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Foreword

The content of this book, written by Prof. Alejandro Olivieri, covers practical and
fundamental aspects of multivariate calibration, setting the focus on first-order
calibration. It is important to remark that multivariate calibration has become a
crucial topic in the analytical world, nowadays being adopted in labs for solving
complicated analytical problems, including those found in environmental, biochem-
ical, agro-industry, and food analysis, among other applications.

The book has been divided in 13 chapters, starting in Chap. 1 with an introduction
of what chemometrics and multivariate calibration represent in the analytical world.
In this chapter, basic concepts are introduced. Then, the following chapters show the
evolution that first-order calibration has experienced from the simplest and original
methods to the latest algorithms, including artificial neural networks to model
nonlinear systems. In addition, several chapters are devoted to explore important
subjects as the optimum number of latent variables, comparison of multivariate
models, data preprocessing and analytical figures of merit, and topics of supreme
importance in the analytical field.

Practical aspects of multivariate calibration are discussed introducing interesting
examples. Most of the experimental data used in examples and exercises correspond
to methods developed by the author’s research group and collaborators. In addition,
the examples are intended to guide analytical chemists in their work, appealing to
mathematics when it is strictly necessary and showing very smart schematic
representations to understand concepts involved in these powerful multivariate
chemometric tools.

To follow the explanations given in the chapters dealing with the applications,
a free graphical interface software, namely, the MVC1 MATLAB routines, is
presented and suggested. The software opens a very interesting scenario, as the
user should be able, after the reading of this book, to exploit the usefulness of the
available tools to perform calibrations with his/her own laboratory data. Particularly
useful in this context is the last chapter with solutions to the homework suggested
along the practical application chapters.

Finally, this book may be considered to fill a gap in the subject, with a smart
treatment of the advantages and practical limitations of first-order calibration, by a
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combination of both fundamentals and practice, and provides free software, devel-
oped by the author, to use the most popular available approaches to deal with current
analytical data.

Héctor Goicoechea
Cathedra of Analytical Chemistry

Faculty of Biochemical and Biological
Sciences, University National of Litoral

Santa Fe, Argentina
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Preface

Multivariate calibration is becoming popular in analytical chemistry. Some branches
of industry have used it for years; others are gradually incorporating it as the
necessary tools, both theoretical and experimental, are disseminated in the academic
and industrial fields. Precisely the objective of this book is to contribute to the
diffusion of the discipline while providing complementary reading material for
undergraduate or postgraduate courses on multivariate calibration in chemistry-
related careers.

Every book on multivariate calibration faces a dilemma. Should deep mathemati-
cal concepts be employed, as those required for the development of the main tools of
the discipline, or should the mathematics be kept at a minimum, describing only in a
qualitative manner the different calibration techniques? The following anecdote
illustrates the issue.

A journalist once interviewed a physics professor, enquiring about the relativity
theory. The professor tried to explain the fundamentals of the theory, using uncom-
mon terms such as geodesics and tensors. Thus the journalist begged for the use of
more understandable terms. The professor then told a story of cowboys firing guns
on a moving train and spoke about the speed of the bullets in relation to the train and
to the platform.

– Good! –exclaimed the journalist– now I understand.
– Yes, but this is not the relativity theory –said the professor.

The same issue is apparent here: how much mathematics and how much qualita-
tive text to include. Exaggerating the mathematics carries the risk of making the
book difficult to understand. Reducing it to zero, on the other hand, leads to a
symmetrical loss in the chemometrics. Finding the right balance in a book like this
one may be a lost cause, but it is worth trying.

Regarding a chemometrics book introducing complex concepts in a simple
manner, an editorial comment used the following words in Latin: veluti pueris
absinthia taetra medentes cum dare conantur, prius oras pocula circum adspirant
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mellis dulci flavoque liquore. This is an advice of the poet and philosopher Lucretius
to orators:

when the topic is tough, behave as physicians seeking to give a draught of bitter wormwood
to a child: first smear some honey along the edge of the cup.

The reader might be left with this same sensation with this book.

Rosario, Argentina Alejandro C. Olivieri
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Chemometrics and Multivariate Calibration 1

Abstract
The relationship between univariate, multivariate, and multi-way calibrations is
discussed, with emphasis in the analytical advantages which can be achieved in
going from simple to more complex data structures.

1.1 Chemometrics: What’s in a Name?

An old joke says that statistics is a very useful discipline, because it keeps
statisticians employed. We could say the same about chemometrics; chemo-
metricians would be unemployed without it. In a similar vein, a well-known analyti-
cal chemist, Charles N. Reilley (1925–1981), said with some humor that analytical
chemistry is what analytical chemists do. His definition of analytical chemistry
intended to overcome the identity crisis faced by the discipline, which involves a
number of activities coming from other well-defined scientific fields, such as chem-
istry, physics, mathematics, and statistics.

We could also affirm that chemometrics is what chemometricians do, because this
discipline faces a similar problem, living in a border line between other traditional
fields, in this case chemistry, mathematics, and statistics. Within the name of the
field itself we could find, in principle, the heart of chemometrics: chemo refers to
chemistry, and metrics to measurement, data processing and interpretation using
statistical and mathematical models. The particle metrics appears in other interdisci-
plinary fields such as biometrics, qualimetrics, even psychometrics, where it plays
the same role as in chemometrics, but complements biological sciences, quality
control, and psychology.

In a broad sense, the above definition implies that fitting an analytical data set to a
straight line, estimating by least-squares the slope and intercept, is a chemometric
activity. Why not? I suspect that some of my colleagues will disagree with this
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assertion. In my opinion, it is difficult to establish how complex the data and model
should be for considering the task a genuine chemometric activity. Does a line
separating a light chemometrics from a true one exist? I doubt it.

In any case, the reader will find that the type of data and mathematical models
described in this book are of a different nature in comparison with the fitting to a
calibration line in classical analytical chemistry. The simple fact of measuring a set
of numerical data for each experimental sample, instead of a single number (as in
classical analytical calibration), opens a door to a new universe. It implies a new way
of approaching the analytical problem and carries surprising analytical potentialities.
The level of complexity of these activities is certainly higher than the classical fitting
to the calibration line, although deep down all mathematical models of chemical data
belong to chemometrics, from the simplest to the most complex ones.

Sadly, it is likely that entire branches of chemometrics constitute an unknown
world to most chemists, in particular to analytical chemists. However, the specific
field here described is today of utmost importance in industry (agriculture, food,
chemical, textile, oil, pharmacy, biomedical, etc.), and also in basic scientific
research. The main application of the methods here described lies in the possibility
of replacing traditional analytical methodologies by alternative ones based on the
combination of optical, electrical, and other instrumental measurements. This would
avoid the use of toxic solvents, considerably decreasing energy, cost and waste,
reducing the time of analysis, and performing non-invasive, remote and automatic
detection. These premises are, in general terms, in agreement with the new trends to
a sustainable or green analytical chemistry (De la Guardia and Garrigues 2012).

1.2 The Proof Is in (Eating) the Pudding

The best way to illustrate the implications of multivariate calibration is by setting an
example. The analysis of glucose in the blood of diabetic patients (more than
500 million worldwide) requires the extraction of a drop of blood, and the use of
auxiliary reagents on a disposable strip which is employed for the indirect electro-
chemical determination of the analyte. One could in principle replace this procedure
by a non-invasive one, based on illuminating the skin with near infrared (NIR) light
(NIR is the electromagnetic radiation in the spectral range from 2500 to 10,000 nm,
which is adjacent to the red region of the visible spectrum). Such a device would
register the absorption spectrum of the dermis (placed at ca. 0.01 mm under the
surface when the skin is thin, as in the forearm or inside the lips) (do Amaral and
Wolf 2008; Vashist 2013) (see Fig. 1.1). The NIR spectrum contains information on
the absorbing chemical species which are present in blood, glucose among them.
However, the relative intensity due to glucose is significantly smaller than other
constituents, such as water, fat, and proteins (Malin et al. 1999). Moreover, the NIR
signal is affected by physicochemical parameters such as changes in body tempera-
ture, blood pressure, and skin hydration. This should give an idea of the challenges
faced by any mathematical model aimed at estimating the concentration of glucose in
blood.
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If this application were possible, one could go further, developing a NIR device
capable of constantly monitoring the glucose level, in real time and in a non-invasive
manner, coupled to a small insulin bomb, which would introduce in the blood the
amount of the hormone necessary to maintain a safe glucose concentration. This
artificial pancreas would be similar to those already existing ones, which measure
glucose by the traditional electrochemical method. Considering the importance of
diabetes, this could be the single most relevant contribution of chemometrics for
improving the human life conditions on earth.

1.3 Univariate and Multivariate Calibration

We now enter a more technical aspect: definitions. Classical analytical calibration of
a single constituent is known as univariate calibration, because it is based on the
measurement of a single number or datum for each experimental sample. As analyti-
cal chemists well know, this calibration requires that the measured signal be selective
with respect to the analyte of interest. This sometimes implies complex operations
designed to free the analyte from interfering agents which might be present in the test
samples.

Fig. 1.1 Scheme illustrating how the glucose level can be measured in human blood by means of
near infrared spectroscopy. A beam of NIR light is directed to the skin, penetrates to the dermis, and
reflects back to a detector. The reflected beam contains information on the absorption spectra of all
dermis constituents, including glucose. A mathematical model would then allow one to estimate the
concentration of glucose. Adapted from https://commons.wikimedia.org/wiki/File:Anatomy_The_
Skin_-_NCI_Visuals_Online.jpg, Bliss D, via Wikimedia Commons
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As an example, let us consider the analysis of L-malic acid in wine. Malic acid is a
very important constituent; if there is not enough, the wine will taste flat and will be
more susceptible to spoilage. If there is too much, the wine will taste green or sour.
Thus, it is important for the winemaker to control the amount of malic acid present.
Since L-malic is just one of the many organic acids present in wine, it is not a simple
task to be able to measure its concentration by univariate calibration methods. In
fact, to determine L-malic acid, it is oxidized to oxaloacetate in a reaction catalyzed
by L-malate-dehydrogenase, in the presence of nicotinamide-adenine-dinucleotide
(NAD). In the presence of L-glutamate, oxaloacetate is transformed in L-aspartate,
in a reaction catalyzed by glutamate-oxaloacetate-transaminase. The formation of
NADH (the reduced form of NAD) in this reaction is measured by the increase in
absorbance at 340 nm and is proportional to the amount of L-malic in the wine
sample. As can be appreciated, a considerable experimental effort is directed to
isolate the analyte (L-malic) from the interferent agents, or to force it to react in a
specific manner so that only the analyte generates a signal. This is the only way in
which univariate calibration can be applied to the determination of specific analytes
in complex samples. Once the analyte of interest is free from interferences, the
univariate calibration process can be illustrated as in Fig. 1.2.

In multivariate calibration, on the other hand, several data are measured for each
sample (today the number of data may be in the order of thousands or millions). In
most of the examples discussed in this book, the data come from spectral absorption in
the infrared or UV-visible regions, or from fluorescence emission. In these cases, the
analyst measures a spectrum for each sample, i.e., a set of numbers (absorbances,
reflectances, or emission intensities at multiple wavelengths) that can be arranged in

Fig. 1.2 Scheme illustrating
how univariate calibration
operates. The signals
measured for the calibration
samples and for the unknown
sample are processed by
means of a simple model (the
fitting to a straight line). The
result is the estimation of
the analyte concentration in
the unknown sample
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the form of a vector. For historical reasons, multivariate calibration deals mostly with
spectroscopic data, but there is no reason why the analysis cannot be extended to other
types of multivariate instrumental measurements. In fact, applications are known in
electrochemistry (voltammetric or frequency traces, electrical sensor arrays), chroma-
tography (depending on the type of detector, which is the device that measures the
signal), etc. In the specific case of the determination of L-malic acid in wine samples,
this can be reliably performed after recording a single NIR spectrum, and processing
the latter with a suitable multivariate model. As a bonus, the NIR spectrum of wine
contains information on other constituents, so that from a single spectrum one could in
principle determine not only L-malic acid, but also other target properties as well, such
as total sugars, pH, total and volatile acidity, glucose/fructose ratio, ethanol, etc. Using
UV-visible spectroscopy and multivariate calibration, on the other hand, the wine
content of more than 25 different phenolic compounds can be simultaneously
measured in a matter of seconds (Aleixandre-Tudo et al. 2018).

In multivariate calibration, the process of determining the concentration of an
analyte is similar to univariate calibration, as shown in Fig. 1.3. Notice that data
processing by linear regression is replaced by a suitable multivariate model.

Today, the possibility exists of measuring data which can be grouped into more
complex mathematical objects than a vector for each sample, e.g., a matrix. In the
next section, we will explain some of the properties of more complex data, but our
prime focus is on vectorial data.

The sea change from univariate to multivariate calibration is revolutionary. It is so
in conceptual terms, but also in practical terms, judging from the variety of real-
world applications that can be developed. It involves a significant change in the way
of thinking the analytical experiment, which we will try to explore in the remainder
of this book.

Fig. 1.3 Scheme illustrating
the process of multivariate
calibration. Signals for
calibration and unknown
samples (typically spectra or
vectors of multiple signals)
are processed by an
appropriate chemometric
model. The result is the
estimation of the
concentration of the analyte in
the unknown sample
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1.4 Orders and Ways

The title of this section seems to correspond to a lesson in human behavior rather
than to one in chemometrics. It is not: the order is a property of the instrumental data
for a single experimental sample, and the way is a property of data for a sample set.
They characterize the type of mathematical objects that can be built with the data.

For example, if a single number is measured for a sample (the absorbance at a
single wavelength), the order of this datum is zero. If a spectrum is measured, the
absorbances can be collected into a column vector; these data are of order one or
first-order. If a data table is acquired for each sample, the mathematical object is a
matrix, whose order is two. And so on. The terminology has been taken from tensor
algebra, where a number is a zeroth-order tensor, a vector is a first-order tensor, etc.

The number of ways characterizes the object built with the instrumental data
measured for a set of samples. In the classical univariate analytical calibration, the
data for a sample set generate a vector. This set is said to have only one way (the
sample way). If a vector (spectrum) is measured per sample, a set of samples would
result in a set of vectors, which can be accommodated side by side forming a matrix.
This matrix is said to have two ways: the spectral and the sample way. When
measuring data matrices for each sample, a three-dimensional object with three
ways can be built. For example, matrices obtained from a liquid chromatograph
with diode array detection may generate an array with three ways: the chro-
matographic elution time, the spectral, and the sample way.

More complex arrangements can be envisaged: three-dimensional data for a
single sample lead to four-way data for a sample set, and so on. Figure 1.4 shows
the progression of data from zeroth- to second-order, and from one- to three-way
data.

The classical univariate calibration is equivalent to zeroth-order or one-way
calibration, although it is not usually called in this manner. We here deal with
first-order or two-way calibration, though the former name is probably the most

Fig. 1.4 Hierarchy of
mathematical objects that can
be built with the measured
instrumental signals. (A) The
order for a scalar, a vector, and
a matrix for a single sample.
(B) The number of ways for a
vector, a matrix, and a three-
dimensional array for a
sample set
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popular one. More complex mathematical objects give rise to second-order or three-
way calibration, third-order or four-way calibration, etc. As a final detail, multivari-
ate calibration includes two or more ways, i.e., from first-order and beyond. Three-
way calibration and further are called multi-way calibrations (Olivieri and Escandar
2014).

We have already described the different first-order data which can be measured
experimentally, giving rise to first-order calibration. Second-order data can be
measured in two general manners. In a single instrument (e.g., a spectrofluorimeter),
one may register fluorescence excitation-emission matrices. These are data tables in
which one of the ways is the excitation wavelength and the other one is the emission
wavelength (Escandar et al. 2007). Another popular form of recording second-order
data is to couple two instruments in tandem: a liquid chromatograph with a diode
array detector generates second-order data. In these data tables, one way is the
elution time and the other one the absorption wavelength (Escandar et al. 2007).
Figures 1.5 and 1.6 show three-dimensional plots for excitation-emission fluores-
cence and chromatography with spectral detection, respectively. These figures are
also known as second-order landscapes, because they resemble their natural
counterparts.

Third-order data can also be measured in a single instrument, by registering
excitation-emission fluorescence matrices as a function of time, for example, when
following the kinetic evolution of a reaction (Escandar et al. 2007). In this four-way
calibration, the ways are excitation wavelength, emission wavelength, reaction time,
and sample. One could also connect three instruments in tandem: in comprehensive
bidimensional chromatography with spectral detection, two chromatographic
columns are coupled to a multivariate detector. There are examples involving liquid

Fig. 1.5 Three-dimensional
plot of an excitation-emission
fluorescence matrix, showing
how the emission intensity
varies as a function of the
excitation and emission
wavelengths (labeled as λexc
and λem, respectively)
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chromatography with UV-visible diode array detection (Escandar et al. 2014), and
gas chromatography with mass spectrometric detection (Escandar et al. 2014).

Figure 1.7 shows how excitation-emission fluorescence matrices (represented by
their contour maps) vary with the reaction time, when fluorescent products are
generated while the sample constituents react with an appropriate reagent. It is not
possible to plot the complete data array for a given sample, because four dimensions
would be required (fluorescence intensity, excitation wavelength, emission wave-
length, and reaction time).

Fig. 1.6 Three-dimensional
plot of a matrix from
chromatography with
UV-visible spectral detection,
showing how the absorbance
varies as a function of elution
time and absorption
wavelength

Fig. 1.7 Third-order data:
temporal changes of
excitation-emission
fluorescence matrices (in the
form of contour maps) while a
chemical reaction generating
fluorescent products
progresses

8 1 Chemometrics and Multivariate Calibration



There is no limit, in principle, for increasing the order of the data, but experimen-
tal limitations appear to exist for the development of further multi-way systems, and
only a few applications have been published (Escandar et al. 2014).

1.5 Why Multivariate Calibration?

The change of attitude taking place in going from univariate to multivariate data, as
regards analytical calibration, is primarily related to the role assigned to the
interferents. The International Union of Pure and Applied Chemistry (IUPAC)
mentions the interference issue in its definition of selectivity: the extension that a
method can be used to determine individual analytes in mixtures or matrices without
interference from other components of similar behavior (Vessman et al. 2001). In
classical analytical chemistry, we are used to consider that any substance producing
a signal similar to the analyte signal (for example, absorbing at the same wavelength)
is an interferent. Possible solutions to avoid the undesired effect of the interferences
are: (1) physically removing the interfering constituent by a clean-up procedure,
(2) separating the constituents by chromatography or other separative techniques,
(3) masking the interferent by reaction with a specific reagent which transforms the
interferent in a non-responsive product, (4) using a specific reagent to transform the
analyte into a product showing a signal different than the interferents, etc.

In multivariate calibration, on the other hand, the interferents are innocent unless
proven otherwise. All interferents are, in principle, potential, and removing or
transforming them is not required, as in univariate calibration. The effect of the
interfering agents in the multivariate world can be appropriately compensated using
mathematical models of the data for each sample.

How can this highly important analytical result be achieved? In the examples
described in this book, i.e., in the framework of first-order multivariate calibration,
the aim is achieved by inclusion of the potential interferents in the sample set
employed for calibrating the model. This assertion opens a series of questions for
the classical analytical chemist, which we will analyze below.

1.6 Frequently Asked Questions

If there were a FAQ window in multivariate analytical calibration, the most fre-
quently asked questions would be the following ones.

1. Is it necessary to know all possible interferents that might be present in an
unknown sample to apply a multivariate calibration protocol?

In general, no; in most applications, the chemical identity of the interferents is
not known.

2. How can one prepare a calibration sample set containing the interferents if they
are not known?
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The calibration set should contain a number of representative samples,
containing varying amounts of the interferents, even when the latter ones are
not known. Only the analyte content needs to be known in the calibration
samples, either because a known amount of a pure analyte was used to prepare
the samples, or because the analyte content was measured by a reference analyti-
cal technique.

3. Is it necessary to prepare a large number of calibration samples?
This is a very important question with no simple answer. In general, developers

of multivariate calibration recommend the collection of a number of samples in
the order of hundreds. The analyte content should be either known or measured in
all of these samples. The calibration model will then be validated against another,
independent set of samples of known analyte content. This validation phase
allows one to qualify the model as satisfactory or not, depending on the average
prediction error for the validation set of samples. The number of calibration
samples may need to be increased if the average prediction error is large, until
the multivariate model stabilizes, providing an acceptable prediction error.

4. Incidentally, what is an acceptable prediction error?
Roughly speaking, the average prediction error (in % relative to the mean

calibration analyte content) can be characterized as excellent if it is less than 2%,
good if in the range 2–5%, reasonable if in the range 5–10%, and poor if larger
than 10%. However, there is an important factor to be taken into account: a newly
developed method is supposed to compete with existing ones, not only in terms of
relative prediction error, but also in terms of cost, speed, and simplicity. It is a
balance among these parameters, and possibly other ones, what determines if a
multivariate calibration is able to favorably compete or not. For example, if the
only available method has an associated error of 15%, and the developed calibra-
tion model shows a relative error of 10%, then the latter one is no longer poor!

5. Does a multivariate calibration model last forever?
In general, no. With some instruments, particularly NIR spectrometers, there

may be changes in the detector response or measurement conditions with time.
On the other hand, there are no guarantees that the newly produced or collected
samples will always have the same qualitative chemical composition, especially
when the samples are of a natural origin. In any case, the multivariate models
have the capacity of flagging these samples, which are different in composition
with respect to the calibration set. This important property will be explored in the
future, and is known as the first-order advantage.

6. What to do if new samples are outside the calibration range or contain chemical
constituents which were not considered in the calibration phase?

This question refers to two independent issues. On one hand, if the qualitative
compositions of the calibration and test samples are analogous, but the analyte
occurs in the test samples at concentrations outside the calibration range, the
model may still be useful. This will be possible if the relationship between signal
and analyte concentration is linear, and the linearity extends beyond the calibra-
tion range.
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On the other hand, if test samples contain new chemical constituents, one
should recalibrate the model, including a number of new samples in the calibra-
tion set, all of known analyte content, to recover representativity and to allow the
model to adapt itself to the new conditions. Industrial laboratories usually check
the calibration with a certain frequency (once a month, a semester, a year, etc.)
using a set of samples of known analyte content, meaning that the reference
analytical methods should not be discarded, and should be kept for this periodic
control of the model ability.

As an example, in a laboratory controlling the quality of sugarcane juice, a
multivariate model was built to measure the Brix degrees (a measure of the
content of carbohydrates in sugarcane) using NIR spectroscopy. A large number
of sugarcane samples were employed for calibration, measuring the NIR spectra
and the Brix degrees with a polarimeter (the reference method), achieving a
reasonably stable model with good analytical parameters. However, a year of
extreme cold weather in the cane producing region made the model unrepresen-
tative. The set of control samples started to show poor analytical results, and this
prompted for model re-calibration. The solution was to add, to the original
calibration set, hundreds of new sugarcane juices from the cold season. The
model stabilized again at a reasonable prediction error. Future cold weather
conditions should not affect the calibration model.

The above considerations are valid for first-order multivariate calibration, which
is the prime subject of this text. In second- and higher-order calibration, on the other
hand, the view on the role of interferents is even more revolutionary, as will be
discussed in Sect. 1.10. Industrial applications of higher-order data, nevertheless, are
extremely limited today, and the field belongs to the area of basic scientific research.
At least for now . . .

1.7 Near Infrared Spectroscopy: The Analytical Dream

What would an analytical chemist ask to Aladdin’s lamp? Simple: to be able to
determine the content of one or several sample constituents (or sample properties) in
the following manners: instantaneous, remote, automatic and non-invasive, without
subjecting the sample to clean-up or pre-treatment, and without using auxiliary
reagents or organic solvents. Impossible?

Let us set an example: a fruit producing plant uses a device based on NIR
spectroscopy and first-order multivariate calibration to measure, among other
properties, the degree of fruit ripeness. This can be done in a completely automatic
and non-invasive manner, without cutting the fruit to measure the content of fructose
by liquid chromatography. It is, indeed, the dream of every analytical chemist:
almost instantaneous analysis, non-invasive, automatic, and free from interferents.
No organic solvents, extraction steps, or sample clean-up procedures are required.

How is it done? First, we must consider a fundamental fact: a NIR spectrometer
allows one to measure the spectrum of the sample material near the surface of a solid
sample, without pre-treatment or dissolution. The NIR radiation penetrates into the
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material up to a distance of the order of a few wavelengths, before reflecting to the
detector. In this way, the spectrum of the NIR light registered by the detector
contains information on the absorptive properties of the material composing the
sample.1 It is, in fact, the NIR absorption spectrum of the material, superimposed
with a portion of the incident light beam which is dispersed by the sample to the
detector. In this spectrum, the analyte absorption bands will be found, overlapped
with those of the potential interferents.

After measuring the NIR spectra of hundreds or thousands of fruits, and deter-
mining at the same time their fructose content by a reference analytical method, one
can build a first-order multivariate model. This model will correlate the NIR
spectrum with the fructose level, and will allow one to know the fructose content
in future fruit samples, which will only be analyzed by NIR spectroscopy.

Many similar applications of infrared (mid- and near-) and multivariate calibra-
tion are known, and almost every day new alternatives are developed. As
commented above in the biomedical filed, the glucose content in blood can be
measured by irradiating the skin where it is thin (the forearm or the interior of the
lips) (do Amaral and Wolf 2008; Vashist 2013). Projects exist to measure usual
biochemical parameters (cholesterol, albumin, uric acid, triglycerides, etc.) in a
single drop of blood, simultaneously and with no auxiliary reagents (García-García
et al. 2014; Perez-Guaita et al. 2012).

In the food industry, the measurement of oil, protein, starch, and moisture in seeds
is already classical (Burns and Ciurczak 2008a). One could determine up to 20 dif-
ferent parameters in wine using as sample a single drop of wine (Gichen et al. 2005).
Imagine the energy, cost, reagents, solvents, and analysis time that can be saved by
replacing the classical methods for the determination of these properties with the
tandem NIR-chemometrics. Do you need to analyze wine without opening the
bottle? The Raman spectrum collected after passing a 1064 nm laser through the
bottle green glass provides similar information (Qian et al. 2013). A nice example of
the challenges faced by multivariate calibration of NIR data is provided in Fig. 1.8,
which shows the spectra for a set of chopped meat samples (Borggaard and
Thodberg 1992). The fact that the content of fat, protein, and moisture can be
accurately determined in these samples from the highly correlated and almost
featureless spectra of Fig. 1.8 can be regarded as something close to a miracle.

Portable NIR spectrometers have allowed one to develop applications which
appear to be science fiction. Today, one could point to the wall of a mine a
miniaturized NIR equipment of the size of a mobile phone, and get in the screen
the average content of bauxite, so that aluminum extraction from the mine walls is
optimized. Or point it to a dish of food and know the average content of sugars, lipid,
calories, etc. These and other fascinating applications are perfectly feasible. The
interested reader is directed to a classical book (Burns and Ciurczak 2008b) and to a
very recent review on the subject (Pasquini 2018).

1The sample material actually involves the material that makes up the surface layer, up to a
thickness of a few wavelengths. However, there are techniques that allow for non-invasive analysis
of the sample bulk, as confocal Raman spectroscopy.
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1.8 Science Fiction and Chemometrics

In the previous section, some modern applications of NIR spectroscopy and
chemometrics were said to belong to science fiction. Interestingly, the famous
book I, robot by Isaac Asimov (Asimov 1950) reflects the situation in the chapter
entitled The evitable conflict. The following paragraphs are literally reproduced from
the latter chapter.

The cotton industry engages experienced buyers who purchase cotton. Their procedure is to
pull a tuft of cotton out of a random bale of a lot. They will look at that tuft and feel it, tease it
out, listen to the crackling perhaps as they do so, touch it with their tongue, and through this
procedure they will determine the class of cotton the bales represent. There are about a
dozen such classes. As a result of their decisions, purchases are made at certain prices;
blends are made in certain proportions. Now these buyers cannot yet be replaced by the
Machine.

Why not? Surely the data involved is not too complicated for it?
Probably not. But what data is this you refer to? No textile chemist knows exactly what it

is that the buyer tests when he feels a tuft of cotton. Presumably there’s the average length of
the threads, their feel, the extent and nature of their slickness, the way they hang together,
and so on. Several dozen items, subconsciously weighed, out of years of experience. But the
quantitative nature of these tests is not known; maybe even the very nature of some of them is
not known. So we have nothing to feed the Machine. Nor can the buyers explain their own
judgment.

I, robot was published in 1950. About a decade later, multivariate calibration and
near infrared spectroscopy were developed and shown to be able to do precisely
what Asimov’s robots appeared to be unable to do. Specifically, cotton quality can
be reliably assessed by easily automatable techniques based on spectral
measurements. These include the determination of cotton quality parameters such

Fig. 1.8 NIR spectra of
chopped meat samples,
employed to build
multivariate models for the
non-invasive determination of
the contents of fat, moisture,
and protein. The data were
recorded on a Tecator Infratec
Food and Feed Analyzer
working in the wavelength
range 850–1050 nm, and are
available at http://lib.stat.cmu.
edu/datasets/tecator
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as micronaire (a measure of the air permeability of compressed cotton fibers),
fineness, maturity, length, strength, uniformity, brightness, and yellowness (Zumba
et al. 2017; Liu et al. 2016).

1.9 Global Properties vs. Specific Analytes

An additional characteristic of the combination spectroscopy/chemometrics is the
possibility of measuring global properties of a sample, instead of quantifying
individual analytes. Examples include organoleptic properties or calories in food,
tenderness, freshness and shear force in meats, octane number in gasolines, distilla-
tion temperature in fuels, rheological properties of flour, textile fiber quality
parameters, etc.

The determination of some global properties such as the degree of public accep-
tance of a food (coffee, beer, wine, chocolate, etc.) requires an adequately trained
human sensorial panel. It is possible to develop multivariate calibration models of
spectral data and values provided by a sensorial panel, in such a way that in the
future, the acceptability of the product is only measured by spectroscopy. The
success of this model greatly depends on the relationship between the concentrations
of sample constituents producing spectral signal and affecting the global property to
be measured. In principle, we may assume that the relationship exists, and that it is
reasonable to expect that global properties such as taste or odor are directly related to
the chemical constituents (and thus to their spectra).

Many published scientific papers have demonstrated the practical feasibility of
calibrating multivariate models for correlating NIR spectra with organoleptic
properties. An interesting example involves the study of coffee. Several coffee
samples were qualified by a sensorial panel according to the following attributes:
acidity, bitterness, flavor, cleanliness, body, and overall quality (Ribeiro et al. 2011).
The NIR spectra of the ground coffee beans were previously recorded, and a
multivariate model was built which successfully correlated the coffee attributes
with the spectra. Why was the model effective? The authors showed that some
bulk constituents of coffee beans are directly related to the sensorial attributes of the
liquid infusion: caffeine, trigonelline, 5-caffeoylquinic acid, cellulose, coffee lipids,
sucrose, and casein. This is the type of scientific work which deserves to be
commended, because it not only develops a mathematical property-spectrum rela-
tion, generating a model to be applied to future samples without the need of a human
panel, but also identifies the chemical constituents defining the property. Multivari-
ate models should not be regarded as black boxes, and their physicochemical
interpretability should be pursued as the ultimate source of scientific joy.

There are limitations, however, as to what can be achieved by multivariate
calibration and infrared spectroscopy. The main drawback is the low sensitivity of
the spectral technique. It is not possible to detect NIR signals from trace constituents
in a sample; it is perfectly possible to measure bulk properties of seeds (oil, moisture,
protein, starch), but not trace levels of aflatoxins. One may generate a multivariate
model to measure albumin, total protein, and cholesterol in blood, all present in the
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concentration range 0.2–5%, but it is highly difficult to do it for creatinine or uric
acid, whose levels are lower than 0.01%. In general terms, constituent concentrations
of less than 1% would be difficult to be detected via NIR. If the sample properties
depend on minor constituents for which the instrumental sensitivity is low, then the
model will have low probabilities of succeeding.

In a student experiment published in the Journal of Chemical Education, a
significant number of volatile constituents of banana flavor were identified by
chromatography (Rasmussen 1984). They mainly include low-molecular-weight
alcohols (isobutyl and isoamyl), isobutyric and isovaleric esters, and C4-C6
alkanones. A synthetic mixture was prepared with the 15 most abundant compounds
in a real banana flavor, and in the same relative proportion as in the natural fruit, but
. . . the artificial mixture did not smell as real banana! This means that the organo-
leptic properties may depend on chemical constituents which are present at very
low concentrations, not detectable by NIR. However, other optical or electrical
techniques may be more sensitive, and may improve the detectability of those
minor constituents. It is a world open to scientific exploration as never before in
analytical chemistry.

1.10 Multi-way Calibration and Its New Advantages

The change from univariate to first-order multivariate calibration is revolutionary in
what concerns the analyst attitude with respect to interferents. Likewise, multi-way
calibration (from second-order and beyond) implies a new revolutionary change,
which is also related to the interferents (Olivieri and Escandar 2014).

In the multi-way universe, it is possible to calibrate an analytical system to
determine an analyte in particular, without including the potential interferents in
the calibration set! This may seem magical, but it is certainly not the case. This
so-called second-order advantage is related to the mathematical properties of the
objects which may be built with second- and higher-order data. Multi-way calibra-
tion may allow one, for example, to determine the analyte of interest in a complex
sample containing a number of potential interferents, having calibrated the model
with a minimal set of samples, only containing the pure analyte of interest (Olivieri
and Escandar 2014).

The changes from zeroth- to first-order and from first- to second-order are
revolutionary, but it appears that from second- to third-order and beyond the changes
are not revolutionary, but only evolutionary. The general consensus is that there are
no third- or higher-order advantages, so that second-order calibration and beyond all
have the same second-order advantage. However, we should admit that in science
the ultimate truth is never revealed, and new surprises may await analytical chemists
in the future.

It is not our purpose to discuss multi-way calibration, which today is mainly
confined to research laboratories, although the probability of being adopted by
industry is high, given its favorable properties for the analytical work. It could
mean the end of the need of cleaning samples before a chromatographic analysis,
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the universal solution to the baseline problem, the drastic decrease in the number of
samples for building a multi-way model, etc.

One could summarize this section with a final advice to the modern analytical
chemist: do it your way, but do it multi-way!

1.11 About This Book

This is the fourth of a series of books written in Spanish, which started in 2001
(Olivieri 2001) with an introduction to the field of computer programming using
simple algorithms, implemented in the MATLAB environment.2 A second one,
published in 2007, described in a simple way the theory underlying multivariate
calibration, trying to bring to the analytical chemist its foundations, without exces-
sive use of linear algebra, and emphasizing the practical aspects of the discipline
(Goicoechea and Olivieri 2007). Finally, a third text updated the 2007 version in a
digital format (Olivieri 2017).

In this new version, the most recent developments in the field have been included.
Specifically, new concepts and mathematical expressions for analytical figures of
merit are introduced, a chapter is devoted to non-linear calibration using artificial
neural networks, spectral pre-processing strategies are presented and their
consequences are discussed, and the use of freely available stand-alone multivariate
calibration software is described, which does not require the MATLAB environment
to be run. The main objective of this text is to present seemingly complex material in
a simple and practical manner, emphasizing the application of multivariate calibra-
tion techniques to real-world problems.
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The Classical Least-Squares Model 2

Abstract
The simplest first-order multivariate model, based on classical least-squares, is
discussed. Important concepts are introduced, which are common to other
advanced models, such as the regression coefficients and the first-order advan-
tage. The main limitations of the classical model are detailed.

2.1 Direct and Inverse Models

First-order multivariate models can be classified as either direct or inverse. The
nomenclature refers to the manner in which the relationship between signal (in fact,
multivariate signals measured at multiple sensors, or at multiple wavelengths in
spectroscopy) and concentration of chemical constituents is established. In the direct
models, the signal is considered to be directly proportional to the concentration, as
dictated, for example, by Lambert–Beer’s law in classical UV-visible spectroscopy.
In the inverse models, on the other hand, the concentration is considered to be
directly proportional to the signal.

How important can the difference be? In classical univariate calibration, no
substantial difference appears to exist in calibrating a regression line in a direct or
in an inverse fashion. However, the inverse univariate model seems to be more
efficient regarding analyte prediction when the data sets are small and the noise level
is high (Tellinghuisen 2000).

In multivariate calibration, on the other hand, the difference between direct and
inverse models is crucial. Direct models, as we shall see in this chapter, show some
advantages, but present unsolvable problems regarding the variety of analytical
systems to be tackled, some of which were qualitatively discussed in the previous
chapter.
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2.2 Calibration Phase

The simplest direct multivariate model is known as classical least-squares (CLS)
(Thomas and Haaland 1988). This model has been almost abandoned today, due to
its disadvantages in comparison with the inverse models. However, it shows a high
pedagogical value. It is simple and intuitive, and it follows the classical Lambert–
Beer’s law of absorption spectroscopy, allowing one to introduce some abstract
concepts that will be greatly useful when studying the inverse models.

As all analytical methods, multivariate calibration consists of a first phase, in
which the calibration model is built from a set of experimental samples where the
analyte contents and spectra (or other multivariate signals) are known. Some authors
call this stage the training phase, a term related to the idea that multivariate calibra-
tion is some type of artificial intelligence, in which the model learns the spectra–
concentration relationship, before facing the world of new and unknown samples.

For building a CLS model, it is necessary to prepare mixtures of standards of all
pure chemical constituents to be used as calibration samples. The number of
mixtures should be at least equal to the number of constituents, but in general
analysts prefer to prepare a generously larger number of samples than constituents,
because in this way the results are more precise. This is similar to univariate
calibration, where several standards are employed to determine a single analyte.
Notice that we distinguish between constituents and analytes. The former ones are
generic chemical compounds present in typical experimental samples, although not
all of them may be analytes of interest. It may perfectly happen, for example, that
samples of pharmaceuticals contain five constituents, two of which are active
principles (the analytes) and the remaining three are excipients (constituents but
not analytes). We prefer not to use the term component, because the latter may be
confused with abstract entities calculated by certain mathematical techniques, and do
not represent, in general, true chemical constituents.

The CLS calibration phase faces two problems: (1) how many samples should be
prepared for calibration and (2) which concentrations should be assigned to their
constituents before preparing the calibration samples. The overall issue is part of a
chemometric field called experimental design. The theory behind mixture design is
beyond the scope of this book; we may simply detail, using common sense, that the
calibration mixtures should be representative, as much as possible, of the combina-
tion of concentrations to be found in future, unknown samples. The specific values of
the constituent concentrations should fulfill certain requirements, which will be
apparent when the CLS model is developed in detail.

Let us assume that several (the specific number is I ) standard solutions of
constituents have been prepared, and the absorbances of these solutions have been
measured at J different wavelengths. The corresponding instrumental responses xji
(the absorbance at wavelength j of standard solution i) can be collected in a
calibration matrix X (of size J � I ):
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X ¼
x11 x12 . . . x1I
x21 x22 . . . x2I
. . . . . . . . . . . .
xJ1 xJ2 . . . xJI

2
664

3
775 ð2:1Þ

Figure 2.1 shows the matrix X in detail, and its relationship with the experimental
spectra of the calibration samples. On the other hand, the concentrations of the
N chemical constituents in the calibration set must be known. They are grouped in
the calibration concentration matrix Y (of size I � N ), whose generic element yin is
the concentration in the mixture i of constituent n:

Y ¼
y11 y12 . . . y1N
y21 y22 . . . y2N
. . . . . . . . . . . .
yI1 yI2 . . . yIN

2
664

3
775 ð2:2Þ

Fig. 2.1 Left, spectra registered at different wavelengths, or multivariate signals registered at
different sensors. Top right, the matrix X in detail, showing that each spectrum corresponds to a
column. Bottom right, generic representation of the matrix X, highlighting the specific column with
a red box
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Figure 2.2 schematically illustrates how the constituent concentrations in the
calibration set are organized in a data table or matrix.

The calibration phase is completed by assuming that Lambert–Beer’s law is
obeyed between absorbance and concentration, or a similar linear law relating a
generic signal and concentration. The mathematical expression for the direct CLS
model is the equation relating X and Y through a matrix of proportionality constants
called S (of size J� N, whose generic element sjn is the sensitivity at wavelength j of
constituent n):

X ¼ S YT þ E ð2:3Þ
Figure 2.3 shows a simple schematic representation of the former equation using

blocks for representing the matrices. Notice that in UV-visible absorption spectros-
copy, the element sjn is the molar absorptivity at wavelength j of constituent n. In
general, the name sensitivity is preferred for this element, because it may be applied
to any instrumental technique beyond UV-visible spectroscopy.

Fig. 2.2 Top, data table with the constituent concentrations of each calibration sample. Bottom,
matrix Y with the calibration concentrations. The red arrow and box connects the column of the
table with the column of the matrix Y

Fig. 2.3 Block scheme
representing the CLS model
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In comparison with the simple univariate law (x ¼ s y), two differences are found
in Eq. (2.3): (1) the matrixY is transposed (columns are converted into rows and vice
versa), as symbolized with the superscript “T,” and (2) an error matrix E is summed
to the right-hand side. The first difference is due to consistency between matrix sizes
and is only formal. The second one is more important, and deserves a detailed study,
as the one presented in the next section.

The CLS calibration phase consists, therefore, in the preparation of the standard
solutions (mixtures of the pure constituents at known concentrations contained in
matrix Y), measurement of their spectra (contained in matrix X), mathematical
relation through Eq. (2.3) expressing the linear signal-concentration law, and finally
estimation of the matrix S. The latter matrix is the necessary link between signals and
concentrations, to be applied to future samples. The next sections will deal with the
details.

2.3 Model Applicability

Several requirements should be fulfilled for the successful application of the CLS
model to a real analytical system. In the first place, since the total signal in the
calibration samples (X) will be modeled as a function of the concentrations of the
chemical constituents producing instrumental response (Y), it is necessary to know
the concentrations of all these constituents in all calibration samples. The
constituents should be the same that will occur in the future test samples. This is
the main problem associated to the CLS model. Think about the determination of
glucose in blood: a CLS calibration would require one to know all the chemical
identities and concentrations of all the human blood constituents producing a NIR
signal. This is clearly not possible.

Additionally, it is also important to recall that the CLS model relates signals to
analyte concentrations, but not signals to global properties (octane number, sensorial
attributes, etc.). This means that the CLS model is not applicable to the prediction of
properties of samples such as foodstuff, drinks, perfumes, and fuels, a fact that
further limits its application field.

When can one apply the CLS model with success? One possible application area
is the analysis of pharmaceutical products, in which every constituent of a pharma-
ceutical form is most likely to be known, and all necessary standards are available to
prepare the calibration mixtures, including active principles and excipients, and even
degradation or synthetic by-products. The developed model would allow the simul-
taneous determination of the active principles by classical spectroscopic techniques,
in the presence of excipients and other constituents, without the need of physically
separating them or using chromatographic methods. Nevertheless, even in these
cases inverse multivariate models might be the preferred (Goicoechea and Olivieri
1998).
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2.4 Why Least-Squares? Mathematical Requirements

Calibrating a CLS model requires to estimate the matrix S from Eq. (2.3). We should
recall that the latter equation is, in fact, the formal expression of a set of simultaneous
equations with multiple unknowns. One of these specific equations, corresponding
to a given element of X, is shown in Fig. 2.4.

If the samples contain N constituents, J � N parameters should be estimated (the
values of all sjn elements of matrix S) from a set of J � I equations (the number of
elements of X). In general I > N, and thus the problem is over-determined, i.e., there
are more equations than unknowns. In this case, the usually employed criterion is to
estimate S as the least-squares solution, that is, by minimizing the sum of squared
elements of the matrix of errors E in Eq. (2.3). It can be shown that the least-squares
solution for S is equivalent to finding S from Eq. (2.3), removing the
E term. However, this estimation cannot be simply done by post-multiplying
Eq. (2.3) by (YT)�1, because Y is not, in general, a square matrix, and non-square
matrices cannot be inverted. Thus, a previous phase is required: both sides of
Eq. (2.3) are first post-multiplied by matrix Y:

X Y ¼ S YTY ð2:4Þ
Notice that E ¼ 0 has been set before this operation. The product (YT Y) is a

square matrix (of size N � N ), and post-multiplying both sides of Eq. (2.4) by the
inverse (YT Y) –1 leads to the estimation of S:

S ¼ XYðYTYÞ�1 ð2:5Þ

Fig. 2.4 A specific element of the matrix X (x12) is shown to correspond to one of the multiple
equations, as the product of the first row of S and the second column of YT (both highlighted by red
boxes). The latter product reflects Lambert–Beer’s law and the concept of signal additivity, since x12
is given by s11 y21 + s12 y22 + . . ., i.e., as a sum of products of the form (absorptivity �
concentration)
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Equation (2.5) deserves some comments. First, it is necessary to remark that to be
able to solve it, the square matrix (YT Y) needs to be inverted. Inversion of a matrix
requires its lines (rows or columns) to be linearly independent, meaning that they
should not be linear combinations of other lines. In the present case this implies,
from a chemical viewpoint, that the constituent concentrations in the calibration
mixtures are not correlated (for example, they do not simultaneously increase or
decrease from one mixture to another). Designing a mixture set with minimal
correlations is also part of the theory of experimental design. The presence of
correlations in Y would make the determinant of the matrix (YT Y) null, precluding
the matrix inversion.

The second comment is only formal. If we call the matrix operation [Y (YT Y)�1]
as Y+, the latter is a kind of inverse of Y (transposed, to be precise). The literature
calls Y+ as the generalized inverse of Y. With this nomenclature, Eq. (2.5) can be
written in the following compact form:

S ¼ X Yþð ÞT ð2:6Þ
This is the equation representing the calibration phase, providing a matrix S for

prediction in future samples. The obtainment of S is analogous to the estimation of
the slope of the univariate calibration line, previous to the measurement of the
analytical signal for unknown samples.

2.5 Prediction Phase

In the prediction phase, an unknown sample provides J values of the instrumental
signal, e.g., J absorbances at the same wavelengths at which the calibration signals
were measured. The sample instrumental responses are grouped in a column vector
(of size J � 1) x:

x ¼
x1
x2
. . .
xJ

2
664

3
775 ð2:7Þ

Prediction proceeds by resorting to Lambert–Beer’s law applied to the unknown
sample, analogously to Eq. (2.3):

x ¼ S yþ e ð2:8Þ
where y is a column vector (of size N� 1) containing N elements: the concentrations
of the N constituents of the unknown sample, and e is a vector collecting the errors of
the linear model. We are again in the presence of a system of simultaneous equations
with multiple unknowns: the J equations correspond to the J elements of x, and the
N unknowns to the concentrations of the N constituents contained in y. One of such
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equations is xj¼ sj1 y1 + sj2 y2 + . . ., where xj is an element of the vector x, sj1, sj2, . . .
are elements of S (sensitivities at wavelength j for each sample constituent 1, 2, . . .),
and y1, y2, . . . are the elements of y (concentrations of each constituent in the test
sample). Again, this complies both with the signal additivity concept and Lambert–
Beer’s law.

The problem will be over-determined if J > N, which normally occurs (there are
considerably more wavelengths in the spectra than sample constituents), so that the
criterion of least-squares is also employed to solve Eq. (2.8) to find y (fixing e ¼ 0).
Equation (2.8) should be first pre-multiplied by ST, to obtain a square matrix in the
right-hand side:

STx ¼ STS
� �

y ð2:9Þ
One could then find y pre-multiplying by the inverse of (ST S):

y ¼ ðSTSÞ�1STx ð2:10Þ
We could also define the generalized inverse of S which would allow to find

y pre-multiplying x:

y ¼ Sþx ð2:11Þ
Are there other mathematical requirements in this phase due to the need of

inverting the matrix (ST S) in Eq. (2.10)? We may guess the answer: the columns
of S (the pure constituent spectra) should not be correlated. The spectral correlation
is also known as collinearity. If the constituent spectra are significantly collinear, the
determinant of (ST S) will be zero or close to zero, it would be impossible (or very
difficult) to find the inverse (ST S)�1, and the analyte concentrations will be poorly
defined. The result will be a considerably high prediction error (Goicoechea and
Olivieri 1998). Intuitively, if two constituents have identical spectra, it will not be
possible to distinguish them. The mathematical consequence of the equivalence of
analyte spectra is that the matrix (ST S) is not invertible. We always remark the
importance of connecting a purely mathematical result with a qualitative observation
with physicochemical meaning.

As a summary of the CLS model, after calibration with mixtures of constituents
providing the matrix S from their spectra and concentrations, the spectrum of an
unknown mixture is measured, and Eq. (2.11) provides access to the concentrations
of all sample constituents, without requiring their physical separation. This analysis
could not be made by classical univariate calibration, unless the constituent spectra
do not overlap at all. The spectral overlapping precludes classical analysis, requiring
separation methods such as chromatography, or chemometric methods such as the
presently discussed one. Some authors call multivariate models virtual chromatog-
raphy, mathematical chromatography, or simply with the play on
words chroMATHography.
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2.6 The Vector of Regression Coefficients

Let us suppose that a CLS model has been built for samples with various
constituents, but only one of them is the analyte of interest, while the concentrations
of the remaining constituents do not show any analytical interest. It is possible to
isolate a portion of Eq. (2.11) which only allows one to estimate the concentration of
the nth analyte in the unknown sample. This is equivalent to isolate, from matrix S+,
the row corresponding to this analyte, and multiply it by the vector of signals for the
unknown sample x:

yn ¼ nth row of Sþð Þx ð2:12Þ
A block representation of the latter equation is shown in Fig. 2.5, by extracting a

specific row of the matrix S+, which is linked to the analyte of interest. The nth row
of S+ once transposed (converted into a column vector) is known as the vector of
regression coefficients for the nth analyte, and is represented as bn:

bn ¼ nth row of Sþð ÞT ð2:13Þ

With this latter definition, Eq. (2.12) becomes:

yn ¼ bnTx ¼ b1nx1 þ b2nx2 þ . . .þ bJnxJ ð2:14Þ
meaning that the estimated analyte concentration is the scalar product of the vector
of regression coefficients by the vector of instrumental responses.

Fig. 2.5 Top, block
representation of the
estimation of the constituent
concentrations in an unknown
sample from the generalized
inverse S+ and the unknown
spectrum x. Bottom, a specific
analyte concentration is
estimated from the nth row of
S+ and the spectrum x
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As an example, Fig. 2.6a shows the spectra of four pure constituents of an
analytical system, defined in a range of 100 wavelengths. A typical calibration of
this system using the CLS model will yield the vector of regression coefficients
shown in Fig. 2.6b for the constituent with the blue spectrum in Fig. 2.6a. As can be
seen, the vector bn for this analyte shows positive and negative features. The most
intense positive portion agrees with the position of the maximum of the pure
spectrum of constituent n (identified by the blue spectrum), meaning that bn carries
a certain qualitative information on the analyte.

The vector of regression coefficients plays a prime role in multivariate calibration.
Because bn has the same number of elements as the number of spectral wavelengths,
it is usual to speak about the spectrum of regression coefficients. This spectrum is
quite abstract, with positive and negative portions, and thus it does not represent a
real constituent. However, it does possess a certain qualitative value: the analyst
expects that at least some intense bands of the bn spectrum will correspond to real
absorption bands of the analyte of interest. In the future we will return to these
subjects in several cases, because analogous bn vectors will appear in all multivariate
models, although each of them will be estimated in a different manner from the
calibration signals and concentrations.

Some companies developing NIR calibrations for industrial analytical purposes
call the set of elements of the bn vector the equation, and advertise it as an industrial
product. If the reader purchases a NIR spectrometer and pays the company for
developing calibrations, they will sell him the equation, which are in fact the

Fig. 2.6 (a) Spectra of four pure constituents in a range of 100 wavelengths or sensors. The blue
line corresponds to the analyte of interest. (b) Vector of CLS regression coefficients associated to
the analyte of interest

28 2 The Classical Least-Squares Model



elements of the vector of model regression coefficients for the analyte of interest.
The instrument software will estimate the analyte concentration in an unknown
sample through Eq. (2.14), from the elements of the equation (bjn) and the signal
values (xj).

2.7 A CLS Algorithm

An algorithm consists of a series of instructions, written in a computer language,
which will start from certain initial conditions, and will be executed sequentially
until reaching the end. The most employed language in chemometrics is MATLAB,1

a highly efficient environment in which a large number of models and procedures
have been programmed, most of them freely available on the internet.

A CLS model can be easily programmed in MATLAB (see Box 2.1).

Box 2.1
After loading in the working space the variables “X” (the matrix of calibration
signals), “Y” (the matrix of calibration concentrations), and “x” (the vector of
signals for the unknown sample), two program lines are enough to estimate the
matrix “S” and the constituent concentrations in the unknown “y”:

S¼X*Y*inv(Y'*Y);
y¼inv(S'*S)*S'*x;
Notice that the size of the input variables should be: “X,” J� I (J¼ number

of wavelengths or sensors, I ¼ number of calibration samples); “Y,” I � N
(N ¼ number of analytes to be calibrated); “x,” J � 1. Those generated during
program execution are “S,” J � N and “y,” N � 1.

2.8 Validation Phase

Once the CLS model is calibrated, it is important to validate it. For this purpose, it is
usual to prepare an independent validation sample set, in which the constituents are
present at concentrations which are different than those employed for calibration.
The validation concentrations are usually selected as random numbers within the
corresponding ranges for each constituent. The comparison of the analyte
concentrations estimated for the validation set is made using appropriate statistical
indicators. One of them is the root mean square error in prediction (RMSEP),
calculated according to:

1MATLAB. The Mathworks, Natick, Massachusetts, USA.
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RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNval

n¼1
ynom,n � ypred,n
� �2

Nval

vuuut ð2:15Þ

where Nval is the number of validation samples, ynom,n is the nominal concentration
of analyte n in the validation samples, and ypred,n is the CLS predicted concentration
in the same samples.

Another common indicator is the relative error of prediction (REP), given in %,
and defined as:

REP ¼ 100
RMSE
< y >

ð2:16Þ

where <y> is the mean value of the calibration concentrations for the analyte.
Incidentally, it is not uncommon to see published works where the RMSEP and

REP are reported with unreasonably large numbers of significant figures; a parame-
ter indicating uncertainty, and all parameters derived from uncertainty, should be
reported with a single significant figure, or at most two, which is justified when the
first figure is 1, or the first is 1 and the second is less than 5 (Olivieri 2015).

There are more sophisticated tests for the comparison of nominal and predicted
concentrations. Beyond the statistical importance of these indicators, the visual
impression of the analyst is most important. In this sense, it is usual to plot the
predicted vs. nominal analyte concentration, and the prediction errors (difference
between predicted and nominal) vs. predicted values. Figure 2.7a, for example, is
reassuring: the relationship between predicted and nominal is reasonable, and
approaches the ideal line of unit slope (Fig. 2.7a), with prediction errors showing a
seemingly random distribution (Fig. 2.7b).

Figure 2.8, on the other hand, shows a different scenario, with reasonable results
for most validation samples, except for one of them, whose predicted value and

Fig. 2.7 (a) Predicted concentrations as a function of nominal values for the analyte of interest in
50 validation samples. (b) Prediction errors as a function of predicted concentrations. In (a) the red
line indicates perfect correlation with unit slope; in (b) the red line indicates null errors
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prediction error considerably deviate from the expectations. What to do with samples
of this kind? The temptation of discarding them from the analysis may be irresistible.
However, the analyst should go beyond this feeling, asking himself what really
happened with this particular sample. Two main reasons may be responsible for this
strange behavior: (1) preparation errors, making the nominal analyte concentration
different than the one considered in Fig. 2.8 and (2) presence of interferent agents,
not taken into account in the calibration phase, so that the prediction is biased. In any
case, it is worth investigating these possibilities, repeating the preparation of the
sample to verify reason (1), or using the diagnostic discussed in the next section to
verify reason (2).

2.9 Spectral Residuals and Sample Diagnostic

In the framework of the CLS model, one may obtain a typical parameter of all least-
squares fitting procedures: the regression residues. In the present case they are the
elements of the vector e in Eq. (2.8), containing the uncertainty associated to the
model of the unknown sample signal. The vector of residues can be found from
Eq. (2.8) and the calibration matrix S:

e ¼ x� S y ð2:17Þ
It is also important to estimate, for each unknown sample, the standard deviation

of the residuals sres:

sres ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PJ
j¼1

e j

� �2

J � N

vuuut
ð2:18Þ

Fig. 2.8 (a) Predicted concentrations as a function of nominal values for the analyte of interest in
50 validation samples. One of the samples shows a significant deviation. (b) Prediction errors as a
function of predicted concentrations. In (a) the red line indicates perfect correlation with unit slope;
in (b) the red line indicates null errors. The problematic sample is indicated with a question mark
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Notice the (J � N ) degrees of freedom in Eq. (2.18), due to the fact that the
sample provides J data (the signals measured at J wavelengths), and N parameters
are estimated (the concentrations of the N analytes in the sample).

The value of sres is indicative of the fitting success. As in all least-squares fitting
procedures, one expects that the lack of fit (LOF) is not significant. The LOF is
estimated through the comparison of sres with the level of instrumental noise in the
spectral measurements. The rigorous statistical comparison is made through an
F-test between the square of sres and the squared noise level (Miller and Miller
2010), as will be discussed in detail in a future chapter for advanced multivariate
models. Intuitively speaking, the analyst expects that the value of sres is of the order
of the instrumental noise; one has always certain knowledge about the latter from the
experience in using the instrument.

Could a CLS model show a significant lack of fit? If so, when? This could occur if
Eq. (2.8) is not properly modeling the signals for the unknown. The main cause of a
significant LOF lies in the presence of new constituents in the unknown sample,
which may produce signals in the same spectral range of the calibration constituents.
In the next section we will study this case in detail, but we may anticipate here a
rather bitter-sweet result: the model will not work, in the sense that it will not be
useful for predicting the analyte concentration in samples with significant LOF, but
will warn the analyst about this fact.2

2.10 The First-Order Advantage

In the framework of the CLS model, it is assumed that the unknown samples do not
possess constituents which are not present in the calibration sample set, and are able
to produce a signal overlapping with those for the analytes. We now study the case of
a new sample composed of substances not taken into account in the calibration
phase. The result is that a significant error will occur in the prediction phase, mainly
because Eq. (2.8) would not be correct. In the latter expression, only calibrated
analytes should be present in the unknown sample.

This outcome is similar to that found in univariate calibration, where complete
selectivity towards the analyte of interest is required for accurate prediction. How-
ever, in CLS calibration, the model can warn the analyst on the presence of uncali-
brated phenomena in a given unknown sample. In this case, the value of the residual
standard deviation sres will be abnormally high in comparison with the instrumental
noise level. Moreover, the visual inspection of the elements of the vector e in
Eq. (2.8) may provide additional information. Since e has a number of elements

2One could also estimate the calibration spectral residues, which are the elements of the matrix E in
Eq. (2.3), as E ¼ X � SYT. An analogous expression to Eq. (2.18), applied to the values of eji (the
elements of E), would measure the calibration fit. The LOF value for the calibration CLS phase is
expected to be significant if: (1) the signal–concentration relationship deviates from the linear law,
(2) important interactions among constituents occur, or (3) wrong constituent concentrations are
introduced in matrix Y.
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equal to the number of wavelengths, a plot of e is called the spectrum of residuals.
This spectrum will show random noise at all sensors if the fit to Eq. (2.8) is
reasonably good, and the LOF is not significant. Conversely, if the LOF is signifi-
cant, meaning that Eq. (2.8) does not adequately represent the chemical composition
of the unknown sample, the spectrum of residuals will show positive and negative
features of significant intensity.

In this way, multivariate models such as CLS are able to provide the analyst with
information about the presence of unmodeled constituents in unknown samples.
They may not be able to compensate for the presence of these constituents, but at
least they can warn the analyst on these anomalies. This property is called the first-
order advantage. Figures 2.9 and 2.10 illustrate these observations. Figure 2.9
shows the spectra of two unknown samples; in part a the sample is composed of
the same four constituents of Fig. 2.6a, whereas in part b the sample contains, in
addition to these four constituents, an unmodeled compound whose spectrum shows
a maximum centered at sensor No. 60. If we submit both of these samples to a CLS
model built with the four constituents of Fig. 2.6a, the resulting spectral residuals
from Eq. (2.17) would be of the kind shown in Fig. 2.10. In part a of this latter figure,
the spectrum of residuals is random and of low intensity, corresponding to a test
sample which is representative of the calibration composition. In this case, sres would
be small and compatible with the level of instrumental noise present in the spectral
measurements. In part b, on the other hand, the residuals are significantly higher in
intensity than in part a, and suggest a spectral shape which differs from random

Fig. 2.9 (a) Spectrum of an unknown sample containing four constituents, whose spectra are
shown in Fig. 2.6a. (b) Spectrum of an unknown sample (blue line) containing the same four
constituents and an additional one whose pure spectrum is shown as a green line
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noise. Moreover, the spectrum of residuals in part b shows a positive signal at the
same sensor corresponding to the maximum for the interferent (sensor No. 60). In
some way, the spectrum of residuals is indicative about which spectral regions
correspond to the unexpected interferents. They do not provide their real spectra,
but only qualitative indications that something odd is going on in a certain spectral
region.

2.11 A Real Case

In this section we present a literature work where CLS was applied to the resolution
of a real case. It deals with the simultaneous determination of three active principles
in a pharmaceutical form: the antibiotics rifampicin, isoniazid, and pyrazinamide
(Goicoechea and Olivieri 1999). Figure 2.11 shows the UV-visible absorption
spectra of pure standard of the active principles. As can be seen, it is not possible
to find a wavelength at which one analyte is the only responsive constituent (except
rifampicin at wavelengths longer than 400 nm), which is the requirement for the
successful application of classical univariate calibration. In pharmaceutical quality
control, this type of determinations is usually carried out by means of liquid
chromatography with UV-visible detection, so that the lack of selectivity of the
spectroscopic technique is compensated by the selectivity of the chromatographic
column, which physically separates the sample constituents before detection.

Fig. 2.10 (a) Spectrum of spectral residues after CLS analysis of the unknown sample of Fig. 2.9a.
(b) The residues after CLS analysis of the unknown sample of Fig. 2.9b
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The work was required by a pharmaceutical company, due to the advantages of
the spectral analysis in comparison with chromatography. We could mention the
following ones: (1) it is faster, because a UV-visible spectrum may take a few
seconds to be recorded, in contrast to chromatographic runs, with regular times in
the order of minutes, (2) it does not employ auxiliary reagents or organic solvents,
(3) it may be implemented with portable instruments outside the laboratory,
(4) instruments may be connected remotely with optical fibers to the system,
allowing to take informed decisions, etc.

It is important to notice that commercial samples of these pharmaceutical forms
contain additional constituents to the active principles: the excipients. If any of these
excipients dissolves when analyzing the tables, and absorbs UV-visible light in the
working wavelength range, it will act as an interferent in the analysis, and should be
included within the calibration constituents when planning the calibration phase. In
the present experimental case, however, the excipients did not produce a significant
interference, and the calibration set was designed with only three constituents: the
active principles.

The calibration set included 15 mixtures of the three analytes. The concentrations
of the analytes in these mixtures were in the range where Lambert–Beer’s law was
obeyed, and were established through an experimental design known as central
composite (Leardi 2009). This design employs five different concentration levels for
each analyte, as illustrated in the three-dimensional plot of the 15 concentrations
(Fig. 2.12). As previously mentioned, the selection of the concentrations of calibra-
tion mixtures requires adequate designs providing representativity to the calibration,
and minimizing the correlations among the columns of the matrix Y. Central
composite designs put more emphasis in the combination of concentrations near
the center of the design, in contrast to full-factorial designs, which include all
possible combinations of concentration levels. This concept is best appreciated in
Fig. 2.13, where a two-constituent central composite design is compared with a full-

Fig. 2.11 UV-visible
absorption spectra of the
analytes of a real sample:
rifampicin (green line,
6.80 � 10�6 mol L�1),
isoniazid (black line,
2.00 � 10�5 mol L�1), and
pyrazinamide (red line,
1.20 � 10�4 mol L�1)
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factorial one. If both designs are built with five concentration levels, the central
composite will require 9 experiments, whereas the full-factorial 25 (Fig. 2.13). The
economy in experiments is apparent in the former case.

In the real experiment, once the spectra of the 15 calibration mixtures were
registered, the CLS matrix S was found, and through its generalized inverse, the
concentrations of the three analytes were predicted in a set of 6 validation samples,
prepared with standards of the same three active principles. The predicted
concentrations were compared to the nominal ones in the validation samples, and
the result was . . . not good! According to the authors of this work, . . . while the
concentrations of rifampicin and pyrazinamide could be reasonably determined, the
prediction errors for the less favorable analyte, isoniazid, were poor and on the
order of 50% (Goicoechea and Olivieri 1999). Why? The reader should conclude,
from the reading of this chapter, on the reason of the poor predictive ability of the
CLS model in this case, particularly with respect to the analyte isoniazid (Fig. 2.11).

Fig. 2.13 Two possible mixture designs for a two-constituent analytical system with five different
concentration levels. (a) Central composite. (b) Full factorial

Fig. 2.12 Three-dimensional
representation of the
concentrations of three
analytes in a central composite
design of 15 samples. The
blue point is located in the
center of the design, the eight
black points are in the
extremes of a factorial design
at two levels, and the six red
points (star points) outside the
factorial design are located at
a distance which depends on
the number of constituents
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We will discuss this system again in future chapters, by resorting to other multivari-
ate calibration models.

2.12 Advantages and Limitations of CLS

The main advantages of CLS can be summarized as follows. It is based on a simple
mathematical model, which can be easily implemented with the help of standard
matrix calculations. If the samples to be analyzed do not present serious interferents,
and no significant spectral collinearities are found among the analyte spectra, CLS
analysis provides a rapid, simple, and reliable way of simultaneously estimating all
analyte concentrations in multi-component samples.

The disadvantages are easy to imagine: it is sensitive to spectral correlations or
collinearities, so that analytes with severely overlapped spectra cannot be reliably
determined using CLS. It is also necessary to know all the chemical constituents
present in the unknown samples, otherwise the presence of non-modeled interferents
will lead to serious errors in the determination. This latter condition is hard to be
fulfilled in complex samples of natural, biological, industrial, or environmental
origin. The application range of CLS is thus extremely limited.

2.13 Exercises

1. Table 2.1 shows three different alternatives for the concentrations of two analytes
in two calibration samples, which would be used to build a CLS model.
(a) Write the matrix Y and the matrix product (YTY) for each alternative
(b) Calculate the determinant of the (YTY) matrix in each case. Hint: for a 2�2

matrix M, the determinant is simply (m11 m22 � m12 m21)
(c) Which alternative is better for calibrating the CLS model?

Table 2.1 Three alternatives for the calibration concentrations of two analytes

Alternative 1

Analyte Sample 1 Sample 2

1 1 0

2 0 1

Alternative 2

Analyte Sample 1 Sample 2

1 1 1

2 2 2

Alternative 3

Analyte Sample 1 Sample 2

1 1 2

2 2 1
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2. Indicate in which of the following cases a CLS model would be successful and
justify the answer.
(a) Determination of the quality of chicken meat by NIR spectroscopy
(b) Determination of the concentrations of two chemical constituents in the

presence of a constant background signal by UV-visible spectroscopy
(c) Determination of the concentrations of two chemical constituents in the

presence of a variable background signal by UV-visible spectroscopy
3. Figure 2.14 shows three cases of different spectral overlapping between two

analytes in pure form.
(a) Order the three overlapping situations according to decreasing values of the

determinant of the matrix (STS)
(b) Which situation is the most favorable one for predicting the analyte

concentrations in an unknown sample?
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The Inverse Least-Squares Model 3

Abstract
The first and simplest inverse least-squares calibration model, also called multiple
linear regression, is discussed in detail. Advantages and disadvantages are
discussed for a model which today is still in use for some applications. Proposals
are given for developing advanced calibration models.

3.1 Why Calibrating Backwards? A Brilliant Idea

The name inverse calibration is due to the use of the linear response-concentration
law written in an inverse manner, in comparison with classical direct methods such
as CLS. As will be shown below, inverse methods allow one to study multi-
component samples where only one or a few analytes are of interest, but the
concentrations, spectra, and chemical identities of the remaining sample constituents
are in general unknown. In this way, they allow one to overcome the main disadvan-
tage of CLS: the need of knowing the concentrations of all possible sample
constituents in the calibration phase.

The development of inverse models began in the decade of 1960, because of the
need of applying NIR spectroscopy to the analysis of materials. It was clear that NIR
data had a great potential for the non-invasive analysis of intact material, particularly
for the detection of quality parameters of seeds and other agricultural products. The
main drawback was the high degree of spectral overlapping among the spectra for
the analytes of interest (in fact, some of them are not really analytes but global
properties) and the remaining sample constituents. The CLS model is not feasible in
these cases, so that researchers focused on alternative mathematical models. The first
work describing a new approach to this problem was made by Karl Norris, in the US
Department of Agriculture, correlating the measurement of NIR data at two
wavelengths with the moisture level in seeds (Norris and Hart 1965). This work
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paved the way to seemingly more ambitious aims, e.g., the use of whole NIR spectra
in diffuse reflectance mode, for the direct analysis of samples without any previous
treatment. The publication consolidating this approach is the most cited one in the
field of NIR spectroscopy (Ben-Gera and Norris 1968). It is important to notice that
Norris was not a mathematician, a statistician, or a chemometrician, but an agricul-
tural engineer. This is perhaps an important lesson to be learned from the history of
multivariate calibration: you do not need to be a mathematician to produce a
mathematical revolution in analytical chemistry.

3.2 Calibration Phase

We now explore the first versatile method for the analysis of multi-component
mixtures: inverse least-squares regression (ILS), a model also known as multiple
linear regression (MLR). As previously discussed for the CLS model, direct calibra-
tion implies measuring the spectra of calibration samples containing the analytes at
known concentrations, and obtainment of the matrix of sensitivities from the direct
law by least-squares fitting of the following representative expression:

Signal ¼ Sensitivity� Concentrationþ Errors ð3:1Þ
In inverse calibration, on the other hand, the linear law is written inversely:

Concentration ¼ Signal� Regression coefficientþ Errors ð3:2Þ
where proportionality is assumed between the concentrations of the calibrated
constituents and the corresponding instrumental responses, through a set of regres-
sion coefficients to be estimated. Notice that the term collecting the model errors in
Eqs. (3.1) and (3.2) are different: in the former case they correspond to spectral
errors; in the latter, to concentration errors.

In inverse models, Eq. (3.2) is applied when the analyst only knows the concen-
tration of a single analyte (or a few) in the calibration samples, but knows nothing
about the remaining sample constituents. This highly important concept is the basis
of the most powerful multivariate calibration models. The literature on the subject is
abundant; we recommend the classical text of Massart et al. (1997), and the excellent
article by Haaland and Thomas (1988).

A general model based on the inverse of Lambert–Beer’s law can be expressed as:

Y ¼ XTBþ E ð3:3Þ
where the matrix X (of size J � I ) collects the instrumental signals for I calibration
samples, measured at J wavelengths. The matrix Y, on the other hand, contains the
calibration concentrations, in each of the I samples, of each of N sample constituents,
and its size is I � N (N is the total number of constituents). Up to here, both X and
Y have identical meaning as in the CLS model, since Y contains the concentrations
of all sample constituents.
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In Eq. (3.3), B is a matrix of size J � N relating the concentrations with the
responses in an inverse manner, and is called the matrix of regression coefficients.
It contains all the regression coefficients relating each of the constituent concentrations
with the calibration spectra. Finally, E is a matrix of error models, of size identical
to Y. The presence of E in Eq. (3.3) is due to the same reasons why a similar error
matrix was considered in the CLS calibration model. If the problem is over-
determined, with more equations than unknowns, the estimation of the parameters is
made by least-squares fitting, minimizing the sum of the squared elements of E.

Let us suppose now that we are not interested in all chemical constituents of the
samples, but just on a few, possibly on a single one. It is likely that we know nothing
about those other constituents, and only a single analyte is of interest. In this case, we
do not need to know all the elements of the matrix B, but only the column
corresponding to the analyte of interest, identified by the index n. Thus it is possible
to propose a simplified model in which only the concentrations for analyte n are
known, isolating from Eq. (3.3) the portion corresponding to the latter analyte:

yn ¼ XTbn þ e ð3:4Þ
where yn is a vector of analyte concentrations n, bn is the column of the matrix
B corresponding to this analyte, and e is the vector of concentration residuals for this
reduced ILS model. Figure 3.1 shows by means of blocks the meaning of Eqs. (3.3)
and (3.4).

Formally, finding bn from Eq. (3.4) implies the same steps as in the CLS model:
pre-multiplication of both sides by X, followed by pre-multiplication by the inverse
(X XT)�1:

Fig. 3.1 Top, block-based scheme corresponding to Eq. (3.3), representing the ILS model for
all the chemical constituents of the calibration samples, whose concentrations are grouped in the
matrix Y. The matrix X contains the spectra of the calibration samples in its columns, the matrix
B the vectors of regression coefficients in its columns, and the matrix E collects the model errors.
Bottom, isolation of the portion of the top scheme corresponding to a single analyte of interest: a
specific column of Y and a specific column of B are isolated and called yn and bn, respectively
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bn ¼ ðXXTÞ�1Xyn ð3:5Þ
Defining the generalized inverse of X as X+ allows one to condense Eq. (3.5):

bn ¼ Xþyn ð3:6Þ
Equation (3.6) illustrates the main difference between ILS, where only the analyte

concentrations need to be known, and CLS, where all concentrations of all
constituents should be known in the calibration samples. It is important to recall
that the matrix X should always be representative of the composition of future
unknown samples.

Notice that Eq. (3.6) does not mean that the ILS model allows for the study of a
single analyte only. If there are more analytes of interest, one could in principle write
a separate model for each of them, analogous to Eq. (3.6). For each analyte, a specific
vector of calibration concentrations yn is needed, leading to an analyte-specific
regression vector bn.

Finally, the ILS model allows one to study global sample properties (organoleptic
properties of food, octane number in gasoline, etc.). In Eq. (3.6), the vector yn would
not contain specific analyte concentrations, but global sample properties. ILS does
not appear to face major issues for the calibration phase. However, a detailed
analysis of the mathematical requirements involved might bring some bad news.

3.3 Mathematical Requirements

Equation (3.4) is the formal expression for a system of simultaneous equations with
multiple unknowns. One such equation is shown in Fig. 3.2, where the concentration
of the analyte of interest in sample 1 (y1) is expressed as the sum of products of the
signal at each wavelength for this particular sample (x11, x21, . . .) and the
corresponding regression coefficient (b1, b2, . . .).

The analysis in terms of number of equations and unknowns is as follows. There
are I equations (the number of elements of yn, which is the number of calibration
samples). On the other hand, J unknowns should be estimated, i.e., the elements of
the vector of regression coefficients bn, a number which is coincident with the
number of spectral wavelengths (or sensors in other multivariate signals). The
problem will be over-determined, in principle, if I > J. We face here the first problem
when trying to calibrate an ILS model: it requires more calibration samples than
wavelengths.

One option is to prepare a large number of calibration samples, generously larger
than the number of wavelengths. This might be demanding in terms of cost or time,
and may require several thousands of samples. Another alternative is to select, from
the whole spectral range, a reduced group of wavelengths, so that the samples
outnumber the wavelengths. This requires a convenient algorithm to select the
working wavelengths, and may lead to a significant loss of sensitivity, by discarding
sensors which are potentially useful for the analysis.
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This is not the end of the problems. Even if the condition I > J is met, to safely
continue the calibration process represented by Eq. (3.5), the matrix (X XT) should
be inverted. This implies that the columns ofX, at the selected working wavelengths,
should not show a significant degree of correlation or overlapping. Otherwise, the
determinant of (X XT) will be zero, precluding the matrix inversion in Eq. (3.5), or
close to zero, making the inversion unstable.

Figure 3.3 illustrates two extreme cases of spectral overlapping: in the first one
(part A), the degree of overlapping is significant at all sensors. Spectra with these
characteristics will lead to a very small value of the determinant of the matrix (XXT),
independently on the specifically selected wavelengths. In the second one (part B),

Fig. 3.2 A specific equation of the system of multiple equations in the ILS calibration phase. The
concentration of the analyte in sample 1 is shown to be the product of the first row of XT and the
column bn

Fig. 3.3 (a) Two spectra with a high degree of overlapping. (b) Two spectra with a low degree of
overlapping
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on the other hand, the overlapping is relatively low, although not null. If all columns
of X are overlapped in this latter way, there will be no problems in inverting (X XT)
at selected sensors. Unfortunately, in real-world applications using NIR spectros-
copy, the calibration spectra resemble Fig. 3.3a rather than the pleasing Fig. 3.3b.
See, for example, a set of NIR spectra for the calibration of typical parameters in corn
seeds which is shown in Fig. 3.4. These calibration spectra display a high degree of
overlapping or collinearity.

Selecting a reduced number of wavelengths with minimal correlation from a large
number of available sensors is not a simple task, and various algorithms have been
developed for this purpose, so that the ILS model can be successfully applied. In a
future section, a variable selection algorithm will be described, which is still in use
today. The degree of difficulties faced by the algorithm will be clear then.

3.4 Prediction Phase

During prediction, an inverse equation similar to the calibration phase is written
[Eq. (3.3)], based on the inverse Lambert–Beer’s law applied to the unknown
sample:

yn ¼ bnTx ð3:7Þ
where x is the spectrum of the unknown sample. Equation (3.7) implies that bn
behaves as the regression coefficient for constituent n (the equation), as previously
discussed for CLS. If more than one analyte of interest occur, Eq. (3.7) is applied as
many times as necessary, using each time the vector bn associated to each analyte.

It is also important to mention that in the framework of ILS, no model errors are
available for the test sample signals in the prediction phase [Eq. (3.7)]. Therefore, no
information on possible unmodeled constituents in the unknown sample is provided,
losing the important first-order advantage shown by CLS.

Fig. 3.4 NIR spectra of a set
of 50 corn seed samples,
employed to build a model for
the determination of quality
parameters. They were
measured in the wavelength
range 1100–2498 nm at 2 nm
intervals (700 channels), and
are available at http://www.
eigenvector.com/data/Corn
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3.5 An ILS Algorithm

We now provide a set of MATLAB instructions for performing ILS (Box 3.1). The
algorithm looks deceptively simple. However, notice that the variable “X” in Box
3.1 is not the full-spectral calibration data matrix, but the matrix of selected signals at
suitable wavelengths. The task of selecting the specific wavelengths is considerably
more complex, as we shall see below.

Box 3.1 ILS Algorithm
After loading in the workspace the variables “X,” “yn,” and “x,” i.e., the
calibration data matrix at the selected working wavelengths, the vector of
analyte concentrations or sample properties in the calibration samples, and the
spectral vector for the unknown sample (at the same wavelengths selected for
calibration), it is simple to apply the following two MATLAB programming
lines:

bn¼inv(X*X')*X*yn;
y¼x'*bn;
where “bn” is the vector of regression coefficients and “y” the predicted

analyte concentration or sample property.
The size of the input variables should be: “X,” J � I (J ¼ number of

wavelengths or sensors, I ¼ number of calibration samples); “yn,” I � 1; and
“x,” J� 1. Those generated during program execution are “bn,” J� 1 and “y,”
1 � 1.

3.6 Validation Phase

The validation phase of the ILS model is analogous to the one described for CLS in
the previous chapter. A group of new samples, independent of those employed for
calibration, and whose analyte content or sample property is known, is submitted to
the ILS model after measuring their spectra or multivariate signals. A comparison is
then made of the prediction results with the nominal values using an appropriate
statistical test. The statistical indicators are useful to judge on the analytical ability of
the model with respect to these validation samples: root mean square error of
prediction (RMSEP) and relative error of prediction (REP), as described in
Chap. 2. In the future, the model can be monitored by means of new sets of samples,
periodically analyzed using the developed multivariate ILS model and a reference
technique to control the calibration maintenance.

The visual inspection of the plots of predicted vs. nominal concentration and
prediction errors vs. predicted values will be useful, in the same way as described for
CLS. However, if a sample is problematic (prediction error significantly larger than
the average), with ILS it is not possible to detect the presence of interferents not
modeled by the calibration phase. This is because ILS does not possess the first-order
advantage, as discussed above.
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3.7 Advantages and Limitations of ILS

The main advantage of the ILS model stems from the study of complex mixtures by
an inverse calibration process, knowing only the concentrations of a limited number
of constituents. In other words, ILS permits the quantitation of an analyte in the
presence of interferences, provided the latter are properly included in the calibration
phase, although their concentrations or chemical identities are not known.

The main disadvantage of ILS lies in the requirement of a limited number of
working sensors, which leads to a loss of information and overall sensitivity, and to
the need of selecting sensors with minimal correlation, which is not an easy task.
Additionally, ILS does not show the important first-order advantage, already
discussed for the CLS model. Due to these limitations, the modern practice has
been gradually replacing ILS by more powerful methodologies, to be discussed in
future chapters.

3.8 The Successive Projections Algorithm

The aim of this algorithm is to select a small number of variables (wavelengths or
sensors) with a low degree of collinearity, so that the ILS model can be safely
applied (Araújo et al. 2001; Soares et al. 2013). To gather an idea of the magnitude of
the problem, imagine that 30 calibration samples are available, with spectra
measured at 100 wavelengths. To build a successful ILS model, the number of
wavelengths should be smaller than the number of samples, so that the question is:
how may sub-sets of 1, 2, 3, etc. and up to 29 wavelengths can be built with these
100 wavelengths? Combinatorial theory tells us that the answer is 100 sub-sets of
one wavelengths, 100 � 99/2 ¼ 4950 sub-sets of two wavelengths, etc., making a
total of 2 � 1025 sub-sets, i.e., a 2 followed by 25 zeros!

All of these models will provide a vector of regression coefficients bn, which will
allow one to predict the analyte concentration in an independent group of samples. In
this way, the models can be evaluated as regards their predictive ability, and the best
one will be the one leading to the lowest prediction error. If each of these operations
takes one microsecond, calculating all combinations would require
600,000,000,000 years! This shows the importance of developing intelligent
algorithms for selecting the optimal sub-set of sensors, or a sub-set close to the
optimum, allowing one to reach the goal rapidly and efficiently.

One of these methodologies is known as the successive projections algorithm
(SPA). The idea is to produce a reduced number of sub-sets, each of them with
minimal correlation among the selected variables, based on the concept of orthogo-
nal (perpendicular) projection. SPA involves various phases, among which the first
and most important one will be detailed here: the definition of the potential sub-sets
of sensors. Additional procedures have been developed for improving the SPA
results (Galvão et al. 2008).

In the above example, SPA will only produce a total of 100� 29¼ 2900 sub-sets,
instead of 2 � 1025. In a general case, the number of sub-sets will be J�(I � 1). The
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first 100 sub-sets of one wavelength are simple to define: each of them contains each
of the 100 original variables at which the spectra were measured. The next 100
sub-sets contain two wavelengths. Instead of selecting all possible combinations of
each of the 100 variables with each of the remaining 99 variables, SPA selects, as the
second sensor accompanying the first one, the variable that best fulfills the require-
ment of perpendicularity (orthogonality) with respect to the first one.

The rationale behind SPA is the following: each sensor can be represented by a
vector, or a set of I numbers: the row elements of the calibration matrix X. These
vectors point in a certain direction in a multi-dimensional sample space, and the tip
of the vector indicates the position of the sensor. In our example, SPA applies the
following protocol to find the 100 two-sensor sub-sets:

1. Consider the first one-sensor sub-set.
2. Find the projections of the remaining 99 variables in the direction perpendicular

to the selected sensor in the sample space.
3. Select the variable with the largest orthogonal projection as the second sensor

accompanying the first one.
4. Return to 1 and continue until the 100 sensors have been processed.

The above procedure will furnish 100 two-sensors sub-sets, instead of the 9900 of
a comprehensive search.

The concept of maximum orthogonal projection is illustrated in Fig. 3.5. In the
simplest possible sample space with just two samples, three variables are shown as
arrows pointing in the directions of their corresponding rows of X. If the first
variable of a particular two-sensor sub-set is the blue one (λ1), to find the second
one, the projections of the remaining two variables (λ2 and λ3) are obtained in the
direction perpendicular to λ1. The largest is the green one (Fig. 3.5) so that λ2 is
selected as the second variable accompanying λ1 in the two-sensor sub-set.

Fig. 3.5 Illustration of the
process of successive
orthogonal projections in the
sample space. For a given
sub-set of variables, λ1 is the
first selected sensor. The
projections are then calculated
of the remaining two variables
λ2 and λ3 in the direction
which is perpendicular to the
first variable λ1. The largest
orthogonal projection is the
one for λ2, so that this latter
sensor is selected as the
second one in the sub-set
starting with λ1
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Continuing with three-sensor sub-sets in our example of 100 variables and
30 samples, a similar criterion is adopted: the third selected sensor accompanying
each of the 100 two-sensor sub-sets will be the one, from the 98 remaining sensors,
presenting the largest orthogonal projection with respect to a space defined by the
first two variables. And so on, until reaching the last 100 sub-sets of 29 variables
each. It is easy to understand the algorithm name: successive projections.

Once the 2900 sub-sets have been produced, each of them is probed by an ILS
model to see which provides the best prediction results regarding the analyte
concentration or sample property to be measured. Some procedures have been
developed to efficiently filter the best variables of the best sub-set, leading to an
even more reduced set of sensors with optimal analytical results (Galvão et al. 2008).
A MATLAB graphical interface is freely available for the easy implementation of
SPA (Paiva et al. 2012), which can be downloaded from http://www.ele.ita.br/
~kawakami/spa/.

3.9 A Simulated Example

Algorithms such as SPA have renewed the interest in the use of ILS in multivariate
calibration for solving complex analytical problems (Soares et al. 2013). A simulated
example of the application of SPA is now discussed. Figure 3.6a shows the spectra
of four constituents of an analytical system, in which the analyte of interest is the one
with the blue spectrum, and Fig. 3.6b shows spectra for typical mixtures of the four
constituents. If 30 four-constituent mixtures are prepared in random proportions to
calibrate an ILS model, one should select, as discussed above, 2900 different
sub-sets through SPA. After applying the latter algorithm, the best sub-set of sensors
for building an ILS model is shown in Fig. 3.7. SPA only selects four wavelengths,
located by accident near the maxima of the four known spectra of the pure
constituents. In a general case, it is likely that the sample constituents or chemical
nature of the analyte of interest are not known. SPA will then operate as a black box,
just providing the optimal sensors or wavelengths for the analytical work.

The fact that four wavelengths were selected for building an ILS model in this
simulated four-constituent example should not come as a surprise. Will SPA always
select a number of wavelengths equal to the number of responsive components? In
general no; the simulated case is too perfect, so to speak, the degree of spectral
overlapping is rather low, there are no baseline effects, etc. In a general case, the real
number of sample constituents is not known, and thus the relationship between
SPA-selected wavelengths and constituent number is difficult to establish.

3.10 A Real Case

In this section a literature work will be discussed, in which the SPA method was
applied to select NIR spectral wavelengths, with the aim of measuring some relevant
parameters of fuel samples: sulfur content, distillation temperatures (starting point,

48 3 The Inverse Least-Squares Model

http://www.ele.ita.br/~kawakami/spa
http://www.ele.ita.br/~kawakami/spa


and T10% and T90% parameters, temperatures at which 10% and 90% of the initial
volume distill respectively) (Galvão et al. 2008). These parameters were measured
according to the international ASTM (American Society for Testing and Materials)
norms 4294-90 and D86. A set of 170 samples was available, whose spectra were
collected at 1191 NIR wavelengths (Fig. 3.8). The sample set was divided in three
sub-sets: one for calibration (65 samples), another one for optimizing the wavelength
selection (40 samples), and a third one for independent validation (65 samples). In a
first stage, the first derivative of all spectra was calculated, with the objective of
reducing the effect of the dispersed NIR radiation in the analysis. The application of
this and other mathematical pre-processing operations will be discussed in detail in a
future chapter.

Fig. 3.6 (a) Spectra of four
pure constituents. The blue
spectrum corresponds to the
analyte of interest. (b) Typical
spectra of some calibration
mixtures containing the four
constituents

Fig. 3.7 Wavelengths
selected by SPA (vertical
dashed lines) to calibrate an
ILS model for the analyte of
interest (blue spectrum in
Fig. 3.6)
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The derivative spectra and the parameter values were used to select the optimal
wavelengths for separate ILS calibrations. In the specific case of the parameter
T10%, it is noticeable that from the 1191 original variables, SPA selected only
15, as detailed in Fig. 3.9. The ILS model built with these 15 variables led to a final
prediction error of 3.5 �C in the T10% values, corresponding to a calibration range
from 190 �C to 270 �C. Thus the relative error is only 1.5%. Predictions of a similar
quality were obtained for the remaining parameters (Galvão et al. 2008).

In this real example, the value of the NIR technique and the ILS model can be
appreciated for the calibration of global sample properties. As previously discussed,
the analyst expects that the global sample properties depend on the chemical
composition of the fuel, which in turn will be reflected in the NIR spectra.

3.11 How to Improve ILS: Ridge Regression

At this point we may ask what ILS needs to become a multivariate model with all the
desired properties, without paying the price of selecting a few calibration
wavelengths. Let us write a list of wishes:

1. Maintain the inverse calibration model, which guarantees calibration for a partic-
ular analyte (or a few analytes) or sample global properties, ignoring the chemical
identities and concentrations of the remaining constituents.

2. Employ all available wavelengths or measuring sensors, ensuring maximum
selectivity and sensitivity.

3. Permit the safe inversion of the calibration data matrix.

Fig. 3.8 NIR spectra of 170 diesel samples, employed to build an ILS model for calibration
parameters of interest. Reproduced with permission from Galvão et al. (2008) (Elsevier)

50 3 The Inverse Least-Squares Model



One alternative, still in use today by some researchers, is to solve the ILS
Eq. (3.4) with all available wavelengths in the calibration matrix X, using a modified
least-squares procedure known as ridge regression (RR) (Hoerl and Kennard 1970;
Kalivas 2001). The specific aspects of the latter model are beyond the scope of this
book, but a motivation for RR can be given here. In ILS, the least-squares solution
intends to minimize the sum of squared errors for the model Eq. (3.4), so that the
problem can be formally described as:

bn ¼ arg min
XI
i¼1

e2i

 !
ð3:8Þ

where ei is an element of the residual concentration vector e in Eq. (3.4). Equation
(3.8) is interpreted as saying that bn is the argument leading to a minimum in the sum
of squared calibration errors.

We know that full spectra lead to infinitely large regression coefficients in
Eq. (3.8). In a future chapter, we will learn that large regression coefficients produce
large prediction uncertainties, which are proportional to the length of the vector of

regression coefficients

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XJ
j¼1

b2jn

vuut
0
@

1
A, so that a trade-off can be set by minimizing a

combination of squared calibration error and squared prediction error. The compro-
mise is controlled by the RR parameter λ in the following way:

Fig. 3.9 Wavelengths selected by SPA (red circles) to calibrate an ILS model for the parameter
T10% of diesel fuels, indicated on the first derivative of the average spectrum for the calibration
samples. Reproduced with permission from Galvão et al. (2008) (Elsevier)
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bn ¼ arg min
XI
i¼1

e2i þ λ
XJ
j¼1

b2jn

 !
ð3:9Þ

From Eq. (3.9), it can be shown that the vector of RR regression coefficients is
given by:

bn ¼ ðXXT þ λIÞ�1Xyn ð3:10Þ
where I is an appropriately dimensioned identity matrix. What is important in the
present context is that the matrix inversion in Eq. (3.10) is always possible, even
when the matrix (X XT) is singular and cannot be inverted. Of course, RR requires
one to optimize the value of λ, which can be done by different procedures (Golub
et al. 1979).

We now show the performance of RR in a simulated case, based on the estimation
of the vector of regression coefficients for the example of Fig. 3.6. Four constituents
are present, with the pure spectra shown in Fig. 3.6a. If we assume that only the
calibration concentration of the analyte of interest (blue trace in Fig. 3.6a) is known,
and RR is applied with the optimized value of the parameter λ, the resulting vector of
full-spectral regression coefficients is shown in Fig. 3.10a. Is this vector useful for
future predictions in new samples? In this simulated situation, we can compare it
with the one estimated by a CLS model from the calibration spectral matrix and the
complete matrix of calibration concentrations for all four constituents (this matrix is
known for this specific problem, but remains unknown in a general case, except for
the column associated to the analyte of interest). The CLS vector of regression
coefficients for the analyte of interest (see Chap. 2) is shown in Fig. 3.10b, and is
almost identical to the one for RR. We may conclude that RR could be a viable
alternative to improve the limitations of classical ILS.

A real application of RR can be cited: the determination of octane number in
gasolines from near infrared spectroscopy (Chung et al. 2001). The authors found
good prediction results, with average errors on the order of 0.3 units in the octane
number, better than those furnished by ILS. Despite the viability of RR, the general
consensus is that alternative models, to be discussed in future chapters, are prefera-
ble. The next section provides some insight into these advanced models.

3.12 An RR Algorithm

A short MATLAB algorithm for ridge regression is given in Box 3.2. Notice that its
implementation requires to previously tune the parameter λ of Eq. (3.10).

Box 3.2 RR Algorithm
The ridge regression model is analogous to the ILS model, but the expression
for the vector of regression coefficients slightly differs. A single MATLAB

(continued)
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Box 3.2 (continued)
line is enough to estimate “bn,” from the same workspace variables as in Box
3.1, except that the RR parameter “lambda” is required:

bn¼inv(X*X'+lambda*eye(size(X,1)))*X*yn;

3.13 How to Improve ILS: Compressed Models

Another alternative for improving the ILS model, and stemming from inspection of
the ILS calibration Eq. (3.4), is to replace the matrix of real signals X by another
matrix T, with some specific properties. This matrix T should be a somehow
compressed version of X, significantly smaller than X in size, to relax the require-
ment of a large number of samples. The compression process leading to T from
X should be able to retain the main properties of X, in the sense of representing the
changes in spectra from sample to sample. Specifically, we need the following
inverse model:

yn ¼ T vn þ e ð3:11Þ

Fig. 3.10 Vectors of regression coefficients for the analyte of interest in the example of Fig. 3.6.
(a) From a ridge regression model, only knowing the vector of calibration concentrations for the
analyte of interest. (b) From a CLS model, knowing the matrix of calibration concentrations of all
four constituents
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where T would play the role of X, and vn would involve a new set of regression
coefficients adapted to T. About 1960, compression methods capable of fulfilling
these requirements were well known, leading to a rapid development of a model
overcoming the problems of ILS. In fact, the specific employed compression method
was known from the XIX century. The details will be given in the next chapters.

3.14 Exercises

1. Consider an analytical system composed of N chemical constituents, all known
and available for the preparation of mixtures of standards.
(a) Show that the matrix of ILS regression coefficients for all constituents (B) is

equivalent to the generalized inverse S+ of a CLS model
(b) Show that in both the CLS and ILS models the number of wavelengths for

calibration should be at least equal to N
(c) Explain the results on wavelength selection by SPA in the system of Fig. 3.7.

2. In the real case described in Sect. 3.10, SPA selected 15 wavelengths for
calibrating the parameter T10%. Does it mean that 15 chemical constituents
have an influence on the target parameter?

3. In 1960, Norris found that the moisture level of a large number of wheat, soybean,
wheat flour, and wheat bran samples could be reasonably predicted as a function
of the difference of NIR absorbance at two wavelengths, 1940 and 2080 nm:

moisture ¼ kðx1940 � x2080Þ

(a) Write the latter expression in terms of an ILS model at two wavelengths
(b) Give a specific expression for the vector of regression coefficients bmoisture

4. Explain how an ILS model could be developed for calibration of the following
systems:
(a) Determination of the quality of chicken meat by NIR spectroscopy
(b) Determination of the concentrations of two chemical constituents in the

presence of a variable background signal by UV-visible spectroscopy
5. (a) Estimate the regression vector vn from Eq. (3.11) by least-squares
(b) Explain the mathematical requirements for the matrix T of Eq. (3.11) to be

useful for developing a successful ILS model
6. There are literature precedents on the determination of metal ions in natural

samples, such as the quantitation of calcium, potassium, magnesium, phosphorus,
sodium, sulfur, iron, boron, and manganese in wine (Cozzolino et al. 2008).
Given that simple metal ions do not show relevant vibrational NIR bands, how
can you explain that metals can be quantitated by NIR spectroscopy and
chemometrics?
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7. Show that the vector of regression coefficients for ILS and for RR are those given
above in this chapter, starting from the objective functions to be minimized,
written in the following way:

f ILS ¼ ð
XI
i¼1

e2i Þ ¼ eTe ¼ ðXTbn � ynÞTðXTbn � ynÞ

f RR ¼ ð
XI
i¼1

e2i þ λ
XJ
j¼1

b2jnÞ ¼ ðXTbn � ynÞTðXTbn � ynÞ þ λbnTbn

Hint: the derivative of an inner product (xT x) with respect to x can be thought as a
vector of derivatives of (xT x) with respect to each element of x:

d xTx
� � ¼ d x1

2 þ x2
2 þ . . .þ xJ

2
� �

d xTx
� �

=dx ¼
2x1
2x2
. . .
2xJ

2
664

3
775 ¼ 2x
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Principal Component Analysis 4

Abstract
A brief introduction to principal component analysis is provided, with
applications in sample discrimination and in the development of inverse calibra-
tion models using full spectral information.

4.1 Why Compressing the Data?

In the end of the previous chapter, the fundamental problem of multivariate calibra-
tion was raised: to join in a new model the advantages of CLS (using full-spectral
data) and ILS (using inverse calibration). The key appeared to lie in the application
of data compressing techniques, in such a way that the original matrix of calibration
spectra is reduced in size, preserving its prime information, in the form of sample-to-
sample signal changes with constituent concentrations or sample properties. The
desired compressed matrix would be a kind of spectral Gulliver in the country of the
spectral giants.

By 1960 the compressing technique known as principal component analysis
(PCA) was mature. In fact, PCA was first introduced, almost simultaneously in
Italy and France, by the mathematicians Eugenio Beltrami and Camille Jordan in
1873 and 1874, respectively. One of the oldest literature references on PCA dates
back to the beginning of the twentieth century (Pearson 1901).

PCA generates a matrix T called the score matrix (Fig. 4.1) whose properties will
be analyzed in this chapter. The PCA scores efficiently condense the spectral
information contained in the real variables within a matrix of appropriate size, to
be able to produce a suitable inverse calibration model. This condensation or
compression phase of the information contained in X is essential to understand
how the desired model works.
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The literature on PCA is abundant (Massart et al. 1997), as it is probably the most
employed chemometric technique, not only in chemistry, but in many other scientific
fields as well. The purpose of this chapter, therefore, is not to provide a comprehen-
sive insight into PCA, but only to describe in some detail the specific aspects
connecting the technique with first-order multivariate calibration.

4.2 Real and Latent Variables

The instrumental signals measured by the analyst are called real or manifest, and
differ from the so-called latent variables, originated by a mathematical process from
the former ones. They are latent because they cannot be directly visualized in the real
experimental signals, unless the latter ones are subjected to mathematical operations
which reveal their presence.

The link between real and latent variables is realized through a set of vectors
called loadings. The loadings provide the connection between the real and the latent
worlds when necessary. They are the tools allowing to compress the information, by
projecting the latter onto the space represented by them (passage from the real space
to the latent one), or to decompress the latent variables to reproduce the original
information (passage from the latent space to the real one), as illustrated in Fig. 4.2.
This resource will be frequently employed. Each loading corresponds to a given
score, so that they come in pairs and are mutually associated. The loading/score pair
is also called a principal component.

4.3 The Principal Components

The first phase of PCA is the computation of loadings. Mathematically, the loadings
are the eigenvectors of the square matrix (X XT) (Watkins 2002). There are several
techniques for finding the eigenvectors, such as singular value decomposition (SVD)
(Watkins 2002) and NIPALS (non-linear iterative partial least-squares) (Wold
1966). The former method estimates all principal components simultaneously,

Fig. 4.1 Illustrative scheme
of the transformation, via
PCA, of a large matrix X into
a smaller score matrix T
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whereas the latter computes them one by one, in the order of the explained proportion
of the spectral variations in X, until a certain pre-established number of components.

In any case, the loadings are grouped into a matrix U (of size J � I ). They are
called orthonormal, meaning that they are both orthogonal (or perpendicular) and
normalized (the length of each loading is unit). These properties can be condensed in
the following equation:

UTU ¼ I ð4:1Þ
where I represents an identity matrix of size I� I (all its diagonal elements are 1 and
all off-diagonal ones are 0). The relationship between the original matrix X, the
loading matrix loadings U, and the score matrix T is:

X ¼ UTT ð4:2Þ
Mathematically speaking, one could say that Eq. (4.2) defines a matrix decompo-

sition process. The matrix X is decomposed in the product of two matrices, U and T,
on the condition that U is formed by orthonormal columns. Figure 4.3 graphically
illustrates the process.

To obtain T from an experimental data set using Eq. (4.2), we need to carry out
these operations: (1) transpose Eq. (4.2) to give XT ¼ T UT, (2) post-multiply by U,
leading to XT U¼ T UT U, and (3) note that (UT U) is the identity matrix (Eq. (4.1)),
so that one directly obtains:

T ¼ XTU ð4:3Þ

Fig. 4.2 Passage from the real variable space to the latent variable space, by compression or
decompression via the spectral loadings
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One could then say that the matrix of scores T is the projection of the original data
matrix X onto the space defined by the loadings contained in U. Each column of T is
a score, and is associated to its corresponding loading or column of U. This
projection is the fundamental phase of the data compression procedure, because it
reduces the size of the original data matrix X (J � I ) to a score matrix T which is in
principle smaller (I � I ), because usually J> > I, i.e., there are much more
wavelengths than samples.

One requisite is thus fulfilled, the one related to size. There is another requisite, as
important as the former one, which depends on the properties of the columns of T.
They are also orthogonal, as the columns of U. This means that, in a geometrical
sense, the columns of T are perpendicular to each other, and the correlation among
any pair of columns of T is zero. Lack of correlation is an important outcome,
especially if we recall the discussion around ILS in the previous chapter, where
correlations in the signals of the data matrix employed for calibration were a
nuisance to any inverse calibration model.

4.4 Highly Significant Loadings and Scores

A judicious analysis of the scores allows one to find that they can be ordered in a
consistent manner: according to a decreasing contribution to the spectral variation inX.
Therefore, if one not only wishes to compress X to its reduced version T, but also to
select inside T the relevant information, separating it from the irrelevant one, it is
possible to further reduce the size of T. This even more reduced version of T is called
truncated, because it is not obtained by projection onto the loading space, but directly
by pruning the irrelevant T columns.

Suppose we have measured the spectra of 100 experimental samples at 1000
wavelengths. The matrix Xwill be of size 1000� 100, containing 100,000 numbers.
On the other hand, if in the T matrix (of size 100 � 100) we discover that only two
columns are highly significant, we could then represent most of the variation in X by

Fig. 4.3 Scheme illustrating the mathematical relationship between the calibration data matrix X,
the loading matrix U, and the score matrix T
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a truncated matrix of size 100 � 2, with only 200 numbers: those in the two highly
significant columns of T. The degree of compression is amazing: the matrix size is
reduced by 99.8%, leaving a matrix T with only 0.2% of the original size. This is the
sense of compression: to collect the valuable information into a few numbers. In this
example there will be two highly significant principal components, with two scores
and two associated loadings. In the consistently ordered versions of T and U, the
highly significant scores and loadings will be the first two columns of T and the first
two columns of U. The situation is schematically represented in Fig. 4.4.

4.5 Poorly Significant Loadings and Scores

If the previously described matrix T has 100 columns and only two are found to be
highly significant, what do the 98 remaining columns represent? Answer: they are
columns of scores which are primarily related to spectral noise. If we could spy the
specific numbers contained in the loading matrix U, we would see that each column
has J elements, as many as wavelengths. We could then speak about the spectra of
the loadings, and plot them as a function of wavelength. A highly significant spectral
loading (one of the first two columns of U in the above example) would show details
which are typically spectral, although with positive and negative features, meaning
that they do not represent true constituent spectra. They would instead be linear

Fig. 4.4 Illustrative scheme of the transformation, via PCA, of a matrix X of size 1000 � 100 into
a smaller score matrix T, of size 100� 100. The first two columns of T are highly significant, while
the remaining 98 mainly represent instrumental noise
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combinations of those pure spectra, with the meaning of catching, in a purely
mathematical/statistical sense, the spectral variability shown by X. On the other
hand, the poorly significant loadings would show spectral random noise, precisely
because they model the instrumental noise present inX. This is illustrated in Fig. 4.5.

In the ideal case, the loadings will be highly significant up to a certain point,
beyond which the noise-related loadings will start to appear (Fig. 4.6). In real life, as
one could easily anticipate, the situation will not be a black-and-white one, and
there would be some intermediate loadings. Visual inspection of the latter may not
be able to classify them as either spectral or random. Here is where mathematical
methods may help us in deciding, on a statistical basis, how many loadings are really
significant in a given matrix U. We will return on this very important matter in the
future.

Fig. 4.5 (a) Plot of a typical highly significant spectral loading. (b) Plot of a typical poorly
significant spectral loading

Fig. 4.6 The specific content
of the matrix U. The first two
columns have spectral
features, whereas the
subsequent ones are random
noise

62 4 Principal Component Analysis



4.6 Application to Sample Discrimination

Principal component analysis has a relevant application in practice, in the discrimi-
nation of samples by means of spectroscopy or other instrumental techniques.
Suppose the matrix T of size 100 � 100 was truncated to a size 100 � 2, retaining
only the first two columns, because they are the highly significant ones in compari-
son with the remaining 98 columns. If such is the case, each column of the truncated
matrix contains two numbers for each of the 100 samples: the first and second scores,
as illustrated in Fig. 4.7.

We could plot the location of each sample, taking as x coordinate the value of the
first score and as y coordinate the value of the second score. This may result in a map
such as the one of Fig. 4.8 where samples belonging to a certain class (A) are
separated, in the score space, from samples belonging to another class (B). Notice
that the separation is obtained without previously knowing that there are two sample
classes. This type of analysis is known as unsupervised, because samples are

Fig. 4.7 Scheme showing
how the elements of the first
two columns of the score
matrix T can be associated to
a specific sample of a set

Fig. 4.8 Plot of the second
score vs. the first score for a
set of samples belonging to
two different classes
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separated in an automatic manner, without previous knowledge on their origin. In the
supervised analysis, on the other hand, one previously know the sample classes, and
this information is employed, together with the spectra or other multivariate signals,
to train a suitable discrimination model.

The best preacher is brother example (an old Spanish proverb). Figure 4.9 shows
the spectra for 20 different samples measured at 100 wavelengths. The samples are
suspected to belong to two different classes: 10 to class A and 10 to class B, and the
experiment is set to investigate whether: (1) they can be discriminated on the basis of
their spectra and (2) if there is a particular spectral region which is responsible for the
discrimination, meaning that in that region the constituents responsible for the
discrimination absorb.

The result of applying PCA to the spectra is a set of loadings and associated
scores. The first option in this type of studies is always to place the samples in a
two-dimensional plot, in which a given point corresponds to a sample, and is defined
by the first and second score. The plot is shown in Fig. 4.10, where a reasonably
good separation is apparent in two sub-sets of 10 samples each. It is important to
notice that the second score is the parameter which is really useful for discrimination
of the samples in two types (Fig. 4.10), because the samples with large values of the
second score belong to one class, whereas those with low values of the second score
belong to the other class, almost independently on the value of the first score.1

Fig. 4.9 Spectra of 20 samples at 100 wavelengths (red lines, samples of class A; black lines,
samples of class B). The insert shows a zoom of the region between sensors 30 and 40

1The separation of a sample set into classes by PCA is called discrimination, as described here. The
term classification is reserved for the development of a rule for assigning future samples to any of
the separated classes. For example, in Fig. 4.10 the rule might be: samples with positive second
score belong to one class and samples with negative second score to the other class.

64 4 Principal Component Analysis



Another important phase of PCA is the study of the loadings. Figure 4.11 shows
the first two loadings, which have apparent spectral aspect, although they are abstract
linear combinations of real spectra. What is the connection between Figs. 4.10 and
4.11? If the second score is fundamentally responsible for the successful discrimina-
tion, then the second loading should show high intensities in the spectral regions
where the responsible constituents absorb. It is apparent that the spectral region in
the range of sensors 30–40 is the responsible one. We would then search the

Fig. 4.10 Plot of the second score vs. the first score, after PCA of the spectra of Fig. 4.9. Blue
circles, samples of class A, green circles, samples of class B

Fig. 4.11 First two loadings after PCA of the spectra of Fig. 4.9
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chemical structures likely to absorb in this region, verifying if they are really
responsible for the discrimination. Going back to Fig. 4.9 and inspecting it in detail,
we discover that in the region 30–40 sensors there is a small spectral shoulder where
samples differentiate, although minimally, from one type to another (see the insert
zooming that particular sensor region). PCA has made completely apparent this fact
that could go unnoticed to the naked eye. Some authors rightly affirm that PCA is a
tool allowing one to find hidden patterns in the data. That small shoulder is the
hidden feature revealed by PCA in the present case.

If the second principal component is the discriminatory one, we could ask
ourselves what is the role of the first one. Comparison of Figs. 4.9 and 4.11 suggests
that the first loading is related to the mean spectrum of the set of original spectra
(multiplied by �1), and does not provide relevant information regarding the dis-
crimination. For this reason, it is usual to employ a mathematical transformation of
the raw data previous to PCA, consisting in centering the spectra with respect to the
mean (subtracting from each spectrum the mean spectrum). This will decrease the
contribution of the mean spectrum, and will highlight the role of the spectral
differences leading to discrimination. We will return on this activity in the future.

We finally study the subsequent loadings, from the third to the last one. Fig-
ure 4.12 plots the third loading, which is apparently random noise. Likewise, all the
subsequent loadings are composed of random noise. This means that the remaining
scores, associated to these loadings, do not contain information useful for discrimi-
nation. We can tie this behavior to the numerical values of the portion of the data
which is explained by each principal component. The latter is usually called the
explained variance, and is estimated by writing Eq. (4.2) as follows:

Fig. 4.12 Third loading after PCA of the spectra of Fig. 4.9
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X ¼ UTT ¼ u1 u2 . . . uI½ �
tT1
tT2
. . .
tTI

2
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3
775¼ u1tT1 þ u2tT2 þ . . .þ uItTI ð4:4Þ

where the columns u1, etc. are the loadings and the rows t1
T, etc. the scores. The

above equation allows one to consider that each term of the form (ui ti
T) contributes

to the reconstruction of X with a certain proportion of the data. The specific
contribution of the successive terms is usually measured as the sum of their squared
elements, relative to the sum of all the squared elements of X. This defines the
explained variance by each principal component as:

Explained variance %ð Þ ¼ 100

PJ
j¼1

PI
i¼1

u jti
� �2

PJ
j¼1

PI
i¼1

x2ji

ð4:5Þ

where xji, uj, and ti are generic elements of X, u, and t, respectively.
In the present case, the explained variances are: 98.4% by the first principal

component, 1.0% by the second and 0.6% by the sum of all the remaining ones, or
ca. 0.03% each. This justifies why only two principal components are able to explain
the main fraction of the spectral variability. Notice that the discrimination was made
possible thanks to that 1% explained by the second component.

In a real case, it may not be possible to truncate the matrix T to two columns only,
because more columns are associated to relevant phenomena, so that sample dis-
crimination may require more components per sample. If the first three principal
components are highly significant, then a three-dimensional plot could be useful to
separate the samples.

4.7 A PCA Algorithm

Box 4.1 gives a short MATLAB code for implementing PCA, obtaining the loadings
and scores, as well as the explained variance by each principal component.

Box 4.1
This PCA algorithm invokes a sub-routine of the MATLAB environment
(‘princomp’), and provides the loadings and scores from an input variable
‘X’, the matrix of spectra of size J� I (J¼ number of wavelengths or sensors,
I ¼ number of calibration samples)

[U,T,L]¼princomp(X','econ') ;
EV¼100*L/sum(L);

(continued)
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Box 4.1 (continued)
The output consists of ‘U’, the loadings, ‘T’, the scores, and ‘EV’, the

explained variance by each component. If one wants to plot the first two
loadings and the second vs. the first score, the commands are:

plot(U(:,1:2))
plot(T(:,1),T(:,2),'o')

Notice that the MATLAB command ‘princomp’ centers the data before
applying PCA.

4.8 A Real Case

A literature work describes the discrimination of tea samples according to its variety
(He et al. 2007). A total of 240 samples of eight typical kinds of tea were purchased
at a local super-market: Zisun, Xihu Longjing, Zhejiang Longjing, Yangyangouqin,
Xushuiyunlv, Maofeng, Lushanyunwu, and Wanhai. Figure 4.13 shows the NIR
spectra of the tea samples (He et al. 2007). The data were not submitted to PCA
directly, but were previously transformed using a mathematical procedure to remove
the dispersion effects of the NIR radiation when studying solid samples. These
pre-processing methods will be discussed in detail in a future chapter.
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Fig. 4.13 NIR spectra of samples of eight different varieties of tea. Reproduced with permission
from Elsevier (refer Footnote 1)
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After applying PCA, the authors found that three principal components were
needed to explain the spectral variance, and were all involved in the discrimination
process. Figure 4.14 shows the corresponding three-dimensional score plot, where
the discrimination success is apparent.

In the authors’ words: . . . The contribution of this work is to present a rapid and
non-destructive approach for discriminating of different varieties of tea. At present, there
are only qualitative analysis in most of the discrimination of varieties, . . . In this research,
we made quantitative analysis for the varieties of tea, . . . a relation was established between
reflectance spectra and varieties of tea . . . (He et al. 2007).

4.9 Application to Multivariate Calibration

The main application of PCA in the framework of multivariate calibration is to
provide a truncated score matrix, of adequate size and properties, to be coupled to an
inverse calibration model. This would create a model capable of employing full-
spectral data to quantitate analyte concentrations or global sample properties.

The size of the truncated score matrix will be I � A, where I is the number of
calibration samples, and A is the number of columns of T explaining the largest
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Fig. 4.14 Three-dimensional plot of the first, second, and third scores of the tea samples, as
indicated. Reproduced with permission from Elsevier (refer Footnote 1)

4.9 Application to Multivariate Calibration 69



proportion of the variance, which are associated to the highly significant loadings. It
is not possible to exaggerate how crucial is the estimation of the optimum value of
A in multivariate calibration. There are various alternative procedures, visual and
statistical, for this important purpose. We will devote an entire chapter to the subject.

On the other hand, as regards the properties of the score matrix, its columns are
orthogonal to each other. The most important consequence of this property is that
this matrix is free from collinearity or overlapping among its columns. This will be
highly valuable in the next chapter.

4.10 Exercises

1. Figure 4.15 shows the loadings (A) and a plot of second vs. first scores (B) for the
simulated problem discussed in Sect. 4.6, after centering the spectra with respect
to the mean spectrum. The explained variances by the first and second principal
components are 69.0% and 18.6%, respectively.
(a) What conclusions can be drawn from the explained variances with respect to

the use of raw (uncentered) data?
(b) Compare the loadings in Fig. 4.15 A with those for uncentered data
(c) Compare the score–score plot in Fig. 4.15 B with that for uncentered data
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Principal Component Regression 5

Abstract
A modern multivariate model incorporating all required characteristics is
discussed, based on the combination of principal component analysis and inverse
least-squares regression.

5.1 PCA and ILS Combined: Another Brilliant Idea

When considering the CLS and ILS models, the important question was: why not
exploiting the advantages of both models? At the end of Chap. 3 this question was
raised, proposing a working philosophy to overcome the problems of CLS and ILS.
The proposal consisted in estimating a new matrix, from the original one of
instrumental signals for calibration X, preserving the information regarding the
chemical constituents and spectra that were latent in X. On the other hand, the size
of the new matrix should be considerably smaller than that of X, compatible with the
requirements of the ILS model. By the time ILS was first proposed (the decade of
1960), a technique to produce the desired matrix was long known. The latter is the
truncated score matrix furnished by principal component analysis (PCA), as studied
in the previous chapter.

The combination of PCA and ILS gives rise to the first-order multivariate model
known as principal component regression (PCR), and represents one of the simplest
attempts to integrate the main advantages of CLS and ILS. The PCR model employs
an inverse calibration, but does not correlate the analyte concentrations or sample
properties with the instrumental responses, but with the truncated score matrix
discussed in the previous chapter. As before, we highly recommend reading the
work of Haaland and Thomas on the subject (Thomas and Haaland 1988).
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5.2 Matrix Compression and Decompression

The main idea of PCR is to replace the original calibration data matrix X by a
compressed version. The replacement is the truncated version of the score matrix T,
which only retains the first A columns. We will call the truncated score matrix TA.
This matrix, of size I � A, is composed of the A mutually orthogonal columns of
T explaining a significant portion of the spectral variance, associated, as we have
seen before, to the A highly significant loadings.

We are thus assuming that these A latent variables explain the variance in X, and
that it is not necessary to employ the complete matrix U in the projection of X to find
T (see Chap. 4). One can remove the columns ofU from the (A + 1) to the I, leaving a
matrix UA (of size J � A) only containing the first A loadings. The remaining
loadings are discarded because they are considered to model the instrumental
noise. In this way, the truncated score matrix TA can be expressed as:

TA ¼ XTUA ð5:1Þ
This matrix TA, in spite of having a size considerably smaller than the original

spectral matrix, plays a similar role in calibration, because the relevant information
present in X has been compressed and selected in an efficient way.

On the other hand, given a pair of truncated matrices TA and UA, we can
reconstruct an approximation to X which we call XA by means of:

XA ¼ UATA
T ð5:2Þ

This latter matrix XA is a different version of X: it is an approximation to
X reconstructed only with the really useful information, discarding the instrumental
noise. The process can be illustrated as a series of images of a Brazilian beach in
Fig. 5.1. The original picture is a matrix of pixel intensities, which can be
decomposed using PCA. The picture can then be reconstructed using Eq. (5.2).
The image for A ¼ 1 was reconstructed using only the first principal component,
which is the one retaining the largest portion of the total variance. As more and more
principal components are employed in the reconstruction of XA, the image becomes
progressively neat, but the relevant information is retained by the compressed
matrices, even when using a reduced number of latent variables. In the specific
case of Fig. 5.1, the original picture has 5,308,416 data values, whereas the one
reconstructed with 50 latent variables required 268,850 intensities, implying a
compression of ca. 96%.

Figures 5.2 and 5.3 graphically show the operations of: (1) matrix decomposition
of X into loadings and scores, and (2) reconstruction of the matrix XA from the
truncated score and loading matrices.
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Fig. 5.1 Reconstruction of a digital image using a limited number of principal components
(indicated by the value of A). The original image has been taken by the author in a Brazilian beach

Fig. 5.2 Graphical
representation of the
decomposition of the original
data matrixX in the product of
the loading and score matrices

Fig. 5.3 Graphical
representation of the
reconstruction of the matrix
XA with the product of the
truncated loading UA and
score TA matrices, using a
reduced number of principal
components (A)
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5.3 Calibration Phase

At this point we join the advantages of CLS and ILS, which was the prime objective
of multivariate calibration. An inverse calibration model is built, in which the analyte
concentrations in the training samples contained in yn are correlated with the scores
contained in the truncated score matrix TA, instead of the original data matrix X:

yn ¼ TAvn þ e ð5:3Þ
where vn (of size A � 1) is a vector of regression coefficients defined in the space of
the latent variables and e collects the error models. The vector vn can be found from
Eq. (5.3) pre-multiplying both sides by TA

T:

TA
Tyn ¼ TA

TTAvn þ e ð5:4Þ
We now multiply both sides by the inverse of (TA

T TA) and get vn:

vn ¼ ðTA
TTAÞ�1TAyn ð5:5Þ

By analogy with the criterion employed before, we call the matrix [(TA
T TA)

�1

TA] as the generalized inverse of TA and represent it by TA
+, so that Eq. (5.5) adopts

the following final form:

vn ¼ TA
þyn ð5:6Þ

This step completes the calibration. Obtaining the regression coefficients vn in
PCR is completely analogous to the process of finding the regression coefficients bn
in CLS. The only difference is that vn is defined in a latent space, a highly reduced
and abstract version of the real space. Just to set an example, if a CLS model is built
with spectra measured at 1000 wavelengths, the vector of regression coefficients bn
will be a column vector with 1000 elements, whereas if only two principal
components retain the variance, and the score matrix is truncated to its first two
columns, the vector of regression coefficients in PCR vn will only have two
elements. This implies a reduction of 99.8% in the number of coefficients, leaving
only 0.2% of the latent counterparts.

5.4 Mathematical Requirements

In the ILS calibration phase we found, as the main drawback, the issue of inverting
the square matrix (X XT). The mathematical requirements for the latter inversion to
be possible were: (1) I > J, that is, more samples than wavelengths and (2) low
degree of correlation among columns of X.

As regards the number of independent equations and unknowns, Eq. (5.3)
represents a system of multiple equations (the number of equations is I, equal to
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the number of samples or elements of yn) with multiple unknowns (the number is A,
equal to the elements of vn). This implies that the number of calibration samples
should be larger than the number of columns of the truncated matrix TA. This is
indeed fulfilled, because the maximum possible value of A is I.

Notice that A represents the number of sources of spectral variance present in the
system. A rule of thumb of PCR calibration is that as the analytical systems become
more complex, they will show a larger number of sources of variance (mostly
chemical constituents, but also baseline drifts, dispersive effects of the radiation,
etc.) and will require a correspondingly larger number of calibration samples.
Calibration developers for analytes or properties in industrial or natural samples
are used to collect large sets of calibration samples, on the order of hundreds or
thousands. We may naturally expect that, in these systems, A << I.

In the case of PCR, the inversion of (TA
T TA) in Eq. (5.5) is trivial, because this

matrix is diagonal (all off-diagonal elements are zero), due to the fact that the
columns of TA are orthogonal. The inverse of a diagonal matrix is simply given by
a diagonal matrix whose elements are the inverse of the original ones. This greatly
simplifies the collinearity issues which were so problematic in ILS.

5.5 Prediction and Validation Phases

In the prediction phase, the spectrum of an unknown sample is registered, and the
instrumental signals are collected in the column vector x (of size J � 1). Before
applying the prediction model, it is necessary to project the latter vector onto the
space of the A columns of the truncated loading matrix UA, because we cannot use
the original data to estimate concentrations mixing a real spectral vector x with the
compressed regression coefficients contained in vn.

In an analogous fashion to Eq. (5.1), a score vector tA (of size A � 1) is obtained
for the unknown sample:

tA ¼ UA
Tx ð5:7Þ

This vector tA contains the sample scores. They will play the role of the real
spectral data in the prediction PCR phase, where the inverse model is applied
(concentration proportional to signal):

yn ¼ vnTtA ð5:8Þ
where vn replaces bn and tA replaces x. From the last equation, the analyte concen-
tration or sample property yn can be estimated.

Validation, in turn, proceeds as for the previous CLS and ILS models.
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5.6 The Vector of Regression Coefficients

Equation (5.8) is a highly compressed version of the prediction phase. We would like
to go back to the real space, and get a vector of regression coefficients bn defined in
the original wavelength space. In this way, we would get the equation, the product
that some calibration developers sell to the customers. The equation is the set of
numbers, one for each wavelength, allowing one to estimate the analyte concentra-
tion in the sample, multiplying the original spectrum x.

As commented above, the link between the latent and the real space is the loading
matrix, in this case the truncated loading matrix UA. Indeed, replacing tA from
Eq. (5.7) in Eq. (5.8):

yn ¼ vnTUA
Tx ð5:9Þ

We can verify that the vector of regression coefficients in the real space bn
(transposed) is the product vn

T UA
T, so that:

bn ¼ vnTUA
T

� �T ¼ UAvn ð5:10Þ
We can appreciate here the usefulness of the truncated loading matrix, in allowing

us to decompress the latent regression vector to the real space, and to find a vector of
regression coefficients analogous to the one for CLS, but obtained in the framework
of an inverse compressed model.

Recall the discussion on the CLS vector of regression coefficients in Chap. 2,
Sect. 2.6. We noticed that the spectrum of bn showed features indicating where the
analyte of interest responded. The system was a simulated one with well-resolved
pure constituent spectra, and the model was a classical, direct one, resorting to
Lambert–Beer’s law. Does the PCR regression vector bn of Eq. (5.10) represent
something physical too? To answer this question let us describe an experimental
example. The NIR spectra of 50 samples of whole corn seeds of known moisture
level were measured, the number of latent variables A for truncating the loading
matrix was estimated, and a PCR model was built to predict the level of moisture
from the spectra of future samples. Figure 5.4 shows the spectra, and Fig. 5.5 the
vector of PCR regression coefficients bn. As can be seen, the latter presents an
intense band at ca. 1900 nm. Does this band represent a real phenomenon, in spite of
the abstract way in which the regression coefficients were found? Think about the
process: principal component analysis through the eigenvectors of the spectral data
matrix, truncation of the score matrix, inverse calibration for the moisture values,
and decompression of the latent vector of regression coefficients back to the real
space. Honestly, it will be rather miraculous if Fig. 5.5 carries any physical sense.

However, it does. The PCR calibration of the moisture level should in principle be
related to the NIR absorption properties of the water molecule. Water shows various
absorption bands in its NIR spectrum; the most intense one is located at ca. 1900 nm,
and corresponds to a frequency of 5260 cm�1, which is a combination band
consisting of the sum of two fundamental vibrational frequencies: stretching
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(ca. 3700 cm�1) and bending (ca. 1600 cm�1). Figure 5.5 shows that the most
intense positive band in the vector of PCR regression coefficients is located at
ca. 1900 nm. This cannot be a chance result.

The lesson from this section is simple but extremely important: the vector of
regression coefficients knows where the analyte responds in the spectra of the
calibration samples, or where the chemical constituents responsible for an organo-
leptic property of a sample respond. Even after a complex set of operations such as
sample collection, spectral measurement, and mathematical processing, the vector of
regression coefficients will be there, eager to provide a physicochemical interpreta-
tion of the phenomenon under study. This implies that calibration models, no matter
how complex in their formulation, have always a connection with real phenomena,
about which the analyst may have some experience. A PCR model providing a
vector bn which is only random noise cannot be a good predictive model.

Fig. 5.4 NIR spectra of corn
seeds, employed to build a
PCR model for the rapid
determination of the moisture
level and other important
parameters. They were
measured in the wavelength
range 1100–2498 nm at 2 nm
intervals (700 channels), and
are available at http://www.
eigenvector.com/data/Corn

Fig. 5.5 PCR regression
coefficients for the calibration
of moisture in corn seeds. The
wavelengths for the major
peaks are indicated
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In sum, spectral bands which are known to be intense in the pure analyte spectrum
(provided this information is available) may in principle be apparent in the spectrum
of bn. However, this may not always be the case, for a simple reason: if some analyte
bands are severely overlapped with those for other constituents acting as interferents,
there will be no net signal left for prediction, and bn will be small, possibly noise in
the position of those specific bands. All this means that the physical interpretation of
bn may not be completely transparent.

5.7 Karl Norris and the Regression Coefficients

The work that started the modern era of multivariate calibration is due to Norris, as
previously discussed (Norris and Hart 1965). He was able to show that the moisture
level of various samples (wheat, soybean, wheat flour, and wheat bran) could be
reasonably predicted by a very simple model. Specifically, he found that only
measurements at two NIR wavelengths were required, and that the moisture ( y)
was directly proportional to the difference in absorbance at 1940 and 2080 nm, so
that y¼ k (x1940 – x2080). He did not use PCR, but only ILS at these two wavelengths.

Figure 5.5, on the other hand, was obtained after a considerably more elaborated
process, but the conclusion is analogous: the PCR vector of regression coefficients
has almost only two important contributions, centered at ca. 1900 and 2080 nm. Let
us simplify matters, and consider negligible all bn elements except those at 1900 and
2080 nm, which are approximately equal in magnitude and of opposite sign. The
moisture level will be predicted simply by multiplying bn by the sample spectrum x.
If only two elements of bn are significantly different than zero, the product (bn x) will
only have two terms: (k x1940) and (�k x2080). The moisture level y will then be given
by y ¼ k (x1940 – x2080), i.e., Norris equation!

5.8 A PCR Algorithm

A MATLAB algorithm for PCR can be written in only a few programming lines, as
shown in Box 5.1. Is it too good to be true? Maybe: notice that ‘princomp’ in the first
line of Box 5.1 invokes a MATLAB sub-routine which estimates the loadings and
scores of the matrix ‘X’, and returns the variables ‘U’ and ‘T’. If we could inspect
this sub-routine in detail, the PCR algorithm would look considerably more complex
than the three programming lines in Box 5.1.
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Box 5.1
PCR algorithm: after the calibration data (‘X’ and ‘yn’), the unknown sample
spectrum (‘x’) and the number of latent variables ‘A’ are present in the
workspace, the following codes provide the analyte concentration in the
unknown (‘y’):

[U,T]¼princomp(X','econ') ;
bn¼U(:,1:A)*inv(T(:,1:A)'*T(:,1:A))*T(:,1:A)'*yn;
y¼bn'*x;

The sizes of the input variables are: ‘X’, J � I (J ¼ number of wavelengths
or sensors, I¼ number of calibration samples), ‘yn’, I� 1, ‘x’, J� 1, and ‘A’,
1 � 1. Those generated during program execution are ‘U’, J � A, ‘T’, I � A,
‘bn’, J � 1, ‘y’, 1 � 1.

5.9 How Many Latent Variables?

Until now we have mentioned the use of truncated matrices for calibration and
prediction with the PCR model, but we have not explained in detail how to estimate
the value of A. The next chapter will be completely devoted to this important subject.
There are various mathematical techniques to estimate A, although there is some
consensus in that one of them is to be preferred. Why would two procedures differ in
the estimation of A? The answer is that the loadings, which we have classified in
highly significant and poorly significant, should be really classified into three
groups: highly significant, doubtful, and poorly significant. The region of doubtful
loadings is the one that would make a statistical technique to say that A is 4, while
another one says that it is 5. We may not expect that two different mathematical
procedures to estimate A differ in 10 latent variables, but we may naturally expect
differences in a few latent variables, depending on the specific details of the
calculations.

5.10 Advantages of PCR

The main advantages of PCR are easy to summarize: (1) use of full-spectral data,
(2) inverse calibration model, (3) replacement of the original signals, which are
likely to be highly correlated, by latent variables with no correlation (orthogonal).
There are additional advantages. As any model using full-spectral data, PCR should
be able to provide spectral residuals for each unknown sample, restoring the first-
order advantage presented by CLS, which was somewhat lost in ILS.

In the case of PCR, the spectral residuals are defined as the difference between the
experimental sample spectrum (x) and the spectrum that can be reconstructed by the
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model (xA). This latter spectrum is found from the score vector for the sample and the
truncated loading matrix UA:

xA ¼ UAtA ð5:11Þ
This latter expression can be interpreted by saying that the estimated spectrum is

the reconstruction or decompression of the sample scores, from the latent space to
the real space. As always, the link between both spaces is the truncated loading
matrix.

We could define a parameter analogous to that employed in CLS as a measure of
the spectral residue:

sres ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PJ
j¼1

x j � xAj
� �2

J � A

vuuut
ð5:12Þ

where xj and xAj are generic elements of the sample spectrum x and of the
reconstructed spectrum xA with A latent variables as shown in Eq. (5.11). In a future
chapter we will provide a more elaborated test for judging whether the spectral
residues for a given sample are significant or not.

In this way, the first-order advantage is added to the list of advantages already
given for PCR, because sres will be comparable to the instrumental noise level for
normal samples, those not carrying unexpected constituents. Conversely, sres will be
significantly larger than the instrumental noise, flagging samples with uncalibrated
constituents as abnormal. As was the case in CLS, the spectrum of residuals (x – xA)
will show random noise in the absence of unexpected interferents, and spectral
features otherwise.

A final characteristic of PCR is that the scores of the calibration samples, and also
those for validation and true unknowns, can be placed in a score–score plot (second
score vs. first score), allowing one to get a rapid visualization of the mutual
relationship among samples. For example, we could discover in this plot that
samples that were not used to build the model (either validation or unknowns) are
outside the region delimited by the calibration space. If these samples are validation
ones, they should be included (along with other ones of similar behavior) in the
calibration set, to provide more representativity to the latter. If they are true
unknowns, it is likely that they contain new constituents, and could not be analyzed
with the current model.

5.11 A Real Case

A paradigmatic example of the successful application of PCR to a real analytical
problem is the determination of parameters of interest in whole seed samples by
means of NIR spectroscopy, replacing the classical analyses of oil, moisture, protein,
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and starch. Some of them employ toxic organic solvents, and are expensive, com-
plex, and time consuming (moisture evaporation, oil extraction, protein digestion,
and starch hydrolysis take hours). The combination NIR/PCR, instead, allows one to
perform the simultaneous analysis of the four parameters in a short time, with no use
of solvents or auxiliary reagents, with a low cost per sample and without processing
the seed samples (in the extreme case, without even grinding the seeds). This type of
analysis is today routine in quality control laboratories of agricultural products
around the world.

Figure 5.4 shows the NIR spectra of a set of 50 corn seed samples,1 in the
wavelength range from 1100 nm to 2498 nm each 2 nm (700 different wavelengths).
Notice the high degree of spectral overlapping or correlation among the NIR profiles
in Fig. 5.4. Without PCR, the probability of success would be low.

The four parameters of interest in the seeds employed for calibration were
independently measured by reference analytical techniques. The experimental
ranges for these properties are: moisture, 9.38–10.99%; total oil, 3.09–3.83%; total
protein, 7.65–9.71%; and starch, 66.47–62.83%. The aim is to build PCR models to
replace the classical determinations. To illustrate the result, we show in Table 5.1 the
average prediction error in these parameters, estimated for an independent group of
30 validation samples, employing full-spectral PCR models with 20 latent variables
(A ¼ 20). The NIR spectra of the validation samples are shown in Fig. 5.6. We can

Table 5.1 Statistical
indicators for the PCR
validation phase in the
analysis of seedsa

Parameter RMSEP/% REP/%

Moisture 0.016 0.16

Total oil 0.08 2.0

Total protein 0.11 1.2

Starch 0.17 0.3
aRMSEP root mean square error in prediction (%), REP relative error
of prediction (%)

Fig. 5.6 NIR spectra of corn
seeds, employed to validate a
PCR model for the rapid
determination of quality
parameters. See caption of
Fig. 5.4

1This data set is freely available in the internet at: http://www.eigenvector.com/data/Corn/.
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judge the quality of the calibration with the aid of the average errors, both absolute
(RMSEP) and relative (REP) as shown in Table 5.1.

The results are encouraging. They imply very good statistical parameters for the
analysis of all four properties. However, very good is a qualitative observation, and
needs to be further substantiated. How good are the REP values for the validation? A
rule of thumb in validation, already advanced in Chap. 1, is the 2-5-10 rule: less than
2%, excellent; less than 5%, reasonably good; less than 10%, good; more than 10%,
poor. In any case, a relative error needs to be compared with the one for the reference
technique, or with the tolerable error according to the international protocols.

In the case of Table 5.1, the relative errors should be compared with the typical
errors involved in the corresponding reference techniques. The literature indicates
that the repeatability of the classical determinations are ca. 0.15% for moisture (ISO
6540 1980), 2.5% for total oil (ISO 6492 1999), 1.5% for protein (ISO 20483 2000),
and 1.5% for starch (ISO 6493 2000). The relative errors obtained by NIR/PCR
(Table 5.1) are comparable, with a considerably saving of time (only the extraction
phase of the classical methods takes hours), with no use of toxic organic solvents or
other reagents, and providing, at the same time, the values of additional sample
properties.

Figures 5.7 and 5.8 show more information on the validation phase: the plots of
predicted vs. nominal property values and prediction errors vs. predicted values for
the parameters moisture and total oil, respectively. The one for moisture is excellent
(Fig. 5.7); we expect this result because NIR spectroscopy is highly sensitive to the
vibrations of the water molecule. The plot for oil (Fig. 5.8) is less impressive, but still
satisfactory for routine quantitative analysis.

Fig. 5.7 (a) Predicted moisture values as a function of nominal ones for the samples of Fig. 5.6. (b)
Prediction errors as a function of predicted values. In (a) the red line indicates the perfect correlation
of unit slope; in (b) the red line indicates null errors
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5.12 What Can Be Better Than PCR?

If PCR displays all the advantages of CLS and ILS, and none of their limitations, the
logical question is: who can overcome PCR? The answer is not simple. The general
consensus appears to be that there is room for improvement. A defect that can be
noticed in PCR is that the latent variables are estimated using only the spectral
information for the calibration set, without using information on analyte
concentrations or sample properties which is available for the calibration samples.
This latter information is valuable, and multivariate models based on the combina-
tion of spectral and concentration data for computing the latent variables could be
able to improve the predictive ability of PCR.

In a future chapter we will discuss a model that employs all the available
information when estimating the latent variables: partial least-squares (PLS) regres-
sion (Wold et al. 2001). The PLS model is today the de facto standard for first-order
multivariate calibration, and the official explanation for this fact is the above one.
However, not all authors agree with this view (Wentzell and Vega Montoto 2003;
Lin et al. 2016). The apparent truth, almost universally accepted, that PLS is better
than PCR is being challenged, and there are researchers thinking that deep down
PCR and PLS are equivalent (Wentzell and Vega Montoto 2003; Lin et al. 2016).

5.13 Exercises

1. When trying various multivariate models for predicting the content of foreign oils
and fats in butter fats from gas chromatographic data (Lipp 1996), an ILS model
was found to be appropriate for the detection of the addition of about 3–5%
foreign fat, whereas PCR calibration leads to a model with 11 latent variables

Fig. 5.8 (a) Predicted total fat values as a function of nominal ones for the samples of Fig. 5.6. (b)
Prediction errors as a function of predicted values. In (a) the red line indicates the perfect correlation
of unit slope; in (b) the red line indicates null errors
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indicating a detection limit of about 3%. Can you give an explanation for the
better PCR results in comparison with ILS?

2. In a discussion forum on multivariate models, a researcher once asked: when is it
necessary to move from traditional ILS to PCR? Two rather opposite answers
were given to this question.
(a) Always. ILS is, after all, just a special case of PCR. If you include all the

components, you arrive at the same model that ILS gives you. But along the
way you get additional diagnostic information from which you might learn
something. The scores and loadings all give you information about the
chemistry.

(b) As a grumpy old man, I say the time to switch to PCR is when you are ready to
admit that you don’t have the knowledge or patience to do actual
spectroscopy.

What do you think?
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The Optimum Number of Latent Variables 6

Abstract
The relevant issue of optimizing the number of latent variables in full-spectral
inverse models is discussed, with emphasis on interpretation rather on statistical
and mathematical issues.

6.1 How Many Latent Variables?

We have remarked several times the importance of estimating an optimum value of
A, the number of latent variables for truncating the score matrix and building a PCR
model, without additional details. We now give the reasons why this activity is
crucial for the model success.

As an analogy, we first explore a simpler problem. Suppose we have a series of
experimental values of the variable y, measured at different values of the variable x in
the range 0–5, as shown in Fig. 6.1, and we wish to predict the value of y for x ¼ 6.

To answer this question, we should first model the y data in the range of x values
from 0 to 5 through a suitable mathematical expression. Three different polynomial
equations will be used for this purpose: (1) a linear model (y ¼ a + bx), (2) a
quadratic model (y¼ a + bx + cx2), and (3) a cubic model (y¼ a + bx + cx2 + dx3). In
each case, the adjustable model parameters are: (1) a and b; (2) a, b, and c; and (3) a,
b, c, and d. We may say that the model complexity grows from (1) to (3), while the
number of adjustable parameters increases. Deep down, we are exploring the
following question: is it worth to use a more complex model to fit the data?

Figure 6.2 shows the straight line fitted according to the linear model, and the
resulting sum of squared residuals (SSR). This indicator is the sum of the square
differences between experimental values of y and the values predicted by the fitted
model. The lack of fit is apparent, since the value of SSR is large; the square root of
this number, adjusted by the number of observations (11), is ca. 4.8 units. This is
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close to 7% of the average of the measured y values, and we expect a considerably
better fit with more complex models. In addition, the residuals (differences between
predicted and experimental values) show a clear correlation: several positive
residuals occur in the center of the x range, and negative ones in the extremes
(Fig. 6.2).

If the polynomial degree is increased to 2, moving to the quadratic model, a
significantly better fit is obtained (Fig. 6.3): the value of SSR considerably decreases.
Adjusting SSR by the number of observations and taking the square root leads to a
lower typical error of 1.4%. On the other hand, at least visually, no significant
correlation appears to exist among the residues.

What happens if we further increase the degree of the polynomial model? The fit
to the cubic model improves (Fig. 6.4) judging from the new value of SSR, with a
typical error of 1.36%. Is this improvement significant or only marginal? At first

Fig. 6.1 Plot of values of y as
a function of x for an
experimental data set (circles).
The red circle marks the point
where extrapolation is
required

Fig. 6.2 Regression (green)
line fitted to the data in
Fig. 6.1 using the linear
model. The value of SSR is
the sum of squares of model
residues
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sight, both the decrease in SSR and typical error appear to be small and marginal, but
it is a fact that the error decreases. What would go wrong if we use the most complex
cubic model?

Going back to the original aim, to estimate the value of y for x¼ 6, the question is
whether it is best to do it with the quadratic or with the cubic model. Figure 6.5
shows this extrapolating activity with the quadratic model. We call it extrapolation
since we intend to estimate y for an x value outside the calibration range of the
model. As can be seen, interpolation within the calibration range is reasonably safe.
Extrapolation at x ¼ 6 is also safe, although with a somewhat larger uncertainty.

On the other hand, when the cubic model is employed, although interpolation is
safe, extrapolation is considerably more uncertain than for the quadratic model
(Fig. 6.6). We may summarize these results by saying that the linear model under-
fits the data, with less adjustable parameters than those really needed. The quadratic

Fig. 6.3 Regression (green)
line fitted to the data in
Fig. 6.1 using the quadratic
model. The value of SSR is
the sum of squares of model
residues

Fig. 6.4 Regression (green)
line fitted to the data in
Fig. 6.1 using the cubic
model. The value of SSR is
the sum of squares of model
residues
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model yields a reasonable fit. Finally, the cubic model represents an over-fitting of
the data, with more adjustable parameters than needed, and more uncertainty for
extrapolation.

Figure 6.7 graphically collects this information: with fewer adjustable
parameters, the model lacks predictive power for future data points not included in
the calibration, leading to a large bias in prediction. Increasing the number of
parameters improves the predictive power, but the prediction variance gradually
increases, in such a way that a certain optimum number of parameters occurs, which
may ensure reasonable prediction in terms of both bias and variance. The overall
situation is known as the bias–variance compromise.

We can easily extend the analogy to PCR calibration. If a small number of latent
variables is employed for building the calibration model, it carries the risk of
predicting the analyte concentrations in future samples with a considerable bias,
because the model lacks sufficient information. If we exaggerate in the number of
latent variables, some of them will be modeling the instrumental noise. However,

Fig. 6.5 Uncertainty in
prediction within and outside
the calibration range for the
quadratic model. The green
and red lines indicate the
boundaries of the uncertainty
range

Fig. 6.6 Uncertainty in
prediction within and outside
the calibration range for the
cubic model. The green and
red lines indicate the
boundaries of the uncertainty
range
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due to its random nature, the noise in the new samples is different than the noise in
the calibration samples, so that the model will not be able to account for it. The result
will be a prediction of lower quality and larger uncertainty. As a consequence, the
bias–variance compromise implies that the selection of the optimum value of A will
be of great importance to build a successful PCR model.

Figure 6.8 shows the typical progression of the prediction error as a function of
A for the calibration and for independent samples. When estimating the analyte
concentrations in the same samples used to build the model, the error continuously
decreases. This is a rather false feeling, because the latent variables representing
instrumental noise are being employed to study samples with the same noise
structure. When independent samples are studied, the prediction error decreases at
first, as more valuable information is included in the model, until over-fitting is
reached, where the error begins to increase.

Fig. 6.7 Illustration of the
bias–variance compromise

Fig. 6.8 Changes in prediction error for calibration samples (blue circles) and for independent
samples (red squares) as a function of the number of latent variables
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In addition, the number of latent variables may affect the model robustness over
time. Too many latent variables tend to be more sensitive to minor concentrations of
new constituents in test samples. In contrast, models with fewer latent variables do
not significantly degrade its predictive power over time.

6.2 Explained Variance

We have already explored the concept of explained variance in Chap. 4. One
alternative to set the optimum number of latent variables is to consider the cumula-
tive explained variance by the successive principal components, starting from the
most contributing one, until a certain % of the total variance is reached.

Figure 6.9 illustrates a typical behavior for a set of principal components of an
experimental system: the individual contribution of each component progressively
decreases, while the cumulative explained variance increases. In this case, for
example, the first three principal components justify more than 99% of the spectral
variance, a fact that may lead to the conclusion that the recommended value of A is
3 for truncating the score matrix.

This method of estimating the value of A has two problems. First, different
authors employ different criteria for the optimum % of cumulative variance. On
the other hand, only spectral data are used to estimate A, leaving the analyte
concentration information in the calibration samples unused. In analytical chemistry,
it is preferable to incorporate in this analysis the available information regarding the
calibration concentrations, together with the calibration signals.

Fig. 6.9 Typical plot of
cumulative explained variance
as a function of the number of
latent variables
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6.3 Visual Inspection of Loadings

Beyond the mathematical and statistical tools to estimate the value of A, visual
inspection of the loadings is important. Figure 6.10 shows the difference between a
loading representing real physicochemical phenomena, which can be considered as
highly significant, and a loading basically representing noise (a poorly significant
one).

Figure 6.10 shows two cases than can be considered extreme. In real life the
situation can be more complex, and it might be difficult to discern whether a loading
is highly or poorly significant based on visual inspection. This is especially so for the
intermediate loadings, which contain both useful information and instrumental noise
in comparable degrees. Figure 6.11 shows the first six loadings, as estimated with
PCA, for a real analytical system: the determination of an active principle in a cough
syrup, where the analyte and the remaining syrup constituents show a high degree of
spectral overlapping in the UV-visible region. The first three loadings have a clear
spectral aspect, but from the fourth and beyond the classification into highly or
poorly significant becomes difficult.

To avoid human-dependent influences in cases such as the above one, more
objective mathematical/statistical strategies have been designed. The most employed
one in multivariate calibration is described in the next section.

6.4 Leave-One-Out Cross Validation

The possibility of calibrating and predicting by means of a PCR model offers an
interesting alternative for the selection of the optimum number of latent variables
A through a combination of spectral information and nominal analyte concentrations

Fig. 6.10 Left, a highly significant loading representing instrumental variance due to physico-
chemical phenomena. Right, a poorly significant loading representing instrumental noise
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(or sample properties). The procedure is known as cross validation (Thomas and
Haaland 1988). It consists in calibrating various PCR models with sub-sets of
samples taken from the calibration set, leaving the remaining ones for prediction.
When a single sample is left out, the methodology is known as leave-one-out (LOO)
cross validation.

In the LOO procedure, the analyte concentration in the left out sample is
estimated with a model built by the remaining samples, and the prediction error is
computed (difference between nominal and predicted value), in principle using a
single latent variable (A ¼ 1). The left out sample is then returned to the calibration
set, and samples are individually left out, until every sample has been left out once.
Prediction errors using a single latent variable are computed in each case. The
procedure is repeated using an increasing number of latent variables until a certain
maximum value Amax. For each number of latent variables, the following parameter
is calculated: the prediction error sum of squares (PRESS) for all left out samples.
Then the changes in PRESS values as a function of the number of latent variables are
analyzed with a statistical method. Table 6.1 summarizes the steps to be followed for
LOO cross validation.

As an example, during a typical experimental LOO cross validation procedure,
Table 6.2 was obtained showing PRESS values as a function of the number of latent
variables up to Amax ¼ 6. A convenient plot of the PRESS values is shown in
Fig. 6.12.

Table 6.2 and Fig. 6.12 show that, as latent variables are added to the model (from
A ¼ 1 to A ¼ 4), the PRESS decreases. This is due to the fact that the data

Fig. 6.11 Plot of the six first loadings of an experimental system studied by PCA
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compression is progressively more efficient; the first latent variables contain relevant
information regarding the spectral variations in the calibration set. Further increasing
the number of latent variables (from A ¼ 4 to A ¼ 6) causes the PRESS to slightly
increase. This is a strong indication that the last latent variables are not providing
relevant information, and that they essentially represent noise. Using more latent
variables may lead to the undesired situation of over-fitting. Why does the PRESS
increase from a certain value of A? In cross validation, the left out samples not
included in the sub-set employed for calibration act as independent samples, differ-
ent than those used for model building. This situation is similar to the one shown in

Table 6.1 Steps in LOO cross validation

Step Activity

1 A sample is left out from the calibration set

2 A PCR model is built with one latent variable and the remaining samples

3 The analyte concentration in the left out sample is estimated by the PCR model (ypred)

4 The quadratic prediction error is calculated, as the square of the difference between
predicted and nominal value (ypred – ynom)

2

5 The left out sample is returned to the calibration set, and another sample is left out

6 The process is repeated from step 1 to step 5, until all samples have been left out once

7 The PRESS ¼ Σ(ypred – ynom)
2 is calculated (the summation has as many terms as

calibration samples)

8 The process is repeated from step 1 to step 6, using 2, 3, ..., Amax latent variables

9 A list of PRESS values is obtained as a function of the number of latent variables

Table 6.2 PRESS values
as a function of the number
of latent variables in an
experimental system

Latent variables PRESS

1 0.60

2 0.0120

3 2.8 � 10�3

4 2.1 � 10�3

5 3.6 � 10�3

6 0.0114

Fig. 6.12 Changes in PRESS (left) and log(PRESS) (right) as a function of the number of latent
variables for a typical PCR model
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Fig. 6.8, where the prediction error in new samples increases when the number of
latent variables is too large.

An important question arising in connection with the above process is: which
value of Amax should be selected for a given LOO cross validation study? Some
useful suggestions follow. First, the optimum value of A cannot exceed the number
of calibration samples, so that Amax should be smaller than I. Some generosity should
accompany this criterion, i.e., Amax cannot be (I – 1) or so. It has been proposed, for
example, that Amax should be equal to half the number of calibration samples (I/2),
although no firm theoretical justification exists for this criterion. Another useful
suggestion is that the PRESS plot as a function of the number of latent variables
should show a minimum. If a certain value of Amax was selected, and the minimum
does not appear, one should increase Amax until observing the minimum. However, if
this value approaches the number of samples, it may indicate that you need more
calibration samples!

In the present context, it is important to notice that each PRESS value is linked to
a certain value of the average cross validation error (PRESS/I )1/2, which is called the
root mean square error in cross validation (RMSECV). The RMSECV value for the
minimum PRESS should be consistent with the expected uncertainty in prediction
for future samples, or with the uncertainty associated to the nominal concentration
values or sample properties used for model building. Otherwise, although a mini-
mum PRESS is obtained at a certain value of A, the corresponding calibration error
may not be acceptable.

6.5 Cross Validation Statistics

Intuitively, one may select the optimum number of latent variables as the one leading
to the minimum PRESS. However, statistics indicates that this might not be the
wisest selection. A convenient technique to find the optimum value of A is the one
described by Haaland and Thomas (Thomas and Haaland 1988). It consists in
expanding Table 6.2 with additional columns, computing the ratios between the
PRESS values and the minimum one (only for fewer latent variables than those
producing the minimum PRESS). These PRESS ratios play the role of variance
ratios (analogous to the statistical F parameter), so that they can be associated to a

Table 6.3 Statistical analysis of LOO cross validation resultsa

Latent variables PRESS PRESS/min(PRESS) p RMSECV

1 0.60 280 0.999 0.22

2 0.012 5.62 0.997 0.032

3 2.8 � 10�3 1.32 0.679 0.015
4 2.1 � 10�3 1 0.5 0.013

5 3.6 � 10�3
– – –

6 0.011 – – –

aOptimum values in boldface
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probability p, estimated with a number of degrees of freedom equal to the number of
calibration mixtures I both for the numerator and denominator. The results from
Table 6.2 are shown in Table 6.3.

The proposal, based on empirical results, is that the number of latent variables to
be selected is the first one in Table 6.3 for which the associated probability p is lower
than 0.75 (Thomas and Haaland 1988). This criterion leads to A ¼ 3 as the optimum
value for building the PCR model, although the PRESS is minimum at A ¼ 4. The
interpretation here is that the PRESS value for three latent variables is not statisti-
cally larger than the PRESS value for four latent variables. The recommendation is to
select the smallest number of latent variables for which the PRESS is not statistically
different than the minimum, in this case, three.

The optimum PRESS and its associated RMSECV value can be employed to
gather an idea of the predictive ability of the model during the cross validation phase.
The RMSECV should be of the order of the uncertainty associated to the calibration
concentrations. In the last column of Table 6.3, we see that for A ¼ 3, the RMSECV
is 0.015 units. This number should have a qualitative value, judiciously employed by
the analyst. In the present experimental case, the calibration concentrations were in
the range from 1.55 to 2.66 (in units of 10�4 mol L�1) with an average of 2.06
(Goicoechea and Olivieri 1999). The uncertainty for preparing these concentrations
can be estimated as ca. 0.01–0.02 units, so that a cross validation error (RMSECV)
of 0.015 units is highly reasonable.

6.6 Monte Carlo Cross Validation

When the number of calibration samples is large, as is usual in the study of complex
samples with a large number of variability sources, LOO cross validation may be
time consuming. In these cases one may employ an alternative procedure: instead of
leaving a single sample out of the calibration set, a sub-set of samples is left out. The
proportion of left out samples varies, usually 30% of the total number of samples are
left out, using the remaining 70% for model building at each stage of the process.
These calculations are repeated a number of times (e.g., 10 times), selecting the left
out samples at random each time. The final result is a table of PRESS values as a
function of the number of latent variables, analogous to Table 6.3, whose statistical
analysis proceeds in a similar manner as discussed above. This procedure is called
Monte Carlo cross validation, because of the introduction of random elements in its
formulation (Xua and Liang 2001). Table 6.4 summarizes the steps to be followed in
this case.

6.7 Other Methods

Cross validation is the most employed methodology to assess the optimum number
of latent variables in multivariate models such as PCR. However, a number of
drawbacks have been discussed by some authors, as listed below.
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1. The values of PRESS are reliable if the reference values used for calibration
(analyte concentration or sample properties) are known with sufficient accuracy.
Otherwise, the calibration errors may obscure the true changes in PRESS which
are required to estimate the optimum A.

2. The plot of PRESS as a function of latent variables exhibits a relatively flat region
around the minimum, making it difficult to identify a reliable value for the
optimum A which does not significantly differ from the minimum.

3. The procedure is not recommended when the calibration set is statistically
designed. Removing samples of a design for building a model with the remaining
samples leads a loss of the design properties.

To avoid these inconveniences, a method has been proposed based on the analysis
of subsequent latent variables added to the model, using randomization procedures
(Faber and Rajko 2007). Briefly, this method randomly permutes the values of
analyte concentrations, in such a way that any relationship between the instrumental
data matrix X and the target concentration vector yn is destroyed. If the latent
variables reflect real phenomena occurring in the calibration set, permutation will
generate PCR models which will be significantly different than the original model.
Conversely, a poorly significant latent variable will not allow for distinguishing
permuted and non-permuted data. The report describing this method provides
indications for interpreting the results (Faber and Rajko 2007).

6.8 The Principle of Parsimony

There are philosophical reasons for not abusing the number of latent variables. One
is the so-called principle of parsimony, announced centuries ago by William of
Ockham (ca. 1286–1347): frustra fit per plura quod potest fieri per pauciora,
translated as it is useless to do with more what can be done with less. Also called

Table 6.4 Steps in Monte Carlo cross validation

Step Activity

1 A sub-set of samples (30% of the total number of calibration samples, selected at random)
is left out from the calibration set

2 A PCR model is built with a single latent variable with the remaining 70% samples

3 The analyte concentration or sample property is estimated in the left out sub-set of
samples (one ypred value per sample)

4 The quadratic prediction error is calculated as the sum of squares of differences between
predicted and nominal values ∑(ypred – ynom)

2

5 The left out sub-set of samples is returned to the calibration set, and another random
sub-set of samples is left out

6 The process is repeated from step 1 to step 5 a number of times (e.g., 10 times)

7 The PRESS is calculated as ∑∑(ypred – ynom)
2

8 The process is repeated from step 1 to step 7 using 2, 3, ..., Amax latent variables

9 A list of PRESS values is obtained as a function of the number of latent variables
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Ockham’s razor, it advises analysts that it is always preferable to use the most
conservative number of latent variables. If one has to decide between two alternative
models, which do not significantly differ in predictive ability, the principle indicates
that one should select the most parsimonious one, i.e., the one involving the smallest
number of adjustable parameters, or latent variables in PCR. In summary, the
simplest one.

Another reason is the interpretability of A. From a qualitative point of view, the
latent variables represent the sources of spectral variance in the calibration set, or the
sources of variation of the measured instrumental signal from sample to sample.
Therefore, the optimum number of latent variables should represent, in principle, the
number of analytes generating a measurable signal. It may be larger than the actual
number of analytes if other phenomena producing spectral changes occur, such as
dispersion of radiation, baseline drifts, non-linearities, etc., but cannot be, in general,
significantly larger.

The analyst should always take care that black-box procedures, such as cross
validation, do not lead to an optimum number of latent variables which does not have
any connection with the real world.

6.9 A Real Case

We now describe the multivariate spectral determination of fluoride in water
samples. The standard spectrophotometric procedure for measuring fluoride is
based on the effect of the latter on the zirconium complex of 2-( p-
sulfophenylazo)-1,8-dihydroxy-3,6-naphthalene-disulfonate (SPADNS). Fluoride
efficiently binds to zirconium, decreasing the absorbance of the complex, and the
magnitude of the decrease is proportional to fluoride concentration (Method 4500 F
D 1998). However, sulfate ions, which are regularly present in subterranean waters,
are also able to react with zirconium, constituting an interference in the fluoride
determination.

The interference can be modeled by multivariate calibration of visible spectra of a
set of carefully designed samples (Arancibia et al. 2004). Figure 6.13 shows the
spectra for 16 calibration samples, which are aqueous mixtures of fluoride, sulfate,
and the zirconium complex (Arancibia et al. 2004). If the data are employed to build
a PCR model, using the absorbances in the range 560–640 nm, the LOO cross
validation results shown in Table 6.5 are obtained using Amax ¼ 8. The statistical
analysis discussed above leads to the conclusion that the optimum number of latent
variables is four, despite the fact that a minimum PRESS is attained for five latent
variables. The corresponding RMSECV value was found to be reasonably low, with
additional details provided in (Arancibia et al. 2004) regarding validation and test
samples.

What about the chemical interpretation of the optimum number of latent
variables? Considering that fluoride and sulfate ions do not absorb in the working
range of wavelengths, and that the only absorbing species appears to be the
zirconium-SPADNS complex, one could reasonably ask: why four latent variables?
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This is a solution system, so that dispersion effects cannot account for the results.
The answer lies in the known tendency of Zr ions to form ternary complexes with
dyes and either fluoride or sulfate (Arancibia et al. 2004). Therefore, in addition to
the Zr-SPADNS complex, the system involves ternary Zr-SPADNS-fluoride and Zr-
SPADNS-sulfate complexes, whose spectra differ from the one for the binary
complex. Three of the four latent variables can be explained by these species,
which show apparently different spectra in the working region. Only one additional
latent variable is required by PCR cross validation, which could be easily explained
by a slight baseline distortion or other physical phenomena.

Fig. 6.13 Visible spectra of 16 aqueous mixtures of fluoride, sulfate, and a zirconium complex,
used to build a multivariate calibration model for the determination of fluoride in the presence of
sulfate in subterranean water samples. The spectral region from 560 to 640 nm was employed for
calibration

Table 6.5 Statistical analysis of LOO cross validation results in the fluoride determination using
visible spectrophotometry and multivariate calibrationa

Latent variables PRESS PRESS/min(PRESS) p RMSECV

1 0.70 6.50 0.9990 0.14

2 0.23 2.16 0.9880 0.08

3 0.23 2.14 0.9870 0.08

4 0.12 1.08 0.5890 0.06
5 0.11 1 0.5 0.05

6 0.11 – – –

7 0.11 – – –

8 0.12 – – –

aOptimum values in boldface
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6.10 Exercises

1. Indicate whether the following statements are true or false:
(a) A spectral system with two responsive analytes in solution may require

10 latent variables for model building with PCR
(b) A spectral system with two responsive analytes in the solid state may require

10 latent variables for model building with PCR
(c) If the dispersion of the radiation is mathematically removed from the data, the

number of latent variables should decrease
(d) A spectral system with three responsive analytes in solution may require a

single latent variable for model building with PCR
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The Partial Least-Squares Model 7

Abstract
The most popular first-order model based on partial least-squares is presented,
and a range of applications are shown, from single and multiple analyte
determinations to sample discrimination.

7.1 The PLS Philosophy

The first-order multivariate model known as partial least-squares (PLS) regression
intends to improve the PCR model described in the previous chapter, by introducing
the information regarding the calibration concentrations in the estimation of the
latent variables. In the framework of PLS, two types of loadings exist: the weight
loadings, contained in the matrix W, and the loadings, contained in the matrix P.
The columns ofW are orthonormal, whereas the columns of P are neither orthogonal
nor normalized. The purpose of these two different types of loadings is to explain
the maximum spectral variance in the original data matrix X, and at the same time
to explain the maximum correlation between X and the analyte concentration
vector yn.

In this way, PLS employs latent variables which are analyte-dependent, while
PCR employs latent variables which are independent on the analyte. The introduc-
tion of analyte concentration information in the PLS model makes the latter specific
for each analyte. This is the main reason why PLS is thought to overcome PCR: the
PLS model is adapted to the needs of each analyte, because its latent variables are
estimated, in part, as a function of the analyte concentrations in the calibration
samples.
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7.2 Calibration Phase

In the PLS calibration phase, as in PCR, an inverse model is built by correlating the
analyte concentrations with sample scores. The mathematical relationship is for-
mally identical to that for PCR; the difference lies in the manner in which the PLS
scores are estimated, by including both spectral and concentration information.

Specifically, the PLS calibration phase consists in the following inverse model:

yn ¼ TAvn þ e ð7:1Þ
where vn (of size A � 1) is the vector of PLS regression coefficients defined in the
PLS latent space, TA is the truncated score PLS matrix, and e is a vector collecting
the concentration modeling errors. Although the symbols are identical to those in
PCR, the specific values of the elements of vn and TA differ between PCR and PLS.

Finding vn from Eq. (7.1) completes the calibration phase (see Sect. 5.3 in
Chap. 5):

vn ¼ TA
þyn ð7:2Þ

Recall that the PCR score matrix was the projection of the original data
matrix X onto the space defined by the first A columns of the loading matrix U, i.e.,
TA ¼ XT UA. In PLS, on the other hand, both the loadings P and the weight loadings
W participate in estimating the calibration score matrix. As in PCR, they are also
truncated to the first A columns, which should retain the main portion of both the
spectral and concentration variance. The specific expression for the PLS score matrix is:

TA ¼ XTWAðPA
TWAÞ�1 ð7:3Þ

Although the matrix product (PA
T WA) is not diagonal, no serious issues are

found in the above equation for its inversion, due to the properties of the loadings.
Finally, it is important to remark that the columns of TA in Eq. (7.3) are orthogonal.
This removes the correlation problems that may be present in the original matrix X,
in the same way as in PCR.

7.3 Mathematical Requirements and Latent Variables

The mathematical requirements for the calibration PLS phase are analogous to those
for PCR. The matrix inversion involved in Eq. (7.2) was trivial in PCR, because TA

was composed of orthogonal columns. In PLS the score matrix TA is different than
the one for PCR, but the columns are still orthogonal, so that the inversion needed in
Eq. (7.2) is also trivial.

On the other hand, in the PLS model the optimum number of latent variables A is
required, as in PCR. The usual procedure for this purpose is cross validation, either
leave-one-out of Monte Carlo, as previously described for PCR.
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7.4 Prediction and Validation Phases

In the prediction phase, the regression coefficients are employed to estimate the
analyte concentration in a future sample. A previous step is required, as in PCR, to
find the test sample scores, which proceeds by means of the truncated loading
matrices WA and PA. The latter ones are of the same size as the truncated PCR
loading matrix UA (J � A). The specific PLS expression for the test sample score
vector is:

tA ¼ ðWA
TPAÞ�1WA

Tx ð7:4Þ
and the prediction equation is:

y ¼ vnTtA ð7:5Þ
where y is the predicted analyte concentration in the test sample, whose spectrum is
the vector x of Eq. (7.4).

7.5 The Vector of Regression Coefficients

As in PCR, it is possible to decompress the vector of PLS latent regression
coefficients vn back to the real space. The truncated loading matrices will be useful
for this purpose:

bn ¼ WAðPA
TWAÞ�1vn ð7:6Þ

This vector can then be employed to estimate the analyte concentration in a test
sample:

y ¼ bnTx ð7:7Þ
so that the equation can be found, in the same way as some commercial developers
of multivariate calibrations do.

How different are the PCR and PLS loadings and regression vectors? We use for
the comparison the simulated system of four constituents of Chap. 3 (cf. Fig. 3.6),
composed of 20 calibration samples with constituent concentrations in the range
from 0 to 1. The loadings and regression coefficients are estimated for a single
analyte of interest using both multivariate models. The loadings are shown in
Fig. 7.1 (the PCR matrix UA) and Figs. 7.2 and 7.3 (the PLS matrices WA and PA,
respectively).

As can be seen, the first PCR and PLS loadings (u1 and p1, respectively) are
similar, but the subsequent ones are different. The differences arise from the specific
manner in which the models estimate the latent variables. Table 7.1 lists the % of
explained spectral variance by each latent variable in PCR and PLS. The values are
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Fig. 7.1 First four PCR loadings (matrix UA) estimated for a simulated system with four
constituents, calibrated with the spectra of 20 samples having random concentrations in the range
0 to 1. The order of loadings is: 1, blue; 2, green; 3, red; 4, light-blue

Fig. 7.2 First four PLS weight loadings (matrix WA) estimated for a simulated system with four
constituents, calibrated with the spectra of 20 samples having random concentrations in the range
0 to 1. The order is as in Fig. 7.1
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close to each other, although not identical. The cumulative explained variance for the
first 4 variables is in both cases ca. 100%, because this is an ideal system with four
sample constituents and a low noise level.

As regards the vector of regression coefficients, Fig. 7.4 compares the PCR and
PLS bn vectors for the analyte of interest in the above system: they are virtually
identical. Is this a suggestion that PCR and PLS do not significantly differ in
predictive power? Maybe. However, this result corresponds to a single and rather
simple analytical system, with a low level of noise, and the conclusion might not be
general. Nevertheless, recent research tends to confirm the predictive equivalence of
both models, as previously discussed.

After the model is built, validation is performed as already described for previous
models.

Fig. 7.3 First four PLS loadings (matrix PA) estimated for a simulated system with four
constituents, calibrated with the spectra of 20 samples having random concentrations in the range
0 to 1. The order is as in Fig. 7.1

Table 7.1 Explained
spectral variance by
successive latent variables
in a simulated system

Latent variable

Explained spectral variance (%)

PCR PLS

1 91.3 91.2

2 6.8 6.8

3 1.5 1.6

4 0.4 0.4
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7.6 A PLS Algorithm

Box 7.1 shows an iterative PLS algorithm. It estimates the loadings and scores one
by one, in the order of their contribution to the spectral variance and of the
covariance with the analyte concentration. In this sense, it reminds a PCR algorithm
which, in the first PCA phase, estimates loadings and scores in the same fashion: one
by one, in order of their contribution to the spectral variance. The latter is known as
NIPALS (non-linear iterative partial least-squares) (Wold 1966).

Box 7.1
A PLS algorithm. The input variables for this algorithm are ‘X’, the matrix of
calibration spectra, ‘yn’, the vector of calibration concentrations for the ana-
lyte or property of interest, ‘A’, the number of latent variables for building the
model, and ‘x’, the spectrum for the unknown sample. The output variable is
‘y’, the predicted analyte concentration in the test sample.

for i¼1:A

(continued)

Fig. 7.4 Vectors of regression coefficients estimated by PCR (A) and PLS (B) estimated for a
simulated system with four constituents, calibrated with the spectra of 20 samples having random
concentrations in the range 0 to 1
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Box 7.1 (continued)
w¼X*yn/(yn'*yn);
W(:,i)¼w/sqrt(w'*w);
T(:,i)¼X'*W(:,i);
v(:,i)¼T(:,i)'*yn/(T(:,i)'*T(:,i));
P(:,i)¼X*T(:,i)/(T(:,i)'*T(:,i));
X¼X-P(:,i)*T(:,i)';
yn¼yn-v(:,i)*T(:,i) ;

end
bn¼W*inv(P'*W)*v';
y¼bn'*x;

The size of the variables are ‘X’, J � I, (J ¼ number of wavelengths or
sensors, I ¼ number of calibration samples), ‘y’, I � 1, ‘A’, 1 � 1, and ‘x’,
J � 1. Those for the generated variables during program execution are: ‘w’,
J� 1, ‘W’, J� A, ‘T’, I� A, ‘v’, A� 1, ‘P’, J� A, ‘bn’, J� 1 and ‘y’, 1� 1.

We may compare Box 7.1 with the codes for ILS (Box 3.1 of Chap. 3) and PCR
(Box 5.5 of Chap. 5). The first impression is that the complexity increases from ILS
to PCR to PLS. It comes from simply counting lines. As usual, the first impression
might be false. In ILS, the variable ‘X’ is not the original data matrix, but a
considerably smaller matrix, obtained by selecting a suitable sub-set of wavelengths.
This may lead to a separate variable selection MATLAB code, which may be much
more complex than the mere ILS lines of Box 3.1. Hence, a combination of the
simple ILS code and a variable selection algorithm may place ILS at the top of the
complexity list.

On the other hand, PCR invokes the sub-routine ‘princomp’, which estimates the
principal components, and makes the whole algorithm more complex than is
suggested by the visual inspection of Box 5.1. It is remarkable that the PLS codes
of Box 7.1 only include simple mathematical operations: sums, products, and
divisions, except perhaps the matrix inversion in the second last line. However,
this inversion is trivial, so that from the point of view of programming simplicity
PLS appears to be the best of the three competitors.

7.7 The First-Order Advantage

PLS also provides a model for the spectrum of the unknown sample, allowing one to
compute spectral residues, analogous to those in PCR. The sample spectrum is
reconstructed from the calibration loadings and the sample scores as:

xA ¼ PAtA ð7:8Þ
from which the standard deviation of the spectral residues can be obtained:
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sres ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PJ
j¼1

x j � xAj
� �2

J � A

vuuut
ð7:9Þ

As in all models achieving the first-order advantage, if the value of sres for a given
sample is significantly larger than the level of instrumental noise, the sample is
suspected of containing unexpected constituents, not taken into account in the
calibration phase. This may require re-calibration, by adding to the calibration set
new samples, representative of the composition of the unknowns.

To adequately assess whether the spectral residues are significantly large, a
statistical F-test has been proposed. The test compares the squared residuals for
the test sample and the average squared residuals of the calibration set. Specifically,
the experimental Fexp value is computed as (Thomas and Haaland 1988):

Fexp ¼
I
PJ
j¼1

e2j

PJ
j¼1

PI
i¼1

e2ij

ð7:10Þ

where I is the number of calibration samples, ej is the element (at wavelength j) of
the residual vector e ¼ x – xA for the test sample in question, and eij are the
corresponding spectral residues at wavelength j for the calibration sample i. The
value of Fexp in Eq. (7.10) is then compared with the critical Fcrit value with I and
I � J degrees of freedom.

A nice illustration of the use of Eq. (7.10) is provided in a literature work
(Fernández Pierna et al. 2015). NIR spectroscopy was employed at the entrance of
a feed mill to provide early evidence of non-conformity and unusual ingredients. The
study focused on the characterization of pure soybean meal, detecting and
quantifying unusual ingredients in the soybean meal, such as melamine, cyanuric
acid, or whey powder (milk serum). The use of Eq. (7.10) allowed the authors to flag
the samples having the undesired constituents with high efficiency.

Incidentally, it is worth mentioning here that two similar F-tests can be
implemented during the cross validation phase to flag calibration outliers (Thomas
and Haaland 1988). One is based on spectral residuals, as Eq. (7.10), and the other
one on concentration residuals for the left out samples (Thomas and Haaland 1988).
These two tests will be discussed in a future chapter devoted to the selection of
calibration samples. In any case, as has previously been indicated, outliers should be
carefully treated, as they may not be really so, and may require additional studies and
experimental actions before removing them from the calibration set.
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7.8 Real Cases

We first comment in this section on a real case, already studied in the context of CLS:
samples containing mixtures of three active principles (rifampicin, isoniazid, and
pyrazinamide) were employed to calibrate multivariate models for their determina-
tion in pharmaceutical forms (Goicoechea and Olivieri 1999). The CLS model, as
discussed in Chap. 2, was unsuccessful, mainly due to the high level of spectral
overlapping among the constituent spectra (Fig. 7.5). Using a PLS model, on the
other hand, led to satisfactory results (Goicoechea and Olivieri 1999). The analytical
results for an independent validation set were considered satisfactory, with average
relative errors of 1.9%, 9.2%, and 2.1% for rifampicin, isoniazid, and pyrazinamide,
respectively. The largest value corresponded to isoniazid, in agreement with the high
degree of overlapping among the spectrum for this particular analyte and the
remaining sample constituents.

In commercial pharmaceutical forms, the recoveries of the three active principles
were in the order of 108%, 96%, and 94% with respect to the content declared by the
manufacturers, and within the limits accepted by pharmaceutical norms for quality
control. This development could allow for the simultaneous determination of the
active principles in a commercial form, considerably faster than a chromatographic
procedure, and without using toxic organic solvents.

Of course, PLS can be employed to build much more complex calibration models,
such as those previously discussed for NIR studies of foodstuff, fuels, and a large
variety of industrially important materials. For example, in Sect. 5.11 of Chap. 5 we
studied the determination of various quality parameters of corn seeds using PCR. We
may now compare the results with those provided by PLS. Table 7.2 shows the
results, including optimum number of latent variables, estimated by LOO cross
validation up to 25 latent variables (the calibration set consisted of 50 samples),
average prediction errors for a validation set (RMSEP), and relative error of

Fig. 7.5 UV-visible
absorption spectra of the three
pure constituents of a real
sample: rifampicin (green
line, 6.80 � 10�6 mol L�1),
isoniazid (black line,
2.00 � 10�5 mol L�1), and
pyrazinamide (red line,
1.20 � 10�4 mol L�1)
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prediction with respect to the mean calibration values (REP). They are as good as
was already reported in Chap. 5, and for total oil they appear to be even better. Recall
that the NIR spectra of these seed samples display a considerable amount of
dispersion effects. The latter are better removed (or significantly decreased) before
calibration with PCR and PLS, as will be explained in Chap. 10. Here the raw data
were processed, and the results may not be representative of what is done in real
practice with data of this type. Indeed, using the first derivative of the spectra instead
of the raw spectra, PCR and PLS results for total oil are almost equivalent. The effect
of spectral derivatives and other mathematical operations before building the models
will be explained in Chap. 10. However, the data set is useful to show that for most
of the studied parameters, PCR and PLS appear to be equivalent.

7.9 PLS-1 and PLS-2

Two different versions of PLS exist: PLS-1 and PLS-2. The algorithm described in
Box 7.1. corresponds to PLS-1, and aims at calibrating a single analyte of interest.
PLS-2, on the other hand, builds a model for several analytes at the same time. If an
experimental system involves various analytes or sample properties, PLS-1 would
model them separately, and would build a specific calibration model for each analyte
or property. This is not problematic; on the contrary, the building of specific models,
adapted to the needs of each analyte, is preferable to a single model for all analytes.

A PLS-1 model will require an optimum number of latent variables for each
analyte, and will allow one to select, from the full spectra, a sub-set of spectral
regions which might be appropriate for each analyte, as we shall see in a future
chapter. In the same manner, if mathematical pre-processing is required before
model building, PLS-1 will select a pre-processing which will also be analyte-
specific.

The PLS-2 model is intended to calibrate all analytes with a single model, number
of optimum latent variables, spectral region and data pre-processing. When is PLS-2
recommended? The answer can be found in the characteristics of PLS-2. In the
calibration phase, PLS-1 correlates the data matrix X with the vector of analyte
concentrations yn, whereas in PLS-2 the correlation is with the calibration matrix
Y for all analytes. During the PLS-2 regression, Y is replaced by a matrix of
Y-scores, just as X is replaced by the X-score matrix. This means that PLS-2 is

Table 7.2 Comparison of PCR and PLS validation results in the analysis of seedsa

Parameter

PCR PLS

A RMSEP/% REP/% A RMSEP/% REP/%

Moisture 23 0.016 0.16 18 0.014 0.14

Total oil 15 0.08 2.0 21 0.04 1.1

Total protein 25 0.11 1.2 18 0.11 1.2

Starch 22 0.17 0.3 21 0.19 0.3
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preferable to PLS-1 when there are correlations in the columns of Y, because the use
of orthogonal Y-scores alleviates the correlation issues.

As an example, consider the calibration matrix Y containing the values of four
quality parameters for corn seeds, studied in Chap. 5. Because the values of
moisture, total oil, total protein, and starch have different scales, it is first convenient
to transform each column to a new scale ranging from 0 to 1. Once scaled in this
manner, the % of explained variance by the first four principal components of the
matrix Y are estimated as 59%, 18%, 15%, and 8%. Because all four principal
components are required to explain the variance, and the value for the fourth
principal component is significant (8%), PLS-1 should be the model of choice.

On the other hand, if a matrix Y for four analytes, after scaling the columns,
requires three principal components for explaining most of the variance, and the
fourth principal component only explains a very small %, PLS-2 should be selected
for model building. The modeling of Y by three principal components implies the
presence of a significant degree of correlation, for which PLS-2 is better suited.

In sum, there is no point in using both PLS-1 and PLS-2 for a given system.
The logical procedure would be to first perform a PCA of the matrix Y, and verify
whether the number of principal components required to explain most of the
variance in this matrix is equal or smaller than the number ofY columns (the number
of analytes). If it is equal, select PLS-1; if it is smaller, select PLS-2 (Wold et al.
2001).

In what follows, we will use the term PLS for PLS-1. When required, PLS-2 will
be specifically named.

7.10 A PLS-2 Algorithm

A MATLAB algorithm for PLS-2 is given in Box 7.2. It looks a bit more complex
than the one for PLS-1 in Box 7.1, due to the need of estimating both Y- and
X-scores for calibration.

Box 7.2
A PLS-2 algorithm. The input variables are similar to Box 7.1, except that
the matrix of analyte concentrations ‘Ycal’ replaces the single vector ‘yn’
in PLS-1, and the matrix of predicted test concentrations ‘Y’ replaces the
vector ‘y’.

for i¼1:A;
u¼Ycal(:,1);
w¼X'*u/(u'*u);
Wn(:,i)¼w/norm(w);
told¼X*Wn(:,i);
T(:,i)¼told;

(continued)
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Box 7.2 (continued)
v(:,i)¼T(:,i)'*Ycal/(T(:,i)'*T(:,i));
u¼Ycal*v(:,i)/(v(:,i)'*v(:,i));
w¼X'*u/(u'*u);
Wn(:,i)¼w/norm(w);
tnew¼X*Wn(:,i);
while norm(told-tnew)>1e-6*told

w¼X'*u/(u'*u);
Wn(:,i)¼w/norm(w);
told¼X*Wn(:,i);
T(:,i)¼told;
v(:,i)¼T(:,i)'*Ycal/(T(:,i)'*T(:,i));
u¼Ycal*v(:,i)/(v(:,i)'*v(:,i));
w¼X'*u/(u'*u);
Wn(:,i)¼w/norm(w);
tnew¼X*Wn(:,i);

end
P(:,i)¼X'*T(:,i)/(T(:,i)'*T(:,i));
X¼X-T(:,i)*P(:,i)';
Ycal¼Ycal-T(:,i)*v(:,i)';

end
b¼Wn*inv(P'*Wn)*v';
Y¼b*x;

7.11 PLS: Discriminant Analysis

In Chap. 4, we described the application of PCA to the discrimination of samples.
We called the procedure unsupervised, implying that the samples automatically
separated in groups, based on the latent variables estimated only from the data
matrix X, and without previous knowledge on the existence of groups or sample
classes. PLS can also be used for similar purposes, but in this case the analysis is
called supervised, because this model requires the knowledge of the vector yn of
target properties (in this case the classes to which the samples belong). The proce-
dure is known as PLS-discriminant analysis (PLS-DA).

To build a PLS-DA model, one should have a set of signals (spectra or other
multivariate signals) for a number of samples, and knowledge of the samples classes
instead of analyte concentrations. Suppose we have measured the spectra of 20 dif-
ferent samples, distributed between two classes with 10 samples each, as was
previously studied with PCA in Chap. 4. In this case we positively know that the
first ten samples belong to class A, and the ten subsequent samples to class B. To
build the PLS model between X and class A, we employ a vector yn of size 20 � 1,
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whose first 10 elements are 1 (the class A code), and the next 10 elements are 0 (the
code for the remaining class or classes):

yn ¼

1
1
1
. . .
1
0
0
0
. . .
0

2
666666666666664

3
777777777777775

Class A
Class A
Class A

. . .
Class A
Class B
Class B
Class B

. . .
Class B

ð7:11Þ

The first phase of PLS model building is LOO cross validation, to establish the
optimum number of latent variables, which in this case is two. The predicted values
for each sample left out during cross validation may be useful to judge the success of
the calibration model. These values are shown in the bar plot of Fig. 7.6. As can be
seen, the predicted values for class A are all above the limit separating the classes
(0.5 units), while the remaining values are all well below the limit (class B). This

Fig. 7.6 Bar plot showing the predictions by a PLS-DA model during cross validation of a set of
20 calibration samples (see Chap. 4, Sect. 4.6). The predicted values correspond to the class index
for each sample, originally designated as 1 (class A) and 0 (class B). The red dashed line indicates
the separation limit between classes (0.5 units)
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supervised calibration can be considered successful, at least concerning the cross
validation phase. One should then analyze an independent validation set of samples.
Once the PLS regression coefficients for the calibration model are found, they can be
used to predict the class index for future samples. If this value is close to 1, the
sample will be classified as A, if it is close to 0, to class B. This rule allows one to call
the entire process a classification.

7.12 Another Real Case

In this classification application, a handheld NIR device was used for classifying six
similar Amazonian woods (Soares et al. 2017). Supervising wood exploitation can
be very challenging due to the existence of many similar species and the reduced
number of wood identification experts to meet the demand. There is evidence that
valuable endangered wood species are being smuggled disguised as other species.
The studied species were mahogany (Swietenia macrophylla), cedar (Cedrela
odorata), both of high value, crabwood (Carapa guianensis), cedrinho (Erisma
uncinatum), curupixá (Micropholis melinoniana), and jatobá (Hymenea coubaril).

The NIR spectra of 113 samples of wood were measured each 8 cm�1 in the range
between 9000 and 4000 cm�1. The calibration was made with 68 samples, leading to
four different PLS models (one for separating each class from the remaining ones),
and validation was carried out on the remaining 45 samples. Figure 7.7 shows the
average NIR calibration spectra for each species, and Fig. 7.8 the calibration and

Fig. 7.7 Average NIR calibration spectra for six different types of raw woods, employed to build a
PLS-DA calibration model to classify wood samples. The vertical scale is the logarithm of the
inverse of the reflectance values. Adapted with permission from Soares et al. (2017) (Brazilian
Chemical Society)

116 7 The Partial Least-Squares Model



validation results for classifying mahogany. Similar results were obtained for
distinguishing each species from the remaining five other classes. From Fig. 7.8,
one may appreciate the excellent discriminant capacity of PLS-DA, allowing one to
predict the wood classes by a non-invasive spectroscopic method in real time. It
should be noticed that the classical methodology requires expert personnel with
training in wood taxonomy, which is difficult in field studies, where immediate
response is required. The NIR/PLS-DA methodology provides the correct answer,
by means of a portable and inexpensive NIR spectrometer.

7.13 Advantages of PLS

The advantages of PLS are the same as those for PCR, with the additional benefit that
the latent variables are, in principle, analyte-specific, and thus better adapted to the
needs of each analyte of interest. Some years ago, the author of this book wrote a
scientific work entitled Ten reasons to prefer PLS to ILS. It was not accepted, and I
admit to have exaggerated in one or two items. However, my position is still firm; the
ten reasons are the following ones.

1. More reliable analytical predictions and calibration models
2. Extremely useful diagnostic information (the first-order advantage)

Fig. 7.8 Estimated class index values in the calibration phase (open red circles) and in the
validation phase (filled red circles) for the classification of the high-value mahogany samples
from the remaining ones (all other symbols). Black circles indicate a few anomalous samples.
The dotted lines are the limits for class identification (Soares et al. 2017). Adapted with permission
from Soares et al. (2017) (Brazilian Chemical Society)

7.13 Advantages of PLS 117



3. Relative decrease of the impact of noise
4. Higher sensitivity
5. Lower detection and quantitation limits (to be discussed in a future chapter)
6. Algorithmic simplicity
7. Full-spectral regression coefficients with useful qualitative information
8. Zero-correlation scores
9. Valuable insight into the mutual relationship among samples (to be discussed in

a future chapter)
10. Visual (and statistical) inspection of the signal–concentration relationship
11. As long as these arguments do also apply to PCR, the ten reasons can also be

extended to PCR

7.14 Beyond PLS

PLS is most probably the de facto first-order multivariate calibration standard. What
can possibly go wrong with PLS? In the last years several competitors of PLS have
been developed, from simple cosmetic variants to completely different
methodologies. One idea which underlies some alternative PLS models is to first
pre-process the original data matrix, with the aim of removing information which is
not relevant regarding the analyte concentration or sample property to be measured.
In this way, PLS receives a filtered data matrix, richer in information on the target
analyte or property. These alternative models usually require fewer latent variables
than the original one, because some variance sources have been previously removed.
Although they are more parsimonious and perhaps preferable in this latter sense, the
overall prediction results do not appear to be significantly better than traditional PLS.
The reader may find additional details on these models in the specific literature
(Svensson et al. 2002; Wold et al. 1998; Fearn 2000; Goicoechea and Olivieri 2001;
Xu and Schechter 1997).

Another important assumption of all models so far is the linearity in the signal–
concentration relationship. PLS will work properly if the relationship is linear, or if it
does not appreciably deviate from the strict linearity. When this condition is not met,
and significant non-linearity in the signal–concentration relation occurs, the PLS
model will lose predictive power. In general, and due to the existence of Lambert–
Beer’s law, in analytical spectroscopy the relationship is fairly linear in a certain
concentration range. However, when measuring other multivariate signals, or when
calibrating for global sample properties (octane number in fuels, acceptability of a
product by a sensor panel, etc.), the relation may not be linear. In cases of significant
non-linearity, alternative models are needed. There are many different models of this
type; a popular group includes the so-called artificial neural networks (ANN)
(Ni et al. 2014). We will describe in a future chapter a specific ANN variant,
discussing whether it is justified to employ non-linear models or it is preferable to
maintain the simpler PLS model.

Finally, some progress is related to the characteristics of the instrumental noise.
Until now we have implicitly considered that the instrumental noise is not only
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random, but also independent and identically distributed (iid). This implies that there
are no correlations among the noise at one wavelength and the noise at the neigh-
boring wavelengths (independent noise), and that the standard deviation of the noise
is constant across the spectrum (identically distributed noise). Figure 7.9 shows three
traces of noisy signals, illustrating the following noise types: iid (A), correlated or
not independent (B), and proportional or not constant (C).

When we apply the criterion of least-squares in all the regression problems, the
noise is assumed to be iid, so that all models considered so far are based on the same
assumption. However, the noise not always behaves in this way (Wentzell 2014).
For non-iid noise, the models based on the iid assumption will be sub-optimal, and
alternative ones taking into account the noise structure should show improved
predictive ability. One of such models has been developed based on PCR, but
following a criterion called maximum likelihood (MLPCR) (Schreyer et al. 2002).
The latter has not gained a significant popularity, due to the difficulties associated
with the estimation of a key parameter describing the noise structure: the so-called
error variance-covariance matrix (Schreyer et al. 2002). In any case, Reis and
Saraiva (2004) have shown that PLS is able to resist the presence of non-iid noise,
except perhaps when significant correlations among the noise in neighboring sensors
exist.

7.15 Exercises

1. (a) Show the mathematical steps needed to obtain Eq. (7.2) from Eq. (7.1)
(b) Find the specific definition for the generalized inverse TA

+ in Eq. (7.2)
2. Discuss the mathematical requirements for solving Eq. (7.1) by least-squares, in

terms of the number on independent equations and unknowns
3. A discriminant PLS model is built for separating 5 samples of class A, 4 samples

of class B, and 6 samples of class C. Write the three yn vectors required for
separating each class from the remaining ones, if the data matrix was generated
with the corresponding spectra in the following way: the first 5 columns of
X for class A samples, the next 4 columns for class B, and the final 6 columns
for class C

Fig. 7.9 Three different
types of instrumental noise:
(a) iid, (b) correlated, and (c)
proportional
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4. Three active principles of a pharmaceutical formulation need to be determined
with a suitable PLS model from spectral data. Justify the expected optimum value
of A if the spectral data correspond to:
(a) UV-visible absorption spectroscopy in solution
(b) NIR spectroscopy in the solid tablets

5. The vector of regression coefficients for a PLS model of an analytical system is
shown in Fig. 7.10 A. When studying new samples, unexpected interferents may
appear, whose spectra are shown in Fig. 7.10 B
(a) Will the samples containing the interferent with the red trace be flagged as an

outlier according to Eq. (7.10)?
(b) Will the analyte concentration be predicted with a significant bias in the

presence of the red interferent?
(c) Answer the above two questions for the interferent with the green trace in

Fig. 7.10 B
6. How problematic would you expect to be a sample with constituent

concentrations which are far from the center of the calibration range, but with
no new constituents?

7. Table 7.3 collects the RMSEP results for three analytes using the linear models
ILS, PLS-1, and PLS-2.
(a) Are the numbers reported with appropriate significant figures? How would

you report them?
(b) What can you conclude at first sight on the application of the three models?

Fig. 7.10 (a) Spectrum of a vector of PLS regression coefficients for a typical analytical system.
(b) Spectra of potential interferents, not considered in the calibration phase, that may appear in
future unknown samples

Table 7.3 RMSEP values
for different multivariate
models

Model Analyte 1 Analyte 2 Analyte 3

ILS 0.189 0.151 0.465

PLS-1 0.014 0.013 0.016

PLS-2 0.015 0.014 0.017
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Sample and Sensor Selection 8

Abstract
Multivariate calibration models are usually implemented by first selecting appro-
priate calibration samples and working wavelengths. Different procedures are
discussed for performing these important activities.

8.1 Pre-calibration Activities

In the simplest situation, the analyst collects samples for calibration and validation,
builds the multivariate model with the calibration data using the optimum number of
latent variables, and checks the prediction performance against the validation
samples. The model is then applied for analyte prediction in future unknown samples.

In general, however, there are various activities which are usually conducted prior
to model building. They concern: (1) the specific samples to be used for the
calibration and validation sets, (2) the spectral wavelengths (variables or sensors)
to be used for modeling, and (3) whether raw or mathematically pre-processed data
will be submitted to model building. The components of this triad, samples, sensors,
and pre-processing, will be separately discussed in this and the next chapter, but they
are mutually connected, so that one really does not know what comes first, if the
chicken or the egg. This chapter is devoted to sample and sensor selection; we
discuss mathematical pre-processing in the next chapter.

8.2 Sample Selection

When the chemical composition of the calibration samples is dictated by an adequate
statistical design, the properties of the design themselves guarantee the sample
representativity which is always required for model building. On the other hand,
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the validation sample set is usually selected at random, i.e., with constituent
concentrations which are random numbers, constrained to be within the range of
applicability of the model.

Nevertheless, an important number of multivariate calibration applications cannot
be developed by designing the training sample set with specific properties under the
control of the analyst. The samples may come from an industrial production line, or
they may be of natural origin, and cannot be controlled as regards composition or
physical properties. There are multiple examples of this case, involving the determi-
nation of quality parameters of food stuff, drinks, cosmetic, textile or paper products,
fuels, etc.

When the sample composition cannot be controlled, and a large number of
samples is available, the following problem arises: how many and which samples
should be employed for calibrating the model, and how many and which should be
left for the validation phase. A usual procedure is to randomly divide the whole
sample set, leaving, for example, 70% for calibration and 30% for validation. Is there
any risk in this random selection of samples? In general, yes, because random
selection may leave out samples which are far from the calibration center, or
correspond to regions of the sample space which are relatively less populated.
Figure 8.1 illustrates this fact: if the red samples are not chosen by a random
selection method, the calibration set will only be represented by the blue specimens,
and will not display the necessary representativity regarding future red samples.

To avoid these problems, sample selection algorithms have been developed,
which keep in the calibration set a number of really representative objects. One of
the most popular ones is the Kennard–Stone algorithm (Kennard and Stone 1969),
which can be summarized in the following steps.

1. The first selected sample is the one closest to the center of the sample space.
2. The second selected sample is the most distant to the first one.

Fig. 8.1 Graphical
illustration of a set of
calibration samples and its
distribution in the sample
space. The red circles indicate
samples which are far from
the calibration center
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3. For the subsequent selections, the distances of the remaining samples to those
previously selected are first computed. Then the minimum distances are consid-
ered, and the chosen sample is the one with the largest of the minimum distances.

4. The process continues until a certain pre-defined number of calibration samples,
e.g., 70% of the total number. The remaining ones are left for validation.

In the above steps, the distance dii0 between samples i and i0 is defined by:

dii0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XJ

j¼1

x ji � x ji0
� �2

v
u
u
t ð8:1Þ

where xji and xji0 are the values of the signal for samples i and i0 at wavelength j.
Eq. (8.1) should not come as a surprise: it is the generalization of the Pythagorean
theorem to a multi-dimensional space, giving the hypotenuse of a generalized hyper-
triangle in J dimensions. The Kennard–Stone method first selects a central object,
then objects near the border of the sample space, and then fills the space with the
remaining objects in an orderly way.

As an example, consider the 10 samples represented by blue circles in Fig. 8.2,
whose positions in the sample space are defined by only two coordinates [J ¼ 2 in
Eq. (8.1)]. The first selected sample is indicated in Fig. 8.2, and corresponds to the
one closest to the center (the red cross marks the center). The second one will be that
located further away from the first one, as also indicated in Fig. 8.2.

Fig. 8.2 The Kennard–Stone algorithm in action: from 10 samples distributed in a
two-dimensional sample space, the first to be selected is the one closest to the calibration center
(marked with a red cross), and the second is the one located farther away from the first
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The distances of the remaining eight samples to the first two are then computed
(two distances for each of the eight remaining samples). Figure 8.3 shows the
minimum of these two distances per remaining sample (green lines). The solid
green line in this figure is the maximum of the eight minimum distances, and defines
the third selected sample, as indicated. The process continues in the same fashion.
Notice that the second selected sample, located at the largest distance from the
center, is included for calibration by this algorithm, but might not be selected by a
random selection method.

An illustration of the overall process is provided by Fig. 8.4, showing the
25 selected samples by the Kennard–Stone algorithm, from a set of 100 randomly

Fig. 8.3 The Kennard–Stone algorithm in action: once the first two samples are selected (red
circles), the distance of each of the remaining samples to the first two are calculated, and each of the
minimum of these distances is chosen, as indicated by green lines (both solid and dotted). The third
selected sample is the one with the largest of the minimum distances (solid green line)

Fig. 8.4 Selection of
25 samples (red crosses) using
the Kennard–Stone algorithm,
from a set of 100 samples
(blue circles), randomly
distributed in a
two-coordinate sample space
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distributed samples. As can be seen, those in the external borders of the calibration
space are consistently selected, followed by additional ones located inside the
calibration area.

There are additional procedures for sample selection, including variants of the
Kennard–Stone algorithm, which introduce concentration information in the selec-
tion process and not only signal information (Galvao et al. 2005). Many other
methods, using seemingly different philosophies, have been developed, although
Kennard–Stone is still a classic and reliable technique.

8.3 An Algorithm for Kennard–Stone Sample Selection

The Kennard–Stone algorithm can be implemented in MATLAB with the
codes given in Box 8.1. The algorithm provides a vector containing the indexes
of the selected samples and the corresponding matrix of signals for the latter
samples.

Box 8.1
The Kennard–Stone algorithm. Input variables are ‘X’, the complete data
matrix, and the value of ‘Isel’ (the number of samples to be selected as
representative). The algorithm provides the vector ‘msel’ containing the
indexes of the selected samples, and the matrix of signals for the selected
samples ‘Xsel’.

[min1,s1]¼min(sum((X-mean(X,2)*ones(1,size(X,2))).^2));
[max1,s2]¼max(sum((X-X(:,s1)*ones(1,size(X,2))).^2));
Xsel¼[X(:,s1),X(:,s2)];
msel¼[s1;s2];
for isel¼1:Isel-2

d¼zeros(size(X,2),size(Xsel,2));
for i¼1:size(X,2)

d(i,:)¼sum((X(:,i)*ones(1,size(Xsel,2))-Xsel).^2);
end
[max2,sisel]¼max(min(d'));
msel¼[msel;sisel];
Xsel¼[Xsel,X(:,sisel)];

end
disp(msel)
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8.4 Calibration Outliers

Once the samples for the calibration set are selected, and their spectra or multivariate
signals are measured, cross validation is applied to estimate the optimum number of
latent variables. During this procedure, it is possible to detect the presence of
outlying samples: those whose nominal analyte concentration or property signifi-
cantly deviates from the prediction when they are left out from the set, relative to the
average cross validation error.

An indicator for the presence of outliers in cross validation has been proposed in
the form of an Fy(i) value for the ith calibration sample, defined by (Thomas and
Haaland 1988):

Fy ið Þ ¼ I � 1ð Þ ypred, i � ynom, i
� �2

P

i0 6¼i

ypred, i0 � ynom, i0
� �2 ð8:2Þ

where ypred,i and ynom,i are the predicted and nominal value for the left out sample
during cross validation, and ypred,i0 and ynom,i0 are the corresponding values for the
remaining samples. The degrees of freedom for studying the significance of Fy(i) are
1 and (I – 1) for the numerator and denominator, respectively. As can be seen in
Eq. (8.2), Fy(i) compares the variance for each left out sample with respect to the
average variance for the remaining samples used to build the cross validation
models.

Equation (8.2) defines the concentration or y-outliers, to distinguish them from
the x-outliers, samples whose location in spectral or score space is far from the
remaining ones. To detect x-outliers in cross validation, a similar Fx(i) indicator has
been proposed:

Fx ið Þ ¼
I � 1ð ÞP

J

j¼1
xi � xA, ið Þ2

P

i0 6¼i

PJ

j¼1
xi0 � xA, i0
� �2

ð8:3Þ

where xi and xA,i are elements of the original spectrum and of the one reconstructed
with A latent variables, corresponding to the left out sample, while xi0 and xA,i0 have
the same meaning, but apply to the remaining samples used to build the cross
validation models. The number of degrees of freedom for the significance of Fx(i)
is a matter of a certain controversy. A useful rule of thumb says that for a large
number of wavelengths (J > > I ), values of Fx(i) smaller than ca. 3 do not indicate the
presence of significant outliers (Thomas and Haaland 1988).

Typical plots for outlier detection in calibration are shown in Fig. 8.5, displaying
the values of the ratios Fy/Fcrit, which allow one to conclude whether a given sample
is suspicious of being an outlier. In the case of Fig. 8.5, a PLS model was built for the
determination of octane number in gasolines from the NIR spectra of 48 samples
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with known octane number. Cross validation showed that the optimum number of
latent variables was 5, with an RMSECV value of 0.58 octane units, but the plot for
detection of y-outliers clearly suggests that samples 24 and 25 significantly deviate
from the ideal predictions (Fig. 8.5a). Once these samples are removed from the
calibration set, no new outliers are found, and a new cross validation process led to
an optimum number of latent variables of 3, with an improved RMSECV value of
0.31 units.

Two important details should be taken into account when searching for outliers.
First, one should not be too strict regarding the value of the ratio Fy/Fcrit: if values
larger than 1 (e.g., 1.2) occur, it is likely that removing these samples would not
produce a significant effect in the quality of the calibration, especially if the calibra-
tion set contains a large number of samples. Second, if an outlier is real, removing it
from the calibration should lead to a smaller number of optimum latent variables,
accompanied by a decrease in the RMSECV, as in the example of Fig. 8.5.

As a colorful anecdote on the subject, in 2006 the author of this book attended an
international meeting (X CAC, Chemometrics in Analytical Chemistry, Aguas de
Lindoia, Brazil), and was in the audience when a researcher was talking about
outliers. At the end of the conference, Prof. Josef Havel, from Masaryk University,
Brno, Check Republic, raised his hand and said out loud: there are no outliers! What
did Prof. Havel mean? I guess these two important concepts: (1) signal outliers

Fig. 8.5 Bar plots for the detection of y-outliers. (a) Values of the ratio Fy/Fcrit for each calibration
sample after LOO cross validation, indicating that samples 24 and 25 are outliers. (b) Values of the
ratio Fy/Fcrit after LOO cross validation, having removed samples 24 and 25 from the calibration set
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should not be removed from calibration, but more samples of the same type should
be included in the calibration to increase the representativity, and (2) concentration
outliers should be prepared or analyzed again with the reference technique. In other
words: outliers do not exist.

8.5 Sensor Selection

In previous chapters, we have highlighted the benefits of working with full-spectral
inverse models, instead of with a few wavelengths. However, there is general
consensus in that the predictive ability of multivariate models improves upon
selecting a reduced range of spectral regions from the full spectra. This is not
contradictory. The selection of sensors intends to build models based on a large
number of sensors, much larger than for ILS models, but removing spectral regions
which are not sensitive regarding the analyte or property of interest. A compromise is
thus achieved of many sensors but not too many, in such a way that the model
receives spectral regions which display significant sensitivity towards the analyte,
discarding those where the analyte does not respond. Here we appreciate the value of
the specific PLS-1 model, where a given spectral region corresponds to each analyte.
In PLS-2, on the other hand, the same spectral regions should be employed for
studying all analytes.

Many different methods exist for selecting sensors, all with the general objective
of improving the predictive power, and new methods are proposed almost every day
(Mehmood et al. 2012). In this chapter, we will explore in detail two of them: the
selection based on the vector of regression coefficients, and the method called
interval-PCR/PLS.

8.6 Regression Coefficients for Selecting Sensors

The basis for the selection of working wavelengths using the vector of regression
coefficients can be found in the expression for predicting the analyte concentration yn:

yn ¼ bnTx ¼ b1nx1 þ b2nx2 þ . . .þ bJnxJ ð8:4Þ
If the elements of the vector bn are in a certain spectral region close to zero and/or

have a large uncertainty, the terms in Eq. (8.4) corresponding to these elements will
be very small and/or present a significant uncertainty relative to the remaining terms.
Therefore, a method has been proposed for wavelength selection which considers the
spectrum of regression coefficients, estimated with the optimum number of latent
variables, discarding the regions where the elements of bn are negligible. Since the
expression negligible needs statistical support, several procedures have been
designed to choose spectral regions where the elements of bn are statistically
significant (Centner et al. 1996).
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Usually, however, the visual inspection of the spectrum of bn is useful. Figure 8.6
shows a typical situation. Figure 8.6a shows the spectra of various constituents of an
analytical system, including a baseline signal which saturates the detector. The
calibration set was composed of 10 samples with random concentrations of three
constituents in the range from 0 to 1 unit, including the baseline in all samples. The
vector bn is shown in Fig. 8.6b. What conclusions can be drawn from this example?

1. In the region where the detector is saturated (250–300), there is considerable
effect of the noise over bn. This region will propagate a significant uncertainty to
the estimation of the concentration by Eq. (8.4). Removing this type of regions is
recommended.

2. The region where the signal is very small (180–250) leads to values of bn which
are also very small. They will not significantly contribute to Eq. (8.4). The impact
of the signal noise will decrease in the model compression phase, so that
discarding or maintaining this type of regions will cause almost irrelevant effects
on prediction.

3. The region where the analyte significantly responds, even when its spectrum is
partially overlapped with those of other constituents (50–180), will be useful to
calibrate, yielding values of bn with spectral aspect. These regions should be kept
for model building.

Fig. 8.6 (a) Ideal analytical system with an analyte of interest (blue spectrum), two additional
constituents (red and green spectra), and a baseline saturating the detector in the sensor range from
250 and 300 (light-blue spectrum). (b) Vector of PLS regression coefficients for the analyte of
interest in this system
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4. The region where the analyte significantly responds, but its spectrum is almost
completely overlapped with those for other constituents (1–50), will be almost
useless for calibration, giving rise to values of bn with low analytical value.
Discarding or maintaining this type of regions will cause almost irrelevant effects
on prediction.

We should notice that the above analysis was made on an ideal case, where all
constituent properties are known. What would happen in real life? We would not
know where the analyte responds, moreover, there might be no such thing as an
analyte in the classical sense. The good news is that the consideration of the vector of
regression coefficients is independent on our knowledge about the system
constituents: it tells us that there are regions of bn which are uncertain and should
be discarded, others with spectral aspect which should be kept, and still others with
very low intensity which can be discarded or kept without serious consequences.

Finally, it is important to note that the use of regression coefficients for sensor
selection, for detecting the position of spectral regions which are sensitive to the
analyte, or for concluding with regard to the properties of the analyte, has been
criticized (Brown and Green 2009). The ultimate word has not been said in this
subject of apparent complexity.

8.7 Interval-PCR/PLS

Instead of considering a relatively abstract object such as the vector of regression
coefficients, alternative methods have been developed, directly pointing to the heart
of analytical chemistry: the lowest prediction error. One alternative is the compre-
hensive search of useful spectral sensors, but this may be prohibitive in terms of
time. A hint regarding this issue was provided in Sect. 3.8 of Chap. 3, when
discussing the selection of appropriate working wavelengths for the ILS model.

In the interval-PCR/PLS (i-PCR/PLS) method, the full spectral range is divided in
a certain number of sub-regions or intervals with a pre-defined width (Nørgaard et al.
2000). In each of these intervals, a separate model is built, with the corresponding
optimum number of latent variables, and then the average cross validation error
(RMSECV) is considered within each interval. Those sub-regions with the lowest
RMSECV values will be recommended for building the final model. Notice that it is
possible to couple non-consecutive intervals, if they lead to similarly low RMSECV
values.

A typical i-PLS plot is shown in Fig. 8.7, corresponding to the system described
in the previous section, now analyzed on the basis of the PLS regression vector. The
full spectral range comprises 301 sensors, and was divided into 20 intervals of
15 sensors each (discarding the last sensor). For applying LOO cross validation in
each interval, the interval sensors (15) must be larger than both the number of
calibration samples (10) and the maximum number of latent variables (Amax). As
can be seen in Fig. 8.7, the region where the RMSECV is minimum includes the
spectral region where the vector of regression coefficients has a spectral-type shape
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(Fig. 8.6), i.e., the region between sensors 50 and 150, corresponding to the intervals
numbered from 4 to 10. This result nicely agrees with the conclusions drawn from
the behavior of the vector of regression coefficients in Sect. 8.6.

8.8 A Real Case

Figure 8.8 shows the visible-NIR spectra of a set of 61 sugarcane juice samples, all
with known values of the degrees Brix, which were measured by means of the
reference refractometric technique. Sugarcane juice is the syrup extracted from pressed
sugarcane. The degrees Brix measure the relative content of dry matter (generally
sugars) which is dissolved in the juice. As an example, a solution with 20 �Bx contains
20 g of dissolved solids per 100 g of solution. The Brix scale is used in the sugar
industry to measure the approximate amount of sugars in the cane. The name comes
from its proponent, Adolf Brix, a German engineer and mathematician (1798–1870).

The spectra of Fig. 8.8 show a region where the detector signal is saturated at
ca. 1900 nm (reader: can you explain the presence of this intense NIR band?). It can
be anticipated that a PLS model would find difficulties in building an accurate model
if the latter band is included. In fact, LOO cross validation in the full spectral range
leads to 12 as the optimum number of latent variables (after removing some
y-outliers), with an optimum RMSECV of 0.9 oBx. The resulting vector of PLS
regression coefficients has the shape shown in Fig. 8.9. As expected, in the high-
absorbance and saturated regions, the vector is highly uncertain. These regions
should be removed from the data matrix before PLS model building.

Fig. 8.7 Bar plot showing the cross validation error (RMSECV) for the system of Fig. 8.6 using
the i-PLS method of variable selection with 15-sensor intervals. The red line shows the average
calibration spectrum
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Fig. 8.8 Visible-NIR spectra for a set of sugarcane juice samples, employed to build a PLS model
for the determination of the degrees Brix

Fig. 8.9 Full-spectral PLS regression coefficients based on the spectra of Fig. 8.8 for the determi-
nation of degrees Brix of sugarcane juices. The red boxes indicate the sub-regions suggested for
model building
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To improve the predictive power of the model, one would in principle select, by
visual inspection, the regions marked with red boxes in Fig. 8.9. If this is done, only
5 latent variables are required by LOO cross validation (removing a single y-outlier),
with RMSECV ¼ 0.26 oBx. Under these conditions, a set of 53 independent
validation samples furnished an average prediction error (RMSEP) of 0.4 oBx
(2.4% with respect to the average value in the calibration samples of 17.9 oBx).
This is satisfactory for replacing the classical refractometric method by the visible-
NIR/PLS model.

In a published literature work on this same subject, complex algorithms for
wavelength selection were applied (see next section), based on statistical/mathemat-
ical approaches which are beyond the scope of this book. The authors reached a final
optimized model with RMSEP ¼ 0.3 oBx (1.6% of relative error) for the set of
validation samples (Sorol et al. 2010). Not bad for our home-made method
(RMSEP ¼ 0.4 oBx) based on the consideration of the vector of regression
coefficients, right? In fact, the wavelengths selected using more sophisticated
algorithms (Fig. 8.10) are close to those provided by our simple approach based
on the properties of bn (Fig. 8.9).

Fig. 8.10 Variable selection results applying a genetic algorithm to the data set of Fig. 8.8. The
bars indicate the relative importance or weight of each sub-region, with standard deviations
indicated on top of each bar, resulting from running the algorithm several times. The mean
calibration spectrum is superimposed as a solid red line. Blue bars correspond to sub-regions
included in the final model, while gray bars correspond to the excluded sub-regions. Adapted
with permission from Sorol et al. (2010) (Elsevier)
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8.9 Other Sensor Selection Methods

Many additional procedures have been designed, which can be divided into:
(1) those employing the significance of the regression coefficients or loadings,
(2) those seeking the minimum prediction (or cross validation) error.

The first group includes, in addition to the visual inspection of the regression
coefficients, uninformative variable elimination (UVE) (Centner et al. 1996), which
focuses on the elements of the vector of regression coefficients and their signifi-
cance, selecting those sensors for which the associated coefficients are larger than the
corresponding uncertainty.

The already discussed i-PCR/PLS method corresponds to the second group
(Nørgaard et al. 2000), as well as a number of probabilistic methodologies, which
combine individual sensors or groups of sensors, and estimate the prediction error
for cross validation or for a validation sample set. The combinations are
implemented following different mechanisms whose aim is to find a minimum of
the objective function (the prediction error), guided by models mimicking natural
processes. The latter may be, for example, the search of food by a colony of ants as in
ant colony optimization (Shamsipur et al. 2006), the motion of bird flocks following
a guide, as in particle swarm optimization (Xu et al. 2007), genetic algorithms
(Leardi and Lupiáñez González 1998), simulated annealing (Kalivas et al. 1989),
etc. Beyond the funny names of these algorithms, some of them are really effective
in the search for optimal spectral regions to be employed for a successful calibration.

Fig. 8.11 (a) Spectra for a calibration set of gasoline samples, used to build a PLS model for the
determination of octane number. (b) Full-spectral PLS vector of regression coefficients
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In the previously mentioned determination of degrees Brix in sugarcane juices,
the authors applied various methods for wavelength selection; the most efficient ones
were those inspired in natural computation (Sorol et al. 2010). Our simple method of
inspecting the vector of regression coefficients, and the interval PLS procedure may
yield excellent results for sensor selection, without resorting to seemingly complex
methodologies.

8.10 Exercises

1. Figure 8.11a shows the NIR spectra of gasoline samples employed to build a PLS
model for the determination of octane number, and Fig. 8.11b the corresponding
full-spectral vector of regression coefficients.
(a) Which sub-regions will you select for building a PLS model?
(b) Explain the following results: for the full-spectral model, A ¼ 18,

RMSEP ¼ 0.56, whereas after a suitable sensor selection, A ¼ 4,
RMSEP ¼ 0.27.
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Mathematical Pre-processing 9

Abstract
Multivariate calibration models sometimes require one to pre-process the instru-
mental data with mathematical techniques. Criteria are discussed for performing
this relevant activity. The objective is to reduce the impact of physical phenom-
ena or changes in the instrumental response over time.

9.1 Why Mathematical Pre-processing

NIR spectra, and other multivariate signals collected by means of reflectance
measurements, i.e., after reflection on a solid or semi-solid sample, show back-
ground signals which vary from sample to sample, overlapped with the spectra of the
chemical constituents. A typical example is observed in Fig. 9.1, where a high
degree of dispersion is apparent, generating a baseline which significantly changes
across samples.

These variable signals are produced by changes in the intensity dispersed by the
sample, or by the presence of a variable optical path in the solid state or in powdered
materials, and bear no relationship with the analyte concentration or chemical
properties of a sample. They may be related to physical properties, as we shall see,
but not to the chemical composition. A multivariate model built with spectra of the
type of Fig. 9.1 will demand additional latent variables to those required by the
chemical constituents, to be able to consider the dispersive effects. Is there any
problem with this? In principle, the increment in latent variables conspires against
the parsimony principle, and more parsimonious models are preferable, as previ-
ously discussed.

A variety of procedures has been developed, collectively called mathematical
pre-processing, to reduce and, if possible, remove the effects of dispersion, and in
general of any variable background signal. These procedures attempt to filter the
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signals, in such a way that the model is mainly concerned with the chemical
composition of samples. Fewer latent variables will be expected in the latter case,
leading to more parsimonious models.

The idea seems highly reasonable and has become very popular in multivariate
calibration, particularly in the NIR spectroscopy field. However, these activities face
at least two problems: (1) no rational recipe appears to exist for selecting the
pre-processing method for a given system, and the issue becomes a question of trial
and error,whichmay be time consuming and sub-optimal, and (2) some procedures, in
particular those based on the concept of moving window, carry the risk of modifying
the properties of the instrumental noise, introducing previously non-existing noise
correlations, and making the models to be sub-optimal for analyte prediction.

A related activity is required when the measured signals vary over time or
between different instruments: calibration maintenance and transfer, respectively.
A suitable mathematical pre-processing method may restore the original predictive
power of the calibration model or may allow one to transfer a calibration model from
one instrument to another.

9.2 Mean Centering

An almost universally applied data pre-processing is mean centering. It consists in
calculating the average calibration spectrum, and subtracting the latter from all
spectra (calibration, validation, and unknowns). At the same time, the average

Fig. 9.1 NIR spectra of 170 meat samples, employed to build multivariate models to determine fat,
moisture, and protein in a non-invasive manner. The data were recorded on a Tecator Infratec Food
and Feed Analyzer working in the wavelength range 850–1050 nm, and are available at http://lib.
stat.cmu.edu/datasets/tecator
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value of the calibration concentrations or properties is computed, and subtracted
from all concentrations (calibration and validation). The model is then built with the
centered spectra and concentrations, and the analyte concentration is predicted. This
latter value will also be centered: it will be positive if larger than the calibration
average and negative otherwise. After prediction, the analyte concentration is
de-centered: the average calibration concentration is summed to the predicted value.

What do we get from mean centering? First, an almost formal achievement: to
remove from all model expressions the intercept. Second, if a constant background
signal occurs (equal for all samples), independently on the shape of this signal, mean
centering will remove it. In this case, a centered model will require one less latent
variable for calibration: the one that would be employed to model the background.
Figure 9.2 shows the effect of mean centering on a data set with a constant
background signal overlapped with the signals from three analytes: the background
removal is apparent.

Unfortunately, dispersive background signals are seldom constant, and their
general characteristic is that they vary from sample to sample (Fig. 9.1). Figure 9.3
shows the extreme case of a background signal strongly varying across samples
(overlapped with the signals of three analytes), and the result after mean centering
the spectra. As can be seen, the background persists, with positive and negative
values. It is thus necessary to develop mathematical pre-processing procedures
allowing one to correct for these effects. Some of them will be explained in the
next sections.

9.3 Smoothing and Derivatives: Benefits and Hazards

Spectral smoothing and derivatives belong to the category of mathematical
pre-processing employing the moving window strategy. They involve the selection
of a certain window width (a small spectral region at the beginning of the spectrum),

Fig. 9.2 (a) Calibration spectra of 50 samples containing three analytes and a constant background
signal. (b) Mean-centered spectra
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pre-process the data within the window, and then digitally move the window across
the whole spectral range, sensor by sensor, applying the same mathematical
pre-processing in each window.

The most employed tool for smoothing and derivatives is the Savitzky–Golay
filter (Savitzky and Golay 1964). The report describing this technique represents a
rare case of scientific success; in 2004 (40 years after its publication) it was one of
the most cited papers in the prestigious Analytical Chemistry journal, published by
the American Chemical Society. Some people consider the paper as starting the
modern era of digital processing of signals. According to the database SCOPUS, in
2017 the paper had more than 8200 citations, a number that seems to have been
exponentially growing in the last decade.

The basic Savitzky–Golay philosophy is simple: within a moving window of a
certain width, the signal values are fitted to a polynomial function, estimating in each
case the adjustable parameters (the coefficients of the polynomial terms). Subse-
quently, the signal corresponding to the center point of the window is estimated by
the fitted polynomial (smoothing), or by the polynomial derivatives. The window is
then moved across the spectral range and the activity is repeated. It is clear that the
window width is conveniently set as an odd number, larger than the degree of the
fitted polynomial, which should in turn be larger than the order of the derivative (for
smoothing, the order is zero).

For example, suppose that the spectrum of Fig. 9.4, showing a considerable
degree of random noise, requires: (1) smoothing and (2) estimating the first and
second spectral derivatives. A third-degree polynomial is applied, with a five-sensor
moving window. In the first window (Fig. 9.4), the signals are fitted to the following
function:

y ¼ ax3 þ bx2 þ cxþ d ð9:1Þ
where a, b, c, and d are adjustable parameters, x represents each of the five sensors,
and y the signal at a given sensor. With the fitted parameters, the value of y is

Fig. 9.3 (a) Calibration spectra of 50 samples containing three analytes and a variable background
signal. (b) Mean-centered spectra
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estimated at the window center; this will be the first value of the smoothed spectrum.
The process continues by moving the window, in such a way that the smoothed
spectrum will have four less points than the original spectrum. In general, the
smoothed spectra will end with a smaller number of points than the original; the
difference is one less unit than the window width.

Having the fitted polynomial parameters, one can also estimate the derivatives.
In each window, the following values for first and second derivative are estimated
from Eq. (9.1):

dy=dx ¼ 3ax2 þ 2bxþ c 1st:derivativeð Þ ð9:2Þ

d2y=dx2 ¼ 6axþ 2b 2nd:derivativeð Þ ð9:3Þ
The smoothing effect strongly depends on the size of the window. Figure 9.5

shows how the spectral smoothing progresses as a function of the window width. It is

Fig. 9.4 (a) A spectrum with a high level of random noise. (b) The first 5-sensor window for the
application of Savitzky–Golay smoothing (blue line and circles), a fitted third-degree polynomial
(red line), and the value at the middle point estimated by the latter fit (black circle)

Fig. 9.5 Effect produced by smoothing as a function of the width of the moving window of the
Savitzky–Golay filter on the spectrum of Fig. 9.4. (a) Using a 5-sensor window. (b) Using an
11-sensor window
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apparent that a high degree of smoothing can be achieved by applying the Savitzky–
Golay filter, in this particular case, with an 11-sensor window. For illustrative
purposes, or for the sake of preparing publication figures, the result could not be
better. However, as previously anticipated, the smoothing should be considered as a
spectral cosmetic, leading to a seeming improvement in the quality of the signal.
Sadly, the random noise is always there. Is it beneficial to smooth spectra before
building a multivariate calibration model? The apparent answer would be yes, but
careful studies indicate otherwise: models based on digitally smoothed spectra by
moving-window strategies may in fact be worse than those built with raw data
(Brown and Wentzell 1999). In this context, notice the title of Brown and Wentzell
(1999): Hazards of digital smoothing filter as pre-processing in multivariate cali-
bration. The reason lies in the fact that these filters introduce correlations in the
structure of the instrumental noise, with a range equal to the window size. This
correlation, inexistent in the raw data, cannot be adequately modeled by PCR or
PLS, which are based on the iid assumption for the instrumental noise (uncorrelated
and with constant variance). The result is that PCR/PLS models based on smoothed
data can be worse than those based on raw data (Brown & Wentzell, 1999).

Spectral derivatives estimated by the Savitzky–Golay method generate similar
correlation effects in the noise, with an additional danger: the models may become
sensitive to changes in the instrument reproducibility for wavelength registration.
Small changes of a fraction of a wavelength may degrade the model performance.

The first derivative removes the effect of baselines varying across samples,
something which cannot be achieved by mean centering (see previous section),
provided the background signal is approximately linear (reader: can you explain
why?). The second derivative is more general in this respect, and should be able to
remove non-linear background signals varying from sample to sample, provided the
non-linearity can be approximated by a quadratic function (reader: can you explain
why?). We can appreciate the effect of the derivatives in Fig. 9.6, in comparison with
Fig. 9.4, where mean centering was not effective in removing the background.

Fig. 9.6 (a) First derivative of the spectra in Fig. 9.3 estimated by the Savitzky–Golay filter. (b)
Second derivative of the spectra in Fig. 9.3 estimated by the same filter. In both cases, a fifth-degree
polynomial was used with a 25-sensor window
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Figure 9.6 shows that the first derivative leaves some remaining baseline signal,
but the second derivative has made a perfect job, because in this particular example,
the baseline is approximately quadratic. Increasing the order of the derivative to cope
with further non-linear backgrounds is not recommended. Spectral derivation
increases the impact of the noise relative to the signal, and further smoothing the
spectra may be even worse. Some researchers consider the second derivative as the
universal method for removing undesirable dispersive effects.

9.4 An Algorithm for Smoothing and Derivatives

A simple MATLAB code to apply smoothing and derivatives is provided in Box 9.1.
It estimates the coefficients for generalized values of window size and polynomial
degree. Coefficient tables exist allowing one to directly estimate the smoothed
spectrum and the derivatives from the signal values at each window point. Using
these tables, the processed values are directly estimated as a linear combination of
the signals at each window point. The tabulated coefficients are the weights of these
linear combinations (Gorry, 1990).

Box 9.1
This algorithm implements smoothing and spectral derivatives. The variables
present in the workspace should be “x” (the sample spectrum to be processed),
“order” (the derivative order, with 0 implying smoothing, 1 first derivative and
2 second derivative), “degree” (the degree of the polynomial function, up to 5),
and “window” (the width of the window, given by an odd number of sensors).
The processed spectrum is stored in the variable “xnew”:

J¼size(x,1);
xnew¼zeros(J-window+1);
v¼1:window;
me¼(window+1)/2;
mat¼[v.^0;v.^1;v.^2;v.^3;v.^4;v.^5];
p0¼[me.^0;me.^1;me.^2;me.^3;me.^4;me.^5];
p1¼[0;1;2*me.^1;3*me.^2;4*me.^3;5*me.^4];
p2¼[0;0;2;6*me.^1;12*me.^2;20*me.^3];
z¼zeros(J,1);
for i¼1:J-(window-1)

data¼x(i:i+window-1);
coef¼data'*pinv(mat(1:degree+1,:));
eval(['z(i+me-1)¼coef*p',int2str(order),'(1:',int2str(degree+1),');'])

end
xnew¼z(me:J-me+1);
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9.5 Multiplicative Scattering Correction

This mathematical pre-processing procedure, known by its acronym MSC, does not
employ the moving window strategy, and does not present the noise correlation
effect of the Savitzky–Golay smoothing or derivative filters. It is based on the idea
that the background signals due to the light scattering, although they may change
across samples, can be proportional or approximately proportional to each other, or
even shifted by a constant value to lower or higher signal intensities. With this
concept in mind, MSC first linearly fits by least-squares the spectra (calibration,
validation, and unknown) to the mean calibration spectrum, and then subtract from
all spectra the signal estimated by the linear fit.

The effect of MSC pre-processing over the spectra of Fig. 9.3 can be observed in
Fig. 9.7. The procedure has definitely highlighted the concentration changes due to
the analytes, because the bands for three constituents are clearly seen at the
corresponding wavelengths for the spectral maxima. A remaining background signal
is still visible, although the changes of this signal across samples are less variable
than the raw data.

9.6 Additional Pre-processing Methods

There are other commonly applied tools for correcting spectra for dispersive effects:
standard normal variate (SNV) and DETREND (implying removal of trends). In the
former, the average signal and standard deviation are estimated for each spectrum.

Fig. 9.7 MSC pre-processed spectra of Fig. 9.3
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The average signal is then subtracted from each spectrum, and the result is divided
by the standard deviation. Figure 9.8a shows the effect of SNV on the spectra of
Fig. 9.3. The result is similar to that achieved by MSC: there is a noticeable effect in
highlighting the contribution of the three chemical constituents, particularly on the
analyte centered at sensor 130, whose maximum signal is significantly overlapped
with the background signal (Fig. 9.3b). However, some baseline signals still remain.

In DETREND, on the other hand, all the spectra are fitted by least-squares to a
straight line, and the fitted values are then subtracted from each spectrum. This tool
produces the effect shown in Fig. 9.8b, again highlighting the analyte effects, but
leaving background signals.

A final detail concerns pre-processing methods which are not related to dispersion
effects. In spectroscopic multivariate calibration, it is usually assumed that the
spectra of a given constituent at unit concentration do not change from sample to
sample. This is usually the case, so that the assumption is in general safe, but some
multivariate signals do not follow this rule. Two examples are pertinent in this
context: (1) chromatography and (2) electrochemical signals, e.g., voltammetry.

Liquid chromatographic experiments are well known for their intrinsic lack of
reproducibility: if several aliquots of a given pure analyte solution are injected in a
chromatograph, the measured traces at the detector will not overlap with each other.
What can go wrong with a PLS model fed with chromatograms for a set of
calibration mixtures? There are only a few studies in this respect, and they show
that it is best to first synchronize the chromatograms (calibration, validation, and
unknowns) with respect to a reference trace before model building and prediction.

In the determination of the enantiomers of ketoprofen by liquid chromatography
using a chiral stationary phase, for example, a calibration set was designed with
mixtures of the pure enantiomers (Padró et al. 2015). Figure 9.9a shows the raw
calibration chromatograms, where the lack of synchronization is apparent. Digital
displacement of the traces to match a reference chromatogram leads to Fig. 9.9b. The
latter data were employed for successful PLS calibration and prediction.

In a different literature example, a PLS-1 model was developed based on differ-
ential pulse voltammetric traces measured on a glassy carbon electrode for the

Fig. 9.8 (a) SNV pre-processed spectra of Fig. 9.3. (b) DETREND pre-processed spectra
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simultaneous determination of the active principles levodopa, carbidopa, and
benserazide in pharmaceutical formulations (Zapata-Urzúa et al. 2010). The authors
showed that the peak potentials for the pure analytes varied with concentration, and
thus first pre-processed the electrochemical profiles by synchronizing them using an
efficient algorithm known as correlation optimized warping (COW) (Tomasi et al.
2004).

9.7 Algorithms for MSC, SNV, and DETREND

MATLAB codes for MSC, SNV, and DETREND can be found in Box 9.2.

Box 9.2
The following codes implement MSC. Here the variables are “Xcal” (the
calibration data matrix) and “x” (the spectrum of a given sample, calibration,
validation, or unknown). The code stores in variables “Xcalnew” and “xnew”
the pre-processed calibration matrix and sample vector, respectively:

J¼size(x,1);
espxcal¼mean(Xcal,2)'-mean(Xcal(:));
espycal¼Xcal-mean(Xcal(:));
beta¼espycal'*pinv(espxcal);
alpha¼(mean(Xcal)-beta'*sum(mean(Xcal,2))/J);
espynew¼x-mean(Xcal(:));
betanew¼espynew'*pinv(espxcal);
alphanew¼(mean(x)-betanew*sum(mean(Xcal,2))/J);
Xcalnew¼(Xcal-ones(J,1)*alpha)./(ones(J,1)*beta');

(continued)

Fig. 9.9 (a) Raw liquid chromatograms of mixtures of (R) and (S)-ketoprofen. The signal is the
absorbance at 220 nm. (b) The same chromatograms after temporal synchronization. Adapted with
permission from Padró et al. (2015) (John Wiley and Sons)
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Box 9.2 (continued)
xnew¼(x-ones(J,1)*alphanew)./(ones(J,1)*betanew);
To apply SNV, the same variables are required as for MSC (Box 9.2),

employing the following code:
[J,I]¼size(Xcal);
for i¼1:I

sdelta¼std(Xcal(:,i));
Xcalnew(:,i)¼(Xcal(:,i)-mean(Xcal(:,i)))/sdelta;

end
sdeltanew¼std(x);
xnew¼(x-mean(x))/sdeltanew;
DETREND uses the same variables as MSC (Box 9.2), and can be applied

with:
J¼size(Xcal,1);
mat¼[ones(J,1),[1:J]'];
ab¼Xcal'*pinv(mat');
Xcalnew¼Xcal-mat*ab';
abnew¼x'*pinv(mat');
xnew¼x-mat*abnew';

9.8 How to Choose the Best Mathematical Pre-processing

A relevant question in pre-processing spectra concerns the existence of rules for the
selection of procedures. Usually this important phase is conducted by a classical
trial-and-error search. Attempts to find rational procedures for selecting the best
mathematical pre-processing exist, including the careful analysis of the data struc-
ture (Brown 2000; Brown et al. 2000), or the use of experimental design and
optimization (Gerretzen et al. 2015).

Most calibration developers still use the trial-and-error method. This consists in
trying different procedures, separately or combined, until a good multivariate model
is found, with acceptable average cross validation errors and number of latent
variables.

An intermediate alternative is to select the pre-processing automatically, resorting
to algorithms which are guided, as objective function, by the search of the minimum
prediction or cross validation error (Devos and Duponchel 2011). Moreover, these
algorithms can be combined with sample and wavelength selection, under the
philosophy that pre-processing, samples, and sensors are an inseparable triad, and
that they depend on each other, as depicted in Fig. 9.10. An algorithm of this type
employs the following methods for optimizing a PLS model: (1) the Kennard–Stone
method for selecting samples, (2) ant colony optimization for selecting wavelengths,
and (3) a genetic algorithm for selecting math pre-processing (Allegrini and Olivieri
2013).
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9.9 Is Pre-processing Always Useful?

As previously discussed, spectral pre-processing seeks to decrease or remove the
effect of physical phenomena varying from sample to sample (scattering, variable
optical path, etc.), in such a way that the model can focus with higher efficiency (less
latent variables, lower prediction errors) on the chemical composition of the studied
material. However, if the aim of the analysis is not chemical but physical, the
scattering may contain valuable information, and applying signal pre-processing
may seriously harm the model.

As an example, when trying to calibrate a multivariate model based on NIR
spectroscopy to measure the density and other physical properties of wood samples,
it was necessary to maintain the spectra in their raw form, not applying any
mathematical pre-processing as those presently discussed (Lestander et al. 2008).
Why? Because the NIR scattering is the phenomenon related to wood density!

On the other hand, liquid samples measured by transmission should not present
significant dispersion effects, so that spectral pre-processing would not be
recommended, at least in principle. It is usual to find publications where different
analytical results are compared for liquid samples, whose spectra were measured by
transmission, applying various pre-processing techniques. What we would expect in
these cases? Answer: small and marginal differences in the average validation errors,
most probably with no statistical significance. Pre-processing is not really needed!
An exception may be found in systems having constituents with highly overlapped
spectra: spectral derivatives are known to increase spectral resolution by reducing
the widths of constituent signals, which may lead to better prediction results in
comparison with raw data.

Fig. 9.10 Illustration of the
mutual relationship among
samples, sensors, and
mathematical pre-processing
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9.10 A Simulated Example

What about the analytical predictions which can be expected after signal
pre-processing? Table 9.1 shows the average cross validation errors (RMSECV)
and optimum number of latent variables which are estimated for the set of spectra of
Fig. 9.3. The analyte of interest is the one whose spectral maximum is located in the
middle of the three constituent peaks. In all cases, the spectra were mean centered
after each pre-processing was applied. For the Savitzky–Golay filters, a 15-sensor
window and a fifth-degree polynomial were employed.

In this synthetic example, no significant improvement is achieved in the
RMSECV in comparison with the use of raw data, but the optimum number of latent
variables differs, implying that some PLS models are more parsimonious. The need
of four variables when no pre-processing is applied is explained by the presence of
the three constituents and the baseline signal (which leads PLS to demand an extra
latent variable). This number is also four for smoothing and first derivative.

The second derivate, on the other hand, requires one less latent variable, which
can be interpreted as a success of this procedure, because the pre-processed data
carry information on three chemical constituents, without a significant effect from
the background. DETREND leads to a similar result, without the danger of increas-
ing the degree of correlation in the spectral noise.

Finally, in this particular example, MSC and SNV lead to only two latent
variables, with an increase in the average cross validation error. However, this
does not mean that they will not be useful in other examples.

9.11 A Real Case

In this section, we comment on the determination of total oil content in corn seed
samples. The NIR spectra for the calibration samples are collected in Fig. 9.11.,
where a variable background signal is clearly visible. Pre-processing the spectra with
first and second derivatives leads to the results shown in Fig. 9.12a, b, while MSC
furnishes the spectra in Fig. 9.13. The result is surprisingly good: the derivatives
leave almost no background signal. On the other hand, although MSC leaves a
remaining baseline, it is almost constant, and could be removed by mean centering.

Table 9.1 Analytical
results after different pre-
processing methods are
applied to the spectra of
Fig. 9.3

Pre-processing RMSECV Latent variables

None 0.0054 4

Smoothing 0.0055 4

First derivative 0.0057 4

Second derivative 0.0056 3

MSC 0.071 2

DETREND 0.0055 3

SNV 0.072 2
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After pre-processing, the calibration spectra were submitted to PLS modeling,
with the results summarized in Table 9.2., in terms of relative error of prediction
(REP) on an independent validation set for various pre-processing methods and
some combinations. The best models appear to be those highlighted in boldface in
Table 9.2, i.e., first or second derivative and DETREND + derivatives. These models
require a considerably smaller number of latent variables in comparison with the use
of raw data, as expected from the removal of sample-to-sample variable background
signals. The average validation errors are similar, but the more parsimonious models
are to be preferred.

Fig. 9.11 NIR spectra of 50 corn seed samples, employed to build a model for the determination of
quality parameters. They were measured in the wavelength range 1100–2498 nm at 2 nm intervals
(700 channels), and are available at http://www.eigenvector.com/data/Corn

Fig. 9.12 (a) First derivative of the spectra of Fig. 9.11. (b) Second derivative. In both cases, a
fifth-degree polynomial was used with a 25-sensor window
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9.12 Calibration Update

We have already commented that multivariate calibration models may lose predic-
tive power over time. Various examples were provided to illustrate a specific cause
for this phenomenon: the appearance of constituents not present in the calibration set
in new test samples. The universal solution to this problem was discussed as the need
of expanding the calibration set to restore the predictive power, adding samples
which are representative of the new constituents.

Fig. 9.13 MSC pre-processed spectra of Fig. 9.11

Table 9.2 Optimum number of latent variables and relative error of prediction (%) for different
pre-processing methods applied to NIR spectra of corn seeds, employed to build PLS models for the
measurement of total oil

Pre-processinga Latent variables REP (%)

None No derivatives 21 1.1

1st./2nd. derivative 11 1.2
MSC No derivatives 19 2.0

1st./2nd. derivative 10 2.0

SNV No derivatives 19 1.9

1st./2nd. derivative 11 2.1

DETREND No derivatives 21 1.2

1st./2nd. derivative 11 1.1
SNV No derivatives 19 1.8

1st./2nd. derivative 11 2.0
aIn each case, the pre-processing in the first column is applied, followed by the one in the second
column, followed by mean centering. The best models are highlighted in boldface
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Model predictions can change for reasons beyond the appearance of new
constituents in test samples. Another relevant cause is the variation in the instrument
response over time, which may in turn be due to changes in the light source, the
detector properties, or the accuracy of wavelength setting (Feudale et al. 2002). This
needs to be monitored in time, for example, by checking whether the residuals of the
modeling phase of the test sample signals maintain within a certain tolerated value.
The control can be done with the F test discussed in Sect. 7.7 of Chap. 7. However,
industrial analysts are somewhat suspicious of purely mathematical and statistical
tests, relying on a more practical monitoring activity. They periodically measure the
analyte concentration or target property in a set of validation samples using a
reference technique, comparing the results with those predicted by the model. If
acceptable values of the average prediction error (RMSEP) and relative error of
prediction (REP) are produced, there is no need for updating.

How can models be updated? The simplest method is to correct the slope and
intercept of a predicted vs. nominal plot for validation samples. This works properly
under a limited set of circumstances, e.g., when a new constituent appears in test
samples at a fixed concentration.

A better alternative is to mathematically transform the current instrument
response to the one in a different condition (Feudale et al. 2002). Two different
situations may occur: (1) the instrumental properties have changed so that the model
is losing its original predicting ability or (2) we would like to transfer the available
original calibration to a new instrument, whose response is not expected to be the
same as the original one. In any case, transfer samples are required, measured on
both conditions. These transfer samples may be some of the original calibration
samples, if they are still available and are sufficiently stable. Otherwise, stable
transfer samples, e.g., earth oxide glasses, can be used.

Piecewise direct standardization (PDS) is one of the oldest and faithful methods
for calibration update, maintenance, and transfer (Wang et al. 1991). Suppose
the original calibration of an instrument under conditions labeled as “1” was built
with a calibration data matrix X1 of size J � I1 (J ¼ number of wavelengths
and I1 ¼ number of samples). In general, we do not want to re-measure all the
I1 calibration samples in the new condition “2,” but only a smaller sub-set of I2
samples (I2 � I1). The spectra for the I2 samples under condition “2” produce a data
matrix Xs2 of size J � I2. It is obvious that the transfer sample sub-set should be
sufficiently representative; the Kennard–Stone algorithm discussed in Sect. 8.2 of
Chap. 8 is useful for the present purpose.

Once the data matrix Xs2 has been measured, the corresponding columns of X1

for the same samples are selected to form matrix Xs1. Now the problem is how to
correlate Xs1 with Xs2, i.e., to find a transformation matrix F capable of converting
spectra measured in condition “2” back to condition “1.” A clever approach is to
correlate each row of Xs1 with nearby rows of Xs2, or pieces of Xs2, hence the name
of the PDS procedure. Figure 9.14 (left) illustrates the concept: the pth row of Xs1

(x1p) is correlated with the pth piece Xp of matrix Xs2. How many pieces are
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available? This depends on the size of the pieces: if the sensor windows before and
after a given row x1p are of size K, the piece size is (2K + 1) � I2, and there will be
P ¼ J� 2K pieces. It is apparent that 2K sensors will be lost, K at the beginning and
K at the end of the sensor range.

The expression needed to perform the required correlation (Fig. 9.14 left) is the
following (transposition is made to bring it into a familiar form):

xT
1p ¼ XT

p bp þ eT ð9:4Þ

where bp is a vector of regression coefficients of size (2K + 1) � 1. The reader will
recall the ILS model equation (3.4) of Chap. 3, which is analogous to the present
equation (9.4). Thus, each vector of regression coefficients bp can be estimated by
either PCR or PLS. Once all possible P rows of Xs1 have been processed, a set of
P vectors bp are used to build the transformation matrix F of size J � J. Figure 9.14
(right) illustrates the aspect of a typical F matrix: it has zeros outside a band of size
(2K + 1). Rows with zeros on the top and bottom account for the lost sensors.

Once F is available, it can be employed to transform any new vector measured in
situation “2” (x2) back to situation “1” (x1):

Fig. 9.14 Block illustration of the relevant PDS mathematical elements. Left: the pth row of the
matrix Xs1, designed as x1p, and a sub-matrix Xp of the matrix Xs2. Right: the transformation
F matrix. In both cases, 12 wavelengths were considered with a window with K ¼ 2 sensors. In the
transformation matrix, the bp vectors are shown, for p running from 1 to 8
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x1 ¼ Fx2 ð9:5Þ
which could then be combined with the original vector of regression coefficients for
the calibration in situation “1.”

Figure 9.15 shows a simulation of two possible spectral changes: an increase in
signal intensity by a constant factor at all sensors (Fig. 9.15a) and a shift in two
sensors to higher wavelengths (Fig. 9.15b). The correction after applying the PDS
procedure with a window of six sensors (K¼ 3) and a small randomly selected set of
samples appears to be satisfactory, especially in Fig. 9.15a. It is apparent that
wavelengths drifts are more challenging for correction (Fig. 9.15b).

9.13 A PDS Algorithm

A MATLAB code for PDS is provided in Box 9.3. The output of this short program
is the transformation matrix needed to process the spectra of test samples, to bring
them to the original conditions where calibration was built. The code requires one to
set the value of the spectral window for the piecewise regression steps. This is
usually done by trial and error, selecting the window value leading to the lowest
average error for a set of validation samples.

Fig. 9.15. (a) Blue, original NIR spectra for a set of 50 calibration samples, red, the same spectra
multiplied by a constant factor of 1.5, black, residual spectra computed as the difference
(X1 � FX2), with F estimated by PDS with a spectral window of six sensors and a sub-set of ten
randomly selected samples. (b) Blue, original NIR spectra for a set of 50 calibration samples, red,
the same spectra shifted two sensors to higher wavelengths, black, residual spectra computed as the
difference (X1 � FX2), with F estimated as in (a). The black arrow in (b) indicates a spectral region
where rather abrupt absorbance changes take place
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Box 9.3
A PDS algorithm. The variables that should be present in the workspace are
“Xs1,” the matrix of sub-set of samples in condition “1,” “Xs2,” the matrix of
sub-set of samples in condition “2,” and “window,” the number of channels for
applying PDS.

J¼size(Xs1,1);
F¼zeros(J,J);
for j¼window+1:J-window

Xj¼Xs2(j-window:j+window,:);
[U,T,L]¼princomp(Xj','econ');

A¼min(find(cumsum(L)/sum(L)>.99));
bj¼U(:,1:A)*pinv(T(:,1:A))*(Xs1(j,:)'-mean(Xs1(j,:)));
F(j-window:j+window,j)¼bj';

end
The output is the transformation matrix “F,” which can be applied to

transform a new spectrum “x,” by the simple multiplication command F*x.

9.14 Exercises

1. Table 9.3 shows the results for the measurement of octane number in gasolines
from NIR spectra, after application of various pre-processing methods (the
minimum relative error is highlighted in boldface). Can you explain these results?

Table 9.3 Optimum number of latent variables and relative error of prediction (%) for different
pre-processing methods applied to NIR spectra of gasolines, employed to build PLS models for the
measurement of octane number

Pre-processing Latent variables REP (%)

None No derivatives 4 0.27

1st./2nd. derivative 4/5 0.37/0.46

MSC No derivatives 3 0.24
1st./2nd. derivative 5/5 0.34/0.47

SNV No derivatives 4 0.28

1st./2nd. derivative 4/4 0.38/0.47

DETREND No derivatives 3 0.27

1st./2nd. derivative 4/5 0.37/0.45

SNV No derivatives 4 0.29

1st./2nd. derivative 4/5 0.38/0.45
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Analytical Figures of Merit 10

Abstract
Figures of merit are regularly used to compare the performance of different
analytical methodologies. A modern view of their definitions and interpretations
is provided in the framework of first-order multivariate calibration.

10.1 Figures of Merit: What for?

A positive meaning is usually ascribed to the term merit. However, etymology
indicates that the Latin word meritum should be translated as the quality of being
worthy of reward or punishment, as the Oxford Dictionary does. Likewise, analyti-
cal figures of merit are quality parameters, which may favor or disfavor a certain
methodology based on its efficiency (or lack of it).

The main usefulness of figures of merit lies in the possibility of comparing
different analytical methodologies by means of simple, reliable, and easily interpret-
able numerical indicators. The analyst will usually balance the figures of merit, and
other factors such as cost, operating time, possibility of automation, etc. before
selecting a given analytical method for a specific application.

Some figures have an intrinsic importance that goes beyond the comparative
analysis. For example, the limit of detection and the limit of quantitation are
employed to establish whether a given analytical method can be applied or not to
detect very low analyte concentrations. If an official protocol or norm establishes
that the analytical methodology to be applied for the determination of a given analyte
should be able to detect concentrations on the order of parts per billion, it is
necessary to know the limit of detection to determine if the methodology is applica-
ble or not at such low concentrations.
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10.2 Sensitivity

In classical univariate calibration, the sensitivity is defined by the International
Union of Pure and Applied Chemistry (IUPAC) as the slope of the calibration
graph (Fig. 10.1) (Currie 1995; Danzer and Currie 1998). The slope measures the
change in signal for a unit change in concentration, which makes sense if we accept
the qualitative definition of sensitivity as the response provoked by a certain
stimulus. In analytical chemistry, the response is the instrumental signal and the
stimulus is the analyte concentration. The definition can be extended to real life: a
person who is easily offended or upset is said to be sensitive, whereas someone not
aware of or able to respond to something is said to be insensitive. In all cases, the key
is the proportion between stimulus and response.

An almost complete theory accounting for the sensitivity has been developed in
the framework of multivariate and multi-way calibration. This theory defines the
parameter in a different manner than above, based on error propagation theory and
not on signal changes as a function of concentration (Olivieri 2014). Resorting to
error propagation, if the analytical response is measured with an uncertainty sx
(assumed to be constant for all samples), and this uncertainty is propagated through
the calibration process to all validation and unknown samples, a corresponding
uncertainty sy will be generated in the prediction of the analyte concentration. The
numerical sensitivity parameter (SEN) is defined as the ratio between sx and sy:

SEN ¼ sx=sy ð10:1Þ
and its units are signal � concentration–1.

This definition is illustrated in Fig. 10.2. It is easy to show that Eq. (10.1) agrees
with the IUPAC definition. We start from the prediction expression for the analyte
concentration by means of the classical univariate graph:

y ¼ ðx� bÞ=a ð10:2Þ
where y is the predicted concentration, x the test sample signal, b the intercept, and
a the slope of the calibration graph.

Fig. 10.1 A typical linear
calibration graph, showing the
slope (a) and intercept (b).
The sensitivity is the value of
the slope
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We now assume that the calibration process is precise, meaning that the uncer-
tainty only stems from the measurement of the test sample signal. If this is the case,
the slope and intercept in Eq. (10.2) will carry a negligible uncertainty in comparison
with the signal x, and a small error in signal (dx) will be transmitted to prediction as:

dy ¼ dx=a ð10:3Þ
Multiplying each side of Eq. (10.3) by itself:

dy2 ¼ dx2=a2 ð10:4Þ
We should now consider that the square values dx2 and dy2 are averaged for a

very large number of cases. The averages tend to the variances in x and y (s2x and s
2
y),

and their square roots to the standard errors sx and sy. Therefore:

sy ¼ sx=a ð10:5Þ
The latter equation confirms that both sensitivity definitions agree, because from

Eq. (10.5), SEN ¼ sx/sy ¼ a.
In first-order multivariate calibration, various sensitivity definitions have been

proposed, but the accepted one today is based on error propagation (Fig. 10.2). In the
inverse models PCR and PLS, we start from the prediction expression for the analyte
concentration:

y ¼ xTbn ð10:6Þ
It is then required to apply error propagation to Eq. (10.6), considering a small

error in the signal at each sensor, and assuming that the elements of the vector of
regression coefficients do not carry a significant uncertainty. The latter assumption is
due to the fact that the calibration is assumed to precise. To simplify matters, let us
consider an example where only two sensors exist; Equation (10.6) becomes:

Fig. 10.2 Illustration of the estimation of the sensitivity, on the basis of error propagation of the
signal for the test sample to the predicted concentration. The model is assumed to be precise, and the
instrumental noise to be iid
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y ¼ x1bn1 þ x2bn2 ð10:7Þ
Small changes in the signals at each sensor lead to the following change in

concentration:

dy ¼ dx1bn1 þ dx2bn2 ð10:8Þ
As in the univariate definition, we multiply both sides of Eq. (10.8) by

themselves:

dy2 ¼ dx21b
2
n1 þ dx22b

2
n2 þ 2dx1dx2bn1bn2 ð10:9Þ

What can be expected by averaging the values of dx21, dx
2
2, and (dx1dx2) over a

very large number of cases? The first two squares will become the variances at each
sensor; if the instrumental noise is constant, the variances will both be equal to s2x . On
the other hand, the cross product (dx1dx2) will tend to zero if there is no correlation
between the noise at different sensors (sometimes the product dx1dx2 is positive and
sometimes it is negative). These two assumptions describe the characteristics of the
so-called iid (identically and independently distributed) noise: constant variance and
zero correlation.

Under this situation, Eq. (10.9) becomes:

s2y ¼ s2x b2n1 þ b2n2
� � ð10:10Þ

A convenient way of writing Eq. (10.10) is by realizing that the sum b2n1 þ b2n2
� �

is
the square of the length of the vector bn (Pythagoras!). For a general case of
J sensors, Eq. (10.10) can be written as:

s2y ¼ s2x
XJ
j¼1

b2jn ð10:11Þ

From Eq. (10.11), it is easy to derive the multivariate sensitivity for PCR and
PLS:

SEN ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
PJ
j¼1

b2jn

s ð10:12Þ

Equation (10.12) shows that the sensitivity is the inverse of the length of the
vector of regression coefficients. The units of SEN are (signal� concentration–1), so
that this parameter depends on the type of measured signal. As such, it is rather
inefficient for comparing different analytical techniques, which may be based on
wildly different signals. How to compare the sensitivity of a method given in spectral
units of (absorbance M–1) with an alternative one in electrical units of (mV M–1)?
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To solve this problem, an additional figure of merit has been proposed: the
analytical sensitivity γ, as the ratio between sensitivity and instrumental noise
(Skogerboe and Grant 1970; Cuadros Rodríguez et al. 1993):

γ ¼ SEN=sx ð10:13Þ
This latter definition corresponds to univariate calibration, but can be extended to

multivariate calibration in a simple way. The units of the parameter γ are inverse
concentration, making it more useful for method comparison, because it does not
depend on the specific type of signal.

Equations (10.12) and (10.13) may not be efficient for method comparison if the
noise is not iid (Fragoso et al. 2016). Taking into account other noise structure is an
advanced aspect of the present subject, beyond the scope of this book (Fragoso et al.
2016).

10.3 Selectivity

IUPAC mentions the selectivity in the framework of univariate calibration as the
extension that a method can be used to determine individual analytes in mixtures or
matrices without interference from other components of similar behavior (Vessman
et al. 2001). In first-order multivariate calibration, as we have seen throughout this
book, if the interferents are adequately represented in the calibration phase, they will
not produce an interference in the classical sense. However, we may interpret the
IUPAC definition in the multivariate world as indicating that the selectivity will be
smaller than when the analyte is present in its pure form.

To represent the effect of the interferents on the selectivity, the latter has been
defined as the ratio between the sensitivity parameter SEN of Eq. (10.12), and the
sensitivity that the analyte would have in its pure form (SEN0):

SEL ¼ SEN=SEN0 ð10:14Þ
With the latter definition, SEL is a dimensionless number varying between 0 and

1. Equation (10.14) can only be applied in the case the analyte is available in pure
form, something which severely limits the usefulness of the expression, because in
many applications the pure analyte is not available. For calibration of global sample
properties (organoleptic, octane number, etc.), the selectivity parameter defined by
Eq. (10.14) may not admit a viable chemical interpretation.

Instead of SEN0 in Eq. (10.14), some researchers proposed the use of the total
signal for a given sample at unit analyte concentration. With this definition, it will
always be possible to estimate the selectivity, which will be a number smaller than
1. This definition leads to a selectivity parameter that varies from sample to sample,
because the spectrum of the sample (x) may display variable amounts of the
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interferents, in addition to the analyte. One expects that a figure of merit will qualify
the calibration and will be independent on the test sample.

In sum, it is preferable not to report selectivity values for PCR or PLS
calibrations.

10.4 Prediction Uncertainty

This is an important figure of merit, as revealed by the following statement of a well-
known researcher: a result without its estimated uncertainty cannot be taken seri-
ously (De Bièvre 1997). We have already commented on the uncertainty in the
predicted analyte concentration in connection with the sensitivity, where the calibra-
tion parameters were considered to be infinitely precise, implying that the only
source of uncertainty is the experimental collection of the spectrum for the unknown
sample.

However, estimating the total prediction uncertainty requires one to consider the
propagation of instrumental errors from the calibration phase, as well as the errors
from the preparation of the calibration samples, or from the measurement of the
reference nominal values for the calibration samples. The best literature source in
this context is the classical work of Faber and Kowalski (of almost 60 pages long!),
containing everything you wanted to know about uncertainty but were afraid to ask
(Faber and Kowalski 1997). The main result is that the global prediction uncertainty
can be explained by the propagation of three error sources: (1) the measurement of
the multivariate signal for the unknown sample, whose variance is assumed to be
constant and independent (the iid approximation) and equal to s2x , (2) the measure-
ment of the signals for the calibration samples, having the same variance s2x , and
(3) the analyte concentrations or properties for the calibration samples, which are
affected by a constant and independent variance given by s2ycal , which is a function of
the manner in which the calibration samples were prepared from the pure analyte and
the potential interferents, or on how the reference calibration values were measured.

The prediction variance will then be equal to the sum of the three variances, one
for each of the three error sources mentioned above, but the relative impact of these
errors is not the same. The signal errors for the test sample are propagated to the
estimated concentration as inversely proportional to the sensitivity, whereas the
remaining two sources, arising from the calibration phase, are scaled by a dimen-
sionless parameter known as the sample leverage, and symbolized as h (Faber and
Kowalski 1997):

s2y ¼ s2x=SEN
2 þ hs2x=SEN

2 þ hs2ycal ð10:15Þ

The first term in the right-hand side comes from the combination of Eqs. (10.12)
and (10.13), and represents the contribution from the test sample. The second term is
analogous to the first one, but is scaled by the sample leverage h, and represents the
contribution of the calibration signal errors. For test samples close to the calibration
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center, h is smaller than 1, illustrating the averaging effect of the use of multiple
calibration samples. The third term measures the effect of the calibration concentra-
tion errors, and is also scaled by the leverage.

Mathematically, the sample leverage is calculated from the truncated calibration
score matrix TA and the corresponding score vector for the unknown sample tA, as
the squared length of the sample leverage vector h:

h ¼ tTAT
þ
A h ¼

XA
a¼1

h2a ð10:16Þ

where Tþ
A is the generalized inverse of TA and ha is a generic element of h. The

leverage in Eq. (10.16) can be qualitatively interpreted as sample score divided by
calibration scores. The official interpretation is that the value of h locates the
unknown sample in the calibration space, relative to the center of the space if the
data were previously mean centered. Samples with a small leverage are close to the
calibration center, and better represented by the calibration, leading to comparatively
smaller prediction errors. Conversely, high-leverage samples, located far away from
the center or close to the calibration borders, will lead to relatively larger prediction
errors. This behavior is analogous to classical univariate calibration.

How to estimate the variance ingredients needed in Eq. (10.15)? The value of sx
can be experimentally estimated by studying replicate spectra for blank samples, if
they are available, or for typical calibration samples if they are not. The standard
deviation of replicate spectral measurements, averaged over the whole sensor range,
will provide an idea of the level of uncertainty in the signals. As regards the
concentration uncertainty sycal, two different situations exist: (1) the samples are
prepared in the laboratory, and thus sycal is the uncertainty associated to sample
preparation, or (2) the nominal concentration values or sample properties are
measured by a reference technique, and thus sycal is the uncertainty of the latter
technique.

Alternatively, one may allow the model itself to estimate the uncertainties in both
signal and concentration. The former can be taken as the average standard deviation
for the spectral residuals, whereas the latter may be considered as the standard error
of prediction, both during the cross validation process. In any case, these model-
estimated uncertainties should be judiciously checked by the analyst for consistency
with experience.

10.5 The Effect of Mathematical Pre-processing

Mean centering, as previously indicated, is a pre-processing method which is applied
by default in PCR or PLS calibration. The spectra are centered by subtracting the
average calibration spectrum, and the concentrations are centered by subtracting the
average calibration concentration for the analyte of interest. When data are mean
centered, the expression for prediction is:
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yn ¼ ðx� hxiÞTbn þ hyi ð10:17Þ
where hxi is the average calibration spectrum and hyi the average calibration
concentration.

From Eq. (10.17), it is apparent that the prediction variance needs two additional
terms, corresponding to the variance of the average spectrum and concentration.
Statistics shows that the variance of the average is equal to the variance divided by
the number of averaged objects, in the present case the I calibration samples. This
means that under mean centering, Eq. (10.15) should be corrected in the following
way:

s2y ¼ s2x=SEN
2 þ hs2x=SEN

2 þ hs2ycal þ ðs2x=IÞ=SEN2 þ ðs2ycal=IÞ
¼ s2x=SEN

2 þ he ffs2x=SEN
2 þ he ffs2ycal

ð10:18Þ

where the effective leverage heff has been defined as (h + 1/I ). Notice that if the
number of calibration samples is large (I > 100), the practical effect of the term (1/I )
may not be significant.

For the remaining pre-processing procedures, it is necessary to distinguish
between those based on the moving window concept, as smoothing and derivatives,
from methods such as MSC, SNV, and DETREND (see Chap. 9). Why? Because
moving windows modify the noise structure, introducing correlations among the
noise at different sensors, even when the original noise is of the iid type. In this case
Eq. (10.18) is no longer valid, because it is based on the iid assumption for the noise
structure. A discussion on the specific effect of the moving window filters on the
prediction uncertainty is beyond the scope of this book, and is a subject of current
chemometric research (Olivieri and Allegrini 2017).

MSC, SNV, and DETREND do not show this problem. However, one should
take into account that for these pre-processing methods, the value of sx in Eq. (10.18)
will no longer be the standard deviation for the raw signal, but the one for the
pre-processed signal. If this latter uncertainty is experimentally estimated from
replicates, the spectra should be pre-processed before calculating the value of sx.
If, on the other hand, the uncertainty in signal is estimated by the model itself, sx will
be directly given by the model as the pre-processed signal uncertainty.

10.6 Detection Limit

The limit of detection is the minimum detectable concentration with a specified
degree of confidence (Currie 1999). It is important to remark the last portion of the
above definition: with a specified degree of confidence. This is due to the fact that
two parameters exist, in principle, to establish the detectability of an analyte. One of
them is the critical limit of decision limit (LC), a concentration value from which the
analyte is declared to be present, but without the sufficient level of confidence. The
second is the true limit of detection (LOD), from which the analyte can not only be
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declared to be present, but its presence can be asserted with a specified degree of
confidence. Notice the title of the publication in Faber (2008): the limit of detection
IS NOT the analyte level to decide between analyte detected and not detected. This
latter limit is, in fact, the critical limit LC.

The LOD is based on the existence of three concentration regions: (1) below the
critical limit, (2) between the critical limit and the detection limit, and (3) above the
detection limit. The definition is analogous to a well-known real-life situation
(Fig. 10.3): (1) evidence of absence, (2) lack of evidence, and (3) evidence of
presence (Olivieri and Escandar 2014).

To calculate the LOD value according to the above definition, it is required to
estimate the standard error in the predicted analyte concentration for a blank sample
(sy0). This can be done by resorting to Equation (10.15), written in the following way
(Currie 1999):

s2y0 ¼ s2x=SEN
2 þ h0s

2
x=SEN

2 þ h0s
2
ycal ð10:19Þ

where h0 is the blank leverage, which is the leverage for a sample where the analyte
is absent (recall that 1/I should be added if the data are mean centered).

As shown in Fig. 10.4, the LOD is estimated with a statistical hypothesis test. The
first step is to set the concentration at the critical level (LC in Fig. 10.4), from which
decisions are made with regard to analyte detection. For concentrations above the
LC, there is a probability α of making a so-called Type I error, false positive or false
detect. This latter error consists in erroneously accepting the alternative hypothesis,
admitting that the analyte is present when it is in fact absent. As seen in Fig. 10.4, the
relative probability of making Type I errors is given by the shadowed region at the
right of LC (the area α). The distance from LC to zero concentration is approxi-
mately equal to the product of sy0 by the coefficient tα,ν. If α is 0.05, a concentration
higher than LC has a 5% probability to be a false positive. In the same vein, there is a
probability β of making an error of Type II, false negative or false non-detect,

Fig. 10.3 Analogy of decision and detection limits with real-life facts. Adapted with permission
from (Olivieri and Escandar 2014) (Elsevier)
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accepting the null hypothesis and admitting that the analyte is absent when it is in
fact present (shadowed region at the left of LC in Fig. 10.4, with a probability β). If β
is also taken as 0.05, the probability of obtaining a false negative result will be 5%.
In this case the distance from LC to the concentration corresponding to this value of
β is approximated by the product of the coefficient tβ,ν and sy0. We are assuming that
the standard error at the LOD level is very close to the standard error at the true blank
level. The value of LOD thus depends on both α and β, and on the standard
deviations of the two Gaussian curves in Fig. 10.4. If the standard deviations are
assumed to be equal to sy0, the LOD is given by:

LOD ¼ 2t0:05,νsy0 ð10:20Þ

In practice, since the number of degrees of freedom ν is large, the value of
(2t0.05,ν) tends to 3.3, so that a good approximation to the limit of detection is:

LOD ¼ 3:3sy0 ð10:21Þ
Notice that the LOD was formerly defined by only considering Type I errors, as

the concentration corresponding to a signal/noise ratio equal to 3. This amounts to
fixing the LOD as LOD ¼ 3sx0/SEN, where sx0 is the standard deviation at the blank
level (in signal units). In this approximation, the probability of making Type I
errors was of ca. 0.1%, corresponding to t0.001,ν ¼ 3 (with large values of ν).
This definition, today abandoned by IUPAC, does not consider Type II errors
(Currie 1999).

The discussion on LOD would end at this point, with the complete expression for
the limit of detection, as:

LOD ¼ 3:3 s2x=SEN
2 þ h0s

2
x=SEN

2 þ h0s
2
ycal

� �1=2
ð10:22Þ

However, in Eq. (10.22) we need to estimate the blank leverage h0, as discussed
in the next section.

Fig. 10.4 Graphical
representation of the
significance test to estimate
the limit of detection. The
Gaussian curves indicate the
concentration distributions at
the blank level and at the limit
of detection. The blue and red
shadowed areas are the
probabilities of making Types
I and II errors, respectively

168 10 Analytical Figures of Merit



10.7 The Blank Leverage

In univariate calibration the leverage for a blank sample is estimated in a simple way,
because in the absence of the analyte, the blank sample is unique. In multivariate
calibration, on the other hand, there is no single blank. Because the analyte is
determined in the presence of multiple interferents, well represented in the calibra-
tion samples, the blank sample may be a myriad of samples, all having variable
amounts of the interferents and no analyte. Moreover, the blank might not exist at all:
seeds without moisture, gasolines without octane number, etc. We refer, in general,
to a virtual blank sample, not containing the analyte but containing the remaining
constituents in variable concentrations.

We may conclude that the blanks are variable, and thus that there will be a range
of blank leverages h0. Can we estimate these values of h0? Or put it in a different
way, can we estimate the minimum and maximum blank leverages (h0min and
h0max)? If we could do it for a given PCR or PLS calibration, we could define a
range of detection limits, from a minimum LODmin to a maximum LODmax, given by
(Allegrini and Olivieri 2014):

LODmin ¼ 3:3 s2x=SEN
2 þ h0mins

2
x=SEN

2 þ h0mins
2
ycal

� �1=2
ð10:23Þ

LODmax ¼ 3:3 s2x=SEN
2 þ h0maxs

2
x=SEN

2 þ h0maxs
2
ycal

� �1=2
ð10:24Þ

The good news is that the extreme values of the blank leverage can be estimated
in a relatively simple manner. Interestingly, the minimum value is identical to the
one employed in univariate calibration, i.e., assuming that the only constituent in the
samples is the analyte of interest (Allegrini and Olivieri 2014):

h0min ¼ yh i2
PI
i¼1

yi � yh ið Þ2
ð10:25Þ

where yi is the analyte concentration in the ith calibration sample.
On the other hand, to estimate the maximum blank leverage it is first necessary to

calculate the leverage shown by all calibration samples if the analyte could be
virtually removed from them, projecting the actual leverages to zero analyte
concentration:

h0i ¼ hi þ h0min f1� ½ðy� hyiÞ2=hyi2�g ð10:26Þ
where hi is the leverage for each of the calibration samples and h0i is the projected
leverage mentioned above. The maximum of these projections is then selected
(Allegrini and Olivieri 2014):
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h0max ¼ max h0ið Þ ð10:27Þ
and can be used in Eq. (10.24) to estimate LODmax.

Recall that for mean-centered data, (1/I ) should be added to h0min and h0max, to
obtain effective leverages for insertion in Eqs. (10.23) and (10.24).

Interestingly, Eq. (10.26) can be derived from simple trigonometric arguments:

h0i ¼ h0minþ Q2 ¼ h0minþ ðhi �M2Þ ð10:28Þ
where the segments M and Q are defined in Fig. 10.5. From this figure, if the
leverages are interpreted as squared distances proportional to concentration, then
Eq. (10.26) immediately follows from Eq. (10.28).

The conclusion is that at zero analyte level, a range of sample leverages occur,
which depend on the variability of the background composition, with two extreme
values: the minimum (h0min) given by Eq. (10.25), and the maximum of all h0i values
given by Eq. (10.26).

Figure 10.6 shows the leverages for a set of 20 calibration samples, all projected
to zero analyte concentrations, for a typical multivariate system. The limits of
detection corresponding to this system, presented in Fig. 10.7, do not show the
same relative variability as the projected leverages of Fig. 10.6. This is due to the fact
that the first term dominates the value of the LOD in Eqs. (10.23) and (10.24),
whereas the ones scaled by the leverage show a comparatively smaller contribution.
In this way, the LOD variability is attenuated with respect to the leverage variability.

As a final note, it is important to remark that the detection limit is useful in cases
where future samples may have low or even null analyte concentrations, where it is
really relevant to estimate low concentrations and quantitate the analyte detectabil-
ity. Pertinent examples where it is important to detect the presence or absence of the
analyte with a certain confidence are the determination of water in lyophilized

Fig. 10.5 Schematic representation of relevant sample leverages. The thick black line indicates the
plane of zero analyte concentration, the red circle the location of the calibration center (analyte
concentration ¼ hyi), and the green circle the location of the ith calibration sample (analyte
concentration ¼ yi). Additional “distances” in score space (square roots of leverage values) are
noted. Adapted from (Allegrini and Olivieri, 2014) (American Chemical Society)
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pharmaceuticals, adulterants in foodstuff, or therapeutic drugs in biological fluids.
On the other hand, samples that will always contain high analyte concentrations may
not require the LOD as a relevant figure of merit.

Fig. 10.6 Projections to zero analyte concentration of the leverages for 20 calibration samples of a
typical multivariate system

Fig. 10.7 Detection limits for the 20 calibration samples of Fig. 10.6
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10.8 Quantitation Limit

The limit of quantitation (LOQ) is the analyte concentration for which the relative
prediction error is at most 10%. The assumptions made in estimating LOQ are
similar to those for the LOD, concerning the existence of a range of blank samples
and blank leverages, and on the closeness of the LOQ value to zero analyte
concentration. One could then estimate a minimum and a maximum LOQ value,
analogously to the LOD discussion:

LOQmin ¼ 10 s2x=SEN
2 þ h0mins

2
x=SEN

2 þ h0mins
2
ycal

� �1=2
ð10:29Þ

LOQmax ¼ 10 s2x=SEN
2 þ h0maxs

2
x=SEN

2 þ h0maxs
2
ycal

� �1=2
ð10:30Þ

The factor 10 in Eqs. (10.29) and (10.30) is easy to explain: if the analyte
concentration is ten times the prediction uncertainty, then the latter is 10% relative
to the predicted concentration.

Figure 10.8 summarizes the concepts of limit of decision, limit of detection, and
limit of quantitation.

Fig. 10.8 Graphical illustration of the different concentration limits: decision (LC), detection
(LOD), and quantitation (LOQ)
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10.9 Other Figures of Merit

The figures of merit discussed above are those that may involve a certain conflict in
their definition, and are not simply extrapolated from univariate to multivariate
calibration. There are additional figures, such as accuracy, precision (including repeat-
ability, intermediate precision, and reproducibility), robustness, etc. In the multivariate
scenario, they deserve an analogous consideration as in univariate calibration.

10.10 Real Cases

In this section we first analyze an experimental case where the concept of limit of
detection may be useful: the determination of the level of a fluorescent antibiotic in
human plasma (Goicoechea and Olivieri 1999). The calibration phase involved a
PLS model built from the synchronous fluorescence spectra of 50 human plasma
samples, free from the presence of the antibiotic (tetracycline), spiked with the
analyte in the concentration range from 0.0 to 4.0 ppm. In addition, 37 independent
validation samples were prepared, as well as a final 20-sample set for the estimation
of the limit of detection, containing low analyte concentrations (in the range
0.0–0.8 ppm). This latter experimental set was prepared because at the time the
work was carried out, the LOD expressions (10.23) and (10.24) were not known, and
the LOD was assessed experimentally. Today we can re-process these experimental
data, and compare both LOD approximations.

Figure 10.9 shows the synchronous fluorescence spectra for the calibration
samples, registered by scanning both excitation and emission monochromators of

Fig. 10.9 Synchronous fluorescence spectra of 50 samples of human plasma with spiked tetracy-
cline concentration in the range 0.0–4.0 ppm
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the spectrofluorimeter, with a constant difference of 120 nm between them. This
methodology allows one to obtain spectra with smaller bandwidths in comparison
with classical spectrofluorimetry, increasing the spectral selectivity, and allowing
better differentiation between the analyte and the interferents.

The PLSmodel was successful, leading to an RMSEP of 0.06 ppm (REP¼ 3.5%),
after selection of the sensor range between 20 and 101 in Fig. 10.9 for calibration,
and using three latent variables. The plot of predicted vs. nominal concentrations in
the validation samples (Fig. 10.10) confirms the analytical indicators.

In the experimental approach to the LOD of Goicoechea and Olivieri (1999), the
prediction standard errors of the analyte concentrations were computed in the
low-concentration set of 20 samples, by means of the analysis of 4 replicates at
each level. The LOD was established as the concentration whose average analyte
concentration was larger than three times the standard error. The specific values at
each level are reported in Table 10.1, with the result that LOD ¼ 0.20 ppm
(Goicoechea and Olivieri 1999).

In the theoretical approximation of Eqs. (10.23) and (10.24), on the other hand,
the range of LOD values can now be estimated as 0.14–0.22 ppm, in excellent
agreement with the experimental approach. The theoretical values do not require the
preparation of the low-concentration 20-sample set, so today this activity would not
be necessary for LOD estimation.

A complete report including analytical figures of merit for this system is
presented in Table 10.2. It is important to notice that this report was prepared from
the results offered by an appropriate computer program. In the next chapters, a
MATLAB graphical user interface will be described which incorporates all the

Fig. 10.10 Predicted vs. nominal tetracycline concentration for a set of validation plasma samples.
The red dashed line has unit slope
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possibilities described previously for full-spectral inverse models such as PCR,
PLS-1, and PLS-2, namely: (1) LOO and Monte Carlo cross validation, (2) outlier
detection, (3) wavelength selection, (4) mathematical pre-processing methods,
(5) analytical figures of merit, etc.

A second real example, worth mentioning here, is a recent work where the level
of adulterants was assessed in saffron samples (Petrakis and Polissiou 2017). This is
another situation where the limit of detection is relevant. Six typical plant-derived
adulterants of saffron, namely C. sativus stamens, calendula, safflower, turmeric,
buddleja, and gardenia were analyzed by PLS and diffuse reflectance infrared
Fourier transform spectroscopy. For calibration and validation, 123 and 54 samples
were employed, respectively. The limits of detection calculated with the approach
described in Goicoechea and Olivieri (1999) were (in %): stamens, 2.2–3.1, calen-
dula, 1.9–2.6, safflower, 2.1–2.8, turmeric, 1.0–1.6, buddleja, 1.1–1.6, and gardenia,
1.1–1.5 (Petrakis and Polissiou 2017). As can be seen, all LODs are provided as
ranges, whose specific values allowed one to develop a rapid approach to saffron
authentication.

10.11 Exercises

1. Indicate whether you agree or not with the report of Table 10.3.

Table 10.1 Nominal and
predicted concentrations,
and standard errors, for
different levels of
tetracycline in plasma at
low concentration

Nominal (ppm) Predicted (ppm) Standard error (ppm)

0.0 0.00 0.02

0.2 0.20 0.03

0.4 0.38 0.03

0.6 0.65 0.03

0.8 0.81 0.02

Table 10.2 Complete
report with figures of merit
for the determination of
tetracycline in human
plasma

Analyte Tetracycline

Samples Spiked human plasma

Number of calibration samples 50

Number of validation samples 57

Analyte concentration range (ppm) 0–4

Optimum number of PLS latent
variables

3

RMSECV (ppm) 0.13

RMSEP (ppm) 0.06

REP 3.5

SEN(fluorescence units �ppm–1) 103

γ (ppm–1) 32

LOD (ppm) 0.14–0.22

LOQ (ppm) 0.4–0.7
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2. Which of the following statements is true? Explain.
(a) A method with higher sensitivity should also have a lower limit of detection
(b) A method with higher analytical sensitivity should also have a lower limit of

detection
(c) A method with a lower limit of detection should also have a lower limit of

quantitation
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MVC1: Software for Multivariate Calibration 11

Abstract
A simple, easy to use and intuitive software for first-order calibration is presented.
It is freely available in the internet, and incorporates all the calibration models
discussed in this book, including variable selection, pre-processing filters, and the
latest advances in figures of merit.

11.1 Downloading and Installing the Software

The MVC1 software for first-order multivariate calibration was first described in the
open literature in the form of a MATLAB graphical user interface (GUI) (Olivieri
et al. 2004), as an improved version of an old Visual Basic program (Goicoechea and
Olivieri 2000). The latest MATLAB version of MVC1 is freely available in the
following site: www.iquir-conicet.gov.ar/descargas/mvc1.zip. On the other hand, a
compiled, stand-alone version, which does not require to have MATLAB installed in
the computer, is also available at: https://www.dropbox.com/sh/nruf3lp0ge1gbww/
AAAj6r97UBMIhgQmukRGYFPKa?dl¼0.

Each version has pros and cons. The MATLAB codes can be implemented with
the version R2012a, but may not be compatible with the latest MATLAB versions.
They are open *.m files, which can be modified at will by skilled operators. The
compiled version can be run without MATLAB, but operates as a black box, without
access to the codes. To install the stand-alone version, a complementary file needs to
be downloaded from the above site and installed. This file is known as MCR
(MATLAB Common Runtime), and is freely distributed. Installation instructions,
example data, and user manual are available with both MVC1 versions.

To run the compiled program, it is only necessary to execute it and select the
data files with convenient browsers. In the case of the MATLAB version, it is first
required to declare the program path, the folder containing the program codes,
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and the working folder, which is suggested to be different than the one containing
the codes.

Independently on the selected version, it is recommended to periodically visit
both internet sites, because MVC1 is being continually updated.

11.2 General Characteristics

Table 11.1 collects the example data accompanying MVC1, together with a brief
description of each calibration system.1 A good suggestion is to save the files for
each data set in different folders.

There are some previous requirements to operate with the software, as described
below.

1. A set of calibration spectra or multivariate signals is required to build the model.
It is assumed that the signals were measured at J sensors for I samples, and can be
organized in a data table or matrix, of size J� I, and saved in a single flat text file.
In MVC1, this data type is called “Matrix.”

The data could also be saved sample by sample, in separate text files, which
may contain: (a) a vector of size J � 1 of signal values, or (b) a two-column data
table of size J � 2, the first column being the wavelengths (or sensor values) and
the second column the signal intensities. These data types are called, respectively,
“X_vectors” and “X,Y_vectors.”

The analyst should know in advance the specific file type. Figure 11.1 shows
a typical content of a “Matrix” file, and Fig. 11.2 those for “X_vectors” and
“X,Y_vectors” files.

2. The calibration concentrations or nominal properties to be calibrated are also
required. These values could be saved in: (a) a single one-column text file

Table 11.1 Example MVC1 data sets

Data set Analyte or property Samples Spectra

Bromhexine in syrups Bromhexine Cough syrups UV-visible

I5 in reactor A nitro-cresol Industrial reaction
mixtures

UV-visible

Tetracycline in serum Tetracycline Human plasma Synchronous
fluorescence

Octane in gasolines Octane number Gasolines NIR

Parameters in corn Oil, moisture, starch,
and protein

Corn seeds NIR

Parameters in meat Fat, moisture, and
protein

Meat NIR

1MVC1 includes an additional simulated data set with correlated noise, to be studied with the
maximum likelihood MLPCR model. This subject is beyond the scope of this book.
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Fig. 11.1 Typical content of a text file of type “Matrix,” showing the first four columns of the data
table (each column is a spectrum and each row is a sample). Notice that the columns are separated
by blank spaces

Fig. 11.2 Typical content of text files of types “X_vectors” and “X,Y_vectors” (left and right,
respectively). In the former case, only the signal values were saved in the file; in the latter, the first
column contains the wavelengths and the second one the signals. Notice that the columns in the left
panel are separated by commas. Both blank spaces and commas are acceptable



(or several one-column files if there are more analytes or properties to calibrate) or
(b) a single text file with as many columns as analytes or properties. Figure 11.3
shows typical concentration files for either one or several analytes.

3. If the intensity data are of “Matrix” type, then the first column of the data matrix
will be associated to the first row of the concentration file, the second column of
intensities with the second row of concentrations, and so on. Figure 11.4
illustrates the connection between signals and concentrations in this case.

4. If the data are of types “X_vectors” or “X,Y_vectors,” an additional file will be
required: the so-called connecting file between signals and concentrations. This
connecting file must contain, one below each other, the names of the files with the
signals of each calibration sample. It is clear that the order of the names in the
connecting file must be the same as the order of the concentrations in the
concentration file. Figure 11.5 shows a typical connecting file and its relationship
with the concentration file.

5. Filenames should not start by a number, and should not contain blank spaces or
mathematical symbols, such as “+,” “*,” “�,” or “/”. The underscore “_”
character, however, is allowed.

6. For the prediction phase, it is usual to have some files available with similar
characteristics to those for the calibration phase. For validation, the required files
contain: (a) signals of type “Matrix,” “X_vectors,” or “X,Y_vectors,”
(b) validation concentrations (one or more columns, depending on the number
of analytes), and (c) a connecting file relating validation signals and
concentrations if the data are of types “X_vectors” or “X,Y_vectors.”

For truly unknown samples, only the signals will be available, with no infor-
mation on nominal concentrations.

7. To run MVC1, execute the mvc1_gui.m routine in the MATLAB version and
mvc1_32.exe in the compiled one.

Fig. 11.3 Typical content of text files with calibration concentrations. Left: a single analyte. Right:
multiple analytes. Each column corresponds to a given analyte and each row to a sample
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Fig. 11.5 Left: connecting
file between signals and
concentrations. Each row
contains the filename with
calibration signals for a given
sample, whose concentration
is contained in the same row
of the concentration file (right)

Fig. 11.4 Connection between columns of a file of type “Matrix,” and rows of the calibration
concentration file
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11.3 Real Cases Studied with MVC1

As detailed in Table 11.1, data for a series of analytical systems accompany the
MVC1 software. All of them are experimental data sets, either measured in the
author’s laboratory (Bromhexine in syrups, Tetracycline in serum), in an industrial
collaborating laboratory (Octane in gasolines, I5 in reactor) or available on the
internet (Parameters in corn, Parameters in meat). Various spectroscopic
techniques are involved in these determinations, namely UV-visible, synchronous
fluorescence and NIR (both in solution and in solid samples).

Three of the above systems will be described in detail in the following sections:
Bromhexine in syrups, I5 in reactor, and Parameters in corn. Two exercises in Sect.
11.10 ask the reader to process the data for Tetracycline in serum and Octane
number in gasolines. The final system Parameters in meat is postponed for the
next chapter, devoted to non-linear systems and artificial neural networks.

Fig. 11.6 Main MVC1 screen, showing in the red box the place reserved for loading the calibra-
tion files: signals (“Calibration X”) and concentrations (“Calibration Y”)
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11.4 Bromhexine in Cough Syrups

This analysis was motivated by the interest of a pharmaceutical industry in replacing
a classical liquid chromatographic method for the determination of the active
principle of cough syrups by a more convenient spectroscopic method based on
UV-visible measurements (Goicoechea and Olivieri 1999a). The active principle
bromhexine absorbs in the UV-visible region, but its spectrum is overlapped with the
remaining sample constituents, collectively known by the industry as the syrup
blank. For calibration, 12 samples were prepared by mixing different levels of the
syrup blank with different concentration of standard bromhexine.

The corresponding data folder which accompanies MVC1 shows that both
“Matrix” and “X_vectors” types are available for this example. We choose to
work with the former data type, meaning that after execution of the program, we
should first provide the names of the files containing the calibration signals (Xcal.txt)
and calibration concentrations (ycal.txt), using the MVC1 screen browsers
(Fig. 11.6)

Some model names and other parameters appear in the MVC1 screen by default.
If the analyst modifies the screen, and then writes a name in the blank space
corresponding to “SAVE SCREEN” and presses the button, the new screen will
be saved. In a future MVC1 session, it can be loaded using the “LOAD SCREEN”
button (Fig. 11.6).

After pressing “PLOT” we can examine the calibration spectra. Figure 11.7
shows the raw data (left panel) and the pre-processed ones (right panel). In this
case, no math filters have been selected, so that both panels look identical (recall that
mean centering will be then applied by default in all models, but this is not shown in
Fig. 11.7). The horizontal axis for the spectra of Fig. 11.7 does not provide
information on wavelengths, but only on sensor indexes or data points.

In this particular example, validation data are available with spectra (Xtest.txt)
and concentrations (ytest.txt), which can be loaded from the main screen, and plotted
by means of the “PLOT” button (Fig. 11.8). Pressing “SAVE” allows one to save the
pre-processed calibration and validation spectra in text files, in a folder called “temp”
which is created in the working folder.

To build the calibration model, we need to first select the specific multivariate
model to be applied, which can be done from the corresponding drop-down list in the
main screen. In this case we select the option “PLS-1.” We leave the space adjacent
to “Sensors” empty, implying that the model will be built with all sensors or
wavelengths. Otherwise, the space should be completed with the specific working
sensors, as detailed below for other examples.

We then need to choose the maximum number of latent variables for performing
cross validation; the default option is the LOO-type using the raw concentration
values. Additional options will be explored below. This maximum number of latent
variables should be roughly set at half the number of calibration samples, in this case
6, and should lead to the detection of a clear minimum in the PRESS plot (see
Chap. 6).
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With the screen set as in Fig. 11.9, pressing the button “CV” generates the plots of
Fig. 11.10 and the table of Fig. 11.11. Figure 11.10 allows one to conclude that:
(1) there is a clear minimum in the plot of PRESS values as a function of increasing
number of latent variables (top plots), (2) there are no calibration outliers (the values
of the Fy/Fcrit ratios are all smaller than 1 in the left bottom plot), and (3) the
predicted concentration values for the left out samples during the cross validation
process are satisfactory, at least visually (right bottom plot).

On the other hand, the table of Fig. 11.11 indicates that the optimum number of
latent variables to carry out this calibration is 3, in spite of the fact that the minimum
PRESS in Fig. 11.10 occurs at four latent variables. This is due to the fact that the
difference between the PRESS values for three and four latent variables is not
significant. Finally, the RMSECV value for three latent variables, of 0.015 concen-
tration units, is also regarded as satisfactory, in view of the fact that the average
analyte concentration in the calibration samples is of ca. 2.1 units, corresponding to a
relative error for the cross validation phase of only 0.7%. A list of Fy/Fcrit ratios is
also available for each calibration sample in Fig. 11.11.

Once the optimum number of latent variables (three) is estimated, we are in the
position of building the PLS-1 calibration model (Fig. 11.12). Pressing the button

Fig. 11.7 Raw (left) and pre-processed (right) calibration spectra. In this case they are identical,
because no pre-processing filter was selected (except mean centering, which is applied by default,
and is not shown here). Pressing “SAVE” saves the spectra in a file in the folder “temp” of the
working folder
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Fig. 11.8 Plot of spectra for calibration (top) and validation (or test) samples (bottom)

Fig. 11.9 MVC1 screen for performing LOO cross validation with the PLS-1 model. The number
of maximum latent variables has been set to 6 (red box)



Fig. 11.10 MVC1 screen with LOO cross validation results. Top, PRESS plots as a function of the
number of latent variables. Bottom, left: outlier detection. Bottom, right: cross validation prediction
results (predicted vs. nominal values in the left out samples)

Fig. 11.11 MVC1 table with cross validation results. Pressing “SAVE” saves the results in a file in
the folder “temp” of the working folder



“PREDICT” provides access to the prediction phase, accompanied by abundant
information on the calibration results, to be discussed below.

Figure 11.13 shows the plot of predicted concentrations vs. nominal values for the
validation samples, the prediction errors (both as a function of sample index and
predicted concentration), and the region of joint confidence for the slope and
intercept of the plot of predicted vs. nominal values. In this latter plot, we expect
the ideal point of unit slope and zero intercept to be contained within the ellipse if the
analysis is accurate (González et al. 1999). Although this is not the case, in the
present example the point is very close to the elliptical region, which can be
considered satisfactory in view of the fact that this accuracy test is very strict.

The specific predicted values are shown in the table of Fig. 11.14, together with
the theoretical prediction uncertainties and a parameter (a ratio of F values for the
test samples, see Chap. 7) indicating the potential presence of outliers. This indicator
is favorable for most samples, except sample No. 3, to be discussed below.
Figure 11.14 also shows a table headed “Statistics,” with the average absolute
prediction error (RMSEP), the relative error of prediction (REP), the correlation
coefficient (R2), the calibration residues (in signal units), and the % of explained
variance both in signal (X) and in concentration ( y) for the calibration samples. The
Durbin–Watson parameter and its associated probability (measuring the correlation
among residuals, see next chapter), and the number of hidden RBF neurons, only

Fig. 11.12 MVC1 screen prepared to build a PLS-1 model with three latent variables (red box)
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applicable to calibration with neural networks, will be discussed in the next chapter.
The expression “NaN” in this case is a MATLAB symbol for not a number.

Finally, a table with the analytical figures of merit (“AFOMs”) is also provided in
Fig. 11.14, as discussed in Chap. 10: sensitivity, analytical sensitivity, detection
limits, and quantitation limits. It is important to notice that the estimation of the
figures of merit requires one to know the uncertainty in instrumental signals and
calibration concentrations. The software estimates these values from the spectral and
prediction residuals of the cross validation phase, respectively. However, if the
analyst has an independent experimental estimation of these uncertainties, they can
be employed to compute the figures of merit. This can be indicated in the main
MVC1 screen before prediction is made. Figure 11.15 shows the main screen for
building a PLS-1 model, considering 0.005 units of uncertainty in instrumental
signal (typical of UV-visible spectra registered in a modern spectrophotometer)
and 0.01 units of uncertainty in calibration concentrations (derived from sample
preparation or from the typical error for the reference technique).

Fig. 11.13 Prediction plots for bromhexine concentration in cough syrups. Top, left:
predicted vs. nominal concentrations in the validation samples. The green straight line indicates
the ideal line of unit slope. Top, right: elliptical confidence joint region for the slope and intercept of
the prediction plot. The black circle indicates the position of the ideal point. Bottom, left: prediction
errors vs. sample number. Bottom, right: prediction errors vs. predicted concentration
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Additional plots provided by MVC1 are shown in Fig. 11.16: the bar plot in the
left top repeats the information on outliers in the test samples. The score–score plot
(right top) shows the calibration and validation samples located according to the
values of the second and first PLS-1 scores, which is useful for getting a quick view
at the relative position of test samples in the calibration space (notice the red circle
indicating the location of the test sample No. 3). Figure 11.16 also provides the
spectrum of the regression coefficients (left bottom), whose analysis is favorable in
the whole spectral range, in the sense that it does not present saturated or high-noise
regions. Finally, the PLS-1 spectral loadings are plotted in the right bottom of
Fig. 11.16, all of which display spectral-type shapes and not random noise.

All the analytical indicators point, in general terms, to the success in the calibra-
tion for this particular analyte in this type of samples. Specifically, analysts from the
producing laboratory were pleased to see the relative error of prediction of ca. 2%.
This is the main parameter of interest for adopting a new analytical methodology,
besides other properties such as time, cost, and ease of operation.

Notice that in the present example both calibration and validation data are
available. Their spectra are provided along with the corresponding nominal analyte
concentrations. In the case of true unknown samples, no information on analyte

Fig. 11.14 Prediction results for bromhexine concentration in cough syrups. Top: nominal and
predicted concentrations in the test samples, standard deviations, and outlier indicators. Bottom,
left: prediction statistics. Bottom, right: analytical figures of merit. Pressing “SAVE” saves the
results in a file in the folder “temp” of the working folder
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concentration is of course available. To process this type of samples, the file
containing the measured signals will be loaded from the main screen of MVC1,
leaving the box for the filename with nominal concentrations empty. The prediction
results will be similar to above, except those requiring nominal analyte
concentrations to be estimated.

11.5 Prediction Outliers in the Bromhexine Example

We now examine in detail the case of test sample No. 3. In Fig. 11.16 (top left plot)
the blue bar for this sample suggests that it is a potential outlier. Moreover, in the
same figure (top right plot, red circle) the sample in question appears to be outside
the calibration space, and should be considered, in principle, as not being represen-
tative of the calibration set, probably containing constituents which were not
included in the calibration. All this information suggests that sample No. 3 may be
a prediction outlier.

However, we know that sample No. 3 is not of this type: it is a blank sample, with
a nominal analyte concentration of zero, for which the predicted concentration is
quite good (ca. –0.02 units in Fig. 11.14). Why does the PLS-1 model flag it as an

Fig. 11.15 MVC1 screen prepared to build a PLS-1 model with three latent variables, a signal
uncertainty of 0.005 units and a concentration uncertainty of 0.01 units (red box)
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outlier? The best answer is: because the calibration set does not contain blank
samples. We appreciate here how strict is the PLS-1 model with respect to sample
representativity. The calibration composition is a key factor: it should contain the
analyte and the potential interferents in variable proportions, representing the com-
position of future samples. In the absence of a reference concentration value for this
type of samples, it would not be possible to judge whether the prediction is good, or
if the sample should be submitted to a different analytical methodology for
prediction.

One final comment on test outliers: if they occur, either in calibration or in
validation samples, it is possible to ignore these samples for calibration or prediction.
For example, if the calibration sample No. 2 and the validation sample No. 3 are
considered outliers, they can be discarded from the analysis as shown in Fig. 11.17.
To exclude multiple samples, simply type their numerical indexes separated by
blank spaces. In any case, it is always convenient to repeat the preparation of
calibration outliers, especially when the calibration set has been statistically
designed.

Fig. 11.16 PLS-1 prediction plots. Top, left: outlier detection. Top, right: location of the calibra-
tion and prediction samples in the score space (red circle, validation sample No. 3). Bottom, left:
vector of regression coefficients. Bottom, right: the three loadings (specific loadings can be selected
from the drop-down list). Pressing “SAVE” saves the results in a file in the folder “temp” of the
working folder
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11.6 A Dinitro-cresol in Reaction Mixtures

In this system labeled I5 in reactor the analyte is 2,6-dinitro-p-cresol (whose
commercial name is I5), employed in the chemical industry to stop polymerization
reactions. It is added in controlled concentrations to mixtures of unsaturated and
aromatic hydrocarbons, whose composition is not completely known. Both the
hydrocarbons and the analyte I5 strongly absorb in the UV region, but the analyte
shows a red shift which allows one to partially distinguish its signal from the
background, although a considerable degree of overlapping persists (Arancibia
et al. 2005).

Figure 11.18 shows the MVC1 screen corresponding to this particular example.
As can be seen, the spectra were saved by the instrument in files of the type
“X,Y_vectors” (reader: you can check this by opening a typical file). The calibration
and validation spectra are presented in Fig. 11.19. What conclusions can be drawn a
priori with respect to the working sensors for building the calibration model?

This example was specifically chosen to illustrate the advantages in selecting
working spectral ranges for PLS-1 calibration. Examination of Fig. 11.19 indicates
that it is not convenient to calibrate with sensors above No. 300. In the spectral

Fig. 11.17 MVC1 screen prepared to build a PLS-1 model with three latent variables, excluding
the calibration sample No. 2 and the validation sample No. 3 (red box)
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Fig. 11.18 MVC1 screen prepared to build a model for measuring the content of I5 in reaction
mixtures

Fig. 11.19 Calibration and validation spectra in the system for measuring the content of I5 in
reaction mixtures



region between sensors 300 and 400 the absorbance is too high (corresponding to
very short wavelengths), and the detector is saturated, generating a noise level that
will be difficult to model with PLS-1. We may try to calibrate the model with the
sensors from 1 to 300, for which the screen program will look as in Fig. 11.20. We
will employ a maximum of six latent variables for LOO cross validation, because ten
calibration samples are available. The result from this phase is that two latent
variables are optimal, with reasonable analytical indicators and with no outliers.
Prediction of the analyte content in the validation samples with two latent variables
(Fig. 11.21) leads to good statistical indicators: the relative error is ca. 1.5%. The
reader may check that the validation sample No. 6 is an outlier in prediction, and that
excluding this sample from the analysis leads to a REP value of 1.1%, meaning that
the error has not significantly decreased. This particular validation sample might
carry a different background composition in comparison with the calibration
samples, but was not further checked by the industrial laboratory. However, notice
that the ratio of F values for spotting outliers in the case of the validation sample
No. 6 is not significantly larger than 1, so it is likely that it is not a true outlier.

To illustrate how variable selection can be automatically performed using MVC1,
and not by just visual inspection of the spectra, we will employ the i-PLS technique

Fig. 11.20 MVC1 screen prepared for the determination of the content of I5 in the sensor range
from 1 to 300. LOO cross validation will be performed with a PLS-1 model using a maximum of six
latent variables
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by means of the button “i-PLS/PCR,” which allows one to build the calibration
model in sequential sensor intervals. For this purpose, the number of intervals for
estimating the prediction error should be provided, as shown in Fig. 11.22. Notice
that a certain relationship should exist among the total number of sensors, the
selected number of intervals, and the number of latent variables for building the
models. In this particular case, the total number of sensors is 400, and the number of
calibration samples is 10. Since i-PLS calculations are performed using Monte Carlo
cross validation with 70% of the calibration samples (because full LOO cross
validation is considerably slower), we are left with seven calibration samples. To
be able to apply i-PLS, the number of sensors per interval should be larger than the
maximum number of trial latent variables for building each model. Consequently, if
the maximum number of latent variables is 4, the number of intervals should be
smaller than 400/4 ¼ 100 (rounded to the nearest integer). Otherwise, an error
message is obtained (Fig. 11.23).

We may thus select 4 latent variables and 40 intervals of 10 sensors each, as in
Fig. 11.22. The resulting bars (Fig. 11.24) measure the relative prediction errors in
each interval (the maximum one is scaled to 1). As can be appreciated, the errors are
minimal in the range of sensors from 180 to 330. The region from 1 to 180 sensors
could be discarded because in this range the absorbances are negligible, and will not

Fig. 11.21 MVC1 screen prepared for predicting the content of I5 in the validation samples, using
a PLS-1 model with two latent variables in the range of sensors from 1 to 300
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significantly contribute to the model. The region above sensor 330 is problematic
due to significant noise and detector saturation and should be removed from the
model. With these premises, the reader may be able to build the proper model in
region 180–330, using first LOO cross validation for estimating the optimum
number of latent variables. Did you get better figures of merit and statistical
indicators using i-PLS in comparison with the visual inspection above? Does the
prediction outlier still exist?

Fig. 11.22 MVC1 screen prepared to apply the variable selection method i-PLS. The red boxes
show the maximum number of latent variables to be employed (4), and the selected number of
intervals (40)

Fig. 11.23 Error message obtained by setting the number of intervals as too large to be compatible
with the number of calibration samples and latent variables
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11.7 Moisture, Oil, Protein, and Starch in Corn Seeds

The data for this example (labeled Parameters in corn) are available on the internet,
as already discussed in previous chapters, and correspond to the measurement of
quality parameters of corn seeds by NIR spectroscopy. We apply PLS-2 as a global
model for all properties simultaneously. Since the NIR spectra were collected on the
solid samples, they show a significant degree of dispersive signals. We may thus
explore the different methods which are available in MVC1 for reducing dispersive
effects, applying pre-processing mathematical filters.

The main MVC1 screen can be set as in Fig. 11.25. To apply the global PLS-2
model, we need a file with the calibration concentrations for the four parameters
in four different columns. This file (ycal.txt) contains the nominal reference
values of moisture, oil, protein, and starch, which will be our analytes No. 1, 2,
3, and 4, respectively. The first activity is cross validation. We will modify the usual
procedure in two respects: (1) instead of using LOO cross validation, we will employ
Monte Carlo cross validation, which is faster for large sets of calibration samples,
and (2) we will not use the raw concentration values for calibration, but scaled
values, in such a way that the four parameters have the same minimum and

Fig. 11.24 Results after application of i-PLS. The blue bars are proportional to the prediction
errors in each interval (normalized so that the maximum error is 1). The red line indicates the
average calibration spectrum
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maximum values (0 and 1 in MVC1). This is done to avoid analytes or parameters
having large property values dominate the PRESS over the remaining ones. In a first
stage, no pre-processing filters are used, and the whole spectrum is employed for
model building, since no saturation effects are noticed (reader: check this fact
pressing “PLOT”).

Selecting 25 latent variables as the maximum value for Monte Carlo cross
validation (the number of calibration samples is 50), the optimum appears to be in
the neighborhood of 19–21 latent variables (the results may vary due to the random
nature of the Monte Carlo method), with an average error of ca. 0.01 units (in a scale
from 0 to 1, because all parameters were scaled for this procedure). This error is
reasonably small, implying only 2% of the average scaled value of 0.5 units. Reader:
how many latent variables are suggested by LOO cross validation? Which is the
RMSECV in this case? How does it compare with Monte Carlo cross validation in
terms of relative error? Are there outliers in cross validation?

With 20 latent variables, pressing “PREDICT” provides access to the prediction
plots analogous to the previous examples, except for a new drop-down window
permitting the selection of the analyte of interest. For example, Fig. 11.26 shows the

Fig. 11.25 Main screen of MVC1, prepared for carrying out Monte Carlo cross validation on NIR
spectral data for measuring quality parameters of corn seeds. Scaled values of the properties to be
calibrated are employed in a PLS-2 model with a maximum of 25 latent variables. The red boxes
show the selection of the relevant calibration parameters
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results for the analyte No. 1 (moisture); selecting another analyte index provides the
corresponding information. In this table, we can also select the numerical results for
each analyte: prediction, statistics, and figures of merit. In terms of relative error of
prediction, we conclude that they are ca. 0.2% for moisture, 2% for oil, 1.2% for
protein, and 0.3% for starch. Are these values satisfactory? Apparently yes, although
this may depend on the existing protocols and regulations, and on the uncertainty
associated to the reference analytical techniques used to build the multivariate
models.

We now apply a mathematical pre-processing filter to decrease the effect of NIR
dispersion, hoping to also decrease the number of latent variables required to build
the model. A large number of combinations of pre-processing filters is possible, each
with a certain optimum number of latent variables and prediction error. We only
show the effect of the second derivative. Figure 11.27 shows the MVC1 main screen,
prepared to perform Monte Carlo cross validation with the PLS-2 model, scaled
concentration values and the second derivative for pre-processing. The latter will be
estimated with a polynomial of degree 4 and a moving window of 15 sensors
(Fig. 11.27); hence the three numbers “2 4 15” to be typed by the operator in the
corresponding space. The pre-processed spectra can be inspected by pressing
“PLOT” (Fig. 11.28).

Fig. 11.26 Prediction results for analyte 1 (moisture) in corn seeds using the PLS-2 model of NIR
spectra. The red box shows the drop-down list where one may select the analyte of interest
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The cross validation process indicates an optimum number of latent variables of
11, for which the RMSECV is 0.012 units. In comparison with the use of raw data
(see above), we conclude that this model is more parsimonious, without a significant
loss of predictive power, since almost the same error level is achieved with fewer
latent variables. It is clear that the second derivative is effective in decreasing the
impact of the dispersion on the spectral variance.

Using 11 latent variables, the PLS-2 model predicts the concentrations of all four
analytes with average relative errors of ca. 1%, 2%, 2%, and 0.4% (moisture, oil,
protein, and starch, respectively). The predictive ability is maintained, except for
moisture, although a relative error of 1% is still acceptable.

There is also the possibility of applying separate PLS-1 models for each of the
four properties, as already commented (Table 5.1 of Chap. 5 using PCR with raw
data, Table 7.2 of Chap. 7, comparing PCR and PLS-1 with raw data, and Table 9.2
of Chap. 9 using PLS-1 for total oil content using second derivative pre-processing).
Table 11.2 summarizes the results for the oil content. During a night of insomnia, the
reader could build a similar table for the remaining three properties, selecting

Fig. 11.27 Main screen of MVC1, prepared for carrying out Monte Carlo cross validation on NIR
spectral data for measuring quality parameters of corn seeds. Scaled values of the properties to be
calibrated are employed in a PLS-2 model with a maximum of 25 latent variables, and second
derivative as pre-processing filter. The red box shows the Savitzky–Golay parameters (2 4 15),
indicating the order of the derivative (2), the degree of the polynomial (4), and the width of the
moving window (15 sensors)
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optimal working regions with i-PLS, the best pre-processing filter and number of
latent variables.

What conclusions can be drawn from Table 11.2? Simple: PLS-1 is to be
preferred, and the second derivative filter produces a more parsimonious model
without significant loss of predictive power.

11.8 Additional MVC1 Models

In the drop-down list of models, the reader will find additional possibilities beyond
PLS-1 and PLS-2. One of them is PCR, already discussed in Chap. 5. Another
available model is MLPCR (maximum likelihood PCR), which takes into account

Fig. 11.28 Raw and second derivative NIR spectra of the set of corn seeds

Table 11.2 Relative errors of prediction (REP) for the determination of oil content in corn seeds
using various multivariate models

Model Math filter Number of latent variables REP (%)

PLS-1 None 21 1.1

Second derivative 11 1.2

PLS-2 None 20 2.0

Second derivative 11 2.0
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the structure of the instrumental noise, and is recommended for cases where the
uncertainty in signals is not of the iid type. We will not discuss the use of this model
in this book; the reader is directed to the specialized literature on the subject
(Schreyer et al. 2002).

Finally, the RBF model corresponds to a type of neural network (radial basis
functions), developed for systems whose behavior is non-linear with respect to
concentrations or target properties. We will discuss the RBF model in the framework
of MVC1 in the next chapter.

11.9 Other Programs

Many computer programs exist, both free and commercial, to carry out first-order
multivariate calibration, of the type described in this book. Table 11.3 collects some
commercial software, the vendors, and the web sites where to find them.

It is also interesting to mention the cell phone application MVC written in
Android, which allows one to load data, build PCR and PLS models, and plot
prediction results (Parastar and Shaye 2015). It is freely available in http://sharif.
edu/~h.parastar/software.html.

11.10 Exercises

1. Process the data set named Tetracycline in serum, corresponding to the determi-
nation of the antibiotic tetracycline in human sera by means of synchronous
fluorescence spectra (Goicoechea and Olivieri 1999b). In the folder where the
data are provided, the reader will find a help text file, indicating the nomenclature
of filenames, the data type, and additional useful information on this system.

We suggest the following working protocol:
(a) Visually inspect the spectra (“PLOT”). Are there saturated or high-noise

spectral regions which would merit variable selection? Try first discarding
them from the MVC1 screen, and then apply i-PLS/PCR. How do the two
results compare?

(b) Carry out LOO or Monte Carlo cross validation, depending on the number of
calibration samples. Scale the concentrations if you are using the PLS-2
model, otherwise use raw concentration data.

Table 11.3 Commercial software for first-order multivariate calibration

Program Vendor Web site

The Unscrambler Camo www.camo.com

Pirouette Infometrix www.infometrix.com

PLS_Toolbox Eigenvector www.eigenvector.com

Statistics and machine learning toolboxa The Mathworks www.mathworks.com
aRequires MATLAB to be installed
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(c) After cross validation, check for the presence of outliers in calibration. If they
indeed occur, and the F ratios are significant (i.e., larger than 3), exclude the
problematic samples from the calibration set from the MVC1 screen and
re-run cross validation. Do the results improve? If they do not significantly
improve, keep the samples in the calibration set.

(d) Set the optimum number of latent variables for building the calibration model.
(e) Predict the analyte concentrations in the validation set and study the statistical

indicators and figures of merit.
(f) Check for the presence of outliers in the validation samples. Follow the same

rules as for calibration outliers.
(g) Predict the analyte concentrations in true unknown samples, if they are

available.
2. Process the data set named Octane in gasolines, corresponding to the determina-

tion of the octane number of gasoline samples using NIR spectroscopic data
(Boschetti and Olivieri 2004). Follow the same indications as in the previous
exercise.
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Non-linearity and Artificial Neural Networks 12

Abstract
An introduction to calibration of non-linear systems with artificial neural
networks is provided. Detailed information is given on calibration using radial
basis functions. The latter are interpreted based on the concept of data lineariza-
tion by projection onto a non-linear space.

12.1 Linear and Non-linear Problems

In previous chapters, the focus has been mainly directed to linear systems, where the
relationship between multivariate signal and analyte concentration is linear. The
golden rule for multivariate models comes from an old parsimony principle: linear
models for linear systems, non-linear models for non-linear systems. Linear models
are simpler, are based on well-known physicochemical laws, are reliable, and show
well-defined figures of merit. They should be preferred when the system is linear.

One sensible course of action if non-linearity is suspected may be the following:
start by applying a linear model (PCR, PLS-1, PLS-2) to the problem at hand. Why?
Because most spectral signals vary in a linear fashion with respect to analyte
concentrations. If the model results are satisfactory, and they do not suggest the
presence of non-linearity (see next section), it would not make much sense to move
to non-linear models. Conversely, if the analysis of the linear model indicators
suggests the presence of non-linearity, it would not be adequate to apply linear
models. A non-linear approach should instead be taken to process the data. There are
many such models available, one of which will be discussed in this chapter.
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12.2 Multivariate Non-linearity Tests

Different tests have been discussed in the literature for studying the presence of
non-linearities in the multivariate signal–concentration relationship (Centner et al.
1998). A simple alternative is to first build a PLS-1 model with the optimum number
of latent variables, predicting the concentration of the analyte of interest in a set of
validation samples. If the system is not linear, the prediction residuals will show
significant correlations among them, when ordered according to increasing predicted
concentration values. To avoid false visual impressions, the existence of correlations
can be detected by the Durbin–Watson statistical test (Durbin and Watson 1950),
which consists in estimating the following DW indicator:

DW ¼
PNval�1

n¼1
rnþ1 � rnð Þ2

PN
n¼1

rn2
ð12:1Þ

where rn is the nth prediction residue. The DW indicator will be high in the case of
uncorrelated residuals, because a large number of differences between positive and
negative values will occur. On the other hand, for correlated residuals DW will be
small, because series of positive and negative values will occur, with a relatively
small number of differences between successive residues. How can these DW values
be statistically analyzed? The Durbin–Watson indicator DW has an associated
probability p: if p < 0.05 the null hypothesis is rejected, indicating correlations
among residuals, and vice versa.

12.3 A Durbin–Watson Algorithm

A very short MATLAB code allows one to estimate DW and the associated
probability, as shown in Box 12.1. Notice that one should first sort the prediction
values in increasing order, and then implement Eq. (12.1) by applying a built-in
MATLAB routine, which gives the DW value and its associated probability.

Box 12.1
A Durbin–Watson algorithm. The input variables are “ynom,” the vector
of nominal analyte concentrations and “ypred,” the one of predicted
concentrations.

[orderedres,indexes]¼sort(ypred);
res¼ypred-ynom;
[p,dw]¼dwtest(ypred(indexes)-ynom(indexes),ypred(indexes));
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12.4 Non-linear Relationships and Projections

We now study a useful method to cope with non-linear systems. A simple univariate
example will be analyzed before moving to the multivariate world. Suppose we
want to fit the values of y of Fig. 12.1a, which vary in a non-linear fashion with
respect to x. How can the x–y relationship be mapped if we do not know the exact
mathematical expression connecting the variables? What we need is a universal
approximation to non-linear relationships. Fortunately this approach exists, and is
based on the concept of projection of the data onto a non-linear space, fitting the
values of y to a linear combination of Gaussian functions of x:

y ¼
XG
g¼1

wgexp � x� cg
� �2

σ2g

" #
ð12:2Þ

where G is the number of Gaussian functions, wg are the coefficients of the linear
combination, and cg and σg the Gaussian centers and widths. A suitable set of wg, cg,
and σg values should be able to do the job. Since the relationship between y and the
Gaussian functions in Eq. (12.2) is linear, we may interpret Eq. (12.2) as saying that
the set of x values has been first projected onto a G-dimensional non-linear Gaussian
space to linearize the problem.

For the sake of illustration, ten different values of the independent variable x were
selected (green circles in Fig. 12.1a) to adjust the parameters in Eq. (12.2) using only
three Gaussian functions (all σg values were considered identical for simplicity).
With the fitted parameters, the values of y can be successfully predicted, as shown in
Fig. 12.1b, nicely demonstrating the ability of Eq. (12.2) to reproduce the basic
non-linear relationship between the two variables.

Fig. 12.1 (a) A non-linear function y including random noise (blue line), mapped at ten selected
values of x (green circles). (b) Predicted vs. nominal values of y (blue circles) using the non-linear
projection approach onto three Gaussian functions. The expression is

y ¼ 0:01 exp �x2

4

� �
� 0:11 exp � x�1:61ð Þ2

4

h i
þ 2:01 exp � x�3:64ð Þ2

4

h i
. The red line indicates the

perfect fit
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We now move to multivariate calibration. Recall our discussion in Chap. 6 on the
use of polynomials of increasing degree to map a non-linear relationship between two
variables. Oneway of copingwith mild multivariate non-linearities is to add a quadratic
term to the PLS predictive equation, moving from the linear PLS model (Chap. 7):

y ¼ vTtA ¼
XA
a¼1

vata ð12:3Þ

to a PLS model with additional quadratic terms:

y ¼
XA
a¼1

1vata þ 2vat2a
� � ð12:4Þ

where 1va and 2va are the regression coefficients for the quadratic approximation,
estimated during the calibration phase, in a similar manner to the va coefficients of
Eq. (12.3). Notice that we have removed the subscript n, corresponding to the
specific nth analyte of interest to avoid confusion.

The model defined by Eq. (12.4) is known as quadratic PLS (qPLS) (Baffin et al.
1999), and is a good choice when mild deviations from linearity exist. Why?
Because slight deviations of the strict linearity can be modeled by a quadratic
term. However, for general non-linear relationships (most probably of unknown
nature), there is no guarantee that Eq. (12.4) will be able to do the job.

Let us assume, for simplicity, that the number of latent variables capturing the
spectral variance by a suitable PCA study of a given calibration data matrix is
2 (A ¼ 2). How can the two PCA scores t1 and t2 for a given sample be projected
onto a Gaussian space? Assuming that three Gaussian functions are needed, the
vector of projected scores can be expressed as:

d ¼

exp � t1 � c11ð Þ2
σ2

" #
exp � t2 � c12ð Þ2

σ2

" #

exp � t1 � c21ð Þ2
σ2

" #
exp � t2 � c22ð Þ2

σ2

" #

exp � t1 � c31ð Þ2
σ2

" #
exp � t2 � c32ð Þ2

σ2

" #

2
666666666664

3
777777777775

¼

exp � t1 � c11ð Þ2
σ2

þ t2 � c12ð Þ2
σ2

" #( )

exp � t1 � c21ð Þ2
σ2

þ t2 � c22ð Þ2
σ2

" #( )

exp � t1 � c31ð Þ2
σ2

þ t2 � c32ð Þ2
σ2

" #( )

2
666666666664

3
777777777775

ð12:5Þ
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where d is the vector resulting from the projection (size 3 � 1), and each element of
d is a Gaussian function, whose argument is a combination of the scores t1 and t2.
The Gaussian functions are centered at different values, depending on the score and
on the specific element of d: there are six center values cga (where g defines the
element of d and a the score), and a single value of the Gaussian width (σ).

Why three Gaussian functions? Because this number was found to be optimal for
the specific problem at hand. Below we will indicate how to estimate the dimension-
ality of the Gaussian space by statistical techniques in a general case. After
linearizing the system by projection, the vector d can be employed to predict the
analyte concentration by the following linear expression:

y ¼ wTd ð12:6Þ
where w is a vector of regression coefficients (size 3 � 1), whose elements can be
estimated by least-squares. Equation (12.6) is analogous to the prediction PLS
expression, with the vector of regression coefficients v replaced by w, and the
score vector t for a given sample replaced by its projection onto a Gaussian space d.

In a general case where the number of latent variables is A and the dimensionality
of the Gaussian space G, the individual dg elements of d are given by:

dg ¼ exp �
XA
a¼1

ta � cga
� �2

σ2

" #
ð12:7Þ

The centers of the Gaussian functions are contained in a matrix C of size G � A,
whose generic element is represented by cga. In principle, an additional set of G � A
values of Gaussian widths will also be required, but in the usual formulation the
widths of the Gaussian functions are all identical, so that a single value σ is needed,
as in Eq. (12.7). In Eq. (12.6), w and d are both vectors of size G � 1; the former is
estimated during the calibration phase, the latter corresponds to a test sample.
Combining Eqs. (12.6) and (12.7), the prediction phase is condensed into the
following expression:

y ¼
XG
g¼1

wgexp �
XA
a¼1

ta � cga
� �2

σ2

" #
ð12:8Þ

To carry the analogy with PLS calibration further, assume that the dimensionality
of the Gaussian spaceG (the number of Gaussian functions), their centers and widths
are all known. The weights can then be estimated from a set of calibration samples of
known analyte concentrations, which are collected in the usual calibration vector y.
The raw matrix of calibration spectra X, in turn, is first compressed and truncated to
the calibration score matrix TA, and the latter projected onto the Gaussian space to
give a compressed-truncated-and-projected matrix D (sizeG� I ) before applying an
inverse least-squares regression expression. Each column of D has the form of
Eq. (12.5) for each calibration sample. Some researchers call D the design matrix,
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a term which is analogous to the calibration matrix in PLS; in fact, the design matrix
is the result of compressing, truncating, and projecting the calibration matrix.

The corresponding expression for the calibration phase is therefore:

y ¼ DTwþ e ð12:9Þ
from which w can be estimated, as in the ILS model of Chap. 3, by least-squares:

w ¼ DDT
� ��1

Dy ð12:10Þ
The requirements for inverting theG�G square matrix (DDT) in Eq. (12.10) are,

as expected: (1) the number of calibration samples (I) should be larger than G, the
dimensionality of the Gaussian space and (2) the columns of D should not show
significant correlations (reader: why?). To avoid problems with matrix inversion, a
clever resource is to use ridge regression (see Chap. 3):

w ¼ DDT þ λI
� ��1

Dy ð12:11Þ
where I is an identity matrix of proper size and λ is a small number, which is also
adjusted during the training phase. Once the w vector is estimated, prediction for
new samples proceeds as in Eq. (12.8).

Equation (12.8) is highly useful for coping with non-linear systems, and is an
attractive alternative when PLS or qPLS is not adequate. If the reader had never
heard about artificial neural networks (ANN), the theoretical discussion of non-linear
modeling would end here, and we would smoothly move to describe non-linear data
sets. However, a brief introduction to neural networks is necessary, mainly because
the subject has captured the public imagination. The reason is easy to grasp: neural
networks are advertised to be able to mimic the behavior of the human brain.

12.5 Artificial Neural Networks

The acronym ANN describes a set of algorithms capable of modeling non-linear
relationships with high efficiency. The terminology employed in the framework of
these models surprises the reader with similarities, sometimes exaggerated, with the
way in which the human brain works: neurons, inter-neuron connections, neuron
activation, artificial intelligence, network learning, etc. There might be some link
between the way in which ANN are presented to the public and what is known about
the brain, but if the neural terminology is replaced by a more technical and less
flowery prose, the connection may be easily lost. In the analytical multivariate
calibration context, ANN are useful tools employed to model non-linear
relationships between multivariate signals and analyte concentrations or sample
properties as targets. In this context, they can be viewed as nothing else than
calibration models with a number of adjustable parameters, which are able to
universally fit non-linear relations.
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The key operating unit of an ANN is the neuron. Independently of its biological
meaning, in multivariate calibration problems a neuron is a function receiving an
input and generating an output through a suitable mathematical expression. In
artificial intelligence terms, one would say that the neuron is activated by the
input, and will transmit the output to another neuron.

In the usual jargon, ANN is said to have an architecture composed of neuron
layers: the input, the hidden, and the output layers (Fig. 12.2). In the training or
learning ANN phase, the input layer receives the values of the instrumental signals
for the training (calibration) samples, which may be the raw data or the truncated
score matrix. The input process is represented by the red arrows in Fig. 12.2: each
neuron is activated with the signal value for each sample, i.e., the signal is the
argument of a non-linear transfer function (usually a Gaussian or a hyperbolic
tangent). The function value is the output of the input layer, which is transmitted
to the hidden layer (blue arrows in Fig. 12.2):

Output from an input neuron ¼ f input valueð Þ ð12:12Þ
where f represents the non-linear transfer function.

The neurons of the hidden layer are then activated with a weighted average of the
input values, which is the argument of the transfer function:

Output from a hidden neuron ¼ f weighted average of the input valuesð Þ
ð12:13Þ

The weights in Eq. (12.13) are adjustable parameters, to be estimated during the
training phase of the network. The outputs from the hidden layer are then transmitted
to the final output layer (black arrows in Fig. 12.2), linearly combined with addi-
tional weights, and used as argument of the transfer function:

Output from the output neuron ¼ f weighted average of the input valuesð Þ
ð12:14Þ

Fig. 12.2 A typical neural
network architecture with
three layers of neurons
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The weights of this final average are also adjustable parameters. Finally, the output
neuron yields the analyte concentration in the sample (violet arrow in Fig. 12.2).

The network learns the relation between signals and concentration by adjusting
all the weights for the inter-neural connections, in such a way that the final network
output is close to the nominal concentration value for the analyte. There are various
methods to optimize the network parameters, which are described in the literature
on ANN, either as a general topic (Zupan and Gasteiger 1999; Haykin 1999), or
as applied to analytical chemistry in particular (Ni et al. 2014; Despagne and
Massart 1998).

12.6 Radial Basis Functions

A useful type of artificial neural networks having three layers as in Fig. 12.2 is
known as radial basis functions (RBF). The operations taking place in this network
are simpler than the above description, as we shall see.

As in all ANN architectures, the input layer accommodates the significant scores
of the matrix of instrumental data for the calibration samples, and transmits them
directly to the hidden layer. The transfer function activating the hidden neurons is a
Gaussian function, characterized by the values of the centers and widths. Sound
familiar? If the net is composed of A input neurons, each of them receives the ath
score for a given sample (ta). On the other hand, if there are G hidden neurons, then
G � A Gaussian functions will be required to activate the hidden layer. The centers
of these functions are contained in a matrix C of size G � A, whose generic element
is represented by cga. In principle, an additional set of G � A values of Gaussian
widths will also be required, but in the usual formulation of RBF networks, the
widths of the Gaussian functions are all identical, so that a single value σ is needed.
The reader might have noticed, at this point, that the number of hidden neurons is
equal to the dimensionality of the Gaussian space discussed in Sect. 12.4.

The final activating function for the RBF output neuron is linear, thus the network
output is a linear combination of the values delivered by the hidden neurons. If the
weights of this linear combination are called wg, a relatively simple equation can be
produced for the network output y as a function of the input values and the network
parameters:

y ¼
XG
g¼1

wgexp �
XA
a¼1

ta � cga
� �2

σ2

" #
ð12:15Þ

Equation (12.15) is identical to Eq. (12.8). We may thus see Eq. (12.15) as the
result of a projection of the sample data (the scores) onto a non-linear Gaussian
space, followed by a linear combination using appropriate regression coefficients. In
this alternative vision of the RBF network, there are no neurons, connections, or
activating functions, but a projection of non-linear data onto a non-linear space, with
the aim of linearizing the problem. This latter interpretation bears no relationship
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with the brain-related view of artificial neural networks. However, in the remainder
of this chapter we will continue using the network nomenclature, for consistency
with the literature (and because it sounds fancier and more poetic than a projection
onto a non-linear space).

Beyond these rather philosophical considerations, from the operational perspec-
tive it is necessary to estimate various network parameters: (1) the number of hidden
neurons (G), (2) the centers (C) and widths (σ) of the Gaussian functions, and (3) the
weights (w) of the final linear combination. This optimization can be carried out
sequentially, first fixing the number of hidden neurons, widths and centers, and then
finding the weights. There are several alternative procedures for achieving these
goals, one of which is explained in the next section.

12.7 An RBF Algorithm

AMATLAB algorithm for RBF calibration and prediction is given in Box. 12.2. We
hope to demystify the common view that neural networks are too complex to be
included within the framework of an introductory text to multivariate calibration.
Admittedly, some ingredients are missing in Box 12.2: how to select the number of
hidden neurons, and the centers and widths of the Gaussian functions. The idea is to
show that the core RBF computations are not that complex as one may first guess.

Box 12.2
The following codes allow one to perform calibration and prediction with
RBF. It is assumed that the calibration data matrix has been previously
subjected to PCA to find the scores. The input variables are “T,” the matrix
of calibration scores (scaled so that the absolute minimum and maximum are
0 and 1, respectively); “yn,” the vector of calibration concentrations (also
scaled between 0 and 1); and “t,” the vector of test sample scores (scaled
according to the numerical scale used for “T”). Additionally, the number of
hidden neurons or Gaussian dimensionality (“G”), the matrix of centers (“C”),
and the Gaussian widths (“s”) are also required to be known. The output is “y,”
the predicted analyte concentration.

% Calibration
for i¼1:size(T,1)

for g¼1:G
Z(i,g)¼0;
for a¼1:A

Z(i,g)¼Z(i,g)+(T(i,a)-C(g,a))^2/s^2;
end
D(i,g)¼exp(-Z(i,g));

end

(continued)
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Box 12.2 (continued)
end
w¼(D'*D+1e-9*eye(G))\D'*yn;
% Prediction
for g¼1:G

Zt(g)¼0;
for a¼1:A

Zt(g)¼Zt(g)+(t(a)-C(g,a))^2/s^2;
end

end
y¼exp(-Zt)*w;

12.8 RBF Networks in MVC1

In the MVC1 software, the RBF neural network has been implemented in a similar
manner to that described by Orr (1996). The estimation of the network parameters is
equivalent to training the net, which requires a set of calibration spectra and the
nominal values of the analyte concentrations or sample properties. In this sense, the
activity is analogous to that performed during calibration with the linear counterparts
PCR or PLS. The objective of the training phase is to have a set of network
parameters minimizing the average calibration error, with a minimum of hidden
neurons (to avoid over-training of the network, equivalent to over-fitting in PLS
calibration). In any case, recall that the number of hidden neurons (G) should be
smaller than the number of calibration samples (I ).

The first phase of RBF calibration is to set the number of PCA latent variables to
feed the network. This can be done in two alternative and complementary manners:
(1) by a separate PCA of the calibration matrix X, estimating the number of principal
components needed to capture most of the spectral variance, and (2) tuning the
number of latent variables for a PCR analysis of the calibration data by cross
validation. It might be argued here that principal component analysis is a linear
technique, and that the scores generated by a linear technique might not be suitable
for feeding a non-linear model. However, what is relevant here is that the PCA
scores are adequate surrogate variables replacing the original spectra, capturing as
much variance as possible. The non-linear relationship occurs between scores and
concentrations, and this is the relationship modeled by the neural network.

In the framework of MVC1, the protocol described in Table 12.1 has been
adopted. The tuning of the number of hidden neurons is called forward selection,
because neurons are added one by one, until a minimum in a suitable error indicator
is found.
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12.9 A Real Case

This system involves the non-invasive determination of three quality parameters in
meat samples, based on NIR spectral measurements in the range from 850 to
1050 nm (Borggaard and Thodberg 1992). A total of 170 samples were available
for calibration (Fig. 12.3), and 70 for validation, with properties in the following
ranges (%): fat, 32.8–76.6; moisture, 0.9–58.5; and protein, 8.8–23.2. We analyze in

Table 12.1 Optimization of an RBF network in MVC1

Step Activity

1 A single hidden neuron is considered (G ¼ 1)

2 A Cmatrix of Gaussian centers (size G� A) is built with G randomly selected rows of the
score matrix

3 A range of Gaussian widths (σ) is scanned in a proper range

4 A range of ridge regression parameters (λ) is scanned in a proper range

5 For each pair of values of σ and λ, the vector of weights w is estimated by ridge regression
as in Eq. (12.11)

6 For each pair of values of σ and λ, an error indicator is computed, penalizing by the
number of adjustable parameters the RMSEP value (computed by comparing nominal and
predicted concentrations for the training samples)

7 Repeat the steps from 1 to 7 adding one hidden neuron at a time

8 The optimum values of G, σ, and λ correspond to the minimum error indicator

Fig. 12.3 NIR spectra of 170 meat samples, employed to build multivariate models for the
non-invasive determination of the contents of fat, moisture, and protein. The data were recorded
on a Tecator Infratec Food and Feed Analyzer working in the wavelength range 850–1050 nm, and
are available at http://lib.stat.cmu.edu/datasets/tecator
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detail the determination of the fat content in these meat samples using the MVC1
software and an RBF approach, in comparison with classical PLS.

The experimental data set is available on the internet at http://lib.stat.cmu.edu/
datasets/tecator, and is contained in the folder named Parameters in meat
accompanying the MVC1 software. We recommend the reader to examine the files
contained in the latter folder, and to read the documentation which provides help and
additional information on this system.

Figure 12.4 shows the main screen of MVC1, prepared to perform LOO-type
cross validation using a PLS-1 model for the property fat, with a maximum of
30 latent variables. Notice that MSC is being used for pre-processing the NIR
spectral data, due to the fact that solid or semi-solid materials introduce background
dispersion signals which should be removed for better performance. Cross-valida-
tion analysis shows that the optimum number of latent variables is 3, and that the
relationship between predicted fat content and nominal values is, at least visually,
non-linear (Fig. 12.5).

Having established that the optimum number of latent variables is 3, Fig. 12.6
shows how the MVC1 screen is adapted to build the PLS-1 model for fat content.
Prediction in the validation samples (Fig. 12.7) clearly indicates, by visual

Fig. 12.4 MVC1 main screen, prepared to perform cross validation with the PLS-1 model, up to a
maximum of 30 latent variables. The red box shows that MSC is employed as pre-processing filter.
The system corresponds to NIR spectra for measuring quality parameters of meat samples, in this
case fat
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Fig. 12.5 MVC1 plots of cross-validation results for 3 latent variables (red box) in the PLS-1
determination of fat in meat samples

Fig. 12.6 MVC1 main screen, prepared to build a PLS-1 model with 3 latent variables for the
determination of fat in meat samples



inspection, that the relation between predicted and nominal values is non-linear.
Figure 12.8 shows the statistical results for the prediction phase: RMSEP ¼ 2.3%,
REP ¼ 3.7%. Notice that the Durbin–Watson indicator for the correlation among
prediction residuals is 0.90, with a very low associated probability, indicating that
non-linearity is indeed significant.

Given the non-linear nature of the signal–concentration relationship, the predic-
tion results could be improved by moving to a non-linear approach such as those
based on RBF neural networks. To apply the latter model requires one to set a
suitable number of latent variables capturing the spectral calibration variance. A
separate PCA study is required for estimating the number of latent variables. A hint
that this number is larger than 3 is provided by an LOO-type cross-validation
analysis of the PCR model, which yields 13 latent variables as optimum. We may
even use a larger number; the aim is to capture as much variance as possible, and we
do not want to leave PCs out of the model.

Figure 12.9 shows the pertinent MVC1 screen, where 20 latent variables were
selected as input of the network. RBF prediction leads to significantly better analyti-
cal results (Fig. 12.10), where it is apparent that the correlation among successive
residuals is considerably smaller. In particular, the prediction statistics (Fig. 12.11)
looks better than the one for PLS-1, with RMSEP ¼ 0.84% and REP ¼ 1.3%.

Fig. 12.7 MVC1 prediction plots for the PLS-1 model. The red box shows the prediction
errors vs. predicted concentration
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Fig. 12.8 MVC1 table with prediction results. The red box shows the statistical indicators for the
prediction phase

Fig. 12.9 MVC1 main screen, prepared to train an RBF neural network with 20 scores as input,
corresponding to an input layer with 20 neurons (red box). The analytical system is the same as in
Fig. 12.8. MSC is employed as pre-processing filter



Fig. 12.10 MVC1 plots of fat prediction results in meat samples with the trained RBF

Fig. 12.11 MVC1 table of prediction results for the RBF model. The red box shows the statistical
indicators for the RBF prediction phase



The Durbin–Watson indicator is 2.1 with a probability p ¼ 0.40, clearly indicating
non-significant correlations. This confirms that the prediction improvement using the
neural network approach is due to an adequate mapping of the non-linear signal–
concentration relation.

This data set has additional quality parameters to calibrate: moisture and protein
content. The reader will be able to verify the results provided in Table 12.2 (Exercise
2 in Sect. 12.11). It is apparent that RBF calibrations provide reasonably good
results, with non-significant correlations in prediction residuals, unlike PLS-1. The
only exception appears to be the determination of the protein content, for which the
Durbin–Watson probability is close to 0.05. Indeed, PLS-1 calibration with 10 latent
variables for protein yields RMSEP ¼ 0.76%, REP ¼ 4.3%, close to the RBF result.
This may indicate that the relationship between NIR signals and protein content in
these meat samples is only slightly non-linear, and that the improvement in going
from PLS-1 to RBF may only be marginal.

12.10 Figures of Merit

We recall that in PLS calibration, the vector of regression coefficients bPLS can be
used to estimate the sensitivity:

Table 12.2 Results for the determination of quality parameter of meat samples by PLS-1 and RBF
calibrations

Fat/% Moisture/% Protein/%

No. of calibration samples 170

No. of test samples 70

Property range/% 32.8–76.6 0.9–58.5 8.8–23.2

Mean calibration value/% 63.0 18.3 17.7

PLS-1 calibration

Number of latent variables 3 11 10

RMSEP/% 2.3 2.8 0.8

REP/% 3.7 15 4.3

Durbin–Watson DW 0.90 1.17 1.68

Durbin–Watson p � 0.05 � 0.05 0.035

RBF calibration

ANN architecturea 20-46-1 20-61-1 20-53-1

RMSEP/% 0.82 0.65 0.54

REP/% 1.3 3.5 3.1

Durbin–Watson DW 2.02 1.93 2.10

Durbin–Watson p 0.87 0.66 0.49
aThe architecture is reported as number of input-hidden-output neurons
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SENPLS ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

b2jPLS

s ð12:16Þ

Interestingly, there is a simple equivalent to Eq. (12.16) in RBF calibration
(Allegrini and Olivieri 2016). Starting from the general prediction Eq. (12.15) for
RBFs, and applying uncertainty propagation, it is possible to derive an expression
formally analogous to Eq. (12.16), as a function of an analyte and sample dependent
bRBF vector whose generic elements bRBF ( j) are given by:

bRBF jð Þ ¼ �
XG
g¼1

wg

XA
a¼1

2 ta � cga
� �

u ja

σ2

" #
exp �

PA
a¼1

ta � cga
� �2

σ2

0
BB@

1
CCA ð12:17Þ

where uja are the elements of the loading vectors rendered by PCA of the raw data
matrix, and the remaining symbols have the same meaning as above. The sensitivity
for the network calibration is thus:

SENRBF ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

b2jRBF

s ð12:18Þ

It is worth mentioning that bRBF coefficients, in contrast to PLS regression
coefficients, are not employed for analyte prediction. They are sensitivity
coefficients which are sample specific, meaning that each sample will be
characterized by a sensitivity value. This can be understood considering that the
slope of the signal–concentration relationship in a non-linear system is not constant.
The sensitivity can be reported as an average value, ranging from a minimum to a
maximum.

Equations (12.17) and (12.18) make it possible to develop expressions for the
sample dependent prediction uncertainty and detection limit. However, the correct
estimation of the latter parameters is still a subject of debate and intense research
(Allegrini and Olivieri 2016).

Figure 12.12 shows additional model plots. The one highlighted within the red
box shows the vectors of bRBF coefficients for all the calibration samples, which are
employed to estimate the sensitivities according to Eq. (12.18). The sensitivity is
specific for each sample, and thus MVC1 provides the average value <SENRBF>.
The obtained values are shown in Table 12.3 along with the minimum and maximum
sensitivity parameter for each of the three RBF calibrations.
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12.11 Exercises

1. Explain whether the following statements are true or false:
(a) The ANN calibration results are better than those from PLS, even when there

is a linear relationship between signal and concentration.
(b) ANN calibrations are to be preferred over PLS calibration in very complex

samples, even for linear signal–concentration relationships.
(c) ANN require fewer samples for building the calibration model.
(d) ANN programs are very complex and time consuming.
(e) The mathematics associated to ANN is difficult to interpret.
(f) No figures of merit are available for ANN calibrations.

Table 12.3 Figures of merit for the determination of quality parameter of meat samples by RBF
calibration

Fat/% Moisture/% Protein/%

Average <SENRBF> 0.0038 0.0051 0.0022

Minimum SENRBF 0.0017 0.0037 0.0015

Maximum SENRBF 0.049 0.030 0.022

Fig. 12.12 MVC1 model plots. The red box shows the vectors of RBF coefficients which are
useful to estimate the sensitivity of the model
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2. Process the data set called Parameters in meat with PLS-1 and RBF using the
MVC1 software, and reproduce the results shown in Table 12.2. Apply MSC as
pre-processing. Check whether the system is non-linear for the three calibrated
parameters, on the basis of the Durbin–Watson indicators for PLS-1 calibration.

3. Process the data set called Parameters in corn with PLS-1 and RBF using the
MVC1 software and collect the results in a table similar to Table 12.2. Apply
MSC as pre-processing. Check whether the system is non-linear for the four
calibrated parameters, on the basis of the Durbin–Watson indicators for PLS-1
calibration. Are there significant differences between the linear and non-linear
calibrations?
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Solutions to Exercises 13

Abstract
Solutions to the exercises provided at the endof each chapter areworkedout indetail.

13.1 Chapter 2

1. (a) Alternative 1: YTY ¼ 1 0
0 1

� �T
1 0
0 1

� �
¼ 1 0

0 1

� �
1 0
0 1

� �
¼ 1 0

0 1

� �

Alternative 2: YTY ¼ 1 1
2 2

� �T
1 1
2 2

� �
¼ 1 2

1 2

� �
1 1
2 2

� �
¼ 5 5

5 5

� �

Alternative 3: YTY ¼ 1 2
2 1

� �T
1 2
2 1

� �
¼ 1 2

2 1

� �
1 2
2 1

� �
¼ 5 4

4 5

� �
.

(b) Alternative 1: det(YTY) ¼ 1

Alternative 2: det(YTY) ¼ 0
Alternative 3: det(YTY) ¼ 9.

(c) Alternative 2 should be discarded because the determinant is zero and the
matrix cannot be inverted. Qualitatively, the two samples have the same
analyte concentrations; they are, in fact, duplicates of the same sample and
therefore they are not independent. Calibrating for two analytes requires at
least two independent samples.

On the other hand, alternatives 1 and 3 do not present this problem. Which
one to choose? Alternative 1 does not involve mixtures, but pure analyte
solutions, whereas alternative 3 involves two mixtures with different analyte
proportions. In general, it is preferable to choose alternative 3, which may be
more representative of future samples, where the analytes may show slightly
different spectra in comparison with pure analyte spectra.

# Springer Nature Switzerland AG 2018
A. C. Olivieri, Introduction to Multivariate Calibration,
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2. (a) The determination of the quality of chicken meat cannot be performed using a
CLS model, because this would require to know all chemical constituents of
the meat, and the mathematical relationship between the quality parameters
and the chemical components.

(b) A constant background can be removed by measuring a blank sample, and
then subtracting the background signal from all samples, so that if the two
pure chemical constituents are known, the CLS model could be applied.

(c) A variable background cannot be easily removed, so that, in general, the CLS
model will not be useful in this particular case.

3. (a) The spectral overlapping increases in the order B < A < C, and the determi-
nant of the matrix (STS) decreases in the same order.

(b) The most favorable situation for inverting the above matrix and estimating
analyte concentrations is B.

13.2 Chapter 3

1. (a) For a CLS model, in the prediction phase the vector of analyte concentrations
is given by:

y ¼ (STS)–1STx ¼ S+x
If the number of analytes is equal to the total number of constituents, the
above equation is analogous to the ILS expression for all analytes:

y ¼ Bx
This shows that the matrix of regression coefficients of the ILS model is S+, if
all constituent pure spectra are known.

(b) Inversion of the N � N (ST S) matrix requires J > N and low correlation
among the columns of S.

(c) There are four constituents, low spectral overlapping and no background
signal, so that the number of wavelengths selected by SPA is equal to the
number of constituents.

2. Not necessarily, but this is an indication that various chemical constituents are
involved in this determination.

3. (a) moisture ¼ kðx1940 � x2080Þ ¼ kx1940 � kx2080 ¼ ½k � k� x1940
x2080

� �
¼ bTmoisturex

(b) bmoisture ¼ k
�k

� �

4. (a) Registering the NIR spectra of a large number of chicken meat samples,
measuring their quality parameters, selecting the working wavelengths with
e.g., SPA, and building an ILS model at those wavelengths.

(b) Registering the NIR spectra of a large number of two-constituent mixtures of
known concentrations in the presence of the variable background signal,
selecting the working wavelengths with e.g., SPA, and building an ILS
model at those wavelengths.
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5. (a) vn ¼ (TTT)–1TTyn
(b) If the size of T is I � A, where I is the number of calibration samples and A is

the size of the compressed and truncated matrix T, then the requirement for
inverting the square matrix (TTT) of size A � A is that I > A.

6. Metal ions should be bonded to organic matter, so that the content of organic
matter, determined by NIR and chemometrics, is proportional to the metal content.

7. In ILS, the function to be minimized is:
fILS ¼ (XTbn – yn)

T(XTbn – yn)
The minimum in fILS is found by setting to zero the first derivative with respect

to bn. The derivative is a vector of the same size as yn, all whose elements should
be zero, represented by the symbol “0”:

dfILS/dbn ¼ 2X(XTbn – yn) ¼ 0
which leads to:
XTbn – yn ¼ 0
XTbn ¼ yn
X XTbn ¼ Xyn
bn ¼ (X XT)–1Xyn
In RR, the function to be minimized is:

f RR ¼ ðXTbn � ynÞTðXTbn � ynÞ þ λbTnbn
The minimum in fRR is found by setting to zero the first derivative:
dfRR/dbn ¼ 2X(XTbn – yn) + 2λbn ¼ 0
which leads to:
X(XTbn – yn) + λbn ¼ 0
XXTbn + λbn ¼ X yn
(XXT + λI)bn ¼ Xyn
bn ¼ (X XT + λI)–1Xyn

13.3 Chapter 4

1. (a) In the uncentered data, only 1.0% of the variance is explained by the second
score, which is the one mainly responsible for classification. On the other
hand, for centered data, the explained variance by the second score increased
to 18.6% by removing the effect of the mean spectrum. More importance is
now given to the effect of the discriminating spectral shoulder at sensor 30.

(b) In the centered data, the second loading has a smaller contribution from the
sensor 60, which represents the mean spectrum, and a larger contribution
from the sensor 30, which represents the contribution of the discriminating
spectral shoulder.

(c) In the score–score plot for centered data, the samples are clearly discriminated
according to the value of the second score: positive values, green samples,
negative values, blue samples.
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13.4 Chapter 5

1. It is likely that PCR, using full spectral information, is able to model the sample
properties with higher efficiency than ILS.

2. If we accept the views of this book, answer (a) is the appropriate one to the
question.

13.5 Chapter 6

1. (a) False. You cannot have so many latent variables when only two analytes are
responsive in a solution system.

(b) May be true if the additional latent variables model dispersion effects.
(c) True. After removing the background signals, the number of latent variables

tends to decrease.
(d) False. Three responsive analytes in solution require at least three latent variables.

13.6 Chapter 7

1. (a) From Eq. (7.1) of Chapter 7:
yn ¼ TAvn
vn ¼ ðTT

ATAÞ�1TT
Ayn

vn ¼ Tþ
A yn

(b) Tþ
A ¼ ðTT

ATAÞ�1TT
A

2. The number of independent equations is equal to the number of calibration
samples I. The number of unknowns is equal to the number of latent variables
A. The requirements for solving the equation is that A < I, and that the columns of
TA are not correlated.

3. The three vectors are as follows:

y1 ¼

1
1
1
1
1
0
0
0
0
0
0
0
0
0
0

2
6666666666666666666666666664

3
7777777777777777777777777775

y2 ¼

0
0
0
0
0
1
1
1
1
0
0
0
0
0
0

2
6666666666666666666666666664

3
7777777777777777777777777775

y3 ¼

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1

2
6666666666666666666666666664

3
7777777777777777777777777775
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4. (a) Three latent variables, due to the three chemical constituents.
(b) More than three latent variables, due to the three chemical constituents and the

dispersion of the NIR radiation.
5. (a) The interferent will be flagged as an outlier because the signal from the

interferent cannot be modeled by a calibration set where it is absent.
(b) It is likely that the bias will be very small, because the elements of the regression

vector at the wavelengths where the interferent absorbs are very small.
(c) The interferent will be flagged as an outlier, and there will be considerable

bias in the analyte prediction, because the elements of the regression vector at
the wavelengths where the interferent absorbs are significant.

6. Samples with large spectral residuals are more problematic than samples having
unusual constituent concentrations, because the latter concentrations may be
outside the calibration range, but the former are due to uncalibrated new
constituents. If the signal–concentration relationship is linear, high constituent
concentrations should not be a problem. New constituents, however, demand
expanding the calibration set with additional representative samples.

7. (a) No. Values in the first row should be reported as 0.19, 0.15, and 0.5, respectively.
(b) Visual inspection indicates that ILS is definitely the worst model. PLS-1 and

PLS-2 appear to be equivalent, most probably because there are no
correlations among the analyte calibration concentrations. PLS-1 should be
the model of choice.

13.7 Chapter 8

1. (a) The sub-region from 200 to 500 sensors appears to be the best for calibration.
(b) Calibrating with the full spectra requires more latent variables, to model

additional phenomena due to saturation of the detector and presence of
other chemical constituents in comparison with the sensor-selected region.
The RMSEP is smaller in the selected sub-region because it may be more
informative regarding the octane number.

13.8 Chapter 9

1. The smallest REP corresponds to MSC, but there are almost no differences with
the one obtained by applying no pre-processing. The samples are liquid, and no
dispersion of the radiation is expected.
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13.9 Chapter 10

1. (a) In general, yes, unless the uncertainty in prediction is controlled by the errors
in nominal or reference values for the calibration samples.

(b) Same answer as (a).
(c) Yes, because LOQ ¼ 3 LOD.

2. No. Predictions have too many significant figures. The correct report is shown in
Table 13.1:

13.10 Chapter 11

1. The example data set Tetracycline in serum is analyzed following the suggested
protocol:
(a) No saturated spectral regions appear in the spectra
(b) LOO cross validation with a maximum of 25 latent variables is performed

(there are 50 calibration samples). Four latent variables is optimum for the
PLS-1 model, with RMSECV ¼ 0.14 units (satisfactory since the average
calibration concentration is ca. 2 units, 7% of relative error for human serum
samples).

(c) No outliers appear in cross validation.
(d) and (e) Prediction results with PLS-1 and 4 latent variables are reasonably

good: RMSEP ¼ 0.07 and REP ¼ 3.8%. Figures of merit: the LOD is also
reasonably low, from 0.14 to 0.22 units.

(f) No significant outliers in prediction.
(g) No truly unknown samples available.

2. The example data set Octane in gasolines is analyzed following the suggested
protocol:
(a) Saturated spectral regions appear in the spectra below sensor No. 200
(b) LOO cross validation with a maximum of 24 latent variables is performed

(there are 48 calibration samples) in the spectral region from 200 to

Table 13.1 A report with
the correct number of
significant figures

Sample Nominal Prediction

1 0.10 0.10(1)

2 0.20 0.21(2)

3 0.30 0.30(1)

4 0.40 0.42(1)

5 0.50 0.51(2)

RMSEP 0.011

REP 36%

SEN 1.16

LOD 0.012

LOQ 0.04
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500 sensors. Five latent variables is optimum for the PLS-1 model, with
RMSECV ¼ 0.6 units, but there are two clear outliers: samples No. 24 and
25. Excluding these two samples and repeating the LOO cross validation
leads to four latent variables and RMSECV ¼ 0.4 units.

(c) No significant outliers appear in cross validation in the spectral region
200–500 and excluding calibration samples 24 and 25.

(d) and (e) Prediction results with PLS-1 and 4 latent variables are reasonably
good: RMSEP¼ 0.28 and REP¼ 0.29%. Figures of merit: the LOD does not
have a meaning in this case. However, the analytical sensitivity (22 units)
provides an idea of the minimum difference in property that can be
appreciated, as 1/22 ¼ ca. 0.05 units.

(f) No significant outliers in prediction.
(g) No truly unknown samples available.

13.11 Chapter 12

1. (a) Not necessarily.
(b) Not necessarily.
(c) Not necessarily.
(d) They are not very complex, and some (RBF) are not time consuming.
(e) See the present chapter. Is it?
(f) They are for RBF, at least the sensitivity can be readily estimated.

2. Reproduce Table 13.1.
3. Processing the data with MVC1 using both PLS-1 and RBF (MSC pre-processing

was used) leads to Table 13.2.

Table 13.2 PLS-1 and RBF results for the determination of corn seed quality parameters

Moisture (%) Oil (%) Protein (%) Starch (%)

PLS-1 calibrationa

Number of latent variables 21 19 19 17

RMSEP (%) 0.21 0.07 0.13 0.18

REP (%) 2.0 2.0 1.5 0.27

Durbin–Watson DW 1.88 2.41 2.88 1.24

Durbin–Watson p 0.57 0.17 0.001 0.003

RBF calibration

ANN architectureb 20-13-1 20-9-1 20-21-1 20-25-1

RMSEP (%) 0.19 0.14 0.16 0.59

REP (%) 1.9 4.1 1.8 0.91

Durbin–Watson DW 2.18 1.72 2.48 2.07

Durbin–Watson p 0.61 0.25 0.11 0.89
aA maximum of 25 latent variables was employed for LOO cross validation
bThe architecture is reported as number of input-hidden-output neurons
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Fig. 13.1 MVC1 screen with the model plots for the RBF determination of corn seed quality
parameters, in this case moisture. The plot of sensitivity RBF coefficients is inside the red box

Fig. 13.2 MVC1 screen with the model plots for the RBF determination of corn seed quality
parameters, in this case oil. The plot of sensitivity RBF coefficients is inside the red box
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Fig. 13.3 MVC1 screen with the model plots for the RBF determination of corn seed quality
parameters, in this case protein. The plot of sensitivity RBF coefficients is inside the red box

Fig. 13.4 MVC1 screen with the model plots for the RBF determination of corn seed quality
parameters, in this case starch. The plot of sensitivity RBF coefficients is inside the red box



Conclusion: The system is linear. Even for protein and starch, where the
probabilities associated to the DW parameters seem to indicate non-linearity,
the predictions are of the same (or even better quality) than the use of the RBF
model. All this indicates that for non-linearity, one should detect a very low
Durbin–Watson probability, ( p < <0.05) for significant non-linearity to occur.
Values of 0.001–0.003 as in Table 13.2 should be taken with caution.

Another indication that the systems are linear is the RBF plot of the sensitivity
vectors. If these vectors are similar, it is a strong indication that the sensitivity at
all concentrations is the same, suggesting linearity. Figure 13.1 shows these plots
for the four parameters of Table 13.2 (compare with Fig. 12.11 of Chap. 12
corresponding to a truly non-linear system) (For the remaining parameters,
see Figs. 13.2, 13.3, and 13.4).
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Back Matter

Let me see this book as if it were a tour. The visitor will stop at the sites that are most
recommended by commercial agencies. The first one is CLS, a place that has been
abandoned by almost all of its residents. However, it retains a high historical value,
and prepares the visitor for the main objectives of the circuit. The second milestone
of the tour is ILS, not too visited but still active. After some refurbishment here and
there, ILS will be ready to receive new guests. It maintains its appeal, despite the
passing of time and the discovery of new places of greater interest. ILS is part of the
history of multivariate calibration, but may still be useful. Some users rely on ILS
because of its simplicity.

Before arriving to the jewel of the tour, a stop at PCR is timely. Some people
think that PCR is as important as PLS, and that in the future it could overshadow its
splendor. But most researchers prefer PLS, for historical, emotional, or rational
reasons. We do not know yet whether there are sufficient scientific reasons to assert
that PLS is better than PCR. It may depend on what one understands by better. In any
case, PLS is the most visited place today, the one with more stars according to
travelers’ opinions, and the most recommended one by touristic agencies. PLS has
certainly more press than PCR.

ANN is then briefly visited before returning home, perhaps so quickly that its
whole potential may not be appreciated. In the future, it may reach the same status as
PLS, but today it is destined to receive no more than a glimpse. Brief, yes, but
powerful enough so as to catch the travelers’ interest.

Those who made the complete tour may once come back. For different causes: the
wish of knowing more about a place of interest, the need of learning on the history,
the present power or the future projections of some of the visited sites, or just by
curiosity. They will all be welcome.
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