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Preface

In recent years, there has been increasing interest from geoscientists in
potassic igneous rocks. Academic geoscientists have been interested in their
petrogenesis and their potential value in defining the tectonic setting of the
terranes into which they were intruded, and exploration geoscientists have
become increasingly interested in the growing acceptance of an association
of these rocks with major epithermal gold and porphyry gold-copper
deposits. In recent years, there has also been growing recognition of an
association of such rocks with iron oxide copper-gold (IOCG) deposits,
intrusion-related gold deposits (IRGDs), and possibly even Carlin-type gold
deposits. Despite this current interest, there is no comprehensive textbook
that deals with these aspects of potassic igneous rocks.

This book redresses this situation by elucidating the characteristic features
of potassic (high-K) igneous rocks, erecting a hierarchical scheme that allows
interpretation of their tectonic setting using whole-rock geochemistry, and
investigating their associations with a wide variety of both arc-related and
non-arc gold and copper-gold deposits, worldwide. About half of the book is
based on a Ph.D. thesis by Dr. Daniel Müller which was produced at the
Centre for Strategic Mineral Deposits (former ARC Key Centre) within the
Department of Geology and Geophysics at the University of Western
Australia under the supervision of Prof. David Groves, the late Dr. Nick
Rock, the late Prof. Eugen Stumpfl, Dr. Wayne Taylor, and Dr. Brendan
Griffin. The remainder of the book was compiled from the literature using
the collective experience of the two authors. The book is dedicated to the
memory of Nick Rock and Eugen Stumpfl who initiated the research project
on which it is based but died before its completion.

Earlier editions of this book have encouraged more focus on the rela-
tionship between high-K magmatism and hydrothermal gold and gold-copper
mineralization worldwide, which is reflected in numerous new case studies
and research papers that have been published since our Third Edition in
2000. This new updated and enlarged Fourth Edition incorporates new data
and references from Africa, Australia, Brazil, China, Greece, Iran, Mongolia,
North America, Russia, and Turkey, including new maps and sections and
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new plates of high-grade gold-copper ore from major deposits hosted by
potassic igneous rocks. Not only the new edition does incorporate the latest
literature on the topic, but it also provides practical suggestions for the target
generation teams of mining companies exploring for world-class gold and/or
copper deposits in modern and ancient arc and non-arc terranes.

Sincere thanks are due to our colleagues and friends at the former Key
Centre (currently evolved into The Centre for Exploration Targeting at the
University of Western Australia) for providing a stimulating environment
in which to do the research and to write the first drafts of the book. Gratitude
is also expressed to former colleagues at Placer Dome Exploration Inc. in
Santiago; North Limited in Parkes; Kanowna Belle Gold Mines in
Kalgoorlie; PT North Mining Indonesia in Jakarta; TU Bergakademie
in Freiberg; ETH in Zürich; Ivanhoe Mines in Hohhot; Citadel Resource
Group in Jeddah; Coventry Resources in Toronto; and BHP Billiton in Perth,
Singapore, and Santiago, for encouraging the completion and revision,
respectively, of all four editions of the book. The late Prof. Eugen Stumpfl is
also sincerely thanked for his hospitality and assistance in the early stages
of the research recorded in the book. Col Steel is also thanked for his
excellent drafting of the more complex maps displayed in the book. Dr.
Annett Büttner, Dörthe Mennecke-Bühler, and the late Dr. Wolfgang Engel
of Springer-Verlag are thanked for their continued enthusiastic support and
encouragement of the project.

The following colleagues also provided support, contributed ideas, shared
authorship on papers, and/or provided unpublished information:

Anita-Kim Appleby, Antonio Arribas, Chris Ballhaus, Graham Begg,
Frank Bierlein, Phil Blevin, Eric Bloem, Renato Bobis, Geoff Booth, David
Bowes, Selina Brown, Josh Bryant, Bob Burke, Mari Carrizo, Megan Clark,
Hilko Dalstra, Alan Edgar, Sergio Espinosa, Michael Farrand, Fine Fiedler,
Peter Forrestal, Richard Förster, Leander Franz, Ron Frost, Michael Gareau,
Simon Gatehouse, Silke Gawlick, Musie Gebre-Mariam, Rich Goldfarb, Sue
Golding, Eliseo Gonzalez-Urien, Roland Gorbatschev, Torsten Graupner,
Lalou Gwalani, Greg Hall, Adolf Helke, Chris Heinrich, Paul Heithersay,
Bruce Hooper, Steve Hunt, Paul Ivascanu, Abraham Janse, Rod Jones, Roger
Jones, Klaus Kaminski, Michael Kande, Imants Kavalieris, Bat-Erdene
Khashgerel, Doug Kirwin, Tilo Kroll, Jeffrey Keith, Megan Kenny, David
Keough, Rob Kerrich, Kalin Kouzmanov, Marianne Landtwing, Ken Lawrie,
Bernd Lehmann, Li Yuan, Don Lindsley, Liu Huairen, Bob Love, John Mair,
George MacDonald, Mannie Mehu, Neal McNaughton, Ian Miles, Claudio
Milliotti, Aberra Mogessie, Brian Morris, Gregg Morrison, Peter Neumayr,
Juhani Ojala, Julian Pearce, Sven Petersen, Irena Peytcheva, Joe Pieken-
brock, Albrecht von Quadt, David Quick, David Radclyffe, Rob Ramsay,
Steve Rose, Hector Salgado, Wolfram Schuh, Thomas Seifert, Dave Selley,
Steve Sheppard, Richard Sillitoe, Serguei Soloviev, Henning Sørensen,
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Hernan Soza, Jon Standing, Craig Stegman, Joe Stolz, Firman Sumarwan,
Shen-Su Sun, William Threlkeld, Spencer Titley, Linda Tompkins, Takeshi
Uemoto, Ignacio Ugalde, Theo van Leeuwen, Stefan Uhlig, Gianpiero
Venturelli, Marcial Vergara, Richard and Noreen Vielreicher, Mike
Wheatley, Noel White, Paul Warren, Rohan Wolfe, Doone Wyborn,
Derek Wyman, and Zhang Andi.

Eschborn Daniel Müller
Perth David I. Groves
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Abbreviations

HFSE High-field-strength elements (e.g. Ti, Y, Zr, Nb, Hf, Ta). These
elements are characterized by small ionic radii and high atomic
charges. They are normally accommodated into the lattice sites
of titanites and apatites. Subduction-derived potassic igneous
rocks have very low abundances of high-field-strength ele-
ments, while those generated in within-plate tectonic settings
have high concentrations. Generally, high abundances of
high-field-strength elements are considered to reflect deep
asthenospheric magma sources.

LILE Large-ion lithophile elements (e.g. K, Rb, Sr, Cs, Ba). These
elements are characterized by large ionic radii and low atomic
charges. They are not readily accommodated into the lattice of
upper mantle minerals and are mantle incompatible. Large-ion
lithophile elements are strongly partitioned into the first melt
increments during small degrees of partial melting. They are
commonly located in hydrous minerals such as biotites,
phlogopites, and amphiboles. Potassic igneous rocks are
enriched in large-ion lithophile elements.

LOI Loss on ignition. This is the proportion of mass lost (as
volatiles) when rock powder is heated at about 1100 °C in a
furnace for an hour or more. It usually corresponds to the total
content of H2O, CO2, and S.

LREE Light rare earth elements (e.g. La, Ce, Nd). They are part of the
lanthanides (atomic numbers 57–71), commonly equated by
petrologists with the rare earth elements. The light rare earth
elements represent those lanthanides with the lower atomic
numbers and the larger atomic radii due to the ‘lanthanide
contraction’ with increasing atomic numbers. They are mantle
incompatible and are preferentially enriched in the first melt
increments during low degrees of partial melting. Light rare
earth element abundances tend to increase during the process of
differentiation. They are normally accommodated into the
lattice sites of clinopyroxenes and apatites. Potassic igneous
rocks are enriched in light rare earth elements.

mg# Molecular Mg/(Mg+Fe2). Unless otherwise indicated, this
value is calculated in this book with molecular Fe2/(Fe2+Fe3)
set at 0.15, a common ratio in potassic igneous rocks.
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MORB Mid-ocean ridge basalt. These basalts occur at the spreading
centres of the mid-ocean ridges. They are derived from partial
melting of a depleted mantle source, and their geochemical
composition is tholeiitic with low concentrations in
mantle-incompatible trace elements.

OIB Oceanic island basalt. These basalts are generally regarded as
being derived from chemically anomalous mantle sources and
to represent hot spot magmatism where deep asthenospheric
mantle plumes impinge on the surface of oceanic crust. Their
geochemistry is alkaline with characteristic enrichments in
mantle-incompatible elements such as potassium. Examples
where oceanic island basalts occur are Tristan da Cunha and
Gough Island in the South Atlantic.

PGE Platinum-group elements (e.g. Pt, Pd). The group of precious
metallic elements comprising ruthenium, rhodium, palladium,
osmium, iridium, and platinum.

Enriched The terms ‘enriched’ and ‘depleted’ refer qualitatively to the
gain and loss of mantle-incompatible elements, respectively.

Primitive The term ‘primitive’ is used to reflect the amount of basaltic
component present in a mantle-derived melt (based on their
respective mg#, as well as MgO, Al2O3, and CaO contents).

Refractory The term ‘refractory’ refers to mantle minerals and/or
mantle-compatible elements which remain in the mantle
peridotite during the onset of small degrees of partial melting
(e.g. garnets and compatible elements such as Cr, Ni, V, and
HREE).

Notes Regarding Tables of Geochemical Data

Major elements are listed in order of decreasing valency from SiO2 to K2O,
followed by P2O5, LOI, SrO, BaO, Cl, and F where data are available and the
abundance is sufficient for the element to be considered a major, rather than
trace, element.

Trace elements are listed in order of increasing atomic number.
Where data are available, precious metals have been separated and listed

in order of increasing atomic number.
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1Introduction

1.1 Preamble: Potassic Igneous
Rocks and Their Importance

Potassic igneous rocks occur in many different
tectonic settings (e.g. Rock 1991; Foley and Pec-
cerillo 1992; Rios et al. 2007; Costa et al. 2011;
Torabi 2011; Yang et al. 2012; Orozco-Garza et al.
2013; Hari et al 2014; Nabatian et al. 2014; Rao
et al. 2014; Ding et al. 2015; Liu et al. 2015a), and
include a variety of compositions ranging from
shoshonites associated with calc-alkaline volcanic
rocks to ultrapotassic leucitites (Foley and Pec-
cerillo 1992; Peccerillo 1992; Campbell et al.
2014; Soloviev 2014a). They are of increasing
economic interest due to their association with
mineralization, and are of tectonic significance
because of their potential value in reconstructing
the tectonic setting of ancient terranes.

On the economic front, potassic igneous rocks
are now established as being closely related to
certain types of gold and base metal deposits (e.g.
Mitchell and Garson 1981; Mutschler et al. 1985;
Heithersay et al. 1990; Kavalieris and Gonzalez
1990; Richards et al. 1991; Setterfield 1991;
Mutschler and Mooney 1993; Müller and Groves
1993; Sillitoe 1997, 2002; Müller et al. 2001;
Maughan et al. 2002; Kroll et al. 2002; Müller
2002; Zhenhua et al. 2003; Mikulski 2005, 2007;
Chitalin et al. 2012; Lehmann et al. 2013; Bissig
and Cooke 2014; Soloviev 2014a, b; Fu et al.
2015; Jamali and Mehrabi 2015; Liu et al. 2015b;
Soloviev 2015). Some may even be intrinsically

enriched in Au and platinum-group elements
(PGE) (Wyborn 1988; Müller et al. 1992a, 1993;
McDonald et al. 1995). Some of the world’s
largest volcanic- and intrusion-hosted gold and
copper-gold deposits are intimately related to
potassic igneous rocks. For example, the
world-class epithermal gold deposits at Axa,
Xinjiang Province, China (Yang et al. 2009; Chen
et al. 2012; Zhao et al. 2014a), Ladolam and
Porgera, Papua New Guinea (Moyle et al. 1990;
Richards 1990a, b; Carman 1994; White et al.
1995; Müller et al. 2002a, b), Baguio, Philippines
(Cooke et al. 1996), Cripple Creek, Colorado
(Thompson 1992; Kelley and Ludington 2002),
and Emperor, Fiji (Anderson and Eaton 1990;
Setterfield 1991) are all hosted in high-K
calc-alkaline or alkaline rocks. Similarly, there
are equivalent host plutons associated with the
porphyry copper-gold deposits at Bingham, Utah
(Keith et al. 1997; Maughan et al. 2002), Bajo de
la Alumbrera, Argentina (Guilbert 1995; Müller
and Forrestal 1998; Ulrich and Heinrich 2002),
Cadia and Northparkes, NSW, Australia (Hei-
thersay et al. 1990; Müller et al. 1994; Holliday
et al. 2002), Grasberg, Indonesia (Hickson 1991;
McMahon 1994; Pollard et al. 2005), Ok Tedi,
Papua NewGuinea (Rush and Seegers 1990), Oyu
Tolgoi, Mongolia (Kashgerel et al. 2006, 2008;
Wainwright et al. 2011), Peschanka, Siberia
(Chitalin et al. 2012; Soloviev 2014a), Skouries,
Greece (Tobey et al. 1998; Kroll et al. 2002), and
Yao’an, China (Bi et al. 2004; Hu et al. 2004; Lu
et al. 2013a, b). Although emphasized in previous
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editions of this book, this association had not been
stressed in prior reviews on porphyry and epi-
thermal styles of mineralization. However, Silli-
toe (1997), in a review of world-class gold-rich
porphyry and epithermal deposits in the
circum-Pacific region, emphasizes the association
of many of these giant deposits with potassic
igneous rocks: their location and approximate
gold content is shown in Fig. 1.1. Sillitoe (1997,
2002) points out that, even excluding those
deposits associated with potassic igneous rocks of
other magmatic associations (e.g. high-K
calc-alkaline suites), about 20 % of the large
gold deposits are associated with shoshonitic and
alkaline rocks, with such rocks unlikely to exceed
3 % by volume of circum-Pacific igneous rocks.
Sillitoe (1997, 2002) lists the association between
gold deposits and potassic igneous rocks as one of
only four criteria favourable for both world-class
porphyry and epithermal gold-rich deposits in the
circum-Pacific region, and attributes this associa-
tion to the partial melting of stalled lithospheric
slabs in the mantle, immediately following colli-
sion or arc migration, as a preferred mechanism to
promote oxidation of mantle sulphides and the
release of gold.

In addition, less important examples from an
economic viewpoint include the Lamaque stock-
work at Val d’Or, Quebec, Canada (Burrows and
Spooner 1991), the porphyry copper-gold min-
eralization associated with shoshonitic rocks in
British Columbia, Canada (Barrie 1993; Kirkham
and Margolis 1995; Kirkham and Sinclair 1996),
the porphyry copper ± gold mineralization at
Mirkuh Ali Mirza (Maghsoudi et al. 2014) and
Khopik (Shafaroudi et al. 2015), Iran, the Jinju-
shan epithermal gold deposit, Lower Yangtze
region, China (Zhou et al. 1996), and Prospector
Mountain, Yukon, Canada (Glasmacher and
Günther 1991). Subduction-related cobalt-nickel
mineralization in northeast Scotland, formed
during an arc-continent collision during the
Grampian Orogeny, is also associated with
potassic igneous rocks (Dunham 1974; Mitchell
and McKerrow 1975).

A number of other gold and Cu-Au deposits
that occur on craton margins are also associated
with potassic igneous rocks that are directly
related to melting of metasomatized lithosphere
in within-plate plume-related settings. These
include numerous world-class iron-oxide
copper-gold (IOCG) deposits, including the
giant Olympic Dam deposit on the Gawler Cra-
ton of South Australia and a cluster of giants in
the Carajas region on the Amazon Craton of
Brazil (Groves et al. 2010). Intrusion-related gold
deposits (IRGD), including the giant Fort Knox
deposit of Alaska, have a similar setting and
genesis (Goldfarb et al. 2005; Groves et al. 2010;
Mair et al. 2011). The giant Carlin gold district of
Nevada has recently been connected to high
potassic magmatism (Muntean et al. 2011),
although the association may be less direct than
for the other deposit types (e.g. Groves and
Santosh 2015).

Potassic igneous rocks are thus becoming
important exploration targets in their own right
(cf. Chap. 10).

On the tectonic front, potassic igneous rocks
have been recognized as an important and inte-
gral component of magmatism at destructive
continental margins (e.g. Hatherton and Dickin-
son 1969; Morrison 1980; Saunders et al. 1980;
Carr 1998; Yang et al. 2012; Abbasi et al. 2014).
Although there are exceptions (Arculus and
Johnson 1978), arc-related potassic igneous
rocks are generally younger, stratigraphically
higher, and erupted further from the suture than
less potassic rocks, implying that they form at
greater depth in a Benioff Zone. This has led to
the use of potassic igneous rocks to attribute
arc-like tectonic affinities to ancient terranes
(Brooks et al. 1982; Barley et al. 1989; Wyman
and Kerrich 1989a, b; Wyborn 1992).

It is becoming important, whether in
improving exploration models for ancient min-
eral deposits, or in reconstructing ancient terr-
anes, to be able to distinguish the tectonic
settings in which ancient potassic igneous rocks
were generated.

2 1 Introduction
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1.2 Scope of Book

As part of the “Drosophila of igneous petrology”
(Barker 1983, p. 297), potassic igneous rocks
have gained much attention among petrologists
worldwide, mainly due to their distinct geo-
chemistry, and many geoscientists still consider
them as petrological curiosities with an obscure
petrogenesis. In the past, a plethora of genetic
hypotheses and a large number of local names for
potassic igneous rocks from different localities
have been created (see reviews by Sørensen
1974; Peccerillo 1992). This has produced some
confusion in the literature.

This book reviews the geochemical and pet-
rological characteristics of the potassic igneous
rock clan, and investigates the different tectonic
settings in which these rocks occur. The authors
seek to provide an overview and a classification
of those rocks, and to elucidate the geochemical
differences between barren and mineralized
potassic igneous complexes. As discussed above,

many epithermal gold and porphyry copper-gold
deposits are hosted by potassic igneous rocks and
there is increasing evidence that IOCG deposits
and IRGDs are related to high-K magmatism.
Therefore, this book is not only relevant to the
academic petrologist working on alkaline rocks,
but also to the exploration geologist prospecting
for hydrothermal gold, gold-copper and copper
deposits in modern and ancient terranes.
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2Definitions and Nomenclature

2.1 Historical Perspective
of Potassic Igneous Rocks

Potassic igneous rocks were originally recog-
nized in the late 19th century by Iddings (1895),
who described some orthoclase-bearing basalts
from the Yellowstone Park, Wyoming, and
coined the term “shoshonite”. In the last century,
petrologists generated many names for potassic
igneous rocks which were either based on their
mineralogy or, more commonly, based on the
locality of their occurrence. The practice was to
name a new rock after a place where it occurred
—the type locality. These different names for
essentially similar rocks from different localities
led to great confusion (Sørensen 1974; De Wit
1989; Rock 1991; Peccerillo 1992).

The first attempts to explain the petrogenesis of
potassic magmatism date back to the beginning of
the 20th century when Daly (1910) explained
potassic melts as products of the assimilation of
carbonate sediments by uprising basaltic magmas.
Rittmann (1933) adopted this hypothesis in order
to explain the potassicmagmatism of theVesuvius
volcano and theMediterranean Series, as potassic
igneous rocks were named at that time (Peccerillo
1992), with the assimilation of carbonates by
evolved trachyticmagmas. Thismodel waswidely
accepted until the 1960s, although it was unable to
explain the potassic magmatism in the East Afri-
can Rift (e.g. Foley et al. 2011), where carbonates
are absent. However, Savelli (1967) was able to
demonstrate that potassic magmas have much

higher abundances of large-ion lithophile ele-
ments (LILE) and mantle-compatible elements,
such as Cr, Ni, and V, than do both carbonates and
basalts. Therefore, the assimilation model
appeared rather unlikely and alternative explana-
tions were developed. One of these was the zone-
refining model proposed by Harris (1957). This
model was adapted from the steel industry, where
the process of zone-refining was used to purify
metal bars. Harris (1957) suggested that a mantle
plume would rise adiabatically by melting the roof
rocks at its top and by crystallizing minerals at its
base. This process would allow the rising melt to
incorporate all the mantle-incompatible impurities
such as LILE and light rare-earth elements
(LREE). As a result, the migrating melt would
become progressively enriched in these elements
and gain a potassic composition. Another model to
explain potassic magmatism was based on obser-
vations from trace-element modeling (Kay and
Gast 1973), which implied that the enrichments in
LILE and LREE in potassic igneous rocks were an
effect of very low degrees of partial melting (i.e.
melt increments of <1 vol.%) of a garnet-peridotite
in the upper mantle.

However, the advent of the concept of mantle
metasomatism (e.g. Menzies and Hawkesworth
1987) represented a major breakthrough in
understanding of the petrogenesis of potassic
igneous rocks (Peccerillo 1992). Direct evidence
for heterogeneous mantle compositions on a
small scale was provided by the petrographic
studies of mantle xenoliths from deep-seated
kimberlite and trachybasalt eruptions (e.g. Harte
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and Hawkesworth 1989; Grègoire et al. 2000;
Franz et al. 2002; Franz and Romer 2010) which
revealed the presence of LILE-bearing hydrous
minerals such as phlogopite and apatite within
the peridotites of the upper mantle. These min-
erals, which may occur either in veins or dis-
persed within the mantle peridotite (Bailey 1982;
Franz et al. 2002), are believed to have been
metasomatically introduced by volatile- and
LILE-enriched fluids and/or LILE- and
LREE-enriched alkalic melts (see Chap. 3). The
nature and origin of these metasomatizing agents
are still under debate (Peccerillo 1992; Till et al.
2012; Li et al. 2013; Lu et al. 2013; Liu et al.
2014).

Interest in the petrogenesis of potassic mag-
mas has, for many years, been aimed at
describing specific occurrences and explaining
the differences between these and normal basalts
(Foley and Peccerillo 1992). Potassic igneous
rocks have features in common with both the
alkaline and calc-alkaline rock associations, but
also have geochemical characteristics that dis-
tinguish them from the other rock associations
and, therefore, they must be considered a distinct
rock association (Morrison 1980; Campbell et al.
2014).

In the first comprehensive study of potassic
igneous rocks from different localities, under-
taken by Sahama (1974), only ultrapotassic rocks
were considered and these were divided into
kamafugitic and orenditic types. However, the
peralkaline orenditic ultrapotassic igneous rocks
and the kamafugites, which are represented by
groups I and II in Foley et al. (1987), are not
considered further in this study (see definitions in
Sects. 2.5.2 and 2.5.3). Modern studies of
shoshonites and potassic igneous rocks (e.g.
Morrison 1980; Lu et al. 2013; Liu et al. 2014)
re-established their importance as a distinctive
group among the spectrum of igneous rocks.
High-K rocks such as shoshonites have been
formally incorporated in numerous classification
schemes (Peccerillo and Taylor 1976), including
that recommended by the IUGS Subcommission
(Le Maitre 1989).

2.2 Potassic Igneous Rocks
as an Umbrella Term

The potassic igneous rocks, as considered here,
comprise volcanic, hypabyssal and plutonic
rocks. Petrographically, potassic igneous rocks
range from trachybasalts and trachyandesites to
trachytes, which normally have porphyritic tex-
tures with phenocrysts of plagioclase, K-feldspar,
clinopyroxene, olivine, amphiboles, biotite
and/or phlogopite, and minor apatite micro-
phenocrysts. The term “potassic igneous rocks”
is used in this book as an umbrella term to
describe those rocks which are silica-saturated
and more K-rich than typical igneous rocks (i.e.
K > Na). The term includes subduction-related
high-K calc-alkaline rocks and shoshonites,
high-K rocks from within-plate tectonic settings,
hypabyssal high-K rocks such as shoshonitic and
alkaline lamprophyres (cf. Rock 1991), and the
orogenic ultrapotassic rocks (group III of Foley
et al. 1987), which are defined in Sect. 2.5. For a
detailed review of the silica-deficient alkaline
rocks, which are characterized by feldspathoids
such as leucite and nepheline, and commonly
occur in rift-related within-plate tectonic settings,
the reader is referred to the recent work of Gupta
(2014).

2.3 Shoshonites

Shoshonites (sensu stricto) are potassic igneous
rocks which occur in subduction-related tectonic
settings (Morrison 1980; Torabi 2011; Lu et al.
2013; Campbell et al. 2014; Soloviev 2014).
They are commonly formed during the late stage
of arc-evolution, being erupted after the low-K
tholeiites and calc-alkaline rock series. Although
there are a few exceptions, they are commonly
most distant from the trench and are erupted
above the deepest parts of the Benioff Zone. The
shoshonite association is geochemically defined
by high total alkalies (K2O + Na2O >5 wt%), high
K2O/Na2O ratios (>0.6 at 50 wt% SiO2, >1.0
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at 55 wt% SiO2), low TiO2 (<1.3 wt%), high but
variable Al2O3 (14–19 wt%), and a strong
enrichment in LILE and LREE (e.g. Morrison
1980). Trachybasalts and basaltic andesites pre-
dominate in the shoshonite association. Shosho-
nites have porphyritic textures with phenocrysts
of plagioclase, clinopyroxene, olivine, phlogopite
and/or amphiboles in a very fine-grained, com-
monly glassy, groundmass consisting mainly of
K-feldspar (sanidine), plagioclase, and clinopy-
roxene (Morrison 1980).

2.4 Shoshonitic and Alkaline
Lamprophyres

Lamprophyres (Greek lampros, porphyros: glis-
tening porphyry) form an extremely heteroge-
neous group of predominantly hypabyssal
alkaline igneous rocks which occur in a wide
variety of geological settings throughout the
world (Rock 1991). In many localities, lampro-
phyres are associated with granitic, shoshonitic,
syenitic, or carbonatitic magmatism (Rock 1991;
Rowins et al. 1993; Maughan et al. 2002;
Orozco-Garza et al. 2013; Chen et al. 2014;
Karsli et al. 2014; Štemprok et al. 2014; Lu et al.
2015). Several contradictory classifications for
lamprophyres have been used over the past
century. However, lamprophyres have been
comprehensively defined by Rock (1987, 1991)
as hypabyssal, melanocratic igneous rocks with
porphyritic textures carrying only mafic pheno-
crysts, essentially phlogopite-biotite and/or
amphibole with minor olivine. Phlogopite or
biotite phenocrysts are commonly zoned, with
dark brown Fe-rich rims and pale yellow Mg-rich
cores (Rock et al. 1988; Müller et al. 1992,
1993). Felsic minerals are generally restricted to
the groundmass (cf. Rock 1987). However,
quartz xenocrysts are common due to the
volatile-driven rapid uprise of lamprophyric
magmas (Rock 1991). Lamprophyres are also
characterized by battlemented phlogopites and
globular structures, which are due to the segre-
gation of late-stage melts, commonly with
evolved syenitic compositions, into vugs within

the crystal mush (Foley 1984; Rock 1991). The
rocks occur as dykes, sills, plugs, stocks, or vents
and associated intrusive or explosion breccias.

Geochemically, lamprophyric magmas have
primitive compositions, as shown by high mg#
[where mg# = molecular Mg/(Mg + Fe2), with
molecular Fe2/(Fe2 + Fe3) set at 0.15, a common
ratio in potassic igneous rocks] and high Cr, Ni,
and V contents. They are typically enriched in
LILE, LREE, and volatiles such as CO2, H2O, F,
and Cl (Rock 1987; Rock et al. 1990), which are
sited in the lattice of hydrous minerals such as
amphiboles or micas, or hosted by primary car-
bonates, zeolites, epidotes, fluorites, or sulphates
(Rock et al. 1988).

The lamprophyre clan comprises shoshonitic
(calc-alkaline), alkaline, and ultramafic lampro-
phyres, as well as lamproites and kimberlites
(Rock 1991). Only the first two varieties, shos-
honitic and alkaline lamprophyres with high K2O
(>1 wt%) and SiO2 contents (>40 wt%), are
considered in this study. Shoshonitic lampro-
phyres with groundmass plagioclase > K-feld-
spar are further divided into the amphibole-
bearing spessartites and mica-bearing kersantites,
whereas those with K-feldspar > plagioclase are
divided into the amphibole-bearing vogesites and
mica-bearing minettes (Rock 1977). Alkaline
lamprophyres are normally characterized by
biotite or phlogopite phenocrysts in a ground-
mass with K-feldspar > plagioclase (e.g. Müller
et al. 1992, 1993). Many alkaline lamprophyres
would be classified as volatile-rich alkali basalts
or basanites when plotted on the Na2O + K2O
versus SiO2 diagram (Rock 1991) which is
recommended by the IUGS Subcommission
on Igneous Rocks Systematics (cf. Le
Maitre 1989).

2.5 Ultrapotassic Rocks

2.5.1 Introduction

Ultrapotassic rocks are defined by using the
chemical screens K2O >3 wt%, MgO >3 wt%,
and K2O/Na2O >2 for whole-rock analyses
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(Foley et al. 1987). They can be further divided
into four groups:

• Group I (e.g. the Gaussberg lamproites, Ant-
arctica), characterized by low CaO (<8 wt%),
Al2O3 <12 wt%, Na2O <2 wt%, and high mg#
(*60–85).

• Group II (e.g. the kamafugites of the
Toro-Ankole region, East African Rift),
characterized by very low SiO2 (<40 wt%)
and high CaO (>10 wt%).

• Group III (e.g. the orogenic ultrapotassic rocks
of the Roman Province), which occur in oro-
genic areas and have high CaO (>5 wt%), high
Al2O3 (>12 wt%), and low mg# (*40–65).

• Group IV showing transitional chemical
characteristics between groups I and III
(Foley et al. 1987).

2.5.2 Lamproites

Lamproites commonly occur as volumetrically
small vents, pipes, or dykes, and form a group
within the potassic igneous rock clan which
shares certain petrogenetic aspects with the alkali
basalts, kimberlites, and lamprophyres (Bergman
1987). Lamproites have achieved increased eco-
nomic importance since the discovery of the
diamond-bearing Argyle lamproite pipe, Western
Australia (Rock 1991; Luguet et al. 2009). Their
occurrence is restricted to within-plate tectonic
settings (Mitchell 1986; Mitchell and Bergman
1991).

Lamproites are derived by small degrees of
partial melting of a phlogopite-harzburgite man-
tle source under reducing conditions, and two
varieties, olivine lamproite and leucite lamproite,
may be distinguished (Edgar and Mitchell 1997).
Lamproites are normally characterized (Prider
1960; Mitchell and Bergman 1991; Peccerillo
1992) by the presence of rare minerals such as
titanian phlogopite, potassic richterite, leucite,
jeppeite, sanidine, aluminium-poor diopside,
potassic titanites (e.g. priderite), potassic zirco-
nian silicates (e.g. wadeite), shcherbakovite, and
armalcolite (cf. Contini et al. 1993). Lamproites

characteristically do not contain plagioclase,
nepheline, or melilite (Bergman 1987). Geo-
chemically, lamproites have high K2O/Al2O3

ratios (>0.6; Foley et al. 1987), moderately high
CaO (>4 wt%) and very low Al2O3 contents (<12
wt%; Mitchell and Bergman 1991). Most lam-
proites are peralkaline and have (Na + K)/Al
ratios >1 (Mitchell and Bergman 1991). Addi-
tionally, they are characterized by high concen-
trations of mantle-compatible elements (e.g.
*150 ppm V, *400 ppm Cr, *250 ppm Ni),
high LILE (e.g. *6000 ppm Ba, *2000 ppm
Sr), and high LREE (e.g. *250 ppm La,
*400 ppm Ce; Mitchell and Bergman 1991).

In the previous literature, there has been some
debate about whether to consider lamproites as a
distinctive petrogenetic group, as proposed by
Bergman (1987) and Mitchell and Bergman
(1991), or to include them into the lamprophyre
clan as suggested by Rock (1991). In hand
specimen, lamproites appear very similar to
rocks of the lamprophyre clan (e.g. the shos-
honitic lamprophyre varieties kersantite and mi-
nette, and most alkaline lamprophyres; Müller
et al. 1992, 1993) due to their porphyritic tex-
tures with abundant ferromagnesian phenocrysts
such as phlogopite and lack of leucocratic
phenocrysts. However, based on mineralogical
and geochemical considerations, they are quite
different. In contrast to lamprophyres, lamproites
may contain alkali amphiboles such as riebeckite
or richterite, but they lack plagioclase, a major
component of many lamprophyres, at least in
their groundmass. Lamproites also have much
lower SiO2 (<40 wt%) and Al2O3 (<12 wt%)
contents than shoshonitic or alkaline lampro-
phyres (commonly >45 and >14 wt%, respec-
tively; Rock 1991). Based on their exotic
mineralogy, their distinct geochemistry, and their
very rare occurrence in nature, lamproites are not
further considered in this book.

2.5.3 Kamafugites

Kamafugites are mafic kalsilite-bearing lavas,
and they represent the rarest examples of the
magmatic rocks (Mitchell and Bergman 1991).
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Kamafugites may occur as dykes or lavas which
are restricted to within-plate settings. Important
type-localities are the igneous rocks (e.g. ka-
tungites, mafurites, ugandites) from the Toro
Ankole region, Uganda (Holmes 1950; Barton
1979; Foley et al. 2011), and those from Cupa-
ello and San Venanzo, Italy (Mittempergher
1965; Gallo et al. 1984). The term “kamafugite”
(katungite-mafurite-ugandite) was introduced by
Sahama (1974), and subsequently has been
established in the modern literature (cf. Foley
et al. 1987).

Mineralogically, kamafugites are character-
ized by the presence of olivine phenocrysts in a
groundmass consisting of phlogopite, clinopy-
roxene, leucite, melilite, perovskite, and kalsilite,
the latter reflecting their very low SiO2 contents
(Gallo et al. 1984; Foley et al. 1987, 2011).
Kamafugites are petrographically distinguished
from lamproites by the presence of kalsilite and
melilite, and absence of sanidine (Mitchell and
Bergman 1991). Apatite and perovskite normally
represent only minor phases (Gallo et al. 1984).
Kamafugites are geochemically distinct with
extremely low SiO2 (<45 wt%), very low Al2O3

(<12 wt%), low Na2O (<1.38 wt%), and very
high CaO contents (>8 wt%), as discussed by
Gallo et al. (1984) and Foley et al. (1987). Their
characteristically high concentrations of LREE
(e.g. up to 470 ppm Ce) and high field-strength
elements (HFSE) (e.g. up to 44 ppm Y and up to
680 ppm Zr; Gallo et al. 1984) are consistent
with their restricted occurrence in within-plate
tectonic settings.

2.5.4 Orogenic Ultrapotassic Rocks

The group of orogenic ultrapotassic rocks is
equivalent (Foley et al. 1987) to the highly
potassic igneous rocks from the Roman Mag-
matic Province, Italy (e.g. Holm et al. 1982;
Rogers et al. 1985; Boari et al. 2009; and see
Chap. 4).

Geochemically, orogenic ultrapotassic rocks
are characterized by relatively low K2O/Al2O3

ratios (<0.5) when compared with the extreme
K2O-enrichments of lamproites and kamafugites
(K2O/Al2O3 >0.6). They may occur either as
dykes (e.g. Müller et al. 1993) or as lavas (e.g.
Cundari 1973; Boari et al. 2009). Orogenic
ultrapotassic rocks from the Roman Province
typically have high Al2O3 contents (>12 wt%;
Civetta et al. 1981; Holm et al. 1982; Rogers
et al. 1985; Boari et al. 2009).

2.6 Group II Kimberlites

Kimberlites are rare, volatile-rich, ultrabasic,
potassic igneous rocks occupying small vents,
sills, and dykes (Dawson 1987). Kimberlites
have been divided by Smith et al. (1985) into two
distinct varieties termed Group I and Group II
kimberlites. Group I is also known as mica-poor
and Group II as mica-rich kimberlites (Dawson
1987). Petrographically, Group I kimberlites are
characterized by the presence of olivine, phlog-
opite, apatite, monticellite, calcite, serpentine,
and minor magnesian ilmenite (Mitchell 1989).
Groundmass spinels and perovskite are abundant
(Mitchell 1989). Group II kimberlites, which
have been only recognized in Russia, South
Africa and Swaziland to date, are dominated by
phlogopite, and minor diopside and apatite
phenocrysts (Mitchell 1989; Priyatkina et al.
2014). Their groundmass is mainly phlogopite,
diopside, and leucite, whereas monticellite and
magnesian ilmenite are absent (Skinner 1989).
Group II kimberlites are rarely accompanied by
other potassic intrusions such as lamprophyres
(Dawson 1987). Both groups are geochemically
different, with higher concentrations of P, Rb,
Ba, and LREE, and lower concentrations of Ti
and Nb in Group II kimberlites (Smith et al.
1985; Skinner 1989). Importantly, Group II
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kimberlites are highly potassic, with K2O con-
tents of about 3 wt% (cf. Mitchell 1989).

2.7 Potassic Igneous Rocks
as Considered in This Book

Potassic igneous rocks, as considered in this
book, are defined by molar K2O/Na2O ratios of
about or slightly higher than unity (cf. Peccerillo
1992). While potassic igneous rocks from
within-plate settings tend to occur as isolated
geological bodies, those from subduction-related
tectonic settings normally occur as the
end-members of a continuous igneous-rock
spectrum that might range from boninites and
tholeiites to high-K calc-alkaline rocks and
shoshonites during arc evolution (see Chap. 3).
In these settings, the authors also consider rocks
with molar K2O/Na2O ratios <1, if the
whole-rock compositions are K2O >1 wt% at
about 50 wt% SiO2 (e.g. the basalts from the
Mariana Arc: see discussion in Chaps. 3 and 4).

This book does not consider Group II kim-
berlites, due to their very distinctive geochemis-
try with low SiO2 (*36 wt%) and very high
MgO contents (*30 wt%), their exotic miner-
alogy, and their rare occurrence in nature (cf.
Mitchell 1989; Priyatkina et al. 2014). The book
also excludes lamproites and kamafugites
(Groups I and II of Foley et al. 1987), because of
their limited occurrence in nature and their exotic
mineralogy (e.g. rare minerals including richte-
rite, melilite, perovskite, and priderite occur as
well as leucite and/or kalsilite). They tend to be
isolated and are normally not associated with
other high-K rocks. Lamproites and kamafugites
occur typically in mobile belts at craton margins
(lamproites) or in rift valleys (kamafugites), but
not in orogenic areas, and they are not associated
with gold or base-metal mineralization (Mitchell
and Bergman 1991; Foley et al. 1987, 2011). It is
considered, therefore, that eliminating lamproites
and kamafugites from the potassic igneous rock
database SHOSH2 (database discussed in
Chap. 3) not only has a sound basis, but also
allows the discrimination to concentrate on finer

chemical differences among the remaining oro-
genic potassic igneous rocks (including
Groups III and IV ultrapotassic rocks), which are
of more interest here. This decision does leave
some leucite-bearing rocks in SHOSH2, such as
those of the Roman Province, Italy, and the
leucitites of New South Wales, Australia. Lam-
proites and kamafugites were eliminated on a
province-by-province basis, but the criteria are
equivalent to such chemical screens as
CaO/Al2O3 <1.3, CaO < (SiO2 − 30), CaO >
(21 − SiO2), and CaO > [22 − (1.25 × Al2O3)],
based on Figs. 1 and 3 of Foley et al. (1987).

2.8 Field Recognition of Potassic
Igneous Rocks

There is no golden rule for the recognition of
potassic igneous rocks in the field because the
characteristics vary from more mafic to more
felsic varieties, and from plutonic to volcanic
settings.

Volcanic and hypabyssal high-K rocks are
generally characterized by porphyritic textures
with phenocrysts of clinopyroxene, amphibole,
biotite, phlogopite, and apatite in a fine-grained
groundmass which is dominated by K-feldspar
and plagioclase. Extrusive shoshonitic igneous
rocks are commonly dominated by plagioclase and
clinopyroxene phenocrysts which are accompa-
nied by amphibole, biotite, phlogopite, and apatite
phenocrysts. However, the volatile-rich hydrous
phenocrysts such as amphibole, biotite, phlogo-
pite, and apatite are mainly developed in lampro-
phyres, which crystallize at shallow levels in the
crust under low confining pressures of the over-
lying rocks.

Plutonic high-K rocks are characterized by
holocrystalline equigranular, and more rarely,
sparsely porphyritic textures comprising larger
crystals of plagioclase, amphibole, biotite, and
phlogopite in a medium-grained groundmass of
K-feldspar and plagioclase. Typical examples are
the potassic quartz-monzodiorites and/or quartz-
monzonites which host the world-class porphyry
copper-gold deposits of Cadia (Fig. 6.16) and
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Northparkes, Australia (Fig. 6.14), Skouries,
Greece (Fig. 6.29), and Peschanka, Siberia
(Fig. 6.20).

Potassic igneous rocks are commonly dark
grey (e.g. at Bajo de la Alumbrera, Argentina, and
Bingham, Utah). However, they can be pink due
to the presence of Fe in the orthoclase structure
(e.g. at Skouries, Greece; Fig. 6.29). In rare cases,
mineralized high-K intrusions are overprinted by
an intense pervasive hematite-sericite alteration
(i.e. “hematite-dusting”), resulting in brick-red
colours (e.g. at Cadia, Northparkes, and Pesch-
anka; Figs. 6.14, 6.16 and 6.20).
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3Tectonic Settings of Potassic
Igneous Rocks

3.1 Introduction

Modern potassic igneous rocks occur in a wide
range of tectonic environments, from continental
to oceanic and within-plate settings, some of
which are not apparently associated with sub-
duction (Joplin 1968;Morrison 1980;Müller et al.
1992a; Müller 2002; Li et al. 2013; Rao et al.
2014; Soloviev 2014a, b; Jamali and Mehrabi
2015; Liu et al. 2015). It is therefore important,
whether for improving exploration models for
ancient mineral deposits or reconstructing ancient
terranes, to be able to distinguish the tectonic
settings in which ancient potassic igneous rocks
were generated. The following chapter seeks to
provide such a distinction.

3.2 Tectonic Settings of Potassic
Igneous Rocks

Young (<60 Ma) potassic igneous rocks have
been recognized throughout the world in five
principal tectonic settings (Fig. 3.1 and
Table 3.1), of which two are closely related
(Müller et al. 1992a). A schematic overview of
the different tectonic settings in which potassic
igneous rocks are recorded is shown in Fig. 3.2.

3.2.1 Continental Arc

Continental arc potassic igneous rocks are well
represented in the Andean volcanic belt (e.g.

Venturelli et al. 1978; Kontak et al. 1986) and in
the Aeolian Islands in the Mediterranean (Ellam
et al. 1989). Such settings are associated with
reorganization of plate boundaries due to oblique
plate convergence, and are normally character-
ized by relatively flat subduction and broad
Benioff Zones. The nature and distribution of
magmatic activity in the overriding plate is a
function of the convergence rate, the age of the
subducted lithosphere, and the presence of fea-
tures such as seamount chains or aseismic ridges
(Wilson 1989; Kay and Mpodozis 2001; Kay
et al. 2005).

3.2.2 Postcollisional Arc

Postcollisional arc potassic igneous rocks are
exemplified by the Eastern and Western Alps
(e.g. Venturelli et al. 1984; Müller et al. 1992a),
where the continental plates collided during the
Eocene and subduction has long since ceased.
High-K rocks derived in a postcollisional arc
setting are also documented in southern Tibet
(e.g. Guo et al. 2013), and Yunnan province in
China (e.g. Lu et al. 2013a, b). This setting
represents the most complex case of
subduction-related magmatism, in which the
suture zone forms an area of crustal thickening,
characterized by complex magmatic activity and
tectonic uplift (Wilson 1989; Lu et al. 2013b;
Chen et al. 2015; Jiang et al. 2015). After colli-
sion, potassic igneous rocks may be emplaced as
dykes, commonly followed by alkaline volca-
nism where extensional tectonic regimes develop
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as a consequence of uplift (Wilson 1989; Müller
et al. 1992a).

3.2.3 Oceanic (Island) Arc

Oceanic (island) arc potassic igneous rocks are
generated at the site of subduction of one oceanic
lithospheric plate beneath another. Oceanic arc
settings normally show steep subduction and,
compared to continental arc settings, relatively
short distances between volcanic arc and sub-
duction trench where projected to surface.
High-K rocks from this setting can be subdivided
into two types: initial and late oceanic arc
potassic igneous rocks.

Initial Oceanic Arc Potassic Igneous Rocks
Initial oceanic arc settings are exemplified by
unusual potassic igneous rocks (including
shoshonites) from the northern Mariana Arc
(Stern et al. 1988; Bloomer et al. 1989; Lin et al.
1989). Whereas the initial and fore-arc melts in
most island arcs have boninitic or low-K tholei-
itic affinities, and potassic igneous rocks occur
only in the mature, back-arc stages of arc evo-
lution, the Mariana potassic igneous rocks occur
along the magmatic front, and may represent the
reconstruction of the arc following an episode of
back-arc rifting (Stern et al. 1988). More recent
work (Till et al. 2012) explains the unique
compositions of the potassic igneous rocks in the

Fig. 3.1 Global distribution of Cenozoic potassic igne-
ous rock suites used to erect the series of discriminatory
diagrams. Data from many additional pre-Cenozoic rock
suites were compiled in unfiltered database SHOSH1, but
are not shown because their tectonic settings are uncer-
tain. See Table 3.1 for data sources. 1 Aegean Islands,
2 Aeolian Islands, 3 Chile, 4 Peru, 5 Costa Rica, 6

Mexico, 7 New Mexico, 8 Roman Province, 9 Eastern
Alps, 10 Western Alps, 11 Iran, 12 Papua New Guinea,
13 Roumania, 14 Mariana Islands, 15 Fiji, 16 Kuril
Islands, 17 Vanuatu, 18 Sunda Arc, 19 Borneo, 20 Gough
Island, 21 Arizona, 22 Colorado, 23 California, 24
Wyoming, 25 New South Wales, 26 Tristan da Cunha.
From Müller et al. (1992a)
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Table 3.1 Data sources for potassic igneous rocks in filtered database SHOSH2

1. Continental arcs 2. Postcollisional arcs 3a. Oceanic arcs
(initial)

3b. Oceanic arcs (late) 4. Within-plate settings

Aegean Islands,
Greecea

Alps (Eastern) Mariana Islandsa Fijia Borneo

Pe-Piper (1980) 4/8 Deutsch (1984) 5/5 Bloomer et al. (1989)b

2/7
Gill and Whelan
(1989) 1/9

Bergman et al. (1988)
6/11

Müller et al. (1992b) 8/11 Dixon and Batiza
(1979) 6/10

Aeolian Islands, Italy Garcia et al. (1979)
1/6

Kuril Islands Gough Island, Atlantic

Ellam et al. (1989)
7/22

Alps (Western)a Lin et al. (1989)c 2/7 Bailey et al. (1989) 3/4 Le Maitre (1962) 4/13

Keller (1974) 3/9 Beccaluva et al. (1983)
6/6

Meijer and Reagan
(1981) 14/14

Le Roex (1985) 7/19

Dal Piaz et al. (1979)
2/13

Stern (1979) 2/3 Sunda Arc Weaver et al. (1987) 2/4

Andes, Chile Venturelli et al. (1984)
5/7

Taylor et al. (1969)
1/2

Foden (1979) 12/121

Deruelle (1982) 1/5 J.D. Foden (unpl. data)
5/97

North American
Cordilleraa

Thorpe et al. (1976)
3/4

Iran (Northeast) Foden and Varne
(1980) 6/10

Arizona

Spies et al. (1984) 4/6 Hutchison and Jezek
(1978) 6/19

Nicholls (1969) 2/2

Andes, Perua Wheller (1986) 29/122 Roden (1981) 2/2

Kontak et al. (1986)
4/4

Papua New Guinea Whitford (1975)
12/160

Roden and Smith (1979)
1/2

BMRd (unpl. data)
83/166

Whitford and Jezek
(1979) 2/8

Rogers et al. (1982) 5/5

North American
Cordilleraa

De Paolo and Johnson
(1979) 1/8

Whitford et al. (1979)
2/13

Colorado

Costa Rica Jakes and Smith (1970)
13/24

Alibert et al. (1986) 1/1

Reagan and Gill
(1989) 4/4

Jaques (1976) 3/17 Vanuatua Leat et al. (1988) 6/6

Mexico McKenzie and Chappell
(1972) 3/10

Gorton (1977) 10/12 Thompson et al. (1984)
4/5

Allan and Carmichael
(1984) 3/3

J.P. Richards (unpl. data)
16/30

California, Sierra
Nevada

Carmichael (pers.
comm.) 2/2

Smith (1972) 2/29 Dodge and Moore
(1981) 18/19

Luhr and Kyser (1989)
1/1

Sombroek (1985) 19/47 Van Kooten (1980)
13/13

Luhr et al. (1989) 7/8 Wyoming

New Mexico, Rio
Grande

Roumania Barton and van Bergen
(1981)b 1/5

(continued)
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northern Mariana Arc as the product of chlorite
dehydration melting in a relatively cool subduc-
tion zone (see Sect. 4.3).

Late Oceanic Arc Potassic Igneous Rocks
Late oceanic arc settings are well represented in
Fiji (Gill 1970), the New Hebrides (Gorton 1977;
Marcelot et al. 1983), and Lihir Island, Papua
New Guinea (Wallace et al. 1983; Müller et al.
2001) in the western Pacific. Here, potassic
igneous rocks form the youngest volcanic prod-
ucts; they were erupted after lower K-tholeiitic

and/or calc-alkaline rocks and farthest from the
trench, in the classic volcanic sequence referred
to above.

3.2.4 Within-Plate

Within-plate potassic igneous rocks are not related
to any form of subduction. They are particularly
well represented in the North American Cordillera
(Fig. 3.1 and Table 3.1). They may be associated
with hot-spot activity or with extensional (partic-
ularly rift) tectonics (e.g. in the western branch of

Table 3.1 (continued)

1. Continental arcs 2. Postcollisional arcs 3a. Oceanic arcs
(initial)

3b. Oceanic arcs (late) 4. Within-plate settings

Duncker et al. (1991)
2/8

Peccerillo and Taylor
(1976b)c 4/4

Gest and McBirney
(1979) 2/5

Nicholls and Carmichael
(1969) 1/4

Roman Provincea

Appleton (1972) 2/12 New South Wales,
Australia

Civetta et al. (1981)
6/6

Cundari (1973) 32/37

Cox et al. (1976) 2/4

Cundari (1979) 6/14 Tristan da Cunha,
Atlantica

Cundari and Mattias
(1974) 5/17

Weaver et al. (1987) 2/4

Fornaseri et al. (1963)
7/37

Ghiara and Lirer
(1976) 2/6

Holm et al. (1982) 2/6

Poli et al. (1984) 4/4

Rogers et al. (1985)
7/8

Savelli (1967) 5/19

Thompson (1977) 1/2

Van Bergen et al.
(1983) 8/8

3/6 = 3 analyses were retained in filtered database SHOSH2 from 6 analyses in unfiltered database SHOSH1 and original reference
From Müller et al. (1992a)
aAdditional references were incorporated in SHOSH1, but all analyses were filtered out for SHOSH2
bOnly major elements
cOnly trace elements
dBureau of Mineral Resources, Geology and Geophysics, Australia (now Australian Geological Survey Organisation), PETCHEM
database
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the East African Rift), and the magmas from
which they crystallize are commonly generated at
greater depths than those of the other four cate-
gories (Foley et al. 1987, 2011).

3.2.5 Problems with Tectonic
Classification

In areas of plate tectonic complexity, there may be
ambiguity about the classification even of young
potassic igneous rocks into one of these five set-
tings. In the western Sunda Arc of Indonesia
(Curray et al. 1977), for example, not only does
the crustal seismic-velocity structure change from
continental to oceanic moving east from Sumatra
into Java, but the subduction angle and traceable
depth of subduction also change from oblique,
shallow, and <200 km in Sumatra to orthogonal,
steep, and >600 km in Java. Reflecting these
changes, potassic igneous rocks occur on the
back-arc side of Java and islands further east
(Whitford et al. 1979), and are hence attributed to
a late oceanic arc setting. In Sumatra, however,

they are relatively early, occur on the fore-arc side
(Rock et al. 1982), and are better attributed to an
initial oceanic arc setting.

Other difficulties arise in continental-scale
igneous provinces such as the Cenozoic of the
North American Cordillera. Although potassic
igneous rocks in young volcanic suites along the
western seaboard (e.g. Crater Lake, Oregon;
Bacon 1990) are unequivocally continental arc,
and potassic igneous rocks from states well inland
(e.g. North Dakota; Kirchner 1979) are
within-plate by definition, many potassic igneous
rocks from intervening states (e.g. Colorado,
Wyoming; Gest and McBirney 1979; Leat et al.
1988) could be of either affinity. Following most
previous authors, within-plate affinities are
assumed where there is a clear association with
rifting (e.g. Sierra Nevada lavas, California; Van
Kooten 1980), or where the depth of magma
generation is too great for subduction affinities
(e.g. Navajo Province, New Mexico; Rock 1991).

A further set of ambiguities arises from dif-
fering opinions in the literature. For example,

Fig. 3.2 Schematic overview of potassic igneous rocks
from different tectonic settings. CAP continental arc; PAP
postcollisional arc; LOP late oceanic arc; WIP

within-plate setting; MORB mid-ocean ridge basalt; OIB
oceanic island basalt. Modified after Mitchell and Garson
(1981)
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Cundari (1979) uniquely assumes a within-plate
setting for the Sabatini lavas of Italy, whereas all
other authors concerned with Roman Province
potassic igneous rocks assume a continental arc
setting (e.g. Civetta et al. 1981; Peccerillo 1985;
Beccaluva et al. 1991).

3.3 History of Discrimination
of Tectonic Setting
by Geochemical Means

First put forward to distinguish the tectonic set-
ting of ancient basalts (e.g. Pearce and Cann
1973), geochemical discrimination diagrams
were used widely in the late 1970s and early
1980s. Equivalent diagrams were introduced to
classify granites (sensu lato) tectonically (e.g.
Pitcher 1983; Pearce et al. 1984), and the method
was also extended to the petrological classifica-
tion of altered and/or metamorphosed igneous
rocks (e.g. Floyd and Winchester 1975). As with
many other geological methods, a period of
criticism and reappraisal followed (e.g. Smith
and Smith 1976; Morrison 1978), but these
drawbacks have proved insufficient to seriously
limit the use of the method. Geochemical dis-
crimination diagrams, although initially empiri-
cal, subsequently received a formal basis from
statistical analysis and theoretical arguments (e.g.
Pearce 1976).

The principle behind the successful use of these
diagrams is the delineation of trace-element dif-
ferences betweenmodern rocks in different known
settings, based on a comprehensive database;
these differences are then depicted in diagrams
which can be used to assign older samples from
equivocal tectonic settings. The assumed rela-
tively immobile HFSE (namely Ti, Y, Zr, Nb, Hf,
Ta), REE, as well as the elements Th and P, are
generally considered to be most suitable for use in
these diagrams, although some studies have sug-
gested that Th (Wood et al. 1979; Villemant et al.
1993) and REE (Hellman et al. 1979; Allen and
Seyfried 2005; Tropper et al. 2011) may bemobile
under certain conditions, and most of these

elements may be somewhat mobile in highly
altered, mineralized wallrocks.

Previous discrimination diagrams, which have
been developed for basalts and granitic rocks, are
not suitable for discriminating the tectonic setting
of potassic igneous rocks. For example:

• Ti–Zr and Ti–Zr–Y diagrams of Pearce and
Cann (1973): Potassic igneous rocks extend
to compositions well outside the defined
fields on these diagrams and, in particular,
within-plate potassic igneous rocks normally
show much higher Zr concentrations than
indicated by the defined within-plate field for
other igneous rocks (Fig. 3.3).

• Ti–Zr–Sr diagram of Pearce and Cann (1973):
This diagram cannot separate within-plate
from subduction-related potassic igneous
rocks. Most potassic igneous rocks plot mis-
leadingly in the calc-alkaline field, and those
from postcollisional settings plot erroneously
into the ocean-floor basalt field. The discrimi-
nation is also subject to the severe limitation of
Sr mobility for hydrothermally altered rocks.

• Zr/Y versus Zr diagram of Pearce and Norry
(1979): Subduction-related potassic igneous
rocks from continental arcs and from
intra-oceanic tectonic settings plot errone-
ously within the mid-ocean ridge basalt
(MORB) and within-plate basalt fields on this
diagram.

• Hf/3–Th–Ta diagram of Wood et al. (1979):
Nearly all potassic igneous rocks, even those
from known within-plate tectonic settings,
plot misleadingly into the subduction-related
field on this diagram.

The few previously developed diagrams that
actually accommodate potassic igneous rocks
(Pearce 1982), only allow them to be identified
petrologically; the diagrams do not discriminate
the tectonic settings of the rocks (see Fig. 3.4).

Another common plot for comparing geo-
chemical patterns is the spidergram (Thompson
1982), but spidergrams do not effectively sepa-
rate potassic igneous rocks from different tec-
tonic settings (Fig. 3.5). For example, although
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arc-related potassic igneous rocks (Fig. 3.5a–d)
show relatively high values of K, Rb, Cs, Ba, and
Pb (Sun and McDonough 1989) and the sup-
posedly diagnostic (negative) Ti–Nb–Ta (TNT)
anomalies (Saunders et al. 1980; Briqueu et al.
1984; Foley and Wheller 1990), these features
are also shown by some within-plate potassic
igneous rocks (e.g. the potassic lamprophyres
from Borneo; Bergman et al. 1988; see
Fig. 3.5e). There is no simple relationship
between TNT anomalies in spidergram patterns

and subduction-related processes of magma
generation, because potassic igneous rocks
without those anomalies can also occur in sub-
duction settings (Rock 1991).

Many workers have tried to explain the neg-
ative anomalies of the HFSE Ti, Nb, and Ta, in
terms of their retention in the subducted oceanic
slab during the dehydration process (Pearce and
Peate 1995; Rudnick and Fountain 1995; Tiepolo
et al. 2000; Kalfoun et al. 2002). This is because
these elements are thought to have low

Fig. 3.3 Non-validity of
two popular geochemical
discrimination diagrams
(Pearce and Cann 1973)
when applied to potassic
igneous rocks. Data from
SHOSH2. In (a), fields
A + B = low-K
tholeiites (LKT),
B + C = calc-alkaline
basalts, B + D = ocean-floor
basalt. In (b), WPB
within-plate basalts, LKT
low-K tholeiites, OFB
ocean-floor basalts, CAB
calc-alkaline basalts. From
Müller et al. (1992a)
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solubilities in the metasomatic fluids that trans-
port mantle-incompatible elements from the
subducted slab into the overlying mantle wedge
(e.g. Saunders et al. 1991). It has been suggested
also that these elements were retained in the
mantle wedge in minerals such as rutile, ilmenite,
and titanite during partial melting (Foley and
Wheller 1990; Kalfoun et al. 2002). However,
more recent studies attempt to explain the Ti
depletion of arc magmas as a result of the higher
oxygen fugacities (fO2) in subduction zones
(Lange et al. 1993; Toplis and Carroll 1995;
Dalpè and Baker 2000). At high fO2 and during
small degrees of partial melting of upper mantle
material, the HFSE, such as Ti, are preferentially
retained in refractory rutile phases. Experimental
studies by Colasanti et al. (2011) suggest that,
with decreasing fO2, hydrogen may substitute
into rutile as hydroxyl (OH−), thus increasing its
solubility. Generally, higher temperatures are
required to melt Ti-bearing phases when fO2 is
higher, thus producing Ti depletion in the
potassic melts derived from subduction zones
(Edwards et al. 1994). Other studies suggest that
the HFSE depletions in arc magmas are caused
by the precipitation of HFSE-bearing phases as
the melt migrates upwards through the mantle

wedge, while simultaneously dissolving phases
with relatively low HFSE abundances (Kelemen
et al. 1990; Woodhead et al. 1993).

More recently, the results of Ionov and Hof-
mann (1995) suggest that amphibole is an
important host mineral for Nb and Ta in the upper
mantle, and may control the development of
negative Nb–Ta anomalies in arc magmas (Tie-
polo et al. 2000). Ionov and Hofmann (1995)
postulated a model in which fluids, generated by
dehydration of the subducted oceanic slab, ascend
through the mantle wedge and precipitate
amphiboles. Niobium and Ta are transferred with
these fluids into the mantle wedge, where these
elements are partitioned into crystallizing amphi-
bole, thus inducing low Nb and Ta concentrations
in the residual fluid. As the residual fluids migrate
further, they may induce partial melting in
high-temperature regions of the mantle wedge,
thus producing melts with negative Nb and Ta
anomalies (Ionov and Hofmann 1995).

In view of the discussions above, the use of
geochemical discrimination diagrams in isolation
from other lines of evidence for tectonic setting is
never recommended. Wherever possible, geo-
chemistry should be combined with other geo-
scientific information, and attempts to combine

Fig. 3.4 Confirmation of shoshonitic affinities of rocks
used in this study. Diagram from Pearce (1982), data from
SHOSH2. Note that only a minority of samples in

SHOSH2 have determinations for Ta, Yb, Ce and/or Th
and can thus be plotted on this diagram. From Müller
et al. (1992a)
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all these lines of evidence into an expert-system
should be made (Pearce 1987). However,
understanding of potassic igneous rocks is at
present insufficiently advanced for such a
sophisticated approach. The pilot study presented

here, therefore, attempts to show that potassic
igneous rocks from different tectonic settings are
geochemically distinct, and then uses this to erect
discrimination diagrams for the tectonic settings
of older potassic igneous rocks.

Fig. 3.5 Representative
chondrite-normalized
spidergram patterns for
potassic igneous rocks from
the five tectonic settings
recognized in this study.
Element order and
normalizing factors after
Thompson (1982).
a Continental arc settings.
b Postcollisional arc
settings. c Initial oceanic
arc settings. d Late oceanic
arc settings. e Within-plate
settings. Sources are listed
in references. From Müller
et al. (1992a)

3.3 History of Discrimination of Tectonic Setting by Geochemical Means 27



3.4 Erection of Databases SHOSH1
and SHOSH2

There are many possible options to balance the
breadth of the database used against the precision
of discrimination actually achieved. For example,
at one extreme, it might be possible to discrim-
inate the tectonic setting of all igneous rocks
irrespective of their compositions; this would be
comprehensive in its scope, but limited in its
discriminatory power. At the other extreme, it
might be possible to restrict attention to a very
narrow range of compositions (e.g. rocks within
the shoshonite field on Fig. 3.6b); this would no
doubt achieve much better discrimination, but
would be very limited in its scope. In general, the

more diffuse (less internally coherent) the data-
base, the lower its discriminatory power.

There is also a multitude of options for
screening an initial database. Many authors have
used chemical screens: for example, Pearce and
Cann (1973) restrict attention to analyses with
total (MgO + CaO) contents between 12 and
20 wt%, and Pearce and Norry (1979) use those
analyses with total alkalis below 20 wt%. How-
ever, such screens are always arbitrary and arti-
ficially imposed. It is considered preferable here
to embrace the entire natural compositional range
of an igneous suite as far as possible. The major
exception, where the argument for screening is
irrefutable, is in isolating chemical differences
that are due to tectonic setting (that is, reflect the
nature of the source region and magma

Fig. 3.5 (continued)
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generation processes within it), from those that
reflect the subsequent history of the magma
(magmatic differentiation or accumulation, sec-
ondary alteration or weathering, etc.). This usu-
ally requires restricting the rocks within a
database to fresh and primitive samples.

This book attempts a compromise in both the
breadth of the database used and in its screening
so that it is sufficiently broad in scope but still
provides critical discriminatory power. Over 100
published references containing relevant data
were first identified by combining traditional

(manual) and computerized literature search,
using keywords such as “shoshonitic”, “K-rich”,
and “potassic”. Bibliographic indexes searched
include Mineralogical Abstracts, Geological
Abstracts and the CD-ROM version of GeoRef.
Some large existing source databases such as
IGBA, LAMPDA (Rock 1991), the ultrapotassic
rocks database of Foley et al. (1987), and PET-
CHEM (Australian Bureau of Mineral Resour-
ces) were also searched. Data from all these
sources were supplemented by 50 new high-
precision analyses of potassic igneous rocks from

Fig. 3.6 Established
classification diagrams
illustrating the range of
compositions in the filtered
database SHOSH2. a TAS
diagram recommended by
the IUGS Subcommission
on Igneous Rock
Systematics (Le Maitre
1989). b K2O–SiO2

diagram (Peccerillo and
Taylor 1976a) now widely
adopted in the literature;
this differs in essence from
the equivalent IUGS
diagram only in the
absence of the top three
fields. Analyses have been
recalculated to 100 % free
of volatiles before plotting
as wt% in both diagrams.
From Müller et al. (1992a)
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Australia and Papua New Guinea for a compre-
hensive suite of up to 35 major and trace ele-
ments. Methods outlined by Rock (1988, 1991)
for the compilation of petrological databases
were used to validate and check the quality of the
data, to classify them consistently, and to elimi-
nate duplicates. Altogether, this yielded an initial
global database (SHOSH1) comprising 2222
analyses of potassic igneous rocks for up to 11
major and 24 trace elements, all classified
according to igneous province, occurrence (i.e.
suite or volcano), age, and tectonic setting.
Author’s published descriptions and classifica-
tions of these features were adhered to, except in
cases of significant inconsistency. SHOSH1
includes many relatively K-poor (calc-alkaline)
compositions coeval with potassic igneous rocks,
but is not intended to cover the whole spectrum
of orogenic volcanic rocks from low-K to
high-K.

SHOSH1 was then carefully filtered and
checked as follows to generate a final working
database (SHOSH2) of 497 analyses (for the
same range of 35 elements):

1. Age: All pre-Cenozoic analyses were
eliminated.

2. Alteration: All analyses with >5 wt%
loss-on-ignition (LOI) were eliminated. This
limit was not entirely arbitrary, but marked a
natural break in the rocks in SHOSH1
between apparently fresh and more weathered
or altered samples.

3. Primitive Chemistry: To eliminate evolved
and cumulate samples, as mentioned above,
all analyses with mg# outside the range
0.5–0.8 were filtered out.

4. Potassic versus Ultrapotassic: A more
complex and subjective decision involved
whether to retain ultrapotassic as well as
potassic rocks. Ultrapotassic rocks commonly
contain leucite, whereas potassic rocks, such
as shoshonites, normally do not. Fortunately,
an exhaustive global survey of these already
exists (see Foley et al. 1987), and their defi-
nitions are outlined in Chap. 2. Although
orogenic ultrapotassic rocks are considered in
this study, the ultrapotassic lamproites and

kamafugites have been excluded, as discussed
in Chap. 2.

5. Outliers: Outlying compositions not only
reduce the internal coherence of a database
(and hence reduce the potential efficiency of
discrimination), but are quite likely to be
samples which are altered, weathered, or
otherwise unrepresentative. The analyses
which remained after stages 1–4 were there-
fore plotted on various standard classification
diagrams (e.g. Figs. 3.4 and 3.6), in order to
eliminate gross outliers. For example, two
analyses lying in the trachyte and dacite fields
on Fig. 3.6a and b were eliminated, not only
on grounds of internal self-consistency, but
also because Hf and Zr, which were expected
to be useful discriminants in this study, may
be lost via zircon fractionation from rocks
with >68 wt% SiO2 (Pearce et al. 1984).
Three analyses in the foidite field were also
eliminated.

6. Classification: To ensure logical coherence,
it was checked that the final contents of
SHOSH2 were substantially potassic
(Table 3.2), and that the minority of samples
analyzed for the appropriate elements plotted
predominantly in the shoshonitic fields on
Fig. 3.4.

The overall major-element spectrum of the
analyses in SHOSH2, and the range of compo-
sitions to which the diagrams developed in the
following sections therefore apply, are given at
the top of Fig. 3.7. The global distribution and
numbers of analyses from various suites are
quoted in Table 3.1.

Although the above compilation and screen-
ing procedures are claimed to have been as
careful and as scientifically thorough as the cur-
rent literature permits, the resultant databases
SHOSH1 and SHOSH2 are still recognized as
suffering from a number of drawbacks, including
the following:

• Homogeneity: Different published papers
quote data for completely different sets of trace
elements, and some include only major or only
trace elements. Hence, both SHOSH1 and
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SHOSH2 are unavoidably replete withmissing
data for the full set of 35 elements compiled.
Some elements such as Mo, Sb, Sn, and Cs
were not compiled at all, because data were so
few. Some published papers also fail to dis-
tinguish clearly between data which are “not
analyzed” (missing) or “not detected”, both
being variously indicated by “nd” or “zero” in
tables. It has been consistently assumed that
these indicate the absence of data.

• Analytical Differences: It is impossible to
make any allowance in a compilation such as
this for the differing precision and accuracy of
the wide range of analytical methods used in
the literature (XRF, ICP-MS, INAA, AAS,
etc.), and particularly the lower precision of
earlier data produced before the advent of the
flame photometer. Although this is unlikely to
be a problem for major elements, where at
least the internal check of 100 wt% analytical
totals is available, it is more of a problem for
trace elements, on which tectonic setting
discrimination for ancient potassic igneous
rocks must substantially depend.

• Potassic Alteration: Potassic alteration is a
widely recognized phenomenon in mineral-
ized igneous systems, including porphyry
copper and orogenic gold deposits. For cer-
tain gold-associated potassic igneous rocks
compiled in SHOSH1, it can be shown that
some high K2O values are not primary, but
alteration-induced (e.g. Porgera; Rock and

Finlayson 1990). Although screening steps 2,
3, and 5 above are likely to have minimized
this problem, there are simply insufficient
descriptive (e.g. petrographic) data in most
source references to determine the extent of
hydrothermal alteration (and weathering) in
individual samples incorporated into
SHOSH1. Consequently, SHOSH2 may
contain some analyses whose high K contents
are at least partly due to secondary processes
rather than primary enrichment.

• Initial Oceanic Arc Setting: Further difficul-
ties are presented by the initial oceanic arc
setting and whether it should be included at
all. There is only one example of this suite
(the Mariana Arc), which raises questions
about its representativeness. Moreover, most
available analyses from this one suite were
eliminated by the above screening proce-
dures, whereupon remaining data in SHOSH2
then included only one potassic rock
(Table 3.2) and plotted outside the shoshonite
field on Fig. 3.4. It was eventually decided to
retain the setting on the grounds that the
unscreened data-set in SHOSH1 shows clear
potassic affinities—one of 51 analyses lies in
the absarokite and three in the TAS high-K
basaltic andesite field on Fig. 3.6b, and all
five analyses in the trachyandesite field on
Fig. 3.6a are potassic. Nevertheless, the effi-
ciency of discrimination for this particular
setting is recognized as being limited.

Table 3.2 Numbers of sodic, potassic, and ultrapotassic rock analyses included in final filtered database SHOSH2

Tectonic setting Sodica Potassica Unassigneda Ultrapotassicb Totalc

Continental arc 0 60 36 42 96

Postcollisional arc 0 17 153 2 170

Initial oceanic arc 0 1 25 0 26

Late oceanic arc 0 47 42 20 89

Within plate 0 85 26 54 111

Totals 0 209 285 118 492

From Müller et al. (1992a)
aGeneral definition of IUGS (Le Maitre 1989): “sodic” means (Na2O—4.0 wt%) > K2O, “potassic” means Na2O < K2O;
otherwise unassigned
bDefinition of Foley et al. (1987): K2O > 3.0 wt%, MgO > 3.0 wt%, and K2O/Na2O > 2
cSum of sodic, potassic and unassigned analyses; five analyses of the 497 in SHOSH2 do not have values for Na2O
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The ideal approach to the present problem would
be to generate a more self-consistent database.
This would comprise new data for fresh samples
chosen carefully and at first hand, from intimate
geological and petrographical knowledge of all
the studied suites of rocks, and analyzed for
exactly the same set of critical elements by the

same laboratory and analytical techniques.
Unfortunately, to generate such a database of the
size of SHOSH1 (2222 analyses) is not a
short-term option. The present work can there-
fore only be regarded as a pilot study, pending
the availability of a database which approaches
this ideal.

Fig. 3.7 Suggested
flow-chart for separating
unknown samples of
potassic igneous rocks into
the five investigated
tectonic settings. In order to
achieve a maximum
discrimination effect, the
following scheme is
recommended: 1 Plot
unknown samples on
Fig. 3.9a, e and/or f to
separate within-plate
potassic igneous rocks.
2 Plot non-within-plate
samples on Fig. 3.9b or
3.10a to separate oceanic
arc rocks. 3 Plot oceanic
arc potassic igneous rocks
on Figs. 3.9c and/or 3.10b
to separate those from
initial and late settings.
4 Plot remaining samples
on Figs. 3.9d and/or 3.10c
to discriminate between
continental and
postcollisional arc potassic
igneous rocks. From Müller
et al. (1992a)
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3.5 Discrimination of Tectonic
Setting by Multivariate
Statistical Methods

Multigroup linear discriminant analysis is the
statistical method that optimizes separation
between several groups of multivariate data. Le
Maitre (1982) and Rock (1988) provide details of
the method in a geological and specifically petro-
logical context, and Pearce (1976) gives a partic-
ularly relevant application in separating basalts
from different tectonic settings. Multigroup linear
discriminant analysis does so by maximizing the
ratio of between-groups to within-group vari-
ances. The raw data are first recast into a set of
discriminant functions, namely linear weighted
combinations of the measured major and/or trace
element variables. There are N − 1 discriminant
functions for N groups of data, and for viability
there should be at least N × M rock analyses
(samples) in the database, where M is the number
of variables (major and trace elements) to be used
in the discriminant functions. Attempting to dis-
criminate five tectonic settings, will, therefore,
lead to four discriminant functions, and the total of
497 potassic igneous rock samples in SHOSH2 is
sufficient to allow any combination of the up to 35
measured major and trace elements to be used as
discriminating variables. Figure 3.6 shows two
established classification diagrams illustrating the
range of compositions in the filtered database
SHOSH2.

The main problem in applying multigroup
linear discriminant analysis to SHOSH2 arises
from the missing data referred to in Sect. 3.4.
Multigroup linear discriminant analysis requires
a complete and consistent data-matrix: that is,
with a measured value in every sample for every
element to be incorporated in the discriminant
functions. To generate such a data-matrix from
SHOSH2, samples or elements with missing
values must be eliminated, and obviously there is
no unique solution to this process. Table 3.3
therefore presents the results of two end-member
runs of multigroup linear discriminant analysis;
one using major elements, for which 486 of the

497 incorporated potassic volcanic rocks have
been analyzed (Table 3.3a); and one based on the
optimum (i.e. largest possible) combination of
samples and immobile elements (Table 3.3b).

Initial results showed that multigroup linear
discriminant analysis can distinguish potassic
igneous rocks from different tectonic settings, but
with varying degrees of efficiency. Careful
examination then identified several complete sets
of analyses which were consistently misclassi-
fied. One of these was Cundari’s (1979) analyses
for the Sabatini lavas, assigned by him as
within-plate; these were all classified by the
multigroup linear discriminant analysis as conti-
nental arc, the setting assumed by all other
authors (e.g. Civetta et al. 1981) concerned with
the Roman potassic igneous rocks, and their
assignment was therefore adjusted in SHOSH2.
Other datasets which split between two or more
tectonic settings were predictably those for which
ambiguities were already known to apply, for
example:

• Potassic volcanic rocks of Sierra Nevada
(California) and parts of Wyoming were split
between the within-plate and continental arc
settings, either of which are perfectly admis-
sible interpretations for their tectonic setting
(Van Kooten 1980; Dodge and Moore 1981;
Wakabayashi and Sawyer 2001).

• Potassic igneous rocks from Chile and Peru
were misclassified as postcollisional, possibly
because they are sited away from the trench
and may have ascended through thick conti-
nental crust (Thorpe et al. 1976; Dostal et al.
1977a, b; Kontak et al. 1986).

• Potassic igneous rocks from Costa Rica were
also misclassified as postcollisional, but were
already known to be geochemically anoma-
lous (Reagan and Gill 1989).

All these observations, far from undermining the
basis of the treatment, are therefore considered to
confirm very clearly that the multigroup linear
discriminant analysis defines real compositional
differences.
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Table 3.3 Geochemical differences between potassic igneous rocks in five tectonic settings, revealed by multigroup
discriminant analysis

(a) Based on major elements (486 samples divided among five tectonic settings)a

Dependent variable canonical coefficients (standardized by within-group pooled standard deviations)

Discriminant function 1 2 3 4

TiO2 0.772 0.061 0.237 0.788

Al2O3 0.092 0.050 0.804 0.352

Fe2O3 −0.407 −0.211 −0.943 −0.394

MgO 0.511 0.136 0.904 −0.756

CaO −0.270 −0.558 0.248 0.084

Na2O 0.061 0.293 0.230 −0.916

K2O 0.298 −0.654 0.690 −0.685

P2O5 0.270 0.235 −0.373 0.209

Prediction success: observed settings (rows) by predicted settings (columns)b

Predicted Observed totals

CAP PAP IOP LOP WIP

Observed CAP 52 19 6 8 11 96

PAP 1 154 6 7 1 169

IOP 0 0 21 0 0 21

LOP 11 2 15 61 0 89

WIP 8 13 2 0 88 111

Predicted totals 72 188 50 76 100 486

(b) Based on maximum samples for immobile elements (150 samples divided among four tectonic settings)c

Dependent variable canonical coefficients (standardized by within-group pooled standard deviations)

Discriminant function 1 2 3

TiO2 −0.670 0.598 −0.656

P2O5 0.409 0.406 0.057

Y 0.074 0.528 0.677

Zr −0.779 −0.755 0.201

Nb −0.181 −0.093 0.682

Ce 0.125 −0.543 −0.209

Prediction success: observed settings (rows) by predicted settings (columns)b

Predicted Observed totals

CAP PAP LOP WIP

Observed CAP 18 7 10 4 39

PAP 6 31 4 0 41

LOP 0 23 26 0 49

WIP 7 1 0 13 21

Predicted totals 31 62 40 17 150

CAP continental arcs, PAP postcollisional arcs, IOP initial oceanic arcs, LOP late oceanic arcs, WIP within-plate settings
aBoth SiO2 and LOI are omitted from this table to minimize the closure problem (Le Maitre 1982; Rock 1988). A check was also made to
ensure that inclusion of SiO2 did not significantly affect the classification efficiency
bIn prediction success tables, bold figures indicate analyses that are correctly assigned to their tectonic setting by the discriminant functions;
e.g. in Table (b), 18 of 39 CAP analyses are correctly assigned by their chemistry whereas 10 are misassigned to the LOP setting
cThis table is a compromise between excessively limiting the number of samples and elements incorporated into the multigroup
discriminant analysis; other important immobile elements (Hf, Ta, Th) were excluded outright because data were insufficient. Only four
tectonic settings can be distinguished because no potassic igneous rocks from IOP settings (i.e. Mariana Islands) have been analyzed for the
required element combination
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The final results of the multigroup linear dis-
criminant analysis, after reassignment of these
initially misclassified analyses, are summarized
in Table 3.3a and Fig. 3.8. In summary, 54 % of
continental arc, 100 % of initial oceanic arc,
67 % of late oceanic arc, 91 % of postcollisional
arc, and 79 % of within-plate potassic igneous
rocks can be correctly attributed to their tectonic
setting from their major-element chemistry alone.
In more detail, the minimal misclassifications of
initial oceanic arc samples indicates that these are
very distinctive compositions, probably due to
their origin by chlorite dehydration melting in a
relatively cool subduction zone as suggested by
Till et al. (2012), and as evident from Fig. 3.6b.
Conversely, the relatively large misclassification
of continental arc with respect to postcollisional
arc samples indicates that the two groups are
geochemically similar. In Table 3.3b, the per-
centages of correctly classified analyses are pre-
dictably lower, because fewer variables have
been employed on an unavoidably smaller
data-set, but the pattern is similar. Table 3.3a is
of interest in pinpointing geochemical differences
attributable to a tectonic setting in young potassic

igneous rocks not affected by potassic alteration,
and hence when seeking genetic explanations.
Table 3.3b is likely to be applicable to ancient
potassic igneous rocks, where alteration and
metamorphism effects are more likely, because it
relies on immobile elements alone.

3.6 Discrimination via Simple
Geochemical Diagrams

Since Fig. 3.8 and Table 3.3 represent the best
possible separation between the five groups that
can be achieved on a two-dimensional diagram or
by multivariate calculation, it is clear that no sin-
gle graphical or mathematical treatment is likely
to be adequate to assign an individual potassic
igneous rock analysis to its tectonic setting. Any
multigroup linear discriminant treatment which
includes all five settings will inevitably dissipate
much of its power separating settings which are
most distinctive, in turn leaving relatively little
discriminatory power to separate the remainder.
A hierarchical discrimination scheme is therefore

Fig. 3.8 Discrimination diagrams for potassic igneous
rocks from different tectonic settings, based on multigroup
linear discriminant analysis using: a major-elements,
b immobile elements only. The X and Y axes respectively
plot the first two of the discriminant functions (canonical

vectors or factors) which contribute most to the multidi-
mensional group separation. Standardized versions of the
weights (canonical coefficients) used to calculate these
discriminant functions are given in the first two columns
of Table 3.3, respectively. From Müller et al. (1992a)
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appropriate, in which the most distinctive settings
are successfully stripped out, allowing each new
discriminatory criterion in turn to target those
subtle distinctions to which it is most suited. Since
multigroup linear discriminant analysis is a rela-
tively complex mathematical technique, and
because its requirement of a full data-matrix is
commonly impossible to meet (wherever litera-
ture data are involved), a hierarchical set of dia-
grams based on more conventional bivariate and
triangular plots, rather than multivariate plots, was
developed (Müller et al. 1992a).

The scheme is based as much as possible on
immobile element ratios, including triangular
plots, rather than absolute values, since such ratios
are not only less affected by inter-laboratory
variations, and easier to measure accurately, but
are also theoretically unaffected by simple dilution
or concentration affects such as the addition or
removal of CO2 ± H2O during weathering, meta-
morphism and/or hydrothermal alteration.Most of
the elements used in the developed diagrams are
mantle-incompatible as well as immobile, so that
their ratios are also little affected by fractionation
or accumulation of major rock-forming minerals,
and hence reflect primary source differences, such
as those due to tectonic setting.

A first set of diagrams (Fig. 3.9) was based on
the multigroup linear discriminant analysis itself,
by using ratios of elements that have the highest
absolute but opposite canonical coefficients in
Table 3.3. Adequate separation could not be
achieved in some cases using simple ratios of
immobile elements alone, but improved markedly
when Al2O3 was used as a normalizing factor;
since Al2O3 is the least mobile of the major ele-
ments, this result is considered to be reasonably
satisfactory. Simple ratio diagrams (e.g. Fig. 3.9)
can never achieve the same separation efficiency
as Fig. 3.8 (or Table 3.3), because they necessarily
use less of the total multivariate information in the
data, yet they are more accessible for routine use.
A second set of diagrams (Fig. 3.10) was devised
more-or-less empirically, to take account of the
more exotic trace elements, notably La, Ce, and
Hf, which are only available for a minority of
analyses in the database SHOSH2.

Together, these analyses lead to the hierar-
chical scheme outlined in Fig. 3.7. In the first
step, within-plate potassic igneous rocks can be
separated from the four arc-related settings, by
plotting data on Fig. 3.9a, e, or f, respectively;
samples with TiO2 contents above 1.5 wt%, Zr
above 350 ppm, or Hf above 10 ppm can be
considered with particular confidence as
within-plate types (cf. Müller et al. 1992a). More
recent work confirms the distinctly elevated
HFSE concentrations of potassic igneous rocks
derived in within-plate settings (Churikova et al.
2001; Kontinen et al. 2013; Rao et al. 2014). In
the second step, remaining samples should be
plotted on Fig. 3.10a, which discriminates oce-
anic arc from continental and postcollisional arc
settings with almost 100 % efficiency, based on
the lower La and Hf contents of the former.
Depending on the result in this step, remaining
samples are plotted in the third and final step on
either of Fig. 3.9c or 3.10b, which separate initial
from late oceanic arc potassic igneous rocks
based essentially on the lower La content of the
former; or on Fig. 3.9d or 3.10c, which separate
continental from postcollisional potassic igneous
rocks based on slightly lower Ce/P ratios in the
latter. However, since both the final settings
involve destruction of oceanic crust in a sub-
duction setting, they not unexpectedly generate
potassic igneous rocks of similar composition,
and therefore overlaps are unavoidable.

3.7 Theoretical Basis
for Discrimination Between
Potassic Igneous Rocks
in Different Tectonic Settings

The discussion attempts to provide a theoretical
foundation for the empirical observations in
previous sections. It examines those factors
which can, in principle, be expected to induce
differences between potassic igneous rocks
erupted in different tectonic settings, and shows
how the geochemical differences outlined above
can be derived. As genetic processes in arc and
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Fig. 3.9 Hierarchical set of discrimination diagrams for
potassic igneous rocks from different tectonic settings,
based on simple ratios of “immobile” elements revealed
by discriminant analysis (Table 3.3) as contributing most
effectively to group separation. As illustrated further in
Figs. 3.7 and 3.9a should be used first to extract

within-plate potassic igneous rocks (Fig. 3.9e and/or f
are alternatives); Fig. 3.9b should then be used to separate
oceanic arc from continental and postcollisional arc
settings, with the former distinguished as initial or late
using Fig. 3.9c, and the latter using Fig. 3.9d. From
Müller et al. (1992a)
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within-plate settings are so distinct, arc potassic
igneous rocks are discussed first.

Despite the amount of literature published
about high-K rocks, the petrogenetic processes

producing the various types of potassic igneous
rocks are still debated (Peccerillo 1992; Miller
et al. 1999; Srivastava et al. 2009; Guo et al.
2013; Lu et al. 2013a; Tan et al. 2013a; Bucholz

Fig. 3.10 Discrimination diagrams for potassic igneous
rocks from different tectonic settings, partly based on the
more exotic trace elements. Numbers of points are much
less than on Fig. 3.9 owing to missing data. Figure 3.10a
complements Fig. 3.9b in separating continental and
postcollisional arcs from oceanic arcs; Fig. 3.10b

complements Fig. 3.9c in separating initial and late
oceanic arcs; Fig. 3.10c complements Fig. 3.9d in
separating continental and postcollisional arcs. The ratio
TiO2/100 in Fig. 3.10a and the ratios TiO2/10 and P2O5/
10 in Fig. 3.10b are calculated in ppm. From Müller et al.
(1992a)
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et al. 2014; Liu et al. 2014; Wang et al. 2014;
Aghazadeh et al. 2015). However, there is a
general consensus that potassic magmas cannot
be derived by partial melting of normal mantle
peridotite, but require heterogeneous mantle
sources which have been metasomatically enri-
ched in LILE and LREE (Edgar 1987; Foley and
Peccerillo 1992; Guo et al. 2013; Kuritani et al.
2013; Tan et al. 2013b; Bucholz et al. 2014;
Aghazadeh et al. 2015; Yang et al. 2015).

Potassic igneous rocks are commonly enriched
in LILE, LREE, volatiles such as H2O, and halo-
gens, particularly Cl and F (Aoki et al. 1981;
Bailey and Hampton 1990; Foley 1992, 1994;
Zhang et al. 1995; Müller et al. 2001; Guo et al.
2006; Chevychelov et al. 2008; Zajacz et al. 2010;
Melluso et al. 2012; Yang et al. 2015). However,
average estimated maximum H2O contents of
typical mantle material, such as garnet-lherzolite
or eclogite, are generally <1.2 wt% (Leech 2001)
and single-stage partial melting of such rocks
would not produce the volatile-rich and fertile
melts with sufficient H2O contents capable to
produce porphyry copper-gold mineralization (i.e.
up to 9 wt% H2O; Lu et al. 2013a). Therefore,
significant exogenous water (>3 wt%) must be
added to the mantle source in order to produce the
hydrous melts required (Yang et al. 2015). The
exogenous water, as well as the LILE, LREE and
halogens, are mainly incorporated in hydrous
phenocrysts such as phlogopite and/or amphibole
(Aoki et al. 1981; Fuge et al. 1986; Righter et al.
2002; Yang and Lentz 2005; Sarjoughian et al.
2014; Teiber et al. 2015). As a result, portions of
the Earth’s upper mantle rich in phlogo-
pite ± clinopyroxene are considered to be impor-
tant in the genesis of potassic melts (Edgar and
Arima 1985; Foley 1992; Till et al. 2012; Guo
et al. 2013; Lu et al. 2013a). Meen (1987) con-
siders that potassic igneous rocks form by low
degrees of partial melting, under hydrous condi-
tions in a low heat-flow environment, of upper
mantle lherzolite that has been metasomatically
enriched in such elements as LILE and LREE. In
arc settings, the partial melting may be achieved
by modification of mantle geotherms in proximity
to the cold subducted slab (Taylor et al. 1994),
while the metasomatic enrichment may be

achieved by overprinting and veining of the
mantle wedge by either volatile- and
LILE-enriched fluids (Saunders et al. 1980, 1991;
Grove et al. 2002; Till et al. 2012) and/or by actual
alkali, low-temperature, LILE- and
LREE-enriched partial melts (i.e. adakites)
derived during dehydration of the subducted
oceanic slab (Pearce 1983; Bailey et al. 1989; Sun
and McDonough 1989; Zhang et al. 1995; Sajona
et al. 2000; Vigouroux et al. 2008; Campbell et al.
2014;Wang et al. 2014). It is still debated whether
these metasomatizing fluids or melts are derived
from subducted sediments (Rogers and Setterfield
1994; Prelevic et al. 2010; Mallik et al. 2015) or
from altered oceanic crust (Nowell et al. 2004;
Gaffney et al. 2007). Dehydration of the serpen-
tinized subducted oceanic slab might supply suf-
ficient free H2O to trigger partial melting at the
H2O-saturated solidus in the mantle wedge (Till
et al. 2012). Nevertheless, identification of the
metasomatic material from the various derivations
is quite difficult (Prelevic et al. 2010; Kuritani
et al. 2013). However, metasomatic phlogopite
veins documented in ultramafic mantle xenoliths
from grab samples of submarine seamount
trachybasalts in the Bismarck Sea, Papua New
Guinea, provide a direct witness of these enriched
mantle sources (Franz et al. 2002; Franz and Ro-
mer 2010). Detailed studies of altered mantle
xenoliths (Bailey 1982; Menzies and Hawkes-
worth 1987; Gregoire et al. 2000; Franz et al.
2002; Franz and Romer 2010) reveal that the
metasomatically introduced volatiles, LILE, and
LREE are preferentially sited in hydrous minerals
such as phlogopite, amphibole, and apatite which
are concentrated either in vein networks or dis-
persed throughout the upper mantle peridotite
(Peccerillo 1992; Ionov and Hofmann 1995;
Gregoire et al. 2000; Franz et al. 2002; Franz and
Romer 2010; Aghazadeh et al. 2015). These
minerals have lowermelting temperatures than the
surrounding mantle peridotite, and hence partial
melting may preferentially affect these metaso-
matic hydrous veins, thus generating potassic
magmas (Prelevic et al. 2005; Tommasini et al.
2011; Aghazadeh et al. 2015).

Once partial melting has been initiated, the
interplay of two further factors is then generally
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considered to influence the chemistry of all
subduction-related melts actually produced:

• Differing rates and/or angles of the subduc-
tion process (Saunders et al. 1980; Rock et al.
1982; Kay and Abbruzzi 1996; Kay et al.
1987, 2005; Stern et al. 2011).

• Differing relative inputs from at least three
identified source components (Wheller et al.
1986; Vigouroux et al. 2008; Till et al. 2012;
Lu et al. 2013a; Aghazadeh et al. 2015):
1. Subducted oceanic crust, characterized by

high LILE/LREE ratios (e.g. high Sr/Nd
and Rb/Nd) and high LILE/HFSE ratios
(e.g. high Ba/Nb and Th/Ta) (Class et al.
2000; Shen et al. 2008).

2. Subducted marine sediment, characterized
by low Sr/Nd (<7), Ce/Pb (<5), Ba/La
(<50), and Nb/La ratios (<0.5), but high
Th/Ta (>100), Th/La (>1.5), Th/Yb (>100),
and Ba/Nb ratios (>130) (Rogers et al.
1985; Miller et al. 1999; Woodhead et al.
2001; Liu et al. 2014; Mallik et al. 2015),
high Pb, Ba, and La contents (Sun and
McDonough 1989; Wang et al. 2014), and
by negative Eu anomalies in chondrite-
normalized REE spidergram plots
(McLennan and Taylor 1981; Guo et al.
2013; Liu et al. 2014) that are unrelated to
plagioclase fractionation (Miller et al.
1999).

3. The overlying mantle wedge, character-
ized by low Rb (<50 ppm) and especially
Pb contents (Ellam and Hawkesworth
1988; Bucholz et al. 2014).

Melts may be further influenced by the nature of
the crust through which they must pass before
eruption, if any contamination or assimilation
takes place. There is also the classic increase in K
in arc-related suites with increasing distance from
the subduction trench, the cause of which remains
controversial. This may be accompanied by
sympathetic increases in Th, Ta, and Nb (cf.
Brown et al. 1984), attributed by some to the
derivation of liquids from heterogeneous mantle
which changes characteristics from subduction-
related to within-plate type away from the trench.

A schematic cross-section showing the distribu-
tion of the elements in a subduction zone (conti-
nental arc) is illustrated in Fig. 3.11.

On this basis, it is possible to account for some
of the recorded differences among the four arc
settings discussed above. As indicated in Figs. 3.9
and 3.10, continental and postcollisional arc
potassic igneous rocks are enriched in Zr, Hf, Nb,
and LREE; they also have higher Sr and Ba con-
tents, higher K/Na, Nb/Y (>0.55), and higher
LREE/HREE ratios than oceanic arc potassic
igneous rocks (cf. Fig. 3.6). This might be
explained by a greater role for the alkali melt-
induced metasomatism of the mantle wedge,
which is believed to yield stronger enrichments in
these particular elements than fluid-induced
metasomatism (Bailey et al. 1989; Zhang et al.
1995; Sajona et al. 2000; Ishimaru et al. 2007;
Wang et al. 2014). Partial melts derived from
subducted sediments are characterized by rela-
tively high LREE contents (Guo et al. 2013). Such
an augmented role might also further explain the
progressive transition of potassic igneous rocks to
more strongly alkaline (i.e. adakitic) magmatism
in some postcollisional arc settings (Oyhantçabal
et al. 2007; Chen et al. 2015; see Sect. 4.2). Chen
et al. (2015) suggest that high-K rocks from
postcollisional arcs are associated with under-
plating of subduction-modified basaltic material
beneath the lower crust, resulting in the transfor-
mation into amphibolites and eclogites. Partial
melting of this thickened lower crust produces the
typical adakitic magma compositions that char-
acterize potassic igneous rocks from postcolli-
sional arc settings (Chen et al. 2015). By contrast,
high-K magmas derived in continental arcs are
formed by partial melting, assimilation, storage,
and homogenization (MASH) processes (Hou
et al. 2009, 2011; Chen et al. 2015). The passage
of continental and postcollisional potassic igneous
rocks through thick continental crust, as opposed
to relatively thin depleted MORB in the case of
oceanic arc potassic igneous rocks, could also
account, in part, for their higher LILE and LREE
contents (Müller and Groves 1993). However,
enrichments in LREE can also be explained by
metasomatic fluids enriched in volatiles such as
chloride, with chloride complexes preferentially
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transporting the LREE (Campbell et al. 1998; Pan
and Fleet 2002; Pourtier et al. 2010; Tropper et al.
2011).

Continental arc potassic igneous rocks have
slightly higher LILE (e.g. Rb, Sr, Ba) and Ce, but
lower Nb and P contents, than postcollisional arc
potassic igneous rocks: see positive Sr anomalies
of the former on Fig. 3.5a. These differences are
not easy to explain, but may result from the
above-mentioned progressive transition to more
alkaline magmatism in some postcollisional arcs
(cf. Coulon et al. 2002; Oyhantçabal et al. 2007).

Oceanic (island) arc potassic igneous rocks
generally have the lowest concentrations of LILE
(i.e. <310 ppm Rb, <1500 ppm Sr, <1500 ppm
Ba), LREE (e.g. <115 ppmLa, <150 ppmCe), and
HFSE (e.g. <300 ppm Zr, <20 ppm Nb, <5 ppm
Hf). They also commonly have higher Ba/Th
(>110), Ba/La (>50), Sr/Th (>70), andU/Th (>0.2)

ratios than potassic igneous rocks from continental
or postcollisional arc-settings (Woodhead et al.
2001; Guo et al. 2013; Liu et al. 2014). This may
be explained via a mainly fluid-derived metaso-
matic enrichment of the underlying mantle wedge
in oceanic arc settings (Briqueu et al. 1984; Bailey
et al. 1989; Ishimaru et al. 2007). Aqueous fluids
derived from the subducted oceanic slab carry very
little REE, Th and HFSE, but introduce significant
amounts of LILE into themantle wedge (Guo et al.
2013). A fluid-dominated metasomatic enrich-
ment does not significantly increase LREE and
HFSE concentrations of mantle material because
these elements are not mobilized due to their
retention in insoluble phases in the subducted plate
(Briqueu et al. 1984; Bailey et al. 1989; Ishimaru
et al. 2007). The HFSE are insoluble in
subduction-derived fluids (Woodhead et al. 1993),
but can be transported in melts derived from

Fig. 3.11 Schematic cross section showing the main components of a continental arc and distribution of elements (see
also Müller et al. 1992a)
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subducting sediment (Class et al. 2000; Shen et al.
2008). The relatively low LILE concentrations of
the rocks may reflect their origin in an environ-
ment where oceanic crust, derived from a depleted
mantle, has been subducted beneath the oceanic
crust of another plate. During uprise, the melts
produced in this setting must pass through a rela-
tively thin oceanic crust consisting of depleted
MORB. This could explain their very low con-
centrations of LILE compared to magmas from
within-plate settings, where the melts have to pass
through a relatively thick continental crust during
their ascent. The probability of crustal assimilation
for within-plate related potassic igneous rocks,
and a resulting enrichment in LILE, is therefore
much higher. Oceanic (island) arc potassic igne-
ous rocks can be further subdivided into two
subgroups (initial and late) based on their geo-
chemistry. Those derived in initial oceanic arc
settings are defined by unique geochemical com-
positions with very low LREE contents (<42 ppm
La, <33 ppm Ce), and very low P2O5/Al2O3 ratios
(<0.01). Their unique geochemistry is explained
as the product of chlorite dehydration melting in a
cool subduction zone (Till et al. 2012). Chlorite
can form when water is released during the dehy-
dration of serpentine and amphibole in the sub-
ducting oceanic crust (Grove et al. 2006; Iwamori
2007) and/or from the dehydration of subducted
sediments in the mantle wedge nose at <80 km
depth (Till et al. 2012). In a cool subduction zone
like the northern Marianas, no free H2O is avail-
able to trigger melting until chlorite breakdown in
the lowermost mantle wedge and the dominant
form of melting at sub-arc depths is likely to be
chlorite dehydration melting (Till et al. 2012).

For within-plate settings, the partial melting
required to generate potassic igneous rocks may
be caused by processes such as pressure-release
during intraplate rifting (Nelson et al. 1986; Leat
et al. 1988), or by asthenospheric upwelling
associated with lithospheric thinning. The
required metasomatic enrichment of the source,
in turn, may be induced by the local invasion of
regions within the subcontinental mantle by

incompatible-element-enriched mantle-plumes.
The plumes are probably derived from sources
near the 650-km seismic discontinuity or near the
core-mantle boundary (Ringwood 1990), and
have heads that can be as large as 400 km2

(Halliday et al. 1990; Montelli et al. 2004).
Alternatively, the enrichment may reflect
pre-existing, long-term, intrinsic heterogeneities
within the upper mantle and bear no relation to
the actual melting event (Schiano et al. 1997;
Kogiso et al. 2004). At any rate, small degrees of
partial melting of phlogopite-bearing mantle
peridotite, at depths below the level of amphibole
stability and in the presence of CO2, are believed
to generate potassic melts (Nelson et al. 1986;
Prelevic et al. 2005; Tommasini et al. 2011; Guo
et al. 2013; Hudgins et al. 2015). The fact that
within-plate potassic igneous rocks show the
highest HFSE contents (up to 5.50 wt% TiO2,
840 ppm Zr, 74 ppm Nb, 30 ppm Hf) of the
investigated settings (cf. Müller et al. 1992a) and
very high Nb/Y (up to 3) and Nb/U ratios (up to
47), may reflect this assumed greater role for
CO2, which mobilizes many HFSE (Pearce and
Norry 1979; Piercey 2009; Guo et al. 2013).
Within-plate potassic igneous rocks are also
characterized by the highest LILE (i.e. up to
640 ppm Rb, 4600 ppm Sr, 9000 ppm Ba) and
LREE contents (e.g. up to 230 ppm La, 390 ppm
Ce) of all investigated settings, but geochemical
explanations for this are obscure (e.g. Foley et al.
1987, 2011).

In areas where the composition of potassic
igneous rocks results from mixing processes
between melts from both asthenospheric (charac-
terized by within-plate geochemistry) and litho-
spheric (subduction-modified) mantle sources (e.g.
Wyoming Province; see McDonald et al. 1992;
Gibson et al. 1993), the geochemical discrimination
of the tectonic setting becomes problematical. In
those areas, some asthenosphere-derived magma
plumes might have been contaminated by pockets
of subduction-metasomatized lithosphere during
ascent, whereas others remained relatively uncon-
taminated (Gibson et al. 1993).
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3.8 Conclusions

• Young potassic igneous rocks, from the five
main tectonic settings in which they occur,
have somewhat different major- and trace-
element compositions.

• Potassic igneous rocks from within-plate set-
tings—such as the western USA—are very
distinctive, due to very high concentrations of
LILE (e.g. Rb, Sr, Ba), LREE (e.g. La, Ce,
Sm) and HFSE (notably Ti, Zr, Nb, Hf).

• Potassic igneous rocks from oceanic (island)
arc settings have the lowest concentrations of
LILE, LREE and HFSE of such rocks from
all investigated settings, and those from initial
and late oceanic arc settings can be discrim-
inated by the higher P, Zr, Nb, and La con-
centrations of the latter.

• Potassic igneous rocks from continental and
postcollisional settings show the most subtle
differences, but can still be distinguished by
the slightly higher Sr, Zr, and Ce concentra-
tions of the former.

• The above-mentioned differences extend to
immobile elements, so it is possible, in prin-
ciple, to identify the tectonic setting of older
potassic igneous rocks from their geochem-
istry, even where direct geological evidence is
equivocal. This is best done in a hierarchical
set of diagrams, or by formal stepwise dis-
criminant analysis, which successively strips
off the most distinctive compositions in order
to progressively discriminate more subtle
differences.

• Potassic igneous rocks in certain continental,
postcollisional, and late oceanic arc settings
are associated with world-class deposits of
gold and/or base metals (Chaps. 6 and 7), and
hence these new discrimination methods may
be useful in exploration as well as in tectonic
and petrogenetic studies (cf. De Min et al.
2007; Dawod et al. 2010; Costa et al. 2011;
Torabi 2011; Aliani et al. 2013; Torabi et al.
2014; Orozco-Garza et al. 2013; Abbasi et al.
2014; Rao et al. 2014; Ghasemi and
Rezaei-Kahkhaei 2015; Jiang et al. 2015; Liu
et al. 2015). By identifying those older
potassic igneous rocks which have the most

favourable tectonic settings, it may be possi-
ble to identify, more efficiently, those terranes
which have enhanced economic potential for
specific styles of mineralization associated
with high-K igneous rocks (cf. Maughan et al.
2002; Bagheri et al. 2007; Mikulski 2007;
Farahkhah et al. 2010; Betsi and Lentz 2011;
Soloviev and Krivoschekov 2011; Lehmann
et al. 2013; Soloviev et al. 2013; Eyuboglu
et al. 2014; Soloviev 2014a, b, 2015; Jamali
and Mehrabi 2015). This is further discussed
in Chap. 6.
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4Selected Type-Localities of Potassic
Igneous Rocks from the Five Tectonic
Settings

4.1 Roman Province (Italy):
Example from a Continental Arc
Setting

4.1.1 Introduction

The volcanic rocks of Central Italy (Fig. 4.1) are
divided into three magmatic provinces (van
Bergen et al. 1983; Peccerillo 2005):

• In the north, predominantly acid igneous
rocks of Amiata, Roccastrada, San Vincenzo,
and Elba represent the Tuscan Province.

• In central Italy, along the western side of the
Apennine Fold Belt, the highly potassic vol-
canic centres of Vulsini, Vico, Sabatini, and
Alban Hills form the Roman Province (see
also Holm et al. 1982; Rogers et al. 1985;
Boari et al. 2009).

• Potassic volcanoes such as Roccamonfina and
Vesuvius, and the lavas of the Phlegrean
Fields and Vulture form the Campanian
Province in the south (van Bergen et al. 1983;
D’Antonio and Di Girolamo 1994; Melluso
et al. 2012).

The Pliocene-Quaternary volcanic rocks from
the Roman Province, Italy, are considered to be

typical examples of orogenic ultrapotassic rocks
as defined by Foley et al. (1987).

4.1.2 Regional Geology

Despite the potassic igneous rocks of the Roman
Province having been studied by many petrolo-
gists (e.g. Appleton 1972; Cundari 1979; Civetta
et al. 1981; Holm et al. 1982; van Bergen et al.
1983; Di Girolamo 1984; Poli et al. 1984), their
petrogenesis has been the subject of controversy
for many years (Rogers et al. 1985; Boari et al.
2009). There has also been considerable debate
concerning the tectonic setting of these rocks.
Most workers have interpreted the potassic
igneous rocks to be related to subduction beneath
the Calabrian Arc (Ninkovich and Hays 1972;
Edgar 1980), but this has been contested by
Cundari (1979). Modern studies based on stable
isotopes (Rogers et al. 1985) seem to confirm the
importance of subduction processes in the gen-
esis of these rocks.

The Vulsinian District of the Roman Province
is by far the largest in the region, covering
2280 km2 (von Pichler 1970), and is the most
intensively studied (Holm et al. 1982; Rogers
et al. 1985; Peccerillo 2005). The volcanic
activity is represented by lava flows and
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pyroclastic rocks such as tuffs and ignimbrites
(Holm et al. 1982; Boari et al. 2009).

4.1.3 Mineralogy and Petrography
of the Potassic Igneous Rocks

The potassic igneous rocks from the Roman
Province consist mainly of latites, tephrites, tra-
chytes, phonolites and leucitites (Holm et al.
1982; Boari et al. 2009).

Most of the lavas have porphyritic textures
with phenocrysts of clinopyroxene, plagioclase,
and leucite, with minor sanidine and olivine, in a
fine-grained groundmass consisting of plagio-
clase, leucite, and clinopyroxene (Holm et al.
1982; Boari et al. 2009). The more
silica-saturated latites and trachytes are charac-
terized by similar assemblages, although leucite
is absent and sanidine and quartz present; they
also have biotite phenocrysts and apatite micro-
phenocrysts (Holm et al. 1982; Rogers et al.
1985; Peccerillo 2005).

4.1.4 Geochemistry of the Potassic
Igneous Rocks

Most of the lavas from the Roman Province are
highly potassic (Conticelli and Peccerillo 1992;
Peccerillo 2005), and some can be defined as
ultrapotassic with K2O and MgO >3 wt%, and

K2O/Na2O ratios >2 (Foley et al. 1987). The
compositions (Table 4.1) normally vary from
silica-undersaturated to silica-saturated with
moderate SiO2 contents (47.0–56.0 wt%); TiO2

contents are low (<0.8 wt%) and Al2O3 contents
are variable (12.0–17.0 wt%), but can be as high
as 19.9 wt% (e.g. Rogers et al. 1985), which is
typical for subduction-related potassic igneous
rocks (Morrison 1980; Campbell et al. 2014).

The rocks have high concentrations of LILE
(e.g. up to 636 ppm Rb, up to 1812 ppm Sr),
intermediate LREE (e.g. <100 ppm La, <200 ppm
Ce), and low HFSE (<0.8 wt% TiO2, <26 ppm Y,
<14 ppm Nb, <6 ppm Hf; see Table 4.1), when
compared to those potassic igneous rocks derived
from within-plate tectonic settings (Müller et al.
1992b). Based on their geochemistry, the rocks
are interpreted to be subduction-related and they
occur in a continental-arc setting, as previously
suggested by most petrologists concerned with
the area (e.g. Edgar 1980; Rogers et al. 1985;
Boari et al. 2009). This interpretation is not con-
sistent with studies by Cundari (1979), who pro-
poses a within-plate tectonic setting for the
igneous rocks from the Roman Province. Potassic
igneous rocks from such within-plate settings are
typically characterized by very high HFSE con-
centrations (cf. Müller et al. 1993), which is not
the case in the rocks from the Roman Province
(see Table 4.1).

Fig. 4.1 Geological
overview of the Roman
Province, Central Italy.
Geological provinces:
Tuscan; Roman;
Campanian. Modified after
Holm et al. (1982) and van
Bergen et al. (1983)
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Table 4.1 Representative whole-rock major- and trace-element geochemistry of potassic igneous rocks from the
Roman Province, Central Italy

Province/deposit Vulsini,
Roman

Vulsini,
Roman

Sabatini, Roman Mount Ernici,
Roman

Mount Ernici,
Roman

Location Italy Italy Italy Italy Italy

Rock type Leucitite Leucitite Tephrite Trachybasalt Leucitite

Tectonic setting Continental
arc

Continental
arc

Continental arc Continental
arc

Continental
arc

Reference Holm et al.
(1982)

Rogers et al.
(1985)

Conticelli and
Peccerillo (1992)

Civetta et al.
(1981)

Civetta et al.
(1981)

SiO2 47.16 47.52 48.36 48.52 47.39

TiO2 0.74 0.87 0.70 0.77 0.72

Al2O3 12.46 14.52 16.80 16.35 17.85

Fe2O3 (tot) 7.49 8.44 6.95 6.87 6.03

MnO 0.11 0.14 0.13 0.15 0.13

MgO 9.22 7.38 6.57 9.03 6.36

CaO 15.41 13.15 9.85 12.03 10.53

Na2O 0.68 0.96 1.30 2.79 2.51

K2O 4.67 5.14 8.33 2.60 7.36

P2O5 0.22 0.33 0.61 0.27 0.54

LOI 1.46 1.45 0.40 0.62 0.57

Total 99.62 99.90 100.00 100.00 99.99

V 225 243 n.a. 233 233

Cr 295 138 316 490 151

Ni 116 61 74 87 58

Rb 356 425 636 112 335

Sr 784 1122 1812 848 1412

Y 23 26 26 n.a. n.a.

Zr 187 180 266 86 218

Nb 11 6 14 8 9

Ba 853 592 1202 500 892

La 62 56 88 n.a. n.a.

Ce 112 127 202 n.a. n.a.

Th 25 22 46 10 28

Ta n.a. 0.6 0.6 n.a. n.a.

Hf n.a. 5 6 3 6

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron calculated as ferric oxide. Data from
Civetta et al. (1981), Holm et al. (1982), Rogers et al. (1985), and Conticelli and Peccerillo (1992)
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4.2 Kreuzeck Mountains, Eastern
Alps (Austria): Example
from a Postcollisional Arc
Setting

4.2.1 Introduction

This region is described in more detail because
data for the potassic igneous rocks were collected
specifically for this study (cf. Müller 1993), the
tectonic setting of the rocks is complex, and their
precious-metal contents are discussed in Chap. 5.

The major components of the Eastern Alps in
Austria, and adjoining areas of Switzerland,
Italy, and Yugoslavia, are the Northern and
Southern Calcareous Alps and the Central Alps
(Fig. 4.2).

European-African plate collision and Alpine
nappe emplacement in the late Cretaceous-
Eocene were followed by a significant phase of
mafic to felsic Oligocene dyke magmatism,
mostly concentrated along a major (700 km),
east-west-trending Tertiary suture, the Periadri-
atic Lineament (Exner 1976; Michàlek et al.
2011; Konzett et al. 2012; Bartel et al. 2014).
This lineament, also known as the Insubric Line,
forms a dextrally transpressive intracontinental
branch of the Europe-Africa plate boundary
(Laubscher 1988). The Periadriatic fault sepa-
rates the Austro-Alpine and South-Alpine units
in the Eastern Alps, both of which belong to the

Adriatic microplate sensu lato (Bartel et al.
2014).

Dykes cut Austro-Alpine, South Alpine, and,
rarely, Penninic units. They range in composition
from basaltic to rhyolitic, but are mainly
calc-alkaline andesitic and basaltic. Their com-
positions change across broad zones, from tho-
leiitic and calc-alkaline in the Southeastern Alps,
to high-K calc-alkaline in the Central Alps, and
shoshonitic and ultrapotassic in the northwestern
and western sector (Beccaluva et al. 1983). The
transition from calc-alkaline to high-K alkaline
magmatism during transcurrent deformation is
common in postcollisional arc-settings, probably
suggesting the break-off of the subducting oce-
anic slab shortly after collision (cf. Oyhantçabal
et al. 2007).

4.2.2 Regional Geology

The Kreuzeck Mountains, southern Austria, are
composed of rocks of the middle Austro-Alpine
unit of the Central Alps (Fig. 4.2). These consist
of polymetamorphic crystalline basement rocks,
which are partly overlain by a lower Palaeozoic
volcanosedimentary sequence metamorphosed to
greenschist facies (Reimann and Stumpfl 1981,
1985). The area studied covers more than
600 km2 between the Möll Valley in the north
and the Drau Valley in the south, and east-west
from Iselsberg to Möllbrücke (Fig. 4.3).

Fig. 4.2 Geological overview of the Eastern Alps, Austria, showing the location of the Kreuzeck Mountains. Modified
after Reimann and Stumpfl (1985)
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The Kreuzeck Mountains are a wedge-shaped
segment of the Austro-Alpine basement units of
the Eastern Alps, south of the Penninic Tauern
Window, and situated in the suture zone between
the African and the European plates (Hoke 1990;
Bartel et al. 2014). The Kreuzeck Mountains are
subdivided into the Polinik Unit and the Strieden
Unit, which make up the northern and southern
parts, respectively (Hoke 1990; Konzett et al.
2012). These units are separated by a mylonitic
fault zone, with K/Ar mica cooling ages indicating
that tectonic transport along this fault zone com-
menced at about 90 Ma and continued until about
60 Ma (Hoke 1990). The Polinik Unit mainly
consists of medium-grade quartzo-feldspathic

schists, gneisses and metapelites with lenses of
amphibolites of up to several hundred metres in
length (Konzett et al. 2012). The Strieden Unit in
the south is composed of sillimanite-bearing
metapelites, but without any evidence for eclog-
ite-facies metamorphism (Konzett et al. 2012).
Although no quantitative age data are available,
the protoliths are estimated to be older than
Permo-Carboniferous (Lahusen 1972; Michàlek
et al. 2011). In the prevailing plate tectonic
models, the Kreuzeck Mountains form part of the
Adriatic plate which overrode South Penninic
units during the Eocene continent-continent col-
lision. These Penninic units, with oceanic me-
tasedimentary rocks, are exposed in the Tauern

Fig. 4.3 Geographic map of the Kreuzeck Mountains, Austria, showing major mining areas and the location of
shoshonitic and alkaline lamprophyres. Modified after Müller et al. (1992a)
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Window to the north (Konzett et al. 2012). The
Oligocene is characterized by several generations
of dykes and local granodioritic plutons during a
phase of extensional tectonics. This inhomoge-
neous extensional regime is followed by Miocene
compression (Laubscher 1988).

The rocks of the Kreuzeck Mountains reveal a
homogeneous pattern of deformation. Only in the
northeastern area, which is nearest to the southern
edge of the Tauern Window, are different phases
of deformation detectable (Oxburgh 1966). Pre-
dominant tectonic features are faults and fractures,
which show a dominant east-west trend. This
correlates with the strike direction of most felsic
dykes and some of the mafic dykes investigated
here, which follow zones of weakness or fracture
zones in the host rock, and implies a close con-
nection with the east-west-striking Periadriatic
Lineament.

The entire period of Oligocene orogenic
magmatism is linked to continent-continent col-
lision of the African and the European plates
after the subduction of the Penninic oceans
(Deutsch 1986). This includes the Western Alps
(Venturelli et al. 1984), and dyke swarms along
the southern margin of the European plate that
are believed to be related to northwesterly dip-
ping subduction of African oceanic lithosphere
(Beccaluva et al. 1983). This event also produced
back-arc spreading in the southwestern area
(Provence, Balearic Basin, Sardinia).

More than 60 former prospects and mines are
known from the Kreuzeck area (Friedrich 1963;
Feitzinger et al. 1995). Mining activities date back
to the Middle Ages and were mainly directed at
stratabound ores of antimony-tungsten, mercury,
and copper-silver-gold (Reimann and Stumpfl
1981; Feitzinger et al. 1995). The precious metal
mineralization occurs as sheeted quartz veins that
were mined over a distance of 200 m along strike
and dip. The quartz veins typically display collo-
form banding and/or cockade textures and contain
abundant silver sulphosalts (Feitzinger et al.
1995). Most ore deposits are in the southern part
of the Kreuzeck Mountains within a sequence of
metavolcanic and metasedimentary rocks (Lahu-
sen 1972) which extends, with tectonic

interruptions, for over 40 km along the Drau
Valley (Fig. 4.3).

Early work by Friedrich (1963) suggested a
relationship between ore deposits and Tertiary
felsic porphyritic dykes in the Kreuzeck Moun-
tains. He believed the mineralization to be of
epigenetic hydrothermal origin, related to a
hypothetical Tertiary pluton underlying the area.
Friedrich (1963) interpreted numerous small
granodioritic intrusions, as well as the lampro-
phyres and felsic dykes, as an indication of the
presence of this postulated pluton. Later inves-
tigations by Höll and Maucher (1968) interpreted
most of the antimony deposits to be
submarine-exhalative, synsedimentary in origin
(lower Palaeozoic age) and partly remobilized
during Variscian and Alpine metamorphism, an
opinion supported by Lahusen (1972). More
recently, Feitzinger et al. (1995) suggested a
metamorphic origin of the hydrothermal ore
fluids, based on stable isotope data.

4.2.3 Mineralogy and Petrography
of the Lamprophyres

Dyke rocks of the northern and central Kreuzeck
Mountains are dominated by mafic types (lam-
prophyres, basaltic dykes), whereas in the south-
ern part, most dykes are felsic (microdioritic). The
lamprophyres of the Kreuzeck Mountains are
unfoliated dykes that normally cut their host
rocks discordantly. The dykes mainly strike
northeast-southwest, although some strike east-
west, parallel to the Periadriatic Line, which is
about 15 km south of the Kreuzeck Mountains
(Müller et al. 1992a). The thickness of the mafic
dykes normally varies from 0.5 to 5.0 m, although
dykes of intermediate composition can be up to
10 m thick.

Three petrographic types, based on pheno-
cryst mineralogy, can be recognized (cf. Müller
et al. 1992a):

• Type 1, amphibole-clinopyroxene ± mica
phyric.

• Type 2, mica-clinopyroxene ± amphibole
phyric.
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• Type 3, mica-olivine ± clinopyroxene ±
amphibole phyric.

Mica and amphibole phenocrysts are gener-
ally about 0.5–4 mm long, and commonly show
compositional zonation (Fig. 4.4). The lampro-
phyres are characterized by a fine-grained
microcrystalline groundmass comprising plagio-
clase, clinopyroxene, amphibole, and mica, with
less common K-feldspar and apatite. Plagioclase
is typically saussuritized and the mafic minerals
are commonly altered to chlorite. Partially re-
sorbed quartz xenocrysts, presumably derived
from basement rocks, are present in some sam-
ples, particularly those of petrographic type 1.

According to the classification scheme of
Mogessie et al. (1990), amphiboles from rocks of
petrographic type 1 are tschermakitic hornblen-
des and tschermakites with 0.8–2.4 wt% TiO2

(Table 4.2). According to Rock (1991), tscher-
makitic amphiboles are characteristic of
calc-alkaline lamprophyres whereas Ti-rich
amphiboles, especially kaersutite, are diagnostic
of alkaline lamprophyres. Amphibole mineral
chemistry thus indicates that dykes of both
alkaline and calc-alkaline affinity are present in
the Kreuzeck area.

Micas analyzed from rocks of petrographic
types 2 and 3 are phlogopites with mg# > 75
(Table 4.2). They have high TiO2 contents
(*4.0–6.0 wt%), which are more typical of
those for alkaline lamprophyres (see Rock 1991;
Fig. 4.5).

4.2.4 Geochemistry
of the Lamprophyres

Major- and trace-element chemistry is listed in
Table 4.3. The dykes have a range of SiO2

contents (42.6–57.0 wt%), and on a total alkalis
versus silica plot (Fig. 4.5) they cluster into a
mostly nepheline-normative alkaline group
(<48.0 wt% silica, 4.0–7.0 wt% alkalis) and a
hypersthene-normative calc-alkaline group
(>48.0 wt% silica, 3.0–5.5 wt% alkalis). On the
basis of their major- and trace-element chemistry

and petrographic character, the rocks can be
further subdivided into geochemical groups as
described below (cf. Müller et al. 1992a).

Fig. 4.4 Photomicrographs (crossed nicols) of typical
lamprophyre samples from the Kreuzeck Mountains,
Austria. The field of view (FOV) is given in square
brackets. a Porphyritic texture of tschermakite-bearing
shoshonitic lamprophyre (119050) [FOV 3.5 mm]; the
tschermakite phenocrysts show multiple zoning with
Fe-rich rims and Mg-rich cores. b Porphyritic texture of
phlogopite-bearing alkaline lamprophyre (119040) [FOV
2.0 mm]; the phlogopite phenocryst is zoned with dark
brown Fe-rich rim and pale Mg-rich core. c Zoned
tschermakite with Fe-rich rim and Mg-rich core (119051)
[FOV 2.0 mm]. Sample numbers refer to specimens held
in the Museum of the Department of Geology and
Geophysics, The University of Western Australia
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Group 1, amphibole-bearing shoshonitic
lamprophyres (petrographic type 1). These
rocks have variable K2O (*0.8–2.6 wt%) and
Rb (36–200 ppm) contents, suggesting some
alkali loss. This is consistent with the generally
altered nature of the groundmass in these dykes:
that is, groundmass phlogopite is completely
altered to chlorite in all samples except one, and
feldspars are partially saussuritized in all sam-
ples. The low F content (<10 ppm) of one sample
is also consistent with alteration of mica to
chlorite. MgO contents range from 3.6 to 9.8 wt
%, mg# is *50–70, and Ni contents vary
from <5 to 116 ppm, indicating that Group 1
dykes include both evolved and relatively prim-
itive compositions. Group 1 dykes have 0.5–1.0
wt% TiO2 and <13 ppm Nb. Barium contents
are < 400 ppm, resulting in the low Ba/Rb (<10)
and Ba/Nb (<43) ratios characteristic of potassic
magmas derived in postcollisional arc-settings.

Group 2, mica-bearing shoshonitic lampro-
phyres (petrographic types 2 and 3). As with
Group 1, these rocks have somewhat variable
K2O contents (*0.8–2.2 wt%) and K2O/Na2O
ratios (*0.2–1.2) mainly reflecting alteration of
groundmass mica and K-feldspar. Whole-rock F

contents (<500 ppm) are low for typical
mica-phyric lamprophyres and suggest F loss.
Olivine-phyric samples have high MgO contents
(>10 wt%), mg# (>70), and Ni contents
(>400 ppm), indicating that they represent
primitive magma compositions. Other Group 2
rocks are more evolved: one sample has a mg# of
*65 and Ni contents of *120 ppm. TiO2 and
Nb abundances are 1.0–1.5 wt% and <17 ppm,
respectively. The high Ba contents result in high
Ba/Rb (>20) and Ba/Nb (>100) ratios, which
clearly distinguish them from Group 1 rocks.
Such ratios are typical of mica-phyric shoshonitic
magmas generated in subduction zone settings
(e.g. Luhr et al. 1989; Bucholz et al. 2014).

Group 3, alkaline lamprophyres (petrographic
type 3). The alkaline lamprophyres are mostly
nepheline-normative in composition, and they
have high alkali contents with K2O/Na2O>1.Mg#
is consistently *62–67 and Ni content is
*150 ppm, suggesting that magma compositions
are only slightly evolved. The HFSE contents are
high (1.5–2.1 wt% TiO2, >200 ppm Zr,
30–55 ppm Nb), which clearly distinguishes these
rocks from those of Groups 1 and 2. K/Nb ratios
are *500 and Ba/Nb ratios are *35, higher than

Fig. 4.5 (Na2O + K2O)
versus SiO2 (TAS) plot of
dykes in the Kreuzeck
Mountains, Austria, from
this study and Deutsch
(1980, 1986). The dykes
are clearly divided into two
groups: a SiO2-rich
calc-alkaline to shoshonitic
group and a less SiO2-rich
alkaline group. Modified
from Müller et al. (1992a)
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Table 4.3 Representative whole-rock major- and trace-element geochemistry of investigated lamprophyres from the
Kreuzeck Mountains, Austria. Major elements are in wt%, trace elements are in ppm, and precious metals are in ppb

Province/deposit Kreuzeck
Mountains

Kreuzeck
Mountains

Kreuzeck
Mountains

Kreuzeck
Mountains

Location Austria Austria Austria Austria

Rock type Lamprophyre Lamprophyre Lamprophyre Lamprophyre

Sample no. 119049 119045 119052 119053

Geochemical
group

1 2 3 4

Tectonic setting Postcollisional arc Postcollisional arc Postcollisional arc Postcollisional arc

Reference Müller et al.
(1992a)

Müller et al.
(1992a)

Müller et al.
(1992a)

Müller et al.
(1992a)

SiO2 55.91 54.53 46.50 46.40

TiO2 0.45 1.38 2.01 2.41

Al2O3 19.83 14.56 14.14 15.33

Fe2O3 (tot) 6.17 7.21 9.54 11.73

MnO 0.13 0.08 0.15 0.20

MgO 3.94 5.67 8.20 5.69

CaO 6.04 4.43 8.32 8.06

Na2O 1.97 4.30 2.33 2.55

K2O 2.56 1.76 2.93 3.84

P2O5 0.11 0.24 0.53 0.45

LOI 3.13 5.89 5.46 3.30

Total 100.18 99.98 100.10 99.91

ne% 0.00 0.00 0.00 3.40

mg# 59.8 64.7 66.7 53.1

F n.a. 210 150 520

Sc 9 7 15 18

V 148 183 303 347

Cr 49 272 326 133

Ni 5 121 186 20

Cu 7 11 18 14

Zn 62 74 100 97

As 2 2 3 2

Rb 208 40 87 70

Sr 286 690 794 998

Y 17 19 37 29

Zr 92 183 259 215

Nb 8 16 33 17

Sb 0.4 11.0 0.7 0.3

Ba 284 2821 1212 1327

W 120 130 81 100

(continued)
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those present in most non-Dupal-type oceanic
island basalt (OIB) sources which have K/Nb
ratios of *180 and Ba/Nb ratios of *6 (Weaver
et al. 1987; Sun and McDonough 1989). The
trace-element ratios of Group 3 alkaline lampro-
phyres are, however, similar to, or slightly more
elevated than, potassic, Dupal-type (EM2-type)
OIB sources; for example, Gough Island rocks
which haveK/Nb ratios of*430 andBa/Nb ratios
of*16. It is thought that Dupal-type OIB sources
involve recycled sedimentary material, ancient
continental lithosphere, or subduction-zone me-
tasomatized lithosphere (Sun and McDonough
1989). An important difference between
Dupal-type OIBs and the Group 3 lamprophyres is
themuch lower TiO2 contents of the latter: <2.1 wt
% compared with >2.5 wt% for Dupal-type OIB.

Group 4, low mg# alkaline lamprophyres
(petrographic type 2). These lamprophyres are
characterized by low mg# (53–56) and low Ni
contents (*20 ppm), indicating that they repre-
sent evolved magmas. TiO2 contents are *2.5

wt% and Zr and Nb contents are *200 and
*20 ppm, respectively. Because Zr and Nb
contents are lower than in Group 3 lamprophy-
res, Group 4 rocks cannot be derived from Group
3 by fractional crystallization processes, and
must have evolved from a separate primary
magma. Group 3 dykes are clearly alkaline since
they have >5 wt% total alkalis and >2 wt%
normative-nepheline component, yet their low
Nb contents are typical of magmas derived from
subduction zones. K/Nb (>1300) and Ba/Nb
(>55) ratios are extreme for basic alkaline mag-
mas but similar to those of some highly potassic
arc volcanoes such as Batu Tara in the Sunda Arc
of Indonesia (Stolz et al. 1988; Foley and
Wheller 1990; Soeria-Atmadja et al. 1998). The
TiO2 contents of Group 4 lamprophyres are,
however, significantly higher than those of
subduction-zone derived potassic magmas,
which typically have <1.5 wt% TiO2.

A plot of Ba/Rb versus TiO2 (Fig. 4.6) is
effective in separating the dyke rocks into
Groups 1–4.

Table 4.3 (continued)

Province/deposit Kreuzeck
Mountains

Kreuzeck
Mountains

Kreuzeck
Mountains

Kreuzeck
Mountains

Location Austria Austria Austria Austria

Rock type Lamprophyre Lamprophyre Lamprophyre Lamprophyre

Sample no. 119049 119045 119052 119053

Geochemical
group

1 2 3 4

Tectonic setting Postcollisional arc Postcollisional arc Postcollisional arc Postcollisional arc

Reference Müller et al.
(1992a)

Müller et al.
(1992a)

Müller et al.
(1992a)

Müller et al.
(1992a)

Pb 23 32 25 25

Th 29 11 25 16

Pd <1 3 3 <1

Pt <5 <5 <5 <5

Au <3 26.8 15.5 <3

Fe2O3 (tot) = total iron calculated as ferric oxide, n.a. = not analyzed, ne% = nepheline-normative content in wt%
(calculated by CIPW-Norm) based on whole-rock geochemistry. Sample numbers refer to specimens held in the
Museum of the Department of Geology and Geophysics, The University of Western Australia. From Müller et al.
(1992a)
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K-Ar ages (Müller et al. 1992a) are between
ca. 27 and 36 Ma (Table 4.4). The older shos-
honitic lamprophyres (ca. 36 Ma) imply
subduction-related features with low HFSE con-
tents, whereas the younger alkaline lamprophyres
(ca. 30 Ma) show transitional characteristics with
higher HFSE contents (see Table 4.3). The older
age for a Group 1 lamprophyre is also consistent
with the greater degree of alteration and evidence
for recrystallization in the Group 1 samples,
suggesting emplacement during the latter stages
of Alpine metamorphism. Their mainly east-west
dyke orientations also distinguish them from the
slightly younger Group 2–4 lamprophyres.

The largely Oligocene age of these lampro-
phyres is much younger than the supposed age of
mineralization in the area (older than
Permo-Carboniferous; Feitzinger et al. 1995).

4.3 Northern Mariana Arc (West
Pacific): Example from an Initial
Oceanic Arc Setting

4.3.1 Introduction

Intra-oceanic island arcs such as the Mariana Arc
are restricted to the circum-Pacific region (Stern
1979). The Mariana Arc is located about
2000 km north of the mainland of Papua New
Guinea in the West Pacific (Fig. 4.7) and consists
of 21 major volcanoes and seamounts (Garcia
et al. 1979; Meijer and Reagan 1981; Hole et al.
1984; Stern et al. 1988), from Nishino Shima in
the north to Guam in the south. The subduction
trench is situated in the west of the island arc.

Following the geographic distribution of vol-
canic islands and seamounts, the Mariana Arc is
divided into three provinces: the Northern Se-
amount Province, the Central Island Province,
and the Southern Seamount Province (Stern
1979; Lin et al. 1989).

4.3.2 Regional Geology

The magmatic system of the Mariana Arc formed
by the subduction of the Pacific plate beneath the
Philippine Sea plate (Lin et al. 1989). Volcanoes
in the northern Mariana Arc between Uracas
(latitude 20°N) and Minami Iwo Jima (24°N) are
still active, yet entirely submarine (Stern et al.
1988). In contrast to the mainly low-K basalts
and andesites of the subaerially exposed volca-
noes in the Central Island Province (Meijer and
Reagan 1981), the northern and southern parts

Fig. 4.6 Ba/Rb versus TiO2 plot showing the four
geochemical groups of investigated dykes. From Müller
et al. (1992a)

Table 4.4 Whole-rock K-Ar dating on lamprophyres and basaltic dykes from the Kreuzeck Mountains, Austria

Geochemical group Sample no. K-Ar age
(Ma)

Rb-Sr age
(Ma)

Initial 87Sr/86Sr
(whole rock)

Orientation

1 119050 36 ± 1 – – E-W

2 119058 27 ± 0.5 31 ± 2 0.7079 NE-SW

3 119042 32 ± 0.7 29 ± 4 0.7055 NE-SW

4 119053 29 ± 0.7 – – NE-SW

The Rb-Sr data are from Deutsch (1984). The error on ages is quoted as ±2ơ. From Müller et al. (1992a)
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are dominated by high-K igneous rocks which
have been classified as shoshonites by Stern et al.
(1988) and Bloomer et al. (1989). The shosho-
nites apparently represent the youngest volcanic
products of arc evolution, and were previously
interpreted to be products of an episode of
back-arc rifting (Stern et al. 1988; Bloomer et al.
1989; Lin et al. 1989). However, recent studies
have demonstrated that the region now defined
by the shoshonitic rocks occupies a “pre-rift”
position (Baker et al. 1996; Gribble et al. 1998).
The term initial oceanic arc reflects the unique
tectonic setting of the shoshonites in the Mariana
Arc. They were formed early during arc

evolution and they occur along the magmatic
front, which is unusual for an oceanic island arc
(De Long et al. 1975) because high-K
calc-alkaline rocks and shoshonites normally
occur farthest from the trench and above the
highest parts of the Benioff Zone (Morrison
1980). More recent work (Till et al. 2012)
interprets the unique compositions of the shosh-
onites in the northern Mariana Arc as the product
of chlorite dehydration melting in a relatively
cool subduction zone.

Andesites from Sarigan, an island in the
Central Island Province, have been dated at
0.5 ± 0.2 Ma (Meijer and Reagan 1981).

Fig. 4.7 Geographic
overview of the Mariana
Island Arc, West Pacific.
Modified after Stern (1979)
and Bloomer et al. (1989)
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4.3.3 Mineralogy and Petrography
of the Potassic Igneous Rocks

The rocks are densely phyric and have highly
porphyritic textures (Bloomer et al. 1989), and
basalt and andesite dominate. The typical phe-
nocryst assemblages are plagioclase, clinopy-
roxene, orthopyroxene, ± olivine, ± titanomagne-
tite, ± apatite (Bloomer et al. 1989; Gribble et al.
1998) in a groundmass comprising mainly pla-
gioclase and clinopyroxene, and minor
K-feldspar and orthopyroxene (Meijer and Rea-
gan 1981). Olivine is most common in the trac-
hybasalts of the Southern Seamount Province.
Hornblende phenocrysts are rare and mainly
restricted to the andesitic rocks (Meijer and
Reagan 1981).

The shoshonitic trachybasalts from the
Northern and Southern Seamount Provinces
contain phenocrysts of plagioclase, clinopyrox-
ene, olivine, and biotite, which are set in a
fine-grained groundmass of K-feldspar and pla-
gioclase (Bloomer et al. 1989).

4.3.4 Geochemistry of the Potassic
Igneous Rocks

The whole-rock geochemistry of the volcanic
rocks from the Mariana Arc has been studied by
Dixon and Batiza (1979), Stern et al. (1988),
Bloomer et al. (1989), Lin et al. (1989), and
Woodhead (1989).

The shoshonitic rocks, which are of interest
here, are characterized by high K/Na ratios
(>0.6), high K2O (up to 2.54 wt%), and relatively
high Al2O3 contents (up to 18 wt%): see
Table 4.5. They are further characterized by very
low concentrations of LILE (e.g. commonly
<700 ppm Ba, <34 ppm Rb), and very low LREE
(e.g. <40 ppm La, <50 ppm Ce) and HFSE (e.g.
<90 ppm Zr, <5 ppm Nb, <2 ppm Hf) contents.
These very low element abundances for the
Mariana Arc shoshonites are distinct among the
potassic igneous rock clan, and, in combination
with their unusual generation during the initial
stages of arc evolution (De Long et al. 1975;

Stern et al. 1988; Till et al. 2012), define those
high-K rocks from initial oceanic arcs (Müller
et al. 1992b).

4.4 Vanuatu (Southwest Pacific):
Example from a Late Oceanic
Arc Setting

4.4.1 Introduction

Vanuatu (formerly New Hebrides) is an isolated
island arc about 2000 km east of Australia and
forms part of the outer Melanesian Arc (Coleman
1970; Gorton 1977; Peate et al. 1997; Pelletier
et al. 1998). The Vanuatu Arc marks the
boundary between the Australian and the Pacific
plates. The Vanuatu island arc consists of nine
major islands and the subduction trench is situ-
ated to the west of the islands (Fig. 4.8). The
islands are dominated by dome-shaped basaltic
shield volcanoes (Coleman 1970).

4.4.2 Regional Geology

The oldest rocks on the islands of Vanuatu are
Oligocene submarine lavas (Coleman 1970).
Magmatism in the active volcanic arc (Central
Chain) began in the late Miocene at about 6 Ma
and was initially focused on Erromango, Tanna,
and Anneityum in the south (Peate et al. 1997).
Volcanism subsequently developed along the
entire length of the arc and shifted closer to the
trench due to a steepening of the subduction zone
to its present inclination of about 70° (Peate et al.
1997). The arc was apparently rejuvenated in the
Pliocene by a major period of submarine basaltic
volcanism (Gorton 1977). In the Pleistocene and
Recent, a third period of volcanism produced
subaerial high-K olivine-trachybasalts on Gaua,
Aoba, and Ambrym (Fig. 4.8; Mitchell and
Warden 1971; Gorton 1977; Peate et al. 1997).

Modern studies suggest that the relative
motion between the Fiji platform and the
Australian plate is small and not yet quantified,
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and the Fiji platform can thus be considered as
part of the Australian plate (Pelletier et al. 1998).
Therefore, the convergence rate at the southern
Vanuatu Arc is equal to the opening rate in the

southern North Fiji basin. Based on GPS data,
Pelletier et al. (1998) estimate an average con-
vergence rate of about 10 cm/year near 18° S in
the southern part of the Vanuatu Arc.

Table 4.5 Representative
whole-rock major- and
trace-element geochemistry
of potassic igneous rocks
from the Mariana Island
arc, West Pacific

Province/deposit Northern
Seamount

Northern Seamount Northern
Seamount

Location Mariana Islands Mariana Islands Mariana Islands

Rock type Basalt Basalt Basalt

Tectonic setting Initial oceanic arc Initial oceanic arc Initial oceanic arc

Reference Batiza (1979) Bloomer
et al. (1989)

Woodhead (1989)

SiO2 53.37 50.25 54.60

TiO2 0.73 0.80 0.86

Al2O3 16.01 18.54 16.78

Fe2O3 (tot) 9.21 8.54 11.03

MnO 0.16 0.21 0.24

MgO 4.90 4.23 3.29

CaO 9.93 9.31 8.07

Na2O 3.00 2.97 3.34

K2O 1.05 2.54 1.43

P2O5 0.19 0.34 0.27

LOI 0.35 1.80 0.10

Total 98.90 99.53 100.01

V n.a. 398 213

Cr 38 49 4

Ni n.a. 30 5

Rb 17 26 34

Sr 375 305 347

Y n.a. 21 29

Zr 47 31 90

Nb n.a. n.a. 1

Ba 337 714 237

La 7 n.a. 42

Ce 16 n.a. 33

Th 1 n.a. n.a.

Hf 2 n.a. n.a.

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron
calculated as ferric oxide. Data from Dixon and Batiza (1979), Bloomer et al. (1989), and
Woodhead (1989)
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4.4.3 Mineralogy and Petrography
of the Potassic Igneous Rocks

The submarine volcanic rocks consist entirely of
pillow lavas. They are characterized by porphy-
ritic textures with phenocrysts of hypersthene,
augite, plagioclase, and rare olivine in a glassy
groundmass. Phenocrysts of biotite and amphi-
boles are normally absent (Gorton 1977).

The subaerial potassic olivine-trachybasalts
have porphyritic textures, with phenocrysts of
olivine, augite, and plagioclase that are set in a
groundmass dominated by K-feldspar and pla-
gioclase with minor normative nepheline (Gorton
1977).

4.4.4 Geochemistry of the Potassic
Igneous Rocks

The high-K olivine-trachybasalts fromVanuatu are
characterized by high K2O (up to 2.3 wt%), rela-
tively highAl2O3 (up to 16.0wt%), highCaO (up to
12.7wt%), and highNa2O (up to 3.5wt%) contents
(Gorton 1977; Peate et al. 1997): see Table 4.6.
They have moderate mg# (<70) and moderate
concentrations of mantle-compatible elements (e.g.
<124 ppm Co, <260 ppm Cr, <250 ppm V) due to
fractionation (Gorton 1977; Peate et al. 1997).

The very low concentrations of LILE (e.g.
<80 ppm Rb, <540 ppm Sr), and low LREE (e.g.
<30 ppmLa, <70 ppmCe) andHFSE (e.g. <0.8wt%

Fig. 4.8 Geographic
overview of Vanuatu,
Southwest Pacific.
Modified after Gorton
(1977)
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TiO2, <176 ppmZr, <4 ppmNb) contents (Table 4.6)
of the potassic rocks are typical for those derived in a
late oceanic-arc setting (Müller et al. 1992b).

4.5 African Rift Valley (Rwanda,
Uganda, Democratic Republic
of Congo): Example
from a Within-Plate Setting

4.5.1 Introduction

The Virunga volcanic province (Fig. 4.9) occu-
pies an area of more than 3000 km2 at the

junction of Rwanda, Uganda, and the Democratic
Republic of the Congo (De Mulder et al. 1986;
Rogers et al. 1992; Foley et al. 2011). The highly
potassic lavas of the province, in the western
branch of the East African rift system, have long
attracted interest (Thompson 1985). The Virunga
igneous complex is widely regarded as one of the
classic within-plate potassic provinces (Rogers
et al. 1992, 1998). However, the question
remains as to whether the rocks were derived
from lithospheric mantle sources (De Mulder
et al. 1986), or by the input of a deep astheno-
spheric mantle plume (Thompson 1985). The
extreme compositions of some melilite-bearing

Table 4.6 Representative
whole-rock major- and
trace-element geochemistry
of potassic igneous rocks
from Vanuatu, Southwest
Pacific

Rock type Basalt Andesite

Tectonic setting Late oceanic arc Late oceanic arc

Reference Gorton (1977) Gorton (1977)

SiO2 49.42 60.74

TiO2 0.60 0.86

Al2O3 13.14 15.24

Fe2O3 (tot) 10.99 7.64

MnO 0.20 0.13

MgO 9.37 2.92

CaO 12.77 4.94

Na2O 1.76 3.59

K2O 1.45 3.48

P2O5 0.30 0.46

LOI 0.64 1.28

Total 100.05 99.08

V 250 150

Cr 260 31

Ni 46 9

Rb 35 81

Sr 539 441

Y 17 34

Zr 57 176

Nb 1 4

Ba 160 1350

La 9 29

Ce 21 69

Th 2 5

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron
calculated as ferric oxide. From Gorton (1977)
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lavas from Bufumbira seem to necessitate a high
CO2/H2O ratio in their mantle sources, if this was
lherzolite (Thompson 1985). These high CO2

contents are indicative of asthenospheric mantle
plumes (Thompson 1985; Nelson et al. 1986;
Wyllie 1988; Holm et al. 2006).

4.5.2 Regional Geology

Early Pliocene to late Pleistocene volcanic activity in
the Virunga province produced eight major volca-
noes (Fig. 4.9), two of which are still active (Rogers
et al. 1992), and numerousminor vents (Cundari and
LeMaitre 1970). Themajor volcanoes are situated in
a large lava field. The volcanic activity is structurally
related to graben-faulting during the development of
a branch, known as the Bufumbira embayment, in
the rift (De Mulder et al. 1986; Rogers et al. 1992).
The Virunga volcanic rocks are underlain by me-
tasedimentary rocks of the Karagwe-Ankolean
System which was deposited about 2.1 Ga ago and
deformed during the Kibaran Orogeny (1300–
800 Ma; Vollmer and Norry 1983).

Karisimbi is the largest of the volcanoes and
has been active during the last 0.1 Ma (Rogers
et al. 1992). It was apparently formed during three
phases, which are summarized by DeMulder et al.
(1986) and Rogers et al. (1992). The initial phase
formed a shield volcano comprising potassic ba-
sanites: this was followed by an eastward

migration of volcanic activity and the develop-
ment of a caldera complex. The second phase was
characterized by potassic mugearite lavas. The
final volcanic activity is manifested by highly
potassic latite and trachyte lava flows.

4.5.3 Mineralogy and Petrography
of the Potassic Igneous Rocks

The majority of the Virunga volcanic rocks are
silica-deficient, leucite-bearing potassic rocks
(Vollmer and Norry 1983; Demant et al 1994;
Foley et al. 2011). However, the Nyiragongo
volcano also consists of nephelinites and melili-
tites (Demant et al. 1994). The potassic basanites,
which have the most primitive compositions, are
characterized by pronounced porphyritic or
glomeroporphyritic textures with abundant
phenocrysts of olivine, diopside, and chromite in a
fine-grained or glassy groundmass comprising
plagioclase, K-feldspar or leucite, olivine, tita-
niferous salite, and titanomagnetite (Ferguson and
Cundari 1975; Rogers et al. 1992). Despite the
high modal content of olivine in the rocks with
16–22 wt% MgO, less than 10 volume percent of
the olivines appear to be xenocrysts (Foley et al.
2011). Investigated olivine phenocrysts show
common, but relatively subtle zonation, particu-
larly decreasing Ni and Cr, and increasingMn and
Sc towards the rims (Foley et al. 2011).

Fig. 4.9 Geological
overview of the Virunga
Volcanic Province, African
Rift Valley, Uganda.
Modified after De Mulder
et al. (1986)
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The mugearites consist mainly of K-feldspar
and diopside phenocrysts in a fine-grained
groundmass of plagioclase, K-feldspar, olivine,
and diopside (DeMulder et al. 1986). Grading into
the late-stage latites and trachytes, K-feldspar
joins plagioclase, biotite, and titanaugite as
phenocrysts and commonly rims the plagioclase.
Leucite cannot be optically identified in the
groundmass (Ferguson and Cundari 1975).

4.5.4 Geochemistry of the Potassic
Igneous Rocks

The whole-rock geochemistry of the Virunga
potassic igneous rocks has been discussed by
Mitchell and Bell (1976), De Mulder et al.
(1986), and Rogers et al. (1992, 1998), and
representative analyses are shown in
Table 4.7.

Table 4.7 Representative whole-rock major- and trace-element geochemistry of potassic igneous rocks from the
Virunga volcanic field, Uganda

Province/deposit Karisimbi, Virunga Karisimbi, Virunga Karisimbi, Virunga

Location Uganda Uganda Uganda

Rock type Basanite Mugearite Trachyte

Tectonic setting Within-plate Within-plate Within-plate

Reference De Mulder et al. (1986) De Mulder et al. (1986) De Mulder et al. (1986)

SiO2 46.18 48.52 59.57

TiO2 2.98 2.70 1.08

Al2O3 13.19 16.07 18.27

Fe2O3 (tot) 11.13 11.08 5.15

MnO 0.19 0.21 0.12

MgO 7.05 4.23 0.97

CaO 10.83 6.76 2.30

Na2O 2.91 3.63 4.39

K2O 3.44 4.48 6.87

P2O5 0.81 0.75 0.30

LOI 0.70 1.10 1.01

Total 99.41 99.53 100.03

V n.a. n.a. n.a.

Cr 228 77 2

Ni n.a. n.a. n.a.

Rb 115 151 242

Sr 1286 1280 698

Y n.a. n.a. n.a.

Zr 311 341 414

Nb 60 n.a. n.a.

Ba 1321 1445 1200

La 120 126 137

Ce 231 240 276

Th 20 26 42

Ta 9 10 10

Hf 8 8 10

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron calculated as ferric oxide. From de
Mulder et al. (1986)
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Rogers et al. (1992) divided the rocks into two
groups mainly based on their MgO contents. The
older basanites which formed the shield volcano
have primitive compositions with high MgO
contents (>6.3 wt%) and high mantle-compatible
element concentrations (e.g. up to 1158 ppm Cr,
up to 59 ppm Co; De Mulder et al. 1986). This
can be compared to the mugearites with lower
MgO contents (<4.2 wt%) and lower
mantle-compatible element concentrations (e.g.
<77 ppm Cr, <33 ppm Co; De Mulder et al.
1986). The late-stage trachytes are characterized
by more evolved compositions with very low
MgO (<1 wt%), Cr (<2 ppm) and Co (<5 ppm)
contents. Crustal assimilation of the trachytes
during uprise can be excluded based on the rel-
atively high Ce/Pb ratios (>10) of the Virunga
rocks which are similar to those of MORB and
OIB (Hofmann et al. 1986; Rogers et al. 1992).
Many MORBs and OIBs have low Pb contents
and high Ce/Pb ratios (*20) when compared to
those melts derived from the continental crust
(Ce/Pb <6; Hofmann et al. 1986). The high
HFSE concentrations (e.g. up to 4 wt% TiO2, up
to 91 ppm Nb, up to 18 ppm Hf; De Mulder et al.
1986; Rogers et al. 1992) of the Virunga rocks
are typical for potassic igneous rocks derived in a
within-plate setting (Müller et al. 1992b).

Stable-isotope studies by Rogers et al. (1992)
indicate that the Virunga lavas were derived from
the lithospheric mantle, and the evidence for a
contribution from deep asthenospheric mantle
sources, as proposed by Thompson (1985), is
very limited.
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5Primary Enrichment of Precious
Metals in Potassic Igneous Rocks

5.1 Introduction

Controversy continues to surround the relative
contributions of magmatic versus metamorphic,
and crustal versus mantle, components to the
fluids which are responsible for the origin of
orogenic (Groves et al. 1998) gold deposits (e.g.
Rock et al. 1989). The recognition that the
products of deep-seated alkaline magmatism,
such as lamprophyres, are spatially associated
with many orogenic gold deposits (Rock et al.
1989; Rock 1991) has resulted in the detailed
study of primary precious-metal contents in these
rocks (e.g. Wyman and Kerrich 1989; Taylor
et al. 1994). This chapter reviews some recent
studies on primary precious-metal contents in
shoshonitic and alkaline lamprophyres, and other
potassic igneous rocks.

5.2 Theoretical Discussion

It has long been suspected that K-enriched melts
are efficient carriers of Au (Mutschler et al. 1985;
Rock and Groves 1988; Müller and Groves 1993;
Müller 2002; Mavrogenes et al. 2006; Li and
Audetat 2013). Recent experimental studies by
Mavrogenes et al. (2006) reveal that the addition
of K2O to hydrous rhyolitic glasses at constant
water content, temperature, pressure, and oxygen
fugacity (fO2) increases Au solubility by nearly
an order of magnitude. In experimental runs with

FeS only, the Au content increased from
0.08 ppm Au (at 1.6 wt% K2O) to 0.66 ppm Au
(at 6.8 wt% K2O; Mavrogenes et al. 2006). Ore
deposits associated with potassic igneous rocks
tend to be particularly Au-rich and various mod-
els have been proposed to explain this phenom-
enon (cf. Li and Audetat 2013), including:
(1) partial melting of Au-enriched, metasoma-
tized lithospheric mantle (McInnes et al. 1999);
(2) partial re-melting of sulphide-bearing cumu-
lates at the crust-mantle boundary (Richards
2009); (3) high Au solubility in S- and Cl-bearing
magmas (Botcharnikov et al. 2011; Zajacz et al.
2010, 2012; Jego and Pichavant 2012); (4) high
Au solubility in thiosulphate and alkali-chloride
bearing fluids (Zajacz et al. 2010); and (5) lack of
sulphides in the mantle source region due to the
high oxygen fugacities of these magmas (Müller
and Groves 1993; Sillitoe 1997; Mungall 2002).

The occurrence of all primary PGE deposits in
mafic-ultramafic intrusions points to a congruent
enrichment of precious metals in parts of the
mantle (Rock et al. 1988a). Cabri (1981) and
Maier et al. (2009) consider most of the terrestrial
precious-metal budget to have been partitioned
into the deep mantle and core during the early
differentiation of the planet. The ideal magma-
type to transport these elements into the crust is,
therefore, one with an ultrabasic character and an
exceptionally deep origin (i.e. alkaline rocks such
as lamprophyres; cf. Rock et al. 1988a). Lam-
prophyres also havemagmatic compositions (high
CO2 and halogen contents) potentially suitable for

© Springer International Publishing Switzerland 2016
D. Müller and D.I. Groves, Potassic Igneous Rocks and Associated Gold-Copper Mineralization,
Mineral Resource Reviews, DOI 10.1007/978-3-319-23051-1_5

77



transporting Au from the mantle into the crust
(Rock et al. 1988a; Rock 1991).

Reviews have shown that mantle-derived
lamprophyric melts have very high primary
PGE contents (e.g. Crocket 1979). A compilation
of precious-metal contents of potassic igneous
rocks, such as lamprophyres and related rocks
(Table 5.1), has been given by Rock et al.
(1988a, 1989). For example, lamproites from the
Ellendale Field, Western Australia, contain up to
56 ppb Pd (Lewis 1987). The Wessleton and
Frank Smith kimberlites, South Africa, contain
up to 19 ppb Pd (Paul et al. 1979), and discrete
grains of platinum-group metals have been
detected in these kimberlites (Mitchell 1986).
The precious-metal concentrations in lamproites
and kimberlites, which normally occur in
within-plate settings and represent the deepest
forms of magmatism, suggest the presence of
precious-metal-enriched source regions within
the upper mantle (Rock et al. 1988a). Their
precious-metal enrichments are interpreted to be
primary magmatic features (see below), since
lamproites and kimberlites are rapidly irrupted
through the crust and commonly show little

evidence of significant fractionation during
ascent, as reflected in their high mg# and the
occurrence of mantle xenoliths (Rock et al.
1988a; Rock 1991).

The association in space and time between
shoshonitic lamprophyres and orogenic (previ-
ously incorrectly termed mesothermal) gold
deposits has been documented in many Archean
greenstone-belt terrains (Hallberg 1985; Taylor
et al. 1994). Platinum-group elements such as Ir,
Os, and Ru are mantle compatible, and they
remain as sulphide blebs in the olivine (forste-
rite)-bearing residue of the mantle during partial
melting (Brügmann et al. 1987; Gueddari et al.
1996). Originally sulphur-rich magmas such as
MORB are generally PGE-poor, because the
sulphide-hosted PGE are removed during frac-
tionation. By contrast, the elements Cu, Au, Pt,
and Pd behave incompatibly during partial
melting of a strongly depleted mantle source
(Brügmann et al. 1987; Stanton 1994) forming
sulphur-undersaturated melts (Hamlyn et al.
1985). Copper, Au, Pt, and Pd behave as
mantle-incompatible elements (Gueddari et al.
1996) and are partitioned into the first

Table 5.1 Compilation of precious metal abundances in potassic igneous rocks

Individual intrusion Reference Method Au (ppb) Pt (ppb) Pd (ppb)

Kimberlites

South Africa

Wessleton Paul et al. (1979) NAA n.a. n.a. 18

Frank Smith Paul et al. (1979) NAA n.a. n.a. 18

Lamproites

Kimberley, Australia

Ellendale 9 Lewis (1987) ICP n.a. 3 1

Ellendale 11 Lewis (1987) ICP n.a. 4 56

Lamprophyres

Borneo

Linhaisai minette Bergman et al. (1988) NAA 15 n.a. n.a.

Canada

Malpeque Greenough et al. (1988) NAA 45 n.a. n.a.

Papua New Guinea

Fu lamprophyre Finlayson et al. (1988) NAA 29 n.a. n.a.

NAA neutron activation analysis, ICP inductively coupled plasma mass spectrometry, n.a. not analyzed. After Rock
et al. (1988a, 1989)

78 5 Primary Enrichment of Precious Metals …



silicate-melt increments, rather than into a sepa-
rate sulphide-liquid fraction (Taylor et al. 1994).
Thus first-stage arc-magmas tend to generate
Cu-rich melts (Richards 2009). Fractionation of
these precious-metal enriched, but sulphur-
undersaturated, parent magmas can lead to fur-
ther Au and PGE enrichment provided the melt
does not become sulphur saturated (Hamlyn et al.
1985; Brügmann et al. 1987; Taylor et al. 1994).
Gold probably behaves incompatibly during
olivine fractionation, because the Au2+ oxidation
state is not known from natural systems (Togashi
and Terashima 1997). Native Au, Au+, or Au3+

are the most stable species, but their charges and
their large ionic radii preclude their partitioning
into olivine (Brügmann et al. 1987).

Recent work suggests that small sulphide
blebs can act as a reservoir of sulphur and ore
metals such as Cu and Au (Keith et al. 1997;
Halter et al. 2002; Nadeau et al. 2010). Based on
melt inclusion studies on the Bajo de la Alumb-
rera porphyry Cu-Au deposit in Argentina, Halter
et al. (2002) argue that the parental magma was
probably sulphide-saturated, but that the early
formed sulphide blebs were destabilized during
volatile exsolution and that the Cu, Au, and S
from the sulphide blebs then migrated into the
ore-forming hydrothermal fluid. In accord with
this interpretation, Nadeau et al. (2010) studied
sulphide and melt inclusions in volcanic rocks
from the Merapi Volcano, Indonesia, reporting
numerous partially or almost completely dis-
solved sulphide inclusions associated with silicate
melt inclusions and fluid inclusions. The authors
interpret these textures as evidence for the inter-
action between sulphide blebs and a hydrothermal
fluid (Nadeau et al. 2010). Park et al. (2015)
suggest that the relative timing of sulphide satu-
ration is a critical factor to form a magma enri-
ched in chalcophile elements. Once a
mantle-derived basaltic magma rises into the
crust, its temperature, oxygen fugacity, and FeO
content control sulphur solubility in the silicate
melt (Park et al. 2015). Assimilation of reducing
material from the wall-rocks and mixing with
crust-derived silicic magmas are the most likely
processes to result in sulphide saturation during
open-system fractionation, whereas reduction

produced by magnetite crystallization is likely to
be the dominant process in closed systems (Park
et al. 2015). A magma that reaches sulphide sat-
uration early and precipitates a significant amount
of sulphides before it becomes volatile-saturated
is unlikely to produce an economic porphyry
copper-gold deposit, because ore metals, such as
Cu and Au, will be held as cumulates at the base
of the fractionating magma chamber, leading to a
residual magma that is depleted in these elements
(Richards 2011; Park et al. 2015).

Under conditions of relatively high fO2, sul-
phide species become unstable with respect to
sulphates in the magma and the segregation of an
immiscible sulphide-melt phase is impossible
(Richards 1995, 2011). Under such conditions,
the chalcophile elements behave as incompatible
components in the melt, becoming steadily enri-
ched during fractionation (Wyborn, pers. comm.,
1995). Additionally, the high fO2 may delay
sulphur saturation until after the onset of volatile
saturation, thus generating chalcophile-
enriched hydrothermal fluids (Richards 1995,
2011; Park et al. 2015). Hence, the observed Au
and PGE enrichments of many potassic lampro-
phyres (see Sect. 5.3) could be primary features.
Trace element data for potassic igneous rocks
such as shoshonites suggest that they are also
enriched in Cu (Kesler 1997). The fact that not all
potassic igneous rock suites are mineralized, and
that not all shoshonitic lamprophyres are Au- or
PGE-enriched (see Chap. 8), probably indicates
the heterogeneity of mantle metasomatism pro-
cesses (Taylor et al. 1994). It is not yet clear
whether the oxidized nature of late oceanic-arc
basalts is a source characteristic or whether it is
caused by secondary processes such as degassing
(Ballhaus 1993). For instance, the rapid loss of
hydrogen by diffusion, with an attendant increase
in the H2O/H2 ratio, increases fO2 (Haggerty
1990), and has been modeled as the mechanism to
account for oxidized crusts in ponded lava lakes
(Sato and Wright 1966). Late oceanic-arc basalts,
which are commonly more enriched in volatiles
than other basalts (Muenow et al. 1990), are more
susceptible to those degassing processes.

Generally, there are two mechanisms for the
generation of sulphur-undersaturated precious-
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metal-rich magmas (Sun et al. 1991): (1) high
temperature (>1400 °C), large degree (>25 %) of
mantle melting related to asthenospheric mantle
plume activity; and (2) lower temperature, small
degree of partial melting of mantle wedge
material (<4 ppb Pt, Pd; <1 ppb Au; <250 ppm S)
in subduction arcs.

The second process might produce potassic
lamprophyres and shoshonites with primary
precious-metal enrichments (S.S. Sun, pers.
comm. 1996). However, too small a degree of
partial melting (<10 %) will leave sulphides in
the mantle residue, and hence retain the precious
metals during such partial melting (Sun et al.
1991). As noted above, the conditions in sub-
duction zones are considered to be too oxidizing
for the generation of sulphur-saturated magmas
(Taylor et al. 1994; Richards 2011).

Silicate minerals have low mineral/melt dis-
tribution coefficients for Pd, Pt, and Au (Keays
1982), when compared to the very high partition
coefficients for PGE into sulphides (Campbell
et al. 1983). Thus, the PGE tend to form sulp-
hides if sufficient sulphur is present in the melt.
These relatively dense sulphides are strongly
affected by gravitational fractionation, which
means that the resulting melt will be gradually
depleted in precious metals en route to surface
(cf. Richards 2011; Park et al. 2015). As a con-
sequence, efficient precious-metal concentration
in a magma chamber (Sun et al. 1991) requires
fertile basic magmas with high PGE background
levels (e.g. >15 ppb Pd), but low sulphur con-
tents (<1000 ppm S).

Obvious exceptions to the rule regarding
correlation between sulphur-undersaturation and
precious-metal abundances in basic magmas are
the sulphur-saturated lamproites and kimberlites
which may contain significant precious-metal
concentrations (Mitchell and Keays 1981).
However, this can be explained by the
volatile-driven rapid uprise of these potassic
magmas, which might sample some
precious-metal-enriched mantle sulphide drop-
lets, in addition to mantle xenoliths, en route to
surface (Sun et al. 1991).

Theoretically, on the basis of the discussion
above, primary Au and PGE enrichment of

lamprophyric magmas should be characterized
by elevated concentrations of all incompatible
metals such as Cu, Au, Pt, and Pd. If Au peaks
are decoupled from Cu, Pt, and Pd peaks in
distribution plots of metal contents in the lam-
prophyres normalized to primitive mantle, it is
likely that the anomalous Au contents are sec-
ondary features (Wyman and Kerrich 1989).

5.3 Case Study: Potassic Alkaline
Lamprophyres with Elevated
Gold Concentrations
from the Karinya Syncline,
South Australia

5.3.1 Introduction

During extensive base-metal exploration in the
Karinya Syncline, which forms part of the Ade-
laide Geosyncline in South Australia, a lamp-
rophyre province has been mapped in the area
between Truro and Frankton about 80 km
northeast of Adelaide (Fig. 5.1; Morris 1990;
Müller et al. 1993). The investigated dykes from
the Karinya Syncline have been classified as
alkaline lamprophyres (Müller et al. 1993), but
they also show transitional features to lamproites.
Potassic lamprophyres with lamproitic affinity
are known from several localities worldwide (e.g.
Wagner and Velde 1986; Venturelli et al. 1991a;
Sheppard and Taylor 1992; Semiz et al. 2012),
but their petrogenesis is still poorly understood
(Foley et al. 1987).

The potassic lamprophyres from the mineral-
ized Karinya Syncline have high Au contents
(Müller et al. 1993). As they have also been ana-
lyzed for other base- and precious-metals (Cu, Ni,
Pt, Pd) and for elements commonly associated
with hydrothermal gold deposits (As, Sb, W), it is
informative to use them as a test of primary Au
enrichment of these rocks as proposed, for
example, by Rock and Groves (1988a, b). How-
ever, before doing this, the mineralogy, petrology
and geochemistry of the suitemust be documented
to determinewhether the rocks are hydrothermally
altered or not. It is also informative to use the
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geochemical data as a test of the tectonic dis-
crimination diagrams presented in Chap. 3.
A more complete description is provided by
Müller et al. (1993).

5.3.2 Regional Geology and Tectonic
Setting

The Adelaide Geosyncline is a 700 km-long fold
belt comprising late Proterozoic to middle
Cambrian sedimentary rocks which were folded,

metamorphosed, and uplifted during the
Delamerian Orogeny in the late Cambrian
(Thomson 1969, 1970; Foden et al. 2002). No
reliable indicators for an ancient subduction
event (i.e. blueschists, ophiolites, mélanges) have
been recorded in the Adelaide Geosyncline, and
Preiss (1987) has suggested a within-plate origin
for the igneous activity, perhaps related to
deep-seated crustal fractures.

The Karinya Syncline, forming the northern
part of the Kanmantoo Trough (southern part of

Fig. 5.1 Geological overview of the southern part of the Adelaide Geosyncline, South Australia, showing the study
area, which includes the Karinya Syncline. Modified after Müller et al. (1993)
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the Adelaide Geosyncline), consists of Cambrian
metasedimentary rocks which were intruded by
the lamprophyre swarm during the Ordovician
(Fig. 5.2).

5.3.3 Mineralization in the Vicinity
of the Lamprophyres

In the Adelaide Geosyncline, mineral deposits of
various kinds and different ages are situated

either in, or at the edges of, major
north-northwest-trending lineaments or at their
intersections (O’Driscoll 1983). O’Driscoll
(1983) has shown that the largest lineaments
coincide with small base-metal deposits at Kan-
mantoo and Kapunda, as well as with the giant
iron-oxide copper-gold-uranium deposit at
Olympic Dam (Creaser 1996). These deposits
are, however, older than the lamprophyres dis-
cussed here (Müller et al. 1993). The area also

Fig. 5.2 Geological overview of the investigated area
within the Karinya Syncline, South Australia. The map
shows lamprophyre localities and two former base-metal
mines in the area; circles represent samples from

petrographic group 1 and squares represent those from
petrographic group 2. The rose diagram shows the
different strike directions of the two distinctive petro-
graphic groups. Modified after Müller et al. (1993)
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hosts several smaller gold mines, where shallow
alluvial goldfields and some reefs were devel-
oped (e.g. Moppa and Hamilton areas south of
Truro), as well as barite deposits (e.g. northwest
of Dutton, west of Truro; Horn et al. 1989).

The occurrence of mineral deposits, in com-
bination with the presence of crustal-scale lin-
eaments which represent zones of deep-seated
crustal weakness, reflects the potentially high
prospectivity of the area for further gold and
base-metal discoveries (cf. Rock et al. 1988a),
although to date there are no clear indications of
mineralization directly related to the
lamprophyres.

5.3.4 Nature of the Lamprophyres

Most of the dykes strike northeasterly, as shown
in Fig. 5.2. The thickness of the dykes varies
from 0.1 to 1.5 m, and, in general, they have
intruded joint planes of the country rock (Müller
et al. 1993). The lamprophyre dykes show typical
porphyritic textures, with phlogopite phenocrysts
in a fine-grained groundmass. Most lamprophyre
dykes show flow textures, with a parallel align-
ment of phlogopite phenocrysts, and several have
chilled margins at lithological contacts with their
host rocks. In the Truro area there is also a
lamproitic diatreme (Müller et al. 1993). All
samples are affected to varying extents by sec-
ondary alteration. The carbonate host rocks at
Robertstown are strongly altered to talc, asbestos,
and tourmaline.

The investigated lamprophyres were em-
placed at a shallow depth during the Ordovician
after the Delamerian Orogeny. Two different
K-Ar ages of 458 ± 2 and 480 ± 3 Ma (Table 5.2)
are consistent with two distinctive petrographic

groups of lamprophyres (see below) as discussed
by Müller et al. (1993).

The large (1–6 mm), euhedral phlogopite
phenocrysts are sited in a groundmass of mainly
felsic components (e.g. orthoclase, leucite, pla-
gioclase, quartz). The phlogopites commonly
show battlement structures (Fig. 5.3c) and par-
allel orientations (i.e. flow textures; Fig. 5.3a, b).
An older phenocryst generation is represented by
large (up to 6 mm), zoned, Na-rich phlogopite
crystals, and a younger generation by smaller
(<1 mm) phlogopite crystals. Several rocks also
have apatite and titanite microphenocrysts.

Based on phenocryst mineralogy, two petro-
graphic types of lamprophyres can be distin-
guished, one is phlogopite phyric and the other is
apatite-phlogopite phyric (Müller et al. 1993).
Primary ferromagnesian phenocrysts other than
phlogopite are generally absent. However, one
sample also contains alkali-amphibole (i.e. rie-
beckite), and others show secondary amphibole
(i.e. cummingtonite) resulting from intense alter-
ation. Phenocryst mineralogy is dominated by
large zoned phlogopites with very high mg# of
89–90, variable TiO2 contents (1.71–4.06 wt%),
and Al2O3 contents between 12.0 and 13.0 wt%
(cf. Rock 1991). The phlogopite phenocrysts are
characterized by relatively high F concentrations
(up to 3.79 wt% F) compared to average values of
typical lamproites (Table 5.3). For example,
Miocene olivine-lamproites from the West Kim-
berley of Australia have F concentrations of only
about 1.71 wt% (Jaques et al. 1986; Mitchell and
Bergman 1991). Mica compositions, plotted on a
Al-Mg-Fe triangular diagram (Mitchell and
Bergman 1991; Sheppard and Taylor 1992),
show some overlap between values typical for
lamproites and lamprophyres (Fig. 5.4a).

Table 5.2 Whole-rock
K-Ar dating on
lamprophyres from the
Karinya Syncline, South
Australia

Sample no. Petrographic group K (wt%) K-Ar age (Ma)

119068 I 7.33 458 ± 2

119072 II 7.84 478 ± 3

119078 II 8.29 481 ± 3

Analyses performed by Analabs Laboratories, Adelaide, South Australia. The error on
ages is quoted as ±2ơ. Sample numbers refer to specimens held in the Museum of the
Department of Geology and Geophysics, The University of Western Australia. From
Müller et al. (1993)
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Groundmass minerals are mainly orthoclase,
leucite, plagioclase, and quartz. Potassic feld-
spars, plotted on a Fe2O3 versus orthoclase
biaxial diagram (e.g. Sheppard and Taylor 1992),
show transitional features between lamproites
and alkaline lamprophyres (Fig. 5.4b). Lampro-
ites sensu stricto, which commonly show leucite,
do not contain plagioclase (Velde 1975; Berg-
man 1987). They are also characterized by the
presence of Cr-spinels, which have not been
detected in the described lamprophyres (Müller
et al. 1993).

Several dykes have an extremely fine-grained,
cryptocrystalline, and partly glassy groundmass.
Two lamprophyres show syenitic ocelli, mainly
consisting of orthoclase, which are irregular
shaped globular structures and gradational with
their host-rocks (cf. Rock et al. 1988b; Perring
et al. 1989; Rock 1991; Taubald et al. 2004).

Importantly for the study of precious-metal
concentrations, some samples are affected by
secondary alteration. Alteration consists mainly
of saussuritization of groundmass feldspars pro-
ducing secondary epidote, or secondary carbon-
ate replacement. Three samples are strongly
altered, forming magnesio-cummingtonites with
a fibrous character and anomalous birefringence;
their felsic groundmass minerals are completely
altered to secondary talc and epidote (Müller
et al. 1993).

5.3.5 Petrology and Geochemistry
of the Lamprophyres

The major- and trace-element chemistry of rep-
resentative samples is given in Tables 5.4 and
5.5. The dykes show SiO2 contents between 39.6
and 63.1 wt% (Fig. 5.5) and mg# varies from 35

Fig. 5.3 Photomicrographs (crossed nicols) of typical
lamprophyre samples from the Karinya Syncline, South
Australia. a Two generations of mica phenocrysts with
varying size (119068) [FOV 4.0 mm]. b Flow textures
displayed by phlogopite phenocrysts (119072) [FOV
2.0 mm]. c Battlement structures in phlogopite phenocryst

(119068) [FOV 2.0 mm]. d Zoned phlogopite (119079)
[FOV 3.0 mm]. Sample numbers refer to specimens held
in the Museum of the Department of Geology and
Geophysics, The University of Western Australia. From
Müller et al. (1993)
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to 73. Most samples have high K2O (>3 wt%)
and MgO (>3 wt%) contents, and K2O/Na2O
ratios >2, and can be classified as ultrapotassic
(Foley et al. 1987). However, the most-altered
samples have relatively low K2O contents (<1.23
wt%) due to mobilization of K during alteration
(Müller et al. 1993). The lamprophyres are
characterized by very high F concentrations
(1050–5800 ppm). Their high halogen contents
(i.e. Cl and F) are consistent with the occurrence
of phlogopite phenocrysts, probably indicating
hydrous melting of the mantle source (Bizimis
et al. 2000; Guo et al. 2013).

Dykes of petrographic type 2 show P2O5

values >1.4 wt%, whereas those of petrographic
type 1 are characterized by P2O5 values <1.4 wt

% (Müller et al. 1993). Petrographic type 2 dykes
show distinctive Nb concentrations between 20
and 30 ppm, whereas those of type 1 have very
variable Nb concentrations, between 10 and
70 ppm. However, distinction between the two
petrographic groups using spidergram patterns is
equivocal.

The relatively low mg# of the rocks suggest
that the lamprophyres are derived from primitive
mantle melts via olivine ± clinopyroxene ±
phlogopite ± apatite fractionation. This is con-
sistent with their relatively low Ni concentra-
tions. Spitz ratios, such as (Na + K)/Al, show that
the samples tend towards peralkaline character
(Table 5.4). The relatively high TiO2 contents of
the investigated lamprophyres (up to 2.02 wt%;

Fig. 5.4 a Al-Mg-Fe
triangular plot showing 47
representative mica
analyses from the Karinya
Syncline, South Australia.
b Fe2O3 versus orthoclase
biaxial plot showing 21
representative K-feldspar
analyses for lamprophyres
from the Karinya Syncline,
South Australia. The
orthoclase component of
the investigated feldspar
phases is given in %. Data
from Müller et al. (1993).
Modified from Sheppard
and Taylor (1992)
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Müller et al. 1993) and their high Zr concentra-
tions (up to 818 ppm) reflect their alkaline geo-
chemistry (see Sect. 4.2; Müller et al. 1992a;
Karsli et al. 2014). Two samples have very low
SiO2 contents (<41.0 wt%) and very high MgO
contents (>17.0 wt%), suggesting an affinity to
lamproites. However, despite their high MgO
contents, they have only relatively low Ni
(<345 ppm), Co (<55 ppm), and Cr (<145 ppm)
contents. This clearly distinguishes them from
typical olivine-lamproites (Müller et al. 1993),
and suggests that the high MgO contents are not
primary, but caused by secondary alteration
processes.

The geochemistry of the investigated lam-
prophyres is atypical of lamproites (cf. Mitchell
and Bergman 1991), because of their unusually
low LREE abundances (e.g. <84 ppm La,
<157 ppm Ce). The lamprophyres from the
Karinya Syncline also have relatively high Al2O3

(*12.0 wt%) and low Ba contents (*2800 ppm
in fresh samples) compared with average values

for lamproites of 4–10 wt% and 1–3 wt%,
respectively (Bergman 1987).

In order to determine the tectonic setting of
the investigated potassic lamprophyres, they
were plotted on the TiO2 versus Al2O3, Y versus
Zr, and Zr/Al2O3 versus TiO2/Al2O3 biaxial
discrimination plots of Müller et al. (1992b). The
fresh potassic lamprophyres from the Karinya
Syncline are characterized by very high LILE,
LREE, and HFSE concentrations, and plot in the
fields of within-plate types in Fig. 5.6. This
implies that the rocks were generated in a
within-plate setting, consistent with previous
tectonic interpretations of the area (Preiss 1987).

5.3.6 Precious Metal Abundance
and Significance

Potassic igneous rocks are established as being
closely related with certain types of gold and
base-metal deposits (Mitchell and Garson 1981;
Mutschler et al. 1985; Müller and Groves 1993;

Table 5.4 Selected
major-element analyses (in
wt%) of lamprophyres from
the Karinya Syncline,
South Australia

Sample no. Fresh samples Altered samples

119067 119072 119070 119078

Petrographic group I II I II

SiO2 56.30 56.00 40.01 48.00

TiO2 2.02 1.86 1.82 1.75

Al2O3 12.29 12.10 12.84 9.50

Fe2O3 (tot) 9.59 8.50 13.03 9.81

MnO 0.02 0.06 0.02 0.25

MgO 4.83 6.70 17.96 6.20

CaO 0.40 2.08 0.42 6.68

Na2O 0.30 1.42 1.51 0.39

K2O 9.10 7.55 1.08 7.69

P2O5 0.48 1.60 0.31 1.80

LOI 3.98 2.13 10.71 6.57

Total 99.31 100.00 99.70 98.64

mg# 50 61 73 56

(Na+K)/Al 0.84 0.87 0.28 0.94

Sample numbers refer to specimens held in the Museum of the Department of Geology
and Geophysics, The University of Western Australia. From Müller et al. (1993)
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Sillitoe 1997, 2002). Previous work shows that
lamprophyres, too, can contain elevated con-
centrations of precious metals, as discussed
above. As documented in Table 5.5, the lam-
prophyres from the Karinya Syncline contain up
to 23 ppb Au, up to 19 ppb Pt, and up to 49 ppb
Pd (Müller et al. 1993). These are well above the
normal background levels of these elements for

basic igneous rocks, which are commonly less
than 2 ppb (Taylor et al. 1994). Figure 5.7 shows
that Au enrichment of the South Australian
lamprophyres is not decoupled from Cu and Pd
peaks in primitive mantle-normalized distribu-
tion plots (after Brügmann et al. 1987), sug-
gesting that the anomalous Au contents are
primary features (Wyman and Kerrich 1989).

Table 5.5 Selected
trace-element analyses of
lamprophyres from the
Karinya Syncline, South
Australia

Sample no. Fresh samples Altered samples

119067 119072 119070 119078

Petrographic group I II I II

F 4300 5500 4500 n.a.

Li 62 123 62 43

Sc 20 17 33 16

V 587 544 327 502

Cr 70 105 145 100

Co 10 40 55 25

Ni 120 265 345 185

Cu 160 35 65 300

Zn 90 205 155 155

As 13 9 2 2

Rb 575 496 10 411

Sr 614 451 91 740

Y 89 64 36 27

Zr 777 810 165 818

Nb 26 28 11 20

Sb 1.4 2.0 0.2 3.2

Ba 2878 2494 165 2538

La 57.5 51.6 6.9 83.5

Ce 120 100 16 157

Nd 50 40 9 56

Sm 8.9 7.3 2.5 8.8

Yb 3.5 3.4 2.8 1.1

Hf 18 21 3.5 19

W 3.0 1.2 1.7 2.5

Pb 5 59 2 114

Pd 13 9 5 49

Pt <5 <5 <5 19

Au 12 4 <3 23

Trace elements are in ppm, and precious metals are in ppb. n.a. not analyzed. Sample
numbers refer to specimens held in the Museum of the Department of Geology and
Geophysics, The University of Western Australia. From Müller et al. (1993)
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The high correlation (>0.6, <0.9) of the elements
Cu, Au, Pd, and Pt is also shown in the corre-
lation matrix for these elements, further sup-
porting a primary precious-metal enrichment of
the lamprophyres (Table 5.6). A precious-metal
enrichment of the dykes by crustal assimilation
during uprise (see Sect. 4.2) is improbable, and
enrichment by hydrothermal fluids after their
emplacement (see Sect. 8.2) seems unlikely
because there is a poor correlation (<0.2)
between Au and the pathfinder elements for
hydrothermal mineralization (Table 5.6). Thus,
the lamprophyres appear to be examples where
there is a primary enrichment of precious metals
(cf. Rock and Groves 1988a, b; Rock et al.
1988a; Wyman et al. 1995; Wang et al. 2001).

5.4 Comparison of Precious Metal
Abundances for Lamprophyres
from the Karinya Syncline
and Kreuzeck Mountains

This section compares the precious-metal abun-
dances of potassic lamprophyres from the Kari-
nya Syncline, South Australia (Sect. 5.3) with

those from the Kreuzeck Mountains, Eastern
Alps, Austria (Sect. 4.2). The Alpine lampro-
phyres are also characterized by elevated
precious-metal concentrations (Table 4.3) but,
importantly, these are not primary features, as
discussed below.

All lamprophyre samples from the Kreuzeck
Mountains, Eastern Alps, were analyzed for Au
and PGE using Pb-fire-assay and graphite-furnace
atomic-absorption spectroscopy (AAS) tech-
niques at the Institute of Geology, Mining Uni-
versity Leoben, Austria. Samples were prepared
for analysis according to the method of Sighinolfi
et al. (1984). The detection limit was 3 ppb for
Au, 5 ppb for Pt, and 1 ppb for Pd, and the results
were checked against a SARM-7 standard.

The Kreuzeck lamprophyres contain up to
27 ppb Au and 19 ppb Pd (cf. Müller et al. 1992a),
with one calc-alkaline basaltic dyke containing
34 ppb Au. This can be compared with the
0.5-2.5 ppb Au content that is the typical back-
ground level for basic igneous rocks (Taylor et al.
1994; Pitcairn 2011). The Au-bearing samples
from the Kreuzeck Mountains are mainly exposed
in the central part of the area, where massive
sulphides with significant Au and Ag concentra-
tions were mined. The lamprophyres enriched in

Fig. 5.5 K2O versus SiO2

plot (after Peccerillo and
Taylor 1976) showing the
potassic or ultrapotassic
chemistry of the
lamprophyres from the
Karinya Syncline, South
Australia. * = ultrapotassic,
as defined by Foley et al.
(1987); CAB =
calc-alkaline basalts. From
Müller et al. (1993)
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Au normally show Na2O contents of more than
2.30 wt%, and commonly have high LOI.

A Cu versus Au biaxial plot for these rocks
(Fig. 5.8) shows no linear correlation between
the two elements as would be expected if the
magmas had a primary metal enrichment (Tay-
lor et al. 1994). Figure 5.9a, b illustrate that
elevated Au values of the dykes are decoupled
from Cu, Pt, and Pd values in distribution plots
of metal contents normalized to primitive man-
tle (after Brügmann et al. 1987), contrasting
with data for the lamprophyres from the Kari-
nya Syncline (Fig. 5.7). Again, this suggests
that the anomalous Au contents are secondary
features (cf. Wyman and Kerrich 1989). Fig-
ure 5.9b indicates that the Au concentrations of
dykes from the central parts of the Kreuzeck
Mountains are slightly higher than those of
dykes from the northern and southern parts of
the area (Fig. 5.9a). Table 5.7 shows a corre-
lation matrix for precious metals (Au, Pt, Pd),
Cu, and pathfinder elements (As, Sb, W) for
hydrothermal gold deposits, illustrating the
weak correlation between these elements. If the

Fig. 5.6 Discrimination diagrams for potassic igneous
rocks (see Chap. 3) indicating a within-plate tectonic
setting for the investigated lamprophyres. a TiO2 versus
Al2O3 plot. b Y versus Zr plot. c Zr/Al2O3 versus TiO2/
Al2O3 plot. From Müller et al. (1993)

Fig. 5.7 Abundances of chalcophile elements in lam-
prophyres from the Karinya Syncline, South Australia,
relative to primitive mantle. Normalizing factors after
Brügmann et al. (1987)
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elevated precious-metal contents in some of the
lamprophyres were direct enrichments related to
hydrothermal gold mineralization, a better cor-
relation between gold and its normal pathfinder
elements would be expected. Therefore, the
available data support neither a primary mag-
matic enrichment model nor a hydrothermal
enrichment model. Müller et al. (1992a) suggest
that, in this case, the high Au and PGE contents
are related to assimilation of the Au-enriched
massive-sulphide deposits in the area during
uprise and emplacement of the lamprophyric
magmas.

The above interpretation is consistent with
recent studies of shoshonitic lamprophyres from
the Hillgrove gold-antimony mining district,
New South Wales, Australia (Ashley et al. 1994;
Ashley and Craw 2004), where the lamprophyres
are enriched in the elements of the mineralization
that they cut.

Table 5.6 Correlation
matrix for precious metals
(Au, Pd, Pt), Cu, and gold
pathfinder elements (As,
Sb, W) of lamprophyres
from the Karinya Syncline,
South Australia

Cu Au Pt Pd As Sb W

Cu 1

Au 0.772 1

Pt 0.730 0.604 1

Pd 0.786 0.900 0.849 1

As −0.140 −0.188 −0.363 −0.254 1

Sb 0.410 0.136 0.050 0.115 0.316 1

W −0.234 −0.238 −0.088 −0.220 0.264 0.117 1

Fig. 5.8 Plot of Cu versus Au for lamprophyres from the
Kreuzeck Mountains, Austria

Fig. 5.9 Abundances of chalcophile elements in dykes
from the Kreuzeck Mountains, Austria, relative to the
primitive mantle. Normalizing values after Brügmann
et al. (1987). a Dykes from the northern and southern
parts of the area. b Dykes from the central part of the area
where most former gold mines are located
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6Direct Associations Between Potassic
Igneous Rocks and Gold-Copper
Deposits in Volcanic Arcs

6.1 Direct Associations in Specific
Tectonic Settings: Introduction

An overview of spatial associations between
potassic igneous rocks and gold-copper deposits
in the Southwest Pacific area is shown in Fig. 6.1.
Examples of direct associations between potassic
igneous rocks and copper-gold deposits investi-
gated in this study are, in order of increasing age:

• The Quaternary Ladolam gold deposit, Lihir
Island, Papua New Guinea (Wallace et al.
1983; Plimer et al. 1988; Moyle et al. 1990;
Dimock 1993; Hoogvliet 1993; Carman 1994,
2003; Müller et al. 2001, 2002a, b; Müller
2003; Simmons and Brown 2006; Blackwell
et al. 2014).

• The Tertiary Emperor gold deposit, Viti
Levu, Fiji (Gill 1970; Colley and Greenbaum
1980; Anderson and Eaton 1990; Setterfield
1991; Setterfield et al. 1992; Pals et al. 2003;
Scherbarth and Spry 2006).

• The Pliocene Grasberg copper-gold deposit,
Irian Jaya, Indonesia (Van Nort et al. 1991;
McMahon 1994; MacDonald and Arnold
1994; Pollard and Taylor 2002; Pollard et al.
2005).

• The Pliocene Misima gold deposit, Misima
Island, Papua New Guinea (Lewis and Wil-
son 1980; Appleby et al. 1995).

• The Miocene Porgera gold deposit, Papua
New Guinea (Handley and Henry 1990;

Richards 1990a, b, 1992; Richards et al.
1990, 1991; Ronacher et al. 2002, 2004;
Peterson and Mavrogenes 2014).

• The Miocene Bajo de la Alumbrera
copper-gold deposit, Catamarca Province,
Argentina (Müller and Forrestal 1998; Ulrich
et al. 2001; Ulrich and Heinrich 2002; Proffett
2003; Harris et al. 2004a, b, 2006).

• The Miocene Dinkidi copper-gold deposit,
Didipio district, Philippines (Haggman
1997a, b; Garrett 1996; Wolfe et al. 1998;
Wolfe 2001; Wolfe and Cooke 2011).

• The Miocene El Indio gold deposit, El
Indio-Pascua belt, Chile (Siddeley and Aran-
eda 1986; Jannas et al. 1990; Bissig et al.
2001, 2002, 2003; Deyell et al. 2005).

• The Miocene Skouries copper-gold deposit,
Chalkidiki Peninsula, Greece (Magri et al.
1998; Tobey et al. 1998; Kroll 2001; Kroll
et al. 2002).

• The Oligocene Cripple Creek gold deposit,
Colorado, USA (Lindgren and Ransome 1906;
Thompson et al. 1985; Kelley et al. 1998;
Kelley and Ludington 2002; Jensen 2003).

• The Eocene Bingham copper-gold deposit,
Utah, USA (Lanier et al. 1978a, b; Warnaars
et al. 1978; Bowman et al. 1987; Deino and
Keith 1997; Waite et al. 1997; Maughan et al.
2002; Redmond et al. 2004; Gruen et al.
2010; Landtwing et al. 2010; Redmond and
Einaudi 2010).

• The Cretaceous Peschanka copper-gold
deposit, Siberia, Russia (Volkov et al. 2006;

© Springer International Publishing Switzerland 2016
D. Müller and D.I. Groves, Potassic Igneous Rocks and Associated Gold-Copper Mineralization,
Mineral Resource Reviews, DOI 10.1007/978-3-319-23051-1_6
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Nagornaya 2010; Chitalin et al. 2012;
Baksheev et al. 2013; Marushchenko
2013; Nikolaev et al. 2013, 2014; Soloviev
2014).

• The Devonian Hugo Dummett (Oyu Tolgoi)
porphyry copper-gold deposit, Mongolia
(Perello et al. 2001; Kavalieris and Wain-
wright 2005; Kashgerel et al. 2006, 2009;
Wainwright et al. 2011; Crane and Kavalieris
2012).

• The Ordovician Ridgeway (Cadia)
copper-gold deposit, New South Wales,
Australia (Harper 2000; Blevin 2002; Holli-
day et al. 2002; Wilson et al. 2003, 2007).

• The Ordovician Northparkes (Goonumbla)
copper-gold deposit, New South Wales,
Australia (Jones 1985; Heithersay 1986;
Heithersay et al. 1990; Perkins et al. 1990a, b,
1992; Müller et al. 1994; Heithersay and
Walshe 1995; Blevin 2002; Lickfold et al.
2003; Harris and Holcombe 2014).

A database comprising representative petro-
logical and geochemical data from the high-K
calc-alkaline and shoshonitic intrusive rocks
from these mineralized localities was compiled
(GOLD1), and the sources are listed in
Tables 6.1 and 6.2. Available samples were

Fig. 6.1 Overview in terms of gross tectonic setting of
some major gold and base-metal deposits hosted by
potassic igneous rocks in the Southwest Pacific area.

Modified after Müller and Groves (1993). See Fig. 1.1 for
a more complete overview of the entire Pacific Rim
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filtered and geochemical discrimination diagrams
developed. The data were plotted on the K2O
versus SiO2 biaxial diagram of Peccerillo and
Taylor (1976a) to illustrate the potassic affinities
of the igneous rocks (Fig. 6.2). Rocks from the
gold deposits at Emperor, Tom’s Gully (Mount
Bundey), Ladolam, and Porgera generally show
the highest K2O contents (Fig. 6.2). Mount
Bundey is a potassic pluton close to the Tom’s
Gully gold deposit and both are associated with
potassic lamprophyres.

Nearly all of the potassic igneous rocks and
shoshonites from mineralized environments
investigated in this study are arc-related (cf.
Müller and Groves 1993), as illustrated by their
geological setting and confirmed by their position

on the TiO2 versus Al2O3 and Y versus Zr biaxial
plots (Figs. 6.3 and 6.4). However, spatial asso-
ciations between some potassic lamprophyres and
orogenic gold mineralization, for example at the
Tom’s Gully deposit in the Proterozoic Pine
Creek Geosyncline, Northern Territory, Australia
(see Sect. 7.3), are recorded from within-plate
tectonic settings as illustrated in Figs. 6.3 and 6.4.

6.2 Erection of Database GOLD1

Anew database (GOLD1) has been constructed so
that geochemical discrimination diagrams—based
on the filtered database SHOSH2—can be applied

Table 6.2 Whole-rock data sources for samples in database GOLD1

1. Continental arcs 2. Postcollisional arcs 3. Late oceanic arcs 4. Within-plate settings

El Indio, Chile Misima, Papua New Guinea Viti Levu, Fiji Mount Bundey, Northern
Territory, Australia

Bissig et al. (2003)
[5]

Appleby (pers. comm., 1996)
[5]

Gill (1970) [10] Sheppard and Taylor (1992)
[6]

Setterfield (1991) [27]

Bajo de la
Alumbrera,
Argentina

Porgera, Papua New Guinea

Müller and Forrestal
(1998) [4]

Richards (1990a) [6] Northparkes, NSW, Australia

Richards (1990b) [13] Müller et al. (1994) [3]

Bingham, Utah,
USA

Richards et al. (1990) [4]

Waite et al. (1997)
[3]

Ladolam, Lihir Island, Papua
New Guinea

Superior Province, Canada Wallace et al. (1983) [16]

Wyman (1990) [20] Kennecott Exploration (pers.
comm., 1992) [2]

Wyman and Kerrich (1989)
[31]

Dinkidi, Didipio, Philippines

Yilgarn Block, Western
Australia

Wolfe (pers. comm., 1999)
[3]

Taylor et al. (1994) [18]

Univ. of Western Australia
(unpubl. data) [15]

The number in square brackets refers to the number of analyses from that reference in the database. From Müller and
Groves (1993)

6.1 Direct Associations in Specific Tectonic Settings: Introduction 103

http://dx.doi.org/10.1007/978-3-319-23051-1_7


to mineralized tectonic settings. The database
comprises only geochemical data for potassic
igneous rocks from mineralized localities such as
the Emperor, Ladolam, and Porgera gold deposits,

and major porphyry-copper districts such as the
Chilean Andes and the Goonumbla and Cadia
areas, Lachlan FoldBelt, as listed in Table 6.2. The
data were taken from the literature or derived from

Fig. 6.2 K2O versus SiO2 plot (after Peccerillo and Taylor 1976a) showing data from database GOLD1.
CAB = calc-alkaline basalts. Adapted from Müller and Groves (1993)

Fig. 6.3 TiO2 versus Al2O3 diagram (see Chap. 3)
showing discriminant fields and the position of shoshon-
itic and potassic igneous rocks associated with
gold-copper mineralization. Mount Bundey is the

intrusion adjacent to the Tom’s Gully gold deposit,
Northern Territory, Australia. Adapted from Müller and
Groves (1993)
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analyses undertaken for this study. Using the
procedure given in Chap. 3, samples were filtered
and discrimination diagrams developed. Although
several samples from highly mineralized settings
(e.g. Porgera) have high LOI values (i.e. >5 wt%),
and slightly higher CaO (up to 2.4 wt%) and Na2O
(up to 5.3 wt%) contents than recommended for
the use of the discrimination diagrams, they were
left in the database GOLD1.

6.3 Late Oceanic Arc Associations

Generally, the samples from those mineralized
arcs described below are characterized by the
lowest Zr and Nb concentrations (<110 and
<8 ppm, respectively, see Fig. 6.4) and hence are
typical of potassic igneous rocks from oceanic arc
settings (Chap. 3). Figure 6.5 clearly discrimi-
nates them from high-K rocks typical of conti-
nental and postcollisional arc settings, which are
also characterized by higher Zr and Nb contents
(up to 300 ppm and >10 ppm, respectively; see
Fig. 6.4). As demonstrated in Fig. 6.6—the

(TiO2/10)–(10 × La)–(P2O5/10) triangular plot of
Chap. 3—all mineralized potassic island-arc
rocks discussed here are from late oceanic arcs,
with the implication that initial oceanic arcs may
be barren of gold or base-metal mineralization in
association with high-K igneous rocks.

6.3.1 Ladolam Gold Deposit, Lihir
Island, Papua New Guinea

Introduction The Southwest Pacific hosts some
of the world’s premier gold and gold-copper
deposits (Andrews 1995). One example is Lado-
lam, on Lihir Island, which is hosted by Quater-
nary high-K calc-alkaline rocks (Wallace et al.
1983; Moyle et al. 1990; Carman 1994; Müller
et al. 2001). Lihir Island is in the New Ireland
Province of Papua New Guinea, and has an area
of about 192 km2. The island has a rugged and
deeply incised topography rising to about 700 m
above sea level (Moyle et al. 1990). Lihir Island is
one of four volcanic island groups which form an
island chain extending for more than 260 km,
located to the northeast and subparallel to the

Fig. 6.4 Y versus Zr
diagram (see Chap. 3)
showing discriminant fields
and the position of
shoshonitic and potassic
igneous rocks associated
with gold-copper
mineralization. Adapted
from Müller and Groves
(1993)
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New Ireland coast line (Fig. 6.7). The other
islands are Tabar to the northwest and Tanga and
Feni to the southeast (Wallace et al. 1983). Vol-
canic activity started at about 3.6 Ma on Tabar

(Rytuba et al. 1993) and the most recent on-land
eruption was recorded on Feni Island about
2300 year ago (Licence et al. 1987). There are a
number of small volcanic edifices on the seafloor

Fig. 6.5 (TiO2/100)-La-
(Hfx10) triangular diagram
(see Chap. 3)
discriminating between
samples from oceanic arcs
(black symbols) and those
from continental or
postcollisional arc settings
(white symbols). The
symbols are the same as in
Figs. 6.2, 6.3 and 6.4.
Adapted from Müller and
Groves (1993)

Fig. 6.6 Samples from
oceanic arcs (Lihir Island,
Viti Levu, Goonumbla)
plotted on the (TiO2/10)-
(Lax10)-(P2O5/10)
triangular diagram (see
Chap. 3) suggesting their
genesis in a late oceanic
arc. From Müller and
Groves (1993)
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to the south of Lihir Island (Franz et al. 2002;
Franz and Romer 2010), the largest of which is
called Conical Seamount (Petersen et al. 2002).
Conical Seamount (Fig. 6.7) is located about
10 km to the south of Lihir Island (Müller et al.
2003; Gemmell et al. 2004). Submarine grab
samples from this seamount contain the highest
gold concentrations yet reported from the modern
seafloor (max. 230 ppm Au, avg. 26 ppm, n = 40).
The exceptionally large Ladolam gold deposit
contains >46 Moz of gold and is located on the
east coast of Lihir Island (Fig. 6.8). The deposit
was discovered in 1982 by the Kennecott
Explorations and Niugini Mining Joint Venture
(Hoogvliet 1993).

Regional Geology Lihir Island is composed of
Pliocene-Pleistocene alkaline lavas, volcanic
breccias, and pyroclastic and epiclastic rocks
derived from five volcanoes that dominate the

island (Müller et al. 2001). These are, in chro-
nological order, the Huniho, Wurtol, Luise,
Londolovit, and Kinami volcanoes. Whereas the
Londolovit and Huniho volcanoes form the
northern part of the island, the central part is
dominated by the Wurtol and Luise volcanoes
and the southern part by Kinami, which repre-
sents the youngest volcano on Lihir Island. The
volcanic rocks include porphyritic trachybasalts,
trachyandesites, latites, and pyroclastic rocks
with high K2O contents (Wallace et al. 1983;
Müller et al. 2001). In places, the lavas are
intruded by small monzodiorite and monzonite
plugs (Müller et al. 2002a).

The Pleistocene Luise stratovolcano consists
of an elongate elliptical crater, about 5.5 by
3.5 km, where the northeastern margin has col-
lapsed into the sea. Based on the presence of two
overlapping circular demagnetized zones, the
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volcano probably consisted of two active centers
(Komyshan 1999). Extensive diamond drilling
indicates that the Luise collapse amphitheatre
does not represent a caldera as was suggested by
previous workers (e.g. Wallace et al. 1983;
Davies and Ballantyne 1987; Moyle et al. 1990).
Instead, the feature is interpreted as a partial
volcanic slope failure (cf. Lopez and Williams
1993; Voight and Elsworth 1997) of the original
stratovolcano. Failure of the northeastern slope
of the Luise volcano may have been triggered by
an earthquake or by phreatic explosions. The
resulting agglomeratic debris avalanche slipped
seaward along east-west striking, spoon-shaped,
listric faults (Müller et al. 2000b). Lithostatic
unloading during this process (cf. Carman 1994)
would have led to widespread hydraulic brecci-
ation of the host rocks that were saturated with
hydrothermal fluid. These breccias were healed
by anhydrite and calcite precipitation at depth
(Müller et al. 2002a), a common characteristic of

gold deposits in the Southwest Pacific (R. Sillitoe
pers. comm., 2012).

Conical Seamount consists of massive trac-
hybasaltic lava flows, pillows, and talus breccias
comprising moderately vesicular fragments and
scoria (Müller et al. 2003). The volcano has a
basal diameter of about 2.8 km and rises about
600 m above the seafloor to a water depth of
1050 m (Petersen et al. 2002). The seamount is
characterized by a small summit plateau
extending over 100 × 200 m and hosting an
elongate, 100 m-long and east-west oriented
eruptive fissure.

The plate tectonic setting in this area was
characterized by the southwestward subduction
of the Pacific plate beneath the Melanesian trench
and contemporaneous calc-alkaline volcanism on
New Ireland (Müller et al. 2001; Franz et al.
2002). About 15 m.y. ago, the southwestward
subduction ceased due to the collision of the
Ontong-Java plateau with the Kilinailau trench

Fig. 6.8 Alteration map of the Ladolam gold deposit, Lihir Island, Papua New Guinea. Modified after Dimock et al.
(1993)
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(Coleman and Kroenke 1981). This resulted in
plate rotation and stress relocation. As a conse-
quence, the northward movement of both the
Solomon and the Australian plates generated the
presently active north-dipping New Britain
trench (Fig. 6.7). Back-arc spreading then
developed in the Manus basin and separated the
Bismarck microplate into northern and southern
segments. Partial melting of subduction-modified
upper mantle sources beneath Lihir Island was
probably triggered by adiabatic decompression
melting along deep-seated extensional structures
either related to the back-arc rifting of the Manus
basin (Taylor 1979) or, more likely, to a
north-trending flexure and a resulting slab tear in
the subducting Solomon plate (Müller et al.
2002b). Slab tears may play a dominant role in
the formation of porphyry copper-gold deposits
globally (Logan and Mihalynuk 2014). Abundant
north-trending structures have been mapped in
the open pit of the Ladolam gold mine and they
are referred to as Letomazien structures by Cor-
bett (1999). Several high gold-grade late-stage
chalcedony-illite-adularia veins also follow this
trend (Corbett et al. 2001). Additionally, Lihir
Island lies along a northerly trend of shallow
seismicity, which may be related to a fault of
similar orientation on New Ireland (Shatwell
1987). The Londolovit, Luise, and Kinami vol-
canoes as well as Conical Seamount are aligned
along a north-south-trending structure (Müller
et al. 2002b). Kinks or flexures in the subducting
oceanic slab are also interpreted to control the
location of other major deposits such as the
porphyry copper-gold deposits at Bajo de la
Alumbrera, Argentina (Müller and Forrestal
1998), Batu Hijau, Sumbawa Island, Indonesia
(Kerrich et al. 2000), and the porphyry gold
systems of the Maricunga belt, Chile (Vila and
Sillitoe 1991).

Nature of Epithermal Gold Mineralization
The Ladolam gold deposit (Fig. 6.8) consists of
four orebodies, all of which occupy the center of
the extinct Luise volcano: Minifie, Lienetz, Ka-
pit, and Coastal (Moyle et al. 1990; Diemock
et al. 1993; Carman 1994). Minifie and Lienetz
represent the largest orebodies being separated

by a major fault with a vertical offset in excess of
100 m (Müller et al. 2002b). Mining commenced
in late-1997 with two individual open pits
exploiting the Minifie and Lienetz orebodies.
However, both pits were eventually combined
into the large open pit that is currently in oper-
ation. Minifie and Lienetz form tabular ore zones
covering about 2 km2 and extending from the
surface to 400 m below sea level (Simmons and
Brown 2006). They lie in the middle of a brea-
ched crater that formed in response to sector
collapse and unroofing of the volcanic edifice
about 400,000 years ago (Moyle et al. 1990). The
resulting explosive depressurization of the
magmatic-hydrothermal system produced a large
breccia complex and highly permeable rocks,
which now host the ore (Müller et al. 2002a;
Simmons and Brown 2006; Blackwell et al.
2014). The Ladolam gold deposit represents a
transition from porphyry-style to epithermal
mineralization (Carman 1994, 2003; Müller et al.
2002a, b; Blackwell et al. 2014). Three stages of
gold mineralization and hydrothermal alteration
have been documented at Ladolam (Carman
1994; Müller et al. 2002a, b): (1) an early-stage
porphyry gold ± copper system (Fig. 6.9a), (2) a
transitional stage between porphyry and epither-
mal styles (Fig. 6.9b), and (3) an epithermal gold
mineralization event (Fig. 6.9c). An early-stage
porphyry gold ± copper system is indicated by
clasts of strongly potassic-altered monzodiorite
and propylitic-altered trachyandesite that are
preserved in the abundant breccias (Müller et al.
2002a). These breccias also contain clasts of
silicified and potassic-altered monzodiorite with
disseminated pyrite ± chalcopyrite and poorly
developed pyrite ± quartz stockwork veins
(Fig. 6.9a). Additionally, deep exploration dril-
ling under the open pit area intersected monzo-
diorite intrusions with strong potassic alteration
and trachyandesite lavas with strong propylitic
alteration. The transitional stage is indicated by
poorly sorted, clast-supported heterolithic brec-
cias containing angular to subangular fragments
of monzodiorite, trachyandesite, tuffs, minor
laminated mudstones, as well as juvenile clasts.
The matrix of these breccias (Fig. 6.9b) is nor-
mally strongly mineralized with fine-grained
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auriferous pyrite (Müller et al. 2002b). The
mineralization consists mainly of pyrite with
minor marcasite and rare chalcopy-
rite ± galena ± tetrahedrite. The hydrothermal
breccias contain uniform gold grades of about
5 g/t and represent the bulk of the ore at Lado-
lam. Argillic alteration is poorly developed at the
Minifie orebody but is well developed in the top
parts of the Lienetz, Coastal, and Kapit orebodies
(Moyle et al. 1990). The hydrothermal breccias
of the transitional stage are cut by late-stage gray
to blue quartz-chalcedony-illite-adularia-arsenian
pyrite veins (Fig. 6.9c) that may contain isolated

bonanza gold grades of up to 120 g/t (Müller
et al. 2002a). Blue and chalcedonic quartz in the
late-stage veins is normally fine-grained and has
collomorph textures, whereas coarse euhedral
dog-tooth quartz is commonly white.

At the deeper levels of the Minifie orebody,
the monzodiorites and trachyandesite lavas are
brecciated and healed with anhydrite-calcite
veins, locally referred to as the “anhydrite seal”
(Corbett et al. 2001). The anhydrite-calcite
healed breccias are monolithic in composition
and, thus, different from the heterolithic breccias
which host the bulk mineralization at Ladolam
(Müller et al. 2002b).

Ladolam represents a gold resource of about
46 Moz with an average grade of 2.52 g/t
(Blackwell et al. 2014) and the hydrothermal
system is still geothermally active (Moyle et al.
1990). A number of deep geothermal wells were
drilled under the open pit in order to explore the
hydrology of the system and to remove hot water
from the mine site. The deep well cuttings, con-
taining orthoclase, phlogopite, quartz, magnetite,
pyrite, calcite, and anhydrite, indicate a
near-neutral pH of 6–7 at hydrothermal conditions
(Simmons and Brown 2006). The deep geother-
mal sulfate-chloride brine thus resembles the
ore-forming fluid. It contains high gold concen-
trations of 13–16 ppb, and except for Sb and Pb,
the proportions of Au, Ag, Cu, Mo, Zn, and As
match those in the ore (Müller et al. 2002a; Sim-
mons and Brown 2006). Simmons and Brown
(2006) estimate an overall gold flux of 24 kg/year,
and only about 55,000 years would be required to
account for all the known gold in the Ladolam ores
assuming a constant aqueous gold concentration
and fluid flow (50 kg/s), and 100 % deposition.

Submarine gold mineralization at Conical
Seamount is confined to the summit and along its
eruptive fissure (Petersen et al. 2002; Müller
et al. 2003). Grab samples from the area reveal
three mineralization styles: (1) a pyrite stock-
work with locally intense clay-silica alteration
overprinting trachybasalt, (2) auriferous
pyrite-bearing silica veins and disseminated
polymetallic sulphides, and (3) a late-stage
fracture-filling As-Sb mineralization.

Fig. 6.9 Representative ore samples from the Ladolam
gold deposit, Lihir Island, Papua New Guinea (photos
taken by D. Müller): a hydrothermal breccia containing
large clast of silicified and potassic altered monzodiorite
with disseminated pyrite ± chalcopyrite and cut by
pyrite ± quartz stockwork veining (early-stage
porphyry-style mineralization) [FOV 4 × 8 cm]; b bulk
ore of strongly mineralized and poorly sorted heterolithic
hydrothermal breccia containing approximately 20 vol.%
of fine-grained auriferous pyrite in the matrix (transitional
style) [FOV 4 × 8 cm]; c hydrothermal breccia cut by blue
quartz-chalcedony-illite-adularia-pyrite vein (late-stage
low-sulphidation epithermal style) [FOV 3 × 12 cm]

110 6 Direct Associations Between Potassic Igneous Rocks …



Although Sr isotopic data indicate some
involvement of seawater, high-precision lead
isotopic measurements conducted with a plasma
multi-collector ICP-MS on ores, lavas, and sed-
iments from Lihir Island and Conical Seamount
suggest that neither seawater nor the sediments in
the area have significantly contributed to the
metal budget of the ore at Ladolam and Conical
Seamount (Kamenov et al. 2005). The data imply
that the ores and lavas from both locations share
similar Pb isotopic compositions suggesting that
the Pb in both hydrothermal systems was ulti-
mately derived from the alkaline magmas (Ka-
menov et al. 2005, 2008).

Petrology and Geochemistry of the Potassic
Host Rocks The five volcanoes that form Lihir
Island consist of a suite of high-K calc-alkaline
rocks, mainly trachybasalts, trachyandesites, and
latites, which are locally intruded by monzodi-
orite stocks (Wallace et al. 1983). Several
late-stage trachyandesitic and latitic porphyry
stocks and dykes have been intersected in drill
holes (Moyle et al. 1990). More rarely, phono-
lites and olivine-clinopyroxene cumulates are
recognized (Müller et al. 2002b).

The upper parts of the Luise volcano consist
of trachyandesite and latite lavas and related tu-
ffs. The central part of the volcano is dominated
by breccias and trachyandesite lavas that are
locally cut by hypabyssal monzodiorite stocks.
The volcanic rocks have porphyritic textures
with phenocrysts of plagioclase, augite, and
minor phlogopite and hornblende in a
fine-grained feldspathic groundmass (Moyle
et al. 1990). A few samples have a very
fine-grained or glassy groundmass as in a trac-
hybasalt sample which also contains abundant
vesicles (Müller et al. 2001). Hypabyssal mon-
zodiorite intrusions are porphyritic with pheno-
crysts of plagioclase, brown and/or green
hornblende and phlogopite that are set in a
medium-grained, quartz-poor, groundmass.
Igneous phlogopite contains very high F contents
of up to 5.60 wt%. In contrast, hydrothermal
biotite is restricted to zones with potassic

alteration and it is characterized by very low F
contents (<0.08 wt%), but high Cl concentrations
of up to 0.15 wt% (Müller et al. 2001).

The alkaline rocks from Lihir Island
(Table 6.3; cf. Müller et al. 2001) range in geo-
chemical composition from primitive to rela-
tively evolved compositions, as reflected by SiO2

(45.77–54.97 wt%), MgO (1.40–15.30 wt%)
contents, and variable concentrations of the
mantle-compatible elements (130–328 ppm V,
1–186 ppm Ni). These data are consistent with
the wide range of mg# (31–79) that are calcu-
lated using an Fe2/(Fe2 + Fe3) ratio set at 0.15,
common in potassic igneous rocks (cf. Müller
et al. 1992b). Most samples are
hypersthene-normative, but those samples with
the highest total alkali contents (>5.64 wt%) are
nepheline-normative (Müller et al. 2001). Previ-
ous studies by Kennedy et al. (1990), which
suggest that the Luise lavas may be separated
into primitive and relatively evolved groups, with
two distinct fractionation trends, were not con-
firmed. For comparison, compositions of samples
from the Luise, Huniho, Wurtol, and Londolovit
volcanoes as well as Conical Seamount are
plotted as MgO versus Al2O3 (Fig. 6.10); all
samples, including the cumulates, plot along the
fractionation trend outlined by the arrow in
Fig. 6.10, suggesting that the melts from all
volcanoes are related to a single common
parental magma, probably derived from an
underlying magma chamber (Müller et al. 2003).
Note that the three samples with the highest MgO
contents are augite-olivine cumulates. They also
fall on the fractionation trend.

The rocks from Lihir Island are characterized
by high K2O contents (up to 4.68 wt%), high
average K2O/Na2O ratios (0.8), and high average
Ce/Yb ratios (14.1), which are typical of high-K
calc-alkaline rocks transitional to shoshonites
(Pearce 1982). However, the rocks are not com-
parable to shoshonites sensu stricto (Morrison
1980), as suggested by previous workers (e.g.
Moyle et al. 1990). The high LILE (e.g. Rb
186 ppm, Sr 1461 ppm, Ba 760 ppm), low LREE
(e.g. La < 20.3 ppm and Ce < 38.4 ppm), and
very low HFSE concentrations (e.g.
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Table 6.3 Major- and trace-element analyses of potassic igneous rocks from Lihir Island and Conical Seamount, New
Ireland Province, Papua New Guinea

Province/deposit Lihir Island Lihir Island Lihir Island Conical
Seamount

Conical
Seamount

Location Papua New
Guinea

Papua New
Guinea

Papua New
Guinea

Papua New
Guinea

Papua New
Guinea

Rock type Monzodiorite Monzodiorite Monzodiorite Trachybasalt Trachybasalt

Tectonic setting Late oceanic arc Late oceanic arc Late oceanic arc Late oceanic arc Late oceanic arc

Reference Müller et al.
(2001)

Müller et al.
(2001)

Müller et al.
(2001)

Müller et al.
(2003)

Müller et al.
(2003)

SiO2 51.12 49.08 49.57 47.32 47.75

TiO2 1.01 1.10 1.07 0.74 0.73

Al2O3 17.08 17.67 16.48 15.58 15.07

Fe2O3 10.51 10.32 9.90 5.00 4.24

FeO n.a. n.a. n.a. 4.54 5.57

MnO 0.20 0.21 0.18 0.17 0.18

MgO 4.55 3.94 4.23 5.35 6.34

CaO 8.93 9.05 9.73 11.08 11.63

Na2O 3.02 3.37 3.76 2.24 2.82

K2O 2.75 1.47 1.88 3.31 3.03

P2O5 0.36 0.43 0.35 0.42 0.38

LOI 1.00 3.40 3.10 2.98 1.05

Total 100.70 100.23 100.42 98.73 98.79

mg# 46 43 46 51 55

K2O/Na2O 0.91 0.44 0.5 1.5 1.1

Sc n.a. n.a. n.a. n.a. n.a.

V 224 296 222 n.a. n.a.

Co 29 26 27 40 37

Ni 10 4 8 29 33

Rb 48 19 40 51 60

Sr 969 1107 1116 1050 940

Y 27 25 26 19 19

Zr 76 87 87 56 57

Nb 2 3.3 3.3 1.4 1.3

Ba 291 278 270 220 210

La 14.9 15.0 14.2 9.7 9.6

Ce 28.9 29.7 30.0 20 20

Sm 4.6 5.0 4.9 3.8 3.9

Yb 2.30 2.25 2.42 1.6 1.6

Hf 2.0 2.3 2.5 1.5 1.4

Ta 0.1 0.1 0.2 0.09 0.09

Th 1.4 1.3 1.7 0.89 0.85

U 0.6 1.0 1.1 0.69 0.61

The samples from Conical Seamount were dredged during Sonne cruise SO133 in 1998. Major elements are in wt%,
and trace elements are in ppm. Fe2O3 (tot) = total iron for samples from Lihir Island are calculated as ferric oxide. Ferric
iron for samples from Conical Seamount is determined using the Wilson method. From Müller et al. (2001) and Müller
et al. (2003)
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Zr < 132 ppm, Nb < 4.2 ppm, and Hf < 3.7 ppm)
are typical for potassic igneous rocks from oce-
anic (island)-arc settings (Müller et al. 1992b).
The late oceanic (island)-arc affiliation is con-
firmed by plotting the data on Zr versus Y and
La-TiO2/100-Hfx10 discrimination diagrams
(Figs. 6.5 and 6.6).

The lavas from Conical Seamount are defined
by geochemically similar, but more primitive
compositions (Müller et al. 2003). The rocks
have high K2O contents (up to 3.31 wt%), high
average K2O/Na2O ratios (1.19), and high aver-
age Ce/Yb ratios (13.0), which are characteristic
features of potassic igneous rocks transitional to
shoshonites (Morrison 1980; Pearce 1982). The
elevated LILE (e.g. Rb, Sr, Ba up to 65, 1540,
and 320 ppm, respectively), low LREE (e.g.
La < 15.0 ppm, Ce < 33.0 ppm), and very low
HFSE concentrations (e.g. TiO2 < 0.83 wt%,
Zr < 75 ppm, Nb < 1.7 ppm, and Hf < 2.1 ppm)
are typical for potassic igneous rocks from late
oceanic (island)-arc settings (Müller et al.
1992b).

Magmatic phlogopites from Conical Se-
amount have low concentrations of F and Cl
(<0.3 wt% and <0.05 wt%) pointing to high H2O
contents of up to 4.1 wt% (Müller et al. 2003).

Elevated oxygen fugacities (Müller et al. 2001,
2003) of 0.7–2.5 log units above the FMQ buffer
are recorded for lavas from Conical Seamount,
which is quite similar to samples from Lihir Island
(Δlog (fo2)

FMQ = 1.4–4.8). This high magma fO2,
as also indicated by abundant igneousmagnetite in
the rocks from Lihir Island (>5 vol.% magnetite),
is a prerequisite for the enrichment of large quan-
tities of gold in arc magmas (Sillitoe 1979; Mun-
gall 2002; Müller 2002b).

6.3.2 Emperor Gold Deposit, Viti
Levu, Fiji

Introduction Epithermal gold mineralization in
a late oceanic arc setting occurs at the Emperor
mine, Viti Levu, Fiji (Fig. 6.11). The mine is
located at the northern tip of the main island of
Viti Levu, in the Nakaudavadra Mountains about
100 km northwest of Suva and 8 km inland from
the coast (Smith et al. 2008). Mineralization is
hosted by Pliocene shoshonitic volcanic rocks
(Ahmad 1979; Anderson and Eaton 1990; Set-
terfield 1991; Setterfield et al. 1991, 1992; Pals
and Spry 2003; Pals et al. 2003; Scherbarth and
Spry 2006; Smith et al. 2008).

Fig. 6.10 MgO versus
Al2O3 biaxial diagram
showing one single
fractionation trend for the
potassic igneous rocks from
Lihir Island and Conical
Seamount. Adapted from
Müller et al. (2003)
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Emperor was 100 % owned and operated as an
open pit and underground operation by Emperor
Mines Limited until 2006 when the mine was
shut down due to low gold prices and the high
level of capital required to sustain the mining
operation. The mine was later sold to River
Diamonds Plc (now re-named to Vatukoula Gold
Mines Plc) and re-opened in April 2008. Oper-
ating for over 80 years since 1933, the Emperor
mine has produced >7 Moz of Au (Smith et al.
2008).

Regional Geology Fiji is situated at the
boundary between the Indo-Australian and
Pacific plates, midway between the west-dipping
Tonga-Kermadec Trench and the east-dipping
Vanuatu Trench (Gill and Whelan 1989). Mag-
matism in Fiji is largely derived from subduction
along the now-inactive Vitiaz Trench (Setterfield
et al. 1992).

Viti Levu was formed during three periods of
volcanism, with the igneous rock series erupted,
in order, from tholeiites, to calc-alkaline, and
finally shoshonitic rocks (Gill 1970; Setterfield
1991; Pals et al. 2003; Scherbarth and Spry
2006).

The Emperor deposit supports the country’s
largest operating gold mine and is located in
northern Viti Levu at the caldera margin of a
Tertiary shoshonitic shield volcano (Anderson
and Eaton 1990). The second gold mine in Fiji is
the Tuvatu gold-silver telluride deposit with
reserves of about 13 t Au (Scherbarth and Spry
2006). The Emperor gold deposit is situated at
the intersection of a northwest-trending shear
zone with a major, 250 km long,
northeast-trending lineament (Setterfield et al.
1991) that also controls the Tuvatu gold deposit,
located about 50 km to the southwest (Scherbarth
and Spry 2006). Both gold deposits are

Fig. 6.11 Geological overview of the Emperor gold deposit, Fiji. Modified after Setterfield et al. (1991)
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genetically related to monzonite intrusions with
almost identical ages (5.4–4.6 Ma) and shos-
honitic affinities (Scherbarth and Spry 2006). The
Emperor deposit occurs along the margins of the
shoshonitic Tavua shield volcano, whereas the
Tuvatu deposit occurs adjacent to an eroded
shoshonitic volcano.

Nature of Epithermal Gold Mineralization
Gold mineralization in Fiji includes various types
of volcanogenic massive-sulphide (VMS)
deposits, disseminated porphyry copper-gold
deposits and epithermal gold-tellurium-silver
deposits, most of which are associated with
high-K calc-alkaline and shoshonitic rocks
(Colley and Greenbaum 1980). Low-sulphidation
epithermal gold telluride and auriferous pyrite
mineralization occurs in flat-lying
quartz-sericite ± carbonate veins, steep faults,
shatter zones, stockworks, and hydrothermal
breccias at the western flank of the Tavua Cal-
dera (Setterfield et al. 1992; Pals and Spry 2003),
a similar mineralization style as documented at
the Tuvatu gold deposit (Scherbarth and Spry
2006). The unusually high Au content of
Te-bearing arsenian pyrite at Emperor is proba-
bly due to the presence of lamellae of Au-bearing
marcasite and arsenopyrite (Pals et al. 2003).
Epithermal gold mineralization is accompanied
by propylitic alteration (Setterfield et al. 1992)
and, in places, potassic alteration of the host
rocks (Ahmad and Walshe 1990; Anderson and
Eaton 1990; Pals et al. 2003). Mineralization in
both deposits formed in multiple stages and is
characterized by the presence of quartz-roscoelite
telluride veins in which gold-rich tellurides were
deposited prior to silver-rich tellurides (Scher-
barth and Spry 2006). Gold tellurides and vana-
dium micas were deposited at approximately
250 °C from moderately saline fluids. 40Ar-39Ar
dating indicates that epithermal gold minerali-
zation at Emperor was formed at 3.71 ± 0.13 Ma,
whereas shoshonite emplacement and the less
important porphyry-style mineralization were
earlier at ca. 4.3 Ma (Setterfield 1991). Oxygen
and hydrogen isotope compositions of ore fluids
at Emperor and Tuvatu are similar to the

composition of waters exsolved from arc mag-
mas (Scherbarth and Spry 2006). The isotopic
δ34S values of sulphides from Emperor (−20.3 to
+3.9 ‰) are similar to those obtained from the
Tuvatu deposit (−15.3 to −3.2 ‰) and indicate,
along with mineral assemblages, that the hydro-
thermal fluids were oxidizing (Pals et al. 2003;
Scherbarth and Spry 2006). Both stable isotope
and fluid inclusion studies suggest that the gold
mineralization and potassic alteration were pro-
duced by ascending magmatic fluids mixed with
heated meteoric waters (Ahmad and Walshe
1990; Anderson and Eaton 1990; Kwak 1990),
with the magmatic source being a high-K mon-
zonite stock at depth (Ahmad 1979; Pals and
Spry 2003).

Petrology and Geochemistry of the Shos-
honitic Host Rocks The trachybasaltic host
rocks at Emperor have a shoshonitic geochem-
istry and consist of plagioclase, augite, and
olivine phenocrysts, with minor biotite and
hornblende, in a fine-grained feldspathic
groundmass (Gill 1970; Ahmad and Walshe
1990; Setterfield et al. 1991; Scherbarth and Spry
2006). Magma evolution was controlled solely
by fractional crystallization of titanomagnetite,
olivine, clinopyroxene, and plagioclase (Setter-
field 1991). All volcanic rocks plot in the late
oceanic-arc magma series on Figs. 6.5 and 6.6.

Fractional crystallization resulted in low con-
centrations of mantle-compatible trace-elements
(e.g. <198 ppm V, <11 ppm Cr, <6 ppm Ni). The
rocks (Setterfield 1991) which are highly potas-
sic (up to 6.13 wt% K2O, and high K2O/Na2O
ratios of up to 2.04), also contain high concen-
trations of Al2O3 (up to 19.71 wt%) and Na2O
(up to 3.69 wt%). Their trace-element composi-
tion (Table 6.4), is characterized by very high
LILE (e.g. up to 142 ppm Rb, up to 1812 ppm Sr,
up to 1209 ppm Ba), moderate LREE (e.g.
*20 ppm La, *40 ppm Ce), and very low
HFSE (e.g. <0.60 wt% TiO2, <23 ppm Y,
<87 ppm Zr, <4 ppm Nb, *2 ppm Hf) contents,
which are typical for shoshonitic rocks derived in
a late oceanic-arc setting (Müller et al. 1992b).
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6.3.3 Dinkidi Copper-Gold Deposit,
Didipio, Philippines

Introduction The Philippines are well endowed
with porphyry copper-gold deposits (Sillitoe and
Gappe 1984). The Philippines are a collage of
tectonic elements, and porphyry-style deposits

have formed in discrete provinces within this
collage at various times since the Cretaceous
(Sillitoe and Gappe 1984). The Dinkidi porphyry
copper-gold deposit is located in the Didipio area
(Fig. 6.12) about 270 km north of Manila, at an
elevation of 700 m above sea level, in the remote
Sierra Madre Mountains of the Nueva Vizcaya

Table 6.4 Major- and
trace-element analyses of
shoshonitic rocks from the
Emperor gold deposit, Fiji

Province/deposit Emperor Emperor

Location Fiji Fiji

Rock type Trachybasalt Trachybasalt

Tectonic setting Late oceanic arc Late oceanic arc

Reference Setterfield (1991) Setterfield (1991)

SiO2 51.29 52.73

TiO2 0.60 0.54

Al2O3 17.87 19.71

Fe2O3 7.92 6.29

FeO n.a. n.a.

MnO 0.17 0.15

MgO 3.15 1.98

CaO 6.51 5.84

Na2O 3.69 3.00

K2O 4.70 6.13

P2O5 0.53 0.48

LOI 3.18 2.73

Total 99.61 99.58

mg# 48 42

K2O/Na2O 1.27 2.04

Sc n.a. n.a.

V 198 146

Cr 11 3

Ni 6 2

Rb 142 105

Sr 1571 1812

Y 21 23

Zr 85 87

Nb 2 4

Ba 1209 1145

Hf 2 2.1

La 23 18

Ce 39 34

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron
calculated as ferric oxide. From Setterfield (1991)
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Province of northern Luzon, Philippines (Hagg-
man 1997a; Wolfe et al. 1998). Access to the site
is via logging roads from Cabarroguis (Garrett
1996). The region was mined for alluvial gold for
many years, as Dinkidi forms a razorback ridge
protruding from an alluvial valley floor (Hagg-
man 1997a). On the ridge there are narrow
quartz-stockwork veins and zones with argillic

alteration, which overprints monzodioritic to
monzonitic intrusions (Haggman 1997a; Wolfe
2001). Systematic exploration of the ridge sur-
face revealed abundant copper-oxide minerals.
A 300 m by 500 m-wide anomaly was identified
by a subsequent IP survey, and diamond drilling
intersected porphyry copper-gold mineralization
(Haggman 1997a). Detailed geological mapping

Fig. 6.12 Geological
overview of the Dinkidi
copper-gold deposit,
Didipio, Philippines.
Modified after Haggman
(1997b) and Wolfe et al.
(1998)
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of the area suggests that Dinkidi forms part of a
monzonitic caldera complex measuring about
8 km in diameter (Haggman 1997b).

Dinkidi was discovered in 1988 during a sys-
tematic soil sampling program by Climax Arimco
Corporation when following up on an aeromag-
netic anomaly. In 2006, Climax Mining merged
with the much larger New Zealand-based
OceanaGold Corporation which brought the
mine into production in April 2013 and is the
current operator. Dinkidi is a combined open pit
and underground operation and, over its projected
16-year mine life, will produce about 100,000 oz
of Au and 14,000 t of Cu annually. The Dinkidi
deposit consists of a measured and indicated
resource of about 2.06 Moz of Au and 272.4 Kt of
Cu (McIntyre et al. 2010), including a high-grade
zone of 7.9 million tonnes at 6 ppm Au equivalent
(Haggman 1997b). Oxidized ore represents only
three percent of the total resource.

Regional Geology The Didipio area consists of
late-Cretaceous to mid-Miocene volcanosedi-
mentary and volcaniclastic rocks that were
derived in an oceanic (island) arc setting
(Haggman 1997a; Wolfe 2001).

Dinkidi is thought to be related to the change
from Miocene westward subduction along the
northern Luzon Trench to eastward subduction
along the Manila Trench (Corbett and Leach
1998). Dinkidi occurs in a back arc basin that
trends north-south along the Cagayan Valley
(Haggman 1997b). The Didipio Igneous Com-
plex represents several potassic igneous intru-
sions that are localized by the intersection of
east-northeast-trending transfer structures with
north-northwest fractures parallel to the Philip-
pine Fault (Haggman 1997b).

Stratigraphically, the Didipio area is formed
by a pre-Tertiary basement complex of tonalites
and schists, which are covered by Eocene
andesitic lavas and basaltic tuffs interlayered
with sedimentary rocks (Haggman 1997b). This
Eocene Caraballo Group is unconformably
overlain by the Late Oligocene Mamparang
Formation, which comprises high-K calc-alkaline

to shoshonitic lavas and related volcaniclastic
rocks that have been intruded by the
early-Miocene Didipio Igneous Complex (Wolfe
et al. 1998; Wolfe and Cooke 2011).

The Didipio Igneous Complex consists of a
series of early clinopyroxene cumulates, diorites,
and monzodiorites that were intruded by a large,
composite monzonite pluton (Wolfe et al. 1998;
Wolfe 2001). The Dinkidi deposit is hosted by a
large, 800 m by 200 m wide, elongate biotite-
and amphibole-phyric monzonite stock and a thin
diopside-phyric syenitic pegmatite dyke at the
southern margin of this composite monzonite
pluton (Wolfe 2001). The syenite pegmatite is
interpreted to represent a volatile-rich late-stage
felsic differentiate from the monzonitic magma
(Wolfe et al. 1998). Recent studies suggest that
these intrusions are broadly co-magmatic and
both the monzonite porphyry stock and the sye-
nite pegmatite host the bulk of the quartz stock-
work mineralization at Dinkidi (Wolfe 2001;
Wolfe and Cooke 2011).

Nature of Porphyry Copper-Gold Minerali-
zation Emplacement of the monzonite porphyry
was temporally and spatially associated with
pervasive biotite-magnetite-orthoclase alteration,
while the pegmatite emplacement was accom-
panied by a diopside-actinolite-orthoclase alter-
ation assemblage (Wolfe and Cooke 2011). Both
intrusions host an intense quartz-chalcopyrite-
bornite vein stockwork, including A-type and
B-type veins.

The alteration intensity varies broadly
throughout the deposit (Garrett 1996). The deep
core of the porphyry system is characterized by
an intense whitish clay-carbonate-muscovite-
silica-sericite alteration, which overprinted the
monzonite porphyry. The alteration is accompa-
nied by weak disseminations of magnetite-pyrite-
chalcopyrite and, more rarely, fine veinlets of
quartz-pyrite-chalcopyrite (Garrett 1996). This
alteration type grades vertically upward into a
potassic alteration assemblage (Garrett 1996;
Wolfe 2001). Within the potassic alteration zone,
the plagioclase phenocrysts are typically altered
to white sericite-clay-carbonate assemblages,
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whereas the groundmass fraction is flooded by
pinkish-grey orthoclase (Garrett 1996). The
potassic alteration at Dinkidi is dominated by
secondary orthoclase (Corbett and Leach 1998).
The less abundant clinopyroxene, biotite, and
amphibole phenocrysts of the monzonite por-
phyry are weakly altered to chlorite-magnetite
assemblages (Garrett 1996; Wolfe 2001).

The principal copper-sulphides are chalcopy-
rite and, to a lesser extent, bornite, and they
commonly occur as fine disseminations and
within quartz stockwork veins (Haggman 1997b;
Wolfe 2001; Wolfe and Cooke 2011). Bornite
occurs as alteration rims around and within
chalcopyrite grains (Haggman 1997b). Native
gold occurs as inclusions within chalcopyrite
and, less commonly, within bornite. Native gold
and electrum are rare inclusions in silicates
(Garrett 1996; Wolfe 2001).

High-grade porphyry copper-gold minerali-
zation (>1 wt% Cu, >3 ppm Au) is either asso-
ciated with potassic alteration (Wolfe and Cooke
2011) or occurs within the silica-carbonate-
pyrite-chalcopyrite zone surrounding the core of
the deposit (Haggman 1997b). Outside the
potassic alteration zone, the grades are com-
monly lower (Garrett 1996).

In places, hydrothermal brecciation overprints
the potassic alteration zone. These small hydro-
thermal breccias generally contain the highest
copper-gold grades due to remobilization of
these metals and their concentration within the
breccia matrix (Garrett 1996; Wolfe 2001). The
hydrothermal brecciation is consistent with the
high volatile contents of the parental melts (cf.
Kamenetsky et al. 1999).

The porphyry copper-gold mineralization is
interpreted to be genetically related to the
late-stage release of volatiles and monzonitic
melt from the fractionating magma chamber
beneath the caldera. The fractal nature of the
biotite- and hornblende-phyric monzonite por-
phyry and the syenite pegmatite is consistent
with the release of increasingly more-evolved
melt fractions from a larger magma chamber at
depth (Wolfe 2001).

Dinkidi has several similarities with the Cadia
and Northparkes porphyry copper-gold deposits

in New South Wales, Australia (Sects. 6.3.4 and
6.3.5). All three deposits are hosted by porphy-
ritic monzonite intrusions that represent the
late-stage melts derived from an underlying
crustal magma chamber. At all three deposits, the
monzonites have high-K calc-alkaline to shos-
honitic compositions and are interpreted to have
formed in late oceanic arcs.

Petrography and Geochemistry of the
Potassic Host Rocks The mineralized monzo-
nite porphyry is a pinkish-grey, medium-grained,
intrusive rock consisting of phenocrysts of pla-
gioclase, clinopyroxene, biotite, and hornblende,
which are set in a holocrystalline granular feld-
spathic groundmass (Garrett 1996; Wolfe 2001).
The monzonite also contains apatite micro-
phenocrysts. The rock has a vughy texture, but is
intensely and pervasively biotite-magnetite
altered. In places, its groundmass is flooded by
hydrothermal orthoclase (Garrett 1996). The
vughy relic texture is interpreted to reflect the
volatile-rich nature of the parental melt (Wolfe
2001), a common feature of most porphyry
copper-gold deposits hosted by potassic igneous
rocks. The syenite pegmatite forms a thin, 2–
30 m-wide, intrusion composed mainly of
K-feldspar, plagioclase, and clinopyroxene, with
accessory apatite, magnetite, and titanite
(Kamenetsky et al. 1999; Wolfe 2001). The
pegmatite dyke displays remarkable textural
variation, from equigranular intergrowths of
clinopyroxene and perthite to coarsely (2–5 cm)
clinopyroxene-phyric porphyries with a mosaic-
textured perthitic groundmass (Kamenetsky et al.
1999; Wolfe 2001). Detailed studies on fluid and
melt inclusions derived from the syenitic peg-
matite confirm the high volatile contents of the
parental melt (Kamenetsky et al. 1999; Wolfe
2001).

Table 6.5 shows representative whole-rock
analyses of the potassic igneous rocks from the
Didipio Igneous Complex (Wolfe 2001). The
rocks are characterized by enriched LILE con-
centrations (e.g. up to 4.38 wt% K2O; up to
79 ppm Rb, 1005 ppm Sr, 1100 ppm Ba), low
LREE contents (e.g. <15 ppm La, <29 ppm Ce),
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and very low HFSE abundances (e.g.
TiO2 < 0.65 wt%, <100 ppm Zr, <20 ppm Y,
<2 ppm Nb). Fractional crystallization resulted in
low mg# (<52), and very low concentrations of
mantle-incompatible trace-elements (e.g. <6 ppm
Cr, <7 ppm Ni). The rocks have elevated P2O5

concentrations (up to 0.46 wt%), consistent with
the presence of apatite microphenocrysts
(Kamenetsky et al. 1999; Wolfe 2001).

The samples have not been plotted on geo-
chemical discriminant diagrams due to a lack of
Hf analyses. However, based on their

Table 6.5 Major- and
trace-element analyses of
potassic igneous rocks from
the Dinkidi copper-gold
deposit, Didipio,
Philippines

Province/deposit Dinkidi Dinkidi Dinkidi

Location Philippines Philippines Philippines

Rock type Monzodiorite Monzonite Qtz-monzonite

Tectonic setting Late oceanic arc Late oceanic arc Late oceanic arc

Reference Wolfe (2001) Wolfe (2001) Wolfe (2001)

SiO2 51.81 57.55 61.40

TiO2 0.65 0.45 0.37

Al2O3 18.66 18.29 19.19

Fe2O3 8.28 5.44 4.11

MnO 0.19 0.13 0.07

MgO 3.86 2.09 1.40

CaO 9.54 5.65 2.97

Na2O 3.75 4.87 5.58

K2O 2.57 4.13 4.38

P2O5 0.46 0.37 0.23

LOI 0.23 0.76 0.99

Total 100.01 99.73 100.69

mg# 52 47 44

K2O/Na2O 0.68 0.85 0.78

Cr 6 3 2

Ni 7 3 1

Rb 49 70 79

Sr 1005 872 864

Y 20 18 13

Zr 66 100 72

Nb 1.5 1.9 1.7

Ba 502 484 1100

La 11 15 9

Ce 24 29 20

Yb 2.0 1.8 1.3

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron
calculated as ferric oxide. Data from Wolfe (2001)
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geochemical compositions, the rocks are inter-
preted to be derived in a late oceanic-arc setting
(Müller et al. 1992b).

6.3.4 Northparkes (Goonumbla)
Copper-Gold Deposit, New
South Wales, Australia

Introduction In the Lachlan Fold Belt of
southeastern Australia, porphyry copper-gold
deposits are associated with a compositional
variety of Ordovician igneous rock suites, in
contrast to voluminous later Silurian-Devonian
and Carboniferous magmatism, which as a group
is dominantly associated with W, Sn and Mo
mineralization (Blevin and Chappell 1992, 1995;
Blevin 2002). An example of ancient minerali-
zation hosted by shoshonitic rocks in a late
oceanic-arc setting is the Ordovician Goonumbla
porphyry copper-gold deposit in New South
Wales, Australia (Heithersay et al. 1990; Müller
et al. 1994; Heithersay and Walshe 1995; Hooper
et al. 1996; Blevin 2002; Lickfold et al. 2003). It
is described in some detail here because many of
the primary data were collected specifically for
this study (cf. Müller 1993). The Goonumbla
igneous complex is situated within a collapsed
caldera and hosts the world-class Northparkes
copper-gold mine. This igneous suite forms one
of several mineralized Ordovician shoshonitic
centres in the Lachlan Fold Belt (Thompson et al.
1986; Perkins et al. 1992; Wyborn 1992; Blevin
2002). Eleven centres of volcanic-hosted miner-
alization can be distinguished at Goonumbla
(Hooper et al. 1996). The four largest deposits
are Endeavour 22, E27, E26 North, and E48
(Fig. 6.13). They were discovered by Geopeko
geologists in the late-eighties and early-nineties.
The Northparkes project was developed by North
Limited after the takeover of Geopeko and pro-
duction commenced with two open pits at the
E22 and E27 orebodies in 1993. Both pits have
been exploited and the larger E26 North and E48
deposits are currently mined as underground
block-caving operations by a joint venture
between the Rio Tinto and Sumitomo Groups,
respectively. Northparkes, including the four

orebodies E22, E27, E26N, and E48, has an
estimated resource base of 287.8 Mt at 0.57 wt%
Cu and 0.26 g/t Au, as well as significant Ag
credits (Butcher et al. 2011).

Regional Geology Many igneous provinces of
Ordovician age are known from southeastern
Australia (Horton 1978; Powell 1984; Thompson
et al. 1986; Perkins et al. 1992; Wyborn 1992;
Müller et al. 1993; Blevin 2002). The Lachlan
Fold Belt in New South Wales is divided into
several north-south trending synclinorial and
anticlinorial tectonic zones composed of Paleo-
zoic igneous and sedimentary rocks (Scheibner
1972). The Goonumbla district is situated in the
northeastern part of the Bogan Gate synclinorial
zone (Scheibner 1974). This north-trending
trough forms a broad tectonic boundary within
the Lachlan Fold Belt, separating two Protero-
zoic terranes to the west and east of the Parkes
area—the Wagga Metamorphic Belt and the
Kosciusko Terrane, respectively—and comprises
a zone of Paleozoic sedimentary rocks with
associated late Ordovician to early Silurian
igneous rocks (Jones 1985; Perkins et al. 1992;
Blevin 2002). In the Parkes area, a sequence of
latitic lavas, interlayered flows and pyroclastic
units with minor volcaniclastic rocks and lime-
stones comprises the Goonumbla igneous com-
plex (Jones 1985). The rocks are generally
unmetamorphosed, but are commonly gently
folded with relatively gentle dips (Heithersay
1986; Heithersay et al. 1990). Compositions of
the igneous rocks, which are locally intruded by
monzodiorite, monzonite and quartz-monzonite
stocks, range from trachyandesitic to latitic, and
they exhibit typical shoshonitic geochemistry
(Joplin et al. 1972; Morrison 1980). As discussed
by previous workers, the Goonumbla igneous
rocks are probably related to a former subduction
event (Müller et al. 1994; Blevin 2002). Por-
phyry copper-gold mineralization is typically
hosted by quartz-monzonite intrusions (Müller
et al. 1994; Heithersay and Walshe 1995).
Uranium-Pb zircon dating of the intrusions has
established that they do not represent a single
magmatic episode, but three distinct episodes at
about 482, 450 and 440 Ma, respectively (Butera
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et al. 2001; Blevin 2002). Empirical studies
suggest a direct relationship between increasing
mineral deposit size and the degree of
K-enrichment in the related igneous progenitor in
the Lachlan Fold Belt (Blevin 2002; Holliday
et al. 2002). More specifically, the Ordovician
igneous suites that host the world-class Cadia
and Northparkes porphyry copper-gold deposits
in the Lachlan Fold Belt contrast markedly from
those of the Silurian, Devonian and Carbonifer-
ous in that the former are typically more

oxidized, and are significantly less composition-
ally evolved (Blevin 2002).

Nature of Porphyry Copper-Gold Minerali-
zation Within the Goonumbla district, eleven
centres of mineralization are located within a
circular feature which is some 22 km in diameter
(Fig. 6.13). It is partly bounded by a monzonitic
ring dyke, and is interpreted to be a collapsed
caldera formed as a result of regional extension
(Jones 1985). The Goonumbla igneous rocks

Fig. 6.13 Geological overview of the Northparkes copper-gold deposits, Goonumbla igneous complex, New South
Wales, Australia. Modified after Heithersay et al. (1990)
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consist mainly of andesites, latites, and the
slightly younger Wombin trachytes locally
intruded by monzonite stocks and minor basaltic
dykes. The igneous rocks represent a cogenetic
suite with shoshonitic geochemistry as defined
by Morrison (1980).

The mineralized igneous host rocks comprise
a repetitive sequence of andesitic lavas, latites
and trachytes, with associated epiclastic rocks.
Porphyry copper-gold mneralization in the
Goonumbla district is generally associated with
relatively small pipe-like intrusive bodies of
quartz-rich monzonite. These monzonite stocks
can have diameters up to 100 m and vertical
extensions up to 900 m (Perkins et al. 1992), and
were probably formed as late-stage differentiates
of trachyandesitic parental melts. These
late-stage quartz-monzonites form fractal,
finger-like intrusions which commonly have
crowded porphyritic centres that grade outward,
through zones with mosaic textures, into sparsely
porphyritic margins (G. Morrison pers. comm.,
1996). The highest volatile concentrations appear
to be in the masaic-textured zones. Internal
zoning is present in some intrusions, and is
pronounced in the small, strongly porphyritic,
mineralized bodies that are intruded off larger,
and more mafic, plutonic bodies with monzodi-
oritic and/or mafic monzonitic composition at
depth (Heithersay and Walshe 1995). Diamond
drilling suggests that the deep plutonic batholiths
have biotite-poor and hornblende-phyric, mafic
monzonitic compositions, while younger intru-
sions tend to be more felsic, in accord with the
progressively more felsic nature of the younger
volcanic units (Müller et al. 1994; Blevin 2002).

Primary copper and zinc mineralization con-
sists of disseminated and vein sulphides, notably
chalcopyrite, bornite, chalcocite, sphalerite and
minor pyrite, and is generally associated with
quartz vein stockworks which occur both within
the intrusive bodies and the surrounding volcanic
host rocks (Heithersay and Walshe 1995; Lick-
fold et al. 2003; Harris and Holcombe 2014).
Sulphide mineralization is commonly accompa-
nied by disseminated grains of hematite and
magnetite. Pervasive hematite-sericite alteration

is peripheral to the mineralization (Müller et al.
1994).

Native gold occurs mainly as minute grains
within silicates of the host rock, and more rarely
as fine inclusions in the sulphides (Jones 1985).
The highest gold values are present in the
potassic alteration zone (see below), and are
closely associated with chalcopyrite and bornite
mineralization.

No large pervasive alteration zones that typify
many other porphyry copper deposits (e.g. Bajo
de la Alumbrera, Argentina; see Gonzales 1975)
are present in the Goonumbla igneous complex
(Heithersay et al. 1990). However, mineralization
is generally associated with potassic alteration
zones, characterized by either pervasive second-
ary biotite flakes and magnetite grains, or
hydrothermal sericite or orthoclase veins. Pink
hydrothermal orthoclase also forms dense gran-
ular replacements, or occurs as alteration selv-
edges around quartz veins, comparable to the
Skouries porphyry copper-gold deposit in Greece
(Kroll et al. 2002). Secondary biotite is most
commonly developed as dark pervasive zones
within the more mafic trachyandesites. The
stockwork at the Goonumbla deposits includes
A-type and B-type veins (Fig. 6.14). Detailed
studies on the quartz-vein emplacement mecha-
nisms at the E26 North deposit reveal a broad
range of vein orientations that define a conical
distribution around a vertical axis (Harris and
Holcombe 2014). Hydraulically driven defor-
mation was locally important, contributing to the
formation of the irregular fracture stockwork
immediately adjacent to the small intrusive
bodies (Harris and Holcombe 2014).

Regional zones of propylitic alteration in the
Goonumbla district are mainly characterized by
irregular secondary grains of epidote, chlorite,
and carbonate in igneous rocks. Epidote also
forms fine-grained aggregates which have
replaced primary mica and plagioclase pheno-
crysts. This pervasive alteration style, which
commonly obliterates primary volcanic textures,
is developed only on a local scale, and is
apparently related to major structures and/or
contact zones of the intrusive monzonites. Oxide
mineralization blankets comprising malachite,
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azurite, and libethenite, were well developed
over the E22 and E27 deposits.

Hydrothermal sericite associated with miner-
alization yields an 40Ar/39Ar step-heating age of
439.2 ± 1.2 Ma (Perkins et al. 1990a).
Uranium-Pb dating by ion microprobe on mag-
matic zircons from diorites near the Goonumbla
deposits yields an age of 438 ± 3.5 Ma (Perkins
et al. 1990b). These ages indicate that minerali-
zation at Northparkes was synchronous with
magmatism and broadly contemporaneous with
the formation of other gold deposits in the
Lachlan Fold Belt (e.g. Glendale and
Sheahan-Grants) as dated by Perkins et al.
(1992).

Petrography and Geochemistry of the
Shoshonitic Host Rocks The Goonumbla
igneous complex comprises mainly volcanic
rocks with porphyritic textures which are intru-
ded by monzonite stocks with equigranular tex-
tures. The grey trachyandesitic host rocks consist
mainly of labradorite as euhedral crystals up to
5 mm long and commonly intensely affected by
saussuritization or dusting by sericite, with minor
olivine and apatite microphenocrysts. The
groundmass consists of plagioclase and
K-feldspar (Müller et al. 1994). The latites con-
sist of phenocrysts of labradorite, K-feldspar,
augite, and apatite microphenocrysts which are
set in a fine-grained groundmass of quartz,
K-feldspar, and plagioclase. The trachytes con-
sist mainly of K-feldspar, labradorite, augite, and
biotite phenocrysts set in an orange-red ground-
mass of K-feldspar, plagioclase, and quartz. The
trachytes commonly contain apatite micro-
phenocrysts (Müller et al. 1994). The intrusive,
medium-grained, pink, quartz-rich monzonite

bodies are holocrystalline rocks, comprising
principally K-feldspar, plagioclase, quartz, and
biotite. Monzodioritic intrusive bodies are com-
posed of plagioclase and clinopyroxene with
minor late K-feldspar (Blevin 2002). Apatite
microphenocrysts and magnetite are also present,
suggestive of high volatile contents and high
oxygen fugacities of the parental melts (cf. Kroll
et al. 2002). Amphibole is present in places as a
late-stage minor phase with rare quartz. The
mafic monzonites from the underlying batholiths
comprise plagioclase and more rarely K-feldspar
phenocrysts with clinopyroxene phenocrysts set
in a groundmass of K-feldspar (Blevin 2002).
Biotite phenocrysts are restricted to, and occur in
place of clinopyroxene in, the more evolved
quartz-monzonites (Müller et al. 1994). Quartz
intergrown with K-feldspar may be locally
abundant in the groundmass in these rocks.

Whole-rock analyses cover the petrographic
spectrum from basaltic to dacitic rocks (i.e. SiO2

contents between 46.8 and 64.9 wt%), as shown
in Table 6.6. The samples are characterized by
high, but variable, Al2O3 contents (13.4–19.9 wt
%), very high K2O contents (up to 6.8 wt%) and
high K2O/Na2O ratios (0.58–1.48) which are
typical for the shoshonite association (Joplin
et al. 1972; Morrison 1980; Lu et al. 2013). The
rocks also have enriched LILE concentrations
(e.g. up to 1200 ppm Ba, 1350 ppm Sr), low
HFSE contents (<0.67 wt% TiO2, <20 ppm Y,
<125 ppm Zr, <10 ppm Nb, <3.4 ppm Hf) and
very low LREE abundances (<22.4 ppm
La, <31 ppm Ce). Low mg# (<63) suggest that
the rocks were generated from evolved magmas,
probably affected by clinopyroxene-biotite ±
apatite fractionation. All volcanic and intrusive

Fig. 6.14 Representative ore samples from the North-
parkes copper-gold deposits, E48 orebody, Goonumbla
igneous complex, New South Wales, Australia (photos
taken by C. Stegman): a potassic altered
quartz-monzonite porphyry cut by intense quartz-bornite
(A-type) stockwork veining; note the cross-cutting

late-stage S-type vein [FOV 5 × 12 cm]. b Quartz-mon-
zonite porphyry cut by intense quartz-bornite-
chalcopyrite (A-type) stockwork veining, locally with
hydrothermal orthoclase flooding; note that the original
potassic alteration is overprinted by a late-stage pervasive
sericite alteration [FOV 5 × 12 cm]

b
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Table 6.6 Major- and trace-element analyses of shoshonitic rocks from the Northparkes copper-gold deposits,
Goonumbla igneous complex, New South Wales, Australia

Province/deposit Northparkes
(Goonumbla)

Northparkes
(Goonumbla)

Northparkes
(Goonumbla)

Northparkes
(Goonumbla)

Northparkes
(Goonumbla)

Location E27 (NSW,
Australia)

E27 (NSW,
Australia)

E26N (NSW,
Australia)

E26N (NSW,
Australia)

E27 (NSW,
Australia)

Rock type Trachyandesite Trachyandesite Monzonite Monzonite Latite

Tectonic setting Late oceanic arc Late oceanic arc Late oceanic arc Late oceanic arc Late oceanic arc

Reference Müller et al.
(1994)

Müller et al.
(1994)

Müller et al.
(1994)

Müller et al.
(1994)

Müller et al.
(1994)

SiO2 54.90 54.00 64.60 64.90 60.10

TiO2 0.67 0.67 0.36 0.36 0.48

Al2O3 19.60 19.90 17.50 17.10 18.40

Fe2O3 5.69 5.51 1.89 2.13 4.60

FeO n.a. n.a. n.a. n.a. n.a.

MnO 0.10 0.12 0.03 0.03 0.18

MgO 2.65 2.92 1.38 1.04 1.45

CaO 3.93 3.76 0.87 1.15 2.16

Na2O 4.99 4.92 5.76 6.39 5.93

K2O 4.21 4.29 4.68 3.99 5.31

P2O5 0.54 0.56 0.18 0.15 0.28

LOI 2.91 3.07 2.80 3.12 1.50

Total 100.13 99.69 100.12 100.35 100.35

mg# 52 55 63 53 42

K2O/Na2O 0.84 0.87 0.81 0.62 0.89

Sc n.a. n.a. n.a. n.a. n.a.

V 170 170 120 110 80

Cr n.a. n.a. n.a. n.a. n.a.

Ni 4 4 5 4 4

Rb 75 75 90 70 85

Sr 1250 1350 680 650 450

Y 19 19 16 12 20

Zr 90 90 100 95 125

Nb 3 2 5 2 7

Ba 1050 1200 810 850 800

Hf 1.8 1.8 1.9 1.8 3.1

La 16.4 16.3 14.3 13 22.4

Ce 31 29 22 20 31

Sm n.a. n.a. n.a. n.a. n.a.

Yb 1.8 1.6 1.3 1.3 2.1

Th n.a. n.a. n.a. n.a. n.a.

U n.a. n.a. n.a. n.a. n.a.

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron calculated as ferric oxide. Samples
were derived from diamond drill cores of the E26N or E27 orebodies. Sample numbers refer to specimens held in the
Museum of the Department of Geology and Geophysics, The University of Western Australia. Data from Müller et al.
(1994)
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rocks plot in the field of late oceanic-arc magmas
in Figs. 6.5 and 6.6.

6.3.5 Cadia Ridgeway Copper-Gold
Deposit, New South Wales,
Australia

Introduction Another example of ancient min-
eralization hosted by shoshonitic rocks in a late
oceanic-arc setting is the group of Ordovician
Cadia porphyry gold-copper deposits in New
South Wales, Australia (Holliday et al. 2002;
Wilson et al. 2003). The mineralized intrusive
complexes of the Late Ordovician in the Lachlan
Fold Belt can be viewed as a continuum of pro-
gressive K and other incompatible element
enrichment, with the Cadia porphyry gold-copper
deposits representing the youngest, most enriched
and the most strongly mineralized example (Ble-
vin 2002; Holliday et al. 2002). The Cadia system
represents a cluster of porphyry gold-copper
deposits, including Cadia Hill, Cadia Quarry,
Cadia East, Cadia Ridgeway, and Cadia Far East.
The deposits are situated about 20 km south of
Orange in the central tablelands of the Lachlan
Fold Belt in New South Wales, Australia, about
200 km to the west of Sydney. The existence of
economic mineralization at Cadia was demon-
strated in the early-1990s, when Newcrest geolo-
gists recognized the large-tonnage, low-grade
openpit potential of sheeted-vein mineralization at
Cadia Hill (Wood and Holliday 1995). Additional
gold-copper mineralization at Cadia Quarry was
discovered at the same time, followed by Cadia
East in 1994, and Cadia Ridgeway (Holliday et al.
1999) and Cadia Far East in 1996 (Tedder et al.
2001). Pre-mine resources at Cadia were
>19.5 Moz of contained gold and 2.3 Mt of con-
tained copper, making the Cadia district, as a
whole, the largest gold deposit in eastern Australia
(Holliday et al. 2002). In 2002, the underground
resource at the Ridgeway porphyry gold-copper
deposit was 54 Mt at 2.5 g/t Au and 0.77 wt% Cu.

Regional Geology The Cadia gold-copper
deposits are hosted by a late Ordovician to
early Silurian shoshonitic volcano-intrusive

complex, which forms part of a larger zone of
oceanic island arc-related volcanic and associ-
ated intrusive rocks in the eastern Lachlan Fold
Belt (Fig. 6.15). The Ordovician volcano-
intrusive complexes are one of four main com-
ponents of the Lachlan Fold Belt in New South
Wales, the others being Cambrian greenstones,
Ordovician to early Silurian quartz turbidites,
and Silurian to early Devonian volcanic and
sedimentary rocks (Suppel et al. 1998). The
Lachlan Fold Belt is interpreted to have formed
by complex accretionary processes from mid
Cambrian to Carboniferous times, related to the
closure of a back-arc basin (Scheibner and Bas-
den 1998) and associated collision of an
oceanic-arc along the Pacific margin of Gondw-
ana (Foster et al. 1999). The Ordovician
arc-related igneous rocks were accreted during
the early Silurian, and the current geometry of
the volcanic rocks as four separate belts is
attributed to splitting of a single arc (Glen et al.
1998). Despite multiple tectonic events, the
Ordovician volcanic belts that host the Cadia and
Northparkes porphyry copper-gold deposits are
largely undeformed and probably acted as but-
tresses during deformation (Holliday et al. 2002).

Mineralization at Cadia is hosted by mid to
late Ordovician Forest Reefs Volcanics and
underlying Weemalla Formation, and by the late
Ordovician-early Silurian Cadia Intrusive Com-
plex (Holliday et al. 2002). The Forest Reefs
Volcanics in the Cadia area are dominated by
trachyandesites and latitic volcaniclastic units.
All Ordovician volcanics are cut by feldspar
porphyry and pyroxene porphyry dykes.
Post-mineralization cover comprises Silurian
shales, at least 200 m thick in the Cadia area and
becoming thicker further to the east, and a thin
layer of Tertiary basalts and gravel (Holliday
et al. 2002). Both the Forest Reefs Volcanics and
the Weemalla Formation are intruded by the
Cadia Intrusive Complex, a 3 × 1.5 km wide,
composite stock. Strong compositional zonation
is present in this Complex, grading from mon-
zodiorite, diorite and minor gabbro in the west to
coarse-grained K-feldspar and plagioclase-phyric
quartz-monzonite porphyry in the east (Holliday
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et al. 2002). A plug of quartz-monzonite at Cadia
Hill, and unexposed monzodioritic to monzonitic
intrusions at Cadia Far East and Cadia Ridge-
way, are compositionally identical with the
exposed section of the Cadia Intrusive Complex.
A swarm of trachyte dykes to the north of the
Cadia Intrusive Complex are interpreted to be
more evolved, late-stage, differentiates of the
underlying magma chamber. The Cadia monzo-
nites and quartz-monzonites also cut the
above-mentioned feldspar porphyry and pyrox-
ene porphyry dykes that have intruded the For-
rest Reefs Volcanics (Holliday et al. 2002).

Emplacement of the Cadia Intrusive Complex
was probably facilitated by a major
northwest-trending dilational structure which is
apparent in regional magnetic data (Holliday
et al. 2002). Its northwestern trend is also
reflected in the orientation of mineralized sheeted
quartz veins at Cadia Hill, Cadia Quarry, Cadia
East, and Cadia Far East.

Nature of Porphyry Gold-Copper Minerali-
zation There are six components to the Cadia
porphyry cluster: (1) intrusion- and
volcanic-hosted, mainly sheeted quartz-vein
mineralization at Cadia Hill;
(2) volcanic-hosted disseminated and sheeted
quartz-vein mineralization at Cadia East; (3) vol-
canic- and intrusion-hosted mainly sheeted
quartz-vein mineralization at Cadia Far East;
(4) intrusion-hosted mainly sheeted quartz-vein
mineralization at Cadia Quarry; (5) intrusion-
and volcanic-hosted quartz-stockwork vein min-
eralization at Cadia Ridgeway; and (6) Fe-rich
skarns at Big and Little Cadia (Holliday et al.
2002). The Cadia Ridgeway deposit is an
upright, bulbous body of quartz vein stockworks
(250–300 m across and 600 m vertical extent)
that is centered on a small (50–100 m diameter)
composite plug of quartz-monzonite porphyry.
The top of the composite plug occurs at 450 m
depth below the present-day surface and the
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Fig. 6.15 Geological overview of the Cadia copper-gold deposits, Cadia igneous complex, New South Wales,
Australia. Modified after Holliday et al. (2002)
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compositional and textural characteristics of the
individual intrusive phases are documented by
Wilson et al. (2003). The plug has intruded rel-
atively flat-lying, volcaniclastic breccia of the
Forest Reefs Volcanics and the conformably
underlying Weemalla Formation, to the west of
the main Cadia Intrusive Complex (Holliday
et al. 2002). Intense silicification and local gar-
net-epidote alteration related to the Ridgeway
deposit have rendered the original composition
of the Weemalla siltstones unrecognizable at
Ridgeway, although outcrops of the units to the
south of the deposit are relatively fresh and only
weakly carbonaceous (Wilson et al. 2003). The
most strongly developed quartz veinstockworks
and potassic alteration, as well as the highest
gold and copper grades, occur immediately
adjacent to the quartz-monzonite. The
highest-grade portion of the orebody occurs
above the quartz-monzonite. The intensity of
veins and potassic alteration decreases both out-
wards and inwards from the monzonite porphyry
margin (Holliday et al. 2002). Ore minerals are
native gold, bornite, chalcopyrite and covellite,
typically occurring within A-type and B-type
quartz veins, but also as disseminations
throughout the rock (Fig. 6.16). Potassic alter-
ation assemblages consist of hydrothermal biotite
and magnetite, as well as local orthoclase floo-
ding and selvedges around B-type veins.

Hydrothermal magnetite also occurs within
quartz veins, particularly in the massive, lami-
nated quartz veins that occur immediately outside
the lithological contact between the
quartz-monzonite porphyry and its volcanic wall
rocks (Holliday et al. 2002). Propylitic alteration
includes secondary epidote, chlorite, calcite, and
hematite dusting (Harper 2000).

Intrusions hosting the Ridgeway deposit were
emplaced at 456 ± 6 Ma, as were weakly min-
eralized intrusions at Cadia Quarry and Cadia
East (Wilson et al. 2007). A second episode of
intrusive activity occurred at 437 ± 4 Ma, based
on a 206Pb/238U weighted average age for
quartz-monzonite stocks and dykes that host
mineralization at Cadia Quarry, Cadia Hill, and
Cadia East (Wilson et al. 2007). Hence, the
porphyry gold-copper deposits of the Cadia dis-
trict formed in two mineralizing episodes sepa-
rated by 18 m.y., from the Late Ordovician to
Early Silurian. This represents one of the longest
recognized time spans for porphyry copper
deposits within a single district (Wilson et al.
2007) and might suggest multiple replenishment
of the fractionating magma chamber at depth.
The intrusions at Cadia Ridgeway were em-
placed within a northwest-oriented pre-existing
structural corridor. Although the system is cut by
northwest-striking fractures, there has been little

Fig. 6.16 Representative ore from the Cadia Ridgeway
copper-gold deposit, Cadia igneous complex, New South
Wales, Australia (photo taken by M. Foster). Potassic

altered quartz-monzonite porphyry cut by
quartz-bornite-chalcopyrite (A-type) stockwork veining
[FOV 8 × 15 cm]
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syn- or post-mineral movement on any of these
structures and the orebody has no major offsets
(Holliday et al. 2002). Cadia Ridgeway is a
small, but high-grade, porphyry gold-copper
system and is comparable in this sense to the
Goonumbla porphyries (cf. Heithersay et al.
1990; Heithersay and Walshe 1995). It represents
the highest-grade porphyry gold-copper deposit
discovered to date in the Lachlan Fold Belt.

Petrography and Geochemistry of the
Shoshonitic Host Rocks With increasing frac-
tionation of the magma, pyroxene decreases in
abundance in company with the appearance of
amphibole. The grain size of the rocks decreases
from equigranular coarse in the mafic portions to
medium-grained in the felsic portions, coupled
with the appearance of K-feldspar, and more
rarely, plagioclase phenocrysts in the monzonites
and quartz-monzonites (Holliday et al. 2002).
Where fresh, the monzonites are salmon pink,
but they range in colour to green, dependant on
alteration, with large (up to 2 cm) pink
K-feldspar phenocrysts within a seriate textured
groundmass of plagioclase, biotite and amphi-
bole. With the exception of thin, <20 cm wide,
syenogranite aplitic dykes, no cross-cutting
intrusions are documented in the Cadia Intru-
sive Complex (Holliday et al. 2002). The pres-
ence of magmatic biotite, the replacement of
pyroxene by amphibole, the presence of aplites,
and vapour cavities infilled by interstitial melt,
indicate a rapid build-up of volatiles within the
melt during fractionation (cf. Burnham 1979).
Petrographic and textural evidence suggest high
oxygen fugacities during magma crystallization
(Holliday et al. 2002). The more mafic units of
the Cadia Intrusive Complex contain 1–2 vol.%
primary magmatic magnetite, and magmatic
biotite phenocrysts have high Mg/(Mg + Fe)
ratios of >0.59. Whole-rock Fe2O3/FeO ratios are
also elevated, generally in the range of 1.0–1.5
(Holliday et al. 2002).

Representative whole-rock analyses of the
Cadia Intrusive Complex are provided in
Table 6.7. The rocks range in composition from
48.0 to 65.0 wt% SiO2 and exhibit a well-defined

fractionation trend ranging from trachybasalts
through latites to trachytes (cf. Holliday et al.
2002). Compositionally, the Cadia Intrusive
Complex conforms to the definition of shosho-
nite in terms of its modal mineralogy and tex-
tures, as well as its geochemical composition
(Holliday et al. 2002). The igneous rocks have
high K2O contents (4.00–5.84 wt%), and high
K2O/Na2O ratios (0.92–1.54) which are typical
for the shoshonite association (cf. Joplin et al.
1972; Morrison 1980; Lu et al. 2013). Molecular
K/Na ratios for all unaltered samples are con-
sistently >1 (i.e. potassic; Müller et al. 1992b).
Additionally, all samples fall within the shosho-
nite field on Ce/Yb versus Ta/Yb and Th/Yb
versus Ta/Yb biaxial plots (Pearce 1982; Holli-
day et al. 2002). The samples also have enriched
LILE concentrations (e.g. up to 1040 ppm Ba,
101 ppm Rb, 843 ppm Sr), low HFSE contents
(<0.60 wt% TiO2, <19 ppm Y, <126 ppm Zr,
<7 ppm Nb, <8 ppm Hf) and very low LREE
abundances (<27 ppm La, <35 ppm Ce) which
are typical for potassic igneous rocks derived in
late oceanic arc settings (Müller et al. 1992b).
Carr et al. (1995) demonstrated that Pb isotope
data from the mineralized Ordovician intrusions
in the Lachlan Fold Belt fall into the field of
modern mantle reservoirs typified by oceanic
island basalts, with little to no evidence of crustal
input. The elevated P2O5 contents of the Cadia
rocks of up to 0.43 wt% are consistent with the
presence of abundant apatite microphenocrysts
(Wilson et al. 2003).

6.3.6 Hugo Dummett (Oyu Tolgoi)
Copper-Gold Deposit, Mongolia

Introduction The Hugo Dummett porphyry
copper-gold deposit is the highest grade part of
the Oyu Tolgoi porphyry district in the southern
Gobi desert of Mongolia (Crane and Kavalieris
2012; Dolgopolova et al. 2013). The Oyu Tolgoi
porphyry district is located about 650 km south
of the Mongolian capital Ulaanbaatar and about
80 km from the Chinese border (Perello et al.
2001). It comprises six copper-gold deposits
including Hugo Dummett, Central Oyu, South
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Table 6.7 Major- and trace-element analyses of shoshonitic rocks from the Cadia copper-gold deposits, New South
Wales, Australia

Province/deposit Cadia Ridgeway Cadia Ridgeway Cadia Hill Cadia East Cadia Far East

Location NSW, Australia NSW, Australia NSW, Australia NSW, Australia NSW, Australia

Rock type Monzonite Monzodiorite Monzonite Monzonite Trachyte dyke

Tectonic setting Late oceanic arc Late oceanic arc Late oceanic arc Late oceanic arc Late oceanic arc

Reference Holliday et al.
(2002)

Holliday et al.
(2002)

Holliday et al.
(2002)

Holliday et al.
(2002)

Holliday et al.
(2002)

SiO2 61.59 52.84 60.05 60.32 53.15

TiO2 0.44 0.60 0.46 0.46 0.53

Al2O3 16.05 14.94 16.55 16.60 13.88

Fe2O3 2.91 5.98 3.10 3.07 3.34

FeO 2.79 4.21 2.81 2.73 5.35

MnO 0.03 0.10 0.03 0.04 0.14

MgO 2.22 3.96 1.99 1.88 7.06

CaO 1.74 5.65 1.80 3.69 6.03

Na2O 4.46 4.32 4.01 3.94 2.77

K2O 4.89 4.00 5.84 4.33 4.27

P2O5 0.21 0.43 0.23 0.21 0.38

LOI 2.67 2.97 3.13 2.73 3.10

Total 100.00 100.00 100.00 100.00 100.00

mg# 42 44 39 38 60

K2O/Na2O 1.09 0.92 1.45 1.09 1.54

Sc 14 26 14 14 30

V 87 206 113 103 192

Cr 9 17 9 10 348

Ni 6 12 5 6 94

Rb 65 56 101 64 59

Sr 455 843 565 785 785

Y 14 19 14 19 14

Zr 117 63 126 115 58

Nb 7 4 7 7 5

Ba 669 818 1040 1036 874

Hf 6 8 n.a. 8 2

La 10 16 27 16 16

Ce 20 35 25 35 30

Sm n.a. n.a. n.a. n.a. n.a.

Yb n.a. n.a. n.a. n.a. n.a.

Th 6 3 7.5 5 4

U 1 1 3 1 1

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron calculated as ferric oxide. Data from
Holliday et al. (2002)
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and Southwest Oyu, Heruga North and Heruga
(Kavalieris et al. 2011) containg a total metal
content exceeding 41.7 million metric tons of
copper and 49.8 million oz of gold (Crane and
Kavalieris 2012). The Oyu Tolgoi porphyry
district forms part of the mid- to late Paleozoic
Gurvansayhan island-arc terrane (Lamb and
Badarch 1997), which represents an east-west
trending belt through southern Mongolia, about
200 km wide and about 750 km long (Kashgerel
et al. 2008). The morphology of the area is flat
and widely covered by sand and gravel, with rare
undulating hills. Oyu Tolgoi is the Mongolian
name for Turquoise Hill, an area with old
workings targeting outcropping copper oxides.
Identification of porphyry copper mineralization
in the area is accredited to Magma Copper
geologists who visited the area in September
1996. After the take-over of Magma Copper by
BHP, the latter company completed the geo-
chemical and geophysical surveys and conducted
23 diamond drill holes, culminating in the iden-
tification of the Oyu Tolgoi North, Central, and
South mineralized zones (cf. Crane and Kava-
lieris 2012). However, BHP’s exploration strat-
egy was focused on the discovery of large
chalcocite blankets and their drill holes were
limited to a depth of 350 m (D. Kirwin, pers.
comm., 2004). Hence, they did not discover the
largest deposit, Hugo Dummett, which is con-
cealed beneath >800 m of unmineralized rock
(Crane and Kavalieris 2012). In 1999, BHP
offered the tenements for joint venture and a
resulting agreement with Ivanhoe Mines allowed
acquisition of up to 100 % of the properties.
Exploration by Ivanhoe Mines began in May
2000, and exploration is still ongoing. More than
2400 drill holes totaling over 1000 km have been
drilled at Oyu Tolgoi and the exploration history
is documented in detail by Kirwin et al. (2005)
and Crane and Kavalieris (2012). In January
2012, Rio Tinto took a majority stake in Ivanhoe
Mines and the project is currently operated by
Turquoise Hill Resources, a majority-owned
subsidiary of Rio Tinto with 66 % ownership
and the Government of Mongolia holding 34 %.
The mine is a combined underground and open
pit operation which shipped its first batch of

copper in July 2013. Copper production is
scheduled to reach about 450,000 tonnes
(500,000 short tons) annually.

Regional Geology The Oyu Tolgoi district is
situated within the Altaid Tectonic Belt (Khain
et al. 2003). The Altaid Tectonic Belt represents
a complex pattern of accreted microcontinental
blocks and mobile belts and it stretches for
almost 5000 km across Asia from the Siberian
Craton and the Tarim to the North China Craton
(Kröner et al. 2007). During the Paleozoic,
southern Mongolia grew through accretion of
subduction-related oceanic island-arcs and con-
tinental blocks (Dolgopolova et al. 2013). The
Oyu Tolgoi area consists of Silurian to Carbon-
iferous polydeformed arcs that are intruded by
Devonian to Permian granitoids (Wainwright
et al. 2011). The region represents an ancient
analogue to active ore-forming environments
associated with arc magmatism, not unlike the
modern situation in the southwest Pacific (Blight
et al. 2010).

The Late-Devonian porphyry copper-gold
deposits of the Oyu Tolgoi district occur in a
22 km-long north-northeast trending zone
(Fig. 6.17) and are hosted by high-K
calc-alkaline quartz-monzodiorite and
quartz-monzonite intrusions emplaced in por-
phyritic augite-basalt lavas (Kashgerel et al.
2008). The local geology comprises
Late-Devonian basaltic to dacitic volcanosedi-
mentary units of the Alagbayan Group which are
unconformably overlain by Early-Carboniferous
basalts and minor sedimentary rocks of the Sai-
nshandhudag Formation (Kashgerel et al. 2006).
The Devonian-Carboniferous units record the
existence of an oceanic island arc (Perello et al.
2001). Arc construction commenced in the
Late-Silurian with subduction of oceanic crust
beneath the Tuva Mongol arc (Sengör and Nat-
alin 1996). The large Tuva Mongol arc was
active for much of the Paleozoic. By the Perm-
ian, a very complicated collage of tectonic units
had formed throughout Central Asia by collision,
shortening, and strike-slip displacement (Sengör
and Natalin 1996; Perello et al. 2001).
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The Oyu Tolgoi area is intersected by several
major northwest- and northeast-striking linea-
ments. A large northeast-striking lineament can

be traced for several kilometers across the border
and into the Inner Mongolia Province of North
China where it controls the Oblaga copper-gold
skarn deposit (Sen et al. 2005). Oblaga is
genetically associated with sheeted
quartz-monzonite dykes of high-K calc-alkaline
composition (Sen et al. 2005). The most dis-
tinctive structural feature at Oyu Tolgoi is the
sheeted nature of some of the northwest-trending
quartz-magnetite veinlet exposures, aligned with
old workings at South Oyu that exploited
high-grade copper mineralization, and a series of
pebble dykes in Central Oyu (Perello et al. 2001).

The high-K calc-alkaline quartz-monzodiorite
and quartz-monzonite intrusions which host the
Hugo Dummett porphyry copper-gold deposit
occur as dykes and stocks, a few tens of meters
wide, and formed in a mid-Paleozoic oceanic
island-arc setting (Kashgerel et al. 2006; Wain-
wright et al. 2011). The quartz-monzodiorites are
dated at 369 ± 2 Ma (Kashgerel et al. 2009).
Southwest of the Hugo Dummett deposit, there is
a large barren quartz-monzodiorite pluton that is
considered to be related to the small mineralized
porphyry intrusions, although a definitive link
cannot be established due to the lack of outcrop
(Wainwright et al. 2011). However, airborne
geophysics and limited drilling suggest that the
large intrusion has an elliptical shape with the
long axis oriented north-northeast over a
5 × 8 km area (Kashgerel et al. 2006), dimen-
sions that approach those of batholiths known to
underlie world-class porphyry copper districts
(Dilles et al. 2000).

Nature of Porphyry Copper-Gold Minerali-
zation Porphyry copper-gold mineralization is
genetically related to a series of small polyphase
quartz-monzodiorite and quartz-monzonite
intrusions which are similar at all deposits at
Oyu Tolgoi (Kashgerel et al. 2006). In places,
granodiorite phases truncate strongly mineralized
quartz-monzodiorites forming chilled margins
adjacent to quartz- and sulphide-rich zones. The
granodiorite intrusions postdate the main por-
phyry copper-gold system, but are locally
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Fig. 6.17 Location of the Oyu Tolgoi porphyry
copper-gold district including the Hugo Dummett, Cen-
tral, South West, South, and Heruga copper-gold deposits
and the Ulan Khud prospect, Mongolia. Adapted from
Kashgerel et al. (2008)
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accompanied by pervasive hydrothermal alter-
ation and weak copper mineralization (Wain-
wright et al. 2011). Barren post-mineral
intrusions in the Oyu Tolgoi area are domi-
nated by multiple-phase rhyolite and syenite
dykes and small plugs that are locally exposed at
the surface and intersected by drill holes (Perello
et al. 2001). In places, the dykes have chilled
margins along their lithological contacts with the
country rocks and they contain xenoliths and
large blocks of mineralized quartz-monzodiorites
(Perello et al. 2001). Hydrothermal breccias are
not common and volumetrically insignificant at
Oyu Tolgoi (Crane and Kavalieris 2012). They
typically contain about 25 vol.% of strongly
altered, subrounded lithic fragments of undefined
composition plus subangular quartz veinlet clasts
in a fine-grained, flow-banded and laminated,
sand-sized clastic matrix of rock flour and dis-
seminated clastic pyrite (Perello et al. 2001).

Hugo Dummett is divided into two deposits,
Hugo Dummett North and Hugo Dummett South
that are composed of multiple intrusions and may
be broadly separated into two intrusive centers.
Each of the centers has a similar structure, with
small intensely quartz-veined dykes (high-grade
ore: >2.5 wt% Cu) on the eastern margin, flanking
larger quartz-monzodiorite intrusions presumed
to form the center of the intrusive complex
(Kashgerel et al. 2009). The complex tectonic
history, as well as extensive cover rocks, obscures
fundamental characteristics of the early island arc
terrane that hosts the Oyu Tolgoi deposits (Crane
and Kavalieris 2012). Post-mineral deformation
has modified the original intrusive structure and
ductile deformation of sulphides is common in
the Hugo Dummett deposits. A schematic
reconstruction of Hugo Dummett shows that the
core of the system is made up of a dome-shaped
intrusion overprinted by concentric zones of
alteration and mineralization (Kashgerel et al.
2009). The Hugo Dummett deposits are the
richest and deepest porphyry system at Oyu
Tolgoi, locally characterized by high-grade cop-
per (>2.5 wt% Cu) and gold (0.5–2.0 g/t) min-
eralization associated with intense A-type quartz

veins and multiple phases of quartz-monzodiorite
and quartz-monzonite stocks and dykes (Crane
and Kavalieris 2012). The intrusions are em-
placed into a coarse-grained porphyritic
augite-basalt (Kashgerel et al. 2006). The high
iron content of this basalt had a reducing effect on
the hydrothermal fluids, thus precipitating the
ores with very high copper-gold grades that
define the Hugo Dummett deposits, but are highly
unusual for typical porphyry Cu-Au deposits. The
high-grade zone along the lithological contact of
the augite-basalt is best developed at Hugo
Dummett North, where it forms a lens up to 90 m
wide and about 600 m in vertical extent, and with
a strike length of >1.5 km (Crane, pers. comm.,
2011). The high-grade zone is defined by intense
A-type quartz-bornite veins (in places up to 5 wt
% Cu), locally termed the Qv90 zone for >90 vol.
% quartz veins (Fig. 6.18). This zone is closely
enveloped by advanced argillic alteration and
deeply overprinted by a quartz-sericite assem-
blage. Hypogene bornite typically impregnates
quartz, filling spaces and fractures within the
Qv90 zone (Fig. 6.18). Enargite-pyrite occurs as
veins in the outer parts of the Hugo Dummett
deposits and associated with advanced argillic
alteration. Parts of the Hugo Dummett North
deposit have unusually high Au (g/t)/Cu(%) ratios
>1, corresponding to areas with native gold
recorded in polished section (Crane and Kava-
lieris 2012).

An early and regional sodic-calcic alteration is
overprinted by younger wall-rock
biotite-magnetite alteration along with ortho-
clase alteration, the latter two largely restricted to
the host quartz-monzodiorite intrusions (Crane
and Kavalieris 2012). High-grade bornite min-
eralization is commonly associated with intense
sericite alteration, which overprints earlier
potassic alteration assemblages (Kashgerel et al.
2009). Sulphide minerals are zoned outward
from a bornite-dominated core to chalcopyrite,
upward to pyrite ± enargite and covellite at
shallower depth. The latter high-sulphidation
state sulphides are hosted by advanced argillic
alteration that overprints the sericite alteration
(Kashgerel et al. 2009).
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Petrology and Geochemistry of the Potassic
Host Rocks Quartz-monzodiorites and
quartz-monzonites are medium-grained and
consist of subhedral hornblende and biotite fer-
romagnesian phenocrysts, plagioclase
phenocryst-crowded textures, and with potassic
feldspar exclusively in the matrix (Kavalieris and
Wainwright 2005). The rocks also contain
accessory magnetite, zircon and apatite (Dolgo-
polova et al. 2013; Wainwright et al. 2011).
Where unaltered, these rocks are characterized by

a distinct brick-red tint, comparable to the Goo-
numbla intrusions in New South Wales (Müller
et al. 1994). The granodiorite suite is subdivided
into a coarse-grained and sparsely porphyritic
phase with plagioclase and biotite phenocrysts as
well as apatite microphenocrysts which are set in
a distinctive brown aphanitic groundmass, and,
more rarely, a crowded porphyritic phase domi-
nated by plagioclase and minor quartz pheno-
crysts set in a grey-brown to beige-yellow
feldspathic groundmass (Wainwright et al. 2011).

Fig. 6.18 High-grade ore samples from the Qv90 zone,
Hugo Dummett copper-gold deposit, Mongolia (photos
taken by B.E. Khashgerel): a intense quartz-bornite
mineralization from the Qv90 high-grade zone [FOV

6 × 10 cm]. b Intense quartz-bornite ± chalcopyrite
mineralization from the Qv90 zone; note that bornite
impregnates quartz, filling spaces and fractures within the
Qv90 zone [FOV 6 × 12 cm]
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The abundance of hydrous minerals, such as
biotite and hornblende phenocrysts, as well as
apatite microphenocrysts suggests volatile-rich
magmas (Wainwright et al. 2011).

Table 6.8 shows representative whole-rock
analyses for the potassic igneous rocks from Oyu
Tolgoi (Kavalieris and Wainwright 2005). Geo-
chemically, the rocks belong to the high-K
calc-alkaline suite with high, but variable Al2O3

contents (16.64–19.19 wt%), high K2O contents
(up to 3.88 wt%), and high K2O/Na2O ratios
(0.55–1.05). The rocks have enriched LILE (up
to 495 ppm Ba, up to 96 ppm Rb, up to 208 ppm
Sr), low HFSE (<0.79 wt% TiO2, <136 ppm Zr,
<8.9 ppm Nb, <21 ppm Y), very low LREE
abundances (<18.1 ppm La, <34.1 ppm Ce), and
high Ba/La ratios that exceed 25, which are
typical for potassic igneous rocks derived from
oceanic island arc settings (Müller et al. 1992;
Kavalieris and Wainwright 2005). The Ce/Yb
(10.5–17.2) and Th/Yb ratios (1.26–1.63) of the
quartz-monzodiorites from Oyu Tolgoi confirm
their high-K calc-alkaline affinities (cf. Pearce
1982). Mineralized quartz-monzodiorites are
characterized by relatively flat, spoon-shaped,
patterns in mantle-normalized REE spidergram
diagrams (Kavalieris and Wainwright 2005),
generally considered to indicate metasomatic
hydrous alteration of the peridotitic mantle
sources (Navon and Stolper 1987; Takazawa
et al. 1992). The lack of negative Eu anomalies
indicates high oxygen fugacities of the magmas,
and is conducive for gold-rich porphyry systems
(Kavalieris and Wainwright 2005).

The augite-basalt hosting the Hugo Dummett
porphyry copper-gold deposit is very
coarse-grained and porphyritic containing large
augite phenocrysts (35 vol.%, 5–8 mm) that are
set in a dark-gray to black fine-grained ground-
mass consisting of plagioclase, augite and mag-
netite (Kashgerel et al. 2009). Geochemically,
the augite-basalt has primitive tholeiitic compo-
sitions with about 1.37 wt% TiO2, 12.46 wt%
Al2O3, 10.77 wt% MgO, and 0.6 wt% K2O, and
it is defined by relatively flat REE patterns on

mantle-normalized spidergram diagrams (Kava-
lieris and Wainwright 2005; Wainwright et al.
2011).

6.3.7 Peschanka Copper-Gold
Deposit, Siberia, Russia

Introduction The Peschanka deposit is another
example of copper-gold mineralization hosted by
potassic igneous rocks that were derived in a late
oceanic arc setting. It probably represents the
most isolated copper-gold deposit of significant
grade and tonnage (Chitalin et al. 2012). Pesch-
anka is situated in the Chukotka Autonomous
Region near the Arctic circle, about 250 km
southwest of the small town of Bilibino and
425 km from the small seasonal port of Pevek in
the far north of eastern Siberia (Marushchenko
2013). The area comprises undulating hills that
are largely covered by vast pine forests. Annual
average temperatures are well below 0 °C.

The Peschanka deposit forms part of the
Baimka ore district that is confined to the eastern
margin of the large Egdygkych pluton, a com-
posite mafic intrusion of early Cretaceous age
(Baksheev et al. 2013; Nikolaev et al. 2014;
Soloviev 2014). The mineral potential of the
Baimka district was discovered during large
regional stream sediment and soil sampling sur-
veys in the nineteen seventies and early-eighties
(Nokleberg et al. 2005; Chitalin et al. 2012).
Contour maps plotting the elements Cu, Mo, Pb,
and Zn revealed subtle, but perfectly zoned
anomalies in the permafrost soils (Nokleberg
et al. 2005). The Baimka district represents a
cluster of porphyry copper-gold systems, proba-
bly related to a fractionating magma chamber at
depth. The best explored deposit is Peschanka
which crops out at surface and it is well defined
by deep diamond drilling. Peschanka represents
the largest porphyry copper-gold deposit in
Russia, comprising a resource of >1350 Mt at
0.61 wt% Cu, 0.015 wt% Mo, 0.32 g/t Au, and
3.7 g/t Ag accounting for a total metal content of
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Table 6.8 Major- and trace-element analyses of potassic igneous rocks from the Oyu Tolgoi copper-gold deposits,
Mongolia

Province/deposit Oyu Tolgoi Oyu Tolgoi Oyu Tolgoi Oyu Tolgoi

Location Mongolia Mongolia Mongolia Mongolia

Rock type Quartz-Monzodiorite Quartz-Monzonite Quartz-Monzonite Granodiorite

Tectonic setting Late oceanic arc Late oceanic arc Late oceanic arc Late oceanic arc

Reference Kavalieris and
Wainwright (2005)

Kavalieris and
Wainwright (2005)

Kavalieris and
Wainwright (2005)

Kavalieris and
Wainwright (2005)

SiO2 56.73 66.31 65.78 63.54

TiO2 0.79 0.32 0.49 0.45

Al2O3 19.19 16.64 17.01 17.79

Fe2O3 4.69 3.77 4.53 3.83

FeO n.a. n.a. n.a. n.a.

MnO 0.06 0.02 0.01 0.05

MgO 3.28 1.27 0.84 0.62

CaO 0.92 0.41 0.32 1.91

Na2O 5.24 5.15 3.27 4.03

K2O 3.88 2.84 3.43 3.12

P2O5 0.42 0.12 0.19 0.23

LOI 4.59 3.96 4.49 4.23

Total 99.79 100.81 100.36 99.8

mg# 58 40 38 26

K2O/Na2O 0.74 0.55 1.05 0.77

Sc 14 3 4 5

V 74 240 99 89

Cr n.a. n.a. <20 <20

Ni 6 1 <20 <20

Rb 62 96 94 77

Sr 208 176 81 262

Y 9.6 17.8 21 15

Zr 102 115 136 94

Nb 5.2 4.8 8.9 6.8

Ba 237 300 495 231

La 7.5 11 18.1 16

Ce 14.5 21.9 34.1 31

Sm 1.67 3.51 3.87 2.9

Yb 1.19 2.09 2.4 1.8

Th 1.61 2.71 3.93 2.28

U 0.63 0.64 2.03 0.87

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron calculated as ferric oxide. Data from
Kavalieris and Wainwright (2005)
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8.3 Mt Cu, 200 kt Mo, >14 Moz of Au, and >116
Moz of Ag (Seltmann et al. 2010). The explo-
ration potential of the area is high and regional
exploration is ongoing. There is also potential for
the discovery of additional, but concealed,
high-grade zones as one of the drill holes in the
Nakhodka area has intersected an interval aver-
aging 1.5 wt% Cu and 2.1 g/t Au over 147 m (cf.
Soloviev 2014, and references therein). The
Peschanka property is 100 % owned by Mill-
house Capital Ltd., the British investment arm of
Roman Abramovich Holdings in London.

Regional Geology The geology of eastern
Siberia is complex and it incorporates several
large tectonic terranes: (1) the Siberian Craton;
(2) the Western Siberian Lowland; (3) the
Proterozoic-Paleozoic orogenic belts; (4) the Late
Paleozoic-Mesozoic orogenic belts; and (5) the
Cretaceous-Tertiary Okhotsk-Chukotka volcanic
belt overprinting easterly orogenic belts (Parfe-
nov et al. 2003; Seltmann et al. 2010). The
Baimka ore district is hosted by
Paleozoic-Mesozoic orogenic belts adjoining the
Siberian Craton to the east, which are interpreted
as an amalgamation of late Paleozoic to early
Cretaceous island arcs (Sidorov and Eremin
1994; Volkov et al. 2006). Its geological and
metallogenic evolution is comparable to the
Lachlan Fold Belt in New South Wales, Aus-
tralia. The Chukotka Autonomous Region does
not only host significant low-sulphidation epi-
thermal Au-Te deposits such as the alkaline
rock-hosted Dvoinoi (1.1 Moz of Au) and Kupol
(2.5 Moz) mines (Nikolaev et al. 2013), but also
world-class porphyry copper-gold deposits such
as Peschanka and Vetka that are hosted by
high-K intrusions (Baksheev et al. 2010).

The polyphase Early Cretaceous Egdygkych
pluton has been dated at 138–141 Ma based on
U/Pb zircon ages (Baksheev et al. 2013). It rep-
resents a composite intrusion that was formed
during at least three phases, ranging from (1) a
mafic early-stage monzogabbro and monzodior-
ite phase, through a (2) monzodiorite and mon-
zonite phase, to a (3) late-stage, and more
evolved, quartz-monzonite porphyry phase

(Marushchenko 2013; Soloviev 2014). The last is
associated with porphyry copper-gold minerali-
zation (Soloviev 2014). The Egdygkych pluton is
emplaced within Upper Jurassic marine sedi-
mentary rocks, including mudstones, siltstones,
sandstones and conglomerates (Migachev et al.
1995; Soloviev 2014). The pluton has an elon-
gated shape, extending over >25 km with a
north-south orientation (Fig. 6.19), and it is
structurally controlled by a deep extensional fault
zone of similar orientation and with a dextral
displacement, locally known as the Baimka Fault
(Chitalin et al. 2012). The Egdygkych pluton was
formed by progressively more evolved pulses of
high-K calc-alkaline melt derived from the
cupola of a fractionating magma chamber in the
lower crust, comparable to the geological setting
of the Goonumbla and Cadia districts in eastern
Australia (cf. Heithersay and Walshe 1995;
Holliday et al. 2002). The Peschanka deposit is
intersected by a series of dykes, including pre-
and post-mineral lamprophyres (Volchkov et al.
1982; Maraeva et al. 1988), and post-mineral
andesite porphyries (Nikolaev et al. 2014).

Nature of Porphyry Copper-Gold Minerali-
zation Stockwork mineralization is confined to a
north-south trending, eastward dipping, sheet-like
quartz-monzonite porphyry stock of late Jurassic
age that cuts the polyphase Egdygkych pluton
and splits into a series of dyke-like apophyses at
surface (Seltmann et al. 2010; Soloviev 2014).
Mineralization comprises disseminated sulphides
and quartz-sulphide stockwork veining including
A-type and B-type veins (Fig. 6.20). Typical ore
minerals are bornite, chalcopyrite, pyrite, mag-
netite, molybdenite, and rare native gold (Nag-
ornaya 2010). The stockwork veins are conformal
to the quartz-monzonite porphyry phases that
merge together at depth, but also extends for tens
to, locally, several hundred meters into the sur-
rounding country rocks of the Egdygkych pluton
(Baksheev et al. 2012; Soloviev 2014). Deep
exploration drilling defines a north-south ori-
ented, elongated stockwork zone of about 7000 m
by 1500 m in size and economic mineralization
extends to a vertical depth of >700 m (Chitalin
et al. 2012; Nikolaev et al. 2014). The quartz
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stockwork zone extends almost continuously
from the south to the north, and the deposit was
formed by hydraulic fracturing in the stress field
of near-horizontal latitudinal extension (Chitalin
et al. 2012). The following vein types can be
distinguished: (1) quartz-magnetite-pyrite;
(2) quartz-molybdenite; (3) quartz-pyrite-
chalcopyrite; (4) high-grade quartz-chalcopyrite-
bornite-tennantite; (5) late-stage polymetallic
quartz-carbonate-sphalerite-galena-chalcopyrite;
and (6) post-mineral carbonate-anhydrite veins,
the latter suggesting high oxygen fugacities of the
system (cf. Chap. 10). The quartz-moly-
bdenite veins are restricted to the core of the
system and its vein density increases with depth.
Molybdenite phases are dated at about 140 Ma
using Re–Os methods (Baksheev et al. 2013).
Sulphide veinlets and stringer veins are

commonly lenticular, en echelon-shaped, and
clearly controlled by extensional,
northeast-striking, strike-slip faults that are rela-
ted to the regional north-south trending Baimka
structure (Chitalin et al. 2012). Late-stage
hydrothermal breccias are common in the
high-grade core of the system and consist of
angular to subangular clasts of quartz-monzonite
porphyry cemented by barren quartz. The brec-
cias are typically associated with, but post-date,
early hydrothermal biotite-magnetite alteration.
Hydrothermal orthoclase alteration rarely occurs
as flooding, and more commonly as alteration
selvedges around quartz veins. The potassic
alteration assemblages are overprinted by a
late-stage and pervasive sericite alteration, par-
ticularly along the lithological contacts between
the mineralized quartz-monzonite stock and its
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Fig. 6.20 Representative ore samples from the Peschan-
ka copper-gold deposit, Siberia, Russia (photos taken by
A. Chitalin): a potassic altered quartz-monzonite por-
phyry cut by sheeted quartz-bornite-chalcopyrite veining
[FOV 4 × 10 cm]. b Potassic altered quartz-monzonite

porphyry cut by quartz-molybdenite veins [FOV
4 × 8 cm]. c Drill core box (HQ size) with potassic
altered quartz-monzonite porphyry cut by intense
quartz-bornite (A- and B-type) stockwork veining from
Peschanka
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wall rocks. However, sericite alteration and
abundant D-type veins are also controlled by
fractures and faults (Chitalin et al. 2012). The
highest Cu and Au grades of the orebody are
related to north- and northeast-trending zones
where original potassic alteration is overprinted
by sericite alteration, suggesting that the exten-
sional strike-slip setting provided by the regional
Baimka Fault did not only control the intrusion
emplacement, but it remained active during
stockwork development and hydrothermal alter-
ation (Chitalin et al. 2012). The extensional
northeast-trending strike-slip faults, that also host
a series of post-mineral andesite porphyry dykes,
are interpreted as Riedel structures related to the
Baimka Fault (Chitalin et al. 2012). Propylitic
alteration is well developed within the mafic
intrusive wall rocks of the Egdygkych pluton,
represented by epidote-actinolite-chlorite-
albite-tourmaline assemblages (Marushchenko

2013). A thin supergene cap is present on top of
the orebody, but largely eroded and <30 m thick.
Sulphur isotopic compositions of sulphide phases
derived from quartz veins range from −6.4 to
+4.8‰, indicating a magmatic sulphur source
(Baksheev et al. 2013).

Petrography and Geochemistry of the
Potassic Host Rocks The quartz-monzonite
porphyry is medium-grained and comprises
phenocrysts of K-feldspar, plagioclase, quartz,
biotite, clinopyroxene, and amphibole that are set
in a feldspathic groundmass with interstitial
quartz (Nagornaya 2010). Accessory minerals
are rutile, titanite, calcite, and prehnite (Mar-
ushchenko 2013).

Whole-rock analyses of monzodiorites and
monzonites from the Egdygkych pluton are pre-
sented in Table 6.9 (cf. Volchkov et al. 1982;

Table 6.9 Major-element analyses (in wt%) of potassic igneous rocks from the Peschanka copper-gold deposit,
Siberia, Russia

Province/deposit Peschanka Peschanka Peschanka Peschanka

Location Siberia Siberia Siberia Siberia

Rock type Monzonite Monzonite Monzonite Monzonite

Tectonic setting Late oceanic arc Late oceanic arc Late oceanic arc Late oceanic arc

Reference Volchkov et al.
(1982)

Volchkov et al.
(1982)

Volchkov et al.
(1982)

Volchkov et al.
(1982)

SiO2 58.23 59.12 58.73 60.02

TiO2 0.69 0.69 0.67 0.64

Al2O3 18.31 18.12 18.66 18.19

Fe2O3 3.24 2.88 2.69 2.17

FeO 2.56 2.26 2.63 2.68

MnO 0.14 0.10 0.14 0.12

MgO 2.60 2.50 1.99 2.09

CaO 4.88 4.37 4.12 4.41

Na2O 4.50 4.68 4.72 5.00

K2O 3.48 3.68 4.57 3.98

P2O5 0.27 0.24 0.22 0.22

LOI 0.74 0.83 0.70 0.58

Total 99.64 99.47 99.84 100.10

mg# 46 48 42 45

K2O/Na2O 0.77 0.78 0.97 0.8

Ferric iron is determined using the Wilson method. Data from Volchkov et al. (1982)
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Soloviev 2014). The samples are characterized
by high K2O contents (up to 4.57 wt%), high
K2O/Na2O ratios (0.7–0.9), high Al2O3 (>18.1
wt%), and low TiO2 contents (<0.7 wt%) which
are typical for high-K calc-alkaline intrusions
(Peccerillo and Taylor 1976a, b; Müller et al.
1992b). Distinctly low HFSE, such as TiO2 (<0.7
wt%), suggest a late oceanic island arc setting, as
proposed by Sidorov and Eremin (1994) and
Volkov et al. (2006). Unfortunately, no trace
element compositions of the rocks have been
published to date.

However, high volatile contents of the intru-
sions are indicated by the presence of
high-salinity fluid inclusions in quartz veins and
fluorite veins in different parts of the deposit
(Chitalin et al. 2012; Nikolaev et al. 2014).
Abundant primary magnetite contents of the
monzonites and quartz-monzonites, as well as
numerous gypsum and anhydrite veins, are sug-
gestive of high oxygen fugacities of the melts
(Volkov et at. 2006; Chitalin et al. 2012). This is
consistent with high whole-rock Fe2O3/FeO
ratios of the rocks (0.8–1.27).

6.4 Continental Arc Associations

Porphyry copper-gold and epithermal gold
deposits hosted by high-K igneous rocks are
known from both the North American Cordillera
and the South American Andes (Clark 1993;
Kelley and Ludington 2002; Maughan et al.
2002; Sillitoe 2002). The Andes are considered
in more detail here because the geochemistry of
the host rocks is better documented in the liter-
ature. Generally, the host rocks of porphyry
copper deposits in continental arcs of the western
hemisphere are more felsic than those in late
oceanic arcs of the Southwest Pacific (Titley
1975; Sillitoe 1997, 2002). This might be
explained by a greater role of crustal assimilation
during magma uprise and emplacement in con-
tinental arcs (Müller and Groves 1993).

Although there are exceptions, porphyry
copper deposits in continental arcs commonly are
more Mo-rich, but Au-poor, than those in late
oceanic arcs (Sillitoe 1997, 2002).

6.4.1 Bajo de La Alumbrera
Copper-Gold Deposit,
Catamarca Province, Argentina

Introduction The Bajo de la Alumbrera por-
phyry copper-gold deposit is located in the
Catamarca Province in northwest Argentina
(Figs. 6.21 and 6.22). The closest towns are
Belen, about 100 km to the southwest, and
Tucuman, about 300 km to the northeast. The
area belongs to the eastern Cordillera, situated at
an altitude of about 2500 m above sea level near
the border to Chile, with an arid climate and
highly variable temperatures ranging between 0
and 35 °C during the year.

The deposit forms an oval-shaped topographic
low below the edges of the unaltered, and thus
more resistant, units of the surrounding Farallon
Negro Formation. Outcrops of potassic and
phyllic alteration in the center of the deposit form
a distinct colour anomaly on satellite images.
Small copper occurrences in the Farallon Negro
area were known since the nineteen seventies,
but no systematic exploration was undertaken.
Significant porphyry copper-gold mineralization
was discovered and subsequently developed by
MIM Holdings Ltd in the early-nineties. Com-
mercial production commenced as an open pit
operation in February 1998 and the project’s
current ownership structure is 50 % Glencore
(the operator), 37.5 % Goldcorp, and 12.5 %
Yamana Gold Inc.

Bajo de la Alumbrera ranks among the ten
largest porphyry copper-gold deposits in the
world, and it is one of the biggest gold producers
in South America. The total resource, before
mining, was 806 Mt at 0.53 wt% Cu and 0.64 g/t
Au (D. Keough, pers. comm., 1998). In
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December 2013, proven ore reserves were 178 Mt
at 0.35 wt% Cu and 0.35 g/t Au (cf. GlencoreX-
strata—Resources & Reserves Report 2013).

Regional Geology Northwest Argentina con-
sists of three geological provinces: (1) the Puna,
(2) the Cordillera Oriental, and (3) the Sierras
Pampeanas. The high-K calc-alkaline rocks that
host the Bajo de la Alumbrera deposit belong to
the Farallon Negro Formation and are situated in
the northernmost Sierras Pampeanas (Figs. 6.21
and 6.22).

The Sierras Pampeanas comprise a series of
subparallel, north-trending, reverse
fault-bounded, mountain ranges of Upper Prote-
rozoic to Lower Paleozoic basement rocks which
are separated by wide flat valleys in the foreland
of the Central Andes (Caelles 1979). The thrusts
and reverse faults commonly dip at about 60° to
the east and have throws in access of 7000 m
(Strecker et al. 1989). The basement rocks are
predominantly amphibolites-facies mica schists
and paragneisses which, in places, have been
intruded by Upper Ordovician to Silurian grani-
toids (Caelles 1979). The Upper Ordovician to
Silurian period in the Sierras Pampeanas was
characterized by widespread plutonic activity and
compressional deformation. This is consistent
with modern plate-tectonic reconstructions of
that time, implying collision between the eastern
part of the North American continent and the
western part of the South American continent
during the Ordovician (Dalziel 1995).

The basement blocks have been uplifted along
reverse faults during the Pliocene and early
Pleistocene (Strecker et al. 1989), thus forming
the intramontane basins of both the Puna and
Sierras Pampeanas of northwest Argentina
(Schwab and Lippolt 1974). The Pampean
structural style is similar to that of the Laramide
Ranges in western North America (Kay and
Gordillo 1994), and has been suggested to be
characteristic of foreland deformation over shal-
low subduction zones (Jordan and Allmendinger
1986; Introcaso et al. 1987).

In the Andes, the subduction angle varies
along strike, and Recent volcanism is restricted
to zones where the dip is about 30° (Kay et al.
1987, 1988, 2005). Miocene to Pliocene mag-
matism in the Sierras Pampeanas has been
derived from the so-called “flat-slab zone”,
which represents the segment of the subducting
oceanic Nazca Plate between 28° and 33°S (Kay
et al. 1987, 2005; Kay and Abbruzzi 1996). In
this zone, the subduction angle increasingly
shallowed during the Miocene and Pliocene,
beginning at ca. 18 Ma (Caelles 1979), probably
caused by the subduction of a bend in the
Juan-Fernandez Ridge (Pilger 1984). The shal-
lowing subduction angle was accompanied by a

Fig. 6.21 Geographic overview of the major copper-gold
deposits of the Chilean and Argentinian Andes that are
hosted by high-K calc-alkaline rocks. Modified after Vila
and Sillitoe (1991)
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progressive enrichment of the mantle wedge in
LILE, and an increase in Pb and ΣNd values,
resulting in enrichment of melts from the Upper
Miocene relative to those from the Lower Mio-
cene (Kay and Abbruzzi 1996). Quaternary and
present-day volcanism is lacking in the flat-slab
zone (Kay and Gordillo 1994; Kay et al. 2005;
Stern et al. 2011).

The present subduction angle in this zone has
been estimated to be about 10°, in contrast to the
normal angle of about 30° to the north and south
of the flat-slab zone (Caelles 1979) where Qua-
ternary volcanism has been recorded (e.g.
Strecker et al. 1989). The seismic transition
between the flat-slab zone and the more steeply
dipping subduction zone further to the north
occurs between 25° and 28°S, and is character-
ized by a flexure below the 100-km depth con-
tour for the Benioff Zone (Strecker et al. 1989).
Progressive subduction of kinks or flexures in the

downgoing oceanic slab might eventually lead to
tears, thus promoting the uprise of deep
asthenospheric mantle melts that are normally
blocked off by the subducting slab (cf. Müller
et al. 2002b; Logan and Mihalynuk 2014). The
K-rich calc-alkaline Farallon Negro Formation,
which hosts Bajo de la Alumbrera (Ulrich and
Heinrich 2002), is situated within this “transi-
tional zone”, immediately to the north of the
gently dipping segment where the shallow sub-
duction angle gradually increases again to 30°
(Caelles 1979). The brief history of the Farallon
Negro volcanic complex hosting the Bajo de la
Alumbrera deposit differs from that of other
Andean provinces hosting porphyry copper
deposits (Harris et al. 2004a). For example, at the
El Salvador porphyry copper district in Chile,
magmatism related to copper mineralization was
episodic in regional igneous activity that occur-
red over tens of millions of years. By contrast,

Fig. 6.22 Geological overview of the Catamarca Prov-
ince, northwest Argentina, showing the location of the
Bajo de la Alumbrera copper-gold deposit. Modified after

Allmendinger et al. (1983), Allmendinger (1986), and
Strecker et al. (1989)
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Bajo de la Alumbrera resulted from the super-
position of multiple porphyry-related hydrother-
mal systems, temporally separated by only a
million years (Harris et al. 2004a).

The emplacement of the Cenozoic potassic
igneous complexes of northwest Argentina, such
as the Farallon Negro Formation, was controlled
by major northwest-striking lineaments (All-
mendinger et al. 1983; Salfity 1985). Allmen-
dinger et al. (1983) postulated a sinistral
strike-slip movement of up to 20 km along the
lineaments, which are characterized by small
negative gravity anomalies (Götze et al. 1987),
probably related to young volcanic activity
which extends along these structures far to the
east of the main volcanic chain (Schreiber and
Schwab 1991).

Nature of Porphyry Copper-Gold Minerali-
zation Reconstruction of the volcanic structure
suggests that the top of the exposed orebody was
originally emplaced beneath about 2500 m of
andesite, but not directly beneath the vent of a
stratovolcano (Proffett 2003; Harris et al. 2006).
Detailed mapping suggests that porphyry
copper-gold mineralization is centered on a clo-
sely spaced cluster of small dacite porphyry
stocks and dykes, emplaced into andesites during
seven phases of intrusion (Proffett 2003). Geo-
chronological work has divided the porphyry
intrusions into two temporally distinct events:
(1) one group emplaced at ca. 8.0 Ma (early
porphyries), and another intruded about a million
years later (late porphyries; Harris et al. 2004b).
Both groups of intrusions are associated with
varying degrees of hydrothermal alteration
(Proffett 2003; Harris et al. 2004b).

Bajo de la Alumbrera is characterized by a
classical alteration zonation, ranging from a
potassic core which typically contains the most
intense quartz-vein stockworks and the highest
gold grades (*2 g/t Au), surrounded by propyli-
tization and an annular phyllic overprint (Müller
and Forrestal 1998; Ulrich et al. 2001; Proffett
2003; Ford et al. 2015). High-grade stockwork
mineralization includes A-type and B-type
quartz-sulphide veins, hosted by the earlier dacite

porphyries and associated with abundant hydro-
thermal orthoclase, both occurring as flooding and
alteration selvedges around quartz veins (Ulrich
et al. 2001; Ulrich and Heinrich 2002; Proffett
2003). These zones are typically overprinted by a
later phase of stockwork veins introduced by
subsequent porphyry intrusions and accompanied
by hydrothermal biotite-magnetite-anhydrite
assemblages (Proffett 2003). Chalcopyrite and
auriferous pyrite represent the most dominant ore
minerals, with rare bornite and enargite, occurring
both in the quartz veins and as disseminations
(Ulrich andHeinrich 2002). Originally, the central
zone with potassic alteration and stockwork min-
eralization cropped out at surface due to a high
erosion level, and was the focal point when open
pit mining commenced in 1998. The argillic cap of
the system has been removed by erosion. Potassic
alteration is focused on the dacite porphyries, but
biotite-magnetite assemblages locally extend into
the andesitic wall rocks within up to 100 m of the
intrusions (Ulrich and Heinrich 2002). Abundant
hydrothermal magnetite (up to 10 vol.%), that is
both disseminated and in small veins, as well as
abundant anhydrite and gypsum veins (cf. Proffett
2003), imply high oxygen fugacities of the
hydrothermal fluids.

Metallurgical studies have shown that native
gold occurs mainly as inclusions within pyrite and
chalcopyrite. Interestingly, no gold occurs within
the structure of the magnetite (S. Brown, pers.
comm., 1994), which is a known host mineral of
gold in many porphyry copper-gold deposits in
the Philippines (I. Kavalieris, pers. comm., 1996).

Petrography and Geochemistry of the
Potassic Host Rocks The Upper Miocene (i.e.
6–10 Ma) Farallon Negro Formation forms an
igneous complex of lava flows, tuff breccias, and
agglomerates, which, in places, are intruded by
comagmatic hypabyssal stocks and domes
(Müller and Forrestal 1998). Petrographically,
both lava flows and tuffs vary from basaltic
through latitic to rhyolitic in composition. The
comagmatic intrusions (ca. 7.9 Ma) consist of
monzonite stocks and dykes and hypabyssal
trachyandesites and dacites (Stults 1985). The
entire volcanic succession represents the basal
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remnants of a large, formerly up to 6 km high,
stratovolcano some 16 km in diameter (Llambias
1972), and covers about 700 km2 (Caelles 1979).
The complex is situated within a tectonic
depression bounded by uplifted Lower Paleozoic
basement rocks of the Sierra de Quilmes to the
north and the Sierra de Aconquija to the east. The
igneous rocks were erupted through a crystalline
basement comprising amphibolites-facies me-
tasedimentary rocks and granitoid batholiths
(Müller and Forrestal 1998).

Porphyry copper-gold mineralization at Bajo
de la Alumbrera was coeval with the emplace-
ment of a hypabyssal dacite dome (H. Salgado,
pers. comm., 1994), and several other prospects
for porphyry copper-gold (e.g. Cerro Durazno,
Agua Rica) and epithermal gold (e.g. Cerro At-
ajo) are known within the Farallon Negro For-
mation (Müller and Forrestal 1998; Landtwing
et al. 2002). The hypabyssal dacite has a por-
phyritic texture consisting of phenocrysts of
plagioclase, quartz, and biotite, with minor
amphiboles and accessory apatite and magnetite,
within a fine-grained groundmass mainly com-
prising feldspar and quartz (Müller and Forrestal
1998; Harris et al. 2004b). There are two petro-
graphically distinct types of quartz eyes in the
mineralized dacite porphyries (Harris et al.
2004b). Type 1 consists of typical quartz
phenocrysts that are large, up to 8 mm in diam-
eter, rounded and irregular anhedral crystals.
Type 2 quartz eyes are elliptical, small (<2 mm),
and consist of saccharoidal aggregates of anhe-
dral quartz crystals (Harris et al. 2004b). They
are distinctly different from the quartz pheno-
crysts in that they are intergrown with crystals of
feldspar and magnetite. In places, narrow, anas-
tomosing zones of graphic quartz-K-feldspar in-
tergrowths and ragged biotite connect type-2
quartz eyes (Harris et al. 2004b). This connec-
tivity can be over as much as 10 cm, but more
commonly, these interconnected miarolithic
cavities are approximately 1–2 mm across and
5 cm or less in length (Harris et al. 2004b). The
presence of hydrous phenocrysts such as biotite
and hornblende, as well as miarolithic cavities,
suggests high volatile contents (H2O, Cl, SO2,

SO3) of the parental melts. Accessory magmatic
magnetite in the samples is indicative of high
oxygen fugacities of the high-K calc-alkaline
magmas (Sillitoe 1979; Müller et al. 2001).
Proximal to the orebody, the rocks are over-
printed by intense secondary biotite-magnetite
alteration, in which the magnetite content of the
dacites may be as high as 10 vol.% (Brown, pers.
comm., 1994).

The lava flows and pyroclastic deposits of the
Farallon Negro Formation have typical high-K
calc-alkaline compositions, whereas the shallow
comagmatic dacite porphyry intrusions, that are
genetically associated with the mineralization at
Bajo de la Alumbrera, are derived from frac-
tionated high-K calc-alkaline magmas, transi-
tional to shoshonites (Müller and Forrestal 1998;
Harris et al. 2004b). The samples are character-
ized geochemically (Table 6.10) by very high
Ce/Yb ratios (22–54) that are typical for shos-
honitic rocks (Pearce 1982; Müller et al. 1992b)
and rather low, but variable, Al2O3 contents
(8.82–15.90 wt%). Fractional crystallization
resulted in low mg# (<27) and low concentra-
tions of mantle-compatible trace-elements (e.g.
<142 ppm Cr, <7 ppm Ni). The rocks are char-
acterized by high concentrations of LILE (e.g. up
to 5.81 wt% K2O; up to 113 ppm Rb, 181 ppm
Sr, 504 ppm Ba), moderate LREE (e.g. up to
32 ppm La, 65 ppm Ce), and low HFSE (e.g.
<0.60 wt% TiO2, <115 ppm Zr, <9 ppm Y,
<11 ppm Nb, <4 ppm Hf). Their geochemical
fingerprints are typical for potassic igneous rocks
derived in a mature continental arc setting
(Figs. 6.2, 6.3, 6.4, 6.5 and 6.23).

6.4.2 Bingham Copper-Molybdenum
Deposit, Utah, USA

Introduction The Bingham porphyry cop-
per ± gold deposit (Fig. 6.24) is located about
32 km southwest of Salt Lake City, in the central
Oquirrh Mountains, Utah (Bowman et al. 1987;
Waite et al. 1997). With a production of 1300
million tonnes of 0.85 wt% copper ore from 1904
to 1976, the Bingham mining district represents
the largest porphyry copper deposit of North
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Table 6.10 Major- and trace-element analyses of dacitic rocks from the Bajo de la Alumbrera copper-gold deposit,
Catamarca Province, Argentina

Province/deposit Bajo de la
Alumbrera

Bajo de la
Alumbrera

Bajo de la
Alumbrera

Bajo de la
Alumbrera

Location Argentina Argentina Argentina Argentina

Rock type Dacite porphyry Dacite porphyry Dacite porphyry Dacite porphyry

Tectonic setting Continental arc Continental arc Continental arc Continental arc

Reference Müller and Forrestal
(1998)

Müller and Forrestal
(1998)

Müller and Forrestal
(1998)

Müller and Forrestal
(1998)

SiO2 69.90 67.30 65.10 66.80

TiO2 0.35 0.60 0.51 0.30

Al2O3 10.30 15.90 15.00 8.82

Fe2O3 2.45 4.40 5.81 4.49

FeO 3.36 0.69 1.19 7.12

MnO 0.15 0.01 0.01 0.07

MgO 0.99 0.77 0.83 0.92

CaO 1.56 0.09 0.30 0.91

Na2O 0.80 0.20 0.20 0.45

K2O 5.81 4.32 3.85 5.67

P2O5 0.10 0.11 0.04 0.01

LOI 3.98 5.49 6.88 4.29

Total 99.75 99.88 99.72 99.85

mg# 27 26 21 15

Ce/Yb 22.5 29 54.1 25.7

Sc n.a. n.a. n.a. n.a.

V 79 93 81 195

Cr 124 69 62 142

Ni 7 6 4 6

Rb 113 87 75 74

Sr 181 30 24 158

Y 8.6 6 6 5.6

Zr 78 111 115 72

Nb 11 3 3 7

Ba 504 243 134 487

Hf 2.9 3.9 4 2.4

La 9 32 31 10

Ce 18 61 65 18

Sm n.a. n.a. n.a. n.a.

Yb 0.8 2.1 1.2 0.7

Major elements are in wt%, and trace elements are in ppm. Data from Müller and Forrestal (1998)
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America and the world’s largest skarn copper
deposit with significant by-products of molyb-
denum, gold, and silver (Einaudi 1982). As of
2004, Bingham yielded more than 17 million
tons of copper, 23 million oz of gold, 190 million
oz of silver, and 850 million pounds of molyb-
denum (M. Landtwing, pers. comm., 2004).
Copper oxide mineralization in the area was first
discovered in 1848 by two Mormon settlers, sons
of Erastus Bingham, who lend their name to the
deposit. However, it was not until 1863 that
extraction of the first ore began and the mineral
potential of Bingham Canyon began to be widely
recognized. Industrial mining commenced in
1906 by the Utah Copper Corporation which was
taken over by Kennecott Copper Corporation in
1936. The mine is now 100 % owned and
operated by the Rio Tinto Group.

Regional Geology A series of Eocene miner-
alized intrusions in northern Utah, including the

polyphase quartz-monzonites from Bingham,
occur along an east-west lineament, locally
known as the Uinta-Cortez Axis (Roberts et al.
1965). This lineament is considered to represent
an Archean-Proterozoic plate suture (Presnell
1997). After suturing of the Archean-Proterozoic
plates, a rifted continental margin formed, and
Proterozoic and Paleozoic sediments were
deposited (Hintze 1988). The sedimentary basin
in which the rocks accumulated is known as the
Oquirrh Basin and contains up to 7.5 km of Late
Pennsylvanian to Early Permian quartzites,
shales and limestones (Jordan and Douglas
1980). Folding and thrusting of the sedimentary
units occurred during the Jurassic and Creta-
ceous, respectively (Constenius 1996) and is
characterized by large, open, northwest-striking
anticlines and synclines (Lanier et al. 1978a).
The dominant fold within the mining area strikes
northwest and plunges 45° northwest, with the
igneous intrusions and porphyry copper

Fig. 6.23 (Zrx3)-
(Nbx50)-(Ce/P2O5)
triangular diagram (see
Chap. 3) showing only
samples from continental
and postcollisional arcs.
Samples from the latter
tectonic setting show some
overlap due to P
mobilization in altered
Archaean shoshonitic
lamprophyres. Adapted
from Müller and Groves
(1993)
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mineralization localized along the southwestern
limb (Bowman et al. 1987). Presnell (1997)
suggests that two extensional episodes occurred
during the Tertiary. Northeast-striking faults that
formed during the extensional tectonics host a
significant portion of the vein-related late-Eocene
mineralization, implying that these faults were
open at least during the Bingham mineralization,
dated at 39.8–37.5 Ma (Warnaars et al. 1978).
The Bingham system is comprised of several
small, polyphase and mineralized late-Eocene
quartz-monzonite and latite porphyry stocks
(Fig. 6.24) and dykes emplaced in older equi-
granular monzonite as well as Paleozoic quartz-
ites and limestones (Maughan et al. 2002;
Landtwing et al. 2010). The Bingham stock has a
surface extent of about 3 km. Most of the
Bingham quartz-monzonites are steep-walled
intrusions that may have vented just as readily

as the coeval latite dykes (Moore 1973). Mau-
ghan et al. (2002) document that rare mineralized
minette dykes within the ore body
(37.74 ± 0.11 Ma) have the same age as the
youngest ore-related intrusion, the quartz-latite
porphyry (37.72 ± 0.09 Ma). Trace elements of
sapphire crystals (<1 mm in diameter) are present
in the Bingham quartz-monzonite porphyry,
nearby latite porphyry dykes, latitic minette
clasts from block and ash flow deposits, and the
ash and pumice portion of the block and ash
flows (Maughan et al. 2002). These unusual
characteristics strongly argue for a co-magmatic
origin for the volcanic and intrusive rocks at
Bingham. The quartz-monzonites show ample
evidence of prior magma mixing and recent
studies suggest that Bingham may be only
world-class because of substantial contributions
of sulphur and metals from a basic alkaline
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Fig. 6.24 Simplified
geologic map of the eastern
Oquirrh Mountains in
relation to Bingham
intrusive units, Utah, USA.
The location of the
Bingham copper-gold
deposit is outlined in black.
Modified after Maughan
et al. (2002)
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magma injected into an otherwise unremarkable
calc-alkaline magma chamber (Maughan et al.
2002).

Nature of Porphyry Copper Mineralization
Porphyry copper ± gold mineralization probably
took place during several pulses of hydrothermal
activity which started at 39.8 Ma and continued
until the emplacement of minette and latite dykes
at about 37.7 Ma (Warnaars et al. 1978; Mau-
ghan et al. 2002). Mineralization is focused on a
hydrothermally altered composite stock of
quartz-monzonite intrusions, first referred to as
the Bingham stock by Butler (1920). Three
alteration zones can be distinguished: (1) a cen-
tral potassic alteration zone, (2) a surrounding
propylitic alteration zone, and (3) a late-stage and
mainly fault-controlled sericitic alteration zone
(Lanier et al. 1978a).

Porphyry-type mineralization occurs mainly
within the potassic alteration zone which over-
prints the quartz-monzonite stocks and latite
porphyry dykes. Potassic alteration typically
consists of hydrothermal biotite-magnetite
assemblages, partially replacing the groundmass
of the porphyries, and less common orthoclase
selvedges around quartz veins (Bowman et al.
1987; Landtwing et al. 2005, 2010). Mineraliza-
tion consists of a high-grade core with pyrite and
chalcopyrite, a molybdenite stockwork zone, and
an outermost pyrite zone (Bowman et al. 1987).
The surrounding propylitic alteration zone par-
tially overlaps potassic alteration and its typical
minerals include actinolite, chlorite, and epidote
(Keith et al. 1997). The late-stage sericitic alter-
ation comprises sericite that has replaced plagio-
clase and mafic minerals, and is developed most
prominently in the southwestern part of the
Bingham deposit, overprinting all dyke types as
well as sedimentary rocks (Gruen et al. 2010;
Landtwing et al. 2010). Quartz stockworks
include A-type and B-type veins and within an
area of about 1 × 2 km2 centered in the
quartz-monzonite stock, total vein density
exceeds 4 vol.%, locally rising to >10 vol.% in
the center (Gruen et al. 2010). The central

high-grade orebody contains an average of 0.8 wt
% Cu and 0.6 g/t Au. The highest Au concen-
trations correlate systematically with the presence
of bornite and digenite as the dominant Cu min-
erals (Gruen et al. 2010). Many veins show
multiple generations of successively opened and
quartz-filled fractures of changing and random
orientation. Quartz-chalcopyrite ± bornite veins
are typically 2–10 mm wide and can be followed
for tens of centimeters, but wider and more
extensive veins occur sporadically (Gruen et al.
2010). Quartz-molybdenite veins form a distinct
later vein generation that consistently crosscuts
all quartz stockwork veins and even the latest
porphyry dykes (Redmond and Einaudi 2010).
They commonly occur as single, laterally exten-
sive veins with straight walls that are at least 1 cm
wide. In contrast to the quartz stockwork veins,
the quartz-molybdenite veins are commonly
symmetrical with free-standing euhedral quartz
crystals in the center (Gruen et al. 2010).
Molybdenite occurs as a selvedge that predates
most quartz, as bands within the quartz, or as
euhedral platelets overgrowing the quartz. Minor
chalcopyrite in these veins predominantly occurs
as late vug-filling crystals; bornite is absent. The
quartz-molybdenite veins are typically associated
with biotite-stable alteration extending at least
tens of centimeters away but they lack hydro-
thermal orthoclase selvedges (Gruen et al. 2010).
The molybdenum ore shell broadly overlaps with
the copper ore shell at its inner and lower rim, but
it extends to greater depths. Although quartz-vein
stockworks are most intensely developed in the
quartz-monzonite porphyry, vein truncations at
the intrusive contacts of later porphyries indicate
that a similar sequence of vein formation was
repeated with decreasing intensity after the
emplacement of each porphyry intrusion (Red-
mond et al. 2004; Redmond and Einaudi 2010).

Structural observations on the evolving dyke
and vein geometry of the Bingham porphyry
copper system indicate that the concentrically
zoned ore shell is a result of rock extension ahead
of a broad fluid pressure front driven by a deep
hydrous and volatile-rich magma chamber
(Gruen et al. 2010).
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Petrography and Geochemistry of the
Potassic Host Rocks The Bingham intrusive
system consists of five separate mineralizing
intrusions (Redmond and Einaudi 2010). From
oldest to youngest they are quartz-monzonite
porphyry (80 vol.%), latite porphyry (12 vol.%),
biotite porphyry (1 vol.%), quartz-latite porphyry
breccia (2 vol.%), and quartz-latite porphyry (5
vol.% of ore-forming intrusions). Additionally,
two thin mineralized minette dykes are docu-
mented at the Bingham deposit. One of the mi-
nette dykes was dated at 37.74 ± 0.11 Ma (Deino
and Keith 1997). Initial mapping of the Bingham
stock revealed that the outer portions of the
quartz-monzonite porphyry are more mafic, and
darker grey, than the interior mass of the intru-
sion (Maughan et al. 2002). The internal part is
locally known as “hybrid quartz-monzonite por-
phyry”, because it contains mafic xenoliths and
early workers inferred that it had formed by
assimilation of the more mafic, early-stage,
monzonite (Lanier 1978a). Locally, these xeno-
liths contain up to 20 vol.% biotite phenocrysts
indicating that the parental melt of the hybrid
quartz-monzonite porphyry may have mixed
with a more basicand volatile-rich component
prior to its emplacement rather than assimilating
large volumes of adjacent wall rock at epizonal
levels (Maughan et al. 2002). Studies by Keith
et al. (1995, 1997) suggest that the latites and
quartz-monzonites at Bingham are the products
of mixing of shoshonites and minettes with
intermediate calc-alkaline melts. However, pet-
rographic evidence of mixing was obscured by
mineralization (Maughan et al. 2002). Prior to
mining, the hybrid quartz-monzonite porphyry
formed two large light grey rootless intrusions
with abundant quartz phenocrysts (>20 vol.%),
up to 250 m wide (Lanier et al. 1978a). Most of it
has now been excavated and only a small portion
remains. Both quartz-monzonite phases have
more crowded phenocrysts at higher elevations
and are more equigranular at deeper levels
(Maughan et al. 2002). The Bingham
quartz-monzonites are commonly grey. Pheno-
cryst abundance is variable with about 20 vol.%
K-feldspar (up to 8 mm), 10 vol.% quartz (1–
2 mm), 5–10 vol.% plagioclase, and 5–8 vol.%

biotite (up to 5 mm). In places, the stocks are
intersected by hypabyssal andesite porphyry
dykes, which belong to a swarm of
northeast-trending plagioclase-phyric dykes and
sills cutting the northwest margin of the Bingham
stock (Lanier et al. 1978a; Warnaars et al. 1978).
High halogen (i.e. Cl and F) contents of the
parental melts that formed the Bingham intrusive
system are suggested by the presence of fluora-
patite in the groundmass (Wilson 1978).

Table 6.11 shows representative whole-rock
analyses for the potassic igneous rocks from
Bingham (Waite et al. 1997; Maughan et al.
2002). The samples are defined by very high
LILE concentrations (e.g. up to 6.63 wt% K2O,
up to 301 ppm Rb, 708 ppm Sr, 2100 ppm Ba),
moderate LREE concentrations (e.g. <99 ppm
La, <152 ppm Ce), and low HFSE abundances
(e.g. <0.93 wt% TiO2, <20 ppm Y, <229 ppm Zr,
<16 ppm Nb). Fractional crystallization resulted
in relatively low mg# (<63), and elevated con-
centrations of mantle-incompatible
trace-elements (e.g. up to 49 ppm Th, up to
10 ppm U). The rocks have elevated P2O5 con-
centrations (up to 0.32 wt%), which is consistent
with the presence of fluorapatite micro-
phenocrysts (Wilson 1978). Plotting the samples
on discrimination diagrams indicates that they
were formed in a mature continental arc-setting
(cf. Maughan et al. 2002). Note that several
samples from the Nb-rich minette dykes show
within-plate affinities, suggesting the input of a
basic alkaline melt, probably derived from the
deep asthenospheric mantle, into the fractionat-
ing magma chamber beneath Bingham (Maughan
et al. 2002).

6.4.3 El Indio Gold Deposit, Chile

Introduction The Chilean Andes represent the
largest copper province in the world (Sillitoe and
Camus 1991). Since the discovery of the epi-
thermal gold deposits El Indio, Tambo,
Pascua-Llama, Choquelimpie, El Hueso, La Co-
ipa, Puren, and Veladero, Chile has also earned
the status of a major gold province (Sillitoe 1991,
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Table 6.11 Major- and trace-element analyses of potassic igneous rocks from the Bingham copper-gold deposit, Utah,
USA

Province/deposit Bingham Bingham Bingham Bingham

Location Utah, USA Utah, USA Utah, USA Utah, USA

Rock type Latite Dacite Quartz-Monzonite Mafic xenolith within
qtz-monzonite

Tectonic setting Continental arc Continental arc Continental arc Continental arc

Reference Waite et al.
(1997)

Waite et al.
(1997)

Maughan et al.
(2002)

Maughan et al. (2002)

SiO2 61.54 62.89 67.25 59.64

TiO2 0.69 0.69 0.62 0.93

Al2O3 14.81 14.50 15.82 13.50

Fe2O3 6.19 6.10 3.30 7.66

FeO n.a. n.a. n.a. n.a.

MnO 0.09 0.09 0.01 0.02

MgO 4.23 4.21 3.32 9.03

CaO 5.31 4.49 1.59 1.72

Na2O 3.14 2.98 2.45 0.46

K2O 3.67 3.76 5.28 6.63

P2O5 0.34 0.32 0.25 0.32

LOI 1.30 2.37 0.54 0.69

Total 100.01 100.02 100.43 100.60

mg# 57 58 67 70

K2O/Na2O 1.17 1.26 2.15 14.41

Sc n.a. n.a. 7 24

V 142 130 82 163

Cr 166 853 66 473

Ni 52 45 59 157

Rb 105 216 170 301

Sr 708 203 529 202

Y 20 15 16 9

Zr 229 228 204 164

Nb 13 16 10 10

Ba 2074 2100 1601 767

La 76 99 66 57

Ce 117 152 132 135

Sm n.a. n.a. 9 9

Yb n.a. n.a. 1.6 n.a.

Th n.a. n.a. 49 11

U n.a. n.a. 9 10

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron calculated as ferric oxide. Data from
Waite et al. (1997) and Maughan et al. (2002)
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2008; Clark 1993). Most of the principal epi-
thermal- or porphyry-type gold deposits with
more than 10 tonnes of contained gold are
associated with Miocene stratovolcanoes and/or
dome complexes (Arribas pers. comm., 2013).
These gold deposits are concentrated in northern
and central Chile, commonly at altitudes in
access of 4000 m above mean sea level (Sillitoe
1991, 2008).

El Indio (Fig. 6.25) is located about 500 km
north of Santiago and 180 km east of La Serena
in a rugged mountainous terrain close to the
Argentinian border. The mine workings reach
4150 m above sea level (Siddeley and Araneda
1986; Jannas et al. 1990). In 1994, the El Indio

gold-silver mine was acquired by Barrick Gold,
which operated the mine until its closure in 2002
as a combined open pit and underground opera-
tion. Regional exploration in the vicinity of El
Indio by Barrick Gold geologists led to the dis-
covery of the additional gold deposits
Pascua-Llama, Tambo, and Veladero, and the
district became locally known as the El
Indio-Pascua Au-Ag belt (Bissig et al. 2001,
2002; Deyell et al. 2005).

El Indio is one of a number of epithermal gold
deposits related to high-K calc-alkaline rocks
within the Main Cordillera of the Chilean Andes
(Kay et al. 1987; Kay and Mpodozis 2001). The
mine produced about 5.5 Moz of gold, 24 Moz of
silver, and 500,000 tonnes of copper (Robert,

Fig. 6.25 Geological
overview of the high Andes
of north-central Chile
showing the locations of
the El Indio and Tambo
gold deposits. Modified
after Siddeley and Araneda
(1986)
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pers. comm., 2014) and, together with its
neighboring deposits, Pascua-Llama (17 Moz of
Au), Tambo (1 Moz Au), and Veladero (11 Moz
Au), El Indio was one of the most important
gold-silver producers in Chile (Bissig et al. 2003;
Deyell et al. 2005).

Regional Geology The Chilean copper-gold
deposits are part of a series of linear
volcano-plutonic arcs that were generated pro-
gressively farther eastward during subduction of
the oceanic Nazca plate beneath the continental
South American plate from Mesozoic to Recent
(Sillitoe 1991, 2008). Most of the copper-gold
deposits hosted by high-K calc-alkaline rocks are
Upper Cretaceous to Miocene in age (Davidson
and Mpodozis 1991; Gröpper et al. 1991; Reyes
1991; Clark 1993; Sillitoe 2008). The
Cretaceous-Upper Tertiary volcanic and pyro-
clastic rocks in the high Andes of north-central
Chile form a regional north-south-trending belt
over 150 km long, which is underlain by Car-
boniferous to Lower Triassic medium-K
calc-alkaline granodioritic batholiths (Fig. 6.25;
Jannas et al. 1990). These basement rocks have
been thrust over the Cretaceous-Tertiary volcanic
rocks by the steeply west-dipping Baños del Toro
Fault, which defines the western boundary of the
volcanic belt (Jannas el al. 1990).

As recognized by Barazangi and Isacks
(1976) and confirmed by Cahill and Isacks
(1992), the subducting Nazca plate includes
nearly flat segments with a shallow subduction
angle of about 10°, above which there is no
volcanism (Kay and Gordillo 1994), that are
flanked by relatively steeper segments associated
with active volcanism (Kay et al. 1987; Kay and
Mpodozis 2001). The El Indio-Pascua Au-Ag
belt is located above the center of the Chilean flat
slab zone between 28° and 33°S, with the
Maricunga-Farallon Negro district above the
northern transition to a zone with steep subduc-
tion angle (i.e. *30°), and the El Teniente dis-
trict situated above the southern transition to a
steep subduction angle further south (Kay and
Mpodozis 2001; Stern et al. 2011). Epithermal
gold-silver mineralization in the El Indio-Pascua

belt took place above the flat-slab zone while the
subduction angle was shallowing and probably
enhancing mantle hydration above the subduct-
ing slab (James and Sacks 1999; Kay and
Mpodozis 2001).

The Eocene to Miocene volcanic and hyp-
abyssal rocks of the El Indio-Pascua Au-Ag-Cu
belt are high-K calc-alkaline arc suites, ranging in
composition from andesite to rhyolite (Bissig
et al. 2003). El Indio is located within the Upper
Oligocene to Lower Miocene Doña Ana Forma-
tion (Fig. 6.25), a sequence of intensely fractured
volcanic and volcaniclastic rocks which belong to
the volcanic belt of the High Cordillera (Deyell
et al. 2005). Epithermal gold mineralization at El
Indio is mainly hosted by lavas and intercalated
pyroclastic units with dacitic compositions (Jan-
nas et al. 1990). Mineralization is spatially related
to hypabyssal dioritic and monzodioritic stocks
and dykes of the Infiernillo Unit (ca. 16.7 Ma),
which intruded the bimodal andesite-rhyolite
sequence (ca. 18–27 Ma) of the Doña Ana For-
mation (Kay et al. 1987, 1988; Jannas et al.
1990). However, new 40Ar/39Ar laser
step-heating plateau ages suggest that epithermal
gold mineralization both at El Indio and Tambo is
younger than these intrusions (Bissig et al. 2001;
Deyell et al. 2005). Hydrothermal activity
occurred at least from the late Eocene to the late
Miocene, but economic gold-silver mineraliza-
tion was confined to the 6.0–9.5 Ma interval, the
only recorded contemporaneous igneous unit
being the hypabyssal Pascua Formation (Bissig
et al. 2001). The Pascua Formation comprises
small hypabyssal bodies of dacite porphyry, dated
at 5.0–9.5 Ma (Bissig et al. 2002, 2003). The
widespread argillic alteration in the district indi-
cates that the availability of hydrothermal fluid
was not the controlling factor for ore formation,
emphasizing instead the role of the metal content
of the magmas associated with epithermal gold
mineralization and/or the requirement for favor-
able physiographic conditions at the site of ore
deposition (Bissig et al. 2001).

The regional structural setting of El Indio is
dominated by north-south-trending faults sub-
parallel to the main Andean trend (Walthier et al.
1985). The major portion of the exploited
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gold-silver ± copper mineralization occurred
within a structural block only 150 m wide by
500 m long. This block contained more than
40 mineralized veins and was bounded by two
northeast-striking principal faults, which dip
steeply to the northwest (Jannas et al. 1990).
Individual veins extended more than 400 m and
their thickness varied between a few centimeters
and 20 meters (Jannas et al. 1990). The veins had
commonly lenticular shapes (Siddeley and A-
raneda 1986).

Nature of Epithermal Gold Mineralization
The epithermal gold deposits in Chile (Sillitoe
1991, 2008) include both high- and
low-sulphidation types, and range from vein-

dominated systems at El Indio through hydro-
thermal breccia-dominated systems at Choqu-
elimpie, to complex systems combining vein
stockworks, disseminated zones, hydrothermal
breccias, and veins. The epithermal gold-silver
deposits of the El Indio-Pascua belt (Fig. 6.26)
range from high-sulphidation (Tambo,
Pascua-Llama) to complex associations of high-,
intermediate- and, even, low-sulphidation (El
Indio) systems (Bissig et al. 2003).

El Indio is characterized by argillic alteration
and silicification (Jannas et al. 1990), both of
which are typical features for many
high-sulphidation epithermal gold deposits
worldwide (White et al. 1995; Arribas et al. 1995).

Fig. 6.26 Simplified
geologic map of the El
Indio-Pascua belt showing
the locations of the El Indio
and Tambo gold deposits,
Chile. Modified after
Siddeley and Araneda
(1986)
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The argillic alteration affects mainly the dacitic
pyroclastic units, converting feldspars to kaolinite,
sericite and dickite, with minor pyrophyllite and
montmorillonite (Siddeley and Araneda 1986).
Regional silicification occurs in patchy, pervasive
zones, locally obliterating wallrock textures, and it
predominated in the vicinity of high-grade ores
(Jannas et al. 1990), now mined out. The local
replacement offeldspars by alunite and jarosite is a
minor, late-stage feature (Siddeley and Araneda
1986). Propylitic alteration is virtually absent at El
Indio, although it is dominant outside the two
major, northeast-striking, faults that bound the
deposit (Walthier et al. 1985).

All mineralization at El Indio was structurally
controlled (Fig. 6.26), along extensive tensional
features, and two major ore types could be dis-
tinguished (Siddeley and Araneda 1986):
(1) massive sulphide veins; and (2) quartz-gold
veins. The bulk ore at El Indio was derived from
the massive sulphide veins, which consisted
mainly of enargite and pyrite, together forming
about 90 vol.% of the vein material (Siddeley
and Araneda 1986). The remaining 10 vol.% of
the massive sulphide veins consisted of argillic
altered wallrock fragments. The richer gold ores
consisted of younger quartz veins which, in
places, intersected the massive sulphide veins
(Siddeley and Araneda 1986). Gold in these
veins occurred predominantly in the native state,
as thin trails or disseminated within the quartz,
and could be accompanied by minor pyrite,
enargite, and tennantite (Siddeley and Araneda
1986). The average gold content of these quartz
veins ranged between 18 and 25 ppm, but locally
exceeded 200 ppm (Jannas et al. 1990). The
quartz gangue material was typically grey,
cryptocrystalline, banded, colloform, cherty or
drusy (Siddeley and Araneda 1986).

Bissig et al. (2002) propose that changes of
the surficial hydrodynamic environment in the El
Indio-Pascua district, including a rapid lowering
of the water table, increased the lateral

ground-water flow, and fluid boiling and mixing,
all favoring ore deposition.

Petrography and Geochemistry of the
Potassic Host Rocks The hypabyssal porphy-
ritic dacite stocks of the Pascua Formation are
medium-grained and contain phenocrysts of
quartz, plagioclase, clinopyroxene, biotite, and
hornblende, which are set in a grey fine-grained
feldspathic groundmass. Geochemically
(Table 6.12; Bissig et al. 2003), the dacites are
characterized by high whole-rock K2O/Na2O
ratios (0.62–0.84), high LILE concentrations (e.g.
up to 3.60 wt% K2O; up to 834 ppm Ba, 153 ppm
Rb, 508 ppm Sr, respectively) and relatively low
LREE contents (e.g. <25 ppm La, <51 ppm Ce).
The investigated samples (Bissig et al. 2003) also
have low HFSE contents (e.g. <0.67 wt% TiO2,
<131 ppm Zr, <10 ppm Y, <4 ppm Hf, <3.2 ppm
Ta) that are typical for high-K calc-alkaline rocks
derived in continental arc settings (Müller et al.
1992b). Low mantle-compatible element abun-
dances (<103 ppm V and <2 ppm Cr) are con-
sistent with high degrees of fractionation of the
rocks, probably associated with crustal assimila-
tion during their emplacement, as suggested by
elevated Th (up to 11.7 ppm) and U (up to
5.2 ppm) concentrations (Bissig et al. 2003).

El Indio is only one example of Chilean gold
deposits associated with high-K calc-alkaline
rocks. In fact, many of the Chilean gold depos-
its, such as Andacollo (Reyes 1991), Choqu-
elimpie (Gröpper et al. 1991), and those of the
Maricunga Belt (Dostal et al. 1977; Vila and
Sillitoe 1991), are hosted by high-K calc-alkaline
rocks interpreted to have formed during sub-
duction in a continental arc setting (Kay et al.
1987, 1988; Levi et al. 1988; Clark 1993). In
places, copper-gold mineralization is associated
with widespread potassic alteration. However,
whole-rock geochemical analyses from unaltered
volcanic host rocks (e.g. Gröpper et al. 1991)
suggest that the original intrusions were
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Table 6.12 Major- and
trace-element analyses of
potassic igneous rocks from
the El Indio gold deposit,
Chile

Province/deposit El Indio El Indio

Location Chile Chile

Rock type Dacite Dacite

Tectonic setting Continental arc Continental arc

Reference Bissig et al. (2003) Bissig et al. (2003)

SiO2 63.94 70.66

TiO2 0.67 0.36

Al2O3 17.23 15.94

Fe2O3 4.51 1.83

FeO n.a. n.a.

MnO 0.27 0.07

MgO 2.10 0.59

CaO 5.76 2.18

Na2O 2.98 4.26

K2O 1.86 3.60

P2O5 0.19 0.10

LOI 0.49 1.11

Total 100.00 100.70

mg# 48 39

K2O/Na2O 0.62 0.84

Sc 7.3 3.3

V 103 42

Cr 1.4 1.2

Ni n.a. n.a.

Rb 78.2 153

Sr 336 508

Y 9.4 9.2

Zr 123 131

Nb n.a. n.a.

Ba 387 834

Hf 2.7 3.9

Ta 3.2 1.2

La 24.7 24.2

Ce 51.2 42.8

Sm 4.1 2.9

Yb 0.96 0.76

Th 8 11.7

U 2.4 5.2

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron
calculated as ferric oxide. Data from Bissig et al. (2003)
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characterized by high-K calc-alkaline affinities
before potassic alteration took place.

6.4.4 Cripple Creek Gold Deposit,
Colorado, USA

Introduction The Cripple Creek district is
located in the Rocky Mountains, about 30 km
southwest of Colorado Springs, at an elevation of
about 2890 m above sea level (Fig. 6.27). In
October 1890, a local prospector discovered a
high-grade gold vein in the area and triggered the
great Colorado gold rush. By 1900, Cripple
Creek had grown into a substantial mining
community. High-grade gold veins were origi-
nally targeted by small shafts and workings, and
later by underground mines that reached depths
of 1150 m below the surface (e.g. Portland
shafts). In 1994, large-scale open pit mining
began in the district, along with an aggressive

exploration drilling program (Jensen 2003).
Current mining is conducted by CC&V Gold
Mining Company who exploit low-grade dis-
seminated gold ores from large-scale openpits
(e.g. Cresson pits). Since its discovery in 1890,
the Cripple Creek district has produced about
23.5 Moz of gold (Kelley and Ludington 2002).

Regional Geology. The Cripple Creek district
is situated in the Rocky Mountains that form part
of the Laramides in western North America
(Fig. 6.27). The Laramide orogeny began during
the Late Cretaceous at about 70 Ma (Kelley and
Ludington 2002) and ended about 35 Ma ago.
Laramide subduction was characterized by
northeast-directed regional compression, short-
ening, and uplift, and by emplacement of a varied
suite of plutonic and volcanic rocks that were
largely restricted to the Colorado Mineral Belt
(Mutschler et al. 1988). Magmatism was active
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Fig. 6.27 Simplified map
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major gold deposits hosted
by high-K alkaline rocks in
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from 70 to about 55 Ma. Most of these igneous
rocks are calc-alkaline, but high-K alkaline rocks
were emplaced in the northeastern and south-
western ends of the Colorado Mineral Belt
(Kelley and Ludington 2002). From about 55 to
40 Ma, magmatic activity waned, although it did
not cease. This has been attributed to an
increasing subduction rate and temporary flat-
tening of the subducting slab to a low angle
(Dickinson and Snyder 1978; Lipman 1981),
comparable to the “flat-slab zone” of central
Chile (cf. Kay et al. 1987; see Sects. 6.4.1 and
6.4.3). The alkaline magmatism at Cripple Creek
took place in a continental arc setting at a time
when the region was experiencing a transition
between a period of compressional tectonics (i.e.
Laramide orogeny), and an extensional phase
during the Oligocene, probably related to the Rio
Grande rift (Kelley and Ludington 2002; Jensen
2003). Cripple Creek is located in the center of
an eroded alkaline diatreme complex, dated at ca.
30 Ma, and emplaced into Precambrian and
Proterozoic wall rocks (Thompson et al. 1985;
Fears et al. 1986). The Cripple Creek diatreme
complex is located on a north-trending regional
structure formed during the Proterozoic, but
subsequently reactivated in late Paleozoic and
Tertiary time (Kelley and Ludington 2002).

Geological mapping of the area shows evi-
dence for multiple stages of igneous and hydro-
thermal activity (Jensen 2003). The volcanic
complex contains a series of intrusions and vol-
canic vents filled with volcanic breccias, the
largest of which is an elliptical-shaped feature
about 5 km in diameter, interpreted as a diatreme
complex (Thompson et al. 1985). The diatreme
contact with the surrounding Precambrian wall
rocks is erosive and irregular (Jensen 2003). In
addition to the volcanic breccias, coherent bodies
of high-K alkaline volcanic rocks are present
throughout the area, including dykes, sills, lac-
coliths, and composite flows (Jensen 2003).
Multiple phases of small-volume alkaline intru-
sions are recorded within the main diatreme
complex. These are phonolites, tephrites, hyp-
abyssal trachybasalts, syenites, and ultramafic
lamprophyres (Jensen 2003). Phonolite stocks

and sills are dated at 32.5–31.5 Ma and form the
oldest intrusive rocks at Cripple Creek (Kelley
et al. 1998), locally intersecting the volcanic
breccias in the diatreme. They were closely fol-
lowed by more mafic intrusions including teph-
rite and trachyandesite porphyries. The
porphyritic intrusions are locally intersected by
nepheline-bearing syenite dykes that, in turn, are
cut by trachybasaltic dykes. These events were
followed by a widespread phonolitic magmatism
that represents the largest volume of Tertiary
rocks outside the diatreme (Jensen 2003). In
contrast with many other igneous complexes, the
intrusions at Cripple Creek show a trend towards
more mafic compositions with time, as well as
successively smaller volumes of intrusions (Jen-
sen 2003). Hence, the youngest intrusions are a
series of narrow ultramafic lamprophyres dykes
and related small breccia pipes. The lamprophyre
dykes commonly have north-northwesterly ori-
entations, and they bifurcate, anastomose, and
pinch and swell along strike. Locally, they form
sets of en echelon dykes, trending subparallel
and adjacent to structures. No igneous rocks have
been recorded to cut lamprophyres (Jensen
2003).

Nature of Epithermal Gold Mineralization
The Cripple Creek district exhibits a complex
history of magmatic and hydrothermal activity.
Two different styles of gold mineralization may
be distinguished (Kelley et al. 1998; Jensen
2003): (1) high-grade Au-Te veins that were the
source of most of the historic gold production,
and (2) low-grade, disseminated gold deposits
that are currently being mined. The high-grade
low-sulphidation epithermal Au-Te veins consist
of early-stage quartz-K-feldspar-fluorite-pyrite
assemblages followed by base-metal sulphides,
and late-stage telluride mineralization, locally
with roscoelite (Lindgren and Ransome 1906;
Loughlin and Koschmann 1935; Thompson et al.
1985). Low-grade deposits comprise dissemi-
nated pyrite with microcrystalline native gold
and pervasive adularia alteration (Jensen and
Barton 1997; Jensen 2003). Both mineralization
styles are spatially associated with alkaline
intrusions (Lindgren and Ransome 1906; Kelley
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and Ludington 2002), and 206Pb/204Pb composi-
tions of vein galena almost entirely overlap those
of phonolites suggesting a direct genetic rela-
tionship between alkaline magmatism and gold
mineralization (Kelley et al. 1998).

Hydrothermal alteration began with the
emplacement of the earliest phonolite intrusions
and continued past the last, lamprophyre-
dominated intrusive events along with the intro-
duction of gold (Jensen 2003). Alteration types
range from minor early pyroxene-stable varieties
through biotite-bearing assemblages into volumi-
nous K-feldspar-stable types. Economic gold
mineralization is intimately associated with the
late-stage voluminous K-feldspar-pyrite alteration
(Jensen 2003). Deep exploration drilling reveals
that hydrothermal alteration emanates as splays or
spurs off lithological contacts at depth (Jensen
2003), suggesting that these lithological contacts
acted as conduits for hydrothermal fluids. This is
consistent with the development of high-grade
veins along the margins of early lamprophyre
dykes (e.g. at Conundrum mine; cf. Loughlin and
Koschmann 1935).

Geological mapping reveals that the most
productive Au-Te veins show a preference for
the southern half of the volcanic complex (Jensen
2003). These veins typically have subvertical
orientations and upward flaring morphologies.
Locally, they consist of networks of veins and
veinlets occupying sheeted fracture zones that
link together to form coherent structural trends.
However, a smaller portion of the veins is hosted
by lower-angle structures and they are locally
referred to as “flats” even though they dip as
much as 60° (Jensen 2003). They are commonly
developed in the near-surface environment, and
become less abundant at depth. The most pro-
ductive mines comprise intrusive phases from all
major igneous events, indicating that structural
conduits were continuously reopened during the
evolution of the igneous complex (Jensen 2003).
As recognized by Lindgren and Ransome (1906),
the presence of late-stage lamprophyre dykes is
particularly favorable, suggesting that structural
conduits were dilated during the waning stages of
igneous activity. In places, north-northwest

striking phonolite dykes and lamprophyres
appear to have formed impermeable barriers for
hydrothermal fluids, or served as conduits for
migrating fluids (Jensen 2003). Outside of the
main diatreme complex, satellite phonolite dykes
serve as the main controls for mineralization and
alteration.

Petrography and Geochemistry of the
Potassic Host Rocks The ultramafic lampro-
phyres at Cripple Creek are melanocratic rocks,
typically with coarsely porphyritic textures
(Jensen 2003). Phenocrysts include olivine,
clinopyroxene, and phlogopite, the latter locally
up to 3 cm in diameter. Feldspar phenocrysts are
not recorded and amphibole phenocrysts are very
rare. The fine-grained, dark green groundmass
consists mainly of clinopyroxene with minor
K-feldspar, plagioclase, biotite and magnetite
(Jensen 2003). The lamprophyres exhibit textures
suggestive of exsolution of a low-density,
carbonate-rich phase (Thompson et al. 1985).
Their high volatile contents (e.g. CO2, H2O, Cl,
F) are reflected both in their mineralogy (i.e.
abundant phlogopite; fluorite veinlets) and their
whole-rock geochemistry (e.g. CaO contents of
up to 14.49 wt%, see below). Recent studies on
melt inclusions hosted by phonolites from Crip-
ple Creek reveal significant halogen contents of
0.35 wt% Cl and 0.52 wt% F, respectively
(Webster et al. 2014). Oval-shaped ocelli are
common in the less coarse-grained lamprophyres
and are filled by carbonate, K-feldspar, analcime,
quartz, clinopyroxene, fluorite, and phlogopite
assemblages. Ocelli are common in lamprophy-
res (cf. Rock 1991). Lamprophyre breccia pipes
form dark green masses comprising subangular
clasts of lamprophyres that are set in a matrix of
reworked rock flour, carbonate, analcime and
K-feldspar (Jensen 2003).

Geochemically, the alkaline rocks (Table 6.13)
are characterized by high K2O contents (up to
3.22 wt%) and very high Ce/Yb ratios (37–168),
reflecting their high-K alkaline compositions
(Pearce 1982; Müller et al. 1992b). The igneous
rocks from Cripple Creek (Jensen 2003) are
nepheline-normative, contain high LILE (e.g. up
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Table 6.13 Major- and trace-element analyses of potassic igneous rocks from the Cripple Creek gold deposit,
Colorado, USA

Province/deposit Cripple Creek Cripple Creek Cripple Creek Cripple Creek

Location Colorado, USA Colorado, USA Colorado, USA Colorado, USA

Site Portland Mine Dolly Varden Gold King Mine Gold King Mine

Rock type Tephritic breccia Trachybasalt Ultramafic lamprophyre Ultramafic lamprophyre

Tectonic setting Continental arc Continental arc Continental arc Continental arc

Reference Jensen (2003) Jensen (2003) Jensen (2003) Jensen (2003)

SiO2 47.41 50.54 34.24 34.89

TiO2 1.09 1.62 2.02 1.99

Al2O3 13.89 16.54 9.84 9.84

Fe2O3 10.19 9.92 11.05 10.78

FeO n.a. n.a. n.a. n.a.

MnO 0.15 0.16 0.18 0.19

MgO 4.68 4.36 9.20 9.02

CaO 4.90 9.47 14.38 14.49

Na2O 5.19 3.70 2.12 2.34

K2O 3.22 2.48 3.13 2.93

P2O5 0.40 0.82 1.94 1.80

LOI 8.29 0.68 11.09 9.88

Total 99.41 100.29 99.19 98.15

Ce/Yb 37 62 152 168

Sc 24 27 22 21

V 182 219 241 238

Cr 151 15 294 276

Ni 31 21 104 93

Rb 131 75.4 191 253

Sr 1089 1730 1820 2052

Y 21 24 26 25

Zr 175 184 218 137

Nb 31 46 65 67

Ba 819 1250 1223 1272

Hf 4.9 5 5 5.3

Ta 2 3 3 4

La 41.2 68.5 125 132

Ce 74 142 213 219

Sm 5.5 11.1 16.1 17

Yb 2 2.3 1.4 1.3

Th 12.2 23.6 19.3 21.1

U 2.4 5 4.1 3.9

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron calculated as ferric oxide. Data from
Jensen (2003)
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to 1250 ppm Ba, up to 131 ppm Rb, up to
1730 ppm Sr), high LREE (e.g. up to 68.5 ppm
La, up to 142 ppm Ce), and variable HFSE con-
tents. While some HFSE, such as Y (<24 ppm),
Hf (<5 ppm), and Ta (<3 ppm) have low con-
centrations, the other HFSE, such as TiO2 (up to
1.62 wt%), Zr (up to 184 ppm), and Nb (up to
46 ppm) have high concentrations. By contrast,
late-stage, ultramafic lamprophyres from Cripple
Creek, also nepheline-normative, are defined by
very high LILE (e.g. up to 1272 ppm Ba, up to
253 ppm Rb, up to 2052 ppm Sr), very high
LREE (e.g. up to 132 ppm La, up to 219 ppm Ce),
and very high HFSE (e.g. up to 2.02 wt% TiO2;
up to 218 ppm Zr, up to 67 ppm Nb).

The lithospheric mantle source above the
subducted slab in the Rocky Mountains region
during the Laramide orogeny was probably oxi-
dized and volatile-enriched (Kelley and Luding-
ton 2002), when adiabatic decompression
melting produced small increments of fertile
alkaline melts during the onset of the Rio Grande
Rift (Jensen 2003). This would explain the
unique geochemical fingerprints of the alkaline
rocks from Cripple Creek, reflecting their deri-
vation in a mature continental arc setting, but
with distinctly elevated HFSE contents such as
TiO2 (up to 2.02 wt%) and Nb (up to 67 ppm)
inherited from the rifting processes during their
evolution. Initial 87Sr/86Sr ratios of the alkaline
rocks from Cripple Creek average about 0.7055
(Kelley and Ludington 2002; Jensen 2003),
suggesting an upper mantle source of the melts
and very minor crustal contamination during
emplacement (Kelley et al. 1998; McLemore
1996).

6.4.5 Skouries Copper-Gold Deposit,
Chalkidiki, Greece

Introduction Mining has a long history in
Greece and has contributed significantly to its
economic power during ancient times.
Lead-silver ore from the famous polymetallic
Lavrion mining district, located about 50 km
southeast of Athens, has been exploited since
prehistoric times (Voudouris et al. 2008). By

contrast, the northeastern part of Greece has long
been known for copper occurrences hosted by
high-K igneous rocks such as the Kassandra
mining district that includes Limnos and Lesbos
islands as well as the Chalkidiki peninsula (Kroll
et al. 2002; Fornadel et al. 2012; Bristol et al.
2015). This district lies within the Serbomace-
donian metallogenic province, which, in turn, is
part of the Serbomacedonian Massif
(Economou-Eliopoulos 2005). The topography is
dominated by undulating hills, the higher parts of
which are about 600 m above sea level and lar-
gely covered by forests.

The Skouries porphyry copper-gold deposit is
situated on the Chalkidiki Peninsula of north-
eastern Greece (Fig. 6.28), approximately 90 km
southeast of Thessalonici, and forms part of the
Kassandra mining district (Kroll et al. 2002).
Systematic exploration and resource drilling at
Skouries was originally conducted by TVX Gold
Inc. during 1996–1998, defining an indicated
reserve of 206 Mt grading at 0.54 % Cu and
0.8 g/t Au (Magri et al. 1998; Tobey et al. 1998).
In 2012, Eldorado Gold acquired the property
and further developed the project. As of 2015,
Eldorado Gold defined a proven reserve of 3.7
Moz at 0.76 g/t Au and 767 Kt at 0.51 % Cu with
measured and indicated resources of 5.4 Moz at
0.6 g/t Au and 1.2 Mt at 0.43 % Cu. Skouries
also has important Pd credits of up to 480 ppb
that are interpreted to be intrinsic to the system
(Tarkian and Stribrny 1999). Mine construction
has commenced in 2013 and the first production
is planned for 2016.

Regional Geology The Serbomacedonian
Massif forms a northwest-oriented
tectono-magmatic belt perpendicular to the clo-
sure of the western Tethys; that is, the
northeast-trending collision zone between Africa
and Europe (Kockel et al. 1975; Frei 1995). The
massif consists of a crystalline series which has
undergone almandine-amphibolite facies meta-
morphism during Paleozoic and Pre-Paleozoic
times. The crystalline basement consists of
gneisses and amphibolites which are uncon-
formably overlain by late Paleozoic sedimentary
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rocks. During Mesozoic orogeny, these sedi-
mentary rocks were interfolded with the base-
ment rocks and metamorphosed to the
greenschist facies (Kockel et al. 1975). The
crystalline basement includes two stratigraphic
units, the lower Kerdyllia Formation and the
upper Vertiskos Formation, separated by the
northwest-striking Stratoni-Varvara fault
(Fig. 6.28). The upper Vertiskos Formation
consists of muscovite-garnet-biotite-staurolite-
tourmaline schists, amphibolites lenses and
two-mica schists. It has suffered retrograde

metamorphism to the greenschist facies. The
lower Kerdyllia Formation is at higher meta-
morphic grade and comprises biotite,
biotite-plagioclase and hornblende-biotite gneis-
ses, amphibolites and marble lenses (cf. Frei
1992).

The Serbomacedonian massif represents an
important metallogenic province within the
eastern Alpine belt and hosts numerous Pb-Zn-
(Cu-Mo-Sb) deposits, mainly comprising Pb-Zn
replacement, fracture-controlled Sb-vein-,
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Cu-Mo porphyry, and stratiform volcano-
sedimentary deposits which are interpreted to
be genetically related to Tertiary magmatism
(Frei 1992). During the Early Oligocene, the
schists and gneisses of the northeastern Chalki-
diki Peninsula were intruded by a series of dio-
ritic to andesitic porphyry stocks (Frei 1995).
Some of these stocks are accompanied by char-
acteristic sericitic alteration halos. The Skouries
porphyry intrusions (Fig. 6.29) consist of
monzonites and quartz-monzonites with shos-
honitic compositions (Kroll et al. 2002), dated at
about 19 Ma (Frei 1995). The multiple intrusions
have pipe-like shapes and were emplaced into
lower amphibolite facies mica schists and
gneisses of the Vertiskos Formation (Kockel
et al. 1975; Kalogeropoulos 1986; Tobey et al.
1998). The composite intrusions were emplaced
along a deep-seated northwest-striking fault
system (Veranis 1994), extend at surface over an
area of about 200 × 200 m, and have a vertical
extent of 700 m (Tobey et al. 1998; Kroll et al.
2002).

Nature of Porphyry Copper-Gold Minerali-
zation Porphyry copper-gold mineralization at
Skouries consists of quartz-vein stockworks,
comprising pyrite, chalcopyrite, and bornite, that
are centered on multiple phase monzonite intru-
sions (Kroll et al. 2002). The orebody measures
about 300 m across with a vertical extent of
approximately 750 m (Tobey, pers. comm.,
2001). Typically, the veins contain 2–3 vol.%
sulphides (Perantonis 1982). However, chalco-
pyrite can also occur as fine-grained dissemina-
tions in the host rocks and, locally, has replaced
mafic phenocrysts. Early-stage A-type quartz
veinlets, about 1–2 mm in thickness, can be
distinguished from B-type veins. The A-type
veinlets have discontinuous and curvilinear
shapes and contain disseminated
chalcopyrite-bornite assemblages (Fig. 6.29e).
By contrast, B-type veins are characteristically
regular and continuous with variable thicknesses,
from 0.5 to 8.0 mm. They are defined by internal
banding consisting of quartz with fine trails of
chalcopyrite (Fig. 6.29f). The B-type veins

commonly have orthoclase selvages. Both vein
types are intersected by late-stage pyrite veins,
<2 mm in thickness, with sericitic halos. These
D-type veins normally occupy continuous,
though locally irregular, systematically oriented
fractures (Kroll 2001; Kroll et al. 2002).

High-grade ore is characterized by intense
potassic alteration, including secondary ortho-
clase and biotite-magnetite assemblages. In pla-
ces, hydrothermal biotite crystals, up to 1 cm in
length, occur along small veins associated with
hydrothermal magnetite. Large hydrothermal
biotite crystals of up to 1.2 cm length are also
recorded at the Grasberg porphyry copper-gold
deposit in Indonesia, where they are locally
known as “pseudo-pegmatites” (Kavalieris, pers.
comm., 1997). However, typically the hydro-
thermal biotite-magnetite assemblage occurs as
fine-grained pervasive disseminated grains.
Hydrothermal orthoclase ranges from patchy
replacements of plagioclase phenocrysts, through
cross-cutting veinlets, to zones with pervasive
flooding (Kroll et al. 2002). The large propylitic
and phyllic alteration zones, that are common in
many porphyry copper deposits, are not present at
Skouries (Tobey et al. 1998). Propylitic alteration
at Skouries consists of a narrow, <50 m wide,
halo around the host intrusions, comprising
mainly chlorite and albite with rare epidote (Kroll
2001). Phyllic alteration is mainly developed
along structures and late-stage barren dykes, and
post-dates both the potassic and propylitic alter-
ation assemblages (Kroll et al. 2002).

Petrology and Geochemistry of the Shos-
honitic Host Rocks Porphyry copper-gold
mineralization is hosted by at least four hyp-
abyssal monzonite-porphyry phases. In decreas-
ing age, they are: (1) pink monzonite, (2) main
monzonite, (3) intra-mineral monzonite, and
(4) late-stage porphyry. The monzonites have
porphyritic textures with phenocrysts of plagio-
clase, K-feldspar, biotite and amphibole, as well
as apatite and titanite microphenocrysts, that are
set in a fine-grained and feldspar-dominated
groundmass (Kroll 2001). The Skouries
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Fig. 6.29 Representative ore samples from the Skouries
copper-gold deposit, Chalkidiki, Greece (photos taken by
T. Kroll): a late-stage monzonite porphyry cut by
hydrothermal orthoclase veinlet [FOV 4 × 6 cm]. b Pink
monzonite porphyry with large, up to 4 cm, K-feldspar
phenocrysts [FOV 4 × 16 cm]. c Main monzonite
porphyry with quartz-chalcopyrite vein containing large,
up to 1 cm, crystals of hydrothermal biotite [FOV
4 × 6 cm]. d Main monzonite porphyry intersected by

hydrothermal orthoclase veinlet and cross-cutting quartz
veinlets [FOV 4 × 17 cm]. e Main monzonite porphyry
cut by A-type quartz-chalcopyrite-bornite veins which
intersect an earlier black biotite-magnetite veinlet [FOV
4 × 6 cm]. f Main mineral porphyry cut by B-type
quartz-chalcopyrite-biotite vein; note that the original
potassic alteration assemblage is overprinted by a
late-stage pervasive sericite alteration [FOV 4 × 6 cm]
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monzonites are characterized by a pink colour,
probably due to the presence of Fe in the
K-feldspar structure as also documented at the
Cadia (Holliday et al. 2002) and Northparkes
porphyry copper-gold deposits in New South
Wales, Australia (Müller et al. 1994; Heithersay
and Walshe 1995).

All four monzonite phases have relatively
evolved compositions (Table 6.14), as reflected
by their high SiO2 (62.0–68.0 wt%) and low
MgO (1.1–2.2 wt%) contents, and by variable,
but low concentrations of mantle-compatible
elements (<92 ppm V, <103 ppm Ni, <18 ppm
Co). The relatively high degrees of fractionation
are consistent with the relatively low mg# of the
rocks (36–52), calculated using a molecular Fe2/
(Fe2 + Fe3) set at 0.15, a common ratio in
potassic igneous rocks (Müller et al. 1992b). The
pink monzonite porphyry, which represents the
oldest phase of the Skouries intrusions, has the
highest mg# (52), whereas the mineralized main
quartz-monzonite porphyry has relatively low
mg# (36–39) implying higher degrees of frac-
tionation (Kroll et al. 2002). This is consistent
with other alkaline rock-hosted porphyry
copper-gold systems, such as Grasberg, Indone-
sia (Pollard and Taylor 2002), and Northparkes,
Australia (Müller et al. 1994), that each consist of
a series of interconnected intrusions ranging from
mafic to increasingly more fractionated compo-
sitions. Typically, the stockwork mineralization
is directly associated with the relatively evolved
quartz-monzonite phase. The high K2O contents
(4.4–5.8 wt%) and high K2O/Na2O ratios (>1) of
the least altered samples are typical of alkaline
rocks of the shoshonite association (cf. Joplin
1968; Morrison 1980; Müller et al. 1992b; Lu
et al. 2013). This relationship is confirmed by the
high Ce/Yb (>34) and Th/Yb (>21) ratios of the
Skouries intrusions (Pearce 1982; Kroll et al.
2002). All investigated samples also plot on the
“shoshonite” field on the K2O versus SiO2 dia-
gram of Peccerillo and Taylor (1976a, b). The
Skouries intrusions have very high U and Th
concentrations (up to 18.9 and 62 ppm, respec-
tively), consistent with accessory allanite and

thorite in several samples (Tobey et al. 1998).
Gill and Williams (1990) suggest that the
mantle-incompatible elements U and Th are
metasomatically added to the mantle wedge
above subduction zones by fluids derived from
dehydration of the subducted slab.

Relatively high initial 87Sr/86Sr ratios of the
rocks average at about 0.7082 suggesting crustal
contamination of their parental melts during
emplacement (Kroll et al. 2002). Plotting the
analyzed samples on the geochemical discrimi-
nation diagrams of Müller et al. (1992b)
unequivocally assigns them to a continental
arc-setting (Kroll et al. 2002), an interpretation
that agrees with studies by Veranis (1994).

The high halogen contents of the Skouries
intrusions are reflected in the high Cl and F
concentrations of biotite phenocrysts (up to 0.19
and 2.48 wt%, cf. Kroll et al. 2002). The pres-
ence of magmatic magnetite in all intrusive
phases implies high oxygen fugacities of the
parental melts (see Sect. 10.3.2).

6.5 Postcollisional Arc Associations

6.5.1 Grasberg Copper-Gold Deposit,
Irian Jaya, Indonesia

Introduction The Pliocene Grasberg porphyry
copper-gold deposit (Fig. 6.30) is situated in the
Ertsberg Mineral District of Irian Jaya, at 4°S
latitude in the western (Indonesian) part of the
New Guinea mainland. The rugged Ertsberg
district is about 70 km inland from the Arafura
Sea at an altitude of 3500–4500 m above sea
level (Van Nort et al. 1991). The area is one of
only three in the world having permanent
mountain glaciers at equatorial latitudes (Mac-
Donald and Arnold 1994). The mineral potential
of the area has been first recognized in 1936 with
the discovery of the small, but very high-grade,
Ertsberg bornite-skarn deposit, but both the
remote location and the outbreak of the Second
World War delayed its development. Hence,
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systematic and helicopter-supported, regional
exploration in the area by Freeport Mining Cor-
poration only commenced in 1967. The Grasberg
porphyry copper-gold deposit was discovered
less than 3 km from the Ertsberg mine in 1988 at

an elevation of 4270 m above sea level. The
history of early exploration at Grasberg has been
described in detail by Wilson (1981).
Mining operations at Grasberg commenced as an
open pit in 1990 and the mine is now a combined

Table 6.14 Major- and
trace-element analyses of
shoshonitic rocks from the
Skouries copper-gold
deposit, Chalkidiki, Greece

Province/deposit Skouries Skouries Skouries

Location Greece Greece Greece

Rock type Monzonite Monzonite Monzonite

Tectonic setting Continental arc Continental arc Continental arc

Reference Kroll et al. (2002) Kroll et al. (2002) Kroll et al. (2002)

SiO2 64.80 64.79 63.60

TiO2 0.35 0.34 0.43

Al2O3 16.90 17.20 17.60

Fe2O3 4.90 4.89 4.91

FeO n.a. n.a. n.a.

MnO 0.16 0.05 0.05

MgO 1.28 1.37 1.80

CaO 1.60 1.69 2.08

Na2O 3.62 3.88 3.74

K2O 5.20 4.80 4.50

P2O5 0.24 0.28 0.26

LOI 0.13 0.04 0.21

Total 99.18 99.35 99.18

mg# 38 39 46

Ce/Yb 53 62 55

V 71 75 86

Co 7 7 10

Ni 19 18 13

Rb 155 94 106

Sr 1173 1155 1440

Zr 320 322 310

Nb n.a. n.a. n.a.

Ba 2300 2100 2000

Hf 8 9 8

Ta 1.2 0.5 0.5

La 38 56.1 39.8

Ce 69 106 83

Yb 1.3 1.7 1.5

Th 61.7 62.0 55.3

U 18.9 16.1 11.8

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron
calculated as ferric oxide. Data from Kroll et al. (2002)
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open pit and underground block-caving operation
managed by Freeport McMoRan Inc. In 2002,
total recoverable reserves were estimated as 51
billion pounds of copper, 62.4 Moz of gold, and
135.5 Moz of silver (Pollard and Taylor 2002).

Regional Geology The island of New Guinea
has long been recognized as the product of
Miocene collision between the north-moving
Australian plate and the southwest-migrating
Pacific plate (e.g. Puntodewo et al. 1994).
Undeformed continental crust (Van Nort et al.
1991) of the Australian plate extends northward
from beneath the Arafura Sea along the southern
coastal plain to the southern edge of the Papuan
Fold Belt, commonly referred to as the “highland
mountainbelt” in the literature (e.g. Richards
et al. 1991).

Both the Ertsberg copper skarn and Grasberg
copper-gold porphyry mineralization are hosted
by igneous intrusive rocks of intermediate com-
position (Fig. 6.30), ranging from diorite to
quartz-monzonite with high-K calc-alkaline to
shoshonitic compositions (Van Nort et al. 1991;
McMahon 1994; Pollard and Taylor 2002). The
intrusions cut Tertiary limestones of the New
Guinea Group (MacDonald and Arnold 1994)
and several large copper-gold skarns are recorded

along their lithological contacts, the largest of
which being the discovery outcrop of the entire
district, the Ertsberg (Jowitt et al. 2013). The
limestones have been compressed into a series of
tight isoclinal folds with nearly vertical axial
planes. Pluton emplacement, as well as sub-
sequent copper-gold mineralization, may have
been controlled by the intersections of steep,
northwest-trending reverse faults and
northeast-trending sinistral strike-slip faults
(MacDonald and Arnold 1994). The Grasberg
Intrusive Complex is dated at ca. 3 ± 0.5 Ma
using conventional K-Ar methods (MacDonald
and Arnold 1994). More accurate 40Ar/39Ar ages
of magmatic and hydrothermal micas from the
Grasberg Igneous Complex range from
3.33 ± 0.12 to 3.01 ± 0.06 Ma (Pollard et al.
2005). Both the ages of intrusive rocks and
paragenetic relationships between intrusions and
hydrothermal alteration indicate that the Gras-
berg Igneous Complex formed during several
cycles (Pollard and Taylor 2002). Each cycle of
intrusion and alteration appears to have lasted
around 0.1 m.y. or less and indicates that the
huge size and high grade of Grasberg did not
result from an unusually prolonged period of
hydrothermal activity (Pollard et al. 2005). The
40Ar/39Ar ages of equigranular diorite from the
Ertsberg intrusion (2.67 ± 0.03 Ma) and

Fig. 6.30 Geological
overview of the Grasberg
copper-gold deposit, Irian
Jaya, Indonesia. Modified
after MacDonald and
Arnold (1994)
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phlogopite from the Ertsberg copper skarn
deposit (2.59 ± 0.15 Ma) suggest that intrusion
and mineralization at Ertsberg are slightly
younger than in the Grasberg Igneous Complex
(Pollard et al. 2005).

Nature of Porphyry Copper-Gold Minerali-
zation The bulk of the high-grade copper-gold
mineralization is hosted by intense, and
multi-phase, quartz-vein stockworks associated
with potassic alteration (Fig. 6.31). Stockwork
mineralization has been delineated from the ori-
ginal surface at 4200 m and is still open below
2500 m (Pollard and Taylor 2002). The primary
hypogene sulphide mineralogy consists mainly
of chalcopyrite, bornite, and minor pyrite (Van
Nort et al. 1991) which occur in A-type and
B-type quartz veins, S-type veins, or as dissem-
inations in the intrusions (Fig. 6.31). Chalcopy-
rite also occurs as late-stage fracture fillings and
as sulphide veinlets (“S-type veins”) throughout
the porphyry. Vein quartz from the Grasberg
deposit displays a wide range of features in
scanned cathodoluminescence images, including
concentric growth zoning, quartz-filled micro-
fractures, dark luminescence near sulphides,
turbid growth zoning, and the truncation of
concentric growth zoning (Penniston-Dorland
2001). MacDonald and Arnold (1994) recog-
nized three major episodes of hydrothermal
alteration and mineralization that are genetically
linked to successive Dalam Diatreme, Main
Grasberg Stock and South Kali Dyke phases of
intrusion. However, more recent studies (Pollard
and Taylor 2002) reveal numerous overprinting
stages of alteration and infill with two main
episodes of copper-gold deposition, both of
which post-date intrusive rocks within the Gras-
berg Igneous Complex. The major
quartz-chalcopyrite-bornite vein system is
developed towards the center of the intrusive
complex, while the later disseminated
chalcopyrite-bornite-pyrite ± covellite ± enargite
system is best developed towards the periphery
of the Grasberg Igneous Complex (Pollard and
Taylor 2002). Molybdenite is rare and either
occurs as thin stringer veins (*1 mm) or along
the margins of anhydrite-quartz veins in the

deeper parts of the orebody (Pollard and Taylor
2002). Gold is closely associated with chalco-
pyrite and bornite, and gold values appear to
increase with depth (Van Nort et al. 1991). The
native gold is characterized by high Pd contents
of up to 3500 ppm (I. Kavalieris, pers. comm.,
1996). Major ore reserves are also hosted by
skarn-type mineralization formed at contact
zones between igneous intrusions and the dolo-
mitic country rocks (Hickson 1991; Jowitt et al.
2013). Typical skarn ore bodies at Grasberg are
chalcopyrite-bornite-magnetite-silicate-rich
replacements of dolomite (Hickson 1991).

The central potassic alteration zone, with
associated quartz-vein stockworks, grades out-
ward into phyllic alteration and then into a thin
propylitic zone near the intrusive contact with the
limestone country rocks (Hickson 1991). The
potassic alteration zone is characterized by
hydrothermal, very fine-grained biotite and
orthoclase (Van Nort et al. 1991). Anhydrite
development is also characteristic as small pat-
ches and veins and typically accompanies
potassic alteration (MacDonald and Arnold
1994). Phyllic alteration surrounds the potassic
zone, and consists mainly of sericite, kaolinite,
and pyrite. Primary (magmatic) disseminated
magnetite survives potassic alteration, but is
absent in the phyllic alteration zone (MacDonald
and Arnold 1994). Propylitic alteration is not
well developed at Grasberg and, where recorded,
rock textures are preserved but feldspar and
mafic phenocrysts are altered to either clay or
chlorite, with minor epidote (Van Nort et al.
1991). Supergene effects are minimal, with the
development of only a weak, thin (about 5 m),
leached cap characterized by secondary chalco-
cite, digenite, and covellite. However, the area
has gone through several glacial ice advances
over the past one million years, and most of the
leached cap was probably scoured off (Van Nort
et al. 1991).

Petrology and Geochemistry of the Potassic
Host Rocks The porphyry copper-gold miner-
alization in the Grasberg-Ertsberg Mineral Dis-
trict is hosted by two major and several minor
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Fig. 6.31 Representative
high-grade ore samples
from the Grasberg
copper-gold deposit, Irian
Jaya, Indonesia (photos
taken by F. Sumarwan and
P. Warren): a potassic
altered monzodiorite
porphyry with intense
disseminated chalcopyrite
mineralization and cut by
(S-type)
chalcopyrite-bornite
veinlets [FOV 5 × 12 cm].
b Potassic altered
monzodiorite porphyry
with intense disseminated
chalcopyrite ± bornite
mineralization and cut by
(S-type)
chalcopyrite-bornite
veinlets [FOV 4 × 8 cm].
c Potassic altered
monzodiorite porphyry
with intense disseminated
chalcopyrite-bornite
mineralization and cut by
(S-type)
bornite-chalcopyrite
veinlets; note the brown
patches of hydrothermal
biotite alteration
intergrown with
fine-grained chalcopyrite
[FOV 5 × 11 cm]
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intrusions ranging in composition from monzo-
diorite to quartz-monzodiorite (Hickson 1991;
MacDonald and Arnold 1994). The economically
most important intrusions are the Grasberg Igne-
ous Complex, and the Ertsberg and Dom stocks
(Fig. 6.30). The intrusions that make up the
Grasberg Igneous Complex and the hydrothermal
fluids responsible for the porphyry copper-gold
mineralization appear to have been derived from a
deep crustal magma chamber (Pollard et al.
2005). The Grasberg Igneous Complex (3.33–
3.01 Ma) was formed during at least three major
intrusive episodes, which are, in successive order:
(1) the Dalam Diatreme, (2) the Main Grasberg
Stock, consisting of monzodiorite porphyry, and
(3) the South Kali quartz-monzodiorite dykes
(MacDonald and Arnold 1994; Pollard and Tay-
lor 2002). The youngest intrusive phase is a
cross-cutting post-mineral diorite dyke, more
mafic than the preceding Kali
quartz-monzodiorite intrusions, and suggesting
that the magma chamber was periodically
replenished by basic magma (Pollard et al. 2005).

The Grasberg Stock, which hosts the por-
phyry copper-gold deposit, is a medium- to
coarse-grained monzodiorite porphyry contain-
ing 35–55 vol.% plagioclase, 3–5 vol.% biotite,
2–4 vol.% hornblende phenocrysts, with local
quartz eyes that are set in an equigranular
groundmass of quartz, biotite and feldspar
(Hickson 1991; Van Nort et al. 1991). The rock
also contains abundant disseminated magmatic
magnetite (up to 5 vol.%; MacDonald and
Arnold 1994), suggesting high oxygen fugacities
of the parental melts.

Geochemically, the igneous host rocks at
Grasberg are strongly evolved (Table 6.15), as
reflected by high SiO2 (>59.5 wt%) and low
MgO (<3.4 wt%) contents, low mg# (<60), and
low concentrations of the mantle-compatible
trace elements (e.g. <100 ppm V, <60 ppm
Cr, <35 ppm Ni). The rocks are generally char-
acterized by very high K2O contents (up to 8.23
wt%), high K2O/Na2O ratios (up to 6.8), and
high LILE (up to 170 ppm Rb, up to 303 ppm Sr,
up to 1554 ppm Ba), intermediate LREE
(<49 ppm La, <79 ppm Ce), and low HFSE

(<0.50 wt% TiO2; <13 ppm Y, <168 ppm Zr)
contents. The rocks contain elevated Nb con-
centrations (up to 15 ppm), which are consistent
with those of potassic igneous rocks from many
other postcollisional arc settings (Müller et al.
1992b).

Due to the limited data set (e.g. no Hf data)
available to the authors, the rocks could not be
plotted on the discrimination diagrams of
Chap. 3. However, based on the geological set-
ting and the whole-rock geochemistry of the
Grasberg igneous suite, it is interpreted to be the
product of a postcollisional arc setting.

6.5.2 Misima Gold Deposit, Misima
Island, Papua New Guinea

Introduction The Misima gold deposit is loca-
ted on Misima Island in the Louisiade Archi-
pelago, some 670 km east-southeast of Port
Moresby and about 240 km east-southeast of the
Papua New Guinea mainland (Lewis and Wilson
1990; Fallon et al. 2002). Misima Island is about
40 km long and up to 9 km wide, comprising an
area of 202 km2. The topography of the island
ranges from coral reefs along the coast (Fallon
et al. 2002) to a rugged mountainous topography
covered by dense tropical vegetation, rising to
1050 m above sea level in the central part (Lewis
and Wilson 1990).

The Misima gold mine is located in the eastern
part of the island (Fig. 6.32). Mine construction
commenced in 1988, with total mineable reserves
of 55.9 million tonnes at 1.38 g/t Au and 21.0 g/t
Ag at a cutoff grade of 0.7 g/t Au equivalent
(Lewis and Wilson 1990). The mine was an open
pit operation, managed by a joint venture between
Placer Dome (80 %) and state-owned Orogen
Minerals (20 %), that produced about 3.7 Moz of
Au and 20 Moz of Ag until its closure in 2004.
Regional exploration for epithermal gold and
porphyry copper-gold targets at Misima Island is
currently undertaken by WCB Resources Ltd.

Regional Geology The geology of Misima
Island (Fig. 6.32) is dominated by Eocene or
older metamorphic rocks (Appleby et al. 1995),
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which have been subdivided into the higher-grade
Awaibi Association and the lower-grade Sisa
Association (Lewis and Wilson 1990). These two

metamorphic units are separated by an exten-
sional, low-angle detachment fault with a my-
lonitic fabric (Fig. 6.22; Appleby et al. 1995). The
Awaibi Association amphibolite-facies meta-
morphic rocks structurally underlie the
less-metamorphosed Sisa Association rocks of
upper greenschist facies, which occur on the
eastern part of the island and contain the gold
mineralization (Lewis and Wilson 1990). The
Sisa Association is a conformable sequence of
dominantly psammopelitic schists enclosing
fine-grained, massive to foliated greenstones (de
Keyser 1961; Clark et al. 1990).

The Sisa Association units are gently dipping
and are folded into an east-trending, east-plung-
ing antiform (Appleby et al. 1995). The rocks are
overprinted by a penetrative deformation which
resulted in foliation, crenulation fabrics, and
isoclinal to chevron folding (Clark 1988). The
schists and greenstones of the Sisa Association
have been intruded by hypabyssal andesitic to
dacitic stocks, sills, and dykes known as the
Boiou microgranodiorite (Fig. 6.22; Clark et al.
1990), which postdates the deformation (Clark
1988). SHRIMP II U-Pb dating of magmatic
zircons from this granodiorite yields a crystalli-
zation age of 8.1 ± 0.4 Ma (Appleby et al. 1995).

At least three phases of faulting can be iden-
tified, the best-known relationships being in the
Umuna Fault Zone, a 50–200 m-wide zone of
subparallel and anastomosing fractures (Lewis
and Wilson 1990) in which the Misima gold
deposit is situated (A.K. Appleby written comm.,
1996). The epithermal gold mineralization at
Misima is spatially associated with contempora-
neous shoshonitic lamprophyres, and both the
mineralization and lamprophyre dykes have been
K-Ar dated at 3.5 Ma (A.K. Appleby, written
comm.,1996).

Nature of Epithermal Gold Mineralization
Two mineralization events can be distinguished
at Misima (Appleby et al. 1995): (1) early-stage
uneconomic porphyry-style pyrite-chalcopyrite-
bornite-molybdenite mineralization with both
weak (potassic) biotite-magnetite and (propylitic)
chlorite-albite-epidote alteration assemblages

Table 6.15 Major- and trace-element analyses of potas-
sic igneous rocks from the Grasberg copper-gold deposit,
Irian Jaya, Indonesia

Province/deposit Grasberg Grasberg

Location Indonesia Indonesia

Rock type Monzodiorite Monzodiorite

Tectonic setting Postcollisional arc Postcollisional arc

Reference Freeport Mining
Co. (unpubl.
Data, 1993)

Freeport Mining
Co. (unpubl.
Data, 1993)

SiO2 59.45 66.75

TiO2 0.38 0.50

Al2O3 10.79 13.74

Fe2O3 15.57 3.22

FeO n.a. n.a.

MnO 0.05 0.01

MgO 3.35 2.09

CaO 0.42 0.62

Na2O 1.16 1.20

K2O 6.31 8.23

P2O5 0.27 0.23

LOI 1.32 2.57

Total 99.07 99.16

mg# 33 60

K2O/Na2O 5.4 6.8

Sc n.a. n.a.

V 97 87

Cr 13 56

Ni 11 35

Rb 150 170

Sr 179 303

Y 13 11

Zr 86 168

Nb 10 15

Ba 277 1554

Hf n.a. n.a.

La 9 49

Ce 15 79

Major elements are in wt%, and trace elements are in ppm.
Fe2O3 (tot) = total iron calculated as ferric oxide. Data from
Freeport Mining Co. (unpl. data, 1993)
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associated with the Boiou microgranodiorite; and
(2) late economic epithermal precious-metal
mineralization with auriferous pyrite-sphalerite-
galena-chalcopyrite ± gold ± silver associated
with quartz and quartz-carbonate gangue as
fracture fill. The epithermal gold-silver mineral-
ization is focused in high- and low-angle struc-
tures in the upper plate of the detachment fault
(Appleby et al. 1995).

The north-northwest-striking Umuna Fault
Zone is the most significant known locus of
mineralization on Misima Island (Fig. 6.33). The
orebody is about 100–200 m wide, 500 m deep,
and has a 3 km strike length (Appleby et al.
1995). The high-grade gold mineralization is
sited in en echelon dilational sites, indicating
normal movement with dextral slip along the
Umuna Fault Zone at the time of mineralization
(Appleby et al. 1995).

The vein mineralogy is dominated by quartz
or carbonate gangue with galena, sphalerite,
pyrite, and chalcopyrite. Gold shows a distinctive
correlation with galena (Appleby et al. 1995).

The upper levels of the deposit are dominated
by <20 m-wide silica veins with minor barite,
whereas carbonate veins and breccia infill are
more common at depth (Lewis and Wilson
1990). The alteration associated with minerali-
zation is confined to narrow vein selvedges of
sericite-chlorite-pyrite ± epidote. Sericitic alter-
ation is dominant (Appleby written comm.,
1996). The vein mineralogy, texture, and asso-
ciated alteration are characteristic of epithermal
gold mineralization in a low-sulphidation
hydrothermal system (Appleby et al. 1995;
White et al. 1995).

In summary, the epithermal gold-silver min-
eralization at Misima is attributed to coeval Pli-
ocene extensional and transpressional tectonics,
the unroofing of a metamorphic core complex,
and mantle-derived potassic magmatism (A.K.
Appleby written comm., 1996).

Petrography and Geochemistry of the
Associated Potassic Rocks The Miocene
(8 Ma) Boiou microgranodiorite stocks and
dykes vary texturally from porphyritic to even

Fig. 6.32 Geological overview of Misima Island, Louisiade Archipelago, Papua New Guinea, showing gold-silver
mineralization. Modified after Appleby et al. (1995)
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grained, with phenocrysts of plagioclase (<5 mm
long), quartz (*1 mm long), biotite (<2 mm
long), and amphibole (<2 mm long) within a
fine-grained groundmass consisting of quartz and
feldspar (Lewis and Wilson 1990).

The Pliocene (3.5 Ma) lamprophyre dykes at
Misima consist of up to 40 vol.% amphibole
phenocrysts (*1 mm long) within a very
fine-grained groundmass dominated by plagio-
clase and secondary chlorite (A.K. Appleby,
written comm., 1996), and thus can be classified
as spessartites as defined by Rock (1991). The
spessartites near the Umuna Fault Zone are
strongly carbonate altered (Appleby et al. 1995).

Geochemically, the microgranodiorites
(Table 6.16) are characterized by evolved com-
positions with high SiO2 (up to 69.5 wt%) con-
tents, and very low TiO2 (*0.25wt%), Fe2O3 (i.e.
*1.98 wt%), and MgO (*0.99 wt%) concen-
trations (A.K. Appleby written comm., 1996). On
a total alkalis versus silica plot (Le Maitre 1989),
the samples plot on the boundary between
trachytes and dacites due to their high alkali con-
tents (i.e. *4.64 wt% Na2O, *3.06 wt% K2O).

The spessartites (Table 6.16) have typical
shoshonitic compositions (A.K.Appleby written
comm., 1996), with relatively low SiO2 (<52.20
wt%) abundances, low but variable Al2O3

(14.50–16.60 wt%), high LILE (up to 4.20 wt%
K2O; up to 1540 ppm Ba, up to 65 ppm Rb, up to
1600 ppm Sr), relatively low LREE (<50 ppm

La, <95 ppm Ce), and, except for TiO2 and Nb,
low HFSE (<220 ppm Zr, <15 ppm Y, *6 ppm
Hf) contents. The TiO2 and Nb concentrations
are slightly elevated (up to 1.47 wt% TiO2, up to
15 ppm Nb). Their compositions are consistent
with those of potassic igneous rocks from other
postcollisional arc settings (see Sects. 4.2, 6.5.1
and 6.5.3).

Based on both structural considerations (A.K.
Appleby written comm., 1996) and their geo-
chemical fingerprints, the lamprophyres are
interpreted to have been intruded into a postcol-
lisional arc (Fig. 6.23).

6.5.3 Porgera Gold Deposit, Papua
New Guinea

Introduction The Miocene Porgera gold
deposit is situated about 600 km to the northwest
of Port Moresby and about 130 km to the west of
Mount Hagen, the capital of the Enga Province,
in the rugged highlands of Papua New Guinea
(Fig. 6.34). Porgera is an example of modern
gold mineralization hosted by volatile-rich
potassic igneous rocks in a postcollisional arc
setting. The Porgera mine is host to exceptionally
high-grade low-sulphidation epithermal gold
mineralization, locally containing abundant visi-
ble gold and exceeding 1000 g/t (MacMahon,
pers. comm., 1997; Ronacher et al. 2002). Por-
gera was discovered by Placer Dome geologists

Fig. 6.33 Geological
cross-section (SW-NE) of
Misima Island, Louisiade
Archipelago, Papua New
Guinea. Modified after
Appleby et al. (1995)
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in the late-eighties and its exploration history is
well documented by Handley and Henry (1990).
Since the take-over of Placer Dome Inc. in 2006,
the Porgera gold mine has been operated by

Barrick Gold Ltd. With 10.3 Moz of Au recov-
ered between the start of production in 1990 and
June 2001, Porgera is one of the largest gold
producers in the Southwest Pacific region

Table 6.16 Major- and trace-element analyses of potassic igneous rocks from the Misima gold deposit, Louisiade
Archipelago, Papua New Guinea

Province/deposit Misima Misima Misima Misima

Location Papua New Guinea Papua New Guinea Papua New Guinea Papua New Guinea

Rock type Microgranodiorite Spessartite Spessartite Spessartite

Tectonic setting Postcollisional arc Postcollisional arc Postcollisional arc Postcollisional arc

Reference Appleby (written
comm., 1996)

Appleby (written
comm., 1996)

Appleby (written
comm., 1996)

Appleby (written
comm., 1996)

SiO2 69.50 52.20 50.90 50.70

TiO2 0.25 1.20 1.27 1.47

Al2O3 16.00 14.50 15.10 16.60

Fe2O3 1.98 6.60 6.40 6.60

FeO n.a. n.a. n.a. n.a.

MnO 0.15 0.19 0.15 0.15

MgO 0.99 5.25 5.80 5.65

CaO 2.26 8.15 6.10 4.58

Na2O 4.64 2.50 3.94 4.68

K2O 3.06 4.20 2.38 2.34

P2O5 0.20 1.32 0.66 0.73

LOI 1.58 4.06 7.95 7.00

Total 100.61 100.17 100.65 100.50

mg# 54 65 68 66

K2O/Na2O 0.66 1.7 0.6 0.5

Sc n.a. n.a. n.a. n.a.

V 40 160 170 170

Cr 130 150 180 60

Ni <50 100 100 <50

Rb 70 65 45 45

Sr 1040 1600 320 260

Y 6 13 11 15

Zr 100 220 150 160

Nb 10 15 10 15

Ba 930 1540 760 940

Hf 5 8 6 6

La 6 50 20 25

Ce 11 95 40 45

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron calculated as ferric oxide. Data from
A.K. Appleby (written comm., 1996)
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(Ronacher et al. 2004). Reserves and resources in
June 2001 amount to 113 Mt of ore at a grade of
3.5 g/t. The total contained gold at Porgera is
about 22.9 Moz (Ronacher et al. 2004).

Regional Geology Porgera is located in a
highland mountainbelt (Fig. 6.34) which was
formed by Late Miocene continent-island arc
collision (Richards et al. 1991). The region is cut
by the Lagaip Fault Zone, which trends
west-northwest, and separates deformed and
metamorphosed volcanosedimentary rocks to the
northeast from unmetamorphosed Jurassic and
Cretaceous sedimentary rocks to the southwest
(Richards et al. 1991). These supracrustal rocks
were affected by rapid uplift during the Early
Pliocene following the Late Miocene collision
event (Hill and Gleadow 1989). The intrusion of
the Porgera Igneous Complex immediately pre-
dates the main stage of tectonism in the high-
lands (Richards et al. 1991). The Porgera Igneous
Complex is of middle to late Miocene age
(Fleming et al. 1986; Handley and Henry 1990),
comprising a series of small volatile-rich plugs,

stocks, and dykes of potassic alkaline composi-
tion and relatively high oxygen fugacities
(Richards et al. 1991; Peterson and Mavrogenes
2014). The intrusions were emplaced at ca. 6 Ma
at a paleo-depth of about 2.5 km (Richards and
McDougall 1990) and are coeval, within error,
with mineralization (Ronacher et al. 2002). The
intrusions form small balloon-shaped stocks with
narrow contact halos, ranging from a few meters
to a few tens of meters, in the sedimentary wall
rocks. They are interpreted to be apophyses
derived from a much larger pluton at depth, as
indicated by a circular aeromagnetic anomaly,
about 5 km in diameter (Ronacher et al. 2002).
Intrusions and gold-quartz veins are hosted in a
thick, regionally extensive sequence of Creta-
ceous black carbonaceous shales (Ronacher et al.
2004; Peterson and Mavrogenes 2014). The
deposit is intersected by the north-northeast
striking Roamane fault zone, a late and domi-
nantly extensional, normal fault that post-dates
all intrusions and controls the late-stage
high-grade gold-quartz veins (Ronacher et al.
2002; Peterson and Mavrogenes 2014).

Fig. 6.34 Geological overview of the Porgera and Mount Kare (see Sect. 11.2.19) gold deposits, Enga Province, Papua
New Guinea. Modified after Richards and Kerrich (1993)
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Nature of Epithermal Gold Mineralization
The Porgera deposit combines characteristics of
porphyry, epithermal, and structurally controlled
lode-gold deposits (Peterson and Mavrogenes
2014). However, although the richest gold con-
tents in porphyry-type deposits are normally in
the potassic alteration zone (Hollister 1975), no
such alteration zone has been recorded at Porgera
(Richards 1992). Gold mineralization was epi-
sodic (Handley and Henry 1990), with several
overlapping stages of mineralization from early,
low-grade gold disseminations to late, high-grade
epithermal gold veins (Richards 1990a, b).
A magmatic association between gold minerali-
zation and the high-K Porgera Intrusive Complex
is evident (Richards et al. 1991; Ronacher et al.
2004; Peterson and Mavrogenes 2014). Richards
(1990a) provides evidence for the evolution of a
volatile phase during magma crystallization,
suggesting that gold and other elements were
partitioned into a magmatic fluid. These
magmatic-hydrothermal fluids probably caused
the initial stage of gold enrichment (Richards
1990b). A late influx of fresh magma into the
underlying magma chamber might have resulted
in the emplacement of a late suite of feldspar
porphyry dykes and the release of a final pulse of
hydrothermal fluid (Richards 1990a). Gold at the
Porgera complex is predominantly in structurally
controlled veins and faults with lesser, low-grade
arsenian pyrite disseminated in altered wall rocks
(Peterson and Mavrogenes 2014). Three types of
gold-bearing vein assemblages occur at Porgera
(Ronacher et al. 2004): (1) magnetite-
sulphide-carbonate veins with minor gold,
(2) base metal-sulfide ± gold-carbonate veins,
and (3) late-stage quartz-roscoelite-pyrite-gold
veins. In places, the latter phase hosts bonanza
gold grades and is economically the most sig-
nificant. The quartz-roscoelite-pyrite-gold veins
mainly occur within or in the splays of the Ro-
amane fault zone, the high-grade domain of
which is locally referred to as “Zone VII”, where
abundant visible gold and up to 1000 g/t Au
occurred in quartz-roscoelite breccias (MacMa-
hon pers. comm., 1997; Ronacher et al. 2002).
Disruption of the Roamane fault zone signifi-
cantly altered hydrothermal fluid pressure and

flow regimes, initiating the high-grade
quartz-roscoelite-pyrite-gold mineralization
(Peterson and Mavrogenes 2014). Studies on the
V-rich roscoelite micas by Wall et al. (1995) and
Cameron (1998) suggested that mixing of an
oxidized magmatic fluid and a reduced fluid
expelled from carbonaceous sedimentary rocks
was responsible for the formation of high-grade
zones. The interpretation that gold may have
been concentrated in an oxidized magmatic fluid
phase is supported by the presence of hypersaline
fluid inclusions and stable isotope compositions
of mineralization-related minerals consistent with
the involvement of magmatic volatiles (Richards
1992), and evidence for high halogen concen-
trations in biotite phenocrysts of the magmatic
host rocks (Müller and Groves, 1993; see
Chap. 9). Detailed studies on fluid inclusions
from Porgera imply that boiling was, at least
locally, responsible for gold deposition (Ron-
acher et al. 2004). More recent studies reveal an
intricate zonation within pyrite crystals derived
from the high-grade zone at Porgera, document-
ing a rapid and complete switching of alternating
bands of two distinct pyrite types within a single
vein system (Peterson and Mavrogenes 2014).
This cyclicity of the hydrothermal fluids and the
resulting sequential evolution of the mineraliza-
tion is interpreted as the manifestation of a
fault-valve system providing rapid pressure drops
during rupture that either caused flash boiling or
allowed separate fluids to be focused through
faults during earthquake aftershocks (Peterson
and Mavrogenes 2014). Laser 40Ar/39Ar age
dating of magmatic biotite and hornblende
(5.99 ± 0.08 Ma), representing the intrusive
event, and of hydrothermal biotite
(5.98 ± 0.13 Ma) and roscoelite
(5.92 ± 0.08 Ma), representing the mineralizing
event, show that the life-span of the magmatic
and mineralizing system at Porgera was less than
0.1 million years (Ronacher et al. 2002).

Petrology and Geochemistry of the Potassic
Host Rocks The intrusions of the Porgera
Intrusive Complex range from fine- to
medium-grained, porphyritic through euhedral
granular to ophitic textures, due to different rates
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of crystallization, in smaller and larger intrusive
bodies, respectively. The rocks consist of olivine,
diopside, feldspar, hornblende, biotite, phlogo-
pite, fluorapatite, chromite and magnetite (Rich-
ards 1990a; Richards and Ledlie 1993). The
presence of miarolitic cavities and vesicles in
fine-grained mafic dykes and chilled margins, as
well as magmatic biotite, phlogopite and fluora-
patite, reflect the high volatile contents of the
melts (Richards 1990a). Fluorapatite micro-
phenocrysts are locally up to 2 mm wide (Rich-
ards pers. comm., 2003). Fresh olivine has not
been recorded at Porgera, but its original presence
in mafic rocks is inferred from the occurrence of
characteristically shaped pseudomorphs (Rich-
ards 1990a). Plagioclase crystallization was
delayed until shortly after hornblende crystalli-
zation (Richards and Kerrich 1993), with the
result that a small window of compositions exists
within rocks which texturally resemble lampro-
phyres (i.e. non-plagioclase phyric,
clinopyroxene-hornblende porphyries). However,
the rare lamprophyre-textured samples within a
much larger continuum of non-lamprophyric
rocks indicates that the entire Porgera suite can-
not be classified as lamprophyric as originally
proposed by Rock and Finlayson (1990).

The potassic host rocks at Porgera are char-
acterized by a primitive geochemistry
(Table 6.17) with low SiO2 (<48.3 wt%), high
Na2O (up to 3.2 wt%) and high MgO (up to 12.2
wt%) contents, high mg# (up to 75), and high
concentrations of mantle-compatible trace ele-
ments (e.g. >200 ppm V, up to 780 ppm Cr, up to
380 ppm Ni). The rocks have high LILE (e.g.
*650 ppm Sr, *400 ppm Ba), moderate LREE
(e.g. *30 ppm La, *60 ppm Ce), and, with the
exception of Nb, low HFSE (<1.20 wt% TiO2,
*125 ppm Zr, *3 ppm Hf) contents. Richards
(1990b) interpreted the geochemistry of the Por-
gera intrusive suite in terms of within-plate
magmatism resulting from localized melting in
the subcontinental mantle. In terms of the avail-
able database, potassic igneous rocks from such
within-plate settings have very high HFSE con-
centrations (Chap. 3). The Porgera volcanic rocks

(Fig. 6.23), indeed, have very high Nb concen-
trations (*50 ppm), but the remaining HFSE
have abundances which are far too low to be
considered as reliable geochemical fingerprints of
within-plate potassic volcanism (<170 ppm Zr,
<19 ppm Y, <3.6 ppm Hf). Potassic igneous rocks
from many mature postcollisional arc settings do
tend to show a transition from a calc-alkaline or
shoshonitic geochemistry to a more alkaline
geochemistry during the later stages of magma-
tism (e.g. Sect. 4.2; Müller et al. 1992a, b), which
might apply at Porgera.

On balance, the relatively low HFSE (with the
exception of Nb) contents of the Porgera intru-
sive suite implicate a subduction-related post-
collisional arc setting rather than a within-plate
tectonic setting. Moreover, a genetic model pro-
posing that within-plate magmatism was
responsible for the intrusion of the Porgera
Intrusive Complex at 6 Ma would require the
uprise of a deep asthenospheric mantle plume
with OIB-type geochemistry. Tectonic recon-
structions of the area imply the presence of an
oceanic slab subducting southwestward beneath
the continental crust of the Papua New Guinea
main island at this time (Cooper and Taylor
1987), which would have blocked the ascent of
rising mantle plumes. Therefore, a postcollisional
arc setting is suggested on the basis of both
geological and geochemical data.

6.6 Synthesis of Direct Genetic
Associations

As discussed above, there are spatial and prob-
ably genetic associations between copper-gold
mineralization and high-K igneous suites in late
oceanic (island) arc, continental arc and post-
collisional arc settings (cf. Müller and Groves
1993). It is apparent that Tertiary epithermal gold
deposits (e.g. Ladolam, Emperor, Porgera; see
Fig. 6.1) can be hosted by potassic igneous rocks
in late oceanic arcs, in places within, or at the
margin of, a collapsed caldera structure (Ander-
son and Eaton 1990; Haggman 1997b). The
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Au-bearing sulphide mineralization in these set-
tings is generally disseminated or occurs as
quartz –vein stockworks within the K-rich host
rocks. The high-salinity fluid inclusions in these
deposits suggest that the ore fluids were of

magmatic origin (Kwak 1990; Moyle et al. 1990;
Richards 1995), and the mineralization and
potassic magmatism are coeval. Older porphyry-
style deposits at Northparkes (Goonumbla) and
Ridgeway (Cadia) are from a similar tectonic

Table 6.17 Major- and
trace-element analyses of
potassic igneous rocks from
the Porgera gold deposit,
Enga Province, Papua New
Guinea

Province/deposit Porgera Porgera

Location Papua New Guinea Papua New Guinea

Rock type Trachybasalt Trachybasalt

Tectonic setting Postcollisional arc Postcollisional arc

Reference Richards (1990a) Richards (1990a)

SiO2 48.25 45.08

TiO2 0.88 1.19

Al2O3 15.50 13.03

Fe2O3 7.07 9.47

FeO n.a. n.a.

MnO 0.16 0.17

MgO 5.73 12.23

CaO 9.61 11.41

Na2O 3.27 2.14

K2O 1.90 1.63

P2O5 0.34 0.64

LOI 7.29 3.01

Total 100.00 100.00

mg# 64 85

K2O/Na2O 0.58 0.76

Sc n.a. n.a.

V 230 240

Cr 170 785

Ni 59 388

Rb 44 45

Sr 665 630

Y 15 16

Zr 127 120

Nb 59 49

Ba 415 330

Hf 2.8 2.9

La 31 32

Ce 59 65

Sm n.a. n.a.

Yb n.a. n.a.

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron
calculated as ferric oxide. Data from Richards (1990a)
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setting, formed from high salinity fluids (Hei-
thersay et al. 1990; Heithersay and Walshe 1995;
Wilson et al. 2003), and were coeval with high-K
igneous rocks (e.g. Perkins et al. 1990a).

Many Cretaceous to Cenozoic epithermal (e.g.
El Indio) and porphyry-type (e.g. Bajo de la
Alumbrera; El Teniente) copper-gold deposits in
the Chilean and Argentinian Andes are hosted by
high-K calc-alkaline igneous rocks (e.g. Stults
1985; Tschischow 1989; Gröpper et al. 1991;
Reyes 1991; Kay et al. 2005; Stern et al. 2011),
and a direct genetic link between potassic mag-
matism and mineralization in this continental arc
has been proposed.

A similar genetic association between epither-
mal gold and porphyry copper-goldmineralization
and potassic igneous host rocks is also assumed at
the Miocene Porgera and Pliocene Misima gold
deposits, and the Pliocene Grasberg copper-gold
deposit, which occur in a postcollisional arc. Both
hypersalinefluid inclusions and stable isotope data
provide evidence for the involvement ofmagmatic
volatiles in ore formation (Richards 1992), and
gold mineralization occurred within 1 million
years of magmatism (Richards et al. 1991; Ron-
acher et al. 2002; Pollard and Taylor 2002; A.K.
Appleby written comm., 1996).

There is growing evidence that high-K igne-
ous rocks also may be an important component
of the setting of VMS deposits in late oceanic
arcs (e.g. Fiji: Colley and Greenbaum 1980; Flin
Flon, Manitoba, Canada: Syme and Bailes 1993;
Stern et al. 1995) and postcollisional arc (e.g.
western Tasmania: Crawford et al. 1992) set-
tings. The role of the high-K rocks is not defined,
and hence these associations are not discussed in
detail in this book. One possibility is that the
high-K igneous rocks mark tectonic settings
significantly inboard of subduction where there is
a greater chance of preservation of the deposits.

There is also evidence for an association
between molybdenum mineralization and high-K
igneous rocks in island arc settings (e.g. Polillo
Island, Philippines: Knittel and Burton 1985) and
between iron-oxide-Cu-Au (IOCG) minerali-
zation and volatile-rich potassic igneous rocks in

within-plate settings (e.g. Olympic Dam, South
Australia: Skirrow et al. 2007; Pirajno 2008;
Groves et al. 2010). This is discussed in more
detail in Chap. 7.
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7Direct Associations Between Potassic
Igneous Rocks and Copper-Gold
Deposits on Craton Margins

7.1 Introduction

Although this book is mainly about potassic
igneous rocks and hydrothermal gold and
gold-copper mineralization in volcanic arc envi-
ronments, there is increasing evidence for the
genetic association between volatile-rich potassic
igneous rocks and iron-oxide-Cu-Au (IOCG)
deposits (e.g. Campbell et al. 1998; Groves et al.
2010; Haywood 2013; Fazel et al. 2015; Sarj-
oughian et al. 2015) and intrusion-related gold
deposits (IRGD) in plume-related within-plate
settings (e.g. Goldfarb et al. 2005; Mair et al.
2011). Recent studies suggest that both IOCG and
IRGD systems form above metasomatized litho-
sphere from hydrothermal fluids connected to
mixed basic to felsic alkaline to sub-alkaline
intrusions that generated in sub-MOHO magma
chambers (see summary by Groves and Santosh
2015). Such systems provide strong chemical
potential gradients between greatly contrasting
magma geochemistry (Fig. 7.1), allowing both
metal and fluid migration from the hotter basic-
ultrabasic melts to the less-dense overlying felsic
melts, which then provide the source of ore fluid
and metals to form the IOCG and IRGD systems
(Groves and Santosh 2015). Additionally, both
deposit types are interpreted to share a common
within-plate tectonic setting, probably related to
mantle plumes along near-vertical, partly
fault-disrupted craton margins (Fig. 7.2). These
long-lived sutures, where previous paleo-

subduction events have enriched the lithosphere
with mantle-incompatible elements and metals
during metasomatism, provided preferred path-
ways for uprising asthenospheric mantle plumes
(Groves and Santosh 2015). Partial assimilation of
the LILE- and volatile-enriched upper mantle
sources by the basic and CO2-rich asthenospheric
plumes would provide the fertile melts capable of
forming the complex geochemical fingerprints
(i.e. high Cl, F, Co, Ni, Ba, LREE, HREE, U,
elements related to high fO2) of IOCG deposits.
This process would also explain the unusually
deep root zones of many IOCG deposits such as
Olympic Dam and Fe-P deposits such as Kiruna
(J. Bryant, pers. comm., 2011). Consequently, the
giant IOCG deposits of Olympic Dam, Australia,
and Salobo,Brazil, togetherwith otherworld-class
to giant deposits, are located on craton margins
(Grainger et al. 2008; Groves et al. 2010; Hay-
wood 2013). Additionally, the world-class to giant
IRGD system at Fort Knox, Alaska, is related to
hybrid monzogranite intrusions into shelf sedi-
mentary sequences, situated adjacent to, and
overlying, the western margin of the North
American Craton (Groves and Santosh 2015). The
giant Telfer gold deposit, between the Pilbara and
Kimberley cratons inWesternAustralia, is another
deposit that is probably an IRGD. The importance
of cratonic margins, and other deep-seated dis-
continuities, as plumbing systems for major cop-
per and gold deposits is also indicated by the
detailed analysis of combined geological,
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geophysical and isotopic data at the lithospheric
scale (cf. Begg et al. 2010; Hronsky et al. 2012).

Interestingly, there have been recent sugges-
tions (e.g. Cline et al. 2005; Muntean et al. 2011;
Johnson et al. 2015) that the gold deposits of the
giant Carlin province of Nevada, USA, on the
same western margin of the North American
Craton as Fort Knox, have at least an indirect
association to high potassic magmatism. The
Carlin deposits have an almost identical Eocene
age to the giant Bingham porphyry copper
deposit (see Sect. 6.4.2) to the east. However,
they were deposited from low-temperature
non-magmatic ore fluids, so the hot and
high-potassic magmas can only have acted as a
heat source driving the Carlin hydrothermal
system, not as the primary fluid source as for
Bingham (e.g. Cunningham et al. 2004).

The economically most significant examples
of IOCG deposits (Olympic Dam, Australia) and
IRGD associated with potassic igneous rocks
(Fort Knox, Alaska, USA) are discussed in more
detail below.

7.2 Iron-Oxide Copper-Gold (IOCG)
Deposits and Potassic Igneous
Rocks

7.2.1 Introduction

The iron-oxide copper-gold (IOCG) sensu stricto
deposits are magmatic-hydrothermal deposits
that contain economic copper and gold grades
and are typically controlled by deep-seated
structures or their intersections (e.g. Hitzman
2000; Williams et al. 2005; Groves et al. 2010).
Most IOCG systems contain significant volumes
of breccias, they may be accompanied by
pre-sulphide alkali (K-feldspar-biotite) and/or
sodic-calcic (albite-actinolite) alteration, but
lack widespread quartz veins or silicification
(Williams et al. 2005; Groves et al. 2010). Typ-
ically, the deposits show a temporal, but not
close spatial, relationship to major alkaline to
subalkaline intrusions that are derived from the
mantle (Groves et al. 2010). The IOCG deposits

are defined by abundant low-Ti iron oxides
(hematite and/or magnetite) and iron silicates that
are intimately associated with, but may be para-
genetically older than, Fe-Cu sulphides (Camp-
bell et al. 1998; Williams et al. 2005; Groves
et al. 2010). Copper-bearing sulphides tend to be
paragenetically late and postdate the
albite-actinolite alteration in the deeper seated
deposits (Williams et al. 2005). Independent
variation in fO2 conditions during mineralization
produced IOCG deposits ranging from pyrite-
poor examples with abundant chalcopyrite,
bornite, and chalcocite (e.g. Salobo, Brazil, and
Olympic Dam, Australia), to others in which
pyrite and chalcopyrite are the main sulphides
(e.g. Candelaria, Chile). Fluid inclusion and sta-
ble isotope studies indicate that highly saline
brines, probably directly sourced from
mantle-derived volatile-rich basic magmas, were
involved in the genesis of these deposits
(Campbell et al. 1998; Williams et al. 2005;
Groves et al. 2010). The exceptionally high REE
contents of IOCG deposits of typically 104 times
the chondritic value (Campbell et al. 1998) sug-
gest high halogen (Cl and F) contents of the
precipitating hydrothermal fluids as the REE are
known to have higher solubilities in Cl- and
F-rich solutions (Hellman et al. 1979; Oreskes
and Einaudi 1990; Allen and Seyfried 2005;
Tropper et al. 2011).

A likely source of the high Cu, Au, REE, and
volatile contents of IOCG deposits are portions
of the upper mantle that had been metasomati-
cally enriched during previous paleo-subduction
events (Groves et al. 2005; Haywood 2008).
Haywood (2008) further suggest that mixing of
these volatile- and metal-rich, alkaline, basic
melts with oxidized silicic crustal melts produced
sulphide-oxide immiscibility and volatile exso-
lution responsible for the formation of IOCG
deposits. The complexity of associated magma-
tism, with mafic to felsic plutons, can be
explained by mixing of alkaline parent
mantle-derived magmas with felsic magmas
derived from underplating of the parent magmas
below continental crust (cf. Hart et al. 2004).
A schematic model for the generation of IOCG
deposits is presented in Fig. 7.2. The alkalic
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dykes documented in numerous IOCG deposits
are interpreted as apophyses from large hydrous
alkaline magma chambers that underlay the
respective orebodies at the time of their forma-
tion (Campbell et al. 1998). The existence of a
large magma chamber would also explain the
coincident magnetic and gravity anomalies
associated with the Olympic Dam deposit
(Roberts and Hudson 1983).

7.2.2 Olympic Dam Cu-Au-U-REE
Deposit, South Australia

Introduction The Olympic Dam copper-
uranium-gold-silver deposit (Fig. 7.3) is located
about 520 km north-northwest of Adelaide in
South Australia (Wang et al. 1999). The deposit
was discovered by Western Mining Corporation

(WMC) in 1975 during an extensive multi-
disciplinary exploration program. The discovery
drill hole RD-1 was collared near the Olympic
Dam stock watering hole on Roxby Downs station
and intersected sub-economic copper minerals at
depths ofmore than 300m (J. Bryant, pers. comm.,
2011). The follow-up drill holes were disap-
pointing, but the persistence of WMC’s explora-
tion team was rewarded with hole RD-10
intersecting >170 m at >2 wt% copper.

Olympic Dam has total indicated resources of
4571 Mt at 0.88 wt% copper, 0.34 g/t gold,
1.56 g/t Ag and 280 g/t U3O8 (mining-
technology.com). The mine is currently oper-
ated as an underground operation by BHP Billi-
ton. Olympic Dam does not only represent one of
the largest copper deposits in the world, but it
also contains economic by-products of silver and
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LREE (Oreskes and Einaudi 1990; Campbell
et al. 1998; Williams et al. 2005). No other
deposit is known to have the same metal asso-
ciation and similar grades (Johnson and McCul-
loch 1995). Consequently there has been much
curiosity and speculation regarding possible
genetic models for its origin and potential
exploration strategies for further discoveries
(Johnson and McCulloch 1995).

Regional Geology The Archaean Gawler cra-
ton, which underlies a large area of southern
Australia, is separated from another cratonic block
to the east, the Curnamona province, by Protero-
zoic continental supracrustal rocks preserved in
the early Paleozoic Adelaide Fold Belt (Fig. 7.3).
Olympic Dam is concealed beneath >300 m of
Proterozoic and Cambrian sedimentary cover near
the northeastern margin of the Gawler craton
(Reeve et al. 1990; Williams et al. 2005). The
deposit is hosted by Middle Proterozoic monz-
ogranites and related breccias (Fig. 7.4). Several
smaller IOCG systems occur in the vicinity of
Olympic Dam (Skirrow et al. 2002) and other
large deposits have been discovered at Prominent
Hill to the north and Carrapateena to the south of
Olympic Dam on the same craton margin. The
mineralization at Olympic Dam (Fig. 7.4) occurs
in a 7 by 5 km zone of brecciated and altered rock
developed within the Hiltaba-Suite Roxby Downs
granite that has been dated at 1588 ± 4 Ma
(Oreskes and Einaudi 1990; Johnson and Cross
1995). The hematite-rich breccias contain large
blocks of sedimentary rocks and have been
interpreted to represent a diatreme-maar volcanic
setting (e.g. Haynes et al. 1995).

Nature of Copper-Uranium-Gold-Silver
Mineralization Hematite-rich breccias that
host the bulk of the ore are generally
matrix-supported with clast sizes mostly <20 cm,
but ranging up to tens of meters (Reeve et al.
1990). The breccias typically form steeply dip-
ping, northwest-striking, dyke-like bodies within
fractured granite (Oreskes and Einaudi 1990).
The vertical extent of these breccias extends to
depths much greater than 1 km (Oreskes and
Einaudi 1990). The dominant alteration

assemblage at Olympic Dam is
sericite-hematite ± chlorite ± quartz ± siderite
(Williams et al. 2005). Hematite occurs as
euhedral laths and fine-grained aggregates in the
matrices of all breccias types (Oreskes and Ein-
audi 1990). By contrast, magnetite is subordi-
nate, paragenetically earlier than the
hematite-phyllosilicate alteration, and concen-
trated in the deeper parts of the system as sug-
gested by deep exploration drilling (J. Bryant,
pers. comm., 2011), suggesting that the wide-
spread hematite alteration could represent a sur-
ficial oxidation product (i.e. martitization)
overprinting an originally magnetite-dominated
orebody.

Economic mineralization consists of
breccia-hosted chalcopyrite-bornite-chalcocite ±
pyrite assemblages (Johnson and McCulloch
1995). The Cu-Fe sulphides commonly are
intergrown with fluorite and locally rim corroded
quartz grains (Oreskes and Einaudi 1990).
Locally, the sulphides also occur as disseminated
grains interstitial to hematite grains in breccia
matrices (Campbell et al. 1998). Radiogenic
isotope studies reveal that the sulphide-rich
hematitic breccias share an initial ΣNd signature
of about −2.5, suggesting that these ore types are
cogenetic (Johnson and McCulloch 1995). The
host Roxby Downs granite has an initial ΣNd
value of about −5.0, and therefore cannot alone
have been the source of the mineralizing fluids
(Johnson and McCulloch 1995). The isotope data
clearly suggest a contribution from a mantle-
derived basic magma (Johnson and McCulloch
1995; Campbell et al. 1998). The hematite
breccias also have high LREE and HREE con-
tents, averaging about 5000 ppm and about 104

times the chondritic value, and the total LREE
content and La/Lu ratios are positively correlated
with hematite abundance (Oreskes and Einaudi
1990). Five hydrothermal REE-bearing mineral
phases have been identified: bastnaesite, floren-
cite, monazite, xenotime, and britholite (Oreskes
and Einaudi 1990).

The orebody is intruded by numerous ultra-
mafic, mafic, and felsic dykes which are tempo-
rally related to the hydrothermal activity
(Williams et al. 2005). A post-mineral dyke has
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been dated at 1592 ± 8 Ma (Johnson and Cross
1995), implying that the deposit formed soon
after emplacement of the Roxby Downs granite
(i.e. 1588 ± 4 Ma; Oreskes and Einaudi 1990).
A pipe-like body of barren hematite-quartz
breccias forms the centre of the orebody
(Fig. 7.4), that is progressively surrounded by a
complex zone of granite-rich breccias and
hematite-altered granite (Reeve et al. 1990).

Petrography and Geochemistry of the
Potassic Host Rocks The Olympic Dam IOCG
mineralization is restricted to a hematitic breccia
complex (Reeve et al. 1990), which occurs
wholly within the Roxby Downs monzogranite
(Fig. 7.4). Where unaltered, the monzogranite is
a pink-red, medium- to coarse-grained rock with
massive textures (Reeve et al. 1990; Johnson and
McCulloch 1995). The K-feldspar commonly
displays rapakivi textures, where K-feldspars are
rimmed by albite. Geochemically, the rock is

characterized by high K2O, LILE, LREE, HREE,
HFSE, U, and F (Collins et al. 1982; Creaser
1989; Johnson and McCulloch 1995), reflecting a
within-plate tectonic setting (cf. Müller et al.
1992). The hematitic breccias which host the
bulk of mineralization vary from matrix-poor
types showing crackle or jigsaw textures, to
matrix-supported types with rotated clasts
(Johnson and McCulloch 1995). Their composi-
tional variability encompasses: (1) heterolithic
breccias with abundant hematite and monzogra-
nite clasts; (2) hematite breccias with dominantly
hematite clasts; and (3) hematite-quartz breccias
with clasts of hematite and granite-derived
quartz. The matrix typically consists of
reworked granite fragments and fine-grained
hematite aggregates (Oreskes and Einaudi
1990). Minor components occurring as discrete
clasts include sulphides ± pitchblende, fluor-
ite, barite and siderite (Johnson and
McCulloch 1995).
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7.3 Intrusion-Related Gold Deposits
(IRGD) and Potassic Igneous
Rocks

7.3.1 Introduction

Although many orogenic gold deposits have
spatial, and more rarely temporal, associations,
but no genetic link, with felsic plutons,
intrusion-related gold deposits (IRGD) have a
clear genetic relationship with host or adjacent
plutons (Goldfarb et al. 2005) that are hybrid
mantle-crustal high-K magmas (Mair et al.
2011). The IRGD systems differ from porphyry
and skarn copper-gold and epithermal gold
deposits in terms of the relatively low fO2 of their
associated intrusions when compared to arc
magmas (see Sect. 10.3.2). Intrusion-related gold
deposits represent a relatively new group of gold
deposits that are hosted primarily within, or in
the immediate wall rocks to, intrusions (Lang and
Baker 2001). Exploration interest has been
attracted to this group of deposits in the last
decade due to their attributed global distribution
(Fig. 7.2), although only a small number of
undoubted IRGDs contain a significant gold
resource of >3 Moz (Goldfarb et al. 2005).
World-class to giant examples include Fort Knox
(Bakke et al. 2000), and probably Telfer (Rowins
et al. 1997) and Morila (McFarlane et al. 2011).
Other world-class deposits such as Donlin Creek
and Pogo in Alaska, as well as Kidston in Aus-
tralia, Kori Kollo in Bolivia, and Vasilkovsky in
Kazakstan, described by Lang and Baker (2001),
among others, as IRGDs are now considered
unlikely to belong to this group (Goldfarb et al.
2005).

Intrusion-related gold deposits have several
distinct characteristics including their associa-
tions with: (1) intermediate to felsic intrusions
with relatively low fO2 that were derived from
potassic basic parent magmas sourced from the
lithospheric mantle (2) carbonic, CO2-rich,
hydrothermal fluids; (3) Bi-W-As-Te-Sb-Sn ore
assemblages; (4) relatively low sulphide contents
(<5 vol.%); (5) weak hydrothermal alteration
zones; and (6) continental within-plate tectonic

settings (Thompson et al. 1999; Lang and Baker
2001; Goldfarb et al. 2005); on (7) craton mar-
gins (Mair et al. 2011; Groves and Santosh
2015).

7.3.2 Fort Knox Gold Deposit, Alaska,
USA

Introduction The Fort Knox gold deposit is
situated about 40 km northeast of Fairbanks in
eastern Alaska. Fort Knox represents the largest
tonnage IRGD in the world (Bakke et al. 2000)
and total resources now total about 7 Moz gold.

The Fort Knox area was actively explored for
gold placer deposits from 1902 when a pros-
pector discovered gold nuggets in the Fish Creek
located downstream of the Fort Knox deposit
(Quandt et al. 2008). Since that initial discovery,
small placer deposits in the Fairbanks mining
district have produced >8 Moz of gold. In 1980,
two local prospectors recovered bismuthinite
nuggets containing abundant gold. The demon-
strated correlation between the gold and bismuth
resulted in a systematic exploration program
involving panning and trenching in the area
(Quandt et al. 2008). In 1984, a consulting
geologist noted the presence of native gold in
quartz veins hosted by monzogranite in the Fort
Knox area. Subsequently, the claims were leased
to an exploration joint venture between Nye
Minerals and Electrum Resources in 1987 which
commenced a large exploration program. In
1992, Amax Gold purchased the Fort Knox
project and established Fairbanks Gold Mining, a
wholly-owned subsidiary, to operate the project
(Quandt et al. 2008). The orebody was delineated
by soil sampling and exploration drilling in late
1992. In 1998, Kinross Gold Corporation
acquired the Fort Knox property as part of its
merger with Amax Gold Inc. (Quandt et al.,
2008). The deposit has been mined as an open-pit
operation by Kinross Gold Corporation since
1998.

Regional Geology The Fairbanks district is
situated on the western margin of the North
American Craton in the northwestern part of the
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Yukon-Tanana Terrane, which consists of
poly-metamorphic rocks of Precambrian to upper
Paleozoic ages (Quandt et al. 2008). The domi-
nant rock types are grey to brown, fine-grained
mica schists and micaceous quartzites, locally
known as the Fairbanks Schist, that is locally
intruded by Cretaceous granodiorite and granite
stocks (Fig. 7.5; Quandt et al. 2008). The Cleary
Sequence, comprising bimodal meta-rhyolite and
meta-basalt with actinolite schist, graphite schist,
and marbles, is intercalated with the Fairbanks
Schist. The northern part of the district contains
outcrops of amphibolite-facies metamorphosed
rocks of the Paleozoic Chatanika Terrane
(Quandt et al. 2008).

Fort Knox belongs to the Tintina gold prov-
ince which forms a broad Cretaceous (110–
65 Ma) magmatic belt that continues for
>1500 km, from southwestern Alaska, across
central Alaska and Yukon, to the westernmost
Northwest Territories (Hart et al. 2002; Goldfarb
et al. 2005). The province contains both
intrusion-related gold deposits including Fort
Knox, Dublin Gulch, Brewery Creek and possi-
bly Shotgun, and orogenic gold deposits such as
Pogo and Donlin Creek (Goldfarb et al. 2005).

The gold deposits are generally situated in a
northeast trending, structurally complex zone
characterized by a series of folds, shear zones,
high-angle faults, and rare low-angle faults
(Quandt et al. 2008). Northeast-striking
high-angle faults (Fig. 7.5), which display
strike-slip displacements, influence the location
of gold deposits that are related to movement
along the regional north-bounding Tintina Fault
system and the south-bounding Denali Fault
system, respectively (Quandt et al. 2008). The
Fairbanks Schist is intersected by several late
Cretaceous to early Tertiary intrusions ranging
from ultramafic to felsic compositions (Quandt
et al. 2008), including lamprophyre dykes (Hart
et al. 2004; Mair et al. 2011).

Nature of Gold Mineralization The Fort Knox
gold deposit (Hart et al. 2004; Goldfarb et al.
2005) is hosted by a small elongate (1 km2),
biotite- and hornblende-bearing composite gran-
ite stock (Fig. 7.5). Magmatic biotites from this
intrusion are dated at about 88–86 Ma using
40Ar/39Ar methods (Selby et al. 2002). Radio-
genic isotope data indicate a significant crustal
component to the magmas (Lang et al. 2000), but
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Fig. 7.5 Simplified
geologic map of the Fort
Knox gold deposit, Alaska,
USA, showing the
dominant
northeast-oriented regional
structural trend. Modified
after Quandt et al. (2008)
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locally, there are also important contributions
from ancient metasomatized mantle (Hart et al.
2004; Goldfarb et al. 2005). The surface expo-
sure of the elongate composite intrusion mea-
sures approximately 1100 by 600 m across
(Quandt et al. 2008). The intrusion is offset by
two northeast-trending structures which display
left-lateral strike slip movement. These struc-
tures, the Monte-Cristo Fault and Melba Fault,
are regional in extent and also offset the Gilmore
Dome pluton south of Fort Knox (Quandt et al.
2008). The gold mineralization mainly consists
of fine-grained native gold and it has a distinctly
low (<0.10 vol.%) sulphide content (Quandt
et al. 2008). Typical sulphide phases documented
at Fort Knox are rare maldonite, bismuthinite,
bismite, tetradymite, and native bismuth (Quandt
et al. 2008). Native gold grains measure
<100 microns in diameter and typically occur in
and along the margins of pegmatite veins, quartz
stockwork veins and veinlets, quartz-veined
shear zones, and fractures within the granite
(Fig. 7.6). Pervasive hydrothermal alteration
zones are lacking at Fort Knox (Goldfarb et al.
2005), but locally, quartz veins and veinlets can
have thin albitic and/or phyllic alteration selv-
edges that range in thickness from 0.5 to 3.0 cm

(Quandt et al. 2008). The stockwork veins strike
predominantly east and have steep dips (Quandt
et al. 2008). The stockwork vein density gener-
ally increases with depth. Shear zones typically
strike northwest and dip moderately to the
southwest. Gold mineralization in the
quartz-filled shears is distributed relatively
evenly (Quandt et al. 2008).

Petrography and Geochemistry of the
Potassic Host Rocks The granite stock hosting
the Fort Knox deposit has very variable textures
and compositions, ranging from fine-grained
granodiorite, through medium-grained biotite-
granite, to coarse-grained biotite-monzogranite
porphyry with phenocrysts of quartz, K-feldspar,
biotite and hornblende (Quandt et al. 2008). The
diverse textural and geochemical varieties as well
as sharp to gradational intrusive contacts suggest
that the Fort Knox pluton represents a composite,
multi-phase intrusion (Quandt et al. 2008). The
local occurrences of orthoclase megacrysts, re-
sorbed quartz phenocrysts, and quartz
glomero-phenocrysts support that interpretation
(Quandt et al. 2008). Crenulated quartz layers
(i.e. brain rock) and dendritic growths of quartz
and K-feldspar documented in the Fort Knox

Coarse-grained granite

S N

Shear zone with sericite halos

Pegmatite/aplite with mostly
feldspar halos

Medium-grained granite

Fine-grained granite

Schist/quartzite
Veining arrays with feldspar-quartz
and/or white mica quartz halos

Fig. 7.6 Geological
cross-section (N-S) of the
Fort Knox gold deposit,
Alaska, USA, showing the
composite monzogranite
stock that hosts the
mineralization. At least
three intrusive phases
ranging from coarse- to
fine-grained may be
distinguished. The
late-stage shear zones
containing high-grade gold
mineralization (up to
1.0 oz/t) are also shown.
Adapted from Bakke et al.
(2000)
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intrusion assist to evaluate intrusive contacts and
paragenesis (Bakke et al. 2000; Quandt et al.
2008). High whole-rock K2O contents (>4.3 wt
%), low Fe2O3/FeO ratios (0.15–0.3), and low
magnetic susceptibilities, suggest a reduced oxi-
dation state of the high-K parent magma (Hart
et al. 2004), consistent with more detailed geo-
chemical studies at the smaller IRGD-associated
Scheelite Dome complex to the east (Mair et al.
2011).
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8Indirect Associations Between
Lamprophyres and Gold-Copper
Deposits

8.1 Introduction

Lamprophyres (cf. Rock 1991) are recorded from
many different tectonic settings worldwide,
including the Eastern Alps, Austria (e.g. Müller
et al. 1992a), Yilgarn Craton, Western Australia
(e.g. Taylor et al. 1994), Karinya Syncline, South
Australia (Müller et al. 1993), Bahia province
(Rios et al. 2007) and São Francisco Craton,
Brazil (Plà Cid et al. 2012), Superior Province,
Canada (e.g. Wyman 1990), Sulu Orogen, E
China (Guo et al. 2004), Yunnan Province, SW
China (e.g. Lu et al. 2015b), NW Iran (Agha-
zadeh et al. 2015), NW Mexico (Orozco-Garza
et al. 2013), Central Oman (Worthing and Nasir
2008), and Turkey (Asan and Ertürk 2013; Karsli
et al. 2014).

Examples of associations between gold min-
eralization and high-K rocks in postcollisional arc
settings include the spatial and temporal associ-
ations between Archaean shoshonitic lampro-
phyres and orogenic lode-gold deposits in the
Superior Province, Canada (Wyman and Kerrich
1989a), including associations with very large
gold deposits at Hollinger-McIntyre and Kerr
Addison-Chesterville (Burrows and Spooner
1989; Spooner 1993), and in the Leonora-

Laverton and New Celebration-Kambalda
regions of the eastern Yilgarn Block, Western
Australia (Perring et al. 1989; Rock et al. 1989;
Barley and Groves 1990; Taylor et al. 1994).
These associations are discussed in Sects. 8.4 and
8.5, respectively. More recently, the association
between lamprophyres and orogenic gold depos-
its has also been documented in the Yunnan
Province, China (e.g. Wang et al. 2001; Chen
et al. 2014; Lu et al. 2013b, 2015). Additionally,
Štemprok et al. (2014) note their association
with hydrothermal Sn–W mineralization in the
Erzgebirge, East Germany. Lamprophyre dykes
are also recorded at the giant Bingham, USA
(Maughan et al. 2002), El Teniente, Chile (Stern
et al. 2011), porphyry copper-gold, and the
Yao’an, China (Lu et al. 2013a, b), porphyry gold
deposits, respectively.

There are also spatial associations between
lamprophyres and gold deposits in Proterozoic
terrains, including those in the vicinity of the
Goodall and Tom’s Gully mines in the Pine
Creek Geosyncline of the Northern Territory,
Australia, as described in Sects. 8.2 and 8.3,
respectively. In this chapter, it is shown that
although there is a strong spatial correlation
between lamprophyres and gold deposits, this is
an indirect rather than a genetic relationship.
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8.2 Shoshonitic Lamprophyres
with Elevated Gold
Concentrations
from the Goodall Gold Deposit,
Northern Territory, Australia
(Proterozoic)

8.2.1 Introduction

This section describes and discusses lamprophyre
dykes from the Goodall gold deposit in the Pine
Creek Inlier, Northern Territory, Australia,
because of their spatial association with gold
mineralization. The Goodall deposit is described
in some detail here because much of the data was
collected specifically for this study (cf. Müller
1993), but have not been published elsewhere.
Goodall mine has been operated by Western
Mining Corporation since 1988. Bulk reserves
were about 1 Mio oz of gold (D. Quick, pers.
comm. 1992).

8.2.2 Regional Geology

The Pine Creek Geosyncline, which forms the
major mineral province of the Northern Territory,
consists of an Early Proterozoic (ca. 1900 Ma)
metavolcanosedimentary sequence covering about
66,000 km2 between Darwin and Katherine
(Needham et al. 1988; Needham and De Ross
1990). Three main geological units of the Pine
Creek Geosyncline can be distinguished (Needham
and De Ross 1990):

• Early Proterozoic sedimentary rocks depos-
ited in a shallow intra-cratonic geosyncline.

• Late Early Proterozoic rift-related felsic vol-
canic rocks.

• Subhorizontal platform sandstones of Middle
Proterozoic age.

The Early Proterozoic sedimentary rocks
consist of shales, siltstones, sandstones, con-
glomerates, and carbonates which were meta-
morphosed during the Top End Orogeny (ca.
1870–1690 Ma; Stuart-Smith et al. 1986: page
1988). Geophysical modeling by Tucker et al.

(1980) suggests that the basement is granitic
throughout the whole region.

Regional metamorphism in the area decreases
from upper amphibolites and granulite facies in
the northeast, to lower greenschist facies in the
centre, and increases to upper greenschist facies
in the Rum Jungle area (Sheppard 1992). Most
felsic and mafic intrusions in the area were em-
placed during the Top End Orogeny (Needham
et al. 1988). The earliest known granitoid intru-
sions are in the Nimbuwah domain to the east
(ca. 1870 Ma) and in the Litchfield domain to the
west (1850–1840 Ma; Needham et al. 1988).
Lamprophyre intrusions are common in the
central part of the Pine Creek Geosyncline
(Stuart-Smith et al. 1986; Nicholson and Eupene
1990), and representative samples from the
Mount Bundey area near Tom’s Gully (Fig. 8.1)
were dated via a Pb–Pb isochron at ca.
1831 ± 6 Ma (Sheppard and Taylor 1992).

Most economic deposits are restricted to the
central part of the Pine Creek Geosyncline
(Sheppard 1992). The area is notable as one of
the world’s largest and richest uranium prov-
inces, as well as being a significant gold province
within Australia (Needham and De Ross 1990).
Despite the episodic nature of gold mineraliza-
tion through Earth history, with production lar-
gely dominated by late Archean and Mesozoic to
Recent deposits, and only few discovered Pro-
terozoic deposits (Barley and Groves 1992),
there are several large gold producers in the Pine
Creek Geosyncline (Sheppard 1992). Three
styles of gold mineralization can be
distinguished:

• Gold associated with uranium ores.
• Stratiform gold ores.
• Epithermal quartz-vein stockwork gold min-

eralization which is commonly accompanied
by lamprophyre dykes.

The last-mentioned forms the most economi-
cally important style (e.g. Goodall and Wool-
wonga mines; Nicholson and Eupene 1990;
Smolonogov and Marshall 1993). The heat
source, and possibly the fluid and metal source,
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for much of the vein-type deposits were probably
the Middle Proterozoic granites, spanning the
period 1870–1765 Ma (Needham and Roarty
1980; Wall 1990; Sheppard 1992).

8.2.3 Nature of Orogenic Gold
Mineralization

The Goodall gold deposit is hosted by folded
Early Proterozoic greywackes, siltstones, and
shales of the Finniss River Group (Fig. 8.1) in the
central part of the Pine Creek Geosyncline.
Low-grade metamorphosed and folded sedimen-
tary rocks are discordantly cut by lamprophyre
dykes striking north-northwest. The sediment-
hosted ore shoots also strike north-northwest. The
thickness of dykes varies from 10 to 50 cm, and
they are exposed in both the open pit and several
diamond-drill holes. The lamprophyres appear to
be broadly parallel to fold axial planes, and they
either predate gold mineralization or have been
intruded synchronously with it. All dykes are
affected by hydrothermal alteration, which has
produced secondary sericitization, and several

dykes in the open pit are mineralized. Most dyke
rocks analyzed in this study were sampled from
exploration drill holes, with one sample collected
in the open pit.

Sulphide mineralization at Goodall occurs
mainly as epigenetic quartz stockwork veining in
bleached sericitized siltstones, and rarely as dis-
seminated assemblages, and it consists mainly of
arsenopyrite, pyrite, and chalcopyrite. Native
gold appears to be entirely vein-related, occur-
ring as visible gold accompanied by arsenopyrite.

8.2.4 Mineralogy
of the Lamprophyres

Most Goodall lamprophyres are characterized by
cognate mica phenocrysts in a groundmass of
feldspar and quartz. One sample contains
amphibole phenocrysts which are completely
altered to chlorite. Only their typical shapes
allow them to be classified as former amphiboles.
Two generations of mica phenocrysts with dif-
ferent sizes can be distinguished: a phenocryst
phase with large phenocrysts (up to 4 mm) and a

Fig. 8.1 Geological
overview of the Pine Creek
Geosyncline, Northern
Territory, Australia,
showing the Goodall and
Tom’s Gully gold deposits.
The Mount Bonnie
Formation, Gerowie Tuff,
and Koolpin Formation
comprise the South
Alligator Group. Modified
after Stuart-Smith et al.
(1986)
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Table 8.1 Microprobe
(WDS) analyses of mica
phenocrysts from
lamprophyres at Goodall
gold deposit, Northern
Territory, Australia

Province/deposit Goodall Goodall

Location Northern Territory, Australia Northern Territory, Australia

Sample no. 119115 119115

Reference Müller (1993) Müller (1993)

SiO2 40.91 44.63

TiO2 3.12 4.44

Al2O3 27.68 29.74

FeO (tot) 9.93 3.82

Cr2O3 0.02 0.02

MnO 0.04 0.04

MgO 6.55 3.33

NiO 0.06 0.05

BaO 0.29 0.31

CaO 0.03 0.03

SrO 0.12 0.10

K2O 6.78 8.82

Na2O 0.10 0.11

Cl 0.02 0.02

F 0.35 0.47

Total 96.00 96.24

mg# 60 67

Ox. form. 22 22

Atoms

Si 5.861 6.037

Ti 0.323 0.451

Al 4.673 4.739

Fe 1.189 0.431

Cr 0.002 –

Mn 0.001 0.003

Mg 1.398 0.671

Ni 0.001 0.005

Ba 0.016 0.016

Ca – 0.005

Sr – 0.006

K 1.239 1.521

Na 0.028 0.030

Cl – –

F – –

Total 14.731 13.915

Ox. form. = oxygen formula. Sample numbers refer to specimens held in the Museum of
the Department of Geology and Geophysics, The University of Western Australia. Data
from Müller (1993)
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groundmass phase with small, elongated mica
flakes (*1 mm). The rocks have been hydro-
thermally altered after or during dyke emplace-
ment, with chloritization of the mica and
amphibole phenocrysts (Table 8.1), and sericiti-
zation of groundmass feldspars.

8.2.5 Geochemistry
of the Lamprophyres

The whole-rock major- and trace-element geo-
chemistry of the lamprophyres from Goodall
gold mine is shown in Table 8.2. The investi-
gated lamprophyres have andesitic compositions
(51.4–63.1 wt% SiO2) with low TiO2 (<0.87 wt
%), high but variable Al2O3 (14.13–18.46 wt%),
and high K2O (>2.3 wt%) contents. The K
enrichment is probably due to secondary serici-
tization. The lamprophyres are characterized by
extremely low Na2O (<0.25 wt%) and very low
CaO (<0.89 wt%) contents, which were probably
caused by secondary alteration processes. The
use of the K2O versus SiO2 biaxial plot of Pec-
cerillo and Taylor (1976), in order to determine
the shoshonitic geochemistry of the samples, is
flawed due to the mobilization of alkali elements
during hydrothermal alteration. However, all
samples plot in the shoshonite fields of the Ce/Yb
versus Ta/Yb and the Th/Yb versus Ta/Yb
biaxial plots (Fig. 8.2). Since these elements
are considered to be essentially immobile during
secondary alteration processes (Pearce and Cann
1973; Pearce 1982), the plots allow the classifi-
cation of the dykes as shoshonitic lamprophyres.
For comparison, the lamprophyres from the
Mount Bundey area, located about 40 km
northeast of Goodall gold mine (Sheppard and
Taylor 1992), have also been plotted on Fig. 8.2.
They form a different dyke swarm with a dis-
tinctive geochemistry (see Sect. 8.3).

The lamprophyres range from fractionated to
relatively primitive (mg# of 42–67), with high V
(*160 ppm) and moderate Ni (*40 ppm) con-
centrations. The low Ba and Sr concentrations
and the Ba/Nb ratios of <71, which are relatively
low in comparison with mica-phyric shoshonitic
magmas from other localities (e.g. Chap. 3), are

not primary features and are likely to have been
caused by mobilization of these elements during
secondary alteration processes. The original
rocks were probably characterized by very high
enrichments of LILE, a common feature of
unaltered shoshonitic rocks (Morrison 1980;
Müller et al. 1992b; Campbell et al. 2014).

The investigated lamprophyre dykes have a
different geochemistry from those of the Mount
Bundey area (Sheppard and Taylor 1992). In
comparison, the Goodall lamprophyres are
characterized by higher SiO2 (>51 wt%) and
Al2O3 (>14 wt%), and much lower P2O5 contents
(<0.6 wt%) than those from the Mount Bundey
suite (generally <50 wt%, <13 wt%, >0.7 wt%,
respectively). The Goodall lamprophyres are also
strongly affected by secondary alteration, as
reflected in their extremely low Na2O and CaO
contents mentioned above. The suites differ in
their trace-element geochemistry, with much
lower LILE (<302 ppm Rb, <71 ppm Sr), lower
LREE (<49 ppm La, <86 ppm Ce), and lower
HFSE (<0.87 wt% TiO2, <258 ppm Zr, <14 ppm
Nb, <5.5 ppm Hf) concentrations for the Goodall
lamprophyres. The Mount Bundey dykes, as
described by Sheppard and Taylor (1992), con-
tain very high LILE (up to 355 ppm Rb, up to
3635 ppm Sr), very high LREE (up to 340 ppm
La, up to 750 ppm Ce), and higher HFSE (up to
2.1 wt% TiO2, up to 932 ppm Zr, up to 75 ppm
Nb, up to 21 ppm Hf) contents which are typical
for potassic igneous rocks, such as lamprophyres,
generated in a within-plate tectonic setting
(Müller et al. 1993; Worthing and Nasir 2008).
However, the use of the geochemical discrimi-
nation diagrams (see Chap. 3) in order to deter-
mine the tectonic setting of the Goodall
lamprophyres is not appropriate because of the
strong hydrothermal alteration.

8.2.6 Direct or Indirect Link Between
Potassic Lamprophyres
and Mineralization

A possible genetic link between shoshonitic
lamprophyres and orogenic gold mineralization,
as discussed above, has been proposed by Rock

8.2 Shoshonitic Lamprophyres with Elevated Gold Concentrations … 207

http://dx.doi.org/10.1007/978-3-319-23051-1_3
http://dx.doi.org/10.1007/978-3-319-23051-1_3


Table 8.2 Major- and trace-element analyses of lamprophyres from Goodall gold deposit, Northern Territory,
Australia

Province/deposit Goodall Goodall Goodall Goodall Goodall Goodall Goodall

Location Northern
Territory,
Australia

Northern
Territory,
Australia

Northern
Territory,
Australia

Northern
Territory,
Australia

Northern
Territory,
Australia

Northern
Territory,
Australia

Northern
Territory,
Australia

Sample no. 119111 119112 119113 119114 119115 119116 119117

Reference Müller
(1993)

Müller
(1993)

Müller
(1993)

Müller
(1993)

Müller
(1993)

Müller
(1993)

Müller
(1993)

SiO2 51.40 54.80 63.10 54.10 56.00 60.10 54.80

TiO2 0.80 0.85 0.63 0.85 0.87 0.74 0.81

Al2O3 15.60 14.13 18.46 16.66 17.06 16.25 16.02

Fe2O3 16.07 10.47 5.18 13.93 9.58 9.20 14.28

FeO n.a. n.a. n.a. n.a. n.a. n.a. n.a.

MnO 0.31 0.06 0.02 0.04 0.05 0.02 0.04

MgO 5.01 9.29 2.95 5.72 7.18 4.96 5.72

CaO 0.37 0.89 0.17 0.26 0.24 0.03 0.27

Na2O 0.16 0.25 0.15 0.12 0.16 0.16 0.13

K2O 3.57 2.31 5.27 3.68 3.10 3.80 3.13

P2O5 0.21 0.67 0.23 0.22 0.15 0.22 0.20

LOI 6.45 6.39 4.02 4.46 5.72 4.62 4.70

Total 99.96 100.14 100.13 100.02 100.11 100.10 100.07

mg# 42 67 57 49 63 55 48

V 164 227 107 185 166 206 167

Ni 38 68 28 12 59 81 42

Cu 171 67 20 265 20 20 20

Zn 109 92 60 62 105 78 48

As n.a. n.a. 32 250 34 75 61

Rb 164 89 302 139 140 209 147

Sr 16 71 39 9 11 11 11

Y 18 26 30 22 20 20 24

Zr 148 258 206 154 166 139 149

Nb 12 10 14 9 5 6 6

Sb n.a. n.a. 2.4 4.4 3.9 11 2.1

Ba 860 514 616 274 142 353 249

La 32.9 43.6 49.8 37 34.3 27.9 35

Ce 63 80 86 69 64 49 66

Yb 1.6 1.6 2.8 1.8 1.9 1.5 1.9

Hf 3.2 5.5 5.2 3.4 3.6 3 3.5

Ta 0.7 0.6 0.8 0.5 0.4 0.4 0.4

W n.a. n.a. 4.5 14 2 3 4.5

Th 15 17 18 14 13 8 14

(continued)
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and Groves (1988a, b). The intrusion of lam-
prophyric magmas into the crust is capable of
promoting hydrothermal circulation and initiat-
ing partial melting, thereby generating felsic
high-K igneous rocks which are commonly
associated with gold deposits (Sheppard 1992;
Betsi and Lentz 2011; Lu et al. 2013b; Heidari
et al. 2015). During crystallization, lamprophyres
can generate S- and CO2-rich fluids, analogous to
those thought responsible for the genesis of
orogenic gold deposits (e.g. Rock 1991).

Some lamprophyres from the Goodall deposit
indeed show enrichments in Au of up to 59 ppb
(Table 8.2). The elevated Au values are, however,
unlike those of the potassic rocks from the Kari-
nya Syncline (Chap. 5) in that they are decoupled
from Cu and Pd peaks in primitive mantle-nor-
malized distribution plots (Fig. 8.3; after Brüg-
mann et al. 1987), suggesting that the anomalous
Au contents are secondary features (Wyman and
Kerrich 1989a). The high Au enrichment com-
pared to other chalcophile elements such as Cu
and Pd is reflected in the high Au/Pd (up to 54)
and Au/Cu ratios (up to 1.4), compared to prim-
itive mantle ratios of 0.25 and 0.036, respectively
(Brügmann et al. 1987). Hydrothermal mineral-
izing fluids which overprinted the dykes after
emplacement are thought to be responsible for the
elevated gold concentrations in the dykes. This
interpretation is consistent with the high

correlation between Au and its pathfinder ele-
ments (e.g. As, W), as shown in Table 8.3. In
comparison to the Truro lamprophyres from
South Australia (see Sect. 5.3), the lamprophyres
at Goodall are situated in a major gold-mining
area and were intensively altered (sericitization)
by hydrothermal fluids after emplacement.

8.3 Shoshonitic Lamprophyres
from the Tom’s Gully Gold
Deposit, Northern Territory,
Australia (Proterozoic)

8.3.1 Introduction

No direct genetic associations between potassic
igneous rocks from within-plate tectonic settings
and economic epithermal gold or porphyry
copper-gold mineralization have been reported to
date. However, indirect associations, where both
gold mineralization and potassic lamprophyre
dykes were emplaced along major fault zones,
are apparent in some areas, as discussed in
Sect. 8.2 for the Goodall district.

A further example of a probable within-plate
association is the Tom’s Gully gold deposit in
the Mount Bundey area, Northern Territory,
Australia.

Table 8.2 (continued)

Province/deposit Goodall Goodall Goodall Goodall Goodall Goodall Goodall

Location Northern
Territory,
Australia

Northern
Territory,
Australia

Northern
Territory,
Australia

Northern
Territory,
Australia

Northern
Territory,
Australia

Northern
Territory,
Australia

Northern
Territory,
Australia

Sample no. 119111 119112 119113 119114 119115 119116 119117

Reference Müller
(1993)

Müller
(1993)

Müller
(1993)

Müller
(1993)

Müller
(1993)

Müller
(1993)

Müller
(1993)

Pd n.a. n.a. <1 <1 <1 <1 <1

Pt n.a. n.a. <5 <5 <5 <5 <5

Au 59 5 28 54 5 5 5

Major elements are in wt%, trace elements are in ppm, and precious metals are in ppb. Fe2O3 (tot) = total iron calculated
as ferric oxide. Precious-metal detection limits are: Au, Pt = 5 ppb, Pd = 1 ppb. Sample numbers refer to specimens held
in the Museum of the Department of Geology and Geophysics, The University of Western Australia. Data from Müller
(1993)
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8.3.2 Regional Geology

The Mount Bundey area is located in the north-
ern part of the Pine Creek Geosyncline (Fig. 8.1).
As described in Sect. 8.2, the Pine Creek Geo-
syncline consists of Early Proterozoic metasedi-
mentary and minor metavolcanic rocks. Rocks of
the Pine Creek Geosyncline unconformably
overlie several Archaean granitic and gneissic
complexes thought to form a continuous base-
ment (Needham et al. 1988). The main period of

deformation and metamorphism is dated at
1885–1860 Ma (Page 1988).

The Mount Bundey pluton, covering about
80 km2, consists of post-tectonic syenitic and
granitic rocks which intrude shales and siltstones
of the Early Proterozoic South Alligator Group
(Fig. 8.1). The lamprophyre dykes are restricted
to within 10 km of the Mount Bundey pluton,
which is probably coeval with mineralization
(Sheppard 1992). The dykes intrude the syenites

Fig. 8.2 Application of
geochemical discrimination
diagrams based on
immobile trace elements
(after Pearce 1982) in order
to illustrate the shoshonitic
character of the highly
altered lamprophyres from
Goodall, Northern
Territory. a (Ce/Yb) versus
(Ta/Yb) plot. b (Th/Yb)
versus (Ta/Yb) plot. Data
for the Goodall
lamprophyres are from
Müller (1993) and those for
lamprophyres from the
Mount Bundey area, about
40 km northeast, are from
Sheppard and Taylor
(1992)
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and I-type granites of the pluton, and postdate
regional deformation and metamorphism
(Sheppard 1992, 1995). The lamprophyres are
dated via conventional U-Pb in zircon methods at
1831 ± 6 Ma (Sheppard 1992, 1995). The Mount
Bundey pluton is dated at 1825 Ma (Rasmussen
et al. 2006).

8.3.3 Nature of Orogenic Gold
Mineralization

The Tom’s Gully gold deposit is situated in the
thermal aureole of the Mount Bundey pluton.

There are two sulphidic ore-shoots in a single,
fault-controlled, shallowly-dipping quartz reef
(Sheppard 1992). On average, the reef is 1.0–
1.5 m thick, but it pinches and swells between 0
and 2.4 m. Ore was probably deposited at Tom’s
Gully during wrench shearing associated with
emplacement of the granitic rocks (Sheppard
1992). The sulphidic ore-shoots consist mainly
of pyrite-arsenopyrite ± loellingite ± gold
(Sheppard 1992), which are hosted by graphitic
siltstones and shales of the Wildman Siltstone
Unit (Sheppard 1992). Loellingite is commonly
replaced by arsenopyrite. Visible gold commonly

Fig. 8.3 Abundances of
chalcophile elements in
lamprophyres from the
Goodall gold deposit,
Northern Territory, relative
to the primitive mantle.
Normalizing factors after
Brügmann et al. (1987).
Data from Müller (1993)

Table 8.3 Correlation
matrix for precious metals
(Au, Pd, Pt), Cu, and gold
pathfinder elements (As,
Sb, W) of lamprophyres
from the Goodall gold
deposit, Australia

Cu Au Pt Pd As Sb W

Cu 1

Au 0.889 1

Pt – – 1

Pd – – – 1

As 0.980 0.817 – – 1

Sb −0.056 −0.228 – – 0.084 1

W 0.973 0.927 – – 0.956 −0.151 1

Data from Müller (1993)
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occurs as blebs of electrum within arsenopyrite.
Minor wallrock alteration of the metasedimen-
tary host rocks is expressed by the oxidation of
graphitic pelites and formation of secondary
sericite and potassic feldspar (Sheppard 1992).

8.3.4 Petrology and Geochemistry
of the Lamprophyres

The lamprophyre dykes are 0.5–3.0 m thick and
have chilled margins. Two petrographic types can
be distinguished (Sheppard and Taylor 1992):
one olivine-phlogopite-diopside-phyric and the
other olivine-amphibole-diopside-phyric. Recent
studies by Bucholz et al. (2014) indicate that
phlogopite crystallization strongly depends on the
degree of K enrichment in a melt, while amphi-
bole crystallization requires a high H2O content.
However, both phases can coexist as they are not
in direct “competition” as crystallizing phases
(Bucholz et al. 2014). Both petrographic types
contain apatite microphenocrysts and their
groundmass is dominated by orthoclase.

Geochemically, the lamprophyres are charac-
terized by very high F (up to 4900 ppm), very
high P2O5 (*2.0 wt%), and K2O (up to 7.4 wt%)
contents (Table 8.4), and resulting high
K2O/Na2O ratios (>2; Sheppard and Taylor
1992). The Mount Bundey lamprophyres have a
primitive geochemistry (Sheppard and Taylor
1992) with relatively high mg# (63–66) and high
mantle-compatible element concentrations (e.g.
>107 ppm V, >205 ppm Cr, >157 ppm Ni). Their
high LILE (e.g. up to 3635 ppm Sr, up to
5101 ppm Ba), high LREE (e.g. *220 ppm La,
*500 ppm Ce) and very high HFSE (*2.0 wt%
TiO2, *750 ppm Zr, *60 ppm Nb, *17 ppm
Hf) contents are consistent with potassic igneous
rocks emplaced in a within-plate tectonic setting
(cf. Figs. 6.3 and 6.4).

The coincidence of lamprophyres, syenites,
and granites is common in many localities
worldwide (Rock 1991; Worthing and Nasir
2008; Karsli et al. 2014; Aghazadeh et al. 2015).
Fractional crystallization of lamprophyric melts
has been demonstrated to produce syenitic

magmas (McDonald et al. 1986; Leat et al.
1988), and granitic rocks associated with lam-
prophyres are interpreted to be generated by
crustal assimilation triggered by the interaction
of mantle-derived hot and volatile-rich lampro-
phyric melts with the lower crust (McDonald
et al. 1986; Lu et al. 2013a). It is possible that the
conduits for these magmas coincide with those
for deeply sourced auriferous fluids.

8.3.5 Indirect Link Between
Lamprophyres and Gold
Mineralization

The lamprophyres, syenite and granite at Mount
Bundey define a Pb-Pb isochron age of
1831 ± 6 Ma, suggesting that the three rock types
form a co-magmatic suite (Sheppard and Taylor
1992) in which the syenite represents the frac-
tionated product of lamprophyric magmatism.
Although the gold mineralization at Tom’s Gully
is bracketed in time by the lamprophyre dykes,
the lamprophyres do not have intrinsically high
Au contents and no direct genetic association is
evident (Sheppard 1992). More recent work
(Rasmussen et al. 2006) dates the gold mineral-
ization at Tom’s Gully at 1780 ± 10 Ma and thus
postdating the Mount Bundey pluton by about
45 m.y. Hence, the shoshonite-gold association
at Tom’s Gully is interpreted to be indirect,
representing only similar structural controls on
both dyke intrusion and mineralization, as at
Goodall in the same terrane.

8.4 Shoshonitic Lamprophyres
from the Eastern Goldfields,
Yilgarn Block, Western
Australia (Archaean)

8.4.1 Introduction

In Australia, the ca. 2700Ma granitoid-greenstone
terrains of the Yilgarn Block are the most inten-
sely mineralized with world-class gold deposits
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(Groves et al. 1994). Widespread shoshonitic
lamprophyre dyke-swarms also represent a sig-
nificant contribution to magmatism in the Yilgarn
Block at ca. 2680–2660 Ma (Rock et al. 1988b;
Vielreicher et al. 2015). Along with contempora-
neous swarms from the Superior Province, Can-
ada, and the Limpopo Belt, Zimbabwe, they may
represent a global Archaean mantle event (Rock
et al. 1988b). Many of these lamprophyre dykes

have been misclassified as “diorites”, “diabases”
and “trachyandesites” in the past (Rock 1991).

8.4.2 Regional Geology

The Yilgarn Block comprises high-grade gneiss
and supracrustal rocks in the west and granitoid-
greenstone terrains in its central and eastern
segments (Groves et al. 1994). The craton has

Table 8.4 Major- and
trace-element analyses of
lamprophyres from the
Mount Bundey district,
Northern Territory,
Australia

Province/deposit Mount Bundey Mount Bundey

Location Northern Territory, Australia Northern Territory, Australia

Rock type Lamprophyre Lamprophyre

Tectonic setting Within-plate Within-plate

Reference Sheppard and Taylor (1992) Sheppard and Taylor (1992)

SiO2 46.73 47.22

TiO2 2.13 1.92

Al2O3 11.88 11.30

Fe2O3 11.02 10.30

FeO n.a. n.a.

MnO 0.14 0.13

MgO 8.12 8.65

CaO 7.78 7.35

Na2O 2.34 2.18

K2O 5.82 6.49

P2O5 2.08 2.18

LOI 2.07 2.01

Total 100.11 99.73

mg# 63 66

V 154 144

Cr 205 262

Ni 200 237

Rb 162 181

Sr 3136 3635

Y 40 37

Zr 722 866

Nb 59 70

Ba 5023 5101

La 220 228

Ce 483 514

Hf 16 19

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron
calculated as ferric oxide. Data from Sheppard and Taylor (1992)

8.4 Shoshonitic Lamprophyres from the Eastern Goldfields … 213



traditionally been subdivided into four main
subprovinces: the Western Gneiss Terrain, and
the Murchison, Southern Cross, and Eastern
Goldfields Provinces (Gee et al. 1981; Fig. 8.4).
Myers (1993) redefines the craton as a number of
geologically distinct superterranes. However, the
province terminology is well recognized in the
literature so it is used here.

The Western Gneiss Terrain contains the old-
est Archaean crust recognized to date in Australia
(Groves et al. 1994). The granitoid-greenstone

terrains of the Murchison, Southern Cross, and
Eastern Goldfields Provinces have a common
history of granitoid intrusion, deformation, and
metamorphism from ca. 2680–2630 Ma, although
the trend of major fault and shear zones varies
from one province to another (Groves et al. 1994).
The Murchison Province, for example, is domi-
nated by northeast-trending shear zones and
greenstone belts, whereas most shear zones and
greenstone belts trend north-northwest to north-
west in the Eastern Goldfields Province.

Fig. 8.4 Geological
overview of the Yilgarn
Craton, Western Australia,
showing the Eastern
Goldfields Province and the
Kambalda, Mount Morgans
and Wiluna gold deposits,
which are spatially
associated with shoshonitic
lamprophyres. After Gee
et al. (1981)
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Although there are only preliminary data, there
appear to be two major supracrustal sequences in
the greenstone belts. Older sequences, which are
dominated by tholeiitic to high-magnesium bas-
alts, contain abundant banded iron-formations
(BIF). These sequences are dominant in the
Murchison and Southern Cross Provinces, with
only local occurrences in the Eastern Goldfields
Province. By contrast, younger supracrustal
sequences, dated at ca. 2700 Ma, dominate the
Norseman-Wiluna Belt in the Eastern Goldfields
Province, but are more restricted in the Murchi-
son and Southern Cross Provinces (Groves et al.
1994). These sequences contain virtually no BIF,
but there are thick sequences of komatiites and
discrete felsic volcanic centres (e.g. Hallberg
1985). The volcanic rocks are commonly overlain
by clastic sedimentary rocks in restricted struc-
tural basins. The ca. 2700 Ma volcanic sequences
resemble those in modern subduction arcs (e.g.
Barley et al. 1989). However, the volcanic rocks
were apparently erupted through older continental
crust because they commonly contain xenocrystic
zircons older than 3000 Ma (Groves et al. 1994).

8.4.3 Nature of Orogenic Gold
Mineralization

The Western Gneiss Terrain, like most high-grade
gneiss terrains worldwide, contains only minor
mineralization. By contrast, the granitoid-
greenstone terrains are exceptionally well miner-
alized with widespread lode-gold and komatiite-
hosted nickel-copper, and more restricted copper-
zinc VMS deposits (Groves 1982; Groves et al.
1994).

With an output of about 68 Mio oz of gold to
1987, the Yilgarn Block has produced almost
half of Australia’s gold production from lode
deposits of about 146 Mio oz to 1987 (Groves
et al. 1994, 1998). The Norseman-Wiluna Belt is
the most highly mineralized, followed by the
Murchison Province, the Southern Cross Prov-
ince, and the remainder of the Eastern Goldfields
Province. About half of the total gold production
has come from the Golden Mile at Kalgoorlie.

Although the physical appearance of the
lode-gold deposits varies greatly, due to differ-
ences in structural style, host rock, and mineral-
ogy of alteration assemblages, the deposits
appear to represent a coherent genetic group
(Groves 1993). Basically, they comprise struc-
turally controlled gold ± silver ± arsenic ± tellu-
rium ± antimony ± tungsten deposits, associated
with metasomatic zones representing K ± CO2 ±
Na ± Ca addition, in a variety of ultramafics,
mafic and felsic igneous rocks, and Fe-rich
sedimentary rocks in greenstone belts of
sub-greenschist to lower granulite-facies grade
(normally greenschist-amphibolite; Groves 1993;
Solomon and Groves 1994).

8.4.4 Lamprophyres and Their
Association with Mineralization

Shoshonitic lamprophyres have been reported
from the Eastern Goldfields (e.g. Kambalda and
Leonora-Laverton areas) and Murchison Prov-
inces (Rock et al. 1988b). Most of these lam-
prophyres (see Fig. 8.4) occur in the highly
mineralized greenstone belts of the Eastern
Goldfields Province (Hallberg 1985), in particu-
lar in association with the orogenic lode gold
deposits at Wiluna (Hagemann et al. 1992; Kent
and Hagemann 1996), Mount Morgan (Vielrei-
cher et al. 1994) and Kambalda (Perring 1988).
Mutually cross-cutting relationships between
these dykes and mineralized quartz veins at
several mines suggest that shoshonitic magma-
tism overlapped with, although it was commonly
earlier than, the period of gold mineralization
(Hallberg 1985; Barley and Groves 1990; Taylor
et al. 1994). Both lamprophyres and gold min-
eralization appear to be spatially and genetically
linked to subhorizontal oblique compression,
and occur along major shear zones which are
interpreted to have extended to the upper mantle
(Perring et al. 1989; Wyman and Kerrich 1988,
1989a), thus providing favourable conduits for
both lamprophyric magmas and deeply sourced
mineralizing fluids.
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8.4.5 Petrology and Geochemistry
of the Lamprophyres

The shoshonitic lamprophyres comprise
amphibole-phyric spessartites and mica-phyric
kersantites (Perring 1988; Rock et al. 1988b).
Generally, in lamprophyres the feldspars are
restricted to the groundmass (Rock 1991).
Spessartites normally consist of euhedral, zoned
hornblende phenocrysts set in a groundmass of
plagioclase with accessory apatite and titanite.
Kersantites are characterized by battlemented
phlogopite phenocrysts in a groundmass con-
taining plagioclase and carbonate with accessory
pyrite, apatite, and zircon. Felsic ocelli are
common in the dykes and are composed of
arborescent plagioclase (larger crystals show
chessboard albite twinning) with minor carbonate
(Perring 1988). Some kersantites also contain
quartz xenocrysts (Perring 1988), which is
indicative of volatile-driven rapid uprise of the
lamprophyric magma (cf. Rock 1991).

The shoshonitic lamprophyres of the Eastern
Goldfields Province are altered to various
degrees. Fresh samples are characterized geo-
chemically by relatively primitive compositions
with relatively high, but variable, mg# (up to 67)
and high concentrations of mantle-compatible
elements (e.g. >100 ppm V, >300 ppm Cr,
>100 ppm Ni; Taylor et al. 1994). They normally
have high LILE (e.g. up to 740 ppm Sr, up to
1300 ppm Ba), low LREE (e.g. *40 ppm La,
*75 ppm Ce), and very low HFSE (e.g. <0.7 wt
% TiO2, <160 ppm Zr, <8 ppm Nb, <5 ppm Hf)
contents. Representative data of mineralogically
fresh samples are presented in Table 8.5. It
should be noted that the Au content of most
Yilgarn lamprophyres is only elevated in those
samples which were collected from the vicinity
of orogenic gold deposits (Fig. 8.5). The gold
values are decoupled from those of other chal-
cophile elements in primitive mantle-normalized
distribution plots (Fig. 8.5b), suggesting that they
are secondary features. This is consistent with the
poor correlation between Au and the magmatic
elements Cu, Pt, and Pd (Table 8.6). The sig-
nificance of the gold contents of the rocks in

terms of an indirect or genetic association
between lamprophyres and gold mineralization is
discussed in Sect. 8.6.

8.5 Shoshonitic Lamprophyres
from the Superior Province,
Canada (Archean)

8.5.1 Introduction

The Superior Province, exposed over an area of
>2 million km2, represents the world’s largest
relatively undisturbed Archaean craton (Card and
Ciesielski 1986). Parts of it are buried beneath
Phanerozoic strata of the Interior Plains and the
Michigan, Hudson, and Moose River Basins, and
beneath little-deformed Proterozoic cover
sequences. The Superior Province is surrounded
by Proterozoic orogenic belts: the Grenville
Province on the southeast, the Churchill Province
on the east, north and west, and the Southern
Province on the south. The Superior Province is
subdivided into several subprovinces, based on
absolute and relative ages of rock units, major
fault zones, as well as structural trends and styles
(cf. Card and Ciesielski 1986).

8.5.2 Regional Geology

The Superior Province comprises a collage of
granitoid-greenstone belts with intervening belts
of metasedimentary rocks and tonalitic gneisses
which are separated by major structural discon-
tinuities such as shear zones and transcurrent
fault systems (Wyman 1990). The greenstone
belts show a similar age range to those of the
Yilgarn Block described in Sect. 8.4, but there is
much less evidence for eruption through conti-
nental crust (e.g. Wyman 1990). Alkaline igne-
ous rocks are only a volumetrically minor
component of the Archean Superior Province of
Canada but, as in Western Australia, share
important spatial and temporal distributions with
orogenic lode-gold deposits (Wyman and Ker-
rich 1988). The alkalic magmatism comprises
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both shoshonitic lamprophyres and K-rich plu-
tonic rocks which are sited along major structures
and are late in the greenstone belt development
(Wyman and Kerrich 1988; Blichert-Toft et al.
1996).

8.5.3 Nature of Orogenic Gold
Mineralization

Superior Province lode-gold deposits systemati-
cally occur as late kinematic features, generally

Table 8.5 Major- and trace-element analyses of lamprophyres from the Eastern Goldfields Province, Yilgarn Craton,
Western Australia

Province/deposit Eastern Goldfields, Yilgarn Craton Eastern Goldfields, Yilgarn Craton

Location Western Australia Western Australia

Rock type Lamprophyre Lamprophyre

Tectonic setting Postcollisional arc Postcollisional arc

Reference Taylor et al. (1994) Taylor et al. (1994)

SiO2 60.39 55.99

TiO2 0.55 0.69

Al2O3 14.56 12.61

Fe2O3 5.96 7.52

FeO n.a. n.a.

MnO 0.09 0.12

MgO 5.17 8.46

CaO 6.24 5.74

Na2O 3.73 3.82

K2O 1.84 3.10

P2O5 0.22 0.36

LOI 1.37 2.47

Total 100.12 100.88

mg# 67 52

V 116 135

Cr 323 684

Ni 101 217

Rb 29 75

Sr 589 738

Y 14 23

Zr 131 154

Nb 5 8

Ba 359 1278

La 38 35

Ce 72 77

Hf 3.1 4.4

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron calculated as ferric oxide. Data from
Taylor et al. (1994)
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in proximity to crustal-scale structures called
“breaks” (Wyman and Kerrich 1988). Similar to
the lode-gold deposits in the Yilgarn Block,
those in the Superior Province, also comprise
mainly structurally controlled gold ± silver ±

arsenic ± tellurium ± antimony ± tungsten
deposits, which are associated with metasomatic
zones representing K ± CO2 ± Na ± Ca addition.
The orogenic lode-gold deposits are associated
with a variety of ultramafic, mafic, and felsic
igneous rocks and Fe-rich sedimentary rocks in
greenstone belts of greenschist- to amphibolites-
facies grade. An excellent summary is given by
Colvine (1989).

8.5.4 Lamprophyres and Their
Association with Mineralization

Shoshonitic lamprophyre dykes are abundant in
areas such as Kirkland Lake, where several small
syenite plutons are also prominent (Rowins et al.
1993), and in the Hemlo region, which is tran-
sected by regional-scale shear zones (Wyman
and Kerrich 1988). Both orogenic gold mineral-
ization and lamprophyre emplacement young to
the south from Red Lake (ca. 2700 Ma) to the
southern Abitibi Belt (ca. 2673 Ma; Wyman and
Kerrich 1989a). The transgressive nature of these
events is compatible with a series of accretionary
events which resulted in generation of the
greenstone belts in the Late Archaean (Wyman
and Kerrich 1989a), implying that these pro-
cesses were linked to a postcollisional arc setting.

The shoshonitic lamprophyres are typically
restricted to granitoid-greenstone subprovinces
and their tectonic boundaries with metasedi-
mentary terranes (Wyman 1990; Blichert-Toft
et al. 1996), a geological setting which they share
with their Western Australian counterparts
(Groves et al. 1994). The Superior Province
lamprophyres are dated at ca. 2690–2675 Ma,
and include minette, kersantite, and vogesite
dykes (Wyman and Kerrich 1989a). The steeply
dipping dykes contain phenocrysts of augite,
phlogopite and/or hornblende in a primary
carbonate-bearing, feldspathic groundmass
(Wyman 1990), and their emplacement is inter-
preted to be spatially and genetically linked to
subduction-like underthrusting within a largely
transpressive tectonic regime (e.g. Wyman and
Kerrich 1989a). The lamprophyre-gold spatial
association is restricted to the final period of

Fig. 8.5 Abundances of chalcophile elements in lam-
prophyres from the Yilgarn Craton relative to the
primitive mantle. a Data for lamprophyres distal to gold
deposits. b Data for lamprophyres from the vicinity of
gold deposits. Normalizing factors after Brügmann et al.
(1987). Data from Taylor et al. (1994)
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stabilization of the Superior Province (Wyman
1990), being particularly well developed near
major fault systems, as exemplified by the
Kirkland Lake area (Fig. 8.6) and Abitibi Belt
(Jensen 1978; Toogood and Hodgson 1985;
Wyman 1990; Rowins et al. 1993). In the Kirk-
land Lake area, both lamprophyres and orogenic
gold mineralization are also spatially associated
with high-K syenitic plutons (Fig. 8.6; Morten-
sen 1993) which are dated at 2680 ± 1 Ma using
conventional U-Pb in zircon techniques (Rowins
et al. 1993). The syenitic plutons are believed to
have been generated by fractional crystallization
of a mantle-derived lamprophyric magma
(Rowins et al. 1993).

8.5.5 Petrology and Geochemistry
of the Lamprophyres

The dykes are all shoshonitic types, including
minettes, kersantites, and vogesites. In contrast to
the lamprophyres of the Yilgarn Block, spessar-
tites have not been recorded to date in the
Superior Province.

Geochemically, the lamprophyres are charac-
terized by primitive compositions, which are
comparable to their Western Australian counter-
parts (see Sect. 8.4.5), with high mg# (>70) and
high concentrations of mantle-compatible ele-
ments (e.g. >110 ppm V, *550 ppm Cr,
*150 ppm Ni; Table 8.7). They are highly
potassic (up to 5.6 wt% K2O), and they are
characterized by high concentrations of LILE
(e.g. up to 200 ppm Rb, up to 750 ppm Sr, up to
1600 ppm Ba), and intermediate LREE (e.g.
̴80 ppm La, *140 ppm Ce), and low HFSE (e.g.
*0.8 wt% TiO2, *250 ppm Zr, *10 ppm Nb,
*5 ppm Hf) concentrations (Table 8.7). Only a
few published precious-metal contents of lam-
prophyres from the Superior Province are avail-
able (Wyman and Kerrich 1989a). They were
derived from fresh, unaltered samples distal from
orogenic gold mineralization (Wyman and Ker-
rich 1989a) and no significant Au abundances
were detected (Fig. 8.7). Table 8.8 shows the
very low correlation between Au and the mag-
matic elements Cu, Pt, and Pd, and the normal
pathfinder elements Sb and W although the

Table 8.6 Correlation
matrix for precious metals
(Au, Pd, Pt), Cu, and gold
pathfinder elements (As,
Sb, W) of lamprophyres
from the Yilgarn Craton,
Western Australia

(a) Data for samples distal to gold deposits

Cu Au Pt Pd As Sb W

Cu 1

Au 0.713 1

Pt 0.312 0.409 1

Pd 0.258 0.512 −0.091 1

As −0.399 0.023 −0.202 −0.434 1

Sb 0.102 −0.123 −0.674 0.634 −0.525 1

W −0.304 −0.245 −0.627 0.682 −0.365 0.877 1

(b) Data for samples proximal to gold deposits

Cu Au Pt Pd As Sb W

Cu 1

Au 0.228 1

Pt −0.563 0.082 1

Pd −0.342 −0.420 0.631 1

As −0.040 −0.067 0.154 −0.424 1

Sb 0.286 0.631 0.012 0.182 -0.780 1

W 0.092 0.791 -0.102 -0.173 -0.628 0.878 1

Data from Taylor et al. (1994)
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database is limited. The significance of the Au
contents of the rocks is discussed in Sect. 8.6,
together with those of counterparts in the Yilgarn
Block.

8.6 Indirect Link Between
Lamprophyres and Archaean
Gold Mineralization

Many of the shoshonitic lamprophyres from the
Superior Province, Canada, and the Yilgarn
Block, Western Australia, plot in the postcolli-
sional arc field (Fig. 6.15), consistent with their
late-tectonic timing with respect to initial volca-
nism. However, discrimination is equivocal for
several samples which plot in the continental arc
field on the diagram. This could be explained by
the high degree of alteration and extensive
metamorphic recrystallization of most of the
Archaean lamprophyres, which have been

affected by a complex history of metamorphism,
deformation, and hydrothermal alteration (e.g.
Taylor et al. 1994), resulting in the mobilization
of P and an increase in the Ce/P2O5 ratios. The P
depletion is also displayed by pronounced neg-
ative anomalies in their spidergram patterns
(Taylor et al. 1994).

The lamprophyric magmas were probably
mantle-derived from between 50 and 120 km
depth beneath the continental crust, whereas the
gold mineralizing systems were probably con-
fined to the continental crust (Wyman and Ker-
rich 1989a). Data from Wyman and Kerrich
(1989a) and Taylor et al. (1994) indicate that the
Archaean shoshonitic lamprophyres do not have
intrinsically high Au concentrations. Sporadi-
cally anomalous Au abundances are restricted to
samples from the vicinity of orogenic gold
deposits (Fig. 8.5b), and the Au values are
decoupled from Cu and Pd peaks in primitive
mantle-normalized distribution plots in the
shoshonitic lamprophyres (Figs. 8.5 and 8.6),

Fig. 8.6 Geological overview of the Kirkland Lake area, Superior Province, Canada. Modified after Rowins et al.
(1993)
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suggesting that anomalous Au contents are sec-
ondary, not primary, features. This is consistent
with the poor correlation between Au and the
magmatic elements Cu, Pt, and Pd (Tables 8.6
and 8.8), although it is not supported by a good
correlation between Au and the gold pathfinder
elements As, Sb, and W.

Overall, the spatial but not genetic association
of orogenic gold deposits and shoshonitic mag-
matism since the late Archaean appears to be
related to their common requirement of
Phanerozoic-style subduction followed by obli-
que collision (e.g. Barley et al. 1989; Wyman
1990).

Table 8.7 Major- and
trace-element analyses of
lamprophyres from the
Superior Province, Canada

Province/deposit Superior province Superior province

Location Canada Canada

Rock type Lamprophyre Lamprophyre

Tectonic setting Postcollisional arc Postcollisional arc

Reference Wyman (1990) Wyman (1990)

SiO2 48.60 47.70

TiO2 0.79 0.75

Al2O3 12.20 11.60

Fe2O3 9.28 8.99

FeO n.a. n.a.

MnO 0.17 0.16

MgO 9.86 9.93

CaO 7.40 9.49

Na2O 2.92 2.43

K2O 4.03 2.37

P2O5 0.65 0.68

LOI 4.08 4.54

Total 99.98 98.64

mg# 71 72

V 118 213

Cr 557 590

Ni 144 159

Rb 198 123

Sr 749 676

Y 23 28

Zr 275 244

Nb 10 12

Ba 765 1542

La 83 65

Ce 144 114

Hf 6.8 4.8

Major elements are in wt%, and trace elements are in ppm. Fe2O3 (tot) = total iron
calculated as ferric oxide. Data from Wyman (1990)
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8.7 Synthesis of Indirect
Associations

Although lamprophyres are spatially and tem-
porally related to gold mineralization in several
ancient terranes, the association is interpreted to
be an indirect one.

Proterozoic orogenic lode-gold mineralization
and lamprophyre emplacement may be contem-
poraneous in several places, although no direct
genetic relationships have been established yet.
Both lamprophyres and mineralization com-
monly occur along major faults and shear zones
which controlled their emplacement. The ele-
vated Au contents in some Proterozoic lampro-
phyres from the vicinity of lode-gold deposits are
decoupled from Cu and Pd peaks in primitive

mantle-normalized distribution plots suggesting
that the anomalous Au contents are secondary
features. The contamination en route to surface
or caused by hydrothermal fluids overprinting the
dykes after their emplacement.

Spatial associations also exist between
Archaean orogenic gold deposits and potassic
lamprophyre dykes in both postcollisional arc and
within-plate settings. Rock and Groves (1988a, b)
suggest that the volatile- and LILE-enriched
fluids necessary to form a metasomatically enri-
ched mantle capable of yielding potassic magmas
would also be capable of transporting Au because
they mimic hydrothermal fluids known to form
gold deposits in the crust. However, recent stud-
ies argue against a direct genetic association,
although lamprophyre intrusions may bracket the
gold mineralization in time (Taylor et al. 1994;

Fig. 8.7 Abundances of chalcophile elements in lam-
prophyres from the Superior Province relative to the
primitive mantle. All data are from lamprophyres distal to

gold deposits. Normalizing factors after Brügmann et al.
(1987). Data from Wyman and Kerrich (1989a)

Table 8.8 Correlation
matrix for precious metals
(Au, Pd, Pt), Cu, and gold
pathfinder elements (As,
Sb, W) of lamprophyres
from the Superior Province,
Canada

Cu Au Pt Pd Sb W

Cu 1

Au 0.025 1

Pt 0.878 −0.457 1

Pd 0.819 −0.553 0.994 1

Sb −1.000 −0.052 −0.865 −0.803 1

W 0.853 −0.500 0.999 0.998 −0.839 1

All samples are derived from localities distal to gold deposits. Data from Wyman and
Kerrich (1989b)
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Yeats et al. 1999). The orogenic gold deposits in
these settings are not hosted by potassic igneous
complexes, but they do occur along major faults
and shear zones, which also represent the deep
conduits for emplacement of lamprophyre intru-
sions (Wyman and Kerrich 1989a, b). As for the
Proterozoic lamprophyres, the elevated Au con-
tents of some Archaean lamprophyres are
decoupled from Cu and Pd peaks in primitive
mantle-normalized distribution plots, suggesting
that the anomalous Au contents are secondary
features, caused by either crustal contamination
by mineralized wallrocks or overprinting by later
hydrothermal fluids.

Indirect associations between shoshonitic
lamprophyres and orogenic gold-antimony
deposits have also been documented from the
Permian Hillgrove district, New South Wales,
Australia (Ashley et al. 1994; Ashley and Craw
2004). A similar direct relationship between
shoshonitic lamprophyres and orogenic copper-
gold-bismuth mineralization has been recorded
for the Tennant Creek area, although recent
40Ar/39Ar age dating indicates that the lampro-
phyres significantly postdate the mineralization
(Duggan and Jaques 1996). Based on available
geochemical and geochronological data, the
widespread spatial association of gold deposits
and lamprophyres, worldwide (e.g. Rock et al.
1988a, 1989), is probably an indirect, rather than
genetic, association, related to the siting of both
adjacent to crustal-scale deformation zones.
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9Halogen Contents of Mineralized
Versus Unmineralized Potassic
Igneous Rocks

9.1 Introduction

Numerous studies have established the important
role of halogens (Cl, F) for the transport of
metals in ore deposits related to igneous rocks
(Holland 1972; Kilinc and Burnham 1972; Gu-
now et al. 1980; Boudreau et al. 1986; Carten
1987; Webster and Holloway 1988, 1990; Rich-
ards 1990a; Richards et al. 1991; Webster 1992;
Stanton 1994; Candela 1997; Heinrich 2005;
Yang and Lentz 2005; Ulrich and Mavrogenes
2008; Richards 2009; Zajacz et al. 2010; Lesne
et al. 2011; Vigneresse et al. 2014; Webster et al.
2014; Liang and Hoshino 2015; Zellmer et al.
2015). A recent review of fluid saturation and
volatile partitioning between melts and hydrous
fluids in crustal magmatic systems (Baker and
Alletti 2012) indicates that, whenever a fluid
phase first forms, it will strip not only Cl and S
from the melt, but also metals associated with
chlorine (e.g. Cu and Au) as previously discussed
by Williams-Jones and Heinrich (2005). It seems
likely that the development of hydrothermal ore
deposits depends less on the relative abundance
of the ore metals such as Au, Cu and Mo in the
fluids than on the availability of appropriate
mechanisms to concentrate, transport, and
deposit the metals, as suggested by Roegge et al.
(1974). Modern experimental studies on the
solubility of Mo in KCl–H2O solutions imply
that base-metal concentration in aqueous fluids
was not the controlling factor for ore formation.

The Mo solubility is temperature dependent and
correlates positively with the KCl concentration
of the hydrothermal fluid (Ulrich and Mavroge-
nes 2008). More recent work suggests that the
availability and oxidation state of sulphur and the
presence of sufficient halogens such as Cl and F
in the magmas are important chemical parame-
ters (Zajacz et al. 2010, 2012). Chlorine largely
controls the abundances of chlorophile ore and
associated elements (e.g. Fe, Mn, Na, K, Cu, Mo)
in saline aqueous fluids that exsolve from a
magma (Webster 1992), and it also increases
PGE solubilities in both sulphide and silicate
melts (Peach et al. 1994). In the rock-forming
minerals, Cl generally occupies the hydroxyl
sites of micas, amphiboles, and apatites (Fuge
et al. 1986). The strong affinity of the halogens
for potassium, particularly in micas, can be
explained in terms of their electronic configura-
tions (Cocco et al. 1972). The Cl–OH and
F–OH exchange in the hydroxyl site of micas is
susceptible to interaction with hydrothermal
fluids, which may impact cations in the octahe-
dral sites given the presence of correlation
between (F–Cl–OH) and (Al + Ti + Fe3 + Cr)
(see Righter et al. 2002; Yang and Lentz 2005;
Teiber et al. 2015). Due to the similar ionic radii
of F− (1.33 Å; Shannon 1976) and OH− (1.32–
1.37 Å), F− is much easily incorporated into
OH-bearing minerals than the larger Cl−

(1.81 Å). Hence, at the magmatic-hydrothermal
transition, F is largely retained in the melt
whereas Cl preferentially partitions into the fluid
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phase (Webster et al. 2009; Wang et al. 2014;
Teiber et al. 2015).

The potential use of high Cl concentrations in
mica phenocrysts as a prospecting tool to define
mineralized volcanic and subvolcanic rocks was
first suggested by Stollery et al. (1971). Com-
parisons between the halogen contents of micas
from mineralized and barren intrusions showed
that micas from the former are generally char-
acterized by higher Cl and F concentrations than
those from the latter (Stollery et al. 1971; Kesler
et al. 1975; Jiang et al. 1994; Loferski and Ayuso
1995; Coulson et al. 2001; Müller et al. 2001;
Kroll et al. 2002; Shabani et al. 2003; Yang and
Lentz 2005; Sarjoughian et al. 2015). Although
most of the preliminary studies did not focus on
mica compositions of potassic igneous rocks,
mica phenocrysts of unmineralized suites of
these rocks are known to have intrinsically
higher halogen contents than those of K-poor
intrusions (Kesler et al. 1975), in agreement with
studies showing that the Cl solubility in
volatile-rich melts increases with the alkalinity of
the melt (Metrich and Rutherford 1992; Dixon
et al. 1997; Zajacz et al. 2012). Numerous studies
have shown that alkaline magmas such as
potassic melts are characteristically enriched in
halogens (Bailey and Hampton 1990; Yang and
Bodnar 1994; Foley 1994; Zhang et al. 1995;
Müller et al. 2001; Kroll et al. 2002; Chevy-
chelov et al. 2008; Melluso et al. 2012), sug-
gesting that the strongest Cl enrichments of
magmatic-hydrothermal fluids, and ore metals
complexed with Cl, occur in fluids exsolved from
magmas that are relatively enriched in K2O
(Webster 1992; Webster et al. 2014; Chen et al.
2015). This is consistent with experiments by
Gammons and Williams-Jones (1997), which
indicate that, at 500 °C, gold solubility as AuCl2

−

is highest for fluids that are oxidized (SO2/
H2S > 1), highly saline, and potassium-rich.
Generally, the measured gold concentrations
increase with increasing amounts of Cl and S
dissolved in the silicate melt (Botcharnikov et al.
2010). The dependence of gold solubility on the
concentrations of Cl and S at fixed redox con-
ditions indicates that gold may not only form
oxide- but also Cl- and S-bearing complexes in

silicate melts. Furthermore, it indicates that
exsolution of S and Cl from the melt by degas-
sing and crystallization processes may lead to the
precipitation of gold into the sulphide phases
(Botcharnikov et al. 2010). At low pressures, S is
preferentially released over Cl, leading to a dis-
tinct increase in vapour S/Cl ratios (Lesne et al.
2011). Experimental work by Zajacz et al. (2010,
2012) implies that the stability of gold hydro-
sulphide complexes is greatly increased by the
presence of minute concentrations of KCl or
NaCl (0.1–0.5 mol/kg H2O). The amplifying
effect of alkali chlorides on the solubility of gold
in H2S-bearing volatiles may explain the prefer-
ential association of many giant hydrothermal
gold deposits with high-K igneous rocks, which
exsolve volatiles that simultaneously contain
both H2S and alkali chlorides in significant
concentrations (Zajacz et al. 2010). However, in
the range of Cl and S concentrations realistic for
natural systems, the role of Cl in gold solubility
is far subordinate to that of reduced S (Zajacz
et al. 2012).

Gold and Cu are both highly chalcophile ele-
ments whose behavior is controlled by the abun-
dance and oxidation state of S, for example as a
HS-bearing complex in fluids (Gibert et al. 1998;
Sun et al. 2004, 2013). They can also partition into
Cl-rich aqueous fluids, as a Cl-bearing complex
(Gammons and Williams-Jones 1997). Given the
high abundance of Cl in arcmagmas, a Cl complex
might be important in scavenging Au and Cu out
of the magmas, but there are no experiments so far
to demonstrate which complex is more important
at magmatic temperature and pressures (Sun et al.
2004).

9.2 Erection of Database MICA1

The fact that most potassic igneous rocks contain
mica phenocrysts, and that considerable mineral
chemistry data have been published, led to
compilation of a database of mica analyses—
MICA1—from mineralized and barren potassic
igneous rocks to test their potential as explora-
tion guides. The halogen contents of
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representative fresh mica phenocrysts from the
investigated localities were both collated from
the literature and directly analyzed using a
ARL-SEMQ microprobe with attached WDS
system at the Centre for Microscopy and
Microanalysis, The University of Western Aus-
tralia, Perth. All analyzed micas are homoge-
neous and unzoned. The available data are not
filtered, and their sources are listed in Table 9.1.
The significance of the data is discussed below.

9.3 Discussion

9.3.1 Behaviour of Halogens
in Magmatic Hydrothermal
Systems

During magma crystallization, trace elements and
halogens partition between the melt and the crys-
tallizing solids (Candela 1989; Cline and Bodnar

1991; Vigneresse 2009). At some stage during
crystallization, bubbles of a magmatic aqueous
phase nucleate and grow because the water con-
centration increases in the bulk melt as quartz and
feldspar crystallize (Candela 1989; Lowenstern
1994). The exsolution of this aqueous fluid during
the final stages of crystallization leads to vein
stockworks due to hydraulic fracturing caused
by expansion of the igneous pluton
(Solomon and Groves 1994). This magmatic-
hydrothermal transition occurs in response to
decreasing pressure (first boiling) and crystalliza-
tion (second boiling) as the melt approaches the
surface (Cline and Bodnar 1991; Candela 1997).
Studies by Webster (2004) suggest that chlorine
solubility is a strong function of melt composition
and varies with melt fractionation. More specifi-
cally, the chemical evolution of dioritic magmas to
more-evolved quartz-monzonite compositions
involves a dramatic reduction in Cl solubility
that increases the probability of hydrosaline
liquid exsolution (Webster 2004). Fractional

Table 9.1 Data sources of mica compositions from database MICA1

1. Continental arcs 2. Postcollisional arcs 3a. Late oceanic arcs 4. Within-plate settings

American Cordillera Eastern Alps Northparkes, NSW,
Australia

Karinya Syncline, South
Australia

(barren) Müller (1993) [6] Müller et al. (1994) [5] Müller et al. (1993) [7]

Allan and Carmichael
(1984) [12]

Grasberg, Indonesia Ladolam, Lihir Island,
Papua New Guinea

Mount Bundey, Northern
Territory, Australia

American Cordillera Müller (1993) [4] Müller (1993) [9] Müller (1993) [7]

(mineralized)

Kesler et al. (1975)
[28]

Porgera, Papua New
Guinea

Müller (1993) [3]

Bingham, USA Richards (1990b) [2]

Parry et al. (1978) [7]

Superior Province,
Canada

Müller (1993) [6]

Yilgarn Craton,
Western Australia

Müller (1993) [19]

The number in square brackets refers to the number of analyses from that reference in the database. From Müller (1993)
and Müller and Groves (1993)
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crystallization increases volatile abundances in the
residual melt and increases silica and decreases
CaO and MgO concentrations of the residual melt
which reduces Cl solubility without influencing
H2O solubility appreciably (Webster 2004).
Chlorine has a pronounced preference for the
aqueous fluid relative to the silicate melt and sili-
cate minerals, implying that a Cl-bearing fluid
would form during the crystallization of a
H2O-saturated, Cl-bearing magma (Kullerud
1995; Shinohara 2009). Extreme enrichments in
Cl and F may occur in these magmatic hydro-
thermal fluids during the end stages of crystalli-
zation (Webster andHolloway 1990), especially in
potassic alkaline melts (Webster 2004). Experi-
mental studies on volatile-rich high-K alkaline
rocks hosting the epithermal goldmineralization at
Cripple Creek, Colorado (Kelley and Ludington
2002; Jensen 2003), allow the estimation of the
primary volatile (H2O, CO2, S, Cl, and F) com-
positions of the exsolved magmatic fluids (Web-
ster et al. 2014). The bulk integrated magmatic
fluid in equilibrium with Cripple Creek phonolitic
melt contains high volatile contents of up to 3 wt%
Cl (3 mol%), and 0.2 wt% F (0.2 mol%) at
200 MPa, the common pressure at which magmas
pond, fractionate, and exsolve fluids (Webster
et al. 2014). By contrast, the average concentra-
tions of halogens and sulphur in the primitive,
undepleted mantle are estimated to be only
1.4 ppm of Cl, 18 ppm of F, and 230 ppm of S,
respectively (Lyubetskaya and Korenaga 2007;
Baker and Alletti 2012). Significant quantities of
ore elements such as Cu, Au, and Mo may be
partitioned into these volatile-rich hydrothermal
fluid phases and be removed from the pluton
(Candela 1989; Vigneresse 2009).

It is likely, therefore, that such Cl-rich hydro-
thermal fluids, which exsolve during magma
crystallization, also transport gold and/or base
metals (Kilinc and Burnham 1972), particularly
since ore-metal solubility as chloride complexes in
aqueous fluids is a strong function of their Cl
content (Webster 1997; Ulrich and Mavrogenes
2008; Zajacz et al. 2010, 2012). For example, the
textures and geochemistry of plutons associated
with Climax-type porphyry-molybdenum depos-
its indicate that Cl- and F-enriched magmatic

hydrothermal fluidswere primarily responsible for
the transport of ore constituents (White et al. 1981;
Webster and Holloway 1990). The very high
salinities of the ore fluids in most porphyry
copper-gold systems, as indicated by fluid inclu-
sion studies (e.g. Roedder 1984), suggest that
base-metals were carried as chloride complexes,
as was Au, at least at high temperatures (Hayba
et al. 1985; Heald et al. 1987; Large et al. 1989).

More recent studies suggest that both Cu and
Au preferentially partition into the volatile phase
during magmatic devolatilization, being dis-
solved in that phase as chloride complexes
(Hayashi and Ohmoto 1991; Heinrich 2005).
Cooling will eventually result in the dispropor-
tionation of the SO2 to sulphate and sulphide
species, thus leading to the precipitation of
Cu-bearing sulphide minerals (Richards 1995).
Although some Au may also be deposited with
these sulphides, much of it will remain in solu-
tion by conversion from chloride to bisulphide
complexes at lower temperatures (Hayashi and
Ohmoto 1991; Heinrich 2005). Most of the Au
may be precipitated at shallower levels in the
epithermal environment (Richards 1995, 2011),
consistent with the decrease of Au grade down-
wards into increasingly Cu-rich mineralization,
as was originally proposed by Bonham and Giles
(1983).

An important prerequisite for the hydrother-
mal extraction of Au from the magma is that
removal of chalcophile elements from the melt
by sulphide-liquid segregation should not occur
before volatile saturation (Richards 1995, 2011).
This condition may be achieved by the suppres-
sion of sulphur saturation through a high oxida-
tion state of the magma (see Sect. 10.3.2), thus
promoting the presence of sulphur as sulphate,
not sulphide, within the melt (Carmichael and
Ghiorso 1986; Campbell et al. 1998; Müller et al.
2002). Recent work has shown that several bar-
ren granites of northern Mexico represent mag-
mas that exsolved a fluid relatively early in their
crystallization history (i.e. before 30% crystalli-
zation), but this study also concluded that these
magmas did not generate mineralization primar-
ily because of the low salinity of their exsolving
fluids (Audetat and Pettke 2003).
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Thus, Cl and F are important components of
the hydrothermal system in that they represent an
effective metal-transporting medium (Spear
1984; Loferski and Ayuso 1995; Richards 2011).
Hence, it may be no coincidence that many gold
deposits tend to be associated with the more
volatile-rich potassic and calc-alkaline magmas
(Spooner 1993), where a magmatic connection is
indicated (Richards 1995; Sillitoe 2002; Mavr-
ogenes et al. 2006; Li and Audetat 2013).

Chlorine is enriched, together with K2O, in
residual melts as a result of crystal-liquid differ-
entiation of vapour-poor magmas, and a moder-
ate correlation between these elements has been
recorded for lavas from several localities
(Anderson 1974). However, in vapour-rich lavas,
Cl tends to partition into the vapour phase and
hence is likely lost during degassing on magma
ascent (Edgar, written comm. 1994). Fluorine
contents increase regularly from tholeiites to
potassic basalts (Aoki et al. 1981), and F is a
significant element in potassic and ultrapotassic
magmas (Edgar and Charbonneau 1991; Foley
1994; Kelley and Ludington 2002; Chevychelov
et al. 2008). Experimental studies by Vukadi-
novic and Edgar (1993) suggest that F, in contrast
to Cl (see Magenheim et al. 1995), behaves as a
mantle-compatible element. This can be
explained by the relatively small ionic radius of
the F cation when compared to the larger and
probably more incompatible Cl anion (Teiber
et al. 2015). Although, under mantle conditions,
F tends to remain in the solid phases rather than
partitioning into the first melt increments during
partial melting (Vukadinovic and Edgar 1993),
alkaline rocks derived in within-plate settings
such as OIB are defined by relatively high F
concentrations of 900–1100 ppm (cf. Wang et al.
2014). During crystallization, F is partitioned into
the hydrous phenocrysts rather than remaining in
the melt (Edgar et al. 1994). In accord with this,
Kesler et al. (1975) and Naumov et al. (1998)
have shown that the average whole-rock halogen
contents of potassic intrusions (>2 wt% K2O) are
higher (240 ppm Cl, 620 ppm F) than those for
non-potassic (<2 wt% K2O) intrusions (160 ppm
Cl, 380 ppm F). High primary Cl and F contents

of potassic igneous rocks from Cripple Creek,
Colorado, are also well documented in fluid
(Thompson et al. 1985) and melt inclusions
(Webster et al. 2014), respectively. In addition,
micas from mineralized intrusions tend to be
more Cl-enriched than those from barren igneous
rocks (Munoz 1984; Coulson et al. 2001; Yang
and Lentz 2005; Sarjoughian et al. 2015). The
ions OH−, Cl−, F−, and K+ are fixed preferentially
in hydrous minerals, in particular phlogopites,
under subsolidus conditions (Aoki et al 1981;
Spear 1984; Foley 1992). Phlogopite-bearing
metasomatized mantle peridotites are considered
to be source materials for primitive potassic
magmas (Tatsumi and Koyaguchi 1989; Foley
1992; Franz et al. 2002, 2010), and phlogopites
provide the major sites of Cl and F in potassic
igneous rocks (Aoki et al. 1981; Edgar and Arima
1985; Edgar et al. 1994). Mineralogical studies
by Jiang et al. (1994) suggest that F is preferen-
tially incorporated into micas with high Mg/Fe
ratios, whereas Cl tends to be enriched in those
with lower Mg/Fe ratios.

The common presence of primary biotite in
most porphyries which host hydrothermal Cu–Au
mineralization indicates that water loss to
hydrous phases and enhancement of the Cl/H2O
ratio occurs in all productive systems (e.g. Cline
and Bodnar 1991). However, in more rare
examples, such as the Ladolam gold deposit on
Lihir Island, Papua New Guinea (see Sect. 6.3.1),
biotite is restricted to secondary (hydrothermal)
phases associated with potassic alteration, while
phlogopite represents the primary magmatic
phases (Müller et al. 2001).

Water-leach analyses of biotites and phlo-
gopites suggest that less than 10 wt% of Cl and
1 wt% of F are present in fluid inclusions. The
remainder is apparently present in the mica
structure (Kesler et al. 1975).

9.3.2 Halogen Contents of Mica
in Potassic Igneous Rocks

The halogen contents of representative, fresh
mica phenocrysts from potassic igneous rocks
associated with mineralization from the
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investigated localities are plotted on a Cl versus
F biaxial diagram in Fig. 9.1. Representative data
for micas from potassic igneous rocks interpreted
to be genetically associated with epithermal gold
mineralization are listed in Tables 9.2 (Ladolam,
Papua New Guinea) and 9.3 (Porgera, Papua
New Guinea), and with porphyry copper-gold
mineralization are listed in Tables 9.4 (Grasberg,
Indonesia), and 9.5 (Northparkes, Australia).
Data from such rocks only spatially related to
mineralization are listed in Tables 9.6 (Eastern
Goldfields Province, Yilgarn Block, Australia)
and 9.7 (Kirkland Lake gold district, Superior
Province, Canada).

Mica phenocrysts from shoshonitic lampro-
phyres from the Eastern Goldfields Province
(Kambalda area, Mount Morgans gold mine) and
Kirkland Lake gold district are generally char-
acterized by very low halogen (<0.04 wt% Cl)
concentrations (Fig. 9.1). This is consistent with
the extremely low Cl concentrations (about
0.02 wt%) of apatite microphenocrysts in Supe-
rior Province lamprophyres (Kerrich, written
comm. 1992). The low halogen contents of Yil-
garn Block and Superior Province shoshonitic
lamprophyres, when compared to those from
mineralized high-K igneous rocks from equiva-
lent postcollisional arc-settings (Fig. 9.1), lend

further credence to the arguments that the lam-
prophyres are not genetically related to the oro-
genic gold mineralization, as originally
suggested by Rock et al. (1987) and Rock and
Groves (1988), but have an indirect association
(Wyman and Kerrich 1989; Taylor et al. 1994;
see Sect. 8.6).

By contract, mica phenocrysts from potassic
igneous rocks which host epithermal gold or
porphyry copper-gold mineralization are charac-
terized by elevated halogen abundances
(>0.04 wt% Cl). Examples are micas from the
high-K igneous rocks associated with the epi-
thermal gold deposits at Ladolam (up to 0.29
wt% Cl) and Porgera (up to 0.09 wt% Cl), and
from the Grasberg (up to 0.24 wt% Cl) and
Northparkes (up to 0.14 wt% Cl) porphyry
copper-gold deposits.

Where mineralization is interpreted to be
genetically associated with potassic igneous
rocks, the host rocks were generated in conti-
nental, postcollisional or late oceanic island arcs
(cf. Müller and Groves 1993). These three set-
tings are the only tectonic settings in which
mineralization genetically related to potassic
igneous rocks is currently recognized. The high
Cl concentrations (>0.04 wt% Cl) in mica
phenocrysts from all mineralized potassic igneous

Fig. 9.1 Chlorine and F
compositions of mica
phenocrysts from potassic
igneous rocks from barren
and mineralized
environments (data sources
are listed in Table 9.1).
Adapted from Müller and
Groves (1993)
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Table 9.3 Microprobe (WDS) analyses of mica phenocrysts from potassic igneous rocks from the Porgera gold
deposit, Papua New Guinea

Province/deposit Porgera Porgera Porgera Porgera Porgera

Location Papua New
Guinea

Papua New
Guinea

Papua New
Guinea

Papua New
Guinea

Papua New
Guinea

Rock type Trachybasalt Trachybasalt Trachybasalt Trachybasalt Trachybasalt

Sample no. PO13 PO14 PO14 RJR-46-A RJR-21-A

Reference N.M.S. Rock
(unpl. data)

N.M.S. Rock
(unpl. data)

N.M.S. Rock
(unpl. data)

Richards
(1990b)

Richards
(1990b)

wt%

SiO2 35.62 36.07 37.25 36.13 36.63

TiO2 3.78 3.97 3.56 3.77 2.70

Al2O3 14.58 14.94 14.94 14.31 15.23

FeO (tot) 15.70 14.64 13.19 14.41 11.50

Cr2O3 0.03 0.03 0.03 0.03 0.09

MnO 0.39 0.27 0.24 0.27 0.13

MgO 14.84 15.86 17.07 16.93 18.64

NiO 0.09 0.10 0.09 – –

BaO 0.18 0.18 0.18 0.20 0.80

CaO 0.03 0.04 0.03 0.02 0.01

SrO 0.16 0.16 0.15 – –

K2O 8.80 9.12 8.64 8.76 8.89

Na2O 0.89 0.91 1.12 1.08 0.76

Cl 0.06 0.06 0.08 0.05 0.09

F 0.59 0.55 0.55 0.26 0.14

Total 95.48 96.66 96.89 96.21 95.63

mg# 68 71 75 73 79

Ox. form. 22 22 22 22 22

Atoms

Si 5.410 5.380 5.475 5.389 5.423

Ti 0.432 0.445 0.393 0.423 0.300

Al 2.609 2.626 2.587 2.515 2.658

Fe 1.994 1.826 1.620 1.797 1.424

Cr – 0.002 0.003 0.004 0.010

Mn 0.050 0.033 0.029 0.034 0.017

Mg 3.359 3.524 3.737 3.763 4.114

Ni 0.008 0.011 0.011 – –

Ba 0.005 0.006 0.006 0.012 0.046

Ca 0.002 0.007 0.004 0.003 –

Sr – – – – –

K 1.704 1.734 1.619 1.667 1.678

Na 0.261 0.262 0.319 0.313 0.217

(continued)
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rocks further support a direct genetic relationship
between magmatism and mineralizing fluids in
these three specific tectonic settings.

Micas from the high-K calc-alkaline host
rocks of the Ladolam epithermal gold (Table 9.2;
see also Müller et al. 2001), and from shosho-
nites hosting the Northparkes porphyry
copper-gold deposit (Table 9.5), both interpreted
to have been generated in a late oceanic
island-arc setting (Müller et al. 1994), are enri-
ched in Cl and F (Fig. 9.1). This might be a
specific feature of mineralized potassic igneous
rocks from this setting, but it awaits confirmation
from data on deposits such as the Emperor epi-
thermal gold deposit, Fiji, which is in a similar
tectonic setting.

Importantly, analyzed unmineralized potassic
igneous suites from continental, postcollisional,
and late oceanic island arcs contain low-Cl (±F)
mica phenocrysts, and hence contrast with those
from mineralized settings (Fig. 9.1). It should be
noted, however, that analyzed phenocrysts from
potassic igneous rocks from within-plate settings
(e.g. Mount Bundey suite, Fig. 9.1) have high Cl
contents equivalent to those of mineralized
high-K rocks from continental, postcollisional,
and late oceanic arc settings, although the rocks
are interpreted to have no genetic relationship to
gold mineralization in the area. It may also be
significant that some potassic igneous rocks from
within-plate settings (e.g. Karinya Syncline,
Sect. 5.3) have intrinsically high Au contents
although no direct relationships to mineralization
have yet been established.

Potassic igneous rocks from the Mariana Arc
(Sect. 4.3), an initial oceanic island arc, do not
contain mica phenocrysts (Dixon and Batiza
1979) and cannot, therefore, be assessed in terms
of halogen contents.

Mica phenocrysts from potassic igneous rocks
generated in within-plate tectonic settings can
contain elevated halogen concentrations. Studies
by Naumov et al. (1998) suggest also that
potassic rocks with high TiO2 contents
(*3.23 wt%), which are typical for those from
within-plate tectonic settings, have primary
enrichments in F compared to the average F
concentrations of basic melts. However,
within-plate tectonic settings may have no
known mineralization or there may be only an
indirect association with known mineralization
(e.g. Mount Bundey igneous suite and Tom’s
Gully gold deposit).

9.3.3 Significance of Halogen Data

From the above discussion, it appears that the
halogen contents of mica phenocrysts from
high-K igneous suites can be used, with due
caution, as a measure of gold-copper minerali-
zation potential in continental, postcollisional,
and late oceanic island arcs (Müller and Groves
1993; Müller et al. 2001; Kroll et al. 2002; Yang
and Lentz 2005). The threshold value for Cl
concentration for such micas is about 0.04 wt%
or 400 ppm, but F is a poor discriminant, being
enriched up to about 4.0 wt% in potassic rocks

Table 9.3 (continued)

Province/deposit Porgera Porgera Porgera Porgera Porgera

Cl – – – – –

F – – – – –

Total 15.834 15.856 15.803 16.052 15.979

Ox. form. oxygen formula. Samples are from the private collection of N.M.S. Rock, and other data are from Richards
(1990b)
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Table 9.4 Microprobe
(WDS) analyses of mica
phenocrysts from potassic
igneous rocks from the
Grasberg copper-gold
deposit, Irian Jaya,
Indonesia

Province/deposit Grasberg Grasberg Grasberg Grasberg

Location Indonesia Indonesia Indonesia Indonesia

Rock type Monzodiorite Monzodiorite Monzodiorite Monzodiorite

Sample no. DM1 DM1 DM1 DM1

Reference Müller (1993) Müller (1993) Müller (1993) Müller (1993)

wt%

SiO2 35.56 35.24 35.37 35.44

TiO2 5.01 5.02 5.27 4.61

Al2O3 13.59 13.08 13.58 14.07

FeO (tot) 16.96 17.32 17.13 16.97

Cr2O3 – – – –

MnO – – – –

MgO 12.65 12.95 13.56 13.67

NiO – – – –

BaO 0.21 0.32 0.23 0.20

CaO 0.08 0.03 0.03 0.03

SrO 0.09 0.11 0.11 0.09

K2O 9.43 9.46 9.67 9.79

Na2O 0.40 0.33 0.26 0.28

Cl 0.12 0.26 0.08 0.10

F 1.30 1.42 1.23 1.31

Total 95.40 95.54 96.52 96.56

mg# 63 63 65 65

Ox. form. 22 22 22 22

Atoms

Si 5.498 5.483 5.416 5.418

Ti 0.582 0.587 0.606 0.529

Al 2.475 2.397 2.449 2.535

Fe 2.192 2.253 2.192 2.168

Cr – – – –

Mn – – – –

Mg 2.913 3.001 3.093 3.114

Ni – – – –

Ba 0.013 0.019 0.014 0.012

Ca 0.013 0.001 0.001 0.005

Sr 0.006 – – 0.005

K 1.859 1.877 1.888 1.909

Na 0.120 0.099 0.076 0.083

Cl – – – –

F – – – –

Total 15.671 15.717 15.735 15.778

Ox. form. oxygen formula. Sample numbers refer to specimens held in the Museum of the
Department of Geology and Geophysics, The University of Western Australia. Data from
Müller (1993)
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Table 9.5 Microprobe (WDS) analyses of mica phenocrysts from shoshonitic rocks from the Northparkes copper-gold
deposit E26 N, Goonumbla igneous complex, New South Wales, Australia

Province/deposit Northparkes Northparkes Northparkes Northparkes

Location NSW, Australia NSW, Australia NSW, Australia NSW, Australia

Rock type Monzonite Monzonite Trachyte Trachyte

Sample no. 119086 119086 119100 119102

Reference Müller et al. (1994) Müller et al. (1994) Müller et al. (1994) Müller et al. (1994)

wt%

SiO2 36.10 37.12 36.53 35.46

TiO2 4.22 4.00 2.83 3.45

Al2O3 14.35 14.17 16.42 16.59

FeO (tot) 11.65 11.50 13.03 13.33

Cr2O3 0.02 0.02 0.02 0.02

MnO 0.10 0.16 0.16 0.22

MgO 16.57 16.35 15.65 15.32

BaO 0.28 0.19 0.14 0.14

CaO 0.03 0.03 0.03 0.03

SrO 0.15 0.16 0.15 0.16

K2O 9.20 9.10 8.85 9.47

Na2O 0.42 0.44 0.29 0.29

Cl 0.10 0.14 0.11 0.12

F 3.90 3.18 1.58 1.42

Total 95.88 95.83 95.85 95.53

mg# 77 77 74 73

Ox. form. 22 22 22 22

Atoms

Si 5.136 5.290 5.242 5.120

Ti 0.452 0.428 0.306 0.374

Al 2.406 2.380 2.778 2.824

Fe 1.248 1.234 1.406 1.448

Cr 0.002 0.002 0.002 0.002

Mn 0.012 0.020 0.020 0.026

Mg 3.514 3.472 3.346 3.296

Ba 0.016 0.010 0.008 0.008

Ca 0.004 0.004 0.004 0.004

Sr 0.012 0.014 0.012 0.014

K 1.670 1.654 1.648 1.744

Na 0.116 0.122 0.080 0.082

Cl – – – –

F – – – –

Total 14.604 14.646 14.868 14.958

Ox. form. oxygen formula. Sample numbers refer to specimens held in the Museum of the Department of Geology and
Geophysics, The University of Western Australia. Data from Müller et al. (1994)
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Table 9.6 Microprobe (WDS) analyses of mica phenocrysts from shoshonitic lamprophyres from the Kambalda gold
province and from Mount Morgans gold deposit, Yilgarn Craton, Western Australia

Province/deposit Kambalda Kambalda Mount
Morgans

Mount
Morgans

Mount
Morgans

Location Western
Australia

Western
Australia

Western
Australia

Western
Australia

Western
Australia

Rock type Lamprophyre Lamprophyre Lamprophyre Lamprophyre Lamprophyre

Sample no. 108370 108512 RV5 RV5 B64

Zonation No No Core Rim No

Reference Müller (1993) Müller (1993) Müller (1993) Müller (1993) Müller (1993)

wt%

SiO2 37.07 37.93 40.66 40.09 36.54

TiO2 2.27 2.31 1.37 1.84 2.28

Al2O3 17.98 14.29 12.77 12.96 15.27

FeO (tot) 11.08 15.79 2.88 10.18 16.76

Cr2O3 0.03 0.10 0.47 0.45 0.13

MnO 0.16 0.08 0.05 0.09 0.17

MgO 14.94 14.84 24.54 18.96 13.19

NiO 0.10 0.06 0.70 0.55 0.10

BaO 0.22 0.37 0.17 0.19 0.19

CaO 0.03 0.03 0.03 0.03 0.07

SrO 0.13 0.13 0.14 0.14 0.15

K2O 10.14 9.35 10.68 10.27 9.06

Na2O 0.10 0.21 0.03 0.03 0.09

Cl 0.03 0.03 0.03 0.03 0.02

F 1.02 0.41 0.81 0.64 0.58

Total 94.87 95.76 94.99 96.18 94.36

mg# 75 68 95 81 64

Ox. form. 22 22 22 22 22

Atoms

Si 5.518 5.695 5.847 5.868 5.601

Ti 0.254 0.260 0.147 0.203 0.262

Al 3.153 2.528 2.163 2.235 2.758

Fe 1.378 1.981 0.347 1.246 2.148

Cr 0.001 0.012 0.053 0.052 0.016

Mn 0.019 0.010 0.006 0.011 0.022

Mg 3.313 3.319 5.256 4.134 3.012

Ni 0.012 0.007 0.081 0.065 0.012

Ba 0.011 0.022 0.006 0.004 0.007

Ca 0.002 0.030 – 0.001 0.012

Sr 0.011 0.011 0.007 0.007 0.002

K 1.924 1.790 1.958 1.916 1.772
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Table 9.6 (continued)

Province/deposit Kambalda Kambalda Mount
Morgans

Mount
Morgans

Mount
Morgans

Na 0.028 0.060 0.004 – 0.027

Cl – – – – –

F – – – – –

Total 15.624 15.725 15.875 15.742 15.651

Ox. form. oxygen formula. Sample numbers refer to specimens held in the Museum of the Department of Geology and
Geophysics, The University of Western Australia. Data from Müller (1993)

Table 9.7 Microprobe (WDS) analyses of mica phenocrysts from shoshonitic lamprophyres from the Kirkland Lake
gold district, Superior Province, Canada

Province/deposit Kirkland Lake Kirkland Lake Kirkland Lake Kirkland Lake Kirkland Lake

Location Canada Canada Canada Canada Canada

Rock type Lamprophyre Lamprophyre Lamprophyre Lamprophyre Lamprophyre

Sample no. NMSR1 NMSR2 NMSR3 NMSR4 NMSR5

Zonation No No No No No

Reference Müller (1993) Müller (1993) Müller (1993) Müller (1993) Müller (1993)

wt%

SiO2 38.89 38.35 37.47 36.46 35.99

TiO2 1.76 2.01 1.73 3.39 3.16

Al2O3 15.05 15.05 15.33 13.92 14.14

FeO (tot) 12.78 13.04 12.99 16.68 16.70

Cr2O3 0.09 0.17 0.13 0.02 0.04

MnO 0.18 0.11 0.16 0.18 0.24

MgO 16.49 15.89 15.76 14.24 14.24

NiO 0.10 0.09 0.07 0.06 0.06

BaO 0.35 0.27 0.35 0.52 0.53

CaO 0.04 0.12 0.03 0.03 0.03

SrO 0.16 0.10 0.13 0.11 0.10

K2O 10.03 9.52 10.01 9.27 9.44

Na2O 0.04 0.09 0.09 0.22 0.17

Cl 0.02 0.04 0.04 0.04 0.05

F 0.38 0.36 0.33 0.37 0.44

Total 96.31 95.10 94.24 94.91 95.14

mg# 72 71 71 63 63

Ox. form. 22 22 22 22 22

Atoms

Si 5.731 5.712 5.646 5.557 5.514

Ti 0.195 0.225 0.195 0.388 0.363

Al 2.612 2.641 2.722 2.499 2.553

Fe 1.574 1.623 1.637 2.125 2.138

(continued)
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from both mineralized and unmineralized envi-
ronments (Fig. 9.1).
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10Implications for Mineral Exploration
in Arc Environments

10.1 Introduction

Successful exploration for the next generation of
major copper-gold deposits is likely to require a
greater emphasis on covered terranes (Hronsky
et al. 2012; Sillitoe, pers. comm., 2013). Hence,
regional-scale target generation will become
increasingly more important in mineral explora-
tion in the next decade. However, such predictive
targeting capability requires a generic,
regional-scale understanding of copper and gold
metallogeny and its controls (Hronsky et al.
2012). The definition of prospective igneous
belts with a fertile geochemistry is an essential
step in target generation (e.g. the well endowed
Eocene-Oligocene igneous belt in northern
Chile). The extension of these prospective belts
can be delineated under cover by the interpola-
tion of limited outcrops in deep cross-cutting
valleys or in exploration drill holes.

Some of the data and interpretations discussed
in previous chapters of this book can be used to
define the most prospective igneous belts in
regional-scale target generation and the explora-
tion for world-class gold and copper-gold
deposits, since many of these deposits are spa-
tially associated with, or hosted by, potassic
igneous rocks (Mutschler et al. 1985; Müller and
Groves 1993; Müller 2002; Sillitoe 2002; Bi
et al. 2004; Hu et al. 2004, 2015; Kouzmanov
et al. 2009; Soloviev and Krivoschenkov 2011;
Fornadel et al. 2012; Hronski et al. 2012; Leh-
mann et al. 2013; Lu et al. 2013a; Soloviev et al.

2013; Witt et al. 2014; Bissig and Cooke 2014;
Chai et al. 2014; Maghsoudi et al. 2014; Solo-
viev 2014a, b, 2015; Xu et al. 2014, 2015; Zhao
et al. 2014a, b; Heidari et al. 2015; Jamali and
Mehrabi 2015; Shafaroudi et al. 2015). The
points listed below may be particularly useful.

10.2 Target Generation

10.2.1 Composition of Host Rocks

Rocks of the alkaline suite are generally more
prospective for giant and bonanza gold deposits
than normal calc-alkaline andesites (Müller and
Groves 1993; Sillitoe 1993, 1997, 2002). Spe-
cifically, four of the nine largest epithermal
gold-silver deposits and four of the ten largest
porphyry copper-gold deposits are associated
with high-K calc-alkaline and shoshonitic rocks
(Hedenquist, pers. comm., 1999; Sillitoe 1997,
2002). The high-K igneous rocks only comprise
between 5 and 10 vol% of arc rocks, yet are
associated with 40 % of the largest epithermal
and porphyry deposits, clearly indicating their
selective importance.

Epithermal gold and porphyry copper-gold
deposits are abundant in convergent-plate margin
settings, reflecting their direct genetic association
with high-K calc-alkaline and shoshonitic mag-
matism (Clark 1993; Müller 2002; Soloviev
2014a). The occurrence of potassic igneous rocks
clearly indicates a potentially high prospectivity
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for epithermal gold and porphyry copper-gold
deposits in that area (Müller and Groves 1993).
These rocks are defined by high K2O (>1 wt% at
50 wt% SiO2), high Ce/Yb ratios (>15), high
LILE and low HFSE (see Chaps. 2, and 3) con-
tents. Fertile potassic igneous rocks also contain
high contents of volatiles such as H2O, Cl and F
(see Chap. 9). Importantly, from a field explora-
tion viewpoint, high volatile contents of the rocks
can commonly be recognized in hand specimen
by their porphyritic texture, with abundant
hydrous phenocrysts of biotite, phlogopite,
and/or amphibole (see Figs. 6.9, 6.14, 6.16, 6.18,
6.20, 6.29, and 6.31). Modern studies (Richards
2011; Chiaradia et al. 2012; Loucks 2014; Lu
et al. 2015) suggest that high H2O contents of
igneous rocks are also reflected in high
whole-rock Sr/Y ratios (>35). During fractional
crystallization, Y behaves as a compatible ele-
ment in hornblende phenocrysts and is depleted
from the melt as hornblende and pyroxene
accumulate at the bottom of the magma chamber,
while Sr is incompatible and remains in the
residual melt (Richards 2011; Loucks 2014; Lu
et al. 2015), at least until the onset of plagioclase
fractionation. In addition, due to their high vol-
atile contents, ore-related potassic igneous rocks
may be characterized by the occurrence of
interconnected miarolitic cavities (Candela 1997;
Ohtani 2001). The hypabyssal lamprophyre
intrusions are typified by a lack of plagioclase
phenocrysts, reflecting the relatively high water
content of the magmas, which suppressed the
crystallization of feldspar (Carmichael et al.
1996). However, extrusive high-K rocks can
have plagioclase phenocrysts. Potassic igneous
rocks are also characterized microscopically by
apatite microphenocrysts and a groundmass that
is dominated by potassic feldspar or leucite.

10.2.2 Tectonic Setting

The definition of the tectonic setting in which the
high-K host rocks have been generated is
essential, since known epithermal gold and/or
porphyry copper-gold mineralization appears to

be restricted to the three subduction-related tec-
tonic settings: continental, postcollisional, and
late oceanic arcs. However, there is also evidence
for an association between iron-oxide-Cu–Au
(IOCG) mineralization and volatile-rich potassic
igneous rocks in within-plate settings (e.g.
Olympic Dam, South Australia: see Chap. 7).

The potassic igneous rocks themselves can be
used to help discriminate the tectonic setting, as
discussed in Chap. 3, via the use of hierarchical
chemical discrimination diagrams (Figs. 3.9 and
3.10).

For target generation, the presence of caldera
settings (e.g. Emperor), deep-seated structural
lineaments (e.g. Porgera) or their intersections
(e.g. Olympic Dam) is favourable, as they rep-
resent potential loci of mineralization. Such
lithosphere-scale structures are vital to allow the
focused transport of fertile magmas and/or fluids
to the upper crust (Hronsky et al. 2012; Korschv
and Doublier 2015). Hence, it may be no coin-
cidence that numerous significant copper and
gold deposits are spatially associated with crus-
tal- to lithosphere-scale lineaments and the
intersection of orogen-parallel structures of this
style with transfer structures at a high-angle to
the orogen trend (O’Driscoll 1983; Richards
et al. 2001). Such structural intersections are
likely to provide a highly permeable pipe-like
connection between the mantle and the upper
crust (Hronsky et al. 2012).

In continental and oceanic arc-settings, addi-
tional prospective exploration criteria are sub-
ducted seamounts that commonly result in kinks
or flexures of the subducting oceanic slab, and a
resulting change of the subduction angle along
both sides of the flexure (e.g. the “flat-slab zone”
in the central Andes; Kay et al. 1987, 2005).
Progressive subduction of kinks or flexures in the
downgoing plate might eventually lead to tearing
of the oceanic slab (Kerrich et al. 2000; Garwin
2002; Müller et al. 2002a), thus promoting the
uprise of deep asthenospheric mantle melts that
are normally blocked off by the downgoing slab
(Müller 2003; Logan and Mihalynuk 2014;
Sigoyer et al. 2014; Sect. 6.4.1). Hence, slab
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tears may play a dominant role in the formation
of porphyry copper-gold deposits globally
(Logan and Mihalynuk 2014).

10.3 Prospect Evaluation

10.3.1 Favourable Tectonic Elements
on the Prospect Scale

There is considerable evidence that many epi-
thermal gold and porphyry copper-gold deposits
which have been generated in late oceanic arcs
are located either within, or at the margin of,
collapsed caldera structures (cf. Soeria-Atmadja
et al. 1998). Examples are the Emperor gold
deposit and the Dinkidi and Northparkes (Goo-
numbla) copper-gold deposits (Müller and
Groves 1993). In addition, the intersections of
major structures may be favourable tectonic
elements on the prospect scale, as, for example,
at Emperor (Setterfield 1991). Other major
structures which favour mineralization (Sillitoe
1993) are high-angle reverse faults (e.g. El
Indio), strike-slip faults (e.g. epithermal gold
deposit at Baguio, Philippines), and reactivated
collisional sutures (e.g. Porgera). The minerali-
zation in Upper Eocene to Lower Oligocene
porphyry-copper deposits in northern Chile (e.g.
Chuquicamata, El Salvador, La Escondida,
Zaldivar) appears to be controlled by a major
dextral transpressive structure (Domeyko Fault;
Clark 1993; Arriagada et al. 2000; Palacios et al.
2007). Field studies by Arriagada et al. (2000)
emphasize the importance of extensional struc-
tures caused by clockwise tectonic rotations for
mineral exploration in the north Chilean Andes.
Thus, both synvolcanic structures and post- to
late-volcanic structures may control mineraliza-
tion in prospective environments.

10.3.2 High Oxygen Fugacities (fO2)
of the Magmas

Oxygen fugacity is defined as the activity (or
partial pressure) of O2 within a system (Frost
1991) and represents a fundamental variable,

such as pressure and temperature, that provides a
measure of the systems redox potential at equi-
librium (Lee et al. 2005). The fO2 is commonly
determined indirectly, by O2 thermobarometry,
wherein the activities of the different valence
states of a redox-sensitive element in minerals (or
glasses) are measured (Lee et al. 2005). In
homogeneous, single-phase, systems (e.g.
magma) experimentally calibrated relationships
between fO2 and the activities of Fe3+ and Fe2+

in a glass are typically used to obtain the fO2 of a
magma just prior to quenching (Kress and Car-
michael 1991). In a heterogeneous, multi-phase,
system, the fO2 of last equilibration is recorded
by the distribution of Fe3+ in different system
phases (Lee et al. 2005) according to the
reaction:

6Fe2SiO4ðOlÞ þ O2ðfluidÞ ¼ 2Fe3O4ðSpÞ
þ 3Fe2Si2O6ðOpxÞ;

where fayalite, magnetite, and ferrosilite occur in
solid solution with olivine, spinel, and orthopy-
roxene, respectively (e.g. Ballhaus et al. 1991).
During this reaction, initially a free SiO2 phase is
formed, which is instable under mantle condi-
tions, and hence, reacts to orthopyroxene (Franz,
pers. comm., 2001).

This barometric method of inferring fO2 has
been widely applied to mantle xenoliths (e.g.
Franz et al. 2002; Franz and Romer 2010), lavas
and intrusions (e.g. Müller et al. 2001, 2003). As
the oxygen geobarometer of Ballhaus et al.
(1991) is restricted to spinels with TiO2 contents
of <1 wt% (Ballhaus, pers. comm., 2000), the
oxygen fugacity of titanomagnetite-bearing
intrusive rocks should be determined using the
QUILF program of Lindsley and Frost (1992)
version of Andersen et al. (1993).

An alternative method to estimate the fO2 of
igneous rocks is promoted by Ballard et al.
(2002) because the conventional use of quanti-
tative oxygen barometers based on Fe–Ti oxides
can be limited by the overprint of hydrothermal
alteration. The authors suggest instead the use of
laser ablation ICP-MS facilities, permitting the
calculation of Ce4+/Ce3+ ratios of zircons using a
lattice-strain model for mineral-melt partitioning
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of Ce4+ and Ce3+, respectively. As zircon occurs
in most calc-alkaline and shoshonitic intrusions
and is resistant to subsolidus alteration, zircon
Ce4+/Ce3+ ratios provide a useful tool to estimate
the fO2 of igneous rocks (Ballard et al. 2002).
Their pilot study on zircons from composite
intrusions hosting the El Abra porphyry copper
deposit in Chile reveal that the oxygen fugacities
of intrusive complexes increase with progressing
fractionation from older, basic, to younger, felsic,
units. Within this sequence (Ballard et al. 2002),
porphyry copper mineralization is genetically
associated with intrusions with high zircon Ce4+/
Ce3+ ratios (>300). More recent work (Burnham
and Berry 2012) confirms that the partition
coefficient of Ce in zircon varies systematically
with fO2 and that porphyry copper mineralization
is preferentially hosted by intrusions with high
Ce4+/Ce3+ ratios (Xu et al. 2015).

The oxidation state of the lithospheric upper
mantle is heterogeneous, with a variation in the
oxygen fugacity (fO2) of at least four log units
(Ballhaus et al. 1990; Ballhaus 1993). Lithosphere
above subduction zones is commonly more oxi-
dized than other mantle regimes either because of
its infiltration by slab-derived fluids generated
from dehydration and decarbonation reactions
(Arculus 1985; Haggerty 1990; Lange and Car-
michael 1990; Mungall 2002; Sun et al. 2004;
Richards 2011; Chen et al. 2015) or due to the
effect of later crustal processes, including pro-
tracted fractionation and degassing of volatile-rich
magmas (Humphreys et al. 2015). Recent studies
on oxygen isotopes of zircons from shoshonitic
intrusions collected in western Yunnan, China,
reveal much higher δ18O values (6.26–7.05 ‰)
than normal mantle material, suggesting some 18O
enrichment during earlier subduction-related
metasomatism of their lithospheric mantle source
(Lu et al. 2013b). High fO2 in potassic igneous
rocks are also suggested by experimental studies
(e.g. Li and Audetat 2013). Phlogopite pheno-
crysts from subduction-related potassic igneous
rocks have the highest Fe3+/FeT ratios (0.77–
0.87), which is consistent with the high magmatic
fO2 inferred for these magmas (Feldstein et al.
1996). The dissociation of H2O and the release of
H should enrich the system in oxygen at an early

stage before the onset of partial melting
(Abdel-Rahman 1994). However, experimental
studies by Moore et al. (1995) indicate that dis-
solved water does not measurably affect the redox
state of iron in natural melts. Therefore, the high
oxygen fugacities, which are commonly recorded
in H2O-rich magmas (e.g. Lange and Carmichael
1990), are probably a record of other processes
that have imposed a high fO2 upon the melt, and
are not a reflection of the amount of dissolved
water (Moore et al. 1995). For example, studies by
Dixon et al. (1997) show that the lowest degree
partial melts have the highest relative fO2 and this
decreases with increasing extent of melting. The
most oxidized basaltic melts are potassic lampro-
phyres such as minettes from mature continental
arcs (Ballhaus 1993) and primitive trachybasalts
from oceanic arcs (Frost and Lindsley 1992;
Müller et al. 2001). While the fO2 of low-K tho-
leiites (MORB) ranges between −2.0 and +0.7 log
units from the FMQ buffer (Lee et al. 2005; Rowe
et al. 2009), high-K oceanic arc basalts typically
have high fO2 ranging from +0.3 to +6.0 log units
ΔFMQ (Lee et al. 2005). High fO2 (+1.4 to +4.8
log units ΔFMQ) are also recorded for potassic
igneous rocks from a late oceanic arc setting at
Lihir Island (Müller et al. 2001), and Conical
Seamount (+0.7 to +2.5 log units ΔFMQ), Papua
New Guinea (Müller et al. 2003). Most authors
agree that oxidation of the upper mantle above
subduction zones is related to the metasomatic
addition of oxidized fluids carrying sulphates
and/or sediments derived from dehydration of the
subducting slab (Carmichael 1991; Schmidt and
Poli 1998; Stern 2002; Hou et al. 2015; Richards
2015). In fact, most metasomatizing processes are
likely to be oxidizing (McGuire et al. 1991;
McCammon et al. 2001). Some authors (e.g.
Holloway 2004) hypothesized that rapidly crys-
tallized magmas may undergo an auto-oxidation
process in which ferrous iron is oxidized by water
to generate magnetite and H2, the latter of which is
free to leave the system as a fluid or by de-gassing.
The loss of H2 will then result in an increase in the
ferric iron content (Holloway 2004).

There is also a positive correlation between the
average volatile content in basalts and their cal-
culated fO2. Thus, those basalts from oceanic arcs
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which are most oxidized also have the highest
abundances of volatile phases such as magmatic
water (Ballhaus 1993), and Cl and F (Müller et al.
2001, 2003). More recent studies (Rowe et al.
2009) reveal that oxygen fugacity is positively
correlated with fluid-mobile trace element and
LREE contents in basalts. Moreover, melt inclu-
sions from shoshonitic lavas show increasing fO2

and trace element abundances closer to the sub-
duction trench (Rowe et al. 2009). Studies by Lee
et al. (2005) suggest a positive correlation
between fO2 and V/Sc ratios. Hence, elevated
oxygen fugacities of arc lavas exceeding +1.0 log
unit ΔFMQ are reflected in high whole-rock V/Sc
ratios (>12; Lee et al. 2005). However, the
interpretation of V/Sc ratios is not straightforward
as high V/Sc ratios could also be caused by
residual garnet in the upper mantle sources of
these magmas (Lee et al. 2005).

At magmatic temperatures, fO2 is a major
factor controlling element partitioning (e.g. Ball-
haus 1995; Blevin and Chappell 1996; Lee et al.
2005; Rowe et al. 2009). At high values of fO2,
iron is partially transformed into Fe3+ and oxide
minerals such as magnetite crystallize in prefer-
ence to Fe2+-bearing silicate minerals (Haggerty
1990). The high alkali content of potassic melts
increases their Fe3+/Fe2+ ratios, thus resulting in a
higher oxygen fugacity (Wyborn 1994). A high
fO2 of the magmas, as indicated by significant
concentrations of primary magnetite (>5 vol.%) in
their crystallized products, favours precipitation
of large quantities of gold (Sillitoe 1979). So it is
no coincidence that the potassic host rocks of
many epithermal gold and porphyry copper-gold
deposits are characterized by appreciable mag-
netite. Examples are the high-K rocks hosting the
porphyry copper-gold deposits at Bajo de la
Alumbrera, Argentina (Stults 1985), Northparkes
(Goonumbla), New South Wales, Australia
(Müller et al. 1994), Grasberg, Indonesia (Kava-
lieris, pers. comm., 1996), Ladolam, Lihir Island,
Papua New Guinea (Müller et al. 2001, 2002b),
and Marian, Philippines (Sillitoe 1979), which all
contain up to 5 vol.% magnetite. These
magnetite-rich igneous rocks result in a high
magnetic susceptibility, generating magnetic
responses of up to 4500 gammas, and may,

therefore, be identified in airborne magnetic sur-
veys. However, in areas where the rocks are
strongly affected by hydrothermal alteration, the
effects of supergene martitization (i.e. alteration
of magnetite to haematite) can minimize this
effect in the vicinity of mineralization.

At constant temperatures, as fO2 increases, the
concentration of dissolved sulphide (S2−) in the
melt decreases, whereas the dissolved sulphate
(SO4

2−) increases as sulphur is oxidized (Carmi-
chael and Ghiorso 1986; Campbell et al. 1998;
Ballard et al. 2002; Richards 2009, 2011). Thus,
the potential for precious metal segregation into
magmatic sulphide phases is reduced (Candela
1992; Sun et al. 2004; Richards 2009; Sect. 5.2).
At high fO2, sulphate phases have a much higher
solubility in silicate melts than sulphides (Carroll
and Rutherford 1985; Ballard et al. 2002). The
transition between sulphide-dominant and
sulphate-dominant melt compositions is quite
abrupt, occurring over about one log unit of
oxygen fugacity (Matthews et al. 1999). If the
sulphide concentration in the melt is reduced,
gold and copper will be concentrated in the
volatile-enriched top part of the magma chamber
(Müller et al. 2002a). Once volatile saturation
occurs during secondary boiling, the magma
chamber releases pulses of metal- and
volatile-enriched melts capable of forming por-
phyry copper-gold mineralization in the upper
crust (Richards 1995; Müller et al. 2002a). In
agreement with this, Kesler (1997) and, more
recently, Tang et al. (2010) have pointed out that
alkaline magmas also can dissolve more sulphate,
thus making it unlikely for the magma to become
saturated with metal sulphides. Alkali-rich, basic
magmas, particularly potassic melts, may contain
sulphate minerals (e.g. anhydrite) and are, there-
fore apparently considerably more oxidized than,
for example, tholeiites (Haggerty 1990; Tang
et al. 2010; Hou et al. 2015). The abundance of
late anhydrite veins in the host rocks at Ladolam
(Sect. 6.3.1), Grasberg (Sect. 6.5.1), and Porgera
(Standing, pers. comm., 1993; Sect. 6.5.3) gold
deposits may be consistent with a high fO2 for
these potassic intrusions, and the occurrence of
anhydrite may be a further guide to mineralization
at the prospect scale.
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10.3.3 Elevated Halogen Contents
of the Magmas

The important role of halogens, such as Cl and F,
for the transport of metals in ore deposits related
to igneous intrusions is discussed in Chap. 9.
Experimental studies of Cl partitioning in gra-
nitic systems suggest that the strongest enrich-
ment of magmatic-hydrothermal fluids in Cl and
ore metals complexed with Cl will most likely be
in fluids exsolved from magmas that are rela-
tively enriched in K2O (Webster 1992; Chevy-
chelov et al. 2008; Melluso et al. 2012; Webster
et al. 2014; Chen et al. 2015). The halogen
contents of mica phenocrysts from high-K igne-
ous suites may be used as a measure of
gold-copper mineralization potential in conti-
nental, postcollisional, and late oceanic arcs. In
exploration target generation, those potassic
igneous rocks whose mica phenocrysts have Cl
contents >0.04 wt% and F contents >0.5 wt% can
be regarded as prospective (Müller and Groves
1993; Müller et al. 2001; Kroll et al. 2002; Yang
and Lentz 2005; Sarjoughian et al. 2015). How-
ever, caution must be used in universal applica-
tion of the halogen contents of high-K rocks as a
tool in mineral exploration because such rocks
analyzed to date from within-plate settings also
have high halogen contents, although no direct
genetic relationships to epithermal gold and
porphyry copper-gold deposits have yet been
established (Müller and Groves 1993). An
exception might be iron-oxide copper-gold
(IOCG) deposits derived in within-plate tec-
tonic settings (e.g. Olympic Dam; Sect. 7.2.2).
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11Characteristics of Some Gold-Copper
Deposits Associated with Potassic
Igneous Rocks

This chapter provides 32 Tables summarizing the
characteristic features of global gold-copper
deposits associated with potassic igneous rocks
for which substantial information is available.

11.1 Abbreviations

Abbreviations for ore minerals: Apy, arsenopy-
rite; Bn, bornite; Cal, calaverite; Cc, chalcocite;
Cinn, cinnabar; Cov, covellite; Cpy, chalcopy-
rite; Dig, digenite; En, enargite; Gn, galena; Mar,
marcasite; Mol, molybdenite; Po, pyrrhotite; Py,
pyrite; Sch, scheelite; Sl, sphalerite; Stib, stib-
nite; Tel, telluride; Ten, tennantite; Tet,
tetrahedrite.

Abbreviations for silicate minerals: Af,
potassic feldspar; An, analcite; Ap, apatite; Bio,
biotite; Cpx, clinopyroxene; Foids, feldspathoid
minerals; Hb, hornblende; Mt, magnetite; Ol,
olivine; Opx, orthopyroxene; Phl, phlogopite; Pl,
plagioclase; Qz, quartz; Ti, titanite.

11.2 Tables of Deposit
Characteristics

The deposit tables are arranged alphabetically for
ease of use but the following lists indicate their
tectonic settings.

Continental arcs: Andacollo, Bajo de la
Alumbrera, Bingham, Buchim, Choquelimpie,
Cripple Creek (transitional), El Indio, Maricunga
Belt Mining District, Skouries, Summitville,
Twin Buttes.

Postcollisional arcs: Axi, Grasberg, Guil-
aizhuang, Kirkland Lake Mining District, Mis-
ima, Mount Kare, Mount Morgans, Ok Tedi,
Porgera, Qulong, Touzlar, Wiluna, Yao’an.

Late oceanic arcs: Cadia, Dinkidi, Emperor,
Ladolam, Northparkes, Oyu Tolgoi, Peschanka,
Woodlark Island.

Within-plate settings: Cripple Creek (transi-
tional) (Tables 11.1, 11.2, 11.3, 11.4, 11.5, 11.6,
11.7, 11.8, 11.9, 11.10, 11.11, 11.12, 11.13,
11.14, 11.15, 11.16, 11.17, 11.18, 11.19, 11.20,
11.21, 11.22, 11.23, 11.24, 11.25, 11.26, 11.27,
11.28, 11.29, 11.30, 11.31 and 11.32).
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