmitted and
reflected fields, Eccw and Ecw, are given by

Eccw(X, Y ) = √
T E0(X, Y )X̂ (5.18)

1The theory in this chapter differs slightly from its associated publication, which described Sagnac
interferometer enhanced optical tweezers without the waveplate, and with the standing wave.
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and

Ecw(X, Y ) = − √
RE0(X, Y )X̂, (5.19)

where the negative sign is due to a hard boundary reflection at the beam splitter. The
counterclockwise traveling field propagates a distance of L1 to the optical tweezers,
and picks up a phase shift of eikL1 , where k = 2π

λ is the wavenumber. Likewise the
clockwise propagating field picks up a phase shift of eikL2 as it travels a distance
of L2 to the optical trap, while additionally changing polarization from X̂ to Ŷ as it
passes the waveplate. The electric field at the trapping point is then given by

EOT(X, Y ) =
(

eikL1
√

T X̂ − eikL2
√

RŶ
)

E0(X, Y ). (5.20)

The effect of distortion, clipping and loss within the objectives and sample cham-
ber then modifies the shape of the circulating fields in a similar manner to that
described for direct detection. The circulating fields will be equal in the two direc-
tions of propagation, as they are equal as they enter the trap, and interact with the
same optical setup. After interacting with the optical trap the counterclockwise and
clockwise propagating fields are given by

Eccw OT(X, Y ) = eikL1
√

T A0
(
σsψ0,s(X, Y ) + σaψ0,a(X, Y ) + κaψp(X, Y )

)
X̂

− eikL2
√

R A0κbψb(X, Y )Ŷ, (5.21)

Ecw OT(X, Y ) = − eikL2
√

R A0
(
σsψ0,s(X, Y ) + σaψ0,a(X, Y ) + κaψp(X, Y )

)
Ŷ

+ eikL1
√

T A0κbψb(X, Y )X̂, (5.22)

where κb denotes the proportion of the trapping field which scatters backward into
the mode ψb(X, Y ).

Each reflectionoff amirror causes a reflectionof the beamprofile in the x direction.
This is shown graphically in Fig. 5.2. As seen in Eq. (5.8), this results in a change in
the sign of the antisymmetric modes ψ0,a and ψp, but does not effect the trapping
modeψ0,s . As a result, the antisymmetric field componentswhich contain the particle

Fig. 5.2 Phase induced by
reflection of an
antisymmetric field off a
mirror. Left Reflection of an
antisymmetric field off a
mirror. Right Spatial profiles
of field before and after
reflection. The example
spatial profile shown here is
a TEM01 mode
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position information pick up an additional π phase shift on each reflection compared
to the symmetric field components.

After interaction with the particle, both counterclockwise and clockwise fields
propagate back to the beam splitter, such that they both travel a distance L =
L1 + L2. The counterclockwise field now passes the waveplate which switches
the polarization between X̂ and Ŷ. The counterclockwise and clockwise fields expe-
rience g and f reflections respectively before reaching the beam splitter, with each
reflection inducing a π phase shift on their antisymmetric components. Dropping the
explicit spatial dependence for the sake of brevity, with with ψn(X, Y ) written as ψn

throughout, the fields at the beam splitter are then

E′
ccw = eikL

√
T A0

(
σsψ0,s + (−1)g(σaψ0,a + κaψp)

)
Ŷ − e2ikL2

√
R A0κbψbX̂, (5.23)

E′
cw = −eikL

√
R A0

(
σsψ0,s + (−1) f (σaψ0,a + κaψp)

)
Ŷ + e2ikL1

√
T A0κbψbX̂. (5.24)

The field leaving the light port is given by EL = − √
RE ′

ccw + √
T E ′

cw, where the
negative sign in the first expression is due to the reflection of the counterclockwise
field from a hard boundary at the beam splitter. Similarly, the field leaving the dark
port is given by ED = √

T E ′
ccw + √

RE ′
cw, which can be expanded as

ED = A0[(T −R)σsψ0,s + A0

(
(−1)gT − (−1) f R

)
(σaψ0,a + κaψp)]eikL Ŷ

+√
T R A0κbψb

(
e2ikL1 − e2ikL2

)
X̂. (5.25)

The back-scattered term which is polarized along the X̂ axis is removed with a polar-
izer, and we now neglect both the global phase eikL and polarization Ŷ. Notice that
all symmetric field components which exit through the dark port suffer destructive
interference due to the prefactor (T − R), and cancel exactly when T = R, which
corresponds to perfect interferometer visibility. By contrast, constructive interference
can be achieved for the antisymmetric scattered field through an appropriate choice
of g and f . The term in Eq. (5.25) relating to the antisymmetric scattered field can be
simplified by defining the difference in the number of reflections experienced by the
clockwise and counterclockwise fields after interactionwith the particle,m = f − g,
so that

ED = A0(T −R)σsψ0,s + (−1)g A0
(
T − (−1)m R

)
(σaψ0,a + κaψp). (5.26)

It apparent that the sign of the antisymmetric coefficient will depend on g. The only
effect this has is to alter the sign of the detected photocurrent ix , with the sensitivity
of the measurement left unchanged. Hence, without loss of generality we set g = 2
as in Fig. 5.1. We can then find
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ED, m odd = A0(T −R)σsψ0,s + A0 (T + R) (σaψ0,a + κaψp), (5.27)

ED, m even = A0(T −R)σsψ0,s + A0(T −R)(σaψ0,a + κaψp). (5.28)

In the case that m is odd, the antisymmetric part of the scattered field constructively
interferes at the dark port, as shown by the presence of a (T + R) prefactor on ψa . In
contrast, if m is even all of the fields destructively interfere, as shown by the (T −R)

prefactor. SNR enhancement requires constructive interference of the antisymmetric
term. If the total number of mirrors in the interferometer is odd, m is odd and this
condition ismet. Henceforthwe only consider this case, with A0 set to be real without
loss of generality. The total photocurrent can now be evaluated as

〈iT 〉 = ε0λ

2h
A2
0

(
(T −R)2|σs |2 + (T + R)

∫∫
|σaψ0,a + κaψp|2d X dY

)
.

(5.29)
This expression is somewhat more complicated than Eq.5.12 due to the general
nature of the field distortion. However, it can be simplified in the limiting case that the
objective distortion is almost perfectly symmetric. Then, neglecting antisymmetric
terms of O(2), we find that

�2iT ≈ 〈iT 〉 = ε0λ

2h
A2
0(T −R)2|σs |2, (5.30)

The difference photocurrent is also evaluated as

〈ix 〉 = 2
ε0λ

h
A2
0(T −R) (T + R)

∞ ∞∫∫

−∞ 0

Re{σ∗
s (κaψp + σaψ0,a)ψ0,s}d X dY. (5.31)

= 1

γ
(T −R) (T + R) 〈idirx 〉 (5.32)

This then yields a shot-noise limited SNR for particle tracking in the x direction of

SNRx = 〈ix 〉2
�2iN

= ε0λ

2h
(T + R)2 A2

0η
2
p (5.33)

= (T + R)2 γ−2SNRdir
x . (5.34)

Since typical trapping powers are of the order 1 W (for example see Ref. [1]), and
typical photodiodes used for detection have saturation thresholds below 10 mW,2 the
optical field is attenuated prior to detection. To enable a fair comparison between
the two schemes, the attenuation in the direct detection is set to γ = (T − R) such
that the total photocurrents in Eqs. 5.12 and 5.30 are equal. With this condition, the
interferometric SNR is substantially enhanced when T ≈ R. Explicitly, the SNR

2For example, the commonly used Thorlabs PDQ30C quadrant detector has a 1 mW saturation
threshold.



80 5 Interferometer Enhanced Particle Tracking

ε

(a) (b)

Fig. 5.3 SNR enhancement of the Sagnac interferometer over direct detection, as a function of,
a beam-splitter reflectivity and, b Sagnac interferometer visibility. T + R = 1 has been used, which
assumes there is no loss in the Sagnac beam splitter

enhancement factor E for the Sagnac over direct detection is

E = SNRx

SNRdir
x

= (T + R)2

(T −R)2
(5.35)

which is shown as a function of R in Fig. 5.3a, assuming a loss-less beam splitter
such that T = 1 − R. Note that E tends to infinity as (T − R) goes to zero. This is
unrealistic since it corresponds to perfect interference on the Sagnac beam splitter,
which requires perfect polarization and spatial overlap as well as R = T . A physi-
cally useful parameter which includes various non-ideal effects is the interferometer
visibility VIS, given by

VIS = 〈nL〉 − 〈nD〉
〈nL〉 + 〈nD〉 = 1 − 2

(T −R)2

(T +R)2
, (5.36)

where 〈nL 〉 and 〈nD〉 respectively denote the photon numbers at the light and dark
ports. The visibility quantifies the mode overlap between the two beams in the inter-
ferometer, with a visibility of 1 indicating perfect mode matching. Using this and
Eq. (5.35), we can express the enhancement factor in terms of the visibility as

E = 2

(1 − VIS)
, (5.37)

where we have assumed a lossless beamsplitter, such that T + R = 1. The enhance-
ment E as a function of VIS is shown in Fig. 5.3b. We see that as the mode overlap
goes to unity, the enhancement again approaches infinity.

In realistic experiments, the interferometer visibility may be limited by something
other than a non-ideal beamsplitter ratio. However, the expression derived in Eq.5.37
holds for any sufficiently high experimental visibility. For instance, the visibilitymay



5.3 Theory of Sagnac Enhancement 81

be limited by non-optimal polarization control. In this case, one of the fields in the
interferometer reaches the beamsplitter polarized along Ŷwhile the other is polarized
along

√
ηŶ + √

1 − ηX̂, such that the overlap is
√

η. If all else is ideal, this results
in an interferometer visibility of V I Sp = √

η, and a SNR enhancement of.

Ep = 2

(1 − √
η)

. (5.38)

This results in a relation between the enhancement and visibility which is identical to
Eq.5.37. Back-reflections from the sample coverslip can also present an additional
complication to experiments. While these should in principle be eliminated with the
polarizing beamsplitter, perfect isolation is not possible if the optical trap includes
some birefringence which rotates the polarization of the circulating fields. As with
imperfect polarization control, realistic levels of back-reflection degrades the SNR
enhancement in a way that is fully accounted for in Eq. (5.37) from the modest
degradation to the visibility.

To show this, the back-reflected field in Eq.5.25 can be included in the detection
rather than being perfectly removed with the polarizing beamsplitter. Should this
back-reflection interfere with the other fields, it could add substantial complexity to
the analysis. However, in addition to being orthogonal in polarization, it will also
have low spatial overlap with the other fields, as reflections from the coverslip are
not collimated, but rather diverge rapidly. Thus, the addition of a back-reflected field
can be treated as a perturbation on the total light intensity which contributes to the
shot-noise while leaving the detection unchanged.

Within these constraints the back-reflected fields can be treated as a separate
additional Michelson interferometer which introduces some light to the dark port.
The added intensity depends on the phase

(
e2ikL1 − e2ikL2

)
. Taking the worst-case

scenario, inwhich this is equal to 2,wefind the total photocurrent to gain an additional
photon flux of

Ib =
(

ε0λ

2h
A0|κb|

)2

(5.39)

which acts to degrade the interferometer visibility by

VISr = VIS − |κb|2. (5.40)

A separate calculation of the SNR, including the increase in shot noise due to the
back-reflected intensity, gives

SNRr = SNR

(1 + |κb|2/(T −R)2)
, (5.41)

which gives the same change in SNR enhancement as does substituting the mod-
ified visibility in Eq.5.40 into Eq.5.37. This means that the expression for SNR
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enhancement as a function of interferometer visibility in Eq.5.37 already accounts
for back-reflections.

Antisymmetric distortion of the trapping field at the optical trap also degrades the
interferometer visibility. For sufficiently high visibility, this merely adds unwanted
shot-noise and a spurious offset to the measured signal. As calculated for back-
reflections above, the SNR enhancement accounts for the addition of unwanted fields
such as this. However, if the antisymmetric distortion becomes large, such that it
dominates the visibility, the approximation in Eq.5.30 fails, and the SNR is not
accurately predicted by in Eq.5.37.

The maximum enhancement possible is limited by the ratio of the trapping field
intensity to the detector saturation threshold. In order to compare Sagnac interferom-
eter based detection to standard detection, the optical intensity in standard detection
is attenuated by a factor of (T −R)2. However, once the optical power is below the
saturation threshold of the detector, it is no longer sensible to apply more attenuation.
Once this limit has been reached, no further advantage can be had from improving
the visibility of the Sagnac, since there is no requirement to further reduce the optical
power reaching the detector.

Practically, the maximum enhancement conferred by the Sagnac interferometer
is achieved when it is used to reduce the detected light intensity to the point that the
total photocurrent defined in Eq.5.30 is just within the saturation threshold 〈isat〉,

〈iT〉 = ε0λ

2h
(T −R)2A2

0 = 〈isat〉. (5.42)

Rearranging this, we find

(T −R)2 = 2h

ε0λ

〈isat〉
A2
0

. (5.43)

If we substitute this into Eq. (5.35), and model a lossless, ideal beamsplitter with
T = R = 1

2 , we find that the maximum enhancement is

Emax = ε0λ

2h

A2
0

〈isat〉 = 〈iT 0〉
〈isat〉 , (5.44)

where 〈iT 0〉 is themeanphotocurrent thatwould result from the trappingfieldwithout
attenuation. The condition that T = R = 1

2 is not critical for this calculation, as this
limit will be approximately accurate for any splitting ratio which is close to 50/50.
The value of this limit will depend on the trapping field intensity and the specific
detector used. For instance, if a trapping intensity of 1W is used as in Ref. [1], and
detection occurs on a detector with 1 mW saturation threshold, such as the Thorlabs
PDQ30C quadrant detector, the absolute maximum enhancement possible would be
approximately 1000. It is unlikely that an interferometer could be constructed which
is capable of exceeding this maximum enhancement, so this upper limit is not likely
to constrain any real experiments.
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Finally, we note that the described theory is only valid for the enhancement the x
position detection, because the interfered beams are only flipped in the x direction
on reflection against interferometer mirrors. While there is some enhancement of the
y position detection, this is not independent of x , as we would like. Reflections of
both the x and the y directions are required in order to fully extend this technique to
enhanced x–y position detection. This can be achieved with a 3-dimensional layout
of mirrors.

5.4 Experimental Verification

The theory presented in this chapter shows that antisymmetric fields generatedwithin
a Sagnac interferometer are selectively directed to the dark port of the interferome-
ter. By implementing optical tweezers within a Sagnac interferometer, this property
can be used to enhance optical tweezers based particle tracking. To achieve signifi-
cant enhancement, it is critical to obtain high interferometer visibility. Since optical
tweezers require the trap beam to be strongly focused in high NA objectives, this is
a significant technical challenge.

An experiment was set up to test the theory presented above, though this setup
did not include the waveplate shown in Fig. 5.1b. The laser source is an Innolight
Prometheus laser, which produces the two counter-propagating 100 mW 1064 nm
trapping fields for a horizontally oriented optical tweezers trap within a Sagnac
interferometer. The trap itself is formed by a pair of long working distance, NA =
0.4 objectives (OFR LMH-20X-YAG).

This apparatus achieved a visibility of 93% in the absence of large trapped par-
ticles, demonstrating the feasibility of the proposed method. The trapping field was
focused onto a CCD camera, with the resulting images of a particle clearly showing
the predicted behavior (Fig. 5.4). In these images, a 2 µm silica bead is fixed to the
coverslip andmoved about controllably. The background trapping field is suppressed
when we image the bead at the Sagnac interferometer dark port. The relatively high
visibility achieved allow clear imaging of particles at the Sagnac dark port, and is
predicted by Eq.5.37 to give a SNR enhancement of 29. In the Rayleigh scattering
regime this enhancement would allow a reduction in theminimum detectable particle

size when compared to standard detection of 29
1
6 , or approximately 1.7 times.

The primary challenge in achieving this was to ensure that the phasefronts of the
clockwise and counterclockwise fields remain matched after transmission through
both objectives, and to ensure that all of the objective distortion remained symmetric
around the optical axis. A particularly sensitive experimental parameter is the align-
ment of the objectives to each other. Any mismatch in the diffraction of the fields
was minimized by placing the optical trap in the center of the Sagnac, so each beam
propagates an equal distance from the trap to the beamsplitter. An additional concern
was clipping within the objectives, which has the effect of altering the intensity dis-
tributions of the two counter-propagating fields. This was avoided by under-filling
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(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 5.4 Direct detection of the trapping field is compared here to the use of Sagnac interferometry.
a 2 µm diameter silica bead was fixed on the cover-glass and imaged with a CCD camera, both
with direct imaging (a and b) and with Sagnac interferometry (c–h, with the particle in a variety
of locations). The trapping field results in a bright background in direct imaging, which is heavily
suppressed in the interferometric case. Since the particle is imaged by both counterpropagating
fields in the Sagnac interferometer case, a double-image results when the particle is off-center.
When the particle is centered, this double-image also exhibits destructive interference (g and h)

the objectives and ensuring that both fields are centered on the optical axis of the
objectives, and therefore experience both minimal clipping and symmetric distor-
tion. Provided the beams are perfectly centered, the loss of intensity due to clipping
effects the SNR in Sagnac based detection and back-focal plane detection in the same
manner, and therefore has no effect on the level of enhancement.

5.5 Alternative Interferometric Configurations

5.5.1 Sagnac-Michelson Interferometry

The setup described here allows monitoring of the back-reflected light by placing
a detector at the empty output of the polarizing beamsplitter. This would allow the
relative back-reflected phase

(
e2ikL1 − e2ikL2

)
to be monitored, as in a Michelson

interferometer. If the back-reflection is dominated by back-scatter from the particle,
this provides a highly precise method to track the axial position of the particle.

The feasibility of this approach was tested with the apparatus described above. In
this case, it was found that back-reflections from the glass coverslip dominated the
back-scatter from the particle, and the Michelson signal provided no useful infor-
mation. Because an air gap was present between the objective and sample, the glass
coverslips which enclosed the sample reflected at least 4% of the incident light,
which is far greater than the particle back-scatter. However, these back-reflections
could be vastly reduced by using oil-immersion or water-immersion objectives.
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Fig. 5.5 This shows optical
tweezers within a
Mach-Zehnder
interferometer, which is an
alternative interferometric
configuration which utilizes
interference to suppress the
unwanted trapping field

A more advanced setup with reduced back-reflections may be able to utilize the
Michelson signal for highly precise axial tracking.

5.5.2 Mach-Zehnder Interferometry

While we consider Sagnac interferometry here, the same principle of using interfer-
ence tofilter out the unwanted trappingfieldmaybe appliedwith other configurations.
An example, which was demonstrated in Ref. [5] following the publication of this
theory, is use of Mach-Zehnder interferometry to enhance sensitivity, as shown in
Fig. 5.5. In this case one field propagates through the optical trap while the other does
not. This will simplify the alignment of the optical tweezers, potentially making it
easier to construct. However, the phasefronts of the two fields will differ if there is
any distortion due to the trapping optics. Trapping optics can heavily distort fields,
particularly when aberrations are present, so this could set a relatively low limit
on the achievable interferometer visibility. However, it is very possible that Sagnac
interferometry does not offer the most practical method for removing the trapping
field, and it is worthwhile to consider alternative methods such as those explored in
Ref. [5].

5.6 Conclusion

By using an interferometric detection scheme, the signal-to-noise ratio for particle
tracking in optical tweezers with counter-propagating trap beams is enhanced by
a factor which increases as the interferometer visibility approaches 100%, up to a
maximum enhancement defined by the ratio of the trapping field intensity to the
detector saturation threshold. This improvement comes about because the interfer-
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ometer causes destructive interference of the trapping field at the dark port without
affecting the information carrying part of the scattered field.
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Chapter 6
Homodyne Based Particle Tracking

The theoretical framework of Part I establishes that the quantum limit to particle
tracking sensitivity improves as the measured flux of scattered photons increases
and the spatial mode overlap improves. Chapter 5 presented a method to increase the
measured photon flux, and thus improve the shot-noise limit. Here we introduce
a novel detection method, which unlike conventional quadrant detection, allows
engineering of the spatial mode overlap and thus optimization of the shot-noise
limit. In principle, this allows construction of a classically optimal tracking scheme.

6.1 Homodyne Measurements

Quadrant detection provides an easy and effective particle trackingmethod.However,
it is not an optimal measurement, as it does not capture all of the information present
in the scattered field. Quadrant detection attempts to estimate the deflection of the
trapping field intensity I (X,Y ) by the measured photocurrent

iquadrant =
∫

sign(X) I (X,Y ) d X dY. (6.1)

This is a fundamentally non-optimal measurement of the mean deflection, defined as

〈X〉 =
∫

X I (X,Y ) d X dY (6.2)

There are alternatives to quadrant detection which avoid this problem. One is the
position sensitive detector, which has a position dependent gain such that it performs
an optimal measurement of the displacement of the measured beam,

iPSD =
∫

X I (X,Y ) d X dY. (6.3)
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Since the laser is displaced through a momentum interaction with the particle, this
is equivalent to an optimal measurement of the optical force. For Mie scattering
particles, however, this still misses information encoded into the phase of the trans-
mitted light. It is only with a phase and amplitude sensitive detection scheme with
an optimal detection mode that it is possible to extract all of the particle position
information from the scattered field (see Chap.2).

Homodyne detection is an alternative method which, when optimized, allows
fields to be measured at the Cramér-Rao informational bounds [2, 3]. Such measure-
ments generally involve mixing a small signal field with a specific local oscillator, as
shown in Fig. 6.1. In the commonly used spatial homodyne measurement, shown in
Fig. 6.1a, a local oscillator ELO and signal Es field aremixed on a 50/50 beamsplitter.
The measured fields at the two detectors are then given by

Edet 1 = √
1/2 (ELO + Es) , (6.4)

Edet 2 = √
1/2 (ELO − Es) , (6.5)

(a)

(c)

(b)

Fig. 6.1 Two different homodyne measurements of the scattered field. a Spatial homodyne is
commonly used tomeasure small signal fields, as it offers optimalmeasurementwith and an arbitrary
detection mode. b The self-homodyne approach used here is closely related, and with appropriate
engineering of the local oscillator will also provide optimal measurement with an arbitrary detection
mode. c In both cases, the scattered field is produced via illumination of the scattering particle. The
particle can be viewed as a beamsplitter which couples a small amount of the illuminating light into
the detection mode. Particle tracking relies on an accurate measurement of this scattered light. The
primary difference between the spatial homodyne and self-homodyne approaches described here
is that the self-homodyne also has the local oscillator propagating through the particle, and thus
requires only one detector

http://dx.doi.org/10.1007/978-3-319-18938-3_2


6.1 Homodyne Measurements 89

with corresponding intensities of

|Edet 1|2 = 1

2
|ELO|2 + 1

2
|Es |2 + Re{E∗

LOEs}, (6.6)

|Edet 2|2 = 1

2
|ELO|2 + 1

2
|Es |2 − Re{E∗

LOEs}. (6.7)

These fields are then detected, with themeasurement relying on the subtraction signal
which is given as

idet = ε0λ

2h

(∫
Edet 1|2d A −

∫
|Edet 2|2d A

)
, (6.8)

= ε0λ

2h

∫
2Re{E∗

LOEs}d A, (6.9)

≈ ε0λ

2h

∫
2Re{Ē∗

LOEs}d A (6.10)

where ĒLO is the mean of the local oscillator field, and the approximation is valid in
the limit that ELO � Es . The factor of

ε0λ
2h normalizes the fields into photon number,

with h Planck’s constant and ε0 the vacuum permittivity. The interference between
the local oscillator and scattered fields is parameterized by the efficiency

η =
∫

ĒLO · Ēs d A
(∫ |ĒLO|2 d A

∫ |Ēs |2 d A
)1/2 . (6.11)

The mean amplitude Ēs and fluctuations δEs generally occupy the same spatial
mode, such that η defines the overlap of both of these signal field components with
the local oscillator. The photocurrent variance is then given by

〈i2det〉 − 〈idet〉2 = η2iLO
ε0λ

2h
〈δE2

s 〉, (6.12)

where iLO is the mean photon flux of the local oscillator field. In this case, 〈δE2
s 〉

includes the vacuum fluctuations, and it cannot approach zero even if the signal field
is removed (Ēs = 0).We can see that this scheme effectively measures the amplitude
of the signal field, while to first order cancelling any noise from the local oscillator.
The signal field in a particle tracking experiment is given by the derivative of the
scattered fieldwith respect to particle position, as described in Chap.3. Bymeasuring
the amplitude of this signal, spatial homodyne could allow particles to be tracked
with precision at the quantum limit [3].

Here, instead of using spatial homodyne, we measure particle motion with a self-
homodyne scheme, as represented in Fig. 6.1b. In this case, the particle is illuminated
to produce a scattered field. This scattered field co-propagateswith the local oscillator
toward a single detector, which produces a photocurrent of

http://dx.doi.org/10.1007/978-3-319-18938-3_3
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idet = ε0λ

2h

∫
|ELO|2 + |Es |2 + 2Re{E∗

LOEs} d A (6.13)

= iLO + is + ε0λ

2h

∫
ĒLO · (

Ēs + δELO + δEs
)

d A. (6.14)

When the constant offset iLO + is is subtracted, this measurement closely resembles
that inEq.6.10.Although this does not cancel the noise variance on the local oscillator
from the measurement, the optimal performance is identical to the conventional
homodyne setup. One might imagine that self-homodyne would include additional
vacuum noise, as the spatial homodyne setup allows cancellation of the vacuum
fluctuations present on the local oscillator. However, the vacuum noise which is
detected in the two schemes is simply that which was on the scattered field mode. In
the case of the self-homodyne scheme, these fluctuations occur on a single optical
mode in which scattered field and local oscillator co-propagate (see Fig. 6.1c).

6.2 Self-homodyne Tracking Setup

A particle tracking experiment was built as shown in Fig. 6.2 which applied self-
homodyne to measure particle motion. In this demonstration, the local oscillator
was shaped as a “flipped” Gaussian at the back-focal plane of the objective, with
a π phase shift applied to one half of its transverse profile [1]. Since the trap-
ping field ET is Gaussian, this effectively sets the local oscillator field profile to
EL O(X,Y ) = sign(X)ET (X,Y ), where X and Y are position coordinates on the
detector. The interference between the scattered field Es and the spatially engineered
local oscillator results in a photocurrent of

Fig. 6.2 Experimental layout of a self-homodyne tracking experiment. Particles are confined by the
counter-propagating trapping and probe fields, which have orthogonal polarization. Particle tracking
is achieved via interference between the back-scattered light from the probe field and a shaped local
oscillator, which is shaped with a phase plate to have a π phase shift on one half of its transverse
profile. The measured fields propagate to the bulk detector via a 50/50 beamsplitter, which loses
half of the light, and a telescope with an aperture, to remove unwanted back-reflections from the
sample chamber. The trapping field is isolated from the detection with a polarizing beamsplitter. A
further imaging field at a different wavelength is used to image the particles onto a CCD camera
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i =
∞ ∞∫∫

−∞−∞
|Es + EL O |2d X dY (6.15)

=
∞ ∞∫∫

−∞−∞
|ET |2 + |Es |2 + 2sign(X)Re(E∗

s ET )d X dY . (6.16)

The self-homodyne measurement is similar to quadrant detection, in which the posi-
tion is inferred by subtracting the light intensity on one half of the detector from the
other, with a photocurrent of

ix =
∫ ∞

−∞

(∫ ∞

0
|Es + ET |2d X −

∫ 0

−∞
|Es + ET |2d X

)
dY, (6.17)

=
∞ ∞∫∫

−∞−∞
sign(X)

(
|ET |2 + |Es |2 + 2Re(E∗

s ET )
)

d X dY. (6.18)

The particle tracking signal derived from each method is identical. The only quali-
tative difference between quadrant detection and our self-homodyne scheme is that
the mean subtraction current in Eq.6.18 is zero, and similar to spatial homodyne
measurements, classical amplitude noise on the light is canceled. While split detec-
tion is widely used and known to perform well, the measurement sensitivity can
be improved by optimizing the spatial profile of the detection mode. Although the
local oscillator shape was not optimized here, the proof-of-principle demonstration
of self-homodyne is an important step towards implementing classically optimal
detection.

For the experimental demonstration, separate fields are used to interrogate the
particle and to act as the local oscillator (see Fig. 6.2). A Gaussian probe field which
propagates away from the detector enters the optical trap and illuminates the particles,
with back-scattered light providing the signal field. This scattered light is mixed with
the flipped Gaussian local oscillator field, which acts to define the detection mode,
and the transmitted intensity is directly measured to infer particle position along one
axis.

The self-homodyne particle tracking scheme shown in Fig. 6.2 was built and char-
acterized. In this experiment, a particle is trapped in water between two objectives
with 0.4 numerical aperture (NA) by 1064nm light. Due to the low NA objec-
tives used, trapping is not possible with a single beam. Two orthogonally polarized
counter-propagating fields are used instead to confine particles, with only one of
these contributing to the measurement. The additional trapping field is isolated from
the detector using a polarizing beamsplitter with a manufacturer specified extinc-
tion ratio of 23 dB. The residual trapping field to reach the detector should carry
an orthogonal polarization to the measured fields, such that it only affects the mea-
surement process via a small contribution of noise. If higher NA objectives were
used, the separate trapping field would not be needed. A Gaussian probe field which
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propagates away from the detector enters the optical trap and illuminates the particles,
with back-scattered light providing the signal field. This scattered light is mixed with
the flipped Gaussian local oscillator field, which acts to define the detection mode,
and the transmitted intensity is directly measured to infer particle position along
one axis. The phase between the local oscillator and scattered field was locked by
modulating the probe field at 2 MHz and monitoring the amplitude of the detected
modulation. This measurement was processed with a PID controller, and used to
lock the optical phases by feeding back to a piezo-mounted mirror in the path of the
probe field.

In addition to backscattered light, the measurement also captures probe light
which reflects from the sample coverslip. This light is highly divergent as the focus
of the reflected field is displaced from the focal plane of the objective. An aperture
is used to remove the diverging component of the optical field, which suppresses
the detection of back-reflected light. However, some of the back-reflected light still
reaches the detector and introduces a spurious signal. Since the glass coverslips are
essentially stationary, the spurious signal has an extremely low frequency, and cannot
be observed over the particle motion above 1 Hz.

With this setup, 1µmpolystyrene particleswere tracked inwaterwith a sensitivity
of 3 × 10−12 m Hz−1/2 (see Fig. 6.3). Then, the measurement scheme was tested
to verify whether the measured signal corresponded to motion along the x axis. A
1 kHz sinusoidal modulation with 5V peak-to-peak amplitude was applied to the
piezo drivers along the x and y axes of the positioning stage (Nanomax MAX302).

Fig. 6.3 Characterization of the cross-talk in homodyne particle tracking. The sample position
was modulated along both the x and y axes, with measured spectra shown in light blue and green
respectively. When the x axis was modulated, the resulting measurement yields a strong signal at
1 kHz as well as a weaker second harmonic at 2 kHz. Modulation of the y axis produced a smaller
signal at 1 kHz and no response at 2 kHz. Both spectra also show the spectra of Brownian motion,
with a measurement sensitivity of 3 × 10−12 m Hz−1/2. The peaks above 30 kHz are additional
unwanted modulations associated with the phase lock
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The resulting power spectra for the measured signal are shown in Fig. 6.3. When the
x axis was modulated, the resulting measurement yields a strong signal at 1 kHz. By
contrast, the response at 1 kHz is 40 times smaller for a modulation along the y axis.
This clearly demonstrates that the measurement predominantly samples the particle
motion along the x axis. Since the stage itself is imperfect, the observed cross-talk
may have originated in either the positioning stage or imperfections in the detection.

Movement along the z axis shifts the relative phase between the scattered field
and local oscillator. This phase is compensated with the phase lock, and to first order
the residual phase difference does not affect the measured signal. Modulation of the
z axis, however, introduced a large axial motion which the phase lock was unable to
compensate. The feedback loop could not respond adequately to the driven motion,
and the phase lock became unstable. This suggests that axial motion could produce
more cross-talk than y axis motion. Without a stable phase lock it is not possible to
perform reliable measurements, and the exact level of this axial cross-talk was not
characterized.
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Chapter 7
Lock-In Particle Tracking

Chapters5 and 6 present methods to optimize the shot-noise limit to particle tracking
sensitivity. In many real experiments, however, technical noise dominates. In this
case, it is more important to eliminate technical noise than to improve the shot-noise
limit. This chapter presents a new optical lock-in method to eliminate low frequency
noise, and incorporates the following publication [9].

7.1 Introduction

While shot-noise establishes the fundamental sensitivity limit for optical tweezers
based measurements [6, 8, 10], real experiments are generally limited by technical
noise sources such as laser noise, electronic noise in the detector, or drifts of mirrors
in the experiment. These technical sources of error can be a significant hindrance
to precision measurement, so much effort has gone into reducing them [1, 3, 5].
Here we develop an optical lock-in particle tracking scheme which allowed evasion
of low-frequency technical noise without needing to remove the noise sources from
the experiment. In principle, this optical lock-in particle tracking scheme offers near
immunity to low frequency laser noise and electronic noise, which could make it
a highly practical method for a wide range of experiments. Here we demonstrate
optical lock-in particle tracking with both self-homodyne and conventional quadrant
detection, and characterize the noise suppression attained. It is shown that lock-in
based particle tracking allows evasion of low frequency electronic noise and laser
intensity noise, and achieves equivalent sensitivity where the dominant noise source
is fundamental shot-noise. The reduction in laser noise and electronic noise yields
up to 20 dB of noise suppression below 1 kHz, where low frequency electronic
noise is significant, and over 20 dB of noise suppression around 600 kHz where
the laser crystal relaxation oscillations introduce an intensity noise feature. This
allows shot-noise limited measurements at low frequencies, which is essential for
the development of quantum enhanced particle tracking.
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7.2 Basic Concept

The lock-in based particle tracking measurement demonstrated here is qualitatively
similar to a continuous position tracking experiment. In optical tweezers based mea-
surements, scattering particles are illuminated and the spatial distribution of the
resulting scattered field is measured to infer particle position [2, 8]. Here this is
extended by modulating the incident illumination. This modulation is carried onto
the scattered field, shifting some of the optical power from the laser carrier frequency
into side-bands. Once the scattered field is measured, the optical modulation trans-
lates into a modulation on the electrical signal, with the particle position information
centered about the modulation frequency (see Fig. 7.1). The particle position can be
recovered by demodulating this signal.

We may ask how the expected sensitivity of such a measurement compares to
a usual continuous measurement. When optical fields are measured, the resulting
photocurrent at time t is given by

I (t) = G
∫

U (X, Y )|E(t)|2d X dY + NE (t) (7.1)

where NE is the electronic noise, G is the detector gain, E is the total electric field at
the detector at the coordinates X and Y , and U (X, Y ) represents the spatial gain of
the detector; for instance, if the photocurrent from two halves of a split detector are
subtracted from one another, this is represented as U (X, Y ) = sign(X), while a bulk
detector has U (X, Y ) = 1. Here we assume that the fields present are a scattered
field Es which depends on particle position, and a local oscillator ELO with which
the scattered field interferes, such that E = ELO + Es . In most optical tweezers
experiments, the local oscillator is simply given by the component of the trapping
field which has not scattered from the particle. For lock-in experiments, the fields
are separated to allow the particle illumination to be modulated independently of

Fig. 7.1 An illumination optical field is modulated by its interaction with the particle (red). In order
to measure this, it is mixed with another bright local oscillator field (dark blue). However, the local
oscillator also has some low-frequency noise present. If the illumination field frequency matches
the local oscillator frequency, as shown on the left, then the low-frequency noise competes with
the low-frequency particle motion signal. However, if it is in amplitude modulated side-bands, as
shown on the right, then the low-frequency particle motion can be isolated from the low-frequency
noise, thereby improving the measurement sensitivity
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the local oscillator. The scattered field is assumed to be much smaller than the local
oscillator (|Es | � |ELO|) as is typically the case, such that themeasured photocurrent
is given by

I (t) = G
∫

U (X, Y )|ELO(t)|2 + 2U (X, Y )Re{ELO(t)E∗
s (t)}d X dY + NE (t).

(7.2)

The explicit time dependence of the scattered field may be separated from the spatial
mode shape as Es = (As(t) + ξ(t))ψs(X, Y ). Here As(t) is a real parameter which
represents the expectation value of the field amplitude given the particle position,
and ξ(t) represents all additional fluctuations such as laser noise and shot noise.
ψs(X, Y ) is the complex spatial modeshape of the scattered field; this does not have
explicit time dependence, but is modified as the particle moves. It is this spatial
modification which is ultimately monitored to retrieve a particle tracking signal. To
find the dependence of the scattered field on a small particle displacement x(t), it
can be expanded to first order as

Es = Es |x=0+x(t)
d Es

dx

∣∣
x=0 = (As(t)+ξ(t))ψs(X, Y )|x=0+x(t)(As(t)+ξ(t))

dψs(X, Y )

dx

∣∣
x=0.

(7.3)
Substituting this expression into Eq.7.2, the component of the photocurrent which
gives a linear particle tracking signal can be seen to be

Isig = 2Gx(t)As(t)
∫

U (X, Y )Re{ELO
dψ∗

s (X, Y )

dx

∣∣
x=0}d X dY, (7.4)

= gx(t)As(t) (7.5)

where for brevity we define a gain g = 2G
∫

U (X, Y )Re{ELO
dψ∗

s (X,Y )

dx

∣∣
x=0}d X dY .

The position sensitivity is optimized when this gain is maximized, as occurs when
both the phase and shape of the local oscillator field are optimized to perfectly
interfere with the scattered field component d Es

dx

∣∣
x=0 [6, 7]. Substituting this into

Eq.7.2, we can represent the measured photocurrent as

I (t) = Nopt(t) + NE (t) + gAs(t)x(t), (7.6)

where all the terms in the integrand which did not contribute to the tracking signal
are included as optical noise Nopt. For a continuous measurement, the expectation
value of the scattered field amplitude As(t) should be constant. Alternatively, we
can perform lock-in measurement if we modulate the scattered field amplitude at
frequency ω such that As(t) = √

2 Āscos(ωt), where the modulated amplitude has
an RMS value of Ās . Provided the modulation frequency is much faster than the
mechanical motion, the position can then be extracted by demodulation;

Ilock-in = √
2Icos(ωt) = √

2
(
Nopt(t) + NE (t)

)
cos(ωt) + g Ās x + g Ās xcos(2ωt).

(7.7)
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Thus, the effect of the lock-in is to shift the low frequency noise to high frequen-
cies, and generate a second harmonic term proportional to x while leaving the signal
term unchanged. The second harmonic term and the low frequency noise can then be
removed via a low-pass filter, such that only the noise originally near the modulation
frequency enters themeasurement.Wherever low-frequency noise is dominant, lock-
in measurement allows suppression of the noise floor. This does not influence white
noise sources such as shot-noise, since these are equally present at low frequencies
and around the modulation frequency. Thus, the fundamental shot-noise limit on
position sensitivity is not influenced by a choice between continuous or lock-in mea-
surement. The two schemes have equivalent shot-noise limits to sensitivity when
the lock-in scattered amplitude Ās matches the amplitude As of a the continuous
measurement, or equivalently, when the same number of scattered photons in mod-
ulation side-bands are collected for the lock-in measurement as are collected for a
continuous measurement.

7.3 Self-homodyne Demonstration

To demonstrate the optical lock-in particle tracking method, the self-homodyne
setup shown in Fig. 7.2 was built, and the sensitivity attainable with continuous and
lock-in measurements characterized. This setup applies lock-in measurement in the
self-homodyne experiment demonstrated in Chap. 6. Particles are trapped in water
between two objectives with 0.4 numerical aperture (NA) by 1064nm light produced
by a low noise Innolight Prometheus Nd:YAG laser. The low NA objectives used do
not allow stable trapping with a single beam, so two orthogonally polarized counter-
propagating fields are used instead to confine particles. One of these is used to probe

Fig. 7.2 Layout of the optical lock-in tracking scheme used here. PBS polarizing beamsplitter,
DM dichroic mirror. The local oscillator is shaped with a phase plate which imparts a π phase shift
to one half of the spatial profile. Particles are trapped by the counter-propagating probe and trap
fields. The trap field is isolated from the detection, and if it is not required for stable trapping, can be
removed altogether. The probe field scatters from trapped particles, and the particle motion tracked
via the interference between this scattered light and the local oscillator. The probe is amplitude
modulated at 2 MHz in a fiber Mach-Zehnder modulator. A separate green field is used to image
the particles in the trap

http://dx.doi.org/10.1007/978-3-319-18938-3_6
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the particles, with the resulting back-scattered light used to perform particle tracking.
The other trapping field is removed with polarizing optics, and does not contribute
to the measurement. The probe field is amplitude modulated at 2 MHz, which is a
sufficiently high frequency that the resulting modulation of the trap strength does
not measurably disturb the particle motion. The back-scatter from this modulated
probe field is combined with a local oscillator field which also propagates through
the trap. As described in Chap.6, the local oscillator is shaped with a phase plate so
that particle motion modulates the spatial overlap between the local oscillator and
scattered field. Provided the phase between the local oscillator and scattered field is
correctly chosen, the influence of the particle motion on the interference between
these fields directly maps the position onto the transmitted light intensity, which is
then measured on a New Focus 1811 bulk detector. Demodulation of the resulting
signal at the amplitudemodulation frequency allows both tracking of a scattering par-
ticle and also monitoring of the relative optical phases. The scattered light includes
a large stationary term (Es |x=0 in Eq.7.2), and the phase between this and the local
oscillator can be determined from the amplitude of the measured modulation. This
measured phase was processed with a PID controller and locked by feedback to a
piezo-mounted mirror in the path of the probe field.

The amplitude modulation on the probe is chosen to leave approximately equal
power in the central laser frequency and the first modulation side-band. This allows
the continuous and pulsedmeasurements to occur simultaneouslywith a single detec-
tor, and with equivalent recording conditions. Some non-linearity in the modulator
resulted in a number of higher harmonics being generated, which were suppressed
in the data acquisition with analog electronic filters.

Using this setup, the Brownian motion of a 1 µm polystyrene bead was simulta-
neously measured both continuously and from side-bands around the 2 MHz mod-
ulation, with spectra shown in Fig. 7.3a, b respectively. The background noise was
characterized by performing equivalent measurements in the absence of a trapped
bead. As expected, the lock-in measurement is very similar to the continuous mea-
surement, but with a reduction in the included electronic and laser noise. The reduc-
tion in included noise (shown in Fig. 7.3c) causes the measurement imprecision to
improve markedly at the frequencies where laser and electronic noise are dominant.
Between 10 and 5000 Hz, the imprecision is improved by an average of 20 dB, with
even greater suppression of 35 dB in the frequency range 550–710 kHz where the
laser crystal relaxation oscillations produce a prominent laser noise peak centered at
630 kHz.A comparison of the twomeasurements in the time domain also reveals both
the clear suppression of noise on the lock-in trace and the otherwise close agreement
between the measured displacements (Fig. 7.3d). These results verify that the lock-in
measurement is equivalent to a continuous measurement, except that it evades low
frequency technical noise.

With the optical layout used here, particle motion was tracked in a self-homodyne
measurement on a single bulk detector rather than a quadrant photodiode. This is not
required for lock-in particle tracking, which should work with any detection appara-
tus. However, it can be very advantageous; quadrant detectors are avoided in some
high-speed experiments because they typically have low bandwidth [1, 4]. Further-

http://dx.doi.org/10.1007/978-3-319-18938-3_6


100 7 Lock-In Particle Tracking

(a)

(c) (d)

(b)

Fig. 7.3 Particle tracking spectra are shown from simultaneous continuous (a) and lock-in (b)
measurements. The light yellow trace shows the noise floor present in the absence of a trapped
particle which corresponds to the measurement imprecision, and the blue shows the measured
signal with a 1 µm polystyrene bead held in the trap. The thick darker blue line fits the bead motion
and the flat shot-noise floor. This matches the lock-in data well since it is shot-noise limited from
500 Hz, but does not follow the continuous spectra as this was limited by low frequency laser noise
until 1 MHz. This noise includes a very prominent spectral peak around 630 kHz from the laser
diode relaxation oscillations. Because the fitted floor corresponds to the shot-noise level, it drops
below the measured data between 10 kHz and 1 MHz. The trap was very weak, as we used 0.4 NA
objectives with a total of 30mW trapping field. As such, the corner frequency is slightly below 10Hz
and not visible in the displayed data. By excluding low frequency noise, the lock-in measurement
yields a measurement precision which is improved by the factor shown in (c). Subplot d shows
the continuous (light) and lock-in (medium) time-traces after a low-pass filter at 1 MHz, revealing
the clear noise improvement from lock-in measurement, and also shows the continuous data with a
low-pass filter at 10 kHz (dark), which closely follows the higher bandwidth lock-in results

more, the quantum limit on sensitivity is accessible only with perfect interference
between the local oscillator and scattered fields, which requires the local oscillator
to be spatially engineered, as it is in a homodyne measurement such as this [6, 8]. A
difficulty with the layout used here was that some of the probe field reflected from
the sample chamber into the detector. Because air-gap objectives were used, the glass
coverslip produced about 4% reflection, which was of a greater intensity than the
back-scatter from the particle. Thus phase shifts between the local oscillator and
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scattered fields generated a spurious measured signal, but this was primarily below
5 Hz. In that low frequency range, our lock-in measurement performed worse than
the continuous measurement. This problem could be solved by using oil-immersion
objectives, where the refractive index mismatch between the medium and the cov-
erslip is far smaller, and the resulting back-reflection far weaker. Alternatively, the
reflections could be eliminated with anti-reflection coatings on the coverslips.

7.4 Experimental Verification in a Conventional Setup

To verify that this lock-in technique is applicable with the high NA objectives and
quadrant detection typically used in optical tweezers experiments, the lock-in particle
tracking apparatuswas rebuilt to thedesign shown inFig. 7.4. In this setup, a particle is
trapped in water between twoNikon Plan Fluorite objectives with numerical aperture
(NA) of 1.3. Because these objectives are high NA, the extra trapping field used
in Sect. 7.3 was unnecessary and the particles were confined with a single beam
optical trap with 30 mW of amplitude modulated trapping light. In this experiment
the measurement bandwidth approached 1 MHz (see Fig. 7.5). It is necessary to
modulate at a frequency which is greater than twice the measurement bandwidth to
ensure that the continuous and lock-in measurements remained spectrally separated,
so the frequency of the amplitude modulation was increased to 2.5 MHz. Once
again, the modulation frequency is sufficiently high that the resulting modulation of
the trap strength should not measurably disturb the particle motion. The back-scatter
from this modulated field is combined with a 3 mW local oscillator field which also
propagates through the trap. The resulting interference is then measured on a split
detector to determine particle position [2]. The split detector follows the design used
in Ref. [4], where the left and right halves of the laser beam are separated with a

Fig. 7.4 Layout of the optical lock-in tracking scheme used here. PBS polarizing beamsplitter,DM
dichroic mirror, λ/4 quarter waveplate. Particles are trapped with a 30 mW trapping field which
has been amplitude modulated at 2.5 MHz in a fiber Mach-Zehnder modulator (dark red). Back-
scattered light from this trapping field is combined with a 3 mW local oscillator field (light red).
Since the back-scattered light passes through the quarter waveplate twice, its polarization is rotated
and it passes straight through the polarizing beamsplitter. The interference between the scattered
field and the local oscillator is measured on a split detector to track the particles. A separate green
field is used to image the particles in the trap
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(a)

(b)

(c)

Fig. 7.5 Particle tracking spectra are shown from simultaneous continuous (a) and lock-in (b)
measurements. The gold trace shows the noise floor present in the absence of a trapped particle
which corresponds to the measurement imprecision, and the blue shows the measured signal with
a 0.5 µm polystyrene bead held in the trap. For clarity, the traces are smoothed with a logarithmic
width filter, and this broadens the sharp electrical noise features. The prominent spectral peak
around 630 kHz in the continuous data is laser noise which arises from the laser diode relaxation
oscillations, and this noise feature is barely visible in the lock-in results. Subplot c shows the factor
by which the noise floor has been lowered for the lock-in results

mirror and measured with a balanced detector. The detector used in this experiment
was a New Focus 1817 detector, which combines shot-noise limited performance
with 80 MHz bandwidth.

Using a similar measurement procedure to Sect. 7.3, the Brownian motion of
a 0.5 µm polystyrene bead was simultaneously measured both continuously and
from side-bands around the 2.5 MHz modulation, with spectra shown in Fig. 7.5a, b
respectively. The background noisewas characterized by performing equivalentmea-
surements in the absence of a trapped bead. As expected, the lock-in measurement is
very similar to the continuousmeasurement, but with a reduction in the included elec-
tronic and laser noise. The reduction in included noise (shown in Fig. 7.5c) causes the
measurement imprecision to improve at the frequencies where laser and electronic
noise are dominant. Below 1 kHz, the noise floor was dominated by 1/f electronic
noise, with some additional noise spikes. In this regime, the imprecision is improved
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by an average of 8 dB, with peaks suppressed by up to 20 dB. A prominent laser noise
peak was also present at 550–710 kHz due to the laser crystal relaxation oscillations,
and this was also suppressed by 20 dB in the lock-in results. At higher frequencies
the measurements are both shot-noise limited, and their noise floors converge. These
results verify that the lock-in measurement is equivalent to a continuous measure-
ment, except that it evades low frequency technical noise.

While the particle motion was only measured along a single axis in this experi-
ment, lock-in particle tracking is fully compatible with the 3D tracking performed
with quadrant detectors, provided the quadrant has sufficient bandwidth to capture
the particle motion around the modulation side-bands. It should be noted that while
lock-in particle tracking evades laser noise and electronic noise, this can only improve
the sensitivity to the particle position relative to the optical fields. As with all other
particle tracking experiments, the measurement remains sensitive to mirror drifts or
air currents outside the trap which cause the trap center to drift, and conventional
methods are needed to stabilize these noise sources.

7.5 Conclusion

In conclusion, we have demonstrated that lock-in measurement provides a simple
and robust technique to reduce technical noise in an optical tweezers setup. Even
when using a low noise laser and detector (shot-noise limited at 10 kHz; see Fig. 7.5),
this results in a substantial improvement. Lock-in particle tracking is demonstrated to
work in both a self-homodyne tracking setup and with a split detector, demonstrating
that it is sufficiently versatile to operate in a wide range of apparatus designs. Since
lock-in measurements eliminate low-frequency optical noise, it becomes relatively
straightforward to perform experiments with quantum shot-noise limited sensitivity
at low frequencies. This is an essential step for the development of quantum enhanced
particle tracking apparatus. Furthermore, this elimination of noise can yield a sub-
stantial improvement in sensitivity, and could provide a practical benefit for many
classical optical tweezers applications.
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Chapter 8
Selective Measurement by Optimized
Dark-Field Illumination Angle

The previous chapters establishmethods which can be used to improve the sensitivity
of single particle tracking in optical tweezers. In many real experiments, particularly
in biology, the single particle under study is surrounded by extraneous scattering
centers. In order to truly benefit from high precision measurements, it is important to
minimize the contribution of these unwanted scatterers. This chapter shows that the
contributions of different scatterers can be tuned by adjusting the angle of illumina-
tion in a dark-field microscopy setup. It is based on the following publication [24].

8.1 Dark-Field Microscopy

To optically image a microscopic structure, such as those within cells, light which
has interacted with the structure is collected with a microscope objective. With dark-
field illumination, the angle of incidence of the illuminating light is chosen to ensure
that light can only enter the objective if it scatters from the sample [13, 19, 29]. This
eliminates the bright background of unscattered light, which vastly improves the con-
trast and makes smaller features observable. This can allow biophysical experiments
to proceed with far smaller markers than otherwise possible [9, 18, 23, 31], which
then reveals previously unobservable dynamics of nanoscale objects such as protein
motors [9, 18, 31]. The improved contrast also enables marker-free observation of
small structures such as the rapidly moving bacterial flagella [13].

The only background light to enter a dark-fieldmeasurement is the unwanted scat-
tering from scattering centers which are not under study. This background degrades
the signal to noise of the measurement, which can be a limiting factor in dark-field
experiments [19]. For instance, a dark-field image of the actin networks within the
cellular cytoplasm includes a background of scattered light from organelles such
as the cell nucleus and mitochondria. While this remaining background is typically
much smaller than the background of unscattered light in bright-field microscopy, it
can be significant when studying complex structures such as cells, where there are a
vast collection of competing scatterers [7].

Here we calculate the collected flux of scattered photons for a range of spherical
scattering particles, microscope objectives, and illumination angles, and show that
the relative contribution of different particles to the measured signal can be tuned
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by appropriately adjusting the illumination angle. This can be used to maximize
the signal to noise, which can improve sensitivity in the limit that the measurement
is limited by background scattering. Furthermore, the background scattering can
be further suppressed by reducing the effective Numerical Aperture (NA) of the
microscope objective. To take a specific example, these calculations are applied to
the experiments which are later performed with squeezed light in Chaps. 11 and 12.
In those experiments, lipid particles are tracked within yeast cells, and other centers
within the cell contribute background noise. We calculate the scattering profiles of
the cell nucleus, mitochondria, lipid granules, and cellular cytoplasm, and from this
predict that the signal to noise ratio achieved with dark-field microscopy was over
three orders ofmagnitude better than it would have been for an equivalent bright-field
measurement. Our results also highlight the importance of selecting an appropriate
illumination angle in dark-field microscopy, with the signal-to-noise varying by over
two orders of magnitude as a function of illumination angle.

8.2 Calculations

In the basic setup considered here, an ensemble of particles are imaged via light
which they scatter from an illumination field into the collection aperture of an objec-
tive, as shown in Fig. 8.1a. For simplicity, we only consider spherical particles, and
approximate the total measured field as the sum of each of the individually calculated
scattered fields. Although more accurate models to calculate biological scattering
exist [6, 8], these approximations are widely used [1, 16, 21, 22] and have been
found to provide realistic results [12, 30]. If the scattering particles consist of both
particles which are to be measured and unwanted scattering centers, then it is desir-
able to maximize the desired scattered photon flux while minimizing the unwanted
scatter. To study the scattered photon flux, we first evaluate the Mie scattering [11]
profiles using the T-matrix method inbuilt in the Optical Tweezers Toolbox [17],
which yields scattering intensity profiles as a function of scattering angle such as
those shown in Fig. 8.1b. This calculation uses 1064nm light which is p polarized
and with an intensity at the scattering particle of 10 mW µm−2. The scattering par-
ticle has a refractive index of 1.4, and is suspended in water with a refractive index
of 1.33. As can be seen in Fig. 8.1b, small scatterers have an intensity profile which
is well approximated by dipole scattering. The scattering from larger particles, by
contrast, can include quite a complex spatial distribution, although there is generally
a large maxima of scattering in the forward-propagation direction. Elsewhere on the
spatial profile there are maxima and minima whose positions depend on the size and
refractive index of the scattering sphere [11].

Once the intensity profile is calculated for each scatterer, it is integrated over
the objective aperture area to find the collected photon flux, as shown in Fig. 8.1c
for an objective with NA of 1.2. The illumination angles which correspond to dark-
field microscopy are indicated by vertical lines, and defined by the range of angles
for which the illumination cannot enter the objective either directly or via a back-
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http://dx.doi.org/10.1007/978-3-319-18938-3_12


8.2 Calculations 107

(a) (b) (c)

Fig. 8.1 We consider a microscopy measurement in which the illuminating light can be incident
from any angle θ relative to the objective, as depicted in (a). In this example, the light is incident
at the particle 45◦ from the objective axis, and the resulting scattered field which falls within the
objective aperture is collected. The Mie scattering profile for 1064nm p-polarized light striking
with a refractive index of 1.4 suspended in water are shown in (b), for particles of diameter 30 nm,
100 nm, 300 nm, 1 µm and 3 µm. This intensity profile has substantial structure, with numerous
maxima and minima for the larger particles, and a single minima at an angle of 90◦ for the dipole
scatterers. In subplot c, the calculated flux of scattered photons through an NA = 1.2 objective is
plotted as a function of the angle θ , for an illumination intensity of 10 mW µm−2 at the particle.
Since the optical power is measured over a large aperture, the structure evident in the intensity
profile is smoothed out. Dark-field measurement requires the illumination angle to be between the
two dashed lines, where neither the illumination nor a back-reflection of the illumination will enter
the objective aperture

reflection from the glass coverslip. Since this objective has a large aperture, the
prominent spatial variation of the intensity profile is barely visible in the total photon
flux. The smallest particles show the least spatial variation, and even the intensity
minima along the direction of polarization makes little difference to the collected
photon flux. Because larger particles scatter far more light in the forward direction,
the relative contributions of these large particles can be tuned by orders of magnitude
by changing the illumination angle.

Since the objective NA limits the range of possible dark-field illumination angles,
most dark-field microscopes use objectives for which the NA is lower than 1.2. In
Fig. 8.2 the dependence of the collected photon flux on the illumination angle is
shown for a collection of lower NA objectives, with the same calculation parameters
as above. The photon flux from 30nm particles is small, and does not appear within
the displayed range for objectives with a NA below 0.6. These 30nm particles are
well approximated as dipole scatterers, with a lower scattering rate but similar spatial
dependence to the 100nm particles. As the NA is reduced, the collected photon flux
shows more of the spatial variation present in the intensity distribution. This allows
the relative contributions of scattering from different sized particles to be tuned by
varying the illumination angle, with greater tuning possible for lower NA objectives.
For instance, if the desired signal is scattering from 300nm particles, with smaller
100nm particles produce the background, the illumination angle should be as low as
possible, and the NAmakes little difference to the relative strengths of the scatterers.
If larger 1µm scatterers produce the scattering background, the optimal illumination
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Fig. 8.2 The flux of scattered photons from the particles considered in Fig. 8.1 is calculated for
various objectives as a function of the angle θ , with dark-field measurement requiring the illumi-
nation to lie between the dashed lines. The smallest particle with 30nm diameter has a photon
flux below the plotted range when the objective NA is below 0.6. As the numerical aperture drops,
the profile of the collected power approaches the intensity profile shown in Fig. 8.1b. In the case
that the measurement sensitivity is limited by background scatterers, this could provide a way to
improve the measurement sensitivity. If large particles are being measured among a background of
dipole scatterers, the scattering background can be suppressed by choosing an illumination angle
of 90◦ and a low NA objective. Alternatively, if a 300nm particle is under study, and the scattering
background is produced by larger 1 µm particles, then the optimal measurement angle is around
140◦, and the relative strength of the scattering background is reduced by reducing the objective
NA

angle is around 140◦, which then allows the 300nmparticles to dominate the scattered
flux for NA below 0.4. However, reducing the NA also increases the diffraction limit
and reduces the total photon flux collected, which will both degrade the overall
sensitivity [25].

In a real measurement, particularly in biology, the sizes of all the scattering par-
ticles may not be precisely known. As such, it is useful to consider the collected
photon flux from scatterers over some range of sizes. The dependence of the col-
lected power on the particle size is shown in Fig. 8.3 for several fixed illumination
angles. In the dipole scattering regime, the scattered power scales as d6, where d is
the particle diameter [10]. Outside of this regime, the behavior is more complicated.
The forward-scatter continues to grow rapidly with particle size, and dominates over
the scatter in any other direction. The scattered power collected to the side or back
is modulated as scattering minima and maxima are sampled. However, we find that
the collected power at the maxima scales as d2; this suggests that the scattering
cross-section scales with the cross-sectional area of the particle. Hence dark-field
illumination at any angle will help to suppress the scattering background from a
large scatterer (such as a cell nucleus), and this suppression is maximized when the
measurement coincides with one of the collection minima.
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Fig. 8.3 The collected photon flux is plotted here at four separate illumination angles as a function
of particle diameter, for an objective NA of 0.4. For dipole scatterers, the collected photon flux
always scales as d6. For larger particles, the side and back scatter photon flux is modulated, but the
flux collected at the maxima scale as d2. By contrast the forward-scatter grows far more rapidly
than this

The calculations discussed above have used p polarized light with a wavelength
of 1064 nm. This can be extrapolated to any wavelength of light, as Mie scattering
depends only on the particle size relative to thewavelength. To apply these results to a
different wavelength, the diameters must be adjusted to keep the relative particle size
d/λ constant. For instance, if the particle diameters are halved, the results presented
will correspond to green illumination at 532 nm. If s polarization is used instead,
the scattering power is independent of the incident angle within the dipole scattering
regime, while in the Mie scattering regime the angles of the scattering maxima and
minima are shifted. However, the overall trends remain similar.

8.3 Application to Biological Measurement

When dark-field microscopy is applied to imaging living cells, many internal com-
ponents can scatter light, which can produce a large scattering background. Cellular
experiments are particularly relevant to this thesis, as the entire goal is to introduce
quantum enhanced particle tracking to biological measurements. Here we consider a
specific example of a biological experiment inwhich Saccharomyces cerevisiae yeast
cells are probed in a dark-field particle tracking scheme, and the thermal motion of
lipid granules racked. For such an experiment, the measurement sensitivity is likely
to be limited by background scattering from the cell.

Overall, a living cell has a highly inhomogeneous refractive index, with a thin
(10 nm) but high refractive index cell wall (n ≈ 1.46) [7, 14] and an interior which
typically varies from 1.36 to 1.40 [4]. Although the cell wall has a high refractive
index, due to its small size it has been shown to contribute little to the total scattering
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of the cell [7]. Within the cytoplasm, there are many distinct scatterers. In addition
to their individual scattering properties, these are collectively considered via their
contribution to the refractive index of the cytoplasm, which is considered here to be a
large scattering particle. Within a yeast cell, the dominant scatterers are the nucleus,
mitochondria, and lipid granules. The nucleus diameter typically varies from 1.5 to
2.8 µm [28], and has a refractive index which varies spatially from 1.36 to 1.39
[4]. Mitochondria are non-spherical with a volume which varies from approximately
0.07 to 1.5 µm3 [16] and have an average refractive index of 1.40 [2, 26]. Lipid
granules are spherical particles which typically have a diameter of 300 nm [27], and
a refractive index of 1.50 [20].

Tomodel the scattered field from the yeast cell (Fig. 8.4), we separately calculated
the scattered fields of a single nucleus, collections ofmitochondria and lipid granules,
and the cytoplasm. The collected intensities of all four sources of scatteringwere then
summed to determine the total collected photon flux. The model used a cell volume
of 65 µm3, which is within the range typically found [28]. The model cytoplasm
refractive index was 1.36 [4, 5], while the extracellular fluid refractive index is 1.35

(a)

(b)

Fig. 8.4 The measured scattered field is calculated for an experiment where lipid granule motion
within a yeast cell are measured in dark-field particle tracking with s polarized light and an objective
NAof 0.4.aThe dominant source of the collected scatteredfield varieswith the collection angle from
nucleus,mitochondria, to lipid granules at largest angles.bThe signal to noise of themeasurement is
plotted here, which is defined as the lipid granule scatter power divided by the scattered power from
all other contributions. As in Figs. 8.1 and 8.2, dark-fieldmicroscopy required the illumination angle
to be between the two dashed vertical lines. The slight rise in the signal to noise around 130◦ results
from a minima in the calculated field for the nucleus. Since the position of such minima in a real
measurement is unlikely to be accurately given by our calculations, this maxima is not considered
to be physically meaningful. For the experiments with squeezed light described in Part III, an
illumination angle of 135◦ was chosen, as indicated by the light vertical line
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[8, 14]. The model nucleus has a refractive index of 1.39 [3, 4] and is approximated
as a 2.4 µm wide sphere, which thus occupies 9% of the cell volume [28]. The
mitochondria are modeled as a collection of 12 spheres with a refractive index of
1.40, and diameters ranging from 0.7 to 1.2 µm, with a total volume occupying
8.5% of the cell [8]. The lipid granules are 300nm across, have a refractive index of
n = 1.50, and occupy 1.3% of the cell volume [28].

The predicted photon flux from the different scatterers are shown in Fig. 8.4a.
Due to the spatial profiles of the individual scattered fields, the total scattered field
is dominated by all four of the scattering centers at different collection angles. Since
the experiment aimed to measure lipid granules, the other scatterers produced the
background. The resulting signal to noise ratio, defined as the collected flux which
scattered from lipid granules divided by all other sources of scatter, is shown in
Fig. 8.4b. This calculation is relevant to the experimentswith squeezed light described
in Part III. For those experiments, an illumination angle of 135◦ was chosen, which
falls within the optimal range of collection angles from 100 to 160◦. Within this
range, the signal to noise is over three orders of magnitude higher than it would be
for a bright-field measurement at θ = 0◦. At other dark-field illumination angles,
the signal to noise could be over two orders of magnitude lower. This suggests that
in addition to removing the bright background from the illuminating laser, the use
of dark-field microscopy can suppress unwanted signals.

Some caution is required when attempting to derive absolute predictions from
the calculations presented here. Firstly, all of the cellular components have been
approximated as homogeneous spheres, while both the nucleus and mitochondria in
a real cell are non-spherical and structured, which can significantly alter the scatter-
ing properties [15]. However, this simplified model has been shown to yield results
which closely approximate real biological samples [1, 16, 21, 22]. Furthermore,
interference between different scatterers has been neglected, although this can effect
the scattered field [6]. Interference does not change either the total flux of scattered
photons, or the total momentum of the scattered photons. Therefore while interfer-
ence will introduce fringes in the measured light, it should not greatly change the
photon flux over the entire aperture. Additionally, light may scatter multiple times
within the cell. Multiple scattering can deflect the illumination angle, or cause the
illumination to be inhomogeneous over the particle. However, the photon flux would
not be influenced by a small change in illumination angle for any of the scatterers in
Fig. 8.4a. Since the particle have a similar size to the wavelength, the spatial inhomo-
geneity in the illuminating field which multiple scattering introduces will typically
be larger than the particles, and will not significantly effect the predicted outcome.
Thus, although some features in the photon fluxmay be different in a real experiment
to the calculations presented here, the general conclusion that dark-field illumination
vastly increases the relative contribution of the lipid granules to the measured fields
is valid.
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8.4 Conclusion

We have calculated the collected flux of scattered photons in the Mie scattering
regime, and determined how the measurement sensitivity depends on the illumina-
tion angle for various objectives and particles. In the limit that the dark-field mea-
surement is limited by background scattering, we have shown that the sensitivity
can be improved by lowering the objectives effective numerical aperture (NA) and
tuning the illumination angle. For an example biological experiment which applies
dark-field microscopy to track lipid granules within a yeast cell, the collected photon
flux from different cellular components was approximately calculated. This suggests
that the signal-to-noise varies by over three orders of magnitude with the illumina-
tion angle. For the experiments described in Part III, which demonstrate quantum
enhanced particle tracking, this calculation is highly relevant, and an illumination
angle is chosen which provides optimal signal to noise.
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Chapter 9
Technical Constraints on Sensitivity

In the preceding chapters, several new methods to improve the particle tracking
sensitivity have been presented. These methods add to an already extensive depth
of knowledge within the field of particle tracking. This chapter summarizes some of
the important technical problems which can constrain particle tracking experiments,
and methods which are in use to allow high sensitivity measurements.

9.1 Aberrations

Optical tweezers rely on a tightly focused optical field to trap and measure a particle.
This is often limited by aberrations in the objective which distort the optical field
and broadens the focus. Such aberrations can severely degrade both the trap strength
and the measurement sensitivity.

9.1.1 Spherical Aberrations

An essential component in any optical trapping experiment is the trapping objec-
tive. Often oil-immersion objectives are used, though it is also possible to use water
immersion, or immersion-free objectives (as used in this thesis). The NA of the
objective is fundamentally limited by the refractive index of the immersion medium,
such that immersion-free objectives are constrained to an NA below 1. Since the
trap performance improves with NA, most experiments are performed with higher
NA oil-immersion or water-immersion objectives. However, it is important to note
the designed function of the objective, as even the highest quality objectives suffer
from aberrations if used outside of their design specifications. Oil-immersion objec-
tives are typically designed to focus light through oil and a glass coverslip. Optical
trapping experiments typically require the light to be focused into water, and the
propagation through water introduces spherical aberrations (see Fig. 9.1). Likewise,
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(a) (b) (c)

Fig. 9.1 Spherical aberrations. a When an objective focuses light, all of the rays should converge
to a single spot. b If the light is being focused from one material with a refractive index of n1
into a second material with n2, the rays are refracted at the interface between the two materials.
This is equivalent to adding a spherical lens with a refractive index of n1 in a medium with n2, as
represented by the dashed lines. When focusing into a lower refractive index medium (n2 < n1),
this brings the focus closer, with the high angle rays focused at a smaller depth than the low angle
rays. c The depth at which the rays converge in water, as a function of the incident angle. This
calculation uses NA=1.3 oil immersion objectives with n1 = 1.50 and n2 = 1.33, with low angle
rays focused into the water at a depth of 20 µm. Spherical aberration shifts the focal depth by more
than 10% for all incident angles above 46◦

immersion-free objectives are not generally designed to focus into water, and also
suffer spherical aberrations. This can vastly broaden the point-spread function of the
objective, degrading the optical forces [20] and rendering optical traps unstable past
a depth of approximately 20 µm [15]. This also degrades the measurement sensitiv-
ity by distorting the measurement mode (as described in Chap. 3), thus preventing
efficient extraction of information from the scattered field. Furthermore, by reducing
the trapping field intensity at the particle, aberration also lowers the rate of photon
scattering, with a corresponding loss of sensitivity. The simplest method to remove
spherical aberrations is to use high quality water-immersion objectives. In principle,
since these are designed to allow light to propagate through water, they should not
suffer any spherical aberrations [17].

9.1.2 Other Aberrations

In addition to suffering from spherical aberrations, the individual lenses within an ob-
jective have a refractive indexwhich varieswithwavelength. This results in chromatic
aberrations, where the focal length varies with wavelength. An objective contains
multiple lenses which are typically arranged to cancel out the overall wavelength
dependence. However, this is only possible over a finite wavelength range. Most
objectives are designed for light microscopy with visible light, while optical trap-
ping experiments often use 1064nm laser light. As such, the objective may not be

http://dx.doi.org/10.1007/978-3-319-18938-3_3
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designed optimally for the trapping light, which can introduce aberrations on the
focus [17].

The laser power used in optical trapping is also typically far higher than most
objectives are designed for. Absorption in the objective can thus heat the lenses,
which will degrade the focus. Heating will change the refractive index and deform
the lens surface, which aberrates the overall focal properties, and also causes stress-
induced birefringence [7]. The birefringence results in astigmatism, where rays in
the horizontal plane focus at a different depth to rays in the vertical plane [13].
Thermal heating can therefore aberrate the focus severely, so it is important to use
low absorption objectives even in classical experiments.

The above aberrations can result when near-perfect objectives are used outside
of their design range. Additionally, non-ideal objectives also suffer aberrations due
to imperfect design or construction. Astigmatism can result from unwanted stress
in the mounting or imperfect angular alignment of the lenses within the objective
[13, 18]. Coma aberrations result when the focus of off-axis incident light is distorted.
However, these aberrations are not typically as serious to trapping applications, and
the bulk of the literature attention is on spherical aberrations.

9.1.3 Aberrations in the Sample Chamber

While most aberrations are associated with the objective, the chamber which holds
the particles under study can also aberrate the focus. The sample chamber typically
includes a small cavity between glass coverslips which is filled with the sample
solution. This is mounted and sealed with a waterproof adhesive, typically nail pol-
ish [19]. If the coverglass is stressed when it is glued in place, the resulting stress
induced birefringence will lead to astigmatism [2]. Although there is no way to com-
pletely eliminate the stress associated with the gluing process, the astigmatism can
be minimized with an appropriate design of the sample chamber. If the sample cham-
ber is circularly symmetric, as shown in Fig. 9.2, the symmetry in the stress should
minimize any resulting aberrations.

(a) (b)

Fig. 9.2 The sample chamber is constructed with two glass coverslips (faint blue) separated by a
spacer (purple). For the experiments in this thesis, this was arranged as shown in (a), although this
can introduce astigmatism via stress induced birefringence. In this approach, the sample chamber is
constructed, then filled with solution and sealed with adhesive [19]. b An alternative which avoids
the astigmatism is to use a circularly symmetric sample chamber. Two coverslips are separated with
a thin spacer, in which a circular hole is cut to house the solution. This requires the chamber to be
filled with solution during the construction process
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Furthermore, optical trapping experiments which are conducted within in vivo
also suffer from aberrations due to the surrounding biological sample [8]. Since this
aberration depends on the specific geometry and structure of the sample, it is not
possible to design the optical trap to avoid it. The only possible way to avoid this is
to apply active aberration compensation.

9.1.4 Aberration Compensation

It is possible to compensate for aberrations by engineering the incident trapping
light [18]. If the aberrations within the system are known, then the conjugate phase
can be applied to the field before it enters the experiment to correct the focal spot. For
instance, a first order Zernike polynomial which represents spherical aberrations can
be applied with a spatial light modulator to improve the focus [16]. Other aberrations
can also be represented as Zernike polynomials, and compensated in a similar man-
ner [11, 18]. Since an improvement in the focus will increase the optical forces, the
quality of the aberration compensation is typically estimated from measurements of
the trap stiffness. The optimal correction is found by adjusting the amplitude of each
Zernike polynomial on the spatial light modulator to maximize the trap stiffness.

Although this optimization of the trapping field can improve the performance,
it is not guaranteed to allow optimal performance, particularly if any aberrations
are present which are not represented by the Zernike polynomials. To overcome
this limitation, adaptive algorithms such as a genetic algorithm can instead be used
to optimize the phase applied to the spatial light modulator [9, 14]. However, the
genetic algorithm is an inefficientmethod to find the optimal solution.Adeterministic
method of aberration compensation is to measure the phase of the aberrated light,
and apply the calculated optimal phase compensation to the spatial light modulator
[5, 8].

In order to apply these compensation techniques, it is necessary to incorporate a
spatial light modulator into the optical tweezers setup. This in itself introduces some
experimental difficulties. For more on the use of optical tweezers with spatial light
modulators, including design strategies and aberration compensation, see Ref. [12].

9.2 Long-Term Stability

Slow drifts in an experiment can cause a spurious signal whichmasks the true particle
motion. For instance, the stage holding the sample under study often drifts over
a timescale of order minutes [10]. This can be reduced by using an ultra-stable
sample mount, but this does not completely eliminate the drift. The drift can also
be compensated by measuring the drift and applying active feedback to the sample
stage. The long-term precision of the particle tracking measurement is then given
by the precision with which the stage drift can be measured. In typical experiments,
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the drift is measured by immobilizing a reference particle on the sample chamber
somewhere within the field of view of the imaging optics and tracking this particle
with either the CCD camera, which can provide a few nm stability, or with a second
measurement laser, which provides sub-nm long-term stability [6].

Also, since the particle position is measured relative to the laser beam center, any
movement of the laser focus directly appears in themeasured results. The focus shifts
when the pointing direction of the incident trapping laser changes, as will result from
any drifts in the mirrors. Mirror drifts are minimized with vibration isolation, used
together with ultra-stable mirror mounts [10]. Additionally, the laser beam can be
deflected by air currents, as air pressure gradients result in a gradient in the refractive
index. To minimize air currents, the trapping setup is often confined in a box [10].
To reduce the spurious signal produced by the remaining currents, the air can be
replaced with Helium, which has a lower refractive index and therefore produces
less deflection for a given pressure gradient [1].

Despite the vast effort and resources which have been invested into improving
classical experiments in this low frequency range, so far these experiments remain
limited by low frequency technical noise. Quantum noise is therefore not relevant
at low frequencies. It is therefore unlikely that quantum enhanced precision will be
achieved below a few Hz while using existing technology.

9.3 Measurement Noise

The drifts described above are a form of technical noise which can obscure the
measured signal. There are also various other sources of measurement noise, such
as electronic noise in the detection, laser noise, and high frequency mechanical
resonances in the sample chamber or optical mounts. Electronic flicker noise is a
particularly significant noise source at low frequencies, as it scales as the inverse of
frequency. This can beminimized by using low-noise detectors and amplifiers.When
the measured signal extends into the MHz regime, the sensitivity can be degraded if
the circuitry is not properly impedance-matched. Laser noise can also substantially
degrade measurements, and use of a low-noise laser is essential for highly sensitive
particle tracking. However, both laser noise and low frequency electronic noise can
be eliminated with lock-in measurement, and can therefore be effectively managed.

Acoustic noise, however, cannot be eliminated with lock-in measurement, as dis-
cussed inChap.7. This noise ismost disruptive if there are anymechanical resonances
in the system. Long, cantilevered structures in particular can increase the impact of
mechanical disturbances on sensitive measurements [4]. To reduce the degrading
effect of such vibrations, most optical tweezers systems are built on air-isolated
optical tables [4]. Often the acoustic noise needs to be reduced even further, so
experiments are performed in quiet times such as weekends [10].

It is also important to consider the effects of aliasing in the detection electronics.
This both degrades precision by increasing the frequency range of technical noise
which can enter the measurement, and also distorts the spectra of the particle motion.

http://dx.doi.org/10.1007/978-3-319-18938-3_7
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(a) (b)

Fig. 9.3 Aliasing of a measured signal. a Calculated spectral densities are shown for a particle
following trapped Brownian motion and a flat white measurement noise floor. If this is measured
with a bandwidth 10 times the Nyquist frequency fN , then the noise floor enters the measurement
10 times over. Additionally, the measured signal deviates from the true motion due to the high
frequency particle motion which is aliased into the measurement. b The overall signal-to-noise of
the measurement, for measurements both with and without aliasing. For this example calculation,
aliasing degrades the sensitivity by a factor of approximately 20

This is particularly detrimental if the experiment aims to accurately characterize
the spectra of motion, since aliasing causes high frequency particle motion to be
measured at lower frequencies, which misrepresents the true mechanical response
of the particle. This effectively converts high frequency particle tracking signal into
lower frequency noise, which can severely degrade an otherwise high sensitivity
measurement (as represented in Fig. 9.3). In many cases, however, the purpose of the
measurement is to estimate the mechanical properties of the optical trap. Since the
motion above the Nyquist frequency is determined by the same properties, inclusion
of this in the measurement record can provide additional information. However, it is
only beneficial if aliasing is accounted for appropriately in the signal analysis [3].
Aliasing can be suppressed substantially by applying a low-pass filter prior to digital
recording.
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Part III
Quantum Enhanced Optical Tweezers

Part III of this thesis demonstrates quantum enhanced sensitivity in optical twee-
zers. Chapter 10 describes the development and characterization of our quantum
enhanced particle tracking apparatus, which relies upon several of the classical
technologies developed in Part II. This demonstrates both sub-shot noise limited
particle tracking and application of squeezed states of light to microscopy for the
first time. With this tool, it is possible to perform a broad range of quantum
enhanced measurements in biology that were unfeasible with previous technologies.

Two such biophysical experiments were performed with this apparatus. We
began in Chap. 11 by demonstrating the first biological measurements with sen-
sitivity beyond the quantum noise limit. Naturally occurring lipid granules were
tracked within Saccharomyces cerevisiae yeast cells, with amplitude squeezed light
yielding a 2.4 dB enhancement in displacement sensitivity. By analyzing the
thermal motion, we could characterize the mechanical properties of the cellular
cytoplasm surrounding the lipid particles, with squeezed light allowing a precision
enhancement of 22 %.

This experiment was then extended to spatially resolved quantum imaging of
the cytoplasmic structure in Chap. 12. This experiment demonstrated both sub-
diffraction limited quantum metrology and quantum enhanced spatial resolution for
the first time in a biological context. By tracking lipid particles as they diffused
through an extended region of the cell, spatial variations in the local mechanical
properties of the cellular cytoplasm could be sampled. This spatial structure was
resolved at length scales down to 10 nm, far below the diffraction limit. In this
case the use of quantum correlated light was found to enhance the spatial resolution
by 14 %.

Chapter 13 then concludes this part of the thesis with a discussion of the future
directions of quantum enhanced particle tracking. Despite showing conclusive
quantum enhancements, our proof-of-principle experiments are yet to surpass the
sensitivity of an optimized classical detection scheme. This chapter discusses the
strategies required to combine quantum enhancement with classical optimization,
and the important applications which such an apparatus could hold.
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Chapter 10
Surpassing the Quantum Limit

As described in Part I, quantum noise establishes a fundamental limit for particle
tracking sensitivity. This limit can be surpassed only by using non-classical states of
light, in which quantum correlations in the photon statistics are used to suppress the
quantum noise. This chapter describes the development of the first optical tweezers
experimentwith quantumenhanced particle tracking sensitivity. The particle tracking
method reported in this chapter was described in the following publication [25].

10.1 Using Squeezed Light to Enhance Particle Tracking

In any optical measurement, quantum noise sets a fundamental limit on the sensi-
tivity achievable per photon [11, 14]. This limit can only be surpassed if quantum
correlations are used to suppress the quantum noise, such that more information is
extracted per photon [9, 17]. Hence, use of such correlations allows high sensitiv-
ity measurements to proceed with a lower light intensity than classically possible
[4, 28], which in the presence of optical power constraints allows sensitivity that can
outperform any classical competitor.

Biological measurements are one important field in which optical power must be
constrained. Incident light disrupts and damages cells via both optical heating [21]
and photochemical effects [18]. Even the most gentle optical probe will effectively
write lithographic changes through the specimen, which can perturb many of the
parameters under study and limit biological observations. Use of quantum correlated
light in biological measurements could allow reduction of the optical power and the
associated optical damage, thus improving observations and potentially reveal new
phenomena.

In typical laser-based particle tracking, the presence of a particle causes light to be
scattered out of an incident field. The subsequent interference between scattered and
transmitted fields manifests itself as a deflection of the incident field proportional to
the displacement x of the particle from the beam center. This deflection is usually
detected with a quadrant photodiode. The quantum noise limit is enforced by the
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probabilistic nature of photon detection events on either side of the photodiode.
Quadrant photodetection is a special case of spatial homodyne detection [23] where
information contained in the fieldmode of interest is extracted via interference with a
bright spatially shaped local oscillator field (see Chap.6). In this framework, particle
positionmeasurement in optical tweezers is formally equivalent to an interferometric
phase measurement. It is well known that phase measurements can be improved
with nonclassical light [9, 11], with the recent demonstrations of sub-quantum noise
limited sensitivity in gravitational wave detectors being a notable example [1, 2].
The complex scattering pattern from microscopic particles in tracking experiments
necessitates a generalization of the usual quantumnoise limit for phasemeasurement.
Including spatial structure, and expressed in terms of the position x of the particle,
the quantum noise limit was shown in Chap.3 to be

�x2QNL = 1

4
η−1n−1

scatRe{〈ψ′
scat|ψdet〉}−2, (10.1)

where η is the detection efficiency of the scattered light; nscat is the mean flux of
scattered photons; ψscat and ψdet are respectively the mode shapes of the scattered
mode and a detectionmode defined by the local oscillator field and detectionmethod;
and ψ′

scat = dψscat
dx

∣∣
x=0 in the limit of small particle displacement. Since the quantum

noise limit applies to tracking of single particles, it is not constrained by the Rayleigh
criterion which determines the resolvable separation of two particles [14].

Using an optical field with amplitude quadrature variance V in the detectionmode
ψdet at the plane of the particle, the achievable sensitivity is

�x2meas = [1 − η(1 − V )] × �x2QNL (10.2)

(see Chap.3). In the coherent state limit with V = 1, the quantum noise limit is
exactly reached. Using amplitude squeezed light, exhibiting non-classical photon
anti-bunching, however, the variance V may be suppressed below unity, allowing
the quantum noise limit to be surpassed. Although Eq.10.2 was derived for squeezed
light, when V → 0 in the limit of high photon flux it sets an ultimate limit which
cannot be surpassed with any quantum resource. When using bright optical fields
subject to non-negligible losses, squeezed states approach this ultimate limit, and
outperform more elaborate non-classical states such as NOON states [9].

Two technical barriers have previously prevented the use of squeezed light in
biological measurements or particle tracking. First, the parameters which are of
interest in such experiments typically produce mechanical displacements at low
frequencies, where classical noise sources constrain the possibility of generating
squeezing [16, 29]. Although state-of-the-art squeezing now reaches down to
10Hz [22], this is based on extensive technical stabilization techniques which cannot
be easily reproduced.Here,we instead applied the optical lock-in technique described
in Chap.7 to measure the low-frequency particle motion in the MHz frequency band
of the squeezing. Although Yurke et al. proposed a similar lock-in method in 1987
to achieve quantum enhanced sensitivity at low frequencies [31], and theoretical
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investigation of this scheme still continues [33], the experiments performed here con-
stitute the first demonstration of low frequency measurements enhanced with high
frequency squeezing. The second barrier is that propagation through high numeri-
cal aperture lenses and biological samples distorts the spatial mode of the squeezed
light and prevents it from matching the detection mode. Due to its immense inter-
nal structure, there is no way to reliably calculate the scattering profile of a cell.
Likewise, it is completely unrealistic to neglect spatial perturbations on light which
propagates through a cell. Thus, it is necessary to find some way to ensure that the
squeezed mode and detection mode coincide at detection, given unknown perturba-
tions on the optical modes. To ensure that the squeezedmodewould overlap perfectly
with the detection mode, we applied the self-homodyne particle tracking technique
described in Chap.6. A bright amplitude squeezed field was used as the local oscilla-
tor, which ensured that the detection mode was given by the squeezed mode, despite
the unknown distortion of the optical modes.

In biological experiments, it is also necessary to know which subcellular compo-
nent gives rise to the scattered field which is measured. Since cells contain a vast
array of scattering centers, the competing scattered fields from the desired compo-
nent needs to be isolated to allow a reliable interpretation of any measured data.
This is achieved here by choosing an appropriate illumination angle to maximize
signal-to-noise, as explained in Chap.8.

10.2 Particle Tracking Method

The particle tracking apparatus developed here is shown schematically in Fig. 10.1.
Rather than relying on a single incident field to both interrogate the particle and act
as the local oscillator, two separate fields are used. A Gaussian probe field propagat-
ing at an angle of 70◦ to the optical trapping axis acts as a dark-field illumination,
interrogating the particle and producing scattering. As in Chap.6, the local oscillator
field is shaped as a “flipped” Gaussian, with a π phase shift applied to one half of its
transverse profile. This propagates along the trap axis and acts to define the detection
mode. Direct detection of the interference between the flipped local oscillator and
scattered light on a single photodiode provides equivalent particle position infor-
mation to the quadrant photodiode in standard particle tracking (see Chap. 6). Now,
however, the local oscillator can be amplitude squeezed to allow quantum enhanced
precision, and the probe field can be stroboscopically pulsed to shift the particle
tracking information to MHz frequencies.

To allow particle motion to be studied for an extended length of time, an optical
trap was used to confine them near the focus of the objectives. The optical force
of the focused laser beam has two components; radiation pressure pushes particles
along the direction of propagation, while the electric field gradient induces a force
toward the focus of the laser beam. The waist of the field at the focus decreases with
the NA of the objective lenses, and this correspondingly increases the gradient force

http://dx.doi.org/10.1007/978-3-319-18938-3_6
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Fig. 10.1 Experimental layout. PBS polarizing beamsplitter, λ/2: half waveplate. An Nd:YAG
laser produces 10–500mW of 1064nm trapping field (orange), which forms a counter-propagating
optical trap to immobilize particles. Polarizing optics are used to isolate the trapping field from
the detector. An imaging field (green) at 532nm images the plane of the optical trap onto a CCD
camera, allowing particles to be identified visually. A separate Nd:YAG laser produces the 1064nm
fields of the probe and local oscillator (red), which are used to measure particle position. For the
full experimental layout, including the squeezed light source and field preparation, see Fig. 10.8

while leaving the radiation pressure approximately unchanged. As such, a single
laser beam cannot stably trap particles if the objective NA is too low.

In our experiment, the optical tweezers were formed with two NA = 0.4 micro-
scope objectives (LMH-20X-YAG). Counter-propagating trapping fields which have
opposing radiation pressure forces were used to trap particles stably, as the NA was
too low to permit single beam trapping. The objectives were chosen because their
anti-reflection coatings ensure low loss (2–4%) at our laser wavelength of 1064 nm,
which is necessary to preserve non-classical correlations [9]. The trapping fields
were orthogonal to the probe and local oscillator in polarization, and were isolated
from the detection with polarizing optics. The trapping fields were also generated
with a different laser to the measurement fields with sufficient frequency detuning
to prevent any interference and further reduce any influence that the trapping fields
could have on the measurement.

10.2.1 Production of the Probe Field

The particle tracking measurements here relied on interference between a squeezed
local oscillator and light which scattered from the particle under study. This scattered
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light was produced by illuminating the particle with a probe field, which entered the
trap in a dark-field configuration [24]. Dark-field illumination was used as it offers
near-perfect isolation of the probe field from the detector, with background scattering
contributing the only unwanted probe photons to the measurement (Chap.8). With-
out this isolation, the scattered light would interfere with both the probe and local
oscillator fields, which would distort the detection mode (see Chap.3). Furthermore,
isolating the probe field from detection also prevented it from contributing laser noise
to the measurement, which would reduce the benefit of applying squeezing to the
local oscillator.

The dark-field probe was not focused through the objectives, but rather directed
into the sample chamber as a free-space field. The intensity was maximized at the
particle by focusing the probe with a 125mm focal length lens. The illumination
angle was chosen to allow the probe to propagate through the setup without clipping
on the objectives, as clipping was found to scatter light in all directions and cause
a large background of unwanted probe light to reach the detector. The unwanted
background of scattered light was further reduced by choosing an illumination angle
within the optimal range calculated in Chap. 8 for our biological experiments. In free
space, the illumination angle was 110◦ from the optical axis of the local oscillator,
though refraction of the field as it entered thewaterwithin the sample chamber shifted
the angle to 135◦.

To perform the lock-in measurement described in Chap.7, the probe field was
amplitude modulated at 3.522 MHz to a depth of 93%. This modulation frequency
was chosen to sit well within the squeezing bandwidth (see Fig. 10.5), while avoiding
themodulations between 1 and 10MHzwhichwere used to lock the laser to themode-
cleaning cavities and squeezing cavity. The scattered field which was produced by
illuminating a particle also carried thismodulation, as did themeasured photocurrent.
Upon demodulation, the particle tracking signal was recovered while all the noise
which had formerly been at low frequencies was shifted to the MHz regime. A
simple low-pass analog filter was then used to remove this technical noise and avoid
aliasing. In addition to this amplitude modulation, the probe also carried a weak
phase modulation at 6.5 MHz which was used to generate an error signal for locking
the phase between the probe and local oscillator. The measured photocurrent was
also demodulated at 6.5 MHz, and the resulting signal fed into a high-speed digital
PID controller. This was then used to lock the phase between the probe and local
oscillator fields via feedback to a piezo mounted mirror. The optical setup used to
prepare this probe field is included in the full layout in Fig. 10.8.

10.2.2 Engineering the Local Oscillator

The scattered field was measured by interfering it with a local oscillator to determine
the particle position. The local oscillator field was shaped to produce a particle track-
ing signal which is equivalent to measurement with a split detector. To achieve this,
a phase plate was used to apply a π phase shift to one half of its transverse profile.
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Since the incident field was in a Gaussian mode, the phase plate shaped the local
oscillator into a “flipped” Gaussian. The phase plate was constructed by our collab-
orators at the Australian National University, following the procedure described in
Ref. [8]. The phase plate consisted of two glass sheets with differing thicknesses
held alongside one another. Light which propagates through the thicker plate gains
a π phase shift with respect to light which propagates through the thinner plate. To
generate the desired local oscillator shape, the incident field was centered on the step
between the two plates. Although the surfaces of the phase plate were AR coated
to ensure high transmission, some light scattered from the step in the center of the
plate, such that the phase plate introduced 5% loss.

The phase profile generated at the phase plate was then mapped to the back focal
plane of the objectives via 4 f imaging with two lenses of focal length 150 mm.
The phase plate was placed 150mm from the first lens, which was 300mm from
the second lens, which was then 150mm from the objective back-focal plane. This
configuration ensured that both the phase and amplitude of the field at the phase plate
was preserved at the back focal plane of the objective [12]. The local oscillator then
propagates through the trap where some scattered light is added, and after this the
optical field is focused onto a detector. Interference between the local oscillator and
probe maps the particle position onto the transmitted light intensity (see Fig. 10.2).

The local oscillator defines the detection mode for the scattered light, provided
its amplitude is much greater than the scattered amplitude. Although the power of
the local oscillator was only 100 µW, which is much less than the 5.2 mW power of
the probe, the scattering rate of the particles was sufficiently small that the scattered
field could be treated as a small perturbation on the local oscillator.

(a) (c) (d)(b)

Fig. 10.2 Schematic of the particle tracking method. a–c A trapped particle acts as the source
of scattered light (faint blue). This scattered light is combined with the spatially antisymmetric
local oscillator field (red), collected in an objective, and the interference is measured as intensity
fluctuations. The phase of the probe light is locked such that when the scattering particle is centered,
as in (b), thefields areπ/2out of phase.When the particlemoves left (a), the scatteredwavefront shift
closer to the local oscillator field maxima on both the left and right, due to the spatial antisymmetry
of the local oscillator. This leads to constructive interference; similarly moving right leads to
destructive interference as represented in (c). Hence the particle position is encoded on the detected
light intensity. dThe scattering particle can be thought of as a beamsplitter with a position dependent
reflectivity, such that a measurement of the transmitted amplitude will yield the particle position.
This is different to the strategies used to estimate macroscopic mirror motion, which typically rely
on a phase shift imparted to a reflected field. In this case, the local oscillator amplitude is transmitted
with ν = 0.98, while only a very small fraction ζ ∼ 7×10−5 µm−1 of the incident probe amplitude
scatters into the detection mode
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10.3 Classically Characterizing the Experiment

The probe and local oscillator fields together should allow particle motion to be
tracked along the x axis. To verify the efficacy of this technique, we trapped 2 µm
diameter silica beads in water and monitored the detected signal (with an example
shown in Fig. 10.3a). This measurement is expected to follow the trapped Brownian
motion described in Sect. 1.3, with a power spectrum given by

〈|x(ω)|2〉 = 2D

ω2 + ω2
c
, (10.3)

where D is the diffusion constant, and ωc is the corner frequency. The corner fre-
quency scales linearly with the effective spring constant kopt of the optical trap, and
therefore ωc provides a reasonable estimate for the optical trapping forces. Mea-
surements were performed with a range of trapping powers and the resulting spectra
compared to this theory (Fig. 10.3b). Since the corner frequency could be observed
to increase with trapping power, these measurements confirmed that the measured
signal corresponded to the mechanical motion of the trapped bead.

(a)

(c)

(b)

Fig. 10.3 a The measurement produces an electrical signal, with an example shown here. b The
measured spectra for four different trapping powers: 10, 40, 100 and 250mW. These are normalized
into displacements by using the known value of the diffusion constant D in Eq.10.3. The thick lines
are a fit of Eq.10.3 to the data, which show that the corner frequency ωc increases with trap
power. The dependence of the measured signal on the trap power verifies that the measured signal
corresponds to particle motion. c To calibrate the setup, a 2kHzmechanical modulation was applied
to the sample holder. The resulting displacement is clearly visible in the spectra, and can be used to
be convert the signal from voltage to physical displacement. This normalization agrees well with
normalization by fitting measured spectra to Eq.10.3

http://dx.doi.org/10.1007/978-3-319-18938-3_1
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There was, however, some variation in the trapping force with time. This was
because the two trapping fields carried the same polarization and thus formed a
standing wave. By forming nodes and antinodes in the field, this greatly increases
the field gradient along the optical axis, and improves the axial confinement of
particles [32]; however, it also means that the stable trapping point must be on an
antinode of the field, and the position of this can drift if the relative phase drifts. In this
proof-of-principle demonstration, the trapping fields were not phase locked to one
another, so the trapping point could drift with air currents and mirror motion. These
drifts occurred over a timescale of minutes. The data collection was not adversely
effected as this occurred over a much shorter timescale. However, the trap stiffness
drifted in time, such that the corner frequency ωc was not found to scale linearly with
the trapping power.

Since diffusion is a well understood process and the constant D is known, the
power spectra of beads in water can be normalized by simply fitting the measured
data to theory. This only requires that we know the particle size, the viscosity of
the surrounding medium, and that there are no nearby boundaries. In this work, the
particles were trapped near the center of a 120µm water-filled chamber, so all three
conditions should bemet. However, as the stable trapping point drifted in time, so too
did the factor which should normalize the data. To establish the reliability of the data,
a coherent 2kHzmodulation with an rms amplitude of 54nmwas applied to the stage
which held the sample chamber, similar to the method in Ref. [27] (see Fig. 10.3c).
This modulation provided another method to convert the signal from volts to meters,
which was found to agree well with the quantitative predictions of Eq. 10.3. This
confirmed that while the system lacked long-term stability, its measurements were
otherwise reliable.

10.4 Incorporating Squeezed States of Light

10.4.1 Generating Squeezed Light

To achieve quantum enhanced sensitivity, squeezed light was integrated into the
particle tracking setup. The optical parametric amplifier (OPA) which was used to
generate squeezed light in this experiment was constructed earlier and had already
been applied in several experiments [3]. In this OPA, squeezed light is generated
by a nonlinear interaction between a strong 532nm pump and a weak 1064nm seed
field. The fields are phase-matched and spatially overlap to allow efficient parametric
amplification. Parametric amplification is a phase sensitive quantum amplification
procedure which simultaneously amplifies one quadrature of the optical field while
de-amplifying the other. In the limit of zero loss, this is a reversible process which
will transform a coherent state into a minimum uncertainty squeezed state.
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Fig. 10.4 The OPA which produced the squeezed light. A periodically poled KTiOPO4 (PPKTP)
crystal provides a nonlinear interaction between the incident seed field at 1064nm and the pump
at 532nm which reduces the amplitude fluctuations of the seed field below the vacuum level. This
nonlinear interaction is enhanced by an optical cavity which is kept resonant with the seed field

In the experiments, the OPA is formed by an optically nonlinear crystal (period-
ically poled KTP) which is placed inside a bowtie shaped optical cavity to enhance
the nonlinear interaction (see Figs. 10.4 and 10.8). This OPA was driven by an Inno-
light Diablo laser which produces light at both 1064 and 532 nm. The 1064nm light
is kept resonant to enhance its nonlinear interaction, while the free-space 532nm
field is used to pump the nonlinear crystal. The faces of the nonlinear crystal were
anti-reflection coated using the ion beam sputtering technique to provide ultra-low
loss for the intra-cavity circulating field. The cavity mirrors were also custom made
with reflectivity exceeding 99.95%. The squeezed field exits the cavity through
an output-coupler with 10% transmission. The OPA is seeded with a bright laser
beam such that bright amplitude squeezed light is produced. The resulting level of
squeezing was calibrated by measuring the squeezed field with spatial homodyne,
and comparing the measured variance to the vacuum noise. This revealed that the
squeezing level was approximately −6 dB below the QNL at the sideband detection
frequency 3.5 MHz [3]. For a more detailed and complete discussion of squeezed
light generation, see Ref. [15].

10.4.2 Optical Losses

Squeezing degrades sharply with added loss, as loss is an inherently random process.
To avoid this, high-efficiency optics were used for the optical tweezers, including
low loss objectives (OFR-LMH-20X-YAG). As these have a relatively low numerical
aperture of 0.4, they also impose minimal spatial distortion to the optical modes. The
local oscillator encountered 19% loss in the optical setup, with 16% of this at the
optical trap, and a further 3% at the phase plate. The objectives together contributed
7% loss, which is within the rated transmission of 96–98%. Most commercially
available objectives have much more loss than this; for instance the Zeiss Objec-
tive A-Plan 20x/0.45 has around 85% transmission at 1064nm. The sample was
suspended in a 120 µm thick water chamber between two glass slides. The loss in
the chamber was minimized by anti-reflection coating both of the air-glass inter-
faces, such that the chamber itself added around 5% loss, with a further 4% lost
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from a trapped glass bead. Numerical calculations with Mie theory confirm that this
loss results primarily from scattering of the field, rather than absorption. After the
optical trap, the remaining 81 µW of local oscillator light was measured on a high
efficiency, home-made bulk detector. This detector has efficiency >95%, and, at the
optical power used, the electronic noise floor was determined to be 14 dB below
the shot noise level. Hence, the local oscillator was detected with an efficiency of
ηL O = 0.76 when tracking the silica beads. In the biological experiments, the yeast
cells in the optical trap caused 9% more loss than the beads did, such that the local
oscillator detection efficiency way ηL O = 0.67. The efficiency ηL O characterizes
the loss which the squeezed local oscillator experiences, and therefore determines
the maximum quantum enhancement possible. However, the local oscillator photons
carry no information about the particle position; this information is carried by scat-
tered photons, and these photons are only sensitive to loss between the scattering
particle and the detector. Thus, the scattered photons which leave the yeast cell or
silica bead are measured with a higher efficiency of approximately η = 0.89.

10.4.3 Amount of Quantum Enhancement

In order to characterize the quantum enhanced measurements, the probe illuminated
a small defect in the sample chamber, producing scattered light to interfere with
the local oscillator. The detector output was then studied with a spectrum analyzer,
with traces shown in Fig. 10.5 for both squeezed and coherent light. The amplitude
modulation from the probe is visible as a peak at 3.522 MHz. At this frequency
the quantum noise limit is achieved for classical light; while for squeezed light it

Fig. 10.5 The noise spectrum measured at the detector without a trapped particle, for coherent
(blue) and squeezed (orange) local oscillator. The probe was amplitude modulated at 3.522MHz,
and illuminated a defect in the sample to allow observation of this large peak. The small peak visible
at 4.7MHz is caused by the modulations used for locking the laser
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is surpassed by 2.8 dB, corresponding to a detected squeezed variance of Vdet =
1 − ηL O(1 − V ) = 10−2.8/10 = 52%. Given 6 dB of incident squeezing, this
detected squeezing would suggest a detection efficiency of 0.63, which is lower
than the measured 0.76. This discrepancy may suggest that there were additional
unknown losses in the system.At frequencies lower than 3MHz,where typical optical
particle tracking experiments operate, the noise floor is dominated by technical noise.
This noise would preclude reaching the quantum noise limit using a continuous
measurement. However, it is evaded with the stroboscopic approach demonstrated
here. This allows sub-quantum noise limited measurements at frequencies down to
10 Hz, matching the lowest frequency previously reported in the literature [22]. It
is worth noting that at low frequencies technical noise sources such as 1/ f noise
and laser noise are a common issue in conventional laser based particle tracking
experiments [19].

10.5 Experimental Characterization

The trapped thermal motion of 2 µm silica beads in water was then measured with
quantum enhanced precision. Both coherent and squeezed light allowed the char-
acteristic Lorentzian mechanical spectrum to be observed, as shown in Fig. 10.6a.
At high frequencies the mechanical amplitude scales inversely with frequency, such
that motion above 1kHz is difficult to detect. It is in this high frequency region
that the simplistic model of Brownian motion breaks down, and complex dynamic
effects become significant [10]. To observe the effect of squeezing more closely, this
section of the observed mechanical spectrum is shown in Fig. 10.6b. The squeezed
light can be clearly seen to improve the sensitivity, and extend the frequency range
over which the mechanical motion is detectable. The classical sensitivity achieved
with this photon flux was 1.3×10−10 m Hz−1/2, while squeezed light improved this
sensitivity to 9.3× 10−11 m Hz−1/2. Correspondingly, the quantum noise limit was
surpassed here by 2.6 dB. As shown in Fig. 10.6c, the measured squeezing degraded
as the trapping power increased, as expected from theory. At low trapping power,
squeezed light enhanced the measurements by up to 2.7dB. As the trapping power
increased, however, the detection included an increased flux of trap photons, which
contributed to the shot noise floor while adding nothing to the measured signal.

To test the frequency range over which squeezed light gave an improvement to
the mechanical measurements, the probe power was vastly reduced. The resulting
spectra (Fig. 10.6d) were then dominated by quantum noise for frequencies above
10Hz. Here, the use of squeezed light restored information which was not previously
observable, demonstrating that squeezing could enhance the sensitivity at frequencies
as low as 10Hz.
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(a) (b)

(d)(c)

Fig. 10.6 This shows the enhancement achieved through squeezed light when tracking silica beads
in water. a Typical measured spectra for a trapping power of 121mW are shown for classical (blue)
and squeezed (orange) local oscillator. Squeezed light lowers the noise floor but otherwise is entirely
equivalent to the coherent measurement. To observe the improvement in noise floor more closely,
the high frequency area within the box is shown in (b), where the two data sets diverge. In this case,
the squeezing suppressed the noise floor by 2.6 dB. c The total degree of squeezing varied with the
trapping power as a small fraction (7 × 10−5) of trapping photons would reached the detector and
contribute shot noise. The measured squeezing (diamonds) is well fitted by this simple model over
a wide range of trapping powers, without fitting parameters. d The probe power was then vastly
reduced, such that the bead motion became nearly irresolvable, and squeezed light was shown to
restore some of the information lost through the reduced light intensity. This shows that squeezed
light can offer substantial benefits for measurements where the scattering rate is very low, or very
low-power illumination is required. It also demonstrates that the quantum enhancement is present
down to 10Hz

10.6 Comparison with Theory

The quantum limit in Eq.10.1 depends on the detection efficiency of the scattered
light η, the flux of scattered photons nscat, the local oscillator mode shape ψLO, and
both the shape and amplitude of the scattered mode derivative ψ′

scat = dψscat
dx

∣∣
x=0.

To make quantitative predictions, these parameters must all be known. Firstly,
we consider the resolution achievable per measured photon, which is given by(
2Re{〈ψ′

scat|ψdet〉
)−1.

To find this displacement, we evaluate the change in scattered field shape with
particle position at the far-field of the particle with the Optical Tweezers Toolbox
computational tool [20], with the transverse profile of this mode shown in Fig. 10.7a.
We also know the local oscillator profile which entered the optical trap. In the experi-
ment, the local oscillator modeψLO was distorted somewhat by the trapped particles.
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(a) (b) (c)

Fig. 10.7 Characterizing the detection mode in this experiment. a The calculated profiles of the
detection mode (thick blue) and the mode ψ′

scat containing particle position information (red). The
information mode is slightly asymmetric because the illumination is off-axis, such that the Mie
scattering profile is not symmetric over the objective aperture. b To quantify whether the trapping
optics distorted this detection mode, the intensity profile of the local oscillator was measured after
the optical trap both with and without a trapped particle, corresponding to the Fourier transform of
the detection mode. c Corresponding 1D intensity profiles through the intensity maxima in y, as a
function of the position x . The expected profile (thick blue line) approximately describes the actual
profiles in both cases

To determine the extent of this distortion, the detector was replaced with a CCD
camera and the intensity profile of the local oscillator measured (Fig. 10.7b, c). The
local oscillator profile approximately matched the expected Fourier transform of the
flipped Gaussian, both in the absence of any trapped particles, and when a 2 µm
diameter silica particle is trapped, as shown in Fig. 10.7. Without the trapped parti-
cle, the intensity distribution falls off more slowly, which is possibly due to spherical
aberrations. Overall, these measurements suggest that the distortion was not severe.
We therefore neglect this effect, and approximate ψLO with the input local oscillator
mode. The overlap Re{〈ψ′

scat|ψLO〉} cannot change with propagation of the optical
fields, so we evaluate this at the far-field of the scattering particle, where the local
oscillator is givenby theflippedGaussianmodeψLO ≈ sign(x)exp(−sin2θ/sin2θw))

with an angular waist θw determined from beam profile measurements.
Using these modes, the overlap between the detection and information modes is

found to be 3.8%, and the corresponding minimum resolvable displacement is then
given by 2.0 µm for each measured photon. This overlap is particularly low because
the local oscillator under-filled the objective apertures, while the information mode
fills the entire objective aperture and clips at the edges. The quantum noise limit can
then be calculated from the flux of scattered photons reaching the detector.

The probe illumination held 5.2 mW of power, although this was reduced to
3.7 mW by a 28% reflective sample chamber wall. This field was only weakly
focused with a 125mm focal length lens, and thus had a focal width of at least
68 µm and an intensity of approximately 1 W/mm2. Since the bulk of the probe
light missed the particle altogether, the fraction of the incident photons which were
scattered into the objective aperture for collection was only 4.3 × 10−8. Hence, we
could collect about 8.5×108 photons per second. However, only 47% of these were
in the modulation side-bands and were thus used for measurement (see Chap.7).

http://dx.doi.org/10.1007/978-3-319-18938-3_7
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Fig. 10.8 The full experimental layout used for quantum enhanced particle tracking. This is sep-
arated into three main parts, the OPA, where squeezed light is generated (also shown in Fig. 10.4),
the Probe preparation, where the probe field is prepared, and the Particle Tracking Setup, where all
these elements are combined in an optical tweezers experiment to allow quantum enhanced particle
tracking (also shown in Fig. 10.1). For clarity, only the dichroic (DM) and OPA cavity mirrors are
included

The measurement efficiency for scattered photons was 0.89, which leaves 3.6× 108

photons per second for the measurement. Combining the predicted measurement
sensitivity per photon with the measured photon flux, we predict a displacement
sensitivity of 1.05×10−10 mHz−1/2. This is only 17%below themeasured precision
of 1.26×10−10 m Hz−1/2. This small discrepancy could easily arise from distortion
of the measured mode, which was neglected.
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10.6.1 Relationship to the Standard Quantum Limit

These experiments demonstrate that microscopic particles can be tracked with sen-
sitivity surpassing the quantum noise limit. The quantum noise limit is used to char-
acterize the improvement which quantum resources confer to a measurement with
a given apparatus, and is relevant in determining the practical benefit of a quantum
enhancement. This is generally used in experiments similar to ours, where bright
optical fields are used for continuous measurements [2, 30]. Many quantum metrol-
ogy experiments instead compare their sensitivity to the more stringent standard
quantum limit. The standard quantum limit characterizes the ultimate limit on sen-
sitivity classically achievable given the number of photons, and is reached with a
perfect measurement with coherent light and 100% efficient detection.

Due to the stringent requirements on measurement apparatus and detection effi-
ciency it is challenging, in general, to surpass the standard quantum limit. This is
particularly the case for microparticle tracking experiments, where the scattered field
has complex spatial structure and is not collimated. The detection apparatus must be
able to near-optimally extract information from this complex spatial mode over 4π
steradians. Even the best classical microparticle tracking experiments remain more
than a factor of 1000 in power from the standard quantum limit.

10.7 Conclusion

The results reported here demonstrate that squeezed light may be used to surpass
the quantum noise limit in particle tracking microscopy. Quantum enhanced particle
tracking holds increasing relevance, with several experiments approaching quantum
limited performance [26], and a wide range of potential applications as discussed in
more detail in Sect. 1.3. In microrheology experiments, improved sensitivity allows
the viscoelastic response of themedium to be probed on smaller timescales, revealing
both the properties of the cytoplasm and biological processes at higher frequency [5].
Several recent experiments have investigated the non-Brownian thermal motion of
particles in water on very short time-scales, observing hydrodynamic memory [10]
and the average ballistic motion at fast time-scales [13]. However, there are predic-
tions which remain untested that elastic properties of fluid will influence hydrody-
namic motion over very short timescale [13, 34]. Direct observation of this without
quantum resources would require over 19W of 1064nm optical power (see Chap.2),
increasing the water temperature [21] by over 100 K. Further applications include
optomechanical experiments in which the quantum state of a trapped levitating par-
ticle is measured and controlled [6]; such systems could benefit from enhanced
sensitivity both to improve optomechanical cooling, and to engineer non-classical
states of the trapped particle [6].

http://dx.doi.org/10.1007/978-3-319-18938-3_1
http://dx.doi.org/10.1007/978-3-319-18938-3_2
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Chapter 11
Biological Measurement Beyond
the Quantum Limit

Chapter 10 described the development of an optical tweezers apparatuswith quantum
enhanced sensitivity. This chapter applies this device to biophysical experiments. The
thermal motion of lipid particles within a living yeast cell was characterized with
quantum enhanced precision, and from this the mechanical properties of the cellular
cytoplasm could be inferred. The use of squeezed light improved the particle tracking
precision by 2.4 dB, which improved the precision with which the α parameter could
be determined by 22%. This demonstrated for the first time that quantum correlated
light could be used to surpass the quantum noise limit in biological measurements.
This experiment was described in the following publication [18].

11.1 Microrheology

This chapter describes quantum enhanced microrheology measurements of the cyto-
plasm within a living yeast cell. In microrheology experiments, the viscoelasticity
of a fluid is determined from its influence on the motion of an embedded particle
[6, 10]. This can involve measuring the mechanical response to either an applied
force or the thermal force, which continually pushes the particle in random direc-
tions. To infer useful information from the thermal diffusion of the particle, the key
parameter of interest is generally the mean squared displacement (MSD). The MSD
of a free particle undergoing thermal motion is defined as

〈
�x2(τ )

〉
=

〈
(x(t) − x(t − τ ))2

〉
, (11.1)

where τ is the delay betweenmeasurements. TheMSD thus characterizes the average
distance that a particle will move over a given time range τ , and provided the MSD
is dominated by thermal motion, has the form

〈
�x2(τ )

〉
= 2Dτα. (11.2)
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Fig. 11.1 The MSD of a trapped silica bead in water, with data recorded with both squeezed
(orange) and coherent (blue) light. The noise floor enters the raw MSD data as a constant offset.
Since squeezed light has lower noise, it has a lower offset. To analyze mechanical properties from
such data, this noise floor is subtracted off (closed circles). Both the squeezed and classical data
then closely follow the expected behavior for Brownian motion (dashed line) at short delays, with
α = 1 in Eq.11.2. At long delays there is a plateau in the MSD due to the confinement of the
optical trap

Here D is the diffusion constant and α a diffusive parameter determined by the
viscoelasticity of the surrounding medium, with the ratio of loss to storage moduli
given by G ′′/G ′ = tan(πα/2) [11]. In a purely viscous medium, the particle follows
Brownian motion which is characterized by α = 1, whereas a viscoelastic medium
results in subdiffusive motion with α < 1 [7]. To determine the diffusive parameter,
theMSD is determined frommeasurements of the particlemotion.Adiscrete series of
measurements xn of the particle position x are performed at evenly spaced intervals
dt in time, where n is the measurement number. These are used to determine the
MSD by the relationship

〈
�x2(τ = m dt)

〉

exp
=

∑
(xn+m − xn)2 − NMSD, (11.3)

where NMSD is the mean noise variance. An example of such measured MSD traces
for beads in water are shown in Fig. 11.1. This closely follows the expected α = 1
at short delays, although at long delays there is a plateau in the MSD due to the par-
ticle confinement in the optical trap [25]. By analysing the MSD at short delays, the
viscoelastic properties of surrounding fluid can be characterized. Alternatively, sub-
diffusive motion can also be characterized by analyzing the motion in the frequency
domain, with the spectral density rolling off as ω−(1+α), as can be seen in Fig. 11.2b.
However, analysis of the MSD intrinsically involves averaging which reduces the
noise in the data when compared to the Fourier transform.

In addition to characterizing the viscoelasticity of the cytoplasm, microrheology
measurements also shed light on cellular processes which rely on thermal motion.
Almost all thermal motion within a living cell is subdiffusive because proteins and
other macromolecules resist the movement of particles [23]. Subdiffusive motion is
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(a) (b)

Fig. 11.2 Measured data from living yeast cells. a A typical time trace of data recorded with
squeezed light probing a yeast cell. b The corresponding spectra, with amplitudes normalized to
the shot-noise floor, and averaged over 100 data sets each. The orange lines are from data recorded
with squeezed light, while the blue colored lines are recorded with coherent light. The fitting lines
represent a frequency roll-off ofω−1.8 (corresponding toα = 0.8), plus an additional flat noise floor.
At low frequency, additional confinement causes the data to deviate from this fit. The inset shows
the same spectra with a linearly scaled frequency axis, which allows the 2.4 dB of enhancement
in precision (equivalently, 42% lower noise) through squeezing to be seen more clearly. Some
spurious peaks which resulted from modulations used to lock the squeezed light source have been
removed from the spectra

extremely important to the operation of a cell, as it mediates important processes
such as chemical reactions [3] and protein folding [4]. The extent of the particle
confinement can strongly effect chemical reactions, for instance, as it slows the initial
approach of chemical reactants to one another but also decreases the likelihood that
they will pass without interacting. In some regimes this improves the efficiency of
the reaction, while in others it can suppress reactions [8, 16]. Subdiffusion also has
a strong effect on enzyme reactions [1, 14], and the formation of spatiotemporal
patterns [22, 24]. The viscoelasticity is not a simple static parameter, but has been
found to follow nanoscale structure in places [21], and to vary as the cell undergoes
reproduction [15].However,more study is still required to establish the full biological
implications of these mechanical properties [8].

11.2 Quantum Enhanced Microrheology

To demonstrate the biological potential of the quantum particle tracking technique
described in Chap.10, we performed microrheology experiments within Saccha-
romyces cerevisiae yeast cells. It is known from intracellular measurements with a
different yeast strain that the thermalmotion of lipid granules in the cell is suppressed
by networks of actin filaments within the cytoplasm, causing them to exhibit subdif-
fusive motion [20, 25]. To study the granule motion in our experiments, the host cell

http://dx.doi.org/10.1007/978-3-319-18938-3_10
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was first immobilized by laser trapping with 170 mW of optical power, which also
caused an estimated 1.5K of cellular heating [13]. The amplitude modulated probe
field was then incident on the yeast cells, at an illumination angle which provides
optimal signal-to-noise for measurements of the lipid particles (see Chap.8). This
produced scattered light which was mixed with a shaped local oscillator and mea-
sured to extract lipid granule motion, with an example measurement in Fig. 11.2a.
The sensitivity of the measurement depends on the overlap of the scattered field
with the local oscillator, which in our experiment, was maximized for small particles
near the focus, with the scattering profile from large structures yielding poor over-
lap. Because of this, measurements carried out in yeast cells preferentially extracted
the motion of lipid granules. The measurement statistics confirm that lipid granules
dominate the measured signal; in particular, see Sects. 12.4 and 12.5. However, it is
not possible to fully exclude background scattering centers from the detection, and
they are expected to contribute a noisy background to the measured signal. Similar
to the bead tracking experiments in Chap.10, squeezed light improved the measured
sensitivity with the quantum noise limit surpassed by up to 2.4 dB (Fig. 11.2b). In
circumstances where optical damage is a concern, this enhancement would allow the
probe power to be reduced by 42%.

The MSD was extracted over a range of delay times for both silica beads and
yeast results, with typical traces shown in Fig. 11.3. Both the mean and uncertainty
in the diffusive parameter α was determined through weighted linear regression of
the MSD in a log-log basis. The results from silica beads in water match the well
known profile of diffusive motion, with an ensemble of measurements finding that
on average α = 0.994 ± 0.006. By contrast, the results extracted with yeast cells
reveal clearly subdiffusive motion with a non-stationary value of α which varies on

(a) (b)

Fig. 11.3 Mean squared displacement data. Typical MSD measurements recorded over 0.1 s are
shown in subplots a and b for silica beads and lipid granules in yeast respectively. Squeezed light
measurements are shown as orange open circles, classical measurements as blue closed circles, and
the shaded regions represent the standard error of the mean squared displacements. The dashed
lines are linear fits to the data, which allow α to be determined. For the beads in water, this gives
α = 0.999 ± 0.006, whereas it gives α = 0.815 ± 0.008 for the displayed yeast results. For yeast,
the data is clearly subdiffusive; for comparison, a diffusive trend is plotted (dotted line) alongside
this fit

http://dx.doi.org/10.1007/978-3-319-18938-3_8
http://dx.doi.org/10.1007/978-3-319-18938-3_12
http://dx.doi.org/10.1007/978-3-319-18938-3_12
http://dx.doi.org/10.1007/978-3-319-18938-3_10
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Fig. 11.4 This shows the variation of α with time on a subset of data recorded with squeezed
light, with dots representing separate measurements and the shaded region representing the running
mean and standard error over 6 points. The observed variations are far larger than the statistical
uncertainty

sub-second timescales within the range of 0.6 to 1 as the lipid particles interact with
different parts of the local environment (Fig. 11.4), similar to other measurements in
the literature [15]. As expected, the MSD observed with squeezed light is similar to
that observed with coherent light, but with improved precision. For instance, after
a delay of 20 µs, the particle motion shown in Fig. 11.3b is unresolvable using
coherent light but can be resolved using squeezing, with MSDs of 0.8±1.1 nm2 and
1.8 ± 0.6 nm2 respectively.

Over all the measured biological data, α spanned from 0.6 to 1.0 with a mean
of 0.81 ± 0.01. Because α was non-stationary, it was not possible to estimate the
statistical uncertainty in each determination of α by the standard deviation of the
ensemble. Instead, the statistical uncertainty in each determination was estimated
with weighted linear regression. This uncertainty was found to be on average 22%
smaller when using squeezed light than equivalentmeasurementswith coherent light.
Consequently, squeezed light allows the ratio of the viscoelastic moduli to be charac-
terized with 22% enhanced precision. Alternatively, the precision can be maintained
while averaging over fewer data points, with a 64% increase in measurement rate
allowed through the use of squeezed light. Thus dynamic changes in α could be
observed over shorter timescales, providing more information about the inhomo-
geneity of the local environment around the granule.

11.2.1 The Effect of the Trapping Laser

In this experiment the optical trapwas necessary to immobilize the cells in the correct
location formeasurement, although in principle the particle trackingmethod does not
require an optical trap. Sometimes the trap also attracted additional particles which
could disrupt the measurement, in which case the sample chamber was moved and a
newyeast cell probed.More importantly, since the trapping laserwas relatively bright,
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it could have disrupted the cell function and influenced the measured properties. To
test this, the lipid motion was studied as the trap power was varied from 44 mW to
308 mW. When trapping the cell with 308 mW, we expect approximately 2.5K of
cellular heating [13], and photo-oxidation to cause a lethal buildup of chemicals in
approximately 3min [12]. At the low trapping power of 44 mW, however, a more
moderate 0.4K of heating is expected [13] and photo-oxidation is expected to take
over 20 min to kill the cell [12]. As such, the conditions within the cell are likely to
varywith power.Ourmeasurements, however, did not find any statistically significant
variation in the diffusive parameter α with optical power, with measurements at
different powers all yielding a similar range and mean of α (Fig. 11.5). As such, we
conclude that the trapping laser did not effect the measured viscoelastic properties
in our experiment.

Themeasurements ofα could also have been influenced by drift in the background
temperature, as the temperature of the sample stage was not stabilized. While it is
not possible to fully exclude this possibility, the results described above suggest that
α is not strongly dependent on the temperature. Optical heating should induce tem-
perature changes greater than 2K between those tests. Since α was not found to vary

(a)

(d) (e)

(b) (c)

(f)

Fig. 11.5 To test whether the trapping fields disrupted the microrheology experiments, the values
of α determined from a MSD analysis of the lipid motion are plotted in histograms for trapping
powers of a 44 mW, b 89 mW, c 99 mW, d 136 mW and e 308 mW, following a similar approach
to Ref. [15]. The data here was recorded in three different cells, as additional particles would
occasionally enter the optical trap, such that it was necessary to either remove the foreign particle
or probe a new cell; one cell was measured for data (b), one for data (c), and another for (a), (d) and
(e). However, the data here shows no discernible variation between the different yeast cells. Each
plot includes 80 measurements of 1 s length. The measured values of α vary quite substantially,
but the mean α found in these measurements (plotted in f) all lie within a single standard error
(errorbar), so there is no statistically significant dependence on the optical power
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measurably between tests, it follows that a temperature change of 2K is insufficient
to alter the mean of α. Much smaller temperature changes are expected when the
power is held constant, so thermal drift is not expected to contribute significantly to
the fluctuations in α.

In addition to the viscoelasticity in the cytoplasm, which is characterized by α,
the lipid granules also experience additional confinement. This can be characterized
by the corner frequency, at which the spectra begins to roll off with the ω−(1+α)

dependence (see Fig. 11.2). This was also fitted to the data, and was found to cover a
similar range for all trapping powers (Fig. 11.6). Although these did show statistically
significant changes with the power, the changes were not consistent with optical
trapping; the highest corner frequency (and hence, the tightest confinement) was
recorded with the lowest trap power. This indicates that the dominant confinement
of the particles was not the trapping laser, and is most likely a cage-like particle
confinement by the intracellular structure [9]. The changes in corner frequency is
most likely due to changes in the relative position of boundaries such as the cell wall,
as these sets of data were recorded many minutes apart and sometimes in different
cells. It is noteworthy that even though the data was recorded in three different yeast
cells, the data shows no discernible variation from cell to cell.

Fig. 11.6 This data shows that the optical trap did not significantly effect the motion of lipid par-
ticles within the yeast cells. The corner frequency of the measured spectrum was calculated for a
range of trapping powers (from the same data as in Fig. 11.5). This corner frequency determines
the transition between a low frequency plateau and high frequency roll-off with ω−(1+α) depen-
dence, and indicates the confinement of the particle. Although the measurements show statistically
significant differences between the mean corner frequencies, the corner frequency is not found to
increase with power as would be expected if the particle confinement was dominated by the optical
trap. All the measurements cover a similar range, as shown by the overlapping standard deviations
(dotted lines)
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11.3 Conclusion

The results reported here demonstrate that squeezed light may be used to surpass the
quantum noise limit on tracking particles within a biological sample. The absolute
sensitivity achieved was competitive with previous classical microrheology experi-
ments [20]; however, the quantumnoise limit itself could be lowered ifmore scattered
photons were collected [17, 19]. If 74% more photons were collected, the classical
sensitivity would match our quantum enhanced sensitivity. For this setup, this would
require increased sample illumination, since even completely eliminating optical loss
would only increase the collection of scattered photons by 12%. While it is gener-
ally easier to increase the light intensity than introduce squeezed light, high light
intensities can cause biological damage [12, 13] so biophysical experiments must
operate with constrained optical power. Under such constraints, the enhancement
demonstrated provides a way to improve measurement sensitivity without increas-
ing the risk of optical damage to the sample, thus allowing biological systems to be
studied with improved bandwidth and precision. More generally, by demonstrating
that biological measurements can be improved using quantum correlated light, our
results pave the way for other applications in areas such as two-photon microscopy,
super-resolution, and absorption imaging [2, 5].
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Chapter 12
Subdiffraction-Limited Quantum Imaging
of a Living Cell

This chapter extends the biological experiments described in Chap.11 to allow obser-
vation of spatial structure, and in doing so, demonstrates both subdiffraction-limited
quantum metrology and quantum enhanced spatial resolution for the first time in a
biological context. As in the previous experiment, thermal motion of embedded lipid
nanoparticles is used to study the mechanical properties of the cytoplasm of a yeast
cell. Here, however, the thermal motion is characterized with quantum enhanced
precision through an extended region of the cell, with the gradual drift of the particle
bringing it into contact with new cellular structure. This quantum enhanced photonic
forcemicroscope allows spatial structurewithin the cell to bemapped at length scales
down to 10nm. Control experiments in water show a 14% resolution enhancement
compared to experiments with coherent light. This confirms the longstanding predic-
tion that quantum correlated light can enhance spatial resolution at the nanoscale and
in biology. In this demonstration, however, the nanoparticle motion is only character-
ized along a single axis, and the unknown motion along the other two axes precludes
any reliable reconstruction of the underlying structure. The challenge remains to
combine this technique with 3D particle tracking, which would allow construction
of quantum enhanced images of nanoscale biological structure. This chapter is based
on the following paper [38].

12.1 Quantum Imaging with PFM

The emerging field of quantum imaging utilizes quantum effects to overcome clas-
sical imaging constraints. In particular, non-classical states of light can allow the
shot-noise and diffraction limits to be surpassed [16], and quantum engineered arti-
ficial atoms allow new approaches to sensing [24]. The primary motivation for such
techniques is in biological imaging [4, 24, 27, 29, 42], where any improvement in
imaging technology can reveal new levels of cellular complexity. Since sub-cellular
structures often have nanometer size scales, spatial resolution surpassing the dif-
fraction limit is particularly beneficial. However, neither subdiffraction-limited res-
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olution nor quantum enhanced resolution have previously been achieved in biology.
To date, the only reported demonstration of biological imaging with non-classical
light has been in dispersion compensation for optical coherence tomography [27].
Even in non-biological demonstrations, both the absolute sensitivity and resolution
of optical quantum imaging has been constrained to levels far inferior to state-of-the-
art classical technology [4, 29, 31]. While unprecedented sensitivity is in principle
achievable using squeezed states of light [16, 42], nomethod has been experimentally
demonstrated capable of utilizing squeezed light in biological imaging.

Here we propose and demonstrate a new quantum imaging method which applies
squeezed light in photonic force microscopy (PFM) [8]. This allows both quan-
tum enhanced resolution and subdiffraction-limited quantum imaging in biology for
the first time, with resolution comparable to leading classical experiments. PFM
is a classical subdiffraction-limited imaging technique closely analogous to atomic
force microscopy (AFM), but with a nanoscale particle trapped in optical tweezers
replacing the probe tip [8, 11]. As the nanoparticle explores a cell, environmental
variations which affect its thermal diffusion can be mapped. PFM has been used to
map both 3D surfaces [10, 40] and mechanical properties of fluids [32], and has
been applied to study cell membranes [8], nanoscale protein motors [34], molecular
interactions [33], and, similar to our work here, intracellular viscoelasticity [2]. As
is typical of nanoprobe based microscopy techniques, the spatial resolution achiev-
able in PFM is not constrained by the diffraction limit. The resolution lateral to the
motion of the probe particle is constrained by its size. However, similar to AFM, the
resolution along the direction of motion is typically limited by measurement signal-
to-noise [10, 33]. Here we use non-classical light to improve the signal-to-noise, and
thereby demonstrate quantum enhanced resolution in PFM.

The squeezed-light-enhanced PFM is used to construct one-dimensional profiles
of spatial structures within a cell, with features observed at length scales down to
10nm. Control measurements in water confirm that for fixed optical power, squeezed
light provides 14% enhancement over the resolution possible with coherent light. A
74% increase in optical powerwould be required to achieve this level of enhancement
without squeezing; increasing the potential for damage [28, 30] and photochemical
disruption of cellular processes [22, 28], which are known to severely limit biological
applications of PFM [33]. By demonstrating for the first time that non-classical light
can improve resolution in a biological context, the PFM achieves the key requirement
for quantum enhanced imaging in biology. Our results, further, constitute the first
demonstration of quantum enhanced resolution using squeezed light in any context.1

When combined with 3D particle tracking, quantum enhanced nanoscale images of
biological structure could be constructed, placing practical applications of quantum
imaging with non-classical light within reach.

The results presented here complement previous quantum imaging experiments
using non-classical light. In imaging applications that simultaneously sample the
entire field of view, many spatial modes are captured. Quantum enhancement

1Note that Ref. [5] claims to have enhanced resolution via use of squeezed light. We disregard this
claim as unsubstantiated; for details see Appendix B.
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then requires that quantum correlations are established between a large number
of these modes. Such multimode non-classical light has been applied in proof-
of-principle demonstrations of sub-shot noise absorption imaging [4], enhanced
2-photon microscopy [7], ghost imaging via photon correlations [31], improved
image reconstruction against a noisy background [20], generation of entangled
images [3], noiseless image amplification [21, 26], and to eliminate unwanted arti-
facts in optical coherence tomography [27]. However, practical applications have
been precluded by a lack of both bright multi-mode sources of strongly non-
classical light, and high bandwidth array detectors capable of efficiently detecting
this light [18]. By contrast, in single or few-modes scenarios, such sources and detec-
tors are readily available [1]. This has enabled quantum enhanced measurements of
spatial parameters such as laser beam deflection [42, 43] and spatial quantum cor-
relations [14]. However, these experiments suffer the apparent major drawback that
quantum enhancement is only possible for a number of pixels at most equal to the
number of available single-mode sources of quantum correlated light. Consequently,
they have previously been limited to a maximum of 8 pixels [1]. This limitation can
be overcome using a scanning probe as demonstrated here for the first time, or an
optical raster scan as recently demonstrated in Ref. [29].

In PFM, a probe particle is tracked as it is scanned over the field of view.Variations
in measured motion are then studied over a measurement time which is often of order
minutes [10, 40]. Provided the microscope has sufficient stability [33], and that these
variations are dominated by static intracellular structure, rather than dynamic cellular
processes [35] or nanoscale motion of cellular constituents, this allows a map of
the cellular structure to be constructed. The quantum PFM reported here utilizes
the quantum enhanced nanoparticle tracking apparatus demonstrated in Chap.10.
Although this was also applied in Chap. 11 to study temporal fluctuations within
living cells, the lack of spatial resolution was a critical shortcoming, preventing any
conclusions from being drawn regarding the dominant source of fluctuations in the
measured motion, and therefore application as a PFM. Here, spatial resolution is
introduced and quantum PFM realized, with thermally driven motion used to scan
the probe particle through an extended region of the cell [40].

12.2 Experimental Method

Saccharomyces cerevisiae yeast cells were immobilized with an optical trap, and
lipid granules of approximately 300nm diameter were tracked with either squeezed
or coherent light as they diffused within the cellular cytoplasm. Since the charac-
teristic thermal motion of any particle is determined by the mechanical properties
of its surrounding medium, such intracellular particle tracking measurements are
commonly used to study the mechanics of cellular cytoplasm [2]. Lipid granules are
well suited for use as probe particles within yeast as they occur naturally and can be
tracked precisely due to their high refractive index [35, 41]. In our experiment, the
high frequency thermal motion of a lipid granule reveals the viscoelastic mechanical

http://dx.doi.org/10.1007/978-3-319-18938-3_10
http://dx.doi.org/10.1007/978-3-319-18938-3_11
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properties of the surrounding cytoplasm, while for sufficiently longmeasurements its
slow thermal drift provides spatial resolution by bringing it into contact with different
parts of the cellular cytoplasm. Thus, spatial inhomogeneity in the viscoelasticity can
be quantified by a single continuousmeasurement of the lipid granule position. In our
experiment, the particle position x(t) transverse from the trap center was measured
by combining scattered light from the sample with a local oscillator field which was
spatially shaped such that direct measurement of the total power yielded the particle
position (Fig. 12.1a). In the same manner as in Chap. 11, mechanical properties of
the cytoplasm directly surrounding the nanoparticle could be characterized from its
mean squared displacement (MSD) after a delay τ ,

〈
�x2(τ )

〉
=

〈
(x(t) − x(t − τ ))2

〉
, (12.1)

with an example shown in Fig. 12.1b. Squeezed light improves the precision by
reducing the error with which theMSD can be estimated. This improvement is shown
in the measured power spectral density (Fig. 12.1d), with squeezed light lowering
the noise floor by 2.4dB. For short delays, the MSD is dominated by thermal motion
and has the form

〈
�x2(τ )

〉
= 2Dτα, (12.2)

(a)
(b)

(d)
(c)

Fig. 12.1 This shows measurements of lipid motion within a yeast cell, similar to the results
in Chap.11. a Measured particle motion, which is the x projection of the 3D motion (shown
schematically in the inset). b The MSD is constructed with both squeezed light (dark red) and
coherent light (gold), and α determined by fitting this to Eq.12.2. The classical and squeezed
example traces here both yield α = 0.83. c The raw data was divided into 100ms segments and
the value of α established for each (solid dots). The light red shaded region represents the moving
mean and standard error with a 0.5 second width. d The normalized power spectral density (PSD)
shows that squeezing suppressed the noise floor by 2.4dB

http://dx.doi.org/10.1007/978-3-319-18938-3_11
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where the diffusive parameter α carries information about the mechanical properties
of the surrounding medium [12, 23]. α is determined for a set of data by fitting the
MSD at short delays to Eq.12.2. When α = 1, the motion is diffusive, which is
indicative of a random walk type of motion, whereas confinement of the particle
causes subdiffusive motion (0 < α < 1). Subdiffusive motion is an indicator that
the cellular cytoplasm exhibits both viscosity and elasticity [12], since to constrict
motion the cytoplasm must store mechanical energy. In our experiments, 100 ms of
data was sufficient to precisely determine α. Consequently, the measured values of
α allowed temporal variations in the cellular viscoelasticity to be characterized with
10Hz bandwidth.

12.3 Spatially Resolved Measurements

As lipid particles undergo three dimensional (3D) thermal motion, they are exposed
to different parts of the cell (Fig. 12.1a inset). In a full PFM, 3D motion is tracked
through an extended regionof the cell. By characterizing the changes inα that occur, it
is then possible to construct 3D images of structure within the cellular cytoplasm [2].
Here, to demonstrate that non-classical light enables resolution surpassing that pos-
sible with coherent light, a proof-of-principle demonstration is achieved using 1D
particle tracking along the x axis, with the co-ordinates y and z not determined. This
allows 1D profiles ofα(x) to be constructed following the projection of the trajectory
onto the x axis.

A series of experiments were performed in which the motion of lipid particles was
tracked with quantum enhanced precision for 10 s as they diffused through the cell.
The data from each experiment was separated into 100 ms segments, with bothα and
the mean position along the x axis determined for each segment. As the particle dif-
fused, a profile ofαwas generated as a function of x , with four representative profiles
shown in Fig. 12.2. As can be seen, the particles explored a range of approximately
120nm along the x axis over the 10s measurement interval, consistent with theMSD
in Fig. 12.1b extrapolated to longer delays. The directly obtained data exhibited sub-
stantial noise both from the measurement process and due to the unknown trajectory
of the particle in the y and z directions. To identify statistically resolvable features,
the running mean and standard error of α were calculated along the x axis, with a
10nm averaging window defining the spatial resolution. A broader averaging win-
dow degrades the resolution, but improves the statistical uncertainty with which α
can be determined, since a greater number of measurements are included in the aver-
aging. As with any imaging procedure, features can only be observed if the image
achieves sufficient contrast to distinguish it from its background; where the contrast
here is limited by the statistical uncertainty in α. There exists an intrinsic compro-
mise between spatial resolution and contrast, and it is necessary to choose a suitable
spatial resolution to allow clear observation of spatial features. The choice of 10nm
spatial resolution was found to provide sufficient contrast to observe cellular struc-
ture in the images shown here. A significantly narrower choice of spatial resolution
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(a)

(c) (d)

(b)

Fig. 12.2 1D profiles of α. Each circle represents a single measurement of α versus x using a
100ms set of data. The shaded regions represent the running mean and standard error with 10nm
resolution (thick black bar). Each profile was recorded minutes apart to allow the particle time to
diffuse to different regions of the cell with qualitatively different spatial structures. The particle
confinement is greatest where α is lowest, such as the dip about 40nm in (b), and the particle
movement is most free when α is highest, such as the peak at –55nm in (d)

led to numerous gaps in the profiles where there was insufficient data to construct
the running average, while broader spatial resolution tended to average over some
observable features.

The observed spatial structure varies between measurements of α(x) because the
particle follows different 3D trajectories. Gradual linear changes in α were observed
(e.g. Fig. 12.2a) which suggest a spatial gradient in the molecular crowding along
the x axis [46], along with narrow dips in α (e.g. Fig. 12.2b at 40nm) suggestive of
barriers in the cytoplasm, areas of homogeneity (e.g. Fig. 12.2c), and peaks in α (e.g.
Fig. 12.2d at –55nm)whichmay follow fromsmall voids in the cytoplasmic structure.
Since only the projection of the particle motion onto the x axis was tracked, it is not
possible to define the complete trajectory along which these 1D profiles are taken.
This obscures the biological origin of observed features. For instance, the narrow dip
inα seen in Fig. 12.2b could result from a range of subcellular components including
an actin filament or the edge of a larger organelle, even though these have markedly
different 3D profiles. The 3D motion of the particle also degrades the contrast of
narrow features by averaging measurements of α from a range of positions along
the y and z axes. These limitations could be resolved by incorporating our technique
in a 3D PFM [8] which maps the complete trajectory of the particle. It may then
be possible to generate a quantum enhanced 3D image of the cell, with quantum
enhancement only required for one axis from which α could be determined.

12.4 Correlation Analysis of Images

Importantly, even though the biological origin of the profiles in Fig. 12.2 is obscured,
themeasured changes inα can be rigorously shown to originate from spatial structure
within the cell. In a static spatially varying environment, spatial correlations between
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α(x) profiles should decay exponentially with the time between the profiles, as the
unknown motion along the y and z axes brings the particle into different regions
of the cell.By contrast, temporal changes in the cell [35] or drifts in the apparatus
which produce fluctuations inα should not exhibit any correlations between profiles.
Thus, analysis of the correlations between subsequent images can determine whether
temporal fluctuations or spatial structure in α are dominant. The correlations which
result from spatial structure can be predicted with a simple model which assumes
that α is perfectly correlated if the displacement dr along the y and z axes is below
the length scale of structural variations rc, and completely uncorrelated if dr > rc.
Then, assuming that the motion along each axis independently follows Eq.12.2, and
also assuming Gaussian probability distributions, the average correlation is given by
the probability that the particle remains within rc

P (dr < rc) = 1 − Exp

[ −πr2c
4〈dr2〉

]
= 1 − Exp

[
−π

4

(
dt

Tc

)−α
]

, (12.3)

where Tc is the average time that the particle takes to diffuse into an uncorrelated
region of the cell, such that 〈dr2〉 = r2c . To determine whether the experimental data
follows Eq.12.3, a series of α(x) profiles were constructed at a rate of 20 s−1, and
the correlations between the subsequent images calculated as a function of delay. In
this case, each profile was constructed from 50 measurements of α, each based on
1 ms of raw data. This experimental data was fitted to Eq.12.3, with Tc and α used

Fig. 12.3 To verify that the measured changes in α are spatial, correlations between sequential
measurements ofα(x) are analyzed for three sets of data. The circles are experimentally determined
correlations between a series of measurements, which are well fitted by Eq.12.3 (lines), which
predicts the decay in correlations decays due to unknown motion along the y and z axes. The
characteristic time Tc for the particle to diffuse into uncorrelated regions of the cell is estimated by
fitting the data to Eq.12.3. Note that the decay in correlation restricts the duration over which α(x)

profiles can be constructed. Although the characteristic times found here are in the range of 0.1 s,
correlations were found to persist for sufficient time to construct the 10 s α(x) profiles shown in
Fig. 12.2



160 12 Subdiffraction-Limited Quantum Imaging of a Living Cell

as fitting parameters. The data shows excellent agreement with the simple model,
thus confirming that the α profiles reflect spatial structure rather than temporal fluc-
tuations (Fig. 12.3). Furthermore, this analysis of correlations allows the local length
scale of viscoelastic structure to be determined in the region of the nanoparticle. This
length scale can be found by combining the MSD measured in Fig. 12.1b with the
fitted characteristic time Tc over which the particle takes diffuses into an uncorrelated
region of the cell. The length scales of the viscoelastic structure in three different
regions were determined to be 46.9 ± 1.3 nm, 43.7 ± 2.4 nm, and 42.6 ± 1.9 nm
(Fig. 12.3), demonstrating that changes in the characteristic length of spatial struc-
ture in different parts of the cell can be statistically distinguished with nanometer
precision.

12.5 Background Scattering

The imaging method presented here intrinsically relies on single particle tracking.
However, within the yeast cells there are many scattering centers which cannot be
entirely separated from the tracked lipid granule. The resulting background of scat-
tered light could contribute spurious signals to the measurement. This is common
to any intracellular particle tracking experiment, though it is generally found to be
safe to neglect the effects of the background structures [41]. In our experiment,
the illumination angle of the dark-field illumination was chosen to maximize the
measured scattering from the lipid granules, while minimizing the contributions of
larger organelles such as mitochondria and the nucleus. Since the lipid granules have
a higher refractive index than these larger organelles, their scattered field dominates
at the wide angles which were sampled in this experiment (see Chap. 8). We can fur-
ther confirm that the measured motion is dominated by lipid granule motion, since
Ref. [41] also measured the motion of single lipid granules within yeast cells, and
their equivalent data almost exactly follows that recorded here (see Fig. 12.4).

During measurements, the yeast cells were observed with light microscopy to
identify the particles under study. The 0.4 numerical aperture of the objectives was
relatively low due to the requirement for high quantum efficiency, and lack of com-
mercially available objectives that combine high efficiency and numerical aperture
at 1064nm. Consequently, the resolution was insufficient to reliably resolve nearby
lipid particles, and it was not possible to directly verify that only a single lipid gran-
ule entered the focus of the local oscillator. However, the measurement statistics are
strongly consistent with single particle tracking and with previous measurements of
single lipid particles in yeast [41]. In particular, the decay in correlations between
subsequent images (discussed above) follows exactly the form expected for single
particle measurements. A much faster decay would be expected if multiple particles
contributed to the measured signal. Furthermore, the number density of lipid parti-
cles within yeast cells is low compared to the focal size of the local oscillator [41],
such that it is statistically unlikely that multiple particles would be simultaneously
measured.

http://dx.doi.org/10.1007/978-3-319-18938-3_8
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Fig. 12.4 The mechanical spectra measured within yeast cells. The data rolls off with a ω−1.8

relation at low frequencies, with a flat noise floor dominating at high frequencies. For comparison,
the low frequency trend reported in Ref. [41] for single lipid granules within yeast cells is also
shown (dashed line)

In future quantum PFM experiments, it will be important to rigorously quantify
the effect of background scattering centers on the measured signal. Increased objec-
tive numerical aperture will be required to optimize the sensitivity, which will also
improve the resolution of the conventional imaging system. This should allow lipid
particles to be individually resolved, such that single-particle tracking can be guar-
anteed at all times. While this technical difficulty requires careful attention, it has
already been addressed in previous classical measurements of anomalous diffusion
within cells [41], and does not present a fundamental barrier to use of this quantum
imaging technique in practical biological experiments.

12.6 Quantum Enhancement in Resolution

Due to the complexity of the intracellular environment, the quantum resolution
enhancement achieved in the PFM was characterized via control experiments on
1 μm radius silica beads in water, rather than directly in vivo. This approach of using
simple well understood control experiments is standard when calibrating resolution
in PFM [8, 10, 33]. Although it would be preferable to use smaller beads which more
closely approximate the lipid granules used in vivo, this would not affect the overall
conclusion of this calibration. α(x) profiles were constructed from 80s of data using
both squeezed and coherent light. In this case, 2.5 dB of squeezing was measured,
which closely approaches the enhancement achieved in biological measurements.
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(a) (c)

(b)

Fig. 12.5 Characterization of the spatial resolution. To calibrate the resolution enhancement
achieved here, a profile of α(x) was constructed by tracking particles in water. The individual
measurements are shown in (a), while (b) shows the corresponding moving mean and standard
error calculated over a 200nm range with spatial resolution of 2nm, 10nm, and 50nm. The data
closely follows the expected α = 1 result (horizontal line). (c) The ratio of spatial resolutions with
squeezed and coherent light is shown as a function of precision in α, which determines the contrast.
Theα precision values shown are normalized into units of Hz−1/2 to account for the improvement in
absolute contrast as data is accumulated. For a fixed precision (or equivalently, contrast), the spatial
resolution achievable with squeezing (Rsqz) is improved by approximately 14% when compared
to coherent light (R0). The absolute spatial resolution achievable using squeezed light is plotted in
the inset. Since the number of points being averaged is proportional to the spatial resolution, the
sensitivity scales as the inverse square root of spatial resolution until the averaging window width
becomes comparable to the spatial range of the measured data

These measurements show no statistically significant spatial structure (Fig. 12.5),
with α = 1 at all spatial locations as expected for Brownian motion. This lack of sta-
tistically significant variation provides further verification that the structure observed
in vivo can be attributed to changes in α, rather than drifts in the apparatus.

Since water is homogeneous with α = 1 throughout, the variation in this data
allows the statistical uncertainty of our measurements of α to be determined. This
precision was characterized as a function of spatial resolution by varying the width
of the running average along x , as shown representatively in Fig. 12.5b. As the width
increases, the spatial resolution is degraded, but the precision in α improves since
more data is averaged at each position along x (see Fig. 12.5c inset), which improves
the achievable image contrast. By comparing the resolution required to achieve a
fixed precision with and without squeezed light, it was possible to confirm for the
first time that squeezed light can be used to enhance spatial resolution. Furthermore,
this also provides the first demonstration of quantum enhanced spatial resolution in
a biological context. As shown in Fig. 12.5c, in this proof-of-principle experiment
squeezed light allowed a 14% improvement in resolution for precision in α ranging
from 0.1–1Hz−1/2.

To take a specific example, the biological profiles shown in Fig. 12.2 use 10nm
resolution and include 10s of accumulated data. In our control experiments in water,
this resolution and accumulation time would allow structures that alter α by 0.1 to
be resolved (see Fig. 12.5c inset). By comparison, a resolution of 12nm would be
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required to resolve such features with coherent light. It is important to note that both
the measurement sensitivity and the spatial range of diffusion differ between this
calibration with silica beads and the measurements in biology. Consequently, the
α precision determined here differs from that achieved in vivo, where the average
standard error in α was 0.04. Importantly, the quantum resolution enhancement is
independent of the absolute level of precision, as can be seen over an order of mag-
nitude in Fig. 12.5c. Therefore, even though the absolute resolution differs between
in vivo and control experiments, the quantum resolution enhancement predicted here
can be expected to accurately represent the in vivo enhancement.

12.7 Theoretically Predicted Quantum Enhancement

This imaging method requires α to be accurately estimated from the thermal motion
of a nanoparticle. The precision of this estimation is limited both by measurement
noise and the stochastic nature of thermal motion. Although squeezed light can
suppress the measurement noise and thereby enhance the spatial resolution, there
is a non-trivial relationship between the resolution enhancement and the degree of
squeezing achieved. Here this relationship was explored by analyzing simulated
data to find the precision with which α can be estimated for different levels of
measurement noise. This simulated data was analyzed in the same manner as the
experimental results. A discrete series of measurements xn of the particle position x
were performed at evenly spaced intervals dt in time, where n is the measurement
number. These were used to determine the mean squared displacement (MSD), by
the relationship

〈
�x2(τ = m dt)

〉

exp
=

∑
(xn+m − xn)2 − NMSD, (12.4)

where NMSD is the mean variance. Although the expectation value of this experimen-
tal MSD is given by 2Dτα (Eq. 12.2), a single trajectory will only asymptote towards
this in the limit of infinite statistically independent measurements. The number of
statistically independent measurements at any delay τ is given by T/τ , where T is
the total measurement time. As such, even a perfectly noise-free determination of
the particle motion cannot yield α with complete certainty in a finite measurement
time. Thus, the stochastic nature of the MSD introduces an intrinsic uncertainty into
the value of α in addition to any uncertainty associated with the measurement noise.
This intrinsic uncertainty is greatest at long delays, where the number of indepen-
dent measurements is lowest. Measurement noise, by contrast, is of approximately
constant amplitude with delay, and therefore has the greatest relative effect at short
delays where the expectation value of the MSD is smallest.

To quantitatively predict the enhancement achievable with squeezed light, Monte
Carlo simulations were performed in which 10000 particle trajectories were simu-
lated by a normally distributed random walk, with measurements including varying
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(a) (b)

Fig. 12.6 The influence of measurement noise in viscoelastic imaging. (a) The precision with
which α can be determined (δα) is plotted against the measurement noise variance, normalized to
the MSD at minimum delay. The dotted line scales as the square root of the noise variance, and
approximately follows δα between variances of 10 and 100. The inset zooms in on this result in
the regime of the experiments here, with the vertical dashed lines showing the noise variance on
the experimental data. (b) The ratio of the spatial resolutions achievable with squeezed light and
coherent light, with either 2.4dB (solid) or 10dB (dashed) of squeezing

levels of white noise. Each thermal trajectory was simulated by taking a normally
distributed random step between each discrete measurement. After the trajectory was
generated, the measurements were generated by adding Gaussian distributed noise
with a range of variances. α was then determined from the simulated trajectories via
weighted linear regression of the MSD in a log-log basis. The uncertainty δα was
then given by the deviations of the predicted α from the ideal result of α = 1 which
should follow from such a random walk.

By repeating this for various levels of measurement noise, we could plot the
uncertainty in α as a function of the measurement noise variance (Fig. 12.6a). In this
case, the measurement length and fitting range matched the measurement conditions
of themain text, and the noise variancewas normalized to theMSDatminimumdelay.
When the noise is far smaller than theMSD(below1 inFig. 12.6a), the stochasticwalk
dominates the uncertainty in α, and techniques for noise reduction such as squeezing
yield little improvement. When the measurement noise dominates the MSD at all
analyzed delays, α cannot be determined with any reliability. As such, this region is
not included in in Fig. 12.6. Between these two extremes, measurement noise only
dominates theMSDat short delays, and the precisionwithwhichα can be determined
scales approximately as the square root of the noise variance.The relative contribution
of shot noise increases as themeasurement rate increases or themeasurement duration
decreases, both of which are required to produce high precision images, or if the
optical power is reduced. As such, quantum enhanced precision provides maximal
enhancement in the regime which is both most challenging to reach in classical
experiments and most relevant to biological imaging.

When performing spatially resolved experiments, the precision with which α can
be determined at a specific location is given by δαimage = δαN−1/2, where N is
the mean number of data points averaged at each location. For 1D imaging, this
is given by
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N = Ntot
dx

xFOV
, (12.5)

where Ntot is the total number of measurements of α, xFOV is the field of view,
and dx is the spatial resolution. Thus, if a fixed precision δαimage is required in a
1D image, the spatial resolution scales as dx ∝ δα2. Using this, the spatial reso-
lution enhancement is plotted in Fig. 12.6b for both 2.4 dB and 10 dB of measured
squeezing.

At the noise levels measured here, we can predict that 2.4 dB of measured squeez-
ing should have allowed 21% narrower spatial resolution in our experiment, which
is greater than the measured 14% enhancement. The discrepancy between predicted
and achieved enhancements may be due to the technical noise in the experiment such
as low frequency noise and unwanted inclusion of RFmodulations that were used for
phase locking of the squeezing cavity. If the measurement rate were increased, such
that the shot noise variance was 100 times greater than the MSD at minimum delay,
2.4 dB of measured squeezing would allow a 45% reduction in spatial resolution. If
state-of-the art squeezing were used and the measured squeezing reached 10dB, the
quantum enhancement could then provide 90% narrower spatial resolution. Alterna-
tively, an even greater measurement rate could sufficiently increase the measurement
noise to preclude determination of α from a classical experiment, while α could still
be determined with squeezed light.

12.8 Outlook for the Future

In absolute terms, the resolution achieved here is comparable to that of leading
classical PFM measurements of viscoelasticity [2, 34]. Furthermore, the resolution
could be substantially improved using an increased level of squeezing. With 10 dB
of measured squeezing, as reported in a number of experiments [25, 36], an order of
magnitude enhancement should be feasible. This could potentially allow Angström
level resolution. In principle, further enhancement may be possible by using more
sophisticated quantum measurements [39, 44], with recent theoretical results pre-
dicting that an array of photon number resolving detectors could even allow particle
tracking at the de Broglie limit [44].

When combined with the advances described above, the technology introduced
here could help to answer important questions related to the nanoscale structure
within cells. It has potential which extends beyond mapping of organelle positions,
since thermal motion is critical to the operation of the cell and mediates important
functions such as chemical reactions [6] and protein folding [9]. It has been shown
that the optimal diffusive regime is different for storage, transport, and chemical
reactions [13], and that in some regions of the cell, structures which influence dif-
fusion are organized at the nanoscale [45]. It remains unknown to what extent these
nanoscale structural variations reflect an underlying biological function. We antici-
pate that in the future, quantum imaging could play an important role in answering
such questions.
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Our results complement recent biological applications of quantum engineered dia-
mond probes with Nitrogen Vacancy (NV) centers, which have enabled thermal [17]
andmagnetic cellular imaging [15, 19, 37]. None of these applications have achieved
subdiffraction limited resolution, as they rely on optically resolvable arrays of sta-
tionary NV probes [15, 17, 19, 37], confining them to the study of relatively large
cellular structures and organelles. The resolution achieved here is over an order of
magnitude finer, providing the possibility to observe important nanoscale cellular
structures such as membranes, actin networks, and individual proteins. Since the
approach is in principle transferable to NV nanodiamond based imaging, it could
also open the door to simultaneous subdiffraction-limited imaging of structure, tem-
perature and magnetic fields.

In summary, we report the first application of quantum imaging techniques to
subdiffraction-limited biological imaging, and demonstrate that non-classical light
can improve spatial resolution in biological applications. The viscoelastic struc-
ture within a living yeast cell is sampled along the trajectory of a thermally driven
nanoparticle, revealing spatial structure with length scales down to 10 nm. Control
experiments in water show that the spatial resolution is enhanced by 14% through
use of squeezed light. Future experiments which apply this quantum enhanced pho-
tonic force microscope with improved technology may enable resolution of sub-nm
structure in vivo.
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Chapter 13
Further Extensions

Chapter 10 of this thesis demonstrated quantum enhanced particle tracking, and
Chaps. 11 and 12 applied this to biological measurements. This demonstrates that
quantum measurement holds the potential to provide practical benefits in biological
microscopy. However, this proof-of-principle demonstration did not provide absolute
sensitivity surpassing that which is already available classically (see Fig. 13.1).
Unprecedented sensitivity could be achieved if squeezed light is used in a classically
optimized experiment. The developments in this thesis have provided the founda-
tion for such an experiment. Here we discuss the requirements and the technical
difficulties associated with achieving this.

13.1 Status of Experiments

The sensitivity achieved in our quantum particle tracking experiments is compared
to a range of results from the literature1 visually in Fig. 13.1 and numerically in
Table13.1. This shows that the absolute sensitivity achieved in our experiment is com-
parable to many published classical experiments (Fig. 13.1a), but is approximately
two orders of magnitude behind leading biological experiments, and four orders
of magnitude behind leading non-biological experiments. This can be attributed
primarily to the low NA objectives and the low optical power used. The absolute
sensitivity in the biological experiments was also limited by the small particle size,
with classical biological experiments using a similar particle size only surpassing the
achieved sensitivity by a factor of four. The classical lock-in particle tracking exper-
iment of Chap.7 achieved sensitivity which is competitive with leading experiments

1In addition to these publications, there are many more which are not shown because they did not
provide results from which the sensitivity could be estimated. As such, this is not an exhaustive
comparison. Experiments with sensitivity worse than 1 nm Hz−1/2 have also been excluded.
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(a) (b)

Fig. 13.1 A comparison of the sensitivity achieved in leading particle tracking experiments. a The
absolute sensitivities, with squares and circles respectively denoting biological and non-biological
experiments. The pale blue points correspond to classical experiments while the dark red points
represent experiments in this thesis; 1 being the biological experiments of Chaps. 11 and 12, 2 the
bead tracking characterization of Chap.10, and 3 the classical lock-in optical tweezers of Chap. 7.
These experiments cover a wide range of particle types, optical setups, and optical powers. The
improvement in sensitivity with increasing optical power is compensated in b, which scales the
sensitivity to that which would be achieved with 1 mW. In this plot, the dark blue line represents the
fundamental limit as derived in Chap.2 for polystyrene spheres in water tracked with 1064nm light
in the Gaussian mode, and an objective NA of 1.3. The orange line presents the limit to sensitivity
achievable with a quadrant detector for these conditions, as derived in Chap.4. The literature results
here are listed in Table13.1

by applying some of the techniques of the quantum particle tracking scheme but
with the wider collection area of high NA objectives and higher optical power. This
acts as a prototype for future quantum enhanced particle tracking experiments, and
establishes that the quantum experiments in this thesis have the potential to provide
field-leading sensitivity when applied with high NA objectives.

The experiments shown in Fig. 13.1 cover a wide range of optical setups. Because
the sensitivity should improvewith the optical power, Fig. 13.1b shows the sensitivity
normalized to the value it would have for 1 mW of optical power. Our quantum
experiments used far less light in measurement than most classical experiments, so
in this normalized comparison our quantum experiments in biology are competitive
with most leading experiments at that size scale. It is also of note that even the field-
leading classical experiments which apply state-of-the-art technology do not closely
approach the fundamental quantum limit to sensitivity (Fig. 13.1b). This is because
technical limitations and inefficiencies prevent quantum limited particle tracking. As
such, an optimized quantum enhanced particle tracking setup is expected to operate
in a regime inaccessible to existing classical technology, even without breaching the
fundamental quantum limit.

http://dx.doi.org/10.1007/978-3-319-18938-3_11
http://dx.doi.org/10.1007/978-3-319-18938-3_12
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Table 13.1 Overview of particle tracking sensitivity

Point Material Diameter Sensitivity Normalized

(µm) (pm Hz−1/2) (pm Hz−1/2 mW1/2)

1 (Chap. 11) Lipid 0.3 625 199

2 (Chap. 10) Silica 2 126 39.9

3 (Chap. 7) Silica 0.5 1 5.48

1 [3] Lipid 0.05 445* 13000

Lipid 2 177* 2300

2 [37] Lipid 0.3 181* 812

3 [35] Silica 0.6 8 33.0

4 [41] Polystyrene
sulfonate

0.8 19.2* 60.7#

5 [1] Silica 1.16 18.5* 149

6 [11] Silica 2 1.41 1.09

7 [14] Gold 0.03 574* 12200

Gold 0.2 222* 1570

8 [34] Gold 0.036 160 1600

9 [13] Gold 0.2 222* 1570

10 [7] Latex 0.3 1.5 4.74

11 [6] Polystyrene 0.3 111* 351#

12 [29] Silica 0.9 21.0* 115

13 [4, 18] Polystyrene 1 0.017 0.450

14 [19, 20] AR titania 1 0.173 5.74

15 [38] Titania 1.1 94.8* 444.5

16 [10] Silica 2 130 791

17 [21] Silicon 2 351* 1110

18 [8] Resin 2 0.973* 13.8

19 [26] Polystyrene 3.27 183* 1830

20 [39] Silica 5.08 100 1000

NotesThe literature results 1–6were biological experiments, while 7–20were non-biological exper-
iments. Sensitivities marked with * are not specified in the publications, but were inferred from
the measurable bandwidth of thermal motion. For the normalized sensitivities marked with #, the
publication did not specify the optical power and we have assumed a rather moderate 10 mW

13.2 Key Challenges for Quantum Enhanced Particle
Tracking

In order to achieve sensitivity which surpasses all classical competitors, some mod-
ifications to the experimental design are required. The primary short-coming of the
apparatus demonstrated here was the use of low NA objectives. Future experiments
will require high NA objectives, as a large collection area is pivotal to achieving high
sensitivity. To maintain classically efficient detection, the detection mode should be

http://dx.doi.org/10.1007/978-3-319-18938-3_11
http://dx.doi.org/10.1007/978-3-319-18938-3_10
http://dx.doi.org/10.1007/978-3-319-18938-3_7
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optimized, all sources of noise minimized, and care taken to avoid aberrations, which
become increasingly important as the objective NA is improved. Chapter 9 discusses
these considerations, which are identical for quantum and classical experiments.
Additionally, the use of squeezed light requires high detection efficiency with losses
throughout the system eliminated as much as possible.

One important consideration is the choice of the optical wavelength. While the
experiments reported here used 1064 nm, a shorter wavelength might be advanta-
geous. Use of a shorter wavelength would reduce optical heating, for instance, while
increasing photochemical damage of cells (see Sect. 1.3). At fixed power it also offers
improved precision; in general, the lower limit on a resolvable displacement scales
as λ1/2, though Rayleigh scattering particles offer a much stronger scaling of λ5/2

(see Chap.2). Furthermore, the transmission of most commercially available objec-
tives is highest near the visible spectrum. In this thesis, 1064 nm light was chosen
because this is the wavelength of the squeezed light source. Existing state-of-the-art
squeezing technology has been developed for gravitational wave observatories, and
has primarily operated at 1064 nm [25, 33]. For this reason, the following discus-
sion assumes use of 1064nm light. However, squeezed light is also generated at other
wavelengths, with up to 7.6 dB demonstrated at 860 nm [24]. Such sources could
also play an important role in future quantum measurements of biology.

An optimal quantum particle tracking experiment requires an objective which
combines high transmission,minimal aberrations and highNA.Currently such objec-
tives cannot be purchased commercially for 1064nm light, and must be custommade
at substantial expense. The first consideration when designing the objective is the
immersion medium. Immersion-free objectives are unsuitable as they are fundamen-
tally limited to a maximum NA of 1, and in practice are even more constrained.
Oil-immersion objectives offer an NA which is commonly as high as 1.3, while the
NA of water-immersion objectives is generally limited to 1.2 [31]. However, as dis-
cussed in Chap.9, sensitivity can be vastly degraded by spherical aberrations when
using oil-immersion objectives, while these are minimized for water immersion.
Thus, despite the reduction in maximum NA, water-immersion objectives are likely
to offer the best overall performance.

In addition to the objectives, loss is also introducedby the sample chamber contain-
ing the particles. In the experiments here this was minimized by use of anti-reflection
coatings on the sample chamber. However, when using high NA objectives, the light
is incident from a wide range of angles, and the optimal coating varies substan-
tially with this incident angle. Furthermore, the light reflected from the coating and
glass coverslip need to destructively interfere to provide optimal transmission, but
for a tightly focused beam these two reflections will be divergent with respect to
one another, making the coating ineffective. However, the reflectivity of the glass
coverslips is relatively low for water immersion, as the glass coverslips have a small
refractive index contrast. The resulting reflectivity predicted by Fresnel reflection is
0.4% at normal incidence, and reaches 5.3% for the s polarized component at the
maximum convergence angle of 64◦. Altogether, this will introduce a loss of 0.7%

http://dx.doi.org/10.1007/978-3-319-18938-3_9
http://dx.doi.org/10.1007/978-3-319-18938-3_1
http://dx.doi.org/10.1007/978-3-319-18938-3_2
http://dx.doi.org/10.1007/978-3-319-18938-3_9
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to an input Gaussian mode, with the four surfaces collectively producing 2.8% loss.
Higher order modes can suffer greater loss if these have greater components at large
convergence angles.

13.3 Possible Designs

One of the aims for quantum enhanced particle tracking is to achieve sensitivity
which outperforms classical competitors. In addition to this, some applications also
require other capabilities such as 3D tracking or multi-particle tracking. For instance,
the quantum imaging procedure described in Chap.12 will only provide useful bio-
logical details if combined with 3D tracking. Multi-particle tracking also opens new
avenues in microrheology, as this allows correlations between the motion of differ-
ent particles to be studied. These correlations arise from transmission of vibrations
between the objects, and thus provides a method to characterize the structures along
which the vibrations propagate [5]. However, an apparatus would require squeezing
across multiple spatial modes to achieve either multi-particle tracking or quantum
enhancement along multiple axes, which could add considerable complexity to the
experiment. Additionally, it would be desirable to integrate the quantum experiment
with the Sagnac interferometry scheme described in Chap.5 to further improve the
sensitivity.

13.3.1 Incorporating Classical 3D Tracking

Figure13.2 shows a proposed layout which could combine standard 3D particle
tracking methods [30] with quantum enhancement along a single axis. Similar to
the layout used for the lock-in experiments in Chap.7, a probe field acts both to
trap particles and to produce scattered light. The resulting back-scattered light is
mixedwith an amplitude squeezed local oscillator, and is efficiently directed toward a
quadrant detector by polarizing optics. Since the sum photocurrent from the quadrant
detector is ameasurement of the total transmitted light, it provides a signal equivalent

Fig. 13.2 A proposed design
for future quantum optical
tweezers. This is closely
related to the layout used for
the lock-in experiments in
Chap.7, though it is adjusted
to allow 3D particle tracking
with quantum enhancement
along a single axis

http://dx.doi.org/10.1007/978-3-319-18938-3_12
http://dx.doi.org/10.1007/978-3-319-18938-3_5
http://dx.doi.org/10.1007/978-3-319-18938-3_7
http://dx.doi.org/10.1007/978-3-319-18938-3_7
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to that of a bulk detector. This signal is used to track the particle position along the
x axis, in the same manner as in the quantum enhanced particle tracking apparatus
demonstrated here. Particle tracking along y and z is enabled by subtraction signals,
similar to conventional 3D tracking. Since this approach relies on back-scattered
light, it is better suited to tracking of small particles than large ones; for more details,
see Chap.2 or 8.

13.3.2 Incorporating Sagnac Interferometry

To further improve the future particle tracking setup, it can be combined with the
Sagnac interferometry approach described in Chap.5 and shown in Fig. 13.3. In this
approach, the squeezed vacuum enters and exits through one port of the interferom-
eter, while a bright probe field enters and exits from the other. In the limit of high
visibility, only fields which experience an antisymmetric distortion within the inter-
ferometer will exit through a different port to the one it enters. Thus, the squeezed
field and the antisymmetric component of the scattered field are preferentially com-
bined and directed toward the detector.

As in the theory presented in Chap.5, the unscattered probe photons which reach
the detector then act as the local oscillator for measurement. Provided the squeezed
vacuumcanbe appropriatelymode-matched to themeasurementmode, this combines
the enhancements of both squeezing and Sagnac interferometry, and may thus offer
a large improvement over conventional particle tracking experiments.

Fig. 13.3 A possible future design incorporating Sagnac interferometry

http://dx.doi.org/10.1007/978-3-319-18938-3_2
http://dx.doi.org/10.1007/978-3-319-18938-3_8
http://dx.doi.org/10.1007/978-3-319-18938-3_5
http://dx.doi.org/10.1007/978-3-319-18938-3_5
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13.4 Applications

There are many potential applications for future implementations of quantum
enhanced particle tracking, some of which are also discussed in Sect. 1.3. Some of
these can be achieved once quantum enhanced sensitivity is achieved along one axis
for a single particle, though some applications will require more elaborate setups.

A quantum particle tracking experiment which only achieves 1D tracking could
be used to perform high bandwidth microrheology, extending the experiment in
Chap.11, with quantum enhanced sensitivity allowing the viscoelastic moduli of
materials to be characterized in the MHz regime. High frequency mechanical prop-
erties are anticipated to be important inmanymaterials, as highly localized relaxation
processes with short characteristic length scales necessarily occur at high frequen-
cies [22]. Such relaxation processes have been observed into the high kHz, though so
far theMHz regime has been inaccessible to both bulk rheometers andmicrorheology
experiments [40].

If classical particle tracking is integrated along the y and z axes, future experiments
could perform 3D photonic force microscopy to image the interior of cells. This
would extend the demonstration in Chap.12 to allow 3D mapping of both organelle
surfaces and the viscoelastic mechanical properties of the cellular cytoplasm. In
addition to imaging cellular structures with nm resolution, this will also allow the
study of perturbing effects which influence the measured structure. For instance,
structural changes occur during cell division which change the average mechanical
properties of the cell [32], and these should drastically change the measured 3D
profiles. Alternatively, genetic activity can be stimulated by illumination, though
the mechanism is not well understood [9, 12]. By imaging a cell before, during,
and after illumination, it may be possible to determine which physical properties of
cytoplasm are influenced by the light and provide new insights into the process of
photostimulation.

Quantum enhanced particle tracking could also hold important applications in
characterizing non-Brownian thermal motion with improved precision, as discussed
in Sect. 1.3. By studying the instantaneous velocity of particles in water, it will be
possible tomeasure the velocity distribution of particles in fluid for the first time [23].
Additionally, sufficiently high sensitivity and bandwidth will allow verification of an
established theory in fluid dynamics. A moving particle in water is expected to carry
with it an envelope of the surrounding fluid [18], which at very short time-scales
decouples from the particle [42]. Observation of this decoupling requires sensitivity
and bandwidth which both exceed the limits of current technology.

The high bandwidth achievable with quantum enhancement could also enable
observation of ultrafast biological processes. These processes are extremely difficult
tomeasure, and thus are poorly understood. For instance, nanopores in themembrane
of a cell of approximately 1nm size can open and close on ns timescales [2, 27].
Optical tweezers might allow direct observation of this process, possibly by bind-
ing a particle to a cell membrane and stimulating nearby nanopore formation. The
dynamics of the formation process could then be characterized if nanopore formation

http://dx.doi.org/10.1007/978-3-319-18938-3_1
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displaces the particle. However, such an experimentwould require sensitivity of order
10−27 m2/Hz. So far this has only been achieved in experiments that use power which
is far too high for biological measurements [4]. Quantum enhanced optical tweezers
might allow this level of sensitivity to be achieved with lower power, and thus allow
the first direct observation of nanopore formation.

Further into the future, multi-particle tracking may allow even more applications.
By studying the correlations between motion at different positions, it is possible
to study vibration propagation along the intervening material. This allows important
applications, such as characterizationof the structural properties of cellular cytoskele-
ton [22]. It could also help to characterize the vibrational pulses which accompany
signals propagating down axons in nerve cells [36]. As discussed in Sect. 1.3, these
vibrational pulses are hypothesized to play an important role in neural transmis-
sion [15, 16]. A precise characterization of the vibrational pulse propagation may
provide the evidence needed to rigorously test this hypothesis.

Finally, by combining quantum correlated light with living biology, it is con-
ceivable that the quantum microscope may even allow the significance of quan-
tum processes in biological systems to be tested. Several experiments have recently
demonstrated that quantum coherence plays a role in biological processes such as
photosynthesis, where it can improve the efficiency of light harvesting [17, 28].
However, it is quantum correlations which produce almost all uniquely quantum
effects. To date, all experiments investigating quantumbehavior in biological systems
have studied quantum coherence, but not quantum correlations. Since this apparatus
allows quantum correlated light to strongly interact with biological samples, it may
be possible to map quantum correlations into biology. For instance, by stimulating
photosynthesis with quantum correlated photons, the correlations should be main-
tained in the resulting excitations until destroyed by decoherence. By measuring the
rate of energy transfer as a function of both the strength of quantum correlation and
the spatial location of the absorption event, it may be possible to determine both the
effect and the robustness of quantum correlations as a function of distance between
the site of absorption and the reaction center. This would allow strong conclusions
to be drawn about the importance of quantum mechanics in photosynthesis.
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Chapter 14
Summary and Conclusion

This thesis describes the development and application of quantum enhanced particle
tracking, with the overall aim of introducing the techniques of quantummetrology to
practical biological experiments. Toward this goal, the quantum limit to sensitivity
was characterized for the first time, and classical strategies developed to improve
sensitivity and make optical tweezers compatible with quantum metrology. Follow-
ing this, we have demonstrated particle tracking with quantum enhanced sensitivity,
and used this to enhance both sensitivity and spatial resolution for the first time in
biological experiments. This has advanced the field of biological quantum metrol-
ogy, and shown a route to future experiments in which quantum resources allow
unprecedented sensitivity.

14.1 Part I: Characterization of the Quantum Limit

Shot noise in particle tracking arises due to quantum noise in the optical fields.
The first part of this thesis characterized the constraining influence of this quantum
noise on particle tracking sensitivity. Prior to the work in this thesis, investigations
of this limit have relied on approximations which are inapplicable to real particle
tracking experiments. Chapter 2 determines the total information contained in a
measured coherent field, which establishes an ultimate limit for classical particle
tracking experiments. The sensitivity achieved in leading experiments is found to be
within two orders of magnitude of this limit, which thus constrains future advances
in classical particle tracking technology.

Since this quantum limit is only approachable for a perfect measurement, it is not
of primary relevance to real experimental systems. Particle tracking relies on extrac-
tion of information from a scattered field, and no particle tracking scheme to date
can capture the complex spatial structure of the field which carries this information.
The quantum shot noise limit in real experiments is derived in Chap. 3. This also
provides insight into how to classically optimize the measurement to extract all of
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the information. Furthermore, this chapter establishes how to use quantum correlated
light to improve the measurement sensitivity and increase the per photon information
content of the scattered light.

Although these calculations rigorously characterize particle tracking sensitivity,
evaluation of the limits requires manual calculation of scattered fields, which can be
difficult and time-consuming for a non-expert. To allow a wide range of researchers
to benefit from rigorous theoretical predictions, Chap. 4 presents a computational
tool which characterizes particle tracking measurements with the commonly used
quadrant detection scheme. This can theoretically characterize the sensitivity and
signal amplitude for an experiment without requiring any manual calculations. Alto-
gether these theoretical tools allow a thorough characterization of the capabilities of
existing technology, show how to improve upon this, and predict the progress that
such advances could enable.

14.2 Part II: Strategies to Improve Sensitivity

The theory from Part I establishes the requirements for efficient measurement of the
scattered photons which carry information about the position of a nanoparticle. The
second part of the thesis presents techniques to improve this detection efficiency,
while minimizing detection of background photons that introduce noise. Chapter 5
demonstrates that the field used to trap the particles can be suppressed through use
of interferometry, without degradation of the scattered field. This allows higher field
intensities at the optical trap without saturation of the detector, and consequently, an
increased flux of scattered photons and corresponding improvement in sensitivity.
Following this, Chap. 6 presents a new particle tracking method based on homodyne
measurement. This allows the detection mode to be engineered arbitrarily, and if
optimized, will allow classically optimal particle tracking. Thismethod also provides
additional benefits for quantum enhanced particle tracking by providing improved
control over the detection mode.

In Chap.7, a novel lock-in measurement is demonstrated which evades low fre-
quency laser and electronic noisewhich could otherwise obscure the particle tracking
signal. This allows shot-noise limited measurements at low frequencies, which could
be beneficial to a wide range of classical experiments, and is essential in any attempt
to achieve sub-shot noise limited sensitivity. Chapter 8 then discusses the use of
dark-field microscopy. Dark-field microscopy spatially separates the illuminating
field from the detection, and allows a vast improvement in contrast. However, while
the illumination can be completely suppressed at the detector, some background
photons from extraneous scattering centers still remain. This chapter shows that the
scattering background can also be suppressed by optimizing the illumination angle.

Chapter 9 then concludes this part of the thesis with an overview of the strategies
commonly used to achieve high sensitivitymeasurements in optical tweezers. For any
optical tweezers experiment to achieve high sensitivity measurements, it must avoid
the technical pitfalls of aberration, drift, and noise. All of these problems can place
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serious limitations on classical experiments, and unless dealt with appropriately, will
also limit quantum experiments. Since these have already been addressedmany times
in classical experiments, it is essential to take note of the expertise of the field which
is summarized in this chapter. Avoidance of these problems is a prerequisite for
any experiment which aims to use quantum correlated light to outperform classical
competitors.

14.3 Part III: Quantum Enhanced Measurements

The theoretical and experimental developments in Parts I and II together show the
way to design a quantum enhanced optical tweezers experiment. In Part III of this
thesis, quantum enhanced particle tracking is finally demonstrated and applied in
biological experiments. It begins with the development and characterization of a
quantum enhanced optical tweezers apparatus in Chap. 10. Squeezed states of light
are applied to microscopy for the first time, and allow sub-shot noise limited particle
tracking for the first time. This provides the first technology capable of performing
a broad range of quantum enhanced measurements in biology.

To demonstrate that the quantum shot noise limit can be overcome for mea-
surements of living systems, quantum enhanced microrhoelogy experiments were
performed within Saccharomyces cerevisiae yeast cells. As described in Chap. 11,
naturally occurring lipid granules were tracked as they thermally diffused through
the cell, with amplitude squeezed light yielding a 2.4 dB enhancement in displace-
ment sensitivity. Analysis of the thermalmotion allowed themechanical properties of
the cellular cytoplasm to be characterized, with squeezed light allowing a precision
enhancement of 22%.

Following this, Chap. 12 extended this experiment to spatially resolved quantum
imaging of the cytoplasmic structure. Here, sub-diffraction-limited quantum metrol-
ogy and quantum enhanced spatial resolution were both demonstrated for the first
time in a biological context. By tracking lipid particles as they diffused through an
extended region of the cell, spatial variations in the local mechanical properties of
the cellular cytoplasm could be sampled. This spatial structure was resolved at length
scales down to 10 nm, far below the diffraction limit. Quantum correlated light was
found to enhance the spatial resolution in this experiment by 14%.

Chapter 13 then concludes the body of the thesis with a discussion of the future
directions of quantum enhanced particle tracking. The experiments reported in this
thesis demonstrate with finality that quantum correlated light can provide a practi-
cal benefit to biological microscopy. However, these proof-of-principle experiments
were not conducted with sensitivity surpassing the classical competition, and the
challenge remains to implement quantum correlated light in a classically optimized
experiment. This chapter discusses the strategies required to build such an apparatus,
and the important applications which it could allow.
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14.4 Outlook for the Future

The experiments in this thesis have established that quantum correlated light is capa-
ble of enhancing biological microscopy experiments, and shown the way for future
applications of this technique.Once a quantumenhancedparticle tracking experiment
is built which applies both the technologies developed here and the improvements
described inChap.13, it is likely to provide sensitivity beyond the capabilities of clas-
sical technology. At that point, the quantum experiment will be capable of resolving
features that no classical competitor can resolve, and will likely be applied in a wide
range of measurements. Perhaps in a few decades, similar quantum techniques will
be applied routinely in microscopy.
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Appendix A
Source Code for Quadrant Detection

A.1 Quadrant Detection

The followingMatlab program is used to calculate the response of a quadrant detector.

t i c

% This f i l e w i l l c a l c u l a t e the measurement s i g n a l f o r d i sp lacements along
% the x axis , and minimum r e s o l v ab l e d i sp lacement f o r a s ph e r i c a l p a r t i c l e
% in op t i c a l tweezers , with p a r t i c l e t r a ck ing v ia a quadrant de t e c t o r at
% the back−f o c a l p lane o f a condenser .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fir s t , d e f i n e the p a r t i c l e p r op e r t i e s : %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Spec i f y r e f r a c t i v e i n d i c e s o f the medim and p a r t i c l e
n_medium = 1 . 3 3 ; % Water

% n p a r t i c l e = 1 . 4 6 ; %S i l i c a
n_particle = 1 . 5 8 ;% Polystyrene

% Pa r t i c l e s i z e
radius = 5e−7; % In un i t s o f m

% Next d e f i n e the measurement setup : %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The vacuum wavelength in m
wavelength=1064e−9;

% Object ive NA; t h i s d e f i n e s the trapp ing beam width . Note , t h i s assumes an
% abe r ra t i on f r e e ob j e c t i v e .
NA=1.25;

% E f f e c t i v e condenser NA
NA_condenser=1.25;
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% bas i s . A Gaussian p r o f i l e i s [ 0 , 0 ] .
lg_mode=[0 0 ] ;

% To normal ize the shot−no i s e l im i t , d e f i n e measured power in W
Power=1e−3;

% What do we want to c a l c u l a t e : %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Which ax i s do we measure a long : x=1, y=2, z=3
ax i s =1;

% I s the p a r t i c l e a x i a l l y cente red at the s t ab l e trap po int (=1) or the beam focus (=0)?
Trap=1;

% Al l needed parameters are now de f ined . %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Creat ing the trapping f i e l d %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Locat ion o f the f o c a l po int r e l a t i v e to the p a r t i c l e . These are the
% [ x y z ] c oo rd ina t e s .
beam_offset = [ 0 0 0 ] ;

% Spec i f y the beam width .
beam_angle = as in ( NA/n_medium ) 180/ p i ;
w0 = lg_mode_w0 ( lg_mode , beam_angle ) ;

% Wavenumber
k = 2 pi n_medium/wavelength ;

% To what order do we expand the f i e l d s ?
Nmax = ka2nmax ( k radius ) ;

i f Nmax < 12
Nmax = 12 ;

end

% Create the trapping f i e l d :
% Use t h i s f o r focused Gaussian f i e l d
[ n , m , a0 , b0 ] = bsc_pointmatch_farfield ( Nmax , 1 , [ lg_mode w0 1 polarisation 90 beam_offset ] ) ;

[ a , b , n , m ] = make_beam_vector ( a0 , b0 , n , m ) ;

% Normalize t o t a l power o f wave sum to 1 .
pwr = sqr t (sum( abs ( a ) . ˆ2 + abs ( b ) . ˆ2 ) ) ;
a=a/pwr ;
b=b/pwr ;

% Po l a r i s a t i o n . [ 1 0 ] i s plane−po l a r i s e d along the x−axis , [ 0 1 ] i s
% y−po l a r i s ed , and [ 1 − i ] and [ 1 i ] are c i r c u l a r l y p o l a r i s e d .
polarisation = [ 1 0 ] ;

% Def ine the s p a t i a l mode o f the i n c i d en t l i gh t , in the Laguerre−Gauss
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% Spec i f y po in t s at which to eva luate the f o r c e .
% Note that the se l eng th s are in un i t s o f the medium wavelength .
z = l i n s p a c e ( −5 ,4 ,100) ;
fz = ze ro s ( s i z e ( z ) ) ;

%c a l c u l a t e the f o r c e along z
f o r nz = 1 : l ength ( z )

[ A , B ] = translate_z ( Nmax , z ( nz ) ) ;
a2 = ( A a + B b ) ;
b2 = ( A b + B a ) ;

pq = T [ a2 ; b2 ] ;
p = pq ( 1 : l ength ( pq ) /2) ;
q = pq ( l ength ( pq ) /2+1: end ) ;

fz ( nz ) = force_z (n , m , a2 , b2 , p , q ) ;

end

% Locate the trapping po int
maxforce=z ( fz==max( fz ) ) ;
zeroindex=f ind ( fz<0&z>maxforce , 1 ) ;

i f l ength ( zeroindex )˜=0
% f i t to th i rd order polynomial the l o c a l po in t s . ( only works when
% dz s u f f i c i e n t l y smal l )
pz=po l y f i t ( z (max ( [ zeroindex −2 ,1 ]) : min ( [ zeroindex+2, l ength ( z ) ] ) ) , fz (max ( [ zeroindex←↩

−2 ,1 ]) : min ( [ zeroindex+2, l ength ( z ) ] ) ) , 3 ) ;
root_z=roo t s ( pz ) ; %f i nd roo t s o f 3 rd order poly .

dpz=[3 pz (1 ) ,2 pz (2 ) ,1 pz (3 ) ] ; %de r i v a t i v e o f 3 rd order poly .

real_z=root_z ( imag ( root_z )==0) ; % f i nd s r e a l r oo t s only .

rootsofsign=po lyva l ( dpz , real_z ) ; %roo t s that are s t ab l e
zeq=real_z ( rootsofsign <0) ; %there i s at most 1 s t ab l e root . c r i t i c a l r oo t s g ive ←↩

e r r o r .
try

zeq=zeq ( abs ( zeq−z ( zeroindex ) )==min ( abs ( zeq−z ( zeroindex ) ) ) ) ;
end

e l s e
zeq =[ ] ;

end

i f l ength ( zeq )==0
warning ( No ax i a l equ i l i b r i um in range ! )
zeq=0;

end

% In s e r t T−matrix here %
T = tmatrix_mie ( Nmax , k , k n_particle/n_medium , radius ) ;
% %

i f ( Trap )
% Calcu la te a x i a l t rapping po int %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% General ly , the trapping po s i t i o n i s not centred along the z ax i s .
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% Calcu la te the de t e c t i on s i g n a l %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Def ine the g r id o f po in t s used in measurement
theta0=l i n s p a c e (0 , a s in ( NA_condenser/n_medium ) ,150) ;% We only need to inc lude po in t s with ←↩

theta<theta max
N_phi=160;% Make t h i s a d i v i s i b l e by 4 , so that each quadrant i n c l ud e s the same number o f ←↩

po in t s .
phi0=pi /N_phi : 2 p i /N_phi : 2 p i ;

[ theta , phi ]= meshgrid ( theta0 , phi0 ) ;
dA=s in ( theta ( : ) ) ( theta0 (2 )−theta0 (1 ) ) ( phi0 (2 )−phi0 (1 ) ) ; % The area o f each g r id po int

% Calcu la te the matr i c e s which t r a n s f e r from expansion c o e f f i c i e n t s to
% E l e c t r i c f i e l d ampl itudes
[ A_p , B_q ]=farfield_matrix (n , m , theta ( : ) , phi ( : ) ) ;

% Def ine the p a r t i c l e d i sp lacements f o r which we c a l c u l a t e the s i gna l , in
% un i t s o f the medium wavelength
dx = l i n s p a c e ( −2 ,2 ,201) ;

% Now work out s ph e r i c a l c oo rd ina t e s f o r the d i sp lacements :
i f ( ax i s==1)

[ rt , theta_dx , phi_dx ]=xyz2rtp ( dx , 0 , zeq ) ; % Displacement along (x , y , z ) ax i s
e l s e i f ( ax i s==2)

[ rt , theta_dx , phi_dx ]=xyz2rtp (0 , dx , zeq ) ;
e l s e i f ( ax i s==3)

[ rt , theta_dx , phi_dx ]=xyz2rtp (0 , 0 , dx ) ;

i f ( l ength ( phi_dx )==1) %This seems to be a problem
phi_dx=phi_dx ones ( s i z e ( theta_dx ) ) ;

end
e l s e

warning ( ax i s must be 1 , 2 , or 3 . )
break

end
% Def ine these here ;
Itot =ze ro s ( s i z e ( dx ) ) ;
QuadX=ze ro s ( s i z e ( dx ) ) ;
QuadY=ze ro s ( s i z e ( dx ) ) ;

f o r nr = 1 : l ength ( dx )

Rot = z_rotation_matrix ( theta_dx ( nr ) , phi_dx ( nr ) ) ; %c a l c u l a t e s an appropr ia t e ax i s ←↩

r o t a t i on o f f z .
D = wigner_rotation_matrix ( Nmax , Rot ) ;

[ A , B ] = translate_z ( Nmax , rt ( nr ) ) ;
a2 = D ( A D a + B D b ) ; % Wigner ma t r i c i e s here are hermit ian . There fore in ←↩

MATLAB the D operator i s the i nv e r s e o f D.
b2 = D ( A D b + B D a ) ; % In MATLAB ope ra t i on s on vec to r s are done f i r s t , ←↩

t h e r e f o r e l e s s c a l c u l a t i o n i s done on the ma t r i c i e s .

e l s e
% Al t e rna t i v e l y , we could simply p lace the p a r t i c l e at the beam cent r e ;
zeq=0;

end
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p2 = D ( A2 D p + B2 D q ) ;
q2 = D ( A2 D q + B2 D p ) ;

% Ca lcu la te the e l e c t r i c f i e l d f o r the se c o e f f i c i e n t s
E=reshape ( A_p ( a+2 p2 )+B_q ( b+2 q2 ) , l ength ( theta ( : ) ) , 3 ) ;

% This i s t o t a l cur r ent and the two subt ra c t i on s i g n a l s .
Itot ( nr ) =sum(sum( abs ( E ) . ˆ 2 , 2 ) . dA ) ;
QuadX ( nr )=sum(sum( abs ( E ) . ˆ 2 . ( s i gn ( cos ( phi ( : ) ) ) ones ( 1 , 3 ) ) , 2 ) . dA ) ;%/ I t o t ( nr ) ;
QuadY ( nr )=sum(sum( abs ( E ) . ˆ 2 . ( s i gn ( s i n ( phi ( : ) ) ) ones ( 1 , 3 ) ) , 2 ) . dA ) ;%/ I t o t ( nr ) ;

end

% Calcu la te the shot−no i s e l im i t %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% When f i nd i ng the sma l l e s t r e s o l v ab l e displacement , i n c lude only the l i n e a r r eg i on in dx

Incl=abs ( dx ) <0.2;
pow=mean( Itot ( Incl ) ) ;

LinfitX=po l y f i t ( dx ( Incl ) , QuadX ( Incl ) /pow , 1 ) ;
GX=LinfitX (1 ) ;
% Lin f i tY=p o l y f i t ( dx ( I n c l ) ,QuadY( I n c l ) , 1 ) ;
% GY=Lin f i tY (1) ;
LinfitZ=po l y f i t ( dx ( Incl ) , Itot ( Incl ) /pow , 1 ) ;
GZ=LinfitZ (1 ) ;

% Minimum r e s o l v ab l e displacement , i f a n o i s e l e s s 100% e f f i c i e n t measurement i s per formed .
%This i s g iven by 1/(GX sq r t (n) ) , with n the measured photon number and GX in un i t s mˆ−1

N_photflux=Power wavelength /(6 . 63 e−34 3.00e8 ) ;
dx_min=abs ( wavelength /( n_medium GX s q r t ( N_photflux ) ) ) ; % In un i t s o f : m Hzˆ{−1/2}
dz_min=abs ( wavelength /( n_medium GZ s q r t ( N_photflux ) ) ) ;

% Display r e s u l t s %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

plo t ( dx wavelength/n_medium 1e6 , [ QuadX ; QuadY ; Itot−mean( Itot ) ] / pow )
xlim ( [ − 1 . 6 , 1 . 6 ] )
x l ab e l ( Displacement (\mum) )
toc

pq = T [ a2 ; b2 ] ;
p = pq ( 1 : l ength ( pq ) /2) ;
q = pq ( l ength ( pq ) /2+1: end ) ;

% Now t r a n s l a t e the s c a t t e r ed f i e l d back in to the o r i g i n a l r e f e r e n c e frame
[ A2 , B2 ] = translate_z ( Nmax ,−rt ( nr ) ) ;
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A.2 Farfield Calculation

The above programcalls on the function “farfield_matrix” to calculate the transmitted
field from the expansion coefficients:

f unc t i on [ A_p , B_q ] = farfield_matrix ( Nmax , theta , phi )
% f a r f i e l d ma t r i x .m
% Finds matr i ce s which re turn the f a r f i e l d from VSWF expansion c o e f f i c i e n t s
%
% usage
% [ A p , B q ] = f a r f i e l d ma t r i x (n ,m, theta , phi )
%
% then , the e l e c t r i c f i e l d i s g iven by
% E=reshape (A p ( a+2 p2 )+B q (b+2 q2 ) , l ength ( theta ( : ) ) , 3 ) ;
%
% each row o f E i s the f i e l d ( in s ph e r i c a l c oo rd ina t e s ) in the
% ( theta , phi ) d i r e c t i o n ( assuming a d i s t anc e s c a l i n g f a c t o r o f kr )
%
% This f i l e i s modi f i ed from ” f a r f i e l d .m” in the Opt ica l tweezer s too lbox 1 . 2 ,
% and c a l l s on other f unc t i on s from that so f tware package .
%
% For d e t a i l s o f the Opt i ca l tweezer s toolbox , s ee :
% http ://www. phys i c s . uq . edu . au/ people /nieminen/ so f tware . html
%( Copyright 2006−2012 The Un ive r s i ty o f Queensland . )
%
%
% This assumes that n= 1 :Nmax, and that f o r each n , m=−n : n .
% That i s , i t assumes a l l modes are input in order .

[ theta , phi ] = matchsize ( theta , phi ) ;

A_p = ze ro s ( l ength ( theta ) 3 , Nmaxˆ2+2 Nmax ) ;
B_q = ze ro s ( l ength ( theta ) 3 , Nmaxˆ2+2 Nmax ) ;

f o r n = 1 : Nmax
[ ˜ , Ytheta , Yphi ] = spharm (n , −n : n , theta , phi ) ;

Nn = 1/ sq r t ( n ( n+1) ) ;

A_p ( ( l ength ( theta )+1) : end , n ˆ2 : ( nˆ2+2 n ) ) = Nn (−1i ) ˆ( n+1) [ Yphi ;−Ytheta ] ;
B_q ( ( l ength ( theta )+1) : end , n ˆ2 : ( nˆ2+2 n ) ) = Nn (−1i ) ˆn [ Ytheta ; Yphi ] ;

end

return

Note that this function has been modified from the version originally published
to improve its speed.



Appendix B
Comment on Experimental Study
on the Imaging of the Squeezed State
Light at 1064 nm

In this thesis, we have claimed that the experiment reported in Chap.12 demonstrated
for the first time that resolution could be enhanced via the application of squeezed
light. It is of note that Ref. [1] have also claimed to achieve enhanced resolution via
the use of squeezed light. This prior publication, and the follow-up work in Refs.
[2, 4], has been disregarded as we consider their claims to be unsubstantiated.

In Ref. [1], an optical parametric amplifier (OPA), consisting of a nonlinear crystal
in a Fabry-Perot optical cavity, is used to generate squeezed light. The measured
squeezing is first characterized, and then the squeezed light is applied in a simple
imaging experiment. In this experiment, a resolution test card with a set of absorbing
patterns is imaged onto aCCDcamera, and the resolution estimated from the smallest
observable features. They claim that the results of this imaging experiment show that
squeezed light overcomes the limit of quantum noise, enhances the resolution, and
surpasses the diffraction limit.

The diffraction limit arises in absorption imaging experiments such as this because
classical diffraction establishes a minimum area to which light can be focused. It is
already well known that squeezed light follows classical diffraction, and cannot be
used to enhance the resolution of an imaging system which is classically diffraction
limited [3]. This is not discussed in Ref. [1], and nor is any mechanism described by
which squeezed light could surpass the diffraction limit. Instead, the authors simply
assert that an image taken with laser light is diffraction limited (their Fig. 7b), and
show that superior resolution could be achieved using their squeezed light source.
However, an increase in laser power was shown to improve resolution for both coher-
ent and squeezed light (their Fig. 8), which demonstrates that the image resolution
is limited by the low signal-to-noise rather than diffraction. As such, the claimed
super-resolution is both unphysical and completely unsubstantiated.

Furthermore, insufficient evidence is provided for the claims of quantum
enhanced resolution. Firstly, no reliable evidence is presented that the light is actually
squeezed. Although the noise power spectrum was characterized (their Fig. 3), the
shot-noise limit was assumed to correspond to the measured laser noise. However,
theirmeasured laser noise fluctuateswith frequency by over 15 dB, and therefore can-
not correspond to shot-noise which is spectrally flat. Without an accurate calibration
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of the shot-noise limit, there is no conclusive evidence of squeezing. Additionally,
the imaging approach is based on static measurements with a CCD camera. Because
the noise was only characterized at frequencies above 500 kHz, there is no evidence
whatsoever that squeezing was present at the measurement frequency of the images.
Construction of a low frequency squeezed light source is an immensely difficult
task [5], and since the authors do not mention of any effort to achieve squeezing
in this low frequency regime, the imaging experiments are almost guaranteed to be
limited by classical noise. This classical noise was not considered, and the images
formed using laser light were simply assumed to be at the classical limit for resolu-
tion. However, even if squeezed light were present, no mechanism was described by
which it could enhance the resolution. No further support is provided by the follow-
up work reported in Refs. [2, 4], which also both fail to provide reliable evidence
of squeezing or to describe any mechanism by which the squeezing could improve
resolution.

Given this, it is exceedingly unlikely that the improvement in resolution demon-
strated in Ref. [1] actually corresponds to a quantum enhancement via squeezed light.
It is far more likely that the “squeezed” light provided improved performance due
to a reduction in classical noise, while remaining above the shot-noise limit. Alter-
natively, the improvement may simply result from systematic errors in the imaging
apparatus. The authors noted that when using coherent light, peripheral details were
unclear compared to those in the center of the image, which was not the case when
using squeezed light. Although this was interpreted as evidence for the superior
imaging properties of squeezed light, in reality it suggests that the optical focus was
changed between the experiments. The achievable resolution is highly sensitive to
the focus, and even a small change could produce the observed improvement. The
authors did not describe the procedure used to change between the squeezed and
coherent light sources, and thus did not rule our any such systematic effects. Overall,
Ref. [1] provided no compelling evidence that they achieved quantum enhanced res-
olution, described no mechanism by which squeezing could enhance the resolution,
and left open the possibility that their observed improvement was fully produced by
systematic errors.
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