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Foreword

This book contains a collection of papers by distinguished researchers that were
presented at an international conference to celebrate Joseph McKean’s 70th birth-
day. The conference entitled “Robust Rank-Based and Nonparametric Methods”
was held at Western Michigan University on April 9 and 10, 2015. Many papers
in this book are contributed by some of Joe’s long-standing collaborators, students,
and colleagues.

Joe McKean is a truly outstanding scholar. He is internationally recognized as
having made fundamental contributions to the theory and practice of nonparametric
statistics. Joe has consistently produced very high quality work over the last 40
years resulting in 6 books and more than 100 published papers. Over this time, he
has directed 24 Ph.D. dissertations. He personally contributed in the development
of rank-based methods for linear models, multivariate models, time series models,
experimental designs, mixed models, and nonlinear models. In particular, he is
responsible for developing both the theoretical underpinnings and the computational
algorithms for these rank-based methods. His contributions are both broad and deep.
Joe has developed rank-based methods across a broad range of settings which are
competitive in terms of efficiency with parametric methods, when the parametric
assumptions hold and at the same time are robust to violations of these assumptions.
Put simply, essentially any data set you can analyze with least squares and/or
maximum likelihood, you can now do using a robust rank-based method developed
and implemented in software by Joe. Joe is a fellow of the American Statistical
Association and the 1994 winner of Western Michigan University’s Distinguished
Faculty Scholar Award.

Joe’s contributions to teaching and service are also legendary. In terms of
teaching, Joe has taught essentially every graduate statistics class at Western
Michigan University. He was the program chair or codirector of five separate Great
Lakes Symposiums on Applied Statistics held in Kalamazoo, Michigan. Joe has
served as an associate editor for five different journals, including the Journal of the
American Statistical Association. Joe played a fundamental role in the formation
of the Department of Statistics at Western Michigan University, which occurred in
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viii Foreword

July 2001. Joe was also one of the principal leaders in putting together the Statistical
Computing Lab at Western Michigan University.

Describing Joe’s long list of outstanding accomplishments speaks to just one
aspect of Joe. Joe has a wonderful life outside of academia. He is much loved by his
wife Marge, his three daughters, and his four grandchildren. Pour Joe a craft beer
and ask him about his international travels and you will be regaled by a tale from
one of his visits to Australia or Switzerland.

On a further personal note, we have enjoyed a long-term friendship and
collaborative relationship with Joe. We have had the great good fortune to work
with him on many research projects. He is the ideal collaborator, always ready to
discuss a problem in depth, often coming up with innovative and creative solutions.

In summary, those who have worked with Joe McKean as well as those who have
been taught by him have greatly benefited from their interactions with a truly great
man.

State College, PA, USA T.P. Hettmansperger
College Station, TX, USA S.J. Sheather
January 2016



Preface

This volume of papers grew out of the

International Conference on
Robust Rank-Based and Nonparametric Methods

which was held at Western Michigan University, Kalamazoo, MI, on April 9 and 10,
2015. This conference consisted of 2 days of talks by distinguished researchers in
the areas of robust, rank-based, and nonparametric statistical methods. Many of the
speakers agreed to submit papers to this volume in areas of their expertise. These
papers were refereed by external reviewers, and revised papers were resubmitted for
a final review. We thank the referees for their work on these papers.

This collection of papers discuss robust rank-based and nonparametric proce-
dures for many of the current models of interest for univariate and multivariate
situations. It begins with a review of rank-based methods for linear and nonlinear
models. Many of the succeeding papers extend robust and nonparametric methods to
mixed and GEE-type models. Many of the papers develop robust and nonparametric
methods for multivariate designs and time series models. Theoretical properties of
the analyses, including asymptotic theory and efficiency properties, are developed.
Results of simulation studies confirming the validity and empirical efficiency of the
methods are presented. Discussion also focuses on applications involving real data
sets and computational aspects of these robust procedures. Several R packages for
these procedures are discussed, and the URLs for their downloading are cited.

The conference was hosted by the Department of Statistics of Western Michigan
University. Our thanks goes to many people who contributed to the success of
this conference. In particular, a special thanks goes to Ms. Michelle Hastings,
administrative assistant of the Department of Statistics, who was in charge of the
local arrangements. Also a special thanks to Dr. Magdalena Niewiadomska-Bugaj,
chair of the Department of Statistics; Professor Rajib Paul, Department of Statistics;
and Dr. Thomas Vidmar, Biostat Consultants of Portage, for their time spent in
organizing this conference. Also, our thanks to Professor Simon Sheather, Texas
A&M University, for emceeing the conference banquet.
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x Preface

We deeply appreciate the efforts of the editorial staff of Springer who made the
production of this book possible. A special thanks to Ms. Hannah Bracken, associate
editor of Statistics at Springer, for her interest and initial guidance on the book, and
to Mr. Dhayanidhi Karunanidhi, production coordinator at Springer, for his efforts
in the actual production of the book. We acknowledge the help of Dr. Jeff Terpstra
on some LATEXissues. Last but not least, a special thanks to the authors for creating
this collection of interesting papers in robust and nonparametric methods.

New Brunswick, NJ, USA Regina Y. Liu
Kalamazoo, MI, USA Joseph W. McKean
March 2016
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Chapter 1
Rank-Based Analysis of Linear Models
and Beyond: A Review

Joseph W. McKean and Thomas P. Hettmansperger

Abstract In the 1940s Wilcoxon, Mann and Whitney, and others began the
development of rank based methods for basic one and two sample models. Over
the years a multitude of papers have been written extending the use of ranks to
more and more complex models. In the late 60s and early 70s Jurečková and
Jaeckel along with others provided the necessary asymptotic machinery to develop
rank based estimates in the linear model. Geometrically Jaeckel’s fit of linear
model is the minimization of the distance between the vector of responses and the
column space of the design matrix where the norm is not the squared-Euclidean
norm but a norm that leads to robust fitting. Beginning with his 1975 thesis,
Joe McKean has worked with many students and coauthors to develop a unified
approach to data analysis (model fitting, inference, diagnostics, and computing)
based on ranks. This approach includes the linear model and various extensions,
for example multivariate models and models with dependent error structure such
as mixed models, time series models, and longitudinal data models. Moreover,
McKean and Kloke have developed R libraries to implement this methodology. This
paper reviews the development of this methodology. Along the way we will illustrate
the surprising ubiquity of ranks throughout statistics.

Keywords Efficiency • Diagnostics • High breakdown fits • Mixed models •
Nonlinear models • Nonparametric methods • Optimal scores • Rank scores •
Rfit • Robust

J.W. McKean (�)
Department of Statistics, Western Michigan University, Kalamazoo, MI 49008, USA
e-mail: joseph.mckean@wmich.edu

T.P. Hettmansperger
Department of Statistics, Penn State University, University Park, PA 16002, USA
e-mail: tph@stat.psu.edu

© Springer International Publishing Switzerland 2016
R.Y. Liu, J.W. McKean (eds.), Robust Rank-Based and Nonparametric Methods,
Springer Proceedings in Mathematics & Statistics 168,
DOI 10.1007/978-3-319-39065-9_1

1

mailto:joseph.mckean@wmich.edu
mailto:tph@stat.psu.edu


2 J.W. McKean and T.P. Hettmansperger

1.1 Introduction

Our intention in writing the following historical development is to provide our
perspective on the evolution of nonparametric methodology (both finite and asymp-
totic). We will focus on a particular development based on ranks. We will show
how beginning with simple rank tests in the 1940s, the area has grown into
a coherent group of contemporary statistical procedures that can handle data
from increasingly complex experimental designs. Two factors have been essential:
theoretical developments especially in asymptotic theory, see Hettmansperger and
McKean (2011), and in computational developments, see Kloke and McKean
(2014). Statistical inference based on ranks of the data has been shown to be
both statistically efficient relative to least squares methods as well as robust. Any
history is bound to be selective. We have chosen a line of development that is
consistent with the theme of this conference. There is a rich and extensive literature
on nonparametric methods. We will confine ourselves to references that directly
relate to the history as related to the topics of the conference.

When constructing tests for the median of a continuous population, the simplest
nonparametric test is the sign test which counts the number of observations greater
than the null hypothesized value of the median. The null and alternative distributions
of the sign test statistic are both binomial. In the case of the null hypothesis, the
binomial parameter is 0.5, and hence, the null distribution of the sign test statistic
does not depend on the population distribution. We call such a test nonparametric
or distribution free. The use of the sign test for dichotomous data was first proposed
by Arbuthnott (1710).

The modern era for nonparametric or distribution free tests began with the work
of Wilcoxon (1945) and Mann and Whitney (1947). Wilcoxon proposed the
nonparametric Wilcoxon signed rank test for the median of a symmetric population,
and the nonparametric Wilcoxon rank sum test for the difference in population
medians. Mann and Whitney (1947) showed that the rank sum test is equivalent
to the sign test applied to the pairwise differences across the two samples. Tukey
(1949) showed the signed rank test is equivalent to the sign test applied to the
pairwise averages from the sample (called the Walsh averages by Tukey). Hence,
from the earliest time, we have a connection between rank based methods and the
L1 norm expressed through its derivative, the sign statistic. In what follows we will
exploit this connection by considering a rank based norm and its relationship to the
L1 norm. In addition, we will need to include the L2 norm and least squares for
comparison in our discussion.

Noether (1955), based on earlier unpublished work by Pitman (1948), intro-
duced Pitman efficiency for hypothesis tests. Then Hodges and Lehmann (1956,
1960) analyzed the efficiency of various rank tests relative to least squares tests
(t- and F-tests) and proved the surprising result that the efficiency of the Wilcoxon
tests relative to the t-tests is never less than 0.864, is 0.955 at the normal model, and
can be arbitrarily large for heavy tailed model distributions. No longer was a rank
test considered quick and dirty with low power. Rank tests now provided a serious
alternative to least squares t tests.
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Hodges and Lehmann (1963) next developed estimators based on rank test
statistics (R-estimates) and showed that they inherit the efficiency of the rank tests
that they were derived from. Because of the connection between the Wilcoxon test
statistics and the L1 norm, the Hodges-Lehmann estimate of location is the median
of the pairwise averages and the estimate for the difference in locations is the median
of the pairwise differences across the two samples. By the mid-sixties rank tests and
estimates for location models, including the one-way layout, were available, and
they share the excellent efficiency properties. Robustness was introduced during
this time by Huber (1964) followed by the work of Hampel (1974). The basic
tools of robustness include the influence function and break down point. Ideally we
would like to have estimates that have bounded influence and positive breakdown.
Indeed, Wilcoxon R-estimates enjoy precisely these good robustness properties in
addition to the excellent efficiency properties mentioned above. For example the
breakdown value for the Hodges-Lehmann estimate of location, the median of the
pairwise averages, is 0.293 while the breakdown of the sample mean is 0.

Hájek and Šidák (1967) published a seminal work on the rigorous development
of rank tests. This was followed many years later by a second edition, Hájek et al.
(1999) which extends much of the theory and includes material on R-estimates.

Hence, during the 1960s nonparametric and distribution free rank tests and rank-
based estimates for location models were well understood and provided excellent
alternatives to least squares methods (means, t- and F-tests) from the point of view
of both efficiency and robustness. Unfortunately the rank methods did not extend in
a straight forward way to the two-way layout with interaction terms. For example,
a quick check of text books on nonparametrics written before the mid-seventies did
not reference a test for interaction in a two-way layout.

The next step involved the extension of rank methods to linear regression where
the two-way layout could be formulated in regression terms and natural rank tests
for regression parameters were easy to construct. The rank based statistical methods
which require the estimation of nuisance parameters will then be asymptotically
distribution free but no longer distribution free for finite samples. The tools for
the development of rank regression were provided by Jurečková (1969, 1971)
and Jaeckel (1972). Jurečková, in particular, provided the asymptotic theory and
Jaeckel provided a rank based dispersion function that when minimized produced
R-estimates. McKean (1975) developed corresponding rank tests along with the
necessary asymptotic distribution theory for the linear model. In the next several
sections we explicitly introduce the linear model and discuss the development of
rank based methods and their efficiency and robustness properties. In subsequent
sections, we discuss extensions of rank-based analyses to nonlinear models and
models with dependent errors.

There is R software available to compute these rank-based analyses. In the
examples presented, we discuss some of the R code for the computation of these
analyses. The rank-based package for linear models, Rfit, (see Kloke and McKean
2012), can be downloaded at CRAN (http://cran.us.r-project.org/). Supplemental
packages for the additional models discussed in the examples can be downloaded at
the site https://github.com/kloke/.

http://cran.us.r-project.org/
https://github.com/kloke/
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1.2 Rank-Based Fit and Inference for Linear Models

In this section we will review the univariate linear model and present the rank
based norm used to derive the rank based statistical methods along with the basic
asymptotic tools. Then we will present the efficiency and robustness results that we
mentioned in the introduction, but in more detail. We will also describe some of
the rank based methods for residual analysis. For details of this development see
Chaps. 3–5 of Hettmansperger and McKean (2011).

Let Y denote the n�1 vector of observations and assume that it follows the linear
model

Y D 1˛ C Xˇ C e; (1.1)

where X is an n � p full column rank matrix of explanatory variables, 1 is an n �
1 vector of ones, ˇ is p � 1 vector of regression coefficients, ˛ is the intercept
parameter, and e is the n � 1 vector of random errors. Letting x0

i denote the ith row
of X, we have yi D ˛ C x0

iˇ C ei. For the theory cited in this section, assume that
the random errors are iid with pdf f .x/ and cdf F.x/, respectively.

A score generating function is a nondecreasing square-integrable function '.u/
defined on the interval .0; 1/ which, without loss of generality, satisfies the
standardizing conditions

Z 1

0

'.u/ du D 0 and
Z 1

0

Œ'.u/�2 du D 1: (1.2)

We denote the scores by a.i/ D 'Œi=.nC 1/�.
The basis of traditional analysis of most models in practice is the least squares

(LS) fit of the model. This fit minimizes the squared-Euclidean distance between the
vector of responses and the estimating region, (subspace if it is a linear model). In
the same way, the basis for a rank-based analysis is the fit of the model except that
a different norm is used other that the Euclidean norm. This norm leads to a robust
fit. For a given score function '.u/, the norm is defined by

kvk' D
nX

iD1
a'ŒR.vi/�vi; v 2 Rn: (1.3)

Note that this is a pseudo-norm; i.e., it satisfies all properties of the norm except it is
invariant to constant shifts, i.e., kvCa1k' D kvk' for all a, where 1 is a vector of n
ones. The counterpart in LS is the squared-Euclidean pseudo-norm

Pn
iD1.vi � v/2.

For convenience, we define the dispersion function D.ˇ/ in terms of the pseudo
norm k � k' as

D.ˇ/ D ky � Xˇk' D
nX

iD1
aŒR.yi � x0

iˇ/�.yi � x0
iˇ/ D a0ŒR.y � Xˇ/�.y � Xˇ/;

(1.4)



1 Rank-Based Analysis of Linear Models and Beyond: A Review 5

where R.yi � x0
iˇ/ denotes the rank of yi � x0

iˇ among y1 � x0
1ˇ; : : : ; yn � x0

nˇ and
aŒR.y � Xˇ/� is the vector with ith component aŒR.yi � x0

iˇ/�. Note that ranks are
invariant to constant shifts such as an intercept parameter. The rank-based estimator
of ˇ is the minimizer

Ǒ D Argmin D.ˇ/: (1.5)

Let Vf denote the full model subspace of Rn; i.e., Vf is the range (column space) of
X. Then D. Ǒ / is the minimum distance between the vector of responses Y and the
subspace Vf in terms of the norm k � k' . For reference, we have

D. Ǒ / D min
�2Vf
kY � �k': (1.6)

Note that this minimum distance between Y and Vf is unique; i.e., the minimum
distance does not depend on the basis matrix of Vf .

Denote the negative of the gradient of D.ˇ/ by

S.ˇ/ D �5 D.ˇ/ D X0aŒR.y � Xˇ/�: (1.7)

Then the estimator also satisfies S. Ǒ / PD0. Generally, the intercept parameter is
estimated by the median of the residuals; i.e.,

Ǫ D medifyi � x0
i
Ǒ g: (1.8)

Examples of scores functions include: '.u/ D p12Œu � .1=2/�, for Wilcoxon
rank-based methods; '.u/ D sgnŒu � .1=2/�, for L1 methods; and '.u/ D ˚�1.u/,
where ˚.t/ is the standard normal cdf, for normal scores methods. In Sect. 1.1,
we pointed out that the nonparametric sign and Wilcoxon location estimators are
based on minimizers of L1-norms. This is true also in the regression case for the
Wilcoxon and sign scores. First, if sign scores are used then the rank-based estimator
of ˇ and ˛, as estimated by the median of the residuals, are the L1 (least absolute
deviations) estimators of ˛ and ˇ; see page 212 of Hettmansperger and McKean
(2011). Secondly, for Wilcoxon scores we have the identity

4.nC 1/p
12

nX
iD1

p
12

�
R.ui/

nC 1 �
1

2

�
ui D

nX
iD1

nX
jD1
jui � ujj; u 2 Rn: (1.9)

That is, the Wilcoxon estimator of the regression coefficients minimizes the absolute
deviations of the differences of the residuals.

In addition to the above defined rank-based estimator of ˇ, we can also construct
an hypothesis test of the general linear hypotheses

H0 W Mˇ D 0 versus HA W Mˇ 6D 0; (1.10)
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where M is a q � p matrix of full row rank. Let Vr denote the reduced model
subspace; i.e., the subspace of Vf subject to the null hypothesis. Let W be a n�.p�q/
basis matrix of Vr. Then we write the reduced model as Y D ˛1CW� C e. Let O�
denote the rank-based estimator of this reduced model. Then the distance between
Y and the subspace Vr is D. O�/, which is the same for any basis matrix of Vr.

The test statistic of the hypotheses (1.10) is the normalized version of the
reduction in distance, D. O�/ � D. Ǒ /, given by:

F' D ŒD. O�/ � D. Ǒ /�=q

O�=2 ; (1.11)

where O� is an estimator of the scale parameter

��1 D
Z
'0.F.t//f 2.t/ dt D

Z
f .t/ d.'.F.t//: (1.12)

Koul et al. (1987) developed a consistent estimator of � . Note that the reduction in
distance (dispersion) parallels the least squares reduction in sums of squares.

The approximating distributions of the estimator and the test statistic are
determined by a linear approximation of the negative gradient of the dispersion
and a quadratic approximation of the dispersion. Let ˇ0 denote the true parameter.
Then the following approximations can be made asymptotically rigorous under mild
regularity conditions:

1p
n

S.ˇ/ � 1p
n

X0'.F.y � Xˇ0// � ��1 1
n

X0X
p

n.ˇ � ˇ0/ (1.13)

D.ˇ/ � D.ˇ0/ � .ˇ � ˇ0/
0S.ˇ0/C

1

2�
.ˇ � ˇ0/

0 1
n

X0X.ˇ � ˇ0/:

Based on these results the following asymptotic distributions can be obtained:

S.ˇ0/ is approximately MVN.0;X0X/
Ǒ is approximately MVN.ˇ0; �

2.X0X/�1/ (1.14)

F' is approximately F.q; n � p � 1/, under H0I (1.15)

(qF' ! �2-distribution with q degrees of freedom, under H0).
Based on (1.14), an approximate .1 � ˛/100 % confidence interval for the linear

function h0ˇ is

h0 Ǒ ˙ t˛;n�p O�
q

h0.X0X/�1h; (1.16)

where t˛;n�p is the upper ˛=2 quantile of a t-distribution with n � p degrees of
freedom. The use of t-critical values and F-critical values for tests and confidence
procedures is supported by numerous small sample simulation studies; see McKean
and Sheather (1991) for a review of such studies.
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1.2.1 Diagnostics

After fitting a model, a residual analysis is performed to check for quality of fit
and anomalies. A standard diagnostic tool for a LS fit is the scatterplot of residual
versus fitted values. A random scatter indicates a good fit, while patterns in the plot
indicate a poor fit and, often, lead to the subsequent fitting of more adequate models.
For example, suppose the true model is of the form

Y D 1˛ C Xˇ C Z� C e; (1.17)

where Z is an n � q matrix of constants and � D �=
p

n, � 6D 0. We fit, though,
Model (1.1) using LS; i.e., the model has been misspecified. A straight forward
calculation yields

OYLS D ˛1C Xˇ CHeCHZ� and OeLS D e �HeC .I �H/Z�;

where H is the projection matrix onto the range of X. If range.Z/ 6� range.X/?
then both the fitted values and residuals are functions of Z� and, hence, there will
be information in the plot concerning the misspecified model. Note that the function
He is unbounded; so, based on this representation, outliers in the random errors are
diffused throughout the residuals and fitted values. This leads to distortions in the
residual plot which, for example, may even mask outliers.

For the rank-based fit of Model (1.1) when Model (1.17) is the true model, it
follows from the above linearity results that

OYrb D ˛1C Xˇ C �'H'ŒF.e/�CHZ� and Oerb D e � �'H'ŒF.e/�C .I �H/Z�:

Thus, as with LS, there is information in the residual plot concerning misspecified
models. Note from the rank-based representation, the function H'ŒF.e/� is bounded.
Hence, the rank-based residual plot is less sensitive to outliers. This is why outliers
tend to standout more in residual plots based on robust fits than in residual
plots based on LS fits. Other diagnostic tools for rank-based fits are discussed
in Chaps. 3 and 5 of Hettmansperger and McKean (2011). Among them are
the Studentized residuals. Recall that the ith LS Studentized residual is Oe�

LS;i D
OeLS;i=Œ O�

p
1 � .1=n/ � hi�, where hi is the ith diagonal entry of the projection matrix

H and O� is the square root of MSE. Note that Oe�
LS;i is corrected for both scale

and location. Rank-based Studentized residuals are discussed in Sect. 3.9.2 of
Hettmansperger and McKean (2011). As with LS Studentized residuals, they are
corrected for both location and scale. The usual outlier benchmark for Studentized
residuals is˙2, which we use in the examples below.
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1.2.2 Computation

Kloke and McKean (2012, 2014) developed the R package Rfit for the rank-
based fitting and analysis of linear models. This package along with its auxiliary
package npsm can be downloaded from the site CRAN; see Sect. 1.1 for the url. The
Wilcoxon score function is the default score function of Rfit but many other score
functions are available in Rfit including the normal scores and the simple bent
scores (Winsorized Wilcoxons). Furthermore, users can easily implement scores of
their choice; see Chap. 3 of Kloke and McKean (2014) for discussion. In subsequent
examples we demonstrate how easy Rfit is to use.

Analogous to least squares, the rank-based analysis can be used to conduct
inference for general linear models, i.e., a robust ANOVA and ANCOVA; see
Chaps. 3–5 of Hettmansperger and McKean (2011). As an illustration, we end this
section with an example that demonstrates how easy the rank-based analysis can be
used to test for interaction in a two-way design.

1.2.3 Example

Hollander and Wolfe (1999) provide an example on light involving a 2� 5 factorial
design; see, also, Kloke and McKean (2014) for discussion. The two factors in the
design are the light regimes at two levels (constant light and intermittent light) and
five different dosage levels of luteinizing release factor (LRF). Sixty rats were put
on test under these ten treatments combinations (six repetitions per combination).
The measured response is the level of luteinizing hormone (LH), nanograms per ml
of serum in the resulting blood samples.

We chose Wilcoxon scores for our analysis. The full model is the usual two-
way model with main and interaction effects. The right panel in Fig. 1.1 shows the
mean profile plots based on the full model rank-based estimates. The profiles are
not parallel indicating that interaction between the factors is present. These data
comprise the serumLH data set in Rfit and hence is loaded with Rfit. The Rfit
function raov, (robust ANOVA), obtains the rank-based analysis with one line of
code as indicated below. The reduction in dispersion test, (1.11), of each effect is
adjusted for all other effects analogous to Type III sums of squares in SAS; see
Sect. 5.5 of Kloke and McKean (2014). Further, the design need not be balanced.
Here is the code and resulting (with some abbreviation) rank-based ANOVA table:

> raov(serum~light.regime+LRF.dose+
light.regime*LRF.dose, data=serumLH)

Robust ANOVA Table
DF RD F p-value

light.regime 1 1642.3332 58.03844 0.00000
LRF.dose 4 3027.6734 26.74875 0.00000
light.regime:LRF.dose 4 451.4559 3.98850 0.00694
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Fig. 1.1 Plots for the serum LH data

As the figure suggested, the factors light regime and LRF dose interact, p D
0:00694. In contrast, the LS analysis fails to reject interaction at the 5 % level,
p D 0:0729. For this example, at the 5 % level of significance, the rank-based
and LS analyses would lead to different interpretations. The left panel of Fig. 1.1
displays the q�q plot of the Wilcoxon Studentized residuals. This plot indicates that
the errors are drawn from a heavy tailed distribution with numerous outliers, which
impaired the LS analysis. The estimate of the ARE between the rank-based and least
squares analyses is the ratio

bARE D O�
2

O�2'
(1.18)

where O�2 is the MSE of the full model LS fit. This is often thought of as a measure
of precision. For this example, this ratio is 1.88. So, the rank-based analysis cuts the
LS precision by a factor of 1=1:88 D 0:53.

In a two-way analysis when interaction is present often subsequent inference
involves contrasts of interest. To demonstrate how easy this is accomplished using
Rfit, suppose we consider the contrast between the expected response at the peak
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(factor LRF dose at 3, factor light at the intermittent level) minus the expected
response at the peak (factor LRF dose at 3, factor light at the constant level). Of
course this is after looking at the data, so we are using this in a confirmatory mode.
Our confidence interval is of the form (1.16). Using the following code, it computes
to 201:16˙ 65:63. The difference is significant.

# full model fit
fitmod <- rfit(serum~factor(light.regime)+

factor(LRF.dose)+ factor(light.regime)*
factor(LRF.dose), data=serumLH)

# hvec picks the contrast
hvec <- rep(0,60); hvec[27] <- -1; hvec[57] <- 1
# estimate of contrast
contr <- hvec%*%fitmod$fitted.values
# error in CI
se2 <- t(hvec)%*%mat%*%vc%*%t(mat)%*%hvec
# error term in the confidence interval.
err <- qt(.975,50)*sqrt(se2)

1.3 Efficiency and Optimality

In general, the relative efficiency of one statistical method to another, in estimating
or testing, is the squared ratio of the slopes in their respective linear approximations.
Restricting ourselves to the linear model, (1.1), and rank-based procedures, in light
of the asymptotic linearity results, (1.14), such ratios involve the scale parameter � .
In particular, suppose we consider two rank-based methods using the respective
score functions '1.u/ and '2.u/, and, hence, the norms k � k'1 and k � k'2 . Then the
aysmptotic efficiency of method 1 to method 2 is

e.k � k'1 ; k � k'2/ D
�22
�21
: (1.19)

Note by (1.14) that this is the same as the ratio of the asymptotic variances
of the associated estimators of the regression coefficients. Values greater than 1
indicate that methods based on k � k'1are superior. The larger slope indicates a more
sensitive method, where the slope is ��1.

For LS, e.k � k'1 ;LS/ D �2=�21 , where �2 is the variance of the random
errors. For comparison with Wilcoxon methods, we already mentioned for location
models that e.Wilcoxon;LS/ is 0.955 when the error distribution is normal. Hence,
e.Wilcoxon;LS/ is the same for both linear and location models. Another striking
result, due to Hodges and Lehmann (1956), shows that this efficiency is never less
than 0.864 and may be arbitrarily large for heavy tailed distributions. In the case of



1 Rank-Based Analysis of Linear Models and Beyond: A Review 11

the normal scores methods, the efficiency relative to least squares is 1 at the normal
model and never less than 1 at any other model!

An optimality goal is to select a score function to minimize �' ; i.e., maxi-
mize ��1

' . We can write expression (1.12) as

��1 D
Z 1

0

'.u/'f .u/ du; (1.20)

where

'f .u/ D � f 0ŒF�1.u/�
f ŒF�1.u/�

: (1.21)

Recall that the scores have been standardized so that
R
'2.u/ du D 1. Hence ��1

can be expressed as

��1 D
R 1
0
'.u/'f .u/ duqR 1

0
'2.u/ du

qR 1
0
'2f .u/ du

8<
:
sZ 1

0

'2f .u/ du

9=
;

D �
8<
:
sZ 1

0

'2f .u/ du

9=
; : (1.22)

The first factor on the right in the first line is a correlation coefficient which we
have indicated by �. Thus ��1 is maximized if we select the score function to be
'f .u/, (standardized form). This makes the correlation coefficient 1 and ��1

' equal
to the term in the braces. This term, though, is the square-root of Fisher information.
Therefore, by the Rao-Cramér lower bound, the choice of 'f .u/ as the score function
leads to an asymptotically efficient (optimal) estimator. For the score functions
discussed in earlier sections, it follows that the optimal score function for normally
distributed errors is the normal score function, for logistically distributed errors is
the Wilcoxon score function, and for Laplace distributed errors is the sign score
function.

Of course this optimality only can be accomplished provided that the form of f
is known. Evidently, the closer the chosen score is to 'f , the more optimal the rank
based analysis is. A Hogg-type adaptive scheme where the score function is selected
based on initial (Wilcoxon) residuals has proven to be effective; see Sect. 7.6 of
Kloke and McKean (2014). McKean and Kloke (2014) successfully modified this
scheme for fitting a family of skewed normal distributions.
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1.3.1 Monte Carlo Study

To illustrate the optimality discussed above, we conducted a small simulation study
of a proportional hazards model. Consider a response variable T with a p� 1 vector
of covariates x. Assume T has a � .1; �/ distribution where � D expfx0ˇg and ˇ is
a p � 1 vector of parameters. It follows that

log T D x0ˇ C 	; (1.23)

where 	 has an extreme-valued distribution; see Chaps. 2 and 3 of Hettmansperger
and McKean (2011). The optimal scores for this model are the log-rank scores
generated by '.u/ D �1 � log.1 � u/.

We simulated this model for the following situation: sample size is n D 20; the
covariates are .1; xi/, where xi D i=21; and ˛ D �2 and ˇ D 5. The methods
involved are LS and the three rank-based methods: optimal scores (log-rank),
Wilcoxon scores, and normal scores. These scores are intrinsic to Rfit. The
simulation size is 10,000. To show how simple the coding is, here is the gist of
the program’s loop portion for a simulation:

mu <- exp(alpha + beta*x)
y <- rgamma(20,1,1/mu); ly <- log(y);
fitw <- rfit(ly~x) # Wil.
fitly <- rfit(ly~x,scores=logrankscores) # opt.
fitns <- rfit(ly~x,scores=nscores) # ns
fitls <- lm(ly~x) # LS

Table 1.1 presents the empirical relative efficiencies (ratios of mean square errors)
for the parameter ˇ. The efficiencies are relative to the optimal rank-based score
procedure. The log-rank score procedure is most efficient followed by the normal
scores procedure and then the Wilcoxon. Least squares (LS) performed the worst.

Table 1.1 Empirical AREs of estimators of the
slope parameter ˇ relative to the rank-based esti-
mator based on the optimal log-rank scores

Method

Optimal Wilcoxon Normal scores LS

1 1.215 1.175 1.380

The simulation size is 10,000



1 Rank-Based Analysis of Linear Models and Beyond: A Review 13

1.4 Influence and High Breakdown

1.4.1 Robustness Properties

In the 1960s and 1970s new tools to assess robustness properties of estimators
were developed beginning with Huber (1964) and Hampel (1974). The breakdown
value of a location estimator is the (limiting) proportion of the data that must be
contaminated in order to carry the value of the estimator beyond any finite bound.
In the one sample location model with score function 'C.u/, the breakdown for the
rank based estimator is 	 where

Z 1�	

0

'C.u/ du D 1

2

Z 1

0

'C.u/ du:

A simple computation shows that the least squares estimate, the mean, has 0
breakdown point, worst possible. The median has breakdown 0.5, the best possible.
The median of the pairwise averages (Wilcoxon score) has breakdown 0.293, while
the normal scores estimate has breakdown 0.239.

Another robustness tool, the influence function, is a measure of how fast the
estimator changes when an outlier is moved out beyond the edges of the sample. It is
provided by the linear approximation of the negative gradient, S.ˇ/, (1.7). Consider
the linear model (1.1). For the rank-based estimator, using the score function '.u/,
the influence function is given by:

˝.x; y/ D �
�
1

n
X0X

��1
'.F.y//x;

where .x; y/ is the value at which we evaluate the influence. When the score function
is bounded the influence is bounded in the y-space. However, note that influence is
unbounded in factor space. In the case of the location model, the influence functions
for the median and the median of the pairwise averages are both bounded. Note also
that least squares estimators have unbounded influence functions in both the y- and
the X-spaces.

For most designed experiments and for designs with predictors which are well
behaved, the rank-based estimators offer a robust and highly efficient alternative to
LS for fitting and analyzing linear models. In the case of messy predictors, though, a
robust alternative with bounded influence in factor space and positive breakdown is
most useful. In fact a primary use of such fits is to highlight the difference between
its fit and that of a highly efficient robust fit and, thus, alerting the user to possible
anomalies in factor space. We next discuss a high breakdown rank-based (HBR) fit
and its accompanying diagnostics which serve this purpose.
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1.4.2 High-Breakdown and Bounded Influence
Rank-Based Estimates

For the linear model, Chang et al. (1999) developed a rank-based estimator that has
bounded influence and can achieve a 50 % breakdown point. It is a weighted version
rank-based Wilcoxon fit. By the identity (1.9), the Wilcoxon estimator minimizes
the least absolute deviations of the differences of the residuals. Let fbijg be a set of
nonnegative weights. Consider estimators which minimize

Ǒ D Argmin
X
i<j

bijj.yi � x0
iˇ/ � .yj � x0

jˇ/j: (1.24)

If the weights are all 1, then this is the Wilcoxon estimator.
Chang et al. (1999) proposed weights which are both functions of factor

space and residual space. For factor space, it uses robust distances based on the
high breakdown minimum covariance determinant (MCD) which is an ellipsoid
in p-space that covers about half the data. For residual space, it uses the high
breakdown least trim squares (LTS) fit for an initial fit. See Rousseeuw and Van
Driessen (1999).

A brief description of the weights are given next. These are the weights defined
for the R function hbrfit which are in the R package npsmReg2 and are
discussed in Sects. 7.2 and 7.3 of Kloke and McKean (2014). This package can
be downloaded at the github site indicated at the end of Sect. 1.1.

Let Oe0 denote the residuals from the initial LTS fit. Let V denote the MCD with
center vc. Define the function  .t/ by  .t/ D 1; t; or � 1 according as t � 1,
�1 < t < 1, or t � �1. Let � be estimated by the initial scaling estimate MAD D
1:483 medijOe.0/i �medjfOe.0/j gj . Letting Qi D .xi � vc/

0V�1.xi � vc/, define

mi D  
�

b

Qi

�
D min

�
1;

b

Qi

�
:

Consider the weights

Obij D min

(
1;

c O�
jOe.0/i j

O�
jOe.0/j j

min

�
1;

b
OQi

�
min

(
1;

b
OQj

))
; (1.25)

where b and c are tuning constants. We set b at the upper �2:05.p/ quantile and c is
set as

c D Œmedfaig C 3MADfaig�2;

where ai D Oe.0/i =.MAD � Qi/. From this point-of-view, it is clear that these weights
downweight both outlying points in factor space and outlying responses. Note that
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the initial residual information is a multiplicative factor in the weight function.
Hence, a good leverage point will generally have a small (in absolute value) initial
residual which will offset its distance in factor space.

In general, the HBR estimator has a 50 % breakdown point, provided the initial
estimates used in forming the weights have 50 % breakdown. Further, its influence
function is a bounded function in both the Y and the x-spaces, is continuous
everywhere, and converges to zero as the point .x�;Y�/ gets large in any direction.
The asymptotic distribution of Ǒ HBR is asymptotically normal. As with all high
breakdown estimates, Ǒ HBR is less efficient than the Wilcoxon estimates but it
regains some of the efficiency if the weights depend only on factor space.

McKean et al. (1996) developed diagnostics to detect differences in highly
efficient and high breakdown robust fits. Their diagnostic TDBETA measures the
total difference in fits of the regression coefficients, standardized by the variance-
covariance of the Wilcoxon fit. The benchmark is similar to the classic diagnostic
DFFITS. A second diagnostic CFITS measures the difference of predicted values
at each case. This diagnostic is useful for data sets where TDBETA exceeds its
benchmark. Section 7.3 of Kloke and McKean (2014) give a full discussion of
these diagnostics with examples. McKean et al. (1999) extended these diagnostics
to differences between robust and LS fits. Next, we present an example which
illustrates HBR fits and these diagnostics.

1.4.2.1 Stars Data

This data set is drawn from an astronomy study on the star cluster CYG OB1
which contains 47 stars; see Chap. 3 of Hettmansperger and McKean (2011) for
discussion. The response is the logarithm of the light intensity of the star while the
predictor is the logarithm of the temperature of the star. The scatterplot of the data is
in the left panel of Fig. 1.2. Four of the stars, called giants, form a cluster of outliers
in factor space while the rest of the stars fall in a point cloud. The panel includes the
overlay plot of the Wilcoxon and HBR linear fits. The four giants form a cluster of
high leverage points, exerting a strong influence on the Wilcoxon fit while having a
minor influence on the HBR fit. The diagnostic TDBETAS between the Wilcoxon
and HBR fits has the value 67.92 which exceeds the benchmark of 0.340, indicating
a large difference in the fits. The right panel of Fig. 1.2 shows the values of the
diagnostic CFITS versus case. The benchmark for this diagnostic is 0.34. The four
largest values are the four giant stars. Hence, for this data set, the diagnostics work.
The diagnostic TDBETAS alerts the user to the large difference between the fits
and CFITS indicates the major points contributing to this difference. The next two
largest CFITS values are of interest to astronomers, also. These are stars between
the giants and the main sequence stars. Although not shown, the least squares fit
is similar to the Wilcoxon fit. The fits and diagnostics can be computed with the
following code:
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Fig. 1.2 The left panel displays the scatterplot of the log of light intensity versus the temperature
of the star, overlaid with the Wilcoxon and HBR fits. The right panel displays the values of CFITS
versus the case numbers. The horizontal line is the benchmark value

fitw <- rfit(lintensity ~ temp)
fith <- hbrfit(lintensity ~ temp)
fitls <- lm(y ~ x)
fitsdiag <- fitdiag(temp,lintensity,est=c("WIL",

"HBR"))

1.5 Extensions to Mixed and Nonlinear Models

In the past 20 years, there have been extensions of the rank-based analysis to many
other models. This includes nonlinear models and models with dependency among
the responses. In this section, we briefly discuss a few of these models, ending with
an example involving a mixed model.

For traditional least squares-based methods for these models, the geometry
essentially remains the same in that least squares estimation is based on minimizing
the squared-Euclidean distance between the vector of responses and the region of
estimation. This is true of the rank-based approach, also, except that the rank-based
norm, (1.3), replaces the squared-Euclidean norm.
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1.5.1 Multivariate Linear Models

Davis and McKean (1993) extended the linear model rank-based procedures for
general score functions to the multivariate linear model. They developed asymptotic
theory for the estimators and tests of linear hypotheses of the form AˇK for the
matrix of regression coefficients ˇ. See Sect. 6.6 in Hettmansperger and McKean
(2011) for discussion and examples. These are component wise estimators, so
computations can be based on the package Rfit; see the web site indicated at
the end of Sect. 1.1 to download a preversion of the package Rfitmult. These
methods are regression equivariant but they are not affine invariant. Oja (2010) and
his collaborators developed affine invariant rank-based procedures for Wilcoxon
scores using a transformation retransformation procedure. Nordhausen and Oja
(2011) developed the R package MNM, downloadable at CRAN, to compute these
affine procedures.

1.5.2 Nonlinear Linear Models

For responses yi, consider a nonlinear model of the form yi D g.�; xi/ C ei, i D
1; : : : ; n, where g is a specified nonlinear function, � is a k � 1 vector of unknown
parameters, and xi is a p � 1 vector of predictors. Let y and g.�; x/ denote the
corresponding n � 1 vectors. Given a rank score function '.u/, the associated rank-
based estimator of � is

O�' D Argminky � g.�; x/k';

where k � k' is the norm defined in expression (1.3). Abebe and McKean (2007)
obtained asymptotic theory for O�' for the case of Wilcoxon scores. The efficiency
properties of the Wilcoxon estimator are the same as in the linear model case; so,
the estimator is highly efficient for the nonlinear model. Abebe and McKean (2013)
extended this development to high breakdown rank-based nonlinear estimators of �

which have bounded influence in both the response and factor spaces. The R package
npsmReg2 contains the R function wilnl which computes these estimators; see
Chap. 7 of Kloke and McKean (2014) for further discussion.

1.5.3 Time Series Models

Consider the autoregressive model of order p, Ar.p/:

Xi D 
0 C 
1Xi�1 C 
2Xi�2 C � � � C 
pXi�p C ei

D 
0 C Y0
i�1�C ei; i D 1; 2; : : : ; n (1.26)
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where p � 1, Yi�1 D .Xi�1;Xi�2; : : : ;Xi�p/
0, � D .
1; 
2; : : : ; 
p/

0, and Y0 is an
observable random vector independent of e. Let X and Y denote the corresponding
n� 1 vector and the n� p matrix with components Xi and Y0

i�1, respectively. For the
score function '.u/, the rank-based estimator of � is given by

O�' D ArgminkX � Y0�k';

where Y is the matrix with rows Y0
i�1. Koul and Saleh (1993) developed the

asymptotic theory for these rank-based estimates. Because of the structure of the
AR.p/ model, outliers in the random errors become ensuing points of high leverage.
As a solution to this problem, Terpstra et al. (2000, 2001) proposed estimating �

using the HBR estimators of Sect. 1.4. They obtained the corresponding asymptotic
theory for these HBR estimators and showed their validity and empirical efficiency
in several large simulation studies. Section 7.8 of Kloke and McKean (2014)
discusses the computation of these estimates using the R package Rfit.

1.5.4 Cluster Correlated Data

Frequently in practice data are collected in clusters. Common examples include:
repeated measures on subjects, experimental designs involving blocks, clinical
studies over multiple centers, and hierarchical (nested) designs. Generally, the
observations within a cluster are dependent.

For discussion, suppose we have m such clusters. Let yki denote the ith response
within the kth cluster, for i D 1; : : : ; nk and k D 1; : : : ;m, and let xki denote
the corresponding p � 1 vector of covariates. For cluster k stack the nk responses
in the vector yk and let Xk denote the nk � p matrix with rows x0

ki. Assume a linear
model of the form

yk D ˇ01nk C Xkˇ C ek; k D 1; : : : ;m; (1.27)

where ek follows a nk-multivariate distribution and the vectors e1; : : : ; em are
independent. We then stack the vectors yk and matrices Xk into the vector Y and
matrix X, respectively.

There are several rank-based analyses available for these models. Abebe et al.
(2016) develop a rank-based analysis for a general estimating equations (GEE)
model which includes models of the form (1.27). This allows for very general depen-
dency structure. For a general score function '.u/, Kloke et al. (2009) developed the
asymptotic theory for the rank-based estimator defined in expression (1.5), i.e., the
minimizer of the norm kY�Xˇk' . Their development includes consistent estimators
of standard errors and consistent test statistics of general linear hypotheses. The
theory requires the additional assumption that the univariate marginal distributions
of ek are the same. This is true for many of the usual models in practice such as
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simple mixed models (compound symmetry covariance structure) and stationary
times series models for the clusters.

The R package jrfit computes the analysis developed by Kloke et al. (2009);
see Chap. 8 of Kloke and McKean (2014) for discussion and examples. This
includes the fit and several options for the estimation of the covariance structure,
including compound symmetry and two general estimators, (a sandwich-type
estimator and a general nonparametric estimator). We conclude this discussion with
an example which illustrates the use of jrfit on cluster data.

1.5.4.1 Example

For an example, we consider the first base study presented in Hollander and Wolfe
(1999). This study investigated three methods of rounding first base for baseball
players who are running from home plate to second base. The response is the
player’s total running time. The three methods are narrow angle (NA), round out
(RP), and wide angle (WA); see Hollander and Wolfe for details. Twenty-two ball
players participated in the study and each ran six times, two repetitions for each
method. The average time of the two repetitions are the response times available.
The data can be found in the firstbase data set in the R package npsmReg2;
see Chap. 8 of Kloke and McKean (2014).

Let yij denote the running time for the jth player on method i and consider the
randomized block design given by

yij D �C ˛i C bj C 	ij; (1.28)

where ˛i denotes the ith treatment fixed effect; bj denotes the random effect for the
jth player; and eij denotes the random error. We assume that the random errors are
iid and the random effects are iid with different distributions. We further assume
that the random errors and the random effects are independent.

Although, finite variance is not required for the asymptotic theory, for the discus-
sion, we assume finite variances. The variance-covariance structure of Model (1.28)
is compound symmetric. Besides fixed effects analyses, we are interested in the
estimation of the variance components given by �2b the variance of bj, �2	 the
variance of 	ij, and the intraclass correlation coefficient � D �2b=.�

2
b C �2	 /. Kloke

et al. (2009) provided robust estimates of these components based on the rank-
based fit of Model (1.28). These estimates have been incorporated into the package
jrfit.

The null hypothesis for the fixed effects is H0 W ˛1 D ˛2 D ˛3 D 0.
The traditional nonparametric test of this hypothesis is based on Friedman’s test
statistic, which for this example results in the value of 11.14 with p-value 0:003.
The comparative rank-based analysis is the Wald-type test on the rank-based fit. As
shown below, the value of the test statistic is 19.31 with a p-value of 0.0001. As with
the Friedman test, the Wald-type test is highly significant. An experimenter, though,
wants a much more in depth analysis than just this test of the fixed effects. The left
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Table 1.2 Rank-based
estimates of fixed effects and
variance components,
firstbase data

Fixed effects Variance

Effect SE components

�RO � �NA 0.000 0.016 O�2B D 0:0124

�WA � �NA �0.053 0.012 O�2	 D 0:0049

�WA � �RO �0.057 0.023 O� D 0:715

panel of Fig. 1.3 displays the comparative boxplots of the methods. Note that, based
on this plot, it appears that the wide-angle method results in the quickest times.
Such a judgement is easily confirmed by considering the estimates and confidence
intervals for the three pairwise comparisons. These are shown in Table 1.2 based
on the rank-based fit. They do confirm that the wide-angle method results in
significantly faster times than the other two methods. Furthermore, the estimated
effects provide the experimenter with an estimate of how much faster the wide-angle
method is than the other two methods.

Table 1.2 also displays the robust estimates of the variance components. Note
that the estimate of the intraclass correlation coefficient is 0.715 indicating a strong
correlation among the times of a runner. The right panel of Fig. 1.3 shows the normal
q�q plot of the Studentized residuals of the rank-based fit. The horizontal lines at
˙2 are the usual benchmark for potential outliers. This plot confirms the outliers in
the boxplots and indicates a heavy tailed error structure. The three largest positive
outliers correspond to Runner 22 who had the slowest times in all three methods.

The results in Table 1.2 and Fig. 1.3 are based on computations using the package
jrfit. Some of the code for the computations is given by:

# The data are in the data set firstbase in the
# package npsmReg2. More discussion of the
# computations can be found in Chapter 8
# of Kloke McKean (2014).
#
# times is the vector of running times; player is
# the indicator of the player; method is the
# indicator of the method.

xmat <- model.matrix(~as.factor(method))[,2:3]
fit <- jrfit(xmat,times,player)
stud <- rstudent(fit) #Studentized residuals
vee(fit$resid,fit$block,method=’mm’) #Var comp.
h1 <-c(0,1,0); h2<-c(0,0,1); hmat<-rbind(h1,h2)
mid <- solve(hmat%*%fit$varhat%*%t(hmat))
tst <- t(hmat%*%fit$coef)%*%mid%*%hmat%*%fit$coef
19.31442
1-pchisq(tst,2)
6.396273e-05
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Fig. 1.3 The left panel displays the comparative boxplots for the three methods of rounding first
base, while the right panel shows the q�q plot of the rank-based Studentized residuals

1.6 Conclusion

As we indicated in Sect. 1.1, the rank tests for simple location problems were
initially used because of their quick calculation in the pre computer age. These meth-
ods were further found to be highly efficient and robust by Hodges and Lehmann
in the mid 1950s. The traditional t-tests for these problems, though, are based
on least squares (LS) fitting which easily generalizes to much more complicated
models, including linear, nonlinear, and models with dependent error structure.
For all such models, the LS fitting is based on minimizing the squared-Euclidean
distance between the vector (or matrix) of responses and the region (space) of
estimation. Further, LS testing of general linear hypotheses is based on a comparison
of distances between the vector of responses and full and reduced model subspaces.
Also, there are ample diagnostic procedures to check the quality of the LS fit of a
model. As in the location problems, though, LS procedures are not robust. Hence, a
generalization was needed for the robust nonparametric methods.
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As briefly outlined in Sect. 1.2, the extension of nonparametric methods to
linear models came about in the late 1960s and early 1970s, with the robust
estimation procedures developed by Jurečková and Jaeckel. In particular, as shown
by McKean and Schrader (1980), Jaekel’s estimation involves minimizing a
distance between the responses and the full model subspace. This distance is based
on the norm defined in expression (1.3). For general linear hypotheses, McKean
and Hettmansperger (1976) developed an accompanying analysis based on a
comparison of distances between the vector of responses and full and reduced model
spaces where distance is based on the norm (1.3). Diagnostics for this rank-based
analysis were developed by McKean et al. (1990). This rank-based analysis is as
general as the traditional LS analysis. As with LS, for any linear model, it offers
a complete procedure including fitting, diagnostic checking of the fit, confidence
regions, and tests of general linear hypotheses. Details of this analysis are discussed
in Chaps. 3–5 of Hettmansperger and McKean (2011).

As discussed in Sect. 1.3, the rank-based analysis is highly efficient. For example,
the rank-based procedure based on Wilcoxon scores has efficiency 0.955 relative
to LS procedures when the random errors are normally distributed and is much
more efficient when the distribution of the random errors has heavy tails. Further,
if the form of the error distribution is known, then optimal scores can be used
which results in fully asymptotically efficient procedures. Rank-based procedures
based on minimizing the norm (1.3) are robust in response space but, similar to LS
procedures, are not robust in factor space. A simple weighting scheme, based on
robust distances in factor space and residuals from an initial robust fit, leads to a
robust rank-based procedure which is robust in both response and factor space as
well as having a 50 % breakdown point.

As reviewed in Sect. 1.5, these rank-based procedures have been extended
to nonlinear models and models in which the errors have dependencies. For
these models, LS fitting is still based on minimizing squared-Euclidean distance
between the responses and the space of estimation. In the same way, the rank-
based fitting of these models is obtained by minimizing the distance based on the
norm (1.3). In recent years, asymptotic theory has been developed for these rank-
based procedures. Hence, besides linear models, robust rank-based procedures exist
for diverse models, including nonlinear models, autoregressive times series models,
multivariate regression models, mixed models, and hierarchical models.

The easy computation of rank-based analyses is performed with R software. For
linear models, the package Rfit offers a complete computation for the rank-based
analysis. A wide variety of scores functions are intrinsic to the package with an
option for user-supplied scores. For models other than linear there are accompanying
R packages for computations. We have discussed the computation based on these
packages throughout this paper. See Kloke and McKean (2014) for discussion of
these packages.
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Jurečková, J. (1969). Asymptotic linearity of rank statistics in regression parameters. Annals of

Mathematical Statistics, 40, 1449–1458.
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Chapter 2
Robust Signed-Rank Variable Selection
in Linear Regression

Asheber Abebe and Huybrechts F. Bindele

Abstract The growing need for dealing with big data has made it necessary
to find computationally efficient methods for identifying important factors to be
considered in statistical modeling. In the linear model, the Lasso is an effective way
of selecting variables using penalized regression. It has spawned substantial research
in the area of variable selection for models that depend on a linear combination of
predictors. However, work addressing the lack of optimality of variable selection
when the model errors are not Gaussian and/or when the data contain gross outliers
is scarce. We propose the weighted signed-rank Lasso as a robust and efficient
alternative to least absolute deviations and least squares Lasso. The approach is
appealing for use with big data since one can use data augmentation to perform the
estimation as a single weighted L1 optimization problem. Selection and estimation
consistency are theoretically established and evaluated via simulation studies. The
results confirm the optimality of the rank-based approach for data with heavy-tailed
and contaminated errors or data containing high-leverage points.

Keywords Adaptive Lasso • Wilcoxon estimation • Oracle property • Penalized
least squares • LAD regression

2.1 Introduction

The growing need for dealing with ‘big data’ has made it necessary to find ways
of determining the few important factors to consider in the statistical modeling. In
the linear and generalized linear models, this translates to identifying the covariates
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that are most needed in the prediction of the outcome. In this regard, the Lasso
method introduced in Tibshirani (1996) has garnered significant attention in the
past two decades. The Lasso method takes advantage of the singularity of the L1
penalty to effectively select variables via the penalized least squares procedure. This
work has been refined and extended in various directions. See, for example, Fan
and Li (2001), Zou and Hastie (2005), Zou (2006), Wang and Leng (2008), and
references therein. Much of the focus has been in establishing the so-called “Oracle”
property Fan and Li (2001) that consists of selection consistency and estimation
efficiency. These are both asymptotic properties where selection consistency refers
to ones ability to correctly identify the zero regression coefficients while estimation
efficiency refers to ones ability to provide a

p
n-consistent estimator of the non-zero

coefficients.
However, there are not too many results that address the lack of optimality of

these variable selection procedures when the model errors are not Gaussian and/or
when the data contain gross outliers. An approach based on penalized Jaeckel-type
rank-regression was discussed in Johnson and Peng (2008), Johnson et al. (2008),
Johnson (2009), Leng (2010) and Xu et al. (2010). The computation is complicated
and, as in unpenalized rank-regression, the approach used in these papers will only
result in robustness in the response space. For variable selection, however, getting
a handle on leverage is crucial. One paper that discussed this issue and tried to
address the influence of high leverage points is Wang and Li (2009), where they
considered penalized weighted Wilcoxon estimation. Our proposed approach based
on minimization of a penalized weighted signed-rank norm is much simpler to
compute and provides protection against outliers and high-leverage points. It also
allows one flexibility through choice of score generating functions. One limitation
of our proposed approach is that it requires symmetry of the error density. In this
case, the estimates are equivalent to Jaeckel-type rank-regression estimates.

Consider the linear regression model given by

yi D x0
iˇ0 C ei; 1 � i � n; (2.1)

where ˇ0 2 B � R
d is a vector of parameters, xi is a vector of independent

variables in a vector space X, and the errors ei are assumed to be i.i.d. with a
distribution function F. Let Vn D f.y1; x1/; : : : ; .yn; xn/g be the set of sample data
points. Note that Vn � V 	 R � X. We shall assume that B is a compact subspace
of Rd, ˇ0 is an interior point of B.

Rank-based approaches have been shown to possess a high breakdown property
resulting on robust and efficient estimators. The rank-based approach considered in
this paper is based on the so-called the weighted signed-rank (WSR) norm proposed
in Bindele and Abebe (2012) for estimation of coefficients of general nonlinear
models. Here we consider WSR with added penalty for simultaneous estimation
and variable selection in linear models. That is, we obtained an estimator Ǒ n of ˇ0
satisfying

Ǒ
n D Argmin

ˇ2B
Q.ˇ/; (2.2)
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where Q.ˇ/ is a penalized WSR objective function

Q.ˇ/ D Dn.Vn;w;ˇ/C n
dX

jD1
P�j.jˇjj/: (2.3)

and Dn.Vn;w;ˇ/ is the WSR dispersion function defined by

Dn.Vn;w;ˇ/ D
nX

iD1
w.xi/an.i/jz.ˇ/j.i/: (2.4)

Here zi.ˇ/ D yi � x0
iˇ, jz.ˇ/j.i/ is the ith ordered value among jz1.ˇ/j; : : : ; jzn.ˇ/j,

and the numbers an.i/ are scores generated as an.i/ D 'C.i=.n C 1//, for some
bounded and non-decreasing score function 'C W .0; 1/ ! R

C that has at most a
finite number of discontinuities. The function w W X ! R

C is a continuous weight
function. The penalty function P�j.�/ is defined on R

C. When the penalty function
is the Lasso penalty Tibshirani (1996) P�j.jtj/ D �jtj for all j, we will refer to
the resulting estimator as the WSR-Lasso (WSR-L), and when the penalty function
is the adaptive Lasso Zou (2006) P�j.jtj/ D �jjtj, we will refer to the estimator
as WSR-Adaptive Lasso (WRS-AL) estimator. We should point out that for 'C 	
1, the objective function in (2.3) reduces to the WLAD-Lasso discussed in Arslan
(2012). If additionally w 	 1, then we obtain the LAD-lasso discussed in Wang et al.
(2007). While these LAD based estimators are easy to compute and provide robust
estimators, they lack efficiency especially when the error density at zero is small
(Hettmansperger and McKean 2011; Leng 2010). Note that, while not stressed in
our notation, Ǒ n depends on the tuning parameter � D .�1; : : : ; �d/

0.
Using the same idea in Wang et al. (2007), either under WSR-L or WSR-AL,

one can write Q.ˇ/ as

Q.ˇ/ D
nCdX
iD1

ijz�
i .ˇ/j; (2.5)

where z�
i .ˇ/ D y�

i � x�0
i ˇ with

.y�
i ; x

�
i /

0 D
�
.yi; xi/

0; for 1 � i � n,
.0; n�iei/

0; for nC 1 � i � nC d.
(2.6)

and

i D
(

w.xi/'
C
�

R.zi.ˇ//

nC1
�
; for i � n,

1; for i > n.
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Here ei is the d-dimensional vector with ith component equal to 1 and all the others
equal to 0. To this end, Eq. (2.5) can be seen as the weighted L1 objective function.
In Eq. (2.6) the WSR-L objective function is obtained by putting �i D � for all
i. To avoid any possible confusion, we will use Qw

` .�/ and Qw
a`.�/ for WSR-L and

WSR-AL objective functions, respectively.

Remark 2.1. Considering the unpenalized objective function Dn.Vn;w;ˇ/ defined
in Eq. (2.4), asymptotic properties (consistency and

p
n-asymptotic normality) of

the WSR estimator with w 	 1 were established under mild regularity conditions in
Hössjer (1994). Considering the weighted case, analogous asymptotic results were
obtained by Bindele and Abebe (2012) for general nonlinear regression model.

2.2 Asymptotics

In this section, we provide the asymptotic properties of the WSR-AL estimator
defined in (2.2) under regularity conditions. Consider the following assumptions

.I1/ P
�
x0ˇ D x0ˇ0

	
< ˛ for all ˇ ¤ ˇ0, 0 < ˛ � 1, and EGŒjxjr� <1 for some

r > 1, G being the distribution of x.
.I2/ The density f of " is symmetric about zero, strictly decreasing on R

C, and
absolutely continuous with finite Fisher information. Its derivative f 0 is bounded
and EF.j"jr/ <1 for some r > 1.

These two assumptions ensure the strong consistency of Q̌ nDArgminˇ Dn.Vn;w;ˇ/.

2.2.1 Consistency and Asymptotic Normality

We shall assume that p0 � d of the true regression parameters are nonzero. Thus,
without loss of generality, we assume ˇ0j ¤ 0 for j � p0 and ˇ0j D 0 for j > p0.
Thus ˇ0 can be partitioned as ˇ0 D .ˇ0

0a;ˇ
0
0b/

0 with ˇ0b D 0. Also, Ǒ n can be

similarly partitioned as Ǒ n D . Ǒ 0na;
Ǒ 0

nb/
0 with Ǒ na D . Ǒn;1; : : : ; Ǒn;p0 /0, and Ǒ nb D

. Ǒn;p0C1; : : : ; Ǒn;d/0.
Following Johnson and Peng (2008), we define

H�j.jtj/sgn.t/ D d

dt
P�j.jtj/ and PH�j.jtj/sgn.t/ D d

dt
H�j.jtj/:

Also, under Eq. (2.5), taking the negative gradient with respect to ˇ, we obtain

S.ˇ/ D rˇQ.ˇ/ D
nCdX
iD1

ixisgn.z�
i .ˇ// D Sn.ˇ/C n

dX
jD1

H�j.jˇjj/sgn.ˇj/;
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where Sn.ˇ/ D �rˇDn.Vn;w;ˇ/. In addition to .I1/ � .I2/, we will need the
following assumption:

.I3/ Define an D max
1�j�p0

H�j.jtj/ and bn D min
j>p0

H�j.jtj/; 8 t fixed, and

assume that

.i/
p

nan ! 0 and
p

nbn !1 as n!1
.ii/ lim

n!1 inf
jtj�c=

p
n
f��1

n H�j.jtj/g > 0 for any c > 0.

Remark 2.2. Note that for the adaptive Lasso case where P�j.jtj/ D �jjtj, and in
assumption .I3/, an and bn are reduced to an D max

1�j�p0
�j and bn D min

p0C1�j�d
�j, as

H�j.jtj/ D �j. It is worth pointing out the Lasso penalty does not satisfy assumption
.I3/which is not surprising as it is well-known that the Lasso estimator does not have
the oracle property, and .I3/ is key to ensuring the oracle property of the resulting
estimator.

Theorem 2.1. Under assumptions .I1/ � .I3/, Ǒ n exists and is a
p

n-consistent
estimator of ˇ0.

The proof this theorem is provided in Appendix.
Next consider the following assumption commonly imposed in the framework of

signed-rank estimation, see Hössjer (1994) and Abebe et al. (2012):

.I4/ 'C 2 C2..0; 1/ n E/ with bounded derivatives, where E is a finite set of
discontinuities.

Following Hössjer (1994), set

�'CD
Z 1

0

�
'C.t/

	2
dt and �'CD

Z 1

0

'C.t/hF.t/dtD�
Z 1

�1
'C.F�1.u//f 0.u/du;

where hF.u/ D �f 0.F�1.u//=f .F�1.u//. As it is pointed out in Hössjer (1994), .I1/
and .I2/ imply that �'C > 0. Also, letting J denote the joint distribution of .y; x/
and by symmetry of f , one can define a corresponding symmetric distribution as
follows:

Hˇ.t/ D 1

2



PJ.zi.ˇ/ � t/C PJ.�zi.ˇ/ � t/

�

D 1

2



EGfF.t/C x�ˇg C EGfF.t � x�ˇ/g�: (2.7)

Now setting Fˇ;i.t/ D 1
2
EGfxiF.tC x�ˇ/g and �.ˇ/ D .�1.ˇ/; : : : ; �n.ˇ//

� , where

�i.ˇ/ D 2
Z 1

�1
'C.Hˇ.t//dFˇ;i.t/;
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it is shown under .I1/ � .I3/ in Hössjer (1994) that Sn.ˇ/ � �.ˇ/ ! 0 a:s: as
n ! 1: Let W.x/ D diagfw1.x/; : : : ;wn.x/g and define the expected weighted
Gram matrix ˙ D EGŒx0W.x/x�. Now partition x as x D .xa; xb/, according to
nonzero and zero coefficients, and let ˙a denote the top left p0 � p0 sub-matrix
of ˙ . We will assume that ˙a is positive definite. The following main result gives
the asymptotic properties (oracle property) of the penalized WSR estimator given
in (2.2). Its proof is provided in Appendix.

Theorem 2.2. Under assumptions .I1/ to .I4/, we have lim
n!1 P. Ǒ nb D 0/ D 1, and

p
n
� Ǒ

na � ˇ0a

	 D�! N
�
0; ��2

'C�'C˙a
	
;

where ˙a is a p0 � p0 positive definite matrix.

Remark 2.3. From the two theorems above, .i/ and .ii/ in assumption .I3/ together
with .I1/, I2 and .I4/ are imposed to ensure the

p
n-consistency, the oracle property

and the
p

n-asymptotic normality of the proposed estimator. Note that although
Theorem 2.2 is similar to that of Johnson and Peng (2008), the definitions of an

and bn given here are more general and the assumptions needed for the asymptotic
normality of the gradient function Sn.ˇ/ are very different.

2.3 Some Practical Considerations

2.3.1 Estimation of the Tuning Parameter �

Another important issue in the estimation of ˇ0 in model (2.1), is the choice of the
�j’s in Eq. (2.3). As proposed by Johnson et al. (2008) � can be estimated as follows

O� D Argmin
�

Dn.Vn;w; Ǒ n.�//=n

f1 � e.�/g2 ; (2.8)

where e.�/ D tr


XfX0XC ˙

�; Ǒ n.�/
g�1X0� and X is the n � d matrix with column

vectors xi and ˙
�; Ǒ n.�/

a diagonal matrix with entries

H�j.j Ǒnj.�/j/sgn. Ǒnj.�//:

This cross validation procedure was considered by Johnson et al. (2008) and was
shown to have advantage over the least squares cross valuation criterion that is
obtained by replacing the numerator of the right hand side of Eq. (2.8) by the
least squares objective function. Note that although the idea similar, the objective
function Dn.Vn;w;ˇ/ considered in this paper is very different to the one considered
in Johnson et al. (2008). If we restrict ourselves to WSR-AL, another alternative to
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estimating � is to consider the AIC and BIC approaches discussed in Wang et al.
(2007) based on the considered objective function. That is, obtain O� as,

O� D Argmin
�

n
Qw

a`.
Q̌

n/ �
dX

jD1
log.n�j/

o
the for AIC approach; (2.9)

which leads to O�j D 1=.nj Q̌njj/, and

O� D Argmin
�

n
Qw

a`.
Q̌

n/ �
dX

jD1
log.n�j/ log n

o
the for BIC approach, (2.10)

which leads to O�j D log n=.nj Q̌njj/, where Q̌ n D Argmin
ˇ2B

Dn.Vn;w;ˇ/.

2.3.2 Choice of Weights

In our analysis, we choose the weight function w.x/ to be

w.x/ D min
h
1;

�

d.x/

i
;

where d.x/ D .x�x/
0C�1

x .x�x/ is a robust Mahalanobis distance, with x and Cx

being robust estimates of location and covariance of x, respectively and � being
some positive constant usually set at �20:95 in practice. Under this choice, it is shown
in Bindele and Abebe (2012) that the resulting estimator has a bounded influence
function.

2.3.3 Computational Algorithm

For computation purposes, the following steps can be followed:

1. Obtain the unpenalized (W)SR estimator Ǒ 'C .

2. Use Ǒ 'C .

• Estimate Ovi as vi. Ǒ 'C/.

• Use AIC/BIC in Eq. (2.9) or (2.10) with Q̌ n D Ǒ 'C to estimate �, say O�.

3. Form z�.ˇ; O�/ D y� � x�0
O� ˇ, where x�

O� is as defined in Eq. (2.6) with � D O�.
4. Find

Argmin
ˇ

nCdX
iD1
Ovijz�

i .ˇ;
O�/j

using any weighted LAD software (e.g. quanteg, rfit in R).



32 A. Abebe and H.F. Bindele

2.4 Simulation and Real Data Studies

To demonstrate the performance of our proposed method, several simulation
scenarios and a real data set are considered.

2.4.1 Low Dimensional Simulation

The setting for the low-dimensional simulation is taken from Tibshirani (1996). We
take a sample of size n D 50 where the number of predictor variables is d D 8 and
ˇ0 is set at ˇ0 D .3; 1:5; 0; 0; 2; 0; 0; 0/0. Thus p0 D 3. To study the effect of tail
thickness, contamination, and leverage, we considered three different scenarios:

Scenario 1: The vector of predictor variables x is generated as x 
 N8.0;V/,
where V D .vij/ and vij D 0:5ji�jj. The error distributions are t and contaminated
normal. That is, the errors are generated as e 
 tdf for several degrees of freedom
(df ) and e 
 .1 � 	/N.0; 1/ C 	N.0; 32/ for several levels of contamination 	.
These distributions allow us to investigate the effect of tail thickness and the rate
of contamination on the proposed method.

Scenario 2: The vector of predictors x is generated as x 
 .1 � 	/N8.0;V/ C
	N8.1�;V/, with� D 5 and the errors are generated as e 
 N.0; 1/. This enables
us to study the effect of contamination (such us gross outliers and leverage points)
in the design space.

Scenario 3: This scenario considers a partial model misspecification similar to
the one in Arslan (2012). In this case, we take ˇ0 D .3; 1:5; 0; 0; 2; 0; 0; 0/0 and
ˇ�
0 D .3; : : : ; 3/0. Then x and y are generated as follows: for i D 1; : : : ; n� Œn	�,

xi 
 N8.0;V/ and yi D x0
iˇ0 C N.0; 1/, for i D n � Œn	� C 1; : : : ; n, xi 


N8.1�;V/, � D 5, and yi D x0
iˇ

c
0 C N.0; 1/. Varying 	 in Œ0; 1/ allows us to

study the effect of various levels of model contamination.

In all cases, we considered the adaptive lasso penalty where the tuning parameter
is computed using the BIC criterion. The estimators studied were least squares
(LS-AL), least absolute deviations (LAD-AL), signed-rank (SR-AL), weighted
LAD (WLAD-AL), and weighted SR (WSR-AL). The weights were computed
as discussed above using minimum covariance determinant (MCD) of Rousseeuw
(1984). We performed 1000 replications and calculated the average number of cor-
rect zeros (true negatives), the average number of incorrect zeros (false negatives),
the percentage of correct models identified, and relative efficiencies versus LS-AL
of the proposed estimators for estimating ˇ1 based on estimated MSEs. The results
of Scenario 1 are given in Figs. 2.1 and 2.2 while the results of Scenarios 2 and 3
are given in Figs. 2.3 and 2.4, respectively.

Figure 2.1 shows that LAD-AL and SR-AL (unweighted) estimators are not very
good at identifying zeroes (left panels) compared to WLAD-AL and WSR-AL.
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Fig. 2.1 Average number of correct and incorrect zeroes, Relative model error, Percentage of
correct fit, relative efficiencies (RE) against t distribution df (Scenario 1). The symbols in the
plots are LS-AL (open triangle), LAD-AL (open square), SR-AL (open circle), WLAD-AL (filled
square) and WSR-AL (filled circle)

They are, slightly more efficient than their weighted counterpart in estimating
nonzero coefficients. Their relative efficiencies versus LS-AL stabilize towards the
theoretical relative efficiencies of 0.955 and 0.63 as the tails of the t distribution
approach the tails of the standard normal distribution.

Figure 2.2 shows that with the exception of LS-AL, the performance in detecting
true zeroes of all other estimators deteriorates as the proportion of contamination
increases (left panels). On the other hand, the false negatives of LS-AL increase
with increasing contamination (top right panel). Taken together, these indicate that
LS-AL increasingly over-penalizes when the proportion of outliers in the data
increases. and SR-AL (unweighted) estimators are not very good at identifying zeros
(left panels) compared to WLAD-AL and WSR-AL. Once again the unweighted
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Fig. 2.2 Average number of correct and incorrect zeroes, Relative model error, Percentage of
correct fit, relative efficiencies (RE) against contamination proportion (	) of the contaminated
normal distribution (Scenario 1). The symbols in the plots are LS-AL (open triangle), LAD-AL
(open square), SR-AL (open circle), WLAD-AL (filled square) and WSR-AL (filled circle)

LAD and SR are slightly more efficient in estimating nonzero coefficients than
their weighted counterparts while the relative efficiencies of both weighted and
unweighted estimators increases with increasing proportion of error contamination.

Figure 2.3 shows that, even when the model is correctly specified, high leverage
points have a detrimental effect on model selection. While the number of true
positives decrease, the weighted cases appear to provide some resistance for low
percentage of high-leverage points. With respect to the estimation of nonzero
coefficients, the false negative rates of LS-AL increase sharply compare to all other
estimators (top right panel). Once again, LS-AL is increasingly over-penalizing
the model with increasing proportion of high-leverage points. It is not surprising
that LS-AL is also inefficient in the estimation of nonzero coefficients, especially
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Fig. 2.3 Average number of correct and incorrect zeroes, Relative model error, Percentage of
correct fit, relative efficiencies (RE) against contamination proportion (	) of the distribution of
the predictor x (Scenario 2). The symbols in the plots are LS-AL (open triangle), LAD-AL (open
square), SR-AL (open circle), WLAD-AL (filled square) and WSR-AL (filled circle)

compared to WLAD-AL and WSR-AL, especially for moderate proportion (4–8 %)
of high-leverage points.

Our observations remain similar to the above for model misspecification (Sce-
nario 3). In this case, the performance of all the estimators deteriorates quite rapidly
with increasing contamination. LS-AL is once again the worst offender and WLAD-
AL and WSR-AL provide the highest relative efficiency. The unweighted forms are
much less efficient in comparison.
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Fig. 2.4 Average number of correct and incorrect zeroes, Relative model error, Percentage of cor-
rect fit, relative efficiencies (RE) against contamination proportion (	) of the model contamination
(Scenario 3). The symbols in the plots are LS-AL (open triangle), LAD-AL (open square), SR-AL
(open circle), WLAD-AL (filled square) and WSR-AL (filled circle)

2.4.2 High-Dimensional Simulation

Again as in Tibshirani (1996), consider the linear model (2.1), where x is a
100 � 40 matrix with entries xij D zij C zi such that zij and zi are independent
and generated from standard normal distributions. This setting makes the xij’s
to be pairwise correlated with correlation coefficient of about 0.5. The random
error in Eq. (2.1) is generated from two different distributions: the contaminated
normal distribution with different rates of contamination and the t distribution
with different degrees of freedom. The regression coefficient vector is set at ˇ D
.0; : : : ; 0; 2; : : : ; 2; 0; : : : ; 0; 2; : : : ; 2/, where there are ten repeats in each block.
From 1000 replications, average numbers of correct zeroes, average number of
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incorrect zeroes and percentage of correct fit are reported. The simulation results
are displayed in Fig. 2.5, where for clarity of presentation we only report results of
LS-AL, SR-AL, and WSR-AL fits.

Our observations are quite similar to the low-dimensional case. LS-AL over-
penalizes with increasing proportion of high leverage points, even when the model
is correctly specified. SR-AL and WSR-AL provide superior performance in high
leverage situations (rows three and four of Fig. 2.5). WSR-AL is clearly the best
among the three for heavier tailed errors (top row). The percentage of correctly
estimated models deteriorates with increasing error contamination (second row) for
all the methods.

2.4.3 Boston Housing Data

The data considered here is the Boston Housing dataset which contains median
values of housing in 506 census tracts and 13 predictors comprised of characteristics
of the census tract. The full description of the data can be found in Leng (2010) and
the dataset is available in the R library MASS. So, for sake of brevity, the description
will not be included here. We first fit unpenalized regression models using the
LS and SR procedures. The results are given in Table 2.1. We then fit penalized
regression models using LS-AL, SR-AL, and WSR-AL. These results are displayed
in Table 2.2.

The results in Table 2.1 indicate that both LS and SR find the variables INDUS
and AGE insignificant while ZN is marginally significant. However, the LS and
SR estimated coefficients are quite different in some cases outside of two standard
errors of each other. Also, the residual plot given in Fig. 2.6 indicates the presence of
heavy tails casting doubt on the LS results. In fact, observing the plot of studentized
residuals of LS and SR in Fig. 2.6 plotted on the same scale, it is clear that the SR
fit identifies many more outlying observations than the LS estimator. The results
of penalized regressions given in Table 2.2 show that LS-AL eliminates the two
insignificant variables (INDUS, AGE) from the model while SR-AL and WSR-AL
eliminate a third variable (ZN) from the model. Thus, our observations are in line
with those of Leng (2010).

The obvious question is if this reduction in model is associated with loss in
prediction accuracy. To evaluate this, we performed cross validation where we
randomly split the data into a training set containing approximately 90% of the
data and a testing set containing the remaining 10 %. We fit the models using
the training sets and calculated the absolute error for the test sets jy � Ǫ � x0 Ǒ j,
where Ǫ is estimated using the mean (for LS) and median (for LAD and SR) of the
training set residuals y�x0 Ǒ . Table 2.3 gives the mean absolute error and the median
model size over 100 iterations. The estimators considered all use the adaptive lasso
penalty. Weights were computed using three different versions of the Mahalanobis
distance: classic (Mah), minimum volume ellipsoid (MVE) of Rousseeuw (1984),
and minimum covariance determinant (MCD) of Rousseeuw (1984).
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Fig. 2.5 Average number of correct and incorrect zeroes and percentage of correct fit for the
high-dimensional simulation. The symbols in the plots are LS-AL (open triangle), SR-AL
(times) and WSR-AL (plus). First row represents t distributed errors, second row represents
contaminated normal, third row represents high-leverage points, and the last row represents model
misspecification
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Table 2.1 Estimated coefficients using LS and SR

LS SR

Coef se t Coef se t

CRIM �0:0103 0.0013 �7:8083 �0:0089 0.0010 �8:8709
ZN 0:0012 0.0005 2:1338 0:0008 0.0004 2:0147

INDUS 0:0025 0.0025 1:0022 0:0023 0.0019 1:2355

CHAS 0:1009 0.0345 2:9255 0:0781 0.0263 2:9691

NOX �0:7784 0.1529 �5:0912 �0:3925 0.1166 �3:3662
RM 0:0908 0.0167 5:4300 0:1766 0.0128 13:8376

AGE 0:0002 0.0005 0:3983 �0:0006 0.0004 �1:5251
DIS �0:0491 0.0080 �6:1486 �0:0359 0.0061 �5:9025
RAD 0:0143 0.0027 5:3725 0:0094 0.0020 4:6518

TAX �0:0006 0.0002 �4:1574 �0:0005 0.0001 �4:6360
PTRATIO �0:0383 0.0052 �7:3086 �0:0300 0.0040 �7:5140
B 0:0004 0.0001 3:8468 0:0006 0.0001 7:5509

LSTAT �0:0290 0.0020 �14:3036 �0:0229 0.0015 �14:8047

Table 2.2 Estimated regression coefficients using LS, SR, LS-AL,
SR-AL, and WSR-AL

LS LS-AL SR SR-AL WSR-AL

CRIM �0:0103 �0:0101 �0:0089 �0:0077 �0:0088
ZN 0:0012 0:0009 0:0008 0:0000 0:0000

INDUS 0:0025 0:0000 0:0023 0:0000 0:0000

CHAS 0:1009 0:0975 0:0781 0:0506 0:0546

NOX �0:7784 �0:6990 �0:3925 �0:3238 �0:3171
RM 0:0908 0:0911 0:1766 0:1696 0:1708

AGE 0:0002 0:0000 �0:0006 0:0000 0:0000

DIS �0:0491 �0:0489 �0:0359 �0:0251 �0:0263
RAD 0:0143 0:0126 0:0094 0:0056 0:0053

TAX �0:0006 �0:0005 �0:0005 �0:0003 �0:0003
PTRATIO �0:0383 �0:0376 �0:0300 �0:0317 �0:0329
B 0:0004 0:0004 0:0006 0:0005 0:0006

LSTAT �0:0290 �0:0288 �0:0229 �0:0249 �0:0245

It is evident from Table 2.3 that while the model performances remain relatively
similar, the median model sizes of the MCD and MVE weighted adaptive lasso
estimation required far fewer variables. For comparable model sizes, SR-AL
estimator provides lower absolute error than LS-AL, LAD-AL, WLAD-AL (Mah),
and WSR-AL (Mah). Also a comparison of WLAD-AL (Arslan 2012) and WSR-
AL shows that on average WSR-AL achieves a lower mean absolute error using a
slightly smaller model.
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Fig. 2.6 Plots of studentized residuals versus fitted values as well as residual Q-Q plots of LS and
SR fits

Table 2.3 Results of cross validation

Method Mean absolute error (St dev) Median model size

LS-AL 0.1408 (0.0184) 11.0

LAD-AL 0.1368 (0.0226) 11.0

SR-AL 0.1356 (0.0214) 11.0

WLAD-AL (Mah) 0.1365 (0.0213) 11.0

WSR-AL (Mah) 0.1360 (0.0210) 11.0

WLAD-AL (MVE) 0.1474 (0.0232) 10.0

WSR-AL (MVE) 0.1452 (0.0219) 10.0

WLAD-AL (MCD) 0.1523 (0.0244) 8.5

WSR-AL (MCD) 0.1490 (0.0224) 8.0
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2.5 Discussion

This paper considered variable selection for linear models using penalized weighted
signed-rank objective functions. It is demonstrated that the method provides
selection and estimation consistency in the presence of outliers and high-leverage
points. Our simulation study considered both low and high-dimensional data. In
both cases, it was shown that compared to penalized least squares, penalized
rank-based estimators provided more accurate true negative and false negatives
identification while providing higher efficiency in estimating true positives when
the error distribution is heavy tailed or contaminated. The weighted versions of
the rank-based estimators provided protection against high leverage points, even
when the model is incorrectly specified for the high-leverage points as long as the
proportion of high-leverage points is moderate.

While the results are encouraging, an interesting extension involves regression
when the data are ultra-high dimensional; that is, the dimension of the predictor
also goes to infinity. This is currently under consideration by the authors. Another
interesting extension involves generalized linear and single index models or even
functional data analysis. Variable selection remains a valid exercise in these cases,
where the last case is usually dealt with using group-selection methods.

Acknowledgements We dedicate this work to Joseph W. McKean on the occasion of his 70th
birthday. We are thankful for his mentorship and guidance over the years. We also thank the
anonymous referee for suggestions that improved the presentation.

Appendix

This Appendix provides some lemmas and the proofs of the main results (Theo-
rems 2.1 and 2.2). In the proofs we have taken W D I to simplify notation. The
general case follows by taking W1=2x in place of x in the proofs.

Proofs

The following three lemmas, whose proofs follow from slight modifications of
those given in Hössjer (1994) and Hettmansperger and McKean (2011), are key
to deriving the proof of the main results.

Lemma 2.1. Under assumptions .I1/ and .I2/, we have Q̌ n ! ˇ0 a:s:

The proof of this lemma is given in Hössjer (1994) for w 	 1 and in Abebe et al.
(2012) for any positive w, and a more general regression model. Also, as in Wu
(1981), the proof of this lemma is obtained by showing that
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lim
n!1 inf

ˇ2Bc

�
Dn.vn;w;ˇ/ � Dn.vn;w;ˇ0/

	
> 0 a:s: (2.11)

where B is an open subset of B and ˇ0 2 Int.B/.

Lemma 2.2. Putting Un.�;ˇ/ D kSn.�/ � Sn.ˇ/ � �.�/C �.ˇ/k1
n�1=2 C k�.�/k1 , we have for

small enough ı > 0 that

sup
k�k�ı

Un.�;ˇ0/
a:s�! 0 as n!1:

This lemma ensures that n�1=2Sn.ˇ0/ converges in distribution to a multivariate
normal distribution with mean zero and covariance matrix �'C˙ . It also results
in the following asymptotic linearity established in Hettmansperger and McKean
(2011).

Lemma 2.3. Under the assumption of the errors having a finite Fisher information,
we have for all 	 > 0 and C > 0

P

"
supp

nkˇ�ˇ0k1�C
kn�1=2.Sn.ˇ/�Sn.ˇ0//C�'C

p
n.ˇ�ˇ0/k1 � 	

#
! 0 as n!1:

From this asymptotic linearity follows that for all ˇ such that kˇ � ˇ0k1 � C=
p

n,
we have

n�1=2Sn.ˇ/ D n�1=2Sn.ˇ0/ � �'C

p
n.ˇ � ˇ0/C o.1/ (2.12)

Proof of Theorem 2.1. Set B D fˇ0 C n�1=2u W kuk1 < Cg. Clearly B is an open
neighborhood of ˇ0 and therefore Bc is a closed subset of B not containing ˇ0. To
complete the proof, it is then sufficient to show that

lim
n!1 inf

ˇ2Bc

�
Q.ˇ/ � Q.ˇ0/

	
> 0 a:s:

which from Lemma 1 of Wu (1981) will result in the
p

n-consistency of Ǒ n. Indeed,

Q.ˇ/ � Q.ˇ0/ D Dn.vn;w;ˇ/ � Dn.vn;w;ˇ0/C n
dX

jD1



P�j.jˇjj/ � P�j.jˇ0jj/

�
:

(2.13)

Now by the mean value theorem, assuming without loss of generality the jˇ0jj <
jˇjj, there exits ˛j 2 .jˇ0jj; jˇjj/ such that

P�j.jˇjj/ � P�j.jˇ0jj/ D H�j.j˛jj/sgn.˛j/.jˇjj � jˇ0jj/;
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and therefore

jP�j.jˇjj/ � P�j.jˇ0jj/j � H�j.j˛jj/jˇj � ˇ0jj:

This together with Eq. (2.13) imply that

Q.ˇ/ � Q.ˇ0/ D Dn.vn;w;ˇ/ � Dn.vn;w;ˇ0/C n
dX

jD1
H�j.j˛jj/sgn.˛j/.jˇjj � jˇ0jj/

� Dn.vn;w;ˇ/ � Dn.vn;w;ˇ0/ �
p

nan

p0X
jD1
jujj; (2.14)

as ˇ 2 Bc implies that ˇ can be written as ˇ D ˇ0 C n�1=2u with kuk1 � C.
Being a closed subset of a compact space, Bc is compact, and hence, is closed and
bounded. Then, there exists a constant M such that C � kuk1 � M. From the

last term of equation (2.14), note that
p0X

jD1
jujj � kuk1 � M from which, we have

�pnan

p0X
jD1
jujj � �

p
nanM. Thus,

Q.ˇ/ � Q.ˇ0/ � Dn.vn;w;ˇ/ � Dn.vn;w;ˇ0/ �
p

nanM;

and so,

lim
n!1 inf

ˇ2Bc

�
Q.ˇ/�Q.ˇ0/

	 � lim
n!1 inf

ˇ2Bc

�
Dn.vn;w;ˇ/�Dn.vn;w;ˇ0/

	� lim
n!1

hp
nanM

i
:

By assumption .I3/, limn!1
hp

nanM
i
D 0, and by Lemma 2.1, we have

lim
n!1 inf

ˇ2Bc

�
Q.ˇ/ � Q.ˇ0/

	
> 0 a:s:

Proof of Theorem 2.2. From the proof of Theorem 2.1 to obtain the oracle prop-
erty, it is sufficient to show that for any ˇ� satisfying kˇ�

a � ˇ0ak1 D Op.n�1=2/

and jˇ�
j j < Cn�1=2 for j D p0 C 1; : : : ; d,

@Q.ˇ/

@ˇj

ˇ̌
ˇ
ˇDˇ�

and ˇ�
j have the same sign.

Indeed,

n�1=2 @Q.ˇ/

@ˇj

ˇ̌
ˇ
ˇDˇ�

D �n�1=2Sj
n.ˇ0/C �'C

p
n.ˇ� � ˇ0/C

p
nH�j .jˇ�

j j/sgn.ˇ�
j /C o.1/

D OP.1/C
p

nH�j .jˇ�
j j/sgn.ˇ�

j / for j D p0 C 1; : : : ; d;
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where Sj
n.ˇ0/ is the jth component of Sn.ˇ0/. Note that by assumption .I3/,

p
nH�j.jˇ�

j j/ �
p

nbn ! 1 as n ! 1, and thus the sign of
@Q.ˇ/

@ˇj

ˇ̌
ˇ
ˇDˇ�

is

fully determined by that of ˇ�
j for n large enough. This together with Theorem 2.1

implies that lim
n!1 P. Ǒ nb D 0/ D 1.

Moreover, by definition of Ǒ n, it is obtained in a straightforward manner that
@Q.ˇ/

@ˇa

ˇ̌
ˇ
ˇD. Ǒ a;0/

D oP.1/. From this, partitioning Sn.ˇ0/ as .Sn;a.ˇ0/; Sn;b.ˇ0//, it

follows from Eq. (2.12) that

oP.1/ D n�1=2Sn;a.ˇ0/ � �'C

p
n. Ǒ na � ˇ0a/C

p
n

p0X
jD1

H�j.j Ǒna;jj/sgn. Ǒna;j/;

and jpn
Pp0

jD1 H�j.j Ǒna;jj/sgn. Ǒna;j/j � p0
p

nan ! 0 as n ! 1 by assumption
.I3/. Hence,

p
n. Ǒ na � ˇ0a/ D ��1

'C n�1=2Sn;a.ˇ0/C oP.1/:

As n�1=2Sn;a.ˇ0/
D�! N

�
0; �'C˙a

	
, we have

p
n
� Ǒ

na � ˇ0a

	 D�! N
�
0; ��2

'C�'C˙a
	
:
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Chapter 3
Generalized Rank-Based Estimates for Linear
Models with Cluster Correlated Data

John Kloke

Abstract This paper focuses on rank-based (R) estimation of parameters in a linear
model with cluster correlated errors. The clusters are assumed to be independent,
however, within a cluster the responses are allowed to be dependent. The method is
applicable to general within cluster error structure. Application of a model which
assumes the within cluster errors which follow an AR(1) process is developed.
Discussion of an estimate of the AR(1) parameter is included. The algorithm first
estimates the correlation structure by obtaining a robust rank-based estimate of the
AR(1) parameter. The responses are then transformed to working independence
and the model parameters are fit using ordinary rank regression. Estimates of
standard errors—which utilize a sandwich estimate—are provided. An example and
simulation results are discussed.

Keywords AR(1) • JR estimator • Robust • Wilcoxon

3.1 Introduction

Rank-based (R) estimation for linear models with independent and identically
distributed (iid) errors was first developed in the 70s by Jureǎková (1971) and
Jaeckel (1972). In the subsequent three to four decades a complete inference—
including estimates of standard errors, tests of hypothesis, confidence intervals,
and diagnostic procedures—was developed; in addition geometry and robustness
properties were established. Extensions to multivariate regression models, nonlinear
models, timeseries, and cluster correlated error data have been established. A
summary of these published works is provided in the monograph by Hettmansperger
and McKean (2011). R (R Development Core Team 2010) software implementation
is discussed in Kloke and McKean (2015).
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This paper develops a robust R procedure for estimation of parameters in a
linear model with cluster correlated errors. The individual clusters are assumed
to be independent and the structure of the within cluster errors is assumed to be
known. A sandwich estimator is used in estimating the standard errors of the model
estimates. Given a robust estimate of the within cluster correlation observations are
transformed to working independence. Estimates of the linear model parameters are
obtained via rank-estimation where the ranking is over the entire set of responses.
Focus is on the case where the within subject errors follow an AR(1) process.

Previous work has been done on R estimation for linear models with cluster
correlated errors. Methods which work with the correlated (non-transformed)
observations include Kloke et al. (2009) and Rashid et al. (2012). Kloke et al. (2009)
developed a joint rankings (JR) estimator which utilizes the rankings of the entire
set of responses. Rashid et al. (2012) developed a many rankings (MR) estimator
which ignores the within cluster effect. Kloke and McKean (2011) considered
a transformation approach for exchangeable (compound symmetric) within block
errors. A comparison between MR and JR is given in Rashid et al. (2013).

The data are assumed to be collected in clusters or blocks and the observations
within each cluster are assumed to be correlated. The design is general and can
include baseline covariates, time varying covariates, or variables based on the
design (e.g. sets of indicator variables denoting treatment). In this new approach
we transform the responses, in a manner similar to generalized least squares (GLS),
to uncorrelated and then apply ordinary rank regression, or more generally, JR
estimation to the problem. In this paper we call these GJR estimates. A similar
approach was implemented in Bilgic et al. (2015) for nested designs. The focus of
this paper is on a repeated measures problem which assumes the errors within an
experimental unit follow an AR(1) process. Estimates of the AR(1) parameter are
based on the work of Terpstra et al. (2000, 2001).

In Sect. 3.2 we provide a review or rank-based estimation and joint rankings (JR)
estimation. In Sect. 3.3 we develop a new method for estimation of parameters in a
linear model with cluster correlated errors based on a transformation of the model
to working independence and discuss estimation the AR(1) parameter. In Sect. 3.4
we discuss the results of a small simulation study and in Sect. 3.5 we present the a
real data example. Section 3.6 is a brief summary of the work.

3.2 R and JR Estimation

In this section we briefly review rank-based (R) estimation for linear models with
independent and identically distributed (iid) errors as well as joint-rankings (JR)
estimation for linear models with cluster correlated error.
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3.2.1 Rank-Based Estimator

R estimates for linear models were first developed by Jureǎková (1971) and
Jaeckel (1972). A complete inference has been developed since that time and is
summarized in the monograph by Hettmansperger and McKean (2011). R estimates
and associated inference can be computed using the R (R Development Core Team
2010) package Rfit (Kloke and McKean 2012). Rfit computes R estimates,
standard errors, and diagnostics for a general linear model.

In this section, we consider the following linear model

yi D ˛ C xT
i ˇ C ei for i D 1; : : : n (3.1)

where yi is a continuous response variable, xi is the vector of explanatory variables,
˛ is the intercept parameter, ˇ is the vector of regression coefficients, and ei is the
error term. The errors are assumed to be independent and identically distributed with
continuous pdf f . Further assume f has finite Fisher information. Additionally, there
are design assumptions that are similar to the least squares analysis [see Sect. 3.4 of
Hettmansperger and McKean (2011)].

Rewrite (3.1) in matrix notation as follows

y D ˛1C Xˇ C e

where y D Œy1; : : : ; yn�
T is a n� 1 vector of responses, X D Œx1; : : : ; xn�

T is an n� p
design matrix, and e D Œe1; : : : ; en�

T is an n � 1 vector of error terms. Recall that
the least squares estimator is the minimizor of Euclidean distance between y and
OyLS D X ǑLS. To obtain the R estimator of ˇ one uses a different measure of distance
which is referred to as Jaeckel’s (1972) dispersion function. Jaeckel’s dispersion
function is defined as

D.ˇ/ D ky � Xˇk' (3.2)

where k � k' is a pseudo-norm defined as

kuk' D
nX

iD1
a.R.ui//ui for u 2 Rn;

a.t/ D '
�

t
nC1

	
; and ' is a score function. Assume ' is nondecreasing on

.0; 1/ and WLOG standardized so that
R 1
0
'.u/ du D 0 and

R 1
0
'.u/2 du D

1. Under these assumptions (3.2) is a convex function of ˇ and provides a
robust measure of distance between y and Xˇ. Commonly used score functions
are Wilcoxon (linear) scores 'W.u/ D

p
12
�
u � 1

2

	
and the sign scores (L1)

'S.u/ D sign
�
u � 1

2

	
. A theoretical result shows that for distribution f , the optimal

scores are '.u/ D � f 0.F�1.u//
f .F�1.u//

; these scores are optimal in the sense that they are
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asymptotically efficient relative to the maximum likelihood estimate. Wilcoxon
scores are commonly used as they robust to outliers1 and have 95 % efficiency
relative to least squares at the normal distribution. Further, the efficiency of the
Wilcoxon relative to least squares can be much greater at distributions with heavier
tails than the normal. Wilcoxon scores are the default is scores in Rfit.

The R estimator of ˇ is defined as

Ǒ
' D Argminky � Xˇk': (3.3)

Note that closed form solutions exist for least squares, however, this is not the
case for rank estimation. The R estimates are obtained by minimizing a convex
optimization problem. The intercept parameter, ˛, is estimated separately using
a robust rank-based estimate of location; the median of the residuals is typically
used. It can be shown, see for example Hettmansperger and McKean (2011), that
the solution to (3.3) is consistent and asymptotically normal. Symbolically we write

Ǒ
' P
N

�
ˇ; �2'.X

TX/�1
�

where �' is a scale parameter which depends on f and the score function '

��1
' D

Z 1

0

'.u/ 'f .u/ du:

Koul et al. (1987) provide a consistent estimate of �' which is implemented in
Rfit. So that the estimated variance covariance matrix is

O�2'.XTX/�1:

Wald type tests and confidence intervals are then easily calculated. Hettmansperger
and McKean (2011) discuss tests based on a reduction in dispersion as well as a
gradient (scores) test.

3.2.2 Joint Rankings Estimator

Kloke et al. (2009) showed that rank-based analysis can be extended to cluster
correlated data. In this section we summarize these methods. An experimental R
software package for computing these joint rankings (JR) estimates is jrfitwhich
is available at https://github.com/kloke/jrfit.

1Having bounded influence function and 29 % breakdown point.

https://github.com/kloke/jrfit
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Assume an experiment is done over m blocks or clusters. Note that we use the
terms block and cluster interchangeably. Let nk denote the number of measurements
taken within the kth block. Let Yki denote the response variable for the ith
experimental unit within the kth block; let xki denote the corresponding vector of
covariates. Note that the design is general in that xki may contain, for example,
covariates, baseline values, or treatment indicators. The response variable is then
modeled as

yki D ˛ C xT
kiˇ C eki for k D 1; : : : ;m; i D 1; : : : ; nk; (3.4)

where ˛ is the intercept parameter, ˇ is a p � 1 vector of unknown parameters, and
eki is an error term. We assume that the errors within a block are correlated (i.e. eki

and eki0 ) but the errors between blocks are independent (i.e. eki and ek0j). Further, we
assume that eki has pdf and cdf f .x/ and F.x/, respectively. Now write model (3.4)
in block vector notation as

yk D ˛1nk C Xkˇ C ek:

where 1nk is an nk�1 vector of ones and Xk D Œxk1 : : : xknk �
T is a nk�p design matrix

and ek D Œek1; : : : eknk �
T is a nk � 1 vector of error terms. Let N D Pm

kD1 nk denote
the total sample size. Let y D .yT

1 ; : : : ; y
T
m/

T be the N�1 vector of all measurements
(responses) and consider the matrix formulation of the model as

y D ˛1N C Xˇ C e

where 1N is an N � 1 vector of ones and X D ŒXT
1 : : :X

T
m�

T is a N � p design matrix
and e D ŒeT

1 ; : : : e
T
m�

T is a N � 1 vector of error terms. Since there is an intercept in
the model, we may assume (WLOG) that X is centered.

The rank-based estimator of ˇ is given by

Ǒ
' D Argminky � Xˇk' where kuk' D

NX
tD1

a.R.ut//ut; u 2 RN ; (3.5)

is Jaeckel’s dispersion function.
For formal inference, Kloke et al. (2009) develop the asymptotic distribution of

the Ǒ' under the assumption that the marginal distribution functions of the random
vector ek are the same. This includes two commonly assumed error structures:
exchangeable within block errors as well as the components of ek following a
stationary time series, such as autoregressive of general order. This asymptotic
distribution of Ǒ is given by

Ǒ
' P
Np

 
ˇ0; �

2
'.X

TX/�1
 

mX
kD1

Xck ˙ 'k Xck

!
.XTX/�1

!
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where ˙ 'k D var.'.F.ek/// and F.ek/ D ŒF.ek1/; : : : ;F.eknk/�
T . As with the iid

case, the scale parameter �' can be estimated by the Koul et al. (1987) method. A
sandwich estimator is recommended to estimate ˙ 'k which is given by

m

m � p

mX
kD1

XT
k a.R.Oek//a.R.Oek//

TXk:

As they will be useful in the development of the GJR estimator in the next
section, we present the asymptotic representation of the parameters. The asymptotic
representation for Ǒ is given by

p
N. Ǒ � ˇ0/ D �'

p
N.XTX/�1XT'.F.e//C op.1/ (3.6)

and the asymptotic representation for Ǫ is given by

p
N. Ǫ � ˛0/ D �sp

N
1T

Nsgn.e/C op.1/: (3.7)

3.3 GJR Estimator

In this section we describe a generalized rank-based estimator. This estimator is
akin to the generalized least squares estimator in that the working covariance matrix
is applied to the vector of responses in each cluster to transform them to working
independence; following that the usual estimation procedure is followed. For the
rank-based estimator we present, we utilized JR estimation and the covariance is
estimated using a sandwich estimator as was discussed in the previous section. Thus
we call the estimator a generalized joint rankings (GJR) estimator.

3.3.1 Model and Notation

As with the JR estimator of the previous section, assume an experiment done over
m block or clusters. Note we use the terms block and cluster interchangeably. The
results presented in this paper are general and can be utilized in a variety of settings.
For example, blocks may denote centers in a multi-center clinical trial or subjects in
a single site trial.

We now establish notation which is similar to the last section. Let nk denote
the number of measurements observed for the kth block. Let yki denote the ith
measurement observed for the kth block and let xki denote the corresponding vector
of covariates. We model the response as

yki D xT
kiˇ C eki for k D 1; : : : ;m; i D 1; : : : ; nk (3.8)
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where ˇ is a p�1 vector of unknown parameters and eki is an error term. We assume
that the errors within a block are correlated (i.e. eki and eki0 ) but the errors between
subjects are independent (i.e. eki and ek0j). Further we assume that eki 
 F; f . Now
write model (3.8) in block vector notation as

yk D Xkˇ C ek:

where yk is an nk � 1 vector of responses, Xk is an nk � 1 matrix, and ek is a vector
of random errors. Note we need not estimate the intercept separately as is typically
the case in R estimation. We assume that var.ek/ D ˙ k.2

3.3.2 GJR Estimation Procedure

Assume the dependence structure between the responses is known and is given by
˙ k. In practice we will estimate ˙ k, one such estimate is the AR(1) parameter for
when the within subject errors follow an AR(1) process.

We first transform the responses to working independence:

y�
k D ˙

�1=2
k yk for k D 1; : : : ;m

along with the corresponding design matrices

X�
k D ˙

�1=2
k Xk for k D 1; : : : ;m:

So the transformed model is

y�
k D X�

k ˇ C e�
k for k D 1; : : : ;m

where e�
k D ˙

�1=2
k ek, var.e�

k / D �2Ink , and Ink is an nk�nk identity matrix. Next we
form one linear model by stacking the transformed response vectors, corresponding
design matrices and error vectors :

y� D X�ˇ C e� (3.9)

so that y�T D Œy�T
1 ; : : : ; y

�T
m �T , X�T D ŒX�T

1 ; : : : ;X
�T
m �T , and e�T D Œe�T

1 ; : : : e
�T
m �T .

Except in special cases the design matrix X� does not have 1N in the column space.
So, as discussed in Dixon and McKean (1996), Model (3.9) cannot be estimated

2We do not need the variance to exist. Only that a linear transformation exists which has the
goal of reducing the dependence in the response variables. The variance notation is adopted for
convenience.
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directly and we must first fit a model with an intercept term and then transform
back. That is we fit

y� D ˛11N C X�
c ˇ1 C e�; (3.10)

where X�
c is the centered version of X�; i.e. X�

c D .IN � H1N /X
� where H1N is a

projection matrix onto the space spanned by the N � 1 vector 1N . The estimate of
ˇ is the one which minimizes Jaeckel’s dispersion function (3.2). For inference we
utilize the results for JR estimation (Kloke et al. 2009) and the extension of Bilgic
et al. (2015). To obtain a first set of intermediate fitted values

Oy�
1 D Ǫ11N C X�

c
Ǒ
1:

From which we can project these first intermediate fitted values to the correct space
[colSpace.X�/] to obtain the second intermediate fitted values

Oy� D HX� Oy�
1 :

Now we re-transform these second intermediate fitted values to obtain the model
fits.

Oyk D ˙ 1=2 Oy�
k for k D 1; : : :m:

The estimate of ˇ is given by solving the generalized least squares problem X Ǒ D Oy
where Oy D ŒOy1; : : : ; Oym�

T . That is

Ǒ D .XTX/�1XT Oy:

The estimate of ˇ is a linear combination of the JR estimates of Model (3.10), i.e.

Ǒ D �X�TX�	�1 X�T Œ Ǫ11N C X�
c
Ǒ
1�

To determine the asymptotic distribution of Ǒ we utilize the asymptotic represen-
tation of ( Ǒ1) and ( Ǫ1) given in (3.6) and (3.7) along with the theory developed
in Kloke et al. (2009) and Bilgic et al. (2015). The asymptotic distribution of Ǒ is
normal with mean vector ˇ and variance covariance matrix

var. Ǒ/ D .X�TX�/�1X�T Œ�21 .0/�
2
s H1C

�2'X�
c .X

�T
c X�

c /
�1
 

mX
kD1

X�T
ck

˙ 'k X�
ck

!
.X�T

c X�
c /

�1X�T
c �X�.X�TX�/�1 (3.11)

where �21 .0/ D
Pm

kD1
Pnk

iD1
Pnk

jD1 cov.sgn.eki/sgn.ekj//.
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3.3.3 Estimation of the AR(1) Parameter

In this section we consider an R analysis of repeated measures taken on m subjects.
It is common to assume that the within subject errors follow an AR(1) process and
that is the approach we take. That is we assume var.eki; ekj/ D �2�ji�jj. The estimate
of � is based on the one proposed by Terpstra et al. (2000, 2001).

The algorithm is as follows.

1. Fit ordinary rank regression (ORR) to the model

y D ˛1N C Xˇ C e:

and form the residuals: Oe D y�X Ǒ. Kloke et al. (2009) ensures that the estimator
of ˇ is consistent.

2. Using the residuals from Step 1 estimate the AR(1) parameter, again using ORR,
though based on regression through the origin (Dixon and McKean 1996)3:

Oeki D �Oek;i�1 C uki:

3. (GJR step) Let OCk be the estimated AR(1) correlation structure of size nk.
Transform the response vectors and design matrices for each of the m subjects:

y�
k D OC�1=2

k yk and X�
k D OC�1=2

k Xk:

Now one may use GJR as discussed in the previous section to obtain estimates and
inference for ˇ.

3.4 Simulation Study

We conducted a small simulation study to investigate the properties of the proposed
method. The model we looked at was a simple analysis of covariance problem:

yk D ˛1n C xkˇ C wk1n�C ek

where xk 
 Nn.0; I/ and wk 
 bin.1; 0:5/, for k D 1; : : : ;m and n is the number
of within subject measurements. We looked at sample sizes of m D 20; 50; and 100
and the number of measures per cluster was n D 2; 4; or 8. Three error distributions
were considered: a standard normal distribution (N(0,1)), a contaminated normal
distribution with 10 % contamination and a standard deviation of 3 (CN(0.1,3)),
and a contaminated normal distribution with 25 % contamination and a standard

3As the intercept was fit in the previous step, the residuals should have location zero.
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Table 3.1 Empirical confidence levels for joint rank (JR) and generalized joint rank (GJR)
estimators

� D 0 � D 0:4

GJR JR GJR JR

m n � ˇ � ˇ � ˇ � ˇ

N(0,1) 20 2 0:942� 0:939� 0:952 0:953 0:944� 0:939� 0:964� 0:974�
20 4 0:940� 0:940� 0:952 0:951 0:916� 0:942� 0:977� 0:975�
20 8 0:940� 0:943� 0:951 0:955� 0:942� 0:940� 0:970� 0:974�
50 2 0:947 0:946 0:952 0:950 0:952 0:942� 0:958� 0:959�
50 4 0:948 0:944� 0:953 0:947 0:945� 0:951 0:956� 0:964�
50 8 0:946 0:943� 0:951 0:948 0:943� 0:948 0:956� 0:961�
100 2 0:954 0:947 0:956� 0:951 0:948 0:948 0:953 0:958�
100 4 0:953 0:944� 0:955� 0:946 0:945� 0:951 0:950 0:959�
100 8 0:947 0:947 0:949 0:949 0:946 0:948 0:954 0:957�

CN(0.1,3) 20 2 0:948 0:935� 0:957� 0:942� 0:949 0:944� 0:972� 0:977�
20 4 0:936� 0:942� 0:949 0:949 0:932� 0:942� 0:973� 0:977�
20 8 0:944� 0:941� 0:957� 0:948 0:940� 0:945� 0:972� 0:974�
50 2 0:951 0:950 0:956� 0:950 0:950 0:944� 0:957� 0:962�
50 4 0:948 0:948 0:952 0:949 0:945� 0:944� 0:954� 0:956�
50 8 0:949 0:942� 0:954 0:945� 0:947 0:945� 0:959� 0:962�
100 2 0:953 0:944� 0:954 0:940� 0:950 0:948 0:953 0:958�
100 4 0:954 0:948 0:956� 0:949 0:952 0:946 0:953 0:953

100 8 0:949 0:948 0:950 0:948 0:952 0:947 0:955� 0:955�
CN(0.25,5) 20 2 0:957� 0:951 0:961� 0:946 0:944� 0:952 0:978� 0:980�

20 4 0:950 0:948 0:960� 0:950 0:938� 0:952 0:976� 0:978�
20 8 0:939� 0:944� 0:955� 0:950 0:892� 0:946 0:990� 0:978�
50 2 0:952 0:954 0:957� 0:945� 0:958� 0:952 0:963� 0:966�
50 4 0:952 0:950 0:957� 0:949 0:949 0:952 0:957� 0:960�
50 8 0:950 0:952 0:955� 0:952 0:947 0:950 0:960� 0:963�
100 2 0:954 0:956� 0:956� 0:950 0:950 0:945� 0:954 0:952

100 4 0:955� 0:953 0:959� 0:954� 0:950 0:954 0:955� 0:956�
100 8 0:948 0:950 0:951 0:950 0:952 0:950 0:956� 0:954

A * denotes the value is outside of the interval 0:95˙ 2
q

0:95�0:05
10;000

deviation of 5 (CN(0.25, 5)). Two AR(1) parameters were considered: � D 0:0; 0:4.
The simulation size was 10,000. Two rank-based estimates were computed (JR and
GJR) and for relative efficiency comparisons the REML estimates were computed
as well. We use the RE = MSEREML=MSE(G)JR and the 95 % confidence interval
coverage as performance metrics. Results are presented in Tables 3.1 and 3.2.

Looking at the empirical confidence levels in Table 3.1 we see that the GJR
estimate can be slightly liberal when the sample size is small (m D 20), however,
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Table 3.2 Empirical relative efficiencies (to REML) for joint rank (JR) and generalized joint
rank (GJR) estimators

� D 0 � D 0:4

GJR JR GJR JR

m n � ˇ � ˇ � ˇ � ˇ

N(0,1) 20 2 0:933 0:946 0:937 1:000 0:939 0:930 0:953 0:822

20 4 0:944 0:958 0:951 0:979 0:952 0:957 0:948 0:767

20 8 0:952 0:962 0:954 0:973 0:953 0:949 0:951 0:735

50 2 0:947 0:947 0:946 0:966 0:945 0:942 0:956 0:805

50 4 0:944 0:961 0:947 0:972 0:955 0:960 0:951 0:752

50 8 0:951 0:955 0:951 0:961 0:955 0:952 0:956 0:726

100 2 0:954 0:948 0:954 0:958 0:948 0:947 0:961 0:803

100 4 0:950 0:961 0:952 0:966 0:957 0:959 0:950 0:748

100 8 0:954 0:955 0:955 0:958 0:952 0:949 0:940 0:718

CN(0.1,3) 20 2 1:313 1:323 1:325 1:392 1:231 1:213 1:228 1:064

20 4 1:344 1:376 1:358 1:413 1:269 1:277 1:205 0:998

20 8 1:369 1:362 1:379 1:377 1:300 1:285 1:218 0:939

50 2 1:363 1:378 1:368 1:403 1:269 1:256 1:256 1:060

50 4 1:350 1:368 1:356 1:381 1:296 1:297 1:230 1:006

50 8 1:361 1:363 1:363 1:371 1:319 1:330 1:246 0:974

100 2 1:367 1:378 1:371 1:387 1:255 1:300 1:241 1:093

100 4 1:363 1:370 1:365 1:374 1:292 1:314 1:213 0:993

100 8 1:347 1:377 1:349 1:382 1:308 1:320 1:210 0:957

CN(0.25,5) 20 2 2:574 2:543 2:704 2:769 1:788 1:878 1:700 1:573

20 4 2:909 2:850 3:002 2:942 2:036 2:114 1:740 1:547

20 8 3:032 2:922 3:081 2:975 2:168 2:298 1:759 1:543

50 2 2:900 2:903 2:935 2:958 2:078 2:110 1:945 1:688

50 4 3:044 3:003 3:082 3:039 2:172 2:262 1:844 1:615

50 8 3:023 3:073 3:040 3:094 2:349 2:268 1:865 1:529

100 2 3:010 3:066 3:026 3:092 2:063 2:197 1:929 1:719

100 4 3:039 3:091 3:051 3:114 2:221 2:326 1:884 1:640

100 8 3:036 3:051 3:045 3:062 2:328 2:397 1:850 1:605

when the sample size increases (m D 50; 100) the coverage is closer the nominal
95 % level. The JR estimate is slightly conservative when the within cluster
correlation has a autocorrelation structure.

At the normal distribution (N(0,1)) the relative efficiency is in the neighborhood
of 95.5 %. One notable exception is the JR estimate of ˇ when � D 0:4, which
looses efficiency. When there is no correlation the performance of the JR and GJR
estimates are practically the same for estimating � (numerically the JR has a slight
advantage), however, when there is autocorrelation (� D 0:4) the GJR has an
advantage.
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3.5 Example

This example is based on the Orthodont data from Pinheiro and Bates (2006).
This is a longitudinal study on 27 young subjects with data collected at 8, 10,
12, and 14 years. The outcome variable is the distance from the pituitary to the
pterygomaxillary fissure (mm). Explanatory variables include age and sex of the
subject. Though the authors of that text conclude a compound symmetric covariance
structure may be suitable; we utilize this example to illustrate the robustness of the
method proposed in this paper. Namely, we model an AR(1) correlation structure for
subjects and estimate the linear increase in distance over time; a indicator variable
is included in the model for females as well as an interaction term.

A spaghetti plot is presented in Fig. 3.1. There are one or more mild outliers in
the data. For example, one subject (M09) has a pattern much different than the other
children The outcome measures decrease from 23 mm at age 8 to 20.5 mm at age 10
then increase to 31 mm at age 12 and then decrease to 26 mm at age 14.

The results of the GJR and GLS fits are displayed in Table 3.3 (in the left most
columns, under Original Data). The estimates and standard errors are similar for
the two methods. The conclusions that both sex and age are important in estimating
distance are the same for the two methods.

20
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Fig. 3.1 Spaghetti plot of 27 young subjects in a longitudinal study to examine distance [from
pituitary to the pterygomaxillary fissure (in mm)] over time
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Table 3.3 Estimates (Est) and standard errors (SE) of GJR and GLS estimates for
orthodont data

Original data Error introduced

GJR GLS GJR GLS

Est SE Est SE Est SE Est SE

Intercept 25.29 0.5 25.06 0.44 25.41 0.7 41.2 12.6

Female �2.39 0.86 �2.42 0.69 �2.72 1.02 �18.56 19.75

Age-11 0.69 0.1 0.77 0.12 0.69 0.1 0.19 0.4

Female � (Age-11) �0.21 0.14 �0.29 0.18 �0.21 0.14 0.29 0.63

rho 0.75 0.63 0.84 0.99

To examine the robustness properties of the proposed method we introduced an
outlier by reordering the first subject’s values and multiplying by 10 (i.e. the data
were entered in the wrong order in the wrong units/with a missing decimal point).
The results of the GJR and GLS fits are displayed in Table 3.3 (in the right most
columns, under Error Introduced).

The estimates and standard errors change somewhat for the GJR approach,
though the conclusions would remain the same. For the GLS method, the estimates
and standard errors change substantially and the conclusions would now be then
neither sex nor age is an important explanatory variable.

This example demonstrates that the procedure is robust to gross outliers and gives
estimates similar to those of traditional methods when there are only mild outliers
in the data.

In practice, it is prudent to select an appropriate correlation structure as doing so
may affect the conclusions; we are working on model selection procedures to aide
in this selection process.

3.6 Summary and Future Work

In this paper we developed generalized rank-based estimates for cluster correlated
data when the within cluster correlation structure is AR(1). A robust estimate of
the AR(1) parameter was discussed as well as estimates of standard errors. A small
simulation study was conducted showing the validity (especially when the number
of clusters is 100 or more) as well as the gains in efficiency to REML methods
when the data contain contamination. An example demonstrates the robustness of
the method to severe outliers.

In future work, we plan to extend these analyses to other correlation structures
(e.g. compound symmetric) as well as develop Studentized residuals. We are also
working to develop model selection, including choice of correlation structure.

Software for the method is in development, though an experimental release is
available at https://github.com/kloke/gjrfit.

https://github.com/kloke/gjrfit
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Chapter 4
Iterated Reweighted Rank-Based Estimates
for GEE Models

Asheber Abebe, Joseph W. McKean, John D. Kloke, and Yusuf K. Bilgic

Abstract Repeated measurement designs occur in many areas of statistical
research. In 1986, Liang and Zeger offered an elegant analysis of these problems
based on a set of generalized estimating equations (GEEs) for regression parameters,
that specify only the relationship between the marginal mean of the response
variable and covariates. Their solution is based on iterated reweighted least squares
fitting. In this paper, we propose a rank-based fitting procedure that only involves
substituting a norm based on a score function for the Euclidean norm used by Liang
and Zeger. Our subsequent fitting, while also an iterated reweighted least squares
solution to GEEs, is robust to outliers in response space and the weights can easily
be adapted for robustness in factor space. As with the fitting of Liang and Zeger,
our rank-based fitting utilizes a working covariance matrix. We prove that our
estimators of the regression coefficients are asymptotically normal. The results of
a simulation study show that the our proposed estimators are empirically efficient
and valid. We illustrate our analysis on a real data set drawn from a hierarchical
(three-way nested) design.
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4.1 Introduction

Repeated measurement designs are often used by researchers to study patterns of
response over time or to simply use available subjects more efficiently. The analysis
of data resulting from such designs often becomes complicated due to the non-
zero within-subject correlation. An elegant solution was given by Liang and Zeger
(1986) who proposed the generalized estimating equations (GEEs) for regression
parameters, that specify only the relationship between the marginal mean of the
response variable and covariates. Within-subject correlation is then accounted for
through a ‘working’ correlation matrix.

The GEE method of Liang and Zeger (1986) gives consistent estimators of the
regression parameter. The method, however, is not robust against outliers since it
is based on score equations from the maximum likelihood method of estimation.
A solution proposed by Qaqish and Preisser (1999) is to use M-type estimation by
involving downweighting schemes. Another solution is one given by Jung and Ying
(2003) who proposed an adaptation of the Wilcoxon–Mann–Whitney method of
estimating linear regression parameters for use in longitudinal data analysis under
the working independence model. They used joint ranking (JR) of all observations in
their development. Wang and Zhu (2006) consider the same model as Jung and Ying
(2003) but they use separate between-subject and within-subject ranks to specify
their Wilcoxon–Mann–Whitney estimating equations.

The purpose of the current paper is to provide a direct rank-based estimation ana-
logue of the GEE model of Liang and Zeger (1986) obtained via the minimization
of rank dispersion functions of Jaeckel (1972). This extends the work of Jung and
Ying (2003) in three directions: (1) specifying a generalized linear model where the
responses are nonlinear as a function of the regression coefficients, (2) allowing user
specified ‘working’ correlation matrices, and (3) allowing general score functions
including the one that gives rise to the Wilcoxon–Mann–Whitney method. Our
development uses the iterated reweighted least squares (IRLS) formulation of the
rank dispersion function given in Sievers and Abebe (2004). This makes our
approach closer in spirit to that of Qaqish and Preisser (1999); however, while they
require the specification of a separate weight function, our weights are a result of
the score function used in the rank dispersion function.

Kloke et al. (2009) studied rank estimation for linear models with cluster
correlated errors using JR along with general score functions. The asymptotic
variance of their estimators includes terms based on the underlying dependency and
they provided techniques for their estimation. The model specified in the current
paper includes the model studied in Kloke et al. (2009); however, the approaches
of estimation are different. The current paper uses marginal models along with a
‘working’ correlation matrix to account for within-subject correlations. Kloke et al.
(2009) specify the joint distribution under the assumption that the within-subject
marginal univariate distributions are the same. So our approach here is much more
general. Earlier versions of our procedure were discussed in a technical report by
Abebe et al. (2010); see, also, Sect. 5.5 of Hettmansperger and McKean (2011).
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The paper is organized as follows. The model and rank estimation of its
parameters using the IRLS estimation technique are given in Sect. 4.2. In Sect. 4.3,
we state the asymptotic distribution of our estimators, giving a detailed proof of
this theory in Appendix. Our estimator is highly efficient and robust in response
space. We also develop a complement procedure which offers protection to outliers
in factor space in Sect. 4.3.2. In Sect. 4.4, we present the results of a Monte Carlo
study over two- and three-way nested designs comparing our procedures with
the traditional REML procedure. In Sect. 4.5, we compare these analyses in their
handling of a real data set drawn from a hierarchical model. The Monte Carlo study
and example offers empirical evidence confirming the robustness and validity of our
procedures.

Packages written in R are available for the computation of our procedures. Bilgic
and Susmann (2013) developed the R package rlme, downloadable at CRAN. In
Sect. 8.4 of Kloke and McKean (2014), the R package rbgee for fitting these robust
procedures is discussed.

4.2 Rank-Based Estimator

Our notation follows that of Liang and Zeger (1986). Consider a longitudinal set of
observations over K subjects. Let yit denote the tth response for ith subject for t D
1; 2; : : : ; ni and i D 1; 2; : : : ;K. Assume that xit is a p � 1 vector of corresponding
covariates. Let N DPK

iD1 ni denote the total sample size. Assume that the marginal
distribution of yit is of the exponential class of distributions and is given by

f .yit/ D expfŒyit�it � a.�it/C b.yit/�
g ; (4.1)

where 
 > 0, �it D h.�it/ and �it D xT
itˇ. Thus the mean and variance of yit are

given by

E.yit/ D a0.�it/ and Var.yit/ D a00.�it/=
 : (4.2)

In this notation, the link function is h�1 ı .a0/�1. More assumptions are stated later
for the theory.

Let Yi D .yi1; : : : ; yini/
T and Xi D .xi1; : : : ; xini/

T denote the ni � 1 vector of
responses and the ni � p matrix of covariates, respectively, for the ith individual.
We consider the general case where the components of the vector of responses for
the ith subject, Yi, are dependent. Let � i D .�i1; �i2; : : : ; �ini/

T , so that E.Yi/ D
a0.� i/ D .a0.�i1/; : : : ; a0.�ini//

T . For a s � 1 vector of unknown parameters ˛, let
Ri D Ri.˛/ denote a ni � ni correlation matrix. Define the matrix

Vi D A1=2
i Ri.˛/A

1=2
i =
 ; (4.3)
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where Ai D diagfa00.�i1/; : : : ; a00.�ini/g. The matrix Vi may or may not be the
covariance matrix of Yi. In any case, we refer to Ri as the working correlation
matrix. For estimation, let OVi be an estimate of Vi. This, in general, requires
estimation of ˛ and often an initial estimate of ˇ. In general, we will denote the
estimator of ˛ by Ǫ.ˇ; 
/ to reflect its dependence on ˇ and 
.

Liang and Zeger (1986) defined their estimate in terms of general estimating
equations (GEE). Define the ni � p Hessian matrix,

Di D @a0.� i/

@ˇ
; i D 1; : : : ;K : (4.4)

Then their GEE estimator ǑLS is the solution to the equations

KX
iD1

DT
i
OV�1

i ŒYi � a0.� i/� D 0 : (4.5)

To motivate our estimator, it is convenient to write this in terms of the Euclidean
norm. Define the dispersion function,

DLS.ˇ/ D
KX

iD1
ŒYi � a0.� i/�

T OV�1
i ŒYi � a0.� i/�

D
KX

iD1
Œ OV�1=2

i Yi � OV�1=2
i a0.� i/�

T Œ OV�1=2
i Yi � V�1=2

i a0.� i/�

D
KX

iD1

niX
tD1
Œy�

it � dit.ˇ/�
2 ; (4.6)

where Y�
i D OV�1=2

i Yi D .y�
i1; : : : ; y

�
ini
/T , dit.ˇ/ D cT

t a0.� i/, and cT
t is the tth row of

OV�1=2
i . The gradient of DLS.ˇ/ is

5 DLS.ˇ/ D �
KX

iD1
DT

i
OV�1

i ŒYi � a0.�/� : (4.7)

Thus the solution to the GEE equations (4.5) also can be expressed as

Ǒ
LS D Argmin DLS.ˇ/ : (4.8)

From this point of view, ǑLS is a nonlinear least squares (LS) estimator. We will
refer to it as GEEWL2 estimator.

Nonlinear LS methods are an extension of linear LS procedures. Their geometry
is similar in that both linear and nonlinear estimators minimize the Euclidean norm
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of the residuals. Abebe and McKean (2007) developed a class of nonlinear robust
estimators. Similar to nonlinear LS estimators, these estimators minimize a norm of
the residuals where, for a vector v 2 Rn, the norm is defined by

kvk D
nX

iD1
'ŒR.vi/=.nC 1/�vi ; (4.9)

where R.vi/ denotes the rank of vi among v1; : : : ; vn and the score function '.u/ is
a nondecreasing, square-integrable function defined on the interval .0; 1/. Without
loss of generality, we standardized ' so that

R
'.u/ du D 0 and

R
'2.u/ du D 1: (4.10)

Two commonly used score functions are the Wilcoxon score function, '.u/ Dp
12Œu � .1=2/�, and the sign score function, '.u/ D sgnŒu � .1=2/�. Ranked-

based robust methods for linear models are based on this norm; see Chap. 3 of
Hettmansperger and McKean (2011) or Chap. 9 of Hollander and Wolfe (1999).

Next consider the general model defined by expressions (4.1) and (4.2). As in the
LS development, let Y�

i D OV�1=2
i Yi D .y�

i1; : : : ; y
�
ini
/T , git.ˇ/ D cT

t a0.� i/, where cT
t

is the tth row of OV�1=2
i , and let G�

i D Œgit�. The rank-based dispersion function is
given by

DR.ˇ/ D
KX

iD1

niX
tD1

'ŒR.y�
it � git.ˇ//=.nC 1/�Œy�

it � git.ˇ/� : (4.11)

We next write the R estimator as weighted LS estimator. Depending on the score
function, there are two cases for the weights. For Case (1), assume that the score
function '.u/ is odd about 1=2, i.e.,

'.1 � u/ D �'.u/: (4.12)

As discussed on page 101 of Hettmansperger and McKean (2011), such scores
are appropriate for symmetric error distributions. Let eit.ˇ/ D y�

it � git.ˇ/ denote
the .i; t/th residual and let m.ˇ/ D med.i;t/feit.ˇ/g denote the median of all the
residuals. Then because the scores sum to 0 we have the identity,

DR.ˇ/ D
KX

iD1

niX
tD1

'ŒR.eit.ˇ//=.nC 1/�Œeit.ˇ/ � m.ˇ/�

D
KX

iD1

niX
tD1

'ŒR.eit.ˇ//=.nC 1/�
eit.ˇ/ � m.ˇ/

Œeit.ˇ/ � m.ˇ/�2

D
KX

iD1

niX
tD1

wit.ˇ/Œeit.ˇ/ � m.ˇ/�2 ; (4.13)
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where wit.ˇ/ D 'ŒR.eit.ˇ//=.nC1/�=Œeit.ˇ/�m.ˇ/� is a weight function. If eit.ˇ/�
m.ˇ/ D 0, we set its weight to the maximum of the weights. Note that by using the
median of the residuals in conjunction with the fact that the score function is odd
about 1=2, (4.12), ensures that the weights are positive.

For Case (2), consider score functions in general which may not satisfy (4.12).
Because the scores sum to 0, there is an i0 such that a.i0/ � 0 and a.j/ > 0, for
all j > i0. Take m.ˇ/ to be the i0th quantile of the residuals. As with Case (1), the
resulting weights will be nonnegative. An example of this situation is discussed in
Sect. 5.5.3 of Hettmansperger and McKean (2011).

Now let Ǒ.0/R denote an initial estimator of ˇ. As estimates of the weights, we use

Owit

� Ǒ.0/
R

�
; i.e., the weight function evaluated at Ǒ.0/. Expression (4.13) leads to the

dispersion function

D�
R

�
ˇj Ǒ.0/R

�
D

KX
iD1

niX
tD1
Owit

� Ǒ.0/
R

� h
eit.ˇ/ � m

� Ǒ.0/
R

�i2

D
KX

iD1

niX
tD1

"r
Owit

� Ǒ.0/
R

�
eit.ˇ/ �

r
Owit

� Ǒ.0/
R

�
m
� Ǒ.0/

R

�#2
:(4.14)

Let

Ǒ.1/
R D Argmin D� �ˇj Ǒ.0/R

�
: (4.15)

This establishes a sequence of IRLS estimates,
n Ǒ.k/

R

o
, k D 1; 2; : : :.

After some algebraic simplification, we obtain the gradient

5 D�
R

�
ˇj Ǒ.k/R

�
D �2

KX
iD1

DT
i
OV�1=2

i
OWi OV�1=2

i

h
Yi � a0.�/ �M� � Ǒ.k/

R

�i
;

(4.16)

where M�
� Ǒ.k/

R

�
D OV1=2

i m
� Ǒ.k/

R

�
1, 1 denotes a ni�1 vector all of whose elements

are 1, and OWi D diagf Owi1; : : : ; Owinig is the diagonal matrix of weights for the ith

subject. Hence, Ǒ.kC1/
R satisfies the general estimating equations (GEE) given by,

KX
iD1

DT
i
OV�1=2

i
OWi OV�1=2

i

h
Yi � a0.�/ �M� � Ǒ.k/

R

�i
D 0 : (4.17)

We will refer to this weighted, general estimation equations estimator as the GEERB
estimator.
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4.2.1 Computation

There are several software packages for computing these rank-based GEE estimates.
The CRAN package rlme uses an iterated reweighted least squares algorithm based
on expression (4.14); see Bilgic and Susmann (2013). As discussed in Sect. 8.6
of Kloke and McKean (2014), the estimating equations (4.17) naturally lead to a
Gauss-Newton type algorithm. The R function geerfit uses this approach for
computation of GEERB estimates; see Sect. 8.6 of Kloke and McKean (2014) for
illustrations.

4.3 Asymptotic Theory

Recall that both the GEEWL2 and GEERB estimators were defined in terms of
the univariate variables y�

it . These of course are transformations of the original
observations by the estimates of the covariance matrix Vi and the weight matrix
Wi. For the theory, we need to consider similar transformed variables using the
matrices Vi and Wi, where this notation means that Vi and Wi are evaluated at the
true parameters. For i D 1; : : : ;K and t D 1; : : : ; ni, let

Y�
i D V�1=2

i Yi D .y�i1; : : : ; y�ini
/T

G�
i .ˇ/ D V�1=2

i a0
i.�/ D Œg�it�

e�it D y�it � g�it.ˇ/: (4.18)

To obtain asymptotic distribution theory for a GEE procedure, assumptions concern-
ing the random errors e�it must be made. The assumptions for the GEEWL2 estimates
are discussed in Liang and Zeger (1986). These include E.e�it/ D 0, Var.e�it/ < 1,
the regularity condition cited under expression (4.31), and Assumptions A.1–A.4
listed below. For the GEERB estimates, Assumptions A.1–A.6 are needed.

A.1
p

KŒ O
.ˇ/ � 
� D Op.1/, as K !1, when ˇ is known.
A.2
p

KŒ Ǫ.ˇ; 
/ � ˛� D Op.1/ when ˇ and 
 are known.
A.3 j@ Ǫ.ˇ; 
/=@
j � H.Y;ˇ/ which is Op.1/.

A.4 (Lindeberg-Feller Conditions): For i D 1; : : : ;K, let ui D V�1=2
i Di and uN D

ŒuT
1 uT

2 � � � uT
K �

T . Denote the .l; j/th entry of uN by ulj, l D 1; 2; : : : ;NI j D
1; 2; : : : p. Then

max
1�l�N

u2ljPN
mD1 u2mj

! 0; for all j D 1; : : : ; p;

and

limN!1 1
N uT

NuN exists and is positive definite.
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A.5 The score function '.u/ is bounded and satisfies the standardizing condi-
tions (4.10).

A.6 The marginal pdf of e�it is continuous and variance-covariance matrix given
in (4.19) is positive definite.

Theorem 4.1. Assume that the initial estimate satisfies
p

K. Ǒ.0/R � ˇ/ D Op.1/.

Then under the above assumptions, for k � 1,
p

K. Ǒ.k/R � ˇ/ has an asymptotic
normal distribution with mean 0 and covariance matrix,

lim
K!1 K

(
KX

iD1
DT

i V�1=2
i WiV

�1=2
i Di

)�1 ( KX
iD1

DT
i V�1=2

i Var.'�i /V
�1=2
i Di

)

�
(

KX
iD1

DT
i V�1=2

i WiV
�1=2
i Di

)�1
; (4.19)

where '
�
i denotes the ni � 1 vector .'ŒR.e�i1/=.N C 1/�; : : : ; 'ŒR.e�ini

/=.N C 1/�/T .

The proof is sketched in Appendix. It involves a Taylor series expansion, as in
Liang and Zeger’s (1986) proof, and the rank-based theory found in Brunner and
Denker (1994) for dependent observations.

Provided the score function '.u/ is bounded, it follows from the asymptotic

representation of Ǒ.k/R given in expression (4.35) of Appendix that the estimator
is resistant to outliers in response (y) space. This is verified by the results of
the simulation study presented in the next section. For resistance to outliers in
factor space, the usual high breakdown weights used in linear models can easily
be incorporated into the weight function w.ˇ/ as discussed in Sect. 4.3.2.

4.3.1 Implementation

For practical use of the GEERB estimate, the asymptotic covariance matrix (4.19)
requires estimation. This is true even in the case where percentile bootstrap
confidence intervals are employed for inference, because appropriate standardized
bootstrap estimates are generally used.

The covariance structure suggests a simple moment estimator. Let Ǒ.k/ and (for
the ith subject) OV.k/

i denote the final estimates of ˇ and Vi, respectively. Then the
residuals which estimate e�i 	 .e�i1; : : : ; e�ini

/T are given by

Oe�i D
h OV.k/

i

i�1=2
Yi � OG.k/

i .
Ǒ.k//; i D 1; : : : ;K; (4.20)
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where OG.k/
i D

h OV.k/
i

i�1=2
a0
� O� .k/� and O� .k/it D h

�
xT

it
Ǒ.k/�. Let R.Oe�it/ denote the rank

of Oe�it among fOe�i0t0g, t D 1; : : : ; niI i D 1; : : : ;K. Let O'�i D .'ŒR.Oe�i1/=.N C
1/�; : : : ; 'ŒR.Oe�ini

/=.NC1/�/T . Let OSi D O'�i � O'�i 1ni where O'�i D
Pni

jD1 'ŒR.Oe�ij/=.NC
1/�.

Then a moment estimator of the covariance matrix (4.19) is that expression with
Var.'�i / estimated by

dVar.'�i / D OSi OST
i ; (4.21)

and, of course, final estimates of Di and Vi. Although, this is a simple nonparametric
estimate of the covariance structure, the simulation study discussed in Sect. 5.5.2
of Hettmansperger and McKean (2011) shows that this estimate may lead to a
liberal inference. Werner and Brunner (2007) discovered this in a corresponding
rank testing problem.

The form of the weights, though, suggests a simple approximation, which is
based on certain ideal conditions. Suppose the model is correct. Assume that
the true transformed errors are independent. Then, because the scores have been
standardized, asymptotically Var.'�i / converges to Ini , so replace it with Ini . This is
the first part of the approximation.

Next consider the weights. The functional for the weights is of the form
'ŒF.e/�=e. Assuming that F.0/ D 1=2, a simple application of the Mean Value
Theorem gives the approximation 'ŒF.e/�=e D '0ŒF.e/�f .e/. The expected value of
this approximation can be expressed as

��1 D
Z 1

�1
'0ŒF.t/�f 2.t/ dt D

Z 1

0

'.u/

�
� f 0ŒF�1.u/�

f ŒF�1.u/�

�
du; (4.22)

where the second integral is derived from the first using integration by parts
followed by a substitution. The parameter � is the scale parameter for the usual R
estimates in the linear model for both the independent errors case and for clustered
correlated errors; see Hettmansperger and McKean (2011) and Kloke et al. (2009),
respectively. A consistent estimate for � is given in Koul et al. (1987). The second
part of the approximation is to replace the weight matrix by .1= O�/I. The results of
a simulation study discussed in Sect. 5.5.2 of Hettmansperger and McKean (2011)
show that the above approximation leads to a valid inference over the situations of
the study. The validity results of the GEERB estimators in the simulation study in
Sect. 4.4 offer further confirmation.
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4.3.2 GEEhbr Estimate

As discussed above in Sect. 4.3, if the score function is bounded then the rank-based
GEE estimator offers protection to outliers in response space. To additionally obtain
protection in factor space we can modify the weights.

As in Sect. 4.2, let eit.ˇ/ D y�
it � git.ˇ/ denote the .i; t/th residual. Then, under

Wilcoxon scores, the objective function (4.11) can be expressed as

DR.ˇ/ D 2.N C 1/p
3

KX
iD1

niX
tD1

KX
i0D1

ni0X
t0D1
jeit.ˇ/ � ei0t0.ˇ/jI

see, for example, page 82 of Hettmansperger and McKean (2011). This easily lends
itself to a weighted versions; i.e.,

DW;R.ˇ/ D 2.N C 1/p
3

KX
iD1

niX
tD1

KX
i0D1

ni0X
t0D1

witwi0t0 jeit.ˇ/ � ei0t0.ˇ/jI

for a set of nonnegative weights fwitg. This is a nonlinear objective function and
Abebe and McKean (2013) showed the existence of a minimizing value. They
further discussed several sets of weights including the high breakdown weights
discussed in Chang et al. (1999) for the linear model case. These weights adjust for
both outliers in response space as well as in factor space. In the linear model case
they achieve 50 % breakdown. Their high breakdown argument holds for our GEE
model, if the objective function is convex. We use this estimator in our example and
Monte Carlo study under the label GEEhbr. It is computed by the rlme package.

4.4 Monte Carlo Study

In this section, we present the results of a Monte Carlo study of the small sample
properties of the GEERB procedure. Besides the GEERB fit, we also obtained the
results of the REML fit, the restricted maximum-likelihood method. We compare
these two procedures in terms of the empirical validity of their 95 % confidence
intervals and the empirical relative efficiencies [ratios of empirical mean square
errors (MSE)]. The REML procedure is computed by the R package nlme developed
by Pinheiro et al. (2016), while the GEERB estimates were computed by the
package rmle; see Bilgic and Susmann (2013).

Our models of interest are the two- and three-level nested random effects models.
The model for the two-way nested design is given by

yij D ˛ C xT
ijˇ C ai C 	j.i/; i D 1; : : : ; I; j D 1; : : : ni; (4.23)
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where ai is the random effect for cluster i, I is the number of clusters, ni is the size of
the ith cluster, and xij is the vector of predictor variables. For the simulation, we used
I D 7 clusters. The total sample size is 185, so the design is slightly unbalanced.
The three-way nested design simulated is given by

yijk D ˛ C xT
ijkˇ C ai C wj.i/ C 	k.ij/; i D 1; : : : ; I; j D 1; : : : ; Ji; k D 1; : : : ; nij;

(4.24)

where ai is the random effect for cluster i, wj.i/ is the random effect for the jth

subcluster of cluster i, Ji is the number of subclusters in cluster i, nij is the size of jth

subcluster in cluster i, and xijk is the vector of predictors. Again I D 7. For each of
the 7 clusters, there were 2 or 3 subclusters. The sample sizes in these clusters range
from 6 to 20, with median about 9. As with the two-way, the total sample size is 185.
For both designs, the random errors are uncorrelated and independent. This nested
analog could be adopted for any repeated measure design, randomized block design,
cluster correlated, and other hierarchical models. We chose two predictors for these
nested models. One predictor is binary and it is labeled as Treatment; while the other
is a continuous predictor and it is labeled as Covariate. Hence, for each design, the
predictor vector is of length 2.

Both normal (N) and contaminated normal (CN), (25 % contamination and
variance ratio of 100), were used for error distributions. The random effects for the
normal models were also normal. Likewise, the random effects for the contaminated
normal models were also contaminated normal with the same parameters as for
the errors. The various variance component situations are given by the vector in
Tables 4.1 and 4.2 under the column Error Dists. For a two-level design, the vector
is � D .�a; �	/

T , while for a three-level design it is � D .�a; �w; �	/
T . For example,

� D .1; 3/T indicates that intra-class correlation is formed with the parameter of
12=.12 C 32/ D 0:10.

Procedures include the REML estimates, the GEERB estimates with Wilcoxon
scores, and the GEEhbr estimates as discussed in Sect. 4.3.2. For the rank-based fits
estimates of the matrices Vi, i D 1; : : : ;K, (4.3), are needed. As discussed in the
theory section, Vi need not be the variance-covariance of the response Yi. For the
simulation study, though, we did use robust estimates of the variance components
as proposed by Kloke et al. (2009); see Sect. 8.4 of Kloke and McKean (2014), also.
We describe it briefly for the three-level nested design. Let Ǒ.l/ denote the current
estimate of the fixed effects ˇ. Fixing i and j, we write Model 4.24 as

yijk � xT
ijkˇ D ai C wj.i/ C 	k.ij/ (4.25)

Let rij denote the nij�1 vector of the residuals rijk D yijk�xT
ijk
Ǒ.l/. For these residuals,

the model is

rijk
:D ai C wj.i/ C 	k.ij/ (4.26)
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With i and j fixed, this is a simple location model with location ai C wj.i/. Let Ouij D
med.rij/. We call this estimate the predictor of aiCwj.i/. To separate ai and wj.i/, let

Oui: D med fOui1; Oui2; � � � ; OuiJig:

For severely unbalanced data, the Ouit’s could be weighted. Then, for j D 1; : : : ; Ji,
the difference Ouij � Oui: is free of ai and, hence, is a predictor of wj.i/. That is, the
prediction of wj.i/ is

Owj.i/ D Ouij � Oui::

Finally, move this prediction to the left side of Eq. (4.26) to obtain the model

rijk � Owj.i/ PDai C 	k.ij/:

This simple location model yields as the prediction of ai,

Oai D medjkfrijk � Owj.i/g:

Proceeding over all sections, we obtain the predictions of the random effects. Since
we used the median as the location predictor, we adjust these with their common
median; i.e., Oai  Oai �medsfOasg and Owj.i/  Owj.i/ �meds;tf Owt.s/g.

Define the random effects as Oa D .Oa1; � � � ; OaI/, and Ow D . Ow1.1/; � � � ; OwJI .I//.
Our robust estimators of the variance components �2	 , �2a and �2w are, respectively,
MAD2

w. O�/, MAD2
w.Oa/, and MAD2

w. Ow/. These estimators are then substituted for the
variance components in in the true variance covariance of Yi.

For each situation 1000 simulations were run. We are interested in the estimates
of fixed effects parameters under normal errors (N) and contaminated normal errors
(CN). The results are displayed in Tables 4.1 and 4.2. The entries in the column
ARE are the ratios of the mean-squared errors of the rank-based estimates to REML
estimates. We also considered confidence intervals of the form Est˙1:96�SE, where
SE’s are the asymptotic standard errors of the estimates computed as discussed
in Sect. 4.3.1. Thus the nominal ˛-level of the confidence interval is 0.05 and the
empirical results for ˛ are recorded in the column called level.

For the two-level design, for the normal situations, the GEERB’s empirical
efficiency relative to the REML’s were close to the linear model (independent case)
efficiency of 0.95. For the contaminated situations, the GEERB estimates were much
more efficient than their REML counterparts. The validity (level) results for the
GEERB estimates were close to 0.05 or conservative in all cases except the normal
.3; 1/ situation. These CN situations do not have outliers in factor space, so while
the GEEhbr estimates are more efficient than the REML estimates it is not surprising
that they are less efficient than the Wilcoxon estimates.

The results for the three-level design were similar. Note that in four of the
normal (N) cases, the GEERB estimates are slightly more efficient than the REML
estimates. As in the two-level situations, the GEERB were much more efficient than
the REML estimates for the contaminated normal (CN) situations.
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Table 4.1 Two-level nested design results

Treatment Covariate

Error dist. Methods Level ARE Level ARE

(0,1), N REML 0.056 1 0.06 1

GEERB 0.059 0.9362 0.055 0.9433

(1,3), N REML 0.047 1 0.047 1

GEERB 0.056 0.9342 0.043 0.9693

(2,3), N REML 0.06 1 0.047 1

GEERB 0.048 0.943 0.052 0.9177

(1,1), N REML 0.044 1 0.044 1

GEERB 0.049 0.9245 0.038 0.9237

(3,1), N REML 0.042 1 0.073 1

GEERB 0.045 0.903 0.071 0.862

(1,3), CN REML 0.057 1 0.058 1

GEERB 0.031 6.1068 0.039 5.5319

GEERB (hbr) 0.008 2.1108 0.02 1.1302

(1,1), CN REML 0.059 1 0.056 1

GEERB 0.028 4.5263 0.035 4.2173

GEERB (hbr) 0.02 1.7524 0.047 1.3536

(3,1), CN REML 0.067 1 0.052 1

GEERB 0.047 3.3953 0.031 3.2894

GEERB (hbr) 0.042 1.8252 0.078 1.4715

4.5 Example of a Hierarchical Model

For an example, we consider a data set drawn from an educational study discussed
in the book by West et al. (2006). This data is originally from The Study of
Instructional Improvement, called SII. The study concerns the math achievement
scores of first-grade students in randomly selected classrooms within randomly
selected schools from a national U.S. sample of elementary schools. There are 1081
observations in 105 schools with the total of 285 classrooms after deleting some
missing observations. The dependent variable is mathgain score; it measures the
change in a student’s math achievement score from the spring of kindergarten to the
spring of first grade. As covariates, we used the variables mathkind (continuous),
gender (female–male), minority (no–yes), and ses (continuous). The study design
has a three-level nested structure, in which students are nested within classrooms,
and classrooms are nested within schools; see expression (4.24) for the model
formulation. The package rlme contains the data set under instruction.

We fit the data with the REML, GEERB, and GEEhbr procedures. These
procedures were computed as they were for the Monte Carlo study of Sect. 4.4.
The results for the data analysis are shown in Table 4.3. The table indicates that
for the REML and GEERB procedures, at the 5 % level, all of the fixed effects are
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Table 4.2 Three-level nested design results

Treatment Covariate

Error dist Methods Level ARE Level ARE

(0,0,1), N REML 0.043 1 0.054 1

GEERB 0.047 0.9171 0.063 0.8894

(1,0,1), N REML 0.048 1 0.05 1

GEERB 0.05 0.9347 0.045 0.9656

(1,1,3), N REML 0.06 1 0.047 1

GEERB 0.045 1.0598 0.051 0.9212

(2,1,3), N REML 0.058 1 0.058 1

GEERB 0.045 1.0057 0.041 1.0813

(1,1,1), N REML 0.052 1 0.059 1

GEERB 0.065 0.871 0.045 1.0583

(3,2,1), N REML 0.049 1 0.054 1

GEERB 0.047 0.9547 0.051 0.9483

(1,1,3), CN REML 0.065 1 0.051 1

GEERB 0.033 5.6231 0.044 4.81

GEERB (hbr) 0.004 1.7636 0.052 1.0415

(1,1,1), CN REML 0.045 1 0.036 1

GEERB 0.032 3.5458 0.043 3.3896

GEERB (hbr) 0.011 1.5708 0.048 1.3638

(3,2,1), CN REML 0.041 1 0.051 1

GEERB 0.024 2.8718 0.04 3.1456

GEERB (hbr) 0.033 1.4897 0.057 1.439

Table 4.3 SII analysis: original data

Intercept Mathkind Gender Minority ses

REML est 57.49 �0.48 �1.36 �8.51 5.40

se 1.33 0.02 1.72 2.37 1.27

p-value 0.00 0.0000 0.4290 0.0003 0.0000

GEERB est 55.64 �0.47 �2.03 �8.55 4.78

se 2.37 0.02 1.60 2.54 1.21

p-value 0.00 0.0000 0.2033 0.0007 0.0001

GEERB (hbr) est 53.90 �0.49 �2.85 �1.93 3.81

se 2.50 0.02 1.61 2.57 1.23

p-value 0.00 0.0000 0.0774 0.4541 0.0019

significant, except for the female effect. Thus, REML and GEERB yielded similar
analyses. The GEEhbr analysis differs some in that it did not find the minority effect
significant.

For a sensitivity analysis, we corrupted one observation of the response variable
and its continuous mathkind variable replacing the original values with points at
10 standard deviations from their centers. Hence, the corrupted observation is a
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Table 4.4 SII Analysis with a bad point of high leverage

Intercept Mathkind Gender Minority ses

REML est 58.80 0.12 �2.21 �0.05 �7.52

se 1.62 0.01 2.26 3.01 1.55

p-value 0.00 0.0000 0.3276 0.9875 0.0000

GEERB est 55.27 �0.26 �2.03 �6.84 1.29

se 2.46 0.01 1.66 2.62 1.18

p-value 0.00 0.0000 0.2194 0.0091 0.2747

GEERB (hbr) est 53.30 �0.48 �2.69 �2.10 3.90

se 2.45 0.01 1.61 2.56 1.15

p-value 0.00 0.0000 0.0957 0.4107 0.0007

bad point of high leverage. The corresponding results for parameter estimates and
inference dramatically changed in the REML analysis. As shown in Table 4.4, the
estimates for the mathkind and ses variables not only reversed sign, they also are
significant in the reversed sign sense. However, the GEERB and GEEhbr analyses
are insensitive to the corrupted case. The GEEhbr analysis, estimates and inferences,
changed only slightly, whereas the GEERB analysis changed only with respect to
the ses variable, (all signs of their regression coefficients remain the same).

McKean et al. (1996) developed a set of diagnostics to differentiate between
difference fits; see Sect. 3.13 of Hettmansperger and McKean (2011) for discussion.
The overall difference in fits (TDBETAS) is measured by a quadratic form in the
difference of the regression coefficients, where the standardizing matrix is the
inverse of the variance-covariance matrix for the GEERB estimates. If this exceeds
a benchmark, then casewise changes in fits (CFITS) are obtained. In the original SII
data, TDBETAS between REML and GEERB is 1.55 which exceeds the benchmark
0.08, (4.p C 1/2=N). Boxplots of the residuals, (not shown), show numerous
outliers in the data. The effect of outliers is also apparent in the table of regression
coefficients, Table 4.3. For example, the difference in the estimates of the gender
predictor is close to one-half of a standard error.

For the corrupted data, TDBETAS between REML and GEEhbr is 63.95, which
far exceeds the suggested benchmark 0.08. For the corrupted case, CFITS between
REML and GEEhbr is �7:85 which far exceeds in the absolute value the suggested
benchmark of 0.14. Hence, for this corrupted data, using these diagnostics, the
experimenter is alerted to “bad” data, knowing the location of at least one bad case.

4.6 Conclusion

In this paper we proposed a rank-based analogue of the GEE method of Liang
and Zeger (1986) for estimation of parameters of a generalized linear model
where responses are observed longitudinally. This procedure (GEERB) is based
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on minimization of the general rank dispersion function of Jaeckel (1972). Our
procedure allows for general scores functions for symmetric and asymmetric
distributions. As in the linear model case, the analysis can be optimized by
careful selection of the score function. We express the dispersion function in such
a way that its minimizer can be obtained via iterated reweighted least squares
estimation. Using similar assumptions as Liang and Zeger (1986), we established
the asymptotic normality of the rank-based estimator. As we cite in Sect. 4.1, there
are computational R packages available for our estimators.

We confirm the robustness and validity of our procedures via a simulation study.
Over the normal situations simulated in this study, the GEERB estimates with
Wilcoxon scores had close to linear model (independent errors) efficiency of 0.955
relative the traditional REML estimates. For contaminated situations, the GEERB
estimates were much more efficient than the REML estimates. Moreover, applying
the method to the real data set of Sect. 4.5 confirms that the rank method gives
reasonable robust estimates in the existence of outliers. For data with outliers in
factor (covariate) space, we also develop a procedure (GEEhbr) which incorporates
high breakdown weights and gives resistance to these outliers.

Appendix

Proof of Theorem 4.1. Let ˛�.ˇ/ D Ǫ.ˇ; O
.ˇ//. Let k � 1 be arbitrary but fixed.
For i D 1; : : : ;K, let

Zi.ˇ;˛
�.ˇ// D DT

i
OV�1=2

i Wi OV�1=2
i



Yi � a0.�/ �M� .ˇ/

�

D DT
i
OV�1=2

i WiŒY�
i �G�

i .ˇ/ �M1�: (4.27)

We then write the GEERB estimating equations (4.17) in the compact form

KX
iD1

Zi.ˇ;˛
�.ˇ// D 0 : (4.28)

The GEERB estimator Ǒ.k/R solves this equation.
Similar to Liang and Zeger (1986), we first expand K�1=2PK

iD1 Zi.ˇ;˛
�.ˇ// in

a Taylor series about the true parameter ˇ and evaluated at Ǒ.k/R . By the chain rule,
the gradient in this expansion is given by,

5i D
@Zi.ˇ;˛

�.ˇ//
@ˇ

C @Zi.ˇ;˛
�.ˇ//

@˛

@˛

@ˇ

D Ai C BiC : (4.29)
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Because Ǒ.k/R solves Eq. (4.28), the Taylor expansion evaluated at Ǒ.k/R is

0 D
KX

iD1
Zi.ˇ;˛

�.ˇ//C
KX

iD1
5i.
Ǒ.k/

R � ˇ/ :

Solving for
p

K. Ǒ.k/R � ˇ/, we obtain

p
K. Ǒ.k/R � ˇ/ D

(
1

K

KX
iD1

5i

)�1 "
1p
K

KX
iD1

Zi.ˇ;˛
�.ˇ//

#
: (4.30)

Secondly, we fix ˇ and expand K�1=2PK
iD1 Zi.ˇ;˛

�.ˇ// about the true parame-
ter ˛ and evaluated at ˛� to get

1p
K

KX
iD1

Zi.ˇ;˛
�.ˇ// D 1p

K

KX
iD1

Zi.ˇ;˛/C 1

K

KX
iD1

@

˛
Zi.ˇ;˛/

p
K.˛� � ˛/C op.1/

D 1p
K

KX
iD1

Zi.ˇ;˛/C B�C� C op.1/ ; (4.31)

where the op.1/ term is due to regularity conditions which imply that the remainder
term is 1

K Op.1/. Note that the weights are evaluated at the true parameters in this
expansion too.

Because Zi.ˇ;˛/ is evaluated at the true parameters, we use the notation given
in (4.18). Letting hT

it be the tth row the product DT
i V�1=2

i , we then have

1p
K

KX
iD1

Zi.ˇ;˛/ D 1p
K

KX
iD1

niX
tD1

hT
itwitŒy

�
it � g�it.ˇ/ � m.ˇ/�

D 1p
K

KX
iD1

niX
tD1

hT
itaŒR.y

�
it � g�it.ˇ//�:

D 1p
K

KX
iD1

DT
i V�1=2

i aŒR.Y�
i �G�

i .ˇ//�: (4.32)

The second equality holds because the weights are evaluated at the true parameters.
By Assumptions [A.5] and [A.6], it follows from Theorem 3.1 of Brunner

and Denker (1994) and the usual Cramer-Wold device that 1p
K

PK
iD1 Zi.ˇ;˛/ is

asymptotically normal with mean 0 and variance-covariance matrix

M D 1

K

KX
iD1

DT
i V�1=2

i Var.'�i /V
�1=2
i Di: (4.33)
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Note that the form of the variance-covariance matrix follows from (4.32) and the
independence between subjects.

Returning to expression (4.31), from the assumptions we have C� D Op.1/.
Because the scores can change value at only a finite number of points [e.g.,
Sect. 3.2.1 of Hettmansperger and McKean (2011)], we can write B� as

B� D 1

K

KX
iD1

�
@

@˛
DT

i V�1=2
i

�
aŒR.Y�

i �G�
i .ˇ//�: (4.34)

Assuming Lindeberg-Feller conditions for the quantity in braces, as in (A.4), it
follows, similar to (4.32) that

p
KB� D Op.1/, and, hence, B� D op.1/.

To finish the proof, we need to consider the terms in expression (4.29). A simple
derivation shows that

Ai D �DT
i V�1=2

i WiV
�1=2
i DT

i :

By assumption, C D Op.1/. Since,

Bi D @Zi.ˇ;˛
�.ˇ//

@˛

arguments similar to those above show that K�1PK
iD1 Bi D op.1/. Hence,

1

K
5i D

1

K

KX
iD1

DT
i V�1=2

i V�1=2
i Di C op.1/:

This and the discussion around expressions (4.32) and (4.33) finish the proof of
Theorem 4.1.

As a final note, the asymptotic representation of the estimator is

p
K. Ǒ.k/R � ˇ/ D

(
1

K

KX
iD1

Ai

)�1 "
1p
K

KX
iD1

DT
i V�1=2

i aŒR.Y�
i �G�

i .ˇ//�

#
C op.1/:

(4.35)
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Chapter 5
On the Asymptotic Distribution of a Weighted
Least Absolute Deviation Estimate
for a Bifurcating Autoregressive Process

Jeff T. Terpstra

Abstract This paper introduces a new class of estimates for estimating the parame-
ter vector of a first-order bifurcating autoregressive model. The estimates minimize a
sum of weighted absolute deviations where the weights are of the Schweppe variety.
Asymptotic linearity properties are derived for the so called WL1-estimate. Based
on these properties, the WL1-estimate is shown to be asymptotically normal at rate
n1=2. The results hinge on two new law of large numbers theorems for bifurcating
processes. As an application of the theory, some asymptotic relative efficiency
comparisons are made.

Keywords Asymptotic normality • Bifurcating autoregressive model
• L1-estimates • Median • Schweppe weights

5.1 Introduction

Bifurcating processes are generally utilized to model tree structured data. For
instance, these processes can be used to study cell lineage data where cell
characteristics (e.g. diameters, lifetimes, and/or volumes) are of interest. Briefly,
let Z1, Z2, . . . , Zn denote the random variates from a perfectly observed binary
tree with g generations. Here, Z1 corresponds to the initial node (i.e. generation
0) while observations Z2i , Z2iC1, . . . , Z2iC1�1 correspond to the 2i observations from
generation i, i D 1; 2; : : : ; g. Thus, the total number of observations in terms of g is
given by n D 2gC1 � 1. Furthermore, the indexing is such that observations Z2t and
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Z2tC1 are offspring of observation Zt, t D 1; 2; : : : ; 2g � 1.Hence, the process (i.e.
fZtg) is referred to as a bifurcating process. Adopting the notation of Terpstra and
Elbayoumi (2012) let

Œx� D
� bxc I x � 1
blog2.x/c C 1 I 0 < x < 1;

(5.1)

where bxc denotes the largest integer less than or equal to x. In this way, for a given
observation Zt, the ancestors can be written as ZŒt=21�, ZŒt=22�, ZŒt=23�, . . . , where Z0,
Z�1, Z�2, . . . denote the unobserved predecessors of Z1.

A popular model for tree structured data is the (first-order) bifurcating autore-
gressive model, denoted here and after as the BAR(1) model. Using the notation
in (5.1), the model can be written as

Zt D 
0 C 
1ZŒt=2� C "t
defD X|

Œt=2��C "t; (5.2)

where XŒt=2� D .1;ZŒt=2�/| and � D .
0; 
1/
|. Furthermore, "t is an element

of one of the vectors given in f."2t; "2tC1/|g1tD�1, which is assumed to be an
independently and identically distributed (iid) sequence of bivariate exchangeable
random variables with continuous joint distribution FJ and (common) marginal
distribution F. Note that Zt can be written as

P1
iD0 
 i

1."Œt=2i�C 
0/. Thus, Zt is well-
defined as an almost sure limit provided j
1j < 1 and E Œj"1j� < 1, which we will
assume throughout the paper. More importantly, since f"Œt=2i�g1iD0 is an iid sequence
for all t it follows that the distribution of Zt is the same for all t. In particular,
E Œh.Zt/� D E Œh.Z1/� and E



h.ZŒt=2�; "t/

� D E Œh.Z1; "2/� for all t and h (assuming
the expectations exists).

A number of papers have been written on the robust estimation of the parameters
in (5.2). See, for example, Huggins and Marschner (1991), Marschner (1992),
Huggins (1996), Bui and Huggins (1998) and Basawa and Zhou (2004). However,
many of these methods are rooted in the use of Mallows-type weighting schemes.
That is, weighting schemes that only incorporate information on the design point
(i.e. ZŒt=2� in the present context). This can lead to reduced efficiency. Incorporating
information from an initial fit into the weights (via the corresponding residuals) can
regain some of this lost efficiency. This is the premise for considering Schweppe-
type weighting schemes. In fact, in the autoregressive time series context, Terpstra
et al. (2000, 2001) have shown (via Monte Carlo) that estimates based on Schweppe-
type weighting schemes can be both robust and efficient simultaneously. Since the
BAR model implies that each line in the tree follows an autoregressive process one
can expect similar properties to hold in the BAR context.

More specifically, the proposed estimate of �, say O�n D . O�n0;
O�n1/

|, is a value
of � that minimizes

D.�/ D
nX

tD2
b.ZŒt=2�; O"t/ j"t.�/j ; (5.3)
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where b.ZŒt=2�; O"t/ denotes a Schweppe-type weight to be used for the tth term, O"t is
a residual based on some initial fit, and "t.�/ D Zt �X|

Œt=2��. Note that b 	 1 yields
the least absolute deviation estimate. Thus, we will refer to the estimate obtained by
minimizing (5.3) as a weighted L1-estimate (WL1).

As long as b is positive, it can be shown that D.�/ is non-negative, piecewise
linear and convex. Hence, a minimum of D.�/ is guaranteed. Although this
minimum is not necessarily unique, it turns out that the diameter of the set of
solutions is op

�
n�1=2	. Alternatively, the estimate of � can be viewed as an

approximate solution of the equation S.�/ D �rD .�/ D 0 where

S.�/ D
nX

tD2
b.ZŒt=2�; O"t/XŒt=2�sgn ."t.�// :

This paper derives the asymptotic distribution of the WL1-estimate in the context
of the BAR(1) model. Specifically, Sect. 5.2 presents and discusses two law of
large numbers theorems. These theorems play a critical role in the theoretical
development of the estimate. Section 5.3 presents the main results of the paper,
namely, asymptotic uniform linearity, asymptotic uniform quadraticity, and the
asymptotic normality of the WL1-estimate. Proofs for all of the results are given in
Sect. 5.4 and some applications of the theory are given in Sect. 5.5. Some concluding
remarks are given in Sect. 5.6.

5.2 Some Law of Large Numbers Results

In this section we present two law of large numbers theorems which play critical
roles in the theoretical development of this paper. The first theorem is basically
an extension of the law of large numbers result given in Terpstra and Elbayoumi
(2012). For instance, letting a1 D a2 D a � 1 and wa�1;0 D w0;a�1 D 1

(wkl D 0 o.w.) in (5.4) yields the generalized Lipschitz condition used by Terpstra
and Elbayoumi (2012). Moreover, (5.4) also satisfies the condition needed in the
proof of Corollary 3.2 of that paper. The theorem is as follows; see Sect. 5.4 for a
proof.

Theorem 5.1. Let fZtgntD1 denote the n random variables from a perfect binary
tree. Then, hn D n�1Pn

tD1 h.Zt/ D E Œh.Z1/� C op.1/ provided the following four
conditions are satisfied:

A1. f."2t; "2tC1/|g1tD�1 is an iid sequence of bivariate exchangeable random
variables,
A2. Zt DP1

iD0  i"Œt=2i�, where j ij D O.ˇi/ for some ˇ 2 .0; 1/,
A3. h is a real-valued function that satisfies the following inequality for some
C > 0:

jh.x/ � h.y/j � Cjx � yj
 

a1X
kD0

a2X
lD0

wkljxjkjyjl
!
; (5.4)
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where wkl is either 1 (indicates presence of jxjkjyjl) or 0 (indicates absence of
jxjkjyjl) and
A4. E Œj"1j� � < 1, where

� D 2maxf1;max
.k;l/
fwkl.kC l/g;max

.k;l/
fwkl.kC 1/g;max

.k;l/
fwkllgg: (5.5)

As an application of Theorem 5.1 let h.x/ D w.x/pd.x/, where w.x/ is a bounded
Lipschitz function and pd.x/ is an arbitrary d-degree polynomial in x. Adding in and
subtracting out w.x/pd.y/ leads to the following inequality

jh.x/ � h.y/j � jw.x/jjpd.x/ � pd.y/j C jpd.y/jjw.x/ � w.y/j: (5.6)

It follows from the Mean Value Theorem that

jpd.x/ � pd.y/j D jp0
d.�xC .1 � �/y/jjx � yj

where � 2 .0; 1/. Moreover, it now follows from the cr-inequality [e.g. page 44
of Jurečková and Sen (1996)] that jp0

d.�xC .1 � �/y/j � C
Pd�1

kD0
Pd�1

lD0 wkljxjkjyjl
where C only depends on the coefficients of the polynomial and the constants from
the cr-inequality and wk;0 D w0;l D 1 (wkl D 0 o.w.). Hence, pd.x/ satisfies (5.4)
and (5.5) with a1 D a2 D d� 1 and � D 2d. This fact, combined with the bound on
w.x/ and it’s Lipschitz property, imply that h.x/ also satisfies (5.4) and (5.5) with
a1 D d � 1, a2 D d, wk;0 D w0;l D 1 (wkl D 0 o.w.) and � D 2d. We can now apply
Theorem 5.1 to show, for example, that

1

n

nX
tD1

w.Zt/.Zt � Z/2 D E


w.Z1/.Z1 � E ŒZ1�/

2
�C op.1/I

which corresponds to a weighted variance result.
The second theorem is a new law of large numbers result for a bifurcating

process. It can be viewed as a generalization of Theorem 5.1 from the perspective
that the summands are now allowed to depend on ."2t; "2tC1/|. The need for such a
theorem stems from the fact that the weights being considered in this paper are of
the Schweppe variety. Once more, the proof of this theorem is given in Sect. 5.4.

Theorem 5.2. Let fvtgmtD1, where vt D .Zt; "2t; "2tC1/|, denote the m D .n � 1/=2
tri-vectors from a perfect binary tree. Then, hm D m�1Pm

tD1 h.vt/ D E Œh.v1/� C
op.1/ provided A1 and A2 of Theorem 5.1 are satisfied in addition to the following
three conditions:

A1. E

jh.v1/j1Cı� <1 for some ı > 0,

A2. jh.x; "2; "3/�h.y; "2; "3/j � C."2; "3/jx�yj �Pa1
kD0

Pa2
lD0 wkljxjkjyjl

	
for some

C."2; "3/ > 0 such that E ŒC."2; "3/� <1 and
A3. E Œj"1j� � < 1, where � is defined in (5.5), but now uses the wkl given in A2
of this theorem.
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As a special case of Theorem 5.2 let h.vt/ D h1.Zt; "2t/ C h1.Zt; "2tC1/.
Furthermore, suppose h1 satisfies A1 of the theorem and a condition analogous to
A2 of the theorem. Then, it follows from Theorem 5.2 that

1

n

nX
tD2

h1.ZŒt=2�; "t/ D
�
2m

n

� 
1

m

mX
tD1

h1.Zt; "2t/C h1.Zt; "2tC1/
2

!

D E Œh1.Z1; "2/�C op.1/: (5.7)

5.3 Asymptotic Distribution Theory

We begin this section with a list of assumptions that are sufficient for the asymptotic
normality of the estimate. Assumptions labeled with an “F” pertain to the (marginal)
error distribution (F) while assumptions labeled with a “B” correspond to the weight
function (b).

F1. f ."/ D F0."/ is continuous.
F2. f ."/ is bounded.
F3. f .0/ > 0.
F4. E



"41
�
<1.

B1. b.z; "/ is bounded.
B2. jb.z1; "1/ � b.z2; "2/j � Ck.z1; "1/| � .z2; "2/|k for some C > 0.
B3. E Œb.Z1; "2/sgn."2/ j Z1� D 0.

With regard to B3, we note that it is a priori satisfied provided f is symmetric about
zero and b.z;�"/ D b.z; "/.

Moreover, recall from Sect. 5.1 that the weights depend on the residuals from
some initial fit. For instance, in practice, b is typically defined as b.ZŒt=2�; O"t/ D
b�.mn1.ZŒt=2�/;mn2. O"t// where mn1 and mn2 denote robust versions of Mahalanobis
distance and b� is a corresponding weight function. Thus, the weights implicitly
depend on an initial estimate of �, measures of location and dispersion and
possible stochastic tuning constants. In such cases it is more appropriate to denote
the weights by b.ZŒt=2�; "tI O�/ where O� denotes a vector of estimated nuisance
parameters. However, we assume throughout this paper that O� can be replaced by
its non-stochastic counterpart without affecting the asymptotic results. Lemma 5.4
of Appendix gives a set of sufficient conditions that justifies such an assumption.
Consequently, for all theoretical results, we write the weight function as b.ZŒt=2�; "t/

and emphasize that the only random elements for theoretical purposes are ZŒt=2�
and "t.

Next, recall that the estimate, say O�n, is such that D
� O�n

�
D min� D.�/.

Ultimately, we wish to show that this estimate is asymptotically normal. To this
end, the true parameter vector will be denoted by �0. Furthermore, let 	 2 <2, and
define the following functions of 	
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Dn.	/ D D
�
�0 C	n�1=2	 ;

Sn .	/ D � @

@	
Dn.	/ D n�1=2S

�
�0 C	n�1=2	 and

Qn.	/ D Dn.0/ � S|
n .0/	C	|

�
1

2�
C
�

	;

where � D .2f .0//�1 and C D E


b.Z1; 0/X1X

|
1

�
.

Two key results needed to prove the fundamental result are asymptotic uniform
linearity (AUL) and asymptotic uniform quadraticity (AUQ). Briefly, the AUL and
AUQ results refer to the following two propositions, respectively: for all c > 0

sup
k	k�c

��Sn .	/ � Sn .0/C ��1C	
�� D op.1/ and sup

k	k�c
jDn.	/ � Qn.	/j D op.1/:

For future reference, we note that asymptotic linearity (AL) is the same as AUL, less
the supremum. Theorem 5.3 establishes the above results; see Sect. 5.4 for a proof.

Theorem 5.3. AL, AUL and AUQ hold under model assumption (5.2), F1–F4 and
B1–B2.

With AUL and AUQ established, the next step is to derive the asymptotic distri-
bution of Sn.0/. This result is given in Theorem 5.4 and its proof can be found in
Sect. 5.4.

Theorem 5.4. If model assumption (5.2), F4 and B1–B3 hold then Sn.0/
D�!

N .0;˙ / where ˙ D E Œ.X11/.X11/
|� and 1 D 2�1=2.b.Z1; "2/sgn."2/ C

b.Z1; "3/sgn."3//.

Finally, to obtain the asymptotic distribution of O�n let 	 D n1=2 .� � �0/ and let
Q	n denote the value that minimizes Qn .	/. Taking the derivative of this function

with respect to 	 and equating it to zero yields the following representation for Q�n

Q	n D
p

n
� Q�n � �0

	 D �C�1Sn .0/ : (5.8)

Note that because Q�n depends on the true value of the process, it is not a statistic.
That said, its asymptotic distribution can still be derived. For instance, upon
combining Theorem 5.4 with (5.8) we obtain

p
n
� Q�n � �0

	 D�! N
�
0; �2C�1˙ C�1	 : (5.9)

Now consider the quantity O	n D n1=2
� O�n � �0

�
where O�n denotes the estimate

obtained from minimizing the objective function given in (5.3). Jaeckel’s (1972)
convexity argument along with the AUQ result can then be used to show that

n1=2
� O�n � Q�n

�
D O	n � Q	n D op.1/. The main result of this paper, which we

state as Theorem 5.5, now follows from this fact and (5.9).
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Theorem 5.5. Under model assumption (5.2), F1–F4 and B1–B3 we have the
following

p
n
� O�n � �0

�
D�! N

�
0; �2C�1˙ C�1	 :

5.4 Technical Details

5.4.1 Proof of Theorem 5.1

Note that (5.4) yields a condition that is similar to that of A3 in Terpstra and
Elbayoumi (2012). In fact, it is easily shown that this assumption is also sufficient
for Lemma 3.1 of Terpstra and Elbayoumi (2012). For instance, simply replace the
inequality in (1) of that paper with the following inequality

jh.Zt/ � h.Qt;j/j � ˇjKa

 
a1X

kD0

a2X
lD0

wkl.jTt;jjjQt;jjkCl C jTt;jjkC1jQt;jjl/
!

and then continue as in that paper. The only additional adjustment is to replace
Eq. (7) of that paper with the following inequality

V Œh.Z1/ � h.c/� � C2
aE

"
.jZ1j2 C jcj2/

 
a1X

kD0

a2X
lD0

wkljZ1j2k

!#
;

where c is any constant such that h.c/ < 1. Hence, upon making these minor
modifications, Theorem 3.1 of Terpstra and Elbayoumi (2012) remains valid. That
is, hn D E Œh.Z1/�C op.1/. �

5.4.2 Proof of Theorem 5.2

To begin, note that hm D hm1 C hm2 where

hm1 D 1

m

mX
tD1

E Œh.vt/ j Zt� and hm2 D 1

m

mX
tD1

.h.vt/ � E Œh.vt/ j Zt�/ :

Consider hm1 first. In doing so, let H.x/ D E Œh.vt/ j Zt D x� and note that the
independence of Zt and ."2t; "2tC1/| along with A2 of the theorem imply that

jH.x/ � H.y/j � E Œjh.x; "2; "3/ � h.y; "2; "3/j�

� E ŒC."2; "3/� jx � yj
 

a1X
kD0

a2X
lD0

wkljxjkjyjl
!
: (5.10)
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Thus, (5.10) satisfies (5.4) so Theorem 5.1 yields hm1 D E Œh.v1/�C op.1/. Finally,
let Ut D h.vt/�E Œh.vt/ j Zt� so that hm2 D m�1Pm

tD1 Ut. It follows from A1 of the
theorem and the definition given on page 190 of Hamilton (1994) that fUtg1tD1 is an
L1-mixingale with respect to ˝t D � -fieldfZ1; "2; "3; : : : ; "2t; "2tC1g. For example,
let ct D E ŒjUtj� and �t D I.t D 0/, where I.�/ denotes the indicator function.
Moreover, since E ŒUt� D 0, it readily follows from Proposition 7.6 of Hamilton
(1994) that hm2 D op.1/. Hence, hm D E Œh.v1/�C op.1/. �

5.4.3 Proof of Theorem 5.3

Heiler and Willers (1988) have shown that AL, AUL and AUQ are equivalent in
the context of linear regression. The only two features of the regression model and
objective function that are utilized in their proof are linearity and convexity, respec-
tively. Since the BAR(1) model is linear in its parameters and our objective function
is convex, the same proof can essentially be used to establish the equivalence of AL,
AUL and AUQ in the current context. That is, AUL and AUQ follow from the AL
result, which we subsequently prove.

To begin, let Un D �| .Sn.	/ � Sn.0// where � 2 <2 and 	 2 <2 are
arbitrary but fixed. Since vector convergence holds if and only if component-wise
convergence holds (obtained via �), it suffices to show that Un D ���1�|C	 C
op.1/ in order to prove the theorem. Of course, this will follow if we can show that
E ŒUn� D ���1�|C	C o.1/ and V ŒUn� D o.1/. Consider E ŒUn� first. In doing so,
let wt D w.ZŒt=2�; "t/ D b.ZŒt=2�; "t/�

|XŒt=2� and note that

Un D �2n�1=2
nX

tD2
w.ZŒt=2�; "t/

�
I
�
"t � X|

Œt=2�	n�1=2� � I ."t � 0/
�

a:e:

defD �2n�1=2
nX

tD2
wtdnt:

However, since the distribution of .ZŒt=2�; "t/
| and .Z1; "2/| are the same for all t it

follows that

E ŒUn� D �2.n � 1/n�1=2E


w.Z1; "2/

�
I
�
"2 � X|

1	n�1=2	 � I ."2 � 0/
	�
:

It now follows from Lemma 5.1 that E ŒUn� D ���1�|C	C o.1/.
Next, let us consider V ŒUn�. Again, since the distribution of .ZŒt=2�; "t/

| and
.Z1; "2/| are the same for all t it follows that

V ŒUn� D 4

�
n � 1

n

�
V Œw2dn2�C 8

n

X
s<t

COV Œwsdns;wtdnt�
defD Vn1 C Vn2:
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With regard to Vn1, note that V Œw2dn2� � E


.w2dn2/

2
�

and E


.w2dn2/

2
� D O.n�1=2/

by Lemma 5.2. Hence, Vn1 D o.1/.
Consider Vn2 next. For s < t, there are four cases to consider. That is, s and t are

such that:

1. "s and "t are sisters,
2. "s and "t belong to the same line,
3. an ancestor of "t is a sister of "s and
4. "s and "t belong to different lines, but are not sisters.

Dividing up the sum according to these cases yields Vn2
defDP4

iD1 Vn2i. Furthermore,
it can be shown that the number of terms for each of these sums are O.n/,
O.n log2.n//, O.n log2.n// and O.n2/, respectively. Since V Œw2dn2� D O.n�1=2/
(by Lemma 5.2) and COV ŒX;Y� � p

V ŒX�V ŒY� it follows that Vn2i D o.1/ for
i D 1; 2; 3. Therefore, we only need to show that Vn24 D o.1/ to complete the proof.
However, this follows from Lemma 5.3. The details are similar to those following
the discussion of Eq. (9) in Terpstra and Elbayoumi (2012). �

5.4.4 Proof of Theorem 5.4

Since Sn .0/ is a vector we will use the Cramer-Wold device and show �|Sn .0/ is
asymptotically normal where � 2 <2 is arbitrary but fixed. To begin, recall from
Theorem 5.2 that there are m D .n � 1/=2 tri-vectors of the form .Zt; "2t; "2tC1/|.
Since "2t and "2tC1 are dependent, we rewrite �|Sn .0/ as follows

�|Sn .0/ D
r
2m

n

mX
tD1

1p
m
.�|Xt/

�
b.Zt; "2t/sgn."2t/C b.Zt; "2tC1/sgn."2tC1/p

2

�

defD
r
2m

n

mX
tD1

1p
m
.�|Xt/t

defD
r
2m

n
Sm.0/:

Since
p
2m=n D 1C o.1/ we need only consider Sm.0/. To that end, define

Ym;t D 1p
m
.�|Xt/t and S�

m;j D
jX

tD1
Ym;t:

Furthermore, let ˝m;t D � -fieldfZ1; "2; "3; : : : ; "2t; "2tC1g. Under F4 and B1 it is
straight forward to show that

E


Y2m;t

� D 1

m
E


.�|Xtt/

2
� D 1

m
�|˙� � �|˙� < 1: (5.11)
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Next, it follows from B3 that

E ŒYm;t j ˝m;t�1�DE


1p
m

�|Xtt j ˝m;t�1
�

D 1p
m
.�|Xt/E Œt j ˝m;t�1�D0: (5.12)

It now follows from (5.11) and (5.12) that fS�
m;j; ˝m;jg is a zero-mean square-

integrable martingale array with differences Ym;j. Thus, we set out to show that the
assumptions used in this paper imply the four conditions of the Martingale Central
Limit Theorem (MCLT) stated as Corollary 3.1 in Hall and Heyde (1980). Consider
the first condition of the MCLT. Using B1 to bound t, we obtain

max
1�t�m

jYm;tj D max
1�t�m

ˇ̌
ˇ̌ 1p

m
.�|Xt/t

ˇ̌
ˇ̌ � K

1p
m

max
1�t�m

kXtk;

where K is a constant depending only on the bound in B1 and �. However, since

P


1p
m

max
1�t�m

kXtk > "
�
� 1

"2
E

kXtk2I

�kXtk2 > m"2
	�

it follows that m�1=2 max1�t�m kXtk D op.1/ provided E

kXtk2

�
< 1 (which

is implied by F4). Hence, max1�t�m jYm;tj D op.1/ and the first condition of the
MCLT is satisfied. Consider the second condition of the MCLT next. In doing so,
let h.Zt; "2t; "2tC1/ D .�|Xtt/

2. It follows from F4 and B1 that A1 of Theorem 5.2
is satisfied (e.g. ı D 1). Moreover, it follows from B1 and B2 that A2 and A3 of
Theorem 5.2 are satisfied with a1 D 1, a2 D 2, w0;0 D w1;0 D w0;1 D w0;2 D 1

(wkl D 0 o.w.) and � D 4. Here, C."2; "3/ turns out to be constant so the finite
expectation assumption is trivial. The details are similar to those that follow (5.6).
Hence, it follows from Theorem 5.2 that

mX
tD1

Y2m;t D
1

m

mX
tD1

.�|Xtt/
2 D �|E



XtX

|
t 

2
t

�
�C op.1/:

This verifies the second condition of the MCLT. Now, the above derivations also
imply the following

E


max
1�t�m

ˇ̌
Y2m;t

ˇ̌� � E

"
mX

tD1
Y2m;t

#
D E



.�|Xtt/

2
� D O.1/:

Hence, the third condition of the MCLT is satisfied. For verification of the fourth
condition one is referred to the “Remarks” paragraph on page 59 of Hall and Heyde
(1980). Thus, since all four conditions of the MCLT have been verified, we have
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proven that

Sm.0/ D S�
m;m

D�! N.0;�|˙ �/

which, by the Cramer-Wold device, completes the proof. �

5.5 Applications of Theory

Recall that when the weights only incorporate information on the design point
(i.e. b.z; "/ D b.z/) they are referred to as Mallows weights. The corresponding
estimates can be viewed as a special case of the theory presented in this paper. For
example, the result given in Theorem 5.5 remains valid with C D E



b.Z1/X1X

|
1

�
and ˙ D .1 C �s/E



b2.Z1/X1X

|
1

�
, where �s D COR.sgn."2/; sgn."3//. In

particular, when b.z/ 	 1 we obtain the result for the L1-estimate.
We note that the result for the least squares estimate [see e.g. Zhou and Basawa

(2005)] is very similar to that of the L1-estimate. For instance, simply replace �s

with � D COR."2; "3/ and �2 with �2 D V Œ"2�. Upon doing so, the asymptotic
relative efficiency (ARE) of the L1-estimate of 
1 relative to the least squares
estimate of 
1 is given by Œ�2.1C �/�=Œ�2.1C �s/�. Note that �2=�2 represents the
corresponding ARE for the location model and .1 C �/=.1 C �s/ is an adjustment
that takes into account the dependence between "2 and "3. As an example, suppose
FJ corresponds to the following bivariate contaminated normal distribution

.1 � �/N.0;˝/C �N.0; !2˝/ where ˝ D

1 �

� 1

�
: (5.13)

While the values of �2, �2, and � can be calculated directly, a Monte Carlo
approximation (N D 100; 000) was used for the values of �s. Table 5.1 presents
some ARE values for different values of � , � , and !2. Unfortunately, the ARE
calculations are not as straightforward when b 6	 1. The difficulties primarily stem
from the fact that the matrices (i.e. C and ˙ ) which define the asymptotic variance-
covariance matrix do not necessarily simplify when b 6	 1. In addition, the exact
distribution of Zt is difficult to determine (for � > 0) when the errors have the
distribution given in (5.13). However, since C and ˙ correspond to expectations,
one can readily approximate these quantities via Monte Carlo.

Table 5.1 AREs of the L1-estimate of 
1 Relative to the Least Squares Estimate

.�; !2/| � D 0 � D 0:1 � D 0:5 � D 0:9

.0;NA/| 0.637 0.661 0.718 0.707

.0:1; 25/| 1.831 1.895 2.071 2.035



92 J.T. Terpstra

As an example, let us approximate the ARE between two different WL1-
estimates (b 6	 1 for both estimates). Consider first a Mallows-type estimate where
the weights are defined as

bm.z/ D min

(
1;
�2z �

2
0:95.1/

.z � �z/2

)
;

where �z D E ŒZt�, �2z D V ŒZt�, and �20:95.1/ D 3:84 corresponds to the 95th
percentile of a Chi-square distribution with one degree of freedom. Here, all points
of high leverage (i.e. large values of ZŒt=2�) will be downweighted.

On the other hand, consider the following Schweppe-type estimate where the
weights are defined as

bs.z; "/ D 1 � I
�
"2 > �2" �

2
0:95.1/

	
I
�
.z � �z/

2 > �2z �
2
0:95.1/

	
.1 � bm.z//;

where I.�/ denotes the indicator function and �2" D V Œ"t�. Note that these weights
will only downweight points of high leverage when O"2t and/or O"2tC1 are deemed to
be large. Furthermore, the degree to which these so-called bad leverage points are
downweighted is identical to that of the Mallows estimate.

As previously discussed, the values of C and ˙ can be approximated via Monte
Carlo (N D 100; 000). In fact, only the more simple AR(1) model given by

Zt D 
0 C 
1Zt�1 C "t

is needed to generate the fZtg process. That is, it is not necessary to generate
a bifurcating tree to approximate these matrices. Moreover, this can be done
independently from the generation of ."2t; "2tC1/| since the BAR(1) model implies
that Zt and ."2t; "2tC1/| are independent.

In what follows, the values of 
1 and 
0 are such that 
1 2 f0:1; 0:5; 0:9g and

0 D 10.1 � 
1/. The distribution of ."2t; "2tC1/|, FJ , is the same as that given
in (5.13). The values used for 
0 imply that the mean of the process (�z) is always
equal to 10. Additionally, �2z D �2" =.1 � 
21/ where �2" D 1 � � C �!2.

The ARE results for this example are given in Table 5.2. Note that when � D 0

there is only a small gain in efficiency and this gain is relatively stable across the
different values of 
1 and � . On the other hand, when � > 0, there are some sizable

Table 5.2 AREs of the
Mallows WL1-estimate of 
1
Relative to the Schweppe
WL1-estimate

.�; !2/| 
1 � D 0 � D 0:1 � D 0:5 � D 0:9

.0;NA/| 0.1 1.041 1.043 1.045 1.044

.0;NA/| 0.5 1.043 1.047 1.046 1.042

.0;NA/| 0.9 1.045 1.048 1.046 1.045

.0:1; 25/| 0.1 1.581 1.579 1.618 1.595

.0:1; 25/| 0.5 1.378 1.405 1.406 1.384

.0:1; 25/| 0.9 1.104 1.103 1.116 1.122
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gains in efficiency. These gains are relatively stable across the different values of
� , but appear to be a decreasing function of 
1. More importantly, the gain in
efficiency can be attributed to how the good leverage points are being weighted.
That is, by bm.Zt/ (< 1) in the case of the Mallows WL1-estimate and not at all
(e.g. bs.Zt; "2t/ D 1) in the case of the Schweppe WL1-estimate. Once more, these
results support the well-known fact that incorporating information from residuals
into the weights can produce more efficient estimates.

5.6 Conclusion

We commence this section with a few observations regarding the theory presented
in this paper. For instance, we note that there is an alternative representation of ˙ ,
the asymptotic variance-covariance matrix of Sn.0/. More specifically, if we let

�bs.Z1/ D COR.b.Z1; "2/sgn."2/; b.Z1; "3/sgn."3/jZ1/ and

�2bs.Z1/ D V Œb.Z1; "2/sgn."2/jZ1�

denote the conditional (on Z1) correlation of b.Z1; "2/sgn."2/ and b.Z1; "3/sgn."3/
and the conditional variance of b.Z1; "2/sgn."2/, respectively, then it can be shown
that

˙ D E


�2bs.Z1/.1C �bs.Z1//X1X

|
1

�
:

Recall that "2 and "3 are, in general, dependent random variables. Thus, this
alternative representation of ˙ reflects how the asymptotic distribution of O�n is
affected by this dependence.

Next, we note from a robustness perspective (e.g. bounded influence function)
that the weight function b is typically chosen so that b.z; "/z is uniformly bounded.
Under this scenario, assume further that b.z; "/z satisfies the Lipschitz property (see
B2). Then, a careful inspection of the proofs reveals that the finite fourth moment
assumption given in F4 can be relaxed to a finite second moment assumption.

Finally, we note that the theory can be extended to the more general BAR(p)
model. That is, a bifurcating autoregressive model of order p. The result given
in Theorem 5.5 is essentially the same. The fundamental difference is that XŒt=2�

needs to be redefined as .1;ZŒt=21�;ZŒt=22�; : : : ;ZŒt=2p�/
| in the definitions of C and ˙ .

However, to prove this result Theorems 5.1 and 5.2 need to be generalized to the
case where b.z; "/ is a function from <p � < to <.

In closing, the results in this paper establish the asymptotic distribution of the
WL1-estimate for a bifurcating autoregressive model. Martingale and mixingale
theorems combined with two new law of large numbers theorems are the under-
pinning tools needed to obtain the results. That said, Theorems 5.1 and 5.2 are
applicable to other situations as well. For instance, in establishing consistency
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results for basic summary statistics such as (weighted) means and variances.
Moreover, Theorems 5.3–5.5 can be used to derive tests of hypotheses for the
model parameters based on Reduction in Dispersion, Aligned Rank, and/or Wald-
type statistics. The interested reader is referred to Sect. 3.6 of Hettmansperger and
McKean (2011) for details in the linear regression context.

Acknowledgements I would like to thank an anonymous referee for providing helpful comments
regarding the initial version of this paper.

Appendix

Lemma 5.1. Let w.Z1; "2/ D b.Z1; "2/�
|X1, where X|

1 D .1;Z1/. Then, assuming
F1, F2, F4, B1 and B2, we have the following:

E


w.Z1; "2/

�
I
�
"2 � X|

1	n�1=2	 � I ."2 � 0/
	�

D n�1=2E


b.Z1; �n/f .�n/.�

|X1X
|
1	/

�
D n�1=2E



b.Z1; 0/f .0/.�

|X1X
|
1	/

�C o
�
n�1=2	 ;

where �n 2

�jX|

1	jn�1=2; jX|
1	jn�1=2�.

Proof. Upon conditioning on Z1 and exploiting the independence of Z1 and "2 we
obtain the following

E


w.Z1; "2/

�
I
�
"2 � X|

1	n�1=2	 � I ."2 � 0/
	� D E

"Z X
|
1 	n�1=2

0

w.Z1; x/dF.x/

#
:

Next, it follows from F1, B2 and the First Mean Value Theorem given on page 230
of Bartle (1976) that

E

"Z X
|
1 	n�1=2

0

w.Z1; x/dF.x/

#
D E



w.Z1; �n/f .�n/X

|
1	n�1=2�

D n�1=2E


b.Z1; �n/f .�n/.�

|X1X
|
1	/

�
;

where �n 2

�jX|

1	jn�1=2; jX|
1	jn�1=2�. Now, adding in and subtracting out the

appropriate quantity we get n�1=2E


b.Z1; �n/f .�n/.�

|X1X
|
1	/

� D En1CEn2 where

En1 D n�1=2E


b.Z1; 0/f .0/.�

|X1X
|
1	/

�
and

En2 D n�1=2E


.b.Z1; �n/f .�n/ � b.Z1; 0/f .0//.�

|X1X
|
1	/

�
:
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Note that F2, F4 and B1 imply that the expectation in En1 is finite. Thus, consider
En2. It follows from F4 that �n D op.1/. Furthermore, it follows from F1, F2, B1
and B2 that b.Z1; �n/f .�n/�b.Z1; 0/f .0/ is a bounded random variable that is op.1/.
Hence, F4 and a variant of the Dominated Convergence Theorem imply that En2 D
o
�
n�1=2	, which completes the proof. �

Lemma 5.2. Let w.Z1; "2/ D b.Z1; "2/�
|X1, where X|

1 D .1;Z1/. Then, assuming
F1, F2, F4, B1 and B2, we have the following:

E
h
w2.Z1; "2/

�
I
�
"2 � X|

1	n�1=2	 � I ."2 � 0/
	2i

� 2n�1=2E


b2.Z1; �n/f .�n/j�|X1j2jX|

1	j� D O.n�1=2/;

where �n 2

�jX|

1	jn�1=2; jX|
1	jn�1=2�.

Proof. To begin, note that

E
h
w2.Z1; "2/

�
I
�
"2 � X|

1	n�1=2	 � I ."2 � 0/
	2i

� E


w2.Z1; "2/I

�j"2j � jX|
1	n�1=2j	� :

Once more, upon conditioning on Z1 and exploiting the independence of Z1 and "2
we obtain the following

E


w2.Z1; "2/I

�j"2j � jX|
1	n�1=2j	� D E

"Z jX|
1 	n�1=2j

�jX|
1 	n�1=2j

w2.Z1; x/dF.x/

#
:

It now follows from F1, B2 and the First Mean Value Theorem given on page 230
of Bartle (1976) that

E

"Z jX|
1 	n�1=2j

�jX|
1 	n�1=2j

w2.Z1; x/dF.x/

#
D2E



w2.Z1; �n/f .�n/jX|

1	n�1=2j�

D 2p
n
E


b2.Z1; �n/f .�n/j�|X1j2jX|

1	j� (5.14)

where �n 2

�jX|

1	jn�1=2; jX|
1	jn�1=2�. Lastly, the bounds given in F2, F4 and B1

imply that the expectation in (5.14) is bounded by a finite constant that is free of n.
Hence, (5.14) is O.n�1=2/, which completes the proof. �

Lemma 5.3. Let wi D w.ZŒi=2�; "i/ D b.ZŒi=2�; "i/�
|XŒi=2�, where X|

Œi=2� D .1;ZŒi=2�/,
and dni D I

�
"i � X|

Œi=2�	n�1=2
�
� I ."i � 0/. Furthermore, suppose i < j and

that .ZŒi=2�; "i/
| and .ZŒj=2�; "j/

| are such that all random variables are independent
except for ZŒi=2� and ZŒj=2�. Then, assuming F1, F2, F4, B1 and B2, we have the
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following:

jCOV


widni;wjdnj

� j � n�1K�giCgj�2 C o.n�1/;

where K 2 .0;1/, � 2 .0; 1/ and the remainder term are all free of i and j and gi

and gj denote the number of generations from the nearest common ancestor of ZŒi=2�
and ZŒj=2�, respectively.

Proof. To begin, recall from Lemma 5.1 that

�ni
defD E Œwidni� D n�1=2E



b.Z1; �n/f .�n/.�

|X1X
|
1	/

�
:

Now, upon conditioning on ZŒi=2� and ZŒj=2� and then exploiting the independence
relationships we obtain the following

COV


widni;wjdnj

�
D E



E


.widni � �ni/.wjdnj � �nj/ j ZŒi=2�;ZŒj=2�

��
D E



E


widni � �ni j ZŒi=2�;ZŒj=2�

�
E


wjdnj � �nj j ZŒi=2�;ZŒj=2�

��
: (5.15)

Furthermore, recall from the proof of Lemma 5.1 that

E


widni j ZŒi=2�;ZŒj=2�

� D n�1=2b.ZŒi=2�; �ni/f .�ni/.�
|XŒi=2�X

|
Œi=2�	/: (5.16)

Applying (5.16) to the two conditional expectations given in (5.15) yields the
following

COV


widni;wjdnj

� D n�1COV


Qi.�ni/R.ZŒi=2�/;Qj.�nj/R.ZŒj=2�/

�
;

where Qi.�/ D b.ZŒi=2�; �/f .�/ and R.ZŒi=2�/ D �|XŒi=2�X
|
Œi=2�	. Now appropriately

add in and subtract out Qi.0/ and Qj.0/ so that

COV


Qi.�ni/R.ZŒi=2�/;Qj.�nj/R.ZŒj=2�/

� D
4X

kD1
Cnij.k/;

where the four covariance terms are given by

Cnij.1/ D COV


.Qi.�ni/ � Qi.0//R.ZŒi=2�/; .Qj.�nj/ � Qj.0//R.ZŒj=2�/

�
;

Cnij.2/ D COV


.Qi.�ni/ � Qi.0//R.ZŒi=2�/;Qj.0/R.ZŒj=2�/

�
;

Cnij.3/ D COV


Qi.0/R.ZŒi=2�/; .Qj.�nj/ � Qj.0//R.ZŒj=2�/

�
and

Cnij.4/ D COV


Qi.0/R.ZŒi=2�/;Qj.0/R.ZŒj=2�/

�
:
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Consider Cnij.1/ first. Since the distribution of ZŒi=2� is the same for all i and Cnij.1/

is a covariance term it follows that

jCnij.1/j�V


.Qi.�ni/ � Qi.0//R.ZŒi=2�/

�

�E
h
.b.ZŒi=2�; �ni/f .�ni/�b.ZŒi=2�; 0/f .0//

2.�|XŒi=2�X
|
Œi=2�	/

2
i
: (5.17)

Now, using an argument similar to that used for En2 in Lemma 5.1 it can
be shown that (5.17) is o.1/. Hence, Cnij.1/ D o.1/. Next, consider Cnij.2/

and Cnij.3/. In doing so, note that the bounds given in F2, F4 and B1 imply
that V



Qi.0/R.ZŒi=2�/

�
< 1. Hence, an argument similar to that in (5.17)

implies that Cnij.2/ D o.1/ and Cnij.3/ D o.1/. Finally, consider Cnij.4/ and
note that this term does not actually depend on n. It follows that jCnij.4/j �
f 2.0/jCOV



h.ZŒi=2�/; h.ZŒj=2�/

� j, where h.ZŒi=2�/ D b.ZŒi=2�; 0/.�
|XŒi=2�X

|
Œi=2�	/.

Moreover, it follows from B1 and B2 that

jh.x/ � h.y/j � Kjx � yj
 

1X
iD0
jxji C

2X
iD0
jyji
!
; (5.18)

where K is a constant that only depends on �, 	 and the bounds given in B1 and
B2. Note that (5.18) satisfies (5.4). In fact, it can be shown that (5.18) along with F4
are also sufficient for Lemma 3.1 of Terpstra and Elbayoumi (2012). Hence, upon
making these modifications, Lemma 3.1 of Terpstra and Elbayoumi (2012) implies
that jCnij.4/j � f 2.0/K�giCgj�2. Finally, combining the results for Cnij.k/, k D
1; 2; 3; 4, leads to the following: jCOV



widni;wjdnj

� j � n�1K�giCgj�2 C o.n�1/,
which completes the proof. �

Lemma 5.4. Define bt.�/ D b.ZŒt=2�; "tI�/. Furthermore, let S�
n .	/ denote the

negative of the gradient vector evaluated with bt. O�/ and let Sn .	/ be defined
analogously with bt.�0/, where �0 represents the true (p � 1) nuisance parameter.
Then,

I. k.S�
n .	/ � S�

n .0// � .Sn .	/ � Sn .0//k D op.1/ and
II. kS�

n .0/ � Sn .0/ k D op.1/

provided the following conditions are satisfied:

A1.
p

n. O� � �0/ D Op.1/,
A2. Db.z; "I�/ D @

@�
b.z; "I�/ exists for all .z; "/|,

A3. kDb.z; "I�/k � B for all .z; "/| and � ,
A4. The family of functions D D fDb.z; "I�/ W .z; "/| 2 <2g is equicontinuous
at �0,
A5. E ŒDb.Z1; "2I�0/sgn."2/ j Z1� D 0,
A6. kDb.x; "2I�0/ � Db.y; "2I�0/k � C."2/jx � yj, where E ŒC."2/� <1.
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Proof. Consider Part I of the lemma first. Assumption A2 along with the Multivari-
ate Mean Value Theorem given on page 365 of Bartle (1976) implies that

Un D .S�
n .	/ � S�

n .0// � .Sn .	/ � Sn .0//

D �2n�1=2
nX

tD2

�
bt. O�/ � bt.�0/

�
XŒt=2�

�
I
�
"t � X|

Œt=2�	n�1=2� � I ."t � 0/
�

D �2n�1=2
nX

tD2
Db|

t .� t/
� O� � �0

�
XŒt=2�

�
I
�
"t � X|

Œt=2�	n�1=2� � I ."t � 0/
�
;

where Dbt.�/ D Db.ZŒt=2�; "tI�/ and � t belongs to the line segment between O� and
�0. It now follows from A3 of the lemma that

kUnk � 2Bkpn. O� � �0/k
 
.1=n/

nX
tD2
kXŒt=2�k

ˇ̌
ˇI
�
"t � X|

Œt=2�	n�1=2� � I ."t � 0/
ˇ̌
ˇ
!

� 2Bkpn. O� � �0/k
 
.1=n/

nX
tD2
kXŒt=2�kI

�
j"tj � jX|

Œt=2�	jn�1=2�
!

defD 2Bkpn. O� � �0/kUn:

Since A1 of the lemma implies that 2Bkpn. O� � �0/k D Op.1/ we need only show
that Un D op.1/ to complete the proof. That said, we note that E


kX1k2
�
< 1

(implied by F4), the continuity of F at 0 (see F1), and the Dominated Convergence
Theorem imply that E



.kX1kI

�j"2j � jX|
1	n�1=2j	/2� D o.1/. Finally, since the

joint distribution of .ZŒt=2�; "t/
| is the same for all t it readily follows that E

h
U
2

n

i
D

o.1/, which completes the proof of Part I of the lemma. Let us now consider
Part II of the lemma. Once again, it follows from assumption A2 along with the
Multivariate Mean Value Theorem that

.S�
n .0/ � Sn .0// D n�1=2

nX
tD2

�
bt. O�/ � bt.�0/

�
XŒt=2�sgn."t/

D n�1=2
nX

tD2
Db|

t .� t/
� O� � �0

�
XŒt=2�sgn."t/

D .1=n/
nX

tD2
.Dbt.� t/ � Dbt.�0//

|pn
� O� � �0

�
XŒt=2�sgn."t/

C
 
.1=n/

nX
tD2

XŒt=2�Dbt.�0/
|sgn."t/

!
p

n
� O� � �0

�

defD Un1 C Un2:
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Consider Un1 first. Since sgn."t/ is bounded by 1, it follows that

kUn1k � max
2�t�n

kDbt.� t/ � Dbt.�0/k
 
.1=n/

nX
tD2
kXŒt=2�k

!
kpn

� O� � �0

�
k:

Now, A1 along with A4 imply that max2�t�n kDbt.� t/ � Dbt.�0/k D op.1/. Next,
note that kXŒt=2�k D h.ZŒt=2�/, where h.z/ D p1C z2 is a Lipschitz function. Hence,
by Theorem 5.1, it follows that .1=n/

Pn
tD2 kXŒt=2�k D E ŒkX1k� C op.1/ D Op.1/

(e.g. a1 D a2 D 0, w00 D 1, and � D 2). Lastly, A1 implies that kpn
� O� � �0

�
k D

Op.1/. It follows from these results that Un1 D op.1/. Thus, to complete the proof
we need only show that Un2 D op.1/. However, given A1, this will follow if we can
show the following result

Uij
n2 D

1

n

nX
tD2

Zi
Œt=2�Dbtj.�0/sgn."t/ D op.1/;

where Dbtj.�0/ denotes the jth component of Dbt.�0/, j D 1; 2; : : : ; p, and i D
0; 1. To begin, fix both i and j and let h1.Z1; "2/ D Zi

1Db2j.�0/sgn."2/. The
notation for i and j has been suppressed for the sake of convenience. Clearly,
assumption A5 implies that E Œh1.Z1; "2/� D 0. Moreover, the bound for sgn."t/,
assumption A3, and the finite second moment for the process (see F4) imply that
E

jh1.Z1; "2/j1Cı� < 1 for any ı 2 .0; 1�. Lastly, it follows from assumptions A3

and A6 that

jh1.x; "2/ � h1.y; "2/j � maxfB;C."2/gjx � yj.1C jyj/

for all i and j. These three results imply that the special case of Theorem 5.2 given
in (5.7) (with a1 D 0, a2 D 1, w00 D 1, w01 D 1, and � D 2) is applicable. In
particular, .1=n/

Pn
tD2 h1.ZŒt=2�; "t/ D Uij

n2 D op.1/ for all i and j. This completes
the proof of Part II and the lemma. �
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Chapter 6
Applications of Robust Regression to “Big” Data
Problems

Simon J. Sheather

Abstract Robust regression methods have many potential applications in big data
problems. In this paper, we consider two such applications using publicly available
data. The first application looks at modeling taxi fares based on the trip distance of
n D 49; 800 taxi rides in New York City on Tuesday January 15, 2013. The second
application focuses on modeling the airfare from the miles flown of n D 78; 905

round trip itineraries for single passengers which consisted of 2 direct one-way
flights within the contiguous domestic US market on Southwest Airlines in the
fourth quarter of 2014. The robust estimates were obtained for both applications
using PROC ROBUSTREG in SAS 9.4. In both cases, we find that the confidence
intervals around the robust estimates of the parameters in the regression models
are very narrow, typically $0.01 or lower. With these confidence intervals being
so narrow, one is left with the impression that these robust estimates differ in
some meaningful way across at least some of the robust methods. Finally, utilizing
findings in Cox (Biometrika, 102:712–716, 2015) we argue that in such applications
it is not surprising that the confidence intervals around the robust estimates are very
narrow, thus producing the illusion of apparently very high precision.

Keywords Big data • Robust regression • SAS • Illusion of very high precision

6.1 Introduction

In recent times there has been an explosion of interest in big data. An advanced
search of books available on Amazon.com published just in 2014 using the search
terms “big data” returned a list of 1,657 books.

Mayer-Schönberger and Cukier (2013) provide many examples of the use of
big data in many fields including banking, energy, finance, government, healthcare,
retail, sports and travel. According to Mayer-Schönberger and Cukier (2013, p. 26):
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In many areas, . . . a shift is taking place from collecting some data to gathering as much as
possible, and if feasible getting everything: N D all.

In this paper we consider two applications of robust regression methods in big
data settings. In both applications we report the values of the following robust
regression estimates and associated 95 % confidence intervals obtained from PROC
ROBUSTREG in SAS 9.4 (with each method based on the default settings) for an
M-estimate, the LTS estimate, the so-called LTS FWLS estimate, an S-estimate and
an MM-estimate. Details of these five robust estimation methods are provided in
Sect. 6.2.

In Sect. 6.3, we consider the first application which looks at modeling taxi fares
from the trip distance of n D 49; 800 taxi rides in New York City on Tuesday
January 15, 2013. The second application, detailed in Sect. 6.4, focuses on modeling
the airfare from the miles flown for n D 78; 905 round trip itineraries for single
passengers which consisted of two direct one-way flights within the contiguous
domestic US market on Southwest Airlines in the fourth quarter of 2014. In both
cases, we find that the confidence intervals around the robust estimates of the
parameters in the regression models are very narrow, typically $0.01 or lower. With
these confidence intervals being so narrow, one is left with the impression that these
robust estimates differ in some meaningful way across at least some of the robust
methods.

Finally, in Sect. 6.5, utilizing findings in Cox (2015) we argue that it is not
surprising that the confidence intervals around the robust estimates are very
narrow, thus producing the illusion of what Cox refers to as “apparently very high
precision”.

6.2 Robust Regression Methods

Let X D .xij/ denote an n � p matrix of predictors, with the first column typically
consisting of 1’s, y D .y1; y2; : : : yn/

Tdenote an n � 1 vector of responses, e D
.e1; e2; : : : en/

Tdenote an n� 1 vector of errors and � D ��1; �2; : : : �p
	T

denote an
p � 1 vector of unknown regression parameters. In this section, we briefly review
robust estimates of � for the linear model

y D X � C e:

Let r D .r1; r2 : : : rn/
Tdenote an n� 1 vector of residuals. Let xT

i denote the ith row
of X. In what follows, we mostly follow the approach taken by Chen (2002).

6.2.1 M-Estimates

An M-estimate O�M of � (Huber 1973) minimizes the following sum

QM .�/ D
nX

iD1
�
� ri

�

�
:
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For least squares estimation, � is the square function, � .z/ D z2. If � is known, then
taking derivatives with respect to � , O�M is also a solution of the following system of
p equations

nX
iD1

 
� ri

�

�
xij D 0 j D 1; : : : ; p;

where  D �0

, the derivative of �. If � is convex, O�M is the unique solution.
PROC ROBUSTREG solves this system by using iteratively reweighted least

squares (IRLS). The weight function w.x/ is defined by

w .x/ D  .x/

x

PROC ROBUSTREG provides ten kinds of weight functions (corresponding
to ten  -functions) through the WEIGHTFUNCTION D option in the MODEL
statement. The default weight function is the bisquare function, which is given by

w .x; c/ D
(

sin. x
c /

x
c
; jxj � �c

0; jxj > �c

The default value of the tuning constant, c D 4:685, was chosen to yield 95 %
asymptotic efficiency of the resulting bisquare M-estimate when the errors follow a
the Gaussian distribution.

If � is unknown, then the function

QM .�/ D
nX

iD1

h
�
� ri

�

�
C a

i
�

is minimized with a > 0 over � and � by alternatively improving O�M in a location
step and O�Min a scale step. The scale parameter � can be specified using the SCALE
D option in the PROC statement. PROC ROBUSTREG provides three options to
estimate scale. The default scale is the median absolute deviation (MAD) of the
residuals divided by 0.6745.

6.2.2 LTS Estimate

The least trimmed squares (LTS) estimate O�LTS of � (Rousseeuw 1984) minimizes
the following sum

QLTS .�/ D
hX

iD1
r2.i/
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where r2.1/ � r2.2/ � : : : � r2.n/ are the ordered squared residuals and h is defined in

the range n
2
C1 � h � 3nCpC1

2
. The breakdown of the LTS estimate is equal to n�h

n .

In PROC ROBUSTREG the default value of h is h D Œ 3nCpC1
4

�. The ROBUSTREG
procedure uses the FAST-LTS algorithm that was proposed by Rousseeuw and Van
Driessen (2000).

The FWLS-LTS estimate is a weighted least squares estimate, with weight
0 assigned to cases that the LTS-estimate identifies as outliers. The FWLS-LTS
estimate is equivalent to the least squares estimate after the detected outliers are
deleted.

6.2.3 S Estimate

The S estimate O�S of � (Rousseeuw and Yohai 1984) minimizes the dispersion S .�/
where S .�/ is the solution of

1

n � p

nX
iD1

�

�
yi � xT

i �

S

�
D ˇ

where ˇ D R
� .s/ d˚ .s/ so that O�S and S( O�S/ are asymptotically consistent

estimates of � and � for the Gaussian regression model. The breakdown value of
the S estimate is equal to ˇ= sups �.s/.

PROC ROBUSTREG provides two kinds of weight functions � through the
CHIFD option in the MODEL statement. The default weight function is the Tukey
function which is given by

�k0 .s/ D
(
3
�

s
k0

�2 � 3 � s
k0

�4 C � s
k0

�6
; jsj � k0

1; jsj > k0

The default k0 D 2:9366 and is such that the breakdown value of the S estimate is
0.25, with a corresponding asymptotic efficiency for the Gaussian model of 75.9 %.

6.2.4 MM Estimate

The MM estimate O�MM of � (Yohai 1987) is based on a combination of the use of
high breakdown estimation and efficient estimation procedures. It is based on the
following three steps:
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1. Compute an initial (consistent) high breakdown value estimate O� 0

: PROC
ROBUSTREG uses the LTS estimate because of its speed, efficiency, and high
breakdown value.

2. Find a scale estimate O� 0

such that

1

n � p

nX
iD1

�

�
yi � xT

i �

S

�
D ˇ

where ˇ D R
� .s/ d˚ .s/ : PROC ROBUSTREG uses the Tukey � function

(given above) with k0 D 2:9366 as the default, which produces a scale estimate
with a breakdown value of 0.25.

3. Find a local minimum O�MM of

QMM D
nX

iD1
�

�
yi � xT

i �

O� 0

�

such that QMM

� O�MM

�
� QMM

� O� 0
�

. PROC ROBUSTREG uses the Tukey �

function (given above) with k0 D 3:440 as the default choice for �, which
produces an MM estimate with 85 % asymptotic efficiency for the Gaussian
model.

In this paper for two “big” data regression problems we report the values of
the following robust regression estimates and associated 95 % confidence intervals
obtained from PROC ROBUSTREG in SAS 9.4 (with each method based on the
default settings):

1. M-estimate with bisquare weight function and scale estimate based on the median
absolute deviation of the residuals

2. LTS estimate
3. LTS FWLS estimate
4. S-estimate with the Tukey � function
5. MM estimate with an LTS initial estimate and Tukey � function

6.3 New York City Taxi Fare Data

On March 11 2014, Chris Whong lodged via email a FOIL (The Freedom of
Information Law) request with the New York City Taxi & Limousine Commission
(TLC) seeking “NYC taxi trip data in machine readable format from 1/1/2013
through the most current available date”. Seven days later a representative from
Legal Affairs at TLC advised that the “request for GPS data has been granted” and
that they had “2013 data available from January to December”. Mr. Whong was
asked to “send or bring an external hard drive with a minimum capacity of 200 GB
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to the TLC offices”. Mr. Whong was further advised that “the hard drive must be
brand new, still in the box unopened”. After following these instructions, Mr. Whong
retrieved the drive from the TLC and found that “the data they had loaded only
took up about 50 GB”. The data were provided in two folders, “Faredata_2013 and
Tripdata_2013” (Whong 2014). Each folder contained monthly files (in csv format)
giving details of each NYC taxi ride during 2013. The fare data files include the
following fields:

medallion—anonymized taxi id
hack_license—anonymized taxi driver id
vender_id—system used to collect the data, either CMT (Mobile Knowledge
Systems Inc) or VTS (Verifone Transportation Systems)
pickup_datetime—date and time taxi trip started
payment_type—CRD (Credit card), CSH (cash), DIS, NOC or UNK (the last 3
codes are unexplained and they make up less than 1 % of the data)
fare_amount—the metered fare
surcharge—fare surcharges of $0.5 for trips between 8 pm and 6 am and $1 for
trips between 4 pm and 8 pm on weekdays (excluding holidays)
mta_tax—MTA tax of $0.5 for all trips that end in New York City or Nassau,
Suffolk, Westchester, Rockland, Dutchess, Orange or Putnam Counties
tip_amount—tip paid by passenger(s)
tolls_amount—total charge for all tolls incurred during the trip
total_amount—total amount paid by passenger(s).

The trip data files include the following fields:

medallion—anonymized taxi id
hack_license—anonymized taxi driver id
vender_id—system used to collect the data, either CMT (Mobile Knowledge
Systems Inc.) or VTS (Verifone Transportation Systems)
rate_code—rate_code 1 corresponds to the standard city rate
store_and_fwd_flag—unexplained attribute
pickup_datetime—start time of the trip
dropoff_datetime—end time of the trip
passenger_count—number of passengers
trip_time_in_secs—trip time in seconds measured by the taximeter
trip_distance—trip distance in miles measured by the taximeter
pickup_longitude and pickup_latitude—GPS coordinates at the start of the trip
dropoff_longitude and dropoff_latitude—GPS coordinates at the end of the trip

The url www.andresmh.com/nyctaxitrips/ contains the two sets of monthly data
files for 2013. The first step in any analysis of this data set is to combine the fare
and trip data files. This can be done by matching the following fields in the two data
files:

medallion, hack_license and pickup_datetime.

www.andresmh.com/nyctaxitrips/
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The fare data file and trip data file for January 2013 contain data on 14,776,615
taxi trips, of which 14,456,067 correspond to rate code 1 taxi trips. According to the
New York City Taxi and Limousine Commission1 for rate code 1, the initial charge
is $2.50 plus 50 cents per 1/5 mile or 50 cents per 60 s in slow traffic or when the
vehicle is stopped. According to Wikipedia2 “slow traffic” is defined to be travelling
under 12 miles an hour.

In this study we shall focus on data for taxi trips taken on a randomly selected day
in January, 2013, namely Tuesday January 15, 2013. In particular, we shall consider
49,800 taxi trips with the following characteristics:

• vender_id = CMT (Mobile Knowledge Systems Inc.)
• payment_type = CRD (Credit card) or CSH (cash)
• rate_code = 1, which corresponds to the standard city rate
• rounded_trip_distance < 3 miles, where the rounding was down to the nearest

1/5 mile
• average_trip_speed � 25 miles per hour

Average trip speed was calculated from the trip distance and the trip time fields
in the data. A decision was made to consider trips with average speed greater than
or equal to 25 miles per hour so that very little, if any, of the fare_amount of any trip
would be due travelling under 12 miles per hour. Secondly, a decision was made to
consider trips of less than 3 miles to limit the number of x values the data takes in
order to simplify the presentation, especially in Tables 6.1, 6.2 and 6.3.

Donovan and Work (2015) have studied the New York City taxi trip data from
2010 through 2013. This corresponds to nearly 700 million taxi trips. They found
that “roughly 7.5 % of all trips” contain “data errors. . . . For example, there are
. . . trips where the reported meter distances are significantly shorter than the straight
line distance, violating Euclidean geometry” as well as “trips . . . that . . . contain
impossible distances, times, or velocities.” As we shall see below, the 49,800 taxi
trips that we consider contain some data errors or outliers, which have not been
removed or altered in any way.

Figure 6.1 shows a box plot of fare_amount for each value of RoundedTripDis-
tance. Examining Fig. 6.1 we see examples of the “data errors” reported by Donovan
and Work (2015). For example, there is a trip of 0.6 miles with fare_amount equal
to $52 and another trip of 0.8 miles with fare_amount equal to $40.

In Fig. 6.1, there are typically a large number of multiple values of the same
fare_amount for each value of RoundedTripDistance making Fig. 6.1 difficult
to interpret. Jittering the data does not work well given that the sample size
of 49,800 is so large. Instead we shall consider Table 6.1, which provides
a cross tabulation of the values of rounded_trip_distance (denoted by x) and
corresponding values of fare_amount. The column headed N gives the number
of times that x, rounded_trip_distance takes each value from 0 to 2.8. For example,

1Web site: www.nyc.gov/html/tlc/html/passenger/taxicab_rate.shtml.
2Web site: https://en.wikipedia.org/wiki/Taxicabs_of_New_York_City.

www.nyc.gov/html/tlc/html/passenger/taxicab_rate.shtml
https://en.wikipedia.org/wiki/Taxicabs_of_New_York_City
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Table 6.2 Median(fare_amount), [MFA], for each value of rounded_trip_distance, [rtd], x

rtd, x 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

MFA $2.5 $3.0 $3.5 $4.0 $4.5 $5.0 $5.5 $6.0 $6.5 $7.0 $7.5 $8.0 $8.5 $9.0 $9.5

when x D 0:2, N D 830 which implies that there are 830 trips in the data
with rounded_trip_distance equal to 0.2 miles. The other entries in Table 6.1
give the number of times that a given pair of values for rounded_trip_distance
and fare_amount occur. For example, there are 2167 trips in the data with
rounded_trip_distance equal to 0.4 miles with a fare_amount equal to $3.50.

Examining Table 6.1 we see further examples of the “data errors” reported by
Donovan and Work (2015). For example, there are 54 trips in the data of 2.8 miles
for which the fare_amount equals just the initial charge of $2.50.

Table 6.2 gives the median(fare_amount) for each value of rounded_trip_distance.
Notice that the median(fare_amount) is a linear function of rounded_trip_distance.
In particular, notice that

median .fare_amount/ D $2:50C $2:50 � rounded_trip_distance (6.1)

This is to be expected since the fare structure is such that the initial charge is $2.50
plus 50 cents per 1/5 mile.

Table 6.3 gives for each value of rounded_trip_distance, the percentage of trips
with fares less than, equal to and greater than the median(fare_amount) at each value
of x. Over all values of rounded_trip_distance, 71.5 % of the fare are equal to the
relevant median(fare_amount), 12.2 % are less than and 16.3 % are greater than.

Figures 6.2 and 6.3 show plots of robust estimates of the intercept and the
slope from a straight line regression fit to the taxi fare data. Also included in these
plots are 95 % confidence intervals based on each robust estimate. Table 6.4 gives
the numerical values of the estimates and confidence limits displayed in Figs. 6.2
and 6.3. Also included in Table 6.4 are these quantities for a robust rank-based
(R) estimate, based on Wilcoxon scores (Hettmansperger and McKean 2011). The
values for the R-estimates were kindly provided by a referee. According to the
referee, the R-estimates were obtained using the software described in Kloke and
McKean (2012).

Examining Figs. 6.2 and 6.3 and/or Table 6.4 we see that the M-estimates (based
on the bisquare weight function and MAD scale estimate) and the R-estimates
(based on Wilcoxon scores) are equal to the values of the intercept and the slope
in (1), namely, $2.50. When calculating these M-estimates, SAS produces the
following message “WARNING: The scale is close to 0. A possible exact fit is
detected.” In fact, SAS reports the MAD of the residuals based estimate of scale
to be zero to four decimal places. After examining Table 6.3, we see that this is not
surprising.

It is also clear from Figs. 6.2 and 6.3 and Table 6.4 that the confidence intervals
around the robust estimates of the slope and the intercept are very narrow, typically
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Graph Builder

fare_amount vs. RoundedTripDistance
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Fig. 6.1 Box plots of fare_amount against RoundedTripDistance

$0.01 or lower. The narrowness of these confidence intervals seems to be due at
least in part to the discrete nature of the Y-variable, fare_amount in addition to
phenomena we will discuss in Sect. 6.5. With these confidence intervals being so
narrow, one is left with the impression that the robust estimates of the slope and
intercept differ in some meaningful way across methods.

6.4 Airline Origin and Destination Survey Ticket Price Data:
Southwest Airlines

We next consider data from the Airline Origin and Destination Survey (DB1B).
This data base has been studied by many authors. For example, a search on google
scholar (www.scholar.google.com) using the following terms:

“Airline Origin and destination survey (DB1B)” AND regression

returned 160 articles and books. The DB1B is “a 10 % sample of airline tickets from
reporting carriers collected by the Office of Airline Information of the Bureau of
Transportation Statistics. Data includes origin, destination and other itinerary details
of passengers transported. This database is used to determine air traffic patterns, air
carrier market shares and passenger flows.” The data have been collected quarterly
since 1993. Each quarter, the data are reported in three separate tables referred to

www.scholar.google.com
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Fig. 6.2 A plot of robust estimates of the intercept along with the associated 95 % confidence
intervals

as DB1BCoupon, DB1BMarket and DB1BTicket. In this section we shall consider
the DB1BTicket file which contains “summary characteristics of each domestic
itinerary on the Origin and Destination Survey, including the reporting carrier,
itinerary fare, number of passengers, originating airport, roundtrip indicator, and
miles flown”.3

We shall consider the most recent data, namely, that from Quarter 4, 2014.4

The DB1BTicket file contains the following fields:

ItinID—Itinerary ID
Coupons—Number of Coupons in the Itinerary
Year—Year
Quarter—Quarter (1–4)

3Source: http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=125&DB_Name=Airline
%20Origin%20and%20Destination%20Survey%20(DB1B)).
4Source: http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=272&DB_Short_Name=
Origin%20and%20Destination%20Survey.

http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=125&DB_Name=Airline%20Origin%20and%20Destination%20Survey%20(DB1B)
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=125&DB_Name=Airline%20Origin%20and%20Destination%20Survey%20(DB1B)
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=272&DB_Short_Name=Origin%20and%20Destination%20Survey
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=272&DB_Short_Name=Origin%20and%20Destination%20Survey
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Fig. 6.3 A plot of robust estimates of the slope along with the associated 95 % confidence intervals

Origin—Origin Airport Code
OriginAirportID—An identification number assigned by US DOT to identify a
unique airport
OriginAirportSeqID—An identification number assigned by US DOT to identify
a unique airport at a given point of time. Airport attributes, such as airport name
or coordinates, may change over time.
OriginCityMarketID—An identification number assigned by US DOT to identify
a city market.
OriginCountry—Country that the airport is located in
OriginStateFips—Numerical code for the state or territory that the airport is
located in
OriginState—Two letter abbreviation for the state or territory that the airport is
located in
OriginStateName—Name of the state or territory that the airport is located in
OriginWac—World Area Code for the origin airport
RoundTrip—Round Trip Ticket Indicator (1D Yes, 0D No)
OnLine—Single Carrier Indicator (1D Yes, 0D No)
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Table 6.4 Robust estimates of the intercept and the slope along with 95 % confidence intervals

Intercept LCL UCL Slope LCL UCL Scale
Method Estimate Intercept Intercept Estimate Slope Slope Estimate

LS 2.276 2.258 2.294 2.603 2.592 2.614 0.924

LTS 2.444 2.555 0.182

LTS FWLS 2.359 2.355 2.363 2.625 2.622 2.628 0.205

M-Bisquare-MAD 2.500 2.500 2.500 2.500 2.500 2.500 0.000

MM-Tukey 2.403 2.400 2.406 2.589 2.587 2.591 0.246

S-Tukey 2.425 2.423 2.428 2.569 2.568 2.571 0.245

R-Wilcoxon 2.500 2.500 2.500 2.500 2.500 2.500 0.000

DollarCred—Dollar Credibility Indicator (1 D Fare value is credible, 0 D Fare
value is questionable)
FarePerMile—Itinerary Fare per Miles Flown in Dollars (ItinFare/MilesFlown is
the calculated value).
RPCarrier—Reporting Carrier
Passengers—Number of Passengers
ItinFare—Itinerary Fare per Person
BulkFare—Bulk Fare Indicator (1D Yes, 0D No)
Distance—Itinerary Distance (Including Ground Transport)
DistanceGroup—Distance Group, in 500 Mile Intervals (1D less than 500 miles,
2D 500–999 miles, . . . )
MilesFlown—Miles flown according to the flight itinerary
ItinGeoType—Itinerary Geography Type (0D international, 1D non-contiguous
domestic (eg Hawaii and Alaska), 2D contiguous domestic)

The DB1BTicket file contains data on 3,588,928 flight itineraries involving
7,021,913 passengers. In this paper we shall focus on 78,905 itineraries with the
following characteristics:

• RPCarrierDWN (Southwest Airlines)
• RoundTrip D 1
• Coupons D 2
• Passengers D 1
• ItinGeoType D 2
• OnlineD 1
• DollarCred D 1
• BulkFare D 0

In other words, we shall focus on 78,905 single passenger nonstop round trip
flight itineraries on Southwest Airlines in the contiguous domestic market. Our
aim was to make the resulting statistical model as simple as possible while still
being realistic. For example, Southwest Airlines was chosen since it does not have
business or first class fares.

We seek to build a model for ItinFare, the itinerary fare per person from
MilesFlown, the miles flown according to the flight itinerary. In this case, the
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Fig. 6.4 A plot of ItinFare against MilesFlown

MilesFlown equals twice the distance between the cities flown, since we are
considering itineraries based on nonstop round trip flights. Figure 6.4 shows a scatter
plot of ItinFare against MilesFlown.

Inspecting Fig. 6.4, we see that a number of flight itineraries exist across the range
of values taken by MilesFlown with very low values of ItinFare. Examining the data
from Fig. 6.4 we find that there are 1150 flight itineraries with ItinFare values less
or equal to $20, with 274 flight itineraries with ItinFare equal to $5 and 842 flight
itineraries with ItinFare equal to $11. After $20, the next cheapest round trip fare
in the data is $66. It is likely that these 1150 flight itineraries correspond to “free”
tickets obtained from points in the Southwest Airlines Rapid Rewards frequent flyer
program. Presumably these low fare amounts correspond to charges that rewards
points do not cover (e.g., pets, extra bag or security fees). Since our focus is on
robust regression methods, we will leave these low fares in the data set.

Initial analyses of the data in Fig. 6.4 quickly revealed that a single straight line
provides a poor fit to the data. Instead what seems to be necessary are regression
splines, in other words, a series of connected straight lines. Use of ADAPTIVEREG
procedure in SAS 9.4 (which fits adaptive regression splines using the method
developed by Friedman 1991) reveals a knot at around 1500 miles (i.e., 750 miles
each way on a round trip). This method combines both regression splines and model
selection. It constructs spline basis functions in an adaptive way by automatically
selecting appropriate knot values for different variables, and it obtains reduced
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Table 6.5 Robust estimates of the slopes from model (6.2) along with 95 % confidence intervals

Method Slope up to 1500 LCL UCL Slope after 1500 LCL UCL

LS $0.1457 $0.1416 $0.1497 $0.0434 $0.0415 $0.0452

LTS $0.0669 $0.0216

LTS FWLS $0.1368 $0.1332 $0.1404 $0.0258 $0.0241 $0.0275

M—Bisquare—Huber $0.1355 $0.1316 $0.1394 $0.0313 $0.0295 $0.0330

MM—Tukey $0.1254 $0.1216 $0.1292 $0.0242 $0.0224 $0.0260

S—Tukey $0.1169 $0.1130 $0.1208 $0.0208 $0.0189 $0.0226

models by applying model selection techniques. The method does not assume
parametric model forms and does not require specification of knot values.

Denote ItinFare by Y and MilesFlown by x. We considered regression spline
models of the form

Y D ˇ0 C ˇ1 .1500 � x/� C ˇ2 .x � 1500/C (6.2)

where

.1500 � x/� D
8<
:

x � 1500; x < 1500
0; x � 1500

and

.x � 1500/C D
8<
:

0; x < 1500
x � 1500; x � 1500

In what follows, we shall focus our discussion on the estimates of the two slope
parameters in model (6.2), since most studies involving the DB1B consider the rate
of change of fare with distance.

Table 6.5 gives the values of robust estimates of the slopes from model (6.2)
along with 95 % confidence intervals. The first thing that is apparent from Table 6.5
is that the values of the LTS estimate of ˇ1 differ dramatically from the other robust
estimates. In particular, apart from the LTS estimate, the robust estimates of ˇ1, the
slope up to 1500 miles, range from 11.7 cents per mile to 13.7 cents per mile, while
the LTS estimate of ˇ1 is equal to 6.7 cents, just over half the value of the other
robust estimates. Such large differences in the estimated rate of change in fare per
mile have dramatic practical consequences. On the other hand, the differences in the
value of the robust estimates of ˇ2 compared to the other robust estimates are not as
great, since they range from 2.1 cents per mile to 3.1 cents per mile.

Figures 6.5 and 6.6 show plots of robust estimates of the slopes from the
regression spline line fit to the airfare data. Also included in these plots are 95 %
confidence intervals based on each robust estimate.
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Fig. 6.5 A plot of robust estimates of the slope up to 1500 miles along with the associated 95 %
confidence intervals

Examining Figs. 6.5 and 6.6 we see that the confidence intervals around the
robust estimates of the slopes in model (6.2) are very narrow, typically $0.01 or
lower. With these confidence intervals being so narrow, one is left with the impres-
sion that the robust estimates of the slopes differ in some meaningful way across at
least some of the robust methods. We shall examine this issue further in Sect. 6.5.

6.5 Conclusions and Discussion

In the examples considered in Sects. 6.3 and 6.4 the confidence intervals around
the robust estimates of regression parameters were very narrow, typically $0.01 or
lower. On face value when these confidence intervals do not overlap, one is left with
the impression that the robust estimates differ across methods.

In a recent paper, Cox (2015) finds that

So-called big data are likely to have complex structure, in particular implying that estimates
of precision obtained by applying standard statistical procedures are likely to be misleading.
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Fig. 6.6 A plot of robust estimates of the slope after 1500 miles along with the associated 95 %
confidence intervals

. . . With very large amounts of data, direct use of standard statistical methods . . . will tend to
produce estimates of apparently very high precision, essentially because of strong explicit or
implicit assumptions of at most weak dependence underlying such methods. . . . The most
serious possibility of misinterpretation arises when the regression coefficient takes very
different values in the different base processes.

In addition, Cox (2015) recommends that
We . . . “consider big data as evolving in a possibly notional time-frame. At

various time-points new sources of variability enter” . . . and that we . . . “represent
the main sources of variation in an explicit model and thereby produce both
improved estimates and more relevant assessments of precision”.

In the case of the ticket data from the Airline Origin and Destination Survey
(DB1B) recall that the data is based on a 10 % sample of airline tickets from
reporting carriers. In our example in Sect. 6.4 we considered the airfare and the miles
flown of n D 78; 905 round trip itineraries for single passengers which consisted of
2 direct one-way flights within the contiguous domestic US market on Southwest
Airlines in the fourth quarter of 2014. In the analyses presented, no account was
taken of the fact that airfares vary across many factors including:
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• Time of the day
• Day of the week
• The two airports that the flights are between
• The number of days before the flight during which the ticket was purchased
• How many vacant seats exist on the flight at the time of booking

Thus, it is reasonable to conclude that the regression coefficients in model (6.2)
can be expected to take very different values in different combinations of these
factors. For example, compare and contrast the airfare for a ticket that is purchased
the day of the flight with very few vacant seats at the busiest time of the day between
two airports between which there is little competition between carriers the airfare
for a ticket that is purchased long before the day of the flight with very many vacant
seats at the least busy time of the day between two airports between which there is
a great deal of competition between carriers. There is likely to be a very substantial
difference between these two airfares. In addition, there is likely to be strong
dependence between the airfare of tickets purchased with similar combinations of
these factors.

In view of the discussion of the previous paragraph and the findings in Cox
(2015) it is not surprising that the confidence intervals around the robust estimates of
the slopes in model (6.2) are very narrow, thus producing the illusion of apparently
very high precision.
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Chapter 7
Rank-Based Inference for Multivariate
Data in Factorial Designs

Arne C. Bathke and Solomon W. Harrar

Abstract We introduce fully nonparametric, rank-based test statistics for inference
on multivariate data in factorial designs, and derive their asymptotic sampling
distribution. The focus here is on the asymptotic setting where the number of levels
of one factor tends to infinity, while the number of levels of the other factor, as
well as the replication size per factor level combination, are fixed. The resulting test
statistics can be calculated directly, they don’t involve any iterative computational
procedures. To our knowledge, they provide the first viable approach to a fully
nonparametric analysis of, for example, multivariate ordinal responses, or a mix
of ordinal with other response variables, in a factorial design setting.

Keywords Asymptotics • Multivariate statistics • Nonparametric method
• Ordinal data • Rank test

7.1 Introduction

Multivariate data in factorial designs with few replications arise in agricultural,
behavioral and biomedical studies, just to mention a few. However, due to the
lack of appropriate inference procedures, such data are often analyzed using
simplistic univariate methods or questionable model assumptions (e.g., multivariate
normality). In this article, we develop fully nonparametric methods for the analysis
of such data. These nonparametric methods allow for the analysis of data with
ordinal responses, and they contain desirable invariance properties, as each variable
(endpoint) can be monotonically transformed without changing the outcome of
the analysis. Furthermore, the proposed methods represent the first nonparametric
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approach that is asymptotically valid when the number (a) of different samples or
treatment groups (more generally, the number of levels of one of the factors) is
large. In order to illustrate application of the procedure, we use the following data
example.

7.1.1 Agricultural Field Trial

In an agricultural experiment that stands here exemplary for many similarly
conducted field trials, several varieties of crabapples are examined with regard to
their disease resistance (Chatfield et al. 2000). The response variable is a rating of
tree health, on an ordinal scale from 0 to 5. Trees are evaluated at different times
during the growing season, generating a multivariate observation vector per tree.
When the experiment is repeated in a different year or at a different location, a
second treatment factor is introduced whose main effect and interaction with the
plant variety need to be considered, in addition to the variety effect. In Chatfield
et al. (2000), the number of crabapple varieties was a D 63, justifying the use of
methods derived for the asymptotic situation of a!1. The number nij of replicates
per variety were between 3 and 5. If we assume that the same study is performed at
two different agricultural experiment stations or in two different years, we would be
in the situations with b D 2.

7.1.2 Model

We describe the model using a two-factor layout corresponding to the data example.
Generalization to higher-way layouts can be done using the techniques described
here. On each experimental unit, a p-dimensional response vector is observed. These
vectors are described by

Xijr D .X.1/ijr ;X
.2/
ijr ; : : : ;X

.p/
ijr /

0:

Here, the first two indices, i D 1; : : : ; a, and j D 1; : : : ; b, denote the levels
of the two explanatory factors considered (in the example, year or location and
variety, respectively). The index r D 1; : : : ; nij stands for the replication or
experimental unit within a factor level combination, and the super-index d D
1; : : : ; p denotes the respective variable, among the total of p response variables
considered (p-dimensional response). A possible multivariate additive linear model
for Xijr could be:

Xijr D 
C � i C �j C � ij C "ijr;
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where �, �, � are the effects due to experimental condition, variety, and interaction
between experimental condition and variety, and " is the random variation assumed
to be independently distributed with mean vector 0 and covariance matrix ˙ij.

Some drawbacks of the linear model approach are that the results depend on
the type of transformation used and can be heavily influenced by outliers. In this
manuscript, we are proposing a completely nonparametric alternative to the linear
model approach. This nonparametric model can be written as

Xijr 
 Fij; (7.1)

where Fij is the multivariate p-dimensional distribution of the response vector for
factor level combination .i; j/. This model imposes no restriction on distributions or
correlations of error terms or random effects. The dependence in the data, induced
by observing several outcome variables on the same subject, is entirely absorbed
by modeling them as multivariate observation vectors, allowing for arbitrary,
unspecified dependence structures among the response variables. The vectors Xijr

are independent for different indices i, j, or r, but the components of the vectors are
possibly dependent.

In this manuscript, we are proposing a completely nonparametric model for the
analysis of multivariate data from factorial experiments, applicable in a variety
of situations. Inferential methods for the two-factor heteroscedastic model have
relatively been well developed in the univariate case in the parametric as well as
nonparametric contexts (for the latter, see for example, the monograph Brunner
et al. (2002), and the references therein). There is some recent work for the
semiparametric multivariate counterpart (Harrar and Bathke 2012; Konietschke
et al. 2015; Van Aelst and Willems 2011), and several procedures have been
proposed under the assumption of multivariate normality (Belloni and Didier 2008;
Girón and del Castillo 2010; Kawasaki and Seo 2012; Krishnamoorthy and Lu
2010; Krishnamoorthy and Yu 2004, 2012; Nel and Van der Merwe 1986; Zhang
2011, 2012; Zhang and Liu 2013). However, not much has been done under
the nonparametric paradigm, in particular under the asymptotic framework of a
large number of factor levels. This asymptotic setup is becoming increasingly
popular due to high throughput diagnostics and other bioinformatics tools which
generate massive amounts of data. More motivations for this type of asymptotics in
agriculture, health sciences, and other disciplines are found in Boos and Brownie
(1995), Akritas and Arnold (2000), Bathke (2002), Bathke (2004) and Harrar and
Gupta (2007) in univariate settings, and Gupta et al. (2006), Gupta et al. (2008),
Bathke and Harrar (2008) and Harrar and Bathke (2008) in the multivariate setting.
Whereas the work of Gupta et al. (2006, 2008) is restricted to the equal covariance
matrix case, Bathke and Harrar (2008) and Harrar and Bathke (2008) consider the
single factor nonparametric situation.

In the following sections, hypotheses and corresponding test statistics are
introduced, and their asymptotic properties are derived. A section is devoted to the
cumbersome task of consistent estimation of the variance-covariance matrix, and
one section shows empirical evidence regarding the performance of the proposed
tests, based on a simulation study.
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Regarding the notation, a block diagonal matrix with blocks A and B will be
written as A˚ B, and the Kronecker product of matrices will be denoted as A˝ B.
See, for example, Schott (2005, Sect. 8.2) or Harville (2008, Sect. 16.1) for the
definition and basic properties of the Kronecker product.

7.2 Hypotheses and Test Statistics

In general notation, the two experimental factors are denoted as factor A and factor
B, respectively. Based on the nonparametric model (7.1), we will test hypotheses
pertaining to these factors. The hypotheses are formulated in terms of the distribu-
tion functions Fij. To this end, define the vector F D .F11; : : : ;F1b;F21; : : : ;Fab/

of cumulative distribution functions. Here, we assume the normalized versions of
the distribution functions, allowing naturally for ties (Kruskal 1952; Lévy 1925;
Ruymgaart 1980) and thus not restricting the methodology to absolutely continuous
distributions.

Particular hypotheses of interest will be of the form H  W D F D 0, postulating
absence of the effect  . More specifically,

D D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Pa ˝ 1
b Jb; for  D A;

Pa ˝ Ib for  D AjB;
1
a Ja ˝ Pb for  D B;

Ia ˝ Pb for  D BjA;
Pa ˝ Pb for  D AB;

where Id is the d � d identity matrix, Jd is the d � d unity matrix (matrix of ones),
and Pd D Id � d�1Jd.

These nonparametric hypotheses imply their corresponding parametric counter-
parts (see, e.g., Brunner et al. 2002; Harrar and Bathke 2008). As an illustration
in the univariate context, the interaction effect in a parametric linear model can be
expressed as .Pa ˝ Pb/
, where 
 is the lexicographically arranged vector of cell
means, 
 D .�11; : : : ; �1b; �21; : : : ; �ab/

0. The implication between nonparametric
and parametric hypotheses is immediately clear when expressing .Pa ˝ Pb/
 in
terms of the distribution functions as .Pa ˝ Pb/

R
xdF.x/. The same relation holds

between the multivariate nonparametric and parametric analogs. The converse of
this relation is not true: the parametric hypotheses do not imply their nonparametric
counterparts.

In order to define nonparametric (rank-based) test statistics, let Rij D .Rij1;

Rij2; : : : ; Rijnij/ where Rijk D .R.1/ijk ; : : : ;R
.p/
ijk /

0 and R.l/ijk is the (mid-)rank of X.l/ijk

among all N D Pa
iD1

Pb
jD1 nij random variables X.l/111; : : : ;X

.l/
abnab

. Use of mid-
ranks follows naturally from the normalized version of the cumulative distribution
function (see above). Arranging these mid-ranks R.l/ijk into a p � N matrix, put
R D .R1;R2; : : : ;Ra/ where Ri D .Ri1;Ri2; : : : ;Rib/. Then, denote the p � p
hypothesis and error sum of squares and cross product matrices based on the ranks
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as H.A/.R/, H.AjB/.R/, H.AB/.R/ and G.R/. The corresponding matrices for testing
main and simple effects of factor B can be written analogously to those of factor A.
However, due to the large a asymptotics considered in this manuscript, we will not
consider tests for the main effect of factor B in detail here.

H.A/ D 1

a � 1

aX
iD1

bX
jD1

. QRi:: � QR:::/. QRi:: � QR:::/0

D 1

a � 1
R

2
4
0
@ aM

iD1

bM
jD1

1

nij
1nij

1
A .Pa ˝ 1

b
Jb/

0
@ aM

iD1

bM
jD1

1

nij
10

nij

1
A
3
5R0;

H.AjB/ D 1

.a � 1/b

aX
iD1

bX
jD1

. NRij: � QR:j:/. NRij: � QR:j:/0

D 1

.a � 1/b
R

2
4
0
@ aM

iD1

bM
jD1

1

nij
1nij

1
A .Pa ˝ Ib/

0
@ aM

iD1

bM
jD1

1

nij
10

nij

1
A
3
5R0;

H.B/ D 1

b � 1

aX
iD1

bX
jD1

. QR:j: � QR:::/. QR:j: � QR:::/0

D 1

b � 1
R

2
4
0
@ aM

iD1

bM
jD1

1

nij
1nij

1
A . 1

a
Ja ˝ Pb/

0
@ aM

iD1

bM
jD1

1

nij
10

nij

1
A
3
5R0;

H.BjA/ D 1

a.b � 1/

aX
iD1

bX
jD1

. NRij: � QRi::/. NRij: � QRi::/
0

D 1

a.b � 1/
R

2
4
0
@ aM

iD1

bM
jD1

1

nij
1nij

1
A .Ia ˝ Pb/

0
@ aM
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jD1
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nij
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H.AB/ D 1

.a � 1/.b � 1/

aX
iD1

bX
jD1

. NRij: � QRi:: � QR:j: C QR:::/. NRij: � QRi:: � QR:j: C QR:::/
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.a � 1/.b � 1/
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nij
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A .Pa ˝ Pb/
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1

nij
10

nij

1
A
3
5R0; and

G D 1

ab

aX
iD1

bX
jD1

1

nij.nij � 1/

nijX
kD1

.Rijk � NRij:/.Rijk � NRij:/
0 D 1

ab

aX
iD1

bX
jD1

1

nij
Sij

D 1

ab
R

0
@ aM

iD1

bM
jD1

1

nij.1� nij/
Pnij

1
AR0;
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where NRij: D 1
nij

nijP
kD1

Rijk, QRi:: D 1
b

bP
jD1
NRij:, QR:j: D 1

a

aP
iD1
NRij:, QR::: D 1

ab

aP
iD1

bP
jD1
NRij:, and

Sij D 1
.nij�1/

nijP
kD1
.Rijk � NRij:/.Rijk � NRij:/

0.

These sum of squares and cross product matrices constitute essentially a
nonparametric multivariate unweighted means analysis. The matrix notation above
shows the pattern after which they can also be defined in higher-way layouts. To
keep this manuscript concise, this extension to higher-way layouts is not carried out
in detail here. Under the hypothesis H  , the expectation of H. / is equal to the
expectation of G, thus allowing for the following way to construct multivariate test
statistics.

Let  be one of the effects under consideration: AB, AjB, A, B, or BjA. We
propose the following multivariate test statistics for testing H  .

(a) Dempster’s ANOVA Type criterion: T. /D D tr.H. //=tr.G/.
(b) Wilks’ � criterion: T. /LR D log jICH. /G�j.
(c) The Lawley-Hotelling criterion: T. /LH D tr.H. /G�/.
(d) The Bartlett-Nanda-Pillai criterion: T. /BNP D tr

�
H. /G�.ICH. /G�/

	
.

These test statistics are similar to the four test statistics considered in Harrar and
Bathke (2012) in the context of a two-factor semiparametric MANOVA under
heteroscedasticity. Their use in this manuscript is distinct in two important ways. In
the present article, the sums of squares and cross products H. / and G are computed
from the ranks which can not be assumed to be independent across subjects. Due to
the discreteness of the rankings, it may not be reasonable to assume non-singularity
of the matrices G and H. / C G. Thus we use here Moore-Penrose generalized
inverses in defining the test statistics. The Moore-Penrose generalized inverse has
the useful continuity property (Schott 2005, Sect. 5.7; for a proof see, e.g., Penrose
1955).

7.3 Asymptotic Results

For the asymptotic derivations in this section, we will assume that a ! 1, b
bounded, and 8i; j W nij bounded. The asymptotics are somewhat involved as the
quadratic forms H. / and G are based on a matrix of ranks R which has both row-
wise and column-wise dependence.

For the mathematical derivations in the technical proofs of this manuscript, it
is convenient to use the so-called “asymptotic rank transforms” (ART) and “rank
transforms” (RT). They are formally introduced in the following definition. For the
concept of ART, see also Brunner et al. (2002, p. 77).
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Definition 7.1. Let Xijk D .X.1/ijk ; : : : ;X
.p/
ijk /

0; i D 1; : : : ; a; j D 1; : : : ; b, and k D
1; : : : ; nij, be independent random vectors with possibly dependent components X.l/ijk

whose marginal distribution is F.l/ij ; l D 1; : : : ; p. Let N D Pa
iD1

Pb
jD1 nij. Further

let

H.l/.x/ D 1

N

aX
iD1

bX
jD1

nijF
.l/
ij .x/

denote the average cdf for variable (l),

OH.l/.x/ D 1

N

aX
iD1

bX
jD1

nijX
kD1

c.x � X.l/ijk /;

where c.t/ D 0; 1=2; 1 if t < 0; t D 0; t > 0, respectively, denotes the
average empirical cdf, and Y D .Y1; : : : ;Ya/ where Yi D .Yi1; : : : ;Yib/, Yij D
.Yij1; : : : ;Yijnij/ and Yijk D .Y.1/ijk ; : : : ;Y

.p/
ijk /

0 where Y.l/ijk D H.l/.X.l/ijk / is known as the

asymptotic rank transform (ART) of X.l/ijk . The matrix of rank transforms (RT), OY, is

defined analogously, with elements OY.l/ijk D OH.l/.X.l/ijk /.

The expression “rank transform” pays tribute to the fact that OY.l/ijk is related to the

(mid-)rank R.l/ijk by OY.l/ijk D N�1.R.l/ijk� 1
2
/. However, the “asymptotic rank transforms”

are technically more tractable than the “rank transforms”, due to the simpler
covariance structure of Y as compared to OY. Note that the ART of independent
random variables are independent, but the RT are not.

Denote Var.Yij1/ D ˙ ij and assume that the following limit exists:

lim
a!1

1

ab

aX
iD1

bX
jD1

˙ ij D ˙ :

For later use, we also introduce the notation M D .
1;
2; : : : ;
a/, 
i D .
i1;

: : : ; 
ib/, 
ij D .
ij1; : : : ;
ijnij
/, where 
ijk D .�

.1/
ijk ; : : : ; �

.p/
ijk /

0 is the vector of

expectations of the ART vector Yijk, that is �.l/ijk D E.Y.l/ijk /, and Y� D Y�M; OY� D
OY �M.

For  2 fA;B;AjB;BjA;ABg, we denote the ART analogs of the matrices H. /

and G defined in Sect. 7.2 by QH. / and QG, respectively. In order to prove asymptotic
normality results for the rank-based test statistics considered in this paper, we need
to first establish the asymptotic equivalence of certain quadratic forms defined in
terms of .H. /;G/ (based on “rank transforms”) and the corresponding quadratic
forms defined in terms of . QH. /; QG/ (based on “asymptotic rank transforms”).

We begin this task by showing the asymptotic equivalence between certain
matrix differences in “rank transforms’ and the corresponding ones in “asymptotic
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rank transforms”. Recall that the ranks R.l/ijk take values in Œ1;N�, while the “rank

transforms” OY.l/ijk D N�1.R.l/ijk � 1
2
/ and the “asymptotic rank transforms” Y.l/ijk take

values within the unit interval, making it necessary to divide the rank matrices by
N2 in order to be able to establish asymptotic equivalence.

Proposition 7.1. Assume b, p and n are bounded. Then

(i) Under the hypothesis H  for  2 fA;AjB;ABg
p

a

�
1

N2
.H. / �G/ � . QH. / � QG/

�
D op.1/ as a!1 :

(ii) Under the hypothesis H  for  2 fB;BjAg
1

N2
H. / � QH. / D op.1/ as a!1 :

and
(iii) N�2G � QG D op.1/ as a!1.

Proof. The proof can be established using the same techniques as in the proof of
Theorem 4 in Harrar and Bathke (2008).

The following proposition asserts that the difference N�2G�˙ is asymptotically
(a!1) stochastically negligible.

Proposition 7.2. Assume that the nij are bounded. Then N�2G�˙
p! 0 as a!1.

Proof. Since N�2G � QG D op.1/ by (iii) of Proposition 7.1, it suffices to show that
QG�˙

p! 0. This follows from Theorem 1 of Harrar and Bathke (2012) if we show
that

Pa
iD1

Pb
jD1 n�2

ij .nij � 1/�1˙ ij ˝ ˙ ij D o.a2/ and
Pa

iD1
Pb

jD1 n�3
ij K4.Yij1/ D

o.a2/ as a ! 1. These two follow from the fact that the components of Yij1 are
uniformly bounded random variables.

Next, we obtain the asymptotic null distributions of the four test statistics for
testing the main, simple, and interaction effects. Since the results for testing H .AB/,
H .A/, H .AjB/ and H .BjA/ are similar in form and their derivations proceed along
the same lines, we consider them together.

We know from Proposition 7.2 that N�2G � ˙ D op.1/ as a ! 1, and it is
established in Theorem 7.1 below that

p
a.H. / � G/˝ D Op.1/ as a ! 1, for

any matrix of constants ˝ . All four test statistics, scaled and centered suitably, can
be expressed as

p
a .`T. /G � h/ D pa tr.H. / �G/˝ C op.1/; (7.2)

where ` D 1; 2; 1; 4, h D 1, 2p log 2, p, 2p and ˝ D .1=tr˙ /Ip;˙
�;˙ �;˙ �

for G D D;LR;LH;BNP, respectively (see Harrar and Bathke 2012, for more
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details). Therefore, the null distributions of the four test statistics can be derived
in a unified manner by obtaining the null distribution of

p
a tr.H. / �G/˝ for any

fixed matrix ˝ . The null distribution of this latter quantity is given in Theorem 7.1.

Theorem 7.1. Let  D AB;A;AjB, or BjA. Under the hypothesis H
. /
0 ,

p
a tr.H. / �G/˝

L! N
�
0; �2 .˝/

�
as a!1 and nij and b bounded, where

�2 .˝/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

2
b

n
v1.˝/C v2.˝/

.b�1/2
o

when  D AB;

2
b fv1.˝/C v2.˝/g when  D A;
2
bv1.˝/ when  D AjB;
2
b2

n
v1.˝/C v2.˝/

.b�1/2
o

when  D BjA:

Here,

v1.˝/ D lim
a!1

1

ab

aX
iD1

bX
jD1

tr.˝˙ ij/
2

nij.nij � 1/ ;

and

v2 D lim
a!1

1

ab

aX
iD1

bX
j¤j0

tr.˝˙ ij˝˙ ij0/

nijnij0
;

assuming the limits exist.

Proof. Considering Proposition 7.1, it is enough to show that N�2pa tr.H. / �
G/˝

L! N
�
0; �2 .˝/

�
as a ! 1 and nij and b bounded. This follows from

Theorem 2 of Harrar and Bathke (2012) if for some ı > 0, Ej.Yij1� 1
2
1/0˙ �1

ij .Yij1�
1
2
1/j2Cı <1 and

lim
a!1

1

a

aX
iD1

bX
jD1

1

n1Cı=2ij .nij � 1/1Cı=2
tr.˝˙ ij/

2Cı <1 and

lim
a!1

1

a

aX
iD1

bX
j¤j0

1

n1Cı=2ij n1Cı=2ij0

tr.˝˙ ij˝˙ ij0/
1Cı=2 <1:

Recalling again that the components of Yij1 are bounded random variables com-
pletes the proof.



130 A.C. Bathke and S.W. Harrar

Under the assumptions and notations of Theorem 7.1, the asymptotic distribution of
Dempster’s ANOVA type criterion can be obtained by setting ˝ D .1=tr˙ /Ip. For
the other three criteria, we set ˝ D ˙ �1 to get the asymptotic null distributions.

Needless to say, the asymptotic null distributions of TLR, TLH and TBNP, scaled
and centered as in (7.2), are the same up to the order O.a�1=2/. A comparison
of the asymptotic variances in Theorem 7.1 reveals that the test statistic for the
interaction effect has smaller variance than that of the main effect. Also we see
from the asymptotic variances in Theorem 7.1 that the test statistic for the simple
effect of A has smaller variance compared to that of either the interaction or main
effects.

7.4 Consistent Variance and Covariance Matrix Estimation

Multivariate data in factorial designs present a major technical difficulty considering
the derivation of valid nonparametric test statistics: Unlike in the multivariate one-
way design discussed in Harrar and Bathke (2008), the covariance matrices do not
simplify under the null hypotheses that are considered here. Therefore, it is more
complicated to devise consistent variance estimators.

The following theorem provides an asymptotic result formulated in terms
of the unobservable “asymptotic rank transforms”. The expression is analogous
to the variance estimator defined in Theorem 2.3 of Harrar and Bathke (2012) in
the semiparametric context. However, due to the fact that the “asymptotic rank
transforms” are per definition bounded between 0 and 1, it is not necessary to require
a moment condition as in Harrar and Bathke (2012).

Theorem 7.2. Let the model and assumptions be as in Theorem 7.1. Define

e� ij.˝/ D 1

4cij

nijX
.k1;k2;k3;k4/2K

˝.Yijk1 � Yijk2 /.Yijk1 � Yijk2 /
0

�˝.Yijk3 � Yijk4 /.Yijk3 � Yijk4 /
0;

where K is the set of all quadruples � D .k1; k2; k3; k4/ where no element in � is
equal to any other element in �, and cij D nij.nij � 1/.nij � 2/.nij � 3/. Also, define

QSij D 1

.nij � 1/
nijX

kD1
.Yijk � NYij:/.Yijk � NYij:/

0:

Then,

1

ab

aX
iD1

bX
jD1

1

nij.nij � 1/ tr.e� ij.˝// � 1

ab

aX
iD1

bX
jD1

1

nij.nij � 1/ tr.˝˙ ij/
2 D op.1/;
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and

1

ab

aX
iD1

bX
j¤j0

1

nijnij0
tr.˝ QSij˝ QSij0/ � 1

ab

aX
iD1

bX
j¤j0

1

nijnij0
tr.˝˙ ij˝˙ ij0/ D op.1/;

as a!1.

The proof follows similar to that of Theorem 2.3 in Harrar and Bathke (2012), or
rather from the theory of U-statistics (see, e.g., Serfling 1980).

Since the “variance estimator” presented in the previous theorem is not observ-
able and therefore can not be used in practice, in the next two theorems we
are introducing observable rank-based estimators and establish their asymptotic
equivalence to corresponding expressions formulated in terms of the “asymptotic
rank transforms”.

Theorem 7.3. Let e� ij.˝/ be defined as in Theorem 7.2. Define b� ij.˝/ anal-
ogously, but using rank transforms instead of asymptotic rank transforms (see
Definition 7.1). Then,

D D 1

ab

aX
iD1

bX
jD1

1

nij.nij � 1/ tr.b� ij.˝//� 1
ab

aX
iD1

bX
jD1

1

nij.nij � 1/ tr.e� ij.˝// D op.1/;

as a!1.

Proof. Without loss of generality, assume that ˝ D I. Define

QD D 1

ab

aX
iD1

bX
jD1

1

nij.nij � 1/
1

4cij

nijX
.k1;k2;k3;k4/2K



. OYijk1 � OYijk2 /.

OYijk1 � OYijk2 /
0 ˝ . OYijk3 � OYijk4 /.

OYijk3 � OYijk4 /
0

� .Yijk1 � Yijk2 /.Yijk1 � Yijk2 /
0 ˝ .Yijk3 � Yijk4 /.Yijk3 � Yijk4 /

0�;
where the cij are as defined in Theorem 7.2, and consider an arbitrary element of this
p2�p2 matrix. Each element QDq1;q2;q3;q4 is uniquely determined by a combination of
four indices q1; q2; q3; q4, where qr D 1; : : : ; p, r D 1; : : : ; 4. Then, we have

QDq1;q2;q3;q4 D
1

ab

aX
iD1

bX
jD1

1

nij.nij � 1/
1

4cij

nijX
.k1;k2;k3;k4/2K


. OY.q1/ijk1
� OY.q1/ijk2

/. OY.q2/ijk1
� OY.q2/ijk2

/. OY.q3/ijk3
� OY.q3/ijk4

/. OY.q4/ijk3
� OY.q4/ijk4

/

� .Y.q1/ijk1
� Y.q1/ijk2

/.Y.q2/ijk1
� Y.q2/ijk2

/.Y.q3/ijk3
� Y.q3/ijk4

/.Y.q4/ijk3
� Y.q4/ijk4

/
�
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D 1

ab

aX
iD1

bX
jD1

1

nij.nij � 1/4cij

nijX
.k1;k2;k3;k4/2K


. OH.q1/.X.q1/ijk1
/ � OH.q1/.X.q1/ijk2

//. OH.q2/.X.q2/ijk1
/ � OH.q2/.X.q2/ijk2

//

� . OH.q3/.X.q3/ijk3
/ � OH.q3/.X.q3/ijk4

//. OH.q4/.X.q4/ijk3
/ � OH.q4/.X.q4/ijk4

//

� .H.q1/.X.q1/ijk1
/ � H.q1/.X.q1/ijk2

//.H.q2/.X.q2/ijk1
/ � H.q2/.X.q2/ijk2

//

� .H.q3/.X.q3/ijk3
/ � H.q3/.X.q3/ijk4

//.H.q4/.X.q4/ijk3
/ � H.q4/.X.q4/ijk4

//
�

D 1

ab

aX
iD1

bX
jD1

1

nij.nij � 1/4cij

nijX
.k1;k2;k3;k4/2K

1

N4

NX
s1D1

NX
s2D1

NX
s3D1

NX
s4D1

�.X.q1/ijk1
;X.q1/ijk2

;X.q2/ijk1
;X.q2/ijk2

;X.q3/ijk3
;X.q3/ijk4

;X.q4/ijk3
;X.q4/ijk4

;Xs1 ;Xs2 ;Xs3 ;Xs4 /;

where �.X.q1/ijk1
;X.q1/ijk2

;X.q2/ijk1
;X.q2/ijk2

;X.q3/ijk3
;X.q3/ijk4

;X.q4/ijk3
;X.q4/ijk4

;Xs1 ;Xs2 ;Xs3 ;Xs4 /

D
�
Œc.X.q1/ijk1

� Xs1 / � c.X.q1/ijk2
� Xs1 /�Œc.X

.q2/
ijk1
� Xs2 / � c.X.q2/ijk2

� Xs2 /�

� Œc.X.q3/ijk3
� Xs3 / � c.X.q3/ijk4

� Xs3 /�Œc.X
.q4/
ijk3
� Xs4 / � c.X.q4/ijk4

� Xs4 /�

� ŒFs1 .X
.q1/
ijk1
/ � Fs1 .X

.q1/
ijk2
/�ŒFs2 .X

.q2/
ijk1
/ � Fs2 .X

.q2/
ijk2
/�

� ŒFs3 .X
.q3/
ijk3
/ � Fs3 .X

.q3/
ijk4
/�ŒFs4 .X

.q4/
ijk3
/ � Fs4 .X

.q4/
ijk4
/�
�
;

c.�/ denotes the normalized counting function c.x/ D .Ifx > 0g C Ifx � 0g/;
and Ft denotes the cdf of Xt:

Note that E.�/ D 0 if all indices s1; s2; s3; s4 are different from each other, and the
corresponding random variables independent of the other eight random variables.
This holds because the first part of �, integrated over .Xs1 ;Xs2 ;Xs3 ;Xs4 /, equals
the second part. Therefore, E. QD/ ! 0 since the number of .s1; s2; s3; s4/ index
combinations resulting in nonzero expectation is of order N3, but the sum is divided
by N4. Consider now

QD2
q1;q2;q3;q4 D

1

a2b2

aX
i1D1

aX
i2D1

bX
j1D1

bX
j2D1

1

ni1j1ni2j2 .ni1j1 � 1/.ni2j2 � 1/16ci1j1ci2j2

ni1 j1X
.k1;k2;k3;k4/2K

ni2 j2X
.l1;l2;l3;l4/2K

1

N8

NX
s1D1

NX
s2D1

NX
s3D1

NX
s4D1

NX
t1D1

NX
t2D1

NX
t3D1

NX
t4D1

�.X.q1/i1j1k1
;X.q1/i1j1k2

;X.q2/i1j1k1
;X.q2/i1j1k2

;X.q3/i1j1k3
;X.q3/i1j1k4

;X.q4/i1j1k3
;X.q4/i1j1k4

;Xs1 ;Xs2 ;Xs3 ;Xs4 /

� �.X.q1/i2j2l1
;X.q1/i2j2l2

;X.q2/i2j2l1
;X.q2/i2j2l2

;X.q3/i2j2l3
;X.q3/i2j2l4

;X.q4/i2j2l3
;X.q4/i2j2l4

;Xt1 ;Xt2 ;Xt3 ;Xt4 /:
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Again, when all involved random variables with indices s1; s2; s3; s4; t1; t2; t3; t4 are
independent of each other, and of the remaining random variables, the expectation
of each �-function is zero, and therefore also the expectation of the product. Similar
to above, this can be seen by first integrating over the random variables with indices
.s1; s2; s3; s4/, conditional on those with indices .k1; k2; k3; k4/. The number of cases
with nonzero expectation is again of smaller order, in this case N7, while division is
by N8. It follows that E. QD2

q1;q2;q3;q4 /! 0 and therefore QDq1;q2;q3;q4 D op.1/ for each

element of QD, which proves QD D op.1/.

Theorem 7.4. Let QSij be defined as in Theorem 7.2, and definebSij analogously, but
using rank transforms instead of asymptotic rank transforms. Then,

K D 1

ab

aX
iD1

bX
j¤j0

1

nijnij0
tr.˝bSij˝bSij0/ � 1

ab

aX
iD1

bX
j¤j0

1

nijnij0
tr.˝eSij˝eSij0/ D op.1/;

as a!1.

Proof. As in the proof of Theorem 7.3, assume without loss of generality that
˝ D I, and define

QK D 1

ab

aX
iD1

bX
j¤j0

1

nij.1 � nij/nij0.1 � nij0/

nijX
kD1

nij0X
k0D1



. OYijk � ONYij�/. OYijk � ONYij�/0 ˝ . OYij0k0 � ONYij0�/. OYij0k0 � ONYij0�/0

� .Yijk � NYij�/.Yijk � NYij�/0 ˝ .Yij0k0 � NYij0�/.Yij0k0 � NYij0�/0
�
;

and consider again an arbitrary element QKq1;q2;q3;q4 of this p2 � p2 matrix that is
determined by a combination of four indices q1; q2; q3; q4, where qr D 1; : : : ; p,
r D 1; : : : ; 4.

QKq1;q2;q3;q4 D
1

ab

aX
iD1

bX
j¤j0

1

nij.1 � nij/nij0.1 � nij0/

nijX
kD1

nij0X
k0D1



. OY.q1/ijk � ONY.q1/ij� / OY.q2/ijk .

OY.q3/ij0k0 � ONY.q3/ij0� / OY.q4/ij0k0 � .Y.q1/ijk � NY.q1/ij� /Y.q2/ijk .Y.q3/ij0k0 � NY.q3/ij0� /Y
.q4/
ij0k0

�

D 1

ab

aX
iD1

bX
j¤j0

1

nij.1 � nij/nij0.1 � nij0/

nijX
kD1

nij0X
k0D1n
 OY.q1/ijk

OY.q2/ijk
OY.q3/ij0k0
OY.q4/ij0k0 � Y.q1/ijk Y.q2/ijk Y.q3/ij0k0 Y.q4/ij0k0

�

� 
 ONY.q1/ij� OY.q2/ijk .
OY.q3/ij0k0 � ONY.q3/ij0� / OY.q4/ij0k0 � NY.q1/ij� Y.q2/ijk .Y.q3/ij0k0 � NY.q3/ij0� /Y

.q4/
ij0k0

�

� 
 OY.q1/ijk
OY.q2/ijk
ONY.q3/ij0� OY.q4/ij0k0 � Y.q1/ijk Y.q2/ijk

NY.q3/ij0� Y.q4/ij0k0

�o
:
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The terms in each of the three square brackets can be considered separately, using
basically the same techniques for each. We show details of the proof for the first
term.

OY.q1/ijk
OY.q2/ijk
OY.q3/ij0k0
OY.q4/ij0k0 � Y.q1/ijk Y.q2/ijk Y.q3/ij0k0 Y.q4/ij0k0

D OH.q1/.X.q1/ijk /
OH.q2/.X.q2/ijk /

OH.q3/.X.q3/ij0k0 / OH.q4/.X.q4/ij0k0 /

� H.q1/.X.q1/ijk /H
.q2/.X.q2/ijk /H

.q3/.X.q3/ij0k0 /H.q4/.X.q4/ij0k0 /

D 1

N4

NX
s1D1

NX
s2D1

NX
s3D1

NX
s4D1



c.X.q1/ijk � Xs1 /c.X

.q2/
ijk � Xs2 /c.X

.q3/
ij0k0 � Xs3 /c.X

.q4/
ij0k0 � Xs4 /

� Fs1 .X
.q1/
ijk /Fs2 .X

.q2/
ijk /Fs3 .X

.q3/
ij0k0 /Fs4 .X

.q4/
ij0k0 /

�
:

Clearly, the expected value of this expression is 0 when all indices s1; s2; s3; s4
are different from each other, and the corresponding random variables indepen-
dent of the other four random variables. This can be seen by integrating over
.Xs1 ;Xs2 ;Xs3 ;Xs4 / first. The number of .s1; s2; s3; s4/ index combinations resulting
in nonzero expectation is of order N3, while the sum is divided by N4. Using
similar techniques for the remaining components of QKq1;q2;q3;q4 , it follows that
E. QKq1;q2;q3;q4 /! 0. Consider next

QK2
q1;q2;q3;q4 D

1

a2b2

aX
i1D1

aX
i2D1

bX
j1¤j01

bX
j2¤j02

1

ni1j1ni2j2 .1 � ni1j1 /.1 � ni2j2 /ni1j01
ni2j02

.1 � ni1j01
/.1 � ni2j02

/

ni1 j1X
k1D1

ni2 j2X
k2D1

ni1 j01X
k0D1

ni2 j02X
k0
2D1



. OY.q1/i1j1k1

� ONY.q1/i1j1�/ OY.q2/i1j1k1
. OY.q3/

i1j01k0
1
� ONY.q3/

i1j01�/
OY.q4/

i1j01k0
1

� .Y.q1/i1j1k1
� NY.q1/i1j1�/Y

.q2/
i1j1k1

.Y.q3/
i1j01k0

1
� NY.q3/

i1j01�/Y
.q4/
i1j01k0

1

�


. OY.q1/i2j2k2

� ONY.q1/i2j2�/ OY.q2/i2j2k2
. OY.q3/

i2j02k0
2
� ONY.q3/

i2j02�/
OY.q4/

i2j02k0
2

� .Y.q1/i2j2k2
� NY.q1/i2j� /Y

.q2/
i2j2k2

.Y.q3/
i2j02k0

2
� NY.q3/

i2j02�/Y
.q4/
i2j02k0

2

�
:

The product of the square brackets can be decomposed into the following and similar
terms, using the same decomposition as in the first part of this proof.
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1

N8

NX
s1D1

NX
s2D1

NX
s3D1

NX
s4D1

NX
t1D1

NX
t2D1

NX
t3D1

NX
t4D1


c.X.q1/i1j1k1
� Xs1 /c.X

.q2/
i1j1k1
� Xs2 /c.X

.q3/
i1j01k0

1
� Xs3 /c.X

.q4/
i1j01k0

1
� Xs4 /

� Fs1 .X
.q1/
i1j1k1

/Fs2 .X
.q2/
i1j1k1

/Fs3 .X
.q3/
i1j01k0

1
/Fs4 .X

.q4/
i1j01k0

1
/
�



c.X.q1/i2j2k2

� Xt1 /c.X
.q2/
i2j2k2
� Xt2 /c.X

.q3/
i2j02k0

2
� Xt3 /c.X

.q4/
i2j02k0

2
� Xt4 /

� Ft1 .X
.q1/
i2j2k2

/Ft2 .X
.q2/
i2j2k2

/Ft3 .X
.q3/
i2j02k0

2
/Ft4 .X

.q4/
i2j02k0

2
/
�
:

As above, it can be seen that when all involved random variables with indices
s1; s2; s3; s4; t1; t2; t3; t4 are independent of each other, and of the remaining random
variables, the expectation of this expression is zero. The number of cases with
nonzero expectation is of order N7, while division is by N8. A tedious calculation
verifies that this is also the case for the remaining components of QK2

q1;q2;q3;q4 .

Thus, E. QK2
q1;q2;q3;q4 / ! 0 and QKq1;q2;q3;q4 D op.1/ for each element of QK, proving

QK D op.1/.

The three previous theorems together establish the consistency of a rank-based
estimator of the asymptotic variances. Aggregating the results so far, we can take
advantage of the results from Harrar and Bathke (2012) and formulate Theorem 7.5.

Theorem 7.5. Let  D AB;A;AjB, or BjA. Under the hypothesis H
. /
0 ,

p
a tr.H. / � G/ Ő O��1

 . Ő / L! N .0; 1/ as a ! 1 and nij and b bounded, where
Ő is the consistent estimator of ˝ obtained by replacing �˙ with N�2G (see

Proposition 7.2), and where

O�2 . Ő / D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

2
b

n
Ov1. Ő /C Ov2. Ő /

.b�1/2
o

when  D AB;

2
b

n
Ov1. Ő /C Ov2. Ő /

o
when  D A;

2
b Ov1. Ő / when  D AjB;
2
b2

n
Ov1. Ő /C Ov2. Ő /

.b�1/2
o

when  D BjA:

Here, Ov1. Ő / D 1
ab

Pa
iD1

Pb
jD1

tr.b� ij. Ő //
nij.nij�1/ and Ov2. Ő / D 1

ab

Pa
iD1

Pb
j¤j0

tr. Ő OSij Ő OSij0 /

nijnij0
.

7.5 Simulation Study

In order to investigate the finite sample performance of the proposed inference
methods under the exemplary setting of dimension p D 3, number of levels of factor
A between a D 6 and a D 50, number of levels of factor B set to b D 3, sample sizes
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Fig. 7.1 Simulated ˛ under null hypothesis for p D 3, b D 3, a D 6 to 50, nij D 4; 5; 6. Normal
and skew normal underlying data distributions, nominal ˛ 5 %. Main effect of A and interaction
between A and B

per cell between nij D 4, 5, and 6. Underlying distributions chosen were normal
and skew normal. The multivariate skew normal data were generated according to
Proposition 6 in Azzalini and Dalla Valle (1996) where we used (in their notation)

ı D
p
2p

p.pC1/C2 .1; : : : ; p/
0 and ˝ D Ip C 1

2�
ıı0.

The results under null hypothesis are shown in Fig. 7.1. As expected from a fully
nonparametric rank-based approach, the underlying distribution does not have a
major effect on the performance. In all cases considered, Wilks’ � type statistic
performed best, in the sense of the simulated level being closest to the nominal
level, while not exceeding it.

Due to its best performance under null hypothesis, Wilks’ � type test statistic
was selected for a power simulation. Here, the statistic based on variablewise ranks,
as proposed in the present article, was compared to the power of the analogous
procedure using the original observations instead of the ranks (justified by Harrar
and Bathke 2012). While there were no visible differences for underlying normal
distributions, the power gain of the nonparametric rank-based method became quite
pronounced when the underlying distribution was chosen as contaminated normal.
Figure 7.2 shows simulation results for an exemplary situation with heteroscedastic
contaminated multivariate normal distributions 0:9N3.0;˙ ij/C 0:1N3.10 � 1;˙ ij/.
Here, ˙ ij were different compound symmetric variance-covariance matrices with
off-diagonal elements �ij D pij=.1C ij/ and diagonal elements 1 � �ij.

Alternatives were modeled by location shifts. Specifically, in the main effects
power simulation, expected values were shifted up by ı units for levels 10–20 of
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Fig. 7.2 Simulated power of Wilks’ � type test statistic using ranks, and using raw data, p D 3,
a D 20, b D 3, nij D 4; 5; 6. Contaminated normal underlying data distributions, nominal ˛ 5 %.
Main effect of A and interaction between A and B. Location shifts for main and interaction effects
as described in the text

factor A, for all variables, while they were shifted down by ı units for the other
levels 1–9. In the interaction effects power simulation, the upwards shift was for the
factor level combinations .i; j/ with i � 10; j � 2, whereas the downwards shift was
for i < 10; j < 2. In both cases, a D 20, b D 3, p D 3.

The results show the rather striking advantages of a nonparametric rank-based
approach over its semiparametric competitor using the original observations instead
of ranks.

7.6 Discussions and Conclusions

In this somewhat theoretical manuscript, we have introduced fully nonparametric,
rank-based test statistics for inference on multivariate data in factorial designs. To
our knowledge, no comparable results in such general applicability (for example
for fully ordinal data) have been established yet. Due to the rather cumbersome
technicalities, the work has only been carried out here for a design with two factors,
but it can be extended in a straightforward way to higher-way layouts. Also, we
have focused here on large (a) asymptotics (number of factor levels of factor A tends
to infinity) and only considered those test statistics in detail that yield asymptotic
normality under this type of asymptotic setting. The asymptotic distribution of the
test for main effect of factor B will be that of a weighted sum of �2 random variables.

It should be pointed out that the test statistics can be calculated directly, they
don’t involve any iterative computational procedures. The test statistics presented
here can be taken as a basis for small sample approximations based on moment
estimators or expansions. In future work, it would be interesting to compare their
performance with resampling based methods such as those from Konietschke et al.
(2015), or with other robust procedures based on semiparametric models.

Acknowledgements Dedicated to Joe McKean on the occasion of his 70th birthday.



138 A.C. Bathke and S.W. Harrar

References

Akritas, M., & Arnold S. (2000). Asymptotics for analysis of variance when the number of levels
is large. Journal of the American Statistical association, 95(449), 212–226.

Azzalini, A., & Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika,
83(4), 715–726.

Bathke, A. C. (2002). Anova for a large number of treatments. Mathematical Methods of Statistics,
11(1), 118–132.

Bathke, A. C. (2004). The anova F test can still be used in some balanced designs with unequal
variances and nonnormal data. Journal of Statistical Planning and Inference, 126(2), 413–422.

Bathke, A. C., & Harrar, S.W. (2008). Nonparametric methods in multivariate factorial designs for
large number of factor levels. Journal of Statistical Planning and Inference, 138(3), 588–610.

Belloni, A., & Didier, G. (2008). On the Behrens–Fisher problem: A globally convergent algorithm
and a finite-sample study of the Wald, LR and LM tests. The Annals of Statistics, 36,
2377–2408.

Boos, D.D., & Brownie, C. (1995). Anova and rank tests when the number of treatments is large.
Statistics & Probability Letters, 23(2), 183–191.

Brunner, E., Domhof, S., & Langer, F. (2002). Nonparametric analysis of longitudinal data in
factorial experiments. New York: Wiley.

Chatfield, J. A., Draper, E. A., Cochran, K. D., & Herms, D. A. (2000). Evaluation of crabapples
for apple scab at the Secrest Arboretum in Wooster, Ohio. Special circular 177, The Ohio State
University, Ohio Agricultural Research and Development Center.

Girón, F. J., & del Castillo, C. (2010). The multivariate Behrens–Fisher distribution. Journal of
Multivariate Analysis, 101(9), 2091–2102.

Gupta, A. K., Harrar, S. W., & Fujikoshi, Y. (2006). Asymptotics for testing hypothesis in
some multivariate variance components model under non-normality. Journal of Multivariate
Analysis, 97, 148–178.

Gupta, A. K., Harrar, S. W., & Fujikoshi, Y. (2008). Manova for large hypothesis degrees of
freedom under non-normality. Test, 17(1), 120–137.

Harrar, S. W., & Bathke, A. C. (2008). Nonparametric methods for unbalanced multivariate data
and many factor levels. Journal of Multivariate Analysis, 99(8), 1635–1664.

Harrar, S. W., & Bathke, A. C. (2012). A modified two-factor multivariate analysis of variance:
asymptotics and small sample approximations (and erratum). Annals of the Institute of
Statistical Mathematics, 64(1 & 5), 135–165 & 1087.

Harrar, S. W., & Gupta, A. K. (2007) Asymptotic expansion for the null distribution of the f-statistic
in one-way anova under non-normality. Annals of the Institute of Statistical Mathematics, 59(3),
531–556.

Harville, D. A. (2008). Matrix algebra from a statistician’s perspective. Berlin: Springer.
Kawasaki, T., & Seo, T. (2015). A two sample test for mean vectors with unequal covariance

matrices. Communications in Statistics-Simulation and Computation, 44, 1850–1866.
Konietschke, F., Bathke, A. C., Harrar, S. W., & Pauly, M. (2015). Parametric and nonparametric

bootstrap methods for general MANOVA. Journal of Multivariate Analysis, 140, 291–301.
Krishnamoorthy, K., & Lu, F. (2010). A parametric bootstrap solution to the MANOVA under

heteroscedasticity. Journal of Statistical Computation and Simulation, 80(8), 873–887.
Krishnamoorthy, K., & Yu, J. (2004). Modified Nel and Van der Merwe test for the multivariate

Behrens–Fisher problem. Statistics & Probability Letters, 66(2), 161–169.
Krishnamoorthy, K., & Yu, J. (2012). Multivariate Behrens–Fisher problem with missing data.

Journal of Multivariate Analysis, 105(1), 141–150.
Kruskal, W. H. (1952). A nonparametric test for the several sample problem. Annals of

Mathematical Statistics, 23, 525–540.
Lévy, P. (1925). Calcul des Probabilités. Paris: Gauthiers-Villars.
Nel, D.G., & Van der Merwe, C. A. (1986). A solution to the multivariate Behrens-Fisher problem.

Communications in Statistics-Theory and Methods, 15(12), 3719–3735.



7 Rank-Based Inference for Multivariate Data in Factorial Designs 139

Penrose, R. (1955). A generalized inverse for matrices. Proceedings of the Cambridge Philosoph-
ical Society, 51, 17–19.

Ruymgaart, F. H. (1980). A unified approach to the asymptotic distribution theory of certain
midrank statistics. In Statistique non parametrique asymptotique. Lecture notes on mathematics
(Vol. 821). Berlin: Springer.

Schott, J. R. (2005). Matrix analysis for statistics. Hoboken: Wiley.
Serfling, R. (1980). Approximation theorems of mathematical statistics. New York: Wiley.
Van Aelst, S., & Willems, G. (2011). Robust and efficient one-way MANOVA tests. Journal of the

American Statistical Association, 106(494), 706–718.
Zhang, J. -T. (2011). Two-way MANOVA with unequal cell sizes and unequal cell covariance

matrices. Technometrics, 53(4), 426–439.
Zhang, J. -T. (2012). An approximate Hotelling T2-test for heteroscedastic one-way MANOVA.

Open Journal of Statistics, 2(1), 1–11.
Zhang, J. -T., & Liu, X. (2013). A modified Bartlett test for heteroscedastic one-way MANOVA.

Metrika, 76(1), 135–152.



Chapter 8
Two-Sample Rank-Sum Test for Order
Restricted Randomized Designs

Yiping Sun and Omer Ozturk

Abstract This paper develops a new nonparametric test for the location shift
between two populations based on order restricted randomized design (ORRD).
The ORRD exploits the use of subjective, imprecise or rough information among
experimental units to create a blocking factor. The blocking factor, in a given
set of H experimental units, is constructed by ranking the units from smallest
to largest and then assigning them into H ranking classes (judgment blocks).
The design then uses a restricted randomization to assign the treatment regimes
to experimental units across these judgment blocks. This randomization scheme
induces a positive correlation structure among within-set response measurements.
The positive correlation structure then acts as a variance reduction technique in the
inference of a contrast parameter in an ORRD. The paper develops a rank-sum test to
test the difference between two treatment medians. It is shown that the test performs
better than its competitors regardless of the accuracy of the ranking information
of within-set units. The paper also constructs point and interval estimators for the
contrast parameter. For set sizes H > 2, there are more than one ORRDs. The paper
constructs an optimal design that maximizes the asymptotic Pitman efficacy of the
proposed test among all possible ORRDs. The proposed test is applied to ACTG
320 clinical trial data.
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8.1 Introduction

In a design of experiment, natural variation among experimental units can be
accounted in several ways. One of the common approach is to identify an auxiliary
variable either to fit a covariance model or to create a blocking variable to construct
homogeneous groups. In certain settings, there may not exits a clearly defined
auxiliary variable and the natural variation can be assessed with informal subjective
observations. Although subjective observations may be questionable in quality, it is
extremely useful in reducing the total variation in an experiment.

As an example, consider a study of efficacy comparison between a new drug and
an existing one. In this setting, formal measurements on experimental units may
include age, gender, weight, etc., which can be used as covariates or as a blocking
factor in the design of the experiments. Informal measurements may include general
health status, pre-medical history of patients, etc. This information in general may
be incomplete, subjective, imprecise, even biased, and it may not be converted to
numerical numbers or categories easily. Nonetheless, the information is very useful
to improve statistical inference if it is used properly at the design and analysis stages
of the experiment.

Ozturk and MacEachern (2004, 2007) proposed order restricted randomized
design (ORRD) to use this informal and subjective information to construct
judgment ranking blocks to estimate contrast parameters in a design of experiment.
The following model describes the underlying structure between the responses and
model parameters in an additive model

Zij D �i C �ij for i D 1; 2 and j D 1; � � � ; n; (8.1)

where Zij is the response measurement from the experimental unit j with treatment i;
�i is the median effect of treatment i; �ij’s are independent and identically distributed
(iid) random errors from a distribution F with finite Fisher information. This model
indicates that the error term �ij is the property of an experimental unit. Thus, the
heterogeneity among experimental units is explained by these random error terms.
The premise of ORRD is to use this heterogeneity by ranking the residual terms in
model (8.1) at the design stage of an experiment.

The order restricted randomized design can be constructed through a two-step
procedure, ranking and randomization. In ranking step, we select 2H experimental
units at random from an infinite population and divide them into two sets, each
of size H. Units in each set are judgment ranked based on their anticipated error
terms, �ij, with available subjective auxiliary information. Let R1; : : : ;RH denote
the subjective ranks of the experimental units in each set. Note that ranking of
experimental units, similar to the construction of blocks in randomized block
design, is performed pre-experimentally based on inherent variations among the
experimental units since experiment has not been conducted yet. Hence, there may
be ranking error in the construction of judgment ranks.
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Table 8.1 Illustration of an
ORRD with replication size
n, set size H, sets ˛ and ˇ

Replication Seta Control Treatment

1 1 XŒ˛1�1; � � � ;XŒ˛u �1 YŒˇ1�1; � � � ;YŒˇH�u�1

2 XŒˇ1�1; � � � ;XŒˇH�u�1 YŒ˛1�1; � � � ;YŒ˛u �1

2 1 XŒ˛1�2; � � � ;XŒ˛u �2 YŒˇ1�2; � � � ;YŒˇH�u�2

2 XŒˇ1�2; � � � ;XŒˇH�u�2 YŒ˛1�2; � � � ;YŒ˛u �2

:
:
:

:
:
:

:
:
:

:
:
:

n 1 XŒ˛1�n; � � � ;XŒ˛u �n YŒˇ1�n; � � � ;YŒˇH�u�n

2 XŒˇ1�n; � � � ;XŒˇH�u�n YŒ˛1�n; � � � ;YŒ˛u �n

aJudgment order statistics from the same set are correlated, but
judgment order statistics from different sets are independent

In randomization step, we separate the ranks .R1; � � � ;RH/ into two disjoint non-
empty subsets ˛ and ˇ, where ˛ = .˛1; � � � ; ˛u/ and ˇ D .ˇ1; � � � ; ˇH�u/. In the
first set, we then perform a randomization to decide whether the control or treatment
regimes are assigned to the units that have ranks in set ˛ or ˇ. In the second
set, opposite allocation is performed without randomization so that each treatment
regime is applied to all ranks. These two steps are called a replication. This basic
process is repeated n times to increase the sample size. Table 8.1 illustrates the
construction of ORRD for replication size n, set size H, and sets ˛ and ˇ.

Model (8.1) under ORRD can be revised to reflect the ranking structure of within-
set residuals

ZiŒh�j D �i C �iŒh�j for i D 1; 2I h D 1; � � � ;H; and j D 1; � � � ; n; (8.2)

where ZiŒh�j and �iŒh�j are, respectively, the response measurement and error term for
treatment i ranked unit h and replication j. The parameter �i is the median effect of
treatment i. The square brackets are used to indicate that there may be ranking error
in the construction of judgment ranks. If there is no ranking error, we replace the
square brackets with the round parentheses. In this case, the random variable ZiŒh�j

and �iŒh�j become the hth order statistics in a set of size H. In this paper unless stated
otherwise, we use an arbitrary, but consistent ranking scheme. The ranking scheme
is called consistent if the following equality holds

F.y/ D
HX

hD1
FŒh�.y/;

where FŒh�.y/ is the cdf of the hth judgment order statistic, �iŒh�j.
In Table 8.1, the response variable ZiŒh�j reduces to ZiŒh�j D XŒh�j if i D 1 and

ZiŒh�j D YŒh�j if i D 2. It is important to recognize that all X- and Y-measurements
are correlated if they belong to the same set since they are judgment order statistics
in a set of size H. On the other hand, any two measurements from different sets are
independent since they are ordered independently in different sets. Under a perfect
ranking model, judgment order statistics XŒh�j and YŒh�j become the hth order statistics
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in a set of size H from control and treatment group in replication j, respectively. In
this case, we use the standard notation X.h/j and Y.h/j to denote the order statistics.

For any fixed value of H, the ORRD is determined by the choices of set ˛ and
set ˇ. Thus, the set D D .˛; ˇ/ is called the design parameter of ORRD. When H
is 2, the design is unique. When H is greater than 2, there are 2H�1 � 1 possible
designs depending on the how the integers 1; � � � ;H are allocated into sets ˛ and ˇ.
For H > 2, an optimal design can be chosen from all possible designs based on
some reasonable criteria.

A data set obtained from ORRD has a specific feature. Within set observations
are not independent although between set observations are independent. Under some
mild assumptions, within-set observations are positively correlated. This specific
correlation structure of the data leads to an important characteristic of the ORRD.
Since the ranked units from the same set are separated into two treatment groups, the
within set positive correlations translate into negative correlations for the estimation
of the contrast parameter and leads to a variance reduction for the contrast estimator.

The subjective information has also been successfully used in a ranked set
sampling (RSS) design in McIntyre (1952, 2005). As in ORRD, an RSS design
ranks EUs in a small set without measurement, but it uses these ranks to select a
single EU for measurements to construct homogeneous groups of EUs. Unlike an
ORRD where all units in the set are measured, remaining H�1 units in the set in an
RSS design are unused. Hence, RSS design could be too restrictive in design of an
experiment where potential EUs are expensive or limited. The construction of RSS
and most current literature review can be found in Wolfe (2012) and Hollander et al.
(2014, Chap. 15).

In recent years, there has been increased research activity in ORRD. Ozturk
and MacEachern (2007) looked at the design issues of ORRD in a two-sample
problem and developed statistical inference for the contrast parameter of a location
shift between treatment and control means. Sun (2007) and Ozturk and Sun (2009)
constructed rank based inference for a two sample problem. Due and MacEachern
(2007) constructed several statistics to estimate the location shift between treatment
and control regimes based on judgment post stratified ORR designs. Markiewicz
(2008) fitted a linear model to ORRD to estimate the model parameters based on
L-1 norm. Recently Ozturk and MacEachern (2013) used generalized linear models
to draw inference based on ORRD. Gao and Ozturk (2015) developed inference for
linear models based on rank dispersion function.

In this paper, we use ORRD to develop a rank-sum test for location shift between
control and treatment populations. Section 8.2 introduces the test statistic and
investigates its asymptotic null distribution. It is shown that the test statistic is
asymptotically normal and has higher asymptotic Pitman efficacy than its com-
petitors. Section 8.3 discusses the asymptotic null distribution of the test statistic
under imperfect ranking. Section 8.4 provides empirical evidence to investigate the
properties of the tests and estimators. Section 8.5 applies the proposed tests to a
clinical trial data set. Section 8.6 provides a concluding remark. The details of
the proofs of the theorems can be found in PhD dissertation in the Department of
Statistics at the Ohio state University (Sun 2007)
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8.2 Two-Sample Rank-Sum Test

Let F.x/ and G.y/ D F.y � �/ be the cumulative distribution functions (cdfs) of
the control and treatment populations, respectively. The parameter, � D �Y � �X ,
represents a location shift between these two distributions, where �X and �Y are the
medians of G and F. Let FŒi� and GŒi� be the cdfs for XŒi�j and YŒi�j, the ith judgment
order statistics in replication j; j D 1; � � � ; n, respectively.

We develop a nonparametric test to test the null hypothesis H0 W � D 0 against
the alternative hypothesis H1 W � ¤ 0. Let

T D
HX

iD1

nX
jD1

HX
kD1

nX
tD1

I.XŒi�j � YŒk�t/:

Our test rejects the null hypothesis for extreme values of T . For computational
easiness, we center the test statistic T and write

T� D
HX

iD1

nX
jD1

HX
kD1

nX
tD1
ŒI.XŒi�j � YŒk�t/ � �ik�

D
HX

iD1

nX
jD1

HX
kD1

nX
tD1

I.XŒi�j � YŒk�t/ � n2H2

2
;

where

�ik D EŒI.XŒi�j � YŒk�t/�:

It is clear that EŒT�� D 0. For notational convenience, we also define NT� D T�

.nH/2

and NT D T
.nH/2

.
Standard asymptotic theory is not applicable to derive the asymptotic null

distribution of the test statistic due to the fact that T is not a sum of independent
random variables. We first project the test statistic onto a space of linear functions
of independent random variables.

We rearrange the data in the ORRD as follows

Z1s D .XŒ˛1�s; � � � ;XŒ˛u�s;YŒˇ1�s; � � � ;YŒˇH�u�s/; s D 1; � � � ; n
Z2s D .XŒˇ1�s; � � � ;XŒˇH�u�s;YŒ˛1�s; � � � ;YŒ˛u�s/; s D 1; � � � ; n

Z D .Z11; � � � ;Z1n;Z21; � � � ;Z2n/;

where Z1s and Z2s indicate the set 1 and set 2 observations in the sth replication
in Table 8.1, respectively. All observations in vectors Z1s and Z2s are positively
correlated, but the vectors Z11; � � � ;Z1n;Z21; � � � ;Z2n are mutually independent
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H-dimensional random vectors since the sets are randomly selected in ORRD. The
test statistic T� can be considered as a random variable based on independent
random vectors Z11; � � � ;Z1n;Z21; � � � ;Z2n, such that EŒT�� D 0. We first con-
struct a projection of NT�, NVp, onto the space of linear functions of Z11; � � � ;Z1n,
Z21; � � � ;Z2n.

Lemma 8.1. Let F.x/ and G.y/ D F.y��/ be the cdfs of the control and treatment
populations, respectively. Under the null hypothesis, the projection of NT� onto the
space of linear functions of Z11; � � � ;Z1n;Z21; � � � ;Z2n is given by

NVP D
nX

sD1
ŒE. NT�jZ1s/C E. NT�jZ2s/�

D 1

nH

nX
sD1

(
uX

iD1
Œ1 � F.XŒ˛i�s/ � N�˛i��C

H�uX
kD1
ŒF.YŒˇk �s/ � N��ˇk �

)

C 1

nH

nX
sD1

(
H�uX
iD1
Œ1 � F.XŒˇi�s/ � N�ˇi��C

uX
kD1
ŒF.YŒ˛k �s/ � N��˛k �

)
; (8.3)

where

N�˛i� D
HX

tD1
�˛it=H; N�ˇi� D

HX
tD1

�ˇit=H; N��˛k D
HX

tD1
�t˛k=H; N��ˇk D

HX
tD1

�tˇk=H:

Proof. Under the null hypothesis F.x/ D G.x/. We partition NT� into four different
sums

NT� D 1

nH2

uX
iD1

nX
jD1

uX
kD1

nX
tD1
ŒI.XŒ˛i�j � YŒ˛k �t/ � �˛i˛k �

C 1

nH2

uX
iD1

nX
jD1

H�uX
kD1

nX
tD1
ŒI.XŒ˛i�j � YŒˇk �t/ � �˛iˇk �

C 1

nH2

H�uX
iD1

nX
jD1

uX
kD1

nX
tD1
ŒI.XŒˇi�j � YŒ˛k �t/ � �ˇi˛k �

C 1

nH2

H�uX
iD1

nX
jD1

H�uX
kD1

nX
tD1
ŒI.XŒˇi�j � YŒˇk�t/ � �ˇiˇk �:

The projection of NT� follows from

NVP D
nX

sD1
ŒE. NT�jZ1s/C E. NT�jZ2s/�:
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It can be shown that

E. NT�jZ1s/ D n � 1
n2H2

I.s D j; t ¤ s/

(
uX

iD1

uX
kD1
Œ1 � FŒ˛k �.XŒ˛i�s/ � �˛i˛k �

C
uX

iD1

H�uX
kD1
Œ1 � FŒˇk�.XŒ˛i�s/ � �˛iˇk �

)

C n � 1
n2H2

I.s D t; j ¤ s/

(
uX

iD1

H�uX
kD1
ŒFŒ˛i�.YŒˇk �s/ � �˛iˇk �

C
H�uX
iD1

H�uX
kD1
ŒFŒˇk �.YŒˇk �s/ � �ˇiˇk �

)
C o.1=n2/

and

E. NT�jZ2s/ D n � 1
n2H2

I.s D j; t ¤ s/

(
H�uX
iD1

uX
kD1
Œ1 � FŒ˛k �.XŒˇi�s/ � �ˇi˛k �

C
H�uX
iD1

H�uX
kD1
Œ1 � FŒˇk �.XŒˇi�s/ � �ˇiˇk �

)

C n � 1
n2H2

I.s D j; t ¤ s/

(
uX

iD1

uX
kD1
ŒFŒ˛i�.YŒ˛k �s/ � �˛i˛k �

C
H�uX
iD1

uX
kD1
ŒFŒˇi�.YŒ˛k �s/ � �ˇi˛k �

)
C o.1=n2/

Combining these two conditional expectation and using the equality in consistent
ranking scheme,

PH
iD1 FŒi�.t/ D HF.t/, we show that

NVP D
nX

sD1
ŒE. NT�jZ1s/C E. NT�jZ2s/�

D 1

nH

nX
sD1

(
uX

iD1
Œ1 � F.XŒ˛i�s/ � N�˛i��C

H�uX
kD1
ŒF.YŒˇk �s/ � N��ˇk �

)

C 1

nH

nX
sD1

(
H�uX
iD1
Œ1 � F.XŒˇi�s/ � N�ˇi��C

uX
kD1
ŒF.YŒ˛k �s/ � N��˛k �

)
C op.1=n/;

The proof is completed by showing that difference between the variances of NVP and
NT� goes to zero as n gets large.
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In Eq. (8.3), for each s the random variables in curly brackets belong to the
same set and hence, they are positively correlated. On the other hand, the random
variables in the first and second sums belong to set type 1 and set type 2 in Table 8.1,
respectively. These random variables are independent. We then observe that the
statistic NVP is a sum of 2n independent random variables and limiting distribution of
VP follows from the central limit theorem.

Theorem 8.1. The null distribution of
p
2nH. NT� 1

2
/, as n goes to infinity, converges

to a normal distribution with mean 0 and variance �2, where

�2 D 2

H

(
Var

"
uX

iD1
.1 � F.XŒ˛i�1/ � N�˛i�/C

H�uX
kD1
.F.YŒˇk�1/ � N��ˇk/

#

C Var

"
H�uX
iD1
.1 � F.XŒˇi�1/ � N�ˇi�/C

uX
kD1
.F.YŒ˛k �1/ � N��˛k/

#)
:

Proof. The proof follows from the central limit theorem.
It is clear from Theorem 8.1 that the asymptotic null distribution of

p
2nH.T� 1

2
/

depends on ranking mechanism and is not distribution free in general. Under perfect
ranking, Theorem 8.1 can be simplified and the proposed rank-sum test statistic T
becomes asymptotically distribution free. In this case, the test statistic T becomes
functions of order statistics from control and treatment groups

T D
HX

iD1

nX
jD1

HX
kD1

nX
tD1

I.X.i/j � Y.k/t/:

The asymptotic variance of
p
2nH. NT � 1=2/ reduces to an explicit expression

depending only the design parameters ˛ and ˇ.

Theorem 8.2. Under perfect ranking, the asymptotic null distribution ofp
2nH.T � 1

2
/ converges to a normal distribution with mean zero and variance

�2p , where

�2p D
4

H

8<
:

uX
iD1

˛i.H C 1 � ˛i/

.H C 1/2.H C 2/ C 2
uX

iD1

uX
jD1

I.˛i < ˛j/˛i.H C 1 � ˛j/

.H C 1/2 .H C 2/ C

H�uX
kD1

ˇk.H C 1 � ˇk/

.H C 1/2.H C 2/ C 2
H�uX
kD1

H�uX
tD1

I.ˇk < ˇt/ˇk.H C 1 � ˇt/

.H C 1/2 .H C 2/

�2
uX

iD1

H�uX
kD1

I.˛i < ˇk/˛i.H C 1 � ˇk/

.H C 1/2 .H C 2/ � 2
uX

iD1

H�uX
kD1

I.ˇk < ˛i/ˇk.H C 1 � ˛i/

.H C 1/2 .H C 2/

)
:
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Proof. Under perfect ranking F.X.k// is distributed as beta distribution with param-
eters k and H C 1 � k. The proof is completed by evaluating the moments of beta
distributions in �2 in Theorem 8.1.

There are more than one ways that an ORRD can be constructed when H > 2.
In this case, it is desirable to select a design so that the asymptotic Pitman efficacy
of the test is larger than any other design among all possible ORRDs. Let G�n.t/ D
F.t � �N/, where �n D a=

p
n, a > 0. Under this local alternative, the Pitman

efficacy of the test based on the design parameters ˛ and ˇ is given in the following
theorem.

Theorem 8.3. Let X and Y be two random variables with cdfs F.X/ and G.Y/ D
F.Y � �/, respectively, and f .X/ be the probability density function (pdf) of F.x/.
Assume that

R
f 2.x/dx is bounded. The asymptotic Pitman efficacy of T�.�/ is

given by

c2ORRD D
˚

d
d�E� NT�.0/

ˇ̌
�D0

�2
�2p

D .
R

f 2.x/dx/2

�2p
:

Proof. For the shift parameter �, we compute E� NT�.0/ by using the expected
values of each term in the partition of NT�.0/ in the proof of Lemma 8.1

E� NT�.0/ D 1

H

uX
iD1

�
1 �

Z
F.x ��/dF.˛k/.x/ � N�˛i:

�

C 1

H

H�uX
iD1

�
1 �

Z
F.x ��/dF.ˇi/.x/ � N�ˇi:

�
C o.1/

D 1 �
Z

F.x ��/dF.x/ � N�:: C o.1/:

The proof is completed by taking the derivative with respect to �.

We note that c2ORRD depends on ˛ and ˇ through �2p . Hence, maximizing c2ORRD

is equivalent to minimizing �2p over all ˛ and ˇ.

Theorem 8.4. Let H > 2 be any fixed integer. The null variance of the test statisticp
2nH. NT � 1

2
/, �2p , is minimized when set ˛ takes odd integers only and set ˇ takes

even integers only, or vise verse.

Proof. The proof is divided into two steps. Step I shows that any design of the
form Dki;jr D .� � �ˇk; ˛i; � � � ; ˛j; ˇr; � � � /, i < j can be improved by designs
Dki;rj D .� � � ; ˇk; ˛i; � � � ; ˇr; ˛j; � � � / and Dik;jr D .� � � ; ˛i; ˇk; ˛iC1; � � � ; ˛j; ˇr; � � � /.
In another words, the variance of NT� based on design Dki;jr is larger than its variance
under designs Dki;rj and Dik;jr, where Dki;jr is the design that all integers between
the ith and jth entries are from set ˛. By using this result, we search the optimal
design with no consecutive ˛s and ˇs in the middle ranks. On the other hand, there
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can still be consecutive ˛s or ˇs at the both ends. Then in the step II, we need to
show that the designs having two consecutive ˛s (ˇs) at the end, can be improved
by switching one of the ˛.ˇ/. The details of the proof can be found in Sun (2007).

The Theorem 8.4 indicates that the optimal design is the one that distributes
integers, 1; � � � ;H, to set ˛ and ˇ as evenly as possible. This can be achieved
by putting odd integers in one set and even integers in the other. The asymptotic
variance of the test statistics NT reduces to a simple form for the optimal design.

Corollary 8.1. Assume that set ˛ and ˇ contains odd and even integers. Under
perfect ranking assumption, the asymptotic null variance of NT based on optimal
design, �2Opt reduces to

�2Opt D
(

1
.HC1/2 if H is even

1
H.HC2/ if H is odd:

There are two competitors of the proposed test in the literature, rank-sum test under
simple random samples (SRS) and ranked set samples. Bohn and Wolfe (1992)
introduced RSS analog of the Mann-Whitney-Wilcoxon (MWW) statistic, URSS, to
test the null hypothesis that the two populations are stochastically equivalent against
the alternative hypothesis that one population is stochastically larger than the other,
where

URSS D
qX

sD1

nX
tD1

kX
iD1

mX
jD1

I.XŒi�j < YŒs�t/:

Under perfect ranking, the null distribution of URSS is asymptotically normal and
the test based on URSS has higher asymptotic Pitman efficiency with respect to SRS
rank-sum test.

The asymptotic Pitman efficacy of the MWW test based on SRS is available
in standard text books, such as Hettmansperger and McKean (2011), Randles and
Wolfe (1991). When the sample sizes in X- and Y-samples are equal, it is given by

c2SRS D 3
�Z

f 2.x/dx

�2
:

The Pitman efficacy of RSS rank-sum test is given in Bohn and Wolfe (1992)

c2RSS D
3.H C 1/

2

�Z
f 2.x/dx

�2
:

We compare the proposed optimal ORRD test to its competitors by matching
their sample sizes. Let T1 and T2 be two tests. Then the asymptotic Pitman relative

efficiency (ARE) of T1 with respect to T2 is defined as ARE.T1;T2/ D c21
c22

, where

c21 and c22 are the asymptotic Pitman efficacies of the tests T1 and T2, respectively. If
the ARE.T1;T2/ is larger than 1, the test T1 is superior to the test T2.
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Table 8.2 The asymptotic Pitman relative efficiencies

H ARE (RSS, SRS) ARE (ORRD, SRS) ARE (ORRD, RSS)

Even HC1
2

.HC1/2

3

2.HC1/

3

Odd HC1
2

H.HC2/

3

2H.HC2/

3.HC1/

In order to match the fully measured observations in all three designs, the equal
set and replication sizes are selected in each treatment groups. The ARE results
for the three designs (SRS, RSS and ORRD) summarized in Table 8.2. Table 8.2
shows that the proposed test outperforms its competitors. It is also clear that the
AREs depend on whether the set size H is even or odd, but they are free from the
underlying distribution. The designs with odd set sizes yield higher efficiency results
than the designs with even set sizes.

8.3 Calibration for Ranking Error

The proposed rank-sum test is not distribution-free under imperfect ranking. The
variance of the test statistic depends on the ranking mechanism and it is usually
smaller than �2P. Thus, if we use �2P to conduct the test when there is ranking error,
the test statistic will be inflated and lead to larger type I error rate. To reduce the
impact of ranking error, we calibrate the test by replacing �2P with the estimate of
the variance (�2 in Theorem 8.1) of the test statistic from the data. We construct a
consistent estimator for �2 under a consistent ranking scheme.

Under the null hypothesis, X- and Y-samples have the same distributions. To
increase the sample size in the estimation of �2, for each judgment class h, h D
1; � � � ;H, we combine X- and Y-sample data as follows

ZŒh�j D
�

XŒh�;j if j D 1; � � � ; n;
YŒh�;j�n if j D nC 1; � � � ; 2n:

The variance �2 in Theorem 8.1 can be written in a slightly different form in
terms of �Œi� and Œi;j�

�2 D 4

H

8<
:

H

3
�

HX
iD1

�2Œi� C 2
HX

iD1

HX
jD1

I.i < j/.Œi;j� � �Œi��Œj�/

� 4
uX

iD1

H�uX
kD1

I.˛i < ˇk/.Œ˛i;ˇk� � �Œ˛i��Œˇk�/

� 4

uX
iD1

H�uX
kD1

I.˛i > ˇk/.Œ˛i;ˇk� � �Œ˛i��Œˇk�/

)
; (8.4)
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where

�Œi� D EŒF.ZŒi�1/� and Œi;j� D EŒF.ZŒi�1/F.ZŒj�1/�:

A consistent estimator for �2 can be constructed through consistent estimators of
�Œi�, i D 1; � � � ;H, and Œi;j�, i D 1; � � � ;H, j D 1; � � � ;H
Lemma 8.2. Under an arbitrary but consistent ranking procedure the consistent
and unbiased estimator of �Œi� and Œi;j� are given by

b�Œi� D 1

2n.2n � 1/H
2nX

jD1

2nX
kD1

HX
sD1

I.k ¤ j/I.ZŒs�k � ZŒi�j/;

bŒi;j� D Cn;H

2nX
lD1

2nX
kD1

2nX
tD1

I.k ¤ l/I.t ¤ k; l/Œ
HX

sD1
I.ZŒs�k � ZŒi�l/

HX
sD1

I.ZŒs�t � ZŒj�l/�

where

Cn;H D 1

4n.2n � 1/.n � 1/H2
:

Proof. For the proof of unbiasedness, we take the expected values with respect to
ZŒs�t, s D 1; � � � ;H and t D 1; � � � ; 2n

E. O�Œi�/ D 1

2n.2n � 1/H
2nX

jD1

2nX
kD1

HX
sD1

I.k ¤ j/E
˚
I.ZŒs�k � ZŒi�j/

�

D 1

2n.2n � 1/H
2nX

jD1

2nX
kD1

HX
sD1

I.k ¤ j/E
˚
FŒs�.ZŒi�j/

�

D H

2n.2n � 1/H
2nX

jD1

2nX
kD1

I.k ¤ j/EF.ZŒi�j/ D �Œi�

E b̊Œi;j�� D Cn;H

2nX
lD1

2nX
kD1

2nX
tD1

I.k ¤ l/I.t ¤ k; l/E

"
HX

sD1
I.ZŒs�k � ZŒi�l/

HX
sD1

I.ZŒs�t � ZŒj�l/

#

D 2n.2n � 1/.2n � 2/
4n.2n � 1/.n � 1/H2

HX
sD1

HX
vD1

EI.ZŒs�2 � ZŒi�1/I.ZŒv�3 � ZŒj�1/

D 1

H2

HX
sD1

HX
vD1

EFŒs�.ZŒi�1/FŒh�.ZŒj�1/ D Œi;j�:
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The proof of consistency can be proved by showing that the variances of these
estimators go to zero as n gets large. The details of the proof can be found in Sun
(2007).

Note that �2 is a finite sum and a continuous function of �Œi� and Œi;j�. Then
an unbiased and consistent estimator of �2 is obtained by inserting b�Œi� andbŒi;j� in
Eq. (8.4), which yields

b�2 D 4

H

8<
:

H

3
�

HX
iD1

b�2Œi� C 2
HX

iD1

HX
jD1

I.i < j/.bŒi;j� �b�Œi�b�Œj�/

� 4
uX

iD1

H�uX
kD1

I.˛i < ˇk/.bŒ˛i;ˇk� �b�Œ˛i�b�Œˇk �/

� 4
uX

iD1

H�uX
kD1

I.˛i > ˇk/.bŒ˛i;ˇk� �b�Œ˛i�b�Œˇk�/

)
:

Theorem 8.5. For a fixed set size H, under an arbitrary and consistent ranking
scheme, the asymptotic null distribution of

p
2nH.T� 1

2
/=b� converges to a standard

normal distribution as n goes to infinity.

Proof. The proof of the theorem follows from Slutsky’s theorem.
To implement the proposed test under imperfect ranking, centered data should

be used to compute the null variance of T since it needs to be estimated under the
null hypothesis. Let Mx and My be the medians of X- and Y-sample observations,
respectively. We then center X and Y observations witheXŒi�;j D XŒi�j�Mx andeY Œi�;j D
YŒi�j �My for i D 1; � � � ;H, j D 1; � � � ; n. The estimatorb� is constructed based on
the centered data

eZŒh�j D
� eXŒh�;j if j D 1; � � � ; n;eY Œh�;j�n if j D nC 1; � � � ; 2n:

In the next section, we further study the test under imperfect ranking through
simulations and show empirically that the null distribution of T can be better
approximated by a Student’s t-distribution when the sample size is moderately large.

In order to complete the inferential procedures, we develop a point estimator and
a distribution-free confidence interval for�. The point estimator of� is constructed
from Hodges-Lehman estimator. Hodges-Lehman estimator is defined as the median
of the pair-wise differences of X- and Y-sample observations,

b� D medianfYŒk�t � XŒi�jI i D 1; � � � ;HI j D 1; � � � ; nI k D 1; � � � ;HI t D 1; � � � ; ng:
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Since the asymptotic Pitman efficacy of the test is c2ORRD D .
R

f 2.x/dx/2=�2,p
2nHb� converges in distribution to a normal distribution with mean zero and

variance c�2
ORRD.

It is easy to see that under the null hypothesis, the distribution of the proposed test
statistic T is symmetric around .nH/2=2. Therefore, the distribution-free confidence
interval of � follows directly from the inversion of the null distribution of T . Let
D.1/ � � � � � D..nH/2/ be the ordered differences of YŒk�t � XŒi�j for i D 1; � � � ;HI
j D 1; � � � ; nI k D 1; � � � ;HI t D 1; � � � ; n. If P0.T � k�/ D ˛=2, then we have that

ŒD.k�C1/;D..nH/2�k�// (8.5)

is a 100.1 � ˛/% confidence interval for �. For large n, the quantity k� can be
approximated from the asymptotic null distribution of T ,

k� D .nH/2=2 � 0:5 � z˛=2 O�T ; (8.6)

where O�2T is the variance estimate of the asymptotic null distribution of T , and O�2T D
.nH/3 O�2=2. Furthermore, if we use the optimal ORRD with perfect ranking, O�2T is

replaced with .nH/3

2.HC1/2 if H is even and n3H2

2.HC2/ if H is odd.

8.4 Empirical Evidence

In this section, a simulation study is performed to show how the type I error rates
and empirical power of the proposed test behave under various simulation settings
when the sample size is relatively small. The simulation settings consist of different
set (H) and replication (n) sizes, various degree of ranking information, and some
common underlying distributions (F).

There are three different available models to quantify the quality of within-set
ranking information, Dell and Clutter (1972), Bohn and Wolfe (1992) and Fligner
and MacEachern (2006). In this paper, we use Dell and Clutter model to rank
the experimental units. Dell-Clutter model states that the error term "i, that is the
property of the experimental units, is modeled with

ui D 	i C !i; i D 1; � � � ;H;
where !i’s are iid draws form a normal distribution with mean zero and variance �2.
The model above creates a set of vectors (ui; 	i) for i D 1; � � � ;H. The units in
these sets are ranked based on the first components of (ui; 	i) for i D 1; � � � ;H and
the second components are selected as the judgment ranked units. The quality of
ranking in this model is controlled by the noise variable through its variance �2.
This dependence can be expressed in terms of the correlation coefficient between u
and 	

� D 
p

2 C �2 ;
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where 
2 is the variance of 	i. It is clear that if ! has a degenerate distribution, its
variance is 0 and � D 1. This leads to perfect ranking 	i 	 ui. Otherwise, ranking
process will contain ranking error. The magnitude of this error depends on the size
of �2.

Throughout the simulation study, in each replication, the ORRD residuals are
generated from the following algorithm for each simulation parameter combination.

Step I: Generate 	i and!i independently from the underlying distribution F with
mean 0 and variance 
2 and the normal distribution with mean 0 and variance �2,
respectively, for i D 1; 2; � � � ; 2nH. Compute ui D 	i C !i for i D 1; � � � ; 2nH.
Step II: Randomly separate these ui’s into 2n sets, each of size H.
Step III: Rank ui’s in each set from 1 to H.
Step IV: Randomly separate the 2n sets into two groups, n sets of each. In one of
the groups, perform a randomization to decide whether the control or treatment
regime is assigned to units that have ranks in set ˛ or in set ˇ. In the other
group, perform an opposite allocation without a randomization. The residuals in
the control group and the treatment group are 	Œh�1i and 	Œh�2i for h D 1; � � � ;H
and j D 1; � � � ; n.
Step V: Construct the control and the treatment group response measurements
X and Y, respectively, from XŒh�i D 	Œh�1i and YŒh�i D �C "Œh�2i for h D 1; � � � ;H
and j D 1; � � � ; n.
Step VI: Under the null hypothesis, � D 0, compute z D p2nH. NT � 1

2
/=�p

under perfect ranking or z D p2nH. NT � 1
2
/= O� under imperfect ranking.

The simulation parameters in perfect ranking include the set size H D 2; 3; 4; 5;
replication size n D 3; 5; 7; 8; 10; correlation coefficient � D 1; and three differ-
ent underlying distributions. These distributions are standard normal distribution
(N(0,1)), Student’s t-distribution with 3-degrees of freedom (t(3)), and the log-
normal distribution (LN(0,1)). The simulation size is taken to be 5000 replication.
The Type I error rates are estimated as the proportion of jzj values that exceed the
critical value 1:96 for a 5% test.

Table 8.3 illustrates the estimated type I error rates under perfect ranking. The
entries in Table 8.3 indicate that the estimated type I error rates are reasonably close
to nominal size (0:05) for replication size as small as n D 3. It appears that heavy
tailed and skewed distributions require slightly larger sample sizes (replication size
n � 5).

To see the impact of ranking error on the test, we conducted another simulation
study under imperfect ranking. In this part of the simulation, type I errors are
estimated from the proportion of jzj D jp2nH. NT � 1

2
/=�pj values that exceed the

critical value 1:96 for a 5% test. In this case test is not calibrated for ranking error
since it uses variance of the test statistic under perfect ranking. Entries of Table 8.4
shows that although the performance of the test is excellent under perfect ranking,
the true type I error rates are inflated seriously under imperfect ranking. It is obvious
that even a small amount of ranking error, such as � D 0:9, has a big impact on type I
error. This suggests that a calibration is necessary in practice to conduct a reasonable
testing procedure.
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Table 8.3 The estimated
type I error rates under
perfect ranking

F H n D 3 n D 5 n D 7 n D 8 n D 10

N.0; 1/ 2 0.049 0.047 0.043 0.047 0.048
3 0.029 0.044 0.049 0.044 0.053
4 0.035 0.044 0.045 0.045 0.048
5 0.032 0.042 0.041 0.045 0.049

t.3/ 2 0.046 0.047 0.043 0.043 0.048
3 0.031 0.040 0.050 0.045 0.050
4 0.036 0.044 0.042 0.045 0.045
5 0.032 0.044 0.041 0.045 0.048

LN.0; 1/ 2 0.047 0.048 0.043 0.048 0.046
3 0.030 0.041 0.045 0.043 0.046
4 0.036 0.048 0.046 0.043 0.043
5 0.032 0.044 0.039 0.046 0.048

Table 8.4 The estimated
type I error rates under
imperfect ranking without
calibration, n D 5

F H � D 1 � D 0:9 � D 0:75 � D 0:5

N.0; 1/ 2 0.042 0.112 0.178 0.240

3 0.038 0.161 0.259 0.339

4 0.043 0.242 0.371 0.469

5 0.044 0.283 0.447 0.523

A third simulation study is conducted to investigate the size of the calibrated test
under imperfect ranking. In this part, the simulation parameters are chosen to be
H D 2; � � � ; 5; n D 4; 5; 7; 10; � D 0:9; 0:75; 0:5. The underlying distributions are
the same as in perfect ranking case. For the brevity of the presentation, we only
report the estimated type I error rates when � D 0:75 in Table 8.5.

Table 8.5 provides two estimates, one based on normal approximation (NA) in
Theorem 8.1, and the other based on Student’s t-distribution (tA) with degrees
of freedom computed from the Satterthwaite approximation. We noticed that
estimated type I error rates slowly converge to nominal value 0:05 under normal
approximation. This is not surprising since the estimation of � in the calibrated test
introduces additional variation and inflates the type I error rates for small sample
sizes. The estimated type I error rates based on t-approximation, however, are much
closer to the nominal value 0:05 for the three underlying distributions and all sample
sizes as small as 4. The difference between both approximations gets smaller as the
sample size increases. It is clear from Table 8.5 the calibrated test works reasonably
well regardless of ranking quality.

We next investigate the empirical power of the test. Simulation study considered
set size H D 3, the number of replication n D 5 and varying degree of judgment
ranking information. Residual for the ORRD are again generated from Dell and
Clutter model for � D 1; 0:9; 0:75; and 0:50. For the alternative hypothesis we
considered location shift of � D 0.0:1/1. The empirical powers of the rank-sum
test of ORRD along with classical Mann-Whitney-Wilcoxon test is given in Fig. 8.1.

Figure 8.1 illustrates that the new test has substantially higher power than the
power of the Mann-Whitney-Wilcoxon test as long as there is some information to
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Table 8.5 Empirical type I
error rates of calibrated test
when � =0.75

N.0; 1/ t(3) LN.0; 1/

H n tA NA tA NA tA NA

2 4 0.064 0.143 0.064 0.144 0.068 0.146
5 0.054 0.114 0.056 0.115 0.058 0.117
7 0.057 0.093 0.055 0.091 0.056 0.092
10 0.054 0.074 0.058 0.078 0.059 0.078

3 4 0.060 0.148 0.059 0.140 0.052 0.137
5 0.058 0.118 0.058 0.121 0.063 0.118
7 0.061 0.095 0.061 0.096 0.057 0.093
10 0.054 0.072 0.059 0.077 0.057 0.078

4 4 0.058 0.136 0.056 0.139 0.056 0.138
5 0.054 0.111 0.056 0.116 0.051 0.110
7 0.060 0.095 0.052 0.087 0.056 0.088
10 0.060 0.080 0.058 0.079 0.057 0.079

5 4 0.052 0.136 0.053 0.136 0.051 0.123
5 0.056 0.115 0.058 0.117 0.056 0.113
7 0.056 0.093 0.059 0.096 0.057 0.089
10 0.056 0.078 0.055 0.075 0.055 0.075
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Fig. 8.1 Empirical power curves of the rank-sum tests for selected �, set size H D 3, replication
size n D 5 and simulation size 5,000

rank the units prior to experimentation. If the quality of ranking information is poor,
the correlation coefficient is less than 0.5, the ORR design is as good as simple
random sampling design. This indicates that the proposed test does not loose its
power for settings where ranking information leads to a random ranking.
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8.5 Application to ACTG 320 Clinical Trial

In this section, we illustrate the use of the proposed test in a data set. Ideally, we
should design an experiment based on an ORRD and collect data to apply the
procedure. This kind of experiment, however, is not available currently. We therefore
apply the proposed test to a well-known AIDS Clinical Trial Group Protocol 320
(ACTG 320) study performed by Hammer et al. (1997).

The researchers in ACTG 320 clinical trial compare two types of treatments
for human immunodeficiency virus type I (HIV-1). One treatment is a two-drug
regime involving two nucleoside analogues (lamivudine and zidovudine/stavudine),
the other is a three-drug regime including the protease inhibitor (indinavir) along
with the two nucleoside analogues. The study is designed as a randomized, double-
blind, placebo-controlled trial with 1156 HIV-infected patients who have no more
than 200 CD4 cells per cubic millimeter at the screening stage and are not previously
treated by lamivudine and indinavir, but by zidovudine for at least 3 months. Their
conclusions show that the three-drug regime is better than the two-drug regime in
term of slowing the development of HIV-1 disease.

In our study, we select an ORRD sample of size 30 from all available patients in
this study to compare the CD4 cell counts (CD4-4) at week 4 between two treatment
regimes. We denote two-drug regime as treatment A and three-drug regime as
treatment B. We predetermine the set size H D 3 and the replication size n D 5;

and use the design ˛ D f1; 3g and ˇ D f2g. The correlation coefficient between
the base line CD4 cell counts (CD4-B) at the screening stage and CD4 cell counts
(CD4-4) at week 4 is 0:798. Therefore, it is reasonable to use the CD4-B cell counts
at the screening stage to rank the subjects to create judgment blocs. The histograms
of the CD4 cell counts at week 4 for each treatment regime and the pooled data are
skewed to right and have similar shape. The difference of medians of the CD4 cell
counts from the two treatment regime is MB � MA D 30 per cubic millimeter. The
potential outlier in treatment A and the skewness of distributions suggest that use of
the proposed test would be appropriate for this data.

For the purpose of illustration, we treat all 1077 patients as potential population
after excluding the missing values in the CD4 cell counts at the screening stage and
week 4. Thirty patients are taken from the population through the following steps
that resembles the ORRD as closely as possible.

In Step I, each patient is assigned a random number and the data are sorted by
assigned random numbers so that the patients in the data set are listed in a random
order. In step II, the first three patients are selected from the list and sorted based on
their CD4 cell counts at the screening stage (CD4-B). The rankers are only allowed
to see the CD4-B cell counts and the treatment variable. If the first and third patients
in this sorted sample are from treatment A and the second patient is from treatment
B, we then select these three patients as type I set in replication 1. However, if
the first and third patients are from treatment B and the second patient is from
treatment A, we then select these three patients as type II set in replicate 1. If the
first three patients are in neither of the two forms, we discard them and take the next
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Table 8.6 The sampled
ORRD data for CD4-4 cell
counts

Treat. CD4-B CD4-4 Repl. Set Rank

A 16.0 19 1 1 1

B 29.0 98 1 1 2

A 95.0 100 1 1 3

B 25.0 120 1 2 1

A 157.5 161 1 2 2

B 206.0 430 1 2 3

A 85.5 81 2 1 1

B 115.0 176 2 1 2

A 172.0 189 2 1 3

B 26.0 85 2 2 1

A 55.0 61 2 2 2

B 159.0 207 2 2 3

A 132.5 180 3 1 1

B 156.5 199 3 1 2

A 160.0 170 3 1 3

B 14.0 35 3 2 1

A 59.0 102 3 2 2

B 204.0 227 3 2 3

A 107.0 109 4 1 1

B 139.5 181 4 1 2

A 219.0 238 4 1 3

B 21.5 50 4 2 1

A 50.0 91 4 2 2

B 58.5 135 4 2 3

A 4.5 0 5 1 1

B 39.0 107 5 1 2

A 225.5 261 5 1 3

B 5.0 126 5 2 1

A 10.5 24 5 2 2

B 209.5 220 5 2 3

three patients from the remaining population. We continue to this process until we
select one type I and one type II sets. In step III, step II is performed repeatedly
on the remaining population units until five replications are selected. Although the
experiment is not originally designed as an ORRD, sampled data resembles a valid
ORRD structure with H = 3 and design parameters ˛ = f1; 3g and ˇ = f2g. The
sampled data set is listed in Table 8.6

We apply the proposed testing procedure to test if the medians of CD4 cell counts
at week 4 for the two treatment regimes are different. The test statistic for the data
in Table 8.6 yields that T = 83 and p-value = 0:018. The value of the Hodges
Lehman estimator of the parameter is 31 CD4 cell counts per cubic millimeter with
an associated 95% confidence interval from 24 to 37 CD4 cell counts per cubic
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millimeter. The confidence interval contains the true value � D 30. Based on the
statistical evidence, we conclude that the three-drug treatment regime provides a
substantial amount of improvement over the two-drug treatment regime.

8.6 Concluding Remarks

This papers develops a distribution-free inference based on order restricted random-
ized design for the location shift between two distributions. The new design exploits
the use of subjective information to rank the experimental units to produce more
accurate inference for the contrast parameter. It is shown that the estimators and
test statistics have limiting normal distribution regardless of the quality of ranking
information. A simulation study shows that the asymptotic results remain valid even
for relatively small sample sizes. The proposed testing procedures are applied to a
clinical trial.

The approach that we have taken in this paper extends to more complex
treatment structure with k-treatments. A test, similar to Kruskal-Wallis test, can be
constructed. In this case, interesting design issues may appear.
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Chapter 9
On a Partially Sequential Ranked
Set Sampling Paradigm

Douglas A. Wolfe

Abstract In a two-sample setting it is important to design statistical procedures that
can take advantage of additional information to minimize the sample sizes required
to reach reliable inferences about possible differences between the two populations.
This is particularly true when it is difficult and/or costly to obtain sample observa-
tions from one or both of the populations. One class of procedures designed with this
goal in mind uses the partially sequential sampling (PS) approach, first introduced
by Wolfe (Journal of the American Statistical Association 72:202–205, 1977a).
The use of ranked set sampling (RSS), first introduced by McIntyre (Australian
Journal of Agricultural Research 3:385–390, 1952, reprinted in 2005), offers another
approach for minimizing required sample sizes through the mechanism of obtaining
more representative samples than can be achieved using simple random samples.
In this paper we provide a review of these two sampling techniques and discuss
options for melding the two methodologies to obtain partially sequential ranked
set sample (PSRSS) two-sample test procedures that take advantage of the sample
saving properties of both the PS and RSS approaches. To illustrate this combination,
we consider PSRSS procedures where the fixed (control) sample is obtained via
simple random sampling and the sequential (treatment) sample is obtained via
ranked set sampling. Properties of the associated tests are discussed, including the
limiting distributions as the fixed sample size tends to infinity.

Keywords Distribution free tests • Judgment ranked order statistics • Minimiz-
ing sample sizes • Negative binomial distribution • Using auxiliary sampling
information

9.1 Introduction

Minimizing the cost associated with collection of the sample data is a critical
feature of most statistical analyses. As a result, it is important to develop statistical
approaches to sampling that minimize the sample sizes necessary to achieve desired

D.A. Wolfe (�)
Department of Statistics, Ohio State University, Columbus, OH 43210, USA
e-mail: daw@stat.osu.edu

© Springer International Publishing Switzerland 2016
R.Y. Liu, J.W. McKean (eds.), Robust Rank-Based and Nonparametric Methods,
Springer Proceedings in Mathematics & Statistics 168,
DOI 10.1007/978-3-319-39065-9_9

163

mailto:daw@stat.osu.edu


164 D.A. Wolfe

properties, whether it be precision of estimators, length of confidence intervals, or
power of statistical tests. One technique that has been shown to be useful in this
regard is ranked set sampling (RSS), first introduced by McIntyre (1952, reprinted
in 2005) in the context of sampling from pasture and crop plots. This sampling
approach uses readily available auxiliary information from individual units in a
population to aid in the selection of more representative units for measurement
than are typically generated by simple random sampling (SRS). Development of
statistical procedures using this RSS approach remains an active area of research.
[See, for example, the recent survey article by Wolfe (2012).] A second approach
to data collection designed to reduce the sample size in a treatment versus control
two-sample setting is the partially sequential (PS) paradigm introduced by Wolfe
(1977a,b). This approach uses a negative binomial sampling framework to minimize
the number of treatment observations necessary for reaching satisfactory statistical
conclusions regarding the treatment’s efficacy.

In this paper we review the basic tenets of both the RSS and PS methodologies
and discuss how to combine these approaches to develop partially sequential ranked
set sample (PSRSS) two-sample test procedures. In Sect. 9.2 we present the PS
two-sample framework and review previous work in this area. We describe the
basic RSS approach in Sect. 9.3 and discuss a number of options available within
this structure. We propose a class of melded PSRSS two-sample test procedures
in Sect. 9.4 and develop their basic small sample and asymptotic properties as the
control sample size becomes large. Section 9.5 is devoted to a general discussion
of the opportunities presented by this new methodology as well as extensions for
future research.

9.2 Partially Sequential Two-Sample Procedures

The partially sequential approach to data collection in the two-sample setting was
first introduced by Wolfe (1977a). It is particularly appropriate for data collection
settings such as the following:

1. A sample from the first population (e.g., control) has already been collected and
we do not wish to collect any more observations from the second population
(e.g., new treatment) than are necessary for reaching a decision.

2. Neither sample has been collected, but one of the samples (say the ‘stan-
dard’procedure observations) is relatively easy and inexpensive to collect, while
the other sample observations (corresponding to the ‘new treatment’) are costly
and/or difficult to collect. In such situations our goal would be to collect a
sample (usually large) of standard observations and then collect only enough
difficult-to-obtain new treatment observations necessary to reach statistically
valid conclusions about potential differences between the two populations.

We first describe a general PS procedure to test for differences between two
distributions. Let X1; � � � ;Xm be a random sample from a continuous probability
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distribution with p.d.f. f .x/ and c.d.f. F.x/, where m is a fixed positive integer, and
let G.y/ be a second continuous distribution function with associated p.d.f. g.y/.
Let .x1; � � � ; xm/ be an arbitrary m-tuple of real numbers and let A.x1; � � � ; xm/ be a
subset of the real line R depending on the m-tuple .x1; � � � ; xm/. For example, A.�/
could be the portion of R below the minimum x-value or the portion of R above the
maximum x-value. Define the indicator function �.�/ by

�.y/ D
(
1; if y 2 A.x1; � � � ; xm/;

0; if y 62 A.x1; � � � ; xm/:
(9.1)

Now let Y be a random variable (independent of X1; � � � ;Xm) from the second
distribution G.y/. Applying �.y/ to these random variables X1; � � � ;Xm and Y , we
obtain the following

�.Y/ D
(
1; if Y 2 A.X1; � � � ;Xm/;

0; if Y 62 A.X1; � � � ;Xm/:
(9.2)

Thus, �.Y/ is the random indicator variable for the random set A.X1; � � � ;Xm/.
With (9.2) in mind we sequentially sample mutually independent Y 0s from

the distribution G.y/ until a preset number, say r, of these Y 0s are in the set
A.x1; � � � ; xm/, where .x1; � � � ; xm/ is the observed value of the previously collected
random vector .X1; � � � ;Xm/. Define the statistic Nm (having random contributions
from both the X and Y samples) by

Nm D fnumber of Y observations required to get r Y 0s in A.x1; � � � ; xm/g: (9.3)

Wolfe (1977a) discussed how to use Nm to test the null hypothesis H0 W F.x/ 	 G.x/
against appropriate alternatives [depending on the nature of the set A.x1; � � � ; xm/].
The decision rule he proposed is to reject H0 when Nm � N0.˛; r;m;A/, where
N0.˛; r;m;A/ is the lower ˛th percentile point for the null (H0) distribution of Nm.
Note that with this approach we will never need to collect more than N0.˛; r;m;A/
Y observations. In fact, we would stop even sooner with an even smaller Y sample
size and (1) reject H0 as soon as we obtain r Y observations in A.x1; � � � ; xm/ or (2)
fail to reject H0 as soon as we obtain fN0.˛; r;m;A/ � rC 1g Y observations not in
A.x1; � � � ; xm/.

9.2.1 Properties of Partially Sequential Procedures

For given X1 D x1; � � � ;Xm D xm, let

pm D pm.x1; � � � ; xm/ D PGfY 2 A.x1; � � � ; xm/g: (9.4)
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Thus, pm is the conditional probability that an observation from the distribution
G falls in the set A.x1; � � � ; xm/ prescribed by the observed values from the F
distribution. Then, conditional on X1 D x1; � � � ;Xm D xm, Nm has a negative
binomial distribution with parameters r and pm; that is,

P.Nm D njX1 D x1; � � � ;Xm D xm/

D
 

n � 1
r � 1

!
Œpm.x1; � � � ; xm/�

rŒ1 � pm.x1; � � � ; xm/�
n�rIfr;rC1;rC2;��� g.n/:

(9.5)

The unconditional distribution of Nm is obtained from the result in (9.5) by
integrating over the distribution of the X0s, namely,

P.NmDn/DEFf
 

n � 1
r � 1

!
Œpm.X1; � � � ;Xm/�

rŒ1�pm.X1; � � � ;Xm/�
n�rgIfr;rC1;rC2;��� g.n/:

(9.6)

Since the investigator has flexibility in setting the sample size m for the X
observations, it is of interest to know how Nm behaves as m becomes large, that
is, as m ! 1. If, for given F and G, pm.X1; � � � ;Xm/ converges in probability to a
fixed number p D p.F;G/, 0 < p � 1, as m ! 1, then the limiting distribution
(m!1) of Nm is negative binomial with parameters r and p; that is, the asymptotic
distribution (m!1) of Nm is

P�.Nm D n/ D
 

n � 1
r � 1

!
pr.1 � p/n�rIfr;rC1;rC2;��� g.n/: (9.7)

(Note: A limiting value of p D p.F;G/ D 0 does not satisfy the conditions for this
result. If a pair .F;G/ produces a limiting value of p D 0, the statistic Nm does
not possess a limiting distribution as m ! 1, since in such cases Nm increases
stochastically without limit as m!1.)

When m is fixed and large we can use the limiting distribution in (9.7) to select r
to guarantee asymptotic (m!1) power against an alternative to H0 of interest. Let
Ha be an alternative to H0 against which we require an approximate power ˇ, where
0 < ˇ < 1 is arbitrary. Let p� be the value of p in (9.7) that corresponds to the
alternative Ha. Then from the definition of N0.˛; r;1;A/ (i.e., the approximate ˛-
level critical value for the asymptotic, m!1, distribution of Nm), this approximate
power requirement corresponds to

N0.˛;r;1;A/X
nDr

 
n � 1
r � 1

!
.p�/r.1 � p�/n�r � ˇ: (9.8)

For many partially sequential procedures, the left side of the inequality in (9.8)
is a non-decreasing function of r. In this case, to satisfy our asymptotic power
requirements with the fewest Y observations, we can preset r to be r D r�, where
r� is the smallest integer for which (9.8) is satisfied.
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9.2.2 Examples

The PS approach can be used equally well in parametric or nonparametric settings.
We briefly discuss two such examples.

Example 1: Parametric Setting

Let F.x/ D ˚f x��1
�
g and G.y/ D ˚f y��2

�
g, where ˚.t/ is the standard normal

distribution function. The null hypothesis of interest is H0 W �1 D �2 and we
consider here the alternative Ha W �2 > �1.

One method for selecting the set A.x1; � � � ; xm/ would be to view the indicator
�.�/ in (9.1) as a critical function for testing H0 against Ha for random samples of
sizes m and 1 from the F and G distributions, respectively. For example, we know
that the uniformly most powerful level ˛� test of H0 against Ha for m X observations
and a single Y observation has critical region

C.y; x1; � � � ; xm/ D
�
.y; x1; � � � ; xm/ W m1=2

.mC 1/1=2
.y � Nx/

s
� t˛�.m � 1/

�
;

where Nx D
mP

iD1
xi=m, s2 D

mP
iD1
.xi � Nx/2=.m � 1/ and t˛�.m � 1/ is the upper ˛�

percentile point for the t distribution with m � 1 degrees of freedom.
Thus, in this setting it is natural to take the set A.x1; � � � ; xm/ to be

A.x1; � � � ; xm/ D fy W y � NxC t˛�.m � 1/.fmC 1gs2=m/
1
2 g: (9.9)

In fact, Orban and Wolfe (1978) showed that this choice of A.x1; � � � ; xm/ leads to
the asymptotically (m!1) most powerful level ˛� partially sequential procedure
for testing H0 against Ha.

With A.x1; � � � ; xm/ given by (9.9), we have

pm D 1 � ˚.fNxC t˛�.m � 1/.fmC 1gs2=m/
1
2 � �2g=�/

and the limiting distribution of Nm as m ! 1 is negative binomial (9.7) with
parameters r and p D lim

m!1 pm D 1 � ˚
˚
�1��2
�
C z˛�

�
.

Example 2: Nonparametric Setting

Let F and G be arbitrary, continuous distribution functions. We wish to test
H0 W F 	 G against the alternative Ha W �2 > �1, where �1 and �2 are the medians
of the F and G distributions, respectively. Assume that m is an odd integer (more
complicated, but tractable for m even) and define A.x1; � � � ; xm/ by

A.x1; � � � ; xm/ D fy W y > mxg; (9.10)
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where mx D median.x1; � � � ; xm/. Then the PS two-sample median test associated
with Nm (9.3) has the following properties:

(a) pm D 1 � G.mx/ and the exact null (H0) distribution of Nm is given by

P0.Nm D n/ D
8<
:
�n�1

r�1
	

mŠ
Œf.m�1/=2gŠ�2

�
�

mC2n�2rC1
2

�
�
�
2rCmC1

2

�
.mCn/Š ; n D r; rC 1; � � �

0; elsewhere:

(9.11)

(b) The limiting distribution of Nm as m ! 1 is negative binomial (9.7) with
parameters r and p D lim

m!1 pm D 1�G.�1/, with p D 1=2 or > 1=2 depending

on whether H0 or Ha is true, respectively.
Wolfe (1977b) initially proposed this PS two-sample median procedure and

Orban and Wolfe (1982) studied its properties, including the expected number
of Y observations required to conduct the test. They also provided the necessary
tables for selecting r so that the approximate power requirement in (9.8) can be
attained.

9.3 Ranked Set Sampling

The goal of RSS is to collect observations that are more likely to be representative
of the full range of values in a population than the same number of observations
obtained via SRS. To obtain a balanced RSS of k observations from a population, we
proceed as follows. First, an initial SRS of k units is selected from the population
and rank ordered on the attribute of interest. This ranking can be obtained through a
variety of mechanisms, including visual comparisons, expert opinion, or through the
use of correlated concomitant variables, but it cannot involve actual measurements
of the attribute of interest on the selected units. The unit that is judged to be the
smallest in this ranking is taken as the first item in the RSS and the attribute of
interest is formally measured for the unit and denoted by XŒ1�. Note that square
brackets are used instead of the usual round brackets for the smallest order statistic
since XŒ1� may or may not actually have the smallest attribute measurement among
the k units in the SRS, even though our ranking judged it to be the smallest. The
other remaining k � 1 units in our initial SRS are not considered further in making
inferences about the population—they were used solely to assist in the selection of
the smallest ordered ranked unit for measurement.

Following the selection of XŒ1�, a second SRS (independent of the first SRS) of
size k is selected from the population and ranked in the same manner as the first
SRS. From this second SRS we select the item ranked as the second smallest of the
k units (i.e., the second judgment order statistic) and add its attribute measurement,
XŒ2�, to the RSS. From a third SRS (independent of both previous SRS’s) of size k we
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select the unit ranked to be the third smallest (i.e., the third judgment order statistic)
and include its attribute measurement, XŒ3�, in the RSS. This process continues until
we have selected the unit ranked to be the largest of the k units in the kth independent
SRS and included its attribute measurement, XŒk�, in our RSS.

This process results in the k measured observations XŒ1�;XŒ2�; � � � ;XŒk� and is
called a cycle. The number of units, k, in each SRS is called the set size. To complete
a single ranked set cycle, we need to access a total of k2 units from the population to
separately rank k independent simple random samples of size k each. The measured
observations, XŒ1�;XŒ2�; � � � ;XŒk�, constitute a balanced ranked set sample of size
k, where the descriptor “balanced” refers to the fact that we have collected one
judgment order statistic for each of the ranks 1; 2; � � � ; k. To obtain a final balanced
RSS with a desired total number of measured observations n D qk, we repeat
the entire process for q independent cycles, yielding the balanced RSS of size n:
XŒ1�j ;XŒ2�j ; � � � ;XŒk�j , for j D 1; � � � ; q.

Note that a balanced RSS of size n differs from an SRS of size n in a number
of important ways. An SRS is designed so that the n observations in the sample are
mutually independent and identically distributed. This means that, probabilistically
speaking, each of the individual sample items can be viewed as representative
of a typical value from the underlying population. That is certainly not the case
for a balanced RSS of size n. While the individual observations in a balanced
RSS are also mutually independent, they are clearly not identically distributed. As
such, it is not the case that each of the individual observations in a balanced RSS
represents a typical value from the underlying population. On the contrary, the
individual judgment order statistics represent very distinctly different portions of
the underlying population. It is, however, precisely this additional structure on the
items in the balanced RSS that enables it to provide greater assurance that the entire
range of population values are represented in the sample data.

There have been numerous papers in the literature demonstrating the advantages
that balanced RSS provides relative to SRS, both in terms of precision accuracy and
in terms of reducing required sample sizes. Dell and Clutter (1972) showed that
the estimator of the population mean � based on a balanced RSS is unbiased and
it has a variance that is never larger than the variance of the estimator of � based
on a SRS of the same size. The remarkable thing is that this result is true even if
the judgment ranking for the balanced RSS is not perfect. The better the judgment
ranking, of course, the greater the improvement from using a balanced RSS instead
of a SRS. Stokes and Sager (1988) obtained similar results for the RSS estimator of
the distribution function of the population and Terpstra (2004) did the same for the
RSS maximum likelihood estimator for a population proportion.

While a balanced RSS is the most commonly occurring form of ranked set
sampling data, there are situations where it is not optimal to collect the same number
of measured observations for each of the judgment order statistics. For example,
suppose we are interested primarily in making inferences about the median � of a
distribution based on an odd number of observations k D 2d C 1. It is well known
that among all the order statistics the sample median, X.dC1/, contains the most
information about � when the underlying distribution is unimodal and symmetric.



170 D.A. Wolfe

Thus, to make inferences about � , it is natural to measure the same judgment order
statistic, XŒdC1�, in each set so that it is measured all k times in each of the q
cycles. The resulting RSS consists of qk measured observations, each of which is
a judgment median from a set of size k. This is the most efficient RSS for making
inferences about the population median � for a distribution that is both unimodal and
symmetric, and it is clearly as unbalanced as possible. (A similar argument calls for
a distinctly different unbalanced RSS for estimating the median of an asymmetric
unimodal population or a multimodal population. See, for example, Ozturk and
Wolfe 2000, and Chen et al. 2006.) We should point out, however, that such a
median unbalanced RSS would not necessarily be a good idea if we wanted to make
inference about other features of the population, such as its distribution function or
the population variance.

RSS and related methodology has an active and rich literature. The interested
reader is referred to the recent survey and review articles in Wolfe (2004) and Wolfe
(2012) for more comprehensive discussions.

9.4 A Class of PSRSS Two-Sample Percentile Test
Procedures

There are three approaches that can be taken to incorporate RSS into partially
sequential procedures:

1. Use RSS for the X sample data and SRS for the sequentially obtained Y sample
data.

2. Use RSS for both the X sample and Y sample data.
3. Use SRS for the X sample data and RSS for the Y sample data.

All three of these options are worthy of consideration, although the first approach
is probably the least interesting in the context where partially sequential procedures
would be most useful. In this paper we concentrate on the most natural third option
to provide an illustration of how to introduce RSS into the partially sequential
process. To facilitate the discussion we consider the particular unbalanced RSS
corresponding to all of the observations being collected at a single judgment order
statistic and we assume that the judgment ranking is perfect, so that the various
judgment order statistics can be viewed as true order statistics.

As before, let X1; � � � ;Xm be a random sample from a probability distribution
with p.d.f. f .x/ and c.d.f. F.x/, where m is an odd integer, and let G.y/ be a second
distribution function with associated p.d.f. g.y/. Let MX be the X sample median
and let mx be the observed value of MX . Once again we wish to test H0 W F 	 G
against the alternative Ha W �2 > �1, where �1 and �2 are the medians of the F and G
distributions, respectively.

For illustrative purposes, we consider collecting unbalanced RSS data from G
using a single cycle (q D 1) with set size k and measuring the jth order statistic, Y.j/,
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at each step of the sequential sampling, for fixed j 2 f1; � � � ; kg. With this RSS Y-
sampling scheme and the indicator set A.x1; � � � ; xm/ D fy W y > mxg, the associated
PSRSS test of H0 W F 	 G against the alternative Ha W �2 > �1 has the following
properties:

(a) The unconditional exact distribution of Nm still has the form

P.Nm D n/ D EF

( 
n � 1

r � 1

!
Œpm.X1; � � � ;Xm/�

rŒ1� pm.X1; � � � ;Xm/�
n�r

)
Ifr;rC1;rC2;��� g.n/;

(9.12)

but the parameter pm D pm.x1; � � � ; xm/ is now given by

pm D PfY.j/ > mxg D 1 � Qj.mx/;

where Qj.�/ is the c.d.f. for the jth order statistic for a random sample of size k
from G, given by

Qj.t/ D
kX

uDj

 
k

u

!
ŒG.t/�uŒ1 � G.t/�k�u: (9.13)

Combining (9.12) and (9.13), the unconditional distribution of Nm becomes

P.Nm D n/ D EFMX

( 
n � 1
r � 1

!
Œ1 � Qj.MX/�

rŒQj.MX/�
n�r

)
Ifr;rC1;rC2;��� g.n/;

(9.14)

where FMX is the c.d.f. of the sample median for a random sample of size
m from F. Using the standard form of FMX for an odd sample size m in
expression (9.14), it follows that

P.Nm D n/ D
Z 1

�1

 
n � 1
r � 1

!
Œ1 � Qj.t/�

rŒQj.t/�
n�r

� mŠ

Œ
�

m�1
2

	
Š�2
fF.t/Œ1 � F.t/�g m�1

2 f .t/dtIfr;rC1;rC2;��� g.n/;

(9.15)

Under H0 W F 	 G it follows from the change of variable v D F.t/ in (9.15)
that the null distribution for Nm “simplifies” to

P.Nm D n/ D
Z 1

0

 
n � 1

r � 1

!8<
:1�

kX
uDj

 
k

u

!
Œv�uŒ1� v�k�u

9=
;

r 2
4 kX

uDj

 
k

u

!
Œv�uŒ1� v�k�u

3
5

n�r

� mŠ

Œ
�

m�1
2

	
Š�2

fv.1� v/g m�1
2 dvIfr;rC1;rC2;��� g.n/;

(9.16)
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This expression clearly does not depend on the form of the continuous F, so that
the test based on Nm is distribution-free and the exact critical values for the test
can be evaluated from (9.16) without knowledge of F.

(b) The limiting distribution of Nm as m!1 is negative binomial with parameters
r and p�

j D lim
m!1 pm D 1 � Qj.�1/.

Using the expression for Qj.t/ in (9.13), we see that

p�
j D 1 � Qj.�1/ D 1 �

kX
uDj

 
k

u

!
ŒG.�1/�

uŒ1 � G.�1/�
k�u;

which simplifies under the null hypothesis to

p�
0j D 1�Qj.�1/ D 1�

kX
uDj

 
k

u

!
ŒF.�1/�

uŒ1�F.�1/�
k�u D 1�

kX
uDj

 
k

u

!
Œ0:5/�uŒ0:5�k�u;

(9.17)

9.4.1 Special Cases

1. j D k—here we are measuring the maximum judgment order statistic in each set
and

p�
0k D 1 �

kX
uDk

 
k

u

!
Œ0:5/�uŒ0:5�k�u D 1 �

 
k

k

!
Œ0:5/�kŒ0:5�k�k D 1 � .0:5/k;

(9.18)

which converges to 1 as k!1.
2. j D 1—here we are measuring the minimum judgment order statistic in each

set and

p�
01 D 1 �

kX
uD1

 
k

u

!
Œ0:5/�uŒ0:5�k�u

D 1 � Œ
kX

uD0

 
k

u

!
Œ0:5/�uŒ0:5�k�u �

 
k

0

!
Œ0:5/�0Œ0:5�k�0�

D 1 � Œ1 � .0:5/k� D .0:5/k; (9.19)

which converges to 0 as k ! 1. (Remember that this is not a viable option for
PSRSS.)

3. j D d C 1, where k D 2d C 1 is an odd integer—here we are measuring the
median judgment order statistic, Y.dC1/, in each set and
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p0.dC1/ D 1 �
2dC1X

uDdC1

 
2dC 1

u

!
Œ0:5/�uŒ0:5�.2dC1/�u

D
dX

uD0

 
2dC 1

u

!
Œ0:5/�uŒ0:5�.2dC1/�u

D 1

2

2dC1X
uD0

 
2dC 1

u

!
Œ0:5/�uŒ0:5�.2dC1/�u D 1

2
.1/ D 0:5: (9.20)

The fact that the limiting distribution under the general alternative F ¤ G
depends on both the negative binomial stopping parameter r and the set size k
provides us with even greater flexibility in designing a study with the idea of
guaranteeing prescribed power against specific alternatives. Both increasing r and
increasing k will lead to increased power for the PSRSS median procedure, but
increasing r will also lead to a larger number of measured observations from the
Y distribution, something that we are trying to avoid. Increasing k and/or increasing
the initial sample size m from the X distribution can be used as effective alternatives
for increasing the power without increasing the number of measured Y observations.

9.5 Discussion and Future Research

Small sample and asymptotic properties of the PSRSS two-sample median test
procedure (corresponding to special case 3) based on measuring the Y sample
median (for an odd set size k) in every ranked set have been investigated extensively
by Matthews et al. (2016). They found that taking the RSS approach for collection of
the Y sample observations leads to both increased power and decreased expected Y
sample size relative to the PSRSS version studied by Orban and Wolfe (1982). This
is due to both the intrinsic structure inherent in the partially sequential approach
to the two-sample problem and the ranked set sampling methodology employed in
obtaining the Y sample. As noted in Sect. 9.4, further improvements in both power
and reduced Y sample size can likely be obtained by utilizing RSS to collect both
the X and Y sample observations. The basic formulation of this dual RSS approach
would be analogous to what we utilized in this paper using SRS to collect the X
sample items, although the mathematical properties would be more complicated.
Another intriguing possibility would be to develop PSRSS methodology that utilized
a fully balanced RSS approach to the collection of the Y observations, rather than
relying solely on the use of the medians of the ranked sets. This could also include
a fully balanced RSS approach to collection of the initial X sample, leading to
natural partially sequential analogues to the two- sample balanced RSS procedures
considered by Bohn and Wolfe (1992) and Fligner and MacEachern (2006).
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Chapter 10
A New Scale-Invariant Nonparametric Test
for Two-Sample Bivariate Location Problem
with Application

Sunil Mathur, Deepak M. Sakate, and Sujay Datta

Abstract Diagnostic testing in medicine is crucial in determining interventions
and treatment plans. It is important to analyze diagnostic tests accurately so that
the right decision can be made by clinicians. A scale-invariant test is proposed
for when treatment and control samples are available and a change in condition
between the treatment and control groups is investigated. The proposed test statistic
is shown to have an asymptotically normal distribution. The power of the proposed
test is compared with that of several existing tests using Monte Carlo simulation
techniques under different bivariate population set-ups. The power study shows that
the proposed test statistic performs very well as compared to its competitors for
almost all the changes in location and for almost all the distributions considered
in this study. The computation of proposed test statistic is shown using a real-life
data set.

Keywords Location test • Power • Bivariate • Wilcoxon’s rank sum test •
Mardia’s test

10.1 Introduction

Diagnostic testing plays an important role in medicine, helping physicians deter-
mine treatment plans, interventions, and the need for new diagnostic tests (Deeks
2001). The patients’ health and well-being are dependent on the decisions made
based on these diagnostic tests. Thus, it becomes critical to analyze diagnostic tests
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accurately in order to select the correct treatment plans and interventions. Every
year several new drugs are introduced to treat a variety of illnesses. In the case of
epilepsy, for example, ten new antiepileptic drugs were introduced in a single year
(Beghi 2004), which expanded the options available to physicians. The new drugs
may be better in treating the illness in terms of efficacy, safety, and tolerability.
The choice of a new drug is generally considered when there is no benefit or a
negative effect from the old drug (Beghi 2004). In the area of drug development,
it is essential to detect even the smallest change produced by a new drug in the
treatment group’s outcome (Pepe 2003). In most cases, the distributional form of the
population remains unknown, which can make statistical tests based on a parametric
model ineffective or may even lead to false conclusions (Woolson and Clarke 2011).
The problem becomes more complicated if the sample size available is small and
involves more than one outcome variable (Armitage et al. 2008). Our aim is to
compare the clinical outcomes of two drugs in order to make a better treatment
strategy. In other words, we would like to compare two clinical outcomes under
two different conditions (placebo, treatment). In this paper, first we outline the
problem in a statistical framework and then propose a test which can be applied
when the population distribution is unknown, two outcome variables are available,
and treatment and control samples are available.

We consider two independent random samples, denoted by .X1i;Y1i/; i D
1; : : : ;m and .X2j;Y2j/; j D 1; : : : ; n, from bivariate populations with continuous dis-
tribution functions (cdfs) F.x; y/ and G.x; y/ respectively. It is assumed that the pop-
ulations are elliptically symmetric about their respective medians. Our aim is to test

H0 W F.x; y/ D G.x; y/ (10.1)

against

HA W F.x; y/ D G.xC ı1; yC ı2/ (10.2)

where, .ı1; ı2/ 6D .0; 0/.
There are several procedures available in the literature for the problem (Baring-

haus and Franz 2004; Chung and Romano 2013; Davis and McKean 1993; Dietz
1982; García et al. 2010; Jurečková and Kalina 2012; Oja 1999; Peters and Randles
1990, 1991; Randles and Peters 1990; Wilcox 2012). The generalized multivariate
median of Oja (1999) was used in Brown and Hettmansperger (1987) to define
the multivariate notion of quantile or rank. Peddada et al. (2006) proposed the
‘Dunnett-type’ test procedures to test for simple tree order restrictions on the means
of p independent normal populations and also suggested nonparametric versions
based on ranked data for non-normal data. Mathur and Smith (2008) proposed a test
statistic that had a U-statistic representation with a degenerate kernel for the two
sample bivariate location problem. The limiting distribution for the proposed test
statistic was Gaussian chaos (Van der Vaart 2000). However, some of these tests are
complex and may require special conditions for applications.

In Sect. 10.2, we propose a test statistic U. The invariance property of the
test is studied in Sect. 10.2.1. In Sect. 10.3, asymptotic properties are presented.
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In Sect. 10.4, Monte Carlo results are presented. In Sect. 10.5, a bivariate two sample
data set is used for applying the proposed test. In Sect. 10.6, the discussion is
presented.

10.2 The Proposed Test Statistic

Let .X01i;Y
0
1i/; i D 1; : : : ;m and .X02j;Y

0
2j/; j D 1; : : : ; n be two independent random

samples from the bivariate populations with cdfs F.x; y/ and G.x; y/, respectively.
We wish to test the null hypothesis as given in Eq. (10.1).

Consider, . NXC; NYC; / as the mean of the combined sample which is obtained by
pooling the two samples. Define X1i D X01i � NXC, Y1i D Y01i � NYC, i D 1; : : : ;m and
X2j D X02j � NXC, Y2j D Y02j � NYC, j D 1; : : : ; n. We compute the angles made by
Zi D .X1i;Y1i/ and Wj D .X2j;Y2j/ with the positive directions of X- axis, measured
from 0 to 2� , and denote them by �1ci and �2cj respectively. The slopes are defined

as m1i D Y1i
X1i

, and m2j D Y2j

X2j
. Looking at the combined samples, let Rank.�1ci/,

i D 1; : : : ;m and Rank.�2cj/, j D 1; : : : ; n be the ranks of angles in first and second
sample respectively. Blumen (1958) proposed a test statistic based on slopes for
one sample location problem. Mardia (1967) used the slopes for the two-sample
location problem. Motivated by the work in Blumen (1958) and Mardia (1967),
we base our test statistic on the center of gravity of the unit circle. It is similar to
that in Blumen (1958) and Mardia (1967) but we use the ranks of angles of two
samples in different manner which we believe would lead to a more powerful test
statistic. Similar approach was used in Peters and Randles (1991). A test statistic
based on the direction of the vectors Xi D .X1i;Y1i/ and Yj D .X2j;Y2j/ with the

positive directions, measured from 0 to 2� , and slopes m1i D Y1i
X1i

, and m2j D Y2j

X2j
,

will be independent of unit of measurements used and correlation between two
variates. Moreover, the use of ranks of �1ci and �2cj provides a way to compare
variables in two populations without using population distributions, thus leading
to a nonparametric test statistic. Also, the direction of the slopes incorporated into
building of a test statistic enables us to see whether vectors are lying in the upper half
of the unit circle or lower half of the unit circle. The direction of slopes can be found
by looking at the sign of yi and under the null hypothesis, we should have probability
of y lying in the upper half of a unit circle to be one half and that in negative half of
the unit circle is also one half. Now, if we consider the slopes and directions of the
unit vectors, we should see a random pattern if the null hypothesis is true otherwise
there should be a preferred direction of these vectors. Thus, calculating the mean
value of the vectors, which in our case is the center of the gravity of the unit circle,
will enable us to see whether there is a random pattern of observations exists or not.

We define statistics T1 and T2 as

T1 D 1

m

mX
iD1

AiRank.�1ci/ (10.3)
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and

T2 D 1

n

nX
jD1

BjRank.�2cj/ (10.4)

where,

Ai D
(
1; if y1i is Positive in ith ordered slope m1i

0; if y1i is Negative in ith ordered slope m1i;

Bj D
(
1; if y2j is Positive in jth ordered slope m2j

0; if y2j is Negative in jth ordered slope m2j

Here, A’s and B’s are not mutually independent as both depend on the commonly
centered data values. Also, the test procedure will not be exactly distribution-free
but only asymptotically.

Under H0, we expect

PŒAi D 1� D 1

2
D PŒAi D 0�;

PŒBj D 1� D 1

2
D PŒBj D 0�:

We combine both T1 and T2 and propose the statistic

U D T 0˙�1T; (10.5)

where, T 0
1�2 D .T1;T2/0 and ˙ is a 2 � 2 covariance matrix of T . For very small or

large values of U, H0 is rejected.

10.2.1 Invariance

A statistic T is said to be scale-invariant if

T.cX1; cX2; : : : ; cXmI cY1; cY2; : : : ; cYn/ D T.X1;X2; : : : ;XmIY1;Y2; : : : ;Yn/;

where, c is a constant.
In our case, Xi D .X1i;Y1i/; i D 1; 2; : : : ;m, and Yj D .X2j;Y2j/; j D 1; 2; : : : ; n.

We find that m1i’s hence �1i’s are invariant under above transformation. Similarly,
�2j’s are invariant under above transformation. Hence, the proposed statistic U is
scale-invariant.



10 NP Test for Location 179

10.3 Asymptotic Properties

In order to study asymptotic properties of the proposed test statistic, we denote the
probability density function (pdf) of Y1 and Y2 by fY1 .y1/ and hY2 .y2/ in the ordered
slopes m1 and m2, respectively and corresponding cumulative distribution function
(cdf) for Y1 and Y2 by FY1 .y1/ and HY2 .y2/ respectively.

We define p1 D P.Y1 > 0/, and p2 D P.Y2 > 0/, under H0, p1 D 1=2 D p2.
Define p11 D PŒY1j < Y1i�, p22 D PŒY2j < Y2i�, and p12 D PŒY1j < Y2i�.

We find that E.T1/ D mC1
2

p1, E.T2/ D nC1
2

p2,

Cov.T1;T2/ D
mX

i6Dj

nX
.E.AiBj/ � E.Ai/E.Bj//Rank.�1ci/Rank.�2cj/

D
mX

i6Dj

nX
.p12 � p11p22/Rank.�1ci/Rank.�2cj/; (10.6)

Var.T1/ DPm
iD1 Var.Ai/ŒRank.�1ci/�

2, and Var.T2/ DPn
jD1 Var.Bj/ŒRank.�2cj/�

2.

Under H0, E.T1/ D mC1
4

and E.T2/ D nC1
4

.
Let ı D .ı1; ı2/ and N D nCm. Denote FM1 .m1/ and HM2 .m2/ the cdf of m1 and

m2, respectively.

Theorem 10.1. Suppose that n=N ! r 2 .0; 1/. Then

p
NŒ NU � u.ı/�

�.ı/

D! N.0; 1/ (10.7)

where,

NU D U

mn

u.ı/ D E. NU/ (10.8)

and

�2.ı/ D Var. NU/ (10.9)

Remark 10.1. The convergence is asymptotic as both m and n tend to infinity such
that n=N converges to r.

Remark 10.2. If FM1 and HM2 are continuous under H0, then u.0/ D 1=2 and
�2.0/ D 1=12r.1 � r/.

Under the large sample, the asymptotic power function of the test yields
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�N.ı/ D Pı.
p

N. NU � u.0// > Z1�˛�.0//

D Pı.
p

N. NU � u.ı// > Z1�˛�.0/ �
p

N.u.ı/ � u.0//

D Pı

 p
N. NU � u.ı//

�.ı/
>

Z1�˛�.0/ �
p

N.u.ı/ � u.0//

�.ı/

!

D 1 � ˚
 

Z1�˛ �
p

N.u.ı/ � u.0//

�.ı/

!

D 1 � ˚
 

Z1�˛ �
p

Nru.0/ı0

�.ı/

!
C o.1/

Proof (Proof of Theorem 10.1). The test statistic is U D T 0˙�1T .
Let NU D U=nm. Considering an equivalent form of U as X0˙�1X, where X0 D

.X1;X2/, and ˙ is variance-covariance matrix, using the kernel as h.x1; : : : ; xm/ D
X0˙�1X, the U-statistic can be defined as Un.h/ D 1

.n
m/

P
Cm;n

h.x1; : : : ; xm/ (Lee

1990). Similarly, taking h.x1; : : : ; xm/ D T 0˙�1T as kernel function, we find that NU
is a two-sample U-statistic. By the two-sample U-statistic theorem,

p
N. NU � Pı.m2 < m1// D

p
N

n

nX
iD1

.HM2 .m1i/ � EŒHM2 .m1i/�/

�
p

N

m

mX
jD1

�
FM2 .m2j/ � EŒFM2 .m2j/�

	C oPı .1/:

This leads to the asymptotic normality in Eq. (10.7) with u.ı/, �2.ı/ defined in
Eqs. (10.8) and (10.9) respectively. �

Remark 10.3. We notice that U has a form similar to Mahalanobis’ d2 D .X �
�/0˙�1.X � �/, which has a Chi-square distribution with p degrees of freedom.
This leads to the conclusion that U has Chi-square distribution with 2 degrees of
freedom asymptotically. As an anonymous reviewer pointed out, the Monte Carlo
results in Sect. 10.4 tend to support the normal approximation for the standardized
test statistic.

Special Case.

Suppose that .X1;Y1/ 
 N

��
0

0

�
;

�
1 0

0 1

��
and .X2;Y2/ 
 N

��
ı1
ı2

�
,

�
1 0

0 1

��
. Therefore, the asymptotic power function in this case is

�N.ı/ D 1 � ˚
 

Z1�˛ �
r
12nm

nC m

�
1

2
� exp.�jjıjj2=2/

2

�!
C o.1/ (10.10)
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10.4 Power Study

Power is compared using Monte Carlo simulation method. We compared the powers
of the proposed test with those of Hotelling’s T2 test, Mardia’s test (Mardia 1967),
and Wilcoxon’s rank sum test (Peters and Randles 1991). We denote proposed
statistic by U, Mardia’s statistic by M, Wilcoxon’s rank sum test statistic by WRS
and Hotelling’s T2 by T2. Four test statistics U, M, WRS and T2 are compared using
samples from the following seven distributions: Bivariate normal, Bivariate normal
mixtures with probability P D 0:5 and P D 0:9 respectively, Pearson type II (light
tailed), Pearson type VII (heavy tailed), populations 6 (heavy tailed) and 7 (light
tailed). Population 6 and 7 are from the class of densities in Randles and Peters
(1990). We have chosen v D 0:10 and v D 30 for population 6 and 7 respectively.
The proportion of times that each test statistic exceeded its critical value when the
sample size is kept fixed and location parameters are changed provides the measure
of power. The results are presented in Appendix in Tables 10.2 and 10.3. Results in
Table 10.2 are based on 2000 samples of size n D 15 from a bivariate population
with location .ı1; ı2/ where, ı1; ı2 > 0 and 2000 samples of size m D 18 from
population with location (0,0). This process is repeated for samples of sizes n D 25
and m D 28 respectively for producing Table 10.3 given in Appendix. A nominal
significance level of 0.05 was used. The variance-covariance matrix used in the

simulation is

�
1 0:5

0:5 1

�
.

For sample size m D 15, and n D 18, proposed test statistic performs very
well as compared to Mardia’s, and Wilcoxon’s test statistics when the underlying
distribution is normal. We find that for all shifts in location parameters considered
in the study, Hotelling’s T2 dominates when the underlying population is normal.
When the underlying distribution is non-normal, the proposed test statistic works
very well as compared to its competitors including Hotelling’s T2. For example, in
case of bivariate normal mixtures, the proposed test statistic U dominates the rest
of test statistics for small as well as large changes in the location. In case of light-
tailed distributions, the proposed test statistic U performs very well for almost all
the values of location parameters considered here. For heavy tailed distributions, we
notice that the power of the proposed test statistic is very high for all values of the
location parameters as compared to all the statistics considered here. The proposed
test statistic U approaches the power value 1 at a very faster rate as compared to its
competitors. Also, for m D 25, and n D 28, similar results are seen.

Thus, the power study shows that the proposed test statistic will work very well
when the underlying population is non-normal and is able to detect the smallest
shift in the location which is a highly desirable property of any test statistic. It is
highly desirable that a nonparametric test’s performance be as good as its parametric
counterpart under normal distribution conditions (Dietz 1982; Larocque et al. 2003;
Peters and Randles 1991) which is achieved by the proposed test.
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10.5 Real-Life Application

The proposed test statistic is applied to bivariate data, Table 10.1, taken from
Peterson’s Data (Belle et al. 2004) which describes the inverse relation of sudden
infant death syndrome (SIDS) rate with birthweight. The data consists of the
birthweight (in grams) of 22 dizygous twins and 19 monozygous twins.

Let ı D .ı1; ı2/ be the difference in the medians of two populations from which
the samples were drawn. We state our null hypothesis as

H0 W ı D 0

against

HA W ı 6D 0

We find that T1 D 8:219, T2 D 9:125, and U D 1:214. The approximate p-value of
the test statistic is 0.002. Therefore, the null hypothesis is rejected at 5 % level of
significance.

Table 10.1 Birthweight
and SID

Dizygous twins Monozygous twins

SID Non-SID SID Non-SID

1474 2098 1701 1956

3657 3119 2580 2438

3005 3515 2750 2807

2041 2126 1956 1843

2325 2211 1871 2041

2296 2750 2296 2183

3430 3402 2268 2495

3515 3232 2070 1673

1956 1701 1786 1843

2098 2410 3175 3572

3204 2892 2495 2778

2381 2608 1956 1588

2892 2693 2296 2183

2920 3232 3232 2778

3005 3005 1446 2268

2268 2325 1559 1304

3260 3686 2835 2892

3260 2778 2495 2353

2155 2552 1559 2466

2835 2693

2466 1899

3232 3714
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10.6 Discussion

One of the important applications of nonparametric testing is in the field of
diagnostic testing in medical science. Physicians base their future treatment plans
based on diagnostic testing. Since, the nature of population is generally unknown,
parametric testing procedures cannot be applied with certainty. Nonparametric tests
present a useful alternative to parametric procedures under these conditions. We
developed a strictly nonparametric test. The proposed test is also scale-invariant,
which is a desirable property of any test statistic (Kowalski and Tu 2008; Sugiura
1965). The proposed test statistic takes into account the information contained in
the samples, including the correlation structure of the population through ˙ . This
makes the test statistic more sensitive to location changes, thus making it a highly
powerful test statistic. The power study shows that under normal distribution it
is more powerful than Mardia’s test, and more powerful than Wilcoxon’s test for
almost all the values of the location parameters considered here. For non-normal
populations, the proposed test statistic dominates the test statistics considered here
for almost all the values of location parameters. It approaches power level 1 very
quickly for very small shifts of location parameters. The power simulation study
shows that the proposed test statistic works extremely well when an underlying
population is non-normal. The proposed test statistic is able to detect the smallest
shift in the location parameter. Since, the distribution of an underlying population
is hardly ever known in real-life situations, the proposed test statistic may work
very well in such situations. Thus, in many fields, such as the medical field
where the smallest change in a drug’s effectiveness can be critical (Schneeweiss
et al. 2011) for a clinician to determine a treatment plan or intervention for a
patient (McDonald et al. 2002), this test can provide highly desirable accuracy
and efficiency. Several medical diagnosis require more than one characteristic of
a population to be considered for making the decision on future course of treatment.
The proposed test fits very well with those requirements. The proposed test can take
into account two characteristics of the population at a time and compare the control
group and treatment group based on these two characteristics. The higher power of
the proposed test as compared to some of its competitors makes it a more attractive
option than its competitors.

Acknowledgements Authors would like to thank the anonymous referee for his/her useful
comments which enhanced the clarity of the paper and led to significant improvements in the
paper.

Appendix

See Tables 10.2 and 10.3.
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Table 10.2 Monte Carlo rejection proportion, sample size m D 15, n D 18

Distribution ı1; ı2 U M WRS T2

Bivariate normal 0.00, 0.00 0.0545 0.046 0.0445 0.0485

0.10, 0.07 0.176 0.065 0.098 0.3875

0.30, 0.10 0.3885 0.0905 0.145 0.7405

0.70, 0.50 0.8995 0.367 0.81 1

1.20, 1.00 0.99 0.659 0.9995 1

2.40, 3.00 1 0.9375 1 1

BVN mixture P D 0.5 0.00, 0.00 0.055 0.0505 0.0475 0.0505

0.10, 0.07 0.2115 0.068 0.066 0.112

0.30, 0.10 0.4735 0.152 0.1725 0.213

0.70, 0.50 0.8975 0.523 0.845 0.8705

1.20, 1.00 1 0.855 1 1

2.40, 3.00 1 0.9995 1 1

BVN mixture P D 0.9 0.00, 0.00 0.047 0.0495 0.0475 0.044

0.10, 0.07 0.295 0.067 0.061 0.0615

0.30, 0.10 0.546 0.152 0.125 0.135

0.70, 0.50 0.9575 0.447 0.687 0.682

1.20, 1.00 0.9985 0.798 0.9975 0.995

2.40, 3.00 1 0.9995 1 1

Type VII 0.00, 0.00 0.0515 0.0515 0.0445 0.0495

0.10, 0.07 0.266 0.0725 0.154 0.098

0.30, 0.10 0.699 0.193 0.49 0.5965

0.70, 0.50 1 0.8855 0.9985 1

1.20, 1.00 1 0.9885 1 1

2.40, 3.00 1 0.999 1 1

Type II 0.00, 0.00 0.0455 0.035 0.051 0.039

0.10, 0.07 0.393 0.058 0.1505 0.1515

0.30, 0.10 0.785 0.2105 0.5135 0.716

0.70, 0.50 1 0.685 1 1

1.20, 1.00 1 0.7655 1 1

2.40, 3.00 1 0.8655 1 1

Population 6 0.00, 0.00 0.05 0.0535 0.0585 0.044

0.10, 0.07 0.5935 0.069 0.519 0.1825

0.30, 0.10 0.891 0.0705 0.8635 0.714

0.70, 0.50 1 0.2755 1 1

1.20, 1.00 1 0.4225 1 1

2.40, 3.00 1 0.5110 1 1

Population 7 0.00, 0.00 0.053 0.0535 0.049 0.0495

0.10, 0.07 0.2135 0.071 0.062 0.0575

0.30, 0.10 0.368 0.1165 0.1115 0.105

0.70, 0.50 0.7785 0.3495 0.422 0.4645

1.20, 1.00 0.9735 0.803 0.927 0.9605

2.40, 3.00 1 1 1 1
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Table 10.3 Monte Carlo rejection proportion, sample size m D 25, n D 28

Distribution ı1; ı2 U M WRS T2

Bivariate normal 0.00, 0.00 0.0525 0.046 0.0445 0.0485

0.10, 0.07 0.0905 0.0585 0.058 0.183

0.30, 0.10 0.3855 0.0905 0.145 0.7405

0.70, 0.50 0.888 0.367 0.81 1

1.20, 1.00 1 0.659 0.9995 1

2.40, 3.00 1 0.9375 1 1

BVN mixture P D 0.5 0.00, 0.00 0.0535 0.0505 0.0445 0.05

0.10, 0.07 0.1715 0.0725 0.075 0.0815

0.30, 0.10 0.387 0.2325 0.2395 0.347

0.70, 050 1 0.736 0.948 0.991

1.20, 1.00 1 0.993 1 1

2.40, 3.00 1 1 1 1

BVN mixture P D 0.9 0.00, 0.00 0.045 0.051 0.058 0.0515

0.10, 0.07 0.1655 0.0785 0.0795 0.0775

0.30, 0.10 0.381 0.2085 0.1965 0.2375

0.70, 0.50 0.995 0.5915 0.833 0.9165

1.20, 1.00 1 0.9105 1 1

2.40, 3.00 1 1 1 1

Type VII 0.00, 0.00 0.0445 0.0425 0.047 0.0525

0.10, 0.07 0.4095 0.0725 0.3285 0.2525

0.30, 0.10 1 0.353 0.6985 0.9445

0.70, 0.50 1 0.9995 1 1

1.20, 1.00 1 1 1 1

2.40, 3.00 1 1 1 1

Type II 0.00, 0.00 0.048 0.046 0.043 0.046

0.10, 0.07 0.3205 0.0835 0.1925 0.219

0.30, 0.10 1 0.416 0.611 0.914

0.70, 0.50 1 0.825 1 1

1.20, 1.00 1 0.858 1 1

2.40, 3.00 1 0.9985 1 1

Population 6 0.00, 0.00 0.0506 0.057 0.049 0.051

0.10, 0.07 0.899 0.0685 0.7225 0.275

0.30, 0.10 1 0.0975 0.921 0.8975

0.70, 0.50 1 0.2345 1 1

1.20, 1.00 1 0.4775 1 1

2.40, 3.00 1 0.5655 1 1

Population 7 0.00, 0.00 0.051 0.0465 0.047 0.0585

0.10, 0.07 0.323 0.0715 0.0655 0.0725

0.30, 0.10 0.536 0.2005 0.125 0.145

0.70, 0.50 0.941 0.604 0.6025 0.762

1.20, 1.00 0.999 0.9815 0.99 0.9995

2.40, 3.00 1 1 1 1
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Chapter 11
Influence Functions and Efficiencies of k-Step
Hettmansperger–Randles Estimators
for Multivariate Location and Regression

Sara Taskinen and Hannu Oja

Abstract In Hettmansperger and Randles (Biometrika 89:851–860, 2002) spatial
sign vectors were used to derive simultaneous estimators of multivariate location
and shape. Oja (Multivariate nonparametric methods with R. Springer, New York,
2010) proposed a similar approach for the multivariate linear regression case. These
estimators are highly robust and have under general assumptions a joint limiting
multinormal distribution. The estimates are easy to compute using fixed-point algo-
rithms. There are however no exact proofs for the convergence of these algorithms.
The existence and uniqueness of the solutions also still remain unproven although
we believe that they hold under general conditions. To circumvent these problems,
we consider in this paper k-step versions of Hettmansperger and Randles (HR)
location and shape estimators and their extensions to the linear regression problem.
The influence functions, limiting distributions and asymptotical efficiencies of the
estimators are derived at the multivariate elliptical case.

Keywords Affine equivariance • Efficiency • Influence function • Location
vector • Multivariate regression • Shape matrix • Spatial sign

11.1 Introduction

In this paper we consider so called Hettmansperger–Randles (HR) estimators
for multivariate location-scatter and regression-scatter models. In the case of the
regular least square estimates with simultaneous covariance matrix estimation, the
residuals are made mutually uncorrelated as well as uncorrelated with the explaining
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variables. The HR estimators are obtained in a similar way, the residuals are just
replaced by the multivariate spatial signs of the residuals. The spatial sign of the
p-vector y is a unit vector in the direction of y, that is,

S.y/ D
� kyk�1y; y ¤ 0

0; y D 0;
(11.1)

where kyk D .yTy/1=2 is the Euclidean length of the vector y. Spatial sign function
thus projects the residuals on the unit sphere making the estimators obtained in this
way highly robust. For statistical inference based on spatial signs and ranks, see Oja
(2010). For other concepts of multivariate signs and ranks, see also Puri and Sen
(1971), Oja (1999), and Hettmansperger and McKean (2011).

Simple location and scatter estimators based on spatial sign vectors, that is,
the spatial median and the spatial sign covariance matrix, were studied in Brown
(1983), Locantore et al. (1999), Marden (1999) and Visuri et al. (2000) among
others. These estimators are easy to compute and have some nice statistical
properties e.g. bounded influence functions, positive breakdown points and high
efficiency at heavy-tailed distributions. Unfortunately, the estimators are only rota-
tional equivariant therefore their usage in multivariate analysis is limited. The affine
equivariant shape matrix of Tyler (1987) is based on an affine transformation such
that the spatial signs of transformed data points are uncorrelated. In Hettmansperger
and Randles (2002) simultaneous estimators of location and scatter were found
such that the spatial signs of the estimated residuals were standardized with mean
vector zero and covariance matrix proportional to the identity matrix. In multivariate
regression setting, the estimators based on spatial sign vectors were developed
and studied in Bai et al. (1990) and Arcones (1998). These estimators are not
affine equivariant either, but as in the case of location and scatter estimation,
fully equivariant estimators can be derived by applying spatial sign function to the
residual points, Oja (2010).

The HR estimators are computed via simple iterative algorithms, but so far
the proofs for the convergence of these algorithms are missing. Also the existence
and uniqueness of the solutions remain unproven. Notice that conditions for the
existence and uniqueness of simultaneous M-estimators of multivariate location
and scatter were derived in Maronna (1976), but HR estimators do not satisfy
such conditions. Due to these shortcomings, we study in this paper so called k-step
versions of the estimators. In Sect. 11.2, we consider estimators for the location-
scatter model and in Sect. 11.3, the multivariate regression model is considered. The
paper is concluded with some final comments in Sect. 11.4.
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11.2 Hettmansperger–Randles Estimators
of Location and Shape

11.2.1 Elliptic Model

Assume that the p-variate observations yi follow the location-scatter model

yi D ˝ei C 
;

where 
 is the p-variate symmetry center and ˝ is a full-rank p � p mixing matrix
The standardized observations (residuals) ei D ˝�1.yi � 
/ are assumed to have a
spherical distribution, that is, its density function is of the form

f0.e/ D expf��.jjejj/g
for a suitable function �. Notice that ei can be decomposed as ei D riui, where the
modulus ri D jjeijj and the direction vector ui D jjeijj�1ei are independent with
ui being uniformly distributed on the unit sphere, Fang et al. (1990). To fix ˝ , we
assume that � is chosen so that EŒr2i � D p, that is, Cov.ei/ D Ip. (If one wish to
avoid moment assumptions, one could for example assume that MedŒr2i � D p.) Then
Cov.yi/ D ˙ D ˝˝ 0 and we can without loss of generality choose ˝ D ˙ 1=2

(positive definite and symmetric (PDS) version). We further assume that the density
function f0 is continuous and finite in an open neighborhood of the origin implying
that E.jjeijj�1jj/ is finite. Under these assumptions, yi comes from an elliptically
symmetric distribution with probability density function

f .y/ D j˝ j�1f0.˝�1.y � 
//: (11.2)

The scatter parameter ˙ D ˝2 can be decomposed as ˙ D ��, where
� D �.˙ / is a scale parameter and � D ��1˙ is a shape matrix. Natural choices
for the scale parameter are given in Paindaveine (2008) and Frahm (2009). In
this paper we choose � D tr.˙ /=p, that is, � is standarised so that Tr.�/ D p.
Notice that in several applications it is enough to estimate the shape matrix only as it
provides all information of the shape and orientation of the multivariate distribution.

Beyond the elliptic model, the properties of multivariate distributions can
be described using location and shape functionals. If Fy denotes a cumulative
distribution function of y, then a p-variate vector valued functional 
.Fy/ is a
location vector if it is affine equivariant in the sense that


.FAyCb/ D A
.Fy/C b; (11.3)

for any nonsingular p � p matrix A and p-vector b. Further, we call V.Fy/ a p � p
shape matrix functional if it is PDS and affine equivariant in the sense that

V.FAyCb/ D p

Tr.AV.Fy/AT/
AV.Fy/AT :
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Affine equivariance properties of the functionals imply that in the elliptic case,

.Fy/ D 
 and V.Fy/ D p ˙=Tr.˙ / D �.

When location and shape functionals are applied to empirical distribution
function based on the sample Y D .y1; : : : ; yn/

T , we obtain estimators that we
denote from now on by O
 D 
.Y/ and OV D V.Y/. The estimators are then naturally
affine equivariant as well and, in the elliptic model, all location and shape estimates
then estimate the same population quantities 
 and � and are directly comparable
without any modifications.

11.2.2 k-Step Location and Shape Estimators

The location estimator O
 based on a chosen location score function T.y/ solves the
estimating equation

avefT.yi � O
/g D 0:

The corresponding location functional 
.Fy/ is then defined by E


T.y�
.Fy//

�D0.
If the identity score, T.y/ D y, were used, the classical sample mean vector is
obtained that is optimal in the case of multivariate normality. Optimal location
score function in the spherical case is T.y/ D r�.jjyjj/. The spatial median,
Brown (1983), is obtained by using the spatial sign score function S.y/ defined
in (11.1). The spatial median is highly robust estimator of symmetry center having
50% breakdown point and bounded influence function. It can be computed using a
simple iteration steps

O
k D O
k�1 C
avefS.yi � O
k�1/g

avefjjyi � O
k�1jj�1g
:

The estimator is however only rotation equivariant, that is, it satisfies (11.3) only for
orthogonal p � p matrices A.

The affine equivariant spatial median can be obtained using so called trans-
formation-retransformation technique. In that case, the observations are first stan-
dardized, the spatial median is then found for the standardized observations, and
the estimate is then transformed back to the coordinate system of the original
observations. See Chakraborty et al. (1998), Tyler et al. (2009) and Ilmonen et al.
(2012) and the references therein. In Hettmansperger and Randles (2002), location
and shape estimators are estimated simultaneously: O
 and OV are chosen to satisfy

avefS.Oei/g D 0 and p avefS.Oei/S.Oei/
Tg D Ip; (11.4)

where Oei D OV�1=2.yi � O
/ and OV is standardized so that Tr. OV/ D p. The resulting
location estimate O
 is an affine equivariant spatial median and the shape matrix
estimate OV is the Tyler’s M-estimate, Tyler (1987), with respect to the spatial
median.
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The statistical properties of HR estimators were studied in Hettmansperger and
Randles (2002), Tyler (1987), and Dümbgen and Tyler (2005). They showed
that the location and shape estimators have bounded influence functions, positive
breakdown points and limiting multivariate normal distributions. The computation
is very simple. As in general M-estimation case, the estimating equations (11.4) can
rewritten in a way that provides the following iteration steps.

Iteration Steps 1 The HR location-scatter estimate is obtained using the following
steps

1. Oei D OV�1=2
k�1 .yi � O
k�1/, i D 1; : : : ; n,

2. O
k D O
k�1 C OV1=2
k�1ŒavefjjOeijj�1g��1avefS.Oei/g,

3. OVk D OV1=2
k�1 avefS.Oei/S.Oei/

Tg OV1=2
k�1.

and OVk is standardized so that Tr. OVk/ D p.

Unfortunately there is no proof for the convergence of the above algorithm nor
the existence and uniqueness of the HR estimates. It is however well known that
the convergence is attained if one repeats the steps 1 and 2 alone (spatial median)
or the steps 1 and 3 alone (Tyler’s scatter matrix). In the paper we proceed with the
same practical solution as in Taskinen et al. (2010), that is, we start the iteration
with some

p
n-consistent estimates and stop iterating after k steps. The estimate

then inherits some properties of the initial estimate but, with large k, the behavior is
almost as that of the regular HR estimate. We then give the following.

Definition 11.1. Let O
0 and OV0 be initial location and shape estimators. The k-step
HR estimators O
k and OVk for location and shape are obtained by starting with O
0

and OV0 and repeating Iteration Steps 1 k times.

Notice that the k-step estimators are affine equivariant if the initial estimators are
affine equivariant. In Croux et al. (2010), the robustness and efficiency properties
of k-step Tyler’s shape estimator were studied. They for example showed that the
breakdown property of the k-step estimator is inherited from the initial estimator.
The approach used in Croux et al. (2010) differs from ours in that the location center
is assumed to be fixed. In the following sections, we derive influence functions and
asymptotic properties for the simultaneous k-step HR location and shape estimators.

11.2.3 Influence Functions

The robustness of a functional T against a single outlier y can be measured using
the influence functions Hampel et al. (1986). Let

F	 D .1 � 	/F C 	�y;

denote the contaminated distribution, where �y is the cdf of a distribution with
probability mass one at point y. The influence function of T is then given by
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IF.yIT;F/ D lim
	!0

T.F	/ � T.F/

	
:

A continuous and bounded influence function indicates good local robustness
properties of an estimator. We now find the influence functions of the k-step HR
estimators in the elliptic case.

Due to affine equivariance properties of our estimators, it suffices to derive
influence functions at a spherical distribution F0 of e. Hampel et al. (1986) and
Ollila et al. (2004) showed that in that case, the influence functions of all location
and shape functionals, 
.F/ and V.F/, are of the form

IF.yI
;F0/ D �.r/u; (11.5)

and

IF.yIV;F0/ D ˛.r/


uuT � 1
p

Ip

�
; (11.6)

where r D jjyjj, u D jjyjj�1y and real-valued functions �.r/ and ˛.r/ depend
both on the functionals and on the underlying distribution F0. When comparing
robustness properties of different estimators, it is enough to compare weight
functions � and ˛ only. In the following we will derive these functions for k-step
HR-estimators.

Let now 
k D 
k.Fy/ and Vk D Vk.Fy/ be the functionals corresponding to
k-step HR-estimators O
k and OVk, that is,


k D 
k�1 C
V1=2

k�1 EŒS.e/�
EŒjjejj�1� (11.7)

and

Vk D p ŒTr.V1=2
k�1 EF



S.e/S.e/T

�
V1=2

k�1/�
�1 V1=2

k�1 EF


S.e/S.e/T

�
V1=2

k�1; (11.8)

where e D V�1=2
k�1 .y � 
k�1/. We prove the following result in Appendix.

Theorem 11.1. The influence functions of k-step HR location and scatter function-
als 
k and Vk with initial functionals 
0 and V0 at F0, the distribution of spherical
e with Cov.e/ D Ip, is given by (11.5) and by (11.6), respectively, with

�k.r/ D
�
1

p

�k

�0.r/C
"
1 �

�
1

p

�k
#

p Œ.p � 1/E.jjejj�1/��1;

and

˛k.r/ D
�

p

pC 2
�k

˛0.r/C
"
1 �

�
p

pC 2
�k
#
.pC 2/:
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Fig. 11.1 Functions �k for the k-step HR location functionals with k D 0; 1; 2; 3 and 1 when
the regular mean vector (left figure) and 50% BP S-estimator with biweight loss-function (right
figure) are used as starting functionals. The functions are computed at the bivariate standard normal
distribution case

First note that, the influence functions of the regular HR location-scatter estimate is
obtained when k!1, that is,

�.r/ D pŒ.p � 1/E.jjejj�1/��1 and ˛.r/ D pC 2:

The above influence functions are clearly bounded if those of the initial estimators
are bounded. In Fig. 11.1 we illustrate the behaviour of the function �k at bivariate
standard normal case using two different initial estimators. When the sample
mean vector is used as a starting value, resulting k-step estimators have naturally
unbounded influence functions, although after few steps the influence function is
very close to that of the affine equivariant spatial median. When highly robust 50%
breakdown point S-estimator with biweight loss-function, Davies (1987), is used
as an initial estimator, bounded influence functions are obtained. Notice that after
few steps the influence function does not differ much from that of the location HR
estimator.

In Fig. 11.2, the influence functions for k-step HR shape estimators are illustrated
at bivariate standard normal case. As initial estimators we use the sample covariance
matrix as well as the 50% breakdown point S-estimator with biweight loss-function.
When we start with non-robust sample covariance matrix, unbounded influence
functions are obtained, but the estimator with better robustness properties is again
obtained after few steps. By using S-estimator as a starting value, the influence
functions of resulting k-step estimators are naturally bounded.

In the following section, we will compare the efficiency properties of k-step HR
estimators with different initial estimators. We will show that, after only few steps,
the initial estimator has very little influence on the resulting efficiencies.
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Fig. 11.2 Functions ˛k for the k-step HR shape functionals with k D 0; 1; 2; 3 and 1 when the
regular covariance matrix (left figure) and 50% BP S-estimator with biweight loss-function (right
figure) are used as starting functionals. The functions are computed at the bivariate standard normal
distribution case

11.2.4 Limiting Distributions and Asymptotic Relative
Efficiencies

The asymptotic normality of k-step HR estimators follows if the initial estimators
are
p

n-consistent and have limiting multinormal distributions. In the following, we
write vec.V/ for the vectorization of a matrix V, obtained by stacking the columns
of V on top of each other. We also denote

Cp;p.V/ D .Ip2 CKp;p/.V˝ V/ � 2
p
vec.V/vecT.V/;

where Kp;p is the commutation matrix, that is, a p2�p2 block matrix with .i; j/-block
being equal to a p � p matrix that has 1 at entry .j; i/ and zero elsewhere.

Theorem 11.2. Let y1; : : : ; yn be a random sample from F0, the distribution of
spherical e with Cov.e/ D Ip. Assume that

p
n O
0 and

p
n vec. OV0 � Ip/ have a

joint limiting multivariate normal distribution. Then

p
n O
k

d�! N.0; �1kIp/ and
p

n vec. OVk � Ip/
d�! N.0; �2k Cp;p.Ip//;

where

�1k D EŒ�2k .jjejj/�
p

and �2k D EŒ˛2k .jjejj/�
p.pC 2/

Functions �k and ˛k are given in Theorem 11.1.
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The limiting distributions at elliptical distribution follow from the affine equivari-
ance properties of the estimators. See for example Ollila et al. (2004) and Taskinen
et al. (2010).

Corollary 11.1. Let y1; : : : ; yn be a random sample from F, an elliptical distribu-
tion of ˙ 1=2eC
 where e is spherical with Cov.e/ D Ip. Write � D .p=tr.˙ //˙ .
Then

p
n . O
k � 
/

d�! N.0; �1k˙ / and
p

n vec. OVk ��/
d�! N.0; �2k WCp;p.�/WT/;

where �1k and �2k are given in Theorem 11.2 and W D Ip2 � p�1 vec.�/vec.Ip/
T :

In order to compare asymptotic relative efficiencies of different estimators, one
only has to compare scalars �1k and �2k. In Table 11.1 we list the asymptotic relative
efficiencies of k-step HR location estimators as compared to the sample mean at
different p-variate t-distributions with selected values of dimension p and degrees
of freedom , where  D 1 refers to the multinormal case. As in previous section,
we use the sample mean and 50% BP S-estimator as starting values.

Table 11.1 Asymptotic relative efficiencies of k-step HR location
estimators as compared to the sample mean at different p-variate
t-distributions with selected values of dimension p and degrees of free-
dom 

(a) (b)

k  D 3  D 6  D 1  D 3  D 6  D 1
p D 2 1 1.600 1.135 0.936 2.025 1.035 0.697

2 1.882 1.135 0.867 2.045 1.074 0.747

3 1.969 1.115 0.827 2.031 1.083 0.768

4 1.992 1.101 0.806 2.017 1.085 0.777

5 1.998 1.093 0.796 2.009 1.085 0.781

1 2.000 1.084 0.785 2.000 1.084 0.785

p D 5 1 2.094 1.238 0.937 2.359 1.259 0.898

2 2.274 1.250 0.912 2.318 1.253 0.904

3 2.300 1.250 0.907 2.308 1.251 0.905

4 2.304 1.250 0.906 2.306 1.250 0.905

5 2.305 1.250 0.905 2.306 1.250 0.905

1 2.306 1.250 0.905 2.306 1.250 0.905

p D 10 1 2.302 1.297 0.960 2.451 1.320 0.950

2 2.412 1.312 0.952 2.426 1.314 0.951

3 2.421 1.313 0.951 2.423 1.313 0.951

4 2.422 1.313 0.951 2.423 1.313 0.951

5 2.422 1.313 0.951 2.422 1.313 0.951

1 2.422 1.313 0.951 2.422 1.313 0.951

The sample mean (a) and the 50% BP S-estimator (b) are used as a
starting values
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Consider first the efficiency results for the simple k-step estimator that uses
sample mean vector as a starting value. In case of high-dimensional data, the
k-step estimators are very efficient even in the multinormal case, and after few
steps the efficiencies are already very close to those of regular HR estimators. As
seen in previous section, in case of low-dimensional data, several steps are needed
to obtain estimator with reasonable robustness properties. When multinormal data
in considered, such estimator seems to lack efficiency. To study the effect of an
initial estimator to efficiencies, 50% BP S-estimator was also used as a starting
value. When k is large enough, the initial estimator has very little influence on the
efficiencies. For example when different 5-step estimators are compared, regardless
of the distribution, the efficiencies are almost alike.

In Table 11.2 the asymptotic relative efficiencies of k-step HR shape estimators
are given as compared to the sample covariance matrix based shape estimator.
We again use the sample covariance matrix as well as the 50% BP S-estimator
as starting values. As seen in Table 11.2, in multinormal case, the k-step shape
estimators are very inefficient no matter which estimator is used as a starting value.
For heavy-tailed distributions, the k-step estimators outperform the initial sample
covariance matrix. Again after five steps, the efficiencies are very close to those
of the limiting estimators, and the efficiencies of sample covariance matrix based
estimators are very similar to those of the S-estimator based estimators.

11.3 Hettmansperger–Randles Estimators of Regression

11.3.1 k-Step Regression Estimators

Assume next the linear regression model

yi D BTxi C˙ 1=2ei; i D 1; : : : ; n;

where yi are the p-variate response vectors, B is the q � p matrix of unknown
regression parameters and ˙ is the covariance matrix of the residuals. The q-vector
of explaining variables xi and the standardized p-variate residuals ei are independent
and ei is spherical around zero with Cov.ei/ D Ip. Finally .xi; ei/, i D 1; : : : ; n, are
iid. We may then also write

Y D XBC E˙ 1=2; (11.9)

where Y D .y1; : : : ; yn/
T and E D .e1; : : : ; en/

T are n � p matrices, and X D
.x1; : : : ; xn/

T is an n � q matrix.
The regression estimator OB based on the location score function T.y/ solves

avefT.yi � BTxi/xT
i g D 0 (11.10)
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Table 11.2 Asymptotic relative efficiencies of k-step HR shape estima-
tors as compared to the sample covariance matrix based shape estimator
at different p-variate t-distributions with selected values of dimension p
and degrees of freedom 

(a) (b)

k  D 5  D 8  D 1  D 5  D 8  D 1
p D 2 1 1.714 1.091 0.800 1.377 0.687 0.458

2 1.778 0.941 0.640 1.472 0.733 0.489

3 1.670 0.846 0.566 1.495 0.746 0.496

4 1.590 0.796 0.532 1.500 0.749 0.498

5 1.546 0.774 0.516 1.500 0.750 0.499

1 1.500 0.750 0.500 1.500 0.750 0.500

p D 5 1 2.194 1.205 0.831 2.173 1.094 0.744

2 2.221 1.119 0.748 2.159 1.081 0.723

3 2.170 1.086 0.724 2.149 1.074 0.717

4 2.151 1.075 0.717 2.144 1.072 0.715

5 2.145 1.073 0.715 2.143 1.072 0.715

1 2.143 1.071 0.714 2.143 1.071 0.714

p D 10 1 2.512 1.301 0.878 2.521 1.245 0.851

2 2.520 1.261 0.841 2.505 1.253 0.836

3 2.504 1.252 0.835 2.501 1.251 0.834

4 2.501 1.250 0.834 2.500 1.250 0.834

5 2.500 1.250 0.833 2.500 1.250 0.833

1 2.500 1.250 0.833 2.500 1.250 0.833

The sample covariance matrix (a) and the 50% BP S-estimator (b) are
used as starting values

With the identity score T.y/ D y, the classical least squares (LS) estimator for
model (11.9) is obtained. The solution OB D OB.X;Y/ D .XTX/�1XTY is then fully
equivariant, that is, it satisfies

OB.X;XHC Y/ D OB.X;Y/CH;

for all q � p matrices H (regression equivariance). Further,

OB.X;YW/ D OB.X;Y/W;

for all nonsingular p � p matrices W (Y-equivariance) and

OB.XV;Y/ D V�1 OB.X;Y/;

for all nonsingular q � q matrices V (X-equivariance).
As in case of location estimation, robust regression estimator is obtained by

replacing identity scores used in (11.10) with spatial sign scores S.y/. This choice
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yields to the multivariate least absolute deviation (LAD) estimator, Bai et al. (1990).
The solution OB cannot be given in a closed form, but may be obtained using simple
iterative algorithm.

1. Oei D yi � OBT
k�1xi, for i D 1; : : : ; n,

2. OBk D OBk�1 C ŒavefjjOeijj�1xixT
i g��1 avefxiS.Oei/

Tg.
LAD-estimator is regression and X-equivariant, but Y-equivariant only with

respect to orthogonal transformations. As in the case of location and shape estima-
tion, a fully equivariant estimator is obtained using a similar inner standardisation.
The regression estimator OB and the residual scatter matrix OV then solve

avefS.Oei/xT
i g D 0 and p avefS.Oei/S.Oei/

Tg D Ip

where Oei D V�1=2.yi � BTxi/ and OV is standardized so that Tr. OV/ D p. As in the
case of regular LAD-estimator, the solution OB cannot be given in a closed form, and
the estimate is obtained using a fixed-point algorithm with the following steps.

Iteration Steps 2 The HR regression-scatter estimate is obtained using the follow-
ing steps

1. Oei D OV�1=2
k�1 .yi � OBT

k�1xi/, for i D 1; : : : ; n,

2. OBk D OBk�1 C ŒavefjjOeijj�1xixT
i g��1 avefxiS.Oei/

TgV1=2
k�1,

3. OVk D p OV1=2
k�1 avefS.Oei/S.Oei/

Tg OV1=2
k�1.

OV is scaled so that Tr. OV/ D p.

Again there is no proof for the convergence of the above algorithm. We therefore
proceed as in the case of location and shape estimation and define k-step HR
regression estimators as follows.

Definition 11.2. Let OB0 and OV0 be initial regression and scatter matrix estimates.
The k-step HR estimators OBk and OVk are then the estimators obtained by starting the
iteration with OB0 and OV0 and repeating Iteration Steps 2 k times.

11.3.2 Influence Functions and Limiting Distributions

Let Bk D Bk.Fx;y/ and Vk D Vk.Fx;y/ be the functionals corresponding to k-step
HR-estimators OBk and OVk, that is,

Bk D Bk�1 C fEŒjjejj�1xxT �g�1 EŒxS.e/T �V1=2
k�1 (11.11)

and

Vk D p V1=2
k�1 EF



S.e/ST.e/

�
V1=2

k�1; (11.12)

where e D V�1=2
k�1 .y � BT

k�1x/.
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If B0 and V0 are affine equivariant functionals then so are Bk and Vk, k D 1; 2; : : :
Due to this equivariance, we may consider without loss of generality the spherical
case with B D 0 and Cov.y/ D Cov.e/ D Ip. The influence function of Vk is
then as in Theorem 11.1, and therefore bounded if the influence functional of Vk is
bounded. The influence function of Bk in spherical case is given in the following
theorem.

Theorem 11.3. For Fx;y with B D 0, ˙ D Ip and spherical e with Cov.e/ D Ip,
the influence function of k-step HR regression functional Bk with initial estimator
B0 is at z D .x; y/ given by

IF.zIBk;Fx;y/ D
�
1

p

�k

IF.zIB0;Fx;y/

C
"
1 �

�
1

p

�k
# 


E.xxT/
��1

p Œ.p � 1/E.jjejj�1/��1xS.y/T :

The latter part of the influence function is bounded in y, but unbounded in x,
therefore even if the initial estimator has bounded influence function, the HR
estimator is sensitive to bad leverage points.

Assume next that the influence function of an initial estimator is of the type

IF.zIB0;Fx;y/ D �0.r/


E.xxT/

��1
xS.y/T ; (11.13)

where the weight function �0 depends on the functional B0 and the underlying
spherical distribution of e. Then

IF.zIBk;Fx;y/ D �k.r/


E.xxT/

��1
xS.y/T ;

where

�k.r/ D
�
1

p

�k

�0.r/C
"
1 �

�
1

p

�k
#

p Œ.p � 1/E.r�1/��1: (11.14)

See Fig. 11.1 for an illustration of �k.r/; in the left figure the initial regression
estimator is the LS estimator with �0.r/ D r. The LS-estimator is highly non-
robust estimator as it is sensitive to leverage points as well as vertical outliers. By
taking just few steps in our estimation procedure, the effect of y-outliers is reduced.
However, the estimator stays sensitive to leverage points through the term xS.y/T .

The joint asymptotic normality of OBk and OVk follows if the initial estimators
are
p

n-consistent with joint limiting multinormal distributions (see the proof
of Theorem 11.4 in Appendix). The limiting distribution for OVk is given in
Theorem 11.2. If OB0 is an regression estimator with influence function as given
in (11.13), the limiting distribution of OBk reduces to a following simple form.
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Theorem 11.4. Let .x1; y1/; : : : ; .xn; yn/ be a random sample from a distribution of
.x; y/ with B D 0, ˙ D Ip and y D e spherical around zero with Cov.e/ D Ip. Let
B0 be an initial estimator with influence function as given in (11.13). Then

p
n vec. OBk/

d�! N.0; �3k.Ip ˝


E.xxT/

��1
//;

where �3k D EŒ�2k.jjejj/�=p; and �k.r/ as given in (11.14).

The limiting distribution at elliptical case follows from the affine equivariance
properties of OBk:

Corollary 11.2. Let .x1; y1/; : : : ; .xn; yn/ be a random sample from a distribution
of .x; y/ with Cov.e/ D Ip. Let B0 be an initial estimator with influence function as
given in (11.13) Then

p
n vec. OBk � B/

d�! N
�

0; �3k

�
˙ ˝ 
E.xxT/

��1��
;

where �3k is as in Theorem 11.4.

The asymptotic relative efficiencies of k-step HR regression estimators relative to
LS-estimator equal to those obtained in the location estimation case. The efficiencies
at p-variate t-distribution cases with selected values of  and p are listed in
Table 11.1.

11.4 Discussion

In this paper, the location, shape and regression estimators based on the spatial sign
score function were considered. It was shown how the problems encountered in
simultaneous location and shape estimation of Hettmansperger and Randles (2002)
as well as in regression estimation of Oja (2010) can be circumvented by using
corresponding k-step estimators.

The influence functions and asymptotic properties of k-step HR estimators were
derived. In our example we used both robust and non-robust initial estimators.
The use of the sample mean, the sample covariance matrix as well as the least
squares estimator as initial estimators yields to estimators with unbounded influence
functions. The robustness studies however indicate that already after few steps,
estimators with better robustness properties are obtained, as the influence functions
of k-step estimators are very close those of the limiting estimators. The efficiency
studies demonstrate that when k is large enough, the use of non-robust initial
estimators yields to efficiencies that are similar to those obtained using robust initial
estimators. Based on these studies, we conclude that to obtain simple and practical
estimators for location, shape and regression, one could use as initial estimators
the sample mean, the sample covariance matrix and the least squares estimator,
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respectively. One has, however, to keep in mind that the breakdown properties of
k-step estimators are inherited from the initial estimators, Croux et al. (2010).

Acknowledgements The authors wish to thank a referee for several helpful comments and
suggestions. The Research was funded by the Academy of Finland (grants 251965 and 268703).

Appendix

Proof (Theorem 11.1).
The functional (11.7) solves

EF


y � 
k.F/

jjzjj
�
D 0; (11.15)

where z D V�1=2
k�1 .F/.y � 
k�1.F//. Write F	 D .1 � 	/F0 C 	�y0 . Then


k�1.F	/ D 	IF.y0I
k�1;F0/Co.	/ and Vk�1.F	/ D IpC	IF.y0IVk�1;F0/Co.	/

and, further,

jjzjj�1 D 1

r

h
1C 	

r
uTIF.y0I
k�1;F0/C

	

2
uTIF.y0IVk�1;F0/uC o.	/

i
:

Substituting these in (11.15) and having the expectation at F	 gives

IF.y0I
k;F0/ D ŒE.r�1/��1u0 C 1

p
IF.y0I
k�1;F0/:

Find next the influence function of Vk.F/. Write (11.8) as

Vk.F/EF


.y�
k�1.F//T.y�
k�1.F//

jjzjj2
�
�p V1=2

k�1.F/EF


S.z/ST.z/

�
V1=2

k�1.F/ D 0;

where again z D V�1=2
k�1 .F/.y�
k�1.F//. Proceeding then as in the proof for 
k.F/,

we get

IF.y0IVk;F0/ D 2

pC 2 IF.y0IVk�1;F0/C p


u0uT

0 �
1

p
Ip

�
:

The result then follows from the above recursive formulas for IF.yI
k;F0/ and
IF.yIVk;F0/.

ut
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Proof (Theorem 11.2). Consider first the limiting distribution of 1-step HR location
estimator. Let yi; : : : ; yn be a sample from a spherically symmetric distribution F0
and write ri D kyik and ui D r�1

i yi. Further, as we assume that O
0 and OV0 arep
n-consistent, we write 
�

0 WD
p

n O
0 and V�
0 WD

p
n. OV0� Ip/, where 
�

0 D Op.1/

and V�
0 D Op.1/. Now using the delta-method as in Taskinen et al. (2010), we get

p
n O
1 D 
�

0 C


ave

�
1

ri

�
1C 1

ri
p

n
uT

i 
�
0 C

1

2
p

n
uT

i V�
0ui

����1

� pn ave

�
ui � 1p

nri

�
0 C

1p
nri

uiuT
i 
�

0 C
1

2
p

n
uiuT

i V�
0ui

�
C op.1/:

(11.16)

As
p

n O
0 D
p

n avef�0.ri/uig C op.1/, the asymptotic normality of
p

n O
1 follows
from the Slutsky’s theorem and joint limiting multivariate normality of

p
n avefuig

and 
�
0 D
p

n O
0 (and EŒuT
i V�ui� D Tr.V�/ D 0). Equation (11.16) reduces to

p
n O
1 D p�1pn O
0 C ŒE.r�1

i /��1
p

n avefuig C op.1/:

Continuing in a similar way with
p

n O
2,
p

n O
3, and so on, we finally get

p
n O
k D

�
1

p

�kp
n O
0 C

"
1 �

�
1

p

�k
#

pŒ.p � 1/E.r�1
i /��1

p
n avefuig C op.1/:

Thus
p

n O
k D
p

n avef�k.ri/uig C op.1/: and the limiting covariance matrix ofp
n O
k equals to EŒ�2k .r/uuT � D p�1EŒ�2k .r/�Ip:

The limiting distribution for k-step HR shape estimator can be computed as above
starting from 1-step estimator

OV1 D p

"
ave

(
.yi � O
0/

T.yi � O
0/

jj OV�1=2
0 .yi � O
0/jj2

)#�1
ave

(
.yi � O
0/.yi � O
0/

T

jj OV�1=2
0 .yi � O
0/jj2

)
:

Note that the estimator is scaled so that Tr. OV1/ D p. After some straightforward
derivations,

p
n. OV1 � Ip/ D


1C 1p

n
avefuT

i V�
0uig

��1 
p
p

n

�
avefuiuT

i g �
1

p
Ip

�

C p ave

�
uT

i V�
0uiuiuT

i C
2

ri
p

n
uiuT

i uT
i 
�

0 �
2

ri
p

n

�
0uT

i � uT
i V�

0uiIp

� �
C op.1/:

As the joint limiting distribution of
p

n .avefuiuT
i g � p�1Ip/ andp

n. OV0 � Ip/ D pnavef˛0.ri/.uiuT
i � p�1Ip/g C op.1/ is multivariate normal,

the asymptotic normality of
p

n. OV1 � Ip/ follows and
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p
n. OV1 � Ip/ D 2.pC 2/�1

p
n. OV0 � Ip/C p

p
n.avefuiuT

i g � p�1Ip/C op.1/

D pn avef˛k.ri/.uiuT
i � p�1Ip/g C op.1/:

Continuing in the same way, we obtain

p
n. OVk � Ip/ D

p
n avef˛k.ri/.uiuT

i � p�1Ip/g C op.1/:

The limiting covariance matrix of
p

n vec. OVk � Ip/ is then

E


˛2k .r/ vec.uuT � p�1Ip/vecT.uuT � p�1Ip/

�

D EŒ˛2k .r/�

p.pC 2/.Ip2 CKp;p � 2p�1Jp/ D EŒ˛2k .r/�

p.pC 2/Cp;p.Ip/:

ut
Proof (Theorem 11.3). First note that (11.11) is equivalent to

EŒjjejj�1xxT �Bk � EŒjjejj�1xxT �Bk�1 � EŒxS.e/T �V1=2
k�1 D 0;

where e D V�1=2
k�1 .y � BT

k x/. Proceeding as in the Proof of Theorem 11.1, and
assuming (without loss of generality) the spherical case with B D 0 and ˙ D Ip,
we end up after some tedious derivations to

E


xxT

r

�
IF.zIBk;F0/ � E


xxTIF.zIBk�1;F0/uuT

r

�
� xuT D 0;

where y D ru with r D jjyjj and u D y=r. As EŒuuT � D p�1Ip, this simplifies to

IF.zIBk;F0/ D 1

p
IF.zIBk�1;F0/C EŒxxT ��1

xuT

EŒr�1�
;

and as the influence functions for all k are of the same type, we get

IF.zIBk;F0/ D
�
1

p

�k

IF.zIB0;F0/C
"
1 �

�
1

p

�k
#

EŒxxT ��1p Œ.p�1/E.r�1/��1 xuT :

ut
Proof (Theorem 11.4). Consider first the general case, where OB0 and OV0 are assumed
to be any

p
n-consistent estimators and write B�

0 D
p

n OB0 and V�
0 D
p

n. OV0 � Ip/,
where B�

0 D Op.1/ and V�
0 D Op.1/.

Without loss of generality, assume that B D 0 and ˙ D Ip so that y1; : : : ; yn

is a random sample from a spherical distribution with zero mean vector zero and
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identity covariance matrix. Write ri D kyik and ui D yi=ri. Now as in the proof of
Theorem 11.2, the 1-step HR regression estimator may be written as

p
n OB1 D B�

0 C


ave

�
1

ri

�
1C 1p

nri
xT

i B�
0ui C 1

2
p

nri
uT

i V�
0ui

�
xixT

i

���1

� pn ave

�
xi

�
uT

i �
1p
nri

xT
i B�

0 C
1p
nri

xT
i B�

0uiuT
i C

1

2
p

n
uT

i V�
0uiuT

i

��
C op.1/:

The limiting multivariate normality of
p

n OB1 then follows from the joint limiting
multivariate normality of B�

0 D
p

n OB0 and
p

navefxiuT
i g and the Slutsky’s theorem.

The above equation then reduces to

p
n OB1 D p�1pn OB0 C ŒE.r�1

i /��1D�1pn avefxiuT
i g C op.1/;

where D D EŒxxT �, and for the k-step HR regression estimator we get

p
n OBk D

�
1

p

�kp
n OB0C

"
1 �

�
1

p

�k
#

pŒ.p�1/E.r�1
i /��1 D�1pn avefxiuT

i gCop.1/

again with a limiting multivariate normality.
Let us next consider the simple case, where the initial estimator is of the type

p
n OBk D D�1pn avef�k.ri/xiuT

i g C op.1/;

where �k is given in (11.14). The covariance matrix of
p

n vec. OBk/ then equals to

EŒ�2k.r/ vec.D�1xuT/vecT.D�1xuT/�

D EŒ�2k.r/�.Ip ˝ D�1/vec.xuT/vecT.xuT/�.Ip ˝ D�1/

D EŒ�2k.r/�.Ip ˝ D�1/.E.uuT/˝ D/.Ip ˝ D�1/

D p�1EŒ�2k.r/�.Ip ˝ D�1/:

ut
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Chapter 12
New Nonparametric Tests for Comparing
Multivariate Scales Using Data Depth

Jun Li and Regina Y. Liu

Abstract In this paper, we introduce several nonparametric tests for testing scale
differences in the two- and multiple-sample cases based on the concept of data
depth. The tests are motivated by the so-called DD-plot (depth versus depth plot)
and are implemented through a permutation test. Our proposed tests are completely
nonparametric. An extensive power comparison study indicates that our tests are as
powerful as the parametric test in the normal setting but significantly outperform
the parametric one in the non-normal settings. As an illustration, the proposed tests
are applied to analyze an airline performance dataset collected by the FAA in the
context of comparing the performance stability of airlines.

Keywords Data depth • DD-plot • Multivariate scale difference • Permutation
test

12.1 Introduction

Advanced computing and data acquisition technologies have made possible the
gathering of large multivariate data sets in many fields. The demand for efficient
multivariate analysis has never been greater. However, most existing multivariate
analysis still relies on the assumption of normality which is often difficult to
justify in practice. A nonparametric method which does not have such a restriction
is more desirable in practical situations. The goal of this paper is to introduce
several nonparametric tests for comparing the scales (or dispersions) of multivariate
samples. These tests are completely nonparametric. Therefore, they have broader
applicability than most of the existing tests in the literature.
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We first consider two distributions which are identical except for a possible scale
difference. If two random samples are drawn from the two distributions, any point
would be relatively more central with respect to the sample with the larger scale
and relatively more outlying with respect to the sample with the smaller scale. This
phenomenon results in a particular pattern in the so-called DD-plot (depth versus
depth plot). Based on this particular pattern in the DD-plot, we propose a test for
scale differences and carry out the test through a permutation test. We present a
simulation study to compare power between our proposed test, a rank test and a
parametric test. The performance of our test is comparable to the parametric one
and slightly better than the rank test under the multivariate normal setting. Under
the non-normal setting, such as the multivariate exponential or Cauchy case, our
test significantly outperforms the parametric one and is as good as the rank test.

We further generalize the above nonparametric test to the multiple-sample case.
The power comparison study shows the efficiency and robustness of our proposed
test in both the normal and non-normal settings. Motivated by the proposed
multiple-sample test, we also introduce a DD-plot for the visual detection of
inhomogeneity across multiple samples.

The rest of the paper is organized as follows. In Sect. 12.2, we give a brief review
of data depth, depth-induced multivariate rankings, and DD-plot. In Sect. 12.3, we
describe the test for scale differences in the two-sample case. The results from
a simulation study are presented. We devote Sect. 12.4 to the testing of scale
homogeneity across multiple samples. In particular, it includes the description of
our depth-based nonparametric test, a power comparison study between our test
and a rank test, and a DD-plot for scale differences in the multiple-sample case.
In Sect. 12.5, we apply our tests to compare the performance stability of airlines
using the airlines performance data collected by the FAA. Finally, we provide some
concluding remarks in Sect. 12.6.

12.2 Notation and Background Material

12.2.1 Data Depth and Center Outward Ranking
of Multivariate Data

A data depth is a measure of how deep or central a given point is with respect
to a multivariate data cloud or its underlying distribution. The word “depth” was
first used in Tukey (1975) for picturing data. Liu (1990) observed the natural
center-outward ordering of the sample points in a multivariate sample that data
depth induces. Since then, many new and efficient nonparametric methods based
on data depth have been developed to characterize complex features of multivariate
distributions or make statistical inference for multivariate data (Liu et al. 1999). In
the literature, many different notions of data depth have been proposed for capturing
different probabilistic features of multivariate data. [See, for example, the lists in Liu
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et al. (1999) and Zuo and Serfling (2000)]. In the following, we use the simplicial
depth proposed in Liu (1990) as an example of data depth to describe the general
concept of data depth and its corresponding center-outward ordering.

Let fY1; � � � ;Ymg be a random sample from the distribution G.�/ in Rd, d � 1.
We begin with the bivariate setting, d D 2. Let 4.a; b; c/ denote the triangle with
vertices a, b and c, and I.�/ be the indicator function with I.A/ D 1 if A occurs
and 0 otherwise. Given the sample fY1; � � � ;Ymg, the sample simplicial depth of y is
defined as

DGm.y/ D
 

m

3

!�1X
.�/

I
�
y 2 4.Yi1 ;Yi2 ;Yi3 /

	
;

which is the fraction of the triangles generated from the sample that contain the
point y. Here (*) runs over all possible triplets of fY1; � � � ;Ymg. A large value of
DGm.y/ indicates that y is contained in many triangles generated from the sample,
and thus it lies deeper within the data cloud. On the other hand, a small DGm.y/
indicates an outlying position of y. Thus DGm is a measure of “depth” of y with
respect to the data cloud fY1; � � � ;Ymg.

The above simplicial depth can be generalized to any dimension d as follows:

DGm.y/ D
 

m

dC 1

!�1X
.�/

I.y 2 sŒYi1 ; � � � ;YidC1
�/;

where (*) runs over all possible subsets of fY1; � � � ;Ymg of size .d C 1/. Here
sŒYi1 ; � � � ;YidC1

� is the closed simplex whose vertices are fYi1 ; � � � ;YidC1
g. When the

distribution G is known, then the simplicial depth of y with respect to G is defined as

DG.y/ D PGfy 2 sŒY1; � � � ;YdC1�g;

where Y1; � � � ;YdC1 are .d C 1/ random observations from G. DG measures how
“deep” y is with respect to G. In Liu (1990), it is shown that DG.�/ is affine invariant,
and that DGm.�/ converges uniformly to DG.�/. The affine invariance ensures that our
proposed inference methods are coordinate free, and the convergence of DGm to DG

allows us to approximate DG.�/ by DGm.�/ when G is unknown.
For the given sample fY1;Y2; � � � ;Ymg, we can calculate all the depth values

DGm.Yi/, i D 1; : : : ;m, and then order the Yi according to their ascending depth
value. Denote by YŒj� the sample point associated with the jth largest depth values.
We then obtain fYŒ1�;YŒ2�; � � � ;YŒm�g, which is the depth order statistics of the Yi,
with YŒ1� being the deepest point, and YŒm� the most outlying point. Here, a larger
rank is associated with a more outlying position with respect to the underlying
distribution G. Note that the order statistics derived from depth are different from
the usual order statistics in the univariate case, since the latter are ordered from the
smallest sample point to the largest, while the former start from the most central
sample point and move outwards in all directions. This property is illustrated in
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Fig. 12.1 Depth contours for
a bivariate normal sample
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Fig. 12.1 which shows the depth ordering of a random sample of 500 points drawn
from a bivariate normal distribution. The “+” marks the deepest point, and the most
inner convex hull encloses the deepest 20 % of the sample points. The convex
hull expands further to enclose the next deepest 20 % by each expansion. Such
nested convex hulls determined by the decreasing depth value indicate that the depth
ordering is from the center outward.

12.2.2 DD-Plot for Graphical Comparisons
of Multivariate Samples

Suppose that fX1; : : : ;Xng.D X/ and fY1; : : : ;Ymg.D Y/ are two random samples
drawn respectively from F and G, where F and G are two continuous distributions
in Rd. Liu et al. (1999) proposed the so-called depth versus depth (DD)-plot for
graphical comparisons of two multivariate samples. More specifically, the DD-plot
is the plot of DD.Fn;Gm/, where

DD.Fn;Gm/ D
˚
.DFn.x/;DGm.x//; x 2 fX [ Yg�:

This is the empirical version of

DD.F;G/ D ˚.DF.x/;DG.x//; for all x 2 Rd
�
:
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Fig. 12.2 (a) DD-plot: identical distributions (b) DD-plot: location shift
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Fig. 12.3 (a) DD-plot: scale increase (b) DD-plot: skewness difference

If F D G, then DF.x/ D DG.x/ for all x 2 Rd, and thus the resulting DD.F;G/
is simply a line segment on the diagonal line in the DD-plot. This is illustrated
by the simulation result in Fig. 12.2a which is the DD-plot of two samples both
drawn from the bivariate standard normal distribution. A deviation from the diagonal
line segment in the DD-plot would suggest that there is a difference between the
distributions F and G. As it turns out, each particular pattern of deviations from
the diagonal line can be attributed to a specific type of differences between the two
distributions. For example, as shown in Fig. 12.2b, in the presence of a location
difference in the two samples, the DD-plot generally has a leaf-shaped figure. When
there is a scale difference between the two samples, a half-moon pattern will appear
in the DD-plot as shown in Fig. 12.3a. Figure 12.3b shows the wedge-like pattern of
the DD-plot if there exists a skewness difference in the samples.
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12.3 Nonparametric Test for Scale Differences
between Two Multivariate Samples

As described above, the DD-plot can serve as a diagnostic tool for visually detecting
the difference between two samples of any dimension. To make the visual diagnosis
from the DD-plot statistically sound, we would need to establish a proper testing
procedure to accompany the DD-plot to reach a decision. Several tests motivated
by the DD-plot for location differences were proposed in Li and Liu (2004). In
this paper, we focus specifically on developing proper procedures for testing scale
differences.

Recall that X 	 fX1; � � � Xng and Y 	 fY1; � � � ;Ymg are two samples from F
and G, respectively. Assume that F and G are identical except for a possible scale
difference, i.e.,

g.� � �/ D f ..� � �/=�/ ;

where f and g are the density functions of F and G, respectively, and � is the
common location parameter for both distributions. For simplicity, we are interested
in testing whether G has a larger scale. In other words, the hypotheses of interest are:

H0 W � D 1 versus Ha W � > 1:

Under the null hypothesis, i.e., F and G are identical, the depth of any point
with respect to F is equal to its depth with respect to G. Therefore, all the points in
the DD-plot DD.Fn;Gm/ are clustered along the diagonal line as seen in Fig. 12.2a.
If the alternative hypothesis is true, i.e., G has a larger scale, then the depth of any
point with respect to G would be larger than its depth with respect to F. Figure 12.4a
illustrates this phenomenon in a simple univariate setting. In this plot, it shows
the depth curves from two symmetric functions with a scale difference. Due to
the symmetry of the distribution function, their deepest points coincide with the
centers of symmetry. Since G has a larger scale, its depth curve is more spread
out than that of F. Thus, for any point, the depth value from G is larger than its
corresponding value from F. In the DD-plot, this phenomenon is reflected by the
following: y-coordinates of all the points, which represent the depth values with
respect to G, are larger than their corresponding x-coordinates, which represent the
corresponding depth values with respect to F. Therefore, in the DD-plot, there exist
gaps between all the points and the diagonal line, which results in a half-moon shape
as shown in Fig. 12.3a.

Figure 12.4b shows a DD-plot for two distributions with a larger scale difference
than the one in Fig. 12.3a. It is clear that, as the scale difference between F and
G increases, the differences between the y-coordinates and their corresponding
x-coordinates in the DD-plot, i.e., the gaps between the points and the diagonal
line, increase as well. Based on this observation, we propose to use the following
sum of the gaps of all the points in the DD-plot,
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Fig. 12.4 (a) Two distributions with a scale difference (b) DD-plot of a large scale difference

S D
X

Z2X
S

Y

.DGm.Z/ � DFn.Z// (12.1)

as our test statistic for scale differences.
Intuitively, the larger the scale difference between the two distributions, the larger

the S value and thus the stronger the evidence against H0. The p-value based on this
test statistic can then be determined by

pS D PH0 .S > Sobs/; (12.2)

where Sobs is the observed value of S based on the given sample X [ Y.
Since the derivation of the distribution of S under the null hypothesis turns out to

be quite challenging, we propose to use Fisher’s permutation test to determine the
above p-value. Fisher’s permutation test is carried out as follows.

1. Permute the combined sample X [ Y B times. Here B is sufficiently large. For
each permutation, we treat the first n elements as the X-sample and the remaining
elements as the Y-sample. Denote the resulting samples of the ith permutation by
X�

i D fX�
i1; � � � ;X�

ing, and Y�
i D fY�

i1; � � � ;Y�
ing, for i D 1; : : : ;B.

2. Evaluate the corresponding S value [following (12.1)] for each X�
i [ Y�

i , which
is then denoted by S�

i , i D 1; : : : ;B.

Then, the pS defined in (12.2) can be estimated by

pS
B D

BX
iD1

IfS�
i >Sobsg=B: (12.3)
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To evaluate the performance of the proposed test, we compare it with the
following tests in the literature.

• Rank Test

Let W 	 fW1;W2; : : : ;WnCmg 	 fX1; : : : ;Xn;Y1; : : : ;Ymg. If G has a larger
scale, then the Xi are more likely to cluster around the center of the pooled
sample, while the Yi are more likely to scatter at outlying positions. Based on this
observation, Liu and Singh (2006) developed the following depth-based rank test
for comparing scales between two multivariate samples.

Calculate the depth values of all the points with respect to the pooled sample W.
Then rank all the points according to their depth values. In other words, assign lower
ranks to the points with lower depth values. Denote this depth-based rank of Yi by
r.Yi/, and

r.Yi/ D #fWj 2W W DnCm.Wj/ � DnCm.Yi/; j D 1; 2; � � � ; nC mg;

where DnCm.t/ is the sample depth value of t with respect to fW1;W2; : : : ;WnCmg.
Then the rank test statistic R proposed in Liu and Singh (2006) is simply the sum of
the depth ranks of the sample Y, i.e.,

R D
mX

iD1
r.Yi/:

Under H0, if there are no ties, fr.Y1/; : : : ; r.Ym/g can be viewed as a random sample
of size m drawn without replacement from the set f1; : : : ; nCmg. If Ha is true, then
the Yi tend to be more outlying, and assume smaller depth values and smaller ranks.
Therefore, H0 should be rejected if the rank-sum test statistic R is too small. The
p-value of the above depth-based rank test can be obtained by using the Wilcoxon
rank-sum table.

• Fproduct Test

To compare the scales of two univariate normal samples, the standard level-˛
test is to reject the null hypothesis when F D s22=s21 � F˛.m � 1; n � 1/, where
s21 and s22 are the sample variances, and F˛.m � 1; n � 1/ is the upper ˛th quantile
of the F-distribution with degrees of freedom .m � 1; n � 1/. This F-test has been
generalized to test scale differences in the case of two multivariate normal samples.
More specifically, for testing H0 W j˙1j D j˙2j versus Ha W j˙1j < j˙2j, where j˙ij
is the determinant of the covariance matrix ˙i, the test statistic is,

Fproduct D
.m � 1/d�1Qd�1

iD1 .n � i � 1/
.n � 1/d�1Qd�1

iD1 .m � i � 1/
jS2j
jS1j

where jS1j and jS2j are the sample covariance matrices for X and Y, respectively
[see Theorem 3.4.8 of Mardia et al. (1979)]. Under H0, Fproduct follows the same
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Table 12.1 Power comparison between the S test, the rank test and the paramet-
ric test

Normal Exponential Cauchy

� 1 1.2 1.5 1 1.2 1.5 1 1.2 1.5

S test 0.058 0.824 1 0.062 0.512 0.98 0.06 0.23 0.74
Rank test 0.060 0.732 1 0.044 0.476 0.972 0.06 0.28 0.76

Fproduct 0.058 0.828 1 0.114 0.662 0.992 0.47 0.57 0.55

distribution as V1V2 � � �Vd, where Vi has the F-distribution with degrees of freedom
.m � i; n � i/ and the Vi are independent of one another. Clearly, large values of
Fproduct indicate stronger support from the observed data for Ha W j˙1j < j˙2j.
Therefore, H0 is rejected at level ˛ if Fproduct > QF˛ , where QF denotes the distribution
of V1V2 � � �Vd and QF˛ denotes its upper ˛th quantile. The distribution QF can be
approximated by using simulations. In our simulation study later, we draw 1000

random samples from QF and use the resulting empirical distribution, OQF as an
approximation of QF.

Table 12.1 shows the result of a simulation study which compares the power of
our proposed S test with the rank test and the Fproduct test for the bivariate normal,
double exponential and Cauchy distributions. In this power comparison study, the
sizes of both samples are 100. B, the number of permutations, is set to be 500.
The power estimates are based on 500 replications. For the bivariate normal and
double exponential distributions, the Mahalanobis depth (Mahalanobis 1936) is used
to calculate the depth. For the bivariate Cauchy distribution, since it does not have
any moment, we use the simplicial depth. The scale difference between F and G is
denoted by � (the same for both components) in the tables.

From the table, we can see that our proposed test is slightly better than the rank
test and almost as powerful as the parametric test in the bivariate normal setting. In
the non-normal setting, the type I errors of the parametric test far exceed the nominal
level 0.05, especially in the Cauchy case. This clearly shows that the validity of the
parametric test heavily depends on the normality assumption and is not appropriate
for non-normal cases, while our S test is quite robust and its performance is as good
as the rank test.

Remark. In the normal case, the power of our proposed S test is better than that of
the rank test. This may be explained by the fact that the rank test is based on the
rank induced by the depths of the sample points, while our S test is directly based
on those depths. Some information in the data is lost when transforming the depths
to their depth-based ranks, which may result in the minor loss of efficiency for the
rank test.



218 J. Li and R.Y. Liu

12.4 Scale Comparisons for Multiple Multivariate Samples

12.4.1 Nonparametric Test of Scale Homogeneity

Let X1 D fX11; : : : ;X1n1g; : : : ;Xk D fXK1; : : : ;Xknkg be the k samples drawn
respectively from the distributions F1,. . . ,Fk. Let fi denote the density function of
Fi, i D 1; : : : ; k. We assume that the Fi only differ in scale. In other words, for
i D 1; : : : ; k,

fi.� � �/ D f0..� � �/=�i/;

where � is the common location parameter. The hypotheses of interest are

H0 W �1 D � D �k versus Ha W 9 i ¤ j such that �i ¤ �j:

Similar to the two-sample case, we pool all the k samples together, and obtain
the depth values of all the pooled sample points with respect to each individual
sample. Denote Si as the sum of the depths of all the pooled sample points with
respect to the ith sample, Xi. Under the null hypothesis of scale homogeneity, we
would expect the Si to be homogeneous. On the other hand, under the alternative
hypothesis, we would expect these k values to be different. For example, if the
sample X` has a relatively small scale, the depth of any data point with respect
to this sample would be relatively smaller than its depths with respect to the other
samples. Then S` would be relatively smaller than the other Si. If the sample X`

has a relatively large scale, the depth of any data point with respect to X` would be
relatively larger than its depths with respect to the other samples. Then S` would be
relatively larger. Therefore, any scale inhomogeneity among the k samples would
result in inhomogeneity among the Si. To detect the inhomogeneity among the Si,
we can focus on the following statistic,

Q D
kX

iD1
.Si � NS/2;

where NS D Pk
iD1 Si=k. A larger Q value represents a stronger indication of

inhomogeneity. Therefore, the corresponding p-value for the above test can be
determined by

pQ D PH0 .Q > Qobs/;

where Qobs is the observed value of Q based on the given samples Xi, i D 1; : : : ; k.
Similar to the two-sample case, we turn to Fisher’s permutation test to estimate

the p-value, pQ. We pool the k samples together and then randomly divide them into
k subsamples with the sample sizes n1, n2, . . . ,nk, and denote the resulting samples
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by X�
1 , X�

1 ,. . . ,X�
k . We then calculate the corresponding Q from the permuted

samples X�
1 ,X�

1 ,. . . ,X�
k . Repeat this random permutation procedure sufficiently

many times, say B times, and denote by Q�
i the Q value obtained in the ith

permutation. The p-value pQ is then approximated by

pQ
B D

BX
iD1

IfQ�
i >Qobsg=B:

To evaluate the performance of our proposed Q test, we conduct a simulation
study to compare it with a rank test proposed in Liu and Singh (2006) for testing
scale homogeneity for multiple multivariate samples. Similar to the rank test (Liu
and Singh 2006) proposed for the two-sample case, in this rank test, the depth of
each sample point is calculated with respect to the pooled sample, and then all the
depth values are ranked. Let NRi be the average of the ranks assigned to the ith sample,
i D 1; : : : ;K. The test statistic proposed in Liu and Singh (2006) is then defined as,

T D
KX

iD1

�
1 � ni

N

� NRi � .N C 1/=2p
.N � ni/.N C 1/=.12ni/

!2
;

where N D n1 C n2 C � � � C nK . The corresponding p-value is

pT D PH0 .T > Tobs/:

Under the null hypothesis, T asymptotically follows a chi-square distribution with
k � 1 degrees of freedom, denoted by �2k�1. Therefore, pT can be approximated by

pT D 1 � F�2k�1
.Tobs/;

where F�2k�1
.�/ is the cumulative distribution function of �2k�1.

To compare our proposed Q test with the rank test, we simulate three random
samples from bivariate distributions with some or no difference in their scales.
Table 12.2 shows the powers of the two tests for detecting the scale inhomogeneity
in the normal, double exponential and Cauchy setting, respectively. In each simu-
lation, the sizes of the three samples, ni, i D 1; 2; 3, are all set to be 100. For our
proposed permutation test, B, the number of permutations, is chosen to be 500. All
of the power estimates are based on 500 replications. The Mahalanobis depth is used
for the bivariate normal and double exponential distributions, while the simplicial
depth is applied to the bivariate Cauchy distribution.

From the table, we can observe the similar phenomenon as in the two-sample
case. In the bivariate normal setting, our proposed Q test is more powerful than the
rank test. In the non-normal settings, our test is still comparable to the rank test.
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Table 12.2 Power comparison between the Q test and the rank test

Normal Exponential Cauchy

˙ Q test Rank test Q test Rank test Q test Rank test

˙1 D ˙2 D ˙3 D I 0.062 0.06 0.048 0.052 0.06 0.06

˙1 D I; ˙2 D ˙3 D 1:1I 0.292 0.236 0.131 0.128 0.07 0.09

˙1 D I; ˙2 D 1:1I; ˙3 D 1:2I 0.624 0.522 0.262 0.265 0.12 0.14

˙1 D I; ˙2 D ˙3 D 1:2I 0.686 0.608 0.380 0.398 0.24 0.21

˙1 D I; ˙2 D 1:2I; ˙3 D 1:5I 1 0.994 0.894 0.898 0.48 0.53

˙1 D I; ˙2 D ˙3 D 1:5I 1 1 0.968 0.978 0.60 0.66

Table 12.3 Power comparison between the Min test and the Q test

Normal Exponential

˙ Min test Q test Min test Q test

˙1 D ˙2 D ˙3 D I 0.038 0.048 0.058 0.066

˙1 D I; ˙2 D ˙3 D 1:1I 0.258 0.256 0.14 0.13

˙1 D I; ˙2 D ˙3 D 1:2I 0.754 0.708 0.416 0.386

˙1 D I; ˙2 D ˙3 D 1:3I 0.984 0.98 0.714 0.68

˙1 D I; ˙2 D ˙3 D 1:5I 1 1 0.986 0.966

Remark. Our proposed test statistic takes into account all the information contained
in the Si. From some of our simulation results, we observe that, in some particular
simulation setting, the permutation test based on other test statistics may yield
higher power than the one based on the test statistic we propose here. For example,
three samples are simulated with two having the same scales and one having a
smaller scale. The resulting three Si would have two similar values and one relatively
smaller value. If we use the minimum of the Si as the test statistic, the corresponding
permutation test will be more powerful than the one we propose above. See the
simulation results in Table 12.3. The test based on the minimum of the Si is denoted
as Min test in the tables. This result is not a surprise, since the only inhomogeneity
among these three samples lies in the one with the smaller scale. The minimum
of the Si exactly captures this difference, while our proposed

P3
iD1.Si � NS/2

dilutes this difference by taking the average across all the samples. This simulation
study suggests that, if some extra information is available regarding the difference
pattern of the multiple samples, we can improve the proposed test by choosing
appropriate test statistics which well reflect that difference pattern. If there is no
prior information about the difference pattern of the samples, the one based onP3

iD1.Si � NS/2 is always a reasonable choice.



12 New Nonparametric Tests for Comparing Multivariate Scales Using Data Depth 221

12.4.2 DD-plot for Graphical Comparisons of Scales
for Multiple Multivariate Samples

As described earlier, to carry out our Q test, we pool all the k samples together,
and obtain the depth values of all the pooled sample points with respect to
each individual sample. Thus, for each sample point, we have a set of k depth
values corresponding to each of the k samples. If k D 2, we can plot the 2-
dimensional vectors of all the sample points. This is essentially the DD-plot we
mentioned earlier. This DD-plot is always a subset of <2 no matter how large the
dimension of the data is. The two-dimensional DD-plot is easy to visualize, and it
provides a convenient tool for graphical comparisons of two multivariate samples
as discussed in Sect. 12.2.2. For k > 2, plotting the k depth values of each point
will result in a k-dimensional plot. It is not easy to visualize and find interesting
patterns in a k-dimensional plot, especially when k is large. For the purpose of
visually detecting the scale inhomogeneity among the k samples, we propose to
construct a 2-dimensional plot as follows.

Recall that Si is the sum of the depths of all the pooled sample points with respect
to the sample Xi. Since the smaller scale the sample, the smaller sum of those depths
with respect to this sample, we rank the Si and denote the sample associated with
the largest Si as the sample Xmax and the one associate with the smallest Si as the
sample Xmin. Then the samples Xmax and Xmin represent the two samples with the
largest and smallest scales, respectively. Since detecting the scale inhomogeneity of
the k samples amounts to detecting the scale difference between these two extreme
samples, a DD-plot can be defined as

DD.Fmin;Fmax/ D
˚
.DFmin.x/;DFmax.x//; x 2 fX1 [ � � � [ Xkg

�
; (12.4)

where DFmin.x/ and DFmax.x/ are the depths with respect to Xmin and Xmax, respec-
tively.

This plot can serve as a graphical tool for comparing the scales among multiple
multivariate samples. If there is a scale difference among the k samples, then the
sample Xmax should have a larger scale than the sample Xmin. Similar to the two-
sample case, the DD-plot defined in (12.4) will have a half-moon shape. When
the scales of the k samples are homogeneous, there is no significant difference in
scale between Xmax and Xmin. Hence the points in the DD-plot will be clustered
along the diagonal line. Figure 12.5 shows the corresponding plots.

12.5 Applications to Airlines Performance Data

We apply the tests described in Sects. 12.3 and 12.4 to an analysis of an airline per-
formance dataset collected by the FAA. It consists of several monthly performance
measures of the top ten air carriers from July 1993 to May 1998. To facilitate a visual
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Fig. 12.5 DD-plots: (a) Three identical bivariate normal distributions (b) Three bivariate normal
distributions with scale differences

confirmation of our test results with related bivariate scatter plots, we illustrate
our proposed tests using only two performance measures, namely the fractions of
nonconformity in airworthiness (AW) and operation (OP) surveillance. A smaller
nonconformity fraction is a more desirable feature. Several depth based multivariate
control charts (Cheng et al. 2000; Liu 1995) have been used to monitor and compare
the performances of all the ten airlines. Using the DD-plot, Li and Liu (2004)
propose two depth-based nonparametric tests to determine whether or not there are
significant location differences in the underlying distributions of the air carriers.
The location parameter here is referred to as the anticipated target performance
in the aviation safety domain. In comparing Carriers 1 and 4, their scatter plots
in Fig. 12.6a show that the location of Carrier 4 (i.e., the deepest point of Carrier
4, marked by a solid triangle) clearly shifts to the upper-right of that of Carrier 1
(marked by �). This observed location difference has been declared significant by
the tests proposed in Li and Liu (2004).

In judging airline performance, in addition to examining the expected target
performance (i.e. the location of the distribution) of the airlines, the stability of
the performance within the airlines is also a major concern. When the performance
of one air carrier is stable, all of its performance observations must cluster tightly
and result in a small scale of its underlying distribution. On the other hand, when the
performance of one air carrier is not very stable, all of its performance observations
must scatter around and result in a large scale of its underlying distribution.
Therefore, the measure of airline performance stability is simply the measure of
scale or variation of the performance distribution. Thus, comparing performance
stability amounts to comparing the scale of a distribution. Larger scales would mean
less stable performance.
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Fig. 12.6 (a) Scatter plot for Carriers 1 & 4 (b) DD-plot for Carriers 1 & 4

We next compare the scales of Carrier 1 and 4. Given that there exists a location
difference between the two carriers, we first center both samples at their respective
deepest points to ensure that they have the same location, and then apply our
proposed S test to determine whether or not there is a significant difference in scale
in the distributions underlying the two air carriers. The p-value is 0 from (12.3),
which clearly supports the conclusion that Carrier 4 has a larger scale than Carrier
1. In other words, the performance of Carrier 4 is less stable. This same conclusion
can also be reached by examining the two graphs in Fig. 12.7. Figure 12.7a is the
DD-plot of Carriers 1 and 4 after centering the data respectively at their deepest
points. It shows a pattern which combines Fig. 12.3a, b. This suggests that there are
both scale and skewness differences between the two carriers. Figure 12.7b displays
the scale curves of four carriers. The scale curve was first introduced in Liu et al.
(1999) as another graphical tool to visualize scale differences between multivariate
samples. The sample scale curve derived from a sample of size n is defined as,

Sn.p/ D volumefCn;pg; for 0 � p � 1;

where Cn;p is the convex hull containing the dnpe deepest points. Roughly speaking,
the scale curve measures the volume of the nested depth contours, as seen in
Fig. 12.1. The plot of Sn.p/ versus p shows the scale of the distribution as a
simple curve. When comparing the scales of two samples, if the scale curve for the
sample X is consistently above the scale curve for the sample Y , then the sample X is
more spread out and thus has a larger scale than the sample Y . From Fig. 12.7b, it is
obvious that the scale curve of Carrier 4 lies consistently above all others, including
that of Carrier 1. The findings are also supported by the scatter plot in Fig. 12.6a
which shows more scattered data for Carrier 4. In summary, the performance of
Carrier 4 is inferior to that of Carrier 1, in that Carrier 4 has significantly higher
target nonconformity ratios and it is also much less stable overall. Possible causes
should be identified and corrective measures should be taken.
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Fig. 12.7 (a) DD-plot for Carriers 1 & 4 after centering (b) Scale curves for air carriers

In testing the scale homogeneity among Carriers 1, 4, 9 and 10, we again first
center all the samples at their respective deepest points, and then apply our Q test.
The p-value we obtain is 0, which indicates scale inhomogeneity among these four
carriers. This conclusion is also confirmed by the scale curve plot of the four carriers
in Fig. 12.7b. Figure 12.8 shows the DD-plot of the four carriers defined in (12.4).
It has a half-moon pattern, which also suggests scale inhomogeneity among those
carriers. In summary, although most of the top ten carriers have roughly similar
crew training, fleet size, and aircraft models, not all of them achieve the same level
of performance stability.

12.6 Concluding Remarks

In this paper, we introduce several depth based tests for testing scale differences in
the two- and multiple-sample cases. The tests are completely nonparametric, and
they are easy to implement regardless of the dimensionality of the data. We also
present several simulation and comparison studies to illustrate the properties of these
tests. Although our illustrative examples are all in R2, all tests discussed in this
paper apply to any dimension.
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Fig. 12.8 DD-plot for Carriers 1, 4, 9 and 10

In principle, the tests proposed in this paper can be constructed using any
notion of data depth which is affine invariant. Some notions of depth may be more
suitable than others in capturing a certain feature of a distribution. For example, if
the underlying distribution is close to elliptical, then it is more efficient to use the
Mahalanobis depth. Otherwise, the more geometric depths such as the simplicial
depth or the halfspace depth (Tukey 1975) may be more desirable since they
do not require specific distributional structures or moment conditions. It may be
worthwhile to see how the results of our proposed tests are affected by the different
depths used in those tests. We plan to investigate this in a separate research project.

In this paper, we only focus on the case where the scale of one distribution is
an expansion of that of the other one. It should be interesting to consider more
general scale differences between two multivariate distributions. Combining proper
statistics derived from graphical tools, such as DD-plots and scale curves, with the
permutation test idea may prove to be a promising way in developing these tests.
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Chapter 13
Multivariate Autoregressive Time Series Using
Schweppe Weighted Wilcoxon Estimates

Jaime Burgos and Jeff T. Terpstra

Abstract The vector autoregressive model in multivariate time series analysis
is commonly used across different fields due to its simplicity in application.
The traditional method for estimating the model parameters is the least squares
minimization. However, since least squares estimates are sensitive to outliers,
more robust techniques have become of interest. This paper investigates a robust
alternative by obtaining the estimates using a weighted Wilcoxon dispersion with
Schweppe weights. Under the so-called innovations outlier model where outliers
are introduced through the error distribution, the proposed estimator is shown to
be asymptotically multivariate normal, centered about the true model parameters,
at a rate of n� 1

2 . In addition, a Monte Carlo study is presented to evaluate the
performance of various estimators. The study results suggest that the Schweppe-
weighted Wilcoxon estimates will generally have best performance. This result is
most noticeable under the presence of additive outliers or when the series is closer
to non-stationarity.

Keywords Asymptotic normality • Outliers • U-statistics • Vector
autoregressive • Wilcoxon estimates

13.1 Introduction

13.1.1 Time Series Model

A widely used model in multivariate time series analysis is the stationary m-variate
vector autoregressive model of order p. Throughout this paper, we refer to it as the
VARm(p). The (centered) model is generally expressed as
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Yt D ˚1Yt�1 C˚2Yt�2 C � � � C˚pYt�p C "tI t D 1 � p; : : : ; 0; 1; : : : ; T

defD ˚Xt�1 C "t; (13.1)

where p 2 f1; 2; : : :g; Yt; "t 2 R
m; m 2 f2; 3; : : :g; Xt�1 D .Y0

t�1;Y0
t�2; : : : ;Y0

t�p/
0 2

R
mp; ˚ i 2 R

m�m, i D 1; 2; : : : ; p; ˚ D .˚1; : : : ;˚p/ 2 R
m�mp; and p C T is the

number of realizations in the time series. The process has a stationary solution if
and only if

det.xp
Im � xp�1˚1 � � � � �˚p/ D 0 ) jxj < 1; (13.2)

where det.�/ is the determinant operator, Im represents the dimension m identity
matrix, x may be complex valued, and j � j is the modulus operator on the
complex plane (Brockwell and Davis 2002). Furthermore, the "t are assumed to
be independent with an identical continuous distribution function F.�/ that satisfies

VŒ"t� D ˝ p:d:; (13.3)

where p:d: stands for positive definite. Under assumptions (13.1), (13.2) and (13.3),
fYtg is causal (Brockwell and Davis 2002), ergodic (Krengel 1985), and geometri-
cally absolutely regular (g.a.r.) (Terpstra and Rao 2002). Briefly, g.a.r. is a type of
weak dependence property inherent in VARm(p) processes. It basically states that
as observations become further apart, they become less dependent according to a
geometric rate. As we shall see, the g.a.r. of the process plays a critical role in the
theoretical development of this paper. For example, the covariance result found in
Arcones (1998) and U-statistic theorems for g.a.r. processes form the theoretical
paradigm of the paper.

13.1.2 Parameter Estimation

Estimates for the parameters in (13.1) are typically obtained by minimizing, with
respect to ˚ , a dispersion function. The most common selection, generalized with
weights and for a multivariate setting, is the (conditional) L2 dispersion function,

D2.˚/ D
TX

tD1
btk "t.˚/k2; (13.4)

where bt � 0 denotes a weight function that may depend on both the design Xt�1
and the response Yt, "t.˚/ D Yt � ˚Xt�1, and k � k denotes the Euclidean norm.
Typically bt 	 1, which results in a component-wise ordinary least squares (OLS)
estimation. The asymptotic theory for the OLS estimates can be found in many time
series textbooks, including Lütkepohl (1993) and Fuller (1996).
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As with most least squares estimates, outlying observations can yield unre-
liable estimates and predictions (Hettmansperger and McKean 2011; McKean
and Sheather 2009; Rousseeuw and Leroy 1987). A number of robust estimators
for the parameters in (13.1) have been studied. These include a functional least
squares approach by Heathcote and Welsh (1988); an extension of the RA-estimates
proposed by Bustos and Yohai (1986), Li and Hui (1989), and Ben et al. (1999); GR-
estimates proposed by Terpstra and Rao (2002); weighted-L1 estimates proposed by
Reber et al. (2008); an extension of least trimmed squares by Croux and Joossens
(2008); and an extension of MM-estimates by Muler and Yohai (2013).

Other robust estimators can be obtained by using different dispersion functions.
For instance, a multivariate generalization of the weighted-L1 dispersion function is
given by

D1.˚/ D
TX

tD1
btk "t.˚/k; (13.5)

where bt � 0 denotes a weight function that may depend on both the design
Xt�1 and the response Yt. Using Mallows weights (Mallows 1975), the asymptotic
distribution of the weighted-L1 estimates is described by Reber et al. (2008).

Another robust estimator can be obtained from a multivariate generalization of
the weighted-Wilcoxon dispersion function

DWW.˚/ D
TX

i<j

bijk "j.˚/ � "i.˚/k; (13.6)

where bij D bji � 0 denotes a weight function that may depend on both the design
and the response points at the ith and jth realizations. Using Mallows weights, the
asymptotic theory of multivariate weighted-Wilcoxon (WW) estimates, known as
Multivariate Generalized Rank (GR) estimates, was introduced by Terpstra and
Rao (2002). This paper extends the research done by Terpstra and Rao (2002) by
allowing the use of the more general class of Schweppe weights (Handschin et al.
1975).

The rest of the paper is outlined as follows. Section 13.2 discusses some
commonly used weighting schemes. In Sect. 13.3, the proposed estimator is shown
to be asymptotically multivariate normal, centered about the true model parameters,
at a rate of n� 1

2 . Section 13.4 presents details regarding the derivations of the main
theoretical results. After that, in Sect. 13.5, a Monte Carlo study is presented to
evaluate the performance of alternative estimators. Some final remarks are given in
Sect. 13.6.
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13.2 Weighting Schemes

The estimates obtained from (13.4), (13.5), and (13.6) are influenced by the
selection of the weight functions. The weighting schemes used throughout this
paper can be grouped into three classes: non-random weights, Mallows weights,
and Schweppe weights.

13.2.1 Non-random Weights

Non-random weights do no explicitly depend on the time series realizations. The
most common case is selecting the weights constant to one. Here bt 	 1 and bij 	 1,
thus weighing each realization equally.

13.2.2 Mallows Weights

A simple example of Mallows weights for (13.4), (13.5), and (13.6) are the Boldin
(1994) and Theil (1950) weights. These can be generalized to the multivariate
setting by defining them as

bt D kXt�1k�1 if Xt�1 ¤ 0 and bij D kXj�1 � Xi�1k�1 if Xi�1 ¤ Xj�1:
(13.7)

In practice, when Xt�1 D 0 or Xi�1 D Xj�1, bt or bij can be defined arbitrarily since
these points will not contribute to the dispersion function.

Another popular Mallows weighting scheme can be found in Chang et al. (1999).
These can be generalized to the multivariate setting by defining them as

bt D min

(
1;

�
c

d2.Xt�1/

�k=2
)

and bij D bibj; (13.8)

where d.�/ denotes the Mahalanobis distance based on a robust measure of center
and covariance and c and k are tuning constants. Typically, c D �21�˛.mp/ is the
100.1� ˛/th percentile of a chi-squared distribution with mp degrees of freedom, k
is set to 2, and the minimum covariance determinant (Rousseeuw and Leroy 1987)
is used for the robust measures of center and covariance.

As can be seen from (13.7) and (13.8), Mallows weights depend only on the
design point (i.e. Xt�1 in the present context). Consequently, these types of weights
do have some limitations. For example, consider an outlier which is introduced via
the error distribution, F. Since observations in a VAR(p) model play a dual role as
both a response and an explanatory variable, any resulting leverage point is likely
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to be a good leverage point in the sense that a small residual will be produced.
Therefore, downweighting these so-called good leverage points (e.g. using Mallows
weights) tends to decrease overall efficiency. That said, incorporating information
from an initial fit into the weights (via the corresponding residuals) can regain some
of this lost efficiency. This is the premise for considering Schweppe-type weighting
schemes, which we now discuss.

13.2.3 Schweppe Weights

Schweppe weights depend on both design and response points. An example of
Schweppe weights are the high breakdown weights defined in Chang et al. (1999).
These can be generalized to the multivariate setting by defining them as

bt D  
�

b

at

�
and bij D  

�
b2

aiaj

�
; (13.9)

where at D d. O"t/

 .c=d2.Xt�1//
; O"t denotes the tth residual vector based on an initial

robust estimate; and  .x/ D 1; x;�1 when x � 1;�1 < x < 1; x � �1,
respectively. The least trimmed squares estimate of Croux and Joossens (2008) or
Mallows-based versions of (13.5) and (13.6) can be used for the initial fits while
the tuning parameter b is typically set to medifaigC 3MADifaig. Additional details
regarding the selection of tuning constants can be found in Chang et al. (1999) and
Hettmansperger and McKean (2011).

Another type of Schweppe weights are defined in Terpstra et al. (2001). These
can be generalized to the multivariate setting by defining them as

bt D 1 � I.d2.O"t/ > c1/ I.d2.Xt�1/ > c2/.1 � ht/ and bij D bibj; (13.10)

where ht is the Mallows weight defined in (13.8) at the tth realization and I.�/ is
an indicator function yielding 1 if the logical statement is true, and 0 otherwise.
The tuning parameters c1; c2 are typically �21�˛.m/ and �21�˛.mp/, respectively.
These weights make use of an indicator function to downweight only the bad
leverage points.

13.2.4 The Proposed Estimate of ˚

In this paper, we propose the estimator of ˚ as a value that minimizes the
weighted Wilcoxon dispersion function using Schweppe weights. Under the defi-
nition in (13.6), the dispersion function DWW.˚/ is non-negative, piecewise linear,
and convex. Thus, DWW.˚/ has a minimum and an estimate can be obtained.
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For notational convenience, the VARm(p) model in (13.1) is rewritten in a
notation where ˚ is vectorized. Let vec.�/ denote a columns stacking operation
that transforms a r � c matrix into a rc� 1 vector. Also, let˝ denote the Kronecker
product. Then,

Yt D ˚Xt�1 C "t D .X0
t�1 ˝ Im/ vec.˚/C "t

defD x0
t�1ˇ C "t;

where ˇ D vec.˚/ and x0
t�1 D X0

t�1 ˝ Im. More details on the use of vec.�/ to
rewrite models can be found in Lütkepohl (1993, Appendix A.12). Furthermore, we
redefine "t.ˇ/ D Yt � x0

t�1ˇ, so that the dispersion is now viewed as a function
of ˇ instead of ˚ . Hence, our proposed estimator, denoted as Ǒ

n, is such that
DWW. Ǒn/ D minˇ DWW.ˇ/.

13.3 Theoretical Results

We start by stating a list of assumptions under which the asymptotic theory holds.
As usual, asymptotic corresponds to the limit as T D n goes to infinity. The
results rely on the assumptions given below. In what follows, � denotes a vector
of nuisance parameters that can be used in the calculation of the weights and needs
to be estimated in practice (e.g. with O�).

n
1
2 . O� � �0/ D Op.1/ (W1)

Dij.�/
defD r bij.�/ is continuous 8 .i; j;�/ (W2)

kDij.�/k � BD <1 8 .i; j;�/ (W3)

bij D b.Xi�1; "i;Xj�1; "j/ D b.Xj�1; "j;Xi�1; "i/ D bji 8 .i; j/ (W4)

sup
i<j

EŒkXj�1 � Xi�1k2k"j � "ik�1�1Cı <1 for some ı > 0 (E1)

sup
i<j

EŒbijkXj�1 � Xi�1k2k"j � "ik�1�1Cı <1 for some ı > 0 (E2)

sup
i<j

EŒkXj�1 � Xi�1k�1Cı <1 for some ı > 0 (E3)

sup
i<j

EŒbijkXj�1 � Xi�1k�2Cı <1 for some ı > 0 (E4)

We note that all of the above expectations are essentially taken with respect to
the underlying error distribution, F. For instance, in the context of Sect. 13.5, the
expectations are taken with respect to the core process (i.e. � D 0). In addition,
the expectations given in (E1), (E2), and (E3) must also be finite when taken with
respect to the corresponding product distribution.
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Since the main result to obtain is the asymptotic distribution of Ǒ
n, we start by

denoting the true parameter vector for the VARm(p) as ˇ0. Following traditional
methods of proof, we first need to establish asymptotic linearity (AL), asymptotic
uniform linearity (AUL), and asymptotic uniform quadraticity (AUQ). Thus, we
define

S.ˇ/ D �r DWW.ˇ/;

Dn.	/ D n�1 DWW.ˇ0 C n� 1
2 	/;

Sn.	/ D � @

@	
Dn.	/ D n� 3

2 S.ˇ0 C n� 1
2 	/; and

Qn.	/ D Dn.0/ �	0 Sn.0/C	0C	;

where r is the gradient operator, 	 2 R
m2p is arbitrary but fixed, and C is a fixed

m2p � m2p positive definite matrix.
In the multivariate setting, AL, AUL and AUQ refer to

AL W kSn.	/ � ŒSn.0/ � 2C	�k D op.1/;

AUL W sup
k	k�c

kSn.	/ � ŒSn.0/ � 2C	�k D op.1/ 8 c > 0; and

AUQ W sup
k	k�c

jDn.	/ � Qn.	/j D op.1/ 8 c > 0:

Theorem 13.3.1 establishes these results and its proof is provided in Sect. 13.4.

Theorem 13.3.1. Let Ei:jŒ�� denote the expectation with respect to the product
distribution of ."0

i; x
0
i�1/0 and ."0

j; x
0
j�1/0, JŒ�� the Jacobian operator,

uij.x/ D "j � "i � x
k"j � "i � xk ; and

C D 1

4
Ei:jŒbij.xj�1 � xi�1/ JŒ�uij.0/�.xj�1 � xi�1/0�:

Then, AL, AUL, and AUQ hold under model assumptions (13.1)–(13.3), (W1)–
(W4), and (E1)–(E2).

With AUL and AUQ established, we proceed to derive the asymptotic distribution
of Sn.0/. Theorem 13.3.2 establishes this result and its proof is provided in
Sect. 13.4.
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Theorem 13.3.2. Let Ei:j:kŒ�� denote the expectation with respect to the product
distribution of ."0

i; x
0
i�1/0, ."0

j; x
0
j�1/0, and ."0

k; x
0
k�1/0,

u.x/ D x
kxk ; and

˙ D Ei:j:kŒbijbik.xj�1 � xi�1/u."j � "i/u."k � "i/
0.xk�1 � xi�1/0�:

Then, Sn.0/
D�! Nm2p.0;˙ / under model assumptions (13.1)–(13.3), (W1)–(W4),

and (E3)–(E4).

Now, by combining Theorems 13.3.1 and 13.3.2 with the Jaeckel (1972)
convexity argument, we proceed to state our main result. Theorem 13.3.3 establishes
this result and its proof is provided in Sect. 13.4.

Theorem 13.3.3. Under the assumptions of Theorems 13.3.1 and 13.3.2, we
have that

n
1
2 . Ǒn � ˇ0/

D�! Nm2p

�
0;
1

4
C�1˙ C�1

�
:

For practicality of Theorem 13.3.3, estimates of ˙ and C are needed. Note
that ˙ and C are actually functionals defined on the distribution function of
Zt D ."0

t;X
0
t�1/0. Naturally then, we let Ȯ n and OCn be the corresponding von Mises

statistics where the "t are replaced with corresponding residuals.

13.4 Technical Details

The expression for S.ˇ/ is common to several proofs and is obtained by using rules
of derivatives with respect to vectors and the definition of DWW.ˇ/. Starting from
the definition of S.ˇ/, we have that

S.ˇ/ D �r DWW.ˇ/ D � @

@ˇ
DWW.ˇ/ D � @

@ˇ

nX
i<j

bijk "j.ˇ/ � "i.ˇ/k

D �1
2

nX
i<j

bijk "j.ˇ/ � "i.ˇ/k�1 @
@ˇ
."j.ˇ/ � "i.ˇ//

0."j.ˇ/ � "i.ˇ//

D
nX

i<j

bijk "j.ˇ/ � "i.ˇ/k�1.xj�1 � xi�1/."j.ˇ/ � "i.ˇ//

defD
nX

i<j

bij.xj�1 � xi�1/u."j.ˇ/ � "i.ˇ//;

where u.x/ D x=kxk.



13 VAR Time Series Using Schweppe WW-Estimates 235

Establishing asymptotic results is simplified under the assumption that bij has
no additional stochastic components besides Xi�1, "i, Xj�1, and "j. Recall that �

denotes a vector of parameters used in the calculation of the weights. We also
denote �0 and O� as the corresponding vector of true parameters and estimators,
respectively. Furthermore, we denote bij. O�/ as a function of Xi�1, Xj�1, O"i, and O"j

from an initial fit, and other stochastic components. Similarly, we denote bij.�0/

as a function of Xi�1, "i, Xj�1, "j, and no other stochastic components. It can be
shown that, under model assumptions (13.1)–(13.3), (W1)–(W3), and (E1), AL can
be established using bij D bij.�0/. Analogously, it can be shown that, under model
assumptions (13.1)–(13.3), (W1)–(W4), and (E3), the asymptotic distribution of
Sn.0/ can be obtained using bij D bij.�0/. The details are similar to those appearing
in Terpstra and Rao (2001), and are therefore omitted for the sake of brevity.

13.4.1 Proof of Theorem 13.3.1

Heiler and Willers (1988) have shown that AL, AUL, and AUQ are equivalent in the
context of linear regression. Their proof implies that linearity in parameters of the
regression model and convexity of the dispersion function are sufficient conditions
for this result to hold. Since the VARm(p) and DWW.�/ satisfy these conditions, it
suffices to establish AL.

To begin, let � 2 R
m2p be arbitrary but fixed and Tn D �0.Sn.	/� Sn.0//. Thus,

it suffices to show that Tn C 2�0C	 D op.1/. Then, it follows by definitions that

Tn D �0.Sn.	/ � Sn.0//

D n� 3
2

nX
i<j

bij�
0.xj�1 � xi�1/.u."j � "i � dijn/ � u."j � "i//

defD n� 3
2

nX
i<j

bij�
0.xj�1 � xi�1/.uij.dijn/ � uij.0//;

where dijn D .xj�1 � xi�1/0n� 1
2 	 and uij.x/ D u."j � "i � x/. Furthermore, we let

UAL
n D n� 3

2

nX
i<j

bij�
0.xj�1 � xi�1/ JŒuij.0/�dijn

D
�

n � 1
n

��
2

n.n � 1/
� nX

i<j

2�1bij�
0.xj�1 � xi�1/ JŒuij.0/�.xj�1 � xi�1/0	

defD
�

n � 1
n

��
2

n.n � 1/
� nX

i<j

hAL.Zi;Zj/;

where JŒ�� is the Jacobian operator and Zt D ."0
t;X

0
t�1/0.
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Next, note that

jTn � UAL
n j

� n� 3
2

nX
i<j

jbij�
0.xj�1 � xi�1/.uij.dijn/ � uij.0/ � JŒuij.0/�dijn/j

� n� 3
2 k�k

nX
i<j

bijkxj�1 � xi�1kkuij.dijn/ � uij.0/ � JŒuij.0/�dijnk

D n� 3
2 k�k

nX
i<j

bijkxj�1 � xi�1kkdijnkkdijnk�1kuij.dijn/ � uij.0/ � JŒuij.0/�dijnk

defD n� 3
2 k�k

nX
i<j

bijkxj�1 � xi�1kkdijnk�.dijn/

� n�2mk�kk	k
nX

i<j

bijkXj�1 � Xi�1k2�.dijn/:

By taking expectations, and using assumption (E2) along with Lemma 2 (ii) of
Arcones (1998), we have that

EŒjTn � UAL
n j� � n�2mk�kk	k

nX
i<j

EŒbijkXj�1 � Xi�1k2�.dijn/�

� n�2mk�kk	k
nX

i<j

Ei:jŒbijkXj�1 � Xi�1k2�.dijn/�C o.1/

D mk�kk	k
�

n.n � 1/
2n2

�
Ei:jŒbijkXj�1 � Xi�1k2�.dijn/�C o.1/:

By model assumptions (13.1)–(13.3) and the definition of the multivariate deriva-
tive, we have that dijn D op.1/ and �.dijn/ D op.1/. Furthermore, it can be

shown that �.dijn/ � .m
1
2 C 1/k"j � "ik�1. Thus, by assumption (E2) and the

Lebesgue Dominated Convergence Theorem, the expectation on the right hand
side (RHS) is o.1/. Note that the remaining factor on the RHS is O.1/, which
implies that EŒjTn � UAL

n j� D o.1/. Using Markov’s Inequality, it now follows that
Tn � UAL

n D op.1/.
Therefore, it suffices to show that UAL

n C 2�0C	 D op.1/. However, under
assumption (W4), . n

n�1 /U
AL
n is a U-statistic with symmetric kernel hAL.Zi;Zj/.

Hence, it follows from assumption (E2) and Theorem 1 (ii) of Arcones (1998) that
UAL

n � Ei:jŒhAL.Zi;Zj/� D op.1/.
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Finally, we have that

Ei:jŒhAL.Zi;Zj/� D Ei:jŒ2
�1bij�

0.xj�1 � xi�1/ JŒuij.0/�.xj�1 � xi�1/0	�

D �2�0
�
1

4
Ei:jŒbij.xj�1 � xi�1/ JŒ�uij.0/�.xj�1 � xi�1/0�

�
	

D �2�0C	;

which completes our proof. ut

13.4.2 Proof of Theorem 13.3.2

To obtain the asymptotic distribution of Sn.0/, we follow the approach for
U-statistics under absolute regularity proposed by Denker and Keller (1983). To
begin, let � 2 R

m2p be arbitrary but fixed. Then, it follows from definitions that

�0 Sn.0/ D n� 3
2

nX
i<j

bij�
0.xj�1 � xi�1/u."j � "i/

D
�

n � 1
n

�
n
1
2

�
2

n.n � 1/
� nX

i<j

2�1bij�
0.xj�1 � xi�1/u."j � "i/

defD
�

n � 1
n

�
n
1
2 Un;

where, under assumption (W4), Un is a U-statistic with symmetric kernel
h.Zi;Zj/ D 2�1bij�

0.xj�1 � xi�1/u."j � "i/ and Zt D ."0
t;X

0
t�1/0. Next, we obtain

Ei:jŒh.Zi;Zj/� D“
2�1�0.xj�1 � xi�1/

�“
bij u."j � "i/ dF."i/ dF."j/

�
dG.Xi�1/ dG.Xj�1/;

where G.�/ denotes the distribution function of Xt. Note that, by definition of u.�/,
and assumption (W4), it follows that

“
bij u."j � "i/ dF."i/ dF."j/ D �

“
bij u."j � "i/ dF."i/ dF."j/;

“
bij u."j � "i/ dF."i/ dF."j/ D 0; and Ei:jŒh.Zi;Zj/� D 0: (13.11)
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Next, following the approach, we let

h1.Zi/ D
“

h.Zi;Zj/ dF."j/ dG.Xj�1/ and

�2n D E

"
nX

iD1
h1.Zi/

#2
:

By model assumptions (13.1) and (13.2), we have

�2n D E

"
nX

iD1
h1.Zi/

#2

D n EŒh2
1.Zi/�C 2

nX
kD2
.n � .k � 1//EŒh1.Z1/ h1.Zk/�: (13.12)

Focusing attention on the expectation inside the summation we have that

EŒh1.Z1/ h1.Zk/�

D
Z

h1.Z1/ h1.Zk/ dHk

D
Z

h1.Z1/
�“

2�1bkj�
0.xj�1 � xk�1/u."j � "k/ dF."j/ dG.Xj�1/

�
dHk

D
“

h1.Z1/
�“

2�1bkj�
0.xj�1 � xk�1/u."j � "k/ dF."j/ dG.Xj�1/

�
d QHk dF

D
Z

h1.Z1/
Z
2�1�0.xj�1 � xk�1/

�“
bkj u."j � "k/ dF."k/ dF."j/

�
dG d QHk;

where Hk.�/ denotes the joint distribution function of Z1 and Zk, and QHk.�/ denotes
the joint distribution function of Z1 and Xk�1. It now follows from (13.11) that
EŒh1.Z1/ h1.Zk/� D 0 8 k 2 f2; 3; : : : ; ng. Next, we focus attention back to
Eq. (13.12), and have that

n�1�2n D EŒh2
1.Zi/�

D 4�1�0
Ei:j:kŒbijbik.xj�1 � xi�1/u."j � "i/u."k � "i/

0.xk�1 � xi�1/0��

D 4�1�0˙ �:

Thus, by g.a.r. of fZtg and assumption (E4), it follows from Theorem 1 part (c) of

Denker and Keller (1983, p. 507) that n
1
2 Un

D�! N.0;�0˙ �/. Finally, since � is

arbitrary, it follows that Sn.0/
D�! Nm2p.0;˙ /, which completes our proof. ut
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13.4.3 Proof of Theorem 13.3.3

To obtain the asymptotic distribution of Ǒ
n, we follow the approach for regression

coefficients by minimization of dispersion functions proposed by Jaeckel (1972).
To begin, let 	 D n

1
2 .ˇ � ˇ0/ and Q	n D min	 Qn.	/. Then, by minimization of

Qn.	/ and Theorem 13.3.2, we have that

Q	n D n
1
2 . Q̌n � ˇ0/

D 1

2
C�1 Sn.0/

D�! Nm2p

�
0;
1

4
C�1˙ C�1

�
:

Next, we let O	n D n
1
2 . Ǒn � ˇ0/. Thus, by Theorem 13.3.1 and the Jaeckel (1972)

convexity argument, we have that O	n� Q	n D op.1/. Finally, it follows by definitions
that

n
1
2 . Ǒn � ˇ0/

D�! Nm2p

�
0;
1

4
C�1˙ C�1

�
;

which completes our proof. ut

13.5 Monte Carlo Study

13.5.1 The Process

In this section, we study the behavior of several estimates, in particular the
WW-estimates, via Monte Carlo simulation. For the sake of simplicity and com-
putation time only the VAR2(1) is considered. Thus, we define the core process as

Yt D ˚1Yt�1 C "tI t D 0; 1; : : : ;T;
"t

iid
 .1 � �/N2.0;˙ "/C �N2.0;˙ �/;

where � 2 Œ0; 1/, and ˙ ", ˙ � are both positive definite. In addition, we define the
observed process as

Y�
t D Yt C Zt;

Zt
iid
 .1 � �/ı0 C � N2.
� ;˙ � /;

where � 2 Œ0; 1/, ı0 represents a bivariate point mass distribution at 0, 
� 2 R
2,

and ˙ � is positive definite.
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Note that when � D 0 and � > 0, the observed process reduces to the core
process, representing Fox’s (1972) Type II or Innovation Outlier (IO) model. As
discussed by Rousseeuw and Leroy (1987, p. 275), this model produces good
leverage points in the sense that they have relatively little impact on estimates. When
� D 0 and � > 0, the observed process yields Fox’s Type I or Additive Outlier (AO)
model. This model produces bad leverage points which can have a significant impact
on many estimates. When � > 0 and � > 0, the observed process corresponds to
a combination of the IO and AO models, denoted I&AO for convenience. In the
remaining case, when � D 0 and � D 0, the observed process is bivariate normal.

13.5.2 The Estimators

For interpretation convenience, we group estimators according to their weight-
ing schemes as: no weights, Mallows, and Schweppe labeled as 1-3, respec-
tively. Furthermore, in what follows, we refer to weighted L2-estimates, weighted
L1-estimates, and WW-estimates as those estimates obtained by minimizing the
dispersion functions given in (13.4), (13.5), and (13.6), respectively. This Monte
Carlo study will simulate, compute, and compare the performance of the following
estimators:

OLS(1): OLS estimate based on the dispersion in (13.4) with bt 	 1,
L1(1): L1-estimate based on the dispersion in (13.5) with bt 	 1,
WIL(1): Wilcoxon-estimate based on the dispersion in (13.6) with bij 	 1,
BL2(2): Weighted L2-estimate based on the dispersion in (13.4) with bt

defined in (13.7),
BL1(2): Weighted L1-estimate based on the dispersion in (13.5) with bt

defined in (13.7),
THL(2): WW-estimate based on the dispersion in (13.6) with bij defined

in (13.7),
ML2(2): Weighted L2-estimate based on the dispersion in (13.4) with bt

defined in (13.8),
ML1(2): Weighted L1-estimate based on the dispersion in (13.5) with bt

defined in (13.8),
GR(2): WW-estimate based on the dispersion in (13.6) with bij defined

in (13.8),
HBL2(3): Weighted L2-estimate based on the dispersion in (13.4) with bt

defined in (13.9),
HBL1(3): Weighted L1-estimate based on the dispersion in (13.5) with bt

defined in (13.9),
HBR(3): WW-estimate based on the dispersion in (13.6) with bij defined

in (13.9),
TMNL2(3): Weighted L2-estimate based on the dispersion in (13.4) with bt

defined in (13.10),
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TMNL1(3): Weighted L1-estimate based on the dispersion in (13.5) with bt

defined in (13.10),
TMNR(3): WW-estimate based on the dispersion in (13.6) with bij defined

in (13.10).

For the estimators based on Schweppe weights, we obtained initial residuals
using ML1-estimates. We used the Minimum Covariance Determinant to obtain the
robust measures of center and covariance required by d.�/.

13.5.3 The Simulation Settings

We selected the simulation settings to account for the impact on estimates due to the
degree of stationarity of the time series, the level of contamination due to innovation
outliers, the level of contamination due to additive outliers, and the magnitude of the
additive outlier. With regard to stationarity, the following three coefficient matrices
are considered:

˚1 2
�
0:10 0:03

0:01 0:05

�
;


0:30 �0:20
�0:10 0:40

�
;


1:20 �0:50
0:60 0:30

��
;

representing three degrees of stationarity. The processes associated to these ˚1

matrices have roots with their largest modulus at 0.1, 0.5 and 0.8, respectively.
Therefore, we denoted them as very stationary, moderate stationary, and close
to non-stationary process, respectively. Note that all of the coefficient matrices
satisfy the stationarity assumption in (13.2). Furthermore, we evaluate the sensitivity
of the estimates to innovative outliers by considering � 2 f0; 0:05; 0:1g. Next,
we evaluate the sensitivity of the estimates to additive outliers by considering
� 2 f0; 0:05; 0:1g. Finally, we evaluate the impact of the magnitude of the additive
outlier by considering 
� 2 f.10; 13/0; .100; 130/0g; denoted as close and far from
the core process, respectively. The remaining parameters of the simulation are fixed.
We generated 1000 replicates of size T D 100 and set

˙ " D I2; ˙ � D 16 I2; and ˙ � D I2:

All estimates were computed using R (R Core Team 2013).

13.5.4 Simulation Results

We estimate the efficiencies of estimators based on the trace of the empirical mean
square error (MSE) matrix. For comparison purpose, results have the actual trace of
the empirical MSE matrix in the OLS entry, while the other estimators are presented
relative to OLS so that entries larger than 1 indicate a more efficient estimator.
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Table 13.1 shows results for the very stationary setting. Under multivariate nor-
mality, the OLS estimates prove to be the most efficient followed by the Wilcoxon
and the HBR estimates at 0.96 efficiency. Under the AO model, the OLS estimates
deteriorate and are out-performed by all estimates based on robust dispersions.
In particular, the Wilcoxon, Theil, and HBR estimates show the best all-around
performance. Under the IO model, the OLS estimate is resistant, yet the robust
dispersions perform better. Unweighted dispersions perform best, followed by
Schweppe weighted estimates, and last are the Mallows weighted estimates. Under
the I&AO model, the AO effect is mitigated, yet the OLS estimates performance
drops. Similar to the AO model, the estimates based on robust dispersions have an
overall better performance when compared to the OLS estimates. In particular, the
Wilcoxon, HBR, Theil, and L1 estimates show the best overall performance.

Tables 13.2 and 13.3 show results for the moderate stationary and close to
non-stationary settings, respectively. Results remain similar to those under the
very stationary setting. In particular, HBR estimates show the best all-around
performance under the moderate stationary. On the other hand, under the close to
non-stationary setting, the HBR estimates have a blind spot when additive outliers
that are close to the core process are present. Under the close to non-stationary
setting with additive outliers that are close to the core process, the HBL1 has
the best performance. That said, these simulation results suggest that Schweppe
weighted estimators can achieve comparable efficiencies across different degrees of
stationarity and the presence of outliers. Additive outliers seem to have the largest
effect on estimators and are best handled by Schweppe weighted robust dispersions.

13.6 Conclusion

In this paper a Schweppe-based weighted Wilcoxon estimate for a multivariate
autoregressive time series parameter was considered. In Sects. 13.3 and 13.4
asymptotic linearity properties and the asymptotic distribution of the estimate were
derived. Tests of hypotheses as well as standard errors for confidence interval
procedures can be formulated from such results. The Monte Carlo study in Sect. 13.5
compared several estimates that essentially fall into one of nine categories. These
categories are a product of the dispersion function [i.e. (13.4), (13.5), or (13.6)]
and the class of weights [i.e. none, Mallows, or Schweppe]. Generally speaking,
estimates based on (13.6) outperformed analogous estimates based on (13.5)
and (13.4) for time series containing outliers. Moreover, the study highlights the
flexibility of Schweppe weights relative to Mallows weights. For example, under
the IO models considered, the Wilcoxon [WIL(1)] estimate was the most efficient
estimate, followed closely by the Schweppe-based WW-estimates [i.e. HBR(3) and
TMNR(3)] and finally the Mallows-based WW-estimates [i.e. THL and GR]. On
the other hand, the Schweppe and Mallows-based WW-estimates are much more
efficient than the Wilcoxon estimate for AO and I&AO models, where outliers can
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become points of high leverage. Hence, the use of Schweppe weights yields a robust
estimate that is both efficient and robust simultaneously. This is an attractive feature
as the types of outliers are rarely known in practice.
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Chapter 14
Median Stable Distributions

Gib Bassett

Abstract When i.i.d. data follows a stable distribution the sample mean has the
same distribution as the rescaled data. The normal with a scaling factor of

p
n,

and the Cauchy with scaling factor of 1 are well known examples of mean stable
distributions. This idea is extended to median stable distributions by requiring that
the sampling distribution of the median be identical to the distribution of the rescaled
data. The median’s sampling distribution is a functional of the data’s cdf so that the
analysis of median stability involves solutions to functional equations (as opposed
to sums of random variables). A few properties of median stable distributions are
presented including their relation to the limiting distribution of the remedian.

Keywords Remedian • Iteration • Functional composition

14.1 Introduction: The Sample Median
with Small (n = 3) Data

Consider the distribution of the sample median in the simplest case of n D 3 i.i.d
observations. That is, X1;X2;X3, are i.i.d with the common distribution function F;
F will be sometimes referred to as the distribution of the data. The random variable
with the cumulative distribution function (cdf) of the data is denoted by X D X.F/.
Let OX D OX.F/ denote the sample median. The (sampling) cdf of OX is denoted by
M.x/ D M.x W F/ D PrŒ OX < x�.

The distribution of the sample median can be written as a functional depending
on the F of the data,

M.x/ D G.F.x// (14.1)
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250 G. Bassett

where the G-function is,1

G.w/ D 3w2 � 2w3; w 2 Œ0; 1�: (14.2)

While the analysis of the sample mean is about sums of random variables, the
analysis of the sample median has to do with the behavior of functionals like G.

The G function is depicted in Fig. 14.1 along with schematics showing how G
turns F into M. G is seen to be continuous, increasing, with fixed points at G.1=2/ D
1=2, G.0/ D 0, and G.1/ D 1, and G.w/ > w for 1=2 < w < 1, G.w/ < w for
0 < w < 1=2. (These features hold for the median G-functions with n > 3 that will
be considered later.)

One consequence of the G properties is that the median of M and the median of
F will always be the same; see Appendix. If the median of the data F is an interval
Œ��; �C�, then the median of M will be the same interval. If the median of F is a
point, � D �C D ��, then the median of M will also be �. The sample median
being median-unbiased is analogous to the sample mean being mean-unbiased.

With the median of F and M the same, from now on without loss of generality
the data will be centered so that either its unique median is 0, or 0 is in the interval
of medians, Œ��; �C�.

Another feature following directly from the G-properties is that the sample
median will always be more concentrated than the data around their common
median.2 That is, the probability that the sample median is in the interval, Œ�� �
b; �C C a�, b > 0, a > 0, is always greater than the probability that the data
is in the interval; see Appendix. This is indicated in the figure by, M.x/ > F.x/,
F.x/ 2 .1=2; 1/, and M.x/ < F.x/, F.x/ 2 .0; 1=2/. Among other things, this
means the sample median will always be a better estimate of the population median
than the estimate that throws away all but one of the observations.3

Finally, consider a rescaling of the sample median so that not only its location
and scale, but also its shape is the same as the data. That is, for a rescaling factor
� > 1 there is an H for the data such that the rescaled distribution of the median is
the same as H,

� OX.H/ dD X.H/: (14.3)

1 OX < x if: (1) two-out-of-three, or (2) three-out-of-three of the Xi are less than x. Two-out-of-three
has probability, F.x/2.1� F.x//, and can occur in three-choose-two equals three ways. Three-out-
of-three can occur in one way, which has probability, F.x/3. So, M.x/ D F.x/3 C 3F.x/2.1 �
F.x// D 3F.x/2 � 2F.x/3 D G.F.x//. Note that G.x/ is the distribution of the median when the
data is uniformly distributed on [0,1].
2Except in the trivial case in which there is no variation in the data around the median in which
case F D M; see Appendix.
3Note that this is not true for the sample mean. Unless tail conditions on the data are ruled out,
averaging the data can be worse than the estimate based on a single observation; for examples, see,
Feller (1971), p. 172. If averaging is the alternative, the advice to never put all your eggs in one
(observation) basket is a mistake.
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Fig. 14.1 Mapping from F to M, via G

Or, in terms of the cdfs, MŒx W H.��1x/� D H.x/; hence from (14.1), H solves the
functional equation,

H.x/ D G.H.��1x//: (14.4)

Such an H will be analogous to the normal distribution for the sample mean. With
normal data (and n D 3) the sample mean (scaled by

p
3) has the same normal

distribution. In a similar fashion, with H-data the sample median has the same H
distribution. A picture illustrating the relationship between H and G is shown in
Fig. 14.2.
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Fig. 14.2 The relationship between H and G

In the case of the sample mean the set of distributions that reproduce themselves
in this fashion define the symmetric stable distributions; see e.g., Feller (1971),
p. 169. The normal is best known. Other scaling factors lead to different distribu-
tions; for example, a Cauchy distribution for the data results in a Cauchy distribution
for the sample mean, where the scaling factor is, � D 1.

Similarly, a distribution H that satisfies (14.4) will be referred to as median stable.
In this paper the idea of median stable distributions is introduced and an initial
investigation is begun into what they look like. The simplest, n D 3 case is continued
in Sect. 14.2, and serves as a template for n > 3 considered later.

Discussion Motivated by the sample mean, the classical presentation of sym-
metric stable distributions is in terms of sums of i.i.d random variables such that the
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rescaled sum has the same distribution as the common distribution of the summands.
Rather than a definition in terms of “sums”, a definition in terms of the sample mean
lends itself to extensions of the idea of stable distribution. That is, when OX.H/ is
the sample mean (given i.i.d data H), the definition of a (mean) stable distribution
is (14.3). Substituting the sample median for the sample mean in this definition leads
to the median stable distributions considered here.

One difference between the median and mean stable distributions concerns the
way they depend on n, the number of observations. Mean stable distributions do not
depend on—are the same—for all n: for n D 3 the normal is stable, and it is also
stable for n > 3. In contrast, as discussed in Sect. 14.3, there are different median
stable distributions for each n.4

Another contrast between mean and median stable distributions is that there are
mean stable distributions with the �-scaling factor less than one; the sample mean
with fat-tailed data has to be scaled by a � < 1 because it is more dispersed than the
data. As mentioned above, since the sample median is more concentrated than the
data, its scaling factor will always be greater than one.

14.2 More Small Data

When noting the dependence of the cdf H defined by (14.4) on �, write, H.x W �/.
The next result summarizes general properties of H.x W �/ that follow directly from
the shape of G.

Theorem 14.1. For each � > 1, H.x W �/ is symmetric, continuous, increasing,
with 0 < H.x W �/ < 1, and H.1=2 W �/ D 0. An H.x W �/ determines a scale
family of cdfs: if H.x W �/ solves (14.4) then so does H�.x W �/ D H.�x W �/,
� > 0. An H.x W �0/ determines all (� D �

1=˛
0 ,˛ > 0), solutions to (14.4) via,

H.x W �1=˛0 / D H.x˛ W �0/.
For the last part, let L.x/ D H.x˛ W �0/ so L.x/ D G.H.��1

0 x˛ W �0// D
G.H..��1=˛

0 x/˛ W �0// D G.L.��1=˛
0 x//, but this says L.x/ solves the functional

equation with � D �1=˛0 .
Note that since H is increasing the stable H’s all have a unique median.
The derivative of H is; h.x W �/ D g.H.��1x//h.��1x/��1, which at x D 0 says,

h.0 W �/ D g.0/h.0/��1 D sh.0/��1, so if the density is positive at the median
the scaling parameter for the stable distribution will be � D s. Since the solutions
of (14.4) for any � can be obtained from, H.x W �0/, we focus mostly on the case
�0 D s where the density of H is positive at x D 0.

4A median stable distribution with n observations, call it Hn, however, is a limiting distribution
but, rather than the median, for the median-like (base n) remedian estimator; see Sect. 3 below and
Rousseeuw and Bassett (1990).
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It would be nice to have a way of going from the G function of (14.2) to an
explicit formula for the cdfs implicitly defined by the functional equation (14.4). An
explicit solution of the defining functional equation (14.4), even for this simplest
n D 3 case, however is not evident. So as a starting point to understanding what
H looks like, an approximation for h.x W s/ near zero is presented and compared
to the normal distribution. This is followed by expressions for H.x W s/ in terms of
functional composition, and for H.x W s/ as the limit of a sequence of cdfs that are
related to the distribution of the remedian.

14.2.1 H.x W s/, x Near Zero

Write the derivative of G.w/ as g.w/ D sŒ1�4.w�1=2/2�. The log of the derivative
of the functional equation is then given by, log h.sx//�log.h.x// D log.1�4.H.x/�
1=2/2/. Dividing by x2 and taking limits as x goes to zero means the RHS is�4h.0/2,
while for the LHS,

lim
x!0

s2 log.h.x//

x2
� log.h.sx//

s2x2
D .s2 � 1/ lim

x!0

log.h.x//

x2
:

So,

lim
x!0

log.h.x//

x2
D �4h.0/2

s2 � 1 D �3:2h.0/2

Ḣence,

Theorem 14.2. h.x W s/ D exp.�3:2x2h.0/2 C o.x//.

This density whose value at x D 0 is 1 can be compared to the normal density
whose value at 0 is also 1, or n.x W 0; � D 1=p2�/ D exp.��x2/. Hence the stable
median and normal densities near zero are both proportional to x2 with the normal
exponent being �  3:14 whereas the median stable exponent is 3.20.

14.2.2 H as the Composition of Functions

Equation (14.4) “at” s�1x on the RHS says, H.s�1x/ D G.H.s�2x// which on
substituting into the LHS gives H.x/ D G.G.H.s�2x/// D G.2/.H.s�2x// where
G.2/.x/ is the composition of G two-times. Continuing in this fashion, H.x/ D
G.k/.H.s�kx//, k D 1; 2; : : :. Further, since G is increasing its inverse is well-
defined so that (14.4) says, G�1.H.x// D H.s�1x/, and substituting as above
gives, H.x/ D G.�k/.H.skx//, where G.�k/.w/ is the composition of G.�1/.w/,
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k-times. Hence, for k D ˙1;˙2; : : : ; a median stable distribution satisfies, H.x/ D
G.k/.H.s�kx//, or H.skx/ D G.k/.H.x//. This can be, in turn, extended to rational
and then real values of k by defining fractional composition via, for example, G.1=2/

as G.1=2/.G.1=2/.w// D G.w/.
This maps out all solutions to the functional equation. Pick w0 in .1=2; 1/, and

x0 > 0 so that

H.skx0/ D G.k/.w0/:

This identifies the H.x/; x > 0 in the scale family of cdfs satisfying (14.4)with
� D s such that H.x0/ D w0. (For x < 0, H is determined by symmetry, H.x/ D
1 � H.�x/.)

The tail of H.x/, x ! 1, is thus seen to depend on the rate at which
G.k/.w0/! 0, k ! 1. This rate can be determined from a G-inequality involving
monomials, which can be used to compute and bound G.k/.w0/; see Appendix. It
gives,

Theorem 14.3.

lim
x!1 x�˛ log H.�x/ D �c

where 0 < c <1, and s˛ D 2.

Proof. See Appendix.

This limit means a median stable distribution has exponential, not fat, tails.

14.2.3 H as the Limit of Hk.x/

Consider H.x/ D G.k/.H.s�kx/, since H.s�kx/ D 1=2C h.0/s�kxC o.s�kx/, define
the sequence of cdfs, Hk.x/ D G.k/.1=2C s�kx/, js�kxj < 1=2, k D 1; 2; : : : ;. The
limit of the sequence of cdfs is the median stable distribution in which, h.0/ D 1. 5

Table 14.1 in Appendix shows the values of Hk.x/ for various x and k. For
comparison, it also shows the values of the normal distribution whose density at
zero is 1. The comparison shows Hk.x/ is very close to normal even for moderate
k. [But the limit is not a normal distribution because the normal does not satisfy the
functional equation (14.4).]

5HK.x/ is the distribution of the remedian (base 3) with n D 3K data that are uniform on Œ0; 1�; see
Rousseeuw and Bassett (1990).



256 G. Bassett

14.3 Stable Median Distributions and the Remedian

A stable distribution for the mean does not depend on—is the same—given any
number of observations. In addition, the limiting distribution of the sample mean
with arbitrary, not necessarily stable, data will necessarily be a stable distribution.
The property of the mean that makes its associated stable distributions the same for
any number of observations is its recursive property in which the mean of means is
the mean. For the regular median, as is well-known, the median of medians is not the
median, and as a result median stable distributions are n-dependent. The recursive
property for the mean however does hold for the median-like, remedian estimator.6

As a result, the stable distribution for the (base b) remedian (which is the median
stable distribution for b observations) is the same for all n > b.

The remedian is defined recursively as the median of medians. Its base-3 version
is the ordinary median given n = 3 observations. For n D 32 write the data as a 3� 3
array Xij, i D 1; : : : ; 3, j D 1; : : : ; 3. The base-3 remedian for n D 32 is given by,
OX32 D OX3. OX1: ; : : : ; OX3: /, where OXi: D OX3.Xi1; : : : ;Xi3/, i D 1; : : : ; 3. That is, the

n D 32 version is the same as OX3, but on a set of “data” that are themselves medians.
In a similar fashion the estimate for n D 3k is recursively defined as the median of
the “data”, . OX1 OX.k�1/

; OX2 OX.k�1/
; OX3 OX.k�1/

/.

The cdf of the remedian given i.i.d. data with cdf F is, PrŒ OX3k.F/ < x� D
G.k/.F.x//, see Rousseeuw and Bassett (1990).

Similar to the definition of mean and median stable distributions, define a
remedian stable distribution so that the scaled-by-� sampling distribution of the
estimate is the same as the data. Let Hn.x W �n/ be notation for such a remedian
stable distribution.

Since the remedian of remedians is the remedian, an Hn that is OXn-stable with
n observations will be also stable with n2 observations. That is, Hn2 .x W �n2 / D
Hn.x W �2n/. The stable distribution is the same, and the scaling parameter for n2

observations is just �n2 D �2n, namely the squared value of the scaling parameter
with n observations; see Appendix.

14.4 Median Stable for n > 3

Let OXr denote the median given n D 2r C 1, i.i.d F-distributed observations. The
sampling distribution of OXr, like the r D 1 case discussed above, is a functional of
the data, Gr.F/. It is convenient to write this Gr function as a transformation of its
G D G1 version in Eq. (14.2).

6This contrasts with generalizing the median (the 0.5 quantile) via its M-estimator representation
as in Bassett and Koenker (1978), Koenker and Bassett (1978).
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Write the G function of (14.2) as, G.w/ D R w
0

g.t/dt, and consider the
transformation to a new G function by raising the integrand to the power r, and
scaling the result so that it integrates to 1:

Gr.w/ D
R w
0

g.t/rdtR 1
0

g.t/rdt
D C�1

r

Z w

0

g.t/rdt

where Cr D
R 1
0

gr.t/dt D 4rsr
R 1
0
Œt.1�t/�rdt D 4rsr � 2.rC1/

� .2rC2/ D rŠrŠ
.2rC1/Š . The sampling

cdf of the median is given by, Mr.x/ D Gr.F.x//; for this and many additional
results about the median see e.g., David (1981).

Let the median stable distributions for n D 2r C 1 be denoted by Hr.x/; as
in section 14.1 they are defined by a functional equation given by Hr.x W �r/ D
Gr.Hr.�

�1
r x//.

Consider the stable cdfs with positive density at the median. As in the r D 1 case
this entails �r D sr so that the functional equation is: Hr.x W sr/ D Gr.H.s�1

r x//
where sr D gr.1=2/, where gr.x/ denotes the derivative of Gr.x/.

The previous results regarding H near zero and H in the tails extend readily to
the r > 1 case:

Theorem 14.4.

h.x W s/ D exp.�˛.r/x2h.0/2 C o.x//

where, ˛.r/ D �4r
s2�1 .

Proof. See Appendix.

Theorem 14.5.

lim
x!1 x�˛ log H.�x/ D �c

where, 0 < c <1, and ˛ satisfies, s˛ D rC 1.

Proof. See Appendix.

Finally, given data with a positive density at the median we know the limiting
distribution of the median;

lim
n!1 Mn.n

�1=2x W F.x// D Gn.F.n
�1=2x// D N.x W 0; �M/

where �M D .2f .0//�1. In terms of the G function this means

lim
r!1 Gr.N.s

�1
r x W 0; �// D N.x W 0; �/
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(Verify noting

lim
n!1 s�1

n

p
n D

p
�=2

and N..�=2/1=2x W 0; �M/ D N.x W 0; �M/). This just means that the normal
distribution solves the stable median functional equation as, n D 2rC 1!1.

Appendix

1. Median unbiased for any F.
� is a median of F if; (i) F.�C 0/ � 1=2 and, (ii) F.� � 0/ � 1=2. Since G

is increasing with fixed point at 1=2, F.�C 0/ � 1=2, implies G.F.�C 0// �
G.1=2/ D 1=2, or M.�C 0/ � 1=2. On the other side, F.� � 0/ � 1=2 implies
G.F.� � 0// < G.1=2/ D 1=2, or M.� � 0/ � 1=2. Hence � will also be a
median of M.

2. No variation in the data around the median.
The sample mean and data have the same cdf in the trivial case in which

there is no variability in the data; there is probability 1 point mass at 0; Pr.X D
0/ D 1. The analogous situation for the median occurs when the data is equal to
“the” median with probability 1. As in the mean case, this trivially occurs when
Pr.X D 0/ D 1. But it also occurs when Pr.X D ��or X D �C/ D 1 which
means, Pr.X D ��/ D Pr.X D �C/ D 1=2. In this case F D M, the cdfs are the
same.

3. The sample mean is more concentrated around the median than the data.
Let a > 0 such that, 1=2 < F.�C C a C 0/ < 1. Since G.x/ > x for

1=2 < x < 1, 1=2 < F.�CC aC 0/ < G.F.�CC aC 0// < 1. But G.F.�CC
aC 0// D M.�C C aC 0/, so, 1=2 < F.�C C aC 0/ < M.�C C aC 0/ < 1.
Similarly, let b > 0 is such that 0 < F.�� � b � 0/ < 1=2. Since G.x/ < x
for x < 1=2, 0 < G.F.�� C b � 0// < F.�� C b � 1/ < 1=2. Combining
gives: for any a > 0 such that 1=2 < F.�C C a C 0/ < 1, b > 0 is such that
0 < F.�� C b � 0/ < 1=2:

Pr.�� � b < OX < �C C a/ > Pr.�� � b < X < �C C a/:

4. Table 14.1
5. Stability for n2.

The LHS of the stability condition for n2 is, �n2
OXn2 .Hn2 /. Make the substitu-

tion, Hn2 D Hn, �n2 D �2n, or, �2n OXn2 .Hn/. Now use, OXn2 D OXn. OX1:; : : : ; OXn:/ and
linear homogeneity so that,

�2n
OXn2 .Hn/ D �2n OXn. OX1:.Hn/; : : : ; OXn:.Hn// D �n OXn.�n OX1:.Hn/; : : : ; �n OXn:.Hn//:
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Table 14.1 HK.x/ for alternative x and K

K D 1 K D 2 K D 5 K D 10 K D 15 Normal

x D 0:00 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

x D 0:10 0.59941 0.59915 0.59896 0.59894 0.59894 0.59896

x D 0:20 0.69526 0.69330 0.69192 0.69179 0.69179 0.69193

x D 0:30 0.78400 0.77800 0.77395 0.77359 0.77358 0.77397

x D 0:40 0.86207 0.84981 0.84196 0.84126 0.84124 0.84199

x D 0:50 0.92593 0.90669 0.89492 0.89389 0.89387 0.89495

x D 0:60 0.97200 0.94818 0.93368 0.93241 0.93239 0.93371

x D 0:70 0.99674 0.97538 0.96033 0.95899 0.95896 0.96034

x D 0:75 1.00000 0.98435 0.96995 0.96862 0.96860 0.96994

x D 0:80 0.99076 0.97755 0.97628 0.97626 0.97753

x D 0:90 0.99769 0.98799 0.98692 0.98691 0.98796

x D 1:00 0.99976 0.99394 0.99312 0.99311 0.99391

x D 1:10 1.00000 0.99712 0.99655 0.99654 0.99709

x D 1:50 0.99992 0.99986 0.99986 0.99992

But �n OXi:.Hn/
dD X.Hn/, so,

�n OXn.�n OX1:.Hn/; : : : ; �n OXn:.Hn//
dD �n OXn.X1.Hn/; : : : ;Xn.Hn//

dD X.Hn/:

The last step following from the fact that Hn is stable.
6. H, x near zero.

Suppressing the r-subscript, let G denote the G-function with n D 2r C 1 (as
in Sect. 14.4), and H.x/ a median stable cdf with � D s, s denoting the derivative
of G at 1=2. The derivative of the functional equation is h.sx/ D s�1g.H.x//h.x/,
where g.w/ D sŒ1 � 4.w � 1=2/2�r. Take the log of both sides so, log.h.sx// �
log.h.x// D r log.1 � 4.H.x/ � 1=2/2/. Divide both sides by x2 and take limits
as x goes to zero. The RHS is just �4rh.0/2 and the LHS is

lim
x!0

s2 log.h.x//

x2
� log.h.sx//

s2x2
D .s2 � 1/ lim

x!0

log.h.x//

x2
:

So,

lim
x!0

log.h.x//

x2
D �˛.r/h.0/2;

where ˛.r/ D �4r
s2�1 . When r D 1, ˛.1/ D 3:2 as in Theorem 14.2. As

r increases, ˛.r/ decreases and converges to � , the coefficient for the normal
density.
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7. Tails: H.x/; x! �1:
Suppressing the r-subscript, let G denote the G-function with n D 2r C 1 (as

in Sect. 14.4), and H.x/ a median stable cdf with � D s, s denoting the derivative
of G at 1=2.

Consider the following result for the tail of G. For 0 < t < 1=2, write
t.1 � t/ D !t where, 1=2 < ! < 1. So,

G.w/ D C�1
Z w

0

Œ6t.1 � t/�rdt D C�1.6!/r
Z w

0

trdt D

C�1.6!/r
w.rC1/

.rC 1/ :

So, G.k/.w/ D .A.r/wrC1/.k/ where A.r/ D C�1.6!/r

rC1 . Now verify,

.bx˛/.k/ D b
1�˛k
1�˛ x˛

k

so that,

lim
k!1 log

.bx.˛C1//.k//

˛ C 1 D log xC ˛�1 log b

So,

lim
k!1

log G.k/.w/

.rC 1/k D lim
k!1

log.A.r/wrC1/.k/

.rC 1/k D log xC r�1 log A.r/

To prove the result, write x D skx0, so

lim
x!�1 x�˛ log H.x/ D lim

k!1.s
kw0/

�˛ log H.�skx0/ D lim
k!1 s�˛kx�˛

0 log G.k/.w0/

but, s˛ D rC 1 so that

D lim
k!1

x�˛
0 log.A.r/wrC1/.k/

.rC 1/k D x�˛
0 .log xC r�1 log A.r// D c:
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Chapter 15
Confidence Intervals for Mean Difference
Between Two Delta-Distributions

Karen V. Rosales and Joshua D. Naranjo

Abstract Traditional two-sample estimation procedures like pooled-t, Welch’s t,
and the Wilcoxon-Hodges-Lehmann are often used for skewed data and data inflated
with zero values. We investigate how well these work compared to dedicated
procedures that consider the specialized nature of the data.

Keywords Two-sample estimation • Confidence intervals • Skewed distribu-
tion • Zero-inflated data • Delta distribution

15.1 Introduction

Some data are inherently nonnegative and contain a large number of zeros. Aitchison
(1955) first described a distribution that contains both zero and positive values
in an application to household expenditures. Some households spend nothing
on, say, children’s clothing while others allocate high amounts that make the
distribution skewed and approximately follow the lognormal curve. On marine
surveys, data are frequently inflated with zeros. Pennington (1983) examined a
series of ichthyoplankton surveys aimed at estimating the total egg production of
Atlantic mackerel in the study region.

When zeros are mixed with lognormal positive values, this type of distribu-
tion is referred to as delta distribution (Aitchison 1955). One-sample confidence
intervals for the mean of a delta distribution were investigated by Owen and
DeRouen (1980), Pennington (1983), Zhou and Tu (2000a), Fletcher (2008), and
Rosales (2009). Zhou and Tu (2000a) explored different methods of constructing
confidence intervals for the mean of a delta distribution, including a bootstrap
and two likelihood-based intervals. Fletcher (2008) investigated a profile-likelihood
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approach. Zhou and Tu (2000b) proposed a maximum likelihood-based method and
a bootstrap method for constructing confidence intervals for the ratio in means of
medical costs data that contained both lognormal and zero observations.

It remains unclear how well various two-sample confidence intervals work.
For example, can we simply ignore the delta distribution structure of data and
use traditional LS methods for estimating difference between means? Will more
robust versions work better? In this paper, we focus on commonly used two-sample
confidence intervals, and compare them to confidence intervals specifically derived
under delta-distribution theory. We investigate how relative performance depends
on sample size, proportion of zeros, the population means, and the population vari-
ances. In Sect. 15.2, we set up notation and terminology. In Sect. 15.3, we describe
the confidence intervals included in the simulation study. In Sect. 15.4, we discuss
results of a simulation study.

15.2 Notation and Terminology

Consider a population in which a proportion ı of the observations are zeros, and
the non-zero values follow a lognormal distribution with parameters � and �2. The
population is said to have a Delta distribution, denoted as�(ı; �; �2). We will index
the populations of interest by j D 1; 2. Thus the jth population is said to have
distribution �(ıj; �j; �

2
j ), with mean �j and variance �2j . The population mean and

variance of the jth population are

�j D EŒYj� D .1 � ıj/e
�jC�2j =2 (15.1)

j D VarŒYj� D .1 � ıj/e
2�jC�2j .e�

2
j � .1 � ıj// (15.2)

Let y1j; : : : ; ynjj be a random sample from the jth population. Assume, without
loss of generality, that the nj1 nonzero observations are listed first and the nj0 D
nj�nj1 zero observations are listed last. For the nonzero observations let xij D log yij

and

Oıj D nj0=nj (15.3)

O�j D
Pnj1

iD1 log yij

nj1
D
Pnj1

iD1 xij

nj1
D Nxj (15.4)

s2j D
Pnj1

iD1 .log yij � O�j/
2

nj1 � 1 D
Pnj1

iD1 .xij � Nxj/
2

nj1 � 1 (15.5)

Note that O�j and s2j are simply the sample mean and variance of the log-transformed
nonzero observations from the jth sample. The proportion of nonzero observations
in the jth sample is 1 � Oıj. Finney (1941) derived minimum-variance unbiased
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estimators for the lognormal mean and variance. Extending his results, Aitchison
(1955) showed that the following is a minimum variance unbiased estimator of the
mean of the �-distribution.

O�j D

8̂
<̂
ˆ̂:

nj1

nj
e O�j Gnj1

�
s2j
2

�
if nj1 > 1

xj1

nj
if nj1 D 1

0 if nj1 D 0
(15.6)

where Gnj1 .t/ is a Bessel function defined as,

Gnj1 .t/ D 1C
nj1 � 1

nj1
tC

1X
iD2

.nj1 � 1/2i�1ti

ni
j1.nj1 C 1/.nj1 C 3/ � � � .nj1 C 2i � 3/iŠ

An estimate of asymptotic variance is given by Aitchison and Brown (1969)

O1. O�j/ D
e2 O�j C S2j

nj

"
Oıj.1 � Oıj/C

.1 � Oıj/.2S2j C S4j /

2

#
(15.7)

Owen and DeRouen (1980) suggested confidence interval estimates based on these
estimates of mean and variance. Pennington (1983) proposed an interval estimate
using an alternative estimate of the variance, as follows:

Open. O�j/ D

8̂
<̂
ˆ̂:

nj1

nj
e2 O�j

�
nj1

nj
Gnj1

�
s2j
2

�
� nj1�1

nj�1 Gnj1

�
nj1�2
nj1�1 s2j

��
if nj1 > 1

.
xj1

nj
/2 if nj1 D 1

0 if nj1 D 0
(15.8)

15.3 Two-Sample Confidence Intervals

We are interested in confidence interval estimates for the difference between
means �1 � �2 of two delta distributions. We first consider traditional least-squares
confidence intervals based on Student’s t-distribution, using either the pooled-SD
version or the unpooled-SD Welch–Satterthwaite version. The pooled-t 100(1-˛)%
confidence interval is given by

"
.Ny1 � Ny2/ � t˛=2;df Sp

s
1

n1
C 1

n2
; .Ny1 � Ny2/C t˛=2;df Sp

s
1

n1
C 1

n2

#
(15.9)
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where Nyj D 1
nj

njX
iD1

yij is the sample mean for the jth sample, t˛=2;df is the upper

percentile of the t-distribution, nj is the sample size, dfDn1 C n2 � 2, and Sp is the
pooled standard deviation. We refer to this method as Pooled-t in the simulation
study.

A 100(1-˛)% confidence interval based on Welch’s statistic is

2
4.Ny1 � Ny2/ � t˛=2;

s
s21
n1
C s22

n2
; .Ny1 � Ny2/C t˛=2;

s
s21
n1
C s22

n2

3
5 (15.10)

The degrees of freedom  associated with this variance estimate is approximated
using the Welch-Satterthwaite equation

 D .
s21
n1
C s22

n2
/2

s41
n21.n1�1/ C

s42
n22.n2�1/

This method will be denoted as Welch-t in the simulation study.
Since the lognormal is right skewed, more robust alternatives might work better

than the t-based methods. A rank-based alternative is the confidence interval
based on the Wilcoxon rank sum test. See, for example, Hollander et al. (2014).
The Wilcoxon interval may be computed as follows. Form all possible .n1/.n2/
pairwise differences yh1 � yi2 between the first group and the second group. Let
O.1/;O.2/; : : : ;O.n1n2/ denote these ordered differences. The Hodges-Lehmann point
estimator of �1 � �2 is the median of these differences. A 100(1-˛)% confidence
interval is given by

�
O.C˛/; O.n1n2C1�C˛

	
(15.11)

where C˛ D n1.2n2Cn1C1/
2

C 1 � w˛=2, and w˛=2 is an appropriate percentile of the
rank sum distribution. For large samples, a normal approximation of C˛ is given by

C˛ D n1n2
2
� Z˛=2


n1n2.n1 C n2 C 1/

12

�1=2

This method is denoted as Wilcoxon in the simulation study.
Both versions of the t-interval and the Wilcoxon interval ignore the zero-inflated

nature of the data. One may construct a confidence interval based on Aitchison’s
minimum variance unbiased estimator O� and Pennington’s estimator of the variance
of O�. A 100(1-˛)% confidence interval for .�1 � �2/ is

. O�1 � O�2/˙ z˛=2
q
Open. O�1/C Open. O�2/ (15.12)

where O� and Open are given in Eqs. (15.6) and (15.8), respectively. This method will
be referred to as MVUE1 in the simulation study.
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An alternative confidence interval can be constructed based on the variance
estimate from Aitchison and Brown (1969). This 100(1-˛)% confidence interval
for .�1 � �2/ is

. O�1 � O�2/˙ z˛=2
p
O1. O�1/C O1. O�2/ (15.13)

where O� and O1 are given in Eqs. (15.6) and (15.7), respectively. We refer to this
method as MVUE2 for the rest of this dissertation.

In addition to the above confidence intervals, we propose two additional robust
confidence intervals. Since the sample mean and the sample variance lack robust-
ness, Al-Khouli (1999) proposed to directly replace O� and s2 in (15.4) and (15.5)
with robust M-estimators to obtain robust estimators of � and . In his simulation,
using (TH , S2b) in place of ( O�, s2) seemed to work best, where TH is the one-step
Huber M-estimator of location and S2b is a bi-weight A-estimator of scale.

Directly substituting TH and S2b in place of O� and s2 in (15.6) and (15.8), we get
a robust version of the MVUE1 interval (15.12). The confidence interval is

. O�M1 � O�M2 /˙ z˛=2
p OM. O�M1 /C OM. O�M2 / (15.14)

where

O�Mj D

8̂
<
:̂

nj1

nj
eTHj Gnj1

�
Sbj

2

�
if nj1 > 1

x1
nj

if nj1 D 1
0 if nj1 D 0

and

OM. O�Mj/ D

8̂
<
:̂

nj1

nj
e2THj

n
nj1

nj
Gnj1

�
Sbj

2

�
� nj1�1

nj�1 Gnj1

�
nj1�2
nj1�1Sbj

�o
if nj1 > 1

. x1
nj
/2 if nj1 D 1

0 if nj1 D 0

This method is referred as RMVUE1 in the simulation study.
Similarly, a robust version of the MVUE2 confidence interval (15.13) replaces O�

and s in Eqs. (15.6) and (15.7) with their robust versions. The confidence interval is

. O�M1 � O�M2 /˙ z˛=2
p O1. O�M1 /C O1. O�M2 / (15.15)

where

O�Mj D
nj1

nj
eTHj Gnj1

�
Sbj

2

�
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and

O1. O�Mj/ D
e2THj CSbj

nj

"
Oıj.1 � Oıj/C

.1 � Oıj/.2Sbj C S2bj
/

2

#

We denote this method as RMVUE2 in the simulation study.

15.4 Simulation

To assess the general performance and robustness of the interval estimators (15.9)–
(15.15), we conducted a simulation study under various parameter combinations of
the�-distribution. Performance of the different estimates will be assessed using the
following criteria:

• Coverage Probability (CP): proportion of times that the 95 % confidence interval
contains the true value of �1 � �2.

• Coverage Error (CE): absolute difference between the coverage probability
and 95 %.

• Lower Error Rate (LER): proportion of times that the true value �1 � �2 falls
below the interval

• Upper Error Rate (UER): proportion of times that the true value �1 � �2 falls
above the interval

• Average Width (Width): average width of 95 % confidence interval

Note that all confidence intervals have confidence level set at 95 %. Ideally an
estimation procedure will have CP=0.95, CE=0.0, LER=0.025, and UER=0.025. We
also report the average width of each method. We evaluate performance at balanced
sample sizes of 15 and 50. Ten thousand simulations are done for each combination
of parameters and sample size.

Table 15.1 shows simulation results when the two delta distributions are the
same. MVUE1 and RMVUE1 seem to do best, achieving narrower intervals without
sacrificing coverage probability. Coverage probabilities all exceed 0.95, maybe due
to overinflated standard error estimates because of skewness. The naive t-based
intervals seem competitive, with reasonable width and coverage probability. The
Wilcoxon interval has the shortest width.

Table 15.2 shows simulation results when ı1 ¤ ı2. Again, MVUE1 and
RMVUE1 seem to do best, with narrower intervals without sacrificing coverage
probability. The naive t-based intervals remain competitive, with reasonable width
and coverage probability. The Wilcoxon interval still has significantly shortest width
but achieves this at the price of unacceptably low coverage probability, especially
for larger differences in ı.

Table 15.3 shows simulation results when �1 ¤ �2. MVUE1 and RMVUE1
still seem to do best, with RMVUE1 edging out MVUE1 in coverage probability
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Table 15.1 95 % CI under equal distributions �1.0:2; 0:5; 1/ and
�2.0:2; 0:5; 1/ W �1 � �2 D 0

Method Sample size CP CE LER UER Width

Pooled-t 15 0.9609 0.0109 0.0196 0.0195 4.4816

Welch-t 0.9665 0.0165 0.0171 0.0164 4.5539

Wilcoxon 0.9681 0.0181 0.0168 0.0151 2.5595

MVUE1 0.9687 0.0187 0.0159 0.0154 4.3110

MVUE2 0.9888 0.0388 0.0056 0.0056 5.4533

RMVUE1 0.9684 0.0184 0.0163 0.0153 3.9451

RMVUE2 0.9904 0.0404 0.0049 0.0047 4.7320

Pooled-t 50 0.9561 0.0061 0.0224 0.0215 2.5258

Welch-t 0.9570 0.0070 0.0221 0.0209 2.5324

Wilcoxon 0.9779 0.0279 0.0114 0.0107 1.1137

MVUE1 0.9605 0.0105 0.0208 0.0187 2.4411

MVUE2 0.9739 0.0239 0.0139 0.0122 2.6163

RMVUE1 0.9700 0.0200 0.0161 0.0139 2.3764

RMVUE2 0.9805 0.0305 0.0114 0.0081 2.5332

and width. MVUE2 and RMVUE2 attain better coverage probabilities at the cost
of significantly wider intervals. The naive procedures pooled-t and Welch-t are
surprisingly competitive, with reasonable width and coverage probability. The
Wilcoxon interval has unacceptably low coverage probability, especially for larger
differences in �.

Table 15.4 shows simulation results when �21 ¤ �22 . All intervals have problems
maintaining close to 95 % coverage probability, especially for larger differences
in �2.

The simulations show two notable features of Wilcoxon confidence intervals:
they tend to be shorter and have low coverage probability. Wilcoxon intervals are
a function of the ordered pairwise differences between the two samples [see e.g.
Hollander et al. (2014)]. If .ı1; ı2/ are both large, then enough pairwise differences
are 0 regardless of the values of the positive observations. This seems to reduce
length of the Wilcoxon interval more than the others. Low coverage probability
may be a result of the Wilcoxon interval estimating the wrong parameter. The
Wilcoxon point estimator is the median of pairwise differences, which is naturally
a better estimate of the true median of differences (i.e. the median of FY1�Y2)
rather than the difference in means �1 � �2. For example, given two distributions
�.0:1; 0:5; 1/ and �.0:5; 0:5; 1/, the difference in means is �1 � �2 D 1:0873

while the median of the difference is m D 0:7988. In Table 15.5, we reassess
the performance of Wilcoxon by looking at the percentage of time it contains the
median of differences m instead of �1 � �2. The Wilcoxon 95 % interval coverage
probability for �1 � �2 D 1:0873 are quite low at 0.8708 and 0.6734, respectively,
but the coverage probability for m D 0:7988 are 0.9508 and 0.9479, respectively, as
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Table 15.2 95 % CI under varying proportion of zeros ı

Method Sample size CP CE LER UER Width

�1.0:2; 0:5; 1/ and �2.0:4; 0:5; 1/ W �1 � �2 D 0:5437

Pooled-t 15 0.9619 0.0119 0.0152 0.0229 4.2539

Welch-t 0.9675 0.0175 0.0128 0.0197 4.3263

Wilcoxon 0.9369 0.0131 0.0150 0.0481 2.3203

MVUE1 0.9688 0.0188 0.0121 0.0191 4.0838

MVUE2 0.9872 0.0372 0.0037 0.0091 5.3487

RMVUE1 0.9649 0.0149 0.0149 0.0202 3.7071

RMVUE2 0.9887 0.0387 0.0035 0.0078 4.5085

Pooled-t 50 0.9561 0.0061 0.0174 0.0265 2.4063

Welch-t 0.9572 0.0072 0.0170 0.0258 2.4129

Wilcoxon 0.9059 0.0441 0.0064 0.0877 0.9932

MVUE1 0.9587 0.0087 0.0162 0.0251 2.3397

MVUE2 0.9750 0.0250 0.0098 0.0152 2.5297

RMVUE1 0.9665 0.0165 0.0145 0.0190 2.2688

RMVUE2 0.9779 0.0279 0.0100 0.0121 2.4350

�1.0:1; 0:5; 1/ and �2.0:5; 0:5; 1/ W �1 � �2 D 1:0873

Pooled-t 15 0.9596 0.0096 0.0107 0.0297 4.1678

Welch-t 0.9636 0.0136 0.0085 0.0279 4.2410

Wilcoxon 0.8708 0.0792 0.0051 0.1241 2.1206

MVUE1 0.9662 0.0162 0.0072 0.0266 4.0256

MVUE2 0.9857 0.0357 0.0024 0.0119 5.3849

RMVUE1 0.9636 0.0136 0.0109 0.0255 3.6579

RMVUE2 0.9878 0.0378 0.0029 0.0093 4.4512

Pooled-t 50 0.9575 0.0075 0.0133 0.0292 2.3900

Welch-t 0.9583 0.0083 0.0130 0.0287 2.3972

Wilcoxon 0.6734 0.2766 0.0007 0.3259 0.9820

MVUE1 0.9624 0.0124 0.0125 0.0251 2.3124

MVUE2 0.9776 0.0276 0.0073 0.0151 2.5068

RMVUE1 0.9707 0.0207 0.0119 0.0174 2.2398

RMVUE2 0.9815 0.0315 0.0074 0.0111 2.4070

found in the entry labeled W(for m). In fact, in all cases (see the rest of Table 15.5),
as long as we measure the percentage of times that Wilcoxon interval contains the
appropriate parameter m instead of �1 � �2, then the Wilcoxon has best coverage
probability and narrowest width. Since the performance of MVUE2 and RMVUE2
trail MVUE1 and RMVUE1 in Tables 15.2, 15.3, and 15.4, they have been removed
from Table 15.5 for space considerations.
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Table 15.3 95 % CI under varying lognormal parameter �

Method Sample size CP CE LER UER Width

�1(0.2, 0, 1) and �2(0.2, 0.5, 1): �1 � �2 D �0:8556
Pooled-t 15 0.9366 0.0134 0.0580 0.0054 3.6641

Welch-t 0.9392 0.0108 0.0567 0.0041 3.7380

Wilcoxon 0.8280 0.1220 0.1701 0.0019 2.1170

MVUE1 0.9389 0.0111 0.0573 0.0038 3.5068

MVUE2 0.9678 0.0178 0.0314 0.0008 4.4297

RMVUE1 0.9444 0.0056 0.0510 0.0046 3.2131

RMVUE2 0.9722 0.0222 0.0268 0.0010 3.8499

Pooled-t 50 0.9466 0.0034 0.0447 0.0087 2.0790

Welch-t 0.9471 0.0029 0.0445 0.0084 2.0878

Wilcoxon 0.5473 0.4027 0.4526 0.0001 0.9866

MVUE1 0.9538 0.0038 0.0394 0.0068 2.0192

MVUE2 0.9657 0.0157 0.0310 0.0033 2.1633

RMVUE1 0.9669 0.0169 0.0277 0.0054 1.9697

RMVUE2 0.9759 0.0259 0.0208 0.0033 2.0995

�1(0.2, 0, 1) and �2(0.2, 0.9, 1): �1 � �2 D �1:9252
Pooled-t 15 0.9018 0.0482 0.0949 0.0033 4.9543

Welch-t 0.9033 0.0467 0.0937 0.0030 5.0884

Wilcoxon 0.7171 0.2329 0.2821 0.0008 3.0142

MVUE1 0.9047 0.0453 0.0939 0.0014 4.7717

MVUE2 0.9391 0.0109 0.0602 0.0007 6.0067

RMVUE1 0.9147 0.0353 0.0824 0.0029 4.4050

RMVUE2 0.9464 0.0036 0.0529 0.0007 5.2732

Pooled-t 50 0.9246 0.0254 0.0709 0.0045 2.8552

Welch-t 0.9255 0.0245 0.0704 0.0041 2.8744

Wilcoxon 0.2817 0.6683 0.7183 0.0000 1.4666

MVUE1 0.9363 0.0137 0.0602 0.0035 2.7701

MVUE2 0.9477 0.0023 0.0505 0.0018 2.9663

RMVUE1 0.9542 0.0042 0.0423 0.0035 2.7066

RMVUE2 0.9630 0.0130 0.0349 0.0021 2.8846

15.5 Conclusion

Traditional two-sample estimation procedures like pooled-t and Welch t that require
normal distribution are often used for skewed data and data inflated with zero
values. Our simulations show that these naive nonrobust approaches do not do too
badly compared to dedicated delta distribution procedures, in terms of coverage
probabilities and interval width.

Among the dedicated approaches, we would recommend the MVUE1 and its
robust version RMVUE1. The MVUE1 procedure is based on the mean estimator
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Table 15.4 95 % CI under varying lognormal parameter �2

Method Sample Size CP CE LER UER Width

�1(0.2, 0.5, 0.15) and �2(0.2, 0.5, 1.0): �1 � �2 D �0:7529
Pooled-t 15 0.8805 0.0695 0.1175 0.0020 3.1534

Welch-t 0.8826 0.0674 0.1157 0.0017 3.2449

Wilcoxon 0.7183 0.2317 0.2814 0.0003 2.2225

MVUE1 0.8894 0.0606 0.1095 0.0011 3.0699

MVUE2 0.9044 0.0456 0.0952 0.0004 3.7589

RMVUE1 0.8880 0.0620 0.1116 0.0004 3.0540

RMVUE2 0.9169 0.0331 0.0831 0.0000 3.5633

Pooled-t 50 0.9097 0.0403 0.0866 0.0037 1.8212

Welch-t 0.9103 0.0397 0.0862 0.0035 1.8366

Wilcoxon 0.2679 0.6821 0.7321 0.0000 1.0701

MVUE1 0.9246 0.0254 0.0721 0.0033 1.7831

MVUE2 0.9342 0.0158 0.0643 0.0015 1.8967

RMVUE1 0.9142 0.0358 0.0846 0.0012 1.8514

RMVUE2 0.9259 0.0241 0.0736 0.0005 1.9567

�1(0.2, 0.5, 0.15) and �2(0.2, 0.5, 2.0): �1 � �2 D �2:1636
Pooled-t 15 0.7574 0.1926 0.2420 0.0006 6.9912

Welch-t 0.7651 0.1849 0.2347 0.0002 7.2802

Wilcoxon 0.3201 0.6299 0.6798 0.0001 2.8765

MVUE1 0.7892 0.1608 0.2106 0.0002 6.8989

MVUE2 0.8445 0.1055 0.1554 0.0001 11.7706

RMVUE1 0.6229 0.3271 0.3769 0.0002 4.2226

RMVUE2 0.7015 0.2485 0.2984 0.0001 5.4010

Pooled-t 50 0.8287 0.1213 0.1707 0.0006 4.4801

Welch-t 0.8308 0.1192 0.1686 0.0006 4.5326

Wilcoxon 0.0070 0.9430 0.9930 0.0000 1.2596

MVUE1 0.8768 0.0732 0.1232 0.0000 4.2748

MVUE2 0.8993 0.0507 0.1007 0.0000 5.0110

RMVUE1 0.5428 0.4072 0.4572 0.0000 2.6287

RMVUE2 0.5862 0.3638 0.4138 0.0000 2.8755

O� by Aitchison (1955) and the variance estimator by Pennington (1983). The
RMVUE1 is similar to MVUE1 but uses M-estimates for the lognormal parameters
� and �2.

The Wilcoxon two-sample interval performed consistently badly, but only when
it was asked to estimate the difference in means �1 � �2. When used to estimate the
median of differences m, it performed very well in terms of coverage probability,
and generally had the shortest interval width. Of course, usefulness of the Wilcoxon
interval will depend more on whether the user wants to estimate the median of
differences instead of the difference in means.
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Table 15.5 95 % CI under varying parameters and sample size

Method Sample Size CP CE LER UER Width

Varying ı: �1(0.1, 0.5, 1.0) and �2(0.5, 0.5, 1.0)

�1 � �2 = 1.0873, m=0.7988

Pooled-t 15 0.9596 0.0096 0.0107 0.0297 4.1678

Welch-t 0.9636 0.0136 0.0085 0.0279 4.2410

Wilcoxon (for �1 � �2) 0.8708 0.0792 0.0051 0.1241 2.1206

Wilcoxon (for m) 0.9508 0.0008 0.0241 0.0251 2.1206

MVUE1 0.9662 0.0162 0.0072 0.0266 4.0256

MVUE2 0.9857 0.0357 0.0024 0.0119 5.3849

RMVUE1 0.9636 0.0136 0.0109 0.0255 3.6579

Pooled-t 50 0.9575 0.0075 0.0133 0.0292 2.3900

Welch-t 0.9583 0.0083 0.0130 0.0287 2.3972

Wilcoxon (for �1 � �2) 0.6734 0.2766 0.0007 0.3259 0.9820

Wilcoxon (for m) 0.9479 0.0021 0.0256 0.0265 0.9820

MVUE1 0.9624 0.0124 0.0125 0.0251 2.3124

RMVUE1 0.9707 0.0207 0.0119 0.0174 2.2398

Varying �: �1(0.2, 0, 1) and �2(0.2, 0.9, 1)

�1 � �2 D �1:9252, m=�0.8531

Pooled-t 15 0.9018 0.0482 0.0949 0.0033 4.9543

Welch-t 0.9033 0.0467 0.0937 0.0030 5.0884

Wilcoxon (for �1 � �2) 0.7171 0.2329 0.2821 0.0008 3.0142

Wilcoxon (for m) 0.9421 0.0079 0.0273 0.0306 3.0142

MVUE1 0.9047 0.0453 0.0939 0.0014 4.7717

RMVUE1 0.9147 0.0353 0.0824 0.0029 4.4050

Pooled-t 50 0.9246 0.0254 0.0709 0.0045 2.8552

Welch-t 0.9255 0.0245 0.0704 0.0041 2.8744

Wilcoxon (for �1 � �2) 0.2817 0.6683 0.7183 0.0000 1.4666

Wilcoxon (for m) 0.9335 0.0165 0.0343 0.0322 1.4666

MVUE1 0.9363 0.0137 0.0602 0.0035 2.7701

RMVUE1 0.9542 0.0042 0.0423 0.0035 2.7066

Varying �2: �1(0.2, 0.5, 0.15) and �2(0.2, 0.5, 2.0)

�1 � �2 = �2.1636, m=0.0

Pooled-t 15 0.7574 0.1926 0.2420 0.0006 6.9912

Welch-t 0.7651 0.1849 0.2347 0.0002 7.2802

Wilcoxon (for �1 � �2) 0.3201 0.6299 0.6798 0.0001 2.8765

Wilcoxon (for m) 0.9565 0.0065 0.0236 0.0199 2.8765

MVUE1 0.7892 0.1608 0.2106 0.0002 6.8989

RMVUE1 0.6229 0.3271 0.3769 0.0002 4.2226

Pooled-t 50 0.8287 0.1213 0.1707 0.0006 4.4801

Welch-t 0.8308 0.1192 0.1686 0.0006 4.5326

Wilcoxon (for �1 � �2) 0.0070 0.9430 0.9930 0.0000 1.2596

Wilcoxon (for m) 0.9657 0.0157 0.0184 0.0159 1.2596

MVUE1 0.8768 0.0732 0.1232 0.0000 4.2748

RMVUE1 0.5428 0.4072 0.4572 0.0000 2.6287

The Wilcoxon interval is assessed for containing both �1 � �2 and the median of
difference m
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