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Rapid advances have been made during the past few decades in earthquake response modification
technologies for structures, most notably in base isolation and energy dissipation systems. Many
practical applications of various dampers can be found worldwide and, in the United States, damper
design has been included in building codes. The current design process is simple and useful for
adding supplemental damping up to a reasonable level—but it is not as useful with higher levels
of damping.

Taking a different approach, Structural Damping: Applications in Seismic Response Modification
considers the dynamic responses of structures with added damping devices as systems governed
by the combined effect of the static stiffness, period, and damping—or “dynamic stiffness”—of the
structure device system. This formulation supplies additional information for higher-level supplemental
damping design that current provisions may not adequately cover. The authors also propose a more
comprehensive consideration of the core issues in structural damping, which provides a useful
foundation for continued research and development in seismic response modification technologies
for performance-based engineering.

The book includes design examples, based on the authors’ research and practical experience, to
illustrate approaches that include higher-level supplemental damping to complement the use of the
current NEHRP/ASCE-7 provisions. A self-contained resource on damping design principles, this
book helps earthquake engineers select the most effective type of damper and determine the amount
and configuration of damping under given working conditions.
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Series	Preface
The major goal of earthquake engineering is to limit seismic-induced structural damages at reason-
able cost. To achieve this goal, one of the most effective approaches to reduce structural response 
is to utilize supplemental dampers, provided such a damping system is properly designed. In this 
sense, understanding structural damping is critically important for successful seismic design. This 
book Structural Damping: Applications in Seismic Response Modification is a valuable addition to 
the Advances in Earthquake Engineering Series for it serves the goal of optimal response control.

The book was written under the direction of Dr. George C. Lee, SUNY distinguished professor, 
who had served as chair of the Department of Civil Engineering, dean of the School of Engineering 
and Applied Science, and director of the Multidisciplinary Center for Earthquake Engineering 
Research. He and his coauthors have integrated the essential materials developed by his research 
team in the past 20 years. The key features of this book may be briefly summarized as follows:

 1. The book provides an integrated systematic presentation of the dynamic response of struc-
tures with nonproportional or nonlinear damping, as well as with overdamped vibration 
modes. This theoretical base is important for understanding the dynamic behavior of 
structures with large damping, prior to the development of aseismic design using damping 
devices.

 2. This volume is a pioneering work to provide comprehensive design principles of structural 
damping, including design procedures and guidelines for aseismic design of structures 
with enhanced damping.

 3. Based on a comprehensive formulation, limitations of current design practice for large 
damping are clearly illustrated, and improvements to handle enhanced damping are given.

 4. This volume offers a discussion of the safety issues of structures with enhanced damping, 
based on theoretical formulation and practical design consideration.

This book is useful not only in the practicing engineering community but also to researchers and 
educators, because numerous research and development challenges remain to be pursued.
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Preface
Today, earthquake engineering research is devoting a major effort toward establishing seismic per-
formance requirements associated with large inelastic deformations of the structure. At the same 
time, structural response modification systems (certainly, passive energy dissipation and seismic 
isolation systems) have been widely used. It is reasonable to expect that the next research emphasis 
in performance-based engineering is to integrate both frontiers for more optimal seismic perfor-
mance of structures. As far as safety, performance, and cost for both components of inelastic defor-
mation and structural response control are concerned, structural damping is a core knowledge area. 
In this book, recent advances in structural damping are presented and their applications to the design 
of passive structural response modification devices are given to complement the current supplemen-
tal damping design practice for high-level damping. Integration with seismic performance require-
ment is not addressed in this book.

Aseismic design using supplemental dampers has steadily gained popularity in the earthquake 
engineering profession over the past several decades. Many practical applications of various damp-
ers can be found worldwide and, in the United States, damper design has been included in building 
codes. To date, damping design is primarily based on the concepts of the energy equation, effective 
proportional damping, and simplified linear single-degree-of-freedom (SDOF) response spectrum. 
These concepts, along with their associated underlying assumptions, support the idea that installing 
supplemental dampers in structures will dissipate energy. Nonlinear damping is presented by an 
effective damping ratio through linearization schemes, and the damping coefficients of structures 
are assumed to be classic damping matrices in order to establish a procedure for damping design. 
In addition, it is assumed that statistical procedures that use earthquake records can be carried out 
through proportional scaling of their amplitudes.

These assumptions have enabled us to develop a design procedure for supplemental dampers. 
However, it is not well understood that some of these assumptions work well only when the amount 
of damping in structures is within a specific low level. The first main objective of this book is to 
provide a theoretical foundation on the role of damping in the dynamic response of structures, espe-
cially when the level of damping is high or when nonlinearities become important design issues. 
The second main objective is to provide response spectra–based design principles and guidelines 
for practical applications of damping devices to reduce earthquake-induced structural vibration.

Generally speaking, structural responses under seismic excitations are dynamic processes. There 
are three resisting force components to counter the earthquake load, one of which is the damping 
force. While damping technology has been developed and advanced in a range of mechanical and 
aerospace engineering applications over many years, it has become a popular approach in structural 
engineering only in the later part of the twentieth century.

While the development and application of energy dissipation devices in structural engineer-
ing continue to expand, there are a number of fundamental issues related to the dynamic behavior 
of structures with supplemental damping as a system that require further study. Limitations and 
impacts of using energy dissipation devices need to be clarified and established. This book intends 
to fill the knowledge gap by helping earthquake engineers to better understand the dynamic behav-
ior of structures and to more effectively use the design codes for dampers.

The key elements in this book are summarized as follows.
A straightforward concept often advocated in damping design is that “more energy dissipated 

by the added dampers will result in less vibration energy remaining in the structure, and thus 
the structural response is reduced.” This is not always true. A higher level of damping may not 
effectively reduce the responses of a given structure. In some cases, high-level damping may even 
magnify the responses, because the level of structural response depends not only on local energy 



xviii	 Preface

dissipation, but also on energy input and its redistribution. Thus, minimizing the conservative 
energy of the vibrating system in structures with supplemental damping is a more appropriate 
general guiding principle.

Several other basic issues in structural damping are carefully reviewed. These include the maxi-
mum energy dissipation principle under preset damping force and allowed structural displacement; 
the damping adaptability of devices that can operate in a large dynamic range of earthquake loads; 
the viscoelastic behavior of any damping elements that take the supporting stiffness as well as 
installation practice into consideration; nonproportional damping that needs to be minimized as 
much as possible in design practice; the limitation of using damping force that provides a practical 
engineering limit beyond which adding more damping provides diminishing gains; and the problem 
of damping and stiffness nonlinearity that cannot be accurately approximated by today’s design 
approaches. In addition, a design principle based on energy distribution is discussed, which may be 
useful for generally damped multi-degree-of-freedom (MDOF) systems.

The characteristics of nonlinear damping and nonlinear structures are complex issues to address 
in damping design. In this book, nonlinearity is considered in three cases. The first case involves a 
linear structure with small nonlinear damping, the second case is for a linear structure with larger 
nonlinear damping, and the third case applies when both the structure and the damping are non-
linear. In the first case, because the damping force is rather small, almost any type of linearization 
can be used without causing any significant design discrepancies. In the second case, care must be 
taken to choose proper linearization; employing nonlinear design spectra can often be a reasonable 
approach. In the third case, linearization methods, though adopted by many building codes, can pro-
vide highly inaccurate results. Methods such as the equal displacement approach (using R-factors), 
equal energy approach, and pushover approach all have their limitations. Since the nonlinear design 
spectra approach requires too many response spectra, not only for specific damping and stiffness, 
but also for specific levels of ground excitations, it is not useful in practice. Thus, nonlinear time his-
tory analysis must be used. This latter method, though always workable for the first two cases, can 
yield an unacceptable computation burden, making it unattractive for use in day-to-day practical 
damping design. For this reason, time history analysis is not emphasized in all discussions.

Two types of design approaches are provided in this book. The first is the design response 
spectra approach. Specifically, the design is modified by a simplified factor, the damping ratios 
of the first several vibration modes of the structure. For readers familiar with the design response 
spectra method for an SDOF linear system, this approach provides a good design when damping is 
small and for structural responses in elastic ranges. The modified approach addresses cases where 
damping is large and nonlinear. Examples of how to modify the response spectra design are also 
provided.

The second type of damper design is based on time history analysis, for which several issues are 
important. These issues include how to select and scale earthquake records to be consistent with the 
response spectra, accuracy of modeling of dampers as well as the structure–damper system both as 
elastic and inelastic systems, and interpretation of response time histories and peak values.

There are many issues related to the role of large damping in the design of earthquake protective 
systems. Some involve fundamental theories, while others focus on practical details, such as device 
installations. In this book, focus is first given to the fundamental issues. Detailed technical descriptions 
and step-by-step design procedures are developed based on the basic principles. These fundamental 
issues are limited to areas within the scope of structural dynamics principles, although attention is also 
given to related topics of damper selection, damper specifications, and damper installation.

The arrangement of this book is as follows. Part I provides a foundation for generally damped 
MDOF systems by emphasizing damping force, energy dissipation, and structural impedances, 
which are important in structural dynamics and damping control. In Chapter 1, the necessary back-
ground of linear SDOF systems, including the concepts of natural frequency and damping ratio, is 
introduced. Free and forced harmonic vibrations are discussed, and the concepts of damping force 
and energy dissipation are systemically explained. The effect of damping on free and harmonic 
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vibration is reviewed. Effective damping, as systemically described by Timoshenko, is the funda-
mental formula in currently used damper design. This concept is analyzed and an alternative force-
based approach for linearization of damping is also provided.

In Chapter 2, arbitrary excitations for SDOF systems, including periodic, transient, and random 
excitations, are considered and the earthquake responses of structures are examined. Parallel with 
the description of these three types of arbitrary excitations and the corresponding responses of 
SDOF systems, mathematical tools are introduced. In particular, Fourier series and Fourier/Laplace 
transforms, which are basic approaches to represent vibration signals, are reviewed. The integral 
transforms allow a different idea to be considered; that is, the view in the frequency domain is seen 
as a modal vibration model, whereas the direct response of the system provides the response model 
in the time domain. Furthermore, to account for random vibrations, the concepts of correlation 
analysis and spectral analysis are introduced. These necessary mathematical tools are used in the 
rest of the book. In the last section of this chapter, earthquake response is discussed with a primary 
focus on the response spectrum. Again, the effect of damping is emphasized.

In Chapter 3, linear MDOF systems with proportional damping are introduced. First, the 
undamped system is examined and the fundamental approach of eigen-decomposition is consid-
ered. The concept of the Rayleigh quotient is introduced as the foundation of modal analysis. Then, 
proportional damping is discussed, followed by modal analysis and system decoupling. For practi-
cal applications, modal participation, modal truncation, and modal parameter estimation, as well as 
several forms of proportional damping matrices, are presented.

Nonproportionally damped and overdamped systems are discussed in Chapter 4. Although most 
structures are more or less generally damped, only the equations that are needed for practical use 
are presented. Theoretical developments on generally damped MDOF systems are not covered here 
in significant depth, but are available elsewhere (e.g., Liang et al. 2007). Instead, explanations for 
engineering application of the theoretical principles and design examples are provided.

Part II introduces some design principles and guidelines for damping control. The focus is on 
using damping force more accurately and effectively in the design of structures with supplemental 
damping. In Chapter 5, the basic principles of damper design and damping devices are given. The 
first group of principles are associated with various dampers. These include generic modeling of 
damping force for dampers and damping parameters of structures with added dampers; conven-
tionally used Timoshenko effective damping ratio based on energy and an alternative approach for 
the effective damping ratio based on damping force; maximum energy dissipation per device per 
cycle, which leads to the rectangular law that provides a method for optimal damping design and 
the upper limit of damping vibration control; damping adaptability, which provides another basic 
rule for damper selection; damping ratio affected by the physical parameters of the total system 
and the effectiveness of the structural parameters in affecting the damping ratio; similarity and 
difference of response spectrum and dynamic stiffness, which provide an alternative rule other 
than response spectrum as a design criteria; and the relationship between damping and stiffness, 
which is an often overlooked issue in practical damper design.

Chapter 6 is a continuation of the discussion on design principles, but the focus is on the nonlin-
earity and damping irregularity of the total system of structures with supplemental damping. The 
pros and cons of currently used simplified damper design procedures are presented and discussed. 
In the simplified design procedure, the designers do not have to obtain the exact mode shapes for 
modes higher than the fundamental one, nor do they have to calculate the exact first mode shape. 
However, for systems with larger damping, special considerations must be given. These consider-
ations result in modifications to the currently used simplified approach based on the design spectra 
approach. These suggested modifications are presented in the NEHRP (2009) provisions and are 
discussed in Part III.

In general, Part III provides more detailed design procedures based on the classification of spe-
cific damping devices. In this book, dampers are classified based on their linearity and rate depen-
dency to facilitate the subsequent development of design guidelines in a logical manner, rather than 
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on their displacement dependency and velocity dependency. Chapter 7 deals with linear damping 
and linearized nonlinear damping. When the supplemental damping is not sufficiently large, this 
approach can greatly reduce the computational burden, yet provide reasonable accuracy. The sim-
plified design approach of current codes is introduced. While the design logic is virtually identical 
among these codes, some improvements are suggested to enhance the design procedure. The first 
part of Chapter 7 presents an approach for using SDOF systems, which is directly related to the 
design spectrum. This serves as the basis for the entire simplified design process, as well as provides 
an initial estimation of whether supplemental damping should be used. The multiple-story-single-
period (MSSP) structures and multiple modes are then introduced as the main platform for develop-
ing design guidelines. Chapter 7 also presents more general linear damping.

When the added damping is sufficiently large, to avoid the errors introduced by the linearization 
process, nonlinear damping needs to be considered. This is examined in Chapter 8. One typical 
nonlinear response is the parallelogram-form force–displacement relationship, referred to as the 
bilinear damper. To estimate the structural responses, specific bilinear response spectra are used. 
To further obtain the response vectors of nonlinear MDOF systems, separation of the displacement 
and acceleration is performed and the combination of the first several effective “modes” is rendered. 
In Chapter 8, another important type of damper, the sublinear damper, is discussed and expressed 
by the sublinear response spectra. Unlike bilinear damping, in which all the effective “modes” of 
interest can be treated as bilinear, sublinear damping rarely contributes accurate information for 
higher “modes.” Therefore, an alternative approach of an equivalent linear MDOF system, which 
likely will be generally damped, is used. Detailed design steps on mode shape normalization, gen-
eral damping indices, and response computation, as well as selecting damper specifications, are 
discussed. For sublinear systems, an iterative design procedure for a nonlinearly damped structure is 
also suggested. This includes the identification of the model, initial design, and response estimation. 
Note that the spectra-based estimation proposed in this chapter provides simplified calculations with 
considerably less computational burden. It should be used together with time history analysis for 
design safety, efficiency of damper use, and cost-effective optimizations.

The materials covered in Part III are incomplete. Much remain to be fully developed. Because 
most design professionals are familiar with the current design codes (e.g., NEHRP 2009), an 
approach that follows the NEHRP provisions with added “notations” and “recommendations” is 
followed in presenting the materials in Chapters 7 and 8. It is hoped that this information will be 
useful as a supplement to the existing NEHRP provisions. It is obvious that many research and 
development challenges remain to be faced by the earthquake engineering research community and 
codification professional groups. This book will hopefully also help clarify some of these future 
research needs.

The materials presented in this book were gradually developed by the authors during the past 
20 years in conjunction with their research activities sponsored by the National Science Foundation 
and the Federal Highway Administration through the National Center for Earthquake Engineering 
Research and subsequently, the Multidisciplinary Center for Earthquake Engineering Research. 
The authors would like to acknowledge these funding agencies for the opportunity to work on struc-
tural damping–related subjects, and the Samuel P. Capen Endowment fund of the University at 
Buffalo, State University of New York, for partial financial support. They would like to express their 
appreciation to professors Joseph Penzein of the University at California, Berkeley, and Masanobu 
Shinozuka of the University of California, Irvine, for helpful technical discussions and to many of 
their colleagues at the University at Buffalo, in particular, professors Michael Constantinou, Andre 
Filiatrault, Andrei Reinhorn, T. T. Soong, and Andrew Whittaker, for their inspiring discussions and 
pioneering research efforts in damping design and related areas that greatly benefited this writing 
effort. In addition, the authors are indebted to the following individuals for their invaluable assis-
tance in technical editing and formatting of the manuscript: Jane Stoyle Welch, Shuchuan Zhang, 
Nasi Zhang, Yihui Zhou, Hao Xue, Dezhang Sun, and Chao Huang. Last but not the least, the authors 
express their sincere appreciation and affection to their wives, Yiwei, Grace, Andrea, and Li, for 
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their patience, encouragement, and love, as the authors devoted countless evenings and weekends 
while this book was being written.
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Part I

Vibration Systems
In Part I, the fundamental concepts for modeling of structures under dynamic excitation are 
presented. Structural systems represented by linear single- or multiple-degree of freedom models, 
under both free and forced vibrations, are considered. The corresponding eigen-problem is examined 
in some detail for both the proportional and nonproportional damping cases.

Part I only presents necessary theories and formulae for damper design. In order to systemati-
cally explain the basic concept of structural dynamics, especially for multi-degree-of-freedom sys-
tem with large damping, the materials discussed are arranged to follow self-complete logics, in both 
mathematics and vibration theories.
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1 Free	and	Harmonic	
Vibration	of	Single-Degree-
of-Freedom	Systems

The major focus of this book is on the theory, principles, and procedures for the design of  earthquake 
response modification technologies or earthquake protective systems. In particular, special empha-
sis is placed on the application of various damping devices in the seismic vibration control of civil 
engineering structures.

In this chapter, several fundamental concepts and governing equations of single-degree-of-
freedom (SDOF) systems are reviewed, which serve as basic knowledge for advanced damping 
concepts and structural dynamics in general. While the presentation is intended to be reasonably 
self-contained, some detailed derivations and explanations, which can be found in standard structural 
dynamics reference books, are not included (Inman 2007; Chopra 2006; Clouph and Penzien 1993).

1.1  MODEL OF LINEAR SDOF VIBRATION SYSTEMS

1.1.1  Equation of Motion and Basic dynaMic ParaMEtErs

When a structure or a system is subjected to dynamic load, that is, subjected to time-varying load, it 
will have time-varying responses. The amplitudes of the responses not only will depend on external 
excitations, but will also be a function of the system itself. This system has three types of internal 
forces: the inertial force, the damping force, and the restoring force, which may be conceptually 
explained by a linear single mass-damper-spring (m-c-k) system displayed in Figure 1.1a or a one-
story building model shown in Figure 1.1b. Generally, such a system, which contains only one 
mass and therefore has only one displacement variable, is known as an SDOF system. This simple 
dynamical system is the focus of this chapter.

1.1.1.1  Equilibrium of Vibration Forces
The linear SDOF m-c-k system can be further modeled as shown in Figure 1.1c. By using the 
D’Alembert principle, the summation of all the forces acting on the mass must be balanced, where 
the product of mass m and acceleration ��x is treated as an inertial force. That is, mathematically, the 
linear SDOF vibration can be described by the equation of motion obtained through balancing the 
various forces, that is

	 mx t cx t kx t f t�� �( ) + ( ) + ( ) = ( )  (1.1)

in which, m, c, and k are mass, linear viscous damping coefficient, and stiffness, respectively. It is 
assumed that all three are constants in Equation 1.1, and that in Figure 1.1b the parameters c and k 
represent the damping coefficient and stiffness of the structure respectively. Meanwhile, ��x(t), �x(t), 
and x(t) are the acceleration, velocity, and displacement, respectively. The superposed dots, (.)

.
 and 

( ).
..

, stand for the first and second derivatives respectively with respect to time t. On the right side, 
f(t) represents the external forcing function. In earthquake engineering, x(t) denotes the relative 
displacement between the mass and the ground. Since the acceleration, velocity, displacement, and 
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forcing function are all temporal variables, the symbol (t) is used here. In the following text, for 
simplicity, the symbol (t) may be omitted at times. Note that Equation 1.2 is a linear, second-order 
ordinary differential equation with constant coefficients.

In Equation 1.1, the left side consists of three internal forces, which must balance the external 
force f. The sum can be called the total internal force, fI, that is,

	 f mx t cx t kx tI = ( ) + ( ) + ( )�� �  (1.2)

Several other groupings of the vibrational forces are also of interest. For example, the combina-
tion of forces other than those associated with the external excitation and the force generated by 
acceleration can be called the structural force, fS. Thus,

	 f cx t kxS = ( ) + ( )� t  (1.3)

Similarly, the inertia force is given by, (m > 0)

	 f t mx ti ( ) = ( )��  (1.4)

In the context of earthquake engineering, fi(t) is the inertia force generated by the ground excita-
tion. The damping force can also be written in the form of linear viscous damping as (c ≥	0)

	 f t cx td ( ) = ( )�  (1.5)

Furthermore, the linear spring or restoring force may be given as (k > 0)

	 f t kx tr ( ) = ( )  (1.6)

Comparing Equations 1.5 and 1.6 with Equation 1.3, it is seen that the structural force is a com-
bination of the damping and restoring forces. The stiffness and damping of the structural members, 
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FIGURE 1.1  (a–c) SDOF vibration system.
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along with any added dampers, contribute to this structural force. In a later section, it will be seen 
that the structural force is used to resist the earthquake load generated by the absolute inertia force, 
an important concept in the design of dampers.

1.1.1.2  Basic Parameters of the Physical Model
Since m ≠	0, the monic and homogeneous form of Equation 1.1 can be written as

	
 �� �x t c

m
x t k

m
x t( ) + ( ) + ( ) = 0  (1.7)

Since both m and k are positive, the ratio of k to m can be denoted by a positive term ωn
2,

	
k
m

= ωn
2  (1.8)

The term 2ξωn is used to denote twice the ratio c/m. Thus,

	
c
m

= 2ξωn  (1.9)

or

	 c m= 2ξωn  (1.10)

along with

	 k m= ωn
2  (1.11)

Here ξ is the damping ratio and ωn is the angular natural frequency of the system described in 
Equation 1.7. From the relationships above,

	
ωn = k

m
 (1.12)

and

	
ξ

ω
= =c

mk
c

m2 2 n
 (1.13)

The nature of the m-c-k system can be studied without considering the external force, and the 
m-c-k model is often referred to as the physical model.

In addition to the angular natural frequency ωn, the natural frequency fn is also often used to indi-
cate how many cycles the system vibrates per each unit of time, usually measured in seconds. Thus,

	
fn = 1

2π
ωn  

(1.14)

In many cases, for convenience, as ωn and fn are so closely related, they are only distinguished as 
described in Equation 1.14. They are both defined as the natural frequency. Note, however, that the 
unit of ωn is radian per second (rad/s) and that of fn is 1/second (1/s) or hertz (Hz). The reciprocal of 
fn has unit seconds (s) and is defined as the natural period, that is,
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	 T fn n= 1  (1.15)

For SDOF systems, it is seen that the basic parameters are the mass m, damping c, and stiffness 
k coefficients.

Of course, the natural frequency is a very important parameter in describing an SDOF vibration 
system. From Equations 1.8 through 1.12, it is further realized that the magnitude of the natural fre-
quency is solely determined by stiffness k, which is related to potential energy, and mass m, which 
is related to kinetic energy, when the system vibrates. In other words, a system vibrates because the 
exchange of potential and kinetic energies exists.

Example 1.1

Suppose a building can be modeled as an undamped SDOF system. When equipment weighing 
100 (t) is moved into the building, the corresponding natural period is measured to be T1 = 1.46 
(s). When an additional 100 (t) of equipment is moved in, the natural period is increased further to 
T2 = 1.50 (s). Determine the mass and the stiffness of the SDOF building system.

The mass and stiffness of the building are denoted as m and k, respectively. The first 100 (t) 
mass is denoted as m1, and the total additional 200 (t) mass as m2. Also, the natural frequencies 
of the building alone, the building with the first 100 (t) mass, and the building with the additional 
100 (t) mass are denoted as ωn, ω1, and ω2, respectively. Then,

	

k
m m+

=
1

1ω

	

k
m m+

=
2

2ω

Thus,

	 k m m= +( )1 1
2ω

and

	 k m m= +( )2 2
2ω

Therefore, from the above two equations,

	 m m m m+( ) = +( )1 1
2

2 2
2ω ω

or

	
m m m m T m T

T T
m T m T
T

= −
−

= −
−

= −− −

− −
1 1

2
2 2

2

2
2

1
2

1 1
2

2 2
2

2
2

1
2

1 2
2

2 1
2

1
2

ω ω
ω ω −−

= ( )T22
1,700 t

Furthermore,

	 k m m m m
T

= +( ) = +( ) = ( )1 1
2

1

2

1
2

4ω π 33,343 kN m
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Therefore, the natural frequency of the building alone is

	
ωn = k

m

so that

	
f k

mn
n H z= = = ( )ω
π π2

1
2

0 7.

Example 1.2

Suppose a base isolated building can be modeled as an underdamped SDOF system with 
k = 18,935 (kN/m) and m = 2,000 (t). (In later sections, the concept of an underdamped system 
and base isolation system will be explained in detail.) With the isolation bearings, the damping 
ratio is measured as 13%. However, according to the design, a 30% damping ratio is needed. 
Therefore, the design engineer decides to use a linear viscous damper to increase the damping 
ratio. Calculate the required damping coefficient.

The original damping coefficient can be calculated as

	 c m k0 2 0 13 1600= × = ( ). , kN -s/m

The ratio of the original damping ratio ξ0 to the required damping ratio ξdesign is

	 γ ξ ξ= = =0 0 13 0 3 0 43design . . .

Therefore, the required damping coefficient c can be calculated as

	
c c= −









 = × = ( )0

1 1 1600 1 3077 2 093 3
γ

. , . kN -s/m

1.1.1.3  Characteristic Equation and Modal Model
To seek possible solutions of the homogeneous differential equation, assume that

	 x t Ae t( ) = λ  (1.16)

where A is a displacement amplitude. Then, substituting Equation 1.16 into Equation 1.7, it can be 
determined whether a possible solution described by Equation 1.16 exists. The idea of using the 
assumption such as described in Equation 1.16 is referred to as the semidefinite method. Here, λ is a 
complex number whose physical meaning is discussed later. With the help of Equation 1.16,

	
� ��x t Ae x t Aet t( ) = ( ) =λ λλ λand 2  (1.17)

Substituting Equations 1.16 and 1.17, as well as Equations 1.8 and 1.9, into Equation 1.7 yields

	
λ ξω λ ω λ2 22 0+ +( ) =n n

 Ae t
 (1.18)

Since Aeλt does not equal zero, each side of Equation 1.18 is divided by this factor and results in

	 λ ξω λ ω2 22 0+ + =n n
  (1.19)
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Equation 1.19 is referred to as the characteristic equation of the system. Solving Equation 1.19 
for λ gives:

	 λ ξω ξ ω= − ± −n n
2 1  (1.20)

From Equation 1.20, it is seen that when the damping ratio ξ is smaller than 1, that is,

	 ξ < 1,  (1.21)

Equation 1.20 can then be rewritten as

	 λ ξω ξ ω1 2
21, = − ± −n nj  (1.22)

where

	 j = −1  (1.23)

In Equation 1.22, λ1 and λ2 are complex conjugates. Both λ1 and λ2 belong to two distinct vibra-
tion modes, which implies the aforementioned energy exchange. In fact, the energy exchange occurs 
between the potential and the kinetic energies. Once again, a vibration system does not exist without 
the energy exchange. Furthermore, the energy exchange is described if and only if the inequality 
shown in Equation 1.21 holds. In this case, the system is underdamped. In engineering practice, 
underdamped systems are more common. In fact, ξ can be much smaller than 1. In that case, no 
matter what type of damping forces (e.g., viscous, viscoelastic, hysteretic, quadratic) actually exist, 
the response x will not be greatly influenced by the same “effective” damping ratio (see Section 1.3). 
The assumption of viscous damping can provide fairly accurate results of responses. The approach 
of using linear equations should be, from a mathematical standpoint, the most convenient. This will 
be examined in more detail in Chapter 5, where specificities about the various damping devices are 
first presented.

From the above discussion, it is seen that the damping ratio and natural frequency are param-
eters of the system itself, which will not be affected by external conditions. They are referred 
to as the basic dynamic parameters or eigen-parameters of the system; therefore, the term λ 
is called the eigenvalue. Figure 1.2 depicts the eigenvalues for the undamped case in the com-
plex plane. Furthermore, the model described by Equation 1.19 is referred to as the modal model 
because it can be described by the complex conjugate modes determined by parameters ξ and ωn. 
Additionally, ξ and ωn, the damping ratio and the natural frequency, are referred to as the modal 
parameters.

Note that there are three basic parameters of the physical model for the SDOF system, whereas 
for the modal model there are only two.

When the dynamic behavior of linear multi-degree-of-freedom systems is studied, a complete 
set of modes or a modal model can be used to represent the entire system. This is discussed in 
Chapters 2 and 3. Here, for the SDOF system, there is only one mode for consideration in engineer-
ing practice. Complex conjugates modes do not need to be distinguished in particular and are usu-
ally referred to as a single identical mode.

On the other hand, when

	 ξ = 1,  (1.24)
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Equation 1.20 can be rewritten as

	 λ ξω1 2, = − n  (1.25)

Thus, the characteristic equation has two identical real-valued solutions, and the corresponding 

system is said to be critically damped. From Equation 1.13, it is known that when ξ = 1, c km= 2 . 
To denote the critically damped case, this particular damping coefficient is shown with subscript 
“cr” as

	 c kmcr = 2  (1.26)

With this notation, the damping ratio for a general system with damping coefficient c can be rewrit-
ten as

	
ξ = =c

km
c

c2 cr
 (1.27)

Thus, the damping ratio is formally referred to as the critical damping ratio in many references. 
In addition, from Equation 1.27, it is seen that the damping ratio denotes the ratio of the damping 
coefficient c and twice the geometric mean of the mass m and the stiffness k, namely, 2 km .

Lastly, when

	 ξ > 1,  (1.28)

Equation 1.20 can be rewritten as

	 λ ξω ξ ω1 2
2 1, = − ± −n n  (1.29)

Im

Re
ξωn

+j√1–ξ2ωn

–j√1–ξ2ωn

FIGURE 1.2  Eigenvalues of an underdamped system.
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Thus, the characteristic equation has two distinct real-valued solutions, and the corresponding 
system is said to be overdamped.

Notice that in both the critically damped and the overdamped cases, complex-valued eigenvalues 
no longer exist. The systems are reduced to two first-order real-valued pseudo modes, and there will 
be no energy exchange between the two modes. In other words, both types of systems are no longer 
vibration systems. Although in these two cases, the mass can still be made to oscillate from external 
forces, these systems will no longer be able to oscillate in free vibration.

Example 1.3

Suppose a characteristic equation is given by

	 m c kλ λ2 0+ + = 	

Find the quantities of λ1λ2 and λ1 + λ2, where λ1 and λ2 are the solutions of the above equation.
From the general properties of the quadratic equation, it is known that

	
λ λ1 2 = k

m

and

	
λ λ1 2+ = − c

m

The above expressions are always true regardless of whether the system is underdamped or 
overdamped. However, if the system is underdamped, then

	 λ ξω ξ ω12
21, = − ± −n nj

Therefore,

	
λ λ λ λ ω1 2 1 1

2= = =*
n

k
m

where superscript * stands for the operation of taking the complex conjugate. In this case, it is 
easily seen that

	
k
m

= ωn
2

Furthermore,

	 λ λ ξω ξω ξω1 2 2+ = − + − = −n n n( )

Thus,

	 − = −2ξωn
c
m
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or

	
c
m

= 2ξωn

1.1.2  HoMogEnEous solution, frEE-dEcay ViBration, and tHE rEsPonsE ModEl

The solutions of Equation 1.1 represent the vibration responses, which can be classified as: (1) the 
transient response, including free-decay vibration and forced vibration excited by the transient forc-
ing function; (2) periodic vibration, the steady-state response due to periodic excitations; and (3) 
random vibration, due to random excitations.

It is understandable that the system will not vibrate unless a certain external input is applied. 
The input can be either the initial condition of velocity and/or displacement or the forcing func-
tions. Note that a forcing function can also cause a forced initial condition. If the input is the initial 
conditions only, then free-decay vibrations will occur. That is, Equation 1.1 can have a free-decay 
solution, if the system, e.g., the cart in Figure 1.1a, is excited by an initial force, or has an initial 
velocity or displacement; and after the initial excitation, no external force is added to the system. In 
this case, Equation 1.7 will be used. An SDOF vibration system with m = 2, k = 100, and initial unit 
velocity is used as an example. Suppose there are two cases of damping magnitude, the first with 
a 5% damping ratio and the second with a 50% damping ratio. The responses of the two systems 
are plotted in Figure 1.3. It is seen that the vibration levels continuously decrease in both cases. 
However, the vibration with a larger damping ratio decays much faster.

Using the above mentioned semi-definite method, the free-decay displacement under certain 
initial conditions is written as follows:

	 x t Ae tt( ) sin( )= +− ξω ω ϕn
d  (1.30)

with the initial conditions

	

x d
x v

( )
( )
0
0

0

0

=
=



 �

 (1.31)
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Comparison between free-decay responses
5% damping free decay curve
50% damping free decay curve
5% damping free decay envelop curve
50% damping free decay envelop curve

FIGURE 1.3  Free vibration with decay.
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Here, d0 and v0 are, respectively, the initial displacement and velocity, and

	 ω ξ ωd n= −1 2  (1.32)

is called the damped natural frequency, which is the imaginary part of the eigenvalue described in 
Equation 1.22. In Equation 1.30, A and φ are, respectively, the amplitude and phase angle constants 
and can be determined by the initial conditions given in Equation 1.31. That is,

	
A v d d= +( ) + ( )1

0 0
2

0
2

ω
ξω ω

d
n d  (1.33)

and

	
ϕ ω

ξω
πϕ=

+






+−tan 1 0

0 0

d

n

d
v d

h  (1.34)

Note that the period of the tangent function is π, and the arctangent function has multiple val-
ues. However, the period of the sine and cosine functions is 2π. Therefore, the Heaviside func-
tion, hφ, cannot be arbitrarily chosen. Based on the fact that most computational programs, such 
as MATLAB•,* calculate the arctangent by limiting the values from – π/2 to + π/2, hφ is defined as

	
h

v d
v dϕ

ξω
ξω

=
+ ≥
+ <





0 0
1 0

0 0

0 0

,
,

n

n
 (1.35)

As shown in Figure 1.4, the phase angle φ can have four cases, namely, the combination of ωdd0 
and v0 + ξωnd0 to be positive and negative numbers. Despite the values of ωdd0, it is seen from 
Figure 1.4 and Equation 1.35 that the sign of v0 + ξωnd0 determines the choice of hφ.

From Equation 1.30, it is seen that the vibration will have an envelope of Ae t− ξωn . As time goes 
on, the level of the free vibration will decrease. The rate of the decay per cycle depends on the value 

* The mathematical software package MATLAB is often referenced throughout this book. The reader is encouraged to 
become familiar with this useful tool, which is used in many of the exercises.

v0 + ξωnd0 > 0v0 + ξωnd0 < 0

ωdd0 < 0

ωdd0 > 0

Im

Re

ϕ1

ϕ2

FIGURE 1.4  Phase angle φ.
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of the damping ratio. In Figure 1.3, it is seen that the responses of the systems with a 5% damping 
ratio and with a 50% damping have corresponding envelopes.

In addition, when the damping ratio is larger, the first peak value is smaller. Furthermore, the 
peak value appears earlier and the corresponding damped frequency is smaller.

Taking the time derivative of the displacement in Equation 1.30, the velocity becomes

	
�x t A e tt( ) = + +( )−ω ω ϕ θξω

n n
n cos  (1.36)

where

	
θ ξ

ξ
=

−









−tan 1

21
 (1.37)

Comparing Equation 1.30 and Equation 1.36, it is seen that the time variables are sine and cosine 
functions. The two functions, sin(ωdt + φ) and cos(ωdt + φ + θ), are trigonometric functions with a 
phase difference of 90° + θ.

In many civil engineering structures, the damping ratio is a rather small number, therefore,

	 θ ξ ξ≈ ≈−tan ( )1  (1.38)

Furthermore, the velocity and displacement will have a phase shift θ close to 90°. That is, since 
the damping ratio is a small number, in the case of free-decay vibration, the velocity and the dis-
placement will have a nearly 90° phase difference, and the smaller the damping is, the closer to 90° 
the phase difference will be. Note that the above discussion is only for linear systems. This conclu-
sion can be visualized by using the examples of free vibration decay shown in Figure 1.5. In Figure 
1.5a, the damping ratio is taken to be 0.01 and in Figure 1.5b, the damping ratio is 0.3. Under initial 
conditions of d0 = 0.1 (m) and v0 = 0 (m/s), the velocity (shown in broken lines) of the system with a 
lower damping ratio is close to 90° ahead of the corresponding displacement (shown in solid lines). 
Meanwhile, for the more heavily damped system, velocity noticeably leads displacement by < 90°.

Example 1.4

Suppose the free-decay peak responses of an SDOF system measured at the second cycle and the 
tenth cycle are, respectively, 20 and 0.1 (mm), whereas the damped natural frequency is 1 (Hz). 
Find the damping ratio.

Denote the peak response at the second cycle and the tenth cycle to be x2 and x10, respectively. 
Also, denote the corresponding time points to be t2 and t10. From Equation 1.30,

	 x Ae tt
2 2

2 20= +( ) = ( )−ξω ω ϕn
d m msin

and

	 x Ae tt
10 10

10 0 1= +( ) = ( )−ξω ω ϕn
d m msin .

Thus, the ratio of x2 to x10 is further taken to be

	 x x e t t
2 10

10 2 200= =−ξωn( )
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Therefore

	 ln ln .x x t t2 10 10 2 200 5 298( ) = −( ) = ( ) =ξωn

Hence,

	
ξ

ω ω
= ( )

−( ) =
−( )

ln .x x
t t t t
2 10

10 2 10 2

5 298
n n

Note that from t2 to t10, there are eight complete cycles, with each cycle occupying the duration 
of one period 2π/ωd. Therefore,

	
ω

π

ξ
π
ξ

n t t10 2 2 2

2 10 2
1

16
1

−( ) =
−( )

−
=

−

The damping ratio is calculated to be 10.5%.

Free-decay response (damping ratio = 0.01)
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FIGURE 1.5  Free-decay velocities and displacements (a) ξ = 0.01 and (b) ξ = 0.30.
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Example 1.5

Consider two cases of an SDOF system with different initial conditions. The first case has a zero 
initial velocity (v0 = 0), while in the second case, zero displacement (d0 = 0) is imposed. Find the 
relationship between the damping ratio and amplitude A as well as the peak values of the cor-
responding displacements for these two cases.

The first case when the initial displacement is d0 is examined. From Equation 1.33,

	
A v d d d d= +( ) + ( ) =

−
≈ +







1
1

1
20 0

2
0

2 0
2

2

0ω
ξω ω

ξ
ξ

d
n d

Therefore, the amplitude of displacement A is approximately proportional to the term 1 + ξ2/2. 
In other words, the larger the damping ratio, the larger the resulting amplitude A is in this case, 
despite the common sense notion that larger damping will always result in decreased response 
amplitude.

Note, however, that a larger amplitude A does not mean that the response will have a larger 
value, since the free-decay response due to initial displacement only will never be larger than the 
initial displacement. This can be proven by taking the derivative of the displacement described in 
Equation 1.38 while assigning v0 = 0 and solving for time t. In fact, the left side of Equation 1.36 
can be zero to locate the extreme value; that is,

	  n n
nA e ttω ω ϕ θξω− + +( ) =cos 0

or cos(ωnt + φ + θ) = 0, which gives ωnt + φ + θ = π/2. However, with v0 = 0,

	
ϕ θ

ξ
ξ

ξ
ξ

π+ =
−









+
−











=− −tan tan1
2

1
2

1
1

2

Therefore, t must be zero in order to obtain the extreme value, which is understood to be the 
peak value of the displacement, denoted by xmax. Additionally, when t = 0, the displacement is 
nothing but the initial displacement d0. That is,

	 x dm ax = 0

In other words, with zero initial velocity, the peak value of the displacement is always the initial 
displacement, independent of the value of the damping ratio. However, the damping ratio affects 
the amplitude A, and larger damping yields larger amplitude.

The second case, when the initial velocity v0 is nonzero, is examined next. From Equation 1.33,

	
A v d d

v v
= +( ) + ( ) = =

−
1

1
0 0

2
0

2 0 0
2ω

ξω ω
ω ξ ωd

n d
d n

and from Equations 1.34 and 1.35 with positive v0,

	 ϕ = 0

Thus, from Equation 1.30, the displacement is given by

	 x t v e tt( ) = ( )−0

ω
ωξω

d
d

n sin
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To find the peak value of the displacement, the derivative of the above equation is taken and

	

d
dt

x t v e t e tt t( )  = −( ) ( ) + ( ) 
− −0

ω
ξ ω ω ω ωξω ξω

d
n d d d n nsin cos == 0

From which,

	

sin
cos

ω
ω

ξ
ξ

d

d

t
t

( )
( ) =

−1 2

This equation yields time t when the displacement reaches peak value, which is

	
t=

−−1 11
2

ω
ξ

ξd
tan

and with a small damping ratio the corresponding peak value of the displacement, xmax, is

	

x v em ax
(/ )tan

sin tan=
−− −









 −

−
0 1 1

1
1 2 1 1

ω
ω

ω
ξξω ω ξ ξ

d
d

d

n d
22

0
2

1 1

1
1

2 1 2

ξ

ω ξ
ξ

ξ ξ ξ ξ











=
−

−
− −



 −











−v e
n

tan
22

0 1 1 0 2
2 1 2

= ≈
− −



 −









 −

−v e v e
ω ω

ξ ξ ξ ξ
ξπ

n n

tan

From the above equation, the peak displacement of the SDOF system with initial velocity only 
is approximately inversely proportional to its natural frequency ωn and directly proportional to the 
amplitude of the initial velocity and the term e– ξπ/2. That is, the larger the damping of the system, 
the smaller the peak response.

1.1.3  forcEd ViBration witH HarMonic Excitation

When the external input to the system continues to be applied, the system will vibrate in a forced 
vibration mode. The case when the linear system defined by Equation 1.1 is excited with harmonic 
forcing functions is discussed in the following subsections.

1.1.3.1  Steady-State Response
First, the steady-state response is considered, namely, when a harmonic forcing function is applied 
with sufficiently long duration. Letting f = f0 sin(ωft), where f0 and ωf are, respectively, the ampli-
tude and the driving frequency of the forcing function; the steady-state solution xps is given by

	 x x tps f= +( )0 sin ω φ  (1.39)

Thus, the velocity is

	 �x x tps f f= +( )ω ω φ0 cos  (1.40)
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and the acceleration is

	
��x x tps f f= − +( )ω ω φ2

0 sin  (1.41)

Substituting Equations 1.39 through 1.41 into Equation 1.1 with f = f0 sin(ωft) yields

	 − +( ) + +( ) + +( ) = ( )ω ω φ ω ω φ ω φ ωf f f f f f
2

0 0 0 0mx t cx t kx t f tsin cos sin sin

Dividing both sides of the above equation by m results in

	 − +( ) + +( ) + +( ) =ω ω φ ξω ω ω φ ω ω φf f f n f n f /2
0 0

2
0 02x t x t x t f msin cos sin sinn ωf t( )

Furthermore,

	

sin
sin

ω φ φ
ω

ω ω ξω ω
f

f

n f n f

/
t x

f m t
+ −( )  =

⋅ ( )
−( ) + ( )

0
0

2 2 2 22

Since sin(ωft) cannot always be zero, the amplitude x0 for Equation 1.39 is derived as

	

x f m
0

0

2 2 2 22
=

−( ) + ( )ω ω ξω ωn f n f
 (1.42)

Meanwhile, the angle ϕ stands for the phase difference between the excitation force and the 
response displacement, which can be written as

	

φ
ξω ω

ω ω
π ω ω

π ω ω

φ= −






+ ≠

− =









−tan ,

,

1
2 2

2

2

n f

f n
n f

n f

h  (1.43)

Mathematically, the expression of angle ϕ, as described in the second line of Equation 1.43, does 
not have to be written. However, for practical computations, when ωn = ωf, the term in the bracket 
will have a denominator of zero, which is often not allowed in practical computational programs. In 
addition, the arctangent function has multiple values, whereas most computational programs only 
provide the solution in one or two quadrants. (For example, MATLAB provides the solution in the 
first and the fourth quadrants.) Therefore, a Heaviside function, hϕ, is used to handle this situation, 
which is defined as follows:

	
hφ

ω ω
ω ω

=
<

− >




0
1
,
,

n f

n f
 (1.44)

In the next subsection, the amplitude x0 and the phase ϕ are studied as functions of the frequency 
and damping ratio. Here, from the time history of the steady-state solution, the velocity is found 
to always be 90° ahead of the displacement. Accordingly, in the case of the steady-state harmonic 
response, the damping force will also be 90° ahead of the restoring force.
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1.1.3.2  Method of Complex Response for Steady-State Displacement
The system m x�� + c x� + kx may be subjected to the aforementioned excitation f = f0 sin(ωft). It may 
also have another harmonic excitation, f = f0 cos(ωft). In the latter case,

	 x x tps f= +( )0 cos ω φ

It is easy to see that the amplitude x0 and the phase ϕ in the above equation can also be expressed 
by Equations 1.42 and 1.43, respectively, similar to the case of f = f0 sin(ωft).

Since the vibration system is linear, when a forcing function is written as a complex combination 
of

	 f f t jf t f e j t= ( ) + ( ) =0 0 0cos sinω ω ω
f f

f  (1.45)

the response can be written as

	 x x t jx t x e x e e x ej t j j t
ps f f p

f f= +( ) + +( ) = = =+
0 0 0 0 0cos sin ( )ω φ ω φ ω φ φ ω jj tωf  (1.46)

Here, xp0 is the complex-valued amplitude of xps,

	 x x ej
p0 = 0

φ

namely,

	
x xp0 0=  (1.47)

and

	 ∠ ( ) =xp0 φ  (1.48)

In Equation 1.47, the symbol |(⋅)| stands for the absolute value of the complex variable (⋅). In 
Equation 1.48, the symbol ∠(⋅) stands for the angle of the complex variable (⋅). It can be shown 
that the amplitude x0 and the phase angle ϕ can also be represented by Equations 1.42 and 1.43, 
respectively.

Figure 1.6 shows the relationship between the real and the imaginary parts of the forcing 
functions and the responses. The forcing function, f(t), can be represented by a rotating vec-
tor with amplitude f0 and angular speed ωf, whose projection on the real axis, marked “Re,” is 
f0 cos ωft, and on the imaginary axis, marked “Im,” is mf0 sin ωft. At any time t, the angle ωft, 
being the product of the driving frequency ωf and time t, can be seen as a special angle, as 
shown in Figure 1.6.

Furthermore, the restoring force kx(t) can also be represented by a vector, with amplitude kx0 and 
phase angle ϕ compared to force f(t). The restoring force also has the identical angular speed ωf. It is 
seen that it has the projection kx0 cos(ωft + ϕ) on the Re axis, as shown in Figure 1.6. Its projection 
on the Im axis must be kx0 sin(ωft + ϕ), which is not shown.

Similarly, the damping force cx t�( )	can also be represented as the third vector with amplitude 
cωfx0 and phase angle π/2 compared to the force kx(t). The damping force also has the identical 
angular speed ωf. It is seen that it has the projection cωfx0 cos(ωft + ϕ) on the Re axis, also shown in 
Figure 1.6. Its projection on the Im axis is cωfx0 sin(ωft + ϕ), which is not shown.
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The inertia force mx t��( ) can be represented as a fourth vector with amplitude – mω	2f	x0 and phase 
angle π/2 compared to damping cx t�( ). The inertia force also has the identical angular speed ωft. It 
is seen that it has the projection – mω	2f	x0 cos(ωft + ϕ) on the Re axis, again shown in Figure 1.6. Its 
projection on the Im axis is – mω	2f	x0 sin(ωft + ϕ), which is not shown.

Figure 1.6 shows that once the position of the vector that represents the forcing function is deter-
mined, the vector quadrilateral is determined for a specific m-c-k system. This means that both 
the amplitudes and the phase differences for the restoring force, the damping force, and the inertia 
force are determined. Determination of the amplitudes can be obtained through x0 in Equation 1.42. 
Determination of the phase angles can be obtained through ϕ in Equation 1.43.

These parameters can also be obtained by plotting the vector quadrilateral, such as that shown in 
Figure 1.6, which is then referred to as the geometric method for the steady-state responses.

When Equations 1.42 and 1.43 are derived, the responses either on the Im axis or on the Re 
axis are used. Figure 1.6 shows that once the position of the vectors of the forces is determined, 
so are their projections. Namely, on the Re axis, the cosine functions, and on the Im axis, the sine 
functions, are established. On the other hand, once the cosine functions on the Re axis are known, 
together with the angle ωft and the phase difference ϕ, the force vectors and the sine functions can 
be known on the Im axis and vice versa. These facts imply that the cosine functions or the sine func-
tions or their complex-valued combinations can all be used to represent the steady-state solutions. In 
other words, once one set of functions (cosine, sine, or complex) is determined, so are the other two 
sets of functions. Thus, these three sets of representations are uniquely related.

In many cases, response calculations using complex functions can be simpler. Whenever the real-
valued formulas are needed, either the real or the imaginary part of the complex functions can be 
taken without loss of information, since the real and imaginary portions are uniquely related. This 
is referred to as the method of complex response.

1.1.3.3  Response of Harmonic Excitation with Zero Initial Condition
In the literature, when the initial conditions are zero, namely

	

mx cx kx f t
x
x

�� �

�

+ + = ( )
( ) =
( ) =









0

0 0
0 0

cos ωf

 (1.49)
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FIGURE 1.6  Vector quadrilaterals at time t.
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the response caused by the forcing function f0 sin ωft only is called the particular solution of 
Equation 1.49, which will not only have the steady-state solution described by Equation 1.40a, but 
will also have a transient solution xpt(t), that is,

	 x t x t x t( ) = ( ) + ( )pt ps  (1.50)

For Equation 1.49, the transient solution xpt(t) can be written as

	 x t Ae tt
pt d

n( ) = +( )− ξω ωsin Φ  (1.51)

where

	

A
x x

x

d n f

d

f

d

=

− = −
( ) + −( )

≠ −

−

0 0
2 2

0

2cos
sin

cos cos sinφ ω φ ξω φ ω φ
ω

φ π

ω
ω

Φ

φφ π= −









 2  

(1.52)

and the phase Φ is

	
Φ Φ=

−






− ≤ ≤−tan cos
cos sin

1

2 2
ω φ

ξω φ ω φ
π πd

n f
 (1.53)

In Equation 1.50, the steady-sate solution xps (t) can be written as

	 x t x tps f( ) cos( )= +0 ω φ
 

(1.54)

For Equations 1.53 and 1.54, the amplitude x0 and angle ϕ are defined, respectively, in 
Equations 1.42 and 1.43. The total particular solution xp(t) can be written as

	
x t x t x t x e t tt

p pt ps d f
n( ) = ( ) + ( ) = − +( ) + +( )−

0
cos
sin

sin cosφ ω ω φξω

Φ
Φ





 (1.55)

At the resonance point, when ωf = ωn, Equation 1.55 should be rewritten as

	
x t x t x t x e t t

t

p pt ps d f

n

( ) = ( ) + ( ) = −
−

( ) + ( )












−

0 21

ξω

ξ
ω ωsin sin  (1.56)

In both cases, since the transient responses of xpt(t) will soon fade out, the steady-state solution will 
prevail so that the velocity will also lead displacement by a 90° phase difference, as mentioned before.

For the transient process, a special effect of damping is realized by examining the terms Φ, ϕ, 
and e t− ξωn  in Equation 1.55.

It is seen that the steady-state response xps(t) is periodic. In fact, it is the simplest of periodic 
responses. In the following, xps(t) is studied in more detail.

First, consider the effect on the phase angles. If ωf < ωn, Φ will have a positive sign. As ωf 
increases from rather small values and approaches ωn, the angle Φ gradually decreases from the 
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value of π/2. The smaller the damping ratio, the closer the original limited value π/2. In addition, 
the larger the damping ratio, the slower the rate of decrease. On the other hand, with a smaller 
damping ratio, the rate of decrease becomes faster. These phenomena can be shown by using an 
example, where the natural frequency is set to be 3 (Hz). In Figure 1.7, the values of the phase angle 
Φ are plotted vs. the frequency ratio of ωf/ωn, where three curves are shown, corresponding to the 
damping ratios of 0.01, 0.1, and 0.7, respectively.

The value of ϕ will decrease from zero when the frequency ratio is increased. The rate of the 
increase is also affected by the value of the damping ratio. In Figure 1.8, the values of the phase 
angle φ are plotted vs. the frequency ratio of ωf/ωn. Again, three curves are shown, corresponding 
to the damping ratios of 0.01, 0.1, and 0.7, respectively.

Next, the effect of the damping ratio on the phase angle is considered. In Figure 1.9a, the 
values of the phase angle Φ are plotted vs. the damping ratio of ξ. In Figure 1.9b, the values of 
the phase angle φ are plotted vs. the damping ratio of ξ. In each figure, four curves are shown, 
corresponding to the frequency ratios r = ωf/ωn of 1/2, 1/1.5, 1.5, and 2, respectively. From these 
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plots, it is seen that when the damping ratio increases, the phase angles will change their values 
accordingly.

When the damping ratio is small, the phase angle Φ is close to ±π/2. When the damping ratio 
becomes larger to near 1, the phase angle is close to zero. That is, the trends of changing angle Φ 
can be decreased or increased, depending on whether the frequency ratio is greater or smaller than 
1. On the other hand, when the damping ratio is small, the phase angle ϕ is close to 0 or – π. When 
the damping ratio becomes larger, the phase angle ϕ approaches zero. That is, the trend of change of 
the angle ϕ can also be decreased or increased, depending on whether the frequency ratio is smaller 
or greater than 1. The variation trends of angles Φ and ϕ are similar.

When the damping ratio is sufficiently small, at the resonance point when ωf = ωn, Equation 1.51 
can be written as

	
x t x t x t x e tt

p pt ps n
n( ) = ( ) + ( ) = −( ) ( )−

0 1 ξω ωsin  (1.57)

Next, the transient response in the case where the driving frequency is close to the natural frequency 
is considered. In Equation 1.57, the term (1 – e t− ξωn ) is found, which implies an increasing amplitude 
with respect to time. In Figure 1.9, a system with a natural frequency of 3 (Hz) or 6π (rad/s) with excita-
tion frequency 3.03 (Hz) is used to show the transient responses (assume m = 1 and f0 = 1 for simplicity). 
Comparisons between the vibratory responses and the growing signal x0(1 – e tξωn ) are made in Figure 
1.10. In Figure 1.10a, the damping ratio is taken to be 0.50 and in Figure 1.10b, the damping ratio is 0.05.

In these plots, the broken lines are the increasing amplitudes and the solid lines are the vibra-
tional responses. From Figure 1.10, the increasing signal can be approximately seen as an envelope 
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of the vibratory responses. And, when the damping ratio is smaller, the increasing signal is closer 
to the envelope of the peak vibrations. However, when the damping is larger, at the beginning, there 
can be a large difference. Next, it is observed that when the damping ratio is large, the vibration 
reaches its steady state quicker than with smaller damping. A third observation is that large damp-
ing ensures a smaller vibration amplitude of the steady-state responses.

1.1.3.4  Responses with Nonzero Initial Conditions
Now, the harmonic excitation together with the nonzero initial conditions x(0) and �x( )0 	is further 
considered. That is,

	

mx cx kx f t
x d
x v

f�� �

�

+ + = ( )
( ) =
( ) =









0

0

0

0
0

cos ω
 (1.58)

The solution of Equation 1.58 can be written as

	
x t e A t B t x tt

f( ) = ( ) + ( )  + +( )− ξω ω ω ω φn
d dsin cos cos0  (1.59)
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Here, amplitude x0 and angle ϕ are also defined, respectively, in Equations 1.42 and 1.43; addi-
tionally, in Equation 1.59,

	
A v B x= + +0 0ξω ω φ

ω
n f

d

sin
 (1.60)

and

	 B d x= −0 0 cos φ  (1.61)

From Equation 1.59, the damping effect on the general harmonic response can be seen. First, the 
effect on the steady-state portion of the response is the same as discussed before, which is further 
explored in the next subsection.

Secondly, the transient part has the common term e t− ξωn , which quickly reduces the displacement 
caused by the initial condition. The larger the damping ratio of the system, the quicker the decay 
occurs.

At the same time, this term will also affect the growth of the particular response until it 
reaches steady state. Similarly, the larger the damping ratio of the system, the quicker its growth 
will be.

Since the transient responses of e t− ξωn 	 [A sin(ωdt) + B cos(ωdt)] decay quickly, the steady-state 
solution prevails so that the velocity is 90° ahead of the displacement, as previously mentioned.

From the above discussion, the sine and cosine time variables of the displacement and velocity, 
respectively, mean that during the vibration, the velocity and the displacement have a 90° phase 
difference. That is, the velocity is 90° ahead of displacement. For a linear time-invariant system, 
both the damping coefficient c and spring coefficient k are constants. In Equation 1.5, the product of 
the damping coefficient and velocity is the damping force. Also, from Equation 1.6, the product of 
the spring coefficient and displacement is the restoring force. Therefore, the damping force and the 
restoring force also have a 90° phase difference.

Under earthquake or other random excitations, the response of the system is also random. 
However, for an SDOF system, the relationship described above can be approximately used. 
Figure 1.11a shows certain structural steady-state responses for short time durations. This structure 
has a damping ratio of 5% and is under sinusoidal excitation. Figure 1.11b shows the responses of 
the same structure under Northridge earthquake excitations. The solid lines are velocities and the 
broken lines are displacements. From these figures, it is seen that under random excitation, the 
response is no longer pure sinusoidal signals. Therefore, the concept of phase cannot be used to 
describe exactly the relationship between the velocity and the displacement. However, maximum 
displacement always happens when velocity reaches zero; and, in most cases, maximum velocity 
occurs when the displacement is close to zero. It is still seen that the velocities have a nearly 90° 
phase ahead of the displacements.

1.1.4  ground Excitation

1.1.4.1  Governing Equation
Figure 1.1a shows a case that is subjected to an external force, and in the previous sections, the 
response when the external force is harmonic was discussed. However, in Figure 1.1b, the SDOF 
system is excited by ground accelerations, as opposed to an external force excitation. Now, only 
harmonic ground excitation is considered. In fact, this case relates to earthquake excitations.

Denote the ground acceleration as ��xg , and the absolute acceleration of the mass shown in Figure 
1.1b is written as
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�� �� ��x t x t x tA g( ) = ( ) + ( )  (1.62)

where ��x is the acceleration of the mass relative to the ground. Furthermore, let x and �x denote 
the displacement and velocity of the mass relative to the ground. Then, the governing equation of 
motion for the mass can be written as

	 mx t cx t kx t�� �A ( ) + ( ) + ( ) = 0  (1.63)

Substituting Equation 1.62 into Equation 1.63 and rearranging the equation, results in

	 mx t cx t kx t mx t�� � ��( ) + ( ) + ( ) = − ( )g  (1.64)

Compared to Equation 1.1, the similarity is realized, except in this case, the external force is 
specified as

	 f t mx t( ) = − ( )��g  (1.65)

Namely, the force f(t) is equivalent to the negative value of the product of mass and ground 
acceleration. In the previous section, when the external force in Equation 1.1 was assumed to be 
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harmonic, the steady-state solution was obtained. Now, if the system is excited by the ground 
acceleration that is sinusoidal, similar responses can be found. Note that in earthquake engi-
neering, the excitation forcing function is not sinusoidal. Rigorously speaking, the force is not 
“external” either. However, harmonic excitation can reveal the basic essence of the earthquake 
response. Consequently, this case is first examined to explore the nature of the seismically 
induced force by considering sinusoidal ground excitation, followed by using the concept of 
random vibration.

In Figure 1.1b, the excitation f is due to the ground motion ��xg. This is caused by the inertial force 
of the mass. In fact, if the mass is separated from the ground, it is seen that no external force is 
applied to this system. Instead, there are three forces; the inertia force,

	 f mxi A= ��  (1.66)

the damping force,

	 f cxd = �  (1.67)

and the spring or restoring force,

	 f kxr =  (1.68)

In structural engineering, the spring or restoring force is often used as a design control param-
eter, which is a general term representing the element forces and stresses, such as axial forces, 
bending moments, and shears. This method is also adopted by earthquake engineers. In the latter 
case, the stiffness k is specified as lateral stiffness and the force is referred to as the equivalent static 
force, fST. That is,

	 f f kxST r= =  (1.69)

Note that as a design control parameter, the force fST in Equation 1.69 does not include the damp-
ing force. This is because for typical civil engineering structures, the damping force is quite small 
and can be ignored. That is,

	 f kx mxST A= ≈ − ��  (1.70)

In most building codes, fST is used as the base shear. When the damping force is very small, 
Equation 1.70 provides the formula to compute the base shear through the product mx��A.

However, if dampers are added, the damping force may no longer be negligibly small and the 
use of Equation 1.70 to determine the equivalent static force should be examined. For example, the 
“base shear” of the SDOF structure defined by Figure 1.1b will be a function of mx��A as modified 
by the damping force (Mohraz and Sadek 2000). This issue is discussed in detail in the following 
chapters. In fact, the total base shear, denoted by fTBS, by the reaction of the system is the product 
of the mass and the ground acceleration, as shown in Figure 1.12a for an SDOF structure and Figure 
1.12b for a definition of total base shear, where fST = (½kx + ½kx) < kx + c�x = – m��xA = fTBS.

1.1.4.2  Responses of Harmonic Ground Excitations
If the ground acceleration is sinusoidal, then

	 mx t cx t kx t mx t m x t�� �( ) + ( ) + ( ) = − ( ) = ( )′′g sin ω ω ωf f g fsin2  (1.71)
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where

	 x x′′ = −g f gω2  (1.72)

is the amplitude of the ground acceleration and xg is the amplitude of the ground displacement. 
Dividing both the left and the right side of Equation 1.72 by m, the monic form is as follows:

	
�� �x t x t x t x t( ) + ( ) + ( ) = ( )2 2 2ξω ω ω ωn n f g fsin  (1.73)

Similarly, the steady-state responses as expressed in Equation 1.40 are

	 x x tps f= +( )0 sin ω φ  (1.74)

	
�x x tps f f= +( )ω ω φ0 cos  (1.75)

and

	 ��x x tps f f= − +( )ω ω φ2
0 sin  (1.76)

In this case, the amplitude of the relative displacement x(t), also denoted by x0, has a slightly dif-
ferent expression from Equation 1.42, that is
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n f n f
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ω ω ξω ω
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On the other hand, the phase angles are identical to Equation 1.43 and repeated as such. In this 
case, the angle ϕ stands for the phase difference between the excitation ground motion acceleration 
and the response displacement, written as

	

φ

ξω ω
ω ω

π ω ω

π ω ω

φ

= −






+ ≠

−










−tan ,

,

1
2 2

2

2

n

f n
n f

n f= 

h
 (1.78)

mxA

1 kx
2

.

.

cx 1 kx
2

mxA=−cx−kx

¨

¨

FIGURE 1.12  Total base shear.



28	 Structural	Damping:	Applications	in	Seismic	Response	Modification

As mentioned before, the value of the Heaviside function, hϕ (either 1 or zero), depends on the 
sign of ω2

n – ω2
f (e.g., see Equation 1.44).

In this case, the solution of the equation written in pure sinusoidal form is shown in Equation 
1.74. However, earthquake ground motions are random rather than sinusoidal. In Chapter 2, arbi-
trary excitations including the random input will be introduced. Here, the random excitation is 
briefly discussed by comparing the response with harmonic excitations.

In the case of random excitation, there is no deterministic phase ϕ, which is now rather random. 
Also, there is no deterministic frequency ωf. However, when the damping of the structure is small, 
say, ξ < 0.1, the frequency of the response is very close to the natural frequency of the system, which 
is often referred to as the narrow band system (Clough and Penzien 1993).

Figure 1.12a shows the first 10 (s) of an earthquake response history of a narrow band system, 
whose natural frequency is 5 (Hz) with a damping ratio of 2%. It is seen that the amplitude vs. the 
time is somewhat random. However, a very clear frequency can also be seen. In Figure 1.12b, the 
power spectrum of the response is shown. It is seen that in the neighborhood of 5 (Hz), the density 
of the power spectrum is highly concentrated. Because the band of this concentrated area is rather 
narrow, the system is thus called a narrow band system.

From Figure 1.13a, the variation of the amplitude indicates the difficulty in finding the peak 
response. As a matter of fact, for a given vibration system, single or multiple degrees of freedom, 
linear or nonlinear, together with a given amplitude of the earthquake excitation, it is mathemati-
cally impossible to determine exactly the amplitude of the peak response. In other words, under 
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random vibration, the fact that bounded input does not yield a bound on the output is one of the 
significant properties of seismic structural responses.

To distinguish the case of the forcing function as described in Equation 1.1 and the case expressed 
in Equation 1.71, the first case is referred to as a general external excitation and the second case as 
ground excitation.

Example 1.6

In the above discussion, relative displacement, velocity, and acceleration were used as temporal 
variables to generate the governing equations. However, the absolute acceleration also needs to 
be calculated.

According to Equation 1.62, the absolute acceleration is

	
�� �� ��x t x t x tA g( ) = ( ) + ( )

Suppose there is an SDOF system with m = 2, c = 20, and k = 200 as the basic parameters in 
nondimensional form. With harmonic excitation ωf = 10,

	 x t tg ( ) = ( )5 10sin

Note that the undamped natural frequency is ωn = (200/20)1/2 = 10, so that the frequency ratio 
r = 1. Furthermore, the damping ratio is

	 ξ
ω

= = =c
m2

20
40

0 5
n

.

With zero initial conditions, the amplitude of the steady-state relative displacement is
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while the phase angle is

	 φ π= − 2

Therefore, the relative acceleration is

	 ��x t t t( ) = − ( ) −( ) = ( )ω πf
2 5 10 2 500 10sin cos

Thus, the absolute acceleration is

	 ��x t t t tA ( ) = − ( ) + ( ) = +( )500 10 500 10 707 1 10 0 785sin cos .cos .

The difference may be observed by comparing the relative and the absolute accelerations.

1.2  DYNAMIC MAGNIFICATION

In the above discussion, the steady-state responses of both general excitation and ground excitation 
were reviewed. It is helpful to further examine the amplitude of the responses and to compare the 
results with the static response.
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1.2.1  dynaMic Magnification factor, gEnEral Excitation

1.2.1.1  Dynamic Magnification Factor of Displacement
First, the case of general excitation, namely, the amplitude x0 described in Equation 1.42 is exam-
ined. Dividing ω2

n simultaneously into both the numerator and denominator on the right side of 
Equation 1.42 results in
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Denoting the term multiplying f0/k on the right side of Equation 1.79 by βd results in
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Here, r is the frequency ratio with

	 r = ω
ω

f

n
 (1.81)

Therefore, the amplitude x0 can be rewritten as
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In Equation 1.82, the term f0/k can be seen as a static displacement, when a system has stiffness 
k and is subjected to a force with amplitude f0. That is, the amplitude of the dynamic displace-
ment x(t), namely, x0, can be seen as the static displacement times a special factor βd, which is now 
referred to as the dynamic magnification factor for the displacement.

From Equation 1.82, it is seen that the dynamic magnification factor is a function of: (1) the ratio 
of driving frequency to natural frequency r = ωf/ωn; and (2) the damping ratio ξ. That is,

	 β β ξd d= ( ), r  (1.83)

Furthermore, Equation 1.82 can be written as

	
x f

k
f
k0

0 0= =βd D
 (1.84)

where kD can be referred to as the apparent stiffness and

	
k k f

xD
d

= =
β

0

0
 (1.85)
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In Equation 1.85, it is seen that kD is the amplitude of the force per unit dynamic response of 
displacement. It is also the static stiffness modified by dividing the dynamic magnification factor. 
Generally, it can also be called the dynamic stiffness.

This dynamic stiffness is a function of: (1) ratio r, the ratio of driving frequency to natural 
frequency ωf/ωn; (2) the damping ratio ξ; and (3) the static stiffness k. That is,

	 k k r kD D= ( )ξ, ,  (1.86)

Figure 1.14 shows a set of curves of the dynamic magnification factors with different damping 
ratios.

Figure 1.14a shows that the dynamic magnification factors βd can be either larger or smaller 
than unity. When the frequency ratio is close to 1, the underdamped system will always have the 
value of βd greater than unity. This phenomenon is defined as resonance. The smaller the damping, 
the larger the value of βd found when resonance occurs. Pure resonant behavior occurs for an ideal 
system with zero damping; in which case, the response becomes limitless. When the damping ratio 
becomes larger than 0.707, the value of βd will never be larger than unity. Furthermore, when the 
damping ratio is greater than 1, the system is overdamped.
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FIGURE 1.14  Dynamic magnification factor (a) displacement and (b) acceleration.



32	 Structural	Damping:	Applications	in	Seismic	Response	Modification

1.2.1.2  Dynamic Magnification Factor of Acceleration
In many cases, the acceleration amplitude, denoted by a0, needs to be calculated in addition to the 
amplitude of the displacement. The quantity a0 is a time-invariant constant. In the case of a sinusoi-
dally excited steady-state response, from Equation 1.40, a0 = ω2

fx0.
Therefore, in Equation 1.41, the amplitude of the acceleration can be written as
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The terms in the bracket on the right side of Equation 1.87 can be denoted by βa, as
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Here βa is referred to as the dynamic magnification factor for the acceleration, which is shown 
in Figure 1.14b. By using βa, the amplitude of the acceleration can be written as

	
a f

m
f

m0
0 0= =βa

D
 (1.89)

From Equation 1.89, the dynamic response of the acceleration can be seen as the product of the 
dynamic magnification factor and the term f0/m. This latter term can be seen as an acceleration of 
mass m resulting from a force f0.

Furthermore, in Equation 1.89, the term mD can be referred to as the apparent mass, where

	
m m f

aD
a 0

= =
β

0  (1.90)

From Equation 1.85, mD is the amplitude of the force per unit dynamic response of acceleration. 
It is also the mass modified by dividing by the dynamic magnification factor. Generally, it can also 
be referred to as a special type of dynamic stiffness.

Example 1.7

A machine can be modeled as an SDOF system with m = 500 (kg), c = 707.1 (N-s/m), and 
k = 2,500,000 (N/m).

Suppose this machine is subjected to a harmonic excitation with an amplitude of 4000 (N) 
and a driving frequency equal to 10 (Hz). The maximum allowed displacement and acceleration 
of the machine are, respectively, 1 (cm) and 2 (g) (1g = 9.8 m/s2). Check if these requirements are 
satisfied.

It can be calculated that βd = 4.7353 and βa = 3.7388. Therefore, the displacement is 0.0076 
m = 7.6 (mm); and the acceleration is 29.91 (m/s2) = 3.05 (g). Consequently, the displacement is 
acceptable, but the acceleration exceeds the allowed value.



Free	and	Harmonic	Vibration	of	Single-Degree-of-Freedom	Systems	 33

1.2.1.3  Peak Values of Dynamic Magnification Factors
The next step is to find the frequency ratio when the maximum value of the dynamic magnification 
factor of displacement βd is reached, that is,
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1 22 2 2−( ) + ( )
= ( )

r rξ
βd max  (1.91)

Let
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=
ξ  (1.92)

To avoid a complicated mathematical derivation, find the minimum value inside the square root 
of the denominator; that is, let

	 1 22 2 2
−( ) + ( ) =r rξ min  (1.93)

Namely, let the derivative of the term on the left side of Equation 1.93 with respect to variable r 
equal zero. Thus,

	 d
dr r r1 2 02 2 2

−( ) + ( )



 =ξ  (1.94)

Therefore, for the underdamped case,

	 r = −1 2 2ξ  (1.95)

or

	 ω ξ ωf n= −1 2 2  (1.96)

the peak value (the resonant point) is reached.
Equations 1.95 and 1.96 imply that the maximum value of the dynamic magnification factor is 

not at exactly the frequency where ωf = ωn. Usually, the frequency at the peak resonance is used 
as the natural frequency. However, when the damping ratio becomes large, the resonant frequency 
should be modified by Equation 1.96. Therefore, a special symbol, ωD, is used to denote the peak 
resonance point as

	 ω ξ ωD n= −1 2 2  (1.97)

where ωD is the displacement resonant frequency. From Equation 1.95, it is seen that only if

	 1 2 02− >ξ

or

	 ξ < =2 2 0 707.  (1.98)

then r > 0.
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Thus, only if Equation 1.98 holds, can the system have a peak or resonant value. Otherwise, the 
magnification factor will be always smaller than unity, except at r = 0.

To determine the resonant value, substituting Equation 1.95 into Equation 1.80 provides

	
β ω

ξ ξ
d D( ) =

−
1

2 1 2
 (1.99)

That is, when r = 1 2 2− ξ , from Equation 1.82,
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Also, from Equation 1.82, it is seen that when r = 1, the displacement can still be very large, 
although it has passed the peak value. That is,
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 (1.101)

Note that in the above development, the damping ratio is always smaller than 1. Comparing 
Equation 1.100 with Equation 1.101, it is seen that the peak value is 1 1 2/ − ξ  times the value 
when r = 1. Therefore, x0 defined in Equation 1.100 is always larger than the one defined in 
Equation 1.101.

Similarly, the acceleration resonant frequency, ωA, is defined by making
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and for the underdamped case,
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or
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the resonant point is reached.
Substituting Equation 1.103 into Equation 1.88 yields

	
β ω

ξ ξ
a A( ) =

−
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2 1 2
 (1.105)

That is, when r = −( / )1 1 2 2ξ , from Equations 1.87 and 1.88,



Free	and	Harmonic	Vibration	of	Single-Degree-of-Freedom	Systems	 35
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 (1.106)

Also, from Equation 1.88, it is seen that when r = 1, the acceleration becomes very large, although 
it has not yet reached the peak value. That is,

	
a f
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0 1

2
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ξ
 (1.107)

Again, since the damping ratio is always <1, from Equations 1.106 and 1.107, the peak accelera-
tion value is 1 1 2/ − ξ  times the value when r = 1 and the value obtained from Equation 1.106 is 
always the larger of the two.

Comparing Equation 1.106 with Equation 1.100, and also comparing Equation 1.107 with Equation 
1.101, the similarities between the acceleration resonance and the displacement resonance are found.

Similar to the case of displacement magnification, the condition described by Equation 1.98 must 
hold to have a nonzero real-valued frequency ratio. That is, if the damping ratio is greater than or 
equal to 0.707, the acceleration resonance will not be reached.

From Equations 1.104 and 1.98, it is seen that when the damping ratio becomes larger, errors will 
occur if ωf = ωn is used to estimate the resonant frequency for acceleration and displacement. For 
example, if the damping ratio is larger than 30%, there will be more than a 10% difference between 
the ωA (or ωD) and ωn frequencies. For the sake of simplicity, ωn is often used in this book unless 
otherwise specified. However, note that under earthquake excitations, even when it is different from 
sinusoidal forcing functions, the peak values of the acceleration and of the displacement are influ-
enced by the facts described in Equations 1.106 and 1.100.

Note that the velocity resonance frequency ωV is not affected by damping ratios, that is,

	 ω ωV n=  (1.108)

1.2.1.4  Dynamic Magnification Factors Reaching Unity
1.2.1.4.1 Dynamic Magnification Factor of Displacement
When the frequency ratio r = 0, the dynamic magnification factor of displacement, βd, equals unity. 
Now, it is time to find a second frequency point at which βd returns to unity again. Solving
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2 2 2−( ) + ( )
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r rξ
 

(1.109)

results in obtaining the frequency point as

	 r = −2 1 2 2 ξ  (1.110)

Therefore, when

	 ω ξ ωf n = −2 1 2 2  (1.111)

the dynamic magnification factor of displacement reaches unity. In other words, when the damping 
ratio is smaller than 0.707, and the driving frequency is smaller than 2 1 2 2 n− ξ ω , βd will always 
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be greater than unity, except at ωf = 0. On the other hand, if the driving frequency is larger than 
2 1 2 2 n− ξ ω , βd will always be smaller than unity. This behavior can be observed in Figure 1.14a.

1.2.1.4.2 Dynamic Magnification Factor of Acceleration
When the frequency ratio r = 0, the dynamic magnification factor of acceleration, βa, equals zero. 
When r increases toward infinity, βa will be unity. To find another frequency point at which βa 
approaches one, the following equation may be solved:
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2 2 21 2
1

−( ) + ( )
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which gives the frequency point
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1

2 1 2 2 ξ
 (1.113)

Therefore, when

	 ω
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ωf n
 

=
−

1
2 1 2 2

 (1.114)

the dynamic magnification factor of acceleration reaches unity. That is, when the damping ratio is 

smaller than 0.707, and if the driving frequency is smaller than 1 2 1 2 2/( )  − ξ ωn, βa will always 

be smaller than unity. Alternatively, if the driving frequency is larger than 1 2 1 2 2/( )  n− ξ ω , βa 
will always be greater than unity. Several examples of this behavior are illustrated in Figure 1.14b.

1.2.1.5  Half-Power Points and Resonant Region
1.2.1.5.1 Half-Power Points of Dynamic Magnification Factor of Displacement
Of special interest is when the amplitude of the dynamic magnification factor reaches the value of 

2 2/  times its peak value. That is, when
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Solving Equation 1.115 to find the value of the frequency ratio r,

	 r1 2
2 2 21 2 2 1, = − −ξ ξ ξ∓  (1.116)

Since the damping ratio is often very small, the approximate result is

	 r1 2
2 21 1, ≈ − −ξ ξ ξ∓  (1.117)

Here,

	
r1 1= ω

ωn
 (1.118)
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and

	
r2

2= ω
ωn

 (1.119)

both denoting the special frequency point when the amplitude of the magnification factor reaches 
2 2/  times its peak value, which is referred to as the half-power points. Then, ω1 and ω2 are the 

corresponding driving frequencies defined as the half-power point frequencies.
From Equations 1.118 and 1.119,

	 r r2 1
22 1 2− = − ≈ξ ξ ξ  (1.120)

and

	
r r2 1
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Equation 1.122 indicates that, if the half-power frequencies ω1 and ω2 and the natural frequency 
ωn can be measured, the damping ratio can be approximately determined. In fact, since at the half-
power points and at the resonance point the amplitude of the response is large, the measurements of 
signal-to-noise ratios are rather high. Therefore, when the damping ratio is sufficiently small, say, 
smaller than 30%, Equation 1.122 can provide a good estimation of the damping ratio.

Note that the approximation for obtaining Equation 1.122 is based on small damping ratios. 
When the damping ratio is sufficiently large, the first half-power point will no longer exist. In addi-
tion, large errors will result when estimating the damping ratio.

From Equation 1.116, when

	 1 2 2 1 02 2− − − =ξ ξ ξ  (1.123)

then

	
ξ = − =2 2

2
0 3827.  (1.124)

where the first half-power point vanishes.
Figure 1.15 is a plot of the percentage error of the damping ratio estimation vs. the true damping ratio. 

It is seen that when the damping ratio is smaller than 18.6%, the estimation error is smaller than 10%.

1.2.1.5.2 Half-Power Points of Dynamic Magnification Factor of Acceleration
Similarly, the half-power points of the dynamic magnification factor of the acceleration can be used 
to estimate the damping ratio points. Let
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Then, the frequency ratio r is given by

	
r1 2

2
2 2

4 2
1 2 2 1

8 8 1, =
− −

− +
ξ ξ ξ
ξ ξ

∓
 (1.126)

Again, since the damping ratio is often very small, it can be approximated as

	 r1 2
2 21 1, ≈ − −ξ ξ ξ∓  (1.127)

Comparing Equation 1.127 with Equation 1.117, it is seen that it is the same formula as described 
in Equation 1.117 in the case of acceleration magnification. Note that to derive Equation 1.127 from 
Equation 1.126, it is assumed that

	 8 8 1 14 2ξ ξ− + ≈  (1.128)

which is not true with larger damping ratios.

1.2.1.6  Response Reduction due to Increase of Damping
By examining both the dynamic magnification factors of the displacement and the acceleration, it 
is observed that when the damping ratio is increased, the vibration response can be reduced. In the 
following discussion, the effectiveness of response reduction by increasing the damping ratio in dif-
ferent frequency regions is considered.

First, consider the neighborhood of the resonant frequency. From Equations 1.101 and 1.107, it 
is seen that when ωf = ωn, the amplitudes of the displacement and the acceleration are inversely 
proportional to the damping ratio. That is, when the damping is doubled, the amplitude will be one-
half of the original value. Such a phenomenon is given in the second column of Table 1.1. Because 
the relationship between the displacement amplitude and the damping ratio when r ≠ 1 is not as 
explicit, as described in Equations 1.101 and 1.107, the amplitude reductions when the damping ratio 
is doubled at several different frequency ratios are provided.
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In Table 1.1, the first column is the original damping ratio. When the damping ratio is doubled, 
it becomes 2%, 10%, 20%, and 60%, respectively. The third column is the percentage displacement 
reduction (1 – x0(2ξ0)/x0(ξ0)) at the displacement resonance point. It is seen that the reduction ratio 
is slightly smaller than 0.5, which is not as high as the point when r = 1.

The fourth column is the percentage displacement reduction (1 – x0(2ξ0)/x0(ξ0)) at the first half-
power point. The half-power point is a point at a specific frequency ratio, where the amplitude of the 
displacement is 0.707 times the peak displacement. The fifth column is the percentage displacement 
reduction (1 – x0(2ξ0)/x0(ξ0)) at the second half-power point.

It can be proven that the highest displacement reduction ratio occurs at the resonance point r = 1. 
However, within the region between the two half-power points, the displacement reductions are 
rather large. Generally, this frequency range is referred to as the resonant region.

In the last column of Table 1.1, the percentage displacement reduction when r = 0.1 or r = 10 is 
listed, where these two points are normally outside the range between the two half-power points. It 
is seen that these reductions are rather minimal.

In Figure 1.16, several curves are plotted to compare the response reduction with the increased 
damping ratio at different frequency points. These curves, denoted by R(ξ), are percentage reduc-
tions, namely, the values of the Y-axis are
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 (1.129)

and the X-axis is 100ξ. In Figure 1.16, the frequency ratios are chosen to be 1.5, 1.2, 1.1, and 1.05. 
The corresponding curves are plotted and marked with these frequency ratios. It can be proven that 
the reduction curves of r = 1.5 and r = 1/1.5 are identical, and so on.

In the resonant region, the percentage reductions vs. the damping ratio are close, since the 
original damping is very same. In addition, outside the resonant region, increasing the damping 
ratio becomes less effective. Farther away from the resonant region, the effectiveness of increasing 
damping is further reduced.

From Table 1.1 and Figure 1.16, it is realized that using large damping to reduce the displacement 
can be effective in the resonant range. However, the effectiveness is reduced outside this resonance 
frequency range.

Example 1.8

From Example 1.7, it was found that the acceleration level of the SDOF system exceeds the 
required value. If the mass and the stiffness are constant, the proper damping can be chosen to 
meet the requirement using the dynamic magnification factors.

Suppose the response level of the newly assigned damping ratio should be RD times that of the 
original damping ratio, while the frequency ratio must remain the same.

Denote the original damping ratio and the newly assigned damping ratio as ξ0 and ξdesign, 
respectively. Then,

TABLE 1.1
Percentage Displacement Reduction (1 – x0(2ξ0)/x0(ξ0)) vs. Frequency Ratios

𝛏0 (%) r = 1 r 1 2 2= − ξ r1 r2 r0.1 and r10

1 0.5 0.5000 0.36 0.37 6 × 10– 6

5 0.5 0.4995 0.35 0.38 1.5 × 10– 4

10 0.5 0.4981 0.33 0.39 6 × 10– 4

30 0.5 0.4804 0.26 0.44 0.005



40	 Structural	Damping:	Applications	in	Seismic	Response	Modification

	
β ξ

β ξ
d design

d
D

,
,
r

r
R( )

( ) =
0

for the displacement reduction and

	

β ξ
β ξ
a design

a

,
,
r

r
RA

( )
( ) =

0

for the acceleration reduction.
Notice that both of the above equations yield the same expression
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In Example 1.7, the result is r = 0.8886 and ξ0 = 0.01, with the required ratio R = 2/3.05. Thus,

	 ξdesign = 0 1372.

Therefore, if the damping ratio is increased to 13.72%, then the acceleration level will be 2g. 
In addition, the displacement is further reduced to 4.97 (mm).

1.2.2  dynaMic Magnification factor, ground Excitation

In earthquake engineering, the relative displacement vs. the ground displacement is a useful rela-
tionship, which can provide information on structural displacement. In addition, it can also be used 
to study the relative displacement of structure bearings when seismic isolation is used.

Another useful relationship is the ground acceleration vs. the absolute acceleration of the mass. In 
earthquake engineering, the ground acceleration is often used as the input. The absolute acceleration 
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is used to further obtain the force acting on a given structure. In the case of seismic isolation, the 
absolute accelerations of the superstructure are studied to try to reduce the forces.

1.2.2.1  Dynamic Magnification Factor of Relative Displacement
The special case of ground harmonic excitation is considered next. Dividing both the numerator and 
denominator in Equation 1.77 by ω2

n,
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in which
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The term βdB can be referred to as the dynamic magnification factor of the relative displacement of the 
system subjected to ground excitation with amplitude xg. That is, the relative displacement can be seen as 
a product of the dynamic magnification factor and the ground amplitude. In Figure 1.17a, the values of 
the dynamic magnification factor are plotted vs. the frequency ratio for several damping ratios. It is seen 
that when the frequency ratio is close to zero (i.e., the driving frequency is very small), the dynamic mag-
nification factor is close to zero. However, when the driving frequency is close to the natural frequency, 
the dynamic magnification factor can be very large, if the damping is small. Similar to the case of general 
excitation, resonant regions are also present. When the driving frequency becomes very large, the values 
of the dynamic magnification factor will converge to 1, despite having different damping ratios.

In Figure 1.17b, the phase angles of the displacement are plotted vs. the frequency ratio for sev-
eral damping ratios. From this figure, it is seen that before the resonant region, the phase difference 
of the response and the ground displacement is smaller than −90°	(−π/2). When damping is small, 
the phase angle is close to 0° (0). After the resonant region, the phase differences are greater than 
−90°	(−π/2). The smaller the damping is, the closer the phase angle will approach −180°	(−π).

Comparison with the case of general excitation shows that the dynamic magnification factor of 
the relative displacement of the system subjected to ground excitation is, in terms of formulation, 
equal to the dynamic magnification factor of the absolute acceleration of a system subjected to gen-
eral excitation. That is,

	 β βdB a=  (1.132)

Therefore, the analysis of βa is also applicable to βdB. For example, when

	
r =

−
1

1 2 2ξ
 (1.133)

or the acceleration resonant frequency of ground excitation, ωA,	denote that

	
ω

ξ
ωA n=

−
1

1 2 2
 (1.134a)

the resonant point is reached.
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Note that when the damping ratio is smaller than 40%,

	 ω ξ ωA n≈ +1 2 2  (1.134b)

with an error <5.55%.
Using Equation 1.34a, the peak value of the magnification factor is calculated as

	
β ω

ξ ξ
dB A( ) =

−
1

2 1 2
 (1.135)

That is, when Equation 1.133 holds,

	
x x0 2

1
2 1

=
−ξ ξ

g  (1.136)

Also, when

	 r = 1  (1.137)
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FIGURE 1.17  Frequency responses due to harmonic ground excitations (a) dynamic magnification factor 
and (b) phase angle.
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the displacement can still be very large, although it has passed the peak value. That is,

	
x x0

1
2

=
ξ g  (1.138)

Again, since the damping ratio is normally greater than zero, from Equations 1.136 and 1.138, 

it is seen that the peak acceleration value is 1 1 2/ − ξ  times the value when r = 1, That is, the value 
described in Equation 1.136 is always larger than the evaluation from Equation 1.138.

Secondly, when

	 r =
−

1
2 1 2 2 ξ

 (1.139)

or

	
ω

ξ
ωf n

 
=

−
1

2 1 2 2
 (1.140)

the dynamic magnification factor of the relative displacement reaches unity. That is, when the damp-

ing ratio is smaller than 0.707, if the driving frequency is smaller than 1 2 1 2 2/  n( )− ξ ω , then βdB 

will always be smaller than unity. Otherwise, if the driving frequency is larger than 1 2 1 2 2/  n( )− ξ ω , 
then βdB will always be greater than unity.

Example 1.9

Suppose a set of equipment in a special room of a building requires a very low level of accelera-
tion, so that the entire floor needs to be isolated. The design frequency is 3 (Hz) and the total floor 
mass is 10,000 (kg). The design damping ratio is 7%. This floor is subjected to a harmonic excita-
tion of 1 (cm) displacement and 10 (Hz) driving frequency. What is the relative displacement of the 
isolators? If the allowed displacement must be <1.05 (cm), how should the natural frequency of the 
isolation system be chosen, while keeping the damping ratio unchanged?

According to the given parameters, the frequency ratio is 10/3 and the damping ratio is 0.07. 
From Equation 1.121, the dynamic magnification factor is

	
β

ξ
dB =

−( ) + ( )
=r

r r

2

2 2 21 2
1 10.

Therefore, the relative displacement is 1 × (1.10) = 1.10 (cm), which is larger than the allowed 
displacement of 1.05 (cm).

Generally speaking, if the displacement needs to be R times the original level, while the damp-
ing ratio remains unchanged, the original frequency ratio is denoted as r0 and the frequency ratio 
is to be designated as rdesign. Then,

	

β
β
dB design

dB

r
r

R( )
( ) =
0

Therefore,

	

r r r

r r r

design

design design

4
0
2 2

0
2

0
4 2 2

1 2

1 2

−( ) + ( )





−( ) + ( )

ξ

ξ 22
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= R
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Solving this equation,

	
r b b a

adesign = + −2

where

	 a r r
rR

= −
−( ) + ( )1 1 20

2 2
0

2

0
4 2

ξ

and

	 b = −1 2 2ξ

In the above example, r0 = 10/3, R = 1.05/1.1, so that a = 0.089 and b = 0.990. Therefore,

	 r 4.656design =

Comparing with 10/3 = 3.333, the newly selected frequency needs to have a comparatively 
lower natural frequency of 2.15 (Hz). Note that this implies a significant shift in natural frequency 
to achieve a small reduction in relative displacement. This occurs because the original design was 
already far from the resonant peak.

1.2.2.2  Dynamic Magnification Factor of Absolute Acceleration
Now, the relationship between the ground excitation and the absolute acceleration of mass m is 
considered. This relationship is a significant quantity in seismic isolation, and a more detailed deri-
vation of the corresponding dynamic magnification is given.

1.2.2.2.1 Definition of Dynamic Magnification Factor of Absolute Acceleration
Using the method of complex response for the steady-state response (see Equations 1.45 and 1.46), 
results in

	 mx cx kx m x ej t�� �+ + = ω ω
f g

f2  (1.141)

Note that in Equation 1.141, x, �x, and ��x are relative displacement, velocity, and acceleration, 
respectively. Denote

	 x x ej t= p
f

0
ω  (1.142)

where xp0 is the complex-valued amplitude of the relative displacement. Also,

	
��x a e x ei t j t= = −p p f

f f
0 0

2ω ωω  (1.143)

Here, ap0 is the complex-valued amplitude of the relative acceleration, where

	 a xp0 f p= −ω2
0  (1.144)

Also, the amplitude of the ground acceleration can be written as
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	 a xg f g= ω2  (1.145)

Note that in Equations 1.144 and 1.145, ap0 and xp0 are complex valued, whereas ag and xg are 
real valued.

From Equation 1.130, the relationship between the real-valued amplitude of the relative displace-
ment and the ground displacement is given by

	 x x0 = βdB g  (1.146)

Now, for the complex-valued base excitations,

	 x xC
p0 dB g= β  (1.147)

Here βdB
C  is a complex-valued term, instead of the real-valued dynamic magnification factor, βdB, 

expressed in the previous discussion; superscript C denotes that it is a complex-valued term. The 
result is

	
β

ξdB
p0

g

C x
x

r
r j r

= =
− +

2

21 2
 (1.148)

Consider the relationship between the relative acceleration and the ground acceleration using 
Equations 1.145 and 1.146:

	

a
x

x
x

p C0
2

0
2

′′
= =

g

f p

f g
dB ω

ω
β  (1.149)

Therefore, the dynamic magnification factor of the real-valued relative acceleration, denoted by 
βaB, can be written as

	

β β
ξ

βaB
g

p0

g
dB dB= = = =

−( ) + ( )
=

′′

a
x

x
x

r

r r

p C0
2

2 2
1 2

 (1.150)

Furthermore, the complex-valued amplitude of the absolute acceleration can be written as 
ap0 + xg″. Therefore,

	

a x
x

a
x

r
r j r

j r
r j r

p p0 0
2

2 21
1 2

1 1 2
1 2

+
= + =

− +
+ = +

− +
′′

′′ ′′

g

g g

 
ξ

ξ
ξ

 (1.151)

The real-valued amplitude of the absolute acceleration of mass m, denoted by xA″, can be obtained 
by taking the absolute value of (ap0 + xg″), that is,

	 x a xpA g″ ″= +0  (1.152)

Therefore, the dynamic magnification factor of the absolute acceleration for the base excitation, 
denoted by βAB, can be obtained as follows:



46	 Structural	Damping:	Applications	in	Seismic	Response	Modification

	
β ξ

ξ
ξ ξ
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p0 g

g

p0

g
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=

+
= + = +

− +
=

+( ) −( )
−

x
x x

j r
r j r

j r j r″

″ ″
1 1 2

1 2
1 2 1 2

12 rr j r r j r2 22 1 2+( ) − −( )ξ ξ
 (1.153)

where subscript A denotes absolute, whereas the lowercase subscripts stand for relative quantities. 
Therefore,
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+ ( )
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x

r
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″

1 2
1 2

2

2 2 2  (1.154)

By using the term βAB, the real-valued amplitude of the absolute acceleration can be written as

	 x xA AB g″ ″= β  (1.155)

The phase angle of term |x″ + xg″|/xg″ is
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(1.156)

In Figure 1.18a, the dynamic magnification factor βAB is plotted vs. the frequency ratio for 
several different damping ratios. In Figure 1.18b, the phase angles are plotted vs. the frequency 
ratio.

From Figure 1.18a, it is seen that despite the damping ratios, the dynamic magnification factors 
all start from the value of unity when r = 0. After that, the magnitudes of the factors become larger 
and larger until they reach resonance points. Similar to all the various dynamic magnification fac-
tors, when the damping ratio is small, the magnitude of the dynamic magnification factor of the 
absolute acceleration can be very large. As a difference from the dynamic magnification factors βa 
and/or βdB, which will not have resonance when the damping ratio is >0.707, when the damping ratio 
reaches unity, βAB will still be greater than unity.

By continuously increasing the frequency ratio after the resonance point, the magnitude 
decreases. At a special frequency point, the value returns to unity. Interestingly, this frequency 
point, which is derived in the next subsection, is independent of the damping ratio. Consequently, 
all curves in Figure 1.18 pass through this unique point. Beyond that frequency point, the value of 
βAB will be less than unity. However, in contrast to all the dynamic magnification factors discussed 
above, which always reduce the magnitudes as the damping increases, the magnitude of βAB will 
have a different trend after this frequency point. That is, the larger the damping ratio, the smaller 
the reduction of the dynamic magnification factor.

Note that again, the phase angle should have a minus sign. Thus, by using Figure 1.18b, the 
plots of the phase angle vs. the frequency ratio show that as the frequency ratio increases, the 
phase difference between the mass and the ground will decrease from zero to –π. In this figure, 
the effect of the damping ratio is also realized. Generally, when the damping ratio is small, the 
phase will have a sharp turning point close to r = 1. However, when the damping ratio is large, 
the phase value will be increased more gradually with a less sharp turning frequency point. In 
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addition, when the damping is small, the phase difference will quickly reach –π or –180° as the 
frequency ratio becomes larger than unity. However, with a large damping ratio, the phase angle 
reaches a smaller maximum value in a more gradual manner. That is, the maximum value is also 
reduced. For example, when ξ = 1, the maximum phase difference is no longer –180°; instead, it 
becomes –90°.

1.2.2.2.2 Peak Value of the Dynamic Magnification Factor of Absolute Acceleration
In the preceding section, the nature of the dynamic magnification factor of absolute acceleration 
underground excitation was discussed in general terms. Now, a more detailed analysis is carried out 
at several frequency points. The first important point is when r = 0. It is easy to see that, in this case,

	 βAB |r = =0 1  (1.157)

Next, the peak value of the dynamic magnification factor of absolute acceleration and the cor-
responding frequency ratio are determined. The derivative of βAB is taken with respect to r and the 
result is set equal to zero. Thus,

	

d
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FIGURE 1.18  Magnitude and phase of absolute acceleration due to ground excitation (a) dynamic magnifica-
tion factor and (b) phase angle.
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Solving Equation 1.158 to find the proper value of r, results in

	
r =

+ −











1 8 1
4

2

2

1 2
ξ

ξ

/

 (1.159)

From Equation 1.159, it is realized that since

	 ξ > 0  (1.160)

the frequency ratio is always real valued. This fact implies that Equation 1.158 will always have a 
meaningful solution, so that regardless of the value of the damping ratio, the dynamic magnification 
factor of the absolute acceleration will always have a resonant peak value.

Substituting Equation 1.159 into Equation 1.153, the peak value of the dynamic magnification 
factor is given by

	
β ω ξ ξ ξ ξAB A( ) = − − + +( )−

2 2 8 4 1 1 82 4 2 2
1 2/

 (1.161)

In Equation 1.161, ωA is the resonant frequency given by

	
ω

ξ
ξ

ωA n=
+ −











1 8 1
4

2

2

1 2/

 (1.162)

It can be seen that when the damping ratio is small,

	
β ω

ξ ξ
AB A( ) ≈

−
1

2 1 2
 (1.163)

Thus, according to Equation 1.163, 1 2 1 2/ ξ ξ−  seems to be a peak value of the terms βd, βa, βdB 
and βAB.

However, it is also observed that no matter how the damping ratio is chosen, the following is 
always the case:

	
β ω

ξ ξ
AB A( ) >

−
1

2 1 2
 (1.164)

Inequality Equation 1.164 indicates that the peak value of βAB(ωA) is always larger than the other 
types of dynamic magnification factors. When the damping ratio is sufficiently large, the difference 
becomes more significant. Furthermore, when r = 1,

	
β

ξ
ξAB 1 1 4

2

2

( ) =
+

 (1.165)

which is 1 4 2+ ξ  times the value of the other dynamic magnification factors, such as that of dis-
placement, at r = 1.
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1.2.2.2.3 Frequency Point of Dynamic Magnification Factor of Absolute Acceleration being Unity
Consider the case when the value of the dynamic magnification factor of absolute acceleration 
reaches unity, besides the point when r = 0. Let

	 r = 2  (1.166)

Then, substituting Equation 1.165 into Equation 1.154 yields

	 βAB 2 1( ) =  (1.167)

Therefore, despite the value of the damping ratio, when Equation 1.165 is satisfied, the value of 
the dynamic magnification factor of absolute acceleration reaches unity again. Beyond this point,

	
β ω ωAB f f>( ) <2 1  (1.168)

That is, the value of the dynamic magnification factor of absolute acceleration can be smaller 
than unity, only if Equation 1.168 is satisfied. Consequently, in base isolation design, the natural 
period, Tn, needs to be 2  times larger than the major driving period. Otherwise, the acceleration 
of the superstructure will not be reduced, but will instead be magnified.

1.2.2.2.4 Half-Power Points of Dynamic Magnification Factor of Absolute Acceleration
To obtain the approximation of the half-power points, let
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By solving Equation 1.169,

	
r b b ac

a1 2

2
1 2

4
2,

/

= − −











 ∓  (1.170)

where

	 a = 4 4ξ  (1.171a)

	 b = − + + − +16 8 4 4 1 86 4 2 2 2ξ ξ ξ ξ ξ  (1.171b)

	 c = − + + − +4 4 1 1 84 2 2ξ ξ ξ  (1.171c)

When the damping ratio is sufficiently small, it can be proven that the frequency ratios calculated 
by Equation 1.170 can be used to determine the damping ratio with the help of Equation 1.122. In 
fact, when the actual damping ratio is <21%, there can be a <10% error in damping ratio overestima-
tion. When the actual damping ratios are 30%, 40%, and 50%, the errors in damping ratio overesti-
mation will be 18.82%, 31.11%, and 50.33%, respectively.
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Example 1.10

A computer is mounted on a floor with total mass 25 (kg), which is subjected to ground harmonic 
excitation with an amplitude of 1 (g) and a driving frequency of 4 (Hz). The computer only allows 
0.3 (g) of acceleration so that it is base isolated. The base isolator provides a stiffness of 3,000 
(N/m) and a damping ratio of 10%. If the allowed relative displacement of the isolator is <1.6 (cm), 
the base isolation must be checked to determine if it can satisfy the required parameters.

With the given parameters, the natural frequency of the isolation system is 1.7 (Hz). The fre-
quency ratio is then calculated to be 2.29, βdB = 1.23, and βAB = 0.257. Therefore, the amplitude of 
acceleration is 0.257 (g) < 0.3 (g), whereas the displacement of isolation is 1.9 > 1.6 (cm).

It is seen that although the acceleration satisfies the required level, the displacement does not. 
Therefore, a different group of design data must be chosen. This time, k = 500 (N/m) is supposed. 
The natural frequency of the isolation system is 0.712 (Hz). The frequency ratio is then calculated 
to be 5.62. When the damping ratio is chosen to be 0.7, βd = 1.001, βdB = 1.23, and βAB = 0.251. 
Therefore, the amplitude of acceleration is 0.251 (g) < 0.3 (g), whereas the displacement of isola-
tion is 1.55 < 1.6 (cm).

This example implies that when the level of acceleration is to be reduced, which is often the main 
goal of base isolation, the relative displacement of the isolator must be checked. In fact, in the design 
stage, it is best to consider the reduction of the acceleration and the regulation of the displacement 
simultaneously.

1.3  ENERGY DISSIPATION AND EFFECTIVE DAMPING

In Example 1.10, the vibration of a linear SDOF system under harmonic excitations was discussed. 
When the responses reach a steady state, the input energy and the energy dissipated by damping of 
the system are balanced. The steady-state response of a system can be used as the basis to study the 
effect of damping. In this section, the energy dissipation during a complete vibrating cycle is used 
as a basis to explore the function of damping in forced vibration.

1.3.1  EnErgy dissiPatEd PEr cyclE

1.3.1.1  Linear Viscous Damping
1.3.1.1.1 Damping in SDOF Systems: Qualitative and Quantitative Definitions
In a vibration system, there are three internal forces to balance the excitation load. Unlike the inertial 
and restoring forces, the damping force is nonconservative and the corresponding work done is dissi-
pative. The simplest damping of an SDOF system is linear viscous damping. Generally speaking, the 
damping force is notably smaller than other internal forces. Therefore, using linear viscous damping 
to approximate other types of damping will not introduce significant errors in response estimations.

In this section, the concepts of damping and vibration in SDOF systems are reviewed by qualita-
tive and quantitative definitions. Many of the definitions and formulas can also be found in text-
books (i.e., Inman 2007; Chopra 2006; Clough and Penzien 1993). However, for convenience in 
further discussions, some necessary equations are given for later reference. The important concepts 
of damping are also marked in italics.

Primarily, damping is a measurement of the capability of a system to dissipate dynamic (vibra-
tion) energy. Therefore, damping can be represented by energy dissipation, or by a force that works 
to dissipate energy. Generally speaking, for an SDOF system, the larger the damping force, the 
higher the capability of the system to resist external input energy. Hence, the remaining energy to 
vibrate the structure will be smaller under a given driving frequency and amplitude of excitation. 
This is conventionally believed to be the reason why damping can reduce the vibration level or it 
can control earthquake-induced structural response. Here, the way a system resists external dynamic 
loading is examined first.
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1.3.1.2  Energy Dissipated by Damping Force
The energy dissipation by linear viscous damping is considered. When the harmonic response of 
a system reaches the steady state, the energy dissipated by damping force during a complete cycle 
can be calculated. That is,

	 E f dx cxxdt cx t dt c xd d f f
f

= = = +( ) =∫ ∫ ∫� � �
0

2

0
2 2

0

2

0
2

π ω π ω

ω φ ω πcos

The energy dissipated in the complete cycle under harmonic excitation with the driving fre-
quency equal to the natural frequency, Ed(ωn), is called the damping capacity of the SDOF system. 
That is,

	 E c xd n nω ω π( ) = 0
2  (1.172)

Since c = 2ξωnm,
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Next, the work done by the external harmonic force f0 sin ωft is examined. Denoting this work 
by Wf,

	
W f tdx f tx t dt f xf f f f= = +( ) =∫ ∫0 0 0
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π ω

�  (1.174)

From Equation 1.43, it is seen that
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Therefore,

	

sin φ ξ

ξ
ξ β =

−( ) + ( )
=2

1 2
2

2 2 2

r

r r
r d  (1.176)

Furthermore, from Equation 1.84,

	 f x k0 0= βd  (1.177)

Substituting Equations 1.176 and 1.177 into Equation 1.174 yields

	
W x k x r krxf

d
d2= =0

0 0
22

β
π ξ β ξπ  (1.178)

Comparing Equation 1.178 with Equation 1.173, results in the conclusion that at the steady state,

	 W Ef d=  (1.179)
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Namely, the work done by the external force or the input energy is totally dissipated by the 
damping force. On the other hand, the change of the potential energy and that of the kinetic energy, 
denoted by ΔEp and ΔEk, respectively, are both equal to zero. Thus,

	 ∆E f dxp S= =∫� 0  (1.180)

and

	
∆E f dxk I= =∫� 0  (1.181)

1.3.1.3  Damping Coefficient and Damping Ratio of Linear Viscous Damping
In the above example, when the damping coefficient is known, the damping capacity can be deter-
mined by Equation 1.172. On the other hand, if the damping capacity is known, the damping coef-
ficient can be determined as follows:

	
c E

x
= d

fπω 0
2  (1.182)

Note that the damping coefficient c of linear viscous damping is a constant, but in Equation 
1.182, it appears to be a function inversely proportional to the driving frequency ωf. This is because 
the energy dissipated per cycle is also a function of the driving frequency. Consequently, Equation 
1.182 is not in a convenient form to use. In the following discussion, a different approach is given.

The damping ratio of the linear viscous damping system can be written as
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Therefore,
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where Ep is the maximum potential energy with

	
E kx

p = 0
2

2
 (1.184)

Substituting Equations 1.172 and 1.184 into Equation 1.183 yields

	

ξ πω

π ω
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2
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2

4
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 (1.185)

Comparing Equation 1.183 with Equation 1.13 – the definition of the damping ratio – it becomes 
obvious that Equation 1.183 can be used to represent the damping ratio. In addition, from the 
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definition of Equation 1.13, the damping ratio depends only on the physical parameters of the sys-
tem, namely, mass m, damping coefficient c, and stiffness k. From Equation 1.185, it is seen that 
regardless of the value of the driving frequency, the resulting ratio of Ed and 4πrEp will be the 
damping ratio ξ. In other words, the damping ratio ξ of the linear viscously damped system is not 
a function of external force, such as the driving frequency ωf. However, in Equation 1.185, the fre-
quency ratio is involved, which seems to mean that the driving frequency must be considered. Such 
an involvement can introduce unnecessary constraints and difficulties for practical applications, 
because both harmonic and arbitrary excitations will exist. For example, in earthquake excitations, 
it is difficult to specify the driving frequency ωf.

One way to avoid this problem is to use the damping capacity Ed(ωn); that is, let the driving fre-
quency equal the natural frequency. This is experimentally sound because when ωf = ωn (i.e., at the 
resonance point), a high signal-to-noise ratio can be used for measurement. Furthermore, the damp-
ing capacity is also applicable for random excitations, in which case the system is likely to have 
vibration with frequencies around the natural frequency. Therefore, Equation 1.183 is rewritten as

	
ξ

π
= E

E
d

p4
 (1.186)

For simplicity, unless specifically mentioned, Ed is used instead of Ed(ωn) to denote the special 
energy dissipation or the damping capacity.

1.3.1.4  Linear System
The above discussion is limited to linear systems. That is, both the stiffness and the damping are 
linear. The following discussion addresses nonlinear damping. Before undertaking a detailed study, 
a more rigorous explanation of the condition of the linearity function is necessary.

Generally speaking, if a function

	 y f x= ( )  (1.187)

is linear, the relationship between the variable x and function y should satisfy certain conditions. To 
examine these conditions, denote

	 y f xi i= ( )  (1.188a)

	 y f xj j= ( )  (1.188b)

Here, xi and xj are different variables within the domain of functions f, and yi and yj are the cor-
responding functions. In addition, the variable xk is introduced in the same domain as xi and xj. If 
the function f is linear, the following conditions must be satisfied:

	 f x x f x f x y yi j j i j i+( ) = ( ) + ( ) = +  (1.189)

	 f x x x f x f x xi j k i j k+ +( ) = ( ) + +( ) (1.190)

	 f x yi iα α( ) =  (1.191)

	 f x y yi i iα β α β+( )( ) = +  (1.192)
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	 f x yi iα β αβ( )( ) = ( )  (1.193)

	 1y yi i=  (1.194)

	 0 0yi =  (1.195)

where 0 is the null function; α and β are scalars and

	 0 + =y yi i  (1.196)

The above equations indicate that all these functions are additive and multiplicative. The results 
of these summations and products are still in the same range. From the viewpoint of engineering 
applications, a single equation can be used to summarize the above conditions, that is,

	 f x x y yi j i jα β α β+( ) = +  (1.197)

In a previous subsection on the method of complex response for steady-state displacement, 
Equation 1.197 was used to examine the combined forcing function f(t) = f0 cos(ωf) + jf0 sin(ωft) and 
the resulting response as x(t) = x0 cos(ωf) + jx0 sin(ωft). That is, the forcing function f can be viewed 
as an input variable and the response x as its function.

Similarly, the restoring force is a linear function of the displacement, the damping force is a 
linear function of the velocity, and so on. For example, since

	 f t cx td ( ) = ( )�  (1.198)

if the velocity is multiplied by a scalar α,

	 c x t c x tα α� �( )  = ( )  (1.199)

Specifically, for a forced vibration system, an equivalent condition can exist, which is both nec-
essary and sufficient; that is, a vibration system is linear if and only if the steady-state response 
contains a single frequency component of ωf when a harmonic excitation with driving frequency ωf 
is applied.

1.3.2  daMPing and sEisMic forcE

1.3.2.1  Parametric Equation
In the above discussion, it is seen that both the damping force and the displacement are functions 
of time. Therefore, using the time variable as a parameter, the parametric equation of the damping 
force and the displacement can be obtained, which can be a useful tool to investigate the relationship 
between the force and the displacement.

By using the parametric equation, the curve of the damping force vs. the displacement can be 
plotted. In the case of linear viscous damping, during a vibration cycle of steady-state response, 
the curve must be closed. It will be shown that the closed curve will cover an elliptic area, which 
is the energy dissipated by the damping force. Generally, the parametric equation of an ellipse can 
be written as
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x X
f F

= ( )
= +( )






m

m

cos
sin

τ
τ φ

 (1.200)

where Xm and Fm are, respectively, the maximum values of displacement and force; τ is the parame-
ter of the parametric equation; x and f are variables; and ϕ is the damping phase shift. When τ = π/2, 
x(π/2) = 0 and f(π/2) = f|x=0 = Fm cos ϕ. Thus, the phase shift is

	
φ =







− =cos 1 0f

F
x

m
 (1.201)

Q is denoted as

	 Q f x= =0  (1.202)

where Q is called the characteristic strength. Therefore,

	
cos φ = Q

Fm
 (1.203)

For the physical meaning of the damping phase shift, ϕ, consider an SDOF system with ground 
motion excitation. Rearranging Equation 1.63 as

	 − ( ) = ( ) + ( )mx t cx t kx t�� �A  (1.204)

the combination of the damping force cx.(t) and the spring force kx(t), previously defined as the 
structural force, can be seen as the resistance against the inertial force mx..A(t), which is referred to 
as the seismic force. Note that the seismic force and the structural force have identical magnitudes, 
but opposite signs.

For steady-state responses under harmonic excitation, the displacement and velocity can be rep-
resented by

	 x X t= ( )m fcos ω  (1.205)

and

	 �x X t= − ( )m f fω ωsin  (1.206)

The structural force can be written as

	

cx t kx t cX t kX t

c k X t

� ( ) ( ) sin( ) cos

sin

+ = − + ( )

= + +

m f f m f

f m f

ω ω ω

ω ω φ2 2 2 (( )  (1.207)

Comparing Equation 1.205 with the first equation in Equation 1.200, and Equation 1.207 with 
the second equation in Equation 1.200, it can be realized that in Equation 1.207,
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	 F c k Xm f m= +2 2 2ω  (1.208)

and

	 φ
ω

   = − −tan 1 k
c f

 (1.209)

The parameter τ is used to represent ωft, that is,

	 τ ω= f t  (1.210)

In Figure 1.19, the idealized ellipse is shown as a solid line. It can be proven that the area where 
the maximum energy is dissipated by the structural force, or the maximum work done by the seis-
mic force denoted by WS, is represented by

	 W X F QXS m m m= =π φ πcos  (1.211)

In Figure 1.19, the second curve is shown with a broken line. This curve is plotted by letting 
ϕ = 0, in which case, it can be realized that k = 0. In other words, the broken line stands for the 
damping force only vs. the displacement. It can be seen that the area is also QXmπ.

Therefore, from the comparison of the seismic force and the pure viscous damping force, it 
is seen that both have the same characteristic strength Q and the areas of energy dissipation are 
identical.

Thus, by using Equation 1.211, the maximum seismic work can be calculated through the rela-
tionship between the absolute acceleration and the displacement with specified period and damping. 
Namely, from the time histories of absolute acceleration and displacement, the maximum displace-
ment Xm and characteristic strength Q can be found. From these two quantities, the maximum 
seismic work can be defined.

In order to review the effect of the damping phase shift, consider the normalized seismic work, 
where the seismic force is normalized to unity. The parametric equation is

	

x m

m

= = ( )
= = +( )







x F a
f f F
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 (1.212)
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FIGURE 1.19  Idealized elliptic energy dissipation.
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where

	 a X F= m m  (1.213)

In this circumstance, the normalized work is

	 w a F WS m S= = −π φcos 2  (1.214)

Figure 1.20 shows the normalized work vs. the phase shift.
Nine curves are shown in Figure 1.20. They represent, respectively, the cases of a = 0.9, 0.8, 0.7, 

0.6, 0.5, 0.4, 0.3, 0.2, and 0.1. From Figure 1.19, it is seen that when the damping phase shift is zero, 
the work done, represented by the area of these ellipses, has the maximum value. When the phase 
shifts are close to π/2 or 90°, the corresponding work done is close to zero.

In certain cases, using the following formula can yield more numerically accurate results, that is,

	
W X F X FS m m m m= ( ) + +( )  ( ) + +( ) π ψ ψ φ ψ ψ φ2 2 2 2 2 2 2 2cos sin sin cos  (1.215)

where
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φ
φ

= ( )
− ( )
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 (1.216)

Figure 1.20 shows that the damping phase shift plays an important role that affects the seismic 
work. Next, the impact of this parameter is discussed in detail by considering the governing equa-
tion of an SDOF system as previously described.

Assume that the SDOF system is near resonance at the steady state. In this case, the displacement 
is close to a sinusoidal function, and ωf is replaced by ωn, that is,
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FIGURE 1.20  Effect of damping phase shift.
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	 x X t= ( )m ncos ω  (1.217)

Further, the seismic force is

	 2 2 2ξω ω ω ω φ ωn m n n m n m nX t X t F tsin cos sin( ) + ( )  = +( )  (1.218)

Here

	 F Xm n m= +1 4 2 2ξ ω
 

(1.219)

and

	
φ ξ

ξ
=

+









−cos 1

2

2
1 4

 

(1.220)

Comparing Equation 1.217 with the first equation in Equation 1.200, it is realized that these 
equations are essentially the same if τ = ωnt. Therefore, by using Equations 1.220 and 1.203, it can 
be written that

	

2
1 4 2

ξ
ξ+

= Q
Fm

 
(1.221)

or

	
ξ̂ =

−
1
2

2

2 2
Q

F Qm  
(1.222)

where ξ̂	stands for the calculated value.
As seen in Equation 1.222, if the characteristic strength Q and the maximum displacement from 

the time history plot can be measured, the corresponding damping ratio can be computed, if the 
SDOF system is near resonance. The condition of “near resonance” is reached by the maximum 
value of the acceleration response spectrum at a different period T. In Figure 1.21, the calculated 
damping ratios ξ̂ are plotted as a function of the original assigned damping ratio ξ in Equation 
1.222. The heavy straight line is the theoretical damping ratio. The group of small circles represent 
the calculated damping ratios with the periods taken from 0.5 to 3.0 (s). It is seen that when the 
damping ratios are smaller than 0.7, errors are acceptable.

1.3.3  EffEctiVE daMPing

The above discussion shows that the damping capacity plays an important role in linearizing most 
nonlinear damping. This is important because most commonly used damping cannot be expressed 
as the linear viscous damping described by Equation 1.5. That is, often the damping force cannot 
simply be written as being proportional to the velocity, with the proportional coefficient being the 
damping ratio. More generally, the damping force can be written as

	 f t f x t x td d( ) = ( ) ( )( ), �  (1.223)
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In these cases, the entire system will no longer be linear, so that under harmonic excitation, both 
the driving frequency and the amplitude should be examined.

1.3.3.1  Effective Damping Coefficient
The first approach to linearized damping for practical applications is the concept of effective damp-
ing coefficient. It specifies a linear system with precisely the same mass and stiffness and with the 
damping coefficient, such that the system has the exact energy dissipation per cycle as the nonlinear 
damping system. Let the energy dissipation per cycle of the system with nonlinear damping be Ed. 
The damping coefficient of the equivalent linear system, which is now referred to as an effective 
system, is denoted by ceff,

	 E c xd eff f= ω π 0
2  (1.224)

Therefore, the effective damping coefficient is given by

	
c E

xeff
d

f
=

ω π 0
2  (1.225)

Again, ωf is the driving frequency. Thus, from this definition, it is seen that the effective damping 
coefficient is, in general, not the same constant as that of the linear viscous damping system used in 
Equation 1.5. Instead, it is often a function of the driving frequency ωf.

In practical applications, pure harmonic excitation with a fixed driving frequency, ωf, rarely 
occurs. Therefore, the damping coefficient defined in Equation 1.225 is not very convenient 
to use. In many cases, the natural frequency, ωn, is used to replace the driving frequency in 
Equation 1.225,

	
c E

xeff
d

n
=

ω π 0
2

 (1.226)
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Here, the term Ed is taken to be the energy dissipation with driving frequency ωn.
Note that the concept of a damping coefficient was originally used to define the property of an 

individual damper but not a vibration system. However, the concept of an effective damping coef-
ficient here has become a parameter of the entire nonlinear system.

1.3.3.2  Effective Damping Ratio
Equation 1.186 states that for a linear viscously damped system, the damping ratio can be repre-
sented by the ratio of damping capacity and 4π times the maximum potential energy. From Equation 
1.226, by calculating the energy dissipated per cycle, the concept of an effective damping coefficient 
can be realized. Thus, these two concepts of calculating the damping ratio and the energy dissipa-
tion can be related together and the effective damping ratio can be defined.

That is, if the response reaches the steady state in forced vibration, Timoshenko (1937) suggested 
the following formula for the damping ratio:

	
ξ

πeff
d

p
= E

E4
 (1.227)

where Ed is the energy dissipated during one cycle and Ep is the total conservative energy. This 
formula is widely used. The damping ratio defined in Equation 1.227 is called Timoshenko damp-
ing.* For linear viscous damping, Timoshenko damping has exactly the same value as defined in 
Equation 1.13. In more general cases, other types of damping exhibit a different nature than that 
of linear viscous damping. Timoshenko defined an equivalent system that is linear and has the 
damping ratio defined in Equation 1.227, which dissipates energy during one cycle under sinusoidal 
excitations equal to the energy dissipation of this general system.

Figure 1.22 shows the area of the oval-shaped energy dissipation loop, Ed = πcωx2
0, for which the 

amplitude of the damping force is fd0 = cωx0. The figure also shows the triangular-shaped maximum 
potential energy, Ep = ½kx2

0, for which the amplitude of restoring force is fR = kx0.
As shown in Equation 1.227, the energy, Ep, is often evaluated by using the instantaneous poten-

tial energy when the displacement reaches the maximum value, which is a state quantity. However, 
the energy, Ed, is evaluated through the entire vibration cycle, which is a process quantity.

In earthquake engineering, the focus is on randomly forced vibration, which is more or less dif-
ferent from harmonically excited steady-state responses. This issue is discussed in detail in the next 
chapter.

* In 1930, Jacobsen (1930) first suggested this method. However, it did not receive significant attention until 7 years later, when 
Timoshenko (1937) provided a more systematic description in his textbook Vibration Problems in Engineering, 2nd ed.

Force

fd0 = cωX0
fR = kX0

X0
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FIGURE 1.22  Dissipated energy and potential energy in steady-state vibration.
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1.3.3.3  General Forced Vibration, Energy Dissipation
In more general cases, when a structural force f does not synchronize with the displacement, there is 
a chance that some energy will be dissipated, which can be seen conceptually in Figure 1.23a. That 
is, if a system with damping is forced to have displacement back and forth in a complete cycle, the 
force vs. the displacement will form a closed loop, called the hysteresis loop, or sometimes called 
the energy dissipation loop.

Figure 1.23a shows that displacement x1 is associated with two forces, f1 and f2; that is, the energy 
dissipation loop will be associated with loading and unloading forces, respectively. The loading and 
unloading curves are not identical. The areas under these different curves are the work done by the 
forces f1 and f2 through distance x1, denoted by E1 and E2, respectively. The difference between these 
areas, E1 – E2, denotes the energy difference or the energy dissipation in the first quadrant. That is, 
when a system has a displacement moving away from its equilibrium origin, the corresponding force 
will define the first curve. When the system has a displacement returning to its equilibrium position, 
the corresponding force will define the second curve. If the force associated with the first curve is 
larger than the second one, that is, if f1 > f2 as shown in Figure 1.23a, then energy dissipation occurs. 
In this case, there is a positive damping. This phenomenon also holds true in the remaining quadrants.

Note that in Figure 1.23, the force f may actually contain two parts. In the case of a linear system 
with viscous damping, this point is rather clear; see Equation 1.3. In the more general case, this 
statement is also true. The first part of the force is dissipative, which means that such a force, fd, 
dissipates energy. Here, the symbol stands for a more general dissipative force, different from the 
specific linear damping force defined in Equation 1.5. However, a second type of force, fc, may exist 
as a conservative force. That is,

	 f f f= +c d  (1.228)

The system with damping can be forced to vibrate over many cycles. In many cases, it can be 
assumed that at a given displacement, the amplitude of the damping force remains constant, despite 
specific cycles. These cases are referred to as the steady state of the vibration systems. The sign of 
the damping force depends on the direction of movement of the system. For a steady-state system at 
any point, the amplitude of the conservative force will always be identical.

Suppose that the energy dissipation loop is contributed by both damping and restoring forces. 
Also, assume that the restoring force is linear with zero mean. At the equilibrium position, there are 
only damping forces. Assuming that the damping forces are symmetrical with respect to the X-axis, 
the conservative force can be computed from the following equations:

	 f f f
c ≈ −1 2

2
 (1.229a)
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FIGURE 1.23  Energy dissipation loop.
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and

	
f f f
d ≈ +1 2

2
 (1.229b)

To use these equations, the sign of the conservative force needs to be defined as positive if the 
force exists in the first and fourth quadrants, and vice versa. Note that both f1 and f2 also have their 
own signs, which are defined as follows: when the curve is formed as the system is going forward 
from its origin, the force has a positive sign. When the curve is formed as the system returns to its 
origin, the force has a negative sign.

If the energy dissipation loop is known to have contributions from both the aforementioned 
restoring and damping forces, then Equations 1.229a and b are used. However, in some cases, it is 
not certain if the loop contains both forces. In these circumstances, Equation 1.228 may not hold. 
Therefore, Equations 1.229a and b cannot be used. However, Equations 1.228 and 1.229 imply that 
the structural force fS may contain forces that are essentially different in nature. Once the dissipative 
force exists, the total structural force will be distinct from the conservative force; and a certain area 
will be formed under the loop of the structural force and the displacement. Therefore, it is seen that 
the existence of the dissipative force creates a phase difference between the structural force and the 
displacement.

1.3.3.4  Alternative Form of Damping Ratio
In Equation 1.227, the damping ratio is expressed as the ratio of the dissipated and maximum poten-
tial energies with a proportionality coefficient of π/4.	This formula is obtained through linear SDOF 
systems when their steady-state responses are reached under sinusoidal excitation. This equation is 
very important in providing a measurement of damping ratio for systems that may not be linear, and 
their responses may not be at a steady state under random excitations.

When the damping ratio of a system is comparatively small, this equation can provide suffi-
ciently accurate results in damper design. However, when the damping ratio becomes larger, this 
equation may overestimate the damping effect. Therefore, an alternative equation is needed to mea-
sure the damping ratio.

Under sinusoidal excitation, when a linear system resonates, that is, when ωf = ωn,

	
x f

k0
0

2
=

ξ
 (1.230)

From Equation 1.230, it can be further written that

	
ξ = =f

kx
f
f

0

0

0

2
1
2 R

 (1.231)

Here, fR is the amplitude of the linear spring force or restoring force fr(t), which was previously 
defined, that is,

	 f t kx tr ( ) ( )= 	

Different from the Timoshenko damping, the alternative formula in Equation 1.231 is based on 
the ratio of the damping force to the spring force. Therefore, the damping ratio defined in this equa-
tion may be referred to as the force-based effective damping ratio.



Free	and	Harmonic	Vibration	of	Single-Degree-of-Freedom	Systems	 63

Furthermore, at the resonance point, the amplitude of the external force is equal to the damping 
force, fD, that is,

	 f f0 = D  (1.232)

Note that,

	 f c xD n= ω 0  (1.233)

and

	 c m= 2ξωn  (1.234)

Therefore,

	
ξ = =f

kx
f
f

D D

R 2
1
20

 (1.235)

Furthermore, it can be seen that
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Therefore, when the steady-state responses of a linear SDOF system are considered under sinu-
soidal excitation, the damping ratio described in Equation 1.235 and the Timoshenko damping 
defined in Equation 1.227 are equivalent. Equation 1.235 uses the ratio of the dissipative and 
conservative forces to represent the damping ratio. Compared to Equation 1.227, Equation 1.235 
is an alternative equation that represents the damping ratio, which uses the ratio of the amplitude 
of the excitation force and the restoring force. Equations 1.227 and 1.235 will be used later to 
approximate nonlinear systems with the concept of effective damping ratio. In Chapter 2, non-
linear damping forces and use of the Fourier series to represent the damping force are discussed. 
These parameters will be further used in Chapter 5 to model effective damping ratios for nonlinear 
damping.

1.4  SUMMARY

In this chapter, a number of fundamental concepts have been presented, along with their corre-
sponding governing equations. These concepts will serve as the basis for the study of earthquake 
protective systems. The focus in this chapter has been on SDOF systems under free vibration and 
forced vibration under harmonic loading. The presentation has emphasized the concepts of dynamic 
amplification and energy dissipation mechanisms. In the next chapter, these same systems are exam-
ined under arbitrary excitations.
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2 Linear	Single-Degree-of-
Freedom	Systems	with	
Arbitrary	Excitations

In Chapter 1, the linear single-degree-of-freedom (SDOF) system and its vibration responses due 
to initial conditions and harmonic excitations were briefly defined and reviewed. These serve as the 
theoretical basis for complex excitations, such as an earthquake ground motion. In this chapter, the 
forcing functions and their structural responses are classified into three categories, each requiring 
special treatment.

The first type of forcing function is time periodic. The basic approach to examining the system 
response is to use the combinations of sine and cosine functions as a series to represent a periodic 
function. The corresponding mathematical tool is the Fourier series, which will be further used as 
a basis for integral transforms, including the Fourier and Laplace transforms.

The second type of forcing function is transient, which does not have a period. In other words, the 
period of these functions is infinitely long. However, the functions are deterministic. Mathematically, 
the Fourier integral is used instead of the Fourier series to represent these temporal functions. The 
integral transform and the convolution of the forcing function and impulse response function, as 
well as the corresponding transfer functions, are the mathematical tools.

The third type of forcing function, the random function, is directly applicable for earthquake 
excitations. Such functions often do not have Fourier transforms. In fact, the analysis of these 
functions is essentially different from that of the above two deterministic signals. Furthermore, 
the analysis must be based on random processes, so a statistical study must be applied, including 
ensemble average, correlation functions of the excitations and responses, and their Fourier trans-
forms, such as power spectrum density functions. Finally, using the spectral analysis approach, 
earthquake response spectra are discussed, which is a special case of ensemble average with 
respect to periods and is used to account for the excitation of random ground accelerations.

2.1  PERIODIC EXCITATIONS

In Chapter 1, it is shown that the dynamic response of a linear SDOF system can be expressed as a 
product of the static response and a dynamic magnification factor. The dynamic magnification factor 
can be determined solely by the physical properties of the system itself. In this chapter, it is shown 
that periodic forcing functions and their responses can be represented by the summation of a series 
of harmonic functions. From now on, for convenience, these temporal functions are called “signals.”

2.1.1  PEriodic signals

2.1.1.1  Periodic Functions
A periodic signal is a function that repeats itself in time. That is, any signal for which a determin-
istic time T exists, such that

	 f t f t nT n( ) = +( ) = ±, , ,1 2 … 	 (2.1)
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Here, time T is the minimum possible value and is called the period of function, f(t).
For example, a sine function with frequency ω has a period of 2π/ω and a tangent function with 

frequency ω has a period of π/ω. That is,

	 f t t t n n( ) = ( ) = +( ) = ±sin sin , , ,ω ω π2 1 2 … 	  (2.2)

Therefore,

	 sin sinω π ω π ωt t+( ) = +( ) 2 2 	  (2.3)

Also, since

	 f t t t n n( ) = ( ) = +( ) = ±tan tan , , ,ω ω π 1 2 … 	  (2.4)

then

	 tan tanω π ω π ωt t+( ) = +( )  	  (2.5)

The above equations show that as long as these sine and cosine functions have the identical fre-
quency ω, they will have the identical period 2π/ω.

For example, let

	 f t a t b t( ) = ( ) + +( )sin sinω ω θ 	  (2.6)

then,
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where

	 c a b b= + ( )  + ( ) { }cos sinθ θ
2 2 1 2

	  
(2.8)

and
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−tan
sin
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1 b

a b 	  (2.9)

Therefore, the phase angle ψ will not affect the period, as long as the sine and cosine functions 
share the identical frequency. (Here, it is assumed that a +	b	cos(θ) > 0.)

Furthermore, consider

	 f t a t b t( ) = ( ) + ( )sin sinω ω1 2 	  (2.10)
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It is seen that as long as the ratio of ω1/ω2 is a rational number, the signal f(t) can have a period T. 
Thus, the condition can be regarded as an expression of ω1/ω2, which represents the quotient of two 
integer quantities, n and m, that is,

	

ω
ω

1 n
m2

=
	  

(2.11)

Letting n and m be the smallest possible integer, such that n and m do not have a common divisor, 
the period T can be written as

	
T = =2 2n m

1 2

π
ω

π
ω 	  

(2.12)

Example 2.1

Given

	 f t a t b t( ) = ( ) + ( )sin . sin .1 5 2 5 	

then

	

ω
ω

1

2

n
m= = 3

5 	

Consequently, the period T is

	
T = × = ( )2 3

1 5
4π π

.
s

	  
(2.13)

When a signal contains more than two sine or cosine functions, the corresponding period can 
still be found using the same procedure by dealing with the terms one by one. Thus, suppose a 
function has

	 f t a t a t a t a tn n( ) = ( ) + ( ) + ( ) + + ( )1 1 2 2 3 3sin sin sin sinω ω ω ω� 	  (2.14)

As long as a series of integers n1, n2, n3,…, nn, can be found such that

	 n n n n1 1 2 2 3 3ω ω ω ω= = =� n n 	  (2.15)

The period T can be defined by

	 T i

i
= ( )2π

ω
n s 	  (2.16)

In addition, when the constant a0 is added on the right side of Equation 2.14, the period T will 
not be affected.

From the above discussion, it is seen that a function consisting of sine and cosine functions 
with frequencies, ω1, ω2,…, ωn, as well as a constant, is periodic, as long as the condition in 
Equation 2.15 is satisfied.
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2.1.2  fouriEr sEriEs

2.1.2.1  Fourier Coefficients
The next step is to explore whether a periodic function can always be represented by the summation 
of a constant and a series of sine and cosine functions. Suppose the periodic function f(t) has the 
following form:

	 f t a a n t b n tn n
n

( ) = + +( )
=

∞

∑0

12
cos sinω ωT T 	 (2.17)

Two groups of conditions, referred to as the Dirichlet conditions, are sufficient for the assumption 
described in Equation 2.17: First f(t) must be bounded and have a finite number of extrema and a finite 
number of discontinuities in any given interval. Secondly, f(t) must be absolutely integrable over a period. 
Generally speaking, most engineering vibration signals satisfy the first group of conditions but they may 
not satisfy the second one, which is discussed in Equation 2.139 and further in Subsection 2.2.3.

In Equation 2.17, the period of f(t) is T and the basic frequency ωT is

	 ω π
T = 2

T
	 (2.18)

Equation 2.17 is completely defined if the coefficients a0, an, and bn are determined.
Note that the sine and cosine functions have the following complementary properties:

	 sin , , ,
/

/

n t dt n
T

T

ω T
−∫ = =

2

2

0 1 2 … 	 (2.19)

	 cos , , ,
/

/

n t dt n
T

T

ω T
−∫ = =

2

2

0 1 2 … 	 (2.20)

	 sin n t sin m tdt
0, n m

, n  mT T
T 2

T 2

ω ω
−∫ =

≠
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T
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	 (2.21)

	 cos n t cosm tdt
0, n m

, n  mT T
T 2

T 2

ω ω
−∫ =

≠

=






T
2

	 (2.22)

and

	 sin cos
/

/

n t m tdt
T

T

ω ωT T
−∫ =

2

2

0 	 (2.23)

In the above equations, conditions in Equations 2.19 and 2.20 define the fundamental nature of 
the sine and cosine functions, since

	 sin sin−( ) = − ( )θ θ 	 (2.24)

and

	 cos cos−( ) = ( )θ θ 	  (2.25)

Thus, the corresponding integral in a complete period must be zero.
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Conditions in Equations 2.21 through 2.23 are orthogonal conditions. Furthermore, from 
Equations 2.19 and 2.20, it is realized that the sine and cosine functions are also orthogonal to a 
constant, so the orthogonality condition must also include Equations 2.19 and 2.20.

Through the conditions in Equations 2.19 and 2.20, it can be realized that

	 2
0

2

2

T
f t dt a

T

T

( ) =
−∫ /

/

	  (2.26)

This is because in the complete cycle of period T from – T/2 to T/2, the integration of all sine and 
cosine functions must be zero, except for the constant term, which remains.

Furthermore,

	 2

2

2

1 2
T

nf t n t dt a n
T

T

( ) = =
−∫ cos , , ,

/

/

ωT … 	 (2.27)

This is possible due to the orthogonality conditions, since in the complete cycle with period T, all 
the cosine terms with cos (nωTT) (m ≠ n) and all the sine terms will vanish.

Similarly,

	 2

2

2

1 2
T

nf t n t dt b n
T

T

( ) = =
−∫ sin , , ,

/

/

ωT … 	 (2.28)

Equations 2.26 through 2.28 determine the corresponding Fourier Coefficients a0, an, and bn. 
Therefore, the existence of Equation 2.17 is proven. In other words, as long as a function is peri-
odic and integrable over the period, it can be represented by the series described in Equation 
2.17, which is now referred to as the Fourier series. All the orthogonal terms, namely, the xmaxi

, 
are the base of the Fourier series, which can now be regarded as a set.

From the discussion of the Fourier series, it is further realized that such a set can be fully repre-
sented by the linear summation of the base. In this case, the coefficients of these bases are a0, an, and 
bn. These bases of the Fourier series set representing a periodic function are periodic themselves. 
These bases are orthogonal; in other words, they are independent of each other. This independency 
means that any terms of cos (nωTT) and/or sin (nωTT) are isolated functions, which will not contain 
other bases. Figure 2.1 conceptually shows this independency with a diagram of several amplitudes 
of cosine functions at corresponding frequencies 0, ω	T, 2ω	T, 3ω	T, etc. Only the cosine terms are 
plotted.

From Figure 2.1, it is realized that these coefficients of the cosine functions form a special spec-
trum. This spectrum has the frequency interval

	 ∆ω ω ω ω= − −( ) =n nT T T1 	  (2.29)

At each frequency point

	 ω ωn T= n 	 (2.30)

is the amplitude an. However, in between nωT and (n – 1)ω	T, there is nothing. That is, all these spec-
tral lines are isolated and have no relationship with other spectral lines. In other words, all these 
spectral lines are independent. The same is true for sine functions.
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By means of Euler’s equations:

	 cos θ
θ θ

= + −e ej j

2
	 (2.31)

and

	 sin θ
θ θ θ θ

= − = − −− −e e
j

j e ej j j j

2 2
	 (2.32)

Equation 2.17 is rewritten as
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Now, let
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and
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Also

	 c a jb
T

f t e dt nn
n n jn t

T

T

− = + = ( ) =
−∫2

1 1 2
2

2

 Tω

/

/

, ,… 	  (2.36)
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FIGURE 2.1  Cosine spectrum.
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With the help of Equation 2.30, Equations 2.35 and 2.36 can be combined as

	 c
T

f t e dt nn
jn t

T

T

= ( ) =−

−∫1 1 2
2

2

 Tω

/

/

, ,… 	  (2.37)

Thus, Equation 2.17 can then be rewritten as

	 f t c c e c e c en
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n
jn t

n
n
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( ) = + +( ) =−
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=

∞

= −∞

∞
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That is,

	 f t c en
jn t

n

( ) =
= −∞

∞

∑ ωT 	  (2.38)

This is the Fourier series in the form of complex exponentials. In this case, the bases are in terms 

of e jn tωT  and the complex-valued constants cn are also called the Fourier coefficients.

Example 2.2

Consider a function written as

	 f t t t t( ) = + ( ) + +( ) − −( )10 5 1 5 2 2 5 1 0 5 4 2sin . sin . . cos 	

Find the Fourier series that represents the above signal.
First, the period f(t) is found. Since in this case, ω1 = 1.5 (rad/s), ω2 = 2.5 (rad/s), and ω3 = 4 (rad/s), 

the result is

	 15 25 40
1 2 3ω ω ω

= = 	

The integers 15, 25, and 40 have the maximum common divisor 5. Therefore,

	 3 5 8
1 2 3ω ω ω

= = 	

Therefore, the period T is 2π × (3/1.5) = 4π (s), so that ωT = (2π/T) = 0.5 (rad/s). Thus, this sig-
nal is periodic. Furthermore, for cosine coefficients, a0 = 20, a1 = a2 = a3 = a4 = 0, a5 = 2 sin(1), 
a6 = a7 = 0, and a8 = – 0.5 cos(2). For sine coefficients, b1 = b2 = 0, b3 = 5, b4 = 0, b5 = 2 cos(1), 
b6 = b7 = 0, and b8 = 0.5 sin(2). Any term with n > 3 is null. In Figure 2.2, these coefficients are 
plotted vs. the corresponding frequencies. The vertical axis denotes the amplitudes. The a0 axis is 
the coefficient of the cosine terms and the b0 axis is the coefficient of the sine terms. It is seen that 
the Fourier coefficients and the corresponding frequencies form a 3D spectrum.

In the above examples, the Fourier coefficients are computed directly from the original sig-
nals, rather than using the formulas described in Equations 2.26 through 2.28, 2.34, and 2.37. 
In the following subsection, further discussion about the Fourier series using these formulas is 
provided.
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2.1.3  discrEtE fouriEr transforM

In the above discussion, the Fourier series is used to represent periodic signals. In order to carry out 
numerical analysis using digital computers, these periodic signals must be converted into computer-
ized signals. That is, the signal in the continuous time domain, which is called an analog signal, 
will be digitized and thus becomes a digital signal in the discrete time domain. This process is also 
referred to as sampling. When an analog signal is sampled into a digital signal, it will usually have 
a new period. If its original period is infinite, then this new period will be the length of the total 
samples.

Suppose the total sampling length is T. With such a sampling procedure, the digitized signal 
will be forced to have a sampling period T, except in the following case. Theoretically, a signal may 
have T/n as its own period, with integer n. Then, after sampling, the digitized signal will retain the 
period T/n. This is referred to as complete period sampling. Practically, an exact complete period 
sampling is very rare, except for samples with carefully selected intervals. Thus, most signals that 
are digitized, despite their own periods, will have periods T, so that they can be represented by the 
aforementioned Fourier series.

2.1.3.1  Discretization of Signals
In the real world, a dynamic signal x is likely to be a signal in the continuous time domain. Thus, 
it is denoted as

	 x x t= ( ) 	  (2.39)

Furthermore, let

	 ∆t dt→ 	  (2.40)

except for certain signals that may exhibit discontinuities. Note that, a specific process of sampling 
must have a fixed time interval, that is,

	 ∆t = constant 	  (2.41)

In other words, the signal values between Δt will be ignored. In Figure 2.3a, the solid line repre-
sents an analog signal, whereas the dots stand for the digitized discrete signals.

From Figure 2.3a, it is realized that once the time interval Δt is determined, the analog time his-
tory can be sampled at Δt, 2Δt, 3Δt,… The corresponding x(Δt), x(2Δt), x(3Δt),…, are the samples 
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FIGURE 2.2  3D Fourier spectra.
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taken from the time history x(t). As a difference from the continuous time history, the collection of 
x(Δt), x(2Δt), x(3Δt),…, x(nΔt) represents discrete individual values. Thus, the signal x(t) is referred 
to in the continuous time domain and the series x(nΔt) in the discrete time domain. It is clear that 
only at the sampling time points,

	 x t x n t( ) = ( )∆ 	  (2.42)

and

	 t n t= ∆ 	  (2.43)

For convenience, the signal is denoted in the discrete time domain as simply x(n).
The inverse of the sampling time interval Δt is referred to as the sampling frequency, denoted 

by fSP, that is,

	 f tSP = 1 ∆ 	  (2.44)

From the above discussion, it is seen that the collection of x(nΔt) may not necessarily represent 
the signal x(t). This is because x(nΔt) is not continuous and certain important time points may be 
missing. In fact, the condition to recover the analog time history from the digitized series x(nΔt) can 
be written as follows:

	 f fSP H≥ 2 	  (2.45)

where fH is the highest frequency contained in the signal x(t). If the condition described by Equation 
2.45 is violated, then the signal x(t) will not be recoverable, a condition that is referred to as signal 
aliasing. The corresponding theory is based on the Nyquist sampling theorem.

In practical applications, any collection of the values of x(nΔt) has a limited number of samples. 
Suppose a total of N samples are taken. The time duration will be (see Figure 2.3a)

	 T N t= ∆ 	  (2.46)

∆t
n∆t(a)

(b)

T = N∆t

t, n

x(t), x(n)

�c(������ c(m��

∆�
m∆�

N∆�

��� m

FIGURE 2.3  Discretization of a signal in both time and frequency domains: (a) time domain and (b) fre-
quency domain.
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where T is the aforementioned sampling period. Therefore, the sampled signal is forced to have the 
period T, unless the case of complete period sampling applies.

2.1.3.2  Discrete Fourier Series
Mathematically, a discrete signal with period T can be expressed using the complex Fourier series 
described in Equation 2.38. Thus,

	 x n x c e c en m
jm n t

m

N

m
jmn N

k

N

( ) = = =
=

−

=

−

∑ ∑ω πT ∆

0

1
2

0

1
/ 	  (2.47)

Here, cm is a complex-valued Fourier coefficient. The absolute value of cm = c(m) can be plotted, 
as in Figure 2.3b. Here, ωT satisfies Equation 2.18 and mωT is the mth harmonic frequency. The term 
cm can be described as

	 c c m
T

x e t
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x em m n
jn m t

n
n

jnm N

n

N N

= ( ) = =−

=

−

=

− −

∑ ∑1 1

0

2

0

1 1
ω πT ∆ ∆ / 	  (2.48)

Equations 2.47 and 2.48 define the discrete Fourier transform (DFT) pair. In the next section 
on transient signals, the Fourier transform in the continuous time and frequency domains is further 
explored. The relationship between the Fourier pair is discussed in more detail. Here, note that once 
the period is determined by the actual sampling process, any signal will be practically treated as a 
periodic signal with a sampling period T, whether it has a true period or not. Figure 2.4 shows the 
mathematical expansion.

From Figures 2.3a and b, it is visualized that for a limited number of samples, the sampling 
period T is limited as is the maximum measurable frequency fH or ωH. In fact, Equation 2.45 has 
implied this limitation. That is, generally,

	 f TH = 1 	  (2.49)

or

	 ω πH = 2 T 	  (2.50)

Taking a digital signal from an analog signal is often referred to as A-to-D (A/D) conversion. In 
the digitizing process of A/D conversion, the time interval Δt is the time resolution. In the spectral 
analysis, the frequency interval Δf or Δω is called the frequency resolution. These two resolutions 
are obviously related by the given number of total samples N. That is,

T T T

n

x(n)

FIGURE 2.4  Periodic expansion of x(n).
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	 ∆f T= 1 	  (2.51)

	 ∆ω π= 2 T 	  (2.52)

	 f N fH = −( )2 1 ∆ 	  (2.53)

	 ω ωH = −( )N 2 1 ∆ 	 (2.54)

Based on the above discussion, it is clear that due to limited sampling time or number of samples, 
the digitized signal is artificially assigned with the period T, in order to have a Fourier series repre-
sent the signals in the discrete time domain.

In vibration measurement and testing, either the forcing function or the response may have a 
period of its own other than T. In this case, there may be measurement and testing errors. Therefore, 
for true periodic signals, it is better to adjust the time interval and the total sampling length to be 
close to the true period.

In Equation 2.47, a total of N terms of cn are required to represent a single value of x(n). Similarly, 
from Equation 2.48, it is seen that it takes N terms of xn to represent a single value of c(n). If there 
are N terms of xn, then the N terms of cn are determined and vice versa. In other words, the N terms 
of xn and the N terms of cn are mutually determined through a full rank linear transfer. Therefore, a 
full rank n × n matrix G can be found such that

	

x
x

x

c
c

cn n

0

1

1

0

1

1

... ...
− −



















=



















G 	  (2.55)

and
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Here
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Note that the Fourier coefficients are complex numbers and Equation 2.56 provides the complex 
pairs. Their real values are located symmetrically about the point N/2. The imaginary values are 
also located inverse symmetrically about the point N/2. To plot these coefficients vs. the frequency 
as a spectrum, the X-axis or the frequency axis needs to be determined. The unit of the frequency 
axis is also referred to as the frequency resolution or frequency interval, which is given in Equation 
2.51. The total length of the frequency range is NΔf.
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Often, when only a real or imaginary or absolute value is needed, only half of the spectrum 
needs to be plotted. In this case, the total length of the frequency range or frequency band is NΔf/2. 
Thus, the full amplitude of the absolute values of the Fourier coefficients needs to be plotted; that 
is, instead of using Equation 2.57a,

	 F = − − −
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	  (2.57b)

Further, from Equations 2.55 and 2.56, it is seen that

	 F G= −1 	  (2.58)

Example 2.3

Suppose there is a signal

	 x t t t t( ) = ( ) − × × +( ) + × × −( )5 2 3 2 3 1 2 2 21 2sin cos sinπ π π 	

Since 21 is an irrational number, this signal has no period. However, if 300 samples are taken 

with a time interval Δt = 10/300 (s), the sampling period is 10 (s). Using Equations 2.57 and 2.56, the 
corresponding Fourier coefficients cn can be calculated. The real part and imaginary part of the Fourier 
coefficients are plotted, respectively, in Figure 2.5a and b where the x axes denote the sample points.

By using Equation 2.57b, the absolute values of the Fourier coefficients are plotted in Figure 
2.6, with a frequency band from 0 to NΔf/2 = 150. Note that since T = 10 (s), according to Equation 
2.51, Δf = 0.1 (Hz).

Note that in Figure 2.6, the amplitudes at 1 and 3 (Hz) are exactly 5 and 3. This is because these 
frequency components are complete or full-period sampled. However, the amplitude of 21 (Hz) 
is 1.9057, instead of 2, because the irrational frequency component cannot be full-period sam-
pled. This phenomenon is called power leakage.

Also note that there is no amplitude at the period T = 10 (s) in Figure 2.6. This means that, 
although the digitized signal x(n) is forced to have a period 10 (s), there is no corresponding ampli-
tude shown in the spectrum of its Fourier series.

2.1.4  gEnEral daMPing forcE

The nonlinear damping force can be represented using the Fourier series. Note that two different sit-
uations may exist. The first is when the damping force is generated by an SDOF system, for which, 
with or without the nonlinear damping, the total system including the damping force is nonlinear. 
The response of such a system under a sinusoidal excitation contains more frequency components 
than the driving frequency. In other words, the response displacement or velocity will not be a pure 
sinusoidal signal.

In the second case, the nonlinear damping force is caused by nonlinear dampers only. In this 
case, such a nonlinear damper is often tested by a forced sinusoidal movement. In other words, 
the damper velocity is sinusoidal. In Chapter 1, the concept of effective damping is based on such 
assumptions. Namely, the relative displacement or velocity of the moving end of the damper (com-
pared with the fixed end of the damper) is forced to be sinusoidal and the damping force is measured 
accordingly. Since the nature of the damper is nonlinear, the damping force becomes nonlinear.
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In this section, only the second case of a nonlinear damping force is discussed. Suppose the 
damper under test is forced to have a sinusoidal movement in the form

	 x t x t( ) = ( )0 sin ωf 	  (2.59)

Thus, the velocity is

	 �x t x t( ) = ( )0ω ωf fcos 	  (2.60)

2.1.4.1  Linearity of Fourier Series
The linearity of the transfer matrix F expressed in Equations 2.56 and 2.57 actually implies the 
linear relationship between the temporal variable x(t) and the Fourier coefficient cn. In the following 
discussion, only the case of DFT is described. Denoting

	 x = [ ]x x xn
T

1 2, , ,… 	  (2.61)

and

	 c = [ ]c c cn
T

1 2, , ,… 	  (2.62)

Equation 2.56 is rewritten as

	 c Fx= 	  (2.63a)

Equation 2.63a implies that the matrix of the Fourier series c can be seen as a result of an opera-
tion � acting on x, that is,

	 c x= ( )� 	  (2.63b)

Here, � is also used to denote Fourier transformation in the following text. Apparently,

	 � � �a b a bx y x y+( ) = ( ) + ( ) 	  (2.64)

Here,

	 y = [ ]y y y1 2, , ,… n
T 	  (2.65)

where the term y(.) are a different series from a temporal signal.
The above-mentioned linearity of operation � can be used to deal with the summation of the 

damping force and the spring forces, namely, the seismic force.

2.1.4.2  Steady-State Structural Force
The steady-state structural force of a linear m-c-k system excited by a harmonic force f0 in the 
form of sin(ωft) can be represented by a Fourier series. Denoting the amplitude of the displace-
ment to be x0, the displacement x(t) = x0 sin(ωft + ϕ) and the structural force are given by (see 
Equation 1.3):
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The period of the structural force is 2π/ωf and the basic frequency is ωT = ωf. Therefore,

	 f t a t b tS f f( ) = ( ) + ( )1 1cos sinω ω 	  (2.67)

Here, a1 and b1 are coefficients and
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and
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If the damping force can be represented by a cos(ωft) and the displacement can be represented 
by b sin(ωft), then from the discussion of parametric equations in Chapter 1, the energy dissipation 
can be calculated through

	 E abd = π 	  (2.70)

When ωf	=	ωn, Ed becomes the damping capacity, and the damping ratio can be calculated through

	
ξ

π
π
π

= =E
E

a
kb

d

p4 2 	
(2.71)

Now, the coefficient a can be obtained by letting t = 0 and assuming ωf = ωn, that is,
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In addition, b = x0. Now, the value of Ed/4πEp is examined,
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The structural force can be seen as the summation of the damping force fd = c�x(t) and the restor-

ing force fr = kx(t). Following the above discussion, (also see Equation 1.220), denote the damping 
force and the displacement as the following Fourier series,

	 f t f t f td f f( ) = ( ) + ( )1 2cos sinω ω 	  (2.74a)

 
x t x t x t( ) = ( ) + ( )1 2cos sinω ωf f  (2.74b)

where

	 f c x n x1 0 1 0= ( ) = ( )ω φ φf a d xcos sin 	 (2.75)

	 f c x and x x2 0 2 0= − ( ) = ( )ω φ φf sin cos 	 (2.76)

In this case, again using Equation 2.70, the following can be directly obtained:

	 E c xd f= π ω 0
2 	 (2.77)

The above discussion on using the Fourier series to represent the linear damping and restoring 
force seems trivial. However, when the damping and restoring forces are nonlinear, as long as the 
total structural force can be represented by their summation, the operation of finding the corre-
sponding Fourier series is linear. Suppose,

	 f n cx n f n kx n f nS dN rN( ) = ( ) + ( ) + ( ) + ( )� 	 (2.78)

Here, for convenience, the discrete time series is used to represent the temporal signals. On the right 
side of Equation 2.78, c�x(n) and kx(n) are the linear viscous damping force and linear restoring force. 

The terms fdN(n) and frN(n), respectively, are the nonlinear viscous damping force and nonlinear restor-
ing force.

Thus,
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(2.79)
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Therefore, when the conditions described in Equations 2.59 and 2.60 hold, namely, when the 
system with arbitrary damping is tested by the harmonic forcing function, the Fourier series can be 
used to represent the structural force. Particularly, when the restoring force is linear with stiffness 

k and the driving frequency is equal to k m/ , only the Fourier coefficients that correspond to the 

effect of energy dissipation are counted.
In the following discussion, two examples of the types of damping forces primarily used in 

practice are examined.

2.1.4.3  Dry Friction Damping
First, consider dry friction (Coulomb friction) damping. The friction damping force can be expressed as

	 f t xd N( ) = ( )µ sgn � 	 (2.80)

Note that

	 sgn sgn cos sgn cos�x t t( ) =   = −( ) ω ωf f 	 (2.81)

Thus, from Equations 2.80 and 2.81, it is seen that,

	 f t f td d( ) = −( ) 	 (2.82)

Therefore, the damping force generated by dry friction damping is an even function of time t. It is 
understandable that an even function, f(t), will generate an even product with even-valued cos(nωft). 
In this case, the corresponding integration between the region (– T/2, 0) will be identical to that in 
the region (0, T/2).

However, the product with sin(nωft), which is odd, will also be odd. Therefore, the correspond-
ing integration between the region (– T/2, 0) will be opposite to that in the region (0, T/2). In other 
words, the integrations in the two regions will cancel each other and the resulting Fourier series will 
no longer have sine terms. That is,
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and
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In addition, from Equation 2.80, it is seen that the mean value of the damping force is zero, that is,

	 a0 0= 	 (2.85)

In the case ωf = ωn, the Fourier coefficient an can be written as
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Since the damping force is an even function,
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Generally,

	 f t x t t td f f fN N( ) = ( ) = − + −





µ µ
π

ω ω ωsgn cos cos cos� �4 1
3

3 1
5

5 	 (2.88)

In Figure 2.7a, a normalized friction damping force and the corresponding Fourier series with 
the first Fourier term, the first four terms, and the first nine terms are plotted. It is seen that the 
more Fourier terms used, the closer the truncated series is to the original signal. However, as shown 
in Figure 2.7a, an overshoot is still in the corner, which is caused by the discontinuity of the signal 
and is referred to as the Gibbs phenomenon. It can be proven that when sufficient Fourier terms are 
used, the amplitude of this overshoot will be in the range of about 9%.

If only the first term is used to approximate the damping force, that is, if

	 f t td f
N( ) ≈ ( )4 µ

π
ωcos 	 (2.89)
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FIGURE 2.7  Normalized dry friction damping force and its Fourier series: (a) time history and (b) energy 
dissipation loop.
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then from Chapter 1 it is seen that during one cycle of x = sin(ωft), namely, a displacement with unit 
amplitude, the dissipated energy is

	 Ed
N N≈ 





( ) =π µ
π

µ4 1 4 	 (2.90)

However, it has already been seen that the energy dissipation by friction force during a cycle is

	 Ed N= 4 µ 	 (2.91)

Note that, since only a damper but not the vibration system is considered. Ed is only the dissi-
pated energy but not the damping capacity.

In Figure 2.7b, the energy dissipations are shown by the enclosed areas. Each area of the corre-
sponding damping force, as well as the representation by the Fourier series, is marked in this figure.

Comparing Equations 2.90 and 2.91, it is seen that if only the first term of the Fourier series is 
used, the calculated energy dissipation is exactly equal to 4 μN.

In fact, since
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in this case,
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In Equation 2.93, the first term on the right side is

	 4 4µ
π

π µN N= 	

which agrees with Equation 2.90.
Note that, due to the aforementioned orthogonality of cosine functions,

	 cos cos
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2 1 0
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2
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−∫ ω ω ωf f f 	 (2.94)

Therefore, the terms other than the first one in Equation 2.93 are zero. That is, any Fourier com-
ponents other than the first term in Equation 2.88 will not contribute to the energy dissipation. This 
observation will simplify the computation of dissipative energy, and it is not limited to dry friction 
force.
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Furthermore, when a friction damper is combined with certain linear restoring forces, the fol-
lowing combination is possible:

	 f t N x kd ( ) = ( ) +µ sgn � x 	 (2.95)

In this case, a special bilinear damping occurs, which is plotted in Figure 2.8a and b, by assum-
ing that the stiffness k = 1 and µN = 1.

As previously discussed (see Equation 2.62), to find the Fourier series to represent this bilinear force,

	
� � �f n N x k x nd ( )  = ( )  + ( ) µ sgn � 	 (2.96)

Equation 2.96 shows that the Fourier series of the bilinear damping force can be derived by sepa-
rately considering the term µN sgn( )�x 	and kx. It can be seen that the energy dissipation by kx is zero,
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Therefore, the energy dissipation is calculated by the term µN sgn( )�x 	only, which was discussed 

earlier. The corresponding energy dissipation can be seen by using Figure 2.8b, where for conve-
nience k = 1 and μN = 1. From this plot, the area is 2 × 2 = 4. 
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2.1.4.4  General Nonlinear Viscous Damping
In the literature, the general nonlinear viscous damping force is often written as

	 f t c x xd ( ) = ( )� �β sgn 	 (2.98)

where β is called the damping exponent. Under the test condition described by Equations 2.55 
and 2.56,

	

f t c x t t

c x t

d f f f

f f

( ) = ( ) ( ) ( ) 

=
( ) ( ) −

0

0

ω ω ω

ω ω

β β

β β

cos sgn cos

cos , ππ ω π ω

ω ω π ω π ω π ωβ β

2 2

2 20

f f

f f f f fand

≤ <

− ( ) − ( )  − ≤ < − ≤

t

c x t t tcos , , <<







 π ωf

	 (2.99)

Since

	 f t c x t t f td f f f d−( ) = ( ) −( ) −( )  = ( )0ω ω ωβ β
cos sgn cos 	 (2.100)

the damping force is also an even function. Thus, the computation of the Fourier coefficient an is 
considered as
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Here, the period T is exactly the period of ωf, the driving frequency. In this case, Equation 2.101 
can be rewritten as
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First, consider the Fourier coefficient when n = 1. The integral in Equation 2.102 can be denoted 
and evaluated as
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where Γ(.) is the Gamma function.
Thus,

	 a c x A1 f= ( )0ω πβ
β 	 (2.104)

Similar to the case of the dry friction force, it can be proven that
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	 a n evenn = =0, 	 (2.105a)

and

	 b n 1 2n = = …0, , , 	 (2.105b)

Therefore consider the Fourier terms when n = 3, 5, 7, 9, …. Note that

	 cos 3 t 4 cos t 3 cos tf f
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fω ω ω( ) = ( ) − ( ) 	 (2.106a)

Furthermore, 
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and so on.
The Gamma function satisfies the following property:

	 Γ Γσ σ σ σ+( ) = ( ) >1 ,† 0 	 (2.107)

Thus,
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Furthermore, it can be proven

	 a 1 3 3 5 a5 1= −( ) −( ) +( ) +( )β β β β 	 (2.108b)

	 a 1 3 5 3 5 7 a7 1= −( ) −( ) −( ) +( ) +( ) +( )β β β β β β 	 (2.108c)

	 a 1 3 5 7 3 5 7 9 a9 1= −( ) −( ) −( ) −( ) +( ) +( ) +( ) +( )β β β β β β β β 	 (2.108d)

and so on. In Figure 2.9, these Fourier coefficients are plotted with special values of damping expo-
nents β = 0, 0.5 and 1. In Figure 2.9, the plots are normalized by letting c = ωf = 0 = 1;
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Now, consider the energy dissipation.
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Due to the orthogonality of cosine functions, Equation 2.109 is reduced to
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Therefore, the energy dissipation during a cycle is only contributed by the first Fourier term of 
the damping force.

Consider the special case when β = 0, the nonlinear viscous damping is reduced to the dry friction 
damping. It is seen that Aβ = 4; and since c = μN

	 a c x A 4 N1 f= =( )0
0ω π µ πβ 	 (2.111)

which is exactly the quantity given in Equation 2.86 for the friction damper.
Consider another special case when β = 1, the viscous damping becomes linear. In this case, the 

first term of the Fourier coefficient described in Equation 2.17 is

 
a c x A x1 f f= =( )0

1
0ω π ωβ c  (2.112)

where Aβ = π. And, only the first Fourier term exists. In this case, the value of the amplitude of the 
linear viscous damping force is recovered.

From Equation 2.112, when β = 1 and using ωf = ωn for a vibration system, the energy dissipation 
Ed becomes damping capacity, and
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which agrees with Equation 1.172.
From the above discussion, it is seen that, when the displacement and the damping force can be 

described by Equations 2.59 and 2.60, only the first term of the damping force represented by the 
Fourier series, denoted by fd1(t), contributes to the dissipative energy. That is,

 
f a cos td1 1 f≡ ( )ω  (2.114)

and
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In Chapter 1, it was seen that the energy dissipation or the damping capacity Ed would play an 
important role in defining the effective damping ratio. Equation 2.115 provides a simple formula to 
calculate Ed, when the first term in the Fourier series of the damping force is known.

Note that in the above equations, the symbol c is used to denote the damping coefficient of a general 
viscous damper, which was originally used to denote the linear viscous damping (see Equation 1.1). 
In Chapter 5, it will be seen that for nonlinear damping, the parameters of an individual damper or 
parameters of the entire system need to be distinguished. In the former case, the symbol ceq is used 
to replace c and in the latter case, ceff is used. Also in Chapter 5, the nonlinear damping force will be 
used to compute the energy dissipation and further model the effective damping ratios.

2.1.5  rEsPonsE to PEriodic Excitations

2.1.5.1  General Response
Next, a linear m-c-k system excited by a periodic forcing function f(t) of period T, with initial condi-
tions x0 and v0, is considered. That is,
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Since the excitation is periodic, a Fourier series with a basic frequency of ω	T = 2π/T is used to 
represent the forcing functions. Suppose f(t) can be represented by the Fourier series 
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where fA0, fAn, and fBn are Fourier coefficients. Since the system is linear, the responses are first 
considered individually due to the forcing function

	 f f
A

A= 0

2
	 (2.118a)

with the initial conditions denoted by x0(t) and the steady-state responses due to the forcing 
functions

	 f t f tan An( ) = ( )cos n Tω 	 (2.118b)

 
f t f tbn Bn( ) = ( )sin n Tω

 
(2.118c)

denoted by xan(t) and xbn(t).
The total response can then be seen as the summation of x0(t) and all xan(t) and xbn(t).
Thus,
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where

 
x t x t x tn an bn( ) = ( ) + ( )  (2.120a)

2.1.5.2  The nth Steady-State Response
The steady-state response corresponding to the nth excitation component described by Equation 
2.120a can also be written as

	 x t f
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n n( ) = +( )β ω φsin T 	 (2.120b)

Here,
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is the amplitude of the nth forcing function, and the dynamic magnification βn as well as phase angle 
ϕn are
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In Equations 2.122, 2.123, and 2.124a, r is the frequency ratio and

 r = ω
ω

T

n
 (2.125)

2.1.5.3  Transient Response
Assume that the transient response due to the initial condition and the force fA, described by 
Equation 2.116 is

	
x t e A t B t f

k
t A

0 ( ) = ( ) + ( )  +− ξω ω ωn
d d  cos sin 	 (2.126)
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The first term in Equation 2.126 is mainly generated by the initial conditions, which are dis-
cussed in Chapter 1, and the second term is a particular solution due to the step input described in 
Equation 2.118a. In the next section on transient excitation, more details of this solution are shown.

It can be proven that in Equation 2.126, the coefficients A and B are

	 A x f
k

f
k

A N
n n

n

N

= − −
=

∑0
1

β φsin 	 (2.128)

	 B v A f
k

nN
n n

n

N

= + −










=
∑1

0
1ω

ξω β ω φ
d

n T cos 	 (2.129)

2.2  TRANSIENT EXCITATIONS

2.2.1  transiEnt signals

Due to periodic excitations, the responses can be periodic signals; in general, there can be signals 
without a period.

For example, the function

	 f t t t( ) = +sin sin π 	 (2.130)

does not have a period. This is because 1/π cannot be represented by a ratio of two integers n/m. 
Alternatively, it can be said that the period of sin t + sin πt is infinitely long, denoted by

	 T → ∞ 	 (2.131)

In this circumstance, the Fourier series cannot be used, except for the case of DFTs. In fact, when 
the period extends toward infinity, the frequency ωT becomes infinitesimally small, and alterna-
tive mathematical tools in the form of the Fourier integral and Fourier transform will need to be 
used. Furthermore, in many cases, the Fourier integral may not even exist; thus, an improved tool, 
namely, the Laplace transform is used instead.

2.2.2  fouriEr transforM

Definition
Substituting Equation 2.37 into Equation 2.38 yields

	 f t
T

f t e dt e
T

T
j t j t

n

( ) = ( )



−∫∑ −

= −∞

∞

  n n1
2

2
ω ω 	  (2.132)

The condition of Equation 2.131 is examined next, for which Equation 2.132 can be rewritten as

	 f t
T

f t e dt e
T

j t j t

n T

T

( ) = ( )



→∞

−

= −∞

∞

−∫∑lim 1
2

2

 n nω ω 	 (2.133)

From Equation 2.18,

	 1
2T

= ∆ω
π

	 (2.134)



92	 Structural	Damping:	Applications	in	Seismic	Response	Modification

Substituting Equation 2.134 into Equation 2.133 further yields

	 f t f t e dt e
T

j t j t
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−
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∞
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Note that when T → ∞, Δω → dω and the summation transforms into an integration process. 
Thus, ω is used to replace ωn and

	 f t f t e dt e dj t j t

T

T

( ) = ( )





−

−∞

∞

−∫∫1
2 2

2

π
ωω ω 	 (2.135)

In other words, the Fourier series becomes an integral, the Fourier integral. Meanwhile, the 
Fourier coefficients cn, as expressed in Equation 2.37, inherits a new form as

	 F  ω ω( ) = ( ) −

−∞

∞

∫ f t e dtj t 	 (2.136)

which is now referred to as the Fourier transform of the function f(t). This may be denoted in a 
simple way as

	 F f tω( ) = ( ) � 	 (2.137)

Substituting Equation 2.136 into Equation 2.135 yields

	 f t F e dj t( ) = ( )
−∞

∞

∫1
2π

ω ωω 	 (2.138)

From Equation 2.84, it is seen that if f(t) is given, its Fourier transform F(ω) can be uniquely 
determined, provided that the integral in Equation 2.136 exists; that is, provided the aforementioned 
absolutely integrable condition, given by

	  f t e dtj t( ) < ∞
−∞

∞

∫ − ω 	 (2.139)

Furthermore, from Equation 2.138, if F(ω) is available, then the original function f(t) can be 
obtained. The operation described by Equation 2.138 is often called the inverse Fourier transforma-
tion, which can be denoted by

	 f t( ) = ( ) 
−� 1 F ω 	  (2.140)

In the following discussion, the functions f(t) and F(ω) are said to be a Fourier pair and the rela-
tionship between f(t) and F(ω) is denoted as

	 f t( ) ↔ ( )F ω 	 (2.141)
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To better understand vibration damping for damper design, the following features of the Fourier 
transform are important.

Mathematically speaking, for a signal f(t) to have the corresponding Fourier transform, both the 
conditions described in Equation 2.139 and the Dirichlet conditions must be satisfied. However, 
in the following discussion, the Dirichlet conditions will not be checked often, unless specifically 
necessary.

2.2.2.1  Important Features of the Fourier Transform: A Summary
In the following discussion, assume that f(t), f1(t), and f2(t) are real functions, which satisfy the con-
ditions for the existence of their Fourier transforms and that a and b are constants.

2.2.2.1.1 Linearity
The Fourier transform of f(t) = af1(t) + bf2(t) is

	 � � � �f t af t bf t a f t b f t( )  = ( ) + ( )  = ( )  + ( ) 1 2 1 2 	 (2.142)

2.2.2.1.2 Theorem of Time Shift
The Fourier transform of f(t + τ) is

	 � �f t e f t ej j+( )  = ( )  = ( )τ ωωτ ωτF 	 (2.143)

This theorem can be proven as follows:

	 � f t f t e dtj t+( )  = +( )
−∞

∞

∫ −τ τ ω 	 (2.144)

Let t + τ = u, and note that dt = du. Thus,

	

f u e du f u e e du

e f u e

j u j u j

j j u

( ) = ( )

= ( )

−∞

∞
− −( )

−∞

∞
−

−∞

∞
−

∫ ∫
∫

ω τ ω ωτ

ωτ ω

 

ddu

e j

 

F= ( )ωτ ω

	 (2.145)

2.2.2.1.3 Theorem of Multiplication

	
f t f t dt d
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1 2 1 2

1 2

1
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1
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( ) ( ) = ( ) ( )

= ( ) ( )
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∞

−∞

∞

−∞

∞

∫ ∫
∫
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F F

π
ω ω ω

π
ω ω

*

* ωω

	  

(2.146)

This can be seen as follows:
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(2.147)

2.2.2.1.4 Differentiation of Fourier Transform

	 � �f t j( )  = ( )ω ωF 	 (2.148)

This theorem can be proven in the following way through the process of integration by parts:

	 � � �f t f t e dt f t e j f t e dtj t j t j t( )  = ( ) = ( ) + ( )−

−∞

∞
−

−∞
∞ −

−∞

∞

∫  ω ω ωω∫∫ 	 (2.149)

To ensure Equation 2.139,

	 f t t( ) →∞ = 0 	 (2.150)

so that Equation 2.148 holds.

2.2.3  laPlacE transforM

Definition
In the above discussion, all the useful features must be based on the condition described in Equation 
2.139. However, the integrals in certain cases can become infinitely large. In other words, the Fourier 
integral does not exist. One solution is to force the value contributed by function f(t) to vanish when 
the temporal variable t reaches infinity. This may be accomplished by multiplying the integrand 
with an exponential function of t as in e–υt. In many cases, by just letting

	 υ > 0 	 (2.151)

the following can result:

	  f t e dtj t( ) ( )− +
∞

∫ < ∞υ ω

0
	 (2.152)

In this way, a new integral transform can be defined, the Laplace transform, written as

	 �[ ( )]f t f t e dtst= ( ) = ( ) −
∞

∫F s
0

	 (2.153)
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where s is the Laplace variable with

	 s j= +υ ω 	 (2.154)

Similar to the case of the Fourier transform, the inverse Laplace transformation is

	 f t s( ) = ( ) 
−� 1 F 	 (2.155)

and the Laplace transform pair can be denoted as

	 f t s( ) ↔ ( )F 	 (2.156)

2.2.3.1  Important Features of the Laplace Transform: A Summary
Here, it is assumed that f(t), f1(t), and f2(t) are real functions and that a and b are constants.

2.2.3.1.1 Linearity
The Laplace transform of f(t) = af1(t) + bf2(t) is

	 � � � �f t af t bf t a f t b f t( )  = ( ) + ( )  = ( )  + ( ) 1 2 1 2 	 (2.157)

2.2.3.1.2 Differentiation of Laplace Transform
If

	 � f t s( )  = ( )F 	 (2.158)

then

	 � �f t s s f( )  = ( ) − ( )F 0 	 (2.159)

This theorem can be proven in the following way. First, write

	 � � �f t f t e dt f t e s f t e dtst st st( )  = ( ) = ( ) + ( )−
∞

− ∞ −
∞

∫ ∫0 0 0
	 (2.160)

Here, the terms on the right side of the equation are obtained through the process of integration 
by parts. Thus,

	 f t e s f t e dt f s s s s fst st( ) + ( ) = − ( ) + ( ) = ( ) − ( )− ∞ −
∞

∫0 0
0 0F F 	 (2.161)

which provides the desired result. From Equation 2.159, it can be further written that

	 � �� �f t s sf f( )  = ( ) − ( ) − ( )2 0 0F s 	 (2.162)
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Example 2.4

Find the Fourier and Laplace transforms of f(t), which is the summation of inertia, damping, and 
spring forces of an SDOF vibration system given by

	

f t m x cx kx

x

x

( ) = + +

( ) =

( ) =











�� �

�

0 0

0 0

	

It is seen that f(t) can be viewed as an external force of the vibration system. Taking the Fourier 
transform on both sides of the first equation in the above results in

	 � �f t F m x cx kx m j k X( )  = ( ) = + +[ ] = − + +( ) ( )ω ω ω ω�� � 2 c 	

On the other hand, taking the Laplace transform on both sides of that equation, since the initial 
displacement and velocity are all zero, results in

	 � �f t s m x cx kx m s sc k s( )  = ( ) = + +[ ] = + +( ) ( )F X�� � 2
	

Here, X(ω) ↔ x(t) and X(s) ↔ x(t).

2.2.4  iMPulsE rEsPonsE

Besides harmonic excitation, an impulse is one of the simplest forcing functions. Practically, when 
an SDOF system is only subjected to a single impact force with sufficiently short duration, it will 
then have a free-decay vibration. This phenomenon is a foundation to explore further generally 
forced vibrations.

To examine the impact response, the idealized impulse force f(t) is considered first, which can 
be written as

	 f t
I t( ) =







− ≤ ≤ +





→

0
0

1
2

0

lim ,

,
ε ε

τ ε τ ε   

elsewhere
	  (2.163)

where I0 is the amplitude of the impulse function, τ is the time delay, and ε is a small time interval.
The rectangular-shaped impact force is shown in Figure 2.10, plotted with a solid line, which 

approximates the actual time history of force, plotted with a dotted line.
Equation 2.163 can be rewritten as

	 f t I t( ) = ( )0δ 	  (2.164)

Here δ(t) is a special function, the delta function. Figure 2.10 shows a special case of time shift 
t – τ and the corresponding impulse function δ(t – τ), which can be seen as

	 δ τ ε
τ ε τ ε

εt
t

−( ) =






− ≤ ≤ +





→

lim ,

,
0

1
2
0

   

elsewhere
	  (2.165)
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and

	   δ τ δ τ
ε

ε
τ ε

τ ε

ε
t dt t dt−( ) = −( ) = =

−∞

∞

−

+

→∫ ∫ lim
0

1
2

2 1 	 (2.166a)

Thus,

	 δ t dt( ) =
−∞

∞

∫ 1 	 (2.166b)

Therefore,

	 f t dt I t dt I( ) = ( ) =
−∞

∞

−∞

∞

∫ ∫ 0 0δ 	 (2.167)

When the initial displacement is zero, the mass is considered to be at rest just shortly prior to the 
application of the impulse I0. At the moment when I0 is applied, the momentum of the system gains 
mv0. That is,

	 I f t t mv0 0 0= ( ) = −∆ 	 (2.168)

Thus,

	 v
f t t

m
I
m0

0= ( ) =
∆

	 (2.169)

Therefore, the effect of an impulse applied to the SDOF m-c-k system is identical to the case of a free 
vibration with zero initial displacement and initial velocity equal to that described in Equation 2.169.

From the discussion on the free vibration decay in Chapter 1, it is known that when I0 = 1, the 
response is

	 x t
m

e tnt( ) = ( ) 
−1

ω
ωξω

d
dsin 	

f(t)

I0
1

2ε

ε ε
τ

t

FIGURE 2.10  Impulse.
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This expression is quite important. A special notation is used to represent this unit impulse 
response. Thus, let

	 h t
m

e tt( ) = ( ) 
−1

ω
ωξω

d
d

n sin 	 (2.170)

where the quantity h(t) is known as the unit impulse response function.
For an impulse with general amplitude I0,

	 x t I h t I
m

e tt( ) = ( ) = ( ) 
−

0
0

ω
ωξω

d
d

n sin 	 (2.171)

2.2.5  gEnEral forcE and tHE duHaMEl intEgral

2.2.5.1  Convolution Integral
In the above discussion, the cause of the free decay is due to an impulse. Mathematically speaking, 
the special function called the Dirac delta function, δ(t), can be used to represent the impulse. In 
somewhat imprecise terms,

	 δ τ
τ
τ

( )t
t
t

− =
∞ =

≠


 0

	 (2.172)

and

	 δ τ τ( )t dt− = < < ∞
∞

∫ 1 0
0

, for 	  (2.173)

The δ function is seen to have a special effect on sampling. That is, if a continuous function f(t) is 
multiplied by δ(t – τ), and then integrated over the entire time axis, the contribution to the integral 
becomes zero except at t = τ, where the Dirac delta function operates on f(t) to sift out the value of 
f(τ) as the integral. This process implies that the Dirac delta function δ(t – τ) just samples the signal 
f(t) at time τ and the value of that sample is simply f(τ).

The δ function is plotted in Figure 2.11a. An arbitrary forcing function, such as an earthquake, 
can be seen as a combination of a series of impulse functions at time point t – τ. Particularly, at time 
point τ, the forcing function exists as an impulse f(τ)Δt. The corresponding responses due to the 
impulse can be denoted as Δx(t), and

	 ∆ ∆x f t h tτ τ τ( ) = ( ) −( ) 	 (2.174)

That is, this response due to the specific impulse response function is the product of the unit 
impulse response function h(t – τ) and the amplitude of the impulse f(τ)Δt. Figure 2.11b conceptu-
ally shows this treatment of an impulse response at time point τ.

Since the system is linear, the total response can be seen as the summation of Δx(t), which starts 
from time 0 up to time t, and the specific response at each particular interval t – ti is due to the cor-
responding impulse. Here, ti is used to replace t to denote the particular instant. Therefore at t = tn, 
the resulting summation is
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	 x n f t t h t t
n

( ) = ( ) −( )∑ i i∆
0

	 (2.175)

With the help of the above notations and concepts, the structural response under the arbitrary 
excitation f(t) can be seen as a combination of all the impulse responses, from time 0 to t, represent-
ing any given time. When the time interval Δt is minimized toward infinitesimally small dt, the 
summation described in Equation 2.175 is essentially an integration. Thus,

	 x t h t f d
t

( ) = −( ) ( )∫ τ τ τ
0

 	 (2.176)

The integral shown in Equation 2.176 is referred to as a convolution integral, in this case, 
between the functions f(t) and h(t).

It is seen that by letting u = t – τ, du = dt results. Therefore, by replacing the variable h in the 
above integral by t – τ,

	 x t h u f t u du h u f t u du
t

t
( ) = − ( ) −( ) = ( ) −( )∫ ∫  

0

0
	 (2.177)

Thus,

	 f h t d h f t d
t t

τ τ τ τ τ τ( ) −( ) = ( ) −( )∫ ∫0 0
 	 (2.178)

f(t)

(a)

(b)

(c)

δ(t – τ)→ ∞

t – τ

f(τ)

dt

dx(t), impulse response
(t – τ) ≥ 0

t

τ

τ

FIGURE 2.11  (a–c) Duhamel integral.



100	 Structural	Damping:	Applications	in	Seismic	Response	Modification

For convenience, the convolution of two functions, h(t) and f(t), can be denoted by

	 x t f t h t h t f t( ) = ( ) ( ) = ( ) ( )* * 	 (2.179)

Since the convolution is only taken between the starting point t = 0 and final time point t, for any 
time point beyond t, the integral will be equal to zero. Thus,

	 x t h t f d h t f d h t f d
t t

t
( ) = −( ) ( ) + = −( ) ( ) + −( ) ( )∫ ∫ ∫

∞
τ τ τ τ τ τ τ τ τ

0 0
0 	

and h(t) = 0 for t < 0, therefore,

	 x t h t f d h t f d( ) = −( ) ( ) = −( ) ( )
∞

−∞

∞

∫ ∫τ τ τ τ τ τ
0

	 (2.180)

Equation 2.180 is also a popular form of the convolution.
Now, substituting Equation 2.170, the expression of the unit impulse response, into Equation 2.176 yields

	 x t
m

e f e t dt
t

( ) = ( ) −( )− −∫1
0ω

τ ω τ τξω ξω τ

d
d

n n sin 	 (2.181)

Thus, the response of an SDOF linear system under an arbitrary excitation f(t) with zero initial 
conditions is obtained. Such a formulation using the above-mentioned convolution to calculate the 
response is referred to as the Duhamel integral, as given by Equation 2.181.

2.2.6  transfEr function of unit iMPulsE rEsPonsE

A linear SDOF m-c-k system subjected to unit impulse has the governing equation with zero initial 
condition defined as

	

mx cx kx t

x

x

�� �

�

+ + = ( )

( ) =

( ) =











δ

0 0

0 0

	 (2.182)

Taking the Laplace transform on both sides of the first equation in Equation 2.182, due to a zero 
initial condition, results in

	 � �mx cx kx t�� �+ +[ ] = ( ) δ 	 (2.183)

The left side of the Laplace transform has been obtained through Example 2.4. The term on the 
right side is considered next.

	 � δ δt t e dt est st
t( )  = ( ) = =−

∞
−

=∫0
0 1 	 (2.184)

The above holds due to the sampling effect of the δ function, which makes all the values of e–st 
vanish, except for the value at t = 0. Thus,
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	 ms sc k s2 1+ +( ) ( ) =X 	 (2.185)

Note that in this circumstance, X(s) is the particular Laplace transform of the unit impulse 
response, that is,

	 X s h t( ) = ( ) � 	 (2.186)

Substituting Equation 2.186 into Equation 2.185 yields

	 � h t
ms cs k( )  =

+ +
1

2 	 (2.187)

Equation 2.187 implies that the Laplace transform of the unit impulse response is one over the 
term (ms2 + cs + k). This is another important relationship. This Laplace transform is denoted as H(s). 
That is, let

	 H s
ms cs k( ) =

+ +
1

2 	 (2.188)

The Fourier transform of the unit impulse response is also important. This Fourier transform is 
denoted as H(jω). That is,

	 � h t H j
m jc k( )  = ( ) =

+ +
ω

ω ω
1

2 	 (2.189)

In addition, consider a more general case defined as

	

mx t cx t kx t f t

x

x

�� �

�

( ) + ( ) + ( ) = ( )

( ) =

( ) =











0 0

0 0

	 (2.190)

Taking the Laplace transform on both sides of the first equation in Equation 2.190, because of 
zero initial condition, results in

	 ms cs k s f t s2 + +( ) ( ) = ( )  = ( )X F� 	 (2.191)

From Equation 2.191, with the help of Equation 2.188,

	
X
F  

s
s

s( )
( ) =

+ +
= ( )1

2ms cs k
H 	 (2.192)

Equation 2.192 implies that the ratio of the Laplace transforms of the response and the forcing 
functions is exactly equal to the Laplace transform of the unit impulse response function. Here, this 
ratio is defined as the transfer function. Therefore,
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	 X s H s F s( ) = ( ) ( ) 	 (2.193)

Equation 2.193 implies that the force in the Laplace domain F(s), namely, the Laplace transform 
of the force, is transferred into the response in the Laplace domain X(s), by the effect of the transfer 
function H(s). In other words, F(s) transfers into X(s) through the “bridge” H(s). In the literature, 
Equation 2.193 is referred to as Borel’s theorem.

By letting s = jω, Equation 2.193 can be rewritten as

	 X Fj H j jω ω ω( ) = ( ) ( ) 	 (2.194)

Similarly, Equation 2.194 implies that the force in the Fourier domain F(jω), namely, the Fourier 
transform of the force, is transferred into the response in the Fourier domain X(s), by the effect 
of the function H(jω). Here, the transfer function of H(jω) has a special name—the frequency 
response function. That is, F(jω) transfers into X(jω) through the “bridge” H(jω).

2.2.7  intEgral transforM of conVolution

Comparing the convolution of h(t) and f(t) described in Equation 2.180 with the multiplication of 
H(s)F(s) as well as H(jω)F(jω), both the Laplace transform and the Fourier transform of the convolu-
tion result in the multiplication of the integral transforms. Namely,

	 � h t f t H s s( ) ( )  = ( ) ( )* F 	 (2.195)

	 � h t f t H j j( ) ( )  = ( ) ( )* ω ωF 	 (2.196)

Such relationships are not a coincidence, in fact, it can be proven that for a general form of con-
volution y(t)*z(t),

	 � y t z t s s( ) ( )  = ( ) ( )* Y Z 	 (2.197)

and

	 � y t z t j j( ) ( )  = ( ) ( )* Y Zω ω 	 (2.198)

Equation 2.198 can be proven by considering

	

� y t z t y z t d e dt

y e

j t

j

( ) ( )  = ( ) −( )
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∞
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∫∫* τ τ τ
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ωτ= zz t e d dt

y e d z t e

j t

j j t

−( )

= ( ) −( )

− −( )
−∞

∞

−∞

∞

− − −( )
−∞

∞

∫∫ τ τ

τ τ τ

ω τ

ωτ ω τ∫∫∫−∞

∞

= ( ) ( )dt j jY Zω ω

	 (2.199)

Here, in the third step, the identity was inserted

	 1 = − − −( )e ej jωτ ω τ 	 (2.200)
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2.3  RANDOM EXCITATIONS

The responses of SDOF systems subjected to harmonic excitation were discussed in Chapter 1. 
In addition, the periodic and transient excitations were discussed in the previous sections of this 
chapter. Although these three types of excitations are very distinct, they have one common feature: 
they are all deterministic. Thus, for deterministic structures, the response is also deterministic. The 
earthquake excitations dealt with for damper design are random. As a deterministic signal, which is 
a function of time, if the time point is located, then the value of the forcing function will be known 
exactly. However, as a random signal, at a specific time point, the value is unknown.

For deterministic excitations, the response is automatically deterministic. This means that if 
the physical parameters of a system are given, at any time point, the value of the response can be 
calculated precisely. However, for random excitations, the value of the response at a specific time 
cannot be determined.

In engineering applications, the time history of the response does not necessarily need to be 
known. What is often needed is to locate the maximum value so that the structure to be designed 
and constructed can withstand the corresponding peak deformation and/or peak force. In earth-
quake engineering, often only the peak value of the random ground motions is needed to find the 
peak value of response, called the response bound. Standards based on an earthquake return period 
are set up and these standards are used to classify the input level of earthquakes. In this circum-
stance, although the detailed time history of a ground motion is unknown, the amplitude of the 
excitation is considered to be deterministic.

However, under general random excitations, such as earthquakes, the peak value of the structural 
response cannot be calculated, even when the input bound is specified. In other words, one of the 
important features of earthquake response is that bounded input does not yield bounded output.

A common practice to deal with such difficulties is to employ statistical studies. That is, suf-
ficient earthquake records are collected, including artificial records, and then averages are taken. 
In this way, particular characteristics of the average response can be discovered. For example, on 
average, the most probable amplitude of the response is of interest, as is the trend of the structural 
response when supplemental damping is used, etc. In this section, the basic concept of random vari-
able and random process is introduced, as well as the approach of averaging correlation analysis 
and power density spectrum analysis. Based on this preknowledge, the earthquake response spec-
trum and corresponding design spectrum are considered. The main approach for damper design 
described in this book is based on spectral analysis.

2.3.1  randoM VariaBlEs

Suppose an SDOF vibration system is subjected to random excitations, such as earthquake ground 
motions. The amplitude of the response is considered at exactly 1 (s) after the excitation starts. It 
is understandable that, due to different earthquake excitations, the response displacement can be 
positive or negative; the amplitude can be large or small. In other words, the exact value of the dis-
placement cannot be determined.

Consider the six different earthquake ground motion signals shown in Figure 2.12a. The first through 
the sixth records are, respectively, the El Centro earthquake measured at 0°, the El Centro earthquake 
measured at 90°, the Northridge earthquake measured at 0°, the Northridge earthquake measured at 
90°, the Mexico earthquake, and the Taft earthquake. The amplitudes are accelerations with units in 
(cm/s2). Figure 2.12b shows the amplitudes of these earthquake records at t = 1 (s), while Figure 2.12c 
displays the amplitude of the displacements due to these earthquakes at that same instant of time. From 
this group of data, it is seen that the amplitudes are somewhat random and it seems that no obvious 
regularity can be found by direct observation. Note that to obtain the displacement responses, an SDOF 
system with mass equal to 1, damping coefficient equal to 0.4π, and stiffness equal to (2π)2 is assumed. 
(Therefore, this system has a damping ratio equal to 0.1 and a natural frequency equal to 1 (Hz).) 
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FIGURE 2.12  (a) Earthquake ground accelerations as random excitations (1)–(6). (b) Value of selected earth-
quake ground motions and corresponding response displacements of an assumed SDOF system at t = 1 (s). 
(c) Value of selected earthquake ground motions and corresponding response displacements of an assumed 
SDOF system at t = 1 (s).
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By examining the responses at t = 1 (s), similar to the case of random excitation, it is seen that the 
responses are also somewhat random.

To study the random data, as many values as possible of the ground acceleration or response 
displacement or any kind of random data are collected by placing them inside a special vector, such 
that

	 x1 11 12 1=  x x x n, , ,… 	 (2.201)

Here, subscript 1 of the vector stands for the data collected at t = 1 (s). The first subscript of x1i, 
which stands for an individual random data value, also denotes that the data are taken from the 
time 1 (s). The second subscript i of x1i simply denotes that it is the ith data, which is often called 
the samples. In most cases, a point is not specified, whether t = 1 or not. Therefore, these data are 
simplified by rewriting Equation 2.201 as

	 x =  x x xn1 2, , ,… 	 (2.202)

In Equation 2.202, all the samples already taken or measured are known to be deterministic. 
However, when a sample xi is arbitrarily chosen, the value of this sample is uncertain beforehand. 
Therefore, x is a random data set and xi is a random variable. Whenever a variable xi is chosen for 
the set x, its value is not predictable.

When the exact value is unknown, an alternative approach is chosen (mean value, variance, and 
standard deviation) to find a pattern by exploring if something is common among the values, such as 
displacements due to different earthquake excitations. To do so, several definitions will be reviewed 
first.

2.3.1.1  Mean Value, Mathematic Expectation
The mean value of x is defined as

	 x
n

xi
i

n

=
=

∑1

1

	 (2.203)

which provides the average of the group of data x.
In the case of an infinite number of samples, both summations and integrations will be present. 

Particularly, if the average of the total time history is considered, such as the ground excitation or 
the response, then the time history is denoted as x(t) and

	 x
T

x t dt
T

T
= ( )

→∞ ∫lim 1
0

	 (2.204)

Here, T is the period of the time history. For example, in the first two plots in Figure 2.12, the 
ground motion records of the El Centro earthquake have T = 53.76 (s).

Equation 2.204 is rewritten as

	 x
T

x t dt
T

T
= ( )



→∞ ∫lim 1

0
	 (2.205)

It is seen that the term in brackets implies that each value x(t) at time t has an equal chance 1/T 
to be counted. However, from all the ground motion records shown in Figure 2.13, it is realized that 
this is not true for earthquakes. Instead, at the very beginning of the earthquake, the amplitudes of 
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the ground motion are always rather small. After a while, the ground motions begin to increase and 
after several seconds, the amplitudes will gradually die out. This means that, at different times t, 
the chance of the amplitude being large or small is not equal. In certain circumstances, due to this 
unequal chance, the data can be counted with different weight factors, and this weight factor can 
often be taken as the probability of the appearance of x(t). Denoting such a probability as p(x) results 
in a more rigorous concept of average, the mathematical expectation, defined as

	 E x p x xdx  = ( )
−∞

∞

∫ 	 (2.206)

Note that in Equation 2.206, x is no longer treated as a function of time, but instead is taken as 
an individual value with the chance or probability density function p(x) to be counted. In this sense, 
E[x] can be called the ensemble average. As a comparison, the average expressed in Equation 2.205 
is the average over time (with the period of T), called the temporal average.

Example 2.5

Let x be the collection of ground accelerations at t = 1 (s), taken from the earthquake records 
shown in Figure 2.13a, that is,

	 x1 33 9000 49 7000 12 0560 109 3820 2 7300 0 0530= − −  ( ). . . . . . cm s2 	

By using Equation 2.203,

	 x = ( )14 05. cm s2 	
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2.3.1.2  Variance and Mean Square Value
If sufficient data are taken to perform the averaging described in Equation 2.203, it is likely that the 
mean value will be very close to zero. This will happen at virtually any time point. However, from 
the ground motion plots shown in Figure 2.13, it is realized that at different time points, the peak 
amplitude can vary significantly. As mentioned above, at the very beginning of the recorded ground 
motion, there is always a small amplitude, but after a while, the amplitudes become larger, and so 
on. Therefore, a measure that avoids the positive and negative quantities canceling each other out is 
needed, so that the scattering of data can be represented. The simple way to treat the data is to take 
the square of the individual entries, so that all the negative signs are ignored. In this way, the mean 
square value is

	 x
n

x ti
i

n
2 1 2

1

= ( ) 
=

∑ 	 (2.207)

In the literature, this value is also called the “variance.” The mean square value can be used to 
measure the magnitude of the fluctuation of the data x(t). For instance, in Example 2.5, the set of 
data x and the mean square value can be calculated as

	 x2 2622 8
2

= ( ). cm s2 	 (2.208)

Now, it is seen that at t = 0.04 (s), the same group of earthquake records will have the following 
amplitude:

	 x04
28 8000 2 9000 3 9130 13 4730 0 9430 0 0041= − −  ( ). . . . . . cm s 	

Therefore, the corresponding mean square value is

	 x2 47 3
2

= ( ). cm s2 	 (2.209)

Comparing Equation 2.208 and Equation 2.209, it is seen that at t = 1 (s), the earthquake may 
be more violent than at t = 0.04 (s). However, if the fluctuation that occurs from the average point 
instead of from the zero point is considered, it can be seen that such a measure around the average 
value may be more appropriate. In this case, the value known as variance can be defined as

	 σ2 2

1

1= ( ) − 
=

∑n
x t xi

i

n

	 (2.210)

Note that in practical statistics, n – 1 instead of n is often used to calculate the variance as

	 σ2 2

1

1
1

=
−

( ) − 
=

∑n
x t xi

i

n

	 (2.211)

Similar to the case of average, for situations where the number of samples increases toward infin-
ity, an integral to replace the summation to calculate the mean square value is

	 x
T

x t dt
T

T
2 1 2

0
= ( ) →∞ ∫lim 	 (2.212)
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If the probability of each individual quantity of x(t)2 must be considered and for ensemble averag-
ing, the expected value is

	 x x p x dx2 2= [ ] ( )
−∞

∞

∫ 	 (2.213)

and for the variance,

	 σ2 2

0

1= ( ) − →∞ ∫lim
T

T

T
x t x dt 	 (2.214)

The corresponding ensemble average is

	 σ2 2= −  ( )
−∞

∞

∫ x x p x dx 	 (2.215)

2.3.1.3  Standard Deviation and Root Mean Square Value
From Equations 2.208 and 2.209, it was found that both the variance and the mean square value 
are expressed in units of the square of the original units for the random data set. This is sometimes 
inconvenient. Thus, the root means square value (rms) is defined as

	 x x
n

x ti
i

n

rms = =
−

( ) 
=

∑2 1
1

2

1

	 (2.216)

or

	 x x
T

x t dt
T

T

rms = = ( ) →∞ ∫2 1 2

0
lim 	 (2.217)

Furthermore,

	 x x x p x dxrms = =   ( )
−∞

∞

∫2 2 	 (2.218)

Finally, the standard deviation is defined as

	 σ σ= =
−

( ) − 
=

∑2 2

1

1
1n

x t xi
i

n

	 (2.219)

and

	 σ σ= = ( ) − →∞ ∫2 2

0

1lim
T

T

T
x t x dt 	 (2.220)
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Also,

	 σ σ= = −  ( )
−∞

∞

∫2 2x x p x dx 	  (2.221)

The term standard deviation indicates the degree of data scattering around the mean value, as the 
variance does. However, it is expressed in the identical units as the original data, so that it is often 
more convenient to use.

Example 2.6

Using the formula described by Equation 2.211, the variance of x1 and the variance of x04 are cal-
culated to be 2910.4 and 51.5686, respectively. The corresponding standard deviations are 53.946 
(m/s2) and 7.1811 (m/s2), respectively.

2.3.2  randoM ProcEss

2.3.2.1  Random Time Histories
In the previous subsection, random variables (see Equation 2.202) were described; e.g., the ground 
acceleration of earthquake records at t = 0.04 (s) and t = 1 (s), denoted as x04 and x1. From these two 
sets of data, it was immediately found that using only random variables is insufficient to express the 
time histories. This is because x04 and x1 are only two time points. For the entire process of the time 
history, hundreds, even thousands, of time points that form a sequence should be considered. Thus, 
it will be necessary to introduce a new concept of random process, which is a function of time and, 
therefore, will be able to describe the time histories.

More specifically, a random process is a time process denoted by x(t), which is a collection of 
several sets of time histories, such as those ground motions plotted in Figure 2.12a. Although each 
time history is a specific sample set, so that it is deterministic, however, at a certain time, e.g., 
at t = 1 (s), the values taken from these sets of time histories are random, such as the collection 
described in Equation 2.201. For convenience, these sample time histories are denoted as xj(t). The 
entire collection or ensemble collection of all these time histories, namely, the xj(t), is referred to as 
a random process. It is also called a stochastic process in the literature. In Figure 2.13, the response 
of the system used to generate the data in Figure 2.12c is plotted, which was subjected to the earth-
quake excitations shown in Figure 2.12a.

From these plots, it is realized that due to random excitations, the response is also random. More 
specifically, when the excitation is from a random process, so are the responses. That is, for any 
given set of earthquake records, a deterministic response can be calculated. However, if one of the 
records is chosen arbitrarily, the type of response time history available beforehand is uncertain.

2.3.2.2  Statistical Averaging
To find possible patterns from a random process, the aforementioned averaging can certainly be used. 
Therefore, the mean and/or expected value, the mean square value and/or variance, and the root mean 
square and/or standard deviation can be used, when the collection of random time histories are seen 
as a collection of all random variables. In this sense, the phrase “statistics” actually means average.

On the other hand, to treat these random variables as functions of time, the above-mentioned 
averaging will not be sufficient. It can be easily realized that all the resulting quantities are only 
single-valued scalars, instead of temporal functions.

Generally, the ensemble average should not be replaced by the time average, unless the group of 
data is ergodic. If, with a different time period, the averages taken are identical, then the group of data 
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is said to be stationary. The condition for random data or a random process to be ergodic is stronger 
than stationary. That is, if the random set xR is not stationary, xR is not ergodic. However, if xR is sta-
tionary, then this does not necessarily mean that xR is ergodic. It is easy to see that earthquake records 
are not stationary, because the averages taken from different time points t1 and t2 will likely be different. 
Therefore, mathematically speaking, the time average cannot be used to replace the ensemble aver-
age. Although, in practice, this substitution is often made, particular attention should be given to the 
validity of this assumption. For a more detailed discussion of stationary and ergodic data, readers may 
consult Bendat and Piersol (1971). In the following discussion, only the basic concepts are explained.

Consider the mean value at an arbitrary fixed time point t1 as

	 x t
n

x t
n

i
i

n

1
1

1
1( ) = ( )

→∞
=

∑lim 	  (2.222)

Here, xi(t) is the random time history, which represents the random process measured for the ith 

case. Suppose there are n times of such measurements. Then, apparently, Equation 2.222 denotes the 
ensemble averaging. Generally speaking, for a random process x(t), the value of the average x(t1) 
depends on the time point t1. In the case that the mean value remains constant, that is,

	 x t x1( ) = = const 	  (2.223a)

	 σ σ2 2t( ) = = const 	  (2.223b)

the process x(t) can be referred to as weakly stationary. Note that for a more rigorous definition of a 
random process being weakly stationary, additional conditions of correlation functions are needed, 
which will be discussed in the next subsection. When all the possible averages are independent of 
time, say t1, the process is said to be strictly (strongly) stationary. For engineering signals, there is 
no distinction between these two cases, and the signal is considered to be stationary.

Now, consider the time average of one of the above-mentioned time histories, say, the ith time 
history. Thus,

	 x
T

x t dti
T

i

T
= ( )

→∞ ∫lim 1
0

	  (2.224)

Equation 2.224 is essentially identical to Equation 2.204, but rather distinct from the ensemble 
average described in Equation 2.222. For the case of an ergodic process, a single piece of time his-
tory has the value of the mean value, as well as the same value of the soon to be discussed correla-
tion function.

However, from Equation 2.222, it is seen that to obtain the ensemble average, a large number of 
measurements are needed, which may not be available all the time. Thus, in many cases, engineers as 
well as researchers use the time average to replace the ensemble average, without carefully checking 
the condition of stationary and ergodic signals. Much needs to be explored in this area in the applica-
tion of a probability-based approach in the design of structures to resist extreme hazard events.

Example 2.7

In order to compare ensemble and temporal averages, consider a numerical example by using 
MATLAB• simulations of an ergodic process xR(t) and a nonstationary process yR(t), which are 
plotted in Figures 2.14a and b, respectively. Here, both xR(t) and yR(t) consist of 2,500 time points, 
and both xR(t) and yR(t) contain 2,000 pieces of random time histories.
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The ensemble average of xR(t) at time 0.5 (s) is denoted by X0 5.  and so on. The ensemble aver-
age of yR(t) at time 0.5 (s) is denoted by Y0 5.  and so on.

The temporal average of x1(t) over the duration from 0 to 25 (s), totaling 2,500 time points is 
denoted by xi and so on. The temporal average of y1(t) from 0 to 25 (s), totaling 2,500 time points 
is denoted by yi and so on.

Table 2.1A lists the percentage differences among ensemble averages. It is seen that at different 
time points, namely, 0.5, 6, and 23.5 (s), the variation of x tR() is smaller than 1.5%. Although the 
variation is not absolutely zero, for engineering signals, the averages of the ensemble averages can 
be treated as roughly identical. Note that if X()i  are identical at any time point ( )i , and the corre-
sponding variances at any time point ( )i  are also identical, then xR(t) is weakly stationary. In fact, 
an ergodic random signal must be stationary. On the other hand, it is seen that the variation of yR(t) 
is fairly large, which indicates that yR(t) is a nonstationary process.
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FIGURE 2.14  (a) Time histories of xR(t) and the temporal and ensemble averages. (b) Time histories of yR(t) 
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Furthermore, Table 2.1B lists the percentage differences among temporal averages. It is seen that for 
the averages for different pieces of time histories, say, x1, x2, and x2000, the variation of xR(t) is smaller 
than 1.0%. Although the variation is not absolutely zero, for engineering signals, the averages of the 
temporal averages can be treated as roughly identical to the ensemble averages. In fact, for an ergodic 
random signal, the temporal average must be identical to the ensemble averages. Note that this state-
ment is a necessary condition of an ergodic signal, but is not yet sufficient. On the other hand, it is 
seen that the variation of yR(t) is fairly large, which indicates that yR(t) is a nonergodic process.

2.3.3  corrElation functions and PowEr sPEctral dEnsity functions

To account for random processes, regardless of which concept or method (ensemble or temporal 
average) is used, the primary technology is still averaging. In the following discussion, the correla-
tion functions and their Fourier transforms are described. Thus, correlation analysis and spectral 
analysis are considered.

2.3.3.1  Correlation Analysis
Suppose there are two time histories, xi(t) and xj(t). The xi(t) is a forcing function taken from loca-
tion i and xj(t) represents the corresponding structural response taken from location j. Similar to the 
computation of mean value, for a general random process, the cross-correlation function of xi(t) and 
xj(t) is defined by the ensemble average, written as

	 R t t
n

x t x tx x
n

i j
i

n

i j 1 1 1 1
1

1, lim+( ) = ( ) +( )
→∞

=
∑τ τ 	  (2.225)

and the autocorrelation function is defined by the ensemble average

	 R t t
n

x t x tx x
n

i i
i

n

i i 1 1 1
1

1
1, lim+( ) = ( ) +( )

→∞
=

∑τ τ 	  (2.226)

Similar to the case of mean value computation, to investigate the statistical properties of the ran-
dom process, Equations 2.225 and 2.226 require quite a collection of time histories xi and xj. Thus, 
in many cases, the temporal average is used instead of an ensemble average.

TABLE 2.1A
Percentage Difference Among Ensemble Averages

X
xi

0 5

0 5
.

max .( ) 

X
xi

6

6max ( ) 

X
xi

23 5

23 5
.

max .( ) 

Y
yi

0 5

0 5
.

max .( ) 

Y
yi

6

6max ( ) 

Y
yi

23 5

23 5
.

max .( ) 

0.74 0.80 0.28 14.04 63.47 86.48

TABLE 2.1B
Percentage Difference Among Temporal Averages

X
xi

0 5

0 5
.

max .( ) 

X
xi

6

6max ( ) 

X
xi

23 5

23 5
.

max .( ) 

Y
yi

0 5

0 5
.

max .( ) 

Y
yi

6

6max ( ) 

Y
yi

23 5

23 5
.

max .( ) 

0.45 0.06 0.36 45.65 45.05 46.38



Linear	Single-Degree-of-Freedom	Systems	with	Arbitrary	Excitations	 113

Suppose two pieces of sampled time histories are measured from a random process and are 
denoted as x1(t) and x2(t). The method used to correlate these two time histories is correlated based on

	 R
T

x t x t dt
T

T

12 1 2
0

1τ τ( ) = ( ) +( )
→∞ ∫lim 	 (2.227)

Here, for simplicity, R12 is used instead of Rx x1 2, to denote the cross-correlation function.
 Mathematically, Equation 2.225 can be rewritten as

	 R
T

x t x t dt
T

x t x t d
T T

T

T
12 1 2

2

2

1 2
1 1τ τ τ( ) = ( ) +( ) = ( ) +( )

→∞ − →∞∫lim lim tt
−∞

∞

∫ 	 (2.228a)

For more general cases, 1/T is replaced by a more general term of probability, p12(x1, x2, t, τ), that is,

	 R p x x t x t x t dt12 12 1 2 1 2τ τ τ( ) = ( ) ( ) +( )
−∞

∞

∫ , , , 	 (2.228b)

Here, p12(x1, x2, t, τ) is the probability of the occurrence of the production of x1 taken at time t 
and x2 taken at t + τ.

Since the above equations describe the relationship between the time histories of x1(t) and x2(t), 
it is referred to as the cross-correlation function.

In this particular case, when the time history x2(t) is chosen to be x1(t), the result is the auto-
correlation function, which can be written as

	 R
T

x t x t dt
T

x t x t dt
T T

T

T
11 1 1

2

2

1 1
1 1τ τ τ( ) = ( ) +( ) = ( ) +( )

→∞ − →∞∫lim lim
−−∞

∞

∫ 	 (2.229a)

The more general form is

	 R p t x t x t dt11 1 1τ τ τ( ) = ( ) ( ) +( )
−∞

∞

∫ , 	 (2.229b)

Here, p(t, τ) is the probability of the occurrence of the production of x1 taken at time t and 
t + τ.

From both the cross- and autocorrelation functions, it is seen that the resulting quantities from 
the integrations are functions of τ. The variable τ in the correlation domain is similar to the tem-
poral variable t in the real-world time domain. When τ is chosen from zero to a rational value, the 
resulting integrals R12(τ) or R11(τ) represent a deterministic process.

Note that in the above equations, the time histories x1(t) and x2(t) can be selected from a random 
process. After they are chosen, x1(t) and x2(t) are deterministic. The time histories x1(t) and x2(t) can 
also be known as periodic or transient signals, which are, of course, deterministic. Thus, the cor-
relation analysis is not limited to random processes. However, in the following discussion, it will 
be seen that using the correlation functions for random processes will have additional limitations. 
Further, when the time average is used to define the correlation functions, care should be taken to 
check whether the signals are ergodic.

In Figure 2.15a, the autocorrelation function of sin(ωt) is plotted. Here, ω = 2π	(rad), which is the 
natural frequency of the system mentioned above. In Figure 2.15b, the cross-correlation function 
of sin(ωt), which is used as harmonic excitation, and the response displacement is plotted for the 
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SDOF system mentioned above. Furthermore, Figure 2.15c presents the autocorrelation function 
of [sin(ωt/5) + cos(ωt/3)/2]. Additionally, Figure 2.15d presents the cross-correlation function of 
[sin(ωt/5) + cos(ωt/3)/2], which is used as harmonic excitation, and the corresponding response 
displacement of the same SDOF system.

In addition, in Figure 2.15e, the autocorrelation function of the El Centro earthquake record is 
plotted, while Figure 2.15f provides the cross-correlation function of the El Centro earthquake, which 
is used as ground excitation, and the corresponding response displacement of the SDOF system.

From Figure 2.15, all these correlation functions look like free-decay time histories. That is, when 
the temporal variable t becomes quite large, the correlation functions tend toward zero. It is seen that 
for harmonic functions, the correlation functions decay slowly. For random excitation, the correla-
tion function will decay rather fast. In fact, it can be proven that for any time histories x1(t) and x2(t),

	 R R E x t x11 11 1
20 1

2τ( ) < ( ) = ( )



 = 	  (2.230)

In the following discussion, it is seen that R11(0) actually stands for the average power of the 
process xR(t). Furthermore,

	 R R R12
2

11 220 0τ( ) < ( ) ( ) 	  (2.231)

Correlation functions are very helpful tools in analyzing the random processes. For convenience, 
these functions are denoted as
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	 R x x11 1 1τ( ) = , 	 (2.232)

and

	 R x x12 1 1τ( ) = , 	 (2.233)

It can also be proven that the autocorrelation function is an even function of τ. That is,

	 R R11 11−( ) = ( )τ τ 	 (2.234)

On the other hand, the cross-correlation function is neither an even nor an odd function. However,

	 R R12 21−( ) = ( )τ τ 	 (2.235)

Because of the nature of the correlation function described in Equations 2.234 and 2.235, in 
practical computations, only the values of the correlation functions are calculated when

	 τ ≥ 0 	 (2.236)

Suppose a signal contains several frequency components, which can be expressed as trigo-
nometric functions, say, the frequencies are ω1, ω2, and ω3. Also, suppose the signal has some 
random terms. From the definition of the autocorrelation function in Equation 2.229, it is real-
ized that by using integration, the frequency components ω1, ω2, and ω3 will remain in the cor-
relation function, and the random terms will vanish due to the orthogonality of the trigonometric 
functions. Thus, by using the autocorrelation function, these particular frequency components 
can be emphasized and random terms can be eliminated. Suppose two signals share the same 
frequency components, which can be expressed as trigonometric terms, say, the frequencies 
are ω1, ω2, and ω3. Also, suppose the signals have different frequency components and some 
random terms. From the definition of the cross-correlation function in Equation 2.228, it can 
also be realized that by using integration, the frequency components ω1, ω2, and ω3 will remain 
in the cross-correlation function, and the frequency terms that belong to individual signals and 
the random terms will also vanish, due to the orthogonality of trigonometric functions. Thus, 
by using the cross-correlation function, these particular frequency components shared by both 
signals can be emphasized and the frequency terms of the individual signals and the random 
terms can be eliminated.

The above points can be realized by examining the plots of the earthquake responses given in 
Figure 2.15.

2.3.3.2  Power Spectral Density Function
Random signals may not always have Fourier transforms. Therefore, it is difficult to study the corre-
sponding frequency spectra directly from the integral transformation. In this case, the Fourier trans-
forms of their correlation functions are used, which exist for most engineering signals. Therefore, 
the frequency components of random signals can be studied.

2.3.3.2.1 Definition of Power Spectral Density Function
The Fourier transform of the autocorrelation function defines the auto-power spectral density func-
tion, which can be written as

	 S R e dj
11 11ω τ τωτ( ) = ( ) −

−∞

∞

∫ 	  (2.237)
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Thus,

	 R S11 11τ ω( ) ↔ ( ) 	  (2.238)

Furthermore, the Fourier transform of the cross-correlation function defines the cross-power 
spectral density function. This can be written as

	 S R e dj
12 12ω τ τωτ( ) = ( ) −

−∞

∞

∫ 	  (2.239)

Thus,

	 R S12 12τ ω( ) ↔ ( ) 	  (2.240)

Equations 2.238 and 2.240 are referred to as Wiener–Khintchine equations (Silva 2007).

2.3.3.2.2 Properties of Auto-Power Spectral Function
It can be proven that if the signal x(t) is the response obtained through the convolution of h(t)∗f(t), then

	 S H Sxx ω ω ω( ) = ( ) ( )2
ff 	  (2.241)

Here, Sxx is the autopower spectral density function of the response x(t) and Sff is the autopower 
spectral density function of the forcing function f(t). From Equations 2.240 and 2.241,

	 R H S d E x Xxx τ
π

ω ω ωτ( ) = ( ) ( ) =   ==
−∞

∞

∫0

2 2 21
2 ff 	  (2.242)

In addition to Equations 2.241 and 2.242, other important properties of the Fourier pair Rxx(τ) 
and Sxx(ω) can exist, which are further explored in a later subsection. Here, the proof of Equation 
2.241 is obtained, which is very important in the analysis of random signals.

To prove Equation 2.241,

	 S R e d x x d e dxx xx
j jω τ τ σ σ τ σωτ ωτ

σ

( ) = ( ) = ( ) +( )














−

−∞

∞

−∞

∞
−∫ ∫

( )

ττ
τ−∞

∞

( )
∫ 	  (2.243)

Here, in order to clearly denote the integrals, the integration symbols are followed by subscripts 
(τ) and (σ), which stand for the integrations for variables τ and σ, respectively. In the following dis-
cussion, similar notations are used to indicate the specific integrations.

Note that x(σ) is the response of time variable σ, which can be expressed as the convolution of 
the forcing function f(σ) and the unit impulse response function h(σ), that is,

	 x f h dσ σ µ µ µ( ) = −( ) ( )
−∞

∞

∫ 	  (2.244)

Similarly,

	 x f h dσ τ σ µ τ µ µ+( ) = − +( ) ( )
−∞

∞

∫ 	  (2.245)
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Substituting Equations 2.244 and 2.245 into Equation 2.243 yields

S f h d f h dxx ω σ µ µ µ σ τ µ µ µ
µσ

( ) = −( ) ( )
















+ −( ) ( )
−∞

( )

∞

−∞
( )

∞

−∫∫ ∞∞

∞

−∞
( )

∞
−

( )
∫∫



























µ

σ τ
τ

ωτd dje  	 (2.246)

In order to denote clearly the two convolutions described in Equations 2.244 and 2.245, differ-
ent variables are used. Namely, for the first convolution integral, variable μ is used, whereas in the 
second convolution integral, variable ν replaces μ.	Such a replacement is only for, convenience of 
notation; in fact,

	 µ ν= 	 (2.247)

Now, using Equation 2.247 and realizing the functions [f(σ – μ)h(μ)] and [f(σ + τ – ν)h(ν)] are 
mutually independent,

	 	

f h d f h dσ µ µ µ σ τ ν ν ν
µσ ν

−( ) ( )












+ −( ) ( )
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(2.248)

Because μ = ν	from Equation 2.247, the terms within the braces in Equation 2.248 are rewritten as

	

f f d f f d

f f d

σ µ σ τ ν τ σ µ σ ν τ τ

σ µ σ µ τ τ

−( ) + −( ) = −( ) − +( )

= −( ) − +( )

−∞

∞

−∞

∞

∫ ∫

−−∞

∞

∫
= ( )Rff τ

	 (2.249)

Substituting Equation 2.249 into Equation 2.248 yields

	

S h h R d d e dxx ff
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µ ν τ ν µ

µ ντ

ωτ( ) = ( ) ( ) ( ){ }
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j

	  
(2.250)
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Inserting 1 = e–jωμejωμ between h(μ) and h(ν), Equation 2.250 can be written as

	

 R h e e h d d e d

R

ff
j j jτ µ ν ν µ τ

µ ντ

ωµ ωµ ωτ( ) ( ) ( )

=

( ) ( )( ) −∞

∞
−

−∞

∞

−∞

∞
−∫ ∫∫

fff
j j jh e d h e d e dτ µ µ ν ν τ

µ ντ

ωµ ωµ ωτ( ) ( ) ( )
( ) ( )( ) −∞

∞
−

−∞

∞

−∞

∞
−∫ ∫∫

	  

(2.251)

Note that

	  H h e djω µ µ
µ

ωµ( ) = ( )
−∞

∞
−

( )
∫ 	 (2.252)

and

	 H h e dj* ω ν νωµ

ν

( ) = ( )
−∞

∞

( )
∫ 	 (2.253)

Therefore

	 S R H H e dxx ff
jω τ ω ω τωτ

τ

( ) = ( ) ( ) ( ) −

−∞

∞

( )
∫ * 	 (2.254)

Furthermore,

	 H H Hω ω ω( ) ( ) = ( )* 2
	 (2.255)

Thus,

	 S H R e dxx ff
jω ω τ τωτ( ) = ( ) ( )

−∞

∞
−∫2

	 (2.256)

and Equation 2.241 is established. Thus,

	 S H Sxx ω ω ω( ) = ( ) ( )2
ff 	 (2.257)

Next, since the autocorrelation function is an even function of τ (see Equation 2.234), the autopower 
spectral density function must be real valued, although in general the Fourier transform of a signal x(t) 
is complex valued.

Furthermore, from Equation 2.234, it is proven that the autopower spectral density function must 
be an even function of ω. This is because

	 S R e d R e dxx xx
j

xx
jω τ τ τ τωτ ωτ( ) = ( ) = −( )−

−∞

∞
−

−∞

∞

∫ ∫ 	

	 = −( ) −( ) = −( )−( )
∞

−∞

∫ R e d Sxx
j

xxτ τ ωω τ 	 (2.258)
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Finally, from the above derivations, it is also realized that the autopower spectral density func-
tion must always be greater than zero. That is,

	 Sxx ω( ) ≥ 0 	 (2.259)

2.3.3.2.3 Physical Meaning of Autopower Spectral Density Function
In the above, the power spectral function was defined as the Fourier transform of the correlation 
function. Then, several important properties of the function were examined to emphasize the rela-
tionship between the correlation functions and the power spectral density functions. In the following 
discussion, the physical meaning of the power spectral density function is considered in more detail.

Recall Section 2.2, where it was noted that the existence of the Fourier transform of signal f(t) 
needs certain conditions. Recall the absolutely integrable condition,

	 f t dt( ) < ∞
−∞

∞

∫ 	 (2.260)

Then, the time domain signal f(t) can have its Fourier transform pair F(ω).
Now, from the theorem of multiplication, in Equation 2.146, let f2 = f1 = f. Then,

	 f t dt d d2 21
2

1
2( ) = ( ) ( ) = ( )

−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫π
ω ω ω

π
ω ωF F F* 	 (2.261)

Equation 2.261 is referred to as the Parseval equation. The left side of the equation stands for 
the total energy within the range of (– ∞, + ∞). On the right side of the equation, the term |F(ω)|2 is 
called the energy spectrum. In this sense, the Parseval theorem can be seen as the energy equation 
of signal f(t).

It is understandable that many engineering signals within the range of (– ∞, + ∞) have an infinite 
amount of energy; in addition, the condition in Equation 2.260 may often be violated. The sine 
function is a simple example of such signals. Random signals also often fall into such a category. To 
study the frequency components, an alternative approach must be used. For example, instead of the 
energy, the average power can be written as

	 lim
T T

T

T
f t dt

→∞ −
( )∫1

2
2 	 (2.262)

Now, assume that the signal f(t)|−T	≤	t	≤	T satisfies the Dirichlet conditions, so that it has the Fourier 
transform F(ω,T) written as

	 F ω ω ω,T f t e dt f t e dtT t T
j t j t

T

T

( ) = ( ) = ( )− ≤ ≤
−

−∞

∞
−

−∫ ∫ 	 (2.263)

The corresponding Fourier pair satisfies the Parseval energy equation, that is,

	 f t dt f t dt F T dT t T T t T
T

T
2 2 21

2( ) = ( ) = ( )− ≤ ≤
−∞

∞

− ≤ ≤
− −∞

∞

∫ ∫ ∫π
ω ω, 	 (2.264)
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Dividing by 2T on both sides of Equation 2.264, and letting T → ∞, results in

	 lim lim ,
T T

T

TT
f t dt

T
T d

→∞ − →∞−∞

∞

( ) = ( )∫ ∫1
2

1
2

1
2

2 2

π
ω ωF 	 (2.265)

It is seen that Equation 2.265 represents the energy density. In fact, the term inside the integration 
sign on the right side is the average power density function of the transient signal f(t), denoted by

	 S
T

T
T

ff Fω ω( ) = ( )
→∞

lim ,1
2

2 	 (2.266)

In Equation 2.266, the same symbol S( )( )⋅ ⋅  is used and the identical name of “power density func-
tion” is used as in Equation 2.237, where the concept of the power density function was introduced 
by using the Fourier transform of autocorrelation functions. To see the logic in this approach, the 
essence of Equation 2.266 is examined by further considering random signals, instead of transient 
signals. From now on, assume that the average power always exists, and for convenience, use xR(t) 
instead of f(t) in the remaining analysis, where xR(t) represents a stationary random process. As 
mentioned before, xR(t) is a collection of random signals xi(t). Thus, Equations 2.263 and 2.265 are 
written as follows:

	 X ω ω,T x t e dtR
j t

T

T

( ) = ( ) −

−∫ 	 (2.267)

	 lim ,
T

R
T

T

T
x t dt

T
T d

→∞ − −∞

∞

( ) = ( )∫ ∫1
2

1
2

1
2

2 2

π
ω ωX 	 (2.268)

where X(ω, T) is the Fourier transform of the random process xR(t)|−T	≤	t	≤	T.
Note that the integrations in Equations 2.267 and 2.268 are random. The limit of the mathemati-

cal expectation of the left term in Equation 2.267 is considered, which is the average power of the 
stationary process xR (t), written as

	 lim lim
T

R
T

T

T
RE

T
x t dt

T
E x t

→∞ − →∞
( )




















= ( ) ∫1

2
1

2
2 2








−∫ dt

T

T
	 (2.269)

Equation 2.269 is compared with the mean square value of the transient signal defined in 
Equation 2.212. It is seen that in Equation 2.212, x(t) is a deterministic signal, whereas in Equation 
2.269, xR(t) is a random process. Therefore, to study the power of xR(t), the statistical average is 
needed and the mathematical operation of expectation E[( )]⋅  is used. In addition, the integration 
range (0, T) in Equation 2.212 and (– T, T) in Equation 2.268 do not actually make an essential dif-
ference, especially for engineering signals. Therefore, Equation 2.269 implies that the average 
power of a stationary process equals the mean square value of that process. Additionally, the follow-
ing notation is possible:

	 lim
T

R
T

T
E

T
x t dt X

→∞ −
( )




















=∫1

2
2 2 	  (2.270)
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Furthermore, exchange the order of operations for the term on the right in Equation 2.268 and 
consider Equations 2.269 and 2.270. Then,

	 X2 = ( )



→∞−∞

∞

∫1
2

1
2

2

π
ω ωlim ,

T T
E T dX 	  (2.271)

Examining the integral function in Equation 2.271, and comparing it with Equation 2.266,

	 S
T

E Txx
T

ω ω( ) = ( )



→∞

lim ,1
2

2
X 	  (2.272)

where Sxx(ω) is the autopower spectral density function. Apparently, from Equation 2.272, Sxx(ω) is 
a real-valued, nonnegative function for the term |X(ω, T)|2, similar to the integrand in the integration 
operation of E[( )]⋅  that is real valued and nonnegative. However, up to now, the term defined in 
Equation 2.272 as well as in Equation 2.266 has been the power spectral density, which has been 
used to name the Fourier transform of the autocorrelation function (see the Wiener–Khintchine 
Equation 2.237).

To see the term defined in Equation 2.272 as the Fourier transform of the autocorrelation func-
tion, substitute Equation 2.267 into Equation 2.272. That is,

	
S

T
E x t e dt x t e dtxx

T
R

j t

T

T

R
j t

T

T
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(2.273)

Note that,

	 E x t x t R t tR R xx1 2 2 1( ) ( )  = −( ) 	  (2.274)

Substituting Equation 2.274 into Equation 2.273 yields

	 S
T

R t t e dt dtxx
T

xx
T

T
j t t

T

T
ω ω( ) = −( )







→∞ −

− −

− ∫∫lim ( )1
2 2 1 1 2

2 1 	  (2.275)

In Equation 2.275, let τ = t2 – t1. Then, finally,

	 S R e dxx xx
jω τ τωτ( ) = ( ) −

−∞

∞

∫ 	  (2.276)

Comparing Equation 2.276 with Equation 2.237, it is realized that the newly defined power spec-
tral function is indeed the autopower spectral function. In addition, the reason that the power spec-
tral density actually describes the statistics of the distribution of the frequency components of the 
stationary process xR(t) can be understood.

2.3.3.2.4 Cross-Power Spectral Density Function
Similar to the definition of the autopower spectral density function, the cross-power density spectral 
function had been defined in Equation 2.239. Particularly, R12(t) can be seen as the cross-correlation 
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function of the response x(t) and the forcing function f(t), both of which are random signals. 
Additionally, similar to the explanation of the physical meaning of the autopower spectral density 
function,

	 S
T

E T T
T

E T Txf
T T

ω ω ω ω ω( ) = −( ) ( )  = ( ) ( )
→∞ →∞

lim , , lim , ,*1
2

1
2

X F X F  	  (2.277)

Now, some important properties of the cross-power spectral density function are noted as follows:

 i. S Xxf fxω ω( ) = = ( )X F* *  (2.278)

 ii. Re ReS Sxf xfω ω( )  = −( )   (2.279)

  and

	 	 Im ImS Sxf xfω ω( )  = − −( )  	 (2.280)

 iii. S S Sxf xxω ω ω( ) ≤ ( ) ( )ff  (2.281)

In addition, the autopower and cross-power spectral functions can be used to extract the transfer 
function from a random excitation F(t) or random response xR(t) process. Using Equation 2.278 and 
replacing F by X, results in Sxx(ω) = X*X and it can be proven that
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S
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ω

ω
ω

ω
ω

( ) = ( )
( ) = ( )

( )ff
	  (2.282)

Suppose that the random forcing functions and responses are measured. Denote Fi(ω) and 
Xi(ω) as the Fourier transforms of the ith random forcing function fi(t) and response function 
xi(t), respectively. (Note that Fi(ω) and Xi(ω) always exist, because once fi(t) and xi(t) are mea-
sured, these become deterministic and have finite time duration.) Then, the calculated transfer 
function is
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i
ω

ω
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( ) = ( )
( )

X
F 	  (2.283)

By multiplying X*
i(ω) in both the numerator and the denominator on the right side of Equation 2.283,
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Suppose that the average of the power density functions Sx xi i and Sx fi i of the n sets of the mea-
sured response and forcing functions can approximate the power density function Sxx and Sxf. That 
is,
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	  (2.285)
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and

	 S
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Sxf x f
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1

	  (2.286)

The result is the second part of Equation 2.282. The first part of Equation 2.283 can be proven 
via a similar methodology.

Example 2.8

Suppose there is significant noise mixed with the measurement of the forcing function, whereas 
when the signal of the response is picked up, the noise can be ignored. This case can be shown 
graphically, as in Figure 2.16a.

When the autopower spectral density function of the measured force is used, it is realized that

	
F N F N F F N F F Nω ω ω ω ω ω ω ω ω ω( ) + ( )  ( ) + ( )  = ( ) ( ) + ( ) ( ) + ( ) + ( )* * * * ++ ( ) ( )

= ( ) + ( ) + ( ) + ( )

N N

ff nf fn nn

ω ω

ω ω ω ω

*

S S S S
	

Here, Sff(ω) and Snn(ω) are, respectively, the autocorrelation functions of the force and the 
noise, while Snf(ω) and Sfn(ω) are, respectively, the cross-correlation functions of the force and 
the noise.

In many cases, the noise N(ω) is not correlated with the forcing function and is not correlated 
with itself. Therefore, roughly,

	 S S Snf fn nnω ω ω( ) = ( ) = ( ) = 0 	

In this way, if the first part of Equation 2.282 is used to calculate the transfer function, the noise 
from the input sides can be eliminated, that is, with

	 H
S
S
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1 ω
ω
ω

( ) = ( )
( )ff

	 (2.287a)

F(ω)

F(ω) F(ω) + N(ω)

F(ω)

H(ω)

H(ω)

X(ω)

N(ω)

X(ω)

F(ω) + N(ω)N(ω)

(a)

(b)

+

+

FIGURE 2.16  Noises and transfer function calculation: (a) input with significant noise and (b) output with 
significant noise.
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If the measured response is contaminated with significant noise but the noise is relatively small 
from the input side, as in Figure 2.16b, then the second part of Equation 2.282 should be used to 
calculate the transfer function. Namely,

	 H
S
S
xx

xf
2 ω

ω
ω

( ) = ( )
( ) 	 (2.287b)

Similar to the first case of very large input noise, it can be proven that the noise from the output 
side will be greatly reduced by using [X(ω) + N(ω)][X(ω) + N(ω)]* to obtain Sxx(ω).

The above two equations represent the transfer functions. Subscripts 1 and 2 are used because 
in the literature, the computation of a transfer function that reduces input noise (see Figure 2.16a) 
is referred to as an H1 transfer function. On the other hand, the computation of a transfer function 
that reduces the output noise (see Figure 2.16b) is referred to as an H2 transfer function.

2.3.4  corrElation BEtwEEn forcing function and iMPulsE rEsPonsE function

In this subsection, the relationship between the Laplace transform of a temporal signal, which can be 
seen as a forcing function, is introduced, and the correlation functions between the forcing function 
and the unit impulse response function are examined. In this way, the essence of the Laplace variables 
and Laplace transform can be better understood, and the effect of damping can be further examined.

In Equation 2.154, the variable υ > 0 in many cases, which can be denoted as 

	
υ ξω= n

	
(2.288)

And the variable ω is now denoted as

	
ω ω= − d

	
(2.289)

In Equations 2.288 and 2.289, ξ, ωn and ωd can be seen as the damping ratio, natural and damped 
frequencies of a SDOF system. Thus, the Laplace transform of a temporal function that is seen as a 
general forcing function f(t) can be written as

	 � f t F s f t e dt f t e dtst j tn d( )  = ( ) = ( ) = ( )−
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− +( )∞
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	 (2.290)

Multiplying by ( )/( )e ms
d

− τ ω T on both sides of Equation 2.290 yields
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This operation is equivalent to making a time shift τ of the forcing function f(t). In addition, the 
operation in Equation 2.290 also divides the Laplace transform F(s) by the factor mωd.

Next, taking the complex conjugate of the above equation results in
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	 (2.292)
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Dividing both sides of Equations 2.291 and 2.292 by 2j and subtracting the resulting second 
equation from the first one yields
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From the previous section, it is known that the unit impulse response function with time shift τ,	
h t( )+ τ  of a linear SDOF vibration system (m-c-k) system can be written as,

	 h t e
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ω τ
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d
dsin 	

In Equation 2.293, the operation of subtraction causes the left side term in Equation 2.292 to be 
real valued. Thus, Equation 2.293, can be rewritten as
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Note that the term on the right side of Equation 2.293 is the cross-correlation function of f(t) and 
h(t + τ), denoted by Rfh(τ), Thus,
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	 (2.295)

Denote

	
α

ω
= 1

2jm Td 	
(2.296)

And note that, similar to the theorem of time shift for Fourier transform (see Equation 2.143), 
multiplying F(s) by e−sτ gives the Laplace transform of f(t − τ). Namely,

 
� �α τ α τ τ τf t f t R Rfh hf−( )  + −( )  = ( ) = −( )*

 
(2.297)

Furthermore, denote

 F s F ej( ) = 0
θ

 (2.298)
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Here F0 and θ are the real-valued amplitude and phase angle of the Laplace transform F(s). Both 
are functions of s, namely, the function of the eigenvalue λ of the SDOF vibration system described 
in Equation 1.2, namely,

	 − = = − ±s jλ ξω ωn d 	

and

	 F F0 0= ( )λ 	

	 θ θ λ= ( ) 	

With the help of Equation 2.298, the right side of Equation 2.297 becomes
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Therefore,
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Equation 2.300 implies that the cross-correlation function equals the amplitude of the corre-
sponding Laplace transform F(s) times a function, which has the identical form of the unit impulse 
response h(t), except with a phase shift θ. Here, θ is the phase of F(s).

It is also seen that such a correlation function, obtained through the above manipulation of the 
Laplace transform of the forcing function, is the product of two functions. The function sin(ωdτ + θ) 
is a sinusoidal function with the damped natural frequency ωd and the phase shift θ. The function 
e− ξω τn  makes a decaying envelope with respect to time τ. It is seen that as the damping ratio ξ 
increases, the decay occurs more quickly.

It is also known that when the Laplace variable s is chosen, there is always a corresponding SDOF 
system with the solution λ of its characteristic to be – s = – ξωn ± jωd. The impulse response function 
used above is exactly determined through this SDOF system.

The above discussion implies that the sum of the Laplace transform and its complex conjugate of 
a forcing function with time delay τ, denoted by f(t – τ) and a proportional factor α equals the cross 
correlation of an impulse response function h(t) of a SDOF system and the function of f(t − τ). Due 
to the aforementioned orthogonality of sine and cosine functions, it is seen that the correlation inte-
gration will eliminate all uncorrelated frequency components in f(t) and only the frequency equal 
to the natural frequency ωn of the SDOF system remains and the damping ratio of this system is ξ. 
Therefore, the operation of this correlation integral can be seen as a result of filtering by a SDOF 
system with eigenvalue λ. Thus, Equation 2.297 further implies that the Laplace transform of a 
signal f(t) can be seen as the filtered result through the corresponding SDOF systems, which act as 
a series of mechanical filters.

Example 2.9

Let the forcing function be a unit delta function δ(t), then

	 � δ t( )  = 1	
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Thus,

	 F0 1= 	

and

	 θ = 0 	

From Equation 2.300,
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This equation implies that the cross-correlation function of the unit impulse with a unit impulse 
response function is proportional to the unit impulse response function itself.

Example 2.10

Let the forcing function be a unit step u(t) and
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The above should be equal to Rfh(τ), which can be proven to have the following form:
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2.3.5  Basic aPProacH to dEaling witH randoM ViBrations

As a brief summary, the basic approach to dealing with random vibrations is averaging with proper 
methods. For example, both mean value and standard deviation are arithmetic averages in dealing 
with random variables; the correlation functions are averages of the products of two sets of signals 
taken from certain time points.

The main effort in averaging is the summation for discrete signals, or integration for continuous 
signals, which helps distinguish specific frequency components based on the orthogonality of the 
vibration signals. The summation and/or integration will also help eliminate unwanted noises and 
uncertainties and indicate the major trends of certain random sets.

2.4  EARTHQUAKE RESPONSES OF SDOF LINEAR SYSTEMS

As mentioned before, structural vibrations are excited by three types of forces, namely, periodic, 
transient, and random forcing functions. In this section, a special random excitation is discussed, the 
earthquake ground motion. Although this issue seems not exactly parallel to the three basic types 
of excitations, the purpose is to emphasize the importance of studying earthquake-induced vibra-
tion. The corresponding level of structural vibration is indeed the target of the control by using the 
supplemental dampers.

Earthquake ground motions, as well as the corresponding responses of structures, are ran-
dom processes, so their amplitudes are not deterministic. In addition, the excitation of earthquake 
ground motion is nonstationary random. Thus, even if the magnitude of the peak ground accelera-
tion (PGA) is specified, it is rather difficult to have a deterministic value of the structural responses. 
As mentioned before, due to the random nature of earthquakes, the response bound of a structure 
with bounded excitations cannot be determined.

However, for engineering designs and constructions, deterministic values are needed. For exam-
ple, the maximum possible amplitudes of earthquake-induced structural responses, such as forces 
and displacements, need to be known.

As mentioned in Section 2.3, the basic method to deal with random sets and random processes is 
averaging. And the average must follow certain rigorous rules. Through averages, uncertainties and/
or noises can be effectively rejected and special patterns embedded in those random signals can be 
found. Therefore, the rule of thumb in dealing with random signals, namely, averaging, should be 
used to find patterns of earthquake responses.

The introduction of the response spectrum is an ingenious method of averaging, which provides the 
response bounds with given excitation bounds. Note that since earthquake responses are a nonstationary, 
nonergodic process, temporal averaging cannot be used to find the response patterns.

The construction of the response spectrum is a special type of ensemble average. It is not an 
average at a specific time point as mentioned in Section 2.3, but rather it is the averages at specific 
frequency (period) points. The ensemble averages discussed in Section 2.3 are, in general, a func-
tion of time. Now, the new ensemble averages are a function of period, which is often specifically 
called a spectrum.

In this section, the special ensemble average is introduced and its applications in earthquake 
engineering are discussed.

2.4.1  rEsPonsE sPEctruM

In Chapter 1, it is shown that the load and the response can have a simple proportional relationship 
by using the concept of dynamic stiffness. However, in that case, the excitation is sinusoidal. In the 
above section, the case in which the excitation or forcing function is deterministic was discussed. In 
this case, the convolution integral can be used to determine the responses. For the topic of random 
excitation mentioned in this chapter, mathematical tools, such as correlation functions and power 
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spectral density function, were used to analyze the force and the response. Obtaining the structural 
responses has not yet been discussed.

Under earthquake loading, there cannot be an analytical relationship between the loading and 
the response, as in the case of harmonic excitation. Although the convolution integral can be used to 
obtain the response, the forcing function of the earthquake ground motion is unknown.

Furthermore, even under a given amplitude of earthquake loading, the amplitude of the 
response, in most cases, cannot be completely determined. Yet, to seek the deterministic relation-
ship between the input level and the structural response is a necessity in earthquake engineering. 
Consequently, the concept of the response spectrum has been developed and is widely used (e.g., 
see Chopra 2006).

In earthquake engineering, for design convenience, the input levels are often treated as determin-
istic, although the seismic ground motion is random. This is because although earthquake excitation 
is random, it is expected that the peak amplitude will not exceed a certain level under some statisti-
cal rules. Therefore, a table that lists the deterministic level is possible by having prior knowledge 
of the regional history of earthquakes and the site conditions. A more sophisticated table will also 
consider the importance of the structure to be designed. The specifics of how to obtain such a table 
is beyond the scope of this book. However, with this prior knowledge, it is possible to conclude that 
the earthquake considered during an aseismic design is bounded. The upper bound is the design 
earthquake level, e.g., 0.4 (g). By using the idea of a bounded forcing function, it can be stated that 
one of the major characteristics of aseismic design, especially for an earthquake protective system, 
is that under bounded input excitation, the output bound for the response of the system is very dif-
ficult to determine.

In the case of earthquake response of an SDOF system,

	 mx cx kx f mx�� � ��+ + = = − g 	  (2.301)

Note that x, �x, and ��x are relative displacement, velocity, and acceleration with units of (m), (m/s), 
and (m/s2), respectively, and ��xg is the ground acceleration with units of meters per square second, as 
mentioned previously.

Mathematically speaking, the amplitude, or the bound of the forcing function f, is taken as |m��xg| 
(N or kN) in Equation 2.301, where f is the earthquake loading. The bound of the response x, or the 
amplitude of x0, cannot be specified if f is random. Under any given earthquake record, it is not dif-
ficult to solve Equation 2.301 for the peak response. However, for any given earthquake record, the 
forcing function is no longer random. Therefore, even if all the available records are used as input, 
Equation 2.301 will not give the peak response because the “next” earthquake ground motion is 
unknown.

However, for a practical design of the structural capacity of earthquake resistance, engineers 
need to have deterministic numbers, not only in terms of the input level, but more importantly, in 
terms of the response amplitude. To meet this requirement, a methodology for using the design 
response spectrum was introduced by using existing records of various earthquakes to establish 
the upper bound of an SDOF system. Therefore, it can provide the needed force for design, if the 
structure to be built can be approximated by an SDOF system.

Specifically, the design response spectrum is generated in several steps. First, a proper group 
of earthquake records is selected. The selection is based on certain criteria, e.g., high peak value 
of ground acceleration (PGA) and/or velocity (PGV) and/or displacement (PGD). Other criteria 
include the duration of an earthquake, the distance of signal pickup to earthquake epicenter, specific 
site conditions, etc. For convenience, let the number of these records be N.

Second, these records are normalized or scaled to a standard level. For example, all of the records 
will have the same level of PGA. Since each record has different peak amplitude, unscaled records 
will not have uniform input levels. This is the main reason for record scaling. In earlier days, PGA 
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was often used for the scaling standard. However, many papers reported that PGA might not be a 
good factor, because peak acceleration might not directly relate to structural damage. In damping 
design, this statement must be carefully evaluated. In many cases, the use of additional dampers 
is intended to avoid serious damage to the structure. Note that structural damage may not only 
occur when large floor-drift happens, but may also occur in several other combinations of different 
responses. In this sense, using damage to a structure (which may occur during an earthquake with/
without supplemental damping) may not be a proper criterion.

Third, the scaled records are used as forcing functions to excite a series of SDOF systems. Each 
of the systems will have the governing equation described in Equation 2.301 with a fixed damping 
ratio and the natural frequency or period will be varied. Therefore, with any period Ti, the convolu-
tion integral can be used to compute the corresponding responses. In so doing, all the numbers of 
peak values of the responses, say, the displacements denoted by xij, can be obtained. Here, the first 
subscript i stands for the period Ti, while the second subscript j means that the response is calculated 
by using the jth record. By collecting all the data and plotting the results in Cartesian coordinates 
with the X-axis as the period and the Y-axis as the peak amplitudes, a group of response spectra can 
be obtained. Figure 2.17 shows such spectra under 11 records, whose amplitudes are all scaled to be 
0.4 (g) (Naeim and Kelly 1999, for these 11 records).

Fourth, at each period Ti, the mean value xi  and the standard deviation σi of these peak responses 
are computed. Here, subscript i stands for the statistics taken in accordance with the ith period Ti. 
The sum of xi + σi is taken as the raw data for the statistical response spectral value xi (m). That is,
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In Equation 2.302, N stands for the number of records used. In this way, all xi are positive, which are 
the functions of Ti, with reasonable resolution of Ti, and the response spectrum is obtained. Here, 
Ti is the ith natural period. Note that for convenience, subscript n is omitted from Tni here and in the 
following text.

Fifth, since all of the quantities xi form a nonsmooth curve, this result is not convenient to use. 
Therefore, further measurements are taken to smooth the curve, which may be the envelope of all xi 

or other measures, which are referred to as the design spectra.
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FIGURE 2.17  Earthquake response spectra, ξ = 5%.
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Recall the concept of ensemble average introduced in Section 2.3, which is an average of the 
random process at a specific time. The reason for using the ensemble average is that the random 
process is not ergodic. Now, it is seen that the earthquake responses are nonergodic so that the 
ensemble average is used instead of the temporal average. From Equation 2.302, index i implies that 
the average is taken when there is a fixed period Ti. That is, Equation 2.302 is actually an ensemble 
average of period, instead of time.

2.4.2  dEsign sPEctra

The dark line in Figure 2.17 is the design displacement response spectrum and is denoted by SD. The 
operation is rewritten to determine SD through a series of SDOF oscillators by statistical means in 
Equation 2.302 with appropriate earthquake records using the following notation:

	 x x S Ti i imax ��g D m∑( ) → ( ) ( )	 (2.303)

Here x imax  with the symbol “→” denotes that the spectral value SD is obtained through the maxi-
mum response of xi. The notation ��x ig  in the parentheses of x imax  indicates that the maximum response 
x imax  is obtained through many appropriate earthquake records, ��x ig ; Ti denotes that the value xi is 
taken from an SDOF system with this natural period, where

	 Ti
i

= 2π
ωn

	 (2.304)

where subscript i stands for the ith individual period.

In the notation for Equation 2.303, it is recognized that the displacement x imax  is obtained with a 
certain uniformly scaled method, e.g., by using the same amplitude of PGA. Since each earthquake 
record is scaled with units of (g), this operation is denoted as x imax 	/g.

The notation defined in Equation 2.303 is significant. It solves a mathematically unsolvable prob-
lem. That is, mathematically, it is impossible to determine the peak value of the response under a 
given level of earthquake excitations. In the following discussion, the spectral values of the design 
spectrum are often used, e.g., SD, to replace the statistical maxima xmax.

When the damping ratio is small, which is true for most structures without added dampers, the 
damping force is small when compared to the initial and restoring forces. Therefore, in Equation 
2.301, the damping force can be ignored and reduced to

	 mx kx mx�� ��+ = − g 	 (2.305)

Note that x and ��x in Equation 2.305 are relative displacement and acceleration, respectively. 
Meanwhile, the absolute acceleration is the sum of the relative and ground accelerations, that is,

	 �� �� ��x x xA g= + 	 (2.306)

Therefore, Equation 2.305 can be rewritten as

	 mx kx��A = − 	 (2.307)

or
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	 ��x k
m

x xA n= − = −ω2 	 (2.308)

Using Equation 2.308, the following relationship between the spectrum of absolute acceleration, 
denoted by SA, and the spectrum of the relative displacement, SD, can be obtained, that is,

	 S S
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n D

g
= ω2

	 (2.309)

or
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Note that SA is dimensionless. This is seen from Equation 2.310, where the input records are 
scaled with their amplitude and with units in (g). From Equation 2.310, if the spectrum of relative 
displacement is already calculated, the spectrum of absolute acceleration, SA, can be generated. In 
the procedure to obtain the acceleration spectrum, it is assumed that the damping force is zero, but 
it actually is not. A spectrum generated in this manner is called the pseudo spectrum. As a com-
parison, if the peak accelerations are computed directly from Equation 2.301, the real response 
spectrum can be obtained.

The variation of period in computing the response mentioned above can be seen as choosing 
different SDOF oscillators. Each has a different natural frequency or period. Figure 2.18b shows 
a series of pendulums used to represent this series of SDOF structures with these natural periods. 
The upper bound of the responses of this SDOF oscillator subjected to various earthquake ground 
motions with the uniform amplitude, say, 0.4 (g), is modified according to certain criteria and plot-
ted in Figure 2.18a, shown as three thick lines. The upper thick line represents the response spec-
trum with a 5% damping ratio for each oscillator. The middle one denotes a damping ratio of 7%, 
while the lower one denotes a damping ratio of 15%.

Period (sec)
(b)

(a)

T1 T2 T3 T4 T5 T6 T7 T8

Acceleration factor SA1, 5% Damping ratio
SA2, 7% Damping ratio
SA3, 15% Damping ratio

FIGURE 2.18  (a, b) Response spectrum.
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From Figure 2.17, it is seen that there are two methods to lower the acceleration. The first is to 
shift the period from shorter values to longer ones. From Equation 2.308, it is seen that to make 
the period longer, the static stiffness should be decreased. However, the resulting acceleration is 
thus smaller, which means that the dynamic stiffness of the acceleration becomes larger instead of 
smaller.

The second method is to increase the damping. From Figure 2.18, the three curves conceptually 
with damping ratios at 5%, 7%, and 15%, respectively, indicate that at any period, larger damping 
will provide a lower acceleration level.

In practical applications, the design response spectrum is used to determine, design accelerations 
in a special way. For example, in NEHRP 2003 and/or 2009 (BSSC 2003/2009), several design 
spectral response acceleration parameters were specified as follows:

First, the maximum considered earthquake spectral response acceleration for short periods, SMS, 
and that at 1 (s), SM1, are defined in Equations 2.311 and 2.312, respectively:

	 S F SMS a S= 	 (2.311)

and

	 S F SM v1 1= 	 (2.312)

where SS and S1 are the maximum considered earthquakes, 5% damped, spectral response accelera-
tions at a short period and at a period of 1 (s), respectively (i.e., see BSSC/NEHRP 2009, also see 
Figure 2.19). Here, Fa and Fv are site coefficients, which are defined in Tables 2.2A and B, respectively.

Note that the values of SS and S1 may not be listed in Tables 2.2A and B. Straight-line interpola-
tions are used for intermediate values. Also note that the symbol * denotes that site-specific geo-
technical investigations and dynamic site response analysis should be performed.

Next, the design spectral response acceleration parameters at short period SDS and at 1 (s) period 
SD1 (also refer to Figure 2.18) can be determined by

	 S SDS MS= 2
3 	 (2.313a)

	 S SD1 M= 2
3 1 	  (2.313b)

Spectral response acceleration SA

SDS

SD1

T0 Ts TL

Period T

SA
SD1

SD1

TL

T

T2

SA

1

=

=

FIGURE 2.19  Design response spectrum.
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When a design response spectrum is required by a design code (e.g., NEHRP 2009) and the 
site-specific procedures are not used, the design response spectrum curve shall be developed as 
indicated in Figure 2.19 and as follows:

 1. For periods less than or equal to T0, the design spectral response acceleration, SA, shall be 
taken as given by

	 S S
T

T SA
DS

DS= +0 6 0 4
0

. . 	  (2.314)

  Here, T0 is the period at which the increasing acceleration and constant acceleration regions 
of the response spectrum intersect.

 2. For periods greater than or equal to T0 and less than TS, the design spectral response 
acceleration, SA, shall be taken as equal to SDS. Here, TS is the period at which the constant 
acceleration and constant velocity regions of the response spectrum intersect.

 3. For periods greater than TS, but less than TL, the design spectral response acceleration, SA, 
shall be taken as given by

TABLE 2.2A
Values of Fa as a Function of Site Class and Mapped Short-Period Maximum 
Considered Earthquake Spectral Acceleration

Site Class SS ≤ 0.25 SS = 0.50 SS = 0.75 SS = 1.00 SS ≥1.25

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.2 1.2 1.1 1.0 1.0

D 1.6 1.4 1.2 1.1 1.0

E 2.5 1.7 1.2 0.9 0.9

F * * * * *

Source: NEHRP 2009.
Note: Use straight-line interpolation for intermediate values of SS.
*See Section 11.4.7 of NEHRP 2009

TABLE 2.2B
Values of Fv as a Function of Site Class and Mapped 1 Sec Maximum Considered 
Earthquake Spectral Acceleration

Site Class S1 ≤ 0.1 S1 = 0.2 S1 = 0.3 S1 = 0.4 S1 ≥ 0.5

A 0.8 0.8 0.8 0.8 0.8

B 1.0 1.0 1.0 1.0 1.0

C 1.7 1.6 1.5 1.4 1.3

D 2.4 2.0 1.8 1.6 1.5

E 3.5 3.2 2.8 2.4 2.4

F * * * * *

Source: NEHRP 2009.
Note: Use straight-line interpolation for intermediate values of S1.
*See Section 11.4.7 of NEHRP 2009
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	 S S
TA
D1= 	  (2.315)

  and TL is the period to denote the log-period transition (see Figure 2.19), which is deter-
mined through a regional approach (NEHRP 2009).

 4. For periods greater than TL, the design spectral response acceleration, SA, shall be taken as 
given by

	 S S T
TA
D1 L= 2 	  (2.316)

  Here

	 T S
S

s0
10 2= ( ). D

DS
	  (2.317)

  and

	 T S
S

sS
D1

DS
= ( )	  (2.318)

In the above, T, T0, TS, and TL are all expressed in units of (s). Equations 2.315 and 2.316 as well 
as Figure 2.19 provide the value of SA, which can be used to replace SDS and SD1 (NEHRP 2009) 
whenever the detailed response acceleration vs. structural period is necessary for more accurate 
designs.

Note that the design response spectrum is based on the earthquake responses of a series of 
linear SDOF systems. Therefore, it can be directly used for the damper design of linear SDOF 
systems. In addition, many codes use several SDOF systems to represent a multi-degree-of-
freedom (MDOF) system. In this circumstance, understanding the basic requirement of SDOF 
systems becomes the foundation of damper design. Problems and design errors of using linear 
or linearized SDOF systems to approximate general MDOF systems will be discussed in the 
next several chapters.

In the National Earthquake Hazards Reduction Program (NEHRP) recommended provisions 
for seismic regulations for new buildings and other structures (BSSC 2000, 2003, and/or 2009 
editions), the SDOF approach is classified into the category of an equivalent lateral force analysis 
procedure, although the multiple-story-single-period approach is also in the same category. It states 
that a structure to be designed with the equivalent lateral force analysis procedure should be sub-
jected to the following limitations:

 1. In the direction of interest, the damping system has at least two damping devices in each 
story, configured to resist torsion.

 2. The total effective damping of the fundamental mode, ξ, of the structure in the direction 
of interest is not greater than 35% of the critical damping.

 3. The seismic-force-resisting system does not have a vertical irregularity of Type 1a, 1b, 2, 
or 3 (see Table 2.3A) or a plan irregularity of Type 1a or 1b (see Table 2.3B).

 4. Floor diaphragms are rigid.
 5. The height of the structure above the base does not exceed 30 m.
 6. Peak dynamic response of the structure and elements of the damping system are confirmed 

by nonlinear time history analysis, when it is required that the structure be located at a site 
with S1 greater than 0.60.
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Note that in Table 2.4A, vs stands for the average shear wave velocity in the top 30 (m), su stands 
for the average undrained shear strength in the top 30 (m), N is the average field standard penetra-
tion test for the top 30 (m), PI is the plastic index (ASTM D4318-93), w is the percentage moisture 
content, Fa is the acceleration-based site coefficient at 0.3 (s), Fv is the velocity-based site coefficient 
at 1.0 (s), and H is the thickness of the soil.

The above is the qualitative description of how to select the design procedures. In a later sec-
tion on damper design for multiple-story-single-period systems, certain quantitative criteria for the 
selection of design procedures will be provided.

In addition, Table 2.3A and B only lists the irregularities associated with the weight (mass) and 
stiffness, which are sufficient for structural aseismic design, when the damping is comparatively 
very small. Therefore, they can be referred to as mass-stiffness irregularities. However, when a 
large amount of damping is added to the structure, the damping irregularity should also be consid-
ered. A detailed discussion is provided in Chapters 5 and 6.

NEHRP 2003 and 2009 have virtually identical tables as NEHRP 2000.

TABLE 2.3A
Vertical Structural Irregularities

Irregularity Type and Description Reference Sectiona

Seismicb Design 
Category 

Application

1a Stiffness Irregularity—soft story
A soft story is one in which the lateral stiffness is less than 70% of 
that in the story above or less than 80% of the average stiffness of 
the three stories above

4.4.1 D, E, and F

1b Stiffness Irregularity—extreme soft story
An extreme soft story is one in which the lateral stiffness is less 
than 60% of that in the story above or less than 70% of the 
average stiffness of the three stories above

4.3.1.5.1
4.4.1

E and F
D

2 Weight (Mass) Irregularity
Mass irregularity shall be considered to exist where the effective 
mass of any story is more than 150% of the effective mass of an 
adjacent story. A roof that is lighter than the floor below need not 
be considered

4.4.1 D, E, and F

3 Vertical Geometric Irregularity
Vertical geometric irregularity shall be considered to exist where 
the horizontal dimension of the later-force-resisting system in any 
story is more than 130% of that in an adjacent story

4.4.1 D, E, and F

4 In-Plan Discontinuity in Vertical Lateral-force-resisting Elements
An in-plan offset of the lateral-force-resisting elements greater 
than the length of those elements or a reduction in stiffness of the 
resisting elements in the story below

4.6.1.7
4.6.3.2

B, C, D, E, and F
D, E, and F

5 Discontinuity in Capacity—weak story
A weak story is one in which the story lateral strength is less than 
80% of that in the story above. The story strength is the total 
strength of all seismic-resisting elements shearing the story shear 
for the direction under consideration

4.3.1.5.1
4.6.1.6

E and F
B, C, and D

Source: NEHRP 2003/2009.
a The reference sections are referred to as in NEHRP 2003/2009.
b See Table 2.4A, the site class definitions.
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2.4.3  control factor for daMPEr dEsign: tHE BasE sHEar

For an SDOF system, the basic parameter to be controlled is the seismic base shear V, which should, 
however, not be less than the minimum base shear Vmin, where Vmin is determined as the greater of 
the following values:

	 V V
B

kNmin = ( )	  (2.319)

TABLE 2.3B
Plan Structural Irregularities

Irregularity Type and Description Reference Sectiona

Seismicb Design 
Category Application

1a Torsional Irregularity—to be considered when 
diaphragms are not flexible

Torsional irregularity shall be considered to exist when 
the maximum story drift, computed including 
accidental torsion, at one end of the structure 
transverse to an axis is more than 1.2 times the 
average of the story drifts at two ends of the structure

4.4.1
4.6.3.2

5.2.4.3 and
5.2.6.1

D, E, and F
D, E, and F

C, D, E, and F

1b Extreme Tortional Irregularity—to be considered 
when diaphragms are not flexible

Extreme torsional irregularity shall be considered to 
exist when the maximum story drift, computed 
including accidental torsion, at one end of the 
structure transverse to an axis is more than 1.4 times 
the average of the story drifts at two ends of the 
structure

4.3.1.5.1
4.4.1

4.6.3.2
5.2.4.3 and

5.2.6.1

E and F
D
D

C, D, E, and F

2 Reentrant Corners
Plan configuration of a structure and its lateral-force-
resisting system contain reentrant corners where both 
projections of the structure beyond a reentrant corner 
are greater than 15% of the plan dimension of the 
structure in the given direction

4.6.3.2 D, E, and F

3 Diaphragm Discontinuity
Diaphragms with abrupt discontinuities or variations in 
stiffness including those having cutout or open areas 
greater than 50% of the gross enclosed diaphragm 
area or changes in effective diaphragm stiffness of 
more than 50% from one story to the next

4.6.3.2 D, E, and F

4 Out-of-Plan Offsets
Discontinuities in a lateral force resistance path such as 
out-of-plan offsets of the vertical elements

4.6.1.7
4.6.3.2

B, C, D, E, and F
D, E, and F

5 Nonparallel Systems
The vertical lateral-force-resisting element is not 
parallel to or symmetric about the major orthogonal 
axes of the lateral-force-resisting system

4.4.2.2 C, D, E, and F

Source: NEHRP 2003/2009.
a The reference sections are referred to as in NEHRP 2003/2009.
b See Table 2.4A, the site class definition.
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	 V V kNmin .= ( )0 75 	  (2.320)

Here, B is the numerical damping coefficient, which is discussed in detail in Chapter 7. The base 
shear V, with units of (kN), in a given direction of the SDOF system is determined as follows:

	 V C w kN= ( )s 	  (2.321)

Here, Cs is called the elastic seismic coefficient, which is also called the seismic response 
coefficient. This is discussed in detail in a later paragraph. Furthermore, w is the total vertical 
load, that is,

	 w DL LL= + ( )κ kN 	  (2.322)

Here LL is the live load; κ is a proportional coefficient of LL; and the total dead load DL is

	 DL mg= ( )kN 	  (2.323)

where m is the total mass of the structure with units in (t), and applicable portions of other loads, 
κLL, are listed below (BSSC/NEHRP 2003):

 i. In areas used for storage, a minimum of 25% of the floor live load shall be applicable. Floor 
live load in public garages and open parking structures is not applicable.

 ii. Where an allowance for partition load is included in the floor load design, the actual partition 
weight or a minimum weight of 0.5 (kPa) of floor area, whichever is greater, shall be applicable.

TABLE 2.4A
Site Class Definitions

Site Descriptions

A Hard rock with measured shear wave velocity vs > 1,500 (m/s)

B Rock with 760 (m/s) < vs ≤ 1,500 (m/s)

C Very dense soil and soft rock with 360 (m/s) < vs ≤ 760 (m/s) or with either N > 50 or su > 100 (kPa)

D Stiff soil with 180 (m/s) < vs ≤ 360 (m/s) or with either 15 ≤ N ≤ 50 or 50 (kPa) ≤ su ≤ 100 (kPa)

E A soil profile with vs < 180 (m/s) or with either N < 15, su ≤ 50 (kPa) or any profile with more than 
3 (m) of soft clay defined as soil with PI > 20, w ≥ 40%, and su ≤ 25 (kPa)

F Soil requiring site-specific evaluations:
1.  Soil vulnerable to potential failure or collapse under seismic loading, such as liquefiable soil, 

quick and highly sensitive clays, and collapsible, weakly cemented soils. Exception: For 
structures having fundamental periods of vibration equal to or less than 0.5 (s), site-specific 
evaluations are not required to determine spectral accelerations for liquefiable soils. Rather, the 
site class may be determined in accordance with Section 3.5.2a and the corresponding values of 
Fa and Fv determined from Tables 3.3-1a and 3.3-2a

2.  Peats and/or highly organic clays (H > 3 (m) of peat and/or highly organic clay with H = thickness 
of soil)

3. Very high plasticity clays (H > 8 (m) with PI > 75)
4. Very thick soft/medium stiff clays (H > 36 (m) with su < 50 (kPa))

Source: NEHRP 2003/2009.
a Referred to NEHRP 2003/2009.
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 iii. Total operating weight of permanent equipment.
 iv. In areas where the design flat roof snow load does not exceed 1.4 (kPa), the effective snow 

load is permitted to be taken as zero. In areas where the design snow load is greater than 
1.4 (kPa) and where sitting and load duration conditions warrant and when approved by the 
authority having jurisdiction, the effective snow load is permitted to be reduced to not less 
than 20% of the design snow load.

Note that an MDOF system with order n can often be decomposed into n-SDOF systems. 
Therefore, the modal response for each mode may be computed by using the SDOF approach. In 
this way, Equation 2.322 can be rewritten as follows:

	 w DL LL kNj j j= + ( )κ 	 (2.324)

where wj is the load of the jth floor, with units of (kN), which is the combination of the total dead 
load DLj for the jth floor,

	 DL m g kNj j= ( )	 (2.325)

and applicable portions of other loads, κLLj (see above description of the live load LL). g is the grav-
ity (g = 9.8 (m/s2)) and mj is the jth lumped mass of the structure. In many cases, the modal mass, mj, 
can be calculated by the following relationship:

	 m w g tj j= ( )	  (2.326)

In Equation 2.321, the units of the base shear V and the weight w are identical, e.g., (kN). In this 
case, the term Cs is dimensionless. In the literature, the base shear can also be represented as

	 V S mg kN= ( )A 	  (2.327)

Note that again from Equation 2.326 in Equation 2.327, the spectral SA is dimensionless, that is,

	 S CA s= 	  (2.328)

In the following, both SA and Cs will be used. For the sake of simplicity, both will be referred to 
as the spectral accelerations.

Note that in Equation 2.322, Cs, the seismic response coefficient, shall be determined by

	 C S Is
DS=
R

	  (2.329)

where SDS is as defined previously, R is the response modification factor ranging from 1.25 to 8 
(BSSC/NEHRP 2009), and I is the occupancy importance factor ranging from 1.0 to 1.5 (BSSC/
NEHRP 2009).

The values of Cs need not exceed the following:

	 C S
T

Is
DI=
R

	  (2.330)

where SDI and T have been defined previously.
The values of Cs should also not be less than
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	 C ISs DS= 0 044. 	 (2.331)

In the USA, for structures in seismic design categories E and F, the value of Cs should not be 
less than

	 C S Is = 0 5 1.
R

	 (2.332)

where S1 is as defined previously. For a regular structure with five stories or less in height and having 
a period T being 0.5 (s) or less, the value of Cs shall be permitted to use values of 1.5 and 0.6, respec-
tively, for the mapped maximum considered earthquake spectral response accelerations, SS and S1.

Using Equations 2.329 through 2.332, one of the key issues is to determine the period. In many 
cases, the period of an SDOF system is less than TS and greater than T0, that is, the design response 
spectral acceleration SDS is constant, as is the base shear V. In this case, the design criterion recog-
nizes that by adding damping to a structure, the base shear V can be reduced. With the base shear as 
the only design parameter, it is seen that as more damping is added, the response of the base shear 
becomes smaller.

In the Guide Specifications for Seismic Isolation Design (AASHTO Interim 2000), the elastic 
seismic coefficient, Cs, has a simplified formula. This is because for base isolations, the “effective” 
period, Teff, of the system is always longer than TS. To make the AASHTO formula consistent within 
this context, it is written as

	 C AS
BT

i
s

eff
= 0 4. 	 (2.333)

However, if the damping effect cannot be ignored, then using the above approach may yield sig-
nificant errors. Therefore, if the damping is large, Equation 2.333 should be modified by multiplying 

by a modification factor, 1 4 2+ ξ  as

	 C AS
BT

i
s

eff
= +1 4 0 42ξ . 	 (2.334)

This additional factor will be notably greater than unity when the damping ratio is large.
In Equation 2.333, A is the acceleration coefficient, which can be found in building codes such 

as NEHRP 2009 (BSSC 2009), where

	 A S= DS

0 4.
	 (2.335)

For example, if the amplitude of the ground excitation SDS at short period is 0.4, A = 1, while if 
the amplitude of the ground excitation is 0.8, then A = 2.

Also in Equation 2.333, Si is the site coefficient. For example, Si specified by AASHTO is listed 
in Table 2.4B.

TABLE 2.4B
Site Coefficient

Soil Profile Type

I II III IV

Si 1.0 1.5 2.0 2.7

Source: AASHTO 2000.
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2.4.3.1  Spectral Accelerations and Displacement
In the above discussion, it is known that in earthquake engineering, the input force is random rather 
than sinusoidal. If only the amplitude, or the peak level of the input, is known then it is mathemati-
cally impossible to pinpoint the amplitude of the output. Therefore, to overcome this difficulty, the 
method involving design response spectrum is used. By means of statistical averaging, a sufficient 
number of random inputs are used, mostly real earthquake records, to find the peak value of a sys-
tem under seismic excitation. In so doing, if the natural period and the damping of a structure are 
known, then the amplitude of the absolute acceleration can be written as follows:

	 S C TA s= ( , )ξ 	 (2.336)

and the relative displacement can be determined from

	 S C T g T
D s m= ( ) ( ), ξ

π

2

24
	 (2.337)

Comparing Equations 2.336 and 2.337, it is seen that the relationship between the acceleration 
and the displacement is based on the zero-damping assumption described in Equations 2.309 and 
2.310.

In the following chapters, Equation 2.336 is improved and the necessity of using the factor 

1 4 2+ ξ  is shown.

Peak dynamic response of the structure and elements of the damping system are confirmed by 
nonlinear time history analysis, when it is required that the structure be located at a site with S1 
greater than 0.60.

2.5  SUMMARY

In this chapter, the focus was on forced vibration of SDOF systems under arbitrary loading, which 
can be classified as periodic, transient, and random excitations. In addition, earthquake ground 
motion is discussed as a special case of random dynamic loading. Understanding the concepts of 
dynamic responses of structures under random excitations is the foundation in considering the role 
of damping in vibration control. In the next two chapters, these concepts will be expanded to MDOF 
systems.
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3 Linear	Proportionally	
Damped	Multi-Degree-
of-Freedom	Systems

Practically speaking, most structures should be modeled as multi-degree-of-freedom (MDOF) sys-
tems. The basic idea to deal with an MDOF system is to decouple it into several SDOF systems. 
When the response is linear and the damping is either absent or proportional, which roughly means 
that the distribution of damping forces coincides with the restoring forces, the decoupling can be 
conducted in an n-dimensional modal space. Although such a treatment is not always practical, the 
study of proportionally damped systems can provide insight on how to handle general MDOF sys-
tems. In addition, most codes use this approach for aseismic designs. Furthermore, this chapter also 
offers important background information for the design of damped MDOF systems.

3.1  UNDAMPED MDOF SYSTEMS

To study the decoupling procedure for an MDOF system, an undamped system is considered, where 
the damping matrix is null. The basic idea in decoupling an MDOF system is to perform a linear 
transformation on the coefficient matrices to make them diagonal.

3.1.1  EigEn-ParaMEtErs of linEar undaMPEd systEMs 

3.1.1.1  Governing Equations
Similar to the SDOF systems discussed in Chapters 1 and 2, an MDOF system is also modeled 
by a set of second-order differential equations known as governing equations. A linear undamped 
MDOF system can have the following governing equation in matrix form:
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or, simply

	 M��x Kx 0t t( ) + ( ) =  (3.2)

Here M is the mass coefficient matrix and it must be symmetric, where

	 M =
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and mij is the ijth entry in matrix M; and n is the order of the MDOF system. In most cases, M is 
taken to be diagonal, instead of as described in Equation 3.3. Additionally, K is the stiffness coef-
ficient matrix, with

	

K =
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21 22 2n

n1 n2 nn...

 (3.4)

where kij is the ijth entry in matrix K. The stiffness matrix must also be symmetric, which can be 
guaranteed by the Maxwell reciprocal theorem.

In Equation 3.2, x is the displacement vector
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2

n

...
[ , ,..., ]x x xn

T
1 2  (3.5)

Here, xi denotes the displacement at the ith location; the superscript T denotes the vector or matrix 
transpose. Note that x and xi are time-dependent variables. However, the symbol (t) can be omitted, 
as in Equation 3.5, for convenience. In addition, ��x is the acceleration vector, which is the second 
derivative of x with respect to time t.

Similar, to SDOF systems, it is assumed that

	 x( )t e j t= u ω  (3.6)

and Equation 3.6 is substituted into Equation 3.2. In so doing, if Equation 3.6 is indeed one of the 
solutions of Equation 3.2, the natural frequencies of the MDOF systems can be found. In Equation 
3.6, u is an n	×	1 vector. Thus,

	 − + =ω ω ω2 0M Ku ue ej t j t  (3.7a)

or

	 − +( ) =ω2 0M K u  (3.7b)

since the term ejωt cannot be zero to allow both sides of Equation 3.7a to be divided by ejωt, Equation 
3.7b is obtained. Note that in Equation 3.7a, the temporal variable ejωt is present, whereas in Equation 
3.7b all terms are time invariant. Furthermore, it is realized that vector u denotes the amplitude of 
spatial displacement. Thus, the operation from Equation 3.7a into Equation 3.7b is often referred to 
as the separation of the temporal and spatial variables.

The resulting Equation 3.7b is a linear matrix equation. To ensure u is one of the possible nonzero 
solutions, the determinant of matrix (−ω2M	+	K) needs to be zero. That is,

	 det − +( ) =ω2 0M K  (3.8)

In Equation 3.8, M and K are known. Equation 3.8 offers a unique solution in general, and there 
can be n values of ω2. Thus, for each individual term ω2

i,
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	 − +( ) =ω i
2

iM K 0u  (3.9)

where the subscript i stands for the ith pair of vector ui and scalar ω2
i.

3.1.1.2  Modal Response of Free Vibrations
The vector ui can be determined by solving Equation 3.9. On having the terms of ω2

i and ui, the solu-
tion x can be determined. As mentioned above, subscript i is used to denote the ith possible solutions, 
that is, Equation 3.6 can be rewritten as

	 x i i
j te i= u ω

 (3.10)

From Equation 3.10, it is immediately seen that if Equation 3.10 is one of the possible solutions, 
then its complex conjugate

	 x i
* = −ui

j te iω
 (3.11)

must also be a possible solution. Thus, associated with ω2
i and ui, Equations 3.10 and 3.11 can be 

combined as

	 x i i i
j t

i i
j ta e b ei i= +u uω − ω 	 (3.12)

Here ai and bi are complex-valued scalars. Suppose ai is written as

	 a ji i i= +α β 	 (3.13)

where αi and βi are real-valued scalars, then it can be seen that

	 b a ji i i i= = −∗ α β 	 (3.14)

Now, using Euler’s formula,

	 x i i i i i i i i i i ia b a b A= +( ) ( ) −( ) ( )  = +( )cos t  + j sin t sin tω ω ω ϕu uii  (3.15)

where Ai is the scalar amplitude

	 A a bi i i i i= = +2 2 2 2α β 	 (3.16)

and φi is the phase angle

	 ϕ π
α
β

πϕi
1 i i

i i

1 i

i

j a b
a b

h hi i= ( )
−

+ = −






+− −tan tan
− +

ϕ 	 (3.17)

where hφi
 is a Heaviside function.

From Equation 3.15, it is seen that the ith vibration response is a combination of two portions. 
The first part is Aisin(ωit	+	φi), which is a temporal function and looks like an SDOF response. 
In Chapter 1, due to space constraints, when introducing free vibration of the SDOF system, the 
undamped response was not discussed. Here, this topic can be seen as a complementary item for the 
SDOF vibration. In a later section, it is shown that an MDOF system can indeed be represented by 
SDOF subsystems and Aisin(ωit	+	φi) defines the vibration status of the subsystem.

Each of the subsystems expressed by Aisin(ωit	+	φi) contains the amplitude Ai, frequency ωi, 
and phase angle φi. Among these three parameters, ωi is very important. The term ωi indicates that 
this subsystem will vibrate at this specific frequency, which is only determined by the mass M and 
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stiffness K, regardless of other factors such as external driving frequencies. Based on the concepts 
introduced in Chapter 1, such a frequency is nothing but the angular natural frequency or simply 
the natural frequency of this specific subsystem. Thus, ωi is relabeled as ωni in the following and 
this subsystem is referred as a vibration mode.

The second part of Equation 3.15 is ui, which provides information on how the vibration is dis-
tributed spatially. For example, suppose there is a 2-DOF system such that

	
x i

1i

2i
t

x t
x t

( ) =
( )
( )












=i 1 2 3, , ,…	 (3.18)

and

	
ui

1i

2i

u
u

=








=i 1 2 3, , ,…
	

(3.19)

Here, x1i and x2i are the displacement time history of the first and the second mass, while u1i and 
u2i are the first and the second amplitude of the displacement vector ui.

Using Equations 3.18 and 3.19, the vibration denoted by the temporal variable Aisin(ωnit + φi) is 
distributed to the first and second mass as

	 x A ii i ni i i1 1 1 2 3t  = sin t + u( ) ( ) =ω ϕ , , ,…	 (3.20)

and

	 x A ii i ni i i2 2 1 2 3t sin t + u( ) = ( ) =ω ϕ , , ,…	 (3.21)

Since the response xi(t) is only associated with ω2
ni and ui, it can be referred to as the vibration 

of the ith modal response. Here, ω2
ni and ui are called the ith modal parameters or specifically, the ith 

natural frequency and mode shape, respectively. In addition, the amplitude Ai is called the ith modal 
participating factor.

As a brief summary, the pair <ωni, ui > denote the ith vibration mode. Here, the way to obtain 
information about the ith mode is through the semidefinite method by first assuming Equation 3.6 to 
be one of the solutions of Equation 3.2 and by further separating the spatial and temporal variables 
described in Equations 3.7.

In Equations 3.20 and 3.21, the amplitude Ai and the phase angle φi should be determined by ini-
tial conditions. This issue is addressed in Section 1.1.2 on the topic of damped free-decay vibrations.

Note that since Equations 3.1 and 3.2 are linear, the total response can be obtained by summing 
over all the modal responses as

	 x t t A ti
i 1

n

i ni i i
i 1

n

( ) = ( ) = +( )
= =

∑ ∑x ω ϕ u 	 (3.22)

which is referred to as modal superposition.

3.1.1.3  General Eigen-Parameters
In the above discussion, it is seen that the modal response to calculate the total response is needed. 
To determine the modal response, the natural frequency and the mode shape must be known. In 
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addition to the semidefinite method described in Equation 3.6, a more systematic method to obtain 
these two modal parameters through eigen-decompositions is introduced.

In Equation 3.2, M and K are full rank matrices. Therefore, M−1, the inverse of M, exists. In 
this way, premultiplying M−1 on both sides of Equation 3.9 and rearranging these terms, results in

	 ωni
2

i iu u= ( )−M 1K 	 (3.23)

On the left side of Equation 3.23, a scalar ω2
ni times a vector ui is present. On the right side of 

Equation 3.23, an n × n matrix M−1K times the same vector ui exists. The resulting products must be 
equal, so this amounts to the so-called eigen-problem. That is, given an n × n square matrix, n pair 
of scalars and vectors can be found that satisfy Equation 3.10. The corresponding scalar is called 
the eigenvalue, while the vector is called the eigenvector. Writing these eigen-pairs for matrix M−1K 
in Equation 3.24, results in

	 ω ω ωn1
2

1 n2
2

2 nn
2

n 1 2u u u u u u, ,..., , ,...,  = ( ) ( ) ( )− − −M M M1 1 1K K K nn  	 (3.24)

which is rewritten as

	
U K U�2 1= ( )−M 	 (3.25)

Equation 3.25 is the eigen-problem in matrix form, where

	

�2 =





















=

ω
ω

ω

ω ω

n1
2

n2
2

nn
2

n1
2

0 ... 0
0 ... 0

...
0 0 ...

diag , nn2
2

nn
2,...,ω ( ) 	 (3.26)

is the eigenvalue matrix of M−1K. The square root of the ith entry of the eigenvalue matrix, ωni, is 
the ith natural frequency of this system.

Furthermore,

	 U =  u u u1 2, ,..., n 	 (3.27)

is the eigenvector matrix of M−1K.
Note that matrix M−1K is asymmetric in general, unless M	=	I. An asymmetric matrix can have 

complex-valued eigenvalues and eigenvectors. For comparison, a symmetric matrix will always 
have real-valued eigen-decompositions. However, the eigenvalues and eigenvectors of the specific 
matrix M−1K must be real valued.

It can be proven that all the column vectors, namely, the eigenvectors of U, can be linearly inde-
pendent, so that U is a full rank matrix. In the next subsection, the concept of linear independence is 
discussed in detail. Here, this property is only used to obtain the inverse of U. Postmultiplying U–1 on 
both sides of Equation 3.26 results in

	 U U K�2 1 1− −= M 	 (3.28)

Equation 3.28 implies that the square matrix M−1K is now decomposed into three matrices, 
namely, the eigenvector matrix U, the eigenvalue matrix Ω2, and the inverse of the eigenvector 
matrix, U−1. Thus, Equation 3.28 is referred to as the eigen-decomposition of M−1K.
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Example 3.1

Suppose a structure has the following mass and stiffness matrices. Find the eigenvalues and eigen-
vectors of the system.
  M	=	1000	diag([1.1, 1.2, 1.3, 1.4]) (t)

	

K =

−
− −

− −
−





















( )1000000

1 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

kN m

The eigenvalue matrix is calculated as
𝛀2	=	1000	diag([0.1016, 0.7914, 1.8446, 2.8051])
The eigenvector matrix is calculated as

	

U =

− − −
−

0 6503 0 6084 0 4734 0 3212
0 5776 0 0788 0 4872 0 6700
0 43

. . . .

. . . .

. 444 0 5257 0 3694 0 5941
0 2339 0 5893 0 6342 0 0383

. . .
. . . .

−
−



















The angular natural frequency is the square root of the eigenvalue matrix, that is,
Ω	=	diag([10.0821, 28.1318, 42.9489, 52.9635]) (rad/s)
The period matrix T is
T	=	diag([0.6232, 0.2233, 0.1463, 0.1186]) (s)

3.1.2  BriEf discussion of VEctors and MatricEs

The matrix form of the governing equations was given in the previous subsection, where the eigen-
decomposition of matrices to calculate the natural frequencies and mode shapes of the vibration sys-
tem were discussed. The physical meaning and essence of these mathematical tools are addressed in 
this subsection. The logic of the discussion dictates that the vector and vector space be considered 
first, and then the concepts of linear independence and orthonormal vectors and matrices are intro-
duced. Finally, the Rayleigh quotient, which provides the foundation for modal analysis and the 
physical meaning of the eigen-parameters, is discussed.

3.1.2.1  Vector
Suppose there is a nonzero n	×	1 column vector v and

	

v =



















v
v

v

1

2

n

...
	 (3.29a)

where vi is the ith element. The transpose of v, vT, is another type of vector, an n	×	1 row vector. The 
superscript T denotes the vector or matrix transpose,

	 vT
nv v v= [ ]1 2, ,...., 	 (3.29b)
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3.1.2.2  Vector Norm
A scalar α can always be found such that

	 u v= α 	 (3.30)

and

	 u uT = 1 	 (3.31)

In Equation 3.30, the scalar α can be calculated as

	

α = =












=1
 

1

[v ,...,v ]
v

v

1
v +,... +vT

1 n

1

n

1
2

n
2v v

...
,

	 (3.32)

This can be seen by substituting Equations 3.32 and 3.30 into uTu. That is,

	
u u v v v v

v v
T T

T

T= = =α2 1 	 (3.33)

When case v is used as one of the eigenvectors of an MDOF vibration system, αv will also be an 
eigenvector associated with the identical eigenvalue. That is, the eigenvector v can be normalized 
by multiplying an arbitrary scalar α.	Or, it can be said that the normalization is arbitrary. However, 
Equation 3.32 defines a special normalization, such that the vector satisfies Equation 3.31. In the 
literature, α is called the Euclidian norm or 2-norm of vector v, which is a measurement of the 
“length” of the vector. Thus, α is also referred to as the Euclidian length or simply the length of 
vector v. Figure 3.1 shows the geometric meaning of such a normalization for a 2-DOF vibration 
system, in this case the dimension of v is 2, so that

	
v =









v
v

1

2

	 (3.34)

Bv

2 2
1 2v v+

1

0
2u  

u1

v1

Av

Bu

Au

v2
θ

X 

X�

YY�

u
v

v�

u�

FIGURE 3.1  Vector and vector length.
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From Figure 3.1, it is seen that if

	 u v= =








α
u
u

1

2
	 (3.35)

then

	 u v
v v

1
1

1
2

2
2

=
+

= cosθ 	 (3.36a)

and

	 u v
v v

2
2

1
2

2
2

=
+

= sin θ 	 (3.36b)

In Figure 3.1, vector v is represented by 0-Bv with the horizontal component v1(0-Av) and vertical 
component v2(Av-Bv). The vector has a magnitude v v1

2
2
2+ , which can be represented by the length 

(0-Av). When the vector is divided by v v1
2

2
2+ , a new vector u is formed, which has the same direc-

tion as v, but the length becomes 1. It has a horizontal component u1 and a vertical component u2, 
which can be calculated through Equations 3.36a and b. In addition,

	 θ = −tan 1 v
v

1

2
	 (3.37)

3.1.2.3  Orthonormal Vectors
Two vectors wi and wj are said to be orthogonal if their inner product is zero. That is,

	 w wi
T

j = 0 	 (3.38)

Two vectors, vi and vj, are said to be orthonormal, if

	 v vi
T

j =
=

≠







1

0

,

,

i j

i j
	 (3.39)

In Figure 3.1, v and v⊥ are such orthonormal vectors, which means that v is perpendicular to v⊥ 
and both vectors have a unit length.

A square matrix W is said to be orthogonal, if any two of its columns satisfy Equation 3.38. 
Furthermore, a square matrix V is said to be orthonormal if any two of its columns satisfy Equation 3.39.

It is seen that

	 V V VV IT T= = 	 (3.40)

and

	 V VT = −1	 (3.41)

3.1.2.4  Unit Vector
An n	×	1 unit vector ei has all its elements equal to zero except the ith element, which is equal to ith 
unity. That is,

	
e i

T
i

0, 0...., 0, 1, 0,..., 0= 





T
	 (3.42)
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An identity matrix I has its columns (rows) arranged as a combination of n	×	1 (1	×	n) unit vectors as

	 I = e e e1 2, n, ,…[ ] 	 (3.43)

For an arbitrary nonzero vector v, an orthonormal matrix V can always be found such that

	 VTv e= α i 	 (3.44)

where α is the norm of vector v.

Example 3.2

For n	=	2, v can be described by Equation 3.34. Thus,

	

V =
−







 =

+
−

+

+ +





u1 2

2 1

1

1
2

2
2

2

1
2

2
2

2

1
2

2
2

1

1
2

2
2

u
u u

v
v v

v
v v

v
v v

v
v v
















=
−









cos sin
sin cos

θ θ
θ θ 	 (3.45)

Equation 3.44 becomes

	

VT

1

1
2

2
2 1

2

1
2

2
2 2

2

1
2

2
2 1

1

1
2

2
2 2

v
v v

v v
v v

v

v
v v

v v
v v

v
v =

+
+

+

−
+

+
+





















=








=α α
1
0 1e 	 (3.46)

It is also seen that

	

V V

V V
1 2

2 1

1

1
2

2
2 1

2

1
2

2
2 2

2

1
2

2

v
v v

v v
v v

v

v
v v

−


















=
+

−
+

+

T v
v
1

2
22 1

1

1
2

2
2 2v v

v v
v+

+





















=








=α α
0
1 2e 	 (3.47)

From Figure 3.1, it is realized that premultiplying the transpose of the orthonormal matrix, 
namely, V T on v, implies the rotation of the Cartesian coordinate x-y into x′-y′, that is,

	
x'
y'

cos sin
sin cos

x
y









=


















θ θ
θ θ−

	 (3.48)

Furthermore, it is seen that any n	×	1 vector v	=	[v1, v2, … , vn]T can be represented by a linear 
combination of the unit vectors e1, e2, … , en. That is,

	 v e e e= + + +a a an n1 1 2 2 … 	 (3.49)

Equation 3.44 is valid by simply letting a1	=	v1, a2	=	v2, … , an	=	vn, in Equation 3.49.
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3.1.2.5  Vector Space
In Equation 3.33, there are n vectors ei that are used to represent vector v, which raises a question 
of how many vectors are actually needed to represent an n	×	1 vector. Alternatively, the question 
may be posed from a different angle, i.e., how many eigenvectors are sufficient to represent the 
structural response of an n-DOF system. To answer this question, the set of all possible n	×	1 real-
valued vectors are considered and the set is referred to as a real-valued vector space. In addition, 
all the complex-valued n	×	1 vectors are included, as a generalized complex-valued vector space. 
Apparently, the latter space covers the former. It is seen that the dimension of the vector space is n. 
Note that n is a limited number.

For scalars a and b, it is seen that if u and v are vectors in such a vector space, then

	 a a a( )u v u v+ = + 	 (3.50)

	 (a b) a b+ = +u u u 	 (3.51)

	 a b ab)( ) (u u= 	 (3.52)

and

	 1u u= 	 (3.53)

The n	×	1 vector space can be seen as the space that contains all the possible solutions of ui for the 
homogeneous Equation 3.9 or all the possible eigenvectors in Equation 3.23 for arbitrary M and K.

3.1.2.6  Linear Independence
Suppose there are two n × 1 vectors v and u. If

	 v u= b 	 (3.54)

where b is a nonzero scalar, then v and u are linearly dependent. In other words, v can be repre-
sented by u. If Equation 3.54 does not hold for v and u, these two vectors are linearly independent. 
For example, if n = 2, and Equation 3.54 holds, geometrically, v and u are parallel. Otherwise, they 
are not parallel, in which case, if an orthonormal matrix V operates on v such that V Tv = bei, then 
the same matrix cannot make “V Tu = aei”, where a is a scalar. This fact can easily be seen from 
Equation 3.54.

A set of n × 1 vectors ui are linearly dependent if n scalars b1, b2, … , bn exist and are not all zero, 
such that

	 b b bn n1 1 2 2u u u+ + =� 0 	 (3.55)

where 0 is a null n × 1 vector. If Equation 3.55 does not hold, then the set of ui are linearly indepen-
dent. In this case, the linear combination of all ui will be a nonzero vector v, that is,

	 b b bn n1 1 2 2u u u v+ + =� 	 (3.56)

Equation 3.56 implies that the vector v is now represented by at most n linearly independent vec-
tors. Compared with Equation 3.49, where v is represented by n unit vectors ei, it can be seen that 
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the n unit vectors ei are linearly independent. Thus, a set of scalars bi, not all zero, cannot be found 
to invalidate the relationship:

	 b b bn n1 1 2 2 0e e e+ + ≠� 	 (3.57)

In fact, Equation 3.57 is equivalent to

	

e e e1 2,

b
b

b

b
b

b

1

2

n

1

2

n

, ,
... ...

… n[ ]


















=

















I



=



















≠

b
b

b

1

2

n

...
0 	 (3.58)

Since the n unit vectors ei can represent any n × 1 vectors with proper linear combinations, 
they are called the base in the n-dimensional vector space. Of course, the set of base vectors is not 
unique. If Equation 3.55 holds, the n unit vectors ui can also be used to represent any n × 1 vectors 
with proper linear combinations. Thus, ui also forms a base in the n-dimensional vector space.

It can be proven that if a square matrix A has all its column vectors independent, then this matrix 
is full rank, or

	 rank nA( ) = 	 (3.59)

which is equivalent to

	 det 0A( ) ≠ 	 (3.60)

In this case, A is nonsingular and A−1 exists.
Solving the following linear equations, the set of scalar bi can be found to represent an n × 1 vec-

tor v	=	[v1, v2, … , vn]T. The linear equations can be written as

	

u u u1 2

1

2

1

2, , ,
... ...

… n

n n

b
b

b

v
v

v

[ ]


















=



















	 (3.61)

That is, since these ui are linearly independent, [u1, u2, … , un] has an inverse matrix [u1, u2, … , un]−1. 
Thus, [u1, u2, …, un]−1 can be multiplied on both sides of Equation 3.61, such that

	

b
b

b

v
v

vn

n

n

1

2
1 2

1

1

2

...
, , ,

...



















= [ ]












−u u u…





	 (3.62)

Thus, u1, u2, … , un can also be used as the base. Comparing these vectors with e1, e2, … , en, it is 
seen that ei are more convenient to use, because ei vectors are orthonormal. Note that a set of n 
orthogonal vectors are not necessarily ei. For example, in the 2-dimensional vector space, the two 
columns of matrix V expressed in Equation 3.45 are also orthonomal.
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3.1.3  syMMEtric Matrix and raylEigH quotiEnt

3.1.3.1  Eigen-Parameters of Symmetric Matrices
In the eigen-problem described in Equation 3.23, if all the possible eigenvectors are normalized so 
that their Euclidian length is unity, then this set may or may not be orthogonal. This is because the 
eigenvectors are not necessarily perpendicular to each other. For example, two eigenvectors u1 and 
u2 are written as

	 u e e1 1 1 1 2= +a b 	 (3.63)

and

	 u e e2 2 1 3 3= +a c 	 (3.64)

where a1, a2, b1, and c3 are nonzero scalars.
It is apparent that

	 u u1 2≠ a 	 (3.65)

Therefore, u1 and u2 are linearly independent. However,

	 u u1 2 1 2 0T = ≠a a 	 (3.66)

Thus, they are not orthogonal. It is inconvenient to use linearly independent but nonorthogonal 
vectors, since the simple criterion described in Equation 3.38 cannot be used. The matrix product 
M−1K is often asymmetric and its eigenvector matrix, from now on denoted specifically by U, is not 
orthogonal in general. Thus, U cannot be made orthonormal in general. 

On the other hand, if a square matrix K is symmetric, that is

	 K K= T 	 (3.67)

then all of its eigenvectors will be orthogonal to each other. In addition, all of its eigenvalues will 
be real valued. The symbols VK and ΛK are used to denote the corresponding eigenvector and eigen-
value matrix, respectively. That is,

	 K V V= K K K
TΛ 	 (3.68)

or

	 V KVK K K
T = Λ 	 (3.69)

Here, VK is the orthonormal eigenvector matrix, which satisfies Equation 3.40 and 3.41. The 
condition of forming a symmetric matrix is not very difficult to realize for the structural dynamics 
problem. This is because both the mass and the stiffness matrices are symmetric. However, since the 
eigenvector matrix U of M−1K is often not orthogonal in general, a method to construct a symmetric 
matrix that provides the identical eigenvalues as the matrix M−1K and orthonormal eigenvectors 
needs to be found for convenience.

Before further exploring the eigen-problem of a symmetric matrix, a notation for M1/2 is intro-
duced. Note that the square matrix M can have an eigen-decomposition as

	 M V V= M MΛ M
T 	 (3.70)
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Here, VM is the orthonormal eigenvector matrix, which satisfies Equation 3.40 as well as Equation 
3.41. Matrix ΛM provides the eigenvalues of M, where

	
ΛM M1 M2 Mndiag , ,...,= [ ]( )λ λ λ 	 (3.71)

in which λMi is the ith eigenvalue of M. Now, M1/2 can be calculated as follows:

	 M V V1 2 1 2/ /= M MΛ M
T 	 (3.72)

Since ΛM is diagonal,

	
Λ M

1 2/ =  ( )diag , ,...,M1 M2 Mnλ λ λ 	 (3.73)

Furthermore,

	 M V V− −=1 2 1 2/ /
MΛ M M

T 	 (3.74)

and

	 M M I1 2 1 2/ /− = 	 (3.75)

Note also that

	 M M M1 2 1 2/ / =

Now, premultiplying M1/2 and postmultiplying M−1/2 on both sides of Equation 3.28, the follow-
ing form results:

	 M U U M M M KM M KM1 2 2 1 1 2 1 2 1 1 2 1 2 1 2/ / / / / /� − − − − − − = = 	 (3.76)

Denote

	 V M U= 1 2/ 	 (3.77)

so that

	 V U M− − −1 1 1 2= / 	 (3.78)

Therefore,

	 V V K�2 1 1 2 1 2− − −= M M/ / 	 (3.79)

Equation 3.79 implies that matrix M−1/2 K M−1/2 can have an eigen-decomposition with eigenvec-
tor and eigenvalue matrices V and Ω2, respectively. Since K is symmetric, it is easy to see that
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	 ( )/ / / /M KM M KM− − − −=1 2 1 2 1 2 1 2T 	 (3.80)

That is, matrix M−1/2KM−1/2 is symmetric, so the eigenvector matrix V is orthogonal and can be 
normalized to be orthonormal. In the following discussion, the notation K~ is used, where

	 �K = − −M KM1 2 1 2/ / 	 (3.81)

to denote this symmetric matrix and is called the generalized stiffness matrix. In the following, 
V is used to denote the orthonomal eigenvector matrix. Thus,

	 V U M V U M− − −= = =1 1 1 2 1 2/ /T T 	 (3.82)

3.1.3.2  Rayleigh Quotient
The famous Rayleigh quotient is discussed next, which is the foundation of modal analysis that, in 
turn, is currently the basic tool used in damper design for civil engineering structures.

First, since the eigenvector V described in Equation 3.82 is orthonormal, thus satisfies VT V	=	I,

	 U M M U U MU IT T1 2 1 2/ / = = 	 (3.83)

Furthermore,

	 U KUT = �2
	 (3.84)

Note that in Equation 3.82, the eigenvector matrix V is assumed to be orthonormal. In fact, the 
eigenvector can indeed be made orthonormal with proper normalization by letting the Euclidian 
length of each column vector be unity. On the other hand, each column of the eigenvector matrix 
can be multiplied by an arbitrary nonzero scalar, so that the resulting eigenvector matrix is no longer 
orthonormal though it is still orthogonal. In this case, according to Equation 3.77, the eigenvector 
matrix U of M−1K will be affected, and thus Equations 3.83 and 3.84 will not hold. In this circum-
stance, there will be more general formulas.

	
U MUT

ndiag , , ..., = [ ]( )µ µ µ1 2 	 (3.85)

and

	
U KUT

ndiag , , ..., = [ ]( )κ κ κ1 2 	 (3.86)

where μi and κi are modal mass and modal stiffness quantities, respectively, with their values altered 
by different normalizations of the eigenvectors in U. However, their ratio is always fixed, such that

	

κ
µ

ωi

i
ni
2 i 1, 2, , n= = … 	 (3.87)

Now, Equations 3.85 through 3.87 are rewritten by considering each eigenvalue–eigenvector pair 
one by one. That is, since

	 U = [ ]u u u1 2, , ,…  n 	 (3.88)
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results in

	 u ui
TM i i i 1, 2, , n= = …µ , 	 (3.89)

	 u ui
T

i i i 1, 2, , nK = = …κ , 	 (3.90)

and

	

u u
u u

i
T

i

1
T

i

i

i
ni
2K

M
= =κ

µ
ω 	 (3.91)

Equation 3.91 represents a quotient of two vector-matrix products. The value of the quotient is a 
scalar, which is one of the eigenvalues of the M-K system. Suppose the vector in Equation 3.91 is 
an arbitrary vector v instead of one of the eigenvectors ui. A scalar quotient still exists, denoted by 
R(v), which is named the Rayleigh quotient. That is,

	
R v v v

v v
( ) =

T

T
K
M

	 (3.92)

It can be seen that when the vector v is taken to be one of the eigenvectors, the Rayleigh quotient 
will become the corresponding eigenvalue.

The ratios of the Rayleigh quotient and eigenvalues of a 2-DOF system are plotted. Figure 3.2a 
shows a comparison with the first eigenvalue, while Figure 3.2b shows the second eigenvalue. The 
X-axis represents an index of selection for the vectors. Each selection is the corresponding eigen-
vector with length 1, plus a random vector. At x	=	50, the random vector is null. The length of the 
random vectors selected then increases as one moves away from x	=	50, such that finally at x	=	1 
and x	=	100, the random component will have a length of 1/2 of the eigenvector. In addition, since 
the selection is random, Equation 3.92 is evaluated 100 times for both plots in Figure 3.2a and b and 
the average of the resulting Rayleigh quotient is obtained. From Figure 3.2a, it is seen that the closer 
v is to the actual eigenvector, the smaller the value of the Rayleigh quotient will be, until the ratio 
reaches 1, which is the point at which the vector equals the first eigenvector. Thus, it is seen that 
in this example, the Rayleigh quotient is the minimum, which coincides with the first eigenvalue. 
On the other hand, from Figure 3.2b, the Rayleigh quotient will be the maximum, which equals the 
second eigenvalue.

This example is not a coincidence. In fact, it can be shown that for an n-DOF system, when 
the vector is chosen to be the eigenvector of the first mode, the corresponding Rayleigh quotient 
becomes equal to the first eigenvalue and will be the minimum among all the possible quotients. On 
the other hand, when the vector is chosen to be the eigenvector of the highest mode, the correspond-
ing Rayleigh quotient becomes the largest eigenvalue and will be the maximum among all the pos-
sible quotients. In addition, in each instance when an eigenvector is chosen, the Rayleigh quotient 
will have a stationary value, which is exactly the same as the corresponding eigenvalue.

Example 3.3

Prove that the Rayleigh quotient

	
R v

v v
v v

( ) =
T

T  
�K 	 (3.93)
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reaches a stationary value when v becomes one of the eigenvalues of the symmetric matrix K
~ 

 and 
the value of the Rayleigh quotient is the corresponding eigenvalue.

Taking the partial derivative of R(v) with respect to each element of v	=	[v1, v2, … , vn]T yields

	

∂ ( )
∂

=
( ) −

( )
= …

R v v v v v v

v vv
v

i 1, 2, , n
i

T
i

T
i

T

( ) ( )2 2
2

� �K K
 (3.94)

Here

	
� …Ki i1 in ink k k= [ ], , 	 (3.95)

and kij is the ijth entry of matrix K
~
. Letting

	

∂ ( )
∂

= = …
R v
vi

i 1, 2, , n0, 	 (3.96)

and rewriting Equation 3.94 into matrix form results in

	
�Kv v v− =R( ) 0	 (3.97)

or
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FIGURE 3.2  Ratio of Rayleigh quotient and eigenvalues (a) first order and (b) second order.



Linear	Proportionally	Damped	Multi-Degree-of-Freedom	Systems	 159

	 R( )v v v= �K  	 (3.98)

From Equation 3.97, it is clear that R(v) and v are one of the eigenvalue–eigenvector pairs of 
matrix K

~ 
.

3.2  PROPORTIONALLY DAMPED MDOF SYSTEMS

In this section, the Rayleigh quotient is considered as a means of decoupling the proportionally 
damped MDOF systems, which is often referred to as classic modal analysis or normal modal 
analysis.

3.2.1  Modal analysis and dEcouPling ProcEdurE

3.2.1.1  Governing Equation of Damped MDOF Systems
Linear proportionally damped MDOF systems are often used to model a structure for damper 
design. Using normal mode analysis, the n-DOF system can be decoupled into n-SDOF subsystems, 
which are much easier to handle and more familiar to structural engineers. The decoupling proce-
dure is examined in this section. In the previous section, a monic form with symmetric damping and 
stiffness matrices was used to study the eigen-problem of the MDOF systems. Under earthquake 
excitation, more generally, the governing equation of motion for MDOF is rewritten as

	 M C K M�� � ��x x x Jxt t t tg( ) + ( ) + ( ) = − ( ) 	 (3.99)

That is, similar to Equation 1.59, the force in Equation 3.99 is written as

	 f Jt( ) = − ( )M  x tg�� 	 (3.100)

where

	 J = { } ×1 1n 	 (3.101)

is a unit vector, known as the input vector.
It can be proven that the damping is proportional, if and only if the following defined Caughey 

criterion holds:

	 C CM K KM− −=1 1 	 (3.102)

In other words, the matrices M−1K and M−1C share the identical eigenvector matrix U. Therefore, 
for a proportionally damped system, the eigenvector matrix U is necessary to make the matrices M, 
C, and K simultaneously diagonal. Similar to the case described in Equations 3.85 and 3.86, damp-
ing must be considered. That is,

	 U MUT
idiag( ), i 1, 2, , n= = …µ 	 (3.103)

	 U CUT
idiag( ), i 1, 2, , n= = …χ 	 (3.104)
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and

	 U KUT
idiag( ), i 1, 2, , n= = …κ 	 (3.105)

The eigenvector U defined in Equations 3.103 through 3.105 is also the mode shape matrix of the 
proportionally damped system. Similar to the undamped case, matrix U is now said to be orthogo-
nal with respect to the weighting matrices M, C, and K, for

	 u ui
TM i i i 1, 2, , n= = …µ , 	 (3.106)

	 u ui
TC i i i 1, 2, , n= = …χ ,  (3.107)

and

	 u ui
TK i i i 1, 2, , n= = …κ , 	 (3.108)

Here, μi, χi, and κi are referred to as the ith modal mass, modal damping, and modal stiffness 
coefficient, respectively. From Equations 3.106 through 3.108, it is realized that

	 µ i > 0 	 (3.109)

	 κ i > 0 	 (3.110)

and

	 χi ≥ 0 	 (3.111)

Note that the mode shape vector is not unique. That is, if ui is the ith mode shape of a system, then 
an alternative mode shape ui exists, where

	 u ui i i= α 	 (3.112)

Here αi is the generic normalization factor or proportionality factor, such that

	 u ui
T

iM 1= 	 (3.113)

In addition

	 u vi = −M 1 2/
i 	 (3.114)

where 𝛎i is the ith orthonormal eigenvector of M−1/2KM1/2 described in Equation 3.79.

3.2.1.2  Decoupling by Means of Rayleigh Quotient
The modal mass generated by the eigenvector ui described in Equation 3.112 can be shown to be

	 µ αi i= −2 	 (3.115)
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Therefore, in Equations 3.106 through 3.108, μi, χi, and κi are not unique, because the vector ui is 
not unique. However, their ratios are exactly the aforementioned Rayleigh quotient, when the vector 
ui is taken to be one of the eigenvectors. Those ratios can be written as follows:

	
χ µi i

i
T

i

i
T

i
c i i 1, 2, , n= = ( ) = …u u

u u
uC

M
R , 	 (3.116)

and

	
κ i i

i
T

i

i
T

i
k i

  i 1, 2, , nµ = = ( ) = …u u
u u

uK
M

R , 	 (3.117)

Here, Rc(ui) and Rk(ui) denote the corresponding Rayleigh quotient, thus

	 Rc i i i i ni
2

i ni i 1, 2, , nu( ) = = = = …χ µ ξ ω α α ξ ω2 22 , 	 (3.118)

	 Rk i i i ni
2

ni i 1, 2, , nu( ) = = = = …κ µ ω α α ω2 2 2 , 	 (3.119)

Here, ξi, ωni, and ui are referred to as the modal damping ratio, modal natural frequency, and 
mode shape of the ith mode, respectively. All these are also referred to as the modal parameters.

Using the above notations, it can be assumed that

	 x t t( ) = ( )yi iu 	 (3.120)

is one of the possible solutions of Equation 3.99, where y(t) is the ith modal response. Therefore, 
substituting Equation 3.120 into Equation 3.99 and premultiplying ui

T on both sides of the resulting 
equation yield

	 u u u u u u ui
T

i i i
T

i i i
T

i i i
T

gy t y t y t x tM C K M J�� � ��( ) + ( ) + ( ) = − ( ) 	 (3.121)

Now, dividing both sides of Equation 3.121 by the scalar ui
T Mui results in the relation:

	
�� � �y t y t y ti

i
T

i

i
T

i
i

i
T

i

i
T

i
i

i
T

i
T

i
( ) + ( ) + ( ) = −u u

u u
u u
u u

u
u u

C
M

K
M

M
M

J ��x tg ( ) 	 (3.122)

Equation 3.122 is a scalar equation, implying an SDOF vibration system, which was discussed 
in Chapters 1 and 2.

From the discussion of eigen-decomposition of n × n matrices, it is known that there will be 
n eigenvectors. Therefore, there can be n equations described by Equation 3.122. Since these n 
eigenvectors are linearly independent, they can represent any n × 1 vector in the n × n vector space. 
Thus, yi(t)	ui can be seen as one of the bases in the space. Since x(t) is also an n × 1 vector, it can be 
represented by the linear combination of these (yi(t)	ui). In this way, Equation 3.99 is solved by indi-
vidually calculating (yi(t)	ui) through Equation 3.122 and adding the individual solutions together 
to obtain the total solution. Similar to underdamped cases, the computation procedure to obtain 
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Equation 3.121 is referred to as modal decoupling or modal analysis, while the summation of (yi (t)
ui) is referred to as modal superposition. That is,

	
x t y ti i

i=1

n

( ) = ( )∑ u 	 (3.123)

3.2.1.3  Decoupling by Means of Linear Transformation
The above modal decoupling superposition can also be reached by using a linear transformation 
method based on the eigenvector matrix. That is, premultiplying by matrix UT on both sides of 
Equation 3.99 and using a new variable y(t), such that

	 x Uyt t( ) = ( ) 	 (3.124)

where

	

y t( ) =

( )
( )

( )





















y t
y t

y t

1

2

n

...
	 (3.125)

results in

	 U MUy U CUy U KUy U MJT T T T
gt t t x t�� � ��( ) + ( ) + ( ) = − ( ) 	 (3.126)

Substituting Equations 3.103 through 3.105 into Equation 3.126 results in

	 diag t diag t diag( ) t x ti i i
T

gµ χ κ( ) ( ) + ( ) ( ) + ( ) = − ( )�� � ��y y y MJU 	 (3.127)

Equation 3.127 is thus a decoupled set of n-SDOF equations. The ith equation is

	 µ χ κi i i i i
T

gy t y t y t Jx t i 1  2  n�� � ��( ) + ( ) + ( ) = − ( ) = …u M , , , , 	 (3.128)

Equation 3.128 is the same as described by Equation 3.121, which denotes vibrations of SDOF 
systems.

In engineering applications, for the set of SDOF systems, it may be preferable to have a modal 
mass rather than the monic form. However, the modal mass μi is not unique, and a uniquely defined 
method for normalization of matrix U is needed. In NEHRP 2000 (BSSC 2000) and many other 
codes, the mode shape, which is a column vector of U, namely, ui, is normalized as

	
u u

ui

1i

2i

ni

ni

i

ni
ji

u
u
...
u
u

u , i, j 1, 2, , n=

























= ≡ { } = … 	 (3.129)
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where uni is the ith modal displacement at location n, which is located at the roof, unless specified 
otherwise.

Note that from now on, ui is no longer an arbitrary vector, but is used to denote special normal-
izations; in the following of this chapter, it stands for the normalization described by Equation 3.129. 
Using the notation in Equation 3.129, the uniquely defined approach for the normalized modal mass 
coefficient mi for the ith mode is obtained as follows:

	 mi i
T

i= u uM 	 (3.130)

Also denote

	 ci i
T

i= u uC 	 (3.131)

	 ki i
T

i= u uK 	 (3.132)

which are the normalized modal damping and stiffness coefficients, respectively.
Equations 3.130 through 3.132 describe the physical meaning of the product u ui

T
iM  and so on. 

In practical applications, a more convenient method to compute the modal responses is used, which 
is discussed in the next two sections.

Comparing Equations 3.130 through 3.132 with Equations 3.106 through 3.108, respectively, it 
is realized that the physical essence of these two groups of equations is identical, except that the 
normalizations of the mode shape vectors are different.

From Equations 3.130 through 3.132, it is further seen that

	 M K− =1 2u ui ni iω 	 (3.133)

or

	 K M− =1 21u ui ni iω 	 (3.134)

and

	 M− =1 2Cu ui ni iξ ωi 	 (3.135)

Now, once all the modal responses yi are solved using the notation in Equation 3.128, the modal 
response vector y(t) can be obtained. The total responses x(t) can then be written as the linear trans-
formation Uy(t). This operation is described by Equation 3.124. Except in this case, U is used instead 
of U, where U = [ , , , ]u u u1 2 … n . In other words, the modal shape matrix U transfers the responses 
yi in the modal space into the physical space. Thus, the response y(t) in the modal space can be 
mapped into the physical domain x(t) through mapping matrix U. This operation is also referred to 
as a linear transformation. In the next subsection, using Equation 3.153, the term y(t) = {yi} will be 
formally defined.

The jth element of x(t) in Equation 3.99 can be written in the form of a modal superposition as 
(Clough and Penzien 1993; Chopra 2006)

	
x t u y tj ji

i 1

n

i( ) = ( )
=

∑ 	 (3.136)
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and the response vector is rewritten as

	
x t y ti

i 1

n

i( ) = ( )
=

∑u 	 (3.137)

3.2.2  frEE-dEcay ViBration

If the MDOF system is only subjected to initial conditions without any excitation afterward, then 
the forcing function in Equation 3.99 is null. Correspondingly, Equation 3.122 can be further writ-
ten as

	
�� �y t 2 y t y t 0, i 1, 2, , ni i ni i ni

2
i( ) + ( ) + ( ) = = …ξ ω ω 	 (3.138)

which is the free-decay equation for a typical SDOF vibration system with linear viscous damping. 
From Equation 1.30, it is known that the solution can be written as

	
y t y e sin t i 1, 2,..., ni i0

t
di i

i ni( ) = +( ) =−ξ ω ω ϕ , 	 (3.139)

Here, yi0 is the amplitude and the damped natural frequency is defined as ω ξ ωdi i
2

ni1  = − , as 
previously discussed. To determine the amplitude yi0 and the phase φi angle in the solution, the ini-
tial conditions are needed. From Equation 3.124,

	 y U xt t( ) = ( )−1 	 (3.140)

and

	
� �y U xt t( ) = ( )−1 	 (3.141)

Therefore, if the initial conditions x(0) and �x(0) are given, then the modal initial conditions

	 y U x0 0( ) = ( )−1 	 (3.142)

and

	
� �y U x0 01( ) = ( )− 	 (3.143)

In order to not compute the inverse of the eigenvector matrix, the following equations are chosen 
first:

	 U V M−1 = T 1 2/ 	 (3.144)

Therefore,

	 yi 0 0( ) = ( )ui
TM x1 2/ 	 (3.145)
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and

	
� �y 0 0i i

T 1/2( ) = ( )u M x 	 (3.146)

When the mode ui is used instead of the generic term ui, the normalization constant α (see 
Equation 3.129) should be considered as

	 α i ni n iu= =1 1 m v  (3.147)

Here, mn is the nth row of matrix M−1/2. To see the validity of Equation 3.147, first examine

	

U M V= =
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Therefore,
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where Ap is the normalization matrix and

	

AP

n1

n2

nn

u

u
...

u

=



























1

1

1

	 (3.150)

In Equation 3.149, the inverse of the modified mode shape matrix U is given by

	 U A U A V M− − − −= =1 1 1 1 1 2
P

T
P

/ 	 (3.151)

Thus,

	 x Uy UA A y Uyt (t) t tP( ) = = ( ) = ( )−
P

1
	 (3.152)
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where y(t) is the modal displacement vector and

	 y A yt t( ) = ( )−
P

1
	 (3.153)

From Equation (3.152),

	 y U x A V M xt t tT( ) = ( ) = ( )− −1 1 1 2
P

/ 	 (3.154)

Thus, for the initial displacement and velocity

	 y U x A V M x0 0 0T( ) = ( ) = ( )− −1 1 1 2
P

/ 	 (3.155)

and

	
� � �y U x A V M x0 0 0T( ) = ( ) = ( )− −1 1 1 2

P
/ 	 (3.156)

Equations 3.155 and 3.156 can be rewritten mode by mode as

	 yi ni i
T 1/20 u 0( ) = ( )v M x 	 (3.157)

and

	
� �y 0 u  0i ni i

T 1/2( ) = ( )v M x 	 (3.158)

Here, yi is the ith element of the vector y(t) and vi is the ith column of the orthonormal eigenvector 
matrix V.

The corresponding equation for the newly defined variable yi(t) can be obtained through Equation 
3.138. That is,

	 α ξ ω α ω αi i i ni i i ni
2

i iy t 2 y t y t 0, i 1, 2, , n�� �( ) + ( ) + ( ) = = …

or

	

1
u

y t 2 1
u

y t 1
u

y t 0, i 1, 2, , n
ni

i i ni
ni

i ni
2

ni
i�� �( ) + ( ) + ( ) = = …ξ ω ω 	 (3.159)

Equation 3.159 is also the free-decay equation for a typical SDOF vibration system with linear 
viscous damping. However, as a difference from Equation 3.138, the modal mass is obtained in 
Equation 3.159.

	
α i

ni

1
u

=

and the corresponding solution can be written as

	
y y e sin t i 1, 2, , ni i0

t
di i

i nit( ) = +( ) = …−ξ ω ω ϕ , 	 (3.160)
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where yi0 is the amplitude of the modal displacement. Therefore, 

	 y 0 0i n( ) = ( ) ( )m Mv vi i
T 1 2/ x 	 (3.161)

and

	
� �y 0  0i i

1/2
n( ) = ( ) ( )m Mv v i

T x 	 (3.162)

Here, mn is defined in Equation 3.147.
Now, using Equations 1.33 and 1.34, the formulas for the amplitude yi0 and the phase φi can be 

written as

	
y  0 0i0

di
i i

T 1/2
i ni i i

T 1/2
dn n= ( ) ( ) + ( ) ( )  +1 2

ω
ξ ω ωm M m Mv v v v�x x ii i i

T 1/2
n 0m Mv v( ) ( ) x

2
	 (3.163)

	
ϕi

di i i
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= ( ) ( )
( ) ( ) + ( )

−tan 1 ω
ξ ω

m M
m M m

v v
v v v

x
x� vv i

T 1/2 i0
h

M x( )












+ ϕ π 	 (3.164)

where, when the arctangent is calculated by limiting the values from −π/2 to +π/2, hφi is defined as

	

h
  0 0   

  
i

i i
T 1/2

i ni i i
T 1/2

n n

ϕ =
( ) ( ) + ( ) ( ) ≥0 0

1

,

,

m M m M

m

v v v v�x xξ ω

nn ni i
T 1/2

i ni i i
T 1/20 0   v v v v( ) ( ) + ( ) ( ) <





 M m M�x xξ ω 0
	 (3.165)

Note that if the mode shape U is used instead of U, the modal equation will be reduced to 
Equation 3.138, and according to Equations 3.145 and 3.146

	
y 0 0 0i0

di
i
T 1/2

i ni i
T 1/2

di i
T 1/2= ( ) + ( )  + ( )1 2

ω
ξ ω ωv v vM M M�x x x 

2
	 (3.166)

and

	
ϕi

di i
T 1/2

i
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i ni i
T 1/2
0

0 0
= ( )

( ) + ( )









−tan 1 ω

ξ ω
v

v v
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x x� 
+ h iϕ π 	 (3.167)

Example 3.4
Suppose there is an M-C-K system with
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and initial conditions:
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The quantities M1/2, M−1/2, �K, V, 𝛀2, U, and U can be calculated as

	
M M1 2 1 20 5477 0 1826

0 1826 0 3652
2 1912 1 0958
1

/ /. .
. .

,
. .
.

=








 =

−
−

−

00958 3 2864
156 168
168 204.

,








 =

−
−









�K

	
V =

−







 =

0 7555 0 6552
0 6552 0 7555

2. .
. .

, Ω diag([10.2944  349.70556]), U =
−











0 9374 2 2630
1 3257 3 2004
. .
. .

 
U =

−









0 7071 0 7071
1 0 1 0
. .
. .

Therefore, ωn1 = 3.2085 (rad/s) and ωn2 = 18.7004 (rad/s), while u21 = 1.3257 and u22 = 3.2004. 
Furthermore, the damping ratios can be found as ξ1 = 0.094 and ξ2 = 0.1069, so that ωd1 = 3.1943 
(rad/s) and ωd2 = 18.5933 (rad/s). The amplitudes are y10 = 0.7415; y20 = 0.7088, while the phase 
angles are φ1 = 1.2650 and φ2 = 4.6430.

The corresponding modal displacements are plotted in Figure 3.3a, where the solid line is the 
displacement of the first mode and the broken line is that of the second mode.

By using modal superposition, the response displacements can be calculated in the physical 
domain. In Figure 3.3b, the solid line is the displacement of the first mass and the broken line is that 
of the second mass.
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FIGURE 3.3  (a, b) Modal and physical responses.
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3.3  MODAL PARTICIPATION AND TRUNCATION

3.3.1  Modal ParticiPation factor

Practically speaking, for an n-DOF system, all n modes do not have to be included in response 
computations, as described in Equation 3.137. Usually, the first several modes will provide sufficient 
contributions for the responses. That is, the first S modes are often used as follows:

	
x t u y tj ji

i 1

S

i( ) = ( )
=

∑ 	 (3.168)

by truncating the modal superposition after S terms. Usually, for large systems, the number of S 
modes can be considerably smaller than the number of total n modes, that is,

	 S n<< 	 (3.169)

In order to find out exactly how many modes are needed, methods to quantitatively account for 
the modal truncation are considered. In this section, the concepts of modal participation and modal 
contribution are used.

Through the use of vector normalization, a quantity is denoted as follows:

	
Γ i

i
T

i
T

i

J= u
u u

M
M

	 (3.170)

In Equation 3.170, the term Γi gx⋅ �� ( )t  is defined as the modal participation factor for the ith mode, 
defined by Mpfi, while Γi is the unit acceleration load for the ith mode. In the following discussion, 
for convenience, Γi are also called the modal participation factors.

Using the normalized modal mass, damping, and stiffness coefficients described in Equations 
3.130 through 3.132, and also using the concept of modal participation described in Equation 3.170, 
the nonmonic form of the set of n-SDOF equations is

	 m y t c y t k y t m x t , i 1, 2, , ni i i i i i i i g�� � ��( ) + ( ) + ( ) = − ( ) = …Γ 	 (3.171)

Equation 3.168 implies that in practical applications, the first S modes usually contribute most 
to the response. Therefore, all the modal responses described in Equation 3.171 do not have to be 
calculated. Instead, only the first S modal responses are used. That is, the displacement vector of 
the structure can be written as

	

x( ) , ,t u u un× ≈ [ ]
( )
( )

( )




















1 1 2 S nxS
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y t
y t

...
y t 

Sx1

S < n 	 (3.172)

and the acceleration vector of the structure is

	

��

��
��

��

x(t)  ..., 

y t
y t

...
y t

1 2 S nxS

1

2

S

n u u u× ≈ [ ]
( )
( )

( )









1 , ,













Sx1

S < n 	 (3.173)
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In Equations 3.172 and 3.173, since only the first S modes are used, the procedure is referred to 
as modal truncation; the subscript n	×	S and S	×	1 are used to denote the corresponding dimen-
sions of matrices and vectors. Here, for simplicity, x and ��x are used to denote the modally truncated 
displacement and the acceleration without any further specific notation.

Equation 3.172 can be written in matrix form as

	 x Ut C C( ) ≈ y 	 (3.174)

Here UC 1 2 S nxS ..., = [ ]u u u, ,  is the truncated mode shape matrix and ȳC is the truncated modal 
response, such that

	

yC

1

2

S S 1

y t
y t

...
y t

=

( )
( )

( )





















×

	 (3.175)

In many cases, only the first modal response is used, which is called the fundamental modal 
response to represent the displacement, that is,

	 x t y t( ) ≈ ( )u1 1 	 (3.176)

and,

	
�� ��x t y t( ) ≈ ( )u1 1 	 (3.177)

3.3.2  Modal contriBution indicator

In order to determine if a specific mode should be used, criteria that are generally referred to as 
modal participation indicators or modal contribution indicators are needed. That is, these indica-
tors will be used to establish if a specific peak response of a structure is sufficiently accurate when 
truncated modal superposition is used. The number of truncated modes is determined by the values 
of the indicators. For this purpose, Wilson (2004) suggested the modal mass ratio, which is helpful 
for proportionally damped systems. Chopra (2006) suggested another indicator called the modal 
contribution factor. In the following discussion, practical approaches that will be valid for both 
proportionally and nonproportionally damped systems are explored.

Before the discussion on the selection of various parameters that can be used as the modal 
contribution indicators, the criterion of selection is first described. There are two basic criteria for 
selection of the indicators.

3.3.2.1  Theory of the Indicator
The existence and application of an indicator should be scientifically sound, which means that the 
possible candidates should be mathematically consistent and legitimate.

Chopra (2006) states that the modal contribution indicators should have the following three properties:

 i. The indicators should be dimensionless.
 ii. The indicators should be independent of how the mode shapes are normalized.
 iii. The sum of the modal contribution indicators over all modes should be unity.
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As a matter of fact, these three properties have the same necessary essence. Namely, the indi-
cators should be referenced by a given standard and the most convenient standard is unity. For 
example, the quantity of the modal participation factor cannot be directly used as the indicator. This 
is because it cannot satisfy the above conditions. Thus, it is necessary to find alternative quantities 
to determine the number of modes for the modal truncations.

However, the quantity used as an indicator of a specific mode should also be an amount of 
the percentage quantitatively describing the magnitude of the contribution. That is, if a specific 
mode has a larger contribution, the indicator should be proportionally larger. It is understood 
that the structural responses under earthquake excitations are dynamic quantities, which are 
the result of the convolutions of the ground excitations and the imposed response functions of 
structures.

Practically speaking, several additional modes are often acquired to improve the accuracy of the 
response computation, namely,

	 S S S nP f= + << 	 (3.178)

where S is the number of truncated modes in the response computation, Sp is the number calcu-
lated from various modal participation indicators, and Sf is the number of a few additional modes. 
Usually,

	 Sf ≥ 1 	 (3.179)

The greater the irregularity of a structure, the larger the Sf that should be considered. The con-
cept of structural irregularity will be discussed later.

Using Equation 3.179, the burden of considering the influence of the excitations is removed. 
Thus, a single equation can be used to cover the essence of conditions (i) to (iii) listed above. Note 
that is, if the ith generic modal participation indicator is denoted as γi, then

	
γ i

i 1

n

1
=

∑ = 	 (3.180)

Using the quantity γi, the idea that the larger the value of γi, the greater the contribution should 
be, is explored, and practically, individual modes may not be counted; instead, the summation of the 
first several indicators can be compared and a preset value G can be used as the criterion, that is, if

	
γ i

i 1

Sp

=
∑ ≥ G 	 (3.181)

then the number Sp is specified.
Yet, the equations or the above-mentioned three requirements are not sufficient. In addition, it is 

best that the indicators are all nonnegative numbers. That is,

	 γ i ≥ =0 1 2, , , ,i S… 	 (3.182)

First, this is because the modal participations or contributions are counted by using the concept 
that the larger the value of γi, the greater the contribution. This concept therefore implies the use of 
absolute values. Secondly, if some of the indicators become negative, then the summation of the first 
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Sp modal participation indicators will not monotonically increase, and will not be convenient to use. 
That is, if there are two numbers for the required modes, namely, S2 and S1, it may be required that

	
γ γi

i 1

S

i
i 1

S2 1

S S
= =

∑ ∑≥ >, 2 1 	 (3.183)

3.3.2.2  Realization of Indicators
The second aspect for the selection of indicators is related to using the indicator in practical design. 
First, it is noticed that to compute different types of responses, different numbers of modes may be 
needed to guarantee the accuracy of modal truncation.

Secondly, it is understood that computing responses at different locations may require different 
numbers of modes to guarantee the accuracy of modal truncation.

It is also noted that the consideration of accuracy of modal truncation is related to the dynamic 
behavior of a structure. The response due to the Duhamel convolution contains two factors, namely, 
the structure itself and the external excitation. In this case, any indicator that does not involve the 
factors of the ground excitation cannot be absolutely precise. Instead of seeking more accurate 
modal contributions by including earthquake, as well as other excitations, Equation 3.178 is used 
and several additional modes are included.

In addition, to calculate the modal participation indicator, the fewer pieces of information 
needed, the easier it will be to obtain the quantity.

3.3.2.2.1  Modal Mass Ratio
Having discussed the criteria for selecting the modal contribution factors, one of the oldest param-
eters, the concept of modal mass ratio (Wilson 2004), is considered. It is defined as
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  = =
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M 	 (3.184)

where

 

M m j
j 1

n

Σ =
=

∑  (3.185)

is the total mass of the structure. Here, it is noted that the mass matrix is taken to be diagonal (see 
Equation 3.187). Let

	
m

 effi
i
T 2

i
T

i
=

 u
u u

M
M

J
	 (3.186)

which is called the effective mass of the ith mode. Note that if the generic mode shape ui is used to 
replace ui, Equation 3.186 is still valid.

It can be seen that the modal mass ratio will satisfy all four conditions described in Equations 
3.180 through 3.183. Plus, to obtain the modal mass ratio, only the mass matrix and the mode shapes 
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of the first few modes are needed. Thus, the modal mass ratio can be a good index to indicate the pro-
portion of the contribution of the corresponding mode. It is also easy to use for practical engineers.

In later chapters on practical damper designs, a preset value to compare the first S summations 
of the modal mass ratios is provided. The idea is that if the modal mass ratio is large enough, 
which implies that this particular mode will contribute significantly to the total responses, the mode 
should be considered. Otherwise, it can be dismissed.

In more general cases, there can also be complex-valued mode shapes or complex modes, as well 
as overdamped pseudo modes. The corresponding modal participation factor and modal mass ratio 
will be more complicated. However, Equation 3.180 will still hold, although conditions described in 
Equations 3.181 through 3.183 may be violated.

Note that in practice, it is often assumed that the mass matrix is diagonal, that is,

	
M = ( ) = …diag m j 1, 2, , nj 	 (3.187)

Equation 3.187 is used in NEHRP 2000 (BSSC 2000) and many other codes. Mathematically, 
however, Equation 3.187 is not a necessary condition to use in defining the modal participation fac-
tor and modal mass ratio. Thus, in the following derivations, a diagonal mass matrix is not required, 
unless specifically stated.

3.3.2.2.2  Other Indicators
In addition to the modal mass ratio, several other kinds of indicators exist. For example, the modal 
contribution factor γCi is given by

  
γ Ci

n
st

st
r
r

=
 

(3.188)

where rn
st and rst are respectively the static response of the ith mode and of the total external force, 

(Chopra, 2006).
As a brief summary, modal truncation can save significant computational time and provide suf-

ficiently accurate response estimations, with the proper number of selected modes, which can be 
determined by modal contribution indicators. The modal mass ratio is a comparatively better and 
simpler criterion; this indicator is used in the practical damper designs discussed in Chapters 7 and 8.

3.3.3  rEsPonsE coMPutation of truncatEd Modal suPErPosition

In this section, examples are used to demonstrate the procedure of modal truncation as well as to 
compare the modal contribution indicators described above.

3.3.3.1  Computation Procedure
Suppose the number S is obtained from Equation 3.178 through a certain quantity of the modal 
participation indicators. It is now possible to compute the structural responses by the truncated 
S modes. In the following discussion, a method to carry out the truncated modal superposition is 
explained in detail. The response computation is also used to compare the above-mentioned modal 
participation indicators to examine their accuracy.

Note that the modal truncation discussed here is for proportionally damped systems only. In 
other words, all the modes of concern are normal modes. The system with complex modes and/or 
overdamped subsystems will be discussed in Chapter 4.

The procedure of modal decoupling for proportionally damped systems was theoretically 
explained in the previous section. It was shown that, generally, the decoupled systems, namely, 
the individual modes, can be used to compute the modal responses, such as described in Equation 
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3.122. After these modal responses are computed, the modal superposition described in Equation 
3.168 can be used.

To carry out the modal decomposition in practice, the first step is to find the modal parameters 
of interest. To compute the modal participation indicators, the number of modes that should be con-
sidered needs to be estimated. Usually, a few more modes are estimated to meet the requirement in 
Equation 3.178. There are various procedures of modal decomposition or modal analysis. Although 
they look quite different, the essence of the modal parameters yielded is essentially the same. In the 
following discussion, one of the popular procedures is used to illustrate this concept.

 1. Make sure the system is proportionally damped. This can be done by checking to see if the 
Caughey criterion (Equation 3.102) is satisfied.

 2. If Equation 3.102 holds, then Equation 3.25 is used to compute the corresponding eigen-
values and mode shapes of matrix M−1K. Note that the eigenvalues are the squares of the 
natural frequencies. Namely, Equation 3.25 is rewritten as follows:

	 M K− ω1 u ui i 1  i  S= ≤ ≤ni
2

  In earthquake engineering, there is another criterion for determining the order of S. That 
is, the natural frequency fni	=	ωni/2π is less than 33(Hz), namely,

	 f 33 Hzni ≤ ( )

  Many commercially available computational software programs can provide the modal 
parameters, such as the natural frequencies ωni, damping ratios ξi, and mode shapes ui.

 3. Use the proper modal contribution indicators to determine the number of modes, S. For 
this, the modal mass ratio described in Equation 3.184 can be used. 

   Note that to determine the modal contribution indicators, the mode shape pi is not necessarily 
normalized with respect to special standards at this time. To obtain the number Sp, the preset 
value G is often required. For regular structures, it can be taken as 85%–90%. For irregular 
structures, G should preferably be greater than 95%. That is, Equation 3.181 may be rewritten as

	
γ mi

i 1

Sp

95%
=

∑ ≥ =G

  Once the number Sp is obtained, Equations 3.178 and 3.179 are used to add a few more 
modes.

 4. Equation 3.113 is used to normalize the mode shape. Note that for general computation, 
this step is not necessary.

 5. Equation 3.188 is used to find the modal damping coefficient 2ξi ∙ ωni, that is,

	
 2 i 1, 2, , Si ni

i
T 1

i

i
T

i
ξ ω =

( )
= …

−u u
u u
M C

, 	 (3.189)

 6. Two methods can be used to compute the modal responses. First, the following method can 
be used to compute the response mode by mode. That is, rewrite Equation 3.122 as

	
�� � ��y t 2 y t y t J x t , i 1, 2,i i ni i i

i
T

i
T

i
g( ) + ( ) + ( ) = − ( ) =ξ ω ωni

2 u
u u

M
M

……, S 	 (3.190)
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  By solving Equation 3.190, all the modal responses yi(t) of interest can be obtained.
  Note that in many codes, the damping ratio ξi of a structure before adding any dampers is 

assumed to be 5%. After adding damping, ξi is increased. For damper design, ξi is often 
specified with a given value, e.g., 15%. In this case, this value can be used along with 
Equation 3.189 to compute the modal responses. For the problem when damping param-
eters other than the damping ratio are given, and it is necessary to find ξi, Equation 3.189 
can be used to determine the value of the damping ratio.

   Secondly, state equations can be used to simultaneously compute the first S modal 
responses. For the truncated mode approach, the state matrix with dimension 2S × 2S is 
needed, which can be constructed as follows:

 

AC
i ni S S ni S S

2S S

diag(2 ) diag( )
=

ξ ω ω− −









× ×

×

2

2I 0
 (3.191)

  Here I and 0 are the identity and null matrices with dimension S × S.
  The input matrix 𝔅C is also necessaDry, where
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  where UC is the truncated mode shape matrix with dimension n	×	S mentioned previously. 
Note that in Equation 3.192a, it is not necessary to compute the inverse of U MUC

T
C, which 

increases the computational burden. The following formula can be used:
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	 (3.192b)

  Using the state and the input matrices, the following state equations can be obtained:

	
� ��Y Y= +A BC C gx 	 (3.193)

  where Y is a state variable:

	
Y =

( )
( )











 ×

�y
y

C

C S
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t

2 1

	 (3.194)

  and yC is defined in Equation 3.175.
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   Note that most commercially available software uses the second method to solve for all 
the modal responses of interest.

 7. Equation 3.168 is rewritten as follows to carry out the truncated modal superposition:

	
x U yC C C i

i 1

S

it t y t( ) = ( ) = ( )
=

∑u 	 (3.195)

  Note that in this case, the dimension of the modal shape matrix UC is n	×	S.

In the above discussion, it was shown how to use truncated modal superposition to calculate the 
approximate time histories. In the following discussion, examples are used to examine the quanti-
ties to determine the modal contribution introduced above, by comparing their values and the per-
centages of the peak responses of the truncated and the total modal superposition.

Example 3.5

A 10-story and one-bay shear frame of a building model is used as a simulation example to 
examine the modal mass ratio and the modal contribution factor. The model structure is shown in 
Figure 3.4. The material masses of the columns are ignored, the rotation DOFs around the axis Y 
are restrained, and the floors are assumed to be rigid, so that only X-transverse DOFs are available. 
In addition, the shear effect is restrained.

Let the mass of the first floor be 800 (t), the second be 700 (t), the ninth be 600 (t), and the rest 
floors be 500 (t). That is,

	
M = [ ] ( )diag 8  7  5   5  6  5 t00 00 00 00 00 00, , , , ,…

The interfloor stiffness along the height is identical, which means k1 = k2 = ,..., k10 = k. Let k = 
1.5e6 (kN/m), so that the corresponding stiffness is

	

K = ×

−
−

−





















( )

×

15 1 kN /m6.

...

...
...
...

0

2 1 0
1 2 0

0 1 1 10 10

From the mass and stiffness matrices, the natural frequencies ωni and mode shapes U are 
calculated, which are not affected by the damping matrix. To compute the response, however, 
the damping matrix is needed. Assume that there is a 2% damping ratio for every mode. The cor-
responding damping matrix can be constructed as

	
C MU U MU U= .diag 2 diag kN -s/mi ni niξ ω ω( ) = ( ) ( )− −1 10 1 	 (3.196)

The natural frequencies of this structure are listed in Table 3.1.
Based on Equation 3.184, the modal mass ratios are summarized in Table 3.2.
From Table 3.2, it is seen that all the modal mass ratios and the static modal energy ratios 

are positive values, but smaller than unity. The modal mass ratio of the first mode is less than 
82%. The summation of the first two ratios is 93.3%. The summation of the first three ratios 
is 97.40%. If a preset criterion requires the summation to be not less than 90%, then only 
the first two modes can sufficiently represent the modal contribution. On the other hand, if 



Linear	Proportionally	Damped	Multi-Degree-of-Freedom	Systems	 177

a preset criterion requires the summation to be not less than 95%, then the first three modes 
are needed.

The summation of the modal mass ratio vs. the number of modes selected in the order 
from the lower to higher modes is plotted in Figure 3.5. It is seen that the curve increases 
monotonically.

The ground motion record of the El Centro (1940) earthquake is used to compute the floor 
displacement relative to the ground and the data are used to examine how the above modal par-
ticipation indicators work. The responses are computed by using the aforementioned procedure 
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FIGURE 3.4  Example of a 10-story building.

TABLE 3.1
Natural Frequencies

Mode 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

(Hz) 1.2742 3.7012 5.9520 8.2220 10.2916 11.8749 13.3296 14.8394 16.1904 17.1109
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from steps 1 through 7. The ratios of the maximum acceleration of the truncated response and 
the precise response of each floor are listed in Table 3.3. From the second column onward, the 
ratios of calculated acceleration are compared with the participation of the first mode, the first 
two modes up to the fifth modes. It is seen that the more modes counted, the closer the response 
will be to the true values.

The modal mass ratio of the aforementioned cases is checked, and the results are listed in Table 
3.4, where the smallest acceleration and displacement ratios are also provided. From Table 3.4, it 
is seen that the modal mass ratio provides acceptable estimates.

TABLE 3.2
Modal Mass Ratio

Mode 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

γmi 0.8151 0.1179 0.0409 0.0143 0.0074 0.0035 0.0007 0.0001 0.0000 0.0000

Σγ mi 0.8151 0.9330 0.9739 0.9882 0.9956 0.9991 0.9998 0.9999 1.0000 1.0000

1
0.98
0.96
0.94
0.92

0.9
0.88
0.86
0.84
0.82

0.8
1 2 3 4 5 6 7 8 9 10

Number of modes

FIGURE 3.5  Summation of modal mass ratio for a regular 10-story building.

TABLE 3.3
Ratio of Floor Acceleration of Truncated Response

First Mode Only First 2 Modes First 3 Modes First 4 Modes First 5 Modes

1st 0.7902 0.9881 0.9277 0.9651 0.9827

2nd 0.6618 1.1232 1.0464 0.9769 0.9767

3rd 0.6477 0.9833 0.9701 1.0227 1.0221

4th 0.7015 0.8939 0.8972 0.9965 0.9963

5th 0.8550 0.9056 0.9987 1.0192 1.0016

6th 0.9415 0.8807 1.0063 0.9974 1.0001

7th 0.8678 0.8735 0.9147 0.9862 0.9895

8th 0.8310 0.9524 0.9484 0.9952 0.9976

9th 0.7865 0.9876 0.9964 0.9971 0.9934

10th 0.7070 0.9247 0.9499 0.9844 0.9909
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Note that in the above example, the model structure is not very irregular. That is, the structure 
is symmetric and the distributions of both the mass and the stiffness are rather even. In practical 
design situations, irregular structures are common. Chapter 4 provides an explanation of structural 
irregularities, which are referred to as vertical and plan irregularities, as well as weight distribution 
irregularities. In addition, adding dampers may also add damping irregularities. This will cause the 
structure to be nonproportionally and/or overly damped, which is discussed in the last section as 
well as in Chapter 4. The behavior of the modal participation indicators, such as the modal mass 
ratios of an irregular structure, may be of interest. In Figure 3.6, the summations of the modal mass 
ratios are plotted for another 10-story building with significant plan and vertical irregularities. As a 
comparison, the summations of modal contribution factors γCi are also plotted in Figure 3.7.

Figure 3.6 shows that the summation of the modal mass ratio increases faster than that of more 
regular buildings. This means that to have the same amount of modal contribution or to have the 
same computational accuracy, fewer modes may be needed to participate. That is, to have the modal 
mass ratio greater than 95%, only two modes are needed. However, this phenomenon may not be 
true for other irregular structures. Generally speaking, the more irregular the structure, the more 
modes are needed to have the same computational accuracy.

From Figure 3.7, it is seen that for irregular structures, the summation of the modal contribution 
factors is to converge to unity more slowly. For example, the modal contribution factors for the dis-
placement responses of the first and third floors are greater than unity up to the seventh mode. For 
the fourth floor, even the ninth mode is needed to compute the displacement.

A comparison of modal contribution factors and the displacement ratio is given in Table 3.5 and 
the values of the modal mass ratio are listed in Table 3.6. In Table 3.6, for comparison, the largest 
percentage error of the displacement is also provided. Using all 10 modes should provide the exact 

TABLE 3.4
Comparisons of Smallest Acceleration and Displacement Ratio vs. Modal Mass Ratio

First Mode Only First 2 Modes First 3 Modes

Smallest acc. ratio 0.6477 0.8807 0.8972

Smallest disp. ratio 0.9843 0.9961 0.9982

Modal mass ratio 0.8151 0.9331 0.9740

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82
1 2 3 4 5 6 7 8 9 10

Mode order

FIGURE 3.6  Summation of modal mass ratio for an irregular 10-story building.
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response of the displacement. Using the first several modes will result in some error in the computed 
displacement. The largest error is taken among all the errors of the 10 displacements. It is seen in 
Table 3.5 that the data do not quite agree with each other, as those given in Table 3.3. The modal 
contribution factors are used to examine the structural responses in detail at each location. Since the 
displacement ratio at each floor does not agree with the modal contribution factor, it again implies 
that the modal mass ratio factor may be a better indicator for use in selecting the number of modes 
in modal truncations.

1.1

1.08

1.06

1.04

1.02

1

0.98
1 2 3 4 5 6 7 8 9 10

Mode order

7th Floor
8th Floor
9th Floor
10th Floor 

FIGURE 3.7  Summation of modal contribution factors.

TABLE 3.5
Floor Displacement Ratio of Truncated Response

First Mode 
Disp. Ratio

First Mode 
γci

First 2 
Modes

First 2 Modes 
γci

First 3 
Modes

First 3 
Modes γci

1st 1.0154 1.0730 0.9923 0.9827 1.0045 1.0030

2nd 1.0153 1.0593 0.9979 0.9918 1.0028 1.0000

3rd 1.0136 1.0333 1.0059 1.0040 1.0012 0.9966

4th 1.0124 1.0096 1.0133 1.0128 1.0005 0.9928

5th 0.9946 0.9721 1.0085 1.0223 1.0031 0.9971

6th 0.9764 0.9327 1.0078 1.0238 1.0053 1.0065

7th 0.9567 0.8836 1.0058 1.0085 1.0066 1.0141

8th 0.9170 0.7942 1.0016 0.9811 1.0066 1.0115

9th 0.8931 0.7299 0.9944 0.9371 1.0026 0.9845

10th 0.8017 0.6254 0.9302 0.8701 0.9548 0.9271

TABLE 3.6
Comparisons of Smallest Displacement Ratio vs. Modal Mass

First Mode First 2 Modes First 3 Modes

Percentage error 0.8017 0.9302 0.9548

Modal mass ratio 0.8287 0.9524 0.9739
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However, it is seen that in Table 3.6 the values of the modal mass ratio are always greater than 
the errors, which means that if only the modal mass ratio is used without adding additional modes, 
say Sf modes, then the result will be unsafe.

3.3.4  PEak rEsPonsEs

At the preliminary design phase using the modal contribution factors, it is not necessary to check 
the detailed responses at specific places in a structure. However, their values still need to be esti-
mated. This task can be done through the quantity of peak level of the lateral force applied at level i 
of the structure. The local lateral force can be seen as the product of mass at level i, denoted by mi, 
and the amplitude of the ith absolute acceleration, x t x ti g( ) ( )+ �� .

Namely, in aseismic design, the peak responses are a common quantity. By using the modal 
participation factor, the peak response can be computed mode by mode.

Compare an SDOF system described by the governing equation as

	 mx t cx t kx t mx tg�� � ��( ) + ( ) + ( ) = ( )− 	 (3.197)

with the ith mode of the MDOF system described by the governing equation as

	 m y t c y t k y t m x ti i i i i i i i g�� � ��( ) + ( ) + ( ) = ( )−Γ 	 (3.198)

It is seen that Equation 3.198 can be used to determine the modal responses. On the other hand, from 
Equations 2.334 and 2.337, it was also seen that by using the design response spectrum, the peak pseudo 
acceleration and the peak relative displacement of the SDOF system can be determined, too. Repeated 
as follows, specific terms as, aa, and dD are used to denote the spectral acceleration and displacement:

	
a C T, gs s= ( ) ( )ξ m s2 	 (3.199)

where as is the pseudo acceleration used to approximate the absolute acceleration aa.
As previously mentioned, when damping is large, Equation 3.199 should be modified as

	
a 1 4 C T, ga

2
s= + ( ) ( )ξ ξ m s2 	 (3.200)

Furthermore,

	
d C T, T

4
gD s

2

2= ( ) ( )ξ
π

m 	 (3.201)

Note that the unit of acceleration is often taken to be 1 (g)	=	9.8 (m/s2), and the unit of displace-
ment is often taken to be (m). With these, the peak pseudo acceleration of the ith mode of the MDOF 
system can be written as

	 a C T , gsi i s i i≈ ( ) ( )Γ ξ 	 (3.202)

Note that when damping is large, Equation 3.202 should be modified as

	 a 1 4 C T , gai
2

i s i i≈ + ( ) ( )ξ ξΓ 	 (3.203)
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Furthermore, the peak relative displacement of the ith mode of the MDOF system is

	
d C T , T

4
gi s i i

i
2

2iD m≈ ( ) ( )Γ ξ
π

	 (3.204)

In the above, aai and diD can be seen as the spectral acceleration and displacement.
It is noted that Equation 3.203 can only provide the approximate value of the absolute accelera-

tion for the ith mode. Similarly, Equation 3.204 is a rough estimate of the displacement. In fact, the 
relationship of

	
d a T

4
i
2

2iD ai≈
π

	 (3.205)

is obtained by assuming that the damping force is negligible. With added damping, this assump-
tion may no longer be valid, and the effect of the factor 1 4 2+ ξ  should be considered. Note that 
Equations 3.199, 3.202, and 3.205 are widely used for the aseismic method of using the design 
response spectrum in the earthquake engineering community. In the following, for simplicity, the 
factor 1 4 2+ ξ  will not be written together with these conventionally used expressions for response.

Once the amplitudes of the modes of interest, which are now taken to be the spectral values, 
are determined, methods for the summation of these peak accelerations can be applied, such as the 
method of the square-root-of-the-sum-of-squares (SRSS) and/or the complete quadratic combina-
tion (CQC) (e.g., see Clough and Penzien 1993), which are introduced later. 

As a comparison, a more accurate value may be obtained from the specific response history 
analysis. Thus, the peak level of the total absolute acceleration can be written as 
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	 (3.206)

where the term ��y tai ( )  is the absolute acceleration of the ith mode with proper normalization. The 
peak level of the total relative displacement can be written as

	

x t( ) = [ ]
( )
( )

( )





















u u u1 2 S

1

2

S

...,

y t
y t

...
y t

, , 	 (3.207)

where the term yi(t) is the relative displacement of the ith mode with proper normalization.

3.4  BASE SHEAR AND LATERAL FORCE

If the peak acceleration level is already known, the amplitudes of the lateral force can be written as

	 f MaL = ( )a N 	 (3.208)
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where fL is a vector whose jth element is the story lateral force of the jth level of the structure. Note 
that the unit of lateral force is often taken to be (N). In particular, when only the first mode is used, 
the peak value of the absolute acceleration at the jth level can be written as

	
a C T , gaj1 j

T
i 1 s 1 1= ( ) ( )e u Γ ξ m s2 	 (3.209)

while the peak value of the relative displacement at the jth level is written as

	
d C T , T g1j j

T
1 1 s 1 1

1
2

= ( ) ( )e u Γ ξ
4 2π

m 	 (3.210)

where T1 and ξ1 are the period and the damping ratio of the first mode, and ej, defined in Equation 
3.42, is the selection vector with all elements equals to zero, except the jth element, which equals 1. 
That is, e ujT 1j1 = u .

The peak level of the story lateral force at the jth level contributed only by the fundamental mode 
can then be written as

	 f m a m C T , gLj1 j aj1 j j
T

1 1 s 1 1= = ( ) ( )e u Γ ξ N 	 (3.211)

The total base shear v(t) is a time vatiable. From Equation 3.208, it is seen that the amplitude of 
v(t), denoted by V, which is the summation of the amplitude of the total lateral force contributed by 
all modes, can be written as

	 V T
L

T
a= ≈ ( )J f J M a N 	 (3.212)

where J is the unit vector defined before. Generally speaking, the value aa is often obtained through 
spectral analysis of aai with SRSS and/or or CQC methods, which are approximations. In addition, 
the peak value of accelerations often occurs at different time. Therefore, the computation of V by 
using the acceleration in Equation 3.212 is only an approximation.

Considering Equations 3.206 and 3.212, results in

	
V= t y tTv N( ) = ( ) ( )J UM �� 	 (3.213)

which is based on the time history analysis of the total base shear. Comparing Equations 3.212 
and 3.213, the time history analysis provides exact base shear but not the maximum peak value in 
general cases. In practical design, both methods are used. In the following, the spectral analysis is 
discussed in a more detailed way. 

If only the first mode is considered, the total base shear contributed by the fundamental mode 
only can be obtained, and is denoted by V1. Using the spectral analysis,

	 V C T , g C T , g1
T

1 s 1 1 1 s 1 1= ( ) = ( ) ( )J M MJu u11 1Γ Γξ ξT N 	 (3.214)

Furthermore, the total base shear contributed by the modal response of the ith mode is

	 V C T , g C T , gi
T

i i s i i i s i i= ( ) = ( ) ( )J M MJu uΓ Γξ ξi
T N 	 (3.215)
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Now, the effective mass of the system of the ith mode can be written further as

	
m meffi

i
T 2

i
T

i
i
2

i=
( )

= ( )u
u u

M
M

J
Γ kg 	 (3.216)

With the two notations defined in Equations 3.215 and 3.216, the expression of the story lateral 
force at the jth level contributed by the fundamental mode only can be rewritten as:

	
f m u C T ,

1 J
1 1

L j 1j 1 s 1 1
1
T

1
T

1
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1
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1

1
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1
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u u

u u
u u

uM
M M

M
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MJ
J

J1
1 11

g N( ) 	 (3.217)

Therefore,
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 ( )N 	 (3.218)

In Equation 3.218, the term in the first bracket is the amplitude of the total base shear V1, the term 
in the second bracket is the inverse of the effective mass of the first mode, meff1, and the term in the 
third bracket is the unit acceleration load for the first mode Γ1. Therefore, the story lateral force at 
the jth level contributed by the fundamental mode becomes

	
f m u

m
V m u C gL j 1j

1

eff1
1 j 1j 1 sij = = ( )Γ

� Γ N 	 (3.219)

Similarly, the lateral force at the jth level contributed by the ith mode can be written as

	
f m u

m
V m u C gL j ij

i

effi
i j ij i sij = = ( )Γ Γ� N 	 (3.220)

and the total base shear contributed by the ith mode can be rewritten as

	
V C T , g J C T , g m C T ,i

T
i i s i i i

T i
T

i
T

i
s i i effi s i= ( ) = ( ) =J JM M M

M
u u u

u u
Γ ξ ξ ξξi g( ) ( )N 	 (3.221)

If the first S modes must be considered, then the SRSS method can be used to find the modal 
combination. For simplicity, V and fL	=	{fLj} are used to denote the modally truncated total base 
shear and story lateral forces, that is,

	
V V m C T ,  gi

2

i 1

S

effi
2

s i i
i 1

S

= = ( ) ( )
= =

∑ ∑ 2 ξ N 	 (3.222)

and fLj is the modally truncated story lateral force applied on the jth level,
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f f u C T ,Lj ij

2

i 1

S

ij i
 

i 1

S

i i= = ( ) ( ) ( )
= =

∑ ∑m g Nsj Γ ξ
2 2 	 (3.223)

Furthermore, the modally truncated displacement is denoted as d	=	{dj}, where dj is the displace-
ment at the jth level of the structure, which can be written as

	
d d

T C T ,
4

 gj ij
2

i 1

S
i
2

s i i
2

2

i 1

S

= = ( )







 ( )

= =
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π
m 	 (3.224)

Equations 3.222 and 3.223 can be used to find the number of modes, S. In fact, the concept of 
modal truncation was previously introduced. To explain the inequality, an example of the case 
where S	=	2 is discussed. From Equation 3.222, in this case, the total base shear is expressed by

	
V m C T , m C T ,  geff1

2
s
2

1 1 eff2
2

s
2

2 2= ( ) + ( ) ( )ξ ξ N 	 (3.225)

Assuming that the spectral amplitude remains constant,

	
V C gm 1 m

m
C gm 1 m

2m
C gms eff1

eff2
2

eff1
2 s eff1
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eff1
s e= + ≈ +





= fff1
m2

m1
1

2
+







( )γ
γ

N 	 (3.226)

If γm1	=	0.8, then the value in the last parenthesis in Equation 3.226 is 1.125, which means that if 
G	=	0.8, there will be an error of one minus one over 1.125, which is about 11%. In this case, it can 
be approximated that if the value of G is taken to be 0.8, the result is a fairly good estimation of the 
modally truncated responses.

Note that, again, if a structure is nonproportionally damped, the above formulation should be 
modified, which is discussed in Chapter 4.

3.5  NATURAL FREQUENCY AND MODE SHAPE ESTIMATION

3.5.1  natural frEquEncy

For damper design, one important parameter is the natural period or its inverse, the natural fre-
quency. In the above discussion, it was seen that the natural frequency of an SDOF system can be 
simply calculated using Equation 1.12, if the mass and stiffness are known. For MDOF systems, 
Equation 3.25 can be used. However, practically speaking, in the preliminary design stage, the 
natural frequency may have to be estimated, since important information may not be available in 
the earlier stage. Or, for a simplified design, information such as the stiffness matrix may never be 
used. Therefore, a method to estimate the natural frequencies is needed. The discussion begins with 
an SDOF system.

As shown in Figure 3.8a, an applied force mg can cause a structural drift p:

	 p = mg k 	 (3.227)

Here, p is used to denote the specific value. In the following discussion, regular letter p are used 
to denote more general values.
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If p happens to be the maximum displacement of mass when the system vibrates in its own natu-
ral frequency, then the maximum potential energy stored by k can be expressed as

	 E mgp = 1 2 p 	 (3.228)

The maximum kinetic energy stored by m is

	 E mk n= 1 2 2( )ω p 	 (3.229)

Because Ep	=	Ek,

	
ωn

g=
p

	 (3.230)

The mass and stiffness matrices M and K are present in the case of an MDOF system. Since 
the structure will not have rigid body motion, the structural flexibility matrix, denoted by S, can be 
expressed as

	 S K= −1 	 (3.231)

Now, a series of lateral forces are applied to the system, as shown in Figure 3.8b. The applied 
force vector:

	 f J= { } =f gM 	 (3.232)

will cause the drift vector:

	 u = { } =ui gSMJ 	 (3.233)

mg

m
k

p

k2k1
m2 ……

p1
p2

pn

mngm2g ……m1g

mn
m1 kn

(a)

(b)

FIGURE 3.8  (a, b) Natural frequency estimation SDOF.
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From Equation 3.232,

	 J = −M K1 u g 	 (3.234)

Assuming that the structural system vibrates approximately with the structural first modal fre-
quency ωn1 and modal shape u, the maximum potential energy and kinetic energy of the system can 
be approximated as

	 Ep
T Tg= =1 2 1 2f Ju u M 	 (3.235)

and

	 Ek
T

n= 1 2 1
2ω u uM 	 (3.236)

Similar to the approach used for an SDOF system, since Ep	=	Ek,

	 1 2 1 2 1
2g T T
nu u uM MJ = ω 	 (3.237)

Therefore,

	
ωn1

2
T

T
g= u
u u

M
M

J 	 (3.238)

and

	
ωn1

T

T
g= ( )u
u u

M
M

J rad s 	 (3.239)

Equation 3.239 has only the mass matrix, which is comparatively easier to obtain than the stiff-
ness or the flexibility matrices. However, when this equation is derived, the displacement caused by 
the series of lateral forces is unique. Therefore, the vector u cannot be used as a general mode shape 
function, which can be normalized with respect to many standards and therefore is not unique. 
Thus, an italic letter is used to denote this vector. In Chapter 8, a method to determine u in detail 
is introduced.

If the stiffness matrix K is available, then a more accurate formula to estimate the natural fre-
quency using the Rayleigh quotient can be developed. That is,

	
ωn1

T
1

T
1

= ( )u u
u u

1

1

K
M

rad s 	 (3.240)

where instead of the specific deformation vector u, u1 is specifically the first mode shape normalized 
with respect to any standard. From Equation 3.240,

	 u u u u1 1 1
2

1 1
T

n
TK M= ω 	 (3.241)
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3.5.2  ModE sHaPE EstiMation

In damper design, another important factor that must be considered is the mode shape. For a sim-
plified approach to modeling the structure and/or for preliminary design, the modal shape can be 
estimated with a good degree of accuracy.

If a structure has no notable plan and vertical as well as damping irregularities, which are dis-
cussed later in more detail, then it can be treated as a simple cantilever beam with evenly distributed 
mass and stiffness. Therefore, the ith natural period can be described by

	
T T

i
i 1, 2, , Si

1=
−

= …
2 1

, 	 (3.242)

where S is the total number of modes of interest. The jth element of the ith mode shape, uji, can be 
described as

	
u 1 sin 

2i 1 N 1 j
2N

i 1, 2, , S, j 1, 2,ji
i 1= −( ) −( ) + −( )







 = … = …+ π
, ,, N 	 (3.243)

Here, N is the number of the stories. Note that in Equation 3.243, the mode shape is normalized 
by allowing the roof level modal displacement to be equal to unity.

The mode shape vector for the entire ith mode becomes

	 ui jiu i 1, 2, , m j 1, 2, , n= { } = … = …, , 	 (3.244)

Example 3.6

An example is given to show the results of estimated mode shapes. With this example, the first 
modal mass ratio is calculated by using the triangular mode shape, which is 0.7925. This value is 
slightly smaller than the above-mentioned criterion, so the second mode shape is determined by 
using Equation 3.239. For comparison purposes, the third and fourth mode shapes are calculated 
as well.

In Figures 3.9a through d, the actual and estimated first, second, third, and fourth modes 
shapes, respectively, are shown for the 10-story structure. The stiffness coefficients are evenly 
distributed, shown in Figure 3.4, and the mass matrix has some irregularities. That is,
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It is seen that the maximum variation is about 30%.
In Figure 3.9a, the suggested estimation method 1 is described by Equation 3.243, whereas the 

suggested estimation method 2 is described later in Chapter 8. In the rest of the plots, the sug-
gested estimations are all described by Equation 3.243. Figure 3.9 shows that the estimated mode 
shapes using Equation 3.243 can provide good approximations with the actual mode shapes. As 
a comparison, the mode shapes are plotted with the triangular approach and the corresponding 
residual modes as suggested by NEHRP 2003/2009. It can be seen that a large error may occur 
with the triangular approach.

Next, the natural periods are checked. Table 3.7 lists the actual values and those estimated by 
Equation 3.243. From Table 3.7, it is seen that once the fundamental period is correctly estimated, 
using Equation 3.243 can provide good results.

By using the estimated mode shapes, the modal participation factors can be computed, which 
are listed in Table 3.8. From Table 3.8, it is seen that by using the estimated mode shape, except 
for the fundamental mode, greater errors result. This is one of the limitations of using the simpli-
fied approach.

The fundamental modal mass ratios, calculated with the actual and estimated mode shapes, 
results in γm1	=	85.17% and γm1	=	85.95%, respectively. First, these values are close. Second, both 
values are greater than 80%, whereas using the triangular mode shape, γm1 is less than 80%. The 
remaining modal participation factors for the “residual mode” obtained by using the actual and 
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FIGURE 3.9  Mode shapes (a) mode #1, (b) mode #2, (c) mode #3, and (d) mode #4.

TABLE 3.7
Comparison of Natural Periods

Mode I II III IV

Actual value (sec) 0.5945 0.1966 0.1213 0.0879

Estimated (sec) 0.5945 0.1982 0.1189 0.0849

Error (%) 0.00 0.79 – 2.02 – 3.50
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estimated mode shapes are, respectively, 14.85% and 14.83%, which are fairly close. However, 
with the triangular mode shape, the value jumps to 20.75%.

Note that the above example is only used to show the accuracy of the mode shape and natural 
period estimations. However, the results show qualitatively the trend of using Equations 3.233 and 
3.234. Namely, if a structure does not have large plan and vertical or weight irregularities, these 
equations can provide a fairly good estimate of the mode shapes and natural periods for the first few 
modes. However, care must be taken in the calculation of modal participation factors, which may 
yield large errors, except in the fundamental mode. Fortunately, the modal participation factors of 
higher modes only contribute slightly to the error.

Also note that in Figure 3.9, only the closeness of the estimated mode shapes and the mode 
shapes of normal modes are shown. Practically speaking, normal modes are rare. Therefore, when 
an estimated mode shape is not close to a normal mode, it may not necessarily be a good approach. 
In the next chapter, this issue is discussed in detail.

3.6  COEFFICIENT MATRIX FOR PROPORTIONAL DAMPING

3.6.1  raylEigH daMPing

Several equations represent proportional damping. The simplest one is the Rayleigh damping, which 
expresses that the damping coefficient matrix C can be represented by a linear combination of the 
mass and stiffness matrices. That is,

	 C M K= +α α0 1 	 (3.245)

where α0 and α1 are scalars.
In certain circumstances, the proportionality parameters a0 and a1 need to be identified, which 

can be carried out as follows by using the Rayleigh quotient. Substituting Equation 3.245 into 
Equation 3.116 yields
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Equation 3.246 implies that if all the damping ratios and natural frequencies can be located, 
Equation 3.247, based on the least squares method, can be used to calculate the proportionality 
coefficients α0 and α1. That is,
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TABLE 3.8
Comparison of Modal Participation Factor

Mode I II III IV

Actual value 1.2590 – 0.3981 0.2170 – 0.1242

Estimated 1.2354 – 0.2427 0.3034 – 0.0662

Error (%) 1.87 39.02 – 39.85 46.66



Linear	Proportionally	Damped	Multi-Degree-of-Freedom	Systems	 191

or
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Here,	+	stands for the pseudo inverse. For a rectangular matrix A with dimension m×n, the 
pseudo inverse of A can be calculated as

	
A A A A+ −

= ( ) >T T m n
1

for 	 (3.249)

or

	
A A A A+ −

= ( ) <T T 1
for m n 	 (3.250)

3.6.2  caugHEy daMPing

Alternatively, Caughey proposed a more general formula for proportional damping as

	
C M M K M K KM K= ( ) = + + +

=

−∑ α α α α
−

−
s

s 0

n 1
1 s

1 2
1

0 � 	 (3.251)

Note that
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Therefore, substituting Equation 3.251 into Equation 3.116 results in
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Similarly,
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Therefore, the n coefficients αi can be calculated as
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In many cases, the modal parameters do not have to be used for all modes, just the first S 
modes. In this case, the first S terms in the series are used to represent the damping matrix. That is, 
Equation 3.251 can be written as

	
C M M K≈ ( )
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−
−∑ αs

s 0
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1 s 	 (3.256)

Therefore,
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3.6.3  Modification of caugHEy daMPing

The use of Caughey damping to compute the modal damping can be written as

	
α ω ξ ωs ns

2 s

s 0

n 1

i ni2( ) =
=

−

∑ 	 (3.258)

It is understandable that when the exponent s becomes a large number, the value of (ωns
2 s)  will be 

very large, especially for higher modes. Accordingly, the coefficient αs will become rather small, 
easily smaller than the lowest limit of computer digits. Therefore, mathematically, these coefficients 
can exist; but computationally, quite a few of these coefficients will become computational zero. To 
improve the situation, an alternative formula can be used, such as

	
C M M K= ( )

=

−
−∑ αs

s 0

n 1
1 bs

	 (3.259)

Here, bs can be a series of arbitrary nonzero numbers, not necessarily the integers 0, 1, 2, 3 … , 
as long as bi ≠ bj. However, in order to use higher modal frequencies, bs should not be very large. 
Suppose the maximum possible value of the frequency is denoted as ωnS. The corresponding coef-
ficient αs must be greater than the lowest value of the common computational digit ε. It is suggested 
that for the largest number among all the exponents, denoted by bs,
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M K M K− −( ) <1 b 5 1s 10 	 (3.260)

where i  stands for a norm of matrix (.).
Accordingly,

	 ωnS
2bs( ) < 104 	 (3.261)

or

	
b 4 log 2 logs 1 1 nS< − ( )  ( ) 0 0ε ω 	 (3.262)

For example, MATLAB• for PCs has the digit ε	=	10−16. An alternative formula can be written as

	
b 1 2 logs 1 nS< ( ) 0 0 ω 	 (3.263)

Now, there are S terms in Equation 3.256, the smallest is 0 and the largest is bs, and the ith expo-
nent b1 can be written as

	
b i 1

S 1
bi s= 





−
−

	 (3.264)

Note that the choices of bs in inequalities 3.262 and 3.263 as well as b1 in Equation 3.264 are only 
a suggestion.

3.6.4  oVErdaMPEd ModEs

When a structure is supplied with dampers, it is highly possible that certain modes are over-
damped. The overdamped case is considered using the Rayleigh quotient. It is known that, since 
the stiffness matrix is symmetric and positive definite, the Rayleigh quotient must be a positive 
scalar. That is,
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i
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K
M

= >λ 0 	 (3.265)

Here, for simplicity, the ith eigenvector ui is used directly, instead of an arbitrary vector in 
Equation 3.265. Since overdamped cases may occur, λki is used instead of ωni

2 in Equation 3.275 to 
denote the general case. Similarly, for a positive semidefinite damping matrix,

	

u u
u u

i
T

i

i
T

i
ci

C
M

= ≥λ 0 	 (3.266)

Here, λci is used instead of 2ξi · ωni in Equation 3.266. Note that in practice, there is always a 
positive Rayleigh quotient in Equation 3.266.



194	 Structural	Damping:	Applications	in	Seismic	Response	Modification

To determine if the ith mode is overdamped, check if

	 χ µ κi
2 0− >4 i i 	 (3.267)

or

	 χ µ κi i i2 1( ) >1 2/
	 (3.268)

That is equivalent to checking whether

	 λ λci ki2 11 2( ) >/ 	 (3.269)

or

	

u u

u u u u
i
T

i

i
T

i i
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i

C
M K2

1
( )( )

> 	 (3.270)

3.6.5  altErnatiVE ExPrEssion of ProPortional daMPing

Suppose the mass and stiffness matrices M and K and all the damping ratios of an n-DOF system 
are given. The damping ratios can be arranged in a diagonal matrix as

	
Ξ = [ ]( )diag , ,  1 2 nξ ξ ξ…, 	 (3.271)

From the matrices M and K, the eigenvalue and eigenvector matrices can be calculated and 
denoted by Ω2 and U. The square root of Ω2 is further calculated as Ω, which is the diagonal matrix 
containing all the natural frequencies. That is,

	
Ω = …[ ]( )diag   1 2 nω ω ω, , , 	 (3.272)

The corresponding damping matrix C can be expressed as

	 C MU U= −2  1� � 	 (3.273)

Example 3.7

Suppose the mass and stiffness matrices are as given in Example 3.1. In addition, the damping 
ratio matrix is

	
� = [ ]( )diag .5, .5, .4, .600 00 00 00
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By using the formula described in Equation 3.248, α0	=	0.9016 and α1	=	0.0018, such that
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−
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0 0 1 8053 4 8729−



















( )kN -sm

Using this damping matrix, the damping ratios are calculated as 0.0538, 0.0414, 0.0493, and 
0.0563 for the first through the fourth mode, respectively. It is seen that using the approach of 
Rayleigh damping, computational errors can exist.

By using the formula described in Equation 3.257, α0	=	0.5182, α1	=	0.0052, α2	=	−3.5702e-6, 
and α3	=	8.7961e-10. The corresponding damping matrix is calculated to be
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( )kN -sm

Using this damping matrix, the damping ratio is calculated as 0.05, 0.05, 0.04, and 0.06 for 
the first through the fourth mode, respectively. It is seen that Caughey damping is a fairly good 
approach.

Finally, by using the formula described in Equation 3.273,
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− −



















( )kN -sm

which is identical to the Caughey damping matrix. 

3.6.5.1  Generalized Symmetric Damping Matrix
In Equation 3.81, the concept of a generalized stiffness matrix �K is introduced. It can be seen that 
the eigenvalue matrix of �K is Ω2. The advantage of the generalized stiffness matrix is that it is 
symmetric so that the corresponding eigenvector matrix can be orthonormal. In addition, the same 
treatment of premultiplying and postmultiplying M−1/2 on both sides of the damping matrix C to 
obtain the generalized damping matrix �C can be used. That is,

	 �C M CM= − −1 2 1 2/ / 	 (3.274)

Similarly, matrix �C is also symmetric. When the system is proportionally damped, the general-
ized damping matrix �C will share the identical eigenvector matrix V with �K.

Therefore �K	and �C	will commute, thus

	 � � � �K CKC =  	 (3.275)

Equation 3.275 is an alternative form of the Caughey criterion. Furthermore, it can be realized 
that for the proportionally damped system, matrix �C	will have the following eigen-decomposition:
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�C V V= �C

T 	 (3.276)

or

	 VCV� T
C= � 	 (3.277)

where the eigenvalue matrix 𝚲C is

	 �C i nidiag 2= ( )ξ ω 	 (3.278)

By using the generalized damping and stiffness matrices, Equation 3.99 can be replaced by

	 I /�� � � � ��z z Kz Jt t t  x t1 2
g( ) + ( ) + ( ) = − ( )−C M 	 (3.279)

through premultiplying M1/2 on both sides of Equation 3.99.
Also,

	 z xt t( ) = ( )−M 1 2/ 	 (3.280)

By using Equation 3.279, the similar form of modal Equation 3.138 can be directly obtained from 
the eigen-decomposition of �C and �K.

3.7  SUMMARY

In this chapter, the concept of proportionally damped MDOF systems is introduced. To understand 
the fundamental difference between SDOF and MDOF systems, an undamped structure is first dis-
cussed. The Rayleigh quotient and matrix algebra are introduced as the basic tools to describe the 
MDOF vibratory systems. The principal approach to dealing with an MDOF system is to decouple 
the system into n-SDOF systems, namely, n-modes, so that the responses can be obtained mode by 
mode. In the next chapter, generally damped MDOF systems will be discussed.
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4 Multi-Degree-of-Freedom	
Systems	with	General	Damping

In Chapter 3, a multi-degree-of-freedom (MDOF) system with proportional damping was exam-
ined. When large supplemental damping is added to a structure, the total system is likely to be non-
proportionally damped. In this case, the system will have complex-valued mode shapes, which are 
referred to as complex modes. Furthermore, the system may have certain “modes” with a damping 
ratio greater than 1, which will make the corresponding mode reduce to two overdamped subsys-
tems. In many cases, the contributions of both the complex modes and the overdamped subsystems 
to the total structural response may not be ignored or treated as normal modes. These phenomena 
may be thought of as the results of damping irregularity. In current building codes, neither the 
complex modes nor the overdamped subsystems are required to be considered. In structures with 
added dampers, damping irregularity exists. The question is the degree of irregularity. The complex 
modal responses, as well as overdamped cases, are quantitatively discussed in this chapter, so that a 
determination can be made whether a pair of specific complex modes or an overdamped subsystem 
should be considered in damper design. Note that although installing dampers in a structure will 
likely make the damping of the system nonproportional, if the total damping is still not very large, 
then the proportional damping approach can still be used.

Since adding dampers to a structure may also reduce a mode that was originally underdamped 
and can be expressed as a second-order system to two first-order overdamped subsystems. In this 
case, using the conventional method based on the theory of vibration systems will have limitations. 
Therefore, the overdamped problem is also discussed in this section. In the following paragraphs, 
systems with nonproportional damping and/or overdamped subsystems are referred to as generally 
damped systems. The overdamped subsystems are referred to as pseudo modes.

The phrases normal mode, complex mode, and pseudo mode are used to represent the cases 
listed in Figure 4.1.

4.1  STATE EQUATIONS AND CONVENTIONAL TREATMENT

Conventionally, nonproportionally damped systems with n-degrees-of-freedom are treated in 
the 2n state space. State equations and the state matrix are the major tools used in the approach. 
Similar to the system with proportional damping, eigen-decomposition is used to examine the 
modal responses, though for a nonproportionally damped system, the eigen-decomposition is in 
the 2n-complex modal space. In addition, the state equation is very useful in numerical simulations 
in carrying out the time history analysis.

In the following subsections, a nonproportionally damped system with every mode underdamped 
is considered first. It is also assumed that this system does not have repeated eigenvalues in general.

4.1.1  statE Matrix and EigEn-dEcoMPosition

4.1.1.1  State Equations
As mentioned in Chapter 3, a proportionally damped linear MDOF system can be decoupled into n 
single-degree-of-freedom (SDOF) subsystems or modes in the n-dimensional modal domain. This 
is because matrices M−1C and M−1K share the identical eigenvector matrix, which is then used 
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to transform both M−1C and M−1K into diagonal matrices. However, for a generally damped sys-
tem, the matrices M−1C and M−1K do not have to share identical eigenvectors. In other words, the 
Caughey criterion described in Equation 3.102 will not hold. Thus, an alternative way to decouple 
the entire system needs to be found in order to obtain the responses of such a system, mode by mode.

Consider the governing equation of a linear MDOF system introduced in Chapter 3 (see Equation 
3.99). Here, for a more general case, the forcing vector F(t) is used, that is,

	 M C K�� �x x x ft t t t( ) + ( ) + ( ) = ( ) 	 (4.1a)

In Chapter 3, Equation 3.202, the state equations were introduced as an alternative description of vibra-
tion systems. Now, Equation 3.202 is repeated and more useful properties of the state equations, which 
can be used as mathematical tools to decouple generally damped systems, are further explored. That is,
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Furthermore, using the state and the input matrices, the following state equations can be obtained 
by rewriting Equation 4.1b as

	
�X X F= + ( )A B t 	 (4.2)

In contrast to Equation 3.202, here the dimension of the vector X and F is 2n	×	1, denoted in 
Equations 4.3a and 4.3b as a subscript, that is,
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and note that the dimension of the vector x is n × 1, denoted in Equation 4.4 as a subscript,
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The state matrix is written as
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FIGURE 4.1  General linear MDOF systems.
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Here I and 0 are the identity and null matrices, respectively, with dimension n	×	n.
The input matrix B is

	
B =











×
−

× ×

M
0

n n

n n n n

1

2

	 (4.6)

4.1.1.2 Eigen-Decomposition
As with undamped systems mentioned in Chapter 3, the homogeneous form of Equation 4.4 is used,

	
�X X= ( )A t 	 (4.7)

to introduce the eigen-decomposition of the state matrix A. Note that for the undamped system, the 
matrix to be decomposed is M−1K, which is an n	×	n matrix, whereas the state matrix A is 2n × 2n. 
To evaluate the eigen-properties of these systems, it is first assumed that

	 X P= λe t 	 (4.8)

is a solution of the homogeneous Equation 4.7. That is,

	 λ λ λP Pe et t= A 	 (4.9)

or

	 λP P= A 	 (4.10)

In Equations 4.8 through 4.10, λ is a scalar and P is a 2n ×	1 vector.
If X = Peλt is a solution of Equation 4.7, then Equation 4.10 should hold. Also, if Equation 4.10 

holds, then λP eλt = AP eλt will be a solution of Equation 4.7. Furthermore, from the theory of linear 
algebra and the theory of vibration systems, it can be proven that these necessary and sufficient 
conditions hold.

Now, further assume that the system does not have large damping, that is, the entire system is 
underdamped. Since A is an asymmetric matrix, the complex-valued λ and P will generally exist. 
Taking the complex conjugate of Equation 4.10, denoted by ()*,

	 λ* * *P P= A 	 (4.11)

Equations 4.10 and 4.11 form the typical eigen-problem. That is, if the pair <λ, P> does make 
X = Peλt a solution of Equation 4.8, then Equation 4.10 implies that λ is one of the eigenvalues of the 
matrix A and P is the corresponding eigenvector. Suppose the system has n-DOFs. Thus, there are 
n pairs of eigenvalues and eigenvectors in the complex conjugates. That is, Equations 4.10 and 4.11 
can be further expanded as

	 λ …, i i i i 1,2, nP P= =A 	 (4.12)

Taking the complex conjugate of both sides of Equation 4.12,

	 λ = = …, i i i
* * * i 1,2, nP PA 	 (4.13)
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It is known that the eigen-problem described in Equations 4.12 and 4.13 implies that all the 
eigenvectors, Pi and Pi

*, are linearly independent. Furthermore, each eigenvector is only asso-
ciated with a unique eigenvalue λi (or λi

*), which is defined in Chapter 1 and is represented as 
follows:

	 λ = −ξ ω + − ξ ω = …, i i i i
2

ij 1  , i 1, 2, n 	 (4.14)

Note that in the case of a nonproportionally damped system, both the natural frequency ωi and 
the damping ratio ξi are derived from Equation 4.14. Thus,

	 ω = λ …, i i , 1, 2, ni= 	 (4.15)

and

	 ξ λ ωi i iRe= − ( ) 	 (4.16)

In previous chapters, the natural frequency (or angular natural frequency) is denoted as ωni with 
subscript n standing for “natural.” This natural frequency is obtained through the square roots of 
stiffness k over m or κi over μi. In generally damped systems, however, the natural frequency can-
not be obtained in this way, but rather through Equation 4.14. In this case, to distinguish it from the 
previously defined quantities, subscript n is omitted.

Note that an eigenvalue λi (or λi
*) can have an infinite number of eigenvectors. That is, if Pi is one 

of the corresponding eigenvectors, then vector Ri,

	 R Pi i= α 	 (4.17)

will also be the eigenvector associated with that λi, where α is an arbitrary nonzero scalar. Since Pi 
is a 2n × 1 vector, it is seen that through the assumption described in Equation 4.8,
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where pi is an n × 1 vector. Since the system is linear, the solution can have all the linear combina-
tions of pi and pi

* as follows:
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	 (4.19)

Denote

	 P = [ ]p p p1 2 n, , ,… 	 (4.20)
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and
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the result is

	 x P Pt t t( ) = ( ) + ( )e e* * 	 (4.22)

	
�x P Pt t t( ) = ( ) + ( )� �e e* * * 	 (4.23)

and

	
��x P Pt t t( ) = ( ) + ( )� �2 2e e* * * 	 (4.24)
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and
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Here Λ is defined as the diagonal n × n matrix, which contains all the n-sets of eigenvalues, as 
follows:
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where λi is defined in Equation 4.14, and 0 stands for a null matrix with proper dimension. In the 
following discussion, for simplicity, the off-diagonal submatrix 0 will not appear.

Substituting Equation 4.26 into Equation 4.7 with assistance from Equation 4.3 results in
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There can further be a 2n × u matrix E, defined as
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which can be shown to have full rank 2n. Therefore,
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Postmultiplying by E+ on both sides of Equation 4.30, since

	 EE+
×= I2n 2n 	 (4.31)

where again superscript	+	stands for the pseudo inverse, results in

	

P P
P P

P P
P P

� � �

�

� �* *

* *

* *

*



















 =









A 	 (4.32)

Equation 4.32 indicates that the state matrix A can be decomposed into the eigenvalue matrix:
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* 	 (4.33)

and eigenvector matrix P:

	
P =









 = …[ ]P P

P P
� �* *

* ,P P P1 2, ,  2n 	 (4.34)

Note that the eigenvector matrix is now arranged to have the form of a complex conjugate pair:

	

P
P

P
P

� �

















and

*

	 (4.35)

Thus,

	 P = …[ ] …[ ]





∗P P P P P P1 2 1 2,  ,  ,  , n n, , , 	 (4.36)

and

	

P
P

P
P

� �







 =











* * *

*
	 (4.37)

That is,

	 A P P= −  � 1	 (4.38)

or

	 � = P AP–1 	 (4.39)
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Note that, the method of using the state equation also works for proportionally damped systems.
Matrix Δ in Equation 4.39 maintains exactly the same eigenvalue format as that for proportion-

ally damped systems. However, the eigenvector P can have a different form from the proportionally 
damped case due to the nonuniqueness of Pi discussed above.

Equations 4.38 and 4.39 can be used to define modal analysis in the 2n complex modal domain, 
since the submatrix P in the eigenvector matrix P is generally complex valued. Here P is called the 
mode shape matrix. Note that P contains n vectors expressed in Equation 4.20.

In this case, there is an n set of triples <	pi, ξi, ωi	> and another n set of its complex conjugates. It 
is apparent that the damping ratio ξi and the natural frequency ωi can be obtained through Equation 
4.27. In this circumstance, the triple <	pi, ξi, ωi	> and its complex conjugate define the ith complex mode.

Example 4.1

Suppose an M-C-K system with

	
M C=









 ( ) =

−
−









 ( ) =

−
−

2
2 5

10 5
5 15

1500 750
750 7.

t , kN -s/m , K
550









 ( )kN /m

	

First, let us check the Caughey criterion. It is found that

	
CM K−1 9000 5250

8250 6375
=

−
−











	

and

	
KM C− =

−
−











1 9000
5250 6375

8250

	 .

Therefore, CM−1K ≠ KM−1C, so the Caughey criterion is not satisfied. In other words, the eigen-
vector matrix of K cannot be used to decouple C as mentioned in Chapter 3, but rather the state 
matrix is used to find the eigenvalues and mode shapes.

The state matrix can be written as

	

A =

− −
− −



















5 2 5 750 375
2 6 300 300
1 0 0 0
0 1 0 0

.

	

The corresponding eigen-decomposition will result in

	
� = − + − + − −diag 1.9668 10.8474j, 3.5332 30.2190j, 1.9668 10.8474j,, 3.5332 30.2190j−[ ]( )−

	

and

	

P =

+ − − −
+

0.5068 0.0277j 0.9009 0.5068 0.0277j 0.9009
0.8569 0.4278 0..0654j 0.8569 0.4278 0.0654j

0.0057 0.0457j 0.0034 0.0294j 0
−

− − + − ..0057 0.0457j 0.0034 0.0294j
0.0139 0.0765j 0.0005 0.0142j

+ −
− − − −00.0139 0.0765j 0.0005 0.0142j− +
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So,

	
� = − + − +diag 1.9668 10.8474j, 3.5332 30.2190j[ ]( ) 	

and the mode shape matrix is

	
P =

− − +
− − −
0.0057 0.0457j 0.0034 0.0294j
0.0139 0.0765j 0.0005 0.01422j











In Section 4.1.4, additional measurements to quantify the damping nonproportionality are 
introduced.

4.1.2  accoMPanist Matrix of ModE sHaPEs

For convenience, in this section, another matrix Q is introduced, which is closely related to the 
mode shape matrix P. The matrix Q will play an important role in analyzing the non-proportionally 
damped systems.

Note that the eigenvector matrix P is of full rank. Thus, it must have an inverse matrix, 
denoted as

	 Q P= –1 	 (4.40)

It can be proven that matrix Q has the following structure with complex conjugate pair:

	
Q =











Q R
Q R* * 	 (4.41)

The upper diagonal submatrix Q in Equation 4.41 can be written as

	 Q P P P P P= − −− − − −1 * * * 1 1 1
  � �( ) 	 (4.42)

while the upper off-diagonal submatrix R is

	 R P Q P P= −− −1 1   � 	 (4.43)

or

	 R Q K= − − −� 1  M 1 	 (4.44)

Matrix Q plays an important role in system analysis. It is called the accompanist matrix of the 
mode shape P.

It is seen that the state matrix A can be written as a product of two symmetric matrices R and 
S, that is,

	 A RS= 	 (4.45)
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where

	
R =

−









− −

−

M CM M
M O

1 1 1

1

−

	 (4.46)

and

	
S =

−










M O
O K

	 (4.47)

Therefore,

	 R S P P = � 	 (4.48)

Premultiplying Q on both sides, and inserting a 2n × 2n identity I = QT PT in between R and S,

	 Q R Q P S P   T T( ) = � 	 (4.49)

or

	 Q R Q P S P   T T( )( ) = � 	 (4.50)

Since R and S are symmetric, Q R QT and PT S P will also be symmetric. That is, we can have

	
Q R Q Q R Q    T T T( ) = 	 (4.51)

	
P S P P  S PT T T  ( ) = 	 (4.52)

Thus, taking the transpose on both sides of Equation 4.50,

	 P S P Q R QT T T T  = =� �T 	 (4.53)

or

	
P S P Q R QT T   ( )( ) = =� �T 	 (4.54)

Comparing Equations 4.50 and 4.54, it is seen that matrices (Q R QT) and (PT S P) can com-
mute, which implies that both of them have the identical eigenvector matrix. Furthermore, since 
(Q R QT) and (PT S P) are symmetric, the associated eigenvector matrix can be orthonormal, 
which is denoted by Φ. Thus,

	 Q R Q  diag rT
i

T= ( )Φ Φ 	 (4.55)

and

	 P S PT
i diag s= ( )Φ Φ T 	 (4.56)
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where ri and si are corresponding eigenvalues of Q R QT and PSPT; and

	 ΦΦT = I 	 (4.57)

Substituting Equations 4.55 and 4.56 into Equation 4.54 results in

	 Φ Φ Φ Φ diag r   diag s  i
T

i
T( ) ( ) = � 	 (4.58)

Premultiplying and postmultiplying ΦT and Φ on both sides of Equation 4.58 respectively and 
considering Equation 4.57,

	 diag r  diag si i
T( ) ( ) = Φ Φ� 	 (4.59)

Therefore,

	 diag r si i
T( ) = Φ Φ� 	 (4.60)

Equation 4.60 implies that

	 Φ ΦT  = diagonal� 	 (4.61)

Thus,

	 Q R Q  diag rT
i= ( ) 	 (4.62)

and

	 P S PT
idiag s = ( ) 	 (4.63)

as well as

	 r s , i 1, 2, ni i i= λ = …, 	 (4.64)

and

	 r s , i 1, 2, ni i i
* * *= λ = …, 	 (4.65)

Note that, in the above discussion, the condition of nonrepeated eigenvalues are not necessary.

Example 4.2

Reviewing the M-C-K system mentioned in Example 4.1, the inverse matrix of P is calculated as

	

Q =

+ + + +0.2156 0.0459j 0.4596 0.0719j 0.7635 2.3339j 0.5342 5.1603j
−− − + − − +0.4351 0.0215j 0.2563 0.0522j 0.5014 13.2852j 0.1416 7.92755j
0.2156 0.0459j 0.4596 0.0719j 0.7635 2.3339j 0.5342 5.1603− − − − jj
0.4351 0.0215j 0.2563 0.0522j 0.5014 13.2852j 0.1416 7.92− + − − + − 775j
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Therefore, the accompanist matrix Q of the mode shape P is

	
Q =

+ +
− − +
0.2156 0.0459j 0.4596 0.0719j
0.4351 0.0215j 0.2563 0.0522jj











	

In addition, it can be seen that

	 Q P P P P P*= − − − − −1 * * 1 1 1
 � �−( ) 	

Futhermore,

	

R S=



















−
−

=

2.5 1 0.5 0
1 2.4 0 0.4
0.5 0 0 0
0 0.4 0 0

and

2 0 0 0
0 2.5 0 00
0 0 1500 750
0 0 750 750

−


















	

It is seen that, Q  R  QT=	 diag 0.7862 2.2610j, 1.2137 7.2554j, 0.7862 2.2610j,− + − + − −[(
− ])1.2137 7.2554j− 	 and PT SP = diag 4.5499 0.7122i, 4.1309 0.2040i,4.5499 0.7122i,− − +[(
4.1309 0.2040i+ ]).

4.1.3  linEar indEPEndEncy and ortHogonality conditions

In Chapter 3, the orthogonality of normal modes was introduced without further explanation as to 
why the modes were orthogonal (see also Clough and Penzien 1993).

Note that Equations 4.62 through 4.65 can also be obtained by examining the generalized eigen-
decomposition of symmetric matrices R and S by using orthogonal conditions. For example,

	
Q Qi

i i  
r     i j
0    i j

R j
T =

=
≠





	 (4.66)

	
P Pi

T S 
s     i j
0    i jj
i i=

=
≠





	 (4.67)

That is, vectors Qi and Pi are weighted orthogonal with the weighting function R and S, respec-
tively. Note that Qi and Pi are the ith row and column of matrices Q and P, and their dimensions are 
1 × 2n and 2n × 1, respectively.

Although the orthogonal properties described in Equations 4.66 and 4.67 have been proven in 
Equations 4.62 and 4.63, the orthogonality is checked in an alternative way as follows (Ewins 1984):

Premultiplying R −1 on both sides of Equation 4.48, results in

	 S P R P  1= − � 	 (4.68)

Therefore, for the ith and jth eigenvalues and eigenvectors,

	 S RP Pi i
1

i= λ −
	 (4.69)
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and

	 S RP Pj j
1

j= −λ 	 (4.70)

Premultiplying P jT on both sides of Equation 4.69, results in

	 P P P Pj
T

i i j
T 1

iS R= −λ 	 (4.71)

Because both R and S are symmetric, it follows that R −1 will also be symmetric. Postmultiplying 
Pi on both sides of the transpose of Equation 4.70, results in

	 P P P Pj
T

i j j
T 1

iS R= λ − 	 (4.72)

Subtracting Equation 4.72 from Equation 4.71 yields

	 0 = −( )−P Pj
TR 1

i i jλ λ 	 (4.73)

Equation 4.73 implies that when λi ≠ λj, the matrix production P jT R −1 Pi must be zero, since both 
λi and λj are nonzero values. Therefore, Pj and Pi are orthogonal with a weighting matrix of R −1.

Furthermore, it is easy to see that Pj and Pi are also orthogonal with weighting matrix R. The 
inverse of both sides of Equation 4.48 can be taken and R can be postmultiplied on both sides of the 
resulting equation. Since Q = P  –1,

	 Q S  Q R− −=1 1� 	 (4.74)

which implies

	 Q Qi i iS R− =1 1 λ 	 (4.75)

and

	 Q Qj
1

j j1S R− = λ 	 (4.76)

Note that it is assumed that the system does not have repeated eigenvalues. Therefore, similarly,

	 0 = λ − λQ Qi j
T

i j1 1R ( ) 	 (4.77)

Equation 4.76 implies that when 1/λi ≠ 1/λj, the matrix production Qi
 R Qj

T must be zero, since 
both 1/λi and 1/λj are nonzero values. Therefore, Qj and Qi are orthogonal with weighting matrix 
R. Similarly,

	 R P S P− −=1 1  � 	 (4.78)

As well as

	 R S−1P Pi i i= λ 	 (4.79)
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and

	 R S− =1P Pj j jλ 	 (4.80)

By the same procedure, it can be proven that Pj and Pi are also orthogonal with weighting matrix 
S by generating

	 P Pj
TS i i j 01 1λ λ−( ) = 	 (4.81)

The orthogonal conditions described by Equations 4.66 and 4.67 are good properties to use in 
the study of state equations, and to prove these the assumption of λi ≠ λj when i ≠ j is required. 
However, it should be understood that the essence of Equations 4.62 and 4.63 is not necessarily the 
orthogonal conditions, but the linear independency of all the eigenvectors Pi in matrix P. This is 
the first reason not to use the orthogonal conditions for further studies.

The second reason not to use the orthogonal condition is that the value of ri is not unique, due 
to the nonuniqueness of the eigenvector Pi for all modes. In order to use the values of ri and si for 
all modes, the method of normalization needs to be specified, which may be different from those 
provided by most building codes.

The third reason not to use the orthogonal approach is that it is preferable to use a minimum 
number of equations in practical designs.

A method to obtain the relationship between Qi and Pi without using the orthogonal conditions 
is explained below. Note that Qi and Pi are further used in a later section to introduce the modal 
participation indicators, etc.

Postmultiplying PT on both sides of Equation 4.62 yields

	 Q R P = ( )diag r  i
T 	 (4.82)

Now, consider the ith row of the above matrix equation. The ith row of matrix Q is denoted as

	 Q q ri i i= [ ], 	 (4.83)

which results in

	 q i i i i i
T

i
Tr, ,r p p[ ] =  R λ 	 (4.84)

where ri is the ith row of matrix R defined in Equation 4.41.
Note that qi contains the first n elements of Q, and pi contains the last n elements of P. Therefore, 

the dimensions of qi and pi are, respectively, 1 × n and n × 1.
Using Equation 4.46, Equation 4.84 can further be written as

	
− +  =  

− − − −q r q p pi
1 1

i
1

i
1

i i i
T

i i
Tr rM CM M M, ,λ 	 (4.85)

Therefore, from the second element of Equation 4.85,

	 q pi i
T= ri M 	 (4.86)
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Combining all n of qi in Equation 4.86, it is seen that

	 Q P  R
T= � M 	 (4.87)

where

	 �R idiag r , i 1, 2, n= ( ) = …,  (4.88)

There are n conjugate pairs of ri. Note that, those real-valued ri associated with overdamped 
subsystems can also be treated as pairs. In Equation 4.88, ri is arranged as the first portion of the 
conjugate pair. Next, all values of ri are examined, in order to further represent vector qi.

Taking the inverse of both sides of Equation 4.62 and using the relationship described in 
Equation 4.88,

	 P R PT   diag−1 = ( )1 ri 	 (4.89)

or

	 P Pi
TR − =1 1i ir 	 (4.90)

It can be seen that

	
R − =











1 0 M
M C

	 (4.91)

Thus,

	 p p p p p pi
T

i
T

i
TM Mi i i i i irλ λ+ + =C 1 	 (4.92)

Therefore,

	
r 1

2 i
i

i

i
2=

+( ) =
−( )p pi

T
i i

T
iλ

λ
λM C M Kp p

	 (4.93)

Similarly,

	 si i
T

i
2

i= λ −p pM K( ) 	 (4.94)

Furthermore, the ith row vector of matrix Q can be written as

	
q p

p p
p

p pi
i
T

i
T

i

i
T

i
T

i
=

+( ) =
−( )

Μ
2 i

i

i
2λ

λ
λM C

M
M K 	 (4.95)

Note that

	
ξ

ωi
i

i

i

1
2

= p p
p p

i
H

i
H

C
M 	 (4.96)



Multi-Degree-of-Freedom	Systems	with	General	Damping	 211

and

	
ω i

i
H

i
H

2 = p p
p p

K
M

 
 

i

i
	 (4.97)

Here, superscript H stands for Hermitian transpose.
Using Equation 4.86, it can be proven that the following equations hold:

	
ξ

ωi
i

1
i

i

1
2

=
−q p
q p

i

i

*

*
M C 	 (4.98)

and

	
ω i

2 =
−q p
q p

i

i

*

*
M K1

i

i
	 (4.99)

Example 4.3

Example 4.3 continues with a review of Example 4.1. Through Equation 4.93, it is calculated that

	
r 1

2
1 7862 226

1 1 1 1 1 1 1
1

1 1 1 1
0= ( ) +

= ( ) − ( ) = − +
λ λ λp p p p p p p pT T T TM C M K

. . 11 j0
	

	
r 1

2
1 12137 7 25

2 2 2 2 2 2 2
2

2 2 2 2
= ( ) +

= ( ) − ( ) = − +
λ λ λp p p p p p p pT T T TM C M K

. . 554i
	

and

	 s 4.5499 .7122j1 1
2

1 1 1 1 0= − = −λ p p p pT TM K 	

	 s 4.13 9 .2 4 jT T
2 2

2
2 2 2 2 0 0 0 0= − = −λ p p p pM K 	

Furthermore,

	
ω1

2 = =
−q p

q p
1

i

*

* .M K1 1

1
1215336

	

so that ω1 = 11.0242, and

	
ω2

2 2

2
0= =

−q p
q p

*

* .M K1 2

2
92567 1

	

thus, ω2 = 30.4248. In addition,

	
ξ

ω1
1

1
1

1

1
2

 1784= =
−q p

q p
1

1
0

*

* .M C
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and

	
ξ

ω2
2

1
2

2

1
2

1161= =
−q p

q p
2

2
0

*

* .M C

	

4.1.4  aPProacH of coMPlEx daMPing

From the above discussion, it is known that nonproportionally damped systems have unique char-
acteristics that are different from proportionally damped systems. Generally speaking, because 
the distribution of the damping is irregular with respect to the distribution of the stiffness, the 
function of damping will not only dissipate energy, but also transfer it. A proportionally damped 
system can be decoupled in an n-dimensional space, whereas a nonproportionally damped system 
cannot. A nonproportionally damped system can be realized as a system that has evolved from a 
proportionally damped system by gradually adding nonproportional damping. It is understandable 
that, at the very beginning, when the amount of damping is sufficiently small, the behavior of a 
nonproportionally damped system is very similar to the original proportionally damped system. 
However, to accurately represent the nonproportionally damped systems modally, complex modes 
must be used. In this case, the set of complex modes can be thought of as those that have evolved 
from the original set of normal modes. The reason for the evolution is the energy transfer due to 
nonproportional damping among the original set of normal modes.

It is understandable that either a normal mode or a complex mode will always be an inde-
pendent “energy island,” which will have no energy exchange with other modes. However, if 
the complex mode is seen as the result of an evolutionary process, it can further be understood 
that this new “energy island” is formed by energy transfer among the original set of modes. In 
this situation, it is seen that the function of the nonproportional damping will not only dissipate 
energy, but also transfer energy. However, the function of proportional damping is only energy 
dissipation. In order to quantitatively express the energy dissipation, the concept of a damping 
ratio has already been introduced. The concept of the modal energy transfer ratio (ETR) in order 
to quantitatively express the energy transfer has been discussed in Liang and Lee (1991). For 
convenience, some important issues are repeated here to form a foundation for damper design in 
the following discussion.

In regular structural design against earthquake excitations, many building codes employ the 
concept of structural irregularity, such as plan and vertical irregularity. In damper design, the con-
cept of structural irregularity should be considered as stiffness, mass, and damping irregularity. 
The concept of complex mode and modal ETR can help engineers further understand the damping 
irregularity, both qualitatively and quantitatively.

To begin this discussion, the model energy transfer ratio of the ith mode, denoted by ζi, is con-
sidered as (Liang and Lee 1991)

	
ζ ω

ωi
i

ni
ln= 	 (4.100)

Here, ωi is the ith natural frequency of a nonproportionally damped system, whereas ωni is the 
ith natural frequency of the corresponding proportionally damped system, which can be seen as 
an undamped system (C = 0) whose mass and stiffness matrices are, respectively, identical to the 
nonproportionally damped system. Since both the undamped and the proportionally damped sys-
tems have normal modes, the undamped system can be seen as a special case of the proportionally 
damped system, as described in Chapter 3. In the following discussion, it can be seen that the quan-
tity ζi, defined in Equation 4.100, is related to modal energy transfer.
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The ETR ζi can be examined from a different perspective. In the following paragraph, it is seen 
that if the ith mode is truly complex, then the modal natural frequency ωi must be different from the 
ith normal mode of the corresponding proportionally damped system.

To begin this discussion, consider the homogeneous form of Equation 3.279. That is,

	 I C�� � � �z z zt t t 0( ) + ( ) + ( ) =K 	 (4.101)

Note that the system described by Equation 4.101 has monic mass or the mass matrix is an iden-
tity matrix. In Equation 4.101, generalized stiffness and damping matrices K

~ 
and C

~
 are defined in 

Equations 3.81 and 3.274, respectively. In Chapter 3, proportionally damped systems were primar-
ily discussed, but in this chapter, nonproportional damping is introduced. Therefore, the Caughey 
criterion described in Equation 3.285 may no longer hold.

This monic (I-C
~

-K
~

) system will generally have a different modal space from the original (M-C-
K) system. The newly formed (I-C

~
-K
~

) system is only used for simplicity, because both C
~

 and K
~

 are 
symmetric (see Equations 3.284 and 3.81). For convenience, the modal space of the monic (I-C

~
-K
~

) 
system is called the monic modal space, and the corresponding mode is called the monic mode. The 
modal space of the generic original (M-C-K) system is called the general modal space, and the 
corresponding mode is called the mode if necessary. In Section 4.5.4, the method of dual modes 
is introduced to solve a generic practical problem in damper design when the damping ratios for 
a structure with added dampers must be calculated more accurately and the stiffness matrix is not 
available. In that section, the monic mode will again be used.

Now, one of the conjugate pair of the spatial portion of Equation 4.101 can be further written as 
follows:

	 V P V CP PT T� � � �Λ Λ2 2 0+ + =� 	 (4.102)

Equation 4.64 is in matrix form. Here V and P
~

 are the eigenvector matrix of the stiffness K
~

 and 
the mode shape matrix of the system defined previously, respectively. That is,

	 V = ×[ ]1 2v v v, , ,… n n n 	 (4.103)

and

	
� � � … �P = ×[ , , , ]p p p1 2 n n n 	 (4.104)

Note that again

	 �2 2= ( )diag niω 	 (4.105)

is the eigenvalue matrix of stiffness K
~

. Note that if the system is proportionally damped, then

	 ω ωni i= 	 (4.106)

which is the ith natural frequency of the system.
With the notations defined in Equation 4.105, the iith entry of each matrix of Equation 4.102 forms

	 ω + ω + ω =i
2

i
T

i i i
T

i ni
2

i
T

i 0v p v p v p� � � �C 	
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or

	 ω + ω ω =i
2

i i
T

i i
T

i ni
2 0�v p v p� � �C( ) ( ) + 	 (4.107)

Now, consider the generalized Rayleigh quotient in Equation 4.107 and note that subscript i 
denotes the ith mode.

Since the ith mode shape pi is, in general, complex valued, so is the generalized Rayleigh quotient. 
Therefore,

	 v p
v p
i
T

i

i
T

i
i i

 j
� �
�

C = +α β 	 (4.108)

where αi and βi are real numbers. When the damping of the system is not sufficiently large, 
Equation 4.108 is rewritten as

	 1
2ω

ξ ζ
ni

i
T

i

i
T

i
i i

 
 

jv p
v p

� �
�

C ≈ + 	 (4.109)

That is, the real part on the right side of Equation 4.109 is approximately the conventionally 
defined damping ratio ξi and the imaginary part is identical to that defined in Equation 4.100 (Liang 
and Lee 1991).

Equation 4.109 can also be rewritten as

	 1
2ω

ξ ζ
ni

T
i

T
i

i i
i

i

  
 

ju p
u p

C
M

≈ + 	 (4.110)

where ui and pi are, respectively, the ith mode shapes of the M-zero-K and the M-C-K system. 
Namely, ui is the ith eigenvector of matrix M−1K.

The imaginary part ζi is not zero valued unless the ith mode is normal and only if the ith mode is 
normal, ζi = 0. In other words, all the imaginary parts

	 ζ = = …, i 0, i 1,2, n 	 (4.111)

satisfy the sufficient and necessary condition of a proportional damping system.
The damping ratio here is still the ratio between the dissipated energy Edi during a vibration cycle 

and the total energy Epi of the ith mode in the case of steady-state vibration, that is, Timoshenko 
damping still holds (see Equation 1.217), which is rewritten as

	 ξ πi di piE E= 4 	

In addition, ζi is the ratio between the transferred energy ETi during a vibration cycle and the total 
energy Epi of the ith mode,

	 ζ πi Ti piE E= 4 	 (4.112)

That is, the term ζi is the ratio between the energy ETi transferred during a vibration cycle and 
the total energy Epi before the cycle. In this regard, ζi is the ith modal ETR. Here the energy ETi 
transferred is defined as work done by imaginary damping force 2ζiωniẋ i(t) during a complete cycle 
of 2π/ωni (Liang and Lee 1991).
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Furthermore, it can be shown that

	 ω ω ζ
i nie i= 	 (4.113)

Equation 4.113 (also see Equation 4.100) states that if the ith mode is complex, the natural fre-
quency is changed by the factor eζi. Note that the natural frequency ωi (nonproportionally damped) 
and/or ωni (proportionally damped) is actually the square root of the generalized modal energy. 
Therefore, Equation 4.113 implies that, for a nonproportionally damped system, there must be 
a certain amount of energy transferred among modes and the ETR is the quantity ζi. From this 
perspective, the modal ETR ζi changes the modal energy quantitatively represented by the rela-
tionship given by Equation 4.113. It follows that the real part ξi, the damping ratio, is the ratio of 
energy dissipation.

In the above derivation, no assumptions or restrictions are placed on the physical parameters of 
mass, damping, and stiffness. If and only if the system is proportionally damped, then all the modal 
ETRs are equal to zero. This implies that the modal ETR is the parameter of the system itself and, 
from Equation 4.110, it is shown that the modal ETR cannot be represented by the conventionally 
defined modal parameters (the natural frequency, damping ratio, and mode shape).

Generally speaking, if the norm of the damping matrix is comparatively small, both the damping 
ratio and the ETR will be small. As in conventional design, when the damping ratio is taken at about 
5%, the ETR may be smaller than 1%. When damping is purposely increased for vibration control, 
such as in damper-added and/or base isolated structures, both the damping ratio and the ETR can 
be significant.

The responses of the structure can be further magnified under two-directional ground motion 
inputs. In base isolation, often a greater than 15% damping ratio is incorporated into the design, 
where the damping of the base isolator is often large, but that of the superstructure can be very 
small. Because of the unbalanced nature of damping distribution, the structure can be heavily non-
proportionally damped.

Example 4.4

Consider the M-C-K system mentioned in Example 4.1. The eigenvector matrix V is calculated 
by the eigen-decomposition of K

~
 =M−1/2 KM−1/2, and the eigenvector matrix U is obtained by the 

eigen-decomposition of M−1 K, which are, respectively,

	 V U=
−







 =

−
0 4706 0 8824
0 8824 0 4706
. .
. .

,
0.5122 0.9026
0.8589  0.44306









 	

The mode shape matrix of the corresponding monic (I-C
~

-K
~

) system is

	 �P =
+ +
+ −

0.0053 0.0042j 0.0034 0.0287j
0.0142 0.0785j 0.0005 0.0155jj









 	

Note that the mode shape P̃ matrix of the M-C-K system was obtained in Example 4.1.
Thus,

	 1
2

1
2

0
ω ω

ξ ζ
n1

1
T

1

1
T

1 n1

1
T

1

1
T

1
1 1

 
 

 =  
 

j 1784v p
v p

u p
u p

� �
�

C C
M

≈ + = −. 00 00. 17j	

	 1
2

1
2

0 0
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ξ ζ
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2
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2

2
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2 n2

2
T

2

2
T

2
2 2

 
 

 =  
 

j 1161v p
v p

u p
u p

� �
�

C C
M

≈ + = +. ..0017j	
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Furthermore, it is seen that the ETRs are 0.0017 and –0.0017 for the first and second modes.
Note that,

	 ζ ζ1 2 0+ = 	

If the damping is proportional, the corresponding natural frequency will be the square roots of 
the eigenvalues of matrix K

~
, which are 11.0051 and 30.4777, respectively. Further comparing ω1 

and ω2, which are 11.0242 and 30.4248 rad/sec, respectively, it is seen that,

	 ln 11.024211.0051 0.0017( ) = 	

and

	 ln 3 4248 3 4777 170 0 0 00. . .( ) = − 	

The results agree with the calculated ETRs.

Example 4.5

A specially selected 5-DOF system is used to illustrate the effect of nonproportional damping, 
which results from adding certain damping matrices. Suppose, originally, M = I (t); C0 = 142.9 M 
(kN-s/m), and

	
K =

− −
−
338.4783 308.4909 116.2266 43.8386 42.3444
308.4909 454.70499 264.6522 73.8822 1.4942
116.2266 264.6522 412.3605 306.9967

−
− − 1117.7208

43.8386 73.8822 306.9967 456.1991 190.7701
42.3444 1

− −
− ..4942 117.7208 190.7701 147.7082

1000 kN m

−























× ( )
	

Since C is a Rayleigh damping matrix, the system is proportionally damped. The natural fre-
quencies are listed in the first row of Table 4.1.

With added damping matrix Ca,

	
Ca

0.6369 0.2676 0.3728 0.3699 0.5741
0.2676 0.1134 0.2100 0.1

=

− −
− − 2287 0.2636
0.3728 0.2100 3.0939 1.2200 1.5422
0.3699 0.1287 1.2

−
−

− 2200 0.9324 0.2691
0.5741 0.2636 1.5422 0.2691 1.0234−























× ( )1000 kN -sm
	

the system will become nonproportionally damped; the corresponding natural frequencies are 
listed in the first and second rows of Table 4.1 and the ETRs and damping ratios are listed in the 
third and fourth rows, of Table 4.1, respectively.

The mode shapes of the proportionally and nonproportionally damped systems are, 
respectively,
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1.0000 1.0000 1.0000 1.0000 1.0000
1.9190 1.3097 0.2846 0.8308 1.− − 66825
2.6825 0.7154 0.9190 0.3097 1.8308
3.2287 0.3728 0.5462 1

− −
− − ..0882 1.3979

3.5133 1.2036 0.7635 0.5944 0.5211
−

− −























+ +

and

1.0000 1.0000 1.0000 1.0000 1.0000
1.3097 0.0000j 1.6347 11.3214j 0.3603 0.1022j 0.8308 1.6782 0.1070j
0.7154 0.0000j

+ − − −
+ 11.9435 3.0877j 0.7668 0.2365j 0.3097 1.8178 0.0246j

0.3728
+ − + − −

− ++ + − + − −0.0000j 2.5134 3.1437j 0.3790 0.2420j 1.0882 1.3996 0.1370jj
1.2036 0.0000j 2.9862 2.2994j 0.8846 0.1768j 0.5944 0.5186− + + + − −−





















0.0885j

	

Examining the above mode shapes, it is seen that by adding damping Ca, the mode shapes of 
the nonproportionally damped system generally become complex valued. The resulting first mode 
evolves from the second normal mode of the original proportionally damped system. It does not 
have a large imaginary value because the corresponding ETR is comparatively small (0.59%). The 
second complex mode evolves from the first normal mode. The positions of the third, fourth, and 
fifth modes do not change. The twist between the first and second modes can be illustrated by 
multiplying a factor on Ca from 0% to 100%. The variation of the first and second natural frequen-
cies is plotted in Figure 4.2.

Note that the fourth mode remains normal because the corresponding ETR is exactly zero, 
which implies that no energy is transferred into or out of the fourth mode. Note that by using 

TABLE 4.1
Modal Parameters of the Proportionally and Newly Formed Systems

1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

ωni 1.1370 1.1500 1.4895 4.0000 5.0000

ωi 1.1500 1.1569 1.4661 4.0000 4.9923

ζi 0.0120 0.0063 −0.0158 0.0028 −0.0015

ξi 0.0118 0.2194 0.0625 0.0028 0.0292

First mode Second mode
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100
90
80
70
60
50
40
30
20
10

0
1.135 1.14 1.145 1.15 1.155 1.16

Frequency (Hz)

Pe
rc

en
ta

ge
 o

f C
a

FIGURE 4.2  Twist of natural frequencies.
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the Caughey criterion, the normal mode in nonproportionally damped systems cannot be 
identified.

Furthermore, the damping ratios ξi and ETRs ζi of the nonproportionally damped system are 
listed in the third row of Table 4.1 in the form of ξi	+	jζi. Note that the sum of all ETRs is zero, which 
means that by considering the modal energy transfers only, no energy is dissipated.

	 ζi 1.2 .63 1.58 .15 % 1.83 1.83 %= +( ) + − −( )[ ] = −[ ] =∑ 0 0 0 0 	

Now, if the following damping matrix, Cp, is used, a proportionally damped system with exactly 
the same damping ratios as the nonproportionally damped system can be obtained.

	 Cp

 1.3289    0.6395    0.4508   0.6902   0.3971

 0.6395 

=

− −

    1.7796   0.0507    0.0536   1.0873

 0.4508   0.0507 

− −

−     1.3825   0.4479   0.6366

0.6902    0.0536   0.4479 

− −

− −     0.6922    0.0028

0.3971   1.0873   0.6366    0.0028 − − −     1.3316

1000 (kN -s/m )



























× 	

The corresponding damping ratios are listed in the fourth row of Table 4.1.

By using the El Centro earthquake records, the base shears of the proportionally and nonpropor-
tionally damped systems can be calculated. The peak values are listed in Table 4.2. Note that Table 
4.2 contains only the results of using a single earthquake record. It does not necessarily mean that 
with the same damping ratios, a nonproportionally damped system will always have better results. 
The purpose of the numerical simulations is to illustrate the differences between the proportionally 
and nonproportionally damped systems, which may imply that damper design of a nonproportion-
ally damped system, using a simplified proportional damping method, may result in errors.

4.1.5  solutions in 2n Modal sPacE

In this section, the solution of forced response of a generally damped system is discussed. For a 
generally damped system, 2n-state space is often used and the mode shape function that is employed 
to decouple the state equation is often complex valued. However, with a specific arrangement, real-
valued variables can still be used to represent the solutions.

4.1.5.1  Mode Decoupling
The solutions of Equation 4.2 are considered here. Conventionally, using the eigen-decomposition 
in Equation 4.38 and rearranging Equation 4.2, Q = P –1 is premultiplied on both sides of the rear-
ranged equation, and the following is obtained:

	 Q Q Q�X X− =











�

M f
0

−1

	 (4.114)

TABLE 4.2
Total Base Shears (1000 kN)
Original system 4.6155

Proportionally damped 4.2067

Nonproportionally damped 1.7918
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Denoting

	 Z X=

































=
−

Q F Q=

z
z
...
z
z
...
z

  M

1

2
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1

1
*

*
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and f
0









=
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..
f
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...
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1

2
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1
*

*
n

	 (4.115)

thus,

	 �Z Z− =� F 	 (4.116)

Equation 4.116 has the following decoupled form:

	 �z z f , i 1,2, ni i i− λ = = …, 	 (4.117)

Equation 4.117 is the complex-valued, first-order differential equation. Therefore,

	 �z z f i 1,2, ni i i
* * *, ,− = = …∗λ 	 (4.118)

Equation 4.118 can be solved by direct integration. However, most computational software can-
not directly handle complex integration. In the following discussion, an alternative way to solve 
Equations 4.117 and 4.118 is introduced.

Under earthquake excitation, the forcing function is

	 f = −MJxg″ 	 (4.119)

Substituting Equation 4.119 into Equation 4.114 yields

	 Q Q Q�X X− =








� − ″J
0
xg 	 (4.120)

Thus, using the notations described in Equations 4.115 and 4.116, Equations 4.117 and 4.118 can 
be rewritten as

	 �z z xi i i i g− λ = − ″q J 	 (4.121)

and

	 �z z xgi i i
* * * *− = −∗λ q J ″ 	 (4.122)

Here, qi is defined in Equation 4.86.

4.1.5.2  Alternative Computation Method
Furthermore, Equation 4.121 and its complex conjugate Equation 4.122 can be combined to yield 
the following:
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�
�
z
z

z
z

xi

i

i

i

i

i

i

i
g"* * * *









=


















−








λ
λ
0

0
q
q

J
J

	 (4.123)

For convenience, denote

	 z z jzi Ri Ii= + 	 (4.124)

and let

	 q i Ri Iiq jqJ = + 	 (4.125)

where zRi, zIi, qRi, and qIi are real-valued scalars. Thus, the above equations separate the variable zi 
and the forcing function qi J into real and imaginary parts.

Also denote a full rank matrix G:

	 G =
−











1
2

1 1
j j

	 (4.126)

It is seen that

	 G− =
−











1 1 j
1 j

	 (4.127)

Therefore,

	 G
z
z

z
z

i

i

Ri

Ii
*









=








	 (4.128)

and

	 G
J
J

q
q

i

i

Ri

Ii

q
q*









=








	 (4.129)

Using Equations 4.128 and 4.129, premultiplying G on both sides of Equation 4.123, and insert-
ing the identity

	 I G G= −1 	 (4.130)

in between 
λ

λ
i

i
*









	and 

z
z

i

i
*








	results in
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1
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z
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i i i i

i
2

i i i

Ri

Ii

2








=
− − −

− −



















ξ ω ξ ω

ξ ω ξ ω
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= …
q
q

x i 1,2, nRi

Ii
g" , 	 (4.131)
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Equation 4.131 can be rewritten as
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z
z

1

1

z
z

qRi

Ii
i

i

i i
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Ii

Ri







=
− − −

− −
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2 qq
x i 1,2, n
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= …, 	 (4.132)

or
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x i 1,2, nRi

Ii
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Ri

Ii
g"









=








−








= …ω L , 	 (4.133)

Here matrix

	 L =
−ξ − − ξ

− ξ −ξ
=

−i i
2

i
2

i

1

1

cos sin
sin cos













( ) ( )
( ) ( )







γ γ
γ γ 




	 (4.134)

is seen to be an orthonormal matrix, where γ is an angle and

	 γ = −( )−cos 1
iξ 	 (4.135)

When damping is small, cos(γ) ≈ 0,	and γ ≈ −90°. Furthermore, in this case, the homogeneous 
form of Equation 4.133 can be written as

	 �
�
z
z

cos 90 sin 90
sin 90 cos 90

Ri

Ii
i









≈
−( ) − −( )
−( ) −( )







ω
° °
° °















z
z

Ri

Ii

	 (4.136)

Equation 4.136 implies that the vector 
�
�
z
z

Ri

Ii









	can be seen as a rotation to nearly 90° from vector 
z
z

Ri

Ii









	with a uniform multiplication ωi. In this case, vector 
z
z

Ri

Ii









	can be called the pseudo displace-

ment and vector 
�
�
z
z

Ri

Ii








	can be called the pseudo velocity; from Equation 4.136, the following can 

result:

	 max z max zRi i Ii�( ) ≈ ( )ω 	 (4.137)

and

	 max z max zIi i Ri�( ) ≈ ( )ω 	 (4.138)

Note that Equations 4.127 and 4.138 are obtained by ignoring the forcing function. Under earth-
quake excitations, they will no longer hold.

Equation 4.133 turns the complex-valued Equation 4.117 and its complex conjugate Equation 
4.118 into a real-valued state equation, which can be numerically calculated by most commercially 
available software. Thus, by using Equation 4.133, the modal response zi = zRi	+	j ⋅ zli for the ith 
mode (and its complex conjugate) can be computed, which is useful in practical designs if a particu-
lar mode is specially considered.
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Consider two cases of forcing functions separately as

	 f
0

q
xIi

Ii
g"= −









	 (4.139)

and

	 f
q
0

xRi
Ri

g"= −








	 (4.140)

The first case described in Equation 4.139 has only the imaginary part of the forcing vector 
and the second case described in Equation 4.140 has only the real part of the forcing vector. Since 
Equation 4.131 is a linear equation, the cases of the above excitations can also be considered sepa-
rately and later combined to compute the solutions of Equation 4.131.

Consider the first excitation with the imaginary part of the forcing function.
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g" 	 (4.141a)

Here, for convenience, the variables under this forcing function are denoted by zRli and zIIi. The 
second subscript I stands for the case when only the imaginary part of the excitation is considered; 
the third subscript i stands for the ith mode. Similarly, with the second excitation with the real part,
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=
− − −
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−








q
0

xRi
g" 	 (4.141b)

Under the forcing function used in Equation 4.139, the corresponding response is denoted by zli. 
It is seen that

	 zIi RIi IIiz z= + 	 (4.142)

Similarly, the response under the forcing function Equation 4.140 can be written as

	 zRi RRi IRiz z= + 	 (4.143)

The variables under this forcing function are denoted as zRRi and zIRi. The second subscript R 
stands for the case when only the real part of the excitation is considered; the third subscript i also 
stands for the ith mode.

From the first row of Equation 4.141a,

	 z z z
1

IIi
RIi i i RIi

i

= − +
−

� ξ ω
ξ ωi

2
	 (4.144)

and

	 � �� �z z z
1

IIi
RIi i i RIi

i

= − +
−

ξ ω
ξ ωi

2
	 (4.145)
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Substituting Equations 4.144 and 4.145 into the second row of Equation 4.141a yields

	 �� �z 2 z z 1 q xRIi i i RIi i
2

RIi i
2

i Ii g+ ξ ω + ω = − − ξ ω ′′ 	 (4.146a)

Similarly,

	 �� �z 2 z z 1 q xIRi i i IRi i
2

IRi i
2

i Ri g+ ξ ω + ω = − − ξ ω ′′ 	 (4.146b)

Now, the case when the system is proportionally damped is considered first.

	 q p
p p

i
i
T

i
T

i i
2

i2j   1  
=

−
M

M ξ ω
	 (4.147)

Since for the proportionally damped system the mode shape pi is real valued, it is seen that qi has 
only the imaginary part. That is, the first case is sufficient to cover the seismic ground excitation and

	 qIi i
i
T

i
T

i i
2

i

Im  
2  1

= ( ) =
−

q p
p p

J JM
M ξ ω

	 (4.148)

Using Equation 4.148 results in

	  z 2 z z  xRIi i i RIi RIi i g�� �+ + = ′′ξ ω ω Γi
2 1

2 	 (4.149)

Here Γi is the modal participating factor, defined in Equation 3.170. From Equation 4.149, 
the equation for the SDOF forced vibration that was discussed in Chapter 2, zRli can be solved. 
Furthermore, through Equation 4.144, zlli can be calculated. Also, using Equation 4.142, zli will be 
determined. Note that the ith complex conjugate of Equation 4.149 for the proportionally damped 
system is exactly the same. Similarly, zRi can be determined as well.

The combination of the complex conjugate parts of the variables zIi and zIi
* , denoted as yIi, can 

be written as

	 yIi i i
Ii

Ii
=  









p p,
z
z

*
* 	 (4.150a)

Note that the response can also be calculated from the combination of the complex conjugate 
parts of the variables zRi and zRi

*   , and denoted as yRi.

	 yRi i i
Ri

Ri
=  









p p,
z
z

*
* 	 (4.150b)

By further combining yli and yRi, the response due to the ith mode can be determined.
Since in the case of the proportionally damped system, pi = pi

*, the term zIIi will be canceled 
and it is seen that the equation in the 2n space for the general underdamped system reduces 
to a familiar form for the normal modes. That is, the response by using the forcing function 
described in Equation 4.139, denoted as yIi, is sufficient to represent the total response of the ith 
mode. That is,

	 y 2 zIi i RIi= p 	 (4.151)
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and it is seen that the maximum absolute value of the response yIi can be replaced by the approxima-
tion of the spectral value yDi.

When the system is nonproportionally damped,

	 p pi i≠ * 	 (4.152)

The quantity zIIi must be considered. This is an important difference between the proportionally 
and nonproportionally damped systems.

The above method is an alternative way to calculate the response of the ith mode by solving the 
second-order differential equation that was discussed in Chapter 2. If the modal responses zi are com-
puted, their complex conjugate zi

* can easily be found. Furthermore, once all the modal responses 
are calculated, the response vector X can be obtained by the following linear transformation:

	 X Z= P 	 (4.153)

Note that Equation 4.117 can also be solved directly to find zi and Equation 4.153 can be used to 
compute the response X, as well. Furthermore, the displacement x as well as the velocity x⋅ can be 
determined.

If m time points are collected in the response of Z and arranged in a 2n × m matrix Zm,

	 Zm 1 , 2 ,= ( ) ( ) … ( ) Z Z Z, m 	 (4.154)

Then,
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	 (4.155)

where

	 zim i i it z 1 , z 2 , z m( ) = ( ) ( ) … ( ) , 	 (4.156)

Here, subscript m stands for the total time points; from Equation 4.34,
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λ λ λ λ1 1 1 1

1 1
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n
	 (4.157)

Using Equations 4.155 and 4.157, and considering m time points, Equation 4.153 can also be 
written as

	 X Xm m 2n m
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	 (4.158)

Here, subscript m stands for m time points.
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Equation 4.158 is a general form of the solution of Equation 4.2. Since Xm contains both 
the velocity x⋅ and the displacement x, once Xm is determined, the solution x(t) can be obtained 
for Equation 4.1. Generally, to calculate the responses of nonproportionally damped systems, 
four times larger computer memories are required. For proportionally damped systems, n-phys-
ical space and the response calculation are likely to involve the design response spectrum. 
Conventionally, n-physical space is decoupled into an n-SDOF subspace that can then be linked 
with the design spectrum that was originally associated with the SDOF systems. The nonpro-
portionally damped system needs 2n modal space for its solutions. Similar to Chapter 3, where 
the response computation through the modal superposition without involving all modes was dis-
cussed, for the nonproportionally damped system, the same modal truncation approach is used.

4.2  DAMPER DESIGN FOR NONPROPORTIONALLY DAMPED SYSTEMS

Since a nonproportionally damped system cannot be decoupled in n-dimensional modal space, and 
adding dampers to a structure will likely introduce nonproportional damping, this issue must be 
considered in damper design for nonproportionally damped systems. Theoretically, the problems 
come from the fact that for a nonproportionally damped system, the solutions contain both the dis-
placement and the velocity, whereas for a proportionally damped system, only the term of displace-
ment is involved.

4.2.1  issuEs witH gEnEral daMPEr dEsign

In Chapter 3, issues with damper design for proportionally damped cases were briefly discussed. 
Some additional issues with general damper design are explored in this section.

First, the computation of the solution for generally damped systems is in the 2n complex modal 
domain with the first-order differential equations, whereas in earthquake engineering, the n-dimen-
sional normal mode domain with second-order equations is more common. In particular, the design 
response spectrum is obtained by the following second-order differential equation:

	 m y  + cy  + ky  = m  x ti i i i i i g�� � �− ( )′′Γ 	 (4.159)

where Γi is the ith modal participation factor. For generally damping system, the modal participation 
factor will be discussed in the next section. As discussed earlier, Equation 4.159 can be rewritten as 
the following equation by dividing mi on both sides to obtain the monic equation as:

	 �� �y  2 y y  x ti i i i i i i g+ + = − ( )′′ξ ω ω� �2 Γ 	 (4.160)

As previously mentioned, the statistical maxima of the responses x(t)’s of a series of the SDOF 
oscillators described by Equation 4.160 with different damping ratio ξi and natural frequency ωi 
(natural period Ti = 2π/ωi) can be represented by the spectral value SD(ξi,Ti) through the design 
response spectrum introduced in the previous section. For convenience, Equation 2.303 of this 
operation is rewritten as

	 y ( ,T ) g S ( ,T )max i i D i ii ξ ξ→ 	 (4.161)

where the subscript i of ξi and Ti stand for the ith damping ratio and the natural period. Symbol →	
stands for the statistical operation again.

In Equation 4.161, it is seen that to represent the maximum response of a vibration system with 
the damping ratio ξi and the natural period Ti, the second-order differential Equation 4.160 should 
be used instead of the first-order Equations 4.117 and 4.118.
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Therefore, in order to use the design spectrum, the two complex conjugate pairs need to be com-
bined (see Equations 4.117 and 4.118). Namely combine,

	 �z z f i 1, 2, ni i i− = = …λ , , 	 (4.162)

and

	 �z z f i 1, 2, ni i i
* * *, ,− = = …∗λ 	 (4.163)

into the form of the second-order equation as generally described in Equation 4.159.
Secondly, in damper design as well as in the general computation of the structural responses, all 

the modal responses do not have to be calculated. Instead, only the first several modes can be used.
For proportionally damped systems, the modal mass ratio γmi can be used as the modal participa-

tion indicator to determine if a specific mode must be considered, as described in Equation 3.184 
and repeated as

	 γ mi
i
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However, for the complex mode, this modal mass ratio is no longer valid. A new criterion is 
needed to determine if a specific mode must be considered. Note that in Equation 4.164, pi is used 
to denote more general cases.

In addition, if a mode reduces to two overdamped first-order subsystems, the question is whether 
the overdamped subsystems will still be capable of contributing to the total responses. If some of 
them will, then criteria are needed to determine whether or not the first order should be included.

Thirdly, criteria are needed to determine if the nonproportional damping approach is really 
needed. On the one hand, because of the complexity of nonproportional damping, this approach 
should be avoided if possible. On the other hand, if the simplified approach of using proportional 
damping yields unacceptable errors, a more complicated approach will be required. The judgment 
of whether nonproportional damping is used becomes critical in damper design.

4.2.2  EssEncE of tHE solution of nonProPortionally daMPEd systEM

The damper design issues for nonproportionally damped system mentioned above are examined 
mathematically in this section.

Taking the Laplace transformation on both sides of Equation 4.1b and assuming the zero initial 
conditions of both the displacements and the velocities,
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which is further written as
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where s is the Laplace variable and X(s) and F(s) are the Laplace transformation of x(t) and f(t), 
respectively. Then
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Here, sI 1
1

−( ) 
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0
	is called the transfer function matrix denoted by H with dimension 

2n × 2n, that is,
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Substituting Equations 4.34 and 4.41 into Equation 4.168 yields
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Here, only the submatrix at the lower left corner is of interest, so the symbols Ξ, Ψ, and Z are 
used to represent the rest of the submatrices.

With the help of Equations 4.169 and 4.167,
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The ith term with dimension n × n in brackets is the transfer function matrix between X(s) and 
F(s) and is denoted by

	 H i
i i

1

i

i i
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s
s
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− −p q p qM M
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i

	 (4.171)

Denote � x t sg g′′ ′′( )  = ( )x . Thus

	 F Js x sg( ) = − ( )M ″ 	 (4.172)
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therefore, for convenience, the location vector J is included inside the transfer function vector 
between X(s) and −xg″(s) and the resulting term is denoted by

	 h p q p q
i

g"

i i

i

i i
*

s
s

x s s s( ) = ( )
( ) = −

−
+ ( )

−













X J J
λ λ i

* 	 (4.173)

Note that the dimension of hi(s) is now reduced to n × 1.
The product of piqiJ is generally complex valued, so vector piqiJ can be denoted as

	 p qi i i ijJ = +� � 	 (4.174)

and its complex conjugate is

	 p qi i i ijJ( ) = −∗
� � 	 (4.175)

where the real part, vector

	 �i ij{ }= φ 	 (4.176a)

and the imaginary part, vector

	 �i ij{ }= ψ 	 (4.176b)

are real valued.
Substituting Equation 4.95 into Equation 4.174 yields
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From Equation 4.177, it is realized that the values of Φi and Ψi are unique. In other words, they 
are independent from various normalizations. This is because Equation 4.17, namely (αpi), can be 
used to replace pi in Equation 4.177 and the factor α will be canceled.

Substituting Equations 4.174 and 4.175 into Equation 4.173 and considering Equation 4.14,
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The response of the ith mode xi(t) can be obtained by the inverse of the Laplace transform of the prod-
uct of the modified transfer function hi(s) and the Laplace transform of the ground excitation −xg″(s). 
Note that the location vector J has been considered and included inside the transfer function. Thus,
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It is seen that xi(t) is the vector of time variables and contains only the ith mode. That is, it is the 
modal response.
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Denote
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and
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Here, yDi(t) and yVi(t) can be seen as the responses of the displacement and the velocity under 
normalized unit input xg″(t) and

	 y t y tVi Di( ) = ( )�d
dt

	 (4.182)

Thus, the vector equation can be written as

	 x i i i i i
2

i Di i Vit 2 1 y t 2 y t( ) = − − −( ) ( ) + ( )ω ξ ξ� � � 	 (4.183)

Equation 4.183 expresses the solution of the ith complex mode, which is already in the time 
domain. The total response contributed by all the modes is simply the linear combinations, that is,
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Note that Equation 4.184 can be used to reduce the computational burden to find the exact solu-
tion of Equation 4.2. This is because the computation is carried out in the n-dimensional space, 
instead of a 2n space and many commercially available computational programs can simultaneously 
provide the displacement and the velocity for SDOF systems, since the displacement yDi and the 
velocity yVi are calculated from the identical SDOF system. Note that when the system is proportion-
ally damped, Φi = 0, Equation 4.184 reduces to the case described by the normal mode.

Example 4.6

Consider the M-C-K system mentioned in Example 4.1.
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4.2.3  Modal truncations for nonProPortionally daMPEd systEMs

As in proportionally damped systems, in most cases, all the modes do not have to be considered if 
the first S modes can be dominant; that is, the modal truncation can be obtained as follows:

	 X P ZC C C�≈ 	 (4.185)

Here ZC is the modal time history matrix with the dimension 2S × m and again m is the total 
number of time points, namely,
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where zim(t) is defined in Equation 4.156, and PC is a truncated eigenvector matrix,
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Using Equations 4.186 and 4.187, the response XC in Equation 4.185, which now contains m time 
points, can also be written as
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Equations 4.185 and 4.188 indicate that in many cases, only the first S modal responses are 
needed. Therefore,

	 x xC it t 2 1 y t 2 y ti
i 1

S

i i i i Di i Vi
i 1

S

( ) ≈ ( ) = − −( ) ( ) + ( ){ }
= =

∑ ∑ ω ξ ξ� � �2 	 (4.189)

That is, the time history of xC(t) can be obtained by the modal superposition described in 
Equation 4.189. However, it is often the case that the peak value of xC(t) and not the time history 
itself is of interest during aseismic design. Although the total peak response can be found through 
the maximum responses of each individual mode, the maximum modal responses cannot simply be 
summarized. The summation of the peak value can be carried out through the complete quadratic 
combination (CQC) and the square-root-of-the-sum-of-squares (SRSS) method (Song et al. 2008).

Now the remaining questions are, first, what if certain modes reduce to overdamped? and sec-
ond, how can the number S be determined?

4.3  OVERDAMPED SUBSYSTEMS

Very often, in attempting to achieve the desired damping ratio of certain modes by increasing the 
damping either proportionally or nonproportionally, some other “modes” will become overdamped. 
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That is, the corresponding damping ratios will be greater than 1. In 2n-scape, a pair of complex con-
jugate modes will become independent. Both their eigenvalues and eigenvectors will become real 
valued. For convenience, these overdamped subsystems are referred to as pseudo modes. However, 
certain overdamped subsystems still make notable contributions to the total responses. Ignoring 
such contributions will introduce design errors.

4.3.1  concEPt of oVErdaMPEd systEM

Note that when large damping is added to a structure, more modes will become critically damped 
and will then vanish to form two overdamped first-order subsystems. To realize this point in detail, 
a monic homogeneous equation of motion for an SDOF system is considered first.

	 �� �y t 2 y t y t 0n n
2( ) + ( ) + ( ) =ξω ω 	 (4.190)

Here the subscript i is omitted for simplicity.
Equation 4.190 can represent a pure SDOF system. It can also be used to describe a decoupled 

MDOF system. It is known that the corresponding characteristic equation of Equation 4.190 can be 
written as (see Equation 1.19)

	 λ ξω λ ω2
n2 0+ + =n

2 	 (4.191)

The roots of Equation 4.191 were discussed in Chapter 1 (see Equation 1.20) and are repeated 
again as

	 λ ξ ξ ω1 2
2 1, n= − ± −( ) 	 (4.192)

It has already been shown that, if

	 ξ2 1< , 	

or

	 ξ < 1 	 (4.193)

then the underdamped system will exist. In this case, the roots are complex conjugates.
For a free vibration with certain initial conditions, the system will conceptually have a solution 

of (see Equation 1.30)

	 y t (y e y e ) y e [sin( t )]0
t

0
t

0
t

n
n( ) = + = +−1 2 λ λ ξω ω ϕ

* 	 (4.194)

The cosine term in brackets on the right side of Equation 4.194 implies that the mass will move 
back and forth around its equilibrium position. Thus, it is a vibration system. It is seen that to have 
these trigonometric time variables, the imaginary part in Equation 4.194 needs to be nonzero, that is,

	 λ ξ ξ ω1 2
2

, n1= − ± −( )j 	 (4.195)

Namely, the term 1 2− ξ 	 in Equation 4.195 must be real and nonzero valued. In this case, 
Equation 4.193 is the necessary and sufficient condition for a free-decay system to have vibration.
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The SDOF system can also represent one of the normal modes of an MDOF system. The cor-
responding mode is called the underdamped mode and ξ is the damping ratio.

When damping is gradually added to an underdamped system, the damping ratio gradually 
increases until the critical level is reached. The SDOF system can also include the case in which 
one of the underdamped normal modes of an MDOF system becomes critically damped by gradu-
ally adding damping, as

	 ξ = 1 	 (4.196)

The corresponding mode at this point becomes two identical subsystems, with real-valued eigen-
values and eigenvectors. Thus, the roots will become real valued as

	 λ λ ξω1 2= = − n 	 (4.197)

which is referred to as the critical damping. In this case, the SDOF system reduces to two identical 
subsystems. For convenience, they are referred to as the pseudo modes.

When damping continues to increase to the above system, the damping ratio of either the MDOF 
system or one of the modes of the MDOF system will be greater than 1, which is the above-men-
tioned critical damping; that is

	 ξi 1> 	 (4.198)

From Equation 4.192, it is realized that the roots will become two unequal real numbers. Thus, 
two overdamped subsystems will exist. For convenience, they are also referred to as the pseudo 
modes. In this case, as described by Equation 4.198, subscript i represents these specific pseudo 
mode.

It is thus seen that once Inequality 4.193 is violated, there will no longer be free vibrations for 
the ith pair of subsystems.

If the SDOF system is not monic, then the damping ratio is defined as (see Equation 1.27)

	
ξ = c

2 mk 	

It is seen that when the system is overdamped,

	 c mk> 2 	 (4.199)

Suppose the system is under a sinusoidal excitation with a driving frequency equal to ωn. From 
Equations 1.5 and 1.6, it is realized that the peak value of the damping force fd and restoring force 
fr, when the steady state is reached, can have the following forms:

	 f c x 2 mxd 0= =� ξωn
2 	 (4.200a)

and

	 f k x mxr 0= = ωn
2 	 (4.200b)

The corresponding ratio is

	
f
f

2d

r
= ξ 	 (4.201)
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That is, when the damping is 50%, the amplitude of the damping force will be equal to that of 
the restoring force. When the system is critically damped, the amplitude of the damping force will 
be twice that of the restoring force.

Note that this is only true for the linear SDOF at the resonant point. When a system is generally 
damped, the relationship as described by Equation 4.201 does not occur. However, for convenience, 
a system whose damping force is more than twice that of the restoring force is still referred to as 
overdamped.

Now, a nonproportionally damped system cannot be decoupled in the n-dimensional space. 
Therefore, there must be certain modes that cannot be described by Equation 4.190. However, the 
eigenvalues of the system can still be described by Equation 4.195, if it is underdamped.

Similar to the case of a proportionally damped system, if damping is continuously added, 
sooner or later the eigenvalues of the ith mode will reach a point when the imaginary part is equal 
to zero as the condition of Equation 4.196 is reached. Thus, the critical damping for the specific 
mode is obtained and the mode becomes two identical subsystems. When damping is continuously 
increased, these two subsystems will have different real-valued eigenvalues. They are exactly like 
the case of a proportionally damped system.

Therefore, it does not have to be distinguished if a system is proportionally damped. When add-
ing damping to the system so that it possesses two real-valued eigenvalues, which originally come 
from the ith mode, they are denoted using superscript R as

	 λi1
R

i2
R0 and 0< <λ  (4.202)

The corresponding eigenvectors will also reduce to real-valued

	 p pi1
R

i2
Rand real= 	 (4.203)

The corresponding first-order differential equations will become

	 �z zi1
R

i
R

i
R

if− ⋅ =λ 1 1 1 	 (4.204)

and

	 �z zi2
R

i2 i2− ⋅ =λR R
if 2 	 (4.205)

Usually,

	 λ λi1 i2
R R≠ 	 (4.206)

Therefore,

	 z zi1 i2
R R≠ 	 (4.207)

Note that even certain modes become overdamped, and by using the state equations, the total 
solutions can still be obtained. This is the conventional way to deal with the overdamped case and 
the solution is accurate.

From the conclusion that in nonproportionally underdamped systems the eigen-pair <λi, pi> must 
have its complex conjugate, it is seen that if there is an n-DOF system with no modes reducing to 
overdamped subsystems, and the remaining nu modes are underdamped,

	 n n no u+ = 	 (4.208)
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Secondly, in a 2n space, there will be 2no overdamped subsystems or pseudo modes. In this case, 
P and Λ are still used to denote the complex-valued eigenvector and eigenvalue matrices, and PR and 
ΛR are used to denote the set of 2no real-valued eigenvector and eigenvalue matrices, where

	 PR R R
2no
R= … p p p1 2, , , 	 (4.209)

	 �R
odiag , i 1, 2, 2n= ( ) = …λ i

R , 	 (4.210)

Here, superscript R represents real-valued parameters for the pseudo modes. Using Equations 
4.209 and 4.210, the eigenvalue matrix Δ is rewritten as
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and the eigenvector matrix is
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The inverse of the eigenvector matrix, still denoted by Q will become
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It can be proven that the submatrices QR and RR in the third row are real valued. Similar to the 
process of derivation of the representation of X(s) with the total underdamped modes, the following 
expression for the case where some of the modes have been reduced to overdamped cases can be 
used. That is,
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(4.214)

where pj
R and qj

R are, respectively, the jth column and row in matrices PR and QR and the normal 
character Xj

C(s) is used to represent the ith underdamped modal response. Superscript C is used 
because the corresponding eigenvalue is complex valued. However, in certain formulas, in order 
to be consistent with conventional equations that only account for the underdamped system, the 
superscript can be omitted. The term Xj

R(s) is used to represent the jth overdamped response. 
Note that the underdamped response can be expressed as the case of the system with total modes 
underdamped.

Now, consider the jth overdamped subsystem first, as follows:



Multi-Degree-of-Freedom	Systems	with	General	Damping	 235

	 X F J
j
R j

R
j
R 1

j
R

j
R

j
R

j
R g"

j
R

j
Rs

s
s

s
x s

s( ) =
−

( ) = −
−

( ) =
−




−p q p q rM
λ λ λ 

( )x sg" 	 (4.215)

Here, since pj
R and qj

R are real valued, the real-valued vector rj
R is used to represent the product 

−pj
Rqj

RJ, that is,

	 r p qj
R

j
R

j
R= − J 	 (4.216)

Note that in Equation 4.215, in order to distinguish the underdamped modes and the overdamped 
subsystems, i and j are used to denote them, respectively. In the following discussion, for conve-
nience, both i and j are used to denote the pseudo modes.

In Equation 4.215, the term in brackets on the right side is the transfer function. By letting s = j ω, 
the corresponding frequency response function of the jth pseudo mode can be written as

	 h r
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ω

ω λ
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−
	 (4.217)

Taking the inverse of the Laplace transform on both sides of Equation 4.215,

	 x Xj j
R 1 R

j
R t

o

t

g" j
R

Dj
Rt s e x d y tj

R

( ) = ( )  = ( ) = ( )− −( )∫� r rλ τ τ τ 	 (4.218)

where
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is the unit response of the pseudo modes.
Using Equation 4.219, the total overdamped responses xR(t) can be written as
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and the total exact response can be written as
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Using statistical measures, earthquake records can be used to calculate all the corresponding 
yDj

R (t) to find their maxima, similar to the procedure for determining the design response spectra.

Example 4.7

Assume that the M-C-K system mentioned in Example 4.1 is a two-story structure and a damper 
with the coefficient 60 (kN-s/m) is installed in between the first and the second stories. The 
supplemental damping matrix can be written as
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	 Ca kN -sm=
−

−








 ( )60 60

60 60
	

The corresponding state matrix is

	 A =

− −
− −



















35 32 5 750 375
26 30 300 300
1 0 0 0
0 1 0 0

.

	

From this state matrix,

	 � = − + − − − −diag 3.8 1 11.9335i, 3.8 1 11.9335i, 18.24444,  .0 0 0 0 40 55954[ ]( ) 	

and

	 P =

+ − −
−

0.5707 0.2148j 0.5707 0.2148j 0.4397 0.6947
0.7884 0.7884 0.88965 0.7189

0.0053 0.0492j 0.0053 0.0492j 0.0241 0.0171
0.016

− + −
− 00 0.0619j 0.0160 0.0619j 0.0491 0.0177− − + −



















	

Therefore,

	 PR =
−

−










0 0241 0 0171
0 0491 0 0177
. .
. .

	

	 �R diag 18.2444,  4 .5954= − −( )� 0

	 Q =

+ − − + +0.3191 0.0754j 0.5256 0.0676j 4.3804 7.9715j 4.5850 2.0028jj
0.3191 0.0754j 0.5256 0.0676j 4.3804 7.9715j 4.5850 2.0028− + − − − jj

0.4264 1.0865 35.3919 26.6285
1.2316 1.5930 34.5272 23.1498

− −
− −
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0 0241
0 0491

0 0
0 015R R R  4264  1 865= − = −
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.
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.

	

Similarly,

	
r p q2 2 2

0 0062
0 0064

R R R  = − =
−








J
.
. 	

4.3.2  dEsign rEsPonsE sPEctra for oVErdaMPEd suBsystEM

4.3.2.1  Spectral Value
From Chapter 2, the design response spectrum was shown to be very useful for simplifying damper 
design. By using a statistical survey, the design response spectrum can provide the acceleration if 
the period and the damping are known. However, the currently used design spectrum is obtained 
through underdamped SDOF systems. A new type of design response spectrum is necessary to 
account for the overdamped system.

The statistical maximum response due to a given peak ground acceleration, denoted by SDo, is the 
only function of the real eigenvalue λj

R. That is,
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	 SDo j
Rf= ( )λ 	 (4.222)

Compared with the statistical maximum response of an underdamped system, which is often 
referred to as the spectral value of the design response spectrum introduced in Chapter 2, 
Equation 4.222 can be rewritten using the following relationship:

	 λ πj
R 2 T= − j

R 	 (4.223)

or

	 T 2 j
R

j
R = − π λ 	 (4.224)

where the quantity Tj
R is actually a time constant with the unit “second” for the subsystem with a 

real eigenvalue. This is referred to as a pseudo period and superscript R again stands for the eigen-
value of the overdamped subsystem or the pseudo mode is real valued. The reason for introducing 
this quantity is that for a pseudo mode, there is no commonly defined period or natural frequency. 
However, for convenience in comparing it with regular systems and eventually to use the concept 
of period in order to employ the design spectra, an equivalent quantity with the same dimension as 
the period is needed.

Thus, using Equation 4.224, Equation 4.222 is rewritten as

	 SDo j
Rf T= ( ) 	 (4.225)

That is, although there is no commonly defined period for the overdamped system, Equation 4.225 
is still used and the value SDo is called the spectral value for the specific design response spectrum of 
the overdamped subsystems.

One way to determine the design response spectrum is to use the same procedure as the regular 
design spectrum by calculating the mean and standard deviation of the responses of overdamped 
subsystems with different values of λj

R or Tj
R through a sufficiently large number of ground excita-

tions. However, in the following discussion, an alternative method to find the design spectrum using 
the current regular spectrum is provided.

4.3.2.2  Overdamping Constant
In Section 4.3.1, the modal superposition and modal combination methods for complex modes and 
overdamped subsystems are discussed. In the literature, one of the key issues for modal combina-
tion is to assume that the peak response of an underdamped system is proportional to the root mean 
square value of the response and the proportional factors are constant, despite the value of the 
modal frequency ωi. Now, this issue is discussed in detail.

In the case of the overdamped subsystem, it is also assumed that the peak response of a pseudo 
mode is proportional to the root mean square value of the response and the proportional factor is 
constant, despite the value of the real eigenvalue λj

R. This assumption cannot be proven theoreti-
cally. Statistically, it can be seen that, even though the factor is not exactly constant, the errors are 
rather small. This proportional factor is denoted by αR, which can be determined by a regression 
method based on a white noise input assumption.

In fact, the same assumption is made for underdamped systems (Clough and Penzien 1993). 
That is, the peak response of an underdamped mode is proportional to the root mean square 
value of the modal response. In addition, the proportion factor is constant, despite the natural 
frequencies and damping ratios, namely, eigenvalues. This proportion factor is denoted as αC, 
which can also be determined by using the regression method based on a white noise input 
assumption.
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In the above assumption, the ratio of αR and αC must also be constant. Through statistical studies, 
it was found that the following is approximately true:

	 η
α
α

= ≈C

R
0 85. 	 (4.226)

For convenience, the above ratio η is called the overdamping constant.
In the following discussion, for convenience, d is used to denote the peak response of a non-

homogeneous form of Equation 4.190, which is excited by earthquake ground motions. 
Referring to the formula developed for a general complete quadratic combination, the relation-

ship of the peak response of a SDOF underdamped system to the spectral acceleration is as follows:

	 d 1 S
2C

A

n
3≈ ( )

α
π

ξ ω
m 	 (4.227)

Here SA is the value of design spectrum of acceleration, (see Equation 2.309) and d is for all 
reasonable natural frequencies ωn (or periods) and damping ratios ξ can be obtained from the stan-
dard response spectrum. Generally, the assumption of 5% damping ratio is used. For simplicity, 
the superscript C is omitted, although d is the response of underdamped modes. Equation 4.227 is 
given here (to be proven later). It is obtained from the square roots of the mean square responses y(t) 
through the inverse Fourier transform of the frequency response function of Y(jω).

From Equation 4.227, with proper dimensions,

	 S 0.1 dA
C
2

n
3

2= α ω
π

	 (4.228)

Similarly, the relationship between the peak response and the spectral value is obtained as follows 
by recalling Equation 4.218, the frequency response function of x jR(t) of the jth, pseudo mode, that is,

	 d 1 S d
R

A

2 R 2R ≈
+ ( )−∞

∞

∫α ω λ
ω 	 (4.229)

Here, the subscript R again stands for the pseudo mode. For convenience, the subscript j of the 
eigenvalue λ jR	 is omitted; and furthermore, the amplitude of an element of x jR(t) and the spectral 
displacement, which is denoted as dR, are considered.

During an earthquake, for both the mode with a complex eigenvalue and the pseudo mode with a 
real eigenvalue, the input must be the same. That is, SA in Equations 4.228 and 4.229 are identical. 
Thus, substituting Equation 4.228 into Equation 4.229 results in,

	 d 0.1 y
d 1 0.2 y

dC

R

3
a
2

2 R 2

3
a
2

2 R 2
0

R ≈
+ ( )

=
+ ( )−∞

∞ ∞

∫ ∫α
α π

ω

ω λ
ω

η π
ω

ω λ
ω 	 (4.230)

Note that the integration in Equation 4.230 should be carried out for all reasonable real-eigen-
value λi

R’s. That is, dR is a function of λi
R. Recall Equation 4.212, the statistical spectral value or the 

spectral value SDo is used to replace dR in Equation 4.220 (also see Equation 4.215). That is,

	 SDo
C

R

3 2

2 R

3 2

2 R
0

0.1 d 1 0.2 d d≈
+ ( )

=
+ ( )−∞

∞ ∞

∫ ∫α
α π

ω

ω λ
ω

η π
ω

ω λ
ωd

2 2 	 (4.231)
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Again, for convenience, a variable substitution for Equation 4.231 is made by using Equation 4.223 
as well as

	 ω π= 2 T 	 (4.232)

that is,

	 S 1 0.8 T d

T T T
dTDo

R 2 2

3 2 R 2
0

≈
( )

+ ( )





∞

∫η
π 	 (4.233)

Equation 4.233 can be obtained through both analytical and numerical approaches.
Note that in Equation 4.233, subscript j of the pseudo period Tj

R is omitted for convenience.
Equations 4.230 and 4.233 provide the analytical forms of the peak responses of the pseudo 

modes. They can also provide the spectral value for the design response spectra, which is compat-
ible with underdamped systems. In other words, the numerical integration method does not have to 
be used statistically to obtain the response spectrum for the pseudo modes with real eigenvalues.
Instead, the peak value of the pseudo mode response can therefore be used to generate the over-
damped design spectra as

	 dRj Doλ λj
R

j
R( ) → ( )S 	 (4.234)

In Equation 4.234, the subscript j is replaced to denote the peak response of the jth pseudo mode. 
Or, by using the pseudo period, T  jR,

	 d T TRj Doj
R

j
R( ) → ( )S 	 (4.235)

Example 4.8

In the following example, numerical studies to verify Equations 4.230 and 4.235 are presented. 
Figures 4.3 and 4.4 show the simulation results. Figures 4.3a and 4.4a are the regular response 
spectra (one mean value plus one standard deviation) generated by 28 and 99 groups of earth-
quake ground motion accelerations with 0.4 (g) amplitudes, respectively. Figures 4.3a and b show 
the comparisons of exact and estimated response spectra for pseudo modes with real eigenvalues. 
The exact results (one mean value plus one standard deviation) are calculated directly by 28 and 
99 groups of earthquake ground motion accelerations with 0.4 (g) amplitudes as input, respec-
tively. The estimated curves are obtained through regular response spectra, as shown in Figures 
4.3b and 4.4b and Equation 4.230. It is seen that the estimation results are acceptable for use in 
earthquake engineering practice.

Note that for convenience, in Figure 4.3b, the unit of X axes is frequency, which is actu-
ally the pseudo-frequency for the pseudo mode, in the sense of the reciprocal of the pseudo 
period.

From Equations 4.230 and 4.235 as well as Figures 4.3b and 4.4b, it is realized that when the 
absolute value of λ	jR is relatively small, SDo(λ	jR) can have a relatively large value. Therefore, it may 
not be safe to simply ignore the overdamped systems.

The maximum acceleration can also be obtained by using statistical measures, denoted by 
SAo(λi

R). It is also seen that when the absolute value of λ	jR is relatively small, SAo(λj
R) can also have a 

relatively large value.
The term SDo(λj

R) is called the design spectrum of an overdamped SDOF system or the over-
damping displacement spectrum and the term SVo(λ	jR) is called the design acceleration spectrum 
of an overdamped SDOF system or the overdamping acceleration spectrum. For convenience, the 
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real-valued eigenvalue −λ	jR is called the jth overdamping factor. Note that systems and/or subsys-
tems with different damping can be more clearly shown in the following chart. In this book, we 
refer to a structure with all three cases of damping (proportional damping, nonproportional damp-
ing, and overdamping) and a system with unknown damping is referred to as a generally damped 
system. The phrases normal mode, complex mode, and pseudo mode are used to represent the 
cases already shown in Figure 4.1.

4.4   RESPONSES OF GENERALLY DAMPED SYSTEMS 
AND THE DESIGN SPECTRA

Conventionally, to obtain the responses of a generally damped system, the computation is car-
ried out by decoupling in the 2n complex modal space. This is not convenient for engineers in 
design practice. They often use design spectra for SDOF systems and use the modal summation for 
the MDOF systems in n-dimensional space. In order to be compatible with currently used design 
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statistically obtained (“exact”) and that estimated through Equation 4.230.
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response spectrum, a computation in n-dimensional space is introduced for a generally damped sys-
tem by using the modal approaches with displacement only. In this way, existing design procedure 
and design spectra can be used directly.

4.4.1  aPProacH in 2n- and n-sPacE, dEsign codEs

The first-order differential Equations 4.117, 4.118, and/or 4.204 and 4.205 have been transferred 
into the form of second-order equations such as those described by Equation 4.184. This equation 
is further linked with the design spectra, which are primarily used in damper design. In order to 
pursue this approach more effectively, the responses are simplified by examining each mode. Note 
that the response of the jth pseudo mode is already known. Thus, in this section, we focus first on the 
ith underdamped mode. After all the interested responses are determined, we can use the method of 
modal summation to find the peak value of the total responses and relate these to the design spectra.

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
10–2 10–1 100 101   102

Regular response spectrum (5% damping, 
99 Grd motion input, 0.4 (g) PGA)

Ps
eu

do
 ac

ce
le

ra
tio

n 
(g

)

Period (sec)

Response spectrum for real eigenvalues 
(99 Grd motion input, 0.4 (g) PGA)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
–2

M
ax

im
um

 re
la

tiv
e d

isp
la

ce
m

en
t (

m
)

0 2 4 6 8 10
Frequency (Hz)

Exact
Estimated

(a)

(b)

FIGURE 4.4  (a) Statistical response spectrum (5% damping ratio, 99 records). (b) Comparisons between 
statistically obtained (“exact”) and that estimated through Equation 4.148.
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Thus, Equation 4.183 is considered instead of Equation 4.189. From Equation 4.183, it is realized 
that the response of the ith mode contains two parts: yDi(t) and yVi(t), which are, respectively, the 
monic displacement and the monic velocity described in Equations 4.180 and 4.181, respectively. 
Here, for simplicity, superscript C is omitted, although these responses are taken from under-
damped systems. The reason they are called unit responses is that the input xg″(t) is normalized 
with unit amplitude.

From the above analysis, it is seen that because of the existence of the velocity term, to find the 
modal solution, the 2n-complex modal space must be used. However, all the design codes use modal 
summation in the n-dimensional space.

That is, the design spectral value SD (also SV or SA) can only be related with the sole displacement 
(or sole velocity, sole acceleration). Yet, the displacement yDi(t) cannot be separated from the veloc-
ity yVi(t) from Equation 4.183 alone.

There are two possible methods to deal with the combination of yDi(t) and yVi(t). First, yDi(t) 
and yVi(t) can be treated as two different sets of responses, like two different modes. Then, they 
are linked separately with the design spectra, and finally combined using the common modal sum-
mation methods, such as the SRSS and/or the CQC. This task has been achieved by Veletsos and 
Ventura (1986), and Song et al. (2008), who pioneered the linking of responses of a nonproportion-
ally damped system with the earthquake design spectra. However, since this method treats the dis-
placement and the velocity of the same mode as two different ones, it is complicated and requires 
more computation.

The second is to find the relationship between the displacement yDi(t) and the velocity yVi(t). 
Because both belong to the same mode, the responses should have the same natural frequency and 
damping ratio, which allow them to be combined. If these two responses can be combined together 
and treated as a single modal response, the design formula can be greatly simplified, more easily 
understood, and requires less computation.

Note that one of the goals is to find the maximum modal response from Equation 4.183. This goal 
is realized by using the design response spectrum of the displacement, SD.

That is, the monic design spectrum is statistically obtained by using the mean pulse of the stan-
dard deviation of yDi(t) with the statistical measures using multiple ground motions. Therefore, 
yDi(t) can be replaced by SD as the statistical maximum response of displacements. Similarly, yVi(t) 
is treated as the statistical maximum response of velocities and the design response spectrum of 
the velocity, SV, is statistically obtained by using the mean and the standard deviation of yVi(t). It is 
also noted that yDi(t) and yVi(t) do not provide the entire design spectra, but the spectral value at the 
modal frequency ωi = 2π/Ti under normalized unit excitation xg″(t). Therefore, they can be replaced 
as SD(Ti) and SV(Ti), when the maximum value is calculated.

However, using both spectral values SD(Ti) and SV(Ti) is just as inconvenient as treating them 
as two different modes. This is because SD and SV cannot be used to replace the terms defined in 
Equation 4.103, because the maximum responses of yDi(t) and yVi(t) will not occur at the same time. 
Instead, the following approaches can be used.

Figure 4.5a shows the response of the displacement and velocity of an SDOF structure with a 
natural frequency of ωi = 14(rad/s) (f = 2.2(Hz), T = 0.45(s)) under El Centro earthquake excitation. 
From the response plots, it can be seen that:

 1. When the velocity reaches a very high level, the displacement is close to zero. Then, the 
velocity drops from its peak value, whereas the amplitude of the displacement increases. 
At the exact moment when the velocity reaches zero, the displacement reaches its peak 
value. Therefore, it can approximately be said that the velocity is leading the displacement 
at a 90° phase.

 2. When the velocity and the displacement with close to a 90° phase difference reach their 
maximum peak value, both the velocity and the displacement are close to half sine waves. 
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Therefore, two sinusoidal functions can be used to approximate the peak velocity and the 
peak displacement.

 3. Both sinusoidal functions have their periods close to 2π/ωi. Therefore, the angle θ = ωit can 
be used to construct the sinusoidal functions.

Therefore, in order to find the maximum response contributed by both yDi(t) and yVi(t), the maxi-
mum response of both yDi(t) and yVi(t) can be approximated by the half sine waves and are denoted 
as αsin(θ) and βcos(θ). Their peak values are denoted as α and β, respectively.

Figure 4.5b shows the peak values of the displacement, each of which is purposely multiplied by 
its natural frequency ωi, and the peak velocity. It is seen that these peak values can be represented 
by the half sine and cosine waves. Figure 4.5c shows these two trigonometric functions, where θ is 
chosen to be 90° or 180° by not considering the minus sign of yDi(t), since only the maximum value 
is of interest. Note that in Figure 4.5b, the peak responses are purposely chosen to be not very close 
to the trigonometric waves. In many cases, there can be noticeably better approximation than using 
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the trigonometric functions. However, it is seen that it is already sufficiently close to the result that 
would be obtained by using the trigonometric functions. Also note that in Figure 4.5b, if the dis-
placement is not amplified by the factor ω, its amplitude will be considerably smaller.

4.4.2  Modal solution in n-diMEnsional sPacE

To evaluate the coefficients α and β (see Figure 4.5c), the coefficients of yDi(t) and yVi(t), namely, 

2 1i i i iω ξ ξ� �− −( )i
2

and 2Φi, are considered. The following relationship can be obtained:

	 y t y ti Di maxVi ( ) ≈ ( )ω 	 (4.236)

where the symbol ( )i 	specially stands for the maximum value of ( )i , which was defined previously.
That is, the amplitude of yVi(t) is ωi times the amplitude of yDi. Thus, it is written as

	 y t y ti DiVi ( ) ≈ ( )ω 	 (4.237)

There is another angle to describe the relationship of Equation 4.237, that is, the pseudo design 
spectra:

	 S SPV i D= ω 	 (4.238)

The pseudo spectral value of the velocity is ωi times the value of the spectral displacement.
According to the approximation described in Equation 4.237, a notation that expresses the rela-

tionship of the peak amplitudes needs to be found, which is ωi times in amplitude difference and 
90° in phase difference. Specifically, the following equations can be used:

	 yDi t yDi( ) ≈ ( )sin maxθ 	 (4.239)

and

	 y t y withVi i Di( ) ≈ ( ) ≤ ≤ω θ θcos max 90 180° ° 	 (4.240)

where yDi
max	is the amplitude of the displacement yDi(t); and the variations of the displacement yDi(t) 

and velocity yVi(t) can be described by the variation of angle θ.
Equations 4.239 and 4.240 imply that the responses yDi(t) and yVi(t), under unit excitation, can be 

summarized together by only considering the phase difference of 90° or π/2, since their amplitude 

is known to be yDi
max	and ωi Di

maxy .
Using Equations 4.239 and 4.240, the maximum value of xi(t) can be rewritten as

	 xmax i i i i i m i m Di
max2 1  sin cos yi= − − + −( ) ( ) + ( ){ }ω ξ ξ θ θ� � �2 	 (4.241)

where the angle θ is chosen so that the displacement xi(t) reaches its peak value xmax i	and the 
specific angle is denoted by θm. Note that θm is only used to justify the existence of the maxi-
mum value; it is not used in real-numbered computations. The displacement and the velocity 
are combined in Equation 4.241. Note that in Equation 4.241, the coefficients are vectors, 
which can be treated element by element in order to compare their amplitudes. In these cases, 
the angle θm can be different for different elements. Here, for simplicity, only one angle θm is 
used. For convenience, the coefficients of the jth elements sin(θ)and cos(θ) in Equation 4.241, 
respectively, are denoted by α and β; and for simplicity, subscript j is ignored. The problem now 
is how to determine the total value of α sin(θ)	+	β cos(θ) by examining the coefficients α and β.
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First, assume β	<	α and the maximum value of α/β	sin(θ)	+	cos(θ) is denoted as y and the ratio 
(α/β) is denoted as x. That is,

	 y = ( ) + ( )α β θ θsin cos 	 (4.242)

and

	 x = α β 	 (4.243)

The maximum values are obtained by varying the angle θ. Figure 4.6 plots the curve y vs. the 
ratio x marked by the solid line. In Figure 4.6, a regression curve marked by the dotted line is also 
plotted, which can be expressed as

 y x= 0.9986 0.4213+  (4.244)

Equation 4.242 can be further simplified as

 y x= + 0.4  (4.245)

Using Equation 4.161, the maximum absolute error will be around 0.2, which occurs at the point

	 cos sinθ θ( ) = ( ) 	 (4.246)

The maximum percentage error is less than 15%.
Note that the case described by Equation 4.246 will occur when the order of the mode becomes 

sufficiently high. Since the higher mode will contribute considerably less to the entire responses, the 
overall error will be much smaller than 15%, usually smaller than 5%.

Equation 4.245 is obtained by assuming that

	 β α<  (4.247)

However, if

	 α β≤ 	 (4.248)

the same relationship described by Equation 4.245 can still exist, except that in this case,

	 x = β α  	 (4.249)

Using Equation 4.245, the total value is obtained by multiplying either the factor β or the factor 
α back. The remaining task is to determine whether β	<	α or α	≤	β element by element of the two 

vectors 2 1 yi i i i i Di
maxω ξ ξ� �− −( )2 	and 2 yi i Di

maxω � , or more simply ξ ξi i i1� �− −( )i
2 	and Φi.

First, assume that Equation 4.247 holds; that is, assume for the jth element,

	 − + −( ) >ξ ϕ ξ ψ ϕi ij ij ij1 i
2 	 (4.250)

The plot of Figure 4.6 is thus the combined values of

	 − + −( )





( ) + ( )ξ ϕ ξ ψ ϕ θ θi ij ij ij1 sin cosi
2 	 (4.251)
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vs. one of the element ratios taken from

	 − + −( )ξ ϕ ξ ϕi ij i ij ij1 2 ψ 	 (4.252)

Here the symbol u•/v stands for each element of vector u, e.g., the ith element is divided by the 
corresponding ith element of vector v. Further, u•v is used to denote that for each element of vector 
u, such as the ith element, the corresponding ith element of vector v is multiplied. Furthermore, u•b is 
used to denote that each element of vector u will have the power of scalar b. That is,

	 u = { }ui 	 (4.253)

	 u = { }vi 	 (4.254)

	 u vi = { }u vi i 	 (4.255)

	 u vi = ⋅{ }u vi i 	 (4.256)

	 u• = { }b ui
b 	 (4.257)

With the above notation,

	 x ijmax = − − + −( )



 ( ) + ( ){ }2 1 sin cos yi ij i ij i ij ij m m Diω ϕ ξ ϕ ξ ψ ϕ θ θ2 mmax 	 (4.258)

and yDi
max	is used to denote that the displacement yDi(t) has reached its maximum value.

By using the approximation relationship expressed in Equation 4.245,

	 x ijmax = − { }2 yi ij Di
maxω ϕ y 	 (4.259)

or

	 x ijmax = − +{ }2 0.4 yi ij Di
maxω ϕ x 	 (4.260)

Furthermore,

	 x ijmax .= − +{ }2 4 yi ij Di
maxω ϕ α β 0 	 (4.261)
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and finally,

	 x ijmax = − − + −( ) +{ }2 1 0.4 yi i ij i
2

ij ij Di
maxω ξ ϕ ξ ψ ϕ 	 (4.262)

In addition, it is realized that the maximum value of the displacement, yDi
max, can be statistically 

obtained by using the design response spectrum. That is,

	 y S T , gDi
max

D i i→ ( )ξ 	 (4.263)

Thus, Equation 4.261 is rewritten by replacing the maximum value of yDi
max	 for yDi(t) and the 

maximum value for yVi(t) = ωiyDi(t) with SD(Ti, ξi) and ωi SD(Ti, ξi), also replacing xmaxij
 for dmaxij

 as 
follows:

	 d ij imax = − + −



 +{ }2 1 0.4 S gi i ij ij ij Dω ξ ϕ ξ ψ ϕ2 	 (4.264)

Similarly, it can be proven that if

	 − + − ≤ξ ϕ ξ ψ ϕi i i
j

ij1 i
2 	 (4.265)

then

	 x ij imax = − − + − +{ }2 0.4 1 yi i ij ij ij Di
maxω ξ ϕ ξ ψ ϕ2 	 (4.266)

or

	 d ij imax = − − + − +{ }2 0.4 1  S gi i ij ij ij Dω ξ ϕ ξ ψ ϕ2 	 (4.267)

The significance of Equations 4.264 and 4.267 is that the ith modal response at the jth location 
can be directly related to the spectral value SD, whether or not the system is proportionally or non-
proportionally damped.

Furthermore, the modal response vector can be obtained by considering the following shape 
function. That is, in order to have the general form of the maximum value of the ith modal displace-
ment, the response coefficient vector Υi is denoted as

	 	 	 �i ij

i i ij ij ij i ij ij1 0.4 , when  1
= { } =

− + − +{ } − + −
υ

ω ξ ϕ ξ ψ ϕ ξ ϕ ξ ψ2 2 2
i i <<

− + − +{ } − + − ≥

ϕ

ω ξ ϕ ξ ψ ϕ ξ ϕ ξ ψ ϕ

ij

i i ij ij ij i ij ij ij0.4 1 when  12 2 2
i i,










	 (4.268)

Thus,

	 dmaxi = ( )�i D i iS T , gξ 	 (4.269)

Here, the spectral vector dmaxi 
is used to replace xmaxi

.
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Equation 4.269 defines the peak value of the ith modal response in terms of an n × 1 real-valued 
vector and the spectral value SD(Ti, ξi) taken from the displacement design response spectrum. In 
practical applications, the pseudo acceleration design spectrum, SA(Ti, ξi), is often used and

	 S T , T
4

S T , D i i
i
2

2 A i iξ
π

ξ( ) = ⋅ ( )g 	 (4.270)

It can be written that

	 dmax i i
i
2

2 A i i
T
4

S T , g= ( )�
π

ξ 	 (4.271)

4.4.3  Modal truncations for a gEnErally daMPEd systEM

Suppose a system contains both nu underdamped modes and 2no overdamped subsystems.
According to Equation 4.221, the total response can be written as

	 x x x xt t t ti
i 1

n

i
C

i 1

n

j
R

j 1

2nu o

( ) = ( ) = ( ) + ( )
= = =

∑ ∑ ∑ 	 (4.272)

Here, x i
C t( ) 	is the underdamped response and x j

R t( ) 	is the overdamped response, which was 
previously defined. Thus,

	 x x xi i
C

j
Rt t  t( ) = ( ) + ( ) 	 (4.273a)

Note that if a system does not contain overdamped subsystems,

	 x xi i
Ct t( ) = ( ) 	 (4.273b)

It was previously discussed that for the underdamped system, all the modes do not have to be 
used because the first several modes often contribute the greatest portions of the responses. Thus, 
the concept of modal truncation can be used. Here, because the concept is extended to include the 
overdamped cases and for convenience, it is still called modal truncation.

That is, if only the first SU modes of the underdamped part and the first SO subsystems of the 
overdamped part are of interest,

	 x x x xt = t = t  + ti
i=1

S

i
C

i=1

S

j
R

j=1

SU O

( ) ( ) ( ) ( )∑ ∑ ∑ 	 (4.274)

where

	 S S SU O= + 	 (4.275)

The remaining questions are: (1) what if certain modes reduce to overdamped? (2) how can the 
number S be determined (this is discussed later)? and (3) how should the peak values be consid-
ered? By using Equation 4.272, the individual maximum value of the underdamped response can 
be obtained. To find the maximum value of the overdamped response, Equation 4.218 is repeated 
as follows:



Multi-Degree-of-Freedom	Systems	with	General	Damping	 249

	 x j
R

j
R

Dj
Rt  y t( ) = ( )r 	 (4.276)

so that

	 xmax j
R

j
R

j
Rmax y= r 	 (4.277)

Here xmax
R

j	is the maximum response of the jth overdamped subsystem with a real eigenvalue λ j
R. 

Considering spectral values, Equation 4.277 can be rewritten as

	 dmax j
R

j
R

Do S g= ( )r λ j
R 	 (4.278)

Note that, these maximum response values of each individual mode and/or subsystem cannot be 
directly summarized together. In the following discussion, in order to determine the number of SU 
and SO modes, the concept of modal participation is studied first. Then the truncated modal sum-
mation will be performed.

4.5  MODAL PARTICIPATION AND MODAL CRITERIA

The generally damped system is further examined in this section. Similar to a proportionally 
damped system, the concept of modal participation must be addressed by defining modal contribu-
tion indicators to determine if a mode or a subsystem should be included in the response computa-
tion. Different from a proportionally damped system, complex-valued mode shapes and real-valued 
eigenvalues may present.

4.5.1  critEria on coMPlEx ModE

From the above discussion, it is seen that although using the complex mode approach can increase 
the computational accuracy, it will make the problem more complicated; even when using the 
n-space method. However, on the other hand, there are certain cases where this approach must be 
used. Thus, in order to determine if complex modes should be used, criteria are needed. In the fol-
lowing discussion, specific indices to estimate whether the complex mode must be used in damper 
design are introduced.

4.5.1.1  Modal Energy Index
From Equation 4.113,

	 ω ω ζ ωζ
i

i
ni i nie 1≈ ≈ +( )  (4.279)

Specifically, the difference between the nonproportionally and proportionally damped systems, 
in terms of the natural frequencies, can be denoted by the modal ETR ζi.
When

	 ζi > 0 	 (4.280)

then

	 ω ωi ni>  (4.281)
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On the other hand, when

	 ζi < 0 	 (4.282)

then

	 ω ωi ni< 	 (4.283)

This phenomenon encourages the use of the ETR as the indicator to determine whether or not the 
mode of interest can be approximated by the simplified normal mode approach.

As mentioned above, it can be proven that

	 ζi ≠ 0 	 (4.284)

is the necessary and sufficient condition for the ith mode to be complex. Namely, if the ith mode is 
complex, then the modal participation factor will be affected by the modal ETR ζi. Generally, if ζi 
is greater than zero, this particular mode is formed by receiving energy from other modes and vice 
versa for negative ζi.

For complex modes, a uniform modal participation factor no longer exists. Instead, in a later 
paragraph, the modal participation factor vector is introduced, which means that for the response 
at different locations, the modal participation indicator may vary. In this case, the response of a 
certain location may be amplified, whereas others may be reduced. The energy transfer is only an 
average measure of the entire mode. The resulting peak values at each location may be either larger 
or smaller. In this case, the ETR cannot be only used as a uniform measure to examine the magni-
fication of the responses.

The damping ratio may or may not contribute to the value of the modal participation factor. For 
a proportionally damped system, it is seen that from Equation 3.170, the modal participation factor 
will have nothing to do with the damping in the normal mode. In this circumstance, the damping 
ratio will not affect the mode shape Pi; therefore, the value of Γi will not be changed if the damping 
ratio varies. That is, unless the ith mode reduces to two pseudo modes, the modal participation factor 
will remain the same value for the proportionally damped system.

However, in the second case of nonproportional damping, it is seen that adding damping will 
affect the particular modal participation factor. That is, in an attempt to determine if a particular 
mode can contribute to the total response as well as if it can be simplified as a normal mode, we 
should consider both the damping ratio and the ETR.

For the above reasons, the ratio rEi is defined as follows:

	 rEi
i

i
2

i
2

=
+

ζ

ξ ζ
	 (4.285)

To obtain an overall view of the degree of having the complex mode, the following term can be 
used:

	 r max rE
i 1,S

Ei= ( )
=

	 (4.286)

From Equation 4.285, it is seen that

	 0 rE≤ < 1 	 (4.287)
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In practical damper design, this ratio can be used to determine whether or not the ith mode can 
be treated as a normal mode. It is seen that when the ith mode of a system is normal, rE = 0. When it 
become complex, the higher the degree of complexity, the larger the value of rEi. For convenience, 
this ratio is called the modal energy transfer factor or the ETR factor.
Practically speaking, a value of G can be preset so that when

	 r , i 1, , SEi < =G … 	 (4.288a)

the particular ith mode can be treated as a simplified normal mode. Furthermore, in practice, the first 
mode is checked for simplicity, that is, the criterion can be written as

	 rE1 < G 	 (4.288b)

Furthermore, note that one of the advantages of using the ETR factor is that the quantity of ETR 
of the first mode can be obtained by

	 ζ ω ω1 i ni 1≈ − 	 (4.289)

or

	 ζ1 n1 1T T 1≈ − 	 (4.290)

That is, given the natural frequencies for the nonproportionally damped system, ωn1, and the 
corresponding undamped system, ω1, the ETR can be calculated for the first mode with the simple 
formula described in Equation 4.289. Or, if the natural period for the nonproportionally damped 
system, Tn1, and the corresponding undamped system, T1, can be obtained, the ETR can be calcu-
lated for the first mode by using the simple formula described in Equation 4.290.

4.5.1.2  Complex Modal Factor
In order to study the existence of the complex mode more generally, an alternative index based on a 
comparison between the responses of the complex mode and the normal mode is further considered.

From Equation 4.183, it was learned that the response of the ith complex mode can be represented 
by two parts, namely, the one contributed by displacement yDi(t) and the one contributed by velocity 
yVi(t). Also, from Equation 4.236, it is known that the amplitude of velocity yVi(t) is approximately 
ωi times the amplitude of displacement yDi(t), that is,

	 y t y tVi i Di( ) ≈ ( )ω 	 (4.291)

Here 
“ i( ) ”

 again stands for the amplitude of ( )i .

In this way, the amplitude coefficient of the displacement is denoted as

	 cDi i i i i
2

i2 1= − −( )ω ξ ξ� � 	 (4.292)

and the amplitude coefficient of the velocity as

	 cVi i i2= ω � 	 (4.293)

Here, the vectors Φi and Ψi as before are defined as the real and imaginary parts of piqiJ, 
which is used in the transfer function of the nonproportionally damped ith mode described in 
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Equation 4.173. It is known that a formula such as Equation 4.173 can also be used for a propor-
tionally damped system. Equation 4.173 is rewritten as follows:

	 h
p q p q

i
i i

i

i i
*

i
s

s s( ) = −
−

+ ( )
−













J J
λ λ* 	 (4.294)

Next, the difference between the transfer functions of the nonproportionally and proportionally 
damped systems is examined by considering the term piqiJ. This is because the rest of the terms 
s – λi, etc., are identical for both systems. Now, substituting Equation 4.86 into piqiJ results in

	 p q p pi i i i i
TrJ M J= ( )� 	 (4.295)

If the system is proportionally damped, pi is real valued, that is,

	 p pi ireal Im 0= ( ) =( ) 	

Also, note that M and J are real valued.
The remaining term, ri, is described in Equation 4.93. From Chapter 3, it was seen that the mode 

shape vectors pi are orthogonal with the weighting matrix M and it is known that p pi
T

i imM = , 

p pi
T

i i i ni ic 2 mC = = ξ ω . Therefore, Equation 4.93 is rewritten for the proportionally damped system 

as

	

r 1
2

1
2 m 2 m

1
j 1 m

i 1  

i
i i

T
i i

T
i

i i i ni i i
2

ni i

= ( ) +

= ( ) +
=

−
=

λ

λ ξ ω ξ ω

p p p pM C

, 22 n, ,…

	 (4.296)

Here, ri only has an imaginary part.
From Equation 4.296, it is seen that the term piqiJ is a product of four pure real quantities and 

one pure imaginary quantity. Thus, it is concluded that

	 p q p qi i i ijImJ J= ( ) 	 (4.297)

Compared with generally damped systems, it is seen that the only difference between the non-
proportionally and proportionally damped systems is that, for the latter,

	 p qi i ijJ = Ψ 	 (4.298)

or

	 �i = 0 	 (4.299)

Assuming small damping, substituting Equation 4.299 into Equations 4.292 and 4.293 yields, 
respectively,

	 cDi i i
2

i i i2 1 2  = − ≈ω ξ ω� � 	 (4.300)
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and

	 c 0Vi = 	 (4.301)

for the pure proportionally damped system.
It is understandable that when the degree of damping nonproportionality is lower, the value of the 

velocity will be smaller. Once the system reaches a pure proportionally damped case, the velocity 
term disappears and the vector ΦI will become null. This phenomenon implies that the amplitude 
of the coefficients cDi and cVi can be seen as a new index for determining the complex mode, called 
the complex mode factor, rVi, and is defined as follows:

	 rVi
i
T

i

i
T

i i
T

i
=

+
� �

� � � �
	 (4.302)

For an overall understanding of the degree of the significance having the complex mode, the 
following term can be used:

	 r max rV
i 1,S

Vi= ( )
=

	 (4.303)

From Equation 4.302, it is seen that

	 0 ≤ <r 1Vi 	 (4.304)

In practice, the complex mode factor needs more information in order to be computed, and this 
is one of its limitations. However, it is suggested that both indices be considered to determine if 
the complex mode approach should be used, since using only one factor may lead to errors and/or 
incorrect decisions.

4.5.2  Modal ParticiPation factors

To compute the structural response efficiently without loss of accuracy, the modes that contribute 
the largest part of the total response need to be selected and the modes that only have minimal con-
tribution need to be excluded. In other words, the truncated modal superposition must be sufficient 
to represent the total responses. To determine whether a mode needs to be included in our computa-
tion, we need the help of the concept of modal participation.

The complex mode is more accurate for modeling nonproportionally damped systems, but 
requires more computations. In order to determine whether or not to use it, a criterion is needed. 
This may help us simplify response estimations and less computation may be used without loss of 
design accuracy.

In order to consider another specific case of overdamped subsystems, which is often ignored 
by conventional approaches but may affect the total response computation, we need additional 
criterion. This criterion allows the overdamped subsystems to be considered quantitatively. If an 
overdamped subsystem is to be included, although the computation is unfamiliar to most practical 
engineers, this criterion should be considered.

In this section, these criteria are examined based on an explanation of the dynamic behavior of 
generally damped systems.

In the above discussion, Equation 4.271 was obtained to link the maximum response of the ith 
mode and/or subsystem to the design spectral value. In the following, the modal participation fac-
tor for the generally damped systems will be further defined, which will be convenient for use in 
damper design.
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4.5.2.1  Nonproportionally Damped Modes
The first step is to make the equation compatible with building codes, such as NEHRP 2003 (BSSC 
2003), which use a special form of mode shape, and is normalized with the method described by Equation 
3.129. Note that the mode shape used in the code is real valued, whereas the one described here thus far is 
complex valued. Therefore, a real-valued mode shape pi is used to approximate the exact mode shape as

	 p
p

pi
i

ni
ni ijp

sgn p j 1  2 n=











( ) = { } = …i , , , , 	 (4.305)

Here, the symbol • is described in Equation 4.256. The vector pni is the ith mode shape of a cor-
responding normal mode system with mass and stiffness matrices identical to the nonproportionally 
damped system and a null damping matrix. And, when −90°	<	∠(pij)	< °90 , sin(pij)	=	1. Otherwise, 
sin(pij)	=	−1.

Using Equation 4.305, the modal participation factor of the ith mode at the jth location is further 
defined as

	 Γ ij
ij

ij

i i ij ij ij ij i ij

p

1 0.4 p , when 1
= =

− + − +{ } − + −ψ ω ξ ϕ ξ ψ ϕ ξ ϕ ξ2 2 2
i i ψψ ϕ
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ij ij

i i ij ij ij ij i i i
2

ij0.4 1 p , when 1

>

− + − +{ } − + − ≤2 2
i ϕϕij










	 (4.306)

Therefore, for the nonproportionally damped system, there is no longer a uniform modal par-
ticipation factor as in the proportionally damped system described in Equation 3.170. Instead, the 
modal participation factors are written in the following vector form:

	 �i ji

1i

2i

ni

...
= { } =



















Γ

Γ
Γ

Γ

	 (4.307)

where the braces indicate that the modal participation factors are in vector form. In this case, 
Equation 4.269 is rewritten as

	 x Pmax † ,i i= ( )i�i D i iS T gξ 	 (4.308)

Note that, Γi is a positive vector, which is used for design convenience.

4.5.2.2  Proportionally Damped Modes
If the system is proportionally damped with all modes underdamped, then the definition of Equation 
4.173 can still be used; that is,

	 h
p q p q

i
i i

i

i i
*

i
*s

s s( ) = −
−

+ ( )
−













J J
λ λ 	

However, it was proven that the product of piqiJ has only imaginary parts; that is,

	 p qi i ijJ = � 	

and its complex conjugate is

	 p qi iJ( ) = −∗ j i� 	
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Therefore, in this case, hi(s) reduces to

	 hi
i
2

ni i
2

i ni ni
2s 2 1

s 2 s( ) =
−

+ +
ζ ω

ζ ω ω
�

	

The corresponding response is then reduced to

	 x i
1

i g
1

ni i
g

2
i ni

s x s 2 1
x s

s +2 s+it( ) = − ( ) ( ){ } = − −( ) ( )− −� �h ″
″ω ξ

ξ ω
2 �

ωωni
2












	 (4.309)

Thus, the vector equation is written as

	 x i ni i Dit 2 1 y ti( ) = − − ( )ω ξ2 � 	 (4.310)

Furthermore,

	 xmax max ni i Di
max2 1 yii i= { } = −x ω ξ2 � 	 (4.311)

That is, the maximum value, denoted by vector xmaxi , is only the function of Ψi. Next, denote

	 pni
i

in
ij j 1  2  n=









= { } = …�

ψ
p , , , , 	 (4.312)

Using Equation 4.312, as well as Equation 4.311, results in a similar form to the nonproportionally 
damped system:

	 xmax ni i D i iS T , gi = ( )p Γ ξ 	 (4.313)

except that here, Γi, the modal participation factor, is no longer a vector; and

	 Γ i di i1= 2ω ψ 	 (4.314a)

Therefore, one of the major differences of the modal participation factor between nonpropor-
tionally and proportionally damped systems is that the latter is a scalar, which applies to all the jth 
elements. However, for nonproportionally damped systems, the modal participation factor for each 
complex mode will vary when the elements are different.

It can be proven that Equation 4.314a yields the same absolute value of the modal participation 
factor as in Equation 3.170. Again, for design convenience, the sign of the factor is omitted, that is,

	 Γ i
i
T

i
T

i
= p

p p
M
M

J 	 (4.314b)

Note that, in this case,

	 p uni i= 	

Here, ui	is the ith mode shape of the proportionally damped system, and so will be pni.
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4.5.2.3  Overdamped Subsystems

For the overdamped subsystems, the vector r j
R	was used, which is defined in Equation 4.216 and 

repeated as follows:

	 r p qj
R  = − j

R
j
RJ 	

Thus, the modal participation factor, denoted by Γ j
R, is defined for the jth overdamped subsystem as

	 Γ j
R

j
R= q J 	 (4.315)

In this case, using Γ i
R	to replace q j

RJ	in Equation 4.278,

	 dmax j
R

j
R

j
R

Do i
RS g= ( )p Γ λ 	 (4.316)

4.5.3  Modal contriBution indicators

To attempt to determine the number of modes that should be included to compute the total responses 
in a nonproportionally damped system, modal contribution indicators are still needed. In this sec-
tion, the indicators that can potentially be used to choose the number of truncated modes are 
examined.

4.5.3.1  Modal Mass Ratio
It has been established that for proportionally damped systems, to determine if the contribution of 
a mode needs to be included when computing the total structural responses, the concept of a modal 
mass ratio can be applied (see Equation 3.184).

	 γ mi
effi i

T 2

i
T

i
i
2 mim

M M
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i 1  2  n= =
( )

= = …
Σ Σ Σ

Γ
u

u u
M

M
J

, , , , 	

The favorable properties of the modal mass ratio are that, first, the summation of the modal mass 
ratio is unity (see Equation 3.180) and, secondly, Σγmi will monotonically increase when the order of 
the mode becomes larger. In other words, γmi is a good index or indicator of the modal contributions 
in the total structural responses.

For nonproportionally damped systems as well as systems containing overdamped subsystems, 
the modal mass ratio needs to be redefined. For a generally damped system, the eigenvalue λ	i, and 
the mode shape pi as well as its accompanist vector qi, can be obtained from one of the following 
cases:

 1. They represent one of the identical pairs of a proportionally damped system, namely, the 
normal mode.

 2. They represent one of the identical pairs of a nonproportionally damped system, namely, 
the complex mode.

 3. They represent one of the overdamped subsystems, namely, the pseudo mode.

In the following discussion, the modified modal mass ratio is introduced for generally damped 
systems. Then, the viability of using this parameter is proven. In a later section, other indicators will 
be introduced and compared using numerical simulations.
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If there is no distinction between the above three cases, but the eigenvalue λ	i, the mode shape pi, 
and as its accompanist vector qi are treated as a subsystem,
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	 (4.317)

Here, nRu and nCu are respectively the number of normal and complex modes; nRu + nCu = nu and 
the total mass MΣ is defined in Equation 3.185, and the ith effective mass is redefined as

	 m Reeffi i i i
T= ( ){ }2 λ q pJ JM 	 (4.318)

This newly defined modal mass ratio, similar to the one defined in Equation 3.184, is used to 
determine if a specific mode needs to be included in the total structural response computations. 
Therefore, such a quantity has to satisfy the following requirements.

First, the summation of all these quantities must be a fixed value. For convenience, this fixed 
value can be taken as 1. This requirement provides a reference, e.g., a unity, so that the modal con-
tribution can be quantitatively determined.

Second, if the contribution of a specific mode to the total structural responses is significant, the 
corresponding modal mass ratio must be sufficiently large. In fact, the larger the contribution, the 
larger this quantity should be in a proportional sense. This requirement guarantees that the quantity 
must be a monotonic function of the modal contribution, so that it can be used as an index or indica-
tor of the modal contribution.

Now, the first requirement is proven, namely,

	 m Meffi
i

n

=
∑ =

1
Σ 	 (4.319a)

or

	
m

M

effi
i

n

=
∑

=1 1
Σ

	 (4.319b)
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or

	 γ mi
i 1

n

=
∑ = 1 	 (4.319c)

The term λ i i i
Tq pJ JM( )	 is examined next. For convenience, there is no distinction regarding 

whether the ith subsystem is the complex-conjugate pair of a nonproportionally damped system, or 
one of the identical pairs of a proportionally damped system, or a pseudo mode of structure. Then, 
the Equation 4.319 can be written as

	 λ i i i
T

i 1

2n
T T Tq p Q PJ J J J( )( ) =

=
∑ M M′ ′� 	 (4.320)

Here, P ′n 2n× 	is used to represent all P, P*, and PR in n-dimensional space, which are defined in 

Equation 4.212. That is,

	 P ′ =  P P P, ,* R 	 (4.321a)

Also Q ′n 2n× 	is used to represent all Q, Q*, and QR, which are defined in Equation 4.213, that is,

	 Q ′ =
















Q
Q
Q

*

R
	 (4.321b)

It is known that

	 P Q A� = =
− −









− −M 1 1C M K
I 0

	 (4.322)

where Δ was defined previously.
Substituting Equations 4.321a and 4.321b into Equation 4.322 and considering the lower left 

submatrix,

	 P Q Q P′ ′ ′ ′� �= =I T T 	 (4.323)

Substituting the right part of Equation 4.323 into Equation 4.320 results in

	 λ i i i
T

i 1

2n
T T Mq pJ J J J J JM IM M( ){ } = = =

=

∑∑ 	 (4.324)

Therefore,

	
λ i i i

T

i 1

2n

M

q pJ JM( ){ }
==

∑
Σ

1 	 (4.325)

Thus, the requirement of Equation 4.319 is proven.



Multi-Degree-of-Freedom	Systems	with	General	Damping	 259

In the following, underdamped system with proportional damping is further examined. In this 
circumstance, it is known that the ith mode shape pi can be real valued and reduced to ui defined in 
Equation 3.88. It is also known that pi can be normalized with many respects. For example, pi can 
be a special vector ui, such that

	 u u
i i
TM = 1	 (4.326)

In this case, let

	 p pi
T

i imM = 	 (4.327)

and

	 p pi
T

i i ni i2 mC = ξ ω 	 (4.328)

Substituting Equations 4.237 and 4.238 into Equation 4.93 results in

	 r 1
m 2 2

1
2jm 1

i
i i i ni i i

2
ni

=
+( ) =

−λ ξ ω ξ ω
	 (4.329)

Furthermore,

 

r 1
2j  1

i
i
T

i i ni

=
−p pM ξ ω2 	 (4.330)

Therefore, the following is correct:

	 q p p
p p

i i i
T i
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i
T
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2j 1

= =
−

M M
M ξ ω2

	 (4.331)

Substituting Equation 4.331 into Equation 4.317 results in
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	 (4.332)

That is, the modal mass ratio reduces to Equation 3.184, which was introduced for the case of an 
underdamped system with proportional damping only.

Now, consider the overdamped subsystems. In this case, 

	 q pi
R

i
R

i
RT

= r M 	 (4.333)

 

ri
R

i
R
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i
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2p pλ M C
	 (4.334)
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thus,

	

q p
p p

i
R i

R

i
R

i
R

i
R

T

T=
+( )

M
M C2λ

	 (4.335)

For the overdamped subsystems,

	

γ
λ λ

mi

R
i
R

i
R

j
j 1

n

i
R

i
R

i
R

i

T T T T  

 m

  

 m
=

( ) ( ){ }
=

( ) ( )

=
∑

2 q q q pJ J J JM M

jj
j 1

n

=
∑

	 (4.336)

In generally damped systems, both proportionally damped modes, namely, the normal modes, 
and the nonproportionally damped modes, namely, the complex modes can exist. In addition, the 
overdamped subsystems can also exist. In this case, both underdamped and pseudo modes should 
be considered, and the formula described by Equation 3.184 should be modified.

It is seen that Equations 4.319b and 4.319c can also be proven. Here, for convenience, the nota-
tion meffi is used to denote both underdamped and overdamped pseudo modes or subsystems.

It is known that the modal mass ratio is used to determine whether or not the ith mode should be 
considered. That is, a criterion G can be preset. If the summation of a modal mass ratio of the first 
S modes is greater than this value, the corresponding mode should be considered when the struc-
tural responses are calculated. This requirement was described in Equation 3.181 and is repeated 
as follows:

	
γ mi

i=1

S

� ≥∑ G 	 (4.337)

In Chapter 3, it was mentioned that it was best that the summation for the first S modes monotoni-
cally increases with respect to the number S.

Unfortunately, the modal mass ratio defined above for the nonproportionally damped system 
does not satisfy these requirements. That is, the ratios of certain modes can be negative and the 
summation of those for the first S modes can be greater than unity. In the worst cases, the ratio 
of the first mode can be negative. This fact may mislead a damper designer to make an incorrect 
decision when choosing modes, although it can be compensated by using larger value of Sf in 
Equation 3.178. Therefore, a better method of choosing the modes may be needed to ensure the 
accuracy of the modal truncation.

4.5.3.2  Static Modal Energy Ratio
Consider a generally damped system that consists of a structure with added damping, which may 
contain the complex modes and overdamped subsystems, described by Equation 4.338, a system 
with real modes only can be generated as described by Equation 4.339, which can also have over-
damped subsystems. In addition, an underdamped system with proportional damping only can also 
be generated. That is,

	 M C K M�� �x x x J+ + = −g gx ″ 	 (4.338)

where Cg is a general damping, which may cause complex modes as well as overdamped subsystems;
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	 M C K M�� �x x x J+ + = −r gx ″ 	 (4.339)

where Cr is the damping that causes the system to only have a real-valued mode shape; and

	 M C K M�� �x x x J+ + =a xr g− ″ 	 (4.340)

where a is a scalar that reduces the amount of damping such that the resulting system is underdamped.
Note that from the above-mentioned assumption, if the original system described by 

Equation 4.340 is used, then by adding damping that is proportional, the system becomes the 
one described by Equation 4.339. By adding general damping devices, the system becomes the 
one described by Equation 4.338. Now, suppose the system is as described by Equation 4.338. 
The next step is to find the systems described by Equations 4.339 and 4.340 reduced from the 
generally damped system.

First of all, matrix Cr can be obtained as follows:

	 C Mr i ni
1diag 2= ( ) −U Uξ ω 	 (4.341)

Here, the damping ratios ξi are obtained from the system Equation 4.338 and ωni as well the 
eigenvector matrix U are obtained through eigen-decomposition of matrix M−1K, that is,

	 M KU U−1 = ( )diag ni
2ω 	 (4.342)

Note that the system may contain overdamped subsystems, with the largest damping ratio 
denoted as ξi,

	 ξi > 1 	 (4.343)

This fact will not affect using Equation 4.341 to generate matrix Cr. To generate the corre-
sponding underdamped system described by Equation 4.340, the factor used in Equation 4.340 can 
approximately be calculated by

	 a i< 1 ξ 	 (4.344)

Further assume that when the responses of system Equations 4.348 and 4.340 are calculated by 
choosing the same number of modes for both systems, the same percentage errors can exist for each 
system. That is, the modal contribution indicator of system Equation 4.340 can be used to choose 
the number of modes for system Equation 4.338.

Practically speaking, this is not always true. However, by choosing a few more modes as described 
in Equation 3.178 and repeated as follows:

	 S S Sp f= + 	 (4.345)

In so doing, the computational accuracy is ensured. The benefit of using this method is that the 
requirements described by both Equations 3.182 and 3.183 are satisfied.

Therefore, consider the modified static modal energy ratio, which can be obtained by the fol-
lowing procedure.

First, calculate the mode shape matrix V, which is expressed in Equation 3.77 and repeated as 
follows:

	 V U= = [ ] ×
M1 2

1 2
/ , , ,v v v… s n s 	 (4.346)
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Furthermore, a matrix RI containing an incomplete set of normalized orthogonal vectors rli is given by

	 R V V IJI I1 I2 Is n sdiag a= { }( )



 = …[ ]+

× ×n s
r r r, , , 	 (4.347)

The static modal energy ratio for the general damped system is then denoted as

	 γ Ii Ii
T

Ii na= ( )r r 	 (4.348)

Similar to Equation 4.337, the criterion can be written as

	
γ Ii

i=1

S

� ≥∑ G
	

(4.349)

Practically speaking, for both the modal mass ratio and the static modal energy ratio, the value 
of G can be chosen as

	
G ≥ −85% 90%	

(4.350)

Example 4.9

In order to compare the performance of these modal contribution indicators, recall the example of 
the 10-story building (see Example 3.5). This time, suppose two dampers are installed in the first 
and second stories. It is also assumed that before any damper is added, the original damping ratio 
is 2% for all 10 modes. Using the dampers with a damping coefficient of 3.0 × 104 (kN-s/m), the 
system is nonproportionally damped.

In Figure 4.7, two curves are plotted, which are marked in the legend. This figure shows that the 
summation of both the static modal energy ratio and the modal mass ratio increases monotoni-
cally vs. the numbers of modes used, whereas the summation of the modal mass ratio becomes 
greater than unity when five or six modes are used. However, it can be shown that, when the 
damping coefficieint is chosen to be 4.5 × 104 (kN-s/m), the summation of the modal mass ratio 
becomes greater than unity when six modes are used. In this case, although the summation of 
the modal mass ratio eventually becomes unity, it is realized that the nonmonotonic increase will 
make the determination of the number of modes to be included difficult.

In Figure 4.8, the curve of the modified static modal energy ratio as well as the largest per-
centage error is plotted. This error is calculated by comparing the responses obtained by all 10 
modes and the truncated modal superposition, when the El Centro earthquake (1940) is used 
as the ground excitation. It is seen that although the modified static modal energy ratio is taken 
from the corresponding proportionally damped system by using Equation 4.260b, it can provide a 
good estimate for the modal truncation. For example, if G = 85% is chosen, and therefore, the first 
mode is chosen only to compute the response, the error is <3% (1%−97%	=	3%).

Note that in Example 4.9, only one earthquake record is used in the computation for comparison 
purposes. The authors have conducted many other calculations with several types of structures as 
well as 99 earthquake records, with similar results.

4.5.4  Modal rEconstruction of gEnErally daMPEd systEM

To calculate the modal participation as well as the modal contribution and to determine if complex 
modes should be considered, mode shapes are needed. In later chapters on practical damper design, 
these mode shapes are also needed. In most circumstances, the entire mode shape matrix does not 
have to be used, and only the first few are needed. If a structure has pure proportional damping, 
several methods can be used to compute or estimate the mode shapes, which were discussed in 
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Chapter 3. However, as mentioned above, a structure with damping installed is likely to become gen-
erally damped; namely, it may have nonproportionally damped complex modes and/or overdamped 
subsystems. In this circumstance, the mode shape can be substantially different from the pure propor-
tionally damped system and often the corresponding mode shape for the damper design is necessary.

In many cases, the dimension of mode shape can be very large. Previously, the concept of modal 
truncations based on n-dimensional normal modal space and in 2n-dimensional state space is intro-
duced for reducing computational burdens. Modal reconstruction (also referred to as modal conden-
sation) will be discussed in the following, not only for computations, but also for design convenience 
because of significant dimension reductions.
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4.5.4.1  Modal Reconstruction for Damper Design
To compute the mode shape, it is necessary to have the mass, damping, and stiffness matrices. 
As mentioned earlier, the mass matrix is comparatively easier to obtain. However, it is difficult to 
obtain the full damping and stiffness matrices. In this section, reconstructing a generally damped 
system to approximate the system when key pieces of information are missing is discussed, which 
mainly involves reconstruction of reduced-size stiffness and damping matrices.

In most cases, when an analytical model is extracted from a real-world building design, the stiff-
ness matrix cannot be directly obtained. However, by using commercially available FEM software, 
such as SAP2000 and ABAQUS, a structural model can be established, a structural analysis per-
formed, and real modal frequencies and modal shapes (not stiffness matrix) can be output. Based on 
these modal parameters, a modal reanalysis (modal subspace transformation) approach is applied to 
approximately calculate new complex modal parameters and further predict the structural dynamic 
characteristics after installing dampers in the structure. This procedure is referred to as modal 
reconstruction. That is, using the modally reconstructed system, the mode shapes can be obtained 
for further damper design.

Note that for the requirement of stiffness, a reduced-size matrix can be constructed by consider-
ing the natural frequencies of the modes of interest. For the requirement of damping, a reduced-size 
matrix can also be constructed. That is, a percentage of the damping ratio is assumed and a propor-
tional damping matrix is constructed if the eigenvector matrix of the stiffness is known. Secondly, 
there is some knowledge of the added dampers, e.g., the damping coefficient of the dampers and the 
location of the dampers installed. Although there are limitations on where the added dampers may 
be placed, a reduced-size damping matrix can still be constructed.

Consequently, from a reduced-size space to the full-size space, a linear transformation is 
needed. As mentioned previously, this is done by using the modal superposition of the truncated 
modes and/or overdamped subsystems. In the following discussion, this method is introduced step 
by step.

Up to now, in the space of the normal modes, all the vectors are real valued. Further, in the 
2n-dimensional state space, all the vectors are complex valued. Note that the complex-valued 2n 
state space does not necessarily contain only the complex modes; it is also valid for the normal 
modes. However, a set of complex modes of a system that is nonproportionally damped can only be 
decoupled in the 2n space.

In the n-dimensional vector space, there are n linearly independent vectors, denoted by P, which 
is called the base. That is, the n × n matrix containing all the base vector pi is of full rank n:

	 P = …[ ] ×
p p p1 2 n n n,† , , 	 (4.351)

If there can be all pi, then the complete set of bases is available. Otherwise, they are incomplete; 
e.g., the truncated modal space. In this case,

	 PC = …[ ] ×
p p p1 2 S n S, , , 	 (4.352)

and the rank of the above matrix is S.
Furthermore, any vector in the n-dimensional space denoted by u can be represented by these 

bases. That is,

	 u p= ∑ai i
i=1

n

	 (4.353)

The cases of mode shapes that can be used as bases to represent vectors in damper design are 
summarized as follows:
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4.5.4.1.1 Generic Normal Mode
The differential equations of a proportionally damped structural vibration system with n-DOFs was 
described by Equation 4.1a and with earthquake excitations, it is repeated again as follows:

	 M C K M�� �x x x J+ + = − xg″ 	 (4.354)

The differential equations of an undamped structural vibration system with n-DOFs can be 
expressed as

	 M K M��x x J+ = − xg″ 	 (4.355)

The mode shape of the above two cases is identical, that is,

	 M K−( ) = = …1 u ui ni
2

i i 1  2 nω , , , , 	 (4.356)

4.5.4.1.2 Monic Normal Mode
Premultiplying M−1/2 on both sides of the homogeneous form of Equation 4.355 and using the 
notation

	 z =� /M x1 2 	 (4.357)

results in

	 �� �z z  + =K 0 	 (4.358)

Here K
~

 = M−1/2KM−1/2 as defined previously.
It is known that the corresponding eigen-equation is

	 �Kv vi ni i i 1  2 n= = …ω2 , , , 	 (4.359)

where ωni and vi can be seen as the ith natural frequency and mode shape of the system. Note 
that the eigenvector V can have different normalizations. Here, for convenience, the orthonormal 
normalization described by Equation 3.40 is used.

It is seen that Equation 4.359 is also valid for the system described by Equation 4.101, which is 
repeated as

	 I C�� � � �z z z 0t t t( ) + ( ) + ( ) =K 	 (4.360)

4.5.4.1.3 Generic Complex Mode
It is known that when the damping matrix in Equation 4.360 does not satisfy the aforementioned 
Caughey criterion, the 2n-dimensional state equation is employed and for generic cases, the homo-
geneous form of the state Equation 4.7 is obtained and is repeated as

	 �X Xt t( ) = ( )A 	 (4.361)
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and the eigen-decomposition

	 �AP Pi i i i
i i

i
i 1  2  n= =









= …λ λ
λ p
p

, , , , 2 	 (4.362)

can provide the complex mode shape pi. Here, the generic state matrix is described in Equation 4.5.

4.5.4.1.4 Monic Complex Mode
From the monic Equation 4.360, an alternative state matrix Ã is

	 �
� �

A =










− −C K
I O

	 (4.363)

The eigen-decomposition of matrix A~ is

	 � � � �
�

AP P
p
pi i i i
i i

i
i 1  2  n= =









= …λ λ
λ

� , , , , 2 	 (4.364)

It is also learned that the system Equation 4.362 and the system Equation 4.364 are similar since 
they both have identical eigenvalues. In fact,

	 �A A=




















−

−

M
M

 M
M

1/2

1/2

1/2

1/2 	 (4.365)

or

	 A A=




















−

−

M
M

M
M

1/2

1/2

1/2

1/2 � 	 (4.366)

So that, with proper normalization,

	 �P Pi

1/2

1/2 i =










M
M

	 (4.367)

or

	 P Pi

1/2

1/2 i =










−

−

M
M

� 	 (4.368)

and

	 �p pi
1 2

i= M / 	 (4.369)
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or

	 p pi
1 2

i= −M / � 	 (4.370)

4.5.4.1.5 Simple Monic Mode
Premultiplying VT on both sides of Equation 4.360 results in

	 V V CV V V 0T T T(t) (t) (t)�� � � �z z z+ + =K 	 (4.371)

Denote

	 r V= Tz 	 (4.372)

and

	 D V V= T �C 	 (4.373)

Also notice that

	 V VT
ni
2diag( ), i 1  2  n�K , , ,= = = …�2 ω 	 (4.374)

Then,

	 �� �r Dr r 0t t t2( ) + ( ) + ( ) =� 	 (4.375)

The corresponding state matrix can be written as

	
�

A =
− −









D �2

I O
	

The system described by Equation 4.375 can be called the simple monic system. The eigen-
decomposition of matrix A



 is

	 �
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λ λ
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i 	 (4.376)

It can be seen that the systems of Equations 4.362, 4.364, and 4.376 are all similar, since they all 
have identical eigenvalues. In fact,
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or

	 A A=
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�
	 (4.378)

So that,
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or
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�
	 (4.380)

and

	 � �p p pi
T

i
T 1 2

i = =V V M / 	 (4.381)

or

	 p pi
1 2

i= −M V/ � 	 (4.382)

4.5.4.2  Damper Design without Stiffness Matrix
In the following discussion, the theory and procedure of modal reanalysis are discussed, particu-
larly for the damper design under the condition that the frequencies, damping ratios, and modal 
shapes are obtained, but the structural stiffness matrix is unknown. This treatment is often referred 
to as the method of dual modal space since the original system has a generic normal mode and 
the re-analyzed modal space contains truncated monic modes. This treatment is also referred to as 
modal (or model) condensation (Song et al. 2008).

4.5.4.2.1 Dual Modal Space
It is known that the differential equations of an undamped structural vibration system with n-DOFs 
can be expressed as

	 M K��x x ft t t( ) + ( ) = ( ) 	

The corresponding eigen-decomposition has been written in Equation 4.356. After solving this 
equation, the lower S (S ≤ n) order reserved eigenvalues and eigenvectors (modal shapes) can be 
obtained:

	 �C n1
2

n2
2

nS
2

S S
= diag ,2 ω ω ω,... ,( )

×
	 (4.383)

	 UC S n S= [ ] ×
u u u1 2, , ,… 	 (4.384)
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Here, as mentioned earlier, ωni is the ith natural frequency (i = 1, 2,…, S). Suppose all the modal 
shapes, namely ui, are normalized to the identical modal mass matrix, that is,

	 U MU IC C = 	 (4.385)

For the sake of simplicity, the overhead bar now stands for the normalization realized by the fol-
lowing (see Equation 3.113) instead of that in Equation 3.129,

	 u u
u u

i
i

i i 
=

T M
	 (4.386)

where ui 	is the ith eigenvector obtained by solving the eigen-decomposition Equation 4.356.
As a consequence of the assumption in Equation 4.385, the following relationship exists:

	 U K UC C C
2= � 	 (4.387)

Suppose that in the original structure, before supplemental dampers are installed, the damping is 
proportional. The equation for the proportionally damped system can be rewritten as

	 M C K�� �x x x ft t t t0( ) + ( ) + ( ) = ( ) 	 (4.388)

where C0 is the proportional damping coefficient matrix, which has the following property:

	 U C UC 0 C 01 n1 02 n2 0S nSdiag 2 , 2 2= ( )ξ ω ξ ω ξ ω,..., 	 (4.389)

where ξ0i is the ith damping ratio of the original system.
Now, when the supplemental dampers are added to the structure, an extra damping coefficient 

matrix Ca will be formed, which may or may not satisfy the Caughey criterion. Now a new and 
complete damping matrix should be established as

	 C C C= +0 a 	 (4.390)

Thus, a new equation of motion can be obtained as

	 M C K�� �x x x ft t t t( ) + ( ) + ( ) = ( ) 	 (4.391)

Further, the coordinates of the transformation for Equation 4.391 can be determined from the 
following formula:

	 x U yt tC( ) = ( )C 	 (4.392)

Note that UC and yC(t) are an n × S matrix and an S-dimension vector, respectively. Thus, 
Equation 4.392 is an incomplete and approximate linear space transformation when S	<	n, which 
will transform a time-variable vector from the n-dimension complete physical space to S-dimension 
incomplete monic modal subspace; in Equation 4.392, this point is seen clearly. Using these dual 
modal spaces, the following treatment of the modal truncation is called the method of dual modal 
space. In a later paragraph, the S-dimensional reduced modal space will be further extended into 
a 2S state space.
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4.5.4.2.2 Truncated Modes
Now, suppose the modal number S is set to be sufficiently large, and S/2 order eigen reanalysis 
is carried out as a database for further earthquake ground motion responses analysis (time his-
tory analysis and/or response spectrum analysis). Experience from many other fields and numerical 
simulations in earthquake engineering indicate that satisfactory final results can be guaranteed. The 
detailed procedure continues as follows:

Substituting Equation 4.392 into Equation 4.391 and premultiplying UC
T 	 to the consequent 

equation

	 U M U y U C U y U K U y U fC
T

C C C
T

C C C
T

C C C
T(t) (t) (t) (t)�� �+ + = 	 (4.393)

Considering Equations 4.387, 4.388, and 4.393, it is further found that

	 �� �y D y y fC C C C
2

C C(t)  (t)  (t) (t)+ + =� 	 (4.394)

Comparing Equation 4.394 with Equation 4.360, it is seen that the system described by Equation 
4.394 is in the monic modal space.

Here

	 D D DC C0 CS= + 	 (4.395)

In Equation 4.395,

	 D U C UC0
T
C 0 C 01 n1 02 n2 0S nS diag 2 , 2 2= = ( )ξ ω ξ ω ξ ω, ,… 	 (4.396)

and

	 D U C UCS C
T

a C = 	 (4.397)

Furthermore,

	 f U fC C
T(t) =  (t) 	 (4.398)

If Ca satisfies the Caughey criterion, DC can be a diagonal matrix and can be expressed as

	 DC 1 n1 2 n2 S nSdiag 2 , 2 2= ( )ξ ω ξ ω ξ ω, ,… 	 (4.399)

which will make Equation 4.394 a group of L independent differential equations in the real modal 
space. In this case, real modal analysis is applied to solve the structural responses.

However, in most cases, the Caughey criterion cannot be satisfied for Ca. Therefore, complex 
modal analysis must be considered. In this circumstance, rewriting Equation 4.394 as a state-space 
form results in

	
� � �

R SC
− + =1Y Y FC C C C(t) (t) (t) 	 (4.400)
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and
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	 (4.404)

If the system is underdamped, the corresponding eigen-equations can be written as,

	 λ i Ci i 1  2 SCi

� � � �
R SC C

− − = = …1P P 0, , , , 	 (4.405a)

and

	 λ i
*

Ci
*

Ci
*  i 1  2 S

� � � �
R SC C

− − = = …1 P P 0, , , , 	 (4.405b)

Note that the state Equation 4.400 is an alternative format to the one expressed in Equation 4.2. 
The reason using this form is to show that in addition to Equation 4.2, Equation 4.0 is also popularly 
used and the corresponding eigen-equations 4.405a and 4.405b are often referred to as the general-
ized eigen-equation. The dimension of this particular state space is 2L, which is reduced from 2n, 
the original state space. In this case, the reader can further realize the meaning of the method of 
the dual modal space.

In addition, Equation 4.405a can be rewritten as

	 λ i Ci C Ci i 1  2 S
� � �
P P= = …A , , , , 	 (4.406a)

and Equation 4.405b can be rewritten as

	 λ i
*

Ci
*

C Ci
* i 1  2 S

� � �
P P= = …A , , , , 	 (4.406b)

Note that if the system contains overdamped pseudo modes, then Equations 4.406a and 4.406b 
should be modified.

In Equations 4.406a and 4.406b,
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and
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Note that the 2S × 2S matrices 
� �

R SC Cand 	have the same meaning as described in Equations 4.46 

and 4.47, except here the mass, damping, and stiffness matrices become I, DC, and �L
2, which are 

not physical coordinates, but are the reduced modal coordinates. Thus, Equation 4.406a is compat-
ible with Equation 4.10 and so on.
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In this way, a new state equation is established

	 � �
Y Y FC C C Ct  (t) (t)( ) = +A 	 (4.409a)

which can be decoupled by means of the above-mentioned eigen-decompositions,

	
� � � � � � �

P P A P P PC C C C C C C C Ct   (t)  (t)− − − −( ) = ( ) +1 1 1 1Y Y F 	 (4.409b)

Thus,

	 �z t z t t    i 1,..., 2Si i i i( ) − ( ) = ( ) =λ f , 	 (4.410)

similar to the aforementioned procedure in Equations 4.121 and 4.122. Here, zi(t) and fi(t) are the ith 
elements of vectors 

� �PC C t− ( )1Y  and 
�

P −1
C C (t)F  respectively; and
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…
� � �

…
�

PC C1 C CS C1 C2 CS 2S 2S[ , , , ]= ×P P P P P P2, , , ,* * *
 (4.411a)

where
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(4.411b)

The last step to carry out is to transform modal shapes and response vectors back to the original 
physical space. That is, after solving Equation 4.407, 2S pairs of eigenvalues, eigenvectors, and 
complex modal shapes denoted as λi Ci Ciand, ,

� �P p  (i = 1,2,..., 2S) are obtained, in which λi is inde-
pendent to the coordinate systems, while the mode shapes, 

�pCi, are not, which should be obtained 
through the eigen-decomposition described in Equations 4.406a and 4.406b.
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FIGURE 4.9  Five DOF structure with nonproportional damping.
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The n-dimensional mode shape, denoted as 
�p i ,  can be estimated as 

 
� �p pi C Ci = U  (4.412)

The structural responses in the original physical space are finally obtained as
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From Equations 4.394 through 4.413 it can be seen that the reformed governing equation and 
the eigen-equation are not directly denoted by the matrices M and K. As mentioned above, these 
matrices are replaced by I and �L

2 , respectively.
The benefit of the cases where, S <<	n, yield noticeably smaller scales of eigen-solutions than 

these in the original physical space can be understood.

Example 4.10

A five-story building is shown in Figure 4.9. The story masses are m1 = m2 = 3m0, m3 = m4 = m5 = m0, 
and m0 = 4.0 × 105 (kg). The inter-story lateral stiffnesses are k1 = k2 = 2k0, k3 = k4 = k5 = k0, and 
k0 = 2.0 × 108 (N/m). Suppose that the original structure has proportional damping, which can be 
expressed as C0 = 0.19 M	+	0.00188 (N-s/m). From the assumed M, K, and C0, all five orders of the 
normal modal parameters can be solved. The natural frequencies and damping ratios are listed in 
Table 4.3, and the modal shapes are provided in Table 4.4.

Three dampers are installed as shown and c1	=	c2	=	c3	=	c0	=	1.0 × 107 N-s/m, which forms an 
underdamped complex modal system. Here, the angle of the damper installation must be consid-
ered, which is discussed in detail in Chapter 5.

By using the truncated mode approach with the dual modal space, the resulting periods and 
damping ratios can be computed.

TABLE 4.3
Natural Frequencies and Damping Ratios

1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Circular 
frequency

7.1556 14.8819 27.2193 31.6228 40.6583

Damping ratio 0.0200 0.0204 0.0291 0.0327 0.0406

TABLE 4.4
Mode Shapes

1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

1.0000  1.0000  1.0000  1.0000  1.0000

0.8976  0.5571 –0.4818 –1.0000 –2.3062

0.7033 –0.1326 –1.2497 –1.0000  2.0124

0.4369 –0.7636 –0.1658  1.0000 –0.3224

0.2366 –0.5717  0.7447 –1.0000 –0.1089
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For example, if only the first two modes are considered,
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The damping matrix Da for the supplemental dampers can be formed and

	 D U C UCCa C
T

a=








=

1.1049 2.3109
2.3109 4.8332

−
−

TABLE 4.5
Modal Periods and Percentage Error Comparison

Reserved Mode 
No. 1 2 3 4 5

Mode 
#

Exact 
Value 
(sec)

Est. 
(sec) Error

Est. 
(sec) Error

Est. 
(sec) Error

Est. 
(sec) Error

Est. 
(sec) Error

1 0.8562 0.8781 2.5556 0.8640 0.9133 0.8591 0.3434 0.8562 0.0019 0.8562 0.0000

2 0.4007 0.4291 7.0829 0.4128 3.0322 0.4008 0.0159 0.4007 0.0000

3 0.2354 0.2413 2.4915 0.2355 0.0315 0.2354 0.0000

4 0.2104 0.2104 0.0070 0.2104 0.0000

5 0.1546 0.1546 0.0000

TABLE 4.6
Damping Ratios and Percentage Error Comparison

Reserved 
Mode No. 1 2 3 4 5

Mode 
#

Exact 
Value 

(100%)
Est. 

(100%) Error
Est. 

(100%) Error
Est. 

(100%) Error
Est. 

(100%) Error
Est. 

(100%) Error

1  9.132 9.7205 6.4469   9.5924 5.0448   9.3444   2.3293   9.1331 0.0148   9.132 0.0000

2 19.177 18.560 3.2209 19.654   2.4856 19.184 0.0348 19.177 0.0000

3 26.046 16.115 38.128 25.994 0.1969 26.046 0.0000

4  5.447   5.4448 0.0344   5.447 0.0000

5  4.101   4.101 0.0000
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By using matrices D D DC C0 Ca C
2and= + � , the corresponding modal parameters can be cal-

culated. The first period is 0.8640 sec. The second period is 0.4291 sec. Compared to the exact 
values of 0.8562 and 0.4007, respectively, it is seen that the corresponding errors are 0.913% 
for the first mode and 7.083% for the second mode. In addition, the first modal damping ratio is 
9.592%. The second one is 18.56%. Compared with the exact values of 9.132% and 19.177%, 
respectively, it is seen that the corresponding errors are 5.045% for the first mode and 3.221% for 
the second mode. That is, with the truncated first two modes, the simplified model is obtained by 
using the dual mode method and the corresponding errors are small.

In Tables 4.5 and 4.6, the accurate and approximately estimated values of the periods and the 
damping ratios are listed and compared. From these two tables, it is seen that by using the trun-
cated modal approach, the percentage errors are not significant. Even using only the first mode, 
the error of the period is only about 2.6%. The error of the period estimation is about 6.5%. For 
more complex structures, larger errors using this method can be expected. However, through suf-
ficient numerical simulations, it is seen that the percentage errors are acceptable in most cases. 
Since this method yields a much smaller scale of equations with reasonable error, it can be applied 
in practical design for simplifications.

4.6  SUMMARY

In this chapter, generally damped MDOF systems have been discussed. For this generalized 
consideration, the damping matrix is not necessarily proportional to the mass and the stiffness. 
Furthermore, the systems can also be overdamped. Although the basic approach remains the decou-
pling of an entire system into SDOF modes, the generally damped system can no longer be decou-
pled into n-normal modes. Instead, 2n-complex modes must be used.

Up until Chapter 4 in this book, the focus has been on fundamental vibration theories. In the 
next two chapters, Part II of this book, principles related to damper design and their application to 
different types of systems will be discussed.
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Part II

Principles and Guidelines 
for Damping Control
In Part II, the role of damping, with a special emphasis on supplemental damping, is discussed. At 
the same time, the scope is extended to include nonlinearities of the dynamic response.

Nonlinear structural dynamics is governed by both the structural stiffness and damping. These 
two parameters have their own characteristics, which are described before consideration of the 
nonlinear response of structures.

For stiffness, two typical cases are addressed: linear and nonlinear.

• If the stiffness of a structure enters the inelastic range of the material, or becomes geomet-
rically nonlinear, or a combination of both, and the degree-of-nonlinearity is large, using 
a linearization method for the nonlinear stiffness may yield many errors in response esti-
mations. Pushover analysis is a commonly used method today. It is an iterative approach, 
and its initial curve may only exist for the initial supposition. The pushover method may 
not always converge, and the convergent range (or working condition) of this method is not 
well established. For given ground excitations, nonlinear time history analysis is the only 
way to achieve accurate response estimation. However, generalization is a challenge.

• If the degree of nonlinearity is not large, the use of a linearization method is generally work-
able for response analysis and damping design. However, choosing an appropriate method 
for linearization of the stiffness still requires attention. For example, using “secant stiff-
ness” as a so-called “effective stiffness” may not result in reasonable response estimations.

For damping of structures, especially with added supplemental damping, the system is nonlinear. 
The typical approach in design is to use “effective damping” and “effective mode shape” in addition 
to “effective stiffness” obtained through linearization procedures.

• When the damping force is small (i.e., the effective damping ratio is < 5%), virtually any 
type of approximation can be used to account for nonlinear damping with acceptable 
design result.

• When the damping force is at an intermediate level (i.e., the effective damping ratio is less 
than 15%−25% but greater than 5%), proper linearization methods can be used to account 
for the damping nonlinearity. In this case, however, the choice of a proper modeling 
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approach can also be important. In Chapter 5, equations that use the Timoshenko damp-
ing approach are given for several supplemental damping technologies. The equations for 
a force-based effective damping approach to model these particular types of supplemental 
damping are also given. The accuracy of linearization also depends on correct treatment 
of the effective stiffness. Generally speaking, the Timoshenko damping approach tends to 
overestimate the value of damping, while the force-based effective damping approach is 
more conservative.

For an MDOF systems, problems associated with inaccurate modeling of the “proportional 
damping” can occur. That is, even when the linearization of the effective damping ratios for indi-
vidual modes is carried out with acceptable errors, the damping can still be nonproportional for 
the overall system. Thus, criteria to determine if the system should be modeled as proportionally 
damped are needed. A method to account for nonproportional damping is also needed, which is 
discussed in Chapter 6.

• When the damping force is sufficiently large (i.e., the effective damping ratio is 25% or 
more), linearization of damping is only a measure for simplified design, which may often 
be used for initial estimations. This is because the linearization, no matter what type of 
approximation is employed, can still yield large inaccuracies in response estimation. Thus, 
for cases involving large damping, nonlinear time history analysis must be used.
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5 Principles	of	Damper	Design

The major topic of this chapter is the fundamental design considerations of supplemental damp-
ers for structures. Before presenting the design procedures, the basic principles are first described. 
This can help to identify conditions under which an optimal design can be achieved and where 
special attention is needed. In addition, several types of design inaccuracies and inefficiencies can 
be avoided.

Various models of damping are briefly introduced, followed by a description of three basic mod-
els: linear viscous damping, bilinear damping, and sublinear damping.

The key damping design principles emphasized in this book are established by (1) interpret-
ing the Lazan (1968) formulation of damping mechanisms within the context of structural engi-
neering; (2) advanced structural dynamics, particularly with high damping; (3) observation from 
various experimental studies; and (4) interactions with the damper design industry. Although 
these principles are fundamentally rather theoretical, they are readily applicable to engineering 
practice.

Lazan (1968) classified damping by three standards: rate-dependency, quadratic/nonquadratic, 
and recoverable/nonrecoverable damping. His definition provides the most fundamental essence 
of damping. However, his idea has not yet been adapted in the design of earthquake protective 
systems, where added damping is the predominant measure for reducing the seismic vibration 
level.

Yet, Lazan did not pinpoint the application of added damping to a civil engineering structure; 
his suggestions are primarily for material damping. Interpretation of these concepts in the field of 
structural engineering is given in the first three subsections of this chapter.

For structural engineers, these three laws of Lazan alone are not sufficient in damping design; 
and, it is seen that sometimes these laws are mutually contradictory. Thus, a more uniform method 
is needed that is based on these laws, to guide engineering practice. This topic is also discussed in 
the following sections.

The fundamental principles discussed in this chapter are general and somewhat abstract. In the 
following chapters, design procedures based on these principles for specific dampers are discussed.

5.1  MODELING OF DAMPING

Mathematical modeling of damping is necessary for damper design. Modeling has two levels, the 
model of an individual damper and the model of the system including both the structure and the 
dampers. There are at least four approaches to model damping. The first is to model the damping 
coefficient, which is a sole parameter of an individual damping device. The second is to model the 
damping ratio, which is a system parameter. The third is to consider the damping force, which can 
be a quantity associated with a damper. However, the damping force is always related to the system 
velocity and/or displacement. The fourth approach is to calculate the dissipative energy, which is 
also related to the system response. A damper provides damping forces that dissipate energy and 
may also alter restoring forces. The primary modeling method discussed herein is the damping force.

Practically speaking, most commercially available dampers are nonlinear devices. In order to 
use design spectrum obtained through linear SDOF systems, the linearization of the nonlinear 
damping force is an important step, which is also a major task in damping modeling.
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5.1.1  gEnEral classifications of daMPing

Damping must be classified to develop damper design guidelines. Generally speaking, the design 
spectrum for damper design can be employed to determine which models of effective damping ratio 
are used to linearize systems with nonlinear damping. Time history analysis can also be used by 
employing models of exact damping forces. In the following discussion, a uniform damping clas-
sification is used for design convenience.

5.1.1.1  Damping Ratios of Systems
The models of damping ratios are considered first.

In Chapter 1, Section 1.3.3, Timoshenko damping and force-based effective damping were used 
to linearize various nonlinear damping contributions. Timoshenko damping is based on the calcula-
tion of energy dissipation, whereas force-based effective damping is based on the computation of 
damping force.

Modeling of the damping ratio is important when using design response spectrum, because the 
corresponding design parameter is the damping ratio. This parameter describes the total system. 
Furthermore, the damping ratio parameter represents a very simple model. Generally,

	 ξeff eq eq eq gf c m k I= ( ), , , 	 (5.1a)

Here, ξeff, ceq, meq, and keq are respectively the effective damping ratio, equivalent damping coeffi-
cient, and mass and stiffness of an SDOF system or of a certain mode of MDOF system. Meanwhile, 
Ig is the input level (in the case of earthquake engineering, Ig = ASi). Note that for sublinear damping 
in particular (discussed in Chapter 8), cβ replaces ceq.

Equation 5.1a implies that the effective damping ratio is not only affected by the system param-
eters ceq, meq, and keq, but also by the input level. To emphasize this phenomenon, x0 and v0 are 
used, which are, respectively, the amplitudes of the displacement and the velocity of the structure, 
to replace the input in Equation 5.1a. Then,

	 ξeff eq eq eqf c m k x v= ( ), , , ,0 0  (5.1b)

Note that in engineering practice, the purpose of determining ξeff is to calculate the responses, 
such as x0 and v0.

According to Lazan, if the energy dissipated by a damper is proportional to the square of the peak 
displacement, the damping is called quadratic. That is, quadratic damping dissipates energy as

	 E xd ∝ 0
2  (5.2)

Since the conservative energy is also proportional to the square of the peak displacement, if 
the stiffness is linear, then from Equation 1.227 for Timoshenko damping, it is seen that when the 
damping ratio is independent of the displacement x0, linear damping occurs. Otherwise, the damp-
ing is nonlinear.

Equation 5.1b implies that for nonlinear systems, the task to calculate the damping ratio will not 
be as easy as in linear systems. Often, iterative procedures should be used to determine the values of 
the response x0 and v0 and the damping ratio ξeff. More discussion on iteration and an alternative way 
to compute the response and the damping ratio is carried out in Chapter 8 for bilinear and sublinear 
damper designs.

Generally speaking, the phrase effective means that the capability of energy dissipation of a nonlin-
ear and/or nonviscous damper equals that of a linear viscous damper, when the displacements of both 
dampers are identical. For a simplified damper design, the damping ratio or effective damping ratio 
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is a major control parameter. Here, the effective damping ratio is mainly defined by Equation 1.227. 
With Timoshenko damping, the damping ratio can be used for any type of damper for a simplified 
design based on the design spectrum. Note that the design spectrum is determined through linear 
systems. Thus, to use the spectrum-based design, linear or linearized damping ratios and natural 
periods are needed. In this case, an effective damping ratio and effective natural period imply that 
the linearized parameter actually belongs to certain nonlinear systems.

On the other hand, the term equivalent means that such a quantity can be readily used. For 
an individual damper, its damping properties need to be described quantitatively. One important 
parameter is the equivalent damping coefficient, which is a fixed value when the damper is fabri-
cated. The value of this parameter is not affected by the structure in which it is installed. In other 
words, an equivalent parameter is a design parameter.

When the structure is an SDOF system, the control and design parameters do not have distinct 
mathematical meaning. However, for an MDOF system, the control parameters are those in the 
modal domain, whereas the design parameters are in the physical domain and are more easily 
distinguished. A detailed discussion of control parameters and design parameters is provided in 
Section 5.4. Note that in MDOF systems, more often the first effective damping ratio is taken to be 
the basic control parameter, without introducing those of the higher modes.

Traditionally, the terms effective and equivalent are not always distinguished from each other. 
For example, an effective stiffness may be obtained from an inelastic system through certain linear-
ization procedures. Therefore, we distinguish the terms effective and equivalent in this book only 
when describing dampers.

Since the effective damping ratio of a nonlinear system is generally a function of the amplitude 
of displacement x0 and/or the velocity v0 of the system, the effective damping ratio ξeff is used to 
obtain the response of the structure, i.e., x0. The response can also be seen as a function of the damp-
ing ratio. Therefore, ξeff will not be determined through Equations 5.1a and b. Often, an iterative 
method will be used.

In this book, bilinear and sublinear dampings used to discuss dampers used in practice for 
spectra-based design. In both cases, explicit formulas are derived for the displacement x0 as func-
tions of physical damping parameters of the dampers and structures, which is called the direct 
method. This way, the iterative procedure can be avoided so that more accurate and reliable esti-
mations of the displacement can be carried out with less computation effort. When a structure is 
designed to remain in its elastic range, the direct method is particularly helpful for the structural 
parameters, such that the periods Ti and the normalized mode shapes Pi are fixed, so that the explicit 
formulas are simple and easy to use. The disadvantage of the direct method is that the damping 
ratio will no longer be a control parameter and the corresponding design procedure is not familiar 
to designers. Due to limited space, the direct methods in this chapter are not discussed, instead they 
are introduced in Chapter 8 for bilinear damping and sublinear damping.

5.1.1.2  Damping Force of Systems
5.1.1.2.1 Modeling of Damping Force
When time history analysis is conducted, a different type of modeling that constitutes the relationship 
between the damping force and the displacement is often used. This type of damping model is indepen-
dent of the structure. The force is determined as long as the velocity and displacement of the damper 
are given. However, if the structure-damper system is considered, the damping force is often written as

	 f f t f v x c m kd d eff eq eq eq= ( ) = ( ), , , , ,ξ  (5.3a)

and/or

	 f f t f c xd d eff eff= ( ) = ( ), ,ω  (5.3b)
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Here fd is the time-varying damping force of the SDOF system, or of a certain mode of MDOF 
system, and ωeff is the effective natural frequency.

From the viewpoint of damping force, when fd is proportional to x0 and/or v0, linear damping 
occurs, that is,

	 f xd ∝  (5.4a)

or

	 f xd ∝ �  (5.4b)

Otherwise, the damping is nonlinear.
Analyses of the response time history of structures with dampers are often carried out using vari-

ous finite element programs. The modeling described in Equation 5.4 can be comparatively easier to 
use with commercially available computer programs.

5.1.1.2.2 Characteristics of Individual Dampers
A traditional way to model damping is to consider damping forces. Governing equations for a 
specific damper are often a nonlinear set of first-order differential or integral equations. These 
equations can be totally independent of the system. However, for nonlinear dampers, the structural 
responses must be considered. In many cases, closed-form analytical solutions to the constitutive 
relationships are not available and numerical solutions must be developed. Sometimes, it is difficult 
to attach models to commercially available finite element programs. In this case, even though these 
differential/integral equations may provide more accurate results, such an approach to modeling 
the damping force is not emphasized in this book. For those interested in precise damping forces, a 
number of models for individual dampers are available in the literature. For example, Constantinou 
et al. (1998) summarizes a number of the most popular damper models. More details can be found 
in the following original publications.

Metallic dampers:
Caughey (1960), Jennings (1964), Iwan (1979), Valanis (1971), Kelly et al. (1972), Dafalias and 
Popov (1975), Krieg (1975), Masri (1975), Skinner et al. (1975), Ozdemir (1976), Iawn and Gates 
(1979), Rivlin (1981), Capecchi and Vestroni (1985), Cofie and Krawinkler (1985), Su and Hanson 
(1990), Graesser and Cozzarelli (1991), Whittaker et al. (1991), Xia and Hanson (1992), Pong et al. 
(1994), Tsai and Tsai (1995), Dargush and Soong (1995), Sabelli (2001), Shuhaibar et al. (2002), Kim 
et al. (2004), and Christopoulos and Fillatrault (2006).

Friction dampers:
Mayes and Mowbray (1975), Keightley (1977), Pall et al. (1980), Pall and Marsh (1982), and Aiken 
and Kelly (1990).

Viscoelastic dampers:
Gemant (1936), Willam (1964), Ferry (1980), Bagley and Torvik (1983), Huffmann (1985), Arima 
et al. (1988), Zhang (1989), Makris and Constantinou (1990), Soong and Lai (1991), Kasai et al. 
(1993), Tsai and Lee (1993), Constantinou and Symans (1993), Makris et al. (1993, 1995), and Shen 
and Soong (1995).

Fluid and recentering dampers:
Graesser and Cozzarelli (1989), Richter et al. (1990), Nims et al. (1993), Tsopelas and Constantinou 
(1994), Pong et al. (1994), and Pekcan et al. (1995).

In addition to these references, Badrakhan (1985) classified damping into two categories, namely, 
material damping and structural damping. Under alternating load, the hysteretic phenomena 
between stress and strain dissipate energy. This represents material damping. Metallic damping 
and viscoelastic (VE) damping belong to this category. On the other hand, phenomena occurring 
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between substructures or substances, such as connection surfaces, fluid orifices, sliding friction, 
fluid flows, shear deformations, etc., cause structural damping.

In the literature, there are also many other classifications. From the viewpoint of damper design, 
these classifications are not always beneficial. To focus on practical damper design, nonlinear damp-
ing devices are classified into two categories involving bilinear and sublinear dampings.

5.1.1.3  Bilinear Damping
In Chapter 2, friction damping was introduced, which can be classified as bilinear damping. This is 
because the force of Coulomb dry friction can be written as

	 f x x xd = − ( ) ( ) + ( )η γsgn �  (5.5)

Here, the variables η(x) and γ(x) are defined as

	
η x f f( ) = −( )+ −

1
2  (5.6a)

	
γ x f f( ) = +( )+ −

1
2  (5.6b)

where

	 f f N x+ − = ± ( ), sgnµ �  (5.6c)

are, respectively, the forward and backward forces. Furthermore, N is the normal force, and μ is 
the coefficient of friction that was previously defined. Finally, the bilinear damping force can also 
be written as
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0

0 00+ − < − < ≤








 max           �

 (5.7)

Here, ku and kd are the unloading and yielding stiffness as mentioned earlier, and fmax and x0 are, 
respectively, the maximum force and displacement. Also, −xc and xc are the displacements at points 
C− and C+, respectively, as indicated in Figure 5.1.

–x0

fy

dy

qd
C–

C+

–xc xc x0

kd
ku

–fmax

fmax

x

FIGURE 5.1  Bilinear model.
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Many damping devices can have energy dissipation loops approximated by a parallelogram, 
namely, modeled by the bilinear damping. According to the classification by Lazan (1968), bilinear 
damping is rate independent.

Example 5.1

A special material has complex modulus kC for the linear hysteretic or a special type of viscoelastic 
(VE) damping, described as

	 k j kC = +( )η 1 	 (5.8a)

For the shear mode, the complex shear modulus GC

	
G j GC = +( ) ′′η 1

	
(5.8b)

Here k″ is the spring rate and G″ is the shear modulus. Closely related to this model, the loss 
factor η can exist, which is

	 η = ′ ′′k k 	 (5.9a)

and for the shear mode,

	 η = ′ ′′G G 	 (5.9b)

where k’ and k” are, respectively, the loss and restoring modulus, while G’ and G” are the loss and 
restoring shear modulus, respectively.

In the literature, complex modulus or stiffness is one of the most common models of VE damp-
ing (Sun and Lu 1995). Although there can be many other models, in this book, the term VE 
damping is used to specifically indicate such a damping model. Note that this type of linear 
hysteretic damping is also called structural damping in the mechanical engineering community 
(Inman 2008).

The concept of complex stiffness is useful for steady-state responses under harmonic excita-
tion, but cannot be used directly for transient and/or random vibration. In the literature, an equa-
tion is suggested as

	 ξ η= 2  (5.10)

The application of Equation 5.10 is limited, because the damping ratio is a parameter of a vibra-
tion system, whereas the loss factor is a parameter of an individual VE damper.

Equation 5.10 implies that the loss factor is independent of the system displacement. Based on 
the aforementioned judgment, the VE damping is linear. Furthermore, it must be rate dependent. 
For this linear rate-dependent damping, the complex stiffness formula cannot be used to calculate 
the system response. Additionally, care must be taken to use Equation 5.10 in order to have the 
effective damping ratio. These bring difficulties to the design of a VE damper. However, when 
the excitation level is given and/or the displacement is given, the energy dissipation loops of a VE 
damper are very close to the bilinear parallelogram. In this particular case, a VE damper may be 
treated as bilinear.

In fact, although the loss factor is independent of displacement, it is a function of driving fre-
quency ω. In addition, it is also a function of temperature T. That is,

	 ξ ξ ω= ( ),T  (5.11)
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VE dampers can be applied for relatively fixed working conditions, such as displacement and 
temperature, with great efficiency. In such working conditions, the modeling of bilinear damping 
can be sufficiently accurate.

Figure 5.2 shows some test results for energy dissipation loops that can be approximated by 
bilinear damping.

5.1.1.4  Sublinear Damping
In Chapter 2, the concept of sublinear damping was introduced. Based on this concept, when the 
driving frequency is close to the natural frequency ωn so that ωn is the dominant frequency, the maxi-
mum damping force can be written as

	 f cv c xd nmax = ≈0 0
β β βω  (5.12)

In this case, the damping force is not proportional to the displacement, nor is it proportional to 
the natural frequency ωn. To further explore nonlinear damping, a more general form is used to 
represent the damping force,

	 f t c x t x td eq n( ) ≈ ( ) ( )[ ]ωα β sgn �  (5.13)
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FIGURE 5.2  Examples of bilinear damping. (Photo courtesy of ASCE, Reston, VA.)
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Here, the equivalent damping coefficient, ceq, is used instead of c to denote more general damping, 
instead of viscous damping only. When the term ceq denotes damping coefficients of nonlinear 
dampers, its dimensions or units will vary, according to the exponents α and β. As a comparison, 
the damping coefficient of a linear viscous damper has fixed units of newton seconds per meter in 
the SI system.

Table 5.1 lists several cases of different parameters of α and β as special cases described by 
Equation 5.13.

Example 5.2

In order to see the validity of Equation 5.12, the following example is considered. Suppose a dis-
placement time history is given by

	
x t x t N ti i i

i

p

( ) = +( ) + ( )
=

∑ sin ω θ
1

where N(t) is a zero mean random noise with the peak value of    ⃦N   ⃦, which cannot be expressed 
by a Fourier series such as the first term on the right side of the above equation. The steady-state 
amplitude of x(t) is denoted as

	
x x t0 = ( )m ax

Note that the corresponding velocity is

	
�x t x t d

dt
N ti i i i

i

p

( ) = +( ) + ( )
=

∑ ω ω θcos
1

Consider a normalized viscous damping force (ceq = 1) written as

	
f t x t x td ( ) = ( ) ( )( )� �

β
sgn

Denote the amplitude of fd as

	
f x t x t x tdm ax m ax sgn m ax= ( ) ( )( )





= ( )





� � �
β β

TABLE 5.1
Variations of Damping

𝛂 𝛃

Friction damping 0 0
Special Viscoelastic damping 0 1
Viscous damping 1 1
Sublinear damping 0 <	α	<	1 0	<	β	<	1
Superlinear damping >1 >1
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If ω1 is the dominant frequency and    ⃦N   ⃦ is small, then f xdm ax ≈ ωα β
1 0, and it is seen that

	
α

ω

β

≈
( )

( )
log
log
F x0 0

1

Using a MATLAB• computational program, it is found that if    ⃦N   ⃦ = 0, the exponent α is a func-
tion of β. That is, as long as the frequency series ωi and the amplitude series xi are given, the ratio 
of α/β is a constant. If    ⃦N   ⃦ is sufficiently smaller than F0/10, then the ratio of α/β will vary in a 
small range. Furthermore, If    ⃦N   ⃦ is larger than F0/10, then the ratio of α/β can vary with more than 
a 100% difference, which implies that when x(t) and x

.
(t) cannot be expressed mainly as sums of a 

Fourier series, Equation 5.12 will no longer hold. Note that in a system with linear stiffness and a 
relatively small viscous damping force, the corresponding displacement and velocity can always 
be expressed as combinations of several frequency components, namely, certain Fourier series.

For example, let [ω1, ω2, ω3, ω4, ω5] = 2π [1, 2, 3, 4, 5], [x1, x2, x3, x4, x5] = [5, 4, 3, 2, 1], [θ1, θ2, θ3, 
θ4, θ5] =	π/180 [10, 20, 30, 40, 50]. When N = 0, α ≡ 1.6197β. When N = 0.01, mean(α) = 1.6190β and 
std(α) = 0.02%β, for β is chosen from 0.1 to 0.9.

Example 5.3

To better understand the relationship between energy dissipation Ed and damping exponent β, 
several examples are considered.

First, suppose the displacement x0 = 0.1 (m), damping coefficient c = 40 (kN-s/m), and the natu-
ral frequency f = 0.8 (Hz). When β = 0, 0.3, 0.6, and 1, the damping force–displacement curves 
are shown in Figure 5.3. Note that when β = 0, the damper becomes a Coulomb friction damper, 
and when β = 1, the damper becomes a regular linear viscous damper. At these specific points, 
the corresponding values of Aβ are 4 and π, respectively.

As a second example, let x0 = 0.1 (m), c = 40 (kN-s/m), and f = 2 (Hz). When β = 0, 0.3, 0.6, and 
1, the damping force–displacement curves are shown in Figure 5.4. In this case, the value of Aβ is 
also fixed. Again, when the displacement is fixed, as the value of β becomes smaller, the damping 
force also decreases.
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FIGURE 5.3  Energy dissipation and damping force vs. β for the first example.
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5.1.2  EffEctiVE daMPing ratios for Mdof systEMs

In damper design, the effective damping ratios for MDOF systems need to be determined, because 
most of the structures are MDOF systems. In Chapter 8, in the section on damping ratio realization, 
this effort is discussed in detail, and is based entirely on the aforementioned approach for SDOF 
systems.

One of the advantages of using Timoshenko damping is that it can be used for both SDOF and 
MDOF systems. This is because the number of degrees-of-freedom for the system does not mat-
ter, since the energy relationship is a scalar equation. The force-based damping ratio, on the other 
hand, simultaneously uses quite a few force equations to decide a single damping ratio, which is, in 
general, a difficult task. Therefore, except in special cases where these equations are all consistent, 
a virtual displacement vector is specified that will be used to multiply on both sides of the force 
equations in order to obtain a single scalar equation. This scalar equation will have the dimension 
of energy, so that the force-based effective damping will also have to adapt to the concept of energy, 
which is the basic idea of Timoshenko damping. In the special case of sublinear damping, however, 
the consistent force equations can be found, so the scalar equation will not be used.

5.1.2.1  Timoshenko Damping
5.1.2.1.1 General Viscous Damping
Using Equation 1.227, the expression for the effective damping ratio of a system with general vis-
cous damping can be denoted as

	
ξ

ω
π ω

ω
π

β α
β

β α
β

eff
eq eff

eff eff

eq eff

eff

c x A
m

c x A
k

= =
− −

0
1

2
0

1

2 2

  

  (5.14)

As mentioned before, for an MDOF system, if the stiffness remains linear and the damping 
force is comparatively small, the concept of effective mode is used. Thus, this relation is considered 
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FIGURE 5.4  Energy dissipation and damping force vs. β for the second example.
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“mode” by “mode.” In the case of the ith effective mode, the effective damping ratio can be rewrit-
ten as

	
ξ

ω

π

α
β

β

eff

eq i ij
j

S

i
i

i
i

i
i

T

c x
=

+

=
∑A

K

1

1

2   ip p  (5.15)

where it is supposed that a total of S dampers are installed and the proportionality between excita-
tion and response approximately holds. Subscript i denotes the ith mode, while ωi and xi are the ith 
natural frequency or effective natural frequency and modal amplitude at the jth location, respec-
tively, and

	 x G p pij mj ji j i= −( )−1,  (5.16)

In Equations 5.15 and 5.16, pi is the ith “effective” mode shape with “actual” modal displacement; 
pji and pj-1,i are the “actual” floor displacements of the ith mode which are the elements of pi, and Gmj 
is a geometrical magnification factor, which is defined in detail in Section 5.5.4.

Note that since this system is nonlinear, theoretically the linear modal analysis will not apply. 
However, to calculate the damping ratio, the “mode” shape function is needed. Generally, the 
shape functions are certain vectors denoting the displacement of the “effective” mode. Here, the 
“effective” mode and the corresponding mode shapes are often obtained in two different ways. 
The first is the exact mode shape of undamped M-K systems. In this case, suppose the original 
system without the supplemental dampers is linear, so the mode shape can be computed through 
the mass and the stiffness matrices M and K, respectively. Secondly, if the structure itself has 
been undergoing inelastic deformation, then it will no longer be linear. In this case, the concept 
of effective stiffness can be used so that the mode shape of the system with mass M and effective 
stiffness Keff will be employed. Either way, the corresponding displacement shape function is 
referred to as the effective mode shape. In the following discussion, the term “effective” is used 
to denote the nonlinear system, in order to remind the reader of the theoretical nonexistence of 
modes in nonlinear systems. For simplicity, the double quotation marks may also be omitted.

To calculate the effective damping ratio ξeffi, the maximum “effective modal” displacements xij 
at each of the jth stories are needed. Without knowing the damping ratio, xij cannot be determined. 
To solve this problem, the iteration process must be used.

Example 5.4

Use Timoshenko damping to derive Equation 5.14.
From Equation 1.227, it was shown that when the excitation frequency is ωn, the Timoshenko 

damping formula for a general system, either linear or nonlinear, is as follows:

	
ξ

πeff
d

p

E
E

=
4

Thus, as mentioned in Chapter 1, an effective linear system is defined, which has the identical 
energy dissipation as the nonlinear system, that is,

	 c x Eeff eff dπ ω02 =

Furthermore, by using the expression of the damping force described in Equation 5.13, a more 
general equation than the one expressed by Equation 2.111 in Chapter 2 is obtained. That is,
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E fdx c x t d t c x Ad d eq n eq n= = ( ) =∫ ∫+ + +4 4

0

2
0
1 1

0

2
0
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π
α β β

π
α β

βω ω ω ω  cos

In the above equations, the symbol ceq is the equivalent damping coefficient of the nonlinear 
viscous damper, whereas ceff is the effective damping coefficient of the nonlinear system. By using 
the above two equations,

	
c c x

x A
c x Aeq

eff eff

eff
eff eff= =+

− − −πω
ω

π ωβ α
β

β α
β

0
2

0
1 0

1 1 1

It is seen that if α = 1 and β = 1, ceq is simply equal to c, the linear viscous damping coefficient.
Now, assume

	 c meff eff eff eff= 2ξ ω  (5.17)

and denote

	
ωeff

eff

eff

k
m

=  (5.18)

Again, subscript “eff” is used to denote not only an effective damping ratio, but also effective 
stiffness and mass. Practically speaking, effective stiffness means linearized stiffness obtained from 
nonlinear systems and, generally, the quantity of mass, either for the linearized system or for the 
original nonlinear system, is often modeled identically. However, for the sake of generality, subscript 
“eff” is used for all parameters of mass, damping, and stiffness anyway, even when the stiffness is 
linear. In the following discussion, for the sake of simplicity, the nonlinear system is not distinguished 
in such a detailed way, but rather ωn is used to denote generic natural frequencies in most cases.

Therefore, from Equation 5.18, the expression for the effective damping can be written as
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To obtain a general form of the energy dissipation, the integration for Aβ is performed as shown in 
Equation 5.14.

In Equation 2.112,

 

A t d tf fβ
β

π

ω ω
π β

β
= ( ) =

+





+





+∫ cos 1

0

2
2 2

2
3

2

Γ

Γ

However, since the expression involves the gamma function, it is not convenient to use. Thus, poly-
nomials are used to represent the relationship between the value of integration and the parameter β.

The relationship Aβ vs. β is close to a quadratic curve, so it may be regressed by a quadratic equa-
tion. The results are displayed in Figure 5.5.

Thus, the regressed equation can be written as

	 Aβ β β= − +0 298 1 147 42. .  (5.19)

The estimation standard deviation is 2.5223 × 10−3 and maximum estimation error is ≤0.143% 
(0 ≤ β ≤ 1).
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5.1.2.1.2 Dry Friction Damping
Using Equation 1.227, the expression for the effective damping ratio of a system with friction damp-
ing is obtained as

	
ξ

πeff
eqc

kx
=

2
0

 (5.20)

where

	 c Neq = µ
 

(5.21)

When the structure must be modeled as an MDOF system, assume that L dampers are installed. 
The effective damping ratio of the ith mode can be written as
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N x
= =

∑2
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  p pK  (5.22)

where pi is the ith mode shape defined earlier. Note that the number of dampers L may be less than 
the number of DOF. To calculate the numerator in Equation 5.22, the locations are ignored where 
no damper is installed.
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5.1.2.1.3 Bilinear Damping
It shown in Chapter 6 that the maximum potential energy of a bilinear damper can be written as

 
E k d k x dpd u y d y= + −( )





1
2

2
0

2

Then, together with the maximum potential energy of the system with stiffness k, the total poten-
tial energy will be

	
E k d k x d kxp u y d y= + −( ) +





1
2

02
0

2
0
2

Using Equation 1.227, the expression for the effective damping ratio of an SDOF system with 
general viscous bilinear damping is denoted as
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2
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2  (5.23)

(See Figure 5.1 for definitions of the terms used in Equation 5.23.)
When the structure must be modeled by an MDOF system, assume that L dampers are installed. 

The effective damping ratio of the ith mode can be approximately written as
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Here, dy is the yielding displacement of the bilinear damping as defined previously. In order to 
distinguish the maximum value of the modal displacement from the effective displacement used to 
model the damping force, subscript m is used to denote the maximum displacement. That is,
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 (5.25)

Since the potential energy of the system can be much higher than that stored in the dampers, the 
effective damping ratio of the ith mode can be written approximately as
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d ji y
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i i
i T

q x d
=

−( )
=

∑2
1

p pK
 (5.26a)

Note that in most cases, it is not necessary to consider the small displacement dy. Therefore, in 
this case,
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p pK
 (5.26b)

otherwise, the difference between xji − dy must be considered.
Note that the number of dampers L may be less than the number of DOF. To calculate the numer-

ator in Equation 5.24, the locations where no damper is installed are simply ignored.

5.1.2.1.4 Viscoelastic Damping
Using Equation 1.227, the expression of the effective damping ratio of a system with VE damping 
is given by
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 (5.27)

Or, in shear mode,
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Here, k is the stiffness of the system, k′ and k″, and G′ and G″ are the properties of the damper 
(see example 5.1). Additionally, the terms A and t are, respectively, the working area and the thick-
ness of the VE damper, and totally L dampers are used.

When the structure must be modeled by an MDOF system, the effective damping ratio of the ith 
mode can be written as
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 (5.29a)

Considering the contribution of the restoring modulus for storing additional potential energies, 
the following can be approximated:
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 (5.29b)

where the factor (1.0–1.05) is used to accommodate the additional potential energy; when the term 
G″ΣA/t has a larger value, the effective damping ratio takes a smaller value.

In Equation 5.29, pi and K are defined as earlier. The undamped mode shape is exactly the same 
as that of a proportionally damped system with the same mass and stiffness, whatever the damping 
is, as long as it is proportional. Also, in Equation 5.29, the term B is called the loss-β matrix, where

	 B =  β ji  (5.30)

and βji is defined by

	 β ji con ij jic� ,= β  (5.31)
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where ccon,ij is the entry of the configuration matrix, which is defined in detail in Chapter 7. Also, βji 
is the loss-β coefficient for the ith mode, which is rewritten as

	
β ji

i j

j

G A
t

=
′ ( )ω

 (5.32)

Here, ωi is the ith natural frequency, while Aj and tj are, respectively, the working area and the 
thickness of the VE material.

In Equations 5.30 through 5.32, subscript j stands for the jth damper. If no damper is installed in 
between the location of the jth and (j – 1)th modal displacement, then

	 β ji = 0  (5.33)

5.1.2.2  Force-Based Effective Damping
Compared to the cases of Timoshenko damping, it is more difficult to write the formula for the 
MDOF system in the form of force only. Using the inner product of vectors of virtual relative dis-
placements pi and the damping forces fd of the ith effective mode, the corresponding damping ratio 
can be represented by
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K2 1 0 1 05. ~ .   
 (5.34)

When the supplemental dampers can store larger potential energy, the effective damping ratio 
takes a smaller value.

In addition to Equation 5.34, in certain special cases, the effective damping ratio can be obtained 
directly from the damping force. Since the ith effective damping is a scalar, whereas the damping 
force is an n-dimensional vector, it can be very difficult to directly obtain the damping ratio, unless 
all the n equations are consistent. In Chapter 8, a special case of a sublinear damper is shown that 
will approximately satisfy this condition, so that the effective damping ratio can be computed. Note 
that the damping force vector fd and the relative displacement vector pi should be taken as the same 
with proper units.

5.1.2.2.1 Sublinear Damping
Assume that the equivalent damping coefficient remains constant under different frequencies ωi and 
also assume that the damping exponent is constant. In the ith effective mode, ωβ

i ijx  can be used to 
represent the term �xij

β. For example, take a two-story building where each story is equipped with the 
same sublinear damper. The damping force can be written as
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For the ith effective mode, the amplitude of the damping force is
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Based on the approach described conceptually in Equation 5.34, the effective damping coef-
ficient of sublinear damping can be written as
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When the supplemental dampers can store larger potential energy, the effective damping ratio 
takes a smaller value.

As mentioned earlier, the effective damping ratio can also be obtained directly from the damping 
force. This is particularly true for sublinear damping. However, due to space limitations here, this 
equation is not discussed in detail.

Now, comparing the expression of sublinear damping with the alternative formula described 
in Equation 5.36 and Timoshenko damping described in Equation 5.15, it is found that the ratio of 
Timoshenko damping to the force-based effective damping is Aβi

/π. Thus, in most cases, the estima-
tion of Timoshenko damping will be larger.

5.1.2.2.2 Bilinear Damping
The force-based effective damping ratio for bilinear damping can be written as
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 (5.38)

When the supplemental dampers can store larger potential energy, the force-based effective 
damping ratio takes a smaller value.

Comparing the Timoshenko damping described in Equation 5.23 and the force-based effective 
damping described in Equation 5.38, it is found that the Timoshenko damping is estimated to be 4/π 
times larger.

5.1.2.2.3 Dry Friction Damping
Since the maximum damping force of a friction damper can be written as

	 f Nd = µ

the force-based effective damping ratio of the bilinear damping becomes
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 (5.39)

Comparing Equation 5.39 with Equation 5.22, again the Timoshenko damping is approximately 
4/π times larger.

5.2  RECTANGULAR LAW, MAXIMUM ENERGY DISSIPATION PER DEVICE

The relationship between the damping force and the displacement of a damper is the constitutive 
loop of energy dissipation. Given the amplitude of the force and the displacement, the maximum 
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energy dissipation per damper is a rectangular loop with an area four times the product of the force 
and displacement amplitudes. Furthermore, the relationship between the maximum seismic force 
and the displacement defines the maximum work done by the seismic force. Suppose the maximum 
accelerations of several systems are known to be identical. Then, the displacement of the system 
with a rectangular-shaped maximum seismic force vs. displacement is the smallest in the period 
range between 0.5 and 5 (s).

Installation of nonlinear dampers in structures, which operate either in the elastic or inelastic 
range, would have very different effects due to the nonlinearity of the damping. Therefore, it is help-
ful to study the maximum possible energy dissipation with given allowed amplitudes of the damp-
ing force and damper displacement. The maximum possible energy dissipation is closely related to 
the vibration reduction, though larger energy dissipation does not necessarily mean larger vibration 
reduction.

5.2.1  MaxiMuM EnErgy dissiPation, rEctangular law of daMPing

Dampers, or damping devices, are used to dissipate vibration energy. Therefore, one of the basic 
measurements of a damper is its capacity for energy dissipation. No matter what type of damping 
mechanism the damper possesses, the dissipated energy can be represented by the loop area of the 
force vs. displacement. This is referred to as the force–displacement constitutive relationship for a 
damper, denoted by fd (x

., x) in scalar form or fd (x, x.) in vector form.
From the previous section, given the amplitude of the force fd max applied on a damper and the 

amplitude of the relative displacement between the two ends of the damper, x0, the maximum energy 
that can possibly be dissipated, denoted by Ed max, is

	 Ed df xmax max= 4 0  (5.40)

In Figure 5.6, the force and displacement of a damper are described. From Figure 5.7, it is easy to 
see that any energy dissipation loop other than the rectangular loop will have dissipated energy less 
than Ed max. For example, the viscous damping, shown as an ellipse, has less energy dissipation than 
the rectangular 4fd maxx0. The maple-seed-shaped damping shown in Figure 5.7 has even less energy 
dissipation than the viscous damping behavior.

Suppose the damping force fd (x
., x) can be modeled in the more general form as,

	
f t c c x c x xd ( ) = + + +



 ( )0 1 2

2� � � �β β sgn  (5.41)

A polynomial of the frequency ωn and displacement x0 is then used to represent the amplitude of 
the damping force, fd max:

	 f c c x c xd n nmax = + + +0 1 0 2
2

0
2ω ωα β α β �  (5.42)

Damper 
Force

Displacement

FIGURE 5.6  Force and displacement of a damper.
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where ck are coefficients and the first term involving c0 can be written as c xn0
0

0
0ω . Note that in 

Equations 5.41 and 5.42, the exponential β has a different meaning than in Equation 5.14. For the 
sake of simplicity, the same symbol is used.

It can be seen that the smaller these powers α and β become, the closer the energy dissipation 
will be to a rectangular loop. Only in this case, for example, f xd max ∝ 0

1 2  can be better than f xd max ∝ 0
2.

The concept of rate dependency of dampers is defined as follows (Lazan 1968):
Rate-dependent damping will depend on the rate, the derivative of the force or displacement 

with respect to time; that is, the energy dissipated will be a function of either the displacement or 
the velocity. Rate-dependent damping may also depend on the amplitude of a cyclic load. Rate-
independent damping will only depend on the amplitude of the cyclic loading, but will be indepen-
dent of the rate of load or displacement.

Thus, it is seen that a damper with rectangular energy dissipation has rate-independent damp-
ing. On the other hand, rate-dependent damping consists of many more complicated subcategories. 
As a matter of fact, the amplitude of the load, the amplitude of the displacement, and the driving 
frequency may all affect the rate.

Within the context of the energy dissipation capacity, the Lazan classifications are of funda-
mental significance. His idea can be extended to the rate dependency of the damping force, and 
the damping force can be an important design criterion. It follows that the frequency dependence 
of the damping force is very important. For example, a viscous damper will not change its damp-
ing coefficient if the driving frequency changes but the velocity remains the same. The damping 
force will then remain constant. However, a VE damper will change its damping force under 
the same circumstances. Furthermore, if the supporting stiffness of a viscous damper is com-
paratively weak, the resulting damper assembly will tend to behave with frequency dependence.

5.2.2  sMallEst MaxiMuM dissiPation, rEctangular law of sEisMic work

In Chapter 2, the concept of work done by maximum seismic force was introduced. The correspond-
ing response spectra of the seismic work for linear SDOF systems with viscous damping were then 
plotted. It was learned that during an earthquake, the work done by the maximum seismic force is a 
deterministic value, in the sense of statistical averaging under a given set of earthquake excitations. 
It was also seen that the relationship of the maximum seismic work with the displacement of the 
linear SDOF system defines an elliptic loop.

5.2.2.1  Minimum Work Done by Maximum Seismic Force
In an idealized case, there can be a nonlinear system in which the relationship of the maximum seismic 
work with the displacement of the linear SDOF system has a rectangular loop. In the previous section, 

Force

fd0

–fd0

x0

Displacement

FIGURE 5.7  Maximum energy dissipation.
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the energy dissipation loop is formed by the damping force vs. the displacement. Now, the loop is 
formed by the maximum seismic force. In this specific case, another rectangular law can be obtained 
through numerical simulations by comparing the displacement with the given level of the maximum 
seismic force or maximum absolute acceleration. Thus, the concept of the maximum seismic work can 
be used as a tool to examine the smallest possible displacement associated with earthquake responses.

To see this point, a numerical simulation is used to generate nonlinear displacements for an 
idealized structure that has rectangular maximum seismic work. The absolute acceleration of the 
earthquake responses is regulated during the simulation so that it is identical to linearly viscous 
damped systems. Namely, the responses of the linear systems are first computed by letting the peri-
ods be 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 
2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 7.0, 8.0, 9.0, 
and 10.0, (s) for a total of 42 different periods. The damping ratios are 0.02, 0.05, 0.10, 0.15, 0.20, 
0.25, 0.3, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.80, 0.90, 1.00, 1.25, and 2.00, for a total of 
20 damping ratios. Therefore, the total number of selected linear systems is 42 × 20 = 840. In each 
case, the absolute acceleration and relative displacement are computed. Consequently, a nonlinear 
system with the rectangular maximum seismic work is generated in such a way that both systems 
have identical peak values for the acceleration. The corresponding displacement is then calculated.

In order to conduct a statistical survey, 99 earthquake records are used, which were first used in 
Chapter 4, Example 4.8, and will be discussed in detail in Sections 5.4 and 5.5. For each pair of 
linear and nonlinear systems, the corresponding mean values and standard deviations are calculated 
through the 99 pair responses.

It is found that when the period falls in the range of greater than 0.1 (s) and smaller than 7.5 (s), 
the nonlinear displacement is always smaller than that for the linear system. In Figure 5.8 and fol-
lowing, the symbol “d.r.” denotes “damping ratio”. The displacements in this plot are mean values 
plus one standard deviation, obtained statistically using the 99 earthquake records.

In order to visualize the detailed comparison, Figure 5.9 shows the nonlinear and linear displace-
ments vs. the damping ratios, which are plotted separately in Figures 5.9a and b. For the nonlinear 
systems, the damping ratio is the corresponding value to the linear system.

From Figure 5.9, it can be realized that the nonlinear system has considerably smaller displace-
ment. Furthermore, it is seen that when the corresponding damping ratios increase, the nonlinear 
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FIGURE 5.8  Comparison of displacement between linear and rectangular systems, (L)—Linear 
and (R)—Rectangular.
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responses are first increased and then decreased. As a comparison, the linear displacements are 
monotonically decreased.

In order to visualize this further, Figure 5.10 shows the nonlinear and linear displacements vs. 
the periods, which are plotted separately in Figures 5.10a and b. For the nonlinear systems, the 
period is the corresponding value to that of the linear system.

From Figure 5.10, it is realized again that the nonlinear system has a considerably smaller dis-
placement. Furthermore, it is seen that when the corresponding periods increase, the nonlinear 
responses are increased almost linearly. The linear displacements are also monotonically increased 
within the period range below 3 (s). However, when the periods become longer, the linear displace-
ments will reach their peak values and then start to decrease.

It also noted that the corresponding period and damping terms do not have the conventionally 
defined effective period and damping ratio.
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5.2.2.2  Linearity of Nonlinear Responses
Note that in Figure 5.10, and also in the response comparisons in the previous section, the simu-
lations are conducted by specifying the input acceleration level as 0.4 (g). Since the response is 
nonlinear, it is necessary to study whether this conclusion holds for other input levels. For this 
purpose, other input levels are used to study the linearity of the nonlinear responses, which are 
0.2, 0.6, 0.8, and 1.0 (g). In Figure 5.11, several selected groups of displacements for the rectan-
gular systems are plotted. Group 1 provides the response corresponding to the linear system with 
a damping ratio equal to 0.05; Groups 2, 3, and 4 correspond to the linear systems with damping 
ratios 0.10, 0.30, and 0.50, respectively. Note that the X-axis is the “period,” which is explained 
above.

In each group, the response under 0.2 (g) excitations is first plotted. Then, the response 
under 0.4, 0.6, 0.8 and 1.0 (g) excitations with multiplication factors 0.2/0.4 = 1/2, 0.2/0.6 = 1/3, 

0 1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

0.3

0

(a)

(b)

0.35
Nonlinear displacements (99 records)

D
isp

la
ce

m
en

t (
m

)

Corresponding to linear period (sec)

Corresponding linear d.r. : 0.05
Corresponding linear d.r. : 0.10
Corresponding linear d.r. : 0.30
Corresponding linear d.r. : 0.50
Corresponding linear d.r. : 1.00

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Linear displacements (99 records)

D
isp

lac
em

en
t (

m
)

Period (sec)

d.r. = 0.05
d.r. = 0.10 
d.r. = 0.30
d.r. = 0.50
d.r. = 1.00

FIGURE  5.10  Comparisons of response vs. damping between linear and rectangular systems: 
(a) rectangular systems and (b) linear systems.



Principles	of	Damper	Design	 301

0.2/0.8 = 1/4 and 0.2/1.0 = 1/5 are plotted respectively. Thus, in each group, five curves are 
included.

Using Figure 5.11, the nonlinearity can be examined. If the responses are linear, the five curves 
in each group should be exactly overlapped. Since the systems are nonlinear, there will be certain 
variations. From Figure 5.11, however, it is realized that the variation is rather small.

It is known that when the loop of the maximum seismic work is rectangular, the system must be 
highly nonlinear. However, the earthquake excitation is rather random. The averaging of random 
excitations can smooth the nonlinearity. Therefore, the results from excitations from 0.2 (g) to 1.0 (g) 
actually show good linearity, which can greatly simplify the damper design procedure. Thus, in 
practical design, the result obtained from a particular excitation, i.e., 0.4 (g), can be taken and modi-
fied by the factor n/0.4, if the required ground acceleration is n (g).

Furthermore, the same measures are applied to several parallelogram-shaped systems and the 
results are plotted in Figure 5.12, where the corresponding damping ratios are chosen to be 5%, 
30%, 50%, and 100%, and the input levels are chosen to be 0.4, 0.6, and 1.0 (g). With the same treat-
ment mentioned in Figure 5.12, the displacements are plotted in Figure 5.12a and the accelerations 
are plotted in Figure 5.12b. Similar to the pure rectangular system, the linearity of the nonlinear 
responses are very good in the displacement plots, where all three curves almost overlap. In the 
acceleration plots, when the periods are about 0.5 (s) or shorter, differences in the responses under 
different input levels in each group can be clearly seen. However, when the periods are sufficiently 
long, the three responses in each group nearly overlap, as well. In engineering applications, these 
can be treated as linear responses without noticeable error.

In this case, the above conclusion of the minimum work done by the maximum seismic force can 
be used for any possible ground input.

5.2.3  quality factor

In the above discussion of maximum energy dissipation, it is assumed that a damper can provide 
the idealized rectangular loop. In reality, this rarely happens. In fact, most dampers are modeled for 
their corresponding constitutive force–displacement relationship. However, they all barely provide 
the energy dissipation loop for the idealized loop.
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To handle this type of imperfection, a safety factor, defined as quality factor and denoted as qH, 
can be used. This is explained in the following:

In NEHRP 2003 (BSSC 2003), the quality factor or the hysteresis loop adjustment factor is 
defined as the ratio of the actual area of the hysteresis loop and the area of the assumed elastoplastic 
representation of the loop. The hysteresis loop is formed by assuming that the base-roof displace-
ment loop is converted to a special capacity form. In NEHRP 2003 (BSSC 2003), this factor is 
calculated by

	
0 5 0 67

1
. .< =q T

TH
s  (5.43)

where Ts is the ratio of SD1/SDS, which was discussed in Chapter 2 with detailed definitions; and T1 is 
the period of the first (or fundamental) mode. From Equation 5.43, this is a question of how closely 
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the quality of an individual damper relates to the system. In fact, when a damper is evaluated, 
cyclic load by sinusoidal excitation is often used with fixed displacement. However, when a damper 
starts to work under earthquake excitation, the displacement is both nonfixed and nonsinusoidal. 
Therefore, the quality factor here is not as accurate.

Practically speaking, the quality factor should be provided by vendors who supply the damper. In 
most cases, each individual damper should be tested before it is installed in a building. The theoreti-
cal energy dissipation loops, denoted as Ed, which were briefly introduced earlier and are discussed 
in a later section, should be the base to evaluate individual dampers. The area of an actual loop of 
each specific damper, denoted as Er, should be used under a standard testing procedure. Then,

	
q E

EH
r

d
=

 
(5.44)

5.2.4  issuEs of MultiPlE dynaMic EquiliBriuM Positions

In Section 5.5.1, the issue of recoverable damping and self-centering systems is discussed. That 
is, for a linear vibration system, when the external force no longer activates, the system will 
always return to its original equilibrium position. However, for nonlinear systems, such as a sys-
tem with rectangular damping, there is a chance that when the external force vanishes, the system 
has permanent displacement. Moreover, during excitations, some or all of the displacements will 
have multiple dynamic equilibrium positions, which will be discussed in detail in Chapter 6 (see 
Figures 6.29 and 6.30).

The cause of multiple equilibrium positions is complex. Intuitively speaking, if the required time 
needed for a system to return its original equilibrium posision from a certain displacement is too 
long, then before centering, the system is forced to have a further displacement in the same direc-
tion. A detailed explanation of these causes is beyond the scope of this book. It is seen that when a 
nonlinear system is excited by different earthquake ground motions, this phenomena may or may 
not occur all the time.

In Section 5.2.2, it was shown that statistically, a nonlinear system with rectangular energy dis-
sipation had the smallest average displacement when compared to a linear system with the same 
amount of peak damping force. However, when the responses of a nonlinear system have multiple 
equilibrium positions, it is understood that the total displacement can become very large. Therefore, 
comparing a linear system and an individual nonlinear system that has a peak damping force identi-
cal to that of the linear system, the nonlinear system can have larger displacements, although on 
average, the rectangular law still applies. In order to simplify the explanation of rectangular law and 
its application in damper design, the case of the multiple equilibrium positions caused by nonlinear 
damping is excluded in the following discussion.

5.3  DAMPING ADAPTABILITY

Suppose the amplitude of the damping force of a damper is proportional to the amplitude of dis-
placement to the power of β. When the displacement of a damper increases, while the force also 
increases, the damping can adapt as defined by the quantity β. The higher the damping adaptability, 
the better the chance that it will work in a wider range and dissipate more energy. A damper with 
zero adaptability can only work within a narrow range. Therefore, such a damper may not be suit-
able for an earthquake protective system. On the other hand, the damping force will not increase 
significantly for devices with low damping adaptability. Thus, the energy dissipation will be closer 
to rectangular. Properly designed supplemental damping can be more effective for response reduc-
tion. In addition, variable damping force affects the vibration shape function, whereas constant 
damping force does not, which results in different design strategies.
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5.3.1  concEPt of daMPing adaPtaBility

When a damper is installed in a structure, the relative deformation of the damper is often deter-
mined by the corresponding displacement of the structure. Let, the relative deformation and velocity 
between the two ends of a damper be denoted by x and v, respectively, the values x and v cannot be 
arbitrarily adjusted by dampers. However, the force applied to the damper can be varied, depending 
on the damping characteristics.

It was seen that when only the constant term exists, that is, the damping force fdmax(x
. , x) = c0, 

and α = β = 0 in Equation 5.112, the relationship between force fd and deformation x0 is rectangular. 
However, since the damping force is constant, no matter how large the velocity or deformation, the 
area of energy dissipation cannot be increased accordingly. In this case, the damper has no adapt-
ability to absorb more energy.

This concept can be better explained through Figure 5.13, where x01 stands for a smaller displace-
ment, and x02 is a larger displacement. Suppose at displacement x01, there is a square-shaped energy 
dissipation loop E1 and an ellipse-shaped energy dissipation loop E2. According to the above discus-
sion, the damping mechanism E1 is better than E2.

However, when the displacement becomes larger than x02, due to different damping mechanisms, 
the situation may change.

First, the square-shaped loop can become rectangular, as denoted by E5. Examples of this type of 
damping are friction damping and metallic damping. The loop can also become a larger square, as 
denoted by E4. In addition, the ellipse may become the one denoted by E3 in Figure 5.13.

Quantitatively, the amplitude of the damping force, fdmax, is used as follows,

	 f cxdmax ≈ 0
β  (5.45)

If the exponent β is larger than unity and x0 > 1, then the force can be larger, thereby making the 
total energy dissipation larger, and vice versa. In this case, for example, it is seen that f xdmax ∝ 0

1 2 
can be worse than f xdmax ∝ 0

2.
It is readily seen that this conclusion contradicts the one reached in the previous section. The 

correct way to select criterion depends on two basic factors: the value of the deformation and the 
dynamics of the entire structure.

Force

F1

F0
Displacement

E1

E2

E3

E4

E5

x01 x02

FIGURE 5.13  Energy dissipations denoted by Ei.
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Generally speaking, if only the capability of energy dissipation by the dampers is taken into 
account, the following integration can be maximized in one vibration cycle:

	
E f dxd d= ∫�  (5.46)

In order to quantitatively describe the energy dissipation, a quantitative definition of how the 
energy dissipation loop will be changed as the displacement changes is needed, which is referred 
to as the damping adaptability. This concept is actually a logical expansion of Lazan’s second clas-
sification of damping. The first is the rate dependency, which was previously discussed. The second 
relates to the quadratic or nonquadratic damping form. Lazan (1968) suggested that the energy 
dissipation can be written as

	 E xd = κ γ
0  (5.47)

where κ is a proportionality coefficient and

	 γ β= +1  (5.48)

where β is the exponent defined previously. When γ = 2, quadratic damping exists, otherwise there 
is nonquadratic damping. For example, linear viscous damping is quadratic.

By using f c xd eq nmax = ωα β
0,

	 κ ωα
β= c Aeq n  (5.49)

As a comparison, for the case of linear viscous damping, fdmax = cωnx0 for cycles with frequency 
equal to the natural frequency of the system ωn, and

	 κ πω= c n  (5.50)

Eq and Ed are denoted as the energy dissipation achieved by quadratic damping and other damp-
ing, respectively. Subscripts q and g are used to distinguish the proportional coefficients κ for qua-
dratic and general damping. That is,

	 E x xq q= ∝κ 0
2

0
2  (5.51)

and

	 E x xd g= ∝+ +κ 0
1

0
1β β  (5.52)

From Equations 5.51 and 5.52, the rate of energy dissipation by general sublinear damping will 
be smaller as the displacement increases.

For comparison purposes, suppose there can be a reference of fixed values for c, ceg, ωn, and α 
to make

	 κ κq g=  (5.53)
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In this situation, the ratio of energy dissipations of the general damping and the quadratic damp-
ing is considered:

	 E E xd q = −
0
1 β  (5.54)

It is seen that only if β = 1 will the general damping dissipate the same amount of energy as the 
quadratic damping.

Now, consider bilinear damping. The corresponding energy dissipation,

	 E q x q dd d d y= −4 40  (5.55)

If the small amount of 4qddy is ignored:

	 E q x xd d= ∝4 0 0  (5.56)

From Equation 5.56, it is seen that the rate of energy dissipation by bilinear damping will also be 
comparatively smaller than that of quadratic damping, when the displacement increases.

Based on the above discussion, the damping adaptability factor is defined as follows:

	 fadp = β  (5.57)

It is important to note that the terms fadp and β are no longer the characteristics of a damper per 
se, but rather global parameters of the entire integration of a structure and added energy dissipation 
devices. By comparison, Lazan’s notation is for a damper only.

Note that when β = 1, the damping is quadratic:

	 fadp = 1  (5.58)

From Equation 5.54, it is seen that for sublinear damping,

	
fadp

d qE E
x

= − ( )
( )1

0

ln
ln  (5.59)

That is, using the logarithm of displacement x0 as a reference, as the energy dissipated by the 
general damping becomes larger, the damping adaptability will also increase.

Now, as an example, the concept of using damping adaptability in damper design is examined. 
By employing the same subscripts q and g as previously defined, consider the damping ratio ξ. For 
quadratic damping,

	
ξ

π πq
q qx
kx k

= =
κ κ0

2

0
22 2

 (5.60)

while for general damping,

	 ξ
π π

ξ
β

g
g g

q
x
kx k

x x adp= = =
+

− −κ κ0
1

0
2 0

1
0

1

2 2
β d f  (5.61)

where d is a proportional factor.
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From Equation 5.60, it is seen that the damping ratio is an important control factor in damping 
design and is independent of the displacement if the damping is quadratic, i.e., Newtonian viscous 
damping. In this case, no matter how large or small the vibration level, the damping ratio will 
remain constant. In addition, the units of κq and k, which are identical, do not need to be considered.

However, if the damping is nonquadratic, the situation is different. From Equation 5.61, it is seen 
that the damping ratio depends on the displacement. In this case, the amplitude of vibration level 
matters, and the damping ratio will no longer be constant. Furthermore, κg and k have different units 
so that the term (κg/2πk) denotes dimensionless. Therefore, the proportional factor will have a unit, 
e.g., (m)1−β. When the unit meter is used for the displacement x0 as a seismic response of a building, 
this amplitude is often smaller than unity. In this particular case, for convenience, the value of d is 
determined and smaller damping adaptability often results in a larger damping ratio. Therefore, in 
this case, smaller damping adaptability is beneficial.

On the other hand, for nonunity damping adaptability, the amplitudes of the structure have a 
nonlinear relationship with the input level, and this relationship is exponential. If the nonlinearity 
is larger, the system will become unstable and will yield rather large displacements. This situation 
must be considered in design practice, especially in earthquake zones where the dynamic range of 
ground excitation is relatively large. Based on limited numerical simulations, the following range of 
damping adaptability of a damper appears more beneficial:

	 0 1 0 5. .≤ ≤fadp  (5.62)

5.3.2  dEforMation sHaPE function

Now, consider the effect of fadp on the structural deformation shape functions.
When

	 fadp = 1  (5.63)

linear damping force occurs. In addition, when the damping force is relatively small, say the damp-
ing ratio is less than 10.0%, the corresponding mode shape functions will not be affected by dis-
placement. Therefore, for structural response estimation, constant deformation shape functions can 
be used when changing the amount of supplemental damping. That is,

	 pi ≈ const.  (5.64)

Here, pi is the ith shape function. For a linear system, pi is the ith mode shape. Note that for pro-
portional damping, the mode shape functions remain identical as the damping matrix varies. For 
a nonproportionally damped system, Equation 5.64 will only hold for small damping force. This 
phenomenon will make the response estimation easier. Note that for a nonlinear system, pi can be 
seen as a deformation shape function that evolved from the ith linear mode shape due to an increased 
amount of nonlinear damping force.

However, when sublinear dampers are used,

	 fadp ≠ 1  (5.65)

the corresponding shape function will be affected by the level of input, which determines the value 
of the displacement. That is,

	 p i ≠ const. (5.66)

This fact increases the difficulty of the response estimation.
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It is known that the variation of the deformation shape function is due to the different distribution 
of forces, both restoring force and damping force.

When bilinear damping is used,

	 fadp = 0  (5.67)

a constant damping force with respect to the level of displacement will exist. In this case, it is still 
assumed that Equation 5.64 holds. This is the main reason for using the different approaches of 
sublinear and bilinear dampings in practical design.

In the above discussion, the concepts of the rectangular law and damping adaptability are 
described. These two design principles seem to contradict each other. Namely, by using the rectan-
gular law, a smaller damping exponent is desired, and the best possible case is zero exponents or 
dry friction damping. However, to gain damping adaptability, larger damping exponents are needed. 
The central issue lies in the proper choice of this parameter.

Generally speaking, if the excitation does not have a very broad dynamic range, the rectangular 
law should be considered. In most cases of earthquake excitation, the input dynamic range is com-
paratively small. Thus, the damping exponents should have lower values is also true for inelastic 
structures. In the previous section, 99 earthquake records were used to plot the response reduction, 
as well as the energy status. With many other groups of earthquake records, this phenomenon is 
illustrated.

5.4  DESIGN AND CONTROL PARAMETERS

For convenience, “control parameters” and “design parameters” will represent different concepts 
in this book. From a practical standpoint, control parameters are directly related to design spectra, 
whereas design parameters are used to describe real-world parameters, such as an equivalent damp-
ing coefficient for sublinear dampers.

5.4.1  low daMPing and HigH daMPing structurEs

5.4.1.1  Control Parameters and Design Parameters of Linear Systems
The fundamental approach of damper design discussed in this book is based on spectrum analysis. 
Regardless of whether the structure is a linear SDOF system or a nonlinear MDOF system, the 
computation of the structural responses is calculated based on the existing design spectrum, which 
is generated through linear SDOF systems. Many discussions are therefore devoted to the rationale 
and process of designing a nonlinear MDOF system using the design spectrum.

Therefore, it is helpful to analyze the differences between SDOF systems and MDOF sys-
tems; the difference among proportionally and nonproportionally damped MDOF systems, and 
nonlinearly damped, as well as overdamped, MDOF systems. This topic is first considered by 
analyzing the differences in the control and design parameters between the SDOF system and 
linear systems.

The control parameters are used to control the peak structural responses within a certain allowed 
level. If these parameters are changed, the structural responses will be either increased or decreased. 
The design parameters are the basic structural responses, which are to be decided or designed.

It is known that for a linear SDOF system, the primary control parameters are the natural period 
and the numerical damping coefficient. Since the numerical damping coefficient B (see Equation 
2.319) can be directly determined through the damping ratio, there are only two primary control 
parameters: the natural period and the damping ratio. Other parameters, such as the damping coef-
ficient c and damping exponent β of viscous dampers, are considered as the secondary control 
parameters. Once the periods and the damping ratios are determined, these secondary parameters 
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can be determined as well. For linear systems, these two sets of parameters are directly related. For 
example, if the damping ratio and the natural period are known, the damping coefficient per unit 
mass can be calculated. When the damping coefficient and the natural period are known, the damp-
ing ratio is determined. For nonlinear systems, this bilateral relationship usually does not exist, 
because the quantities depend on their amplitudes.

For a linear SDOF system, the traditional primary design parameter is the total base shear, which 
is the product of the mass and the pseudo acceleration. Therefore, base shear can be replaced by the 
pseudo acceleration. In many codes, such as NEHRP 2009 (BSSC 2009), the design procedure of 
an aseismic structure is to first find the base shear, using the aforementioned control parameters. 
That is,

	 V WS V NA L= = ( ) (5.68)

where V is the maximum total base shear or simply called the base shear, W is the corresponding 
weight, SA is dimensionless spectral value, and VL is the amplitude of the lateral shear force of the 
column.

Equation 5.68 can be extended to linear MDOF systems. The total base shear is used to find the 
lateral force for each story, aided by the modal shape of the mode of interest, that is,
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 (5.69)

Here fL is the lateral force vector for the ith mode and fLj is the amplitude of the lateral force 
of the jth floor for the ith mode. However, in Equation 5.69, for convenience, the indicator of the 
ith mode is not written. Additionally, in Equation 5.69, pj is the ith modal displacement or the 
modal shape element at the jth floor. Here, the condition of the modal shape normalization is 
such that
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1  (5.70)

After the lateral force has been calculated, this quantity is used to define the floor displacement 
or drift and so on. For example, the column shear force of the jth story can be determined as
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Or, for the jth floor,
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Here, vL is the shear force vector for the ith mode and VLj is the amplitude shear force of the jth 
floor for the ith mode. Similarly, in Equation 5.72, for convenience, the indicator of the ith mode is 
not written.

Substituting Equation 5.69 into Equation 5.71 results in
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Therefore, it is realized that the total base shear is indeed the primary design parameter.
There is an alternative design procedure starting with the displacement. Either way, only one 

primary design parameter is sufficient for the entire design. Two control parameters and one design 
parameter are the essence of the design of a traditional linear SDOF system based on the design spec-
trum. On the surface, this nature of design is quite understandable. That is, one must have two control 
parameters to render the design spectrum. Then, only one parameter is sufficient to cover both the 
displacement and the acceleration, since the pseudo acceleration is proportional to the displacement, 
and the proportionality constant is simply the square of the natural frequency, whose information has 
already been given by the period. This design feature can be summarized by the following equations:

	 S f T,A = ( )ξ  (5.74a)

and

	
S T S g mD A=









 ( )

2

24π
 (5.74b)

When a linear MDOF system is to be designed, if it is proportionally damped, Equations 5.74a 
and b can be simply rewritten as follows, where i stands for the ith mode of interest:

	 S f TAi i i= ( ), ξ  (5.75a)

and

	
S T S g mDi

i
Ai=









 ( )

2

24π
 (5.75b)

Therefore, for each mode, the essence of the two control parameters and one design parameter 
remains unchanged.

Note that in Equation 2.337 of Chapter 2, a factor 1 4 2+ ξ  is suggested to modify the relation-
ship between the spectral values of displacement and acceleration. This can be proven by using the 
approach of the square root of the sum of squares (SRSS) for SDOF systems. Adding the damping 
force to Equation 2.307 results in

	 �mx cx kxa�� �= − −

or
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	 �� �x x xa = − −2 2ξω ω

The maximum value of the absolute acceleration can be seen as the SRSS value of the maximum 
values of the monic damping and stiffness forces. That is,
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The maximum values of the absolute acceleration aa and the relative displacement dmax are 
replaced by the spectral values SA and SD, respectively,
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 (5.77a)

and for linear MDOF systems, we have
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Therefore,
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and for linear MDOF systems,
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5.4.1.2  Necessity of Additional Design Parameters
The above-mentioned feature of design, however, will vary when a larger amount of damping is 
added to an MDOF structure. As mentioned previously, Equations 5.75 and 5.78 are used to sim-
plify the expression of accelerations for design purposes, particularly when damping is small. As 
mentioned in Chapter 4, for structures with added damping, Equations 5.71 and 5.73 must be used 
with caution. That is,
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or
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Example 5.5

In order to see this point, the following simple linear example, with given mass and stiffness, is 
considered, as follows:

	 M I= ( )107 kg ,

	

K =
−

− −
−

















( ) 10
2 1 0
1 2 1
0 1 1

10 N m

To have a 1% damping of all the three modes, the proportional damping matrix is
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Note that when theoretically increasing the proportional damping matrix to have a 10% damp-
ing ratio per mode, and assuming that this new damping matrix C2 can be realized, it is given as

	 C C2 110=

Suppose a linear viscous damper with c = 1.606 × 108 (N-s/m) is installed between the first and 
third floors, which increases the total damping ratio of the first mode to 10%. The added damper 
forms the damping matrix Ca,

	

Ca m=
−

−
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1 606 0 1 606

8
. .

. .
.N -s

That is, the newly formed damping matrix C3 is

	 C C C3 1= + a

If the value of the added damping Ca is doubled, then another newly formed damping matrix:

	 C C C4 1 2= + a

will increase the damping ratio of the first mode to 14.67%.
Now, the total base shear and total interstory shears of the aforementioned four cases with 

damping matrices C1, C2, C3, and C4, respectively, are calculated through numerical simulations 
under El Centro earthquake excitation. As a comparison, Equations 5.79 and 5.74 are also used to 
compute the results. The comparison is given in Table 5.2.

In Table 5.2, the term “Exact” means the exact maximum shear force calculated through the 
time history analysis. The term “Assu.” means the maximum shear force calculated through the 
time history at the time point where the total base shear reaches the maximum value. It is found 
that when using damping matrix C1, whose damping ratios are 1% and proportional, the shear 
force is in error at the second floor by –4.72% and at the third floor by –13.42%. Both are not 
considerably smaller than the exact values. When using damping matrix C2, whose damping ratios 
are 10% and still proportional, the shear force at the third floor is in error by –22.77%, which is 
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somewhat large. When using damping matrix C3, whose damping ratio is still 10% for the first 
mode but becomes nonproportional, the shear force error at the third floor is –1.34%. Finally, 
when using damping matrix C4, whose damping ratio is 14.67% for the first mode and remains 
nonproportional, the error of shear force at the third floor increases to –3.47%. This value is con-
siderably smaller than the exact shear force.

In Table 5.2, “Cal” denotes the maximum shear force calculated by Equation 5.73, which is the 
conventional calculation suggested by building codes. It is found that when using damping matrix 
C1, the shear force error at the second floor is 2.78% and at the third floor is –3.86%. Both are negli-
gible. When using damping matrix C2, the shear forces of both floors are still somewhat close to the 
exact values. When using damping matrix C3 with nonproportional damping, the errors in shear force 
at the second and third floors are 3.26% and –2.67%, respectively. When using damping matrix C4, 
the shear force errors at the second and third floors increase to 10.31% and 10.43%, respectively.

Note that this is only an example. In actual structures, the errors using Equation 5.73 may 
vary from one case to another. However, the tendency of increased damping to cause the exact 
maximum floor forces and shear forces to differ from the calculated value can be seen through 
statistical surveys. More importantly, when the damping becomes nonproportional and larger, this 
phenomenon becomes worse.

The reasons are as follows: First, Equation 5.73 means that the maximum shear force is the 
summation of the maximum lateral forces. Second, this equation actually implies that all the peak 
forces occur at exactly the same time. In most cases for an MDOF system, this assumption does 
not hold, especially for heavily damped structures, the maximum floor forces cannot be reached 
at the exact time point. This phenomenon can be clearly seen from the columns of time in Table 
5.2, which indicates that the peak values can occur at different time points, even for proportionally 
damped systems. In addition, for nonproportionally damped system, even within the same mode, 
peak values may occur at different time points. In this circumstance, the summation of these forces 
to form the column shear loses its validity. Thus, when the damping ratio becomes high, the cor-
responding errors can easily be more than 50%.

TABLE 5.2
Base Shear Comparisons

1st Floor 2nd Floor 3rd Floor

VL1 (N) Time (s) VL2 (N) Time (s) VL3 (N) Time (s)

C1 Exact 4.33e8 5.03 3.38e8 5.70 2.01e8 5.70

Assu. 4.33e8 5.03 3.22e8 5.06 1.74e8 5.06

Error –4.72% –13.42%

Cal. 4.33e8 3.47e8 1.93e8

Error 2.78% –3.86%

C2 Exact 1.87e8 5.06 1.44e8 2.34 0.88e8 2.35

Assu. 1.87e8 5.06 1.38e8 5.06 0.68e8 5.06

Error –3.97% –22.77%

Cal. 1.87e8 1.50e8 0.83e8

Error 4.17% –5.37%

C3 Exact 1.85e8 2.34 1.43e8 2.34 0.84e8 2.35

Assu. 1.85e8 2.34 1.43e8 2.34 0.83e8 2.34

Error –0.31% –1.34%

Cal. 1.85e8 1.48e8 0.82e8

Error 3.26% –2.67%

C4 Exact 1.71e8 2.34 1.24e8 2.34 0.69e8 2.35

Assu. 1.71e8 2.34 1.23e8 2.34 0.66e8 2.34

Error – 0.39% – 3.47%

Cal. 1.71e8 1.37e8 0.76e8

Error 10.31% 10.43%
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In addition, by carefully analyzing the lateral forces of each floor, it is realized that these forces 
are not the product of the floor mass times the pseudo acceleration, but rather the real absolute 
acceleration. In Chapter 2, it was shown that the spectrum of real acceleration and the pseudo 
acceleration can be quite distinct when damping becomes significantly large.

In other words, when the damping becomes larger, an additional parameter is needed 
to describe the dynamic behavior of a system. In fact, in Chapter 4, this phenomenon was 
explained mathematically. In the case of engineering applications, it can be interpreted as the 
requirement for an additional design parameter. For example, when large damping is added to 
a structure, while the displacement always decreases, the absolute acceleration may increase. 
However, if the formula of pseudo acceleration is used as described in Equations 5.76 and 
5.78, it can be found that the values of the pseudo acceleration will always be reducing.

Note that in the above example, the damping force has not yet been counted. Otherwise, when 
the damping and the restoring forces cannot be separated, the actual shear force will be even larger. 
When the damping is large, this problem becomes notably worse.

In addition, for the problem of damper design, if the damping is sufficiently high, the structure needs 
two design parameters per mode. In other words, two design spectra are needed: the displacement spec-
trum and the real acceleration spectrum. In Chapter 1, equations are presented to relate the displace-
ment spectrum and the real acceleration spectrum. However, these equations were developed based on 
a specific group of earthquake records. This is why there is a notable difference between the equations 
generated through the 99 earthquake records, and Mohraz and Sadek’s (2001) work. In practical appli-
cations, local earthquake histories should be considered in order to establish more accurate real spectra.

5.4.2  issuEs of daMPing ratios

In linear systems, the damping ratio is a well-defined parameter, which is dimensionless and inde-
pendent of other basic parameters, such as natural frequencies and mode shapes. The damping ratio 
is also not affected by the input level. Therefore, the damping ratio can be a solid design parameter. 
Note that when a damping coefficient is given, which is roughly fixed when damping devices are 
installed, the damping ratio will be affected by the physical parameters of the mass and stiffness. In 
a nonlinear system, the effective damping will be influenced by additional parameters, such as the 
effective natural frequencies, as well as input levels. In this case, further care must be taken when 
using the damping ratio as a design parameter.

The damping ratio is discussed further, as it is one of the most important control parameters. It 
is known that frequency-independent and frequency-dependent damping are also the characteristics 
of the entire system. When exponent α of ωn is zero, both the damping force and the damping ratio 
will not be functions of the natural frequency. In this case, the variation mass of a structure will 
have no effect on the damping ratio. Otherwise, increasing the mass will decrease the value of the 
damping ratio.

In the previous section, it was shown that the damping ratio expressions for certain dampers do 
not contain the term for natural frequency, whereas they do for other dampers. For those that con-
tain a natural frequency term, the corresponding damping ratio will be influenced by the frequency, 
and the degree of influence will depend on exponent α.

As the simplest example of a damping ratio that is not affected by the natural frequency, ideal-
ized friction damping is first considered by reexamining Equation 5.20. That is,

	
ξ

πeff
eqc

kx
=

2
0

 (5.81)

in which the damping ratio is not a function of the natural frequency ωn.
Note that ωn = (k/m)1/2, thus the natural frequency is a function of mass; therefore, for the fric-

tion damping, it is realized that the damping ratio will not be affected by any change of the mass. 
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In real applications, it is well known that certain structures can have a significant amount of variable 
mass. For example, the mass of a bridge for a railway train can increase several times when a train 
is passing. Therefore, studying the influence of mass can be helpful.

The damping ratio from Equation 5.81 is not a function of mass. This is because the damping 
force, in fact, the friction force, is not a function of ωn. That is,

	 f c v Nd eqmax sgn= ( ) ( ) (5.82)

Note that the amplitude of the damping force can be generally expressed as

	 f c x Nd eq nmax = ( )ωα β
0  (5.83)

in which exponent α plays an important role. If

	 α = 0,  (5.84)

the corresponding damping ratio will not be a function of the mass.
Similarly, it is known that the damping forces of both the bilinear damping and roughly the VE 

damping are not functions of ωn. That is, Equation 5.84 is satisfied by both cases. Thus, these damp-
ing types can be classified as frequency-independent damping.

It is also noticed that for all three of these classes of damping, the damping ratios are only func-
tions of the stiffness. That is,

	
ξeff k

∝ 1
 (5.85)

When supplemental damping is installed, the total stiffness of a structure will not often be 
greatly affected. Therefore, no matter how many frequency-independent dampers are installed, the 
damping ratio will not be affected by the factor given by Equation 5.85.

It is worth mentioning that certain viscoelastic materials can have a large amount of restoring 
modulus, which will change the total stiffness. In this case, the damping ratio will be smaller than 
when the restoring modulus is small.

It is also worth noting that certain viscoelastic materials can be significantly influenced by work-
ing frequencies. In this case, Equation 5.83 will be applied and the corresponding dampers are no 
longer frequency independent.

As seen in Equation 5.83, if exponent α is not zero, the damping force will be a function of 
the natural frequency ωn, as will the damping ratio. The corresponding damping will become 
frequency-dependent damping. In the following discussion, several cases of frequency-dependent 
damping are examined.

Linear viscous damping is considered first. In this case, the amplitude of the damping force is

	
f c x cx k

m
Nd nmax = = ( )ω 0 0  (5.86)

and the damping ratio can be written as

	
ξ

ω
= =c

m
c
mkn2 2

 (5.87)
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Therefore, the damping ratio is inversely proportional to the square root of the mass. That is, if the 
mass is doubled, then the damping ratio will be reduced by a factor of approximate 40%. For struc-
tures with variable mass, such as the aforementioned bridge or a movie theater with a near full load 
of people, care must be taken when dampers are used to reduce the seismic-induced vibration. Note 
that in this case, when the mass increases, the damping force decreases if the maximum displace-
ment remains unchanged.

Now, for the general case of nonlinear viscous damping, the damping force is

	 f c x cx k m Nd nmax
/ /= = ( )−ωα β β α α

0 0
2 2  (5.88)

From Equation 5.88, it is seen that the damping force is affected by the mass and exponent α. 
When the displacement is fixed, decreasing exponent α will increase the amplitude of the damping 
force. Increasing the mass will decrease the damping force.

The damping ratio can be written as

	
ξ

ω
π π

α β
β

β
β α α

eff
eq n eqc x A

k
c x A k m= =

− −
− −0

1
0

1
2 1 2

2 2   
( / ) /  (5.89)

From Equation 5.89, the damping ratio is also affected by the mass and exponent α. When the 
displacement is fixed, increasing exponent α will decrease the damping ratio. Increasing the mass 
will also decrease the damping ratio.

It is worth mentioning that the nonlinear hydraulic damper, which provides nonlinear viscous 
damping, has recently become more popular. Most vendors do not provide users with the exponent 
for the frequency. Instead, the exponent of velocity is used. For the reasons discussed in this chap-
ter, it is suggested that vendors should measure exponents α and β separately, so that engineers can 
select the proper parameters and design their structure more safely.

5.5  DAMPING FORCE–RELATED ISSUES

The concept of recoverable damping from Lazan (1968) can be further described by two types of 
relationships between pure stiffness and pure damping. The first is that the stiffness and damp-
ing are in series. Thus, when a damper is installed in a structure, it needs a certain supporting 
stiffness, the value of which is usually considered to be finite. When damping is nonrecoverable, 
the supporting stiffness does not contribute to withstanding the static load. Finite supporting 
stiffness will limit the damping capability and can change a viscous damper into a VE damper. 
Therefore, this issue should not be overlooked. A special state matrix can be used to model the 
integration of a structure and its dampers with finite stiffness support. Roughly speaking, every 
10% of the damping ratio designed into a structure requires a supporting stiffness of about 100% 
of the structural stiffness. The second type of relationship between stiffness and damping is 
related to the parallel configuration, as it defines the capability of a structure with added dampers 
to be self-centered.

5.5.1  rEcoVEraBlE daMPing and sElf-cEntEring systEMs

For civil engineering structures, the primary consideration is static load. Damping is mainly 
designed to withstand the dynamic force, but most dampers need supporting stiffness. In Figure 5.14, 
a damper c needs to be supported by a stiffness ks, other than the structural stiffness k. Thus, it is 
necessary to know if the stiffness can withstand the dead load. A practical thought is, if the needed 
supporting stiffness must be very strong, why bother using dampers? Why not simply increase the 
stiffness? These questions will be answered in Section 5.5.3.
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5.5.1.1  Recoverable Damping
The third and last important classification of damping recommended by Lazan rates the damping 
on the basis of recoverability, which is shown in Figure 5.15. In the following, it is further noted that 
nonlinear damping makes the system nonrecoverable dynamically and nonlinear stiffness results in 
permanent displacement.

It is seen that with the same amplitudes of the force and deformation, nonrecoverable damping 
can have considerably larger energy dissipation. However, recoverable damping can contribute to 
system stiffness. This is because for recoverable damping, when the external force drops to zero, the 
corresponding displacement returns back to its center position. Whereas for nonrecoverable damp-
ing, there will be an offset, d0. This implies that the nonrecoverable damping cannot contribute 
static force. In other words, when the driving frequency tends to zero, there will be no force. Neither 
damping force nor spring force will exist. Therefore, a nonrecoverable damping device cannot be 
used to support static load. It thus also indicates that all the supporting stiffness cannot be used to 
support static load.

On the other hand, recoverable damping contributes static stiffness and can withstand the dead 
load.

The most popular dampers in use today provide only nonrecoverable damping. The recover-
able mechanism of the structure is to be centered, when the external force is canceled due to its 
stiffness. In this case, the integration of the structure and the dampers contributes recoverable 
damping.
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FIGURE 5.14  (a, b) Supporting stiffness for dampers.
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From the above discussion, it is seen that the concept of recovery is important for damper and 
structure designers. However, another significant factor not explicitly included in the concept of 
damping recovery is the rate of recovery. For example, at a working frequency of, i.e., around 
2 (Hz), the VE damper has a notable offset, d0. However, at about zero driving frequency, it contrib-
utes a low recovery force.

Note that a fluid damper will never provide a recoverable (or more precisely, restoring) force. In 
this sense, at a different driving frequency, the VE damping may contribute some stiffness, but fluid 
dampers will not. This factor must be included in the damper design.

Furthermore, different types of rate-dependent dampers will have different energy dissipation 
levels at different driving frequencies. Together with its capacity for recovery, there should be a 
clear understanding of its supporting stiffness. For example, fluid dampers can be used to reduce 
wind-induced vibration. Since the driving frequency is low, a very small orifice of the oil path is 
necessary to create large damping. If the dampers are also used for earthquake response reduction, 
the supporting stiffness must be stronger than that required for wind engineering only, since the 
driving frequency of earthquake excitation is considerably higher. In Section 5.5.3, while discuss-
ing specific dampers, a more detailed explanation of how to choose the supporting stiffness is 
given.

Force

Displacement
(a)

(b)

Rate independent

Rate dependent

Force

Displacement

Rate independent

Rate dependent

FIGURE 5.15  Damping classifications: (a) recoverable and (b) nonrecoverable.
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5.5.1.2  Self-Centering Structures
Generally speaking, a civil engineering structure that did not completely collapse following an 
earthquake can have different configurations. If the vibration of the structure is always in the elastic 
range, then it will not have permanent deformation. 

However, if the vibration of the structure enters the inelastic range, there will be a change in con-
figuration associated with permanent deformation. In many cases, although a structure has inelastic 
deformations, the remaining stiffness is still sufficient to withstand the vertical and horizontal loads. 
In other words, the structure can still be in-service. However, if it has a large permanent deforma-
tion, the owner either has to consider a major repair or replacement of the structure. Thus, self-
centering is an important consideration in the seismic design of structures.

From the viewpoint of structural restoring forces, the capability of structural recentering 
can be explained by noting that when the external force is decreased to zero, the deforma-
tion will also approach zero. To study the concept of self-centering, two situations should be 
examined.

First, when the structure reaches its center position, the restoring force must be equal to zero and, 
when the restoring force equals zero, the structure must return to its center position. That is,

	 x → 0
	 f → 0  (5.90)

This condition can be graphically described by Figure 5.15a, namely, the case of recover-
able damping. In practice, there can be various types of the recoverable damping, as shown in 
Figure 5.16.

In Figure 5.16a and d, the typical rate-dependent and rate-independent self-centering damping is 
shown, respectively. In Figure 5.16b and e, the damping with a symmetric stiffness is shown, while 
in Figure 5.16c, the plot indicates asymmetric damping and stiffness.

The second situation is that when the driving frequency is not close to zero, the above-mentioned 
criterion in Equation 5.80 is not satisfied. However, when the driving frequency ωf approaches zero 
at the end of the earthquake excitation, the deformation also approaches zero. That is,

	 ωf → 0
	 x → 0

 (5.91)

In Figure 5.16f, typical viscous damping with symmetric stiffness is shown. When the velocity 
of the structure reaches zero, the damping force will also reach zero, thereby satisfying Equation 
5.91. That is, this structure also has a self-centering capability. In a later section the issue of driving 
frequency is examined in detail.

5.5.1.3  Relation between Stiffness and Damping
In Figure 5.14b, the damping c has a relationship with two springs, ks and k. It is seen that the 
spring k is in series with the damping, whereas the spring ks is in parallel with the damping. The 
two types of relationships have a general meaning. In a later section, the case of damping in series 
with stiffness is discussed in more detail. Here, the case of damping and stiffness is considered in 
parallel.

When dampers are added to a structure, it is known that the additional damping is in parallel 
with the original stiffness of the structure.

In the case of inelastic deformation in vibration cycles, the restoring force and dissipative force 
can be treated separately. That is,
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	 f t f t f td c( ) = ( ) + ( )  (5.92)

Different from the situation that separates the conservative and dissipative force at the maximum 
displacement, Equation 5.92 describes the situation at any possible displacement. Thus, lowercase 
subscripts d and c are used to denote the general situation. Apparently, when the displacement is 
close to the center position, the force separation can be written as

	 f f fd c0 0 0= +  (5.93)

where subscript 0 stands for the close neighborhood of the center position. In practice, the word 
close can be quantified with certain values, e.g., one thousandth of the height of a structural story 
(see Figure 5.15a, the solid line for example).

Within this neighborhood, if the following criterion is satisfied, the structure can be treated as a 
self-centering system:

	 f f c0 0d <  (5.94)

Therefore, this case can also be treated as a pure damping loop in parallel with a given stiffness.
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FIGURE 5.16  (a–f) Self-centered structures.
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5.5.2  working frEquEncy and tEMPEraturE of daMPErs

In many cases, the working frequency will affect the damping force, thereby influencing the issue 
of structural self-centering and affecting the capability of added dampers to reduce the vibration.

5.5.2.1  Effect on Self-Centering
Using Equation 5.91, the second criterion for a self-centering structure is provided. This crite-
rion relates to the specific driving frequencies that appear close to the end of the earthquake. In 
Figure 5.16, although several types of self-centering structures are shown, the only type that relates 
to the driving frequency is the one with linear viscous damping. However, in practice, there are 
other nonlinear types of damping that can also ensure self-centering. Generally speaking, if the 
damping force can be expressed as

	 f f fSC d dn= ( )ω ω  (5.95)

then, after earthquake excitations, namely, when the driving frequency approaches zero, the added 
damping force will become zero and self-centering is ensured. Here, fSC is the generic damping 
force and fdn is the amplitude of the damping force that is not a function of frequency. Furthermore, 
fdω is the portion of the damping force that is affected by the frequency and is defined as

	
f

f
dω ω

ω ω
ω

( ) =
( ) >

=




,
,

0
0 0  

 (5.96)

where f(ω) stands for any possible function of the frequency.
On the one hand, Equations 5.95 and 5.96 are equivalent to the conventional concept of velocity-

dependent damping. When the earthquake excitation ends, the velocity of ground motion reaches 
zero, and the velocity-dependent damping will no longer exist. Then, the damping will become 
zero.

On the other hand, Equations 5.95 and 5.96 provide a different perspective with which to check 
the effect of damping on self-centering. In many cases, when the excitation ends, a damper can have 
a permanent displacement, which may or may not create a residual force, depending on whether the 
condition described in Equation 5.96 is satisfied.

5.5.2.2  Frequency-Dependent and Temperature-Dependent Damping
Many damping materials and/or damping mechanisms are frequency dependent. There are two types 
of frequency-dependent damping. The first one is when the damping itself is frequency dependent. 
Strictly speaking, most damping materials are frequency dependent. However, earthquake excita-
tions and corresponding structural responses do not have a very large frequency band. The varia-
tion of the damping properties of many damping materials due to the change of working frequency 
may not be notably large within such a narrow band. In this case, the issue of frequency-dependent 
damping is often ignored. In addition, the function of the damping property vs. the driving frequency 
can be rather complex. For the same reason as the narrow frequency band, for many frequency-
dependent damping materials, the approach described below can be used. That is, the damping force 
is assumed to be proportional to certain exponents of the frequency, such as

	 fd n∝ ωα  (5.97)

Viscous fluid damping, due to the existence of a certain amount of air inside the fluid, often has 
the above behavior.
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Other types of damping, such as VE damping, are often described by loss factors. Usually, the 
loss factor η can be expressed as concave curves due to the change in frequency. One of the simplest 
functions can be expressed as

	 η ω ωα= + +a b c  (5.98)

where a, b, c, and α are parameters to be determined by the specific type of damping.
For example, Figure 5.17 conceptually shows the typical frequency responses of viscoelastic mate-

rials. Here, the fine solid line is the storage modulus and the dotted line is the loss modulus, where 
both represent shear modes. Meanwhile, the thick solid line is the loss factor. It is seen that when 
the frequency increases, the storage modulus and the loss modulus will vary accordingly. Since the 
loss factor is the ratio between the two, this factor will also vary according to the working frequency.

Note that both the working frequency and the temperature can influence the storage and loss 
modulus of VE damping materials in a similar way as shown in Figure 5.17, where the thick, thin, 
solid, and dotted lines conceptually represent different types of curves. That is, when both the 
frequency and the temperature are varied, the loss factor will first increase and then decrease. In 
Figure 5.17, the curves of the frequency vs. the modulus and loss factor are recorded when the fre-
quency increases. A similar shape of curves can be obtained when the temperature decreases, for a 
broad class of thermorheologically simple viscoelastic materials.

In this case, an alternative type of equation is used to express the relationship between the damp-
ing and the temperature. For example, for commonly used viscoelastic materials,

	 ln aT bβ( ) = +  (5.99)

where a and b are parameters determined for specific materials and T is the temperature in degrees 
Celsius. For example, in the range between 21°C and 40°C, for a specific viscoelastic material (Shen 
and Soong 1995),

	 ln Tβ( ) = − +0 0561 1 218. .  (5.100)

The second type of frequency-dependent damper is the situation when a damper needs to be sup-
ported and the supporting stiffness does not have an infinite value. In the next section, the concept 
and influence of supporting stiffness are discussed in more detail. And the fact that finite supporting 
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FIGURE 5.17  Example of frequency-dependent damping.
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stiffness of a damper changes the damping and resonant frequency of a structure, although the 
damper itself may have a frequency-independent response, is addressed.

5.5.3  daMPEr dEsign considEring suPPorting stiffnEss

In the following discussion, two related issues are considered: modeling of the structure with lim-
ited supporting stiffness and the geometrical magnification factor for damper installations.

5.5.3.1  Modeling
The supporting or connecting stiffness of a damper plays an important role in damper design, which 
should not be ignored. In order to have a better design, modeling the damper with the supporting 
stiffness becomes critical.

First, with finite supporting stiffness, the effectiveness of a damper is more limited than with infi-
nite supporting stiffness. In certain circumstances, e.g., when the supporting stiffness is decreased 
from a very large value to about five times the structural stiffness, even if the damping ratio continues 
to increase, the response will become greater, not smaller. Note that this relates only to an SDOF 
example. The situation for an MDOF system becomes more complex. The standard Laplace trans-
form approach becomes difficult and a more useful modeling approach involves the state equation 
and the state matrix. A small mass of the supporter can be added for an additional degree-of-freedom 
to create the regular state matrix. However, this method increases the number of equations and some-
times the state matrix becomes stiff owing to the difference between the large mass of the structure 
and the small mass of the support. In the following discussion, different state variables are used to 
yield a smaller state matrix. In this case, the state variables become
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This results in
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and

	 B = [ ]1 0 0, , T  (5.104)

It is seen that the state matrix has an additional dimension. Other methods can be used to account 
for the stiffness instead of the state equations approach. That is, to further explore the issue of 
damper supporting stiffness, the discussion can be started from a single mass system. Now, consider 
the linear modeling of a damper with supporting stiffness, as shown in Figure 5.18.
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Based on the force relationship shown in Figure 5.18a, the following set of equations result:

	 k x c x xs2 2 1 2= −( )� �  (5.105)

	 c x x k x xs� �1 2 1 1−( ) = −( ) (5.106)

	 mx k x x kx fs�� + −( ) + =1 1  (5.107)

Here, ks1 and ks2 are the supporting stiffness.
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FIGURE 5.18  Modeling of linear system with finite damper supporting stiffness. (a) two supporting 
members. (b) one supporting member.
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Equations 5.105 and 5.106 can be rewritten as
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and
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Therefore,
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Equation 5.177 can be rewritten as

	 mx kx k x y fs�� + + −( ) =  (5.111)

Denote y = (x1 − x2) and ks = ks1ks2/(ks1 + ks2).
Equation 5.110 becomes:

	 k y x cys −( ) + =� 0  (5.112)

If ks2 = ∞, then ks = ks1, x2 = 0 and y = x1; or if ks1 = ∞, then ks = ks2, x1 = x and y = (x − x2). For 
either way, Equations 5.105, 5.106, and 5.107 can be reduced to Equations 5.111 and 5.112 and the 
two cases are equivalent. The equivalent physical model is shown in Figure 5.18(b).

Applying Laplace transform to Equations 5.111 and 5.112 with zero initial conditions assumption 
yields

	 s m k ks
2 X X X Y F+ + −( ) =  (5.113)

	 k scs Y X Y−( ) + = 0  (5.114)

where X, Y, and F are the Laplace transforms of x, y, and f, respectively.
In addition, letting the Laplace variable s = jω (as in steady state) and denoting X0(jω) = X(s)|s = jω, 
Y0(jω) = Y(s)|s = jω and F0(jω) = F(s)|s = jω. Equations 5.113 and 5.114 become, respectively,
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and
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From Equation 5.115, it is seen that the system has an order of cubic. Only if ks = ∞ is it reduced 
to the quadratic form:
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which is the case of the commonly accepted formula to calculate the peak value of the displacement.

5.5.3.2  Approximation
In order to further analyze the details of the supporting stiffness in linear systems, the complete 
form of the frequency response function H(jω) = X0 (jω)/F0 (jω) is considered. Based on Equation 
5.115, H(jω) can be expressed as
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Comparing Equation 5.118 with Equation 5.117, the equivalent stiffness keq and equivalent damp-
ing coefficient ceq can be defined as
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From the above equations, it is seen that both the equivalent stiffness and the equivalent damping are 
functions of the excitation frequency. If the structure is excited by a nonharmonic force signal, then the 
frequency ω will vary with time. Therefore, it can be quite difficult to use in practical damper design.

In engineering practice, however, to simplify the analysis, the equivalent structural natural cir-
cular frequency ωeq can be estimated from Equation 5.119 first, and then ceq and the corresponding 
equivalent damping ratio ξeq can be calculated. These parameters are then used in the simplified 
design and the “equivalent” quantities can be kept as time invariant in time response analysis. 
Simulation results indicate that the analysis errors are in the acceptable range. The procedure to 
determine these quantities is presented next.

First, dividing both sides of Equation 5.119 by m, and replacing ω by ωeff,
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In order to define the operations more completely, the following variables are denoted. The “orig-
inal” natural frequency for the cubic equation is denoted as

	 ω0
1 2= ( )k m  (5.122)
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the original damping ratio for the cubic equation is represented by

	
ξ
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m

 (5.123)

the equivalent natural frequency is

	 ωeq eqk m= ( )1 2
 (5.124)

the equivalent damping ratio is
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 (5.125)

the stiffness ratio is defined as

	 γ = k ks  (5.126)

the frequency ratio is

	 λ ω ω= eq 0  (5.127)

while the ratio of the damping ratios is

	 µ ξ ξ= eq 0  (5.128)

The square of the frequency ratio is also denoted as

	 ν λ= 2  (5.129)

Using the above notations,
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Dividing both sides of Equation 5.130 by ω0
2
,

	

ω
ω

ξ γ ω
ω

ξ γ ω
ω

γ

eq

eq

eq0
2

2 0
2

0
2

2

0
2

0
2

2
2

1
4

4







 = +















 +

 (5.131)

or write
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Equation 5.132 can be further written as a quadratic equation about ν,

	 4 4 1 00
2 2 2

0
2 2ξ ν γ ξ γ ν γ( ) + − +( )  − =  (5.133)

The roots of Equation 5.133 can be expressed as
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Since υ must be larger than zero and
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there must be only one reasonable root, which is
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Note that if ξ0 = 0, which means that there is no damper in the undamped system, then we have 
keq = k, which will be simplified to ν = 1.

After solving for ν, λ as well as ceq and ξeq can be calculated. From Equation 5.129,

	 λ ν=  (5.137)

and

	 k m meq eq= = ( )ω λω2
0

2
 (5.138)

From Equations 5.121 and 5.125, the equivalent damping ratio can be calculated by
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and

	 c m meq eq eq eq= =2 2 0ξ ω ξ λω  (5.140)

Based on Equations 5.136, 5.139, and 5.132, the curves of the natural frequency ratio vs. stiff-
ness ratio, equivalent damping ratio vs. stiffness ratio, and the ratio of damping ratios vs. stiff-
ness ratio, are plotted in Figures 5.19 through 5.21, respectively with constant value of λ. From 
Figure 5.19, it is seen that if the support stiffness of the damper is equal to zero, the equivalent 
natural frequency is identical to the original structural natural frequency, which indicates that the 
damper does not function. Along with the increase of the support stiffness, the equivalent natu-
ral frequency will also increase at first, it will approach a peak, and then decrease gradually and 
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tend to the original structural natural frequency. On the other hand, as the original damping ratio 
increases, the equivalent natural frequency will always increase.

From Figures 5.20 and 5.21, it is observed that as the support stiffness increases, the equivalent 
damping ratio will also increase from zero toward the original value. Additionally, the larger the 
original damping, the more slowly the equivalent value approaches the original one.

In order to examine the calculation accuracy, an SDOF vibration system is used as an exam-
ple, based on Figure 5.18b. Consider the case with the following parameters: m = 20,000 (kg); 
k = 3.1583e + 006 (N/m); c = 3.0159e + 005 (N-s/m), and k1 = k, from which we can obtain f0 = 2 
(Hz); ω0 = 12.566 (rad/s); ξ0 = 60% and γ = 1, as well as ωeq = 16.439 (rad/s); feq = 2.6163 (Hz) and 
ξeq = 13.239%.
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5.5.3.3  Generalized Supporting Stiffness
The concept of finite supporting stiffness can be extended to linear structures with the number of 
DOF different from the number of locations of installed dampers. Figure 5.22a and b show a two-
story and a ten-story building, respectively. Both buildings have linear viscous dampers installed 
in the first story only. The damping of both cases is nonproportional. The frequencies and damping 
ratios of the corresponding modes are shown in Table 5.3A and B, respectively.

From Table 5.3, it is seen that with the dampers installed, the damping ratios of the first mode for 
both buildings are approximately 1%. A record from the Northridge earthquake with a peak accel-
eration equal to 0.36 (g) is used as an input to excite these buildings. Then, the value of the damping 
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FIGURE 5.22  (a, b) Buildings with linear viscous damper installed in the first story.
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coefficient is increased until it reaches 50 times the original values. At each time, the displacement 
response is calculated and the maximum values for the two-story and ten-story structures are plot-
ted in Figures 5.22a and b, respectively.

In Figure 5.23a, the upper curve is the response of displacement for the second floor, x2, and the 
lower one is for the first floor, x1. It is seen that as the value of the damping coefficient increases, the 
responses will continuously decrease for both the first and second floors. This means that adding 
damping only at the first story will help reduce the responses of both the first and second floors.

In Figure 5.23b, from bottom to top, the curves represent the displacement response of the first 
to the tenth floors, namely, x1 to x10, respectively. From this latter figure, it is seen that, unlike the 
case of the two-story structure, the displacements will no longer decrease monotonically when the 
damping coefficients increase, except for those at the first and second stories.

The reason for the phenomena shown in Figure 5.23 can be qualitatively explained as follows. 
For both structures, since only the first story has dampers, the energy dissipation of the remain-
ing stories will be carried out by the first story only. Here, the damping of the primary structure 
is ignored, since it is quite small in both cases. The energy dissipation of the remaining stories 
occurs through the stiffness that connects the rest of the stories to the first story. For the two-story 
structure, the second story is close to the first one and therefore the “connecting” stiffness is com-
paratively strong. This is similar to the above-mentioned supporting stiffness concepts. When the 
stiffness is strong, a large damping coefficient will still function to absorb energy.

However, for the ten-story structure, the “connecting” stiffness becomes much weaker than in the 
two-story structure. The function of energy dissipation of the damper for the remaining floors becomes 
weaker and weaker. At the very beginning, when the damping coefficient is not yet large, the connect-
ing stiffness is relatively strong, allowing energy dissipation to take place. However, when the value of 
the damping coefficient becomes sufficiently large, only the second story, which is closest to the first, 
can have enough energy dissipation to reduce the vibration level. The responses of the other stories 
will begin to increase instead of decrease as the value of the damping coefficient gets larger and larger.

5.5.3.4  Design Considerations
In the above discussion, the effect on the supporting stiffness due to increasing damping from 
supplemental dampers and the corresponding response reductions was theoretically shown. Next, 
this issue is related to practical damper design.

From Equations 5.126 and 5.139, 

	
γ λξ λξ

ξ λξ
=

−
2 0

eq

0 eq  
(5.141)

TABLE 5.3A
Modal Parameters for the Two-Story Structure
Mode 1st 2nd

fi (Hz) 3.11 8.14

ξi (%) 1.01 1.01

TABLE 5.3B
Modal Parameters for the Ten-Story Structure

Mode 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

fi (Hz) 2.4 7.1 11.8 16.2 20.1 23.l 25.7 28.3 30.2 31.4

ξi (%) 0.98 2.69 3.93 4.96 6.18 6.14 3.21 1.42 0.54 0.13
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If ξeq is required to not be 90% of ξ0, then 

	
γ ξ= ≥k

k
10s

eq  

That is, generally speaking, when the damping ratio is designed to be around 10%, the support-
ing stiffness ks should be greater than k. When the damping ratio is designed to be around 20%, the 
supporting stiffness ks should be greater than 2k. Therefore, for the case of a smaller damping ratio 
used in damper design, such as, less than 15%, an approximate equation to describe the requirement 
of supporting stiffness can be written as follows:

	 k ks ≥ 10 ξ  (5.142)

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.045

0.005

D
isp

la
ce

m
en

t
D

isp
la

ce
m

en
t

Damping coefficient (1.4×)(a)

(b) Damping coefficient (70×)

0 10 20 30 40 50

0 10 20 30 40 50

0.06

0.05

0.04

0.03

0.02

0.01

0

FIGURE 5.23  Structural responses vs. increase of damping coefficients: (a) response of 2-story 
structure and (b) response of 10-story structure.



Principles	of	Damper	Design	 333

where ξ is the generic term of damping ratio. This statement is quite rough. If more accuracy is 
needed, state equations and/or the modal condensed equations should be used.

In Chapter 3, it was learned that when higher modes are concerned, considerably higher damping 
is usually involved. In this case, Equation 5.141 becomes insufficient. By using the aforementioned 
99 earthquake records, it can be found that if the reduction of responses of the acceleration and/or 
the displacement due to finite supporting stiffness is limited to within about 10%, then the following 
empirical formula can be used:

  
k k ks k≥ −( ) +  =10 6 4 23ln . %ξ ξ γ

 
(5.143a)

This formula is obtained by a least squares approximation. The condition of using this form is 
that the design damping ratio should be larger than 7%. Here γk is the ratio of the supporting stiff-
ness and the lateral stiffness in practical design, and

 
γ ξ ξk

sk
k= = −( ) + 10 6 4 23ln . %

 
(5.143b)

Note that Equation 5.143 is obtained from the numerical simulation by using the specific group of 
99 earthquake records. Obviously, by using another group of earthquake records, alternative param-
eters will be obtained in the empirical formula; for example, by using the 28 records mentioned by 
Naeim and Kelly (1999) due to the randomness of earthquake ground motions. However, based on 
the authors’ limited experience, the differences are not significant. These 99 records are used as 
references of simulation in this book for more pieces of records are available.

Many ground motion records are available from the USGS Strong-Motion CD-ROM and some 
online strong-motion databases. Among them, 99 typical ground motion records are commonly 
used (Naeim and Anderson (1996), www.berkeley.edu/smcat, Lee, et al (2007)). Since they are 
corrected by different techniques, the peak values are slightly different from the records originally 
used by Naeim and Anderson, which are listed in Table 5.4. The soil site classifications according 
to FEMA-273 (FEMA 1997) are also indicated in Table 5.4. 

Note that, in Equation 5.143, the factor of period T does not appear. However, at a different 
period to limit the reduction to within 10%, a different amount of supporting stiffness is required. 
In Equation 5.143, the period range is considered to be from 0.1 (s) to 6 (s). A more accurate formula 
can be obtained by explicitly considering the value of the period. Yet, in engineering applications, if 
sufficient supporting stiffness can be guaranteed, a very detailed formula does not need to be used.

Table 5.5 shows the required stiffness ratio, as well as the percentage increase of the responses 
due to the effect of finite supporting stiffness. For example, if a 50% damping ratio is designed and 
the supporting stiffness is approximately 9.4 times greater than the lateral stiffness, the acceleration 
and displacement will actually be larger than the case of theoretically assumed infinite supporting 
stiffness by factors of 9.87% and 6.68%, respectively.

From Table 5.5, it is also realized that the increase of the acceleration is always larger than 
the displacement. However, this phenomenon can only be observed in a linear system. If nonlinear 
damping is used, then the increase of the displacement is often found to be larger than the 
acceleration.

For larger damping nonlinearity, a safety factor Sn is introduced as

	 k S ks n≥ 10 ξ  (5.144)

Furthermore, when the supporting stiffness is included, the viscous damping becomes “visco-
elastic” damping, and several degrees of phase shift may be observed. When the driving frequency 
becomes higher, this phenomenon can become more serious.
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TABLE 5.4
99 earthquake records

No. Year Earthquake Station  Deg. Attribues

1 1940 El Centro El Centro-Imp Vall Irr Dist 180 Duration

2 1940 El Centro El Centro-Imp Vall Irr Dist 270 Duration

3 1949 Western Washington Olympia Hwy Test Lab 356 Duration

4 1949 Western Washington Olympia Hwy Test Lab 86 Duration

5 1952 Kern County Taft 21 Duration

6 1952 Kern County Taft 111 *

7 1966 Parkfield CA Cholame Shandon Array 2 65 IV

8 1971 San Fernando Pacoima Dam 164 PA, PV, PD, IV, ID, EPA, EPV

9 1971 San Fernando Pacoima Dam 254 PA, PV, IV, EPA, EPV

10 1979 Coyote Lake, CA Gilroy Array #6 230 EPV

11 1979 Coyote Lake, CA Gilroy Array #6 320 *

12 1979 Imperial Valley, CA Bonds Corner 230 PA, PV, IV, EPA, EPV

13 1979 Imperial Valley, CA Bonds Corner 140 PA, PV, IV, EPA, EPV

14 1979 Imperial Valley, CA Cerro Prieto 237 Duration

15 1979 Imperial Valley, CA Cerro Prieto 147 Duration

16 1979 Imperial Valley, CA Delta 352 Duration

17 1979 Imperial Valley, CA Delta 262 Duration

18 1979 Imperial Valley, CA El Centro, Array #4 230 PD, IV, ID

19 1979 Imperial Valley, CA El Centro, Array #4 140 EPV

20 1979 Imperial Valley, CA El Centro, Array #5 230 IV, ID

21 1979 Imperial Valley, CA El Centro, Array #5 140 Duration

22 1979 Imperial Valley, CA El Centro, Array #6 230 PD, IV

23 1979 Imperial Valley, CA El Centro, Array #6 140 PD, ID

24 1979 Imperial Valley, CA El Centro, Array #7 230 PD, IV, ID, EPV

25 1979 Imperial Valley, CA El Centro, Array #7 140 EPV

26 1979 Imperial Valley, CA El Centro Array #8 230 PD, ID

27 1979 Imperial Valley, CA El Centro Array #8 140 PA, PV

28 1979 Imperial Valley, CA El Centro, Array #10 50 PD

29 1979 Imperial Valley, CA El Centro, Array #10 320 *

30 1979 Imperial Valley, CA El Centro, Differential Array 270 PD, ID

31 1979 Imperial Valley, CA El Centro, Differential Array 360 *

32 1979 Imperial Valley, CA Meloland Overpass FF 0 PD, ID

33 1979 Imperial Valley, CA Meloland Overpass FF 270 PD, IV, ID

34 1979 Imperial Valley, CA Holtville Post Office 225 ID

35 1979 Imperial Valley, CA Holtville Post Office 315 *

36 1980 Mammoth Lakes Long Valley Dam (u.l.abut) 0 Duration

37 1980 Mammoth Lakes Long Valley Dam (u.l.abut) 90 *
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TABLE 5.4  (Continued)
99 earthquake records

No. Year Earthquake Station  Deg. Attribues

38 1983 Coalinga, CA Parkfield Fault Zone 14 90 EPV

39 1983 Coalinga, CA Parkfield Fault Zone 14 0 EPV

40 1983 Coalinga Aftershock Pleasant Valley Pump Plant Yr 45 PA, PV

41 1983 Coalinga Aftershock Pleasant Valley Pump Plant Yr 135 *

42 1984 Morgan Hill, CA Coyote Lake Dam 285 PA, PV, IV, EPA, EPV

43 1984 Morgan Hill, CA Coyote Lake Dam 195 PA, PV, IV, EPA, EPV

44 1985 Nahanni Site 1 10 PA, PV, EPA

45 1985 Nahanni Site 2 280 PA, PV, EPA

46 1989 Loma Prieta-October 
17

Agnew-Agnews State Hospital 0 ID

47 1989 Loma Prieta-October 
17

Agnew-Agnews State Hospital 90 *

48 1989 Loma Prieta-October 
17

Corralitos-Eureka Canyon Rd. 0 PA, PV, IV, EPA, EPV

49 1989 Loma Prieta-October 
17

Corralitos-Eureka Canyon Rd. 90 IV, EPV

50 1989 Loma Prieta-October 
17

Gilroy #1-Gavilan College, 
Water Tank

90 EPV

51 1989 Loma Prieta-October 
17

Gilroy #1-Gavilan College, 
Water Tank

0 *

52 1989 Loma Prieta-October 
17

Gilroy #3-Gilroyh Sewage 
Plant

0 PA, PV, EPA

53 1989 Loma Prieta-October 
17

Gilroy #3-Gilroyh Sewage 
Plant

90 *

54 1989 Loma Prieta-October 
17

Hollister-South Street and 
Pine Drive

0 PD, IV, ID, EPV

55 1989 Loma Prieta-October 
17

Hollister-South Street and 
Pine Drive

90 PD, ID

56 1989 Loma Prieta-October 
17

Saratoga-Aloha Ave. 90 PD, ID

57 1989 Loma Prieta-October 
17

Saratoga-Aloha Ave. 0 *

58 1991 Sierra Madre-June 28 Altadena-Eaton Canyon Park 0 EPA

59 1991 Sierra Madre-June 28 Altadena-Eaton Canyon Park 90 *

60 1992 Landers-June 28 Amboy 90 Duration

61 1992 Landers-June 28 Amboy 0 *

62 1992 Landers-June 28 Barstow-Vineyard&H St. 0 ID

63 1992 Landers-June 28 Barstow-Vineyard&H St. 90 *

64 1992 Landers-June 28 Desert Hot Springs 0 Duration

65 1992 Landers-June 28 Desert Hot Springs 90 Duration

66 1992 Landers-June 28 Joshua Tree-Fire Station 0 Duration

67 1992 Landers-June 28 Joshua Tree-Fire Station 90 Duration

68 1992 Landers-June 28 Lucerne Valley T ID

69 1992 Landers-June 28 Lucerne Valley L *
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TABLE 5.4  (Continued)
99 earthquake records

No. Year Earthquake Station  Deg. Attribues

70 1992 Landers-June 28 Yermo-Fire Station 270 PD, ID

71 1992 Landers-June 28 Yermo-Fire Station 360 PD, ID

72 1992 Petrolia-April 25 Cape mendocino 0 PA, PV, PD, IV, ID, EPA, EPV

73 1992 Petrolia-April 25 Cape mendocino 90 PA, PV, EPA

74 1992 Petrolia-April 25 Fortuna-701 S. Fortuna Bl vd. 0 PD

75 1992 Petrolia-April 25 Fortuna-701 S. Fortuna Bl vd. 90 *

76 1992 Petrolia-April 25 Petrolia 0 PA, PV, IV, EPV

77 1992 Petrolia-April 25 Petrolia 90 PA, PV, PD, IV, EPV

78 1992 Petrolia-April 25 Shelter Cove-Airport 90 Duration

79 1992 Petrolia-April 25 Shelter Cove-Airport 0 *

80 1994 Northridge-January 17 Jensen Filtratioin Plant 22 PV, PD, IV, ID, EPV

81 1994 Northridge-January 17 Jensen Filtratioin Plant 292 PA, PV, PD, IV, EPV

82 1994 Northridge-January 17 Los Angeles, Sepulveda 
V.A. Hospital

360 PA, PV, IV, EPA, EPV

83 1994 Northridge-January 17 Los Angeles, Sepulveda 
V.A. Hospital

270 PA, PV, IV, EPA, EPV

84 1994 Northridge-January 17 Castaic-Old Ridge Route 360 IV

85 1994 Northridge-January 17 Castaic-Old Ridge Route 90 *

86 1994 Northridge-January 17 Newhall-La County Fire Station 90 PV, IV, EPA

87 1994 Northridge-January 17 Newhall-La County Fire Station 360 PV, PD, IV, EPA, EPV

88 1994 Northridge-January 17 Pacoima Dam-Upper Left 
Abutment

104 PA, IV, EPA, [D]

89 1994 Northridge-January 17 Pacoima Dam-Upper Left 
Abutment

194 PA, PV, IV, EPA, EPV

90 1994 Northridge-January 17 Santa Monica-City Hall Grounds 90 PA, EPA

91 1994 Northridge-January 17 Santa Monica-City Hall 
Grounds

0 *

92 1994 Northridge-January 17 Sylmar-County Hosp. Parking 
Lot

90 PA, PV, IV

93 1994 Northridge-January 17 Sylmar-County Hosp. Parking 
Lot

360 PA, PV, PD, IV, ID, EPA, EPV

94 1994 Northridge-January 17 Tarzana-Cedar Hill Nursery A 90 PA, PV, PD, IV, EPA, EPV

95 1994 Northridge-January 17 Tarzana-Cedar Hill Nursery A 360 PA, PV, PD, IV, EPA, EPV

96 1994 Northridge-January 17 17645 Saticoy St., Northridge, CA 180 IV

97 1994 Northridge-January 17 17645 Saticoy St., Northridge, CA 90 *

98 1994 Northridge-January 17 14145 Mulholland 
Dr., Beverly Hills, CA

9 EPV

99 1994 Northridge-January 17 14145 Mulholland 
Dr., Beverly Hills, CA

279 IV

PA, PV, PD (large peak acceleration, vecolcity and displacement); IV, ID (large incremental velocity, displacement), EPA, 
EPV (large effective peak acceleration, displacement); * Unknown
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5.5.4  daMPEr installation

There are several methods typically used to install a damper in a structure. In the literature, damper 
installation is also referred to as damper configuration. In this book, the term configuration is used 
to denote the locations of dampers installed in a structure, and installation is used to denote the 
detailed manner of how a damper is installed.

In Figure 5.24, the most popular methods of damper installation are illustrated. A unified 
factor, called the geometrical magnification factor, is used to quantify the effect of the type of 
installation.

From Figure 5.24, it is seen that when level j have level j – 1 have displacements pj and pj–1, or 
velocities vj and vj–1, respectively, the two ends of the damper do not necessarily have the same dis-
placements and/or velocities, except for the case shown in Figure 5.24c.

TABLE 5.5
Supporting Stiffness

Damping 
Ratio (%)

Increase of 
Acc. (%)

Increase of 
Disp. (%) γk

10 10.27 4.83  0.86

20  8.72 4.62  2.87

30  9.21 5.51  5.02

40  9.61 6.15  7.30

50  9.87 6.68  9.39

60  9.92 7.32 12.17

70  9.47 7.78 14.72

80  9.54 8.33 17.33

90  9.4 8.69 20.00

100  9.28 9.07 22.21
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FIGURE 5.24  Damper installation.
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The geometrical magnification factor, Gmj, is now used to unify all these cases. Denoting the 
relative displacement between the two ends of the damper j as drj and the relative displacement 
between the two levels as pj − pj−1, the geometrical magnification factor, Gmj, for the jth level is 
defined as

	
G d

p pmj
rj

j j
=

− −1
 (5.145)

With the assumption of linear systems, if the modal displacement of the ith mode, denoted as drji, 
is present, then

	
G d

p pmj
rji

ji j i
=

− −1
 (5.146)

Here, (pji – pj-1i) is the relative displacement (floor drift) between the two levels of the ith mode. 
From Equation 5.146, it is seen that the value of this factor is not affected by the normalization of 
modes, which is only a function of the geometrical installation. It can be proven that for the instal-
lation shown in Figure 5.24a, the factor is

	 Gmj j= ( )cos θ  (5.147)

where θj is the installation angle.
Meanwhile, for the installation shown in Figure 5.24b, the magnification factor is

	
G L

Gmj j
j

j
= ( )cos θ  (5.148)

where Gi and Li are, respectively, the height of the story and the installation height.
The most basic damper installation is shown in Figure 5.24c, where the amplification factor is 

always

	 Gmj = 1  (5.149)

For the installation depicted in Figure 5.24d, the magnification factor can be written as

	
Gmj = ( ) +

+( )sin sin
cos

θ
θ

θ θ1
2

1 2
 (5.150)

where θ1 and θ2 are the angles defined in the figure.
For the remaining three installations shown in Figures 5.24e through g, the amplification 

factors are

	
Gmj =

+( )
cos

cos
,θ

θ θ
1

1 2
 (5.151)

	
Gmj = sin

tan
θ
θ

1

2
 (5.152)
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and

	
G a

mj =
+( ) −cos

cos
cosθ

θ θ
θ1

1 2
2 (5.153)

respectively. It can be seen that for the cases shown in Figures 5.24a through c, the geometrical 
magnification factors are equal to or less than 1. However, the cases shown in Figures 5.24d through 
g will have geometrical magnification factors that are considerably greater than 1.

On the one hand, when the factor is greater than 1, a broader range of choice is available to select 
various types of dampers. This is because the difference of the displacement pj – pj–1 is usually a 
very small number. Without the help of a magnification factor that is greater than 1, the relative 
displacement drj will also be quite small. Similarly, the relative velocity will be small. With such a 
small relative displacement or velocity, many types of dampers will not provide effective capability 
for energy dissipation. By using large values of Gm, however, these types of dampers can be used.

On the other hand, when the geometrical magnification factor is considerably greater than 1, the 
supporting stiffness becomes a more important issue. That is, if the supporting stiffness is not suf-
ficiently strong, the effectiveness of the geometrical magnification will be greatly reduced.

Note that with th e presence of the geometrical magnification factor, the equation for damping 
ratio estimation is modified. Using the case of SDOF systems with linear viscous damping, e.g.,

	
ξ

ω
= ( ) =

c G x
kx

G c
mk

n m
m

0
2

0
2

2

2 2
,  (5.154)

the factor Gm
2 can be a large number. For example, in the case shown in Figure 5.24f, if θ1 = 30° and 

θ2 = 4°, then Gm = 7.15 and Gm
2 = 51.13.

Practically speaking, using a large value of Gm is not for large energy dissipation. This is because 
if a larger amount of energy needs to be dissipated, the value of the damping coefficient can simply 
be increased. It is not necessary to use the damping installations shown in Figures 5.24d through g, 
which need a more complex supporting mechanism and will thus increase the cost. In other words, 
using these installations is primarily to magnify the displacement.

However, Equation 5.154 indicates that the geometrical magnification factor will also magnify 
the damping force. In this case, the damping force can be magnified 7.15 times, which should be 
accommodated by the four bars. Such a large force may tend to buckle these bars, thereby greatly 
reducing the supporting stiffness.

In practical design, the corresponding supporting stiffness can be calculated on a case-by-case 
basis. However, the basic formula suggested in this section will apply in most cases.

5.6  SUMMARY

In this chapter, several basic design principles for practical damper design have been presented. 
They include general classification and modeling of damping based on practical considerations; 
the rectangular law to approach optimal design and to estimate the limit of damping control; the 
concept of damping adaptability used for damper selection; as well as issues related to the installa-
tion of damping devices. In the next chapter, application of these design principles to nonlinear and 
irregular structures will be considered.
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6 System	Nonlinearity	
and	Damping	of	
Irregular	Structures

This chapter continues the discussion on available information of damping design principles and 
approaches for nonlinear and irregular structures. While this general area is a current frontier in earth-
quake engineering research with many challenges yet to be addressed, only the limited amount of 
knowledge currently available is discussed and summarized for possible damping design applications.

6.1  NONLINEAR SYSTEMS

Linear design spectra can achieve good results in the design of nonlinear dampers when the structure 
is simple and the effective damping ratio is low. However, most actual buildings and structures are 
complex in shape and cannot be modeled as SDOF systems, and when higher levels of damping are 
needed, improvements in the design procedure are required. First, Timoshenko damping may over-
damped the effective damping ratio in these cases, one improvement often can be realized by using the 
force-based effective damping approach. Furthermore, special requirements for supporting stiffness 
should be taken into account. Two essentially different types of damping should be distinctly designed 
by considering the effective damping estimation, the required supporting stiffness, and the amplitude of 
the input level of ground excitations. Secondly, the design spectra approach based on linearized SDOF 
systems and used to compute the responses of multiple-story structures requires modification, both with 
regard to the formulation of damping and for the estimation of the effective period and effective modal 
shapes. Even with these modifications, the estimation of the structural response can still contain signifi-
cant errors due to system nonlinearities and structural irregularities. Consequently, in many cases, time 
history analyses are needed to evaluate and/or finalize the corresponding damper designs.

6.1.1  classifications of nonlinEar daMPing

As noted in Chapter 5, damping was classified according to Lazan’s theory (1968), which focuses on 
the total damping behavior of a structure with added damping systems. In practical design, damping 
needs to be classified, but the focus is on the damping devices. Currently, most codes classify the 
damping as either displacement dependent or velocity dependent. In Chapter 5, it was pointed out 
that such a classification does not clearly distinguish the concepts of linear and nonlinear damp-
ing. For example, the amplitude of the damping force of a linear viscously damped system will be 
proportional not only to the velocity, but also to the displacement and, for certain types of nonlinear 
damping, the damping force does not directly depend on the velocity or the displacement. In this 
book, this classification is not followed.

Alternative classifications are hysteretic damping, viscoelastic damping, and recentering damping 
(Constantinou, Soong, and Dargush 1998). These classifications are helpful for mathematical model-
ing. However, for practical design, often the boundaries among these damping categories are some-
what blurred. For example, a viscoelastic damper is not self-centered during a strong earthquake; 
however, it will have a self-centering capability after the vibration. In addition, the viscoelastic mate-
rial may exhibit a good hysteretic loop for energy dissipation. In damper design, it is often necessary to 
clearly know the damping category in order to perform damper modeling and response computations.
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One method of damping classification relating to practical design is to divide the dampers into 
linear and nonlinear categories. These classifications are helpful in understanding the nature of 
dampers and the functions of damping in a structure and are used in this book.

Linear dampers include the linear viscous damper, which is primarily a hydraulic damping mech-
anism with a damping force proportional to structural velocity. Most viscoelastic dampers also pro-
vides linear damping, whose damping force is proportional to structural displacement. This kind of 
viscoelastic damping is often obtained through viscoelastic materials and the most popular damper 
utilizes the shear mode. Note that some researchers also believe that the damping of a structure is 
better modeled with the damping force proportional to the displacement. Therefore, this type of 
damping with viscoelastic characteristics is sometimes called structural damping.

Nonlinear dampers include the sublinear viscous damper, with the amplitude of the damping force 
proportional to the amplitude of velocity raised to an exponent. These types of dampers are also often 
made by hydraulic devices. When the damping exponent is greater than 1, it is called a superlinear 
damper, which is less effective in earthquake vibration control, and thus it has a primarily theoretical 
meaning. Note that when the damping exponent is equal to 1, the damping becomes linear. Generally 
speaking, the amplitude of structural velocity contains two components, namely, the frequency and the 
amplitude of the displacement. The exponent of the frequency and the exponent of the displacement 
can be different. In practice, the slight difference can yield rather large design errors. Nonlinear damp-
ing can also be accomplished through the use of friction dampers. Once the maximum friction force is 
reached due to transverse vibration, the force stays virtually constant and the energy dissipation loop 
is close to a rectangular loop, which is a special case of the parallelogram-shaped force–displacement 
loop. In fact, when the stiffness of the structure is considered, the energy dissipation loop is a general 
parallelogram. Metallic dampers start to dissipate energy when the metallic material begins to yield. 
Thus, for these dampers, the energy dissipation loop is close to the bilinear parallelogram.

6.1.1.1  Control Parameters and Design Parameters of Nonlinear Systems
6.1.1.1.1 Linear and Nonlinear Systems
The concept of control parameters and design parameters of a nonlinear system is basically the same 
as that specified for linear systems. However, a linear system has two advantages over nonlinear sys-
tems in terms of analysis and design. The first is that only two independent control parameters, the 
period and the damping ratio, are needed for the entire damper design. The second advantage is that 
the level of any responses of the linear system is proportional to the level of the excitation. In other 
words, if the amplitude of the excitation is doubled, so are the responses. Therefore, if these two 
independent control parameters are determined, all the responses, including the control parameters, 
can be determined if the input level is specified.

Theoretically, a nonlinear system will not have the period and damping ratio of a linear system. 
Also, different nonlinear systems will have different parameters and the number of these indepen-
dent parameters is greater than two. For example, a structure with sublinear viscous dampers can 
be characterized by the equivalent damping coefficient, the effective period, and the damping expo-
nent. On the other hand, a structure with friction dampers can be described by the characteristic 
strength, the loading and unloading stiffness, etc.

Because the relationship between the input and the response is not exactly proportional, the 
responses of the nonlinear system cannot be determined with information from these design parame-
ters and the input level. Furthermore, modal superposition will not apply. In other words, if the design 
parameters are given, the control parameters cannot be directly determined. Quite often, iterative 
estimation of the structural responses is necessary. This issue is discussed later in this chapter.

To simplify the design procedure, nonlinear systems may be linearized. As mentioned 
above, the resulting equivalent linear system has only two design parameters. Therefore, no 
matter what the characteristics of a nonlinear system are, the two basic control parameters will 
be involved.
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6.1.1.1.2 Design Procedure
In the early years of damping systems development, it was often assumed that the total damping 
of a structure was not very large, so that the structure with dampers, linear or nonlinear, was 
treated as a linear system. In this case, the design procedure for a structure with added dampers 
is rather simple and straightforward. Furthermore, even if an initial design is not satisfactory, the 
damping ratio control parameter can simply be adjusted until the design parameters are optimal.

In nonlinear systems with large damping, even though they can sometimes be treated as equiva-
lent linear systems, both design parameters, often need to be adjusted. The following two design 
procedures will help clarify the difference between these two approaches.

6.1.1.1.2.1  Common Design Procedure The first design procedure may be referred to as the 
control parameter-based design, or more specifically, the damping ratio based design, which con-
tains the following steps:

 1. The designer estimates the response of a structure without added dampers. If the design 
parameters exceed the required values, then the original control parameters, the period, 
and especially the damping ratio shall be examined.

 2. If the damping ratio is found to be small and the corresponding value needs to be increased 
to control seismic-induced vibration, the desired control parameters, especially the damp-
ing ratio or the numerical damping coefficient, will be established.

 3. According to the required control parameters, appropriate dampers are then selected.
 4. Based on the specifications of the selected dampers as well as information taken from the 

original design of the structure, the control parameters of an equivalent linear system are 
computed.

 5. According to the “effective” control parameters, the design parameters of the structure are 
calculated again to see if they are satisfied.

This is a common design process and seems reasonable. That is, since the original design is not 
satisfied based on building codes, increasing damping is a good concept. On the other hand, since 
nonlinear dampers often have more than two control parameters, this design procedure may make 
damper selection difficult for inexperienced designers.

More importantly, since the design object is a nonlinear system, the control parameters, i.e., 
the effective damping ratios, are essentially functions of the design parameters, i.e., structural dis-
placements. In the literature, iterative methods are used to address this chicken-and-egg problem. 
However, many of the iterative algorithms used in the literature either do not converge, or do not 
converge to the correct values. In this chapter, it is attempted to provide certain formulas to simplify 
the iterations.

6.1.1.1.2.2  Forward Design Procedure The second design procedure may be referred to as the 
design parameter-based “direct” design, or more specifically, the displacement-based design, which 
contains the following steps:

 1. Select proper dampers with their specifications parallel to the design of the structure.
 2. Use information about the structures and dampers to determine the control parameters, the 

period, and the damping ratio.
 3. Use the control parameters to compute the design parameters of the structure.

The forward design requires computation of the structural response directly, which can increase 
computation burdens and design costs, especially for initial estimations. This is because the compu-
tation deals with nonlinear integrations. In this chapter, several design principles are listed to help 
making certain decision in order to simplify the computations.



346	 Structural	Damping:	Applications	in	Seismic	Response	Modification

6.1.1.1.2.3  Modified Spectra-based Design Designers can use nonlinear design spectra to 
seek a reasonable selection of dampers and locate the responses at the same time. Specifically, this 
method utilizes the precalculated nonlinear response spectra. In the literature, debate on using the 
nonlinear spectra frequently appears. One of the disadvantages is that the general nonlinear spectra 
need more than two control parameters. Exhausting all the control parameters is very costly and 
inconvenient. However, once the nonlinear damping is classified into the bilinear and the sublinear 
cases, only four parameters remain for each individual situation. This makes using the nonlinear 
spectra more feasible. In Chapter 8, two kinds of nonlinear design spectra for the sublinear and 
bilinear damping respectively will be suggested.

The major disadvantage of using these tables is that the approach is for SDOF systems only, since 
it is impossible to list all of the response data for multi-degree-of-freedom (MDOF) systems. In order 
to build a bridge between the SDOF and the MDOF systems, empirical formulas are used. Note that 
once again, these empirical formulas do not provide accurate solutions, and thus are for initial esti-
mation purposes only. Experienced designers may choose this second design path, which provides 
more design freedom, especially in choosing suitable combinations for the structures and dampers.

6.1.1.2  Nonlinear Damper Classification
In both the common and the forward design procedures, designers need to account for the interpre-
tation from the damper specifications to the structural control parameters. It is therefore helpful to 
continue the discussion on the characteristics of various dampers.

6.1.1.2.1 Basic Categories
By examining the control parameters of an “equivalent linear” system reduced from a nonlinear 
system, the classification of bilinear damping and sublinear damping can be convenient for practical 
damper design.

First, this classification is based on the fact that bilinear damping will notably affect the control param-
eter of period, whereas the influence of sublinear damping is limited. Secondly, the peak input–peak out-
put relationship of a bilinear system is rather proportional, whereas sublinear damping is nonproportional.

Bilinear damping, as mentioned before, is also called hysteretic damping or structural damp-
ing. Meanwhile, sublinear damping is mainly contributed by viscous devices, which are primarily 
hydraulic dampers.

6.1.1.2.1.1  Bilinear Damping Bilinear damping is mainly contributed by using bilinear damp-
ers. Installation of these devices will increase both the capability of nonlinear energy dissipation, 
primarily through the effective damping coefficient, and some of the elastic restoring force, in terms 
of the effective stiffness. In this chapter, the general concept of bilinear dampers is discussed and 
in Chapter 8 conventional design principles for bilinear dampers are discussed. When the damping 
effect, or effective damping ratio, is assumed to be small so that the approximation of Timoshenko 
damping is appropriate. The bilinear damping can be large. In this case, an alternative approach to 
account for the damping effect based on the force ratio is suggested.

Bilinear damping can also be contributed by the effect of actual dry friction between the mem-
bers of a structure. In many cases, this friction effect can drastically increase damping. However, 
the stiffness of the structure is often not significantly affected. Quantifying these damping effects 
is still a research topic for various types of member connections and structures. This friction usu-
ally takes place during initial movement of the structure, but may be restricted due to limitations 
where large relative displacements among the structural elements are not possible. In other words, 
the bilinear damping occurs when the vibration level is small and is limited when the vibration 
becomes large. It is often worth applying a large damping at the beginning of the vibration, which 
can suppress further growth of the motion. Secondly, the friction forces of structural connections 
are often not controllable, and can be varied due to many factors such as the age of the connections 
and structures, the pair of friction materials, and certain environmental effects.
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Although bilinear damping due to structural connections is not controllable, it should be con-
sidered for damping design after the initial damping is estimated. Certain structures contain a 
large amount of friction and others do not. In a structure with large initial friction, the damping 
ratio will be higher. Recall that higher initial damping also induces the effectiveness of damping 
devices.

Bilinear damping can also contribute to the design of structures, which are deliberately designed 
with friction pairs or viscoelastic walls that may be modeled as bilinear energy dissipators. Bilinear 
damping can also occur when the structure enters the inelastic range. In this case, the damping effect 
will become notably larger, but the stiffness will be reduced. Today, bilinear damping approaches 
to account for inelastic actions for structures with added damping devices have been written into 
building codes (e.g., NEHRP 2003). 

Although using bilinear damping is less effective than using sublinear damping in earthquake 
response control owing to the uncertainty of the random excitations, it provides the most effective 
displacement reduction in base isolations. The results are significant when compared with other 
types of damping.

Bilinear dampers are not the most effective devices. They can be used for earthquake protection 
and have been applied in actual structures. However, for frequent large structural motion, such as 
wind- and traffic-induced excitations, the durability of bilinear devices is not as good as viscous 
dampers. Another drawback is that bilinear dampers often result in permanent displacements of the 
structure, which is not desirable in many applications. The major advantage of bilinear dampers is 
their low cost. For structures with a limited budget for earthquake protection, bilinear dampers are 
often a good choice. In Chapter 8, the advantages and disadvantages of bilinear damping is further 
discussed.

6.1.1.2.1.2  Sublinear Damping Sublinear damping is mainly contributed by hydraulic devices. 
Although a hydraulic damper can provide both a superlinear and sublinear effect, sublinear damp-
ing is the most commonly used form. Dampers with slight sublinear effects do not increase the cost 
of manufacturing. Higher degrees of sublinear damping, i.e., with a damping exponent smaller than 
0.5, will increase the cost, but in many cases remain cost-effective.

In Chapter 8, Section 8.1, the advantages and disadvantages of sublinear damping are further 
discussed; here, the major advantages they offer, such as high-level effectiveness and self-centering, 
are briefly pointed out. Because of these advantages, sublinear damping should be one of the main 
considerations for use in controlling earthquake-induced vibration. Compared to bilinear and linear 
dampings, these advantages may be significant.

6.1.1.2.2 Practical Terminology
In the above discussion, the types of dampers are classified according to the nature of the cor-
responding damping forces and damper displacement (or velocity). Namely, when the relationship 
between the damping force and the damper displacement is linear, it is referred to as linear damp-
ing. When the relationship between the damping force and the damper displacement is close to a 
bilinear parallelogram, it is referred to as bilinear damping. Finally, when the relationship between 
the damping force and the damper velocity is sublinear, it is referred to as sublinear damping.

However, in practice, a pure linear damper is rarely encountered. In this case, the most com-
monly used bilinear dampers can be called dry dampers, since these devices often are not of a 
hydraulic type. On the other hand, most sublinear dampers are hydraulic devices, and may therefore 
be called wet dampers.

6.1.2  conVEntional PrEliMinary EstiMation

When a structure can be modeled by an SDOF system, or its response can be represented by the 
first effective mode of an MDOF system, the following conventional treatment based on simplified 
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linearizations can be used. To better understand this phenomenon, nonlinear design approaches are 
briefly reviewed.

6.1.2.1  Nonlinear Dynamics
6.1.2.1.1 Response Spectra-based Design
Response spectra-based design is more generic phrase for the approach described in commonly 
used building codes. Generally speaking, the modified spectra-based design using the linearized 
model with the two basic control parameters can be considered as the response spectra-based 
design. On the other hand, if time history analysis is used, the essence of the design procedure is 
different.

As mentioned above, two control parameters are needed to use the design spectrum. In current 
building codes, to deal with the structural nonlinearity, the major change is the computation of the 
effective fundamental period, Teff. This is obtained by multiplying the square root of the effective 
ductility demand due to the design earthquake, μD, by the period of the elastic structure T1. This 
equation was implied before and is clearly written as

	 T Teff D= µ 1 	 (6.1)

Equation 6.1 is further generalized as

	 T Teffi i= R 	 (6.2)

where Teffi and Ti are the ith effective and original period, respectively. Here, R is the response modi-
fication factor for the SDOF system. As an example, for elasto-perfectly-plastic (EPP) systems,

	
R = =µD

u

eff

k
k 	

(6.3)

Here, ku and keff are, respectively, the unloading and the effective stiffness of the system, instead 
of for individual dampers, μD is the structural ductility.

In Chapter 7, it will be shown that the numerical damping coefficient B can be written as

	 B ≈ +3 0 9ξ . 	 (6.4)

Therefore, the effective numerical damping coefficient can be calculated using the concept of 
Timoshenko damping, that is,

	
B E

Ei effi
di

pi
i= + = ( ) + +3 0 9 0 24 3 0 90ξ ξ. . .

	
(6.5)

Here, Edi and Epi are the dissipative and potential energies, respectively, of the ith mode, and ξ0i is 
the original damping ratio of the ith mode.

Or, by using the force-based effective damping ratio,

	
B f

fi effi
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(6.6)
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Here, fdi and fri are the damping and restoring forces of the ith mode, respectively.
Once the effective period and damping are found, the spectral value of displacement, diD, and 

pseudo acceleration, aiD, can be determined. For example, according to NEHRP 2003/2009,
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SD1 and SDS are defined in Chapter 2. Furthermore, Γi is the modal participation factor defined 
in Chapter 3, which is repeated in a later section, and S is the total number of interesting modes. 
Determining this number by using certain modal contribution indicators was also discussed in 
Chapters 3 and 4.

Note that the displacement and acceleration are those of the roof of the structure, if the system is 
an MDOF structure. To compute the structural displacement, called the floor deflection of the first 
“mode,” the following equations can be used so that the displacement vector is

	 dmax ,= { } = ( ) =d mj Dd1 1p j 1,..., n	 (6.9)

The story pseudo-acceleration vector is

	
as sa m s j 1,..., nj1 1 1 1

2= { } = ( ) =a Dp ,
	 (6.10)

and so on for higher “modes” with

	 diD ij iD id m= { } = ( ) = =d p , j 1,..., n; i 2,..., S	 (6.11)

for displacements vector and

	
as s iD ii jia m s j 1,..., n; i 2,..., S= { } = ( ) = =a p 2 ,

	
(6.12)

for story acceleration vector. Here, dij and aSij are, respectively, the ith relative displacement and 
pseudo acceleration at the jth floor; and S is again the number of modes of interest. Equations 6.9 
through 6.12 indicate that the modal displacement and acceleration will be distributed from the roof 
movement to the total stories.

Note that in Equations 6.9 through 6.12, the mode shape pi belongs to the elastic structure, which 
is rewritten as follows:

	
p i

ni
jip

p= { } = =1 , j 1,..., n; i 1,..., S
	

(6.13)

In other words, pi belongs to a linear system. It is understandable that when the structure exceeds 
its yielding point and becomes inelastic, or when nonlinear dampers are installed, the entire system 
is nonlinear, so that, theoretically, there are no modes or mode shapes.
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Thus, for a more accurate computation of a nonlinear structure, in addition to modifying the 
period as described in Equations 6.1 and 6.2, the damping ratio and the “mode” shape should also 
be managed. In this chapter, these two basic issues are discussed in detail for the spectra-based 
design.

Once the displacement and the acceleration vectors are calculated, modal combination methods 
can be used to obtain the total responses, such as the square-root-of-the-sum-of-squares (SRSS) or 
the complete quadratic combination (CQC).

Example 6.1

Suppose a structure can be treated as an SDOF system with a fundamental period of T = 1.5 (s) 
and an original damping ratio of ξ0 = 5%. When the structure yields under earthquake loadings, it 
has a maximum ductility of μD = 5. In this case, the energy dissipated by the nonlinear response in 
the half cycle of the maximum deformation is Ed = 402 (kN-m) and the damping force is fd = 3000 
(kN). At the maximum deformation, the remaining potential energy is Ep = 2.399 (kN-m) and the 
restoring force is fr = 56,250 (kN).

The effective period and numerical damping coefficient need to be determined.
According to Equation 6.1, the effective period is calculated to be 3.35 (s). According to 

Equations 6.2 and 6.3, the effective period is calculated to be 7.5 (s). According to Equation 6.4, 
the effective damping coefficient is calculated to be 17.0%. According to Equation 6.5, the effec-
tive damping coefficient is calculated to be 13.0%.

6.1.2.1.2 Time History Analysis
As mentioned previously, the spectra-based design for nonlinear system is not quite accurate, which 
thus is useful for initial estimations, but may not be suitable for final designs. In fact, many codes 
suggest using time history analysis as a complementary measure. In Chapter 2, several important 
issues for time history analysis were discussed.

6.1.2.2  Nonlinear Statics
In addition to nonlinear dynamic analysis, the static approach is still used in practice. The major 
design procedure of the nonlinear static approach is briefly reviewed as follows:

6.1.2.2.1 FEMA Method 1
The Federal Emergency Management Agency (FEMA) method 1 uses the data of the linear SDOF 
system to determine the target displacement of a nonlinear MDOF system. Baseline data used to 
determine the target displacements are obtained through statistical studies on bilinear and trilinear 
non-strength-degrading SDOF systems with 5% damping. The general nonlinear force–displace-
ment relationship is represented with a bilinear model.

By simply employing a coefficient, CN, the target displacement, vector, d1D, of the yielding struc-
ture is described by the following equation:

	
d1

2
1D N A eff eff effC S T T m= ( ) ( )ξ , p

	 (6.14)

Comparing Equation 6.14 with the combination of Equations 6.7 and 6.9, the key issue is to find 
the coefficient CN. Here, CN contains a series of coefficients, especially the function of a ratio of 
maximum inelastic displacement and the peak elastic spectral displacement. Different researchers 
have suggested different formulas for CN. Each equation formula has its own working condition 
and it is difficult to precisely specify or quantify these conditions. Interested readers can consult 
NEHRP 2003/2009 for details on how to calculate this coefficient.
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6.1.2.2.2 FEMA Method 2
Unlike method 1, which uses the initial effective stiffness, method 2 determines maximum response 
based on the displacement corresponding to the intersection of the capacity curve of the structure 
and the spectral demand curve characterizing the design seismic load. The target displacement is 
iteratively calculated through the effective stiffness based on nonlinear deformations. This method 
is then more suitable for larger damping.

To carry out this analysis, a pushover curve is needed, i.e., a static load vs. deflection curve. The 
philosophy of the pushover curve is based on the softening spring caused by the gradual proces-
sion of yielding from an initial proportional relationship. Thus, a rather constant stiffness following 
Hooke’s law is observed at the initial stage. After the load passes the yield point of the load-deforma-
tion curve, the instantaneous stiffness begins to drop. As the load is further increased, the increase 
of displacement becomes nonproportionally larger. The pushover curve is the plot of the load vs. the 
corresponding deformation relationship in Cartesian coordinates that represent the property change 
of the structural model, accompanied by the corresponding changes to its dynamic properties.

An MDOF structure will have multiple input loads because it has multiple lumped masses. To 
achieve the pushover curve of the entire structure, the load configuration or load pattern must be 
determined. That is, the pattern of pushover degradation depends on the pattern of lateral load. In 
the literature, many researchers have expressed concern regarding the topic of distributed seismic 
load on yielding structures (e.g., Ramirez et al. 2000). One of the simplest approaches is the design 
procedure suggested by FEMA (1997), which requires the use of at least two different patterns for 
the lateral loads. The idea is to produce the bounds of the structural responses. The first pattern, 
called the uniform pattern, is based on lateral loads proportional to the total weight at each floor 
level. The second pattern, called the modal pattern, is closely proportional to the fundamental mode 
shape. FEMA (1997) also suggested calculating the load pattern by combining the modal responses 
according to the response spectrum. The total number of modes used should capture 90% of the 
total modal mass ratios.

Chopra and Goel (2002) suggest a modal pushover analysis that combines the fundamental and 
several higher effective modes. This method can be more accurate, especially when the higher 
modes contribute more significantly to the total deformation. However, the above-mentioned load 
patterns are still used.

Figure 6.1 illustrates this procedure to find the pushover curve, an example of which is shown in 
Figure 6.2a. Note that in Figure 6.2, ku and kd are, respectively, the unloading and the yield stiffness 
of the system instead of the individual dampers, while fm and fy are, respectively, the maximum and 
yield force of the system. In addition, the effective stiffness is taken to be the secant stiffness, that is,

x1

x2

V = f1 + f2

f2

f1

FIGURE 6.1  Obtaining the pushover curve.
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	 k k kN meff = ( )sec 	 (6.15)

Suppose the pushover curve is obtained, which is the summation of the lateral force or the base 
shear vs. the roof displacement. The pushover curve is intersected with the capacity curve, which 
provides the basis for the following procedure:

 1. Estimate the target roof displacement x0, based on either an initial assumption or infor-
mation obtained from previous iterations of this procedure. Once the displacement is 
obtained, either estimated initially or through iterative calculation, the base shear V can be 
determined through the pushover curve.

   Furthermore, the acceleration is computed by using the fundamental modal parameters. 
Thus,

	
a V

m
m sD

eff
1

1

2= ( )
	

(6.16)

   Here meff1 is the effective mass for the first mode, which is repeated as follows:

	
m

J
teff

T

T1
1

2

1 1
=

  ( )
p
p p

M
M  

   In the above equation, p1 is the fundamental mode shape of the first effective mode that 
was defined previously.

 2. The effective stiffness and viscous damping ratio can be determined as a function of the 
ductility and the expected shape of the hysteresis relationship for the response at the ductil-
ity level using either an explicit calculation or tabulated data for different seismic framing 
systems (Applied Technology Council 1996).

   For example, since in this step the displacement x0 is given, the corresponding stiffness 
of the system can be calculated. The unloading stiffness ku (initial stiffness when the sys-
tem is still in elastic range) is

	
k f

d
kN mu

m= ( )0 6
0 6

.
. 	

(6.17)

  The effective stiffness and damping ratio can also be calculated. The secant stiffness is 
assumed to be the effective stiffness keff. Thus,

f

(a) (b)

f

fm
fm

ku ku

aku

keff

(kseq)
0.6fm

fy

d0.6 dyx0 x0
X X

FIGURE 6.2  (a, b) Pushover curve and bilinear approximation.
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	 k f x kN meff m= ( )0 	 (6.18)

  The secant stiffness, keff, is the slope of the line from the origin to the point at the target 
displacement x0, which is shown in Figure 6.2a. The corresponding structural ductility, μD, 
is then written as

	
µD

u

eff

uk
k

k
k

= =
sec 	

(6.19)

  From Equation 6.1, it is seen that,

	
T k

k
T f m

x
seff

u

eff

m= = ( )1
0

2π
	

(6.20)

 3. Generally speaking, a standard design spectral value determined by T1 as the period of the 
structure in linear range with ku and ξ = 0.05 can be compared. In this case, it is known that 
the structure is in the inelastic range or has a large amount of bilinear dampers installed, 
so that the total system is nonlinear. In other words, the “yielding point” has been passed. 
By using effective period Teff and the damping ratio ξ	eff obtained above, values through the 
design response spectra of both the acceleration SA(Teff, ξ	eff) and the displacement SD(Teff, 
ξ	eff) are constructed.

   Note that FEMA suggests using Equation 6.20 to estimate Teff, and using Timoshenko 
damping to estimate ξ	eff. Yet, the relationship between SD and SA is

	
S T S g mD A= ( )

2

24π 	
(6.21)

  Suppose SA and SD are now available, which are the demand values calculated in this step. 
Further, calculate a1D and d1D as follows and compare them with these demand values. The 
acceleration and the displacement of the effective SDOF are converted, to further deter-
mine the responses of the nonlinear MDOF system.

   The roof displacement d1D for the fundamental modal representation of the structure is

	
d x

p
mD1

11

1 11
= ( )

Γ 	
(6.22)

  where x11 is the fundamental modal displacement at location 1, i.e., the roof. Meanwhile, 
Γ1 is the modal participation factor of the fundamental mode and p11 is the first element of 
the fundamental mode shape. Note that in this case, x11 is taken to be x0, which is obtained 
through step 1 (see Figure 6.3).

   By using the computed quantities a1D and d1D from Equations 6.22 and 6.16, the spectral 
capacity curve can be plotted, as shown in Figure 6.3. The intersection point of the spectral 
capacity curve and the design demand curve can be found to determine the design displace-
ment. Note that the design spectrum was discussed in Chapter 2. In Figure 6.3, the Y-axis of 
the capacity spectrum in Figure 6.3b is represented by SA and shown by the broken curve. 
This indicates the statistically determined spectral value. The design spectrum represents 
the relationship between the spectral acceleration and the spectral displacement. The Y-axis 
for this pushover-induced response is displayed as the acceleration a1D. To find the response 
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acceleration, SA and a1D have the same meaning (note that the difference is the constant g). 
Therefore, both SA and a1D are used in this figure. Similarly, the X-axis is marked by both 
SD and d1D. Note that, either a1D nor d1D contains a modal participation factor.

 4. Compare the displacement amplitude calculated from the assumed secant stiffness and 
the damping ratio with the displacement assumed in step 1. If the values differ by more 
than 10%, then ku and keff from step 1 need to be iteratively recalculated until the result 
converges.

 5. For higher modes, this procedure is followed and the ith damping ratio is calculated by 
using the Timoshenko damping as

	
ξ

πi
d

p

E
E

i

i

=
4 	

(6.23)

  Here, subscript i denotes the ith mode and, for convenience, subscript “eff” is omitted.
   The ith relationship between the spectral acceleration and the displacement, aiD and diD, 

respectively, is repeated as

	
d T a miD

i
iD= ( )

2

24π 	
(6.24)

  In Equation 6.24, Ti is the ith period. Meanwhile, the spectral acceleration is computed by 
using the ith modal parameters, which are given by

	
a V

m
m siD

i

effi
= ( )2

	
(6.25)

  Here Vi is the base shear of the ith mode and meffi is the effective mass for the ith mode, 
which is repeated as

	
m teffi
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p
p p

M J
M

2

  	
(6.26)

  where pi is the ith mode shape defined previously.
   The spectral displacement diD for the fundamental modal representation of the structure is

V

A

Design demand curve

Spectral capacity curve

SD, d1Dx11

d0 = X11

From V-x11 curve to spectral capacity

SA , a1D

(a) (b)

FIGURE 6.3  Pushover analysis: (a) force vs. displacement, (b) demand and capacity curves.
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d x

p
miD

i

i i
= ( )1

1Γ 	
(6.27)

  where x1i is the ith modal displacement at location 1, the roof, while Γi is the modal partici-
pation factor of the ith mode and p1i is the first element of the ith mode shape.

   Once the displacement response amplitude is calculated, it must be compared with that 
obtained from the assumed secant stiffness and the damping ratio with the displacement 
assumed in step 1. If the values differ by more than 10%, then ku and keff from step 1 need 
to be iteratively recalculated until the result converges.

 6. The total response is finally calculated through proper combinations, such as the SRSS 
method mentioned earlier.

   There are alternative ways to determine the effective stiffness. This method can be seen 
from Figure 6.2b, where the piecewise lines with slopes ku and aku are used to represent the 
pushover curve and a < 1 is a proportionality coefficient. The intersection of the two lines 
is the yielding point. From Figure 6.2b, it is seen that, in this case,

	
k

a
k kN meff u=

+ −( ) ( )1 1µ
µ 	

(6.28)

  where μ is the displacement ductility and

	
µ = x

dy

0

	
(6.29)

  In Equation 6.28, the following relationship between kd and ku is used:

	 k ak kN md u= ( )	 (6.30)

  where a is a proportionality coefficient called the stiffness yielding ratio and, usually, 
a << 1.

   The corresponding structural ductility μD is then written as

	
µ µ

µD
u
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k
k a

= =
+ −( )1 1 	

(6.31)

  Furthermore, from Equation 6.1, it is seen that,
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(6.32)

6.1.2.3  Engineering Issues
In the literature, it is shown that pushover analysis can provide more accurate results than other 
static nonlinear analysis. Furthermore, this method is claimed to be suitable for structures with 
large damping. However, pushover analysis is based on the static pushover curve and the design 
demand curve. Therefore, it has at least three inherent issues that will affect the design accuracy, 
especially when large damping is present.
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6.1.2.3.1 Issues of Estimation of Effective Stiffness
First, pushover analysis uses the secant stiffness keff (see Figure 6.2). This is equivalent to using the 
diagonal line of a parallelogram. Thus, the stiffness can be overestimated and the damping is often 
underestimated.

6.1.2.3.1.1  Conservative Energy Consider the definition of stiffness in a linear system. It is well 
known that the stiffness of a linear system defines a unique relationship between the force and the 
displacement. Suppose under a force fm, the system has a deformation x0, and the rate defines the 
stiffness. That is, for static cases,

	 k f x kN mm= ( )0 	

For a given displacement x0, the system will have a potential energy E kxp = 0
2 2/  (see Equation 

1.184). Therefore, another expression for the stiffness is

	
k E

x
kN mp= ( )2

0
2

Apparently, in a linear system, the above two expressions are identical. This is because the poten-
tial energy can be written as

	
E f x kNp

m= ( )0

2
-m

However, in a nonlinear system, this equation will no longer hold, because the maximum force, 
fm, can contain two components: the dissipative force and the conservative force: fm = fc + fd (see 
Equation 1.228). Only the conservative force contributes to the potential energy, Ep. That is,

	
E f x f x kNp

c m= < ( )0 0

2 2
-m

	
(6.33)

6.1.2.3.1.2  Estimation of Effective Stiffness When we use an effective linear system to repre-
sent a nonlinear system, the effective stiffness should satisfy the following:

	
k E

x
kN meff

p= ( )2
0
2

	
(6.34)

	 k f x kN meff c= ( )0 	 (6.35)

Therefore, the effective stiffness, keff, will be smaller than the secant stiffness, ksec.
In Chapter 1, it was discussed that a vibration is caused by the energy exchange between poten-

tial and kinetic energies. It is seen that the natural frequency of a linear system can be obtained 
by letting the maximum potential energy equal the maximum kinetic energy, that is, through the 
relationship

	
kx mv m xn0

2
0
2 2

0
2

2 2 2
= = ω
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In nonlinear systems, the above equation is modified as

	
k x m xeff eff0

2 2
0
2

2 2
= ω

	
(6.36)

or
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(6.37)

In other words, considering the dynamic property of a nonlinear system, the secant stiffness 
generally estimates the accuracy and the effective stiffness of a nonlinear system as defined in 
Equations 6.28 and 6.29.

In the bilinear case (see the shaded areas in Figure 6.4), when the system moves from 0 to x0, the 
potential energy is

	
E

k d k x d
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+ −( ) ( )

2
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2
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(6.38)

Therefore,
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(6.39)

By using the displacement ductility μ,
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k k
kN meff

u d=
+ −( ) ( )µ

µ
1 2

2
	

(6.40)

Using the notation introduced in Equation 6.30,

Force
fm

dy x0
Disp.

FIGURE 6.4  Maximum potential energy of a bilinear system.
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Therefore, the corresponding effective period is
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Comparing Equation 6.41 with Equation 6.28, it is seen that the effective stiffness estimated by 
the secant method overestimates by the factor
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(6.43)

6.1.2.3.1.3  Comparisons of Damping Ratios
Timoshenko Damping
In the following discussion, the effective damping ratio of the entire bilinear system is derived by 
using several different approximations of the effective stiffness through the Timoshenko damping 
approach.

First, by using the approach based on the quantities ku and aku for Timoshenko damping, it can 
be written that
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1 	
(6.44)

In Chapter 5, the formula for potential energy given in Equation 6.38 was used to derive the 
damping ratio as
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From the viewpoint of the entire system, this can be rewritten as
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Since the characteristic strength, qd, for the bilinear system can be written as

	 q k k dd u d y= −( ) 	 (6.46)

and further
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(6.47)

Force-based Effective Damping
Another way to calculate the effective damping ratio is through force-based effective damping, that 
is,

	
ξeff

d

m

f
f

=
2 	

(6.48)

where fd and fm are the amplitudes of the damping and maximum forces that were defined 
previously.

Clearly defining the dissipative and restoring forces in a bilinear system is not a simple task. The 
following cases may exist: Case 1: friction dampers installed in a linear structure; Case 2: bilinear 
dampers installed in a linear structure; Case 3: friction dampers installed in a bilinear structure; and 
Case 4: bilinear dampers installed in a bilinear structure. In each case, the dissipative force, fd, can 
be different due to the nonlinearity of the total system.

To simplify the study, assume that the damping force is fd = qd = fy − akudy and the equivalent 
restoring force is

	 f k k dy k x kN mm u d d= −( ) + ( )0 	 (6.49)

Therefore,
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With different equations for the dissipative force, the calculated damping ratio will be slightly 
different.

6.1.2.3.2 Value of Design Spectrum
The second approach is an approximation of the design spectrum. The relationship between SD and 
SA is assumed to be proportional to the coefficient T geff

2 24π , such as expressed by Equations 6.12 
and 6.15. That is, the design demand curve is derived under the condition that the damping force is 
negligible. When damping becomes large, Equations 6.12 and 6.15 will no longer be valid. In this 
case, FEMA method 2 introduces another inaccuracy. Thus, when damping is large, the modifica-

tion factor 1 4 2+ ξeff  should be considered. This was discussed in Chapter 5.

Example 6.2

A bilinear system with m = 1000 (t), ku = 100,000 (kN/m), and a = 0.1 is used as an example. Also, 
suppose that the displacement ductility can be varied from 1 to 10. Equations 6.28, 6.32, and 6.44 
are used to estimate the effective stiffness, the effective period, and the effective damping ratio, 
respectively, when the secant stiffness is used. The corresponding plots are shown, respectively, 
in Figures 6.5a through c. Furthermore, based on Equation 6.38, the effective stiffness, the effec-
tive period, and the effective damping ratio are also estimated through Equations 6.40, 6.42, and 
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6.47, respectively. The plots are shown in Figures 6.5a through c, respectively, as comparisons. In 
addition, in Figure 6.5b, the damping ratio obtained by using the approach of force-based effec-
tive damping is plotted.

In Figure 6.5d, the numerical damping coefficients are shown. From these plots, it is seen that 
the difference caused by using the secant and nonsecant stiffness is very significant. In order to 
observe the effects on the response estimations in Figure 6.6a and c, the seismic spectral coeffi-
cients and spectral displacements are plotted, based on the aforementioned different approaches. 

Here, the estimations are conducted without considering the factor 1 4 2+ ξeff.
For comparison purposes, in Figure 6.6b and d, the seismic coefficient factors and spectral 

displacement, respectively, are plotted along with the modification factor 1 4 2+ ξeff. From Figure 
6.6, the differences under the various approaches can be seen.

In this example, the responses are estimated through simplified formulas described in Equations 
6.7 and 6.8. In fact, Equations 2.336 and 2.338 are used with A = Si = 1.0.

6.1.2.3.3 Iterations
The third approach to approximate the effective stiffness of a bilinear system is based on the fact 
that the effective period and the effective damping ratio are actually functions of the displace-
ment x0. However, these parameters are also needed to determine the displacement x0. Therefore, 
FEMA method 2 must use iteration to determine the effective stiffness. Publications reporting 
nonconvergent cases (e.g., Nagarajaiah, Mao, and Saharabudhe 2006) can be found in the literature.
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FIGURE 6.5  (a–d) Comparisons obtained using different effective stiffness.
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Using pushover analysis for structures with large damping (i.e., the combined damping ratio ξΣ is 
greater than 30%) is not recommended. Therefore, the FEMA method should not be used for final 
design. A possible criterion is

	 ξΣ ≤ 30% 	 (6.51)

Note that FEMA methods 1 and 2 were not originally established for damper designs. It is par-
ticularly difficult to use the FEMA methods for sublinear damper design. Furthermore, in FEMA 
method 2, the pushover curve is only used for initial estimation. After several iterations, the defor-
mation curve is considerably altered. In this case, it is not necessary to have an “accurate” initial 
guess, because the computational effort for developing the pushover curve is extensive.

6.1.2.4  Equivalent Linear SDOF Systems
6.1.2.4.1 Equal Energy Approach
The theory of equal energy assumes that the maximum deformation energy of an inelastic struc-
ture, Ein, is equal to the maximum potential energy of an elastic structure, Elin, whose stiffness is 
identical to the inelastic structure before yielding.

	 E Enonl lin= 	 (6.52)

Figure 6.7a shows the relationship between an idealized SDOF EPP system and its corresponding 
equivalent SDOF linear system. Figure 6.7b shows a general bilinear system and its corresponding 
linear system. In these figures, fN and dN are the maximum force and displacement of the nonlinear 
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FIGURE 6.6  Response estimations affected by using different effective stiffness: (a) without modification, 
(b) with modification, (c) without modification, and (d) with modification.
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system, respectively, while fL and dL are the maximum force and displacement of the corresponding 
linear system, respectively. In both cases, the stiffness of the linear system is identical to the unload 
stiffness (elastic stiffness) of the inelastic system.

According to the theory of equal energy, in Figure 6.7a, the maximum deformation energy is 
given by the area O-Y-N-E, whereas the maximum potential energy of the corresponding system 
is given by the area O-L-D. That is, denoting the area O-Y-N-E to be AOYNE and the area O-L-D to 
be AOLD to represent the amount of energy of the elastoplastic system and the corresponding linear 
system results in

	 A AOYNE OLD= 	

Equation 6.52 is used to estimate the maximum displacement of the inelastic system by using 
the corresponding linear system. Without a loss of generality, assume that the mass of these SDOF 
systems is unity, that is, these systems are all represented in monic form. Furthermore, let the linear 
systems have a typical damping ratio of 5%. In this case, since the stiffness k is known and using 
the design spectrum mentioned in Chapter 1, the displacement, dL, and the force, fL, are obtained.

Note that in both curves of Figures 6.7a and 6.7b at point Y, the structures start to yield. Thus, 
fy and dy are, respectively, the yielding strength and the corresponding deformation for both cases. 
Since fy and dy are fixed properties of the nonlinear system, fy and dy are also known to the designers.

For an EPP system, based on Equation 6.52,

	
d

d d
dN

y

L y=
+2 2

2 	
(6.53)

This equation provides a preliminary estimate of the nonlinear response.
For a general bilinear system, the relationship becomes comparatively more complex. In this 

case,

	
d d

d d a d d
aN y

y y L y
= +

− + + −( )2 2 2

	
(6.54)

where a is the ratio of the yielding and unloading stiffness, defined previously.
If both the inelastic and equivalent systems have identical input energy under the same 

seismic excitations, then with equal energy dissipation the remaining vibration energy would 
be equal. In this case, it is acceptable to have a base using a linear system to represent the 
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FIGURE 6.7  (a, b) Treatment of nonlinear stiffness.
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nonlinear system. However, it can be seen that the case of deterministic input energy is very 
rare. In fact, many simulated results can be listed to show that the estimated displacement, dN, 
is problematic.

6.1.2.4.2 Equal Displacement and Response Modification Coefficient
The theory of equal displacement (Priestley 2000) assumes that the maximum deformation or dis-
placement of an inelastic structure is equal to the maximum displacement of an elastic structure, 
whose stiffness is identical to the inelastic structure before yielding.

Figure 6.8a shows the relationship between an idealized SDOF EPP system and its correspond-
ing SDOF linear system. Figure 6.8b shows a general bilinear structure and its corresponding lin-
ear system. In these figures, fN and dN are the maximum force and displacement of the nonlinear 
system, respectively, and fL and dL are the maximum force and displacement of the corresponding 
linear system, respectively.

According to the theory of equal displacement, in Figure 6.8,

	 d dN L= 	 (6.55)

In Figure 6.9, it is seen that when the maximum displacement dL (or dN) is reached, the linear 
system will have the maximum force fL and the nonlinear system will have fN. Clearly,

	 f fN L< 	 (6.56)

Therefore, if the structure is allowed to undergo nonlinear deformation, the maximum force will 
be considerably smaller than the corresponding linear system. The ratio of fL and fN is defined as 
the response modification coefficient denoted as R (also see Equation 6.2),

	
R = f

f
L

N 	
(6.57)
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In NEHRP 2009, the response modification coefficient is used to reduce the level of seismic 
load. The idea is that structures designed to take large displacement ductility can have a large value 
of R and the corresponding seismic load will be R times smaller.

6.1.2.4.3 Equal Displacement and Force: Direct Displacement-based Design
Recently, in conjunction with the development of the performance-based design approaches, many 
researchers have pursued additional displacement requirements to ensure ductility. During the past 
few years, direct displacement-based design (DDBD) has been a subject of interest for the seismic 
design of buildings. 

Figure 6.9 shows a conceptual nonlinear system with large inelastic displacement. It is seen that, 
when the displacement has a large variation Δx, the corresponding variation of force is relatively 
much smaller. Thus, when the displacement is fixed as a design target, it is workable in practice, 
then the design of damping force can be easier. 

As noted earlier in this book, the traditional approach in earthquake resistant design of structures 
is forced-based and typically assumes small damping. Consideration of inelastic deformation capacity 
is an important additional criterion in performance-based design.

From the perspective of damping design, especially for a large value of damping to be delivered 
by added devices, the method to best handle the design of these nonlinear systems is not yet well 
established. There are many interesting and challenging questions that remain to be addressed.

6.1.3  considEration of nonlinEar daMPing for Mdof systEMs

When a structure should not be modeled by an SDOF system, or its response cannot be completely 
represented by the first effective mode of an MDOF system, the methods described in Section 6.1.2 
may introduce large errors. In these cases, the nonlinear damping and the nonlinear structural 
responses should be handled by first identifying the nature of the nonlinearity and then using spe-
cific methods to deal with nonlinearities in question.

6.1.3.1  Generic Nonlinear Damping
Although there are many commercially available dampers with subtle differences and specifica-
tions, dampers can be classified into dry and wet dampers for designs purposes.

Since both dry and wet dampers are nonlinear, when a structure is built with these dampers, the 
entire system becomes nonlinear, despite an apparent linearity of the structure itself. However, it is 
helpful to analyze the following four cases in order to provide an initial estimation of the effective-
ness of the corresponding damper design; 

 1. Bilinear dampers installed in a linear structure
 2. Sublinear dampers installed in a linear structure

∆f

∆X

F 

X 0 

FIGURE 6.9  Variation of seismic force and displacement.
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 3. Bilinear dampers installed in a nonlinear structure
 4. Sublinear dampers installed in a nonlinear structure

In addition, there can also be cases of combined bilinear and sublinear dampers. However, this 
book focuses on the four cases mentioned above. More detailed discussions are provided for cases 
1 and 2 in the next two subsections.

6.1.3.2  General Idea of Nonlinear Damping Design
Bilinear damping and sublinear damping are considered separately in the following based on their 
distinct natures.

6.1.3.2.1 Bilinear Damping
Bilinear damping and its design approach are more thoroughly discussed in Chapter 8. The basic 
idea is briefly described here as part of an overview of nonlinear damping design.

When a single bilinear damper is installed in a structure, the damping force vs. the related 
response of the structure can be modeled as a parallelogram. Based on the parallelogram, the lin-
earization procedure can be estimated to determine the effective stiffness and damping ratio. The 
effective period and the numerical damping coefficient can then be determined, which is further 
used as a link with the design spectrum described in Chapter 2.

When a structure is an MDOF system and multiple bilinear dampers are installed, these dampers 
will reach their yielding point at different times so that the hysteresis loop will no longer be a paral-
lelogram. In fact, although each individual damper will still have the parallelogram-shaped force–
displacement relationship, the “effective modal” force and the corresponding “modal” displacement 
will no longer behave in accordance with a parallelogram. In many cases, the force–displacement 
relationship can become closer to the sublinear energy dissipation model. This creates difficulties in 
following the conventional treatment described above. Furthermore, when a large amount of bilin-
ear damping is used, the issues of nonproportional damping and overdamped system response will 
occur. These situations are discussed in detail in Chapter 7.

On the other hand, when the dampers reach their yielding points at nearly the same time, the 
entire system is still treated as bilinear. Thus, in Chapter 8, based on this assumption, a correspond-
ing design procedure is introduced, which is essentially different from these conventional treat-
ments. This is because with the nonlinearity of the system, the effective stiffness and damping will 
depend on the response amplitude, which is, in turn, a function of the stiffness and damping.

Therefore, the approach of nonlinear response spectra is used. Although the nonlinear response 
can have considerable variation due to many parameters, focusing on the bilinear SDOF system will 
reduce the number of these parameters. Four parameters are sufficient to define the hysteresis loop 
of this SDOF system. For example, the amplitude of peak ground acceleration (PGA), the loading 
and unloading stiffness, and the characteristic strength can be used to generate the bilinear spectra.

An MDOF bilinear system, where it is assumed that the dampers will yield at the same time, can be 
linearized to have several effective “modes,” each of which is assumed to be a bilinear SDOF system. 
Once the parameter of the SDOF system is determined, based on the bilinear spectra, the “modal” 
responses can be calculated. Then, the SRSS method can be used to summarize these responses.

In this process, the “mode” shape function or deformation shape function is needed. In Chapter 
3, the shape functions are taken from an equivalent proportionally damped system. In Chapter 8, the 
generally damped system will be considered.

6.1.3.2.2 Sublinear Damping
Similar to the case of bilinear damping, the basic idea of sublinear damping is provided in the 
context of an overview for nonlinear damping design. The specific design procedure for sublinear 
damping is discussed in Chapter 8.
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Unlike bilinear systems, where the basic force–displacement relationship can still be treated 
as a single parallelogram, it is difficult to find the equivalent damping coefficient for these 
‘effective modes” of sublinear MDOF systems. Therefore, finding the first several “modal” 
responses is not attempted. Instead, only the fundamental effective mode is considered for 
the determination of the equivalent damping coefficient. Once this quantity is calculated, the 
equivalent linear system and the responses of the first several modes can be constructed. Since 
the equivalent system is linear, the system can be decoupled and the modes can be accurately 
determined.

If the degree of nonlinearity is high, similar to the case of bilinear damping design, the nonlinear 
response spectra will be used. Again, focusing on the sublinear damping, only four parameters are 
needed. These parameters are the level of PGA, the modal stiffness of the original system without 
the sublinear damper, the equivalent damping coefficient, and the damping exponent.

6.1.4  yiEld structurE witH suPPlEMEntal daMPing: siMPlifiEd aPProacH

In the above discussion, the state-of-the-practice for simplified nonlinear analysis of a structure that 
can enter a yielding state, which has been used in many codes, was briefly introduced. However, 
the method for adding damping devices to a structure has not yet been addressed. In the following 
discussion, a simplified method for adding dampers to nonlinear structures is provided.

The basic idea of the simplified methods is to use an equivalent linear SDOF system to approxi-
mate the MDOF nonlinear structure with dampers. Among the aforementioned methods, the push-
over analysis is often deemed to be the best choice among the simplified analyses. To carry out 
the analysis, both the effective damping ratio and the effective period of the corresponding SDOF 
system need to be determined.

6.1.4.1  Damping Ratio Summability
When dampers are installed into a structure, there are typically three types of energy dissipations. 
To count all of these energy dissipations, the concept of combined effective damping ratio, ξΣ, is 
used, where it is assumed that

	 ξ ξ ξ ξΣ ≈ + +i d s 	 (6.58)

with ξΣ as the combined effective damping ratio. This can consist of the damping ξi initially pos-
sessed by the structure, also called the inherent damping ratio; the damping ξd contributed by the 
added devices, called the device damping; as well as the damping ξs caused by the nonlinear defor-
mation of the total systems, which is sometimes referred to as the structural damping. In fact, all 
of the “effective damping ratios,” ξ	eff, described in the previous section are actually the values of ξΣ 
in Equation 6.58. That is,

	 ξ ξs eff= 	 (6.59a)

Liang and Lee (1991) have shown that when damping is not very large, i.e., the criterion in 
Equation 6.51 is satisfied, then Equation 6.58 will approximately hold.

Thus, Equation 6.58 is the basis for the design of the dampers for inelastic structures with sim-
plified methods. Based on this assumption, the damping contributions by the energy dissipation 
capability of the elastic structure itself, the added damper, and the inelastic deformation of the yield 
components of the structures can be accounted for separately. After finishing all the individual 
computations, they are combined to obtain the equivalent damping ratio ξΣ.

Note that the effective damping ratios used in Equation 6.59a are all based on the assumption 
that the bilinear deformation can form a full parallelogram. However, practically speaking, when 
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the deformation of a structure enters the inelastic range, the structure may not be fully plastic, nor 
can it be fully elastic. Therefore, there will always be a certain amount of energy dissipation, but it 
may not reach a full parallelogram. In this case, ATC-40 (Applied Technology Council 1996) sug-
gests improving Equation 6.59a as

	 ξ κξs eff= 	 (6.59b)

Here κ is a modification coefficient, which is a function of the effective damping ratio contrib-
uted by the structural yielding. ACT-40 suggests three methods to determine κ.

Method 1: When the energy dissipation loop is close to a full parallelogram, method 1 is 
used. Namely, when ξ	eff ≤ 16.25%, then κ = 1. When ξ	eff ≥ 45%, then κ = 0.77.	 When 
16.25% < ξ	eff < 45%, then κ is determined by linear interpolation.

Method 2: When the structural deformation is not a full parallelogram, but a reasonable 
amount of energy is still dissipated, method 2 is used. Namely, when ξ	eff ≤ 25%, then 
κ = 0.67. When ξ	eff ≥ 45%, then κ = 0.54, and when 25% < ξ	eff < 45%, then κ is determined 
by linear interpolation.

Method 3: When the structural deformation is close to elastic and the energy dissipation is 
low, method 3 is used. In this case, κ is a constant with the value 0.34.

Note that when the effective damping ratio of the yielding structure is calculated, it is not sug-
gested to use those based on the secant stiffness. Namely, Equation 6.38 for the Timoshenko damp-
ing and Equation 6.40 for the force-based damping are considered more suitable than the other 
equations.

6.1.4.2  Period Determination
In the previous section, the modification factor, R, was introduced to determine the effective period 
of a yielding structure from its original period, T1. In this case, no dampers are added.

When bilinear dampers are used, they can provide certain stiffness. In order to simplify the 
analysis procedure, assume that a conceptual bilinear damper is installed into an SDOF bilinear 
structure. The bilinear damper has an effective stiffness denoted by keffd; and the structure has an 
effective stiffness denoted by keffs. In Chapter 8, a more detailed method to combine these two ports 
of stiffness is given. Generally speaking, these two quantities cannot be simply added to estimate 
the total effective stiffness, because the system is nonlinear.

However, in simplified design, the yielding of the damper should take place well before the yield-
ing of the structure. In this case, the stiffness contribution of the damper for the total system can be 
considered to be a constant value. This value will be greater than kdd, the yielding stiffness of the 
damper. However, in many cases, it is acceptable to let

	 k k kN meffd dd≈ ( )	 (6.60)

and let the total effective stiffness of the structure with the damper be

	 k k k kN meff dd effs≈ + ( )	 (6.61)

Here keff is the effective stiffness of the structure with supplemental dampers. It should not be 
confused with the effective stiffness used above for the bilinear structure only.

Therefore, the effective period is written as
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T m

k k
seff

dd effs
≈

+
( )2π

	
(6.62a)

Note that when compared with the structural stiffness keffd, the effective stiffness of the damper, 
kdd, is often very small, that is,

	 k keffd dd>>

Therefore, it is often acceptable to have

	
T m

k
seff

effs
≈ ( )2π

	
(6.62b)

Using sublinear dampers, Equation 6.62b also holds.
In practice, designers may attempt to use a bilinear damper to increase the lateral stiffness of a 

structure. However, the authors do not suggest this idea for aseismic design, because the stiffness 
of the yielding structure can significantly overestimate the value when cases i and ii, as described 
in ATC-40, are considered.

6.2  IRREGULAR MDOF SYSTEM

Most building codes address the issue of vertical and plan structural irregularities, including 
unevenly distributed weight. Buildings with irregularities are very common, and can often be inter-
preted as mass and stiffness irregularities from the structural dynamics' perspective. When damp-
ers are installed in a structure, the distribution of the damping is not likely to be consistent with the 
distribution of the stiffness. If the added damping is large, the dynamic responses of the structure 
may be affected by the uneven energy dissipation, which is caused by damping as well as mass and 
stiffness irregularities. In practice, irregular damping distribution can be more difficult to account 
for than irregular mass and stiffness distributions.

The issues of irregular damping distribution and generally damped systems are closely related 
topics. The former is the main cause of generally damped systems. The latter is the theoretical mod-
eling and formulation to account for irregular damping (Liang and Lee, 1991).

6.2.1  irrEgular structurEs

6.2.1.1  Effect of Structural Configuration
In the previous chapter, the basic procedure for simplified damper design was discussed, which can 
be used for regular structures with proportional damping. In the design of dampers, it is very diffi-
cult to configure the devices to achieve “regular” damping in most cases. Therefore, these irregular 
cases must be addressed. Structures with irregular stiffness, irregular mass, and/or irregular damp-
ing are referred to as irregular structures in this book.

The effect of the irregularity in aseismic designs is considered in this section. Experience dic-
tates that buildings that have irregular configurations can suffer greater damage than those with 
regular configurations. In NEHRP 2003/2009, the reasons for such phenomena are addressed as 
follows:

First, in a regular structure, inelastic demands produced by strong ground motion tend to be 
well distributed throughout the structure, resulting in an even distribution of energy dissipation 
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and damage. In an irregular structure, however, inelastic behavior can concentrate in the zone of 
irregularity, resulting in rapid failure of structural elements in these areas.

Secondly, some irregularities introduce unanticipated stress into the structure that designers fre-
quently overlook when detailing the structural system.

Thirdly, the elastic analysis methods typically employed in the design of a structure often cannot 
adequately predict the distribution of earthquake demands in an irregular structure, leading to an 
unsuitable design.

In addition to the above reasons, irregularities in a structure may introduce significant torsion 
that can considerably increase the resulting stress in structural elements. An irregular structure will 
also have nonproportional damping, which may noticeably reduce the effectiveness of vibration 
control, whereas the damping ratio can be still be very large.

Therefore, for a more comprehensive damper design, the first step is to check the structural 
irregularity. To do so, the conventional definitions of plane and vertical irregularities are considered 
and converted into the stiffness, mass, and damping irregularities for better understanding and 
modeling purposes. In order to involve the mass, damping, and stiffness matrices, a quantitative 
criterion, based on the concept of mode shapes, is considered.

The most “regular” structure can be described as a simple uniformed cantilever beam. Its mode 
shapes are pure sinusoidal functions. For example, the fundamental mode shape is a quarter of the 
sine wave. If the cantilever beam has irregularly distributed mass, it will still have these normal 
mode shapes. However, for each single mode, the mode shape will no longer be a pure sinusoidal 
function. Next, suppose the mass is still evenly distributed but the cross section of the cantilever 
beam changes, so that its stiffness becomes unevenly distributed. The resulting mode shape will not 
be a pure sine function either. In these two cases, a single mode shape can be expressed as a combi-
nation of a series of sinusoidal functions. It is apparent that the more the mode shape departs from 
the pure sine wave, the more irregularity the cantilever beam can have. Therefore, the mode shape 
may be used to quantify the structural irregularity.

It was seen that the mode shapes of either a cantilever beam or a structure can be expressed by 
using the equations introduced in Chapter 2. Here, for convenience, this equation is repeated, that 
is, the jth element of the ith eigenvector, pji, should be described as

	
p

i n j
nji

i= −( ) −( ) + −( )







 = =+1

2 1 1
2

1 sin ,
π

i 1,..., S; j 1,..., n
	

(6.63)

where S is the total number of modes of interest, n is the number of stories, and i denotes the ith 
modes, whereas j denotes the jth story. Note that when j = 1, p1i denotes the model displacement of 
the top story of the ith mode, which is always unity due to normalization. The entire ith mode shape 
can be denoted as

	 p i jip= { } = =, i 1,..., S; j 1,..., n 	 (6.64a)

When the structure has a certain stiffness irregularity, the corresponding mode shapes are dis-
turbed from the pure sine functions. In other words, the mode shape for a single mode will no longer 
be sinusoidal, but instead is represented by several sinusoidal functions. In this case, the mode shape 
is denoted as

	 p i jip= { } = =, i 1,..., L; j 1,..., n 	
(6.64b)

Denote rP as the maximum percentage difference between pj1 and pj1, j = 2,…, n, to be
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where rP can be used as an indicator to determine if the structure has a severe mass-stiffness irregu-
larity. Namely, a preset value, Gp, can be used to determine if the structure has a strong mass-
stiffness irregularity. Usually, Gp is chosen to be about 20%.

Note that the indicator rp is a nonlinear function of the mass-stiffness irregularity, which can 
be expressed as the change in mass and/or stiffness at specific locations, as mentioned in NEHRP 
2003/2009. As the mass and stiffness start to vary, the indicator will grow very quickly. Normally, 
when a 150% change in mass or stiffness at a location occurs, rP will become close to 20%. However, 
after this point, the growth of rP will slow down. Fortunately, to determine if a structure is mass-
stiffness irregular, only the change in rP from zero to about 20% is needed.

In Equation 6.65, only the fundamental mode is considered. It is possible to involve higher modes 
with a different set of the criteria, Gp. For damper design, however, using the fundamental mode is 
sufficient.

Note that in addition to an unevenly distributed mass and stiffness, nonproportional damping 
will also make the mode shape different from the pure sinusoidal function. To clearly understand 
these phenomena, the effect of the mass and stiffness is considered first.

6.2.1.2  Conventional Definitions
In most building codes, the concepts of irregular stiffness and mass are described as the vertical 
irregularity and the plane irregularity. For example, as given in Chapter 2, NEHRP 2003/2009 
defines them as follows:

 1. The vertical irregularity is classified as stiffness irregularity, soft story, and extreme soft 
story; weight irregularity, vertical geometric irregularity, in-plane discontinuity in verti-
cal lateral force resisting elements, and discontinuity in capacity. These were explained in 
detail in Table 2.2A.

 2. Plane irregularity is classified as torsional irregularity, extreme torsional irregularity, re-
entrant corners, diaphragm discontinuity, out-of-plane offsets, and nonparallel system. 
These were explained in detail in Table 2.2B.

In the above classification, the structural irregularities are explained in design terms that can be 
easily understood. However, they are not expressed in terms of basic dynamic parameters, namely, 
the mass, stiffness, and damping. In the NEHRP classification, the stiffness and mass irregularities 
are mixed in both the plane and the vertical descriptions. The damping irregularity is not mentioned. 
In order to better model the structures, the mass M, the stiffness K, and the damping C should be 
considered for both vertical and plane irregularities as described in the following sections.

6.2.2  VErtical irrEgularity

The vertical irregularity of a two-dimensional plan, namely, the Y-Z plan defined in Figure 6.10, 
will be considered first.

For the mass coefficient matrix, there can be two types. The first is the commonly used diagonal 
mass or lumped mass, which presses the mass at each story as a lumped parameter. That is,

	 M = ( ) ( )diag m ti  (6.66a)

In a some circumstances, the mass is evenly distributed, so that
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	 M I= ( )a t 	 (6.66b)

where I is an identity matrix and a is the proportional scalar.
The second case of the mass matrix is the consistent mass, namely,

	 M V V V V= K i K K Mm   diag   tT
K
T( ) = ( )� 	 (6.67a)

where VK is the eigenvector of the stiffness matrix K, and ΛM = diag(mi) is the eigenvalue matrix 
of M, that is,

	 K V  V= ( ) ( )K i K
T diag k kN m 	 (6.67b)

In Equation 6.77, mi and ki are, respectively, the eigenvalues of the mass and the stiffness matri-
ces. If the mass matrix is consistent, namely, the mass M and the stiffness K share the same eigen-
vector matrix, then M and K can commute:

	 MK KM= 	 (6.68)

For a consistent mass of an n-DOF, if

	 m aki i= =, i 1,..., n 	 (6.69a)

or

	 M K= ( )a t 	 (6.69b)

and if the eigenvector matrix satisfies Equation 6.68, the regular mass-stiffness is obtained for the 
case of a consistent mass. Again, the mass irregularity in this case is not an independent concept, 
which also relies on the stiffness matrix. In a general case, the stiffness in Equation 6.67b is not 
regulated. Therefore, even if the mass is consistent with the stiffness, the stiffness matrix can still 
be irregular and the entire structure can also be irregular.

Practically speaking, however, to determine if the mass is regular, the diagonal mass in Equation 
6.66a is often used. In NEHRP 2003/2009, if the lumped mass at any story is 150% of the adjacent 
story, the mass is considered to be irregular.

6.2.3  PlanE irrEgularity

6.2.3.1  Principal Axes of Structures
To consider the structural plane irregularity, the total three-dimensional model in the X-Y-Z coordi-
nate, as shown in Figure 6.10, is used. Generally speaking, for a linear MDOF system, the governing 
equation of motion (see Chapter 3) is rewritten as follows:
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(6.70)

where ��x, �x, and x; and ÿ, �y, and y are acceleration, velocity, and displacement in the X- and 
Y-directions, respectively; J is the input vector, where J = {1} with proper dimensions; and ��xg	and 
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ÿg are the ground accelerations in the X- and Y-directions. Note that for a general MDOF struc-
ture, if it has more than three degrees of freedom, its stiffness is likely to have no principal axes. 
Without principal axes, any pair of perpendicular directions can theoretically be selected as the 
X- and Y-directions. KXX and KYY are the stiffness coefficients in the X- and Y-directions, respec-
tively. KXY and KYX are, respectively, the cross-stiffness coefficients in the X- and Y-directions and 

in the Y- and X-directions; K KXY YX
T= , CXX, and CYY are the damping coefficients in the X- and 

Y-directions, respectively; CXY and CYX are, respectively, the damping coefficients across the X- 

and Y-directions and across the Y- and X-directions; and C CXY YX
T= . The natural directions such 

as east-west and north-south directions are often chosen as the X- and Y-axes. If in one direction 
there is n-DOF, the 2n × 2ns stiffness matrix K can be partitioned as

 

K
K K
K K

=










×

XX XY

YX YY n n2 2  

(6.71)

Thus, KXX stands for the n × n submatrix of stiffness corresponding to responses and excitation 
in the X-direction. KXY stands for the n × n submatrix of stiffness corresponding to responses and 
excitations in the X-direction and Y-direction, respectively, and so on. Similarly, the 2n × 2n damp-
ing matrix C can be partitioned as

	
C

C C
C C

=










×

XX XY

YX YY n n2 2 	
(6.72)

In general, there can be two equal submatrices of the mass because there should be the same 
mass distributions in both the X- and Y-directions. For simplicity, the lumped mass matrix, which 
is diagonal, is taken as

	
M MX Y jm= = ( ) =diag ,  j 1,..., n

	
(6.73)
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FIGURE 6.10  Coordinate system of structures.
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where M(⋅) stands for the mass matrix in the (⋅) direction; and the total mass matrix M is

	
M =

( )
( )













diag
diag

m
m

j

j 	
(6.74)

Note that in the first phase of the damper design, both the cross terms and the directional effects 
are ignored. That is, the MDOF system is described by using the normal mode approach and letting

	 K KXY YX
T= = 0 	 (6.75)

and

	 C CXY YX
T= = 0 	 (6.76)

In this case, the 2n-MDOF system can at least be decoupled into two sets of n-DOF equations. 
Namely,
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(6.77)

or

	 M x C x K x M JX XX XX g  x��� �� � ���+ + = − X 	 (6.78)

and

	 M y C y K y M JY YY YY Y g  y��� �� � ���+ + = − 	 (6.79)

where ��� ��x x,  , x~, and  xg��� , and ��� ��y y, , y~, and ���yg are respectively newly formed acceleration, velocity, 
displacement, and ground accelerations in the X

~
- and Y

~
-directions, in which Equations 6.75 and 

6.76 hold.
In this circumstance, the earthquake input in the X

~
-direction,  xg���  will not affect the response in 

the Y
~

-direction, and the earthquake input in the Y
~

-direction, ���yg will not affect the response in the 
X
~

-direction. The X
~

-Y
~

 axes are said to be the dynamic principal axes of the structure. In other words, 
if and only if a pair of axes X

~
-Y
~

 can be found so that the conditions of Equations 6.75 and 6.76 hold, 
the principal axes can exist. In certain cases, the condition in Equation 6.76 is violated; however, 
the condition in Equation 6.75 still holds. In this special case, a static input in the X

~
-direction will 

not cause any response in the Y
~

-direction, and a static input in the Y
~

-direction will not affect the 
response in the X

~
-direction. The X

~
-Y
~

 axes are the static principal axes or simply the principal axes 
of the structure.

6.2.3.2  Cross Effect
The conditions in Equation 6.76 are very difficult to realize in real-world structures. That is, there is 
rarely a structure that can have dynamic principal axes. In fact, the condition in Equation 6.75 under 
static loading can also be rather difficult to find. That is, statistically, structures with principal axes 
are rare. The response in the Y-direction caused by the input in the X-direction is referred to as the 
simple cross effect (Liang and Lee, 2002, 2003); for convenience, it is referred to as the cross effect.
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Statically speaking, even if the structure does not have principal axes, the response in the 
Y-direction caused by input from the X-direction, namely, the cross effect, is usually quite small. 
In most cases, the cross effect can be ignored. However, under dynamic excitation, the cross 
effect can be cumulative and will significantly enlarge the response, due to the fact that a certain 
amount of vibration energy will transfer from one direction to its perpendicular direction. Such 
an energy transfer may sometimes reduce the vibration. However, this vibration reduction will 
largely depend on the nature of the ground excitation. The energy can also cause an increase in 
the vibration level. Based on numerical simulation, in many cases, this increase will be more than 
30%.

Furthermore, even if the conditions in Equations 6.75 and 6.76 are satisfied, due to the uneven 
distribution of the mass, the structure can still have a rotation around the Z-axis. The rotation will 
further cause the response in the Y-direction due to the input in the X-direction. Lin and Chopra 
(2003) have shown examples of asymmetric structures to explain this phenomenon and modeled 
them with the following equation of motion:
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Here, IXY is the moment of inertia of the structure in the X-Y plan; KXX and KYY are as defined 

previously; KΘΘ is the submatrix of stiffness corresponding to the X-Y plan rotation; K KΘ ΘX X
T=  

is the submatrix of stiffness corresponding to the displacement in the X-direction and the plan 

rotation; and K KΘ ΘY Y
T=  is the submatrix of stiffness corresponding to the displacement in the 

Y-direction and the plan rotation. Additionally, θg = θg (t) is the rotation vector, while �� ��θ θg g t= ( )  is 
the ground rotation acceleration, which is often very small and can be ignored.

From Equation 6.80, it is realized that even if KXY = KYX = 0, the input ��xg will cause a response 
in the Y-direction and ��yg can still cause a response in the X-direction through the rotation.

6.2.4  irrEgular daMPing

6.2.4.1  Regular Mass-Stiffness, Irregular Damping
In general, there are two types of irregular damping. The first is with irregular mass and stiffness, 
which has been discussed in the previous subsections. The second is when the mass and stiffness 
are regular, which will be discussed in the next subsection. In both cases, there is, as yet, no strictly 
theoretical treatment. Thus, examples are given to illustrate the issues and the process of dealing 
with the design of irregular building with enhanced damping.

To explain the nature of structures with regular mass and stiffness but irregular damping, an 
example of a 10-story building is considered. From this example, a pattern can be found and a 
method to deal with these systems is found.

Example 6.3

Suppose a structure with mass matrix to be M = 100 I (t) and the stiffness to be
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Here, k0 = 1.11 × 106 (kN/m). It is seen that this example has regular mass and stiffness. It will 
be seen that even in the case of a structure with regular mass-stiffness, if the damping is irregular, 
care must be taken to prevent it from leading to nonproportional damping.

6.2.4.1.1 Regular Damping
First, suppose the inherent damping of the structure without added dampers is 1% for all the modes. 
Then, suppose dampers are added to this structure so that each story is installed with dampers and 
the damping coefficient is proportional to the stiffness of the story. With this configuration, the 
added damping will always be proportional. That is, the damping matrix for the added damping is 
proportional to the stiffness matrix, which is

	

C =

−
−

−
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αc kN m0
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2 1 0
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0 1 1
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s-

Here, α is a proportional factor. Initially, let α = 1 and c0 = 3145 (kN-s/m), so that the initial 
damping ratio for the first mode becomes 2% (see Table 6.1).

The proportional factor α is changed and the corresponding damping ratios for the first three 
modes are plotted in Figure 6.11a, where the X-axis represents the variation of α.

The responses of this structure are plotted in Figure 6.11b for the absolute acceleration and 
Figure 6.11c for the relative displacement, respectively. In Figure 6.11b, the unit of the Y-axes is 
(g); and in Figure 6.11c, the unit of the Y-axes is (in). These units are used to compare the reduc-
tion of responses vs. an increase in the damping coefficient to the cases in the above example. The 
responses are also the mean value plus one standard deviation under the 99 earthquake records used 
in this book. It can be seen that when the damping coefficient increases, the damping ratios of the 
first mode are always increased. The damping ratios for the second and third modes are roughly 
always increased as well.

Note that the modal mass ratios of this structure are close to those shown in Figure 3.4, so that 
only using the first mode is sufficient to represent the total responses. However, for the purpose of 
comparison, the first three modes are listed anyway.

From Figures 6.11b and c, it is realized that adding damping always causes the responses to 
decrease, although the rate of decrease becomes smaller and smaller. With many other examples 
of structures with regular mass-stiffness and added proportional damping, when the values of the 
dampers increase, the responses will always decrease. Such a structure is referred to as a regular 
structure.

TABLE 6.1
Modal Parameters with Initially Added Damper

Mode 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Natural freq. (Hz) 1.12 3.34 5.48 7.50 9.35 11.00 12.39 13.51 14.33 14.83

Damping ratio (%) 2.0 3.97 5.88 7.67 9.32 10.79 12.03 13.03 13.76 14.20



376	 Structural	Damping:	Applications	in	Seismic	Response	Modification

6.2.4.1.2 Irregular Damping
Next, with the same structure, nonproportional damping is added, and the damping matrix is

	

C =
















( )αc kN m0

0 0
0

1
... s-

where α is defined as before.
For comparison purposes, the initial damping ratio is set to be 1% for every mode. Then, 

dampers are continuously added. Initially, α = 1, c0 =	3600 (kN-s/m), and α increases. The added 
damping will make the damping coefficients and the modal energy transfer ratios vary, which are 
plotted in Figure 6.12a and b, respectively. From these two plots, it is seen that in this case, increas-
ing the damping coefficient will not always increase the damping ratio, as is the case for regular 
structures.

In Figure 6.12c and d, the absolute acceleration and the relative displacement responses of this 
structure are plotted, respectively. In Figure 6.12c, the unit of the Y-axes is (g); and in Figure 6.12d, 
the unit of the Y-axes is (in) for comparison purposes. The responses are also the mean value plus 
one standard deviation under the aforementioned 99 earthquake records. From Figure 6.12c and d, 
it is realized that adding damping does not always cause the responses to decrease for all stories in 
irregular structures.

Since the mass and stiffness, as well as the damping configuration can greatly affect the reduc-
tion of the structural responses, it is necessary to study their behavior and suggest methods to deal 
with these phenomena, especially the effect of nonproportional damping.
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FIGURE 6.11  Damping ratio and responses of a regular structure: (a) damping ratio vs. damping coefficient, 
(b) absolute acceleration (g), and (c) relative displacement (in).
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From the above description, the cause of damping irregularity is classified as follows:

 1. Mass and stiffness are regular, but the damper installation is not proportional
 2. Either the mass or stiffness or both are irregular and the damper installation is 

nonproportional

In other words, the damping irregularity is caused by nonproportional damping. That is, when a 
structure has irregular mass and stiffness, it is difficult to realize a proportionally damped system.

For irregular structures, if the normal mode approach is still used, then large errors may occur. To 
overcome this problem, the stiffness matrix must be examined. Note that, many commercial finite 
element programs, such as SAP 2000, do not allow users to directly handle the stiffness matrix.

One of the benefits of using the stiffness matrix is that the natural periods and mode shapes can 
be calculated for all modes interested. Various approximations do not need to be used. However, the 
traditional approach of using the stiffness matrix is to obtain the normal mode shapes. In this book, 
the complex mode approach is used to obtain considerably more accurate results.

6.2.5  dEsign considErations for nonProPortionality daMPing

From the above example, it is seen that for an irregular structure, the damping ratios of certain modes 
can quickly reach and exceed unity, whereas the damping ratio of the first mode is still rather small. 
Two cases may exist. In the first case, if more damping is added, the overdamped subsystems will 
continue to dissipate energy. Furthermore, the overall dynamic stiffness will continue to increase. 
Therefore, continuously adding damping will further reduce the structural responses, if the damp-
ing ratio of the fundamental mode is not satisfied. In the second case, however, continuously adding 
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FIGURE 6.12  Damping ratio and responses of an irregular structure: (a) damping ratios, (b) modal energy 
transfer ratios, (c) absolute acceleration (g), and (d) relative displacement (in).
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damping will no longer help further reduce the structural responses. Instead, the structural response 
will be magnified. This is because when the damping is unevenly distributed, at certain locations, the 
corresponding response will become very small, but at other locations the responses will remain large.

In practical damping design, the period and the damping ratio of a structure with damping irreg-
ularity may need to be estimated. To approximately quantify the error of estimation in the period, 
when the damping ratio and the energy transfer ratio of the fundamental modes are not very large, 
i.e., < 35% and < 3%, respectively, 

	
ε ζT

c

r

T
T1

1

1
11= − ≈
	

(6.81)

Here ζ1 is the fundamental energy transfer ratio; εT1 is the percentage error of the fundamental 
period estimation; Tr1 is the fundamental period estimated by the real mode approach; and Tc1 = T1 
is the fundamental period estimated by the complex mode approach, which equals the true value of 
the fundamental period without errors.

The errors in estimating the damping ratio are more difficult to predict as the modal energy 
transfer ratio becomes larger. However, if the energy transfer ratio is notably smaller than 1% and 
no overdamped pseudo modes exists, using Rayleigh damping as an approximation,
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(6.82)

Here, εd1 is the percentage error of the fundamental damping ratio estimation; ξr1 is the funda-
mental damping ratio estimated by the real mode approach; and ξc1 = ξ1 is the fundamental damp-
ing ratio estimated by the complex mode approach, which equals the true value of the fundamental 
damping ratio without errors; κ is in the range of 0.3~3.

From Equations 6.81 and 6.82, it is realized that the smaller the energy transfer ratio, the smaller 
the errors of the estimated period and damping ratio. In engineering practice, it is not necessary to 
minimize the energy transfer ratio to the lowest possible value, as such a minimization will be quite 
costly. In fact, if normal mode is to be used to approximate the generally damped MDOF systems, 
the following criterion (Liang, Tong and Lee 1991) may also be used:

	 ζ1 1< % 	 (6.83)

It can be realized that the higher the mode, the larger the error of the period and damping 
ratio estimation. However, these higher modes often contribute to the total response being much 
less than the fundamental mode. In practical damper design, the fundamental mode is of greatest 
interest.

Unlike mass and stiffness irregularities, which can be avoided by choosing the regular vertical 
and plan stiffness and weight distributions in many cases, the irregular damping is very difficult to 
prevent. This is why quantitative indices are used to describe the irregular damping. A qualitative 
explanation is also provided after the discussion on damping matrices.

6.2.6  rEsPonsE EstiMation using rEsPonsE sPEctra

In the first section of this chapter, the key issues and the main challenges in coping with nonlin-
ear systems were discussed. In practice, equivalent linear models are used to approximate nonlin-
ear systems. Using response spectra to estimate the nonlinear responses is one possible means of 
measurement.
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Using time history analysis to calculate the nonlinear response is a well-developed process. This 
direct way of coping with a nonlinear system is based on step-by-step temporal integration, which 
does not need any linearization and can provide very accurate results. However, the time history 
computation is extremely time consuming and is only for one set of input. Therefore, spectral analy-
sis not only possesses clear physical meaning that is easier to understand and is familiar to design-
ers, but it also results in simple and efficient designs.

To summarize these approaches for working with a nonlinear system with irregular damping, there 
are three basic approaches. The first is a direct linear model, which considers a predetermined load 
demand and a linear stiffness (load-deformation constitution), such as FEMA nonlinear method 1. 
Due to the broad possibility of the level and duration of random loading, this method may not be 
suitable for predicting the structural response, but rather may be used as a reference for comparison.

The second measure is to adopt an iterative procedure for response computation. At each itera-
tion step, the piecewise linearization can be used to approximate the nonlinear constitution. Two 
uncertainties regarding the selection of the initial guess and the iteration model will affect the accu-
racy and computation burden. According to a previous study, the initial guess is less important since 
an “accurate guess” such as a pushover curve is not necessary. However, establishing the iteration 
model is vital, as publications on the nonconvergence of currently used iteration can be found in the 
recent literature. A method that is proven to be convergent and to converge to correct points cali-
brated through time history analysis has been developed. However, this method is only for SDOF 
systems. Thus, one of the future research objectives is to develop this method for MDOF structures.

The third approach is to use the nonlinear response spectra. Due to the wide variation of earth-
quakes, as well as many other types of dynamic loads, many parameters can make universal 
nonlinear response spectra extremely difficult to generate and use. However, if the role of damping 
is clearly quantified, it has been found that only two different types of damping can be employed to 
approximate the most commonly used damping; namely, bilinear damping and sublinear damping.

When a structure enters its inelastic range, due the formation of plastic hinges, the entire system 
usually behaves like a piecewise sublinear system. This book favors the use of nonlinear response 
spectra based on the piecewise sublinear system model.

6.3  MINIMIZING DAMPING NONPROPORTIONALITY

As pointed out earlier, for SDOF systems, increasing the damping coefficient instead of the damp-
ing ratio will usually result in vibration reduction, and it is not always the case for MDOF systems. 
Actual structures are often nonproportionally damped MDOF systems. When structures have large 
irregularities in mass, damping, and/or stiffness, nonproportional damping should be addressed in 
design. In general, the conservative energy of the vibrating structure should be minimized by maxi-
mizing the dynamic stiffness of the system.

In the previous section, the presence of irregular damping and nonproportional damping was 
discussed. This section focuses on minimizing the nonproportional damping. Strictly speaking, 
properly designed nonproportional damping can be used to effectively reduce the seismic responses 
of a structure. However, this type of design needs more sophisticated and careful computation, 
which is beyond the scope of this book. Therefore, without rigorous theoretical background and 
careful structural analysis, minimizing the nonproportional damping as a design principle is sug-
gested herein.

6.3.1  furtHEr discussion on conVEntional EnErgy Equation

6.3.1.1  Minimization of Conservative Energy
The input energy to the structural system from earthquake ground motion is not a constant value. 
The idea that the more energy dissipated by damping, the lower the remaining energy and the 
greater the reduction in the vibration level is not always true.
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Liang et al. (1999) suggested an energy relationship, which is given in Equation 6.84 without 
proof. The energy equilibrium for the ith mode is

	 E t E t E t E t E t E t W t Wmc mr dp dr kc kr e mi i i i i i i i( ) + ( ) + ( ) + ( ) + ( ) + ( ) = ( ) + tt( ) 	 (6.84)

where superscript i denotes the ith mode. Here, E tmci ( ) is the conservative part and E tmri ( ) is the vari-
able part of the vibratory kinetic energy; E tdpi ( ) is the fixed portion and E tdri ( ) is the variable part of 
the energy dissipated by damping; E tkci ( ) is the conservative part and E tkpi ( ) is the variable part of 
the vibratory potential energy; W tei ( ) is the work done by the external force and W tmi ( ) is the energy 
transferred from (to) other modes. In the circumstance of pure passive control with fixed dampers,

	 E t E tmr kri i( ) = ( ) = 0 	 (6.85)

E tdri ( )  can be treated as the energy dissipated by the structure itself and E tkci ( ) is the energy dis-
sipated by the supplemental dampers.

Note that, the work done by seismic force, denoted as WS(t), is

 
W t E t W ts mc ei i( ) = ( ) − ( ) ∑

i  
(6.86)

In order to control the vibration induced by earthquake ground excitations or by other dynamic forces, 
the conservative portion of the energy, Ec(t), stored in the structure needs to be minimized. Namely, let

	
E t E t E tmc kc c

i
i i( ) + ( )  = ( )  =∑ min at all t

	
(6.87a)

Equation 6.87a is referred to as the design principle of minimum conservative energy for passive 
damping control. Note that with real-time structural parameter modification technologies (Liang 
and Lee 1999), E tmri ( ) and E tkri ( ) may become nonzero valued. However, Ec(t) = min still holds. 
From Equations 6.84 and 6.86a,

	
min minE t W t W t E t E t E t Ec e m dp mr dr ki i i i i( )( ) = ( ) + ( )  − ( ) − ( ) + ( ) + rr

i
i t( ) { }∑

	
(6.87b)

In Equation 6.87b, the two terms in the first bracket on the right side are energy input. The third 
term represents the energy dissipated by the damping force. The remaining three terms on the right 
side of Equation 6.87b are the energy quantities, which can be removed by adjusting the mass, 
damping, and stiffness.

In Equation 6.87b, for proportionally damped system, the minimal amount of energy transfer 
possible is zero. Thus,

	 W tmi ( ) = 0 	 (6.88)

and

	
min maxE t W t E t E tc e dp dri i i( )( ) = − ( ) + ( ) + ( )  	

(6.89a)

otherwise,

 
min maxE t W t W t E t E tc e m dp dri i i i( )( ) = − ( ) − ( ) + ( ) + ( )   

(6.89b)



System	Nonlinearity	and	Damping	of	Irregular	Structures	 381

In order to seek its maximum value, with the damping coefficient as a parameter, the derivative 
of the summation of the energy terms with respect to time is taken and the result is zero. That is,

	 C�x f− = 0

or

	 �x f= −C 1

Here f is the input force.
The above equation holds only if the response reaches the resonant steady state under sinusoi-

dal excitation. And it is known that in this case, Ec(t) = max. In other words, the summation of 
[ ( ) ( ) ( )]− + +W t E t E te dp dri i i  will not have a minimal value. That is, when displacement x changes, 
the amount of the variation of energy will not reach any particular point, so that a minimal value 
is expected, as seen in Equation 6.89. However, from the term [ ( ) ( ) ( )]− + +W t E t E te dp dri i i , it is also 
realized that the smaller the displacement x, the smaller the amount of energy, Ec(t), will be. Note 
that for an MDOF system, x can be represented by

	 x f= −Kd
1

	 (6.90)

where Kd is the dynamic stiffness. If the amplitude of the input force f remains the same and 
the dynamic stiffness Kd becomes larger, the displacement x will be smaller. Thus, for passive 
damping control, the maximum reduction of the displacement, the maximum amount of energy 
Σ i e dp drW t E t E ti i i[ ( ) ( ) ( )]− + + , and the minimum amount of conservative energy are equivalent.

Equations 6.89 implies that the energy dissipated by the damping force, E tdpi ( ), should be maxi-
mized. That is, it is desired that the damping effect is increased as much as possible, as long as it 
does not result in an increase in the input energy. In the following discussion, it is shown that for 
SDOF systems, with or without consideration of the supporting stiffness, increasing the damping 
coefficient will always reduce the vibration level. However, increasing the damping ratio will not 
always yield a good result for MDOF systems.

Next, all the other energy terms will be examined. First, the work done by the external force, 
W tei ( ), is considered. This energy can be affected by two terms. One term is the work done by 
the external static force only, which is a function of the static force and the corresponding static 
displacement. Most structures are designed based on static loads and the static stiffness will not 
be affected by adding dampers. In other words, the energy dissipation mechanism will not change 
the static configurations of force and displacement. This quantity of energy and the corresponding 
displacement is the lower limit of using any protective system. To evaluate a damper, the second 
term due to dynamic load must be considered and the deformation under dynamic loading can be 
compared with the static deformation.

In the discussion of Equation 6.89 above, the energy transfer term W tmi ( ) was set to be zero. 
However, from a nonproportionally damped system, modal energy transfer cannot be ignored, 
because it can easily cause more than a 30% increase in vibration responses when the damping ratio 
of the structure is high.

The overall indication of whether a system is proportionally damped is given by the Caughey 
criterion previously discussed. However, this criterion does not work for individual modes. 
The direct indication of nonproportional damping for a mode is that the corresponding modal 
energy transfer ratio is not zero. From the above-mentioned theory of nonproportional damp-
ing, an overall nonproportionally damped system does not necessarily have all complex-valued 
modes. It is possible to isolate a particular normal mode, if this mode happens to be the domi-
nant mode.
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6.3.2  MiniMization of daMPing nonProPortionality

In actual structures, it is difficult to find a pure normal mode. However, some modes may be close 
to normal, or close to a proportionally damped mode. In order to minimize the effect of nonpropor-
tional damping, the structure and the dampers should be configured to have a vibrating mode close 
to a proportionally damped mode, which can be measured by letting

	 ζ i = =min, for i 1,..., S 	 (6.91)

where S is the number of total modes of interest, as previously defined.
The quantity of complex mode indicators can also be used, that is,

	 rEi = =min, for i 1,..., S 	 (6.92)

where the term rEi is defined in Equation 4.285.
It can be proven that minimizing nonproportional damping is not always beneficial. The reason 

for using nonproportional minimization is that properly utilizing nonproportional damping to opti-
mize aseismic design is a very challenging task. For engineers who are not well versed in damp-
ing design, it is suggested that proportional damping be used, which is safer, but sometimes more 
conservative.

However, obtaining the modal energy transfer ratio is also difficult for inexperienced designers. 
Alternative measures are available (Liang et al. 1993; Warburton et al. 1984). Regardless of the 
approach used, a structure that contains large nonproportional damping in its dominant modes is 
often caused by improper damper design.

6.4  ROLE OF DAMPING IN NONLINEAR SYSTEMS

In Chapters 1 and 2, the effect of large damping on structural response and vibration suppression 
was discussed. The focus was on linear viscous damping. In actual structures, there are often 
nonlinear systems and various types of damping. Therefore, it is helpful to consider the details 
of two issues regarding the role of damping in supplemental damping design. First, for linear and 
viscous damping, using additional damping reduces vibration. The natural question to follow is: 
Can a similar vibration reduction occur in nonlinear systems? That is, what is the effectiveness of 
damping vibration control for nonlinear systems, especially when the structure enters the inelas-
tic range? The second issue is, in linear systems, using larger damping to reduce the vibration 
response relies on an increase of the dynamic stiffness (rather than greater energy dissipation). 
The follow-up question is: What is the main reason for using supplemental damping to reduce the 
vibration of nonlinear systems? In this section, these two issues are discussed in detail by using 
the concept of energy.

6.4.1  linEar systEMs

6.4.1.1  Response Spectra of Seismic Work and Energy
6.4.1.1.1 Maximum Seismic Work
In Chapter 2, it was observed that in the real spectrum of acceleration, the following equation can 
be used:

	 S S gA n D= +1 4 2 2ξ ω



System	Nonlinearity	and	Damping	of	Irregular	Structures	 383

It is also known that both SA and SD are inversely proportional to the numerical damping coef-
ficient B, when the period is sufficiently long, that is,

	
S

BA ∝ 1

	
S

BD ∝ 1

In Chapter 7, it will be shown that the numerical damping coefficient B can be written as

	 B ≈ +3 0 9ξ . 	 (6.93)

Therefore, roughly speaking

	
S S

BA D ∝
+

=
+
+( )

∝
1 4 1 4

3 0 9
12

2

2

2
ξ ξ

ξ ξ. 	
(6.94)

From Equation 6.94, it seems that the product of the spectral values of the real acceleration and 
the displacement is approximately inversely proportional to the damping ratio. Thus, such a product, 
having the dimension of the work, can be a useful indicator of vibration reduction with supplemental 
damping. This point is further examined in the following paragraphs.

In the previous section, real and pseudo response spectra of acceleration, velocity, and displace-
ment were used to show the effect of damping. In the literature, there are other approaches. For 
example, Housner (1956) was the first to use energy approach for aseismic design. This approach 
attempts to use the earthquake input energy to characterize the ground excitation regardless of the 
structural damping and period.

It is understandable that during an earthquake, the process of energy input is dynamic. That is, at 
a certain moment, there will be energy input to a structure. At other moments, there will be a certain 
amount of energy output from the structure, which is transmitted to the ground. There is no direct 
relationship between the maximum input energy and peak structure responses.

A different spectrum is considered, which is based on the work done by the seismic force. It is the 
spectrum of an SDOF system with linearly viscous damping, which can be established when the maxi-
mum acceleration and displacement are reached. The seismic force has been defined as the product of 
the mass and the absolute acceleration of an SDOF system, that is (also see Equation 1.204),

	 f mxA= ��

Note that the ground force is different from the one defined in the above equation. For a monic 
system, the force becomes

	 f xA= ��

Namely, the seismic force in the monic case equals the absolute acceleration. In earthquake engi-
neering, it is well known that the damage to a structure or a member of the structure can be related 
to extra-large displacement or large force. At the same time, the damage to a structure can also be 
related to the energy or work done by forces. The advantage of using the maximum seismic work is 
that it contains the effects of both the force and the displacement.
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In an idealized case, where the seismic force vs. the displacement has rectangular energy dis-
sipation during an individual cycle, the amplitude of seismic force will remain constant, fm, in this 
cycle. This case is shown in Figure 6.13.

The relationship of rectangular force–displacement can be significant in the evaluation of energy 
dissipation. In Chapter 5, it was shown that among all the damped structures, only the system with 
rectangular energy dissipation has the smallest displacement when the peak seismic force is speci-
fied. Therefore, it is helpful to study the spectral value of the rectangular energy dissipation.

To compare a generally damped system with a rectangular-damped system, an idealized maxi-
mum work done by the seismic force at the maximum displacement, denoted as Erec, is defined as

	 E f drec M= max 	 (6.95)

where subscript “rec” represents rectangular work done or rectangular energy dissipation. That is, 
in Figure 6.13, the shaded area or the first quadrant of the rectangular energy dissipation represents 
this work.

In a linear SDOF system, the energy dissipation is no longer rectangular. Generally speaking, 
the relationship between maximum force and displacement of a linear SDOF system with viscous 
damping, which is excited by seismic ground motions, can approximately be expressed as a part of 
an elliptic curve. This part, i.e., in the first quadrant, can be expanded to the entire X-Y plan.

Example 6.4

A system with a period equal to 1 (s) and a damping ratio equal to 30% has a response history 
under the excitation of the El Centro earthquake. In Figure 6.14, the responses of the acceleration 
vs. displacement are plotted. In order to count the area covered by the displacement–acceleration 
plot, which is related to the energy dissipation, an envelope is also plotted, as shown in Figure 6.14. 
It is seen that the envelope is very close to an ellipse. The elliptic envelope shown in Figure 6.14 
is not just a coincidence. More generally, the responses of a given system under many earthquake 
excitations can be plotted. In this case, we can also obtain the elliptic envelopes. To better under-
stand this point, another example is given.

Example 6.5

In Figure 6.15, the responses of a system with a period equal to 2 (s) and a damping ratio equal to 
50%, under the same 99 records are plotted. The envelope of these responses can also be repre-
sented by an elliptic curve, which is shown in Figure 6.15.

f

fM

dM X

FIGURE 6.13  Rectangular energy dissipation.
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Using an ellipse to approximate the envelope of the response curves has a special significance. 
When the group of earthquake records and the method of scaling the input amplitude are given, 
for a specific linear SDOF system defined by its period and damping ratio, these responses are 
determined. Therefore, the envelope of the ellipse is fixed. Suppose an ellipse is centered at the 
origin, which is the cross point of its short and long axes. Then, this ellipse can be determined by 
two parameters, the maximum values of the coordinates along the X-Y axes. In other words, the 
maximum seismic force and the maximum displacement of a given linear system, in the sense of 
statistical averaging under a group of earthquake excitations, define a unique ellipse.

Note that during an earthquake, the maximum force and displacement are likely to be reached 
only once. The remaining peak forces and displacements will be smaller than the maximum val-
ues. Therefore, using the envelope method shown in Figures 6.14 and 6.15 to estimate the cor-
responding parameters of the SDOF system, i.e., the damping, will not be exactly appropriate. 
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In order to use the favorable characteristics represented by the ellipse envelope, modifications 
are needed. In the next subsection, a more detailed discussion using the “Penzien constant” is 
explained to account for this problem.

In any case, the area of the ellipse is the averaged maximum energy dissipated by the 
system in a specific first quadrant of a cycle where the maximum force and displacement are 
reached. This energy dissipation in the first quadrant is the maximum work done, denoted as 
WS(Σ iWSi

 = Σ
 i
(Emci

 − Wei
)), by the seismic force along the structural displacement. Thus, Ws can 

be determined by the maximum possible seismic force, denoted as fM, and the maximum pos-
sible structural displacement, denoted as dM.

In Chapter 1, the energy dissipation was discussed using an elliptic plot shown in Figure 1.19. 
This concept can be used to calculate the maximum seismic work through the given earthquake 
records, for the elliptic plots shown in Figures 6.14 and 6.15.

6.4.1.1.2 Spectra of Seismic Work
Since the maximum seismic work has significant meaning as discussed above, the issue of seismic 
work spectra requires additional study. That is, the relationship among the period, the damping, and 
the maximum seismic work is examined.

Using Equation 6.86, the maximum seismic work can be found through statistical analysis using 
the same 99 earthquake records, by considering the envelope method described in Figure 6.14, 
where the input acceleration levels of all the records are scaled to be 0.4 (g).

In Figure 6.16, the normalized maximum seismic work WS, with periods equal to 0.4, 1.0, 2.0, 
and 3.0 (s) is plotted vs. the damping ratio. From this figure, it is seen that when the damping is 
increased, the maximum seismic work is increased. However, with different natural period, the 
rates of decrease are different.

If damping continues to be increased to a certain point, the maximum seismic work starts 
to decrease. This is because with the damping increased, the dynamic stiffness of the system 
is increased, which makes the input energy decrease. From Figure 6.16, it is seen that the 
shorter the period of the system, the lower the damping ratio at which the turning point will 
be reached. And after the turning point, the reduction of the maximum seismic work becomes 
more pronounced.
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FIGURE 6.16  Maximum normalized seismic work vs. damping ratio.
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The phenomenon exhibited in Figure 6.16 is important. It indicates that increasing the damping 
ratio may not always be helpful in reducing the work done by the seismic force, although Equation 
6.95 shows that the product of the acceleration and the displacement is always decreased when the 
damping ratio becomes larger.

As mentioned earlier, in certain cases, the damage to the structure is more related to the maxi-
mum seismic work. Here, it is further seen that for a structure with its fundamental period, the 
effect of increased damping will be different from that of the shorter periods associated with higher 
modes.

Example 6.6

To further explain the above statements, consider the example shown in Figure 6.17, where a sys-
tem has the normalized maximum seismic work, WS, with damping ratios equal to 5%, 10%, 30%, 
and 50% are plotted vs. the period. From this figure, it is seen that when the period is increased, 
but below a certain value, the maximum seismic work will be significantly increased. For periods 
longer than that level, however, the maximum seismic work is generally reduced.

In the previous section, it was seen that the product of amaxdmax might be independent of the 
period T. However, from Figure 6.18, it can be realized that this assumption is not true. That is, the 
maximum seismic work is a function of both the damping ratio and the period; it is not constant.

In Figure 6.18, the maximum seismic work is plotted vs. the absolute acceleration (mean 
plus one standard deviation). These curves are obtained by using the same 99 records with 0.4 (g) 
acceleration. The periods are taken to be 0.1 (s) to 5 (s). From these plots, it is seen that as the 
maximum acceleration increases, the maximum work is increased at the beginning and then 
gradually reduced. This is because the displacement or deformation of the structure is more sig-
nificantly reduced.

In Figure 6.19, the maximum seismic work vs. the structural displacement (mean plus one stan-
dard deviation) is plotted. These curves are also obtained by using the same 99 records. Again, 
the periods are taken to be 0.1 (s) to 5 (s). From these plots, it is seen that when the displacement 
increases at the beginning but roughly below 0.07 (m), the maximum work significantly increases. 
Then, the maximum seismic work becomes fluctuated, depending on the selection of the damp-
ing ratio. In any case, when the displacement becomes sufficiently large, the seismic work starts 
to decrease.

From Figures 6.18 and 6.19, it is realized that the maximum seismic work can be expressed 
as a function of both the acceleration and the displacement. When these variables are relatively 
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small or sufficiently large, the amount of work is also small. When the variables of acceleration 
and/or displacement reach an intermediate level, the maximum value of the seismic work is larger.

6.4.1.2  Brief Summary of Damping Effect for Linear Design Spectra
In order to further explore the role of damping in nonlinear systems, a brief review of the effect of 
damping on the seismic-induced vibration of linear SDOF structures is useful. The damping effect 
can be viewed in many ways. Here, the focus is on the scenario of design spectrum-based response 
estimations. Since a proportionally damped MDOF system can be accurately decoupled as several 
SDOF systems, the discussion also includes the corresponding case, and subscript i of the ith mode 
of an MDOF system is ignored.

 1. For linear SDOF systems, both stiffness k and damping c are not functions of the displace-
ment, and given unchanged mass and stiffness, the damping coefficient c is proportional to 
the damping ratio ξ. Note that this conclusion is not always true for nonlinear or generally 
damped systems.

 2. In design spectra, the control parameter related to damping is the damping ratio.
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 3. The spectral value of displacement, SD, will always be reduced when damping is increased. 
The reduction is inversely proportional to the numerical damping coefficient B.

 4. The pseudo spectral value of acceleration, SPA, will also always be reduced when damping 
is increased. The reduction is also inversely proportional to B. The pseudo spectral value 
of acceleration is inversely proportional to the square of period, T2, and proportional to 
the spectral value of the displacement, SD. The product of the pseudo acceleration and the 
displacement is independent of the period.

 5. The actual spectral value, SA, will not have the relationship described in item 4, especially 
when damping is large. The real spectral value of acceleration is not exactly proportional 
to the inverse square of the period. The products of the real acceleration and the displace-
ment, especially the maximum seismic works, are both functions of the damping and the 
period. Generally,

	
S S g

T
S gA n D D= + =

+1 4 4 1 42 2
2 2

2ξ ω
π ξ

 6. The product of the mass and the pseudo acceleration, SPA, is conventionally used as the 
base shear. The product of the mass and the real acceleration is used as the base shear V 
in this book. Thus, when damping is increased, the conventionally defined base shear will 
also always be reduced by the factor B. However, the newly defined total base shear will 
be more complex to use than the damping ratio ξ. When the period becomes large, the base 
shear reduction due to an increased damping ratio will be much less effective. For example, 
with the simplified expression based on AASHTO’s formula,

	 V mgS kNA= ( )

  so that

	 V mgS kNPA≠ ( )	 (6.96)

  In design code, the spectral value of the absolute acceleration is often written as the elastic 
seismic coefficient, Cs. Therefore, different from the equation used in Chapter 2, there 
should be
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(6.97a)

  when Teff < T0,
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(6.97b)

  when T0 ≤ Teff ≤ Ts,
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(6.97c)
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  when Ts ≤ T1 ≤ TL, and

	
C S IT

Ts
D L

eff eff
=

+
+( )

1
2

2
1 4ξ

ξ3 0.9 R 	
(6.97d)

  when T1 > TL.
   Here, T1, T0, Ts TL, R, I, SDS, and SD1 are defined in Chapter 2.
   The spectral displacement d1D is

	
d C T g mD s1

2

2 24 1 4
=

+
( )

π ξ 	
(6.98a)

  For example, when Teff is greater than Ts, AASHTO’s equation for displacement is

	
d mm= ( )0.1AS T

B
i eff

eff 	
(6.98b)

  The base shear can be written as

	 V C w kNs= ( )	 (6.99)

 7. Experience gained from recent earthquakes shows that the conventional equations of Cs and d 
may underestimate the structural acceleration and displacement. The calculated values are 
closer to the mean responses, instead of the values of the mean-plus-standard-deviation.

 8. The spectrum of maximum seismic work is a newly suggested tool, which can be used to 
examine the effect of damping. Instead of structural energy accumulation and ground input 
energy, the maximum seismic work indicates the instantaneous energy dissipated only dur-
ing the half cycle when the maximum displacement is reached. While the spectra of accelera-
tion and displacement indicate that increasing the damping from a very small original value 
always reduces the spectral value, for maximum seismic work, the results are different.

6.4.1.3  Energy Equation in Linear Systems
The design spectrum approach has long been used in seismic design practice. In this book, as 
mentioned before, the spectrum-based approach is also used in the design of structures with supple-
mental damping.

As mentioned in previous discussion, there are at least two challenges in the design of supple-
mental dampers. The first is the fact that the design spectrum is obtained through linear systems, 
while structures with added dampers are most likely nonlinear systems. One way to address this 
issue is to use nonlinear response spectra, whose availability has been argued in the literature (e.g., 
Chopra 2002). This approach is discussed in more detail in the following paragraphs.

The second challenge is the treatment for nonproportional damping. Mathematically speaking, 
nonproportional damping (irregular damping) can be explained as energy transfer among normal 
modes.

Note that due to the nonlinearity of the systems, the “effective” modes can be more closely inter-
twined than linear cases, which results in greater irregular damping.

Both these challenges imply that with an increased energy dissipation capacity, there will be an 
increase in design errors in spectrum-based design for structures with supplemental damping.
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Example 6.7

This example is examine the case of energy dissipation under earthquake excitation. Consider 
an SDOF system with a period equal to 1.0 (s). By varying the damping ratios from 1% to 50%, 
the energy dissipation vs. the damping ratio can be plotted as shown in Figure 6.20a. Suppose 
this system is subjected to the El Centro (1940) earthquake. It is seen that if the damping is small, 
i.e., from 1.0% to 3.0%, when the damping ratio is increased, the energy dissipation is increased 
accordingly. This is understandable because the appearance of damping dissipates energy. When 
the damping ratio is extremely small, i.e., near zero, the energy dissipation will also be near zero. 
As the damping increases, the energy dissipation grows. However, the maximum energy dissipa-
tion will soon reach its maximum value. In Figure 6.20a, the maximum value is used to normalize 
the entire course of energy dissipation. It is also seen that after the peak energy dissipation, as the 
damping ratio is increased, the energy dissipation starts to decrease. In Figure 6.20a, this point is 
at about 13%.

To determine if the energy dissipation pattern of increase-peak-decrease is relatively common, 
the Northridge earthquake (1994), which has the same type of plot, is used, and is shown in Figure 
6.20b. It is seen that the pattern of energy dissipation is similar to the El Centro earthquake, except 
that the peak energy dissipation appears before 1%.

To examine the effect of increasing the damping ratio, the peak value of the accelerations 
and displacement are also plotted in Figure 6.20. It is seen that in these two cases, increasing 
the damping ratio always results in a reduction of the displacements. This phenomenon seems 
to contradict the above conclusion. However, by considering the case of an SDOF system rather 
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than an MDOF system, it is seen that the cross effect of the modal energy transfer and direc-
tional energy transfer does not exist. Note that the reason for using an SDOF system is to show 
clearly the energy dissipation, rather than the response reduction. From a different perspective, 
it can also be concluded that the energy dissipation does not directly correlate to the response 
reduction.

Furthermore, it is also seen that in the El Centro earthquake, when the damping ratio is greater 
than 30%, continuously adding damping also results in an increase in peak acceleration.

6.4.1.4  Limitation of Damping Control
In Chapters 2 and 5, it has been established that when the damping ratio is small, adding damping to 
a system can significantly reduce the level of vibration. However, when the original damping ratio is 
already large, using supplemental damping will be less effective. This implies one of the limitations 
of damping control.

In addition, NERRP 2009 specifies that when using damping control, the base shear should not 
be smaller than 0.75 times the design base shear V of systems without supplemental damping. In the 
following paragraph, this limitation is discussed in terms of design damping ratio.

According to NEHRP 2009, the total base shear with supplemental damping, denoted as Vd, can 
be written as

	
V V

B
kNd = ( )

Note that V is specified when the original damping ratio is 5%. This covers the case when the 
system becomes inelastic, which significantly increases the effective damping ratio. In the elastic 
range, the damping ratio of a structure is often considerably smaller than 5%. According to NEHRP 
2009,

	

V B
V B

d

0
0 75≥ .

	
(6.100)

where Bd and B0 denote the numerical damping coefficients with and without added damping.
From Equation 6.100 it is seen that,

	 Bd ≤ 1 33.

and with the help of Equation 6.93,

	 ξdesign ≤ 14 44. % 	 (6.101)

Considering various design safety factors, the total design damping ratio usually does not exceed 
15%,

	 ξdesign < 15% 	 (6.102)

for the simplified design approach. Here, the simplified damping design means the approach of 
using the linear damping model, which is discussed in Chapter 7.

Liang and Lee (1991) suggest that when the original damping ratio is sufficiently small, adding 
damping to a system can boost the design damping ratio approximately as
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	 ξ ξ ξdesign a= +0 	 (6.103)

If the original damping is assumed to be 5%, for simplified approaches, the damping ratio con-
tributed by supplemental dampers is recommended to be

	 ξa < 10% 	 (6.104)

6.4.2  nonlinEar daMPing and nonlinEar systEMs

6.4.2.1  Energy Dissipation in Nonlinear Systems
In the above discussion, it was shown that in linear systems, increasing the damping coefficient 
may result in a decrease of the energy dissipation, instead of always increasing the energy dissipa-
tion. In other words, the correlation between response reduction and energy dissipation does not 
exist, so energy dissipation should not be used as a reference to determine if the damping design 
is correct.

For nonlinear systems, the problem of energy dissipation vs. increasing damping can also be 
seen. In these cases with a small damping ratio, at the beginning within a very short range, by 
increasing the damping, the energy dissipation is increased. However, in the remaining range, the 
energy dissipation will be reduced.

Chopra (2006) has shown that under white noise excitation, an increase in damping will always 
increase energy dissipation, which can be analytically proven. However, earthquakes have at least 
two characteristics that are essentially different from white noise. First, the duration of an earth-
quake is limited. Generally, an earthquake only lasts for a few dozen seconds or so. However, white 
noise can last forever. Second, the spectrum of an earthquake is also limited. Generally, the upper 
band is considered to be below 33 (Hz). On the other hand, white noise contains an infinite band of 
frequencies.

To examine the issues of energy dissipation vs. the increase of the effective damping ratio of 
nonlinear systems, the following examples are given.

Example 6.8

This example deals with an SDOF system with linear stiffness and nonlinear damping. The 
SDOF system has a mass equal to 2,000 (kg) and a stiffness chosen to have the following 
natural frequencies: 0.25, 0.5, 1, 2, 3, 4, and 5 (Hz). A sublinear viscous damper with the pos-
sible damping exponents of 0, 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 
1.0, is installed so that the system can have effective damping ratios from 1% up to 50%. The 
same 99 earthquake records are used as input to calculate the averaged energy dissipation 
and input energy. The averaged results are mean values plus one standard deviation. Note that 
in this numerical simulation, when the damping exponent is small, there are more significant 
response reductions and so for the corresponding energies. Thus, in the averages, when the 
damping exponent is close to 1, that is, when the system is close to linear, the largest responses 
will occur.

The resulting energy dissipation vs. the effective damping ratio (calculated through 
Timoshenko damping) is plotted in Figure 6.21a, where the nonlinear responses are computed 
through nonlinear integrations. For comparison, in Figure 6.21a, the energy dissipation of equiv-
alent linear systems (which have identical damping ratios) is also plotted. From Figure 6.21a, it is 
seen that both the nonlinear and the equivalent linear systems with effective damping ratio and 
period have a similar pattern of energy dissipation vs. damping ratio. However, the nonlinear 
systems have steeper reduction curves than the linear systems.

Comparing the curves of nonlinear energy dissipations shown in Figure 6.21a with those of 
exact linear systems shown in Figure 6.20a, a difference is also apparent. That is, a system with 
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nonlinear damping, or more precisely sublinear damping, will show a steeper drop of energy dis-
sipation than systems with linear damping only. Furthermore, comparing the energy input shown 
in Figure 6.21 (b), the similar pattern can also be seen.

To review the effect of increasing the damping ratio, in Figures 6.21c and d, the absolute 
accelerations and the relative displacements vs. the effective damping ratio are also plotted. It 
is seen that as the damping ratio increases, the acceleration of the nonlinear system decreases 
quickly when the damping is relatively small but becomes slightly larger when large damping 
is added. On the other hand, when the damping ratio increases, the displacement is always 
reduced.

Again, for comparison, the responses of the equivalent linear systems are plotted and shown in 
Figures 6.21c and d, respectively. It is seen that using the equivalent linear system for this SDOF 
model, the responses are notably different.

From this example, it is further realized that using larger damping may dissipate less rather 
than more energy. And, for the sublinear damping, a more significant reduction of energy dissipa-
tion is seen than for linear systems. However, the responses of acceleration and displacement are 
reduced with different pattern as shown in Figure 6.21c and d. Thus, there is more evidence for the 
noncorrelation of energy dissipation vs. the damping ratio. From Figure 6.21b, it can be realized 
that the reason why increased damping results in response reduction while the energy dissipation 
continues to decrease is due to the significant reduction of input energies.

Thus, for a nonlinear system, although there is no analytical equation for the dynamic stiffness, 
it is still seen that increasing damping will cause an increase in the “effective” dynamic stiffness, 
which results in the response reduction. The point is that the response reduction of the nonlinear 
system is not caused by increased energy dissipation.

Equivalent linear
Nonlinear 

Damping ratio (%)

4500
4000
3500
3000
2500
2000
1500
1000

500
0

(a)

M
ax

im
um

 sy
st

em
 en

er
gy

 (N
-m

)
Maximum dissipated energy vs. damping ratio

Equivalent linear
Nonlinear 

Damping ratio (%)

7000

6000

5000

4000

3000

2000

1000

0

(b)

(c) (d)

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 in
pu

t e
ne

rg
y (

N
-m

)

Maximum input energy vs. damping ratio

Equivalent linear
Nonlinear

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100
Damping ratio (%)

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

M
ax

im
um

ab
so

lu
te

 ac
ce

le
ra

tio
n 

(g
)

Maximum absolute acceleration vs. damping ratio

Equivalent linear
Nonlinear

Damping ratio (%)

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

0M
ax

im
um

 re
la

tiv
e d

isp
la

ce
m

en
t (

m
) Maximum relative displacement vs. damping ratio

FIGURE 6.21  (a–d) Averaged responses of systems with sublinear damping.
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Example 6.9

In this example, a bilinear SDOF system is considered with nonlinear stiffness and linear supple-
mental damping. Suppose a bilinear SDOF system with mass = 300 (t). This system is installed 
with linear viscous dampers so that the designed supplemental damping ratio can be chosen as 
5%, 10%, or 15%. Also, suppose that before the system enters the inelastic range, the original 
damping ratio is 1%. The yielding and unloading stiffness are, respectively, kd = 48,000 (kN/m) 
and ku = 480,000 (kN/m). By choosing its characteristic strength from 500 (kN) to 5,000 (kN), the 
effective damping ratio is increased from 12% up to 62%.

Now, if the system is subjected to El Centro earthquake excitations whose amplitude is 
modified to be 0.4 (g), the results of the maximum displacement and acceleration vs. the effec-
tive damping ratio are plotted in Figures 6.22a and b. In each figure, three curves are plotted 
according to the above-mentioned design supplemental damping ratio, which are marked as 
solid, broken, and dotted lines. From these two figures, it is found that when the effective 
damping is increased, the responses are reduced. Furthermore, when the designed damping 
ratio is taken to be a larger value, the corresponding response becomes smaller, which implies 
that even when a structure behaves in an elastic–plastic manner, using supplemental damping 
can still further reduce the seismic response. Apparently, the closer the structure is to a linear 
system, the greater the effectiveness of using supplemental damping, which is consistent with 
common sense.

However, the more important issue to realize is the trend of energy dissipations by both supple-
mental dampers and the elastic–plastic bilinear behavior of the structure vs. the increase of the 
effective damping ratio. By using the same earthquake record, the energy dissipation is calculated 
and the corresponding curves are plotted in Figure 6.22c.
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FIGURE 6.22  (a–c) Nonlinear response due to El Centro excitation.
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From Figure 6.22c, it is seen that as the effective damping ratio is increased, the amount of 
energy dissipation is first increased before reaching a maximum value. After the peaks when the 
effective damping ratios increase, the amount of energy dissipation begins to drop. Comparing 
with Figure 6.21a, it is realized that both nonlinear systems have similar tendencies for energy dis-
sipation, which also agrees with the case of the linear systems mentioned above. In other words, 
the energy dissipation responses of both linear and nonlinear systems do not maintain a mono-
tonic relationship as the damping ratio increases.

Secondly, by comparing curves corresponding to 5%, 10%, and 15% design damping ratios, 
the same conclusion is reached; that is, increasing the damping ratio may result in a decrease, 
instead of an increase, in energy dissipation.

To determine with greater certainty whether such phenomena can be found in most earth-
quakes, the same 99 records are used again. Using the statistical values of the summation of mean 
plus one standard deviation, the energy dissipation, the input energy, as well as the peak displace-
ment and acceleration are calculated.

To examine the relationship with larger effective damping ratios, the yielding and unloading 
stiffness are, respectively, chosen to be kd = 24,000 (kN/m) and ku = 480,000 (kN/m). By chang-
ing its characteristic strength to vary from 250 (kN) to 5,000 (kN), the effective damping ratio is 
increased from 10% up to 150%. With the same mass equal to 300 (t), this system is also installed 
with linear viscous dampers so that the designed supplemental damping ratios are chosen as 5%, 
10%, and 15%. Also, suppose that before the system enters the inelastic range, the original damp-
ing ratio is 1%. The results are given in Figure 6.23.

In Figure 6.23a, it is again realized that as the effective damping ratio increases, the amount 
of energy dissipation first increases and then decreases. The statistical results agree with the case 
of the single earthquake excitation shown in Figure 6.21c. Secondly, by comparing the curves 
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corresponding to 5%, 10%, and 15% of the design damping ratios, the same conclusion is reached 
again; that is, increasing the damping ratio may result in a decrease, rather than an increase, in 
energy dissipation.

To find the reason for the drop in energy dissipation, the energy input from the ground 
excitations is plotted in Figure 6.23b. It is seen that as the effective damping ratio increases, the 
input energy decreases. As the designed damping ratio increases, the input energy decreases 
as well.

In order to check if the increase of the effective damping can lead to a reduction of the 
responses, in Figure 6.23c and d, the maximum values of the displacement and the accelera-
tion are also plotted. It is seen that as the effective damping ratio increases, the corresponding 
displacement and acceleration both decrease. And, as the designed damping ratio increases, the 
responses decrease as well.

Plots in Figure 6.23c and d do not exhibit the effectiveness of using larger damping or effective 
damping to control the seismically induced structural vibration, but clearly show that the reduc-
tion of the responses has no correlation with the energy dissipation.

Therefore, from these two cases, the limitations of using Equation 6.86 to explain the vibration 
reduction for nonlinear systems are illustrated again.

6.4.2.2  Notes on Nonlinear Response Spectra
In Example 6.9, the design spectrum is discussed, which is based on linear SDOF systems. 
However, in most cases, structures with added damping systems are nonlinear systems. Two 
approaches can be used to account for nonlinear systems. The first is to linearize a nonlinear 
system. A nonlinear system often has considerably more control parameters than linear systems. 
Using a two-parameter model to cover a multiple-parameter model may cause uncertainties and 
design errors. Generally speaking, the above-mentioned design spectrum can be used if the 
damping and the degree of nonlinearity are very small. Otherwise, nonlinear response spectra 
should be considered.

6.4.2.3  Rule 0.65 and the Penzien Constant
One of the fundamental differences between nonlinear and linear systems is that the damping effect 
of the nonlinear system varies according to the amplitude of the structural responses, whereas in 
a linear system, it is a constant value. Therefore, to evaluate the damping effect, either the level of 
the amplitude must be specified, which is awkward because the amplitude of the ground excita-
tion is difficult to determine; or a rule needs to be devised for the standard of structural response 
estimation.

The meaning of the standard of the response estimation is examined first and the rule of this 
setup is subsequently discussed.

6.4.2.3.1 Penzien Constant
To realize the response estimation, two types of damper testing are considered as described in 
Figures 6.24a and b. Namely, a damper can be moved by using an actuator, as illustrated in Figure 
6.24a, or deformed by seismic force, as depicted in Figure 6.24b.

In Figure 6.24a, k stands for the spring constant and c represents the damping coefficient of the 
damper. In Figure 6.24b, the SDOF system of a one-story structure is included for comparison. The 
dotted frames in Figure 6.24a and b emphasize the damper-spring system. It is seen that in (a), the 
force applied on the damper-spring system is applied by the actuator. In (b), the applied force is 
due to the product of the mass and the acceleration, namely, the inertial force caused by the ground 
motion. Now, it is seen that the difference between case (a) and (b) is that the former can have a 
controlled displacement.

That is, the displacement of the damper-spring system can be forced to have an exact position 
guaranteed by the accuracy of the actuator. When the driving frequency varies, the displacement 
can be controlled. In the second case, the inertia force is a function of not only the ground excitation, 
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but also the dynamic stiffness of the system. When the driving frequency varies, the resulting dis-
placement will likely vary accordingly. In this case, the energy dissipation loop obtained in case 
(a) can be very different from case (b). Practically speaking, case (a) is often used as the test setup 
to measure the properties of a damper. Case (b) is often used to simulate the situation that a struc-
ture experiences under earthquake ground excitations. In other words, the energy dissipation loop 
obtained during a damper test can be very different from a real earthquake vibration. Thus, care 
must be taken to distinguish between these two situations.

While both figures can be seen as experimental test setups, the difference between them is 
distinct. In Figure 6.24a, the displacement is preset. It is the actuator that decides the force–dis-
placement parallelogram. In this way, near-perfect bilinear or sublinear model responses can 
be achieved. That is, the test repeatability can be quite good. However, in Figure 6.24b, the 
force, instead of the displacement, takes the actions. Since the force can be a seismic load, it 
is random. In this circumstance, we will not have perfect responses such as the parallelogram. 
In Figure 6.25, the bilinear parallelogram is used to conceptually explain the uncertainty of 
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the force–displacement relationship. The sublinear damping model can be realized to have the 
same problem.

Now, suppose the bilinear model is precisely correct. Namely, any force–displacement point will 
follow the parallelogram. However, since the amplitude of the force varies, the displacement will 
vary accordingly. This will form the plot shown in Figure 6.25, from which it is seen that the maxi-
mum displacement may only be reached once during the entire course of an earthquake excitation. 
In most cases, the displacements will be smaller than dmax.

Now, when both the stiffness and the damping are calculated using the parameters of maxi-
mum force and displacement, the stiffness calculated at the maximum displacement is smaller 
than that calculated anywhere else, as shown by the thick dotted and solid lines. Also, the 
damping ratio calculated at the maximum displacement is smaller than that calculated any-
where else.

Penzien et al. studied these phenomena and suggested that the stiffness and the damping should 
be computed at 65% of the maximum displacement, rather than exactly at the maximum displace-
ment. This suggestion is adopted herein and 0.65 is referred to as the Penzien constant. That is, when 
the effective stiffness and damping are calculated, the displacement x0 is used.

	 x d0 0 65= . max 	 (6.105)

Now, the displacement x0 at pc times the maximum value can be obtained:

	 x p dc0 = max 	 (6.106)

Note that x0 calculated by Equation 6.106 is frequently used as the effective design displacement 
in damper design. In most engineering practice, the Penzien constant pc is taken as 0.65, so that it 
is also referred to as Rule 0.65.

6.4.2.3.2 Variation of Stiffness
There are basically two types of structures. The first type has virtually unchanged maximum value 
of stiffness under large inelastic deformations subjected to strong earthquakes. Many steel struc-
tures exhibit this constant maximum stiffness. The second type has decreased stiffness, when 
the inelastic range is reached and repeated. Most reinforced concrete (RC) structures have this 
type of stiffness. Rzhevsky and Lee (1998) studied the decreasing stiffness and found that it can 
be described as a function of the accumulation of inelastic deformation. Empirically, this can be 
expressed as follows:

	 k k en
x sh n= − ( )−

0
0

1 γ
	 (6.107)

Here, k0 and kn are, respectively, the original stiffness and the stiffness after n-semicycle inelas-
tic deformations; x0 is the peak value of the first inelastic deformation. Subscript n denotes the total 
cycles of inelastic deformations, the term γn is defined as

	
γ n i

i

n

a=
=

∑
1 	

(6.108)

where γn is called the damage factor, which is the summation of the absolute value of all the peak 
values of the inelastic deformations.
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The initial stiffness, k0, and the values of the inelastic deformation, ai, can be specified in an 
experimental study of certain types of RC components and/or structures. Figure 6.26 conceptually 
shows the relationship between the decreased stiffness and the damage factor.

In Figure 6.26, for comparison, both the constant and the decreasing stiffness are plotted and, 
conceptually, both are initially given the same value. It is seen that as the inelastic formations accu-
mulate, the constant stiffness keeps its value until its final failure stage. However, the decreased 
stiffness begins to diminish from the first semicycle, although it will eventually have a total failure, 
which is also conceptually plotted at the point when the constant stiffness fails. The decreasing 
curve is assumed to be exponential, as expressed in Equation 6.107. Note that for steel structures, 
the decrease is not as significant as in RC structures.

Suppose a predetermined value of the inelastic deformation is given, e.g., the deformation when 
the structure collapses. The corresponding cycle is denoted as n. At 65% of the accumulation of 
the total inelastic deformation, a special stiffness, denoted as k0.65, is defined. This value will be 
used to approximate the effective stiffness of structures with decaying stiffness in a later section. 
That is,

	 k k e a sh
0 65 0

0
1

0 65
.

.= − ( )− γ
	 (6.109)

where the term γ0.65 is defined as

	
γ 0 65

1

0 65
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=
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n 

	
(6.110)

By using the Penzien constant and corresponding estimation of the effective stiffness as well as 
damping, the linearized model can be further used to predict the structural responses of nonlinear 
systems.

6.4.2.4  Nonlinear Spectra
In addition to the above-mentioned approach, which utilizes the linear spectrum, another way to 
account for the nonlinear system, yet still based on the concept of statistical response spectra, is to 
generate nonlinear response spectra. In Chapter 8, the rationale, the generating procedure, and the 
utilization of nonlinear response spectra are discussed in detail.

Note that for linear response spectra, the spectral values of the absolute acceleration, SA, and 
the relative displacement, SD, have the relationship described in Chapter 2. However, for nonlinear 
response spectra, the spectral values of the absolute acceleration and the relative displacement may 
no longer have that relationship. Rather,
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FIGURE 6.26  Stiffness vs. accumulation of inelastic deformation.
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	 S S gA T n D= +Sξ ξ ω1 4 2 2
	 (6.111)

Here, the safety factor ηξT is often not equal to 1 and it can be a function of the period, the damp-
ing ratio, and the number of the degrees-of-freedom. This is discussed in Chapter 7.

6.4.3  inElastic structurE witH largE ductility

Under strong earthquake excitations, many types of structures will enter their inelastic range. Namely, 
their displacement ductility will be larger than unity. With the aseismic principle of noncollapse 
under strong earthquakes, many structures are purposely designed to allow large ductility. The role 
of supplemental damping in structures with large ductility is considered in the following.

6.4.3.1  Inelastic Structure with Supplemental Damping
Some believe in a theory that once a structure enters its inelastic range, it will dissipate a large 
amount of energy so that supplemental damping becomes comparatively insignificant; therefore, 
adding dampers to inelastic structures is not suggested; or, alternatively, a structure is designed with 
added dampers to prevent entrance into the large inelastic range.

Once a structure enters the inelastic range, that is, the system becomes nonlinear, a more com-
plex situation occurs. Whether supplemental damping is less effective will depend on several fac-
tors, such as the degree of ductility, the type of supplemental damping, and the amount of damping 
adaptability. Another important issue is, when the structure enters its inelastic range, does the 
resulting damping remain in an underdamped mode, or does it become critical and overdamped? 
This issue will directly relate to the effectiveness of supplemental damping, as well as damping 
design for inelastic structures.

To understand these issues, a simple example is considered first.

Example 6.10

An SDOF EPP structure with characteristic strength q, yielding displacement dy, maximum dis-
placement dm, and unloading stiffness ku, is considered. The mass of the system is 1, that is, the 
monic system is chosen for simplicity.

Its damping force is fEPP = q = kudy, and the energy dissipated in a complete steady-state cycle 
under sinusoidal excitation is EEPP. Suppose a linear viscous damper, with damping coefficient c 
and damping force fD, has energy dissipated in a complete steady-state cycle under sinusoidal 
excitation ED. Also, the maximum potential energy is E k dP u y= 1

2
2.

If the EPP system displacement is just dy, then it remains linear with natural frequency 
ωn = (ku)1/2. When the driving frequency is equal to ωn, it follows that f c d d k dD n y n y u y= = =ω ξω ξ2 22  
and E k dD u y= 2 2πξ .

When the EPP structure yields and reaches its maximum displacement μdy, where μ is the 
displacement ductility, the energy dissipation is

	
E qd k dEPP y u y= −( ) = −( )4 1 4 1 2µ µ

The damping force contributed by the damper becomes fD = cωnμdy = 2ξμkudy and the energy 
dissipation is E k dD u y= 2 2 2πξµ .

Therefore, for a viscously damped EPP system, the ratio of the energy dissipation of the damper 
and the maximum potential energy of the EPP system is

	
R E

E
k d

k dD P
D

P

u y

u y
= = =

2
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4
2 2

2
2πξµ

πξµ
	

(6.112a)
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6.4.3.2  Criterion of Nonlinear Overdamping
When the system remains linear, μ = 1, and is critically damped (ξ = 1), the corresponding energy 
dissipation ratio is

	 RD P = 4π 	
(6.112b)

That is, the energy dissipation is 4π times the maximum potential energy. It is known that for 
linear viscously damped systems, the criterion of critical damping is the unity damping ratio. 
However, this criterion is difficult to apply for nonlinear systems. To date, there are no commonly 
acceptable criteria to determine if general nonlinear systems become overdamped. For one of the 
possible judgments, Equation 6.112 can be used as an energy criterion. Other types of criteria can 
be the occurrence of free-decay vibration.

Using the energy criterion described in Equation 6.112, consider a pure EPP system without 
dampers. It is seen,

	

E
E

k d
k d

REPP

P

u y

u y
D P=

−( ) = −( ) = =
4 1

1 2
8 1 4

2

2
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the EPP system has critical damping. It is understandable that when additional dampers are installed 
in an EPP system, less ductility is required to reach critical damping. Furthermore, when the struc-
ture is not an EPP system, namely, the yielding stiffness is not zero, large ductility is required to 
reach critical damping.

Note that the dynamic behaviors of underdamped and overdamped systems are very different. 
In Chapter 7, special treatment for an overdamped system and corresponding damping design is 
discussed.

6.4.3.3  Energy Dissipations by Viscous and Bilinear Damping
Next, consider the energy dissipation by viscous damping and by the yielding structure. A bilinear 
inelastic structure can be seen as a combination of a linear stiffness and an EPP system, and only 
the EPP system dissipates energy. Therefore, the energy dissipation described by Equation 6.112b 
can be seen as the maximum possible values for various inelastic models.

If a monic system is installed with sublinear viscous damping having a damping coefficient of ceq 
and exponents α and β (see Equation 5.13), then when the system is under sinusoidal excitation with 
steady-state displacement x0, the energy dissipation is E c x AD eq n=

+
ωα

β
β

0
1

 in general (see Example 
5.3). When the displacement reaches the maximum value μdy, and for convenience, let α = β,

	 E c d A c k d AD eq n y eq u y= =+ + + +ω µ µβ β β
β

β β β
β

1 1 2 1 1/
	 (6.113)

then the ratio of energy dissipation is

	
R E

E
k d

c k d A c A
k dD P

EPP

D

u y

eq u y eq
u y= =

−( ) =+ +

−
−4 1 42

2 1 1

2
2 1µ

µβ β β
β β

β

/
ββ

β
µ
µ







−



+

1
1

	
(6.114)
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On the right side of Equation 6.114, the terms in the first parentheses can be determined through 
the properties of the damper and the system. The value of the second parentheses is a function of 
ductility as well as the damping exponent. In Figure 6.27, the value in the first parentheses is equal 
to 1 and the normalized energy dissipation ratio is plotted to realize the influence of the damping 
exponent β and the ductility μ. It is seen that when β is small, i.e., close to 0.1, the damping adapt-
ability of the damper is small; when ductility μ becomes larger, the ratio also becomes larger. This 
implies that the EPP system will dissipate more energy than the damper under the normalized con-
dition. When β is larger than 0.1, an increase in the ductility will first increase the ratio and then it 
will decrease.

To further see the energy dissipations contributed by the damper and the EPP system, let us con-
sider linear viscous damping, that is β = 1. It is seen that the ratio is

	
RD P =

−( )2 1
2

µ
πξµ 	

(6.115)

In Figure 6.28, the energy dissipation ratios, RD/P, are plotted without normalization. Note that 
when the ratio is below unity, the damper will dissipate more energy than the EPP structure. For 
example, when the damping ratio is chosen to be 0.15, which is common in damping design, the 
damper will dissipate more energy as the ductility exceeds 2.6. Note that μ = 2.6 is the critical point 
for a pure EPP system having critical damping. However, with additional viscous damping, the EPP 
system will enter the overdamped mode much sooner.

6.4.3.4  Seismic Responses of Inelastic Structures with Viscous Damping
Table 6.2 lists the seismic responses, including displacement ductility and acceleration, of an EPP 
system with linear viscous damping. This simulation is also carried out using the 99 ground motion 
records. The mass of the system is 200 (t), the unloading stiffness is 17.77 (MN/m), and the yielding dis-
placement is 0.05 (m). For simplicity, the “damping ratio” is computed when the system remains elastic.

From Table 6.2, it is seen that when the “damping ratio” (in fact the corresponding damping 
coefficient of the damper) increases, the mean plus one standard deviation of displacement ductil-
ity always reduces. When the input level is small, i.e., 0.2 (g), increasing damping will cause the 
acceleration to decrease. When the input value is larger, however, increasing damping makes the 
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FIGURE 6.27  Normalized energy dissipation ratios.
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acceleration increase, instead of decrease (see the data expressed in italic in Table 6.2). This phe-
nomenon is caused by overdamping. As mentioned above, with the presence of viscous damping, 
the system will enter the overdamped mode much easier.

6.4.3.5  Biased Deformation of Inelastic Structures
When a structure enters the inelastic range with a sufficiently large ductility under earthquake 
excitations, its dynamic equilibrium position may vary, instead of remaining in position. The biased 
deformations due to nonlinear response can also be seen in experimental studies. This biased 
deformation can enlarge the amplitude of the dynamic displacement as well as render a permanent 
structural deformation. That is, an inelastic structure with large ductility may introduce an unsafe 
situation, which should be prevented. To minimize the biased deformation, the design ductility can 
be reduced, or the amount of supplemental damping can be increased.

Figure 6.29 shows examples of an EPP system under Northridge earthquake excitations. Plot (a) 
is the displacement time history of the EPP system with a equal to 0.1 and the damping ratio equal 
to 0.01. Here the damping ratio is calculated when the system is linear. Plot (b) is the same system 
with a damping ratio equal to 0.2. It is seen that although the biased deformation still exists, the 
magnitude of the bias is significantly reduced.

TABLE 6.2
Examples of Seismic Response of Inelastic Systems

Displacement Ductility

Input Level (g)

Acceleration (g)

Input Level (g)

PGA
𝛏 0.20 0.40 0.60 0.80 1.00 0.20 0.40 0.60 0.80 1.00

0.01 1.2648 2.3954 3.8868 5.9542 8.4272 0.4874 0.5099 0.5071 0.5066 0.5099

0.025 1.1360 2.2089 3.5992 5.4867 7.7981 0.4658 0.5266 0.5310 0.5369 0.5445

0.05 0.9836 2.0071 3.2218 4.8781 6.9095 0.4265 0.5456 0.5651 0.5809 0.5990

0.10 0.7886 1.6012 2.7034 3.9752 5.6241 0.3598 0.5594 0.6177 0.6548 0.6918

0.15 0.6638 1.3251 2.2937 3.3621 4.7232 0.3129 0.5536 0.6550 0.7155 0.7699

0.20 0.5786 1.1458 1.9585 2.9039 4.0580 0.2808 0.5344 0.6739 0.7613 0.8337

Damping ratio = 0.05
Damping ratio = 0.10
Damping ratio = 0.15
Damping ratio = 0.20
Damping ratio = 0.30

Ductility
1 2 3 4 5 6 7 8 9 10

3.5

3

2

2.5
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0

Energy dissipation ratios, linear viscous damping

FIGURE 6.28  Energy dissipation ratio.
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6.4.3.6  Force–Displacement Loop of Inelastic Deformation
In the previous section, it was shown that the effective period and damping can be found by exam-
ining the force–displacement loop. It is known that a bilinear structure without viscous damping 
will have a parallelogram-shaped force–displacement loop. Now, consider a bilinear structure with 
supplemental damping. If the damping adaptability is not zero, then the damping force will grow 
when the displacement becomes larger. That is, when the structure has large ductility, the corre-
sponding damping force can be very large. And, the damping force may be larger than the seismic 
force generated by the structure itself. In this case, the force–displacement loop will no longer be 
parallelogram shaped. In addition, an MDOF system in the yielding process due to large lateral 
seismic forces will behave differently from an SDOF system, since it may start to yield only at a 
certain story, whereas the rest of the stories remain elastic. In this case, the total structure behaves 
like a viscoelastic system, but will no longer be an idealized bilinear. In these situations, using the 
bilinear model may introduce errors.

Figure 6.30 shows examples of a bilinear system under Northridge earthquake excitations. Plot 
(a) is the force–displacement response of the bilinear system with a ratio of yield and original 
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FIGURE 6.29  Biased deformation: (a) ξ = 0.01, a = 0.1 and (b) ξ = 0.2, a = 0.1.
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stiffness, denoted as a = ky/k = 0.01. Here, the damping ratio is calculated when the system is linear. 
Plot (b) is the same system with a damping ratio equal to 0.2. It is seen that when the damping ratio 
is small, the force–displacement curve is very close to a parallelogram. However, when the damping 
ratio becomes larger, the shape of the loop is significantly altered.

6.5  SUMMARY

In this chapter, the basic principles of damping design are applied to nonlinear and irregular struc-
tures with the following emphases:

 1. In terms of seismic response reduction as well as energy dissipation, using supplemental 
damping is beneficial, especially for displacement reduction.

 2. Inelastic structures with supplemental damping can be easily overdamped. Using 
underdamped design spectra, the period and damping ratio need to be altered or redefined 
(see specific design considerations described in Chapter 8, Section 8.3).
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FIGURE 6.30  Examples of force–displacement loop: (a) ξ = 0.01, a = 0.1 and (b) ξ = 0.2, a = 0.1.
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 3. Inelastic structures with large ductility may have significant biased deformation, which 
magnifies both the dynamic and the permanent displacements. Increasing damping can be 
one of the methods to control the inelastic deformations.

 4. When a large amount of damping is added to an inelastic structure, the force–displacement 
(hysteretic) loop is likely to be altered.

The fundamental theories of vibration systems and important design principles for damper designs 
have been discussed in Parts I and II of this book. In the next two chapters, Part III, practical design 
procedures for linear and nonlinear damping systems are discussed with selected examples.
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Part III

Design of Supplemental Damping
Part III of this book presents selected design procedures and examples for supplemental damping. 
Guidelines for the design of structures with added damping devices have been included in current 
aseismic building codes (NEHRP 2000, NEHRP 2003, NEHRP 2009). In general, supplemental 
damping design approaches can be classified into five types: A: linear SDOF and MSSP (multiple-
story-single-period) models; B: linear proportionally damped MDOF systems; C: linear gener-
ally damped MDOF structures; D: nonlinear damped elastic structures; and E: nonlinear damped 
inelastic structures. In this book, a selected set of design approaches are addressed in Chapters 7 
and 8. These approaches are given in the current NEHRP Provisions. A number of departures from 
the NEHRP Guidelines are included to take care of large damping and nonlinear issues.

These additional issues included in Chapters 7 and 8 are noted below:

 1. A more rigorous criterion to determine if a linear model can be used is based on system 
behavior instead of on the level of force in individual devices.

 2. Dampers are classified based on rate-dependency (rather than on displacement- and 
velocity-dependency).

 3. Estimation of the period utilizes the conservative force only. Estimation of the damping 
ratios includes both Timoshenko and force-based effective damping.

 4. Relative displacements and absolute accelerations are no longer only proportional to the 
square of the natural period. For simplified design, an additional parameter is used to 
account for the absolute acceleration.

 5. Mode shapes of acceleration and displacement are treated differently.
 6. The Penzien constant is used to account for randomness of the structural response.
 7. Irregular damping is considered by using a generally damped model, including nonpropor-

tional damping and overdamped subsystems.
 8. Nonlinear design response spectra are used.
 9. Supporting stiffness of damping devices is included.
 10. Numerical damping parameters are modified.
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7 Linear	Damping	Design

In the first part of this chapter, an overview of design procedure using three linear models is 
presented in Section 7.1. The design philosophy, criteria, and primary logic are presented and briefly 
explained. The design procedures for multi-story-single-period (MSSP) systems, and proportionally 
and nonproportionally damped systems are also discussed step-by-step in Section 7.2, 7.3, and 7.4. 
The second part of this chapter is concerned with damper installation issues within the context of 
structural dynamics. Furthermore, issues related to the complementary explanation for the basic idea 
of damping control used by NEHRP 2009 (BSSC 2009) are also discussed at the end of the chapter.

7.1  OVERVIEW OF DESIGN APPROACHES

When the damping ratio is small that can be modeled by Timoshenko damping (see Equation 1.227) 
and when the damping can be approximated as linear viscous damping, a linear approach can be 
used to simplify the damping design when the base structure is designed to be primarily within 
the elastic range. In this section, three design phases are described and step-by-step procedures 
are given for the MSSP model, the proportionally and generally damped systems, respectively. The 
design is based on spectral analysis, rather than time history computations.

7.1.1  dEsign PHilosoPHy

The basic three-phase design procedure for linear structural systems is as follows: (1) evaluating 
the base structure to determine if supplemental damping can be effectively used; (2) calculating the 
structural responses, which is the primary effort of damping design (response computation); and 
(3) determining the specifications of the selected dampers and the damping matrix based on the 
required amount of supplemental damping when the damper configuration is predetermined.

Iterative evaluation of the effectiveness of a damping design may be carried out once the damp-
ing matrix is computed. Dividing the design procedure into three phases is mainly to promote a 
better understanding of the design process. Interactive consideration often exists among the specific 
design steps.

The seismic response computation is a key phase in damping design. The computation can be 
carried out through spectral analysis and/or through time history analysis. The proposed design in 
this book focuses on the former, which is compatible with NEHRP 2009.

Determining if a structure is suitable to use supplemental damping is based on the amount of 
the fundamental modal damping ratio of the base structure ξ0, i.e., ξ0 < 2%–5%. The total damp-
ing ratio ξdesign of the structure with supplemental damping devices is approximated by (Liang and 
Lee 1991)

	 ξ ξ ξdesign a= +0 	 (7.1)

where ξa is the damping ratio contributed by the added dampers.
The criteria of using specific models, namely, the MSSP model, and the proportionally and 

nonproportionally damped models, are discussed in the following subsections. The spectral 
response estimation is based on modal analysis and superposition. That is, the seismic responses of 
the first several modes are calculated and combined to obtain the total responses. Design based on 
the MSSP model involves the fundamental mode only.
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Generally speaking, the modal responses include peak floor displacements, absolute accelera-
tions, lateral forces, and total base shear. The peak displacement and the acceleration are two basic 
quantities, from which the remaining responses can all be determined. Suggested by NEHRP 2009, 
the total base shear is taken to be the criterion to determine if the design is credible. The peak model 
displacement of the ith mode that covers each floor is a vector and is generally written as

	 dmaxi i iD id m= ( )Γ p 	 (7.2)

and the ith peak pseudo acceleration, which is used to approximate absolute acceleration, can be 
written as

	
as i si ii C g m s= ( )Γ p 2

	 (7.3a)

When damping is small, the ith peak absolute acceleration can be written as

 
aa i si ii C g m s≈ ( )Γ p 2

The modal responses are then combined to obtain the total relative displacement and absolute 
acceleration together with safety (modification) factors. The computation of these two key quantities 
essentially follows the same logic: find the products of the modal displacement diD and/or seismic 
response factor Csi, the modal participation factor Γi and mode shape pi.

Both the terms diD and Csi are functions of the period Ti, damping ratio ξi, and corresponding 
values taken from design spectra as well as information from seismic zoning, site specification, and 
type of structures. Γi is a function of mode shape pi and mass matrix M. To calculate the modal 
parameters Ti, ξi, and pi, as basic control parameters, partial or total information about the stiffness 
K and the damping matrix C may be needed, depending on which model is used.

7.1.2  dEsign MEtHods for linEar systEMs

Tables 7.1 through 7.3 provide a summary view of the design methods and corresponding design 
parameters for linear systems.

TABLE 7.1
Damping Designs for Linear Systems

System Notes and Suggestions

MSSP
(1st mode only)

MC Mass matrix only. Inaccurate. Sufficient for initial response 
estimation and design

MA Mass and stiffness matrices needed. Most accurate in MSSP 
design

MB Mass and flexibility matrices needed, easier than M1

MD Mass matrix only. Inaccurate, for initial design only

PM
(Need higher modes)

M1 Real mode only. Good for regular building and proportionally 
or lightly damped

M2 Real mode only. Inaccurate

NM
(Need higher modes)

Complex mode. Most accurate for linear system, not necessary 
for lightly damped
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In Table 7.1, several possible damping design methods are listed along with the required compu-
tation of parameters. The first column lists the models and corresponding methods. The first model 
is the MSSP for which four methods, denoted by MC, MA, MB, and MD, are available. The second 
model is a proportionally damped multi-degree-of-freedom (MDOF) system, denoted by PM for 
two methods, M1 and M2. The third model is the nonproportionally damped MDOF system, which 
is denoted by NM.

It is seen that the MSSP model requires the computation of the first (fundamental) mode only, 
which is the simplest method. The condition to accurately use this method is the high modal mass 
ratio (modal contribution factor) of the first mode. Unfortunately, such a condition is rarely satisfied 
in practical design. However, the MSSP model can provide an initial estimate of the effectiveness 
and cost of damping control. In this case, method C is often sufficient for the response estima-
tion. Note that since higher modes will affect the acceleration (force) more than displacement, for 
displacement-based design, the MSSP model can be more appropriate; the requirement of the modal 
mass ratio can be relatively lower. Also, note that after the damper design is completed, the damping 
matrix for the supplemental dampers will be available, which can be further used in PM and NM 
designs.

Design based on a proportionally damped MDOF system (PM) includes higher modes and yields 
more accurate response estimation. This method needs both mass and stiffness matrices as well as 
the calculation of eigen-decompositions. Method 1 (M1) can provide a more accurate estimation 
of accelerations, but requires proper safety factors to calculate both acceleration and displacement. 
Method 2 (M2) utilizes the concept of residue mode, which is comparatively simpler than method 1. 
Discussion of PM design follows the one for MSSP system; and useful material presented in the 
section on MSSP will not be repeated. The design logic will become evident in the discussions 
regarding Table 7.2.

Design based on a nonproportionally damped MDOF system (NM) is suggested for systems with 
sufficiently high damping only. This method needs eigen-decompositions of a 2n × 2n state matrix 
and the corresponding complex-valued mode shape as well as the accompanist matrices. The com-
putation burden is large and the improvement is often not quite phenomenal, except in structures 
with extremely high levels of mass, damping, and stiffness irregularities. A discussion about NM 
design is introduced at the end of this section. The criterion for using this method is based on a suf-
ficiently high modal energy transfer ratio.

Table 7.2 lists the required design parameters for the damping design methods. The first col-
umn is identical to Table 7.1. The second through the seventh columns are, respectively, the mass 
matrix, the damping matrix, the stiffness matrix, the real-valued and the complex-valued mode 
shapes, the periods, the damping ratios, the modal mass ratios, and the modal energy transfer ratios. 
The parameters listed in Table 7.2 will help a designer determine whether specific parameters are 
needed, and if so, the corresponding equations are given. For mode shapes, natural periods, and 
damping ratios, the requirements for the first modes are denoted by subscript 1, and higher modes 
are denoted by subscript i.

Table 7.3 lists computations of terms needed for response estimations, including the numbers of 
the corresponding equations. Tables 7.1 through 7.3 show the design logic and required computations.

7.2  MSSP SYSTEMS SIMPLIFIED APPROACH

7.2.1  gEnEral dEscriPtion

Simplified design discussed here refers to structures that behave linearly with comparatively small 
damping so that they can be modeled as linear systems (a single-degree-of-freedom [SDOF] or 
MSSP system). The design logic is based on the philosophy of NEHRP 2009, which is applicable 
to structural vibration reduction design when the structures are more or less regularly shaped with 
evenly distributed mass. Under these conditions, the stiffness matrix and the exact mode shape 
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often do not have to be used. However, the mass matrix is needed to estimate the fundamental mode 
shape. The simplified design procedure is described in a form very close to the approaches estab-
lished in the current building codes, except for estimating absolute acceleration and lateral forces.

Spectra-based design for SDOF and MSSP systems relies on the estimation of modal parameters 
of the first mode, namely, the natural period, the damping ratio, and the mode shape. Simplified 
design includes four specific steps:

 1. The basic structural parameters such as the natural period (or frequency), the fundamental 
mode shape, and the original damping ratio of the structures without added dampers, as 
the primary control parameters, are estimated. Using these parameters and the design 
spectrum, it can be determined whether or not dampers will be needed.

 2. It is necessary to determine whether the simplified method can be adequately carried out 
with sufficient accuracy. A method of using the percentage modal mass ratio is proposed 
for this purpose, which is also a primary control parameter.

 3. The design spectrum is used to determine the proper damping ratios. In NEHRP 2009, the 
design parameters, such as the base shear, the lateral forces, and/or the story deformations, 
are directly related to the magnitude of the damping ratio through the numerical damping 
coefficient B. Therefore, the damping ratio is considered to be the control parameter.

 4. The appropriate dampers are chosen to realize the theoretical damping ratio. Criteria for 
selecting different types of dampers were provided in Chapters 5 and 6. The equations to 
calculate the parameters of individual linear dampers are given in the simplified design 
approach.

If the total damping ratio given by Equation 7.1 exceeds 15%,

	 ξdesign > 15% 	 (7.4)

then the simplified design approach that assumes a linear system may not result in a good design. 
More appropriate design approaches are recommended in the next section and in Chapter 8.

In this book, only the complete design steps and procedure for an MSSP model are discussed. 
For proportionally and generally damped MDOF models, only the differences in the design proce-
dures from that of the MSSP systems are addressed.

7.2.2  fEasiBility of daMPing control

To determine whether or not using supplemental damping is beneficial, the following steps may be 
taken:

 1. The first step is to understand the key control and design parameters designated by local 
and national building codes, such as T0, Ts, TL, SDS, SD1, and I (see Chapter 2, Section 2.4 for 
definitions). In Chapters 7 and 8, several simplified examples are illustrated by assuming that 
T0 = 0.16 (s), Ts = 0.8 (s), TL = 2.5 (s), SDS = 0.5, SD1 = 0.4, and I = 1.

  The values listed above are, of course, variables; in the actual design process, their values 
will depend on the location, the type of structure, etc.

 2. The second step is to have an initial estimation of the targeted structure, especially the 
fundamental natural frequency T1, the mass matrix M, the possible damping ratio ξ0 
of the base structure and the R factor, and the approximate fundamental mode shape 
p1. In the following paragraphs, for the sake of simplicity, it is assumed that

	 ξ0 3 1< =% . and R 	 (7.5)



Linear	Damping	Design	 417

  Generally, the diagonal mass matrix is sufficient for damping design, that is,

	 M = ( ) ( )diag m tj 	
(7.6)

  where mj is equal to the jth vertical load wi divided by g.
 3. To determine if damping control is required, two independent criteria can be used. First, 

if the natural period of the targeted structure is longer than Ts, increasing the stiffness 
will further shorten the period. This is not beneficial in reducing the seismic response. 
Therefore, the first criterion for damping design is

	 T T ss1 > ( )	 (7.7)

  The second criterion is whether the original damping ratio is sufficiently small, or

	 ξ0 2 5< −% % 	 (7.8)

  If Equations 7.7 and 7.8 are satisfied, damping control can offer a cost-effective method to 
reduce the seismic responses of the structure.

A further step is to consider which design strategy should be used. If the structure is designed to 
remain in the elastic range (R = 1) and the levels of its mass, damping, and stiffness irregularities 
are low, linear approaches can be used. In the following subsection, criteria are provided to deter-
mine if the damping is irregular. The simplified design method is discussed in terms of SDOF and/
or MSSP models.

7.2.3  sdof and MssP systEMs

In many practical situations, the responses of a multiple-story structure can be approximated by 
its first mode only. Therefore, to estimate the responses, a single period of this mode is all that is 
needed.

Mathematically speaking, an MSSP system is the first mode of an MDOF structure. Therefore, 
the criterion for using an MSSP model can be established by evaluating the modal contribution of 
the first mode (modal mass ratio) (see Equation 3.184):
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Note that in NEHRP 2009, the value of γm1 is required to be at least 90%. This criterion is often 
overlooked so that MSSP systems are used. Practically speaking, however, not many structures can 
be modeled as linear MSSP systems, despite the fact that many designers use the first mode only to 
calculate the seismic responses. Note that when a structure yields and has a large displacement the 
MSSP model will be more accurate than linear systems, because the first “effective” mode contains 
the dominant deformation energy.

Both SDOF and MSSP systems have a single period and a single damping ratio. Therefore, the 
design spectrum (see Chapter 2) can be used directly, based on which, the acceleration (as well as 
the lateral force) and the lateral displacement can be calculated. The estimation of the values of the 
period and damping ratio as well as the mode shape can be carried out as outlined in Chapters 2 and 
3. The computations of the force and displacement can be performed based on the equations given in 
Chapter 6. The details of derivations are not repeated in this chapter. For instance, Equations 2.334 
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and 2.337, discussed in Chapter 2, can be used to calculate the acceleration, Cs, and displacement, 
SD, respectively.

7.2.4  Basic dEsign ProcEdurE

Basic procedures for the simplified damper design are summarized with applicable equations for 
MSSP models. The design through an SDOF model is rarely used because it often does not satisfy 
the criterion in Equation 7.9. However, if an SDOF model is used, the same procedure can be fol-
lowed by letting p1 = 1.

7.2.4.1  Estimation of Seismic Response of Original Structure
If the criterion described in Equation 7.9 is satisfied, then the simplified damping design is carried 
out using the following steps.

7.2.4.1.1 Seismic Response Coefficient and Spectral Displacement
The seismic response coefficient, Cs, and the spectral displacement for the first mode, d1D, are cal-
culated by

	
C

B
S
T

T S I and d C T g ms
DS

DS D
s= + +






 =

+
(1 4 0 6 0 4

4 1 4

2

0
1 1

1
2

2 2

ξ
π ξ R

. . ))
	

(7.10a)

when T1 < T0,
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when T0 ≤ T1 ≤ Ts,
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when Ts ≤ T1 ≤ TL, and
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when T1 > TL.
In Equations 7.10, Cs is dimensionless and the unit of d1D is (m). Compare Equations 7.10 and 

6.7. In Equations 7.10, the design parameters are based on real spectrum and the modal participa-
tion factors are not included. These will also be true in Equation 7.51 for higher modes in the next 
subsection as well as in the next chapter.

In Equations 7.10, T1 is the first (fundamental) period; ξdesign is denoted as ξ for simplicity; T0, 
Ts, TL, R, I, SDS, and SD1 are defined in Chapter 2, Sections 2.4.2 and 2.4.3; and for elastic (linear) 
structures, R = 1. The numerical damping coefficient is

	 B = +3 0 9ξ . 	 (7.11)
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In Section 7.5, Equation 7.11 is explained in more detail. Note that, for the initial design, ξ is 
often assumed as 2%−5%, depending on the type of structure. For steel frame structures, the damp-
ing ratio is smaller and for concrete structures, there can be a larger value.

7.2.4.1.2 Mode Shape and Natural Period of Fundamental Mode
To calculate the mode shape, p1, and the period, T1, the method of eigen-decomposition can be used 
if both the M and K matrices are available, which is referred to as Method A and denoted as MA in 
Tables 7.1 through 7.3, that is,
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or through the flexibility matrix S, which is referred to as Method B and denoted as MB in Tables 7.1 
through 7.3:
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or through mode shape approximation, which is referred to as Method C and denoted as MC in 
Tables 7.1 through 7.3:
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Note that the estimation T1 = 0.1n (s) is used by NEHRP 2009, where the conditions are n ≤ 12 
and story height ≥ 3 (m). However, for initial response estimation in simplified design, this formula 
can be used for other types of buildings.

The triangle approximation used in NERHP 2009, referred to as Method D and denoted as MD 
in Tables 7.1 through 7.3, is given by
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Here, hj is the height of the jth level above the ground and hr is the height of the roof; wj, fLj, and 
δj are, respectively, the part of the total gravity load W, the lateral load, and the elastic deflection, 
located at the jth story.

Note that in Equations 7.12A, 7.12C, and 7.12D, the mode shape is normalized so that the roof 
displacement is unity, which is not necessary. The significance of such a normalization is to make 
sure that the modal displacement of the roof has an identical sign.
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7.2.4.1.3 Modal Participation Factor
In order to calculate the modal responses, the modal participation factor, Γ1, is needed, which is given by
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7.2.4.1.4 Lateral Displacement
The maximum values of floor lateral displacement for methods A, B, and C are given by
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The jth maximum value of floor lateral displacement for method D is given by
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Note that in Equation 7.14D, the deflection δj can be calculated by

	 δ j j jd d m j= − ( ) >−1 2, 	 (7.15a)

with the deflection of the first story

	 δ1 1= ( )d m 	 (7.15b)

In Equation 7.14ABC, SM is a modification (or safety) factor regarding incomplete modes, and

	
SM m= ( )0 95 1 1. ~ γ

	 (7.16)

In Equation 7.14ABC, SDn is a modification (or safety) factor for displacement estimation with 
regard to the number of stories, n. This modification considers possible vertical and plan irregu-
larities of buildings. Buildings with different numbers of stories may have different degrees of 
irregularities. Many numerical simulations have been carried out by the authors, which suggest that 
Equation 7.17 is a reasonable estimation of the modification factor:

	
SDn a n a n a n a n a

=
+ + + +

1
4

4
3

3
2

2
1 0 	

(7.17)

where a0 through a4 are coefficients, which should be determined through local design spectrum and 
computer simulation. In Equation 7.16, the values 0.95 ~ 1 stand for the preset criterion for choosing 
the number of modes (see Equation 7.50 in the next subsection). Once this criterion is determined, 
the coefficients a0 through a4 can be determined. For example, if the same 99 earthquake records 
are used with SM = 0.95/γm1,
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SDn n n n n

=
× − × + × − +− − −

1
6 643 10 1 1689 10 7 405 10 0 0214 0 7428 4 5 3 4 2. . . . . 77 	

In Equation 7.14ABC, SDξ is a modification (or safety) factor for displacement estimation regard-
ing the design damping ratio, ξdesign. This modification considers possible nonproportional damping 
as well as damping-induced cross effect. Again, based on limited numerical simulations, the follow-
ing modification factor appears to be reasonable:
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where b0 through b4 are coefficients, which should be determined through local design spectrum 
and computer simulation. For example, if the 99 earthquake records are used,
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7.2.4.1.5 Lateral Absolute Acceleration
The lateral absolute acceleration vector is
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In Equation 7.19ABC, SM is defined in Equation 7.16, and SAn is a modification (or safety) factor 
for acceleration estimation regarding the number of stories, n. Based on limited numerical simula-
tions, the following appears appropriate:
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where a0 through a4 are a set of coefficients different from those given in Equation 7.17, which 
should be determined through local design spectrum and computer simulation. For example, again 
using the 99 earthquake records,

	
SAn n n n

=
× − × + +− −

1
4 343 10 7 793 10 0 0433 0 85476 3 4 2. . . .



422	 Structural	Damping:	Applications	in	Seismic	Response	Modification

In Equation 7.19ABC, SAξ is a modification (or safety) factor for acceleration estimation with 
regard to the design damping ratio, ξdesign. Based on limited numerical simulations,
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where, b0 through b4 are a group coefficients different from those given in Equation 7.18, which 
should be determined through local design spectrum and computer simulation. For example, using 
the 99 earthquake records, SAξ is given by
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1
53 95 34 865 7 987 0 68113 2. . . . 	

7.2.4.1.6 Lateral Force
The lateral force of the jth floor can be calculated through one of the following equations:

	 f m ga kNLj j aj= ( )	 (7.22ABC)

or
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(7.22D)

Here mj is the mass of the jth level, aaj is the peak acceleration at the jth level of a structure (see 
Equation 7.19), and hj is the height of the jth level that was defined previously.

7.2.4.1.7 Base Shear
The total base shear can be calculated through the following equations. For methods A, B, and C,

	 V kNL
T= ( )f J 	 (7.23ABC)

Here, fL = {fLj} is the vector of lateral load (see Equation 7.22ABC). For method D,

	 V m gC kNeff s= ( )	 (7.23D)

The effective mass of the first mode is

	
m teff

T

T=
( ) ( )
p
p p

1
2

1 1

M
M

 
 
J

	
(7.24)

Note that mathematically, Equations 7.23ABC and 7.23D are equivalent only if the fundamental 
mode is used. However, they are very different if more modes are involved. From the discussion in 
Chapter 4, Equation 7.23ABC can be shown to be more accurate and simpler.
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7.2.4.2  Determination of Damping Ratio and Damping Coefficient
7.2.4.2.1 Damping Proportional Coefficient and Design Damping Ratio
If the base shear V, or the floor displacement dj, or the lateral force fLj exceeds the allowed level, 
[V], [dj], and [fLj], and if the original damping ratio is less than 5%, then, supplemental damping can 
be used. The criteria are

	
V V d d f fj j Lj Lj[ ] ≥   ≥   ≥, ,

	
(7.25)

The allowed base shear [V] is denoted as

	 V V kNV  = ( )α 	 (7.26)

the allowed displacement as

	
d d mj d jj  = ( )α

	
(7.27)

and the allowed lateral force as

	
f f kNLj f LjLj  = ( )α

	
(7.28)

Here, the proportional coefficients αV, αdj, and αdj, which are now denoted as α(⋅) for convenience, 
are design parameters, which can be used to find the proper damping ratio ξa as
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(7.29)

Note that once ξa is determined, the design damping ratio ξdesign can be calculated through 
Equation 7.1.

7.2.4.2.2 Damping Coefficient
For simplified design, a linear viscous damper is used first. The damping coefficient of an individual 
damper can be estimated as

	
c m

NTest
a eff= ( )4 1

1

πξ kN-s m
	

(7.30)

Here, N stands for the total N stories that are equipped with dampers. Note that the initial estima-
tion does not have to be accurate.

7.2.4.2.3 Damper Configuration
Suppose the designer has a preconceived damper configuration in mind, which can be described 
mathematically by a damper configuration matrix, Ccon, and determined as follows:

	
Ccon ijc=   =, ,i, j 1,  n…

	
(7.31)
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Suppose there are p dampers that are connected to the ith mass from other p locations, the iith 
entry of Ccon is given by

	 c pii = , i=1, , p… 	 (7.32)

The ijth entry of Ccon is

	 c p i jij = − ≠, i, j=1, , n,… 	 (7.33)

7.2.4.2.4 Initial Damper Matrix
The estimated damping matrix is

	 C C( )1 = ( )cest con kN-s m 	 (7.34)

7.2.4.2.5 Design Damping Ratio
The design damping ratio can be calculated as
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For a general MDOF system, once the initially designed damping matrix is obtained, the 
modal damping ratios should be calculated and the modal responses should be reevaluated. This 
iterative procedure may yield the consequence of C(1), C(2),…, and ξa

(1), ξa
(2), etc. The iterative 

procedure is discussed in the next two subsections. Note that this iteration is not needed for 
MSSP systems.

7.2.4.3  Specifications of Dampers
The final step is to choose a proper damping device, determine its specifications and the corre-
sponding configuration for installation. The major design parameters are the damping coefficient 
and stroke. Related issues include size, weight, installation issues such as connectors and supporting 
stiffness, working conditions such as temperature, monitoring, and maintenance, as well as design 
safety factors. The major design parameters are addressed in this section.

7.2.4.3.1 Nominal Damping Coefficient
The damping coefficient for an individual nominal damper can be calculated based on

	
c G cmj

a

a
est

( )
( )

1 2
1= ( )− ξ

ξ
kN-s m

	
(7.36)

where Gmj is the geometrical magnification factor that relates the jth mass to the (j − 1)th mass (see 
Equation 5.145). Note that damping devices must be installed. Otherwise, Gmj = 0.

7.2.4.3.2 Number of Dampers
Once the damping configuration is determined, the control parameters of the nominal dampers can 
be initially estimated. The initially determined damping coefficient can often be realized by more 
than one type of damper.

In order to avoid torsion, the damping forces must be balanced at each floor of a building. That 
is, symmetrically configured dampers are desirable. With multiple stories, there is an opportunity 
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to install dampers in several stories to avoid the phenomenon of “man-made viscoelastic damp-
ing” due to the limited supporting stiffness, which is explained in Chapter 8. The strong degree of 
nonproportional damping due to unevenly distributed dampers should also be avoided. Dampers 
that provide a large amount of damping coefficients are often very large in size, which may not be 
suitable for certain structures; and, dampers with a large damping coefficient will apply a large 
damping force, which may not be appropriate in some specific applications. In the above, for each 
story as well as location there is only one damper theoretically determined, which may be called a 
nominal damper. Due to these reasons, the nominal damper must be divided into several feasible 
devices. In this subsection, the case when the damper configuration has already been determined 
is discussed. To achieve the nominal damper using commercially available dampers, consider the 
following strategy:

The specifications of the commercially available dampers need to be checked. Suppose the nom-
inal damper has been replaced by several actual dampers. Although for a single mode the phase of 
damping force is almost 90° ahead of the restoring force, the peak values of both the damping and 
the restoring forces can occur almost simultaneously in the case of random excitation. Therefore, to 
compute the maximum allowed value, damping force can be treated as the regular internal force of 
the considered members of this structure.

Suppose an available linear viscous damper has a damping coefficient c(1). To determine if the 
selected damper is workable, its damping force is checked first. For linear viscous damping, the 
damping force of the jth damper, denoted as fdj, can be calculated by

	
f c G v v kNdj mij i j= − ( )−( )1 2

1 1 	
(7.37)

Here, vj1 and vj −	1,1 are the floor velocities relative to the ground and contributed by the fundamen-
tal mode, which can be approximated by

	
v d

T
m sj

j
1

1
2= ( )π

	
(7.38)

where dj is the maximum floor displacement contributed by the fundamental mode defined in 
Equation 7.15.

In a more general case, a damper can be installed in between the ith and jth locations, and 
the relative velocity is then calculated as vi1−vj1. This damping should be called the damping-
installed-in-between-the-ith-and-the-jth-locations. For convenience, however, this damper can 
still be called the ith damper with the risk of confusion. In the following paragraphs, the ith or jth 
damper is often used for many types of damping devices, which hopefully will not cause confu-
sion. Thus,

	
f

c G
T

kNdj
mij ij= ( )
−2 1 2

1

1

π δ( )

	
(7.39)

where δij1 is the drift between ijth locations, δij1 = dj1−di1 (m).
If the calculated damping force exceeds the allowed value [fdj], the damping coefficient should 

be reduced by

	
c c

f
f

mF
dj

dj

( ) ( )1 1≤
  ( )kN-s

	
(7.40a)



426	 Structural	Damping:	Applications	in	Seismic	Response	Modification

Otherwise, let

	 c c s mF
( ) ( )1 1= ( )kN- 	

(7.40b)

Here, subscript F denotes the case of the consideration of the damping forces. After carrying out 
the above-mentioned step, the working damping force that is equal to or less than the allowed level 
is obtained.

In addition, the size of the damper needs to be determined. Generally speaking, the length 
of the damper is often not a problem, unless specially specified. However, the diameter and 
the area of the cross section of the damper are usually limited. Roughly, once the damping 
coefficient of the linear viscous damping is determined, so will its diameter, which can be 
obtained from vendor specifications. As an estimate for initial design, the following equation 
can be used:

	
Φ = + + + = + + + ( )2 2 22

1
1

2
1

2f
p

r B U c
G T p

r B U cmdi ij

mijπ
δ( )

	
(7.41)

Here, Φ is the inner diameter of the damper and p is the working pressure of the hydraulic fluid inside 
the damper, usually p ≈ 21 (MPa) (3000 (psi)); a specially designed high pressure, p, can be as high as 
100 (MPa) (15000 (psi)). B is twice the thickness plus the outside fixtures of the hydraulic cylinder, 
usually B = 1 ~ 6 (cm); r is the diameter of the piston rod of the damper and usually r = 1 ~ 5 (cm). The 
larger the damping force fdj, the larger the corresponding values of B and r. Furthermore, U is a toler-
ance; usually U = 1 ~ 2 (cm).

If the diameter is too large, several smaller dampers are used instead. Then, the damping coef-
ficient of the damper is recalculated as follows:

	
c c

B U
B U

s mΦ
Φ
Φ

( ) ( )1 1≤
  − −

− −
( )kN-

	
(7.42a)

where [Φ] is the allowed diameter and Φ is the one calculated from Equation 7.41.
If the diameter is within the limits of the allowed level, the damper can be used. Thus,

	 c c s mΦ
( ) ( )1 1= ( )kN- 	 (7.42b)

where subscript Φ stands for the consideration of the diameter of the damper. The corresponding 
damping coefficient is then chosen from the smaller value of the damping coefficient between cF and 
CΦ,	and the initial estimate of the number of dampers, denoted by the symbol N(1), is

	
N c

c cF

( )
( )

( ) ( )min ,
1

1

1 1
≥

 Φ  

(7.43)

The actual number must be an integer. In many cases, the number must also be even to prevent 
damping force-induced torsion.

The resulting design damping coefficient c(2) now becomes

	
c S c

N
( )

( )

( )
2

1

1= ( )υ kN-s m
	

(7.44)
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Here Sυ is a safety factor to account for the uneven distribution of damping force divided by N(1). 
Based on a general treatment of unevenly distributed forces from design handbooks of mechanical 
elements (i.e., Avallone and Baumeister 1996), Sυ taken to be 1.05−1.2, should be considered.

The corresponding damping matrix is

	 C C( ) ( )2 2= ( )c kcon N-s m 	 (7.45)

Note that the idea described in Equation 7.41 can also be used to estimate the size of the dampers 
when the number of actual dampers is predetermined. In this case,

	
Φ = + + + ( )2 2 2

1
2

1

2c
G T p

r B U cmij

mij

( )δ

	
(7.46)

7.2.4.3.3 Damper Stroke
Suppose a damper is installed in between levels i and j. The floor drift is (di − dj). The stroke (relative 
displacement) between the two ends of the damper j, drj, is given by

	 d d d G mrj i j mj= ( ) ( )2 − 	 (7.47)

If all the dampers are identical, the required stroke is

	 d d mr rj= ( ) ( )Sσ max 	 (7.48)

Here, Sσ is a safety factor, which may be taken to be 2.0 ~ 3.0 for structures designed to vibrate 
within the elastic range. The value should be considerably larger for structures that are allowed to 
develop large ductile deformation. The design displacement ductility is denoted as [μ]. Then, Sσ is 
taken to be 1.5 ~ 2.5 [μ], for inelastic structures.

Example 7.1

A simple example is presented to summarize the simplified design procedure. The same ten-
story-seven-bay shear model is considered with the stiffness as given in Example 3.5, the roof 
displacement is x10, the displacement of the first floor is x1, etc. The mass matrix is assumed to be 
twice the value as that of Example 3.6. Further, the original damping ratio is assumed to be 2.5%. 
One nominal damper is installed in each level (note that to prevent torsion due to unbalanced 
damping force, more than one damper is needed per level; so that in this example, at least eight 
dampers are needed in each level). The damper configuration matrix is given by

	

Ccon =

−
−

−



















 ×

2 1 0
1 2 0

0 1 1 10 10

...

...
...
...

	

Since the story height is H = 3 (m) and the bay width is L = 10 (m), Gmj is taken to be 3/10.
Note that the modal mass ratios calculated by these methods are all below 90%. Based on 

NEHRP 2009, the MSSP model cannot be used due to small modal mass ratios. However, by 
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letting the requirement relax to allow 85% modal mass ratio, the design computations can be 
carried out to explain the importance of the criterion of MSSP modal defined by Equation 7.9. 
Here, for comparison purposes, the calculation based on method D is included. The results 
given in Tables 7.5 and 7.6 can be carried out.

As a comparison, numerical simulations with the same 99 earthquake records are used again. 
Note that each record is scaled to have a peak ground acceleration (PGA) equal to 0.4 (g). The 
base shear calculated through the simulation is 64.63 (MN).

Table 7.4 lists the modal mass ratio γm1, natural period T1, modal participation factor Γ1, seismic 
response coefficient Cs, peak spectral displacement d1D, effective mass meff, and base shear V cal-
culated through the above-mentioned methods A, B, C, and D. It is seen that since only one mode is 
involved, the calculated base shears are rather small.

Here, the input level is assumed to be 0.4 (g). The seismic response coefficient Cs is calculated 
through a simplified equation described in Equation 7.51f, by letting ASi = 1 and B = 0.97. In 
Example 7.2, the calculation of Cs through Equation 7.51 is shown.

Method A provides a comparatively larger base shear. This is the method preferred by the authors, 
though it requires information of K. Method B can also provide a good estimation and only needs 
the flexibility matrix S, which may be easier to obtain than K. Methods C and D only need the mass 
matrix. In this particular example, it seems that both C and D can also provide good estimations. 
However, in many cases, the corresponding estimation is poor. For example, if the mass matrix 
used in this example is exactly the same as used in Example 3.6, the natural period must be 0.75 (s), 
instead of 1.0 (s). The resulting error can be quite large, if T1 = 0.1n (s) is used.

To use method D as suggested by NEHRP 2009, since the lateral load, fLj, and the elastic deflec-
tion, δj, of the jth story in Equation 7.10D are not available before the computation of the period T1, 
iterative computations are needed. However, in some cases, the iteration may not be convergent. 
Therefore, T1 = 1.0 (s) is used in this example. The fundamental mode shapes calculated through 
methods A, B, C, and D are listed in Table 7.5. Table 7.6 lists the absolute accelerations, lateral 
forces, and floor displacements.

The quantities calculated by methods A, B, C, and D are denoted, respectively, by the corre-
sponding superscripts. Here, the safety modification SM of methods A, B, and C is taken to be 
1/γm1 = 1/0.85 = 1.18. In addition, the safety factors SDn = 1.684 and SDξ = 1.120, respectively. As 
a comparison, the quantities obtained through numerical simulations based on the 99 earthquake 
records are also listed and denoted by superscript “sim.”

From Table 7.6, it is seen that the computations of all the methods yield comparatively smaller 
quantities than the simulated results, because only the first modal responses are used and the modal 
mass ratios are rather small. It is also seen that methods A, B, and C provide closer results, whereas 
the data of method D are quite small. Generally speaking, when the model mass ratio is below the 
required value, the MDOF model should be used instead. In this case, using the MSSP model with 
methods A through C can provide a relatively good estimation of the displacement, but not the accel-
eration, lateral force, or base shear.

Next, the base shear is used as the design criterion to carry out the damper design. Since the base 
shear changes according to the methods used to calculate it, the data obtained from method A are 

TABLE 7.4
Basic Parameters (Numerically Simulated V = 64.63 [MN])

γml T1 (s) Γ1 Cs d1D (cm) meff (kt) V (MN)

A 0.85 1.085 1.259 0.381 11.14 8.31 59.00

B 0.87 1.079 1.237 0.381 11.07 8.53 55.09

C 0.85 1.000 1.235 0.411 10.26 8.39 58.46

D 0.79 1.000 1.413 0.411 10.26 7.73 31.29
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used and the equation is to be 60 × 103 (kN). Suppose the base shear must be the design parameter 
and the allowed value is [V] = 48.65 × 103 (kN). The proportional coefficients αν is

	
αV

V
V

= [ ] = 0 8108. .
	 .

Therefore, the design damping ratio is 10.08% and ξa = 7.58%. Namely,

	
ξ

α ξ

αa =
−( ) +( )
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−( ) × +( )

×
=

⋅( )
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1 3 0 9
3
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0 . . . .
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00 0758.
	

Using Equation 7.30, cest is about 799 (kN-s/m).
Suppose one nominal damper is installed in every story. Then, matrix C = cest Ccon is

	

C = ×

−
− −

−
−























799

2 1 0 0
1 2 1 0

0 2 1
0 1 1 10

...

...
...
...
... ××

( )

10

kN-s m

	

Using Equation 7.29, the initially designed damping ratio is ξ	a(1) = 0.15%. Thus, the nominal damp-
ing coefficient c(1) is 39.28 (MN-s/m).

Since this structure has 7 bays, suppose 16 realistic dampers are used (2 dampers are used in 
each of the 8 walls) and the safety factor Sυ is taken to be 1.1. Then, c(2) is 2.7 (MN-s/m). The diam-
eter of the damper can be calculated using Equation 7.41 with the diameter of the piston rod r, the 
thickness of cylinder wall of the damper B/2, and the tolerance U assumed to be 2.0, 2.25, and 2.5 
(cm), respectively (which are commonly used for dampers); and the pressure is assumed to be 100 
(MPa). Using method A, it is seen that the maximum floor drift δj is 3.81 (cm). That is, Φ = 0.375 
(m) (if Φ is too large for a special design, then N(1) must be larger than 16, i.e., 18 or more) and the 
maximum nominal damper stroke is 2 × 3.81 × 0.3 = 2.29 (cm). With a safety factor Sσ = 4.0, the 
designed damper stroke is 9.14 (cm).

There are issues remaining for damper installation, such as supporting stiffness and safety factors. 
These issues are considered after the discussion on linear damping design in Section 7.5.

TABLE 7.5
Mode Shapes

Method a Method B Method C Method D

1st floor 0.1475 0.1564 0.1783 0.1000

2nd floor 0.2920 0.3090 0.3405 0.2000

3rd floor 0.4301 0.4540 0.4845 0.3000

4th floor 0.5587 0.5878 0.6105 0.4000

5th floor 0.6768 0.7071 0.7212 0.5000

6th floor 0.7794 0.8090 0.8131 0.6000

7th floor 0.8664 0.8910 0.8887 0.7000

8thfloor 0.9314 0.9511 0.9434 0.8000

9th floor 0.9772 0.9877 0.9813 0.9000

Roof 1.0000 1.0000 1.0000 1.0000
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7.3  PROPORTIONALLY DAMPED MDOF SYSTEMS APPROACH

7.3.1  gEnEral dEscriPtion

If the criterion provided by Equation 7.9 is not satisfied, more modes need to be included in the 
response computations. When the damping irregularity of the targeted structure is sufficiently 
low, proportionally damped models can be used. Mathematically speaking, each modal response 
can be treated as a single MSSP system. Therefore, the difference between an MSSP system 
and a proportionally damped MDOF system in general is that in the latter case, more than one 
mode is considered. In this case, for these individual modes, the aforementioned equations can 
be used by simply replacing subscript 1, which stands for the first mode, by i, which stands for 
the ith mode.

After the first S modal responses are obtained, they are combined together to estimate the total 
responses. For a proportionally damped system, a modified SRSS method is used for simplicity, and 
is often of sufficient accuracy.

Note that the damping design for an MDOF system needs both the mass and the stiffness matri-
ces. Therefore, the simplified approach that does not use the exact period and mode shape is aban-
doned. In this subsection, the corresponding design procedure is discussed, which is virtually the 
same as that for MSSP, except that more modes are considered.

7.3.2  critErion for Modal sElEction

The first step in the design process is the determination of the number of modes. Practically speak-
ing, for all MDOF systems, modal truncation can be used and only the first S modes are considered. 
The criterion is based on the value of the accumulated modal mass ratio, γmS, as

	
γ γmS mi

i

S

= ≥
=

∑
1

90 95% ~ %
	

(7.49)

where the ith modal mass ratio γmi is given by
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(7.50)

7.3.3  Basic dEsign ProcEdurE

Once it is decided to use the proportionally damped model with the first S modes, the design pro-
cedure is as follows.

7.3.3.1  Estimation of Seismic Response of Original Structure
7.3.3.1.1 Seismic Response Coefficients and Spectral Displacements
The seismic response coefficient, Csi, and the spectral displacement, diD of the ith mode are 
given by
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(7.51a)

when Ti ≤ T0,
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(7.51b)

when T0 < Ti ≤ Ts,

	
C S I

T B
and d C T g msi

D i

i i
iD

si i

i

= + =
+

( )1
2 2

2 2

1 4
4 1 4

ξ
π ξR

	
(7.51c)

when Ts < Ti ≤ TL, and
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(7.51d)

when Ti > TL.
In addition, NEHRP 2009 introduces a concept called residual mode. The seismic response 

coefficient, CsR, and the spectral displacement, dRD, are given by
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(7.51e)

Furthermore, for long period structure, the simplified formula described in Equation 2.334 is 
used and is repeated as follows:
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(7.51f)

Here, Csi is dimensionless and the unit of diD is (m).
In Equation 7.51, Ti is the ith natural period; ξi stands for the ith design damping ratio; and T0, Ts, 

TL, R, I, SDS, and SD1 are as defined previously. The numerical damping coefficient is

	 Bi i= +3 0 9ξ . 	 (7.52)

In Equation 7.51e, Cd and Ω0 are the deflection amplification factor and overstrength factor, 
respectively, which are provided in NEHRP 2009.

Note that ξi is assumed to be the original damping ratio of the base structures. Without detailed 
design, the initial damping ratio of the ith mode can be chosen equally for each mode as the one 
estimated for the first mode, say 2%−5%. The resulting response computation will not yield a large 
error because the initial damping force is small.

After proper damper design, the damping matrix C(1) and the modal damping ratios ξ		i(1) and ξ		i(2) 
will be determined. For general MDOF systems, often further evaluation of the design is needed 
until the design criteria, such as previously described in Equations 7.25 through 7.28, are satisfied. 
Once the initially designed damping matrix is obtained, the modal damping ratios are calculated 
and the modal responses are evaluated. This iterative procedure may yield the consequence of C(1), 
C(2),…, and ξ		i(1), ξ		i(2),…, and so on. The equations to find the damping ratios for the proportionally 
damped systems are given in the following subsections.

7.3.3.1.2 Mode Shapes and Natural Periods
To calculate the mode shape, pi, and the period, Ti, the eigen-decomposition method is used, that is,
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(7.53)

In Equation 7.53, P is first calculated through the eigen-decomposition of M−1K. Note that in the 
ith mode shape vector pi, the jth element is denoted as pji, whereas in the simplified design for MSSP 
systems, the jth element is denoted as pj. After the damping matrix C(p) is determined, P can be recal-
culated through the M-C(p)-K system, which is discussed in the next subsection.

In addition, the jth element of the residual mode shape, pRj, and the period of the residual mode, 
TR, respectively, are given by
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Here, pj is the jth element of the fundamental mode shape given by using Equation 7.10D.

7.3.3.1.3 Modal Participation Factors
The modal participation factor Γi is given by
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(7.55)

The residual modal participation factor in NEHRP 2009 is

	 Γ ΓR = −1 1 	 (7.56)

7.3.3.1.4 Lateral Displacements
The maximum values of lateral floor displacement of the ith mode are given by
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The total maximum lateral displacement can be calculated using SRSS as
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In Equation 7.58, SM = 1/ γmS (see the discussion of MSSP systems in the previous subsection) 
and SDn is given as follows:
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+ + + +
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4
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1 0 	

(7.59)
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where a0 through a4 are coefficients, which should be determined through local design spectrum and 
computer simulation. For example, again using the 99 earthquake records, results in

	
SDn n n n n

=
− × + × − × + +− − −

1
6 806 10 1 257 10 7 763 10 0 0173 0 4288 4 5 3 4 2. . . . . 88 	

SDξ is recommend to be

	
SD
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4
4

3
3

2
2

1 0 	
(7.60)

where b0 through b4 are coefficients, which should be determined through local design spectrum 
and computer simulation. For example, using the 99 earthquake records,

	
SD

design design design
ξ ξ ξ ξ

=
− + +

1
29 28 20 05 4 559 0 81853 2. . . . 	

7.3.3.1.5 Lateral Absolute Accelerations
The pseudo lateral acceleration vector of the ith mode is approximately given by
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The total maximum lateral absolute acceleration can be calculated through modified SRSS as
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(7.62A)

Or the method used by NERHP 2009
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Note that the jth element in the acceleration vector aa is denoted by aaj
 whereas in Equation 7.61 

for the ith modal acceleration, the jth element is denoted by aaji.
In Equation 7.62A, SM is the same as defined in Equation 7.56, and SAi can be determined as
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(7.63a)
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In Equation 7.61, SAn is given as follows:
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where a0 through a4 are a set of coefficients different from those given in Equation 7.16, which 
should be determined through local design spectrum and computer simulation. For example, using 
the 99 earthquake records,

	
SAn n n n

=
× − × + +− −

1
4 5738 10 7 0650 10 0 0328 0 36316 3 4 2. . . . 	

and
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where b0 through b4 are a set of coefficients different from those in Equation 7.17, which should 
be determined through local design spectrum and computer simulation. For example, using the 99 
earthquake records,

	
SA

design design
ξ ξ ξ

=
− + +

1
8 51 4 114 0 8152. . . 	

7.3.3.1.6 Lateral Forces
The lateral force at the jth floor can be calculated using the following equation:

	 f m ga kNLj j aj= ( )	 (7.66)

Or it can be calculated using the equation provided by NEHRP 2009:

	 f m gC kNLji j si ji= ( )p 	 (7.67)

In Equation 7.67, pji is the jth element of the ith displacement mode shape (see Equation 7.53). In 
addition, if the residual mode is used, NEHRP 2009 gives

	 f m gC kNLji j sR ji= −( ) ( )1 1Γ p 	
(7.68)

The total lateral force calculated by the modal force described in Equation 7.67 in NEHRP 2009 
is given by
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7.3.3.1.7 Base Shear
The base shear of the ith mode can be calculated by the following equations:

	 V kNL
T= ( )f J 	 (7.70)

	 V m gC kNi effi si= ( )	 (7.71)
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Using the residual modal response, NEHRP 2009 provides:

	 V m m gC kNR eff sR= −( ) ( )Σ 	 (7.73)

where mΣ is the total mass of the structure.
The ith effective mass of the first mode is given by
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7.3.3.2  Determination of Damping Ratio and Damping Coefficient
7.3.3.2.1 Damping Proportionality Coefficient and Design Damping Ratio
Similar to MSSP systems, using supplemental damping can be determined by Equations 7.25 
through 7.28. The only difference is that the first modal damping ratio ξ1, contributed by the supple-
mental dampers to replace ξa in Equation 7.29, is used. That is,
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(7.75)

7.3.3.2.2 Damping Coefficient, Configuration, Matrix, and Initial Damping Ratio
The determination of the design damping ratio for a proportionally damped MDOF system can 
employ all the equations explained for MSSP systems (Equations 7.25 through 7.29, except ξ1 is 
used to replace ξa in Equation 7.29). Similar to Equation 7.29, the modal damping ratio can be cal-
culated as
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(7.76)

Once the modal damping ratios are obtained, there is often a need to go back to the first step, 
starting from Equation 7.51, and check if the criteria described in Equations 7.25 through 7.28 are 
satisfied. This iterative procedure may yield a sequences of C(1), C(2),…, C(p) and ξi

(1), ξi
(2),…, ξi

(p), as 
well as damping coefficient c(1), c(2),…, c(p).
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Such a computation will likely yield complex-valued mode shapes. An initial estimation of a damp-
ing matrix is often needed. The method to change the complex-valued mode shape into a real-valued 
one and the way to estimate the initial damping matrix are discussed in the following subsection.

7.3.3.3  Selection of Damper
Suppose C(p) satisfies the design criteria. The damping coefficient c(p) is thus used for damper selec-
tion. The procedure described in Equations 7.36 through 7.48 is for this purpose.

Example 7.2

A simple example is presented to summarize the suggested design procedure as well as the method 
through residue mode, for proportionally damped system. Consider the same ten-story-seven-bay 
shear model with identical damping and stiffness as given in Example 7.1. The roof displacement 
and the displacement of the first floor are denoted as x10, and x1, respectively, and so on. Similarly, 
the geometrical magnification factor, Gmj, is 3/10, the occupancy importance factor I is taken to be 
1.12, and the response modification factor R is chosen to be 1.0 for simplicity.

Note that in Example 7.1, only the first mode of the same system was used to show the design 
based on the MSSP model, although it was known that the modal mass ratios of the first mode calcu-
lated with several methods of estimation were all below 90%. Now, in Table 7.7, basic parameters up 
to the fourth mode are given. It is seen that up to the second and third modes, the cumulated modal 
mass ratios are, respectively, 0.94 and 0.97. Therefore, if in Equation 7.49 the criterion is chosen to 
be 0.95, the first, second, and third modes for the response estimation of the damper design should 
be chosen for the proportionally damped MDOF system. In the following discussion, the damper 
design based on the proportionally damped MDOF system is compared with the MSSP model. The 
natural periods and mode shapes of the first three modes are calculated according to Equation 7.53. 
The periods as well as the period of the residue mode are listed in Table 7.7, respectively. The mode 
shapes of the first three modes are listed in Table 7.8. The mode shape of the residue mode, calcu-
lated by Equation 7.54, is also listed in Table 7.8.

As a comparison, the numerical simulations are repeated using the 99 earthquake records. 
However, this time, each record is scaled by letting the spectral value of acceleration at period = 1 
(s) (see SD1 calculated below) be 0.36 (g).

Using Equation 7.51, the seismic response factors and the spectral displacements are calculated 
by assuming that the original damping ratios of these three modes are all 2.5%. Note that since 
T1 = 1.085 (s), the parameter TL is not needed in this example.

To determine T0 and Ts, information about the spectral response acceleration at short periods 
(Ss) and at 1 (s) (S1) is needed. Suppose Ss = 0.75 and S1 = 0.3 are given. From Tables 2.1a and b, 
the spectral response acceleration parameters can be calculated at short periods (SMS) and at 1 (s) 

TABLE 7.7
Basic Parameters

Mode 1st 2nd 3rd Residue

Mode mass ratio γmi 0.85  0.091 0.029   —

Cumulated mode mass ratio γmS 0.85  0.94 0.97   —

Period Ti (s) 1.085  0.359 0.222  0.434

Seismic response coefficient Csi 0.382  0.691 0.691  0.263

Special displacement diD (m) 0.125  0.025 0.011  0.01

Modal participation factor Γi 1.259 −0.398 0.217 −0.259

Effective mass meffi (106 kg) 8.311  0.884 0.286  1.447
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(SM1) for a risk-targeted maximum considered earthquake (MCER) based on site coefficients Fa cor-
responding to Ss and Fv corresponding to S1. Suppose Site Class D is considered. From Tables 2.1a 
and b, Fa = 1.2 and Fv = 1.8. Therefore,

	 S F SMS a s= = × =1 2 0 75 0 9. . . 	

and

	 S F SM v1 1 1 8 0 3 0 54= = × =. . . 	

Furthermore, the design earthquake spectral response acceleration parameters at short period 
(SDS) and at 1 sec (SD1) can be calculated as

	
S SDS MS= =2

3
0 6.

	

and

	
S SD M1 1

2
3

0 36= = .
	

Note that the value I in Equation 7.51 is chosen to be 1.95. According to NERHP 2009, T0 and 
Ts are calculated as
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Note that in this example, Ts < T1 < TL and T0 < T3 < T2 < TR < Ts. Here, TR is the period of the 
residue mode, which is 0.4 T1.

TABLE 7.8
Mode Shapes

Suggested Method

Residue Mode1st Mode 2nd Mode 3rd Mode

1st floor 0.1475  0.4534  0.7075 −3.1442
2nd floor 0.2920 −0.8253  1.0809 −2.4415
3rd floor 0.4301 −1.0290  0.8755 −1.7704
4th floor 0.5587 −1.0258  0.2077 −1.1453
5th floor 0.6768 −0.8467 −0.5537 −0.5712
6th floor 0.7794 −0.4902 −1.0102 −0.0724

7th floor 0.8664 −0.0441 −0.9819  0.3507

8th floor 0.9314  0.4123 −0.3520  0.6663

9th floor 0.9772  0.7912  0.4515  0.8890

Roof 1.0000  1.0000  1.0000  1.0000
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In NEHRP 2009, the damping ratio is specified as 5%. In this example, however, the value of 
2.5% is used. In this case, B1 = B2 = B3 = 0.975. Based on the above parameters, as well as the 
required natural periods of the structure, also listed in Table 7.7, the seismic response factors and the 
spectral displacements are calculated as follows, which are also listed in Table 7.7.
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In order to use Equation 7.51e, the values of R, Cd, and Ω0 need to be specified, specifically for 
the residue mode. Suppose the building in this example is “steel eccentrically braced frames, non-
moment resisting, connections at columns away from links” (BSSC/NEHRP 2009), then R = 7, 
Cd = 8, and Ω0= 2. In this case, the frame is considered to yield, so the damping ratio must be sig-
nificantly higher. Let ξR and BR = 1.0. Thus,
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(Note that the seismic response factors, Csi, are dimensionless. However, it is necessary to consider 
using g = 9.8 m/s2 to calculate the accelerations and lateral forces.)
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The modal participation factors are calculated according to Equations 7.55 and 7.56, which are 
also listed in Table 7.7.

Using Equations 7.57 through 7.60, the lateral displacement is calculated. It is seen that 
SM = 1.0309, SDn = 1.8655, and SDξ = 1.0865. The estimated displacements based on the suggested 
method and the method through the residue mode are denoted by dS

max and dR
max and are listed in 

Table 7.9, columns 2 and 3, respectively.
Using Equations 7.61 through 7.65, the lateral absolute acceleration is calculated.
It is seen that SA1 = 0.42, SA2 = 0.24, and SA3 = 0.13. Also SM = 1.0309, SAn = 1.6001, and 

SAξ = 1.0959. The estimated accelerations based on the suggested method and the method through 
the residue mode are denoted as aa

S and aa
R and are listed in Table 7.9, columns 8 and 9, respectively.
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Similar to Example 7.1, as a comparison, the displacement, acceleration, and force obtained 
through numerical simulations based on the 99 earthquake records are also listed in Table 7.9, col-
umns 4, 7, and 10, and denoted as d  max   

Sim , aa
Sim, and f LSim, respectively.

The base shear is calculated using Equations 7.70 through 7.73. Here, it is necessary to find the 
effective mass meffi, which is calculated using Equation 7.74 and listed in Table 7.7. The base shear 
calculated by the numerical simulation is listed in Table 7.10, column 1. The base shear calculated 
by the suggested method based on Equation 7.70 is listed in column 2. The base shear calculated by 
the method based on Equation 7.71 for modal base shear and Equation 7.72, the SRSS method, is 
listed in column 3. The base shear calculated based on the concept of residue mode Equation 7.73 
is listed in column 4.

The calculated results in Examples 7.1 and 7.2 are compared based on the suggested meth-
ods (method A for MSSP and method 1 for proportionally damped MDOF system) with the other 
approaches. It is seen that the response estimations based on the suggested methods can be com-
paratively larger than by using other approaches. Although the response estimations based on the 
suggested methods can be conservative, the authors prefer to recommend using them to create safer 
designs.

Secondly, the responses calculated based on MSSP and MDOF systems are compared. Note 
that the modal mass ratio γml of this particular structure is smaller than 90%. A small γml does not 
necessarily mean that using MSSP will always yield smaller values of responses, if the safety factor 
SM = 1/γml is used. However, using the MDOF model always results in more accurate estimations.

Similar to the case shown in Example 7.1, base shears can be used as the design criterion to carry 
out the damper design (see Equation 7.75).

Once the damping matrix C is determined in the first round, the corresponding damping ratios 
for the first three modes can be calculated through eigen-decompositions and the newly obtained 
numerical damping coefficient Bi can be used to reestimate the accelerations, forces, displacements, 
and base shears, as mentioned previously, until the design criterion is satisfied.

TABLE 7.10
Total Base Shear (MN)
Simulated (7.70) (7.71) (7.72) (7.73) (7.72)

110.12 112.85 31.70 31.30

TABLE 7.9
Calculated Responses

Lateral Displacement (m) Absolute Acceleration (m/s2) Lateral Force (MN)

dmax    S d max   
r d max   

Sim  a a   
S  a a   

r  a a   
Sim   f L   

S f L   
r f L   

Sim

1st floor 0.027 0.025 0.029  9.378 2.211 10.287  8.251 1.945  9.050

2nd floor 0.053 0.046 0.057 10.419 2.132 11.834 10.398 2.128 11.811

3rd floor 0.078 0.068 0.080 11.042 2.344 11.267 10.870 2.307 11.091

4th floor 0.100 0.088 0.101 11.220 2.738 10.957  9.420 2.299  9.199

5th floor 0.121 0.106 0.121 11.419 3.208 11.502 11.713 3.291 11.798

6th floor 0.139 0.123 0.137 11.617 3.669 10.791 10.390 3.281  9.651

7th floor 0.154 0.136 0.151 11.802 4.085 11.701 13.474 4.663 13.357

8thfloor 0.166 0.146 0.163 12.076 4.406  9.214 11.103 4.051  8.471

9th floor 0.174 0.154 0.172 12.790 4.637 10.338 13.465 4.882 10.884

Roof 0.178 0.157 0.177 13.466 4.754 14.487 13.763 4.858 14.806
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7.4  DESIGN OF GENERALLY DAMPED SYSTEMS

7.4.1  critEria for gEnErally daMPEd systEMs

If the damping irregularity is high, the system may need to be treated as generally damped. In this 
case, using the following procedure may improve the design accuracy.

Based on NEHRP 2009, the proportional coefficient, α(.), is often less than 0.75. In this case, if 
ξ0 in Equation 7.8 is 5%, the largest design damping ratio of the first mode is about 16.67%. With 
certain safety considerations, the design damping ratio is chosen to be less than 20% based on linear 
approaches. Part of the reason to keep the damping ratio less than 20% is that, practically speaking, 
most commercially available dampers are nonlinear, which is discussed in Chapter 8.

Similar to proportionally damped MDOF systems, before checking if the system is generally 
damped, the first task is to check the criterion described in Equation 7.49 and find the number of 
terms, S, for those modes that need to be considered.

In generally damped systems, complex modes and overdamped subsystems can exist to determine if 
the fundamental mode of the system is complex, the criterion is used.
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1

1
1 1= − <T

T

p

n

( )

( ) %
	

(7.77)

In addition, the ratios of rE1 and/or rV1 can also be used (see Equations 4.288 and 4.302).
Here, T1

(p) and T1
(n) are, respectively, the fundamental periods of system M-K and M-C(⋅)-K. That 

is, the first term is calculated by using Equation 7.51 and the second term by using the state matrix 
A (see Equations 7.81 and 7.82).

To check the existence of overdamped subsystems in the first S modes, it is necessary to see if 
the ith eigenvalue is real, that is,

	 Im ,λi( ) ≠ =0 i 1, , S… 	 (7.78)

7.4.2  Basic dEsign ProcEdurE

If one or both of the above criteria are not satisfied, the system is generally damped. The design 
procedure of this system is similar to the proportionally damped system, except for several steps 
involving modal response estimation and modal combinations.

The first few steps in response estimation (to determine if damping control is needed) are basi-
cally identical to the case of proportionally damped systems, because the original damping is small 
and the system can be treated as proportionally damped. Equations 7.49 through 7.75 can be used, 
except the equations for residual modes (Equations 7.54, 7.60, and 7.68).

7.4.2.1  Estimation of Seismic Response of Structure with Dampers
Once the design damping ratio is estimated, the steps to determine the damping matrix are identical 
to those for MSSP systems (see Equations 7.36 through 7.45). The only difference is reestimation of 
the response once the damping matrix C(p) is determined. In the following subsections, these steps 
are discussed. Note that for convenience, the order of the required calculations is different from 
those mentioned for MSSP and proportionally damped systems.

7.4.2.1.1 Eigenvalues, Periods, and Damping Ratios
Different from proportionally damped systems, a nonproportionally damped model needs more 
information about the eigen-parameters of the systems. The eigenvalues λi and eigenvectors P can 
be obtained by using the eigen-decomposition of the state matrix A (see Equation 4.38):

	 A P P= −� 1
	 (7.79)
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and A is given by (see Equation 4.5)

	
A =

− −
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(7.80)

Practically speaking, the eigenvalues and eigenvectors of the first few modes can be obtained 
using finite element programs. Here, to specifically denote the shape vector p iR for overdamped 
subsystems, superscript R is used.

The ith period Ti
(n) can be calculated from

	
T si

n

i

( ) = ( )2π
λ 	

(7.81)

In the following discussion, superscript (n) of Ti
(n) is omitted for convenience. If overdamped 

subsystems exist in the first S modes, the eigenvalue becomes real-valued λ iR and the pseudo period 
(see Equation 4.224):

	
T si
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i
R= − ( )2π

λ 	
(7.82)

Furthermore, the ith damping ratio ξi can be calculated from (see Equation 4.16)
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i

i
= −
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(7.83)

In addition to the periods, damping ratios, and mode shapes of a generally damped system, 
information about the corresponding normal mode system, especially for the period Ti

(p) (see 
Equation 7.77) and the mode shape pri, is needed. The several terms have been discussed in the 
previous section on proportionally damped models, where pri was used instead of pi to specially 
denote the real-valued mode shapes.

7.4.2.1.2 Mode Shapes and Accompanist Vectors
Once the mode shapes P = [p1, p2, … ] are obtained through the eigenvector matrix P (see Equation 
4.34), the corresponding accompanist vector for the ith mode is given by
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(7.84)

Note that Equation 7.84 is also valid for overdamped subsystems; where λi is replaced by real-
valued eigenvalue λi

R, and qj
R is used to denote the corresponding accompanist vector.

Three cases can occur for generally damped systems: normal models, complex modes, and 
pseudo modes. Therefore, there are specific types of mode shapes for each case, which are dis-
cussed below.

The next step is to compute the real-valued vectors 𝚽i and 𝚿i (see Equation 4.174) given by

	 � �i i i+ =j ip q J 	 (7.85)
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where

	 �i ij= { }φ 	
(7.86)

and

	 �i ij= { }ψ 	
(7.87)

7.4.2.1.3 Modal Participation Factors
As mentioned in Chapter 4, for a generally damped system, the modal participation factor of the ith 
mode is no longer a scalar but a vector. For complex modes, the jth element of the vector is given by 
(see Equation 4.306)

 

Γ ij
ij

ij

i i ij i ji ij ij i ij ip when
= =

− + − +{ } − + −ψ ω ξ ϕ ξ ψ ϕ ξ ϕ ξ

p

 2 1 0 4 12 . , 22

2 22 0 4 1 1

ψ ϕ

ω ξ ϕ ξ ψ ϕ ξ ϕ ξ ψ

ij ij

i i ij i ij ij ij i i i ip when

>

− + − +{ } − + −. ,  jj ij≤










ϕ
	 (7.88)

The total modal participation vector of the ith mode is

	

�i ji

i

i

ni

= { } =



















Γ

Γ
Γ

Γ

1

2

...

	

(7.89)

For an overdamped subsystem, the modal participation factor is still a scalar, given by

	 Γi
R

j
R= q J 	 (7.90)

Note that the accompanist vector qi
R is real valued this time. If the mode is normal, the modal 

participation factor is still a scalar, given by Equation 7.59.

7.4.2.1.4 Seismic Response Factors and Modal Displacements
The seismic response factors Csi and spectral displacement diD for vibration modes (real and com-
plex) can be calculated using Equations 7.51. The required numerical damping coefficient Bi is 
given by Equation 7.52.

If in the first S “modes,” there are one or more overdamped pseudo modes, the seismic response 
factors CR

sk and spectral displacement dR
kD for the corresponding overdamped subsystems need to be 

specified.
Overdamped displacement spectral values are needed to compute the term dR

kD, which can be 
obtained by using Equation 4.233. A simplified approximation can be obtained through numerical 
simulations. For example, using the 99 earthquake records, the special displacement SD0 is estab-
lished as

	
S T T TD

R R R
0

1 2
0 0748 0 0145 0 0128 0 0252= ( ) + ( ) − +. . ln . .

	
(7.91)
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Thus, the spectral displacement diD   
R can be written as

	 d S S miD
R

D D= ( )1 0 	 (7.92)

Figure 7.1a plots the normalize pseudo displacements (SD1 = 1) of the numerically simulated 
value and approximations by using Equation 7.91.

Overdamped velocity spectral values are needed to compute the term Csk   
R, which can also be 

obtained by using numerical simulations. For example, using the 99 earthquake records, the special 
displacement Sv0 can be established as

	
S T T TV

R R R
0

1 2
0 857 0 447 1 928 1 35= − ( ) + ( ) + ≤ ( ). . ln . , . s 	 (7.93a)
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FIGURE 7.1  (a, b) Overdamped spectral values.
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S T T TV

R R R
0

2
0 0002 0 0054 1 0814 1 35= ( ) − + > ( ). . . , . s

	
(7.93b)

Figure 7.1b plots the normalized pseudo velocities (SD1 = 1) of the numerically simulated value 
and approximations by using Equations 7.93a and 7.93b.

Based on the discussion of overdamped pseudo modes in Section 4.3.1 (i.e., see Equation 4.233, 
etc.), the spectral acceleration Csi

R can be written as

	
C S

T
Ssk

R
D

k
R V= 1 0

2π

	
(7.94)

Figure 7.1b plots the spectral acceleration when SD1 = 0.4.

7.4.2.1.5 Lateral Displacements
The lateral displacement of the ith complex mode is given by (see Equation 4.269)

	 dmaxi d miD i i= ( )� i p 	 (7.95)

where the shape function pi is given by (see Equation 4.305)

	
p

p
pi

i

ni
n ijp

sgn pi=











( ) = { } =i …, j 1, , n

	
(7.96)

Note that, when −90°<∠(pij) <90°, sgn(pij) =	1. Otherwise, sgn(pij) = −1.
The lateral displacement of the jth normal mode given in Equation 7.55 is repeated as

	 dmaxj j jD jd m= ( )Γ p 	 (7.97)

Here, the mode shape vector pj is taken from the normal mode and is real valued.
The lateral displacement of the kth overdamped subsystem is given by

	 dmaxk
R

i
R

kD k
Rd m= ( )Γ p 	 (7.98)

Similar to the proportionally damped system, the total maximum lateral displacement can be 
calculated by using SRSS as

	
d dmax max=









 ( )•

=

•

∑S S SM Dn D
i

S

i mξ
2

1

1 2

	
(7.99)

Note that, in Equation 7.99, the term dmaxi
 includes the overdamped displacement.

Here, the safety factors SM, SDn, and SDξ are defined in Equations 7.56 through 7.58, respectively. 
Here,

	
SDn n n n

=
× − × + +− −

1
6 108 10 5 719 10 0 0015 0 5257 3 5 2. . . . 	
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SD

design design design
ξ ξ ξ ξ

=
− + +

1
33 972 20 578 4 379 0 8283 2. . . .

.

7.4.2.1.6 Lateral Absolute Accelerations
The pseudo acceleration of the ith complex mode is given by

	
as si i ii C g m s= ( )� i p 2

	
(7.100)

where the shape function pi is given by Equation 7.96.
The pseudo acceleration of the jth normal mode given in Equation 7.61 is

	

as

s

s

s

j ...= =





















( )Γ j s jC g 

a
a

a

m sj

1j

2j

nj

p 2

	

(7.101)

The pseudo acceleration of the kth overdamped pseudo mode is given by

	
as

R
k
R

sk
R

k
R

k C  g m s= ( )Γ p 2

	 (7.102)

Note that once an overdamped pseudo mode is considered, for more accurate computation of 
the acceleration described in Equation 7.102, it is better to include its companion subsystem. As 
mentioned in Chapter 4, two overdamped pseudo modes, which are companions, can be seen as 
a development from a single vibration mode due to the addition of sufficiently large damping. 
Therefore, the overdamped sub-subsystems must exist in pairs, one with a longer pseudo period 
and the other with a shorter period. The one with a longer period will contribute more to displace-
ment and the other will contribute more to acceleration, so that excluding the second one may 
cause errors. Since the second one has a shorter period, it is easier to ignore. However, it is often 
difficult to identify the second one. Therefore, practically speaking, this situation can be compen-
sated for by choosing more modes and/or overdamped subsystems.

Similar to the proportionally damped system, the total maximum absolute acceleration can be 
calculated by using the modified SRSS:

	

aa M An A s
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Ai

a

a
i

a
a
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= + ( )
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=

•
•

∑S S S ξ a J2
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2
S
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S

n

...















( )m s2

	

(7.103)

In Equation 7.103, the term asi
 includes the acceleration asi

R. Also in Equation 7.103, SM is the same 
as defined in Equation 7.58 and SAi is determined by Equation 7.63. And, the safety factors SAn and 
SAξ are defined in Equations 7.64 and 7.65, respectively. Here, 

	
SAn n n n

=
× − × + +− −

1
5 9868 10 9 0063 10 0 0395 0 40926 3 4 2. . . .

;
	

	
SA

design design design
ξ ξ ξ ξ

=
− + +

1
43 6574 27 3608 6 1865 0 75363 2. . . .

.
	



Linear	Damping	Design	 447

7.4.2.1.7 Lateral Forces and Base Shear
For nonproportionally damped systems, the lateral force can also be calculated through Equation 
7.66 and the base shear is calculated through Equation 7.70.

7.4.2.4  Redesign of Damping Devices
On completion of the above procedure, the design criteria described by Equation 7.25 should be 
rechecked. If they are not satisfied, the damping ratio and/or damper configuration need to be recon-
sidered and a new damping matrix should be determined. The response estimation is revisited until 
the results are satisfactory.

7.4.2.5  Selection of Dampers
If the above-mentioned criteria are satisfied, similar to the design for the MSSP system, the dampers 
can be selected as discussed above.

The discussion on response estimation of nonproportionally damped systems has been completed 
in the preceding sections. In the following discussion, a simplified example is given to illustrate the 
design procedure and to compare methods in dealing with proportionally and nonproportionally 
damped MDOF systems.

Example 7.3

Assume that the design base shear in Example 7.1 is [V] = 48.65 (kN). The base shear calculated 
through earthquake simulations is 64.64 (kN) with αv = 0.7527 > 0.75.

Therefore, damping control can be used to reduce the seismic responses. Suppose the damp-
ing matrix of the base structure is

	

C 12.95

2 -1 0 ... 0
-1 2 -1 ... 0

...
0 ... 2 -1
0 ... -1 1

0 = ×























( )

10◊10

M N -sm

	

which provides 0.025% damping ratio for the first mode.
Now, suppose the dampers are only installed in the first three stories. The corresponding 

damper configuration matrix is given by

	

Ccon =

−
− −

−























×

2 1 0 0
1 2 1 0
0 1 1 0

0 0
10 1

...

...

...

...
...

00	

Similar to Example 7.1, c(2) = 106.9 (MN-s/m) can be calculated. The supplemental damping 
matrix is c(2) Ccon. The total damping matrix is C0 + C(2). Now, consider response estimations based 
on both proportionally and nonproportionally damped models. For the estimations based on the 
proportionally damped models, two cases are possible: the design using method A and the design 
using method D.

The basic parameters of the accumulated modal mass ratio, the periods, and damping ratios 
of the proportionally and nonproportionally damped systems are given in Table 7.11. Note that 
the nonproportionally damped system is obtained after the supplemental dampers are installed.
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In the second column of Table 7.11, the cumulated modal mass ratio of the corresponding 
proportionally damped system is listed. It is seen that up to the third mode, γmS = 0.9715 > 0.95. 
Note that to choose the exact value of S, the number of modes needed for a nonproportionally 
damped system, the quantity γmS given in Equation 7.49 cannot be used. However, for estimation 
of S, which includes several more modes, γmS is often sufficient. In this example, S = 5 is chosen. 
The safety modification factor SM is taken to be 1.0.

The third column of Table 7.11 is the modal energy transfer ratio. It is seen that ζ1 = 2.4%, which 
is larger than 1%. Furthermore, it is realized that the second “mode” is actually an overdamped 
subsystem. Thus, the model of a generally damped system can be considered. The fourth column 
lists the periods calculated through the proportionally damped and nonproportionally damped 
model, and the fifth column lists the damping ratios of the proportionally damped and nonpro-
portionally damped mode. From these columns, the differences between the proportionally and 
nonproportionally damped systems are evident.

The mode shapes of the proportionally and nonproportionally damped system are listed in 
Table 7.12. For the generally damped system, the accompanist vectors are also listed. Due to space 
limitations, only data from the first four modes are presented. For the proportionally damped sys-
tems, the first three mode shapes are listed in Table 7.5. In the last column of Table 7.8, the shape 
function of the residual mode is also used. Note that the modal participation factor of the residual 
mode is − 0.413.

The estimated modal responses are listed in Tables 7.13 and 7.14. Comparing the responses 
among these methods and the numerically simulated results, it is seen that those obtained from 
the nonproportionally model have the closest results. Those obtained from the proportionally 
damped model with method A are also good estimations. On the other hand, the data obtained 
from the concept of residual mode seem to be not compatible.

According to Example 7.1, supplemental damping is used to reduce the base shear from 60 (MN) 
(64.63 (MN) according to simulated result) to less than 48.65 (MN). The simulated result is based 
on a statistical time history analysis and is considered to be more accurate. Seen from Table 7.14, 
all the methods indicate that the design is satisfactory. However, it seems that the proportionally 
damped models, especially those with inaccurate mode shapes, do not provide accurate results.

7.5  DAMPER DESIGN ISSUES

Many practical issues in damper installation cannot be covered using only the principles of struc-
tural dynamics, such as supporting stiffness, non-Timoshenko damping, and safety and mainte-
nance issues. Here, certain important details are discussed. Most of these concepts also apply to 
nonlinear damping design.

7.5.1  suPPorting stiffnEss

7.5.1.1  General Requirement
In Chapter 5, the effect of supporting stiffness on damper design was discussed. Practically speak-
ing, once a specific type of damper is decided, the damper supporting system needs to be consid-
ered. As noted earlier, the calculation of the influence of the stiffness of the supporting member 
connecting the dampers to the structure is not included in the simplified design. Equations 5.141 
and 5.144 can be used for this purpose. The concept of these two equations can be described by

	 k ks > γ ξξ 	 (7.104)

where ks is the supporting stiffness and γξ is a proportional coefficient.
In NEHRP 2009, it is assumed that structures to be installed with dampers are single-bay struc-

tures, as shown in Figure 7.2a. However, structures may have multiple bays, and dampers may not 
necessarily be installed in all bays, such as shown in Figure 7.2b.
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In this case, the idea of limited supporting stiffness can be extended, as conceptually shown 
in Figure 7.2c. That is, for a simplified design, a structure with dampers, as shown in Figure 7.2b, 
can be represented by an equivalent single-bay model. Using this model, the mass and stiffness 
condensed from multiple bays to a single bay must be addressed. In addition, the effectiveness of 
damping for this equivalent single bay must be addressed. In NEHRP 2009, the energy absorption 
by an individual damper is thoroughly described. Here, vibration energy in bays without dampers 
is absorbed by the structural components in these bays and by dampers installed in adjacent bays. 
These energy quantities can be calculated through MDOF systems.

In multiple-bay structures, the values of γξ and k will vary at different locations. Thus, the sup-
porting stiffness may be written as

	 k ksj kj j≥ ( )γ ξ  kN m 	 (7.105)

where subscript j stands for the jth story where dampers are installed.
With multiple-bay frames, the apparent lateral stiffness is considerably stronger than that of the 

single-bay frames and the resulting damping ratio is much lower. Thus, the product of ξkj may not 
change significantly, if the “additional supporting” stiffness is assumed to be infinite. In order to 
determine the required supporting stiffness, it can be assumed that the lateral stiffness is kj. To have 
the same value of damping ratio ξ, means a larger supporting stiffness, gi, is required. Based on 
limited numerical simulation, the coefficient γkj may be modified as follows:

	
γ γkj

j

j
j

k
k

= +








1 0

∆

	
(7.106)

Here, kj is the lateral stiffness of the jth story with unit (kN/m); Δkj is the additional lateral stiff-
ness of “empty” bays with unit (kN/m). γj0 is the coefficient for single-bay structures. For example, 
with the help of Equations 5.141 and 7.106,

TABLE 7.14
Base Shear

Proportionally 
Damped Model Method B

Method of 
Residual Mode

Generally 
Damped Model

Simulated 
Results

Base shear (MN) 42.70 24.99 44.410 47.345 47.327

ks1

ks2

ks3

(a) (b) (c)

FIGURE 7.2  (a–c) Single-bay and multiple-bay structures.
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γkj

j

j

k
k

= +








10 1 ∆

	

Example 7.4

Suppose that in the jth story of an eight-bay building, dampers are installed in only two bays. The 
lateral stiffness contributed by each bay is about 100,000 (kN/m).

Approximately, Δkj is taken as the stiffness of “empty” bays,

	
∆k kN mj 8 2 100 000 600 000−( ) × = ( ), , .

	 .

Furthermore, since two bays are installed with dampers,

	
k kN mj = × = ( )2 100 000 200 000, , .

	 .

Therefore, when Equation 7.29 is used,

	
γ γ γkj

j

j
j

k
k

= +








 =1 2 70 0

∆ .
	

This result implies that with the “empty” bays, the supporting stiffness needs to be considerably 
larger. In practice, the resulting supporting stiffness can be too large to realize. In this case, install-
ing the dampers in more bays should be considered.

7.5.2  Modification of non-tiMosHEnko daMPing

Computation based on Timoshenko damping is used more often in this chapter. For the case of 
using the force-based effective damping, modification of the damping ratio computation is needed 
as follows:

	 ξ ξn c Tp= 	 (7.107)

in which ξn is the non-Timoshenko damping and ξT is the Timoshenko damping. Both can be the 
damping ratios of an SDOF system; or they can also be the ith damping ratio of the ith mode of 
an MDOF system, respectively. Furthermore, pc is the Penzien constant, which is explained in 
Chapter 6.

In practical applications, the vendors of dampers cannot provide information on the nature of 
the damping associated with their devices, namely, Timoshenko or non-Timoshenko damping. 
Generally, when the damping ratio is small, i.e., ξ < 0.1, all the damping ratios can be treated as 
Timoshenko damping. Otherwise, if the damping adaptability is high (see Equation 5.59), it is better 
to modify the Timoshenko damping by using Equation 7.107.

Example 7.5

Suppose a system has nonlinear damping. Using the equation ξT = Ed/4πEp, the damping ratio can 
be estimated to be 30%, which is the Timoshenko damping.

As a rough estimation, the non-Timoshenko damping can be calculated by letting pc = 0.65, 
in this case,
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	 ξn = × =0 65 0 3 0 24. . . 	

Thus, the force-based effective damping ratio is estimated to be a smaller value, which is expected 
in most cases.

7.5.3  safEty, rEliaBility, and MaintEnancE issuEs

Damping devices, which are in fact mechanical elements, are added to structures for the purpose of 
reducing the seismic response of the structures at the same time. They may also create complica-
tions in structural responses, primarily due to the damper-induced cross effects and other nonlinear 
responses of the structures. These issues are not fully quantified at present. Therefore, safety fac-
tors commonly used for mechanical elements may be considered. Based on a common treatment 
of mechanical elements, some ranges of these safety factors are discussed and suggested only to 
qualitatively illustrate safety issues.

7.5.3.1  Fail-Safe Concept
Earthquake protective systems are meant to reduce the vibration level of the structure induced by 
seismic ground motions. Therefore, the protective system itself should, in principle, be designed 
with a larger safety factor. On the other hand, a fail-safe mode of design may be established for stiff-
ness when the protective system fails. In any case, several aspects of dampers must be considered in 
damper design. These are briefly discussed in the following paragraphs.

7.5.3.2  Maximum Force in Dampers
The maximum force to be experienced by a damper is briefly examined. Figure 7.3 shows examples 
of typical damper installation details. Figure 7.4 shows the additional force applied to a damper at 

(a)

(b)

FIGURE 7.3  (a, b) Damper connection details. ((a) Courtesy of Taylor Devices, Inc. North Tonawanda, NY. 
and (b) Courtesy of ITT Enidine, Inc. Orchard Park, NY.)
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the conceptual connection of the original beam and column. This additional force does not statically 
exist. The amplitudes of the additional damping force and the storage forces and torque of the beam 
and column are time variables. In most cases, they will not reach their peak value at the same time.

If the base shear is calculated by primarily considering the restoring force, the influence of the 
damping force should be considered. That is,

	 σ σ κσΣ = +s d 	 (7.108)

	 τ τ κτΣ = +s d 	 (7.109)

where σ(⋅) and τ(⋅) are the maximum normal and shear stress, respectively with proper units, the sub-
scripts Σ, s, and d stand for the total stress, including the stress caused by storage force and the stress 
caused by damping force, respectively; and κ is a coefficient, depending on different situations. 
When the stress caused by the storage force reaches its peak values, those caused by the damping 
force should be close to zero. In Chapter 4, it was shown that this is not always true for MDOF sys-
tems. Based on limited simulations, the authors suggest that κ be given a value of

	 κ = −20 50% %.  (7.110)

rather than zero.
Larger values are taken when the levels of weight, plan, damping irregularity, and/or the damp-

ing adaptability fadp (see Equation 5.59) are high.

7.5.3.3  Stability of Damper System
When a damper is installed in a structure, it can be subjected to forces more complex in nature than 
the force on a test bench in the laboratory. Some of these forces may cause unstable working condi-
tions (i.e., see Figure 7.6). On the other hand, when a damper is installed in a particular location of a 
structure, and damping forces are applied to the structure at this location, they may help the overall 
system to be more stable due to the constraints of the damper locations, as discussed below.

7.5.3.3.1 Side Load of Dampers
When a damper is tested in the laboratory, most likely it is only subjected to pure axial load. In 
actual installations, side load perpendicular to the axial load may exist. Figure 7.5 conceptually 
shows this situation.

The side load may increase the friction force of the fluid damper seals. In the extreme case, side 
force may lock the piston head of a fluid damper, or it may damage or accelerate the rate of dam-
age of the seal of a fluid damper. The side load may be caused by a bending moment due to multi-
directional input, or by an inertia force of the damper, or simply by misalignment, etc. In order to 
reduce the side load, universal connectors have been used. The disadvantage is discussed in the next 
subsection.

Base shear

+
+

+ +
+
+

Damping
force

FIGURE 7.4  Damping force on joints.



456	 Structural	Damping:	Applications	in	Seismic	Response	Modification

The side load may change the friction coefficient of a friction damper by a factor of between 
−10% and −30%, based on limited numerical simulations, depending on the amplitude and fre-
quency of the side load.

If the side load is simply caused by the gravity force, creep may occur, causing an unstable 
condition of the damper system, because VE material has near zero stiffness under static force. 
Figure 7.6 shows this problem.

In addition, since the stiffness of a damper perpendicular to its axial direction can be consider-
ably less than in the axial direction, even though the mass of the damper and its support is small, 
the corresponding vibration frequency can fall into the major part of an earthquake spectrum. As a 
result, a local vibration mode may develop (see Figure 7.6b).

7.5.3.3.2 Buckling Condition of Damper Systems
A damper is typically installed in a diagonal configuration as shown in Figure 7.6. When the connection 
of the damper support to the frame of the structure is a hinge type, an additional degree-of-freedom is 
introduced. This weakens the buckling condition of the damper system.

7.5.3.3.3 Buckling Condition of the Overall System
The introduction of dampers may change the buckling condition of the overall frame. When a 
column is subjected to vertical loading, it may fail by in-plane buckling. The device configuration 
may provide more lateral deformation constraints to the frame, but at the same time decreases the 
buckling load of the column. Therefore, to determine whether the damper system contributes to the 
frame buckling condition, a detailed analysis needs to be conducted. Furthermore, as previously 
discussed, the combination of damping and spring forces provided by the damper and the damper-
supporting member should be considered. It is safe to assume that both forces reach their peak value 
at the same time during an earthquake.

To date, sufficient data do not exist on the effect of damper systems on the buckling strength of 
structures. In fact, design parameters are not defined.

k

k

(a) (b)

m

FIGURE 7.6  (a, b) Side load of a VE damper and local vibration mode.

Side load

Axial load

FIGURE 7.5  Side load on a damper.
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7.5.3.4  Combinations of Different Devices
Different types of devices can be used together for multiple objectives. When the loading or defor-
mation exceeds the level permitted by the normal design of one damper (either fails or behaves like 
a different type of device), the remaining devices may still be functional. The way to analyze this 
situation is briefly discussed herein.

For linear and proportionally damped systems, this problem can be simply solved by adding the 
effectiveness of each damper. In most cases, damper design involves nonlinear and nonproportional 
damping properties for which accurate calculation is more complex. Generally, numerical calcula-
tions for nonlinear systems have to be carried out and 2n state-space needs to be used to calculate the 
results of modal superposition.

However, if the damping ratio is not very large, i.e., less than 15%, the equivalent damping 
method can yield fairly good accuracy. In this case,

	

ξ
ξ

1

2

1

2
≈

C
C 	

(7.111)

and

	 ξ ξ1 2 1 2+ ≈ +C C 	 (7.112)

where ξ1 and ξ2 are damping ratios in different cases corresponding to different damping matrices 
C1 and C2. The symbol ||(•)|| stands for a particular norm of the matrix (•).

For example, suppose a damping matrix C1 provides the damping ratio for the first mode to be 
ξ1. Later, the damping coefficient matrix is increased α times so that

	 C C2 1= ( )α kN s m- 	 (7.113)

Then,

	 ξ αξ2 1= 	 (7.114)

Next, suppose damper 1 gives a damping coefficient C1 and damper 2 gives a damping coef-
ficient C2. Individually, damper 1 yields a damping ratio ξ1, and damper 2 yields a damping ratio 
ξ2. Then, when the two types of dampers are used together, with υ representing the number of the 
first type of damper and ν the second damper, the approximate total damping ratio, ξtotal, is given by

	 ξ υξ νξtotal ≈ +1 2 	 (7.115)

7.5.3.5  Safety Factors
Since using a damping system to control the dynamic responses of structures is more complex 
than the design of structures to withstand static load without dampers, the considerations of 
design safety and reliability for these cases are different. This is briefly discussed in the follow-
ing subsection.

7.5.3.5.1 Types of Safety Factors
There are two types of safety factors for the design of dampers: damping and structural response 
reduction.

If a structure with supplemental damping is proportionally damped, adding more damping for 
each important mode will further reduce the corresponding modal responses and therefore the total 
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structural response. However, for complex modes, the opposite may result. In this case, the damping 
safety factors can be used.

The advantages of damping safety factors are obvious. The concept of using a higher value of 
damping to guarantee vibration control is easier to understand. Using the damping safety factors 
can simplify the design procedure. This is discussed in the following paragraphs.

When structures with added dampers have high damping nonlinearity, the concept of a special 
safety measure, the response safety factors, are to be used.

When the response safety factors are employed, the initially calculated structural responses, such 
as the total base shear, floor drift, story force, overturning moment, foundation uplifting force, etc., 
are magnified, resulting in a more conservative design.

7.5.3.5.2   Damping Safety Factors
With the damping safety factors, the control parameter ξ will be modified to require a higher value.

7.5.3.5.2.1 Damper and Installation Factor Sϖ The quality control of the damper installation as 
well as the quality of the damper itself should also be considered by using the damper and installa-
tion factor, Sϖ, which consists of several components.

The first safety consideration in damper installation is the supporting stiffness, which is usually 
not infinitely large. For example, a fluid damper can be compressed more than the designed value if 
there is too much air in the fluid; a viscoelastic damper can have a smaller storage modulus due to 
higher temperature; etc. Thus, a safety factor, Sϖ1, should be used.

The second component in safety consideration is the space tolerance for the installation of bolts 
or pivots. Although this space tolerance is small, it can alter the damping force-damper stroke con-
stitution, which is equivalent to a reduction in damping.

When a certain tolerance, denoted by g, exists between the damper and the structure, the designer 
may use a second safety factor Sϖ2.

The third safety consideration by using a safety factor Sϖ3 accounts for the errors introduced in 
decoupling a nonproportionally damped MDOF system into the SDOF models when nonpropor-
tional damping is insignificant.

The fourth safety consideration is the uncertainties introduced by using idealized assumptions 
about the dampers. Due to various imperfections, dampers may not deliver the desired damping 
force. For example, a hydraulic damper may have unwanted leakage or the fluid viscosity may 
become thinner; a friction damper may be overly worn to maintain correct normal force and the 
friction coefficient may become smaller; a viscoelastic damper may have a larger thickness or its 
loss factor may become smaller due to higher working temperature; etc. Due to these imperfections 
of the dampers, the total energy dissipation, which is the area enclosed by the hysteric loop, can 
be smaller than the idealized theoretical value. A quality control factor must then be considered to 
account for those uncertainties (Ramirez et al. 2000).

	 Sϖ4 1= qH 	 (7.116)

Here, qH is the quality factor or the hysteresis loop adjustment factor, which is defined in Equation 
5.44 and repeated as follows:

	
q E

EH
r

d
=

	
(7.117)

Thus, the total safety factor for structure-damper system with high nonlinearity is given by

	 S S S S Sϖ ϖ ϖ ϖ ϖ= 1 2 3 4 	 (7.118)
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7.5.3.5.2.2 Uneven Modal Distribution Factor Sξ In simplified design, it is often assumed that 
the higher modes can have the same value of the damping ratio as the fundamental mode. However, 
it is possible that the higher modes may have a smaller damping ratio. For this situation, a safety 
factor Sξ should be to account for the effects of uneven modal combinations.

7.5.3.5.2.3 Damper Realization Factor Sυ Some uncertainties exist between the design (of ide-
alized damping devices) and installation of dampers. Safety factors, called the damper realization 
factor and denoted as Sυ1, are established by considering several components.

Second, when the fundamental mode only is considered, an error may be introduced by ignoring 
the higher modes. A safety factor Sυ2 may be used.

Third, earthquake excitations do not necessarily occur in one principal direction of the struc-
ture. Orthogonal effects by an input from the perpendicular direction should be considered. This is 
accounted for by yet another safety factor, Sυ3.

Fourth, when a larger damping force is needed but large size dampers are not available (or cannot 
be used due to space limitations), several smaller-sized dampers are used in parallel. Since these 
smaller dampers cannot have exactly the same specifications or the same installation conditions, the 
damping force can be unevenly distributed to these dampers. It is thus necessary to introduce the 
uneven distribution factor, Sυ4.

The total safety factor for the above additional considerations is

	 S S S Sυ υ υ υ= 1 2 3 	 (7.119)

7.5.3.5.3 Response Safety Factors
In addition to the standard safety factors used in seismic design (BSSC/NEHRP 2009), there 
are other response safety factors related to damper design, with which the design parameters of 
responses will be modified to have higher values.

7.5.3.5.3.1 Response Modification (Safety) Factors The response modification factors SDn, SDξ, 
SAn, and SAξ are also important factors, which were mentioned in Section 7.1.

7.5.3.5.3.2 Stroke Safety Factor Sσ The stroke safety factor, denoted as Sσ, is introduced in 
Equation 7.48 to ensure that dampers do not suffer damage due to extremely strong earthquakes. It 
also covers the design uncertainty as well as damper performance uncertainty. To ensure that failure 
of dampers does not occur, a large safety factor is used; especially if the structure is designed to be 
highly ductile.

7.5.3.6  Reliability and Maintenance
The issue of reliability and maintenance of the damping devices must be carefully considered in 
design. This is important, but beyond the scope of this book.

7.5.4  nuMErical daMPing coEfficiEnt

Numerical damping coefficient B is a function of the damping ratios, which are used to modify the 
value of the design spectrum. Therefore, the accuracy of B will directly affect the design value of 
the seismic responses. Several issues can affect the estimation of B, which are discussed below.

7.5.4.1  Concept of Numerical Damping Coefficient B
The numerical damping coefficient B is inversely proportional to the system base shear, expressed 
by Equation 2.319. The basic idea suggested by NEHRP 2009 is that when the numerical damping 
coefficient increases, the system base shear will be reduced proportionally. The same idea is also 
applicable to the lateral forces, fL, and floor deflections, δ, that is,
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V

B
∝ 1 ,

	
(7.120)

	
f

BL ∝ 1 ,
	

(7.121)

	
δ ∝ 1

B
.
	

(7.122)

In these three relationships, the numerical damping coefficient B can be defined as a ratio 
between the spectral value with 5% damping ratio and a damping ratio ξ at period T. That is,

	
B

S T
S T
A

A
=

( )
( )
, .

,
0 05

ξ 	
(7.123)

From Equation 7.123, the factor B is a function of the damping ratio ξ. And, the larger the damp-
ing ratio, the larger the factor B. In Table 7.15, the value of B is listed according to NEHRP 2009.

Using the numerical damping coefficient, the spectral acceleration of a system whose damping 
ratio is different from 5% should be modified. That is, from Equation 7.123,

	
S T

S T
BA

A,
, .

ξ( ) =
( )0 05

	
(7.124)

Similarly, for spectral displacement,

	
S T

S T
BD

D,
, .

ξ( ) =
( )0 05

	
(7.125)

Table 7.15 implies that the numerical damping coefficient is only a function of the damping ratio, 
that is,

	 B f= ( )ξ 	 (7.126)

For convenience of analysis and design, some empirical equations can be used to approximate 
NEHRP’s table and/or Equation 7.126. As can be seen in Figure 7.7, the relationship between the 
numerical damping coefficient B and the damping ratio ξ is very close to a straight line. Therefore, 
a simplified linear relationship between B and ξ can be approximated. That is,

	 B f a b= ( ) = +ξ ξ 	 (7.127)

TABLE 7.15
Numerical Damping Ratio

ξ 0.02 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

B 0.8 1.0 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 4.0
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Based on the least square method, the coefficients a and b can be calculated as a = 3.0 and 
b = 0.9. Therefore,

	 B ≈ +0 3 0 9. .ξ 	 (7.128)

In the literature, there are other expressions for the numerical damping coefficient. Newmark and 
Hall (1982) suggested that for the constant velocity region of the design spectrum, the amplitude 
factor based on the damping ratio, denoted as Aξ, can be written as

	
Aξ

ξ
=

− ( )2 31 0 41 100
1 65

. . ln
. 	

(7.129)

Furthermore, in the constant acceleration region of the design spectrum, the amplitude factor 
based on the damping ratio can be written as

	
Aξ

ξ
=

− ( )3 21 0 68 100
2 12

. . ln
. 	

(7.130)

Because the numerical damping coefficient can be written as

	
B

S T
A

A=
( ), .0 05

ξ 	
(7.131)

in this case, described by Equation 7.129,

	
B =

− ( )
1 65

2 31 0 41 100
.

. . ln ξ 	
(7.132)
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FIGURE 7.7  Numerical damping coefficients.
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Christopoulos and Filiatrault (2006) propose another formula for the numerical damping coef-
ficient, called the damping reduction factor, which is written as

	
B =

− ( )
4

1 ln ξ 	
(7.133)

The curves of B vs. ξ described by Equations 7.132 and 7.133 are also plotted in Figure 7.7 for 
comparison.

7.5.4.2  Modification of Design Spectrum Based on Period Range
7.5.4.2.1 Modification with Respect to Period
The relationship described by Equation 7.126 has some limitations. First, this relationship, devel-
oped for the design spectrum of an SDOF system, does not consider the existence of multiple modes. 
Thus, it is not a function of period Ti.

However, from Chapters 1 and 2, it is known that when the major driving frequency is consider-
ably lower than the natural frequency of a system, the most effective way to reduce the vibration 
level is to increase the stiffness of the system. The corresponding frequency range is referred to as 
the range of stiffness control. When the major driving frequency is considerably higher than the 
natural frequency of a system, to reduce the vibration level, the mass of the system is increased. The 
corresponding frequency range is referred to as the range of mass control. When the value of the 
major driving frequency is in the vicinity of the natural frequency of a system (the system is close to 
resonant), the damping of the system can be increased to reduce the vibration level. The correspond-
ing frequency range is referred to as the range of damping control. These facts indicate that at dif-
ferent frequencies or periods, the effect of the damping will be different. Therefore, the numerical 
damping coefficient B should also be a function of the period. NEHRP 2009 (BSSC 2009) does not 
include these detailed considerations in favor of simplicity.

Ramirez et al. (2000) suggested a method to improve the value of the numerical damping coeffi-
cient by considering the plot shown in Figure 7.8, where the value of B is a function of the period. In 
fact, when the system is very stiff, that is, the period is shorter then Ts/5, B will have a small value; 
this means that damping will play a less important role. In the range between Ts/5 and Ts, there will 
be larger values of B, which continuously increase until they reach the value Bl. After Ts, the damp-
ing coefficient becomes constant and equals Bl.

Thus, according to Ramirez et al., the value of the numerical damping coefficient B should be 
a function of both the damping ratio and the period. By using the 99 earthquake records, the mean 
response spectra can be computed. Then, the spectrum of 5% damping is used as a reference to find 
the value of B. The resulting curves are plotted in Figure 7.9 so that the relationship between B and 
the period can be examined.

If B is not a function of the period, then, in Figure 7.9, horizontal flat lines with different values 
of the damping ratio should be seen. However, there are a group of curves. These curves, when 

T
Ts/5

1.0

Bs

B1
B

Ts

FIGURE 7.8  Damping coefficient spectrum.
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damping is small, are close to Ramirez’s plot, shown in Figure 7.8. When damping becomes larger, 
the differences are obvious. In order to examine this issue further, a group of curves of B vs. the 
damping ratio are plotted and shown in Figure 7.10. For comparison, the curve based on Table 7.6, 
which is marked as the break line, is also plotted.

To further illustrate that the values of B are affected by the variation of the period, the 99 earth-
quake records were used to obtain the mean response spectra with different damping ratios, as 
shown in Table 7.16. In this table, selected values of the damping coefficient B are listed for differ-
ent periods and damping ratios. As a comparison, the values given by NEHRP 2009 are also given.

Based on the principle that larger damping will reduce more vibration, the value of NEHRP 
2009 is safe to apply. Thus, for a simplified damping design, the NEHRP data can be used directly 
without modification.
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In Table 7.16, the values that are smaller than the corresponding data of NHERP 2009 are denoted 
by italic letters. In such cases, however, using the value of the NEHRP 2009 numerical damping 
coefficient will overestimate the effect of damping and result in a design that may be unsafe.

It is noted that Table 7.16 is obtained by using only 99 earthquake records, but it still shows that 
the damping coefficients are ground motion dependent. In seismic design, the local earthquake 
histories should be carefully examined.

As mentioned in Section 7.1, the period of a building is also a function of the number of stories 
of the structure. That is,

	 T f n s= ( ) ( )	 (7.134)

Therefore, in order to reflect the effect of period in practical design, modification (safety) factors 
SDn and SAn, described in Equations 7.16 and 7.22, are recommended.

7.5.4.2.2 Modification with Respect to Damping Ratio
In the previous chapters, structural dynamics principles of acceleration and displacement controls 
were discussed. Now, their corresponding design issues are discussed.

First, since the relationship between absolute acceleration and relative displacement needs to be 
modified by the factor 1 4 2+ ξ , the damping factors for acceleration and displacement reductions, 
denoted as Bacc and Bdisp, should be different, namely,

	 B Bacc disp= +1 4 2ξ 	 (7.135)

In Figure 7.11, curves of the inverse of the numerical damping factor are plotted. The line 
marked with triangles is based on Table 7.15 and the solid line is based on Equation 7.128, the linear 
approach; it is seen that the difference is small, especially when the damping ratio becomes larger.

When the reduction effect described by Equation 7.126 based on limited numerical simulations 

of displacement and acceleration with the factor 1 4 2+ ξ 	 is plotted and marked by dotted and 
break lines, respectively, the difference is also small. This validates Equation 7.128. To write the 
design equations compatible with NEHRP 2009, the number of damping factors for acceleration 
and displacement reductions are not distinguished but only one parameter B is used. Therefore, the 

TABLE 7.16
Numerical Damping Coefficients

T = 0.375 
(s)

T = 0.625 
(s)

T = 0.875 
(s)

T = 1.00 
(s)

T = 1.50 
(s)

T = 2.00 
(s)

T = 4.00 
(s)

NHERP

ξ	=	2% 0.7731 0.7918 0.7915 0.8049 0.8089 0.8267 0.8533 0.8

ξ	=	10% 1.2482 1.2711 1.2803 1.2383 1.2233 1.2051 1.1794 1.2

ξ	=	20% 1.6205 1.6990 1.7259 1.6378 1.5938 1.5316 1.4962 1.5

ξ	=	30% 1.9544 2.0867 2.1128 2.0020 1.9245 1.8224 1.7806 1.8

ξ	=	40% 2.2658 2.4441 2.4804 2.3580 2.2356 2.1074 2.0571 2.1

ξ	=	50% 2.5619 2.7842 2.8427 2.7072 2.5397 2.3905 2.3247 2.4

ξ	=	60% 2.8503 3.1206 3.1990 3.0488 2.8447 2.6685 2.5774 2.7

ξ	=	70% 3.1297 3.4537 3.5512 3.3791 3.1426 2.9415 2.8255 3.0

ξ	=	80% 3.3973 3.7810 3.8958 3.7081 3.4330 3.2110 3.0692 3.3

ξ	=	90% 3.6545 4.0939 4.2388 4.0326 3.7248 3.4812 3.3104 3.6

ξ	=	100% 3.8984 4.3951 4.5760 4.3504 4.0152 3.7482 3.5488 4.0
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factor 1 4 2+ ξ 	is directly used in the equations of the seismic response factors CSi (see Equations 
7.10 and 7.51).

However, from Figure 7.11, a difference in the reductions is found when compared with the 
reduction based on Table 7.15 and numerical simulations. It is understood that the concept of 
using a numerical damping factor is to realize the corresponding reduction, which is referenced 
at ξ = 5%. As previously mentioned, a 5% damping ratio covers certain inelastic deformations; 
whereas when a structure remains in the elastic range, the damping ratio can be considerably 
smaller than 5%. To minimize the differences, the modification (or safety) factors SAξ and SDξ are 
introduced (see Equations 7.23 and 7.17). These two modifications are only valid in the range of 
the damping ratio between 2% and 30%.

7.5.5  ModifiEd srss

In the above discussion of NEHRP 2009 on the computation of SRSS, it was mentioned that it is 
better to avoid using the computation with SRSS as well as CQC, as this may introduce errors.

If the peak values at different stories can be counted at an identical time, then using SRSS can be 
avoided. If direct modal superposition can be used, then such approximations can also be avoided.

However, in many cases, the moment when a peak response occurs cannot be identified; e.g., 
using the values of design spectra. In this case, to increase the accuracy, an improved CQC that 
considers nonproportional damping and overdamping can be used. The interested reader may refer 
to Song et al. (2007) for a more detailed explanation.

7.5.5.1  Absolute Acceleration
To increase the computational accuracy of the absolute acceleration, repeat the M-C-K equation 
once as described in Equation 3.99:

	 M C K M�� � ��x x x Jr r r gt t t x t( ) + ( ) + ( ) = − ( )
	 (7.136)
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FIGURE 7.11  Effects on response reductions by damping ratios.
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where, to emphasize that the variables are relative, subscript r is used. Equation 7.136 can also be 
written as

	 M C K�� �x x xa r rt t t( ) + ( ) + ( ) = 0 	 (7.137)

where the absolute acceleration ẍa(t) is

	
�� �� ��x x Jxa r gt t t( ) = ( ) + ( )

	 (7.138)

When the damping force is small, that is,

	 C�xr t( ) = 0 	 (7.139)

then

	 M K��x xa rt t( ) ≈ − ( ) 	 (7.140)

Note that Equation 7.140 does not necessarily mean that the absolute acceleration ẍa(t) and the 
relative displacement xr(t) share common shape vectors, even if Equation 7.139 holds, unless the 
response contains only one mode (MSSP system).

Similarly, using spectral values, denoted as aa and dmax, respectively, for the responses in vector 
form, Equation 7.140 can be rewritten as

	 M Kaa d≈ max 	 (7.141)

Equation 7.141 does not necessarily mean that the absolute acceleration aa and the relative dis-
placement dmax share common shape vectors. The reason aa and dmax in general do not share common 
shape vectors is obvious, because both aa and dmax result from different values of modal combina-
tions. In this case, the equations suggested by NEHRP 2009, see Equations 7.21D and 7.62D, do not 
have a solid mathematical base and should be improved.

However, for each mode, the pseudo acceleration ẍsi
(t) and the relative displacement xri

(t) share 
the same shape function, and approximately

	 ��x xs i ri it t( ) ≈ ( )ω2
	 (7.142)

or the amplitude of pseudo acceleration can be written as

	 a ds ii i≈ ω2
max 	 (7.143)

where asi
 and dmaxi

 are defined in Section 7.1.
Generally speaking, the shape function of dmax is closer to triangular function, as suggested by 

NERP 2009, whereas the shape function of aa is closer to rectangular. Therefore, to improve the 
accuracy of acceleration estimation, Equations 7.62A and 7.103 are suggested.

7.5.5.2  Incomplete Modes
In practice, it is often impossible to include all the modes in response estimations; and furthermore, 
it is not necessary to do so. Therefore, the first S modes, such as the one used in Equation 7.103, etc., 
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are often used. In so doing, a small amount of response energy will be excluded. To improve this 
situation, a modification factor, SM, is needed, especially for design using MSSP models. Generally 
speaking, SM can be seen as a function of the cumulated modal contribution factors, such as the 
modal mass ratio, γmΣ, that is,

	 SM mf= ( )γ Σ  
(7.144)

Based on limited simulations, for the MSSP model,

	 1 0 0 95 1 1. . ~≤ = ( )SM mγ 	 (7.145)

and for the MDOF system,

	 1 0 0 95 1. . ~≤ = ( )SM mγ Σ 	 (7.146)

In Equations 7.145 and 7.146, more modes are taken, a smaller coefficient is used, and the small-
est values equal unity.

7.6  DAMPER DESIGN CODES

In Section 7.1, the criteria to determine the need to use damping control for structural aseismic 
design ware discussed, mainly based on the principles of structural dynamics. In actual design, the 
requirements of design codes must be followed.

Damping design is not the design of dampers, but the design of structures with added damp-
ing devices. Basically, the structure itself must have the capacity to resist gravity loads and other 
types of normal loads. In addition, the structure should withstand lateral forces due to earthquake 
ground accelerations. The design requirements are provided in design codes, such as NEHRP 
2009. In the following discussion, some basic requirements of NEHRP 2009 for the design of 
structures with supplemental damping are briefly summarized. Major differences between the 
equations in NEHRP 2009 and those given in Section 7.1 and/or additional provisions are also 
briefly discussed. Note that the language used in NEHRP 2009 is not exactly repeated or followed 
closely in this book.

In NEHRP 2009, for linear systems, the damper design is based on the response spectrum. 
The fundamental control parameter is the base shear. The design procedure mentioned in the 
previous sections of this chapter exactly follows the logic of NEHRP 2009. It is known that the 
expected spectral value is determined by both the period T and the numerical damping ratio B. 
Since the system is linear, not much can be done on the period. In order to achieve the desired 
base shear, the damping is increased, which defines the corresponding design parameters of the 
dampers.

As a complete aseismic design, NEHRP 2009 starts with the Seismic Use Group, followed by the 
Seismic Design Category. In the previous sections, however, due to space limitations in this book, 
the focus was on specific damper design only. Thus, the completeness of the design procedure is 
one of the major differences between this book and NEHRP 2009. For practical aseismic design, 
engineers should follow NEHRP 2009.

Calculating the period, especially for MDOF systems, however, is another major difference. In 
NEHRP 2009, the periods are functions of floor displacement. These displacements, on the other 
hand, are also functions of the periods. Therefore, to obtain the period in order to use the design 
spectrum, some iterative computations are needed when exactly following the NEHRP 2009 design 
logic. Since accurate convergence of such iterations cannot be guaranteed, approaches are sug-
gested in the previous section of this book.
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In addition, NEHRP 2009 uses a linear shift of the fundamental mode shape to calculate 
the residual mode shape and approximate the influences of higher modes. In the previous sec-
tion, an alternative method to find higher mode shapes was suggested, which is another major 
difference.

7.7  BRIEF SUMMARY OF DAMPING DESIGN OF LINEAR SYSTEMS

7.7.1  Major stEP (1) dEcision Making

The first major step is to decide on whether or not to use supplemental damping. This is graphically 
shown in Figure 7.12. This step is design phase I.

First, the use of damping control depends on two conditions: (A) the original damping ratio of 
the base structure is sufficiently small, which is the main reason to add supplemental damping; and 
(B) the fundamental period of the base structure is larger than Ts, in which case, increasing stiffness 
will magnify the seismic load so that damping control is more effective. Condition B is not always 
necessary; detailed modeling, such as through finite element analysis, may be needed to make a 
final decision.

Second, it is necessary to determine if the structure does not allow large ductile deformation and 
if the damping devices can be modeled as linear viscous; otherwise, nonlinear damping design must 
be considered if supplemental damping is to be used, which is discussed in Chapter 8.

Third, if the total damping ratio is sufficiently small and the fundamental mode contains the 
main part of the vibration energy, or if only a quick initial estimation is needed without detailed 
calculation; the MSSP model can be marked as type (1) in Figure 7.12. Note that design based on 
an SDOF model is very similar to that through the MSSP model. In this chapter, SDOF systems are 
not discussed due to space limitations.

If more detailed design is needed, more modes must be involved. However, the supplemental 
damping is proportional to stiffness and/or mass; in other words, if the mass, damping, and stiff-
ness irregularities are sufficiently small, the model of a proportionally damped system can be used, 
marked as type (2) in Figure 7.12. Note that if both the original and the supplemental dampings are 
not very high, this method is often acceptable for linear damping design.

In certain cases, more sophisticated design is necessary, e.g., careful reevaluation of the initial 
design or larger damping requirements and/or both damping and mass/stiffness irregularities are 
large. The model of generally damped MDOF systems should then be considered, marked as type (3) 
in Figure 7.12.

7.7.2  Major stEP (2) Modal analysis

The second major step is design phase II, which consists of steps (2) through (4), which are for struc-
tural response estimations. Figure 7.13 shows all three design phases and six design steps.

MDOF systems are the most typical structures in practice. Therefore, in addition to the period 
and damping ratio of the fundamental mode of structures, the mode shape as well as other model 
parameters of high modes are needed, which are obtained in this major step. In Figure 7.13, the 
major design steps are shown graphically as flowcharts.

For MSSP systems, the fundamental period T1 and mode shape p1, as well as modal parameter 
Γ1 need to be calculated. The original damping ratio of the base structure ξ	0 is also needed, which 
usually cannot be accurately calculated through initial modeling, such as finite element modeling. 
Thus, the damping ratio of the base structure, ξ	0, is often roughly estimated by experience. For a 
more accurate response estimation, more sophisticated methods are needed, except in the case of 
eigen-decompositions for simplified MSSP design, where method C mentioned in Section 7.1 can be 
acceptable. Therefore, only the mass matrix M may be needed.
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For proportionally damped MDOF systems, the modal parameters must be further calculated 
more accurately than for the MSSP model and more modes must be accounted for, such as the 
period, damping ratio, and mode shape of the ith mode, Ti, ξi, and pi, as well as modal participa-
tion factor Γi; and, in addition to the period (frequency), damping ratio, and mode shape for each 
mode, the modal contribution indicator, such as modal mass ratio γmS, is also needed. Thus, not 
only the mass matrix M, but also the stiffness matrix K is needed. Note that to use the methods 
suggested by NEHRP 2009, several extra equations, such as the modal effective mass meff1 and 
meffi and/or residual modal period TR, modal shape pRj, and modal participation factor ΓR, are 
needed.

For a generally damped system, which further involves damping matrix C, the mode param-
eters of the corresponding proportionally damped system, whose period and mode shape are now 
denoted by Ti

(p) and pri, need to be computed, as well as those from the generally damped system. 
Therefore, different sets of period, damping ratio, and mode shape Ti

(n) (or Ti), ξi, and pi, as well as ζ1 
and γmS are calculated. In addition, the eigenvalue λi, accompanist vector qi., and the modal energy 
transfer ratio ζ1 must be obtained. Note that this time, the period may include the pseudo period Tj

R; 
and to find Γi, the parameters 𝚽i and 𝚿i need to be calculated as well.

7.7.3  Major stEP (3) sPEctral ValuEs

The third major step is to calculate the spectral values, the modal seismic response factor Csi, and 
modal displacement diD. This step is familiar to earthquake engineers and will not be explained in 

MSSP
Proportionally

damped system 
Generally

damped system

M and/or K
T1, ξ0,  p1, Γ1

M, K, Ti, ξi,
pi  � mS, Γi  

M, K, � i, Ti, Ti
R��ξi,

pi, pri, qi, pi
R� mS,�Γi

 

Cs1, d1D Csi, diD Csi, diD��SD0, SA0

dmax, aa,
fL , V  

dmaxi dmax ari, aa= {aai},
fLj, V 

[V], [dj], [fLj]; � V, � dj, � fLj [V], [dj], [fLj]; � V, � dj, � fLj
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Criteria of supplemental
damping
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Damping ratio, damping

coefficients damping matrix
and evaluation

FIGURE 7.13  Design phases and major steps.
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detail. However, if overdamped subsystems are involved, the response spectra SD0, SA0 is needed, 
which must be determined according to local seismic zones.

7.7.4  Major stEP (4) ModEl rEsPonsEs

In the fourth major step, the modal responses, such as modal displacement, modal acceleration, and 
modal lateral forces, are calculated. Other quantities such as floor drift, base shear, etc., may also 
be needed. The modal displacement and acceleration are the basic design parameters from which 
other responses can be calculated. Both the modal displacement dmaxi

 and the acceleration aai
 or asi

 
are productions of A: spectral values such as diD and Csi; B: modal participation factor Γi; C: mode 
shape pi; and the recommended response modification (safety) factors SM, SDn, SDξ, SAn, and SAξ. 
Note that NEHRP 2009 does not require these factors in method D.

It is not necessary to accurately decide the exact numbers of modes. In general, they can be 
roughly estimated and several more modal responses are then added.

7.7.5  Major stEP (5) critEria of suPPlEMEntal daMPing

The fifth major step is design phase III, which consists of steps (5) and (6). This is the last but often 
not the final design phase because iteration is often needed to determine if the structural responses 
are successfully controlled. Figure 7.14 shows the detailed steps for design phase III.

In step (5) two tasks are carried out. First the total seismic responses, such base shear V, floor 
displacement dji, lateral force fLj, etc., are calculated through a combination of modal responses 
obtained in step (4). Although the SRSS method is used, care must be taken to deal with the ran-
domness introduced by seismic excitations. Generally speaking, SRSS is avoided whenever pos-
sible; and for absolute acceleration, modifications are used.

Response estimated: V, dj, fLj 

Comparison to allowed values [V], [dj], [fLj]
→ αV, αdj, αfL

Required damping ratio of 1st mode due to
added damping devices: ξa (MSSP) or ξ1 (MDOF)   

Geometric
magnification 
factors: Gmij  

Nominal
damping 

coefficient 
c(.)

Damper
configuration 

Ccon 

Specification of
realistic damper:

size, stroke

Number of
realistic dampers

per story

Damping
matrix C

Phase II
Response computation

Phase III
Comparison design

criterion

Damper
specifications

Damping
matrix

Re-evaluate responses with
damping matrix C until α(.) ≥ 1 

FIGURE 7.14  Design phase III, damping design criteria, damper specifications, and damping matrix.
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Secondly, the estimated seismic responses are compiled with the allowed values, such as allowed 
base shear [V], allowed floor displacement [dji], allowed lateral force [fLj], etc. The calculated differ-
ences α(⋅) are the criteria used to determine the proper amount of supplemental damping.

7.7.6   Major stEP (6) dEsign daMPing ratio, sPEcifications of 
daMPing dEVicEs, rEEValuation of total dEsign

In this major step, based on the factors α(•), the design damping ratio ξa is first calculated. By using 
the damping ratio of the systems, ξa, the nominal damping coefficient c(•) is further calculated, from 
which the specifications of the damping devices can be calculated, such as damping coefficient, 
size, and stroke of dampers, etc. For MSSP models, the design is now complete. However, for 
MDOF systems, more work may be needed.

That is, parallel to a system’s damping ratio ξa as well as ξdesign, the damper configuration needs to 
be considered, which will further provide the geometrical magnification factor Gmij. With information 
from these two rounds of computation, the damping matrix C(⋅) can be calculated, which includes the 
coefficient matrix that contributes to the original damping ratio ξ0 of the base structure and the one 
that describes the added dampers. The reason to have the damping matrix is to reevaluate the total 
damping design by reestimating the seismic responses of the newly formed M-C(⋅)-K system. This 
task can be carried out through proportionally damped MDOF systems. However, using a propor-
tionally damped model can be somewhat inaccurate. Therefore, the evaluation is more appropriate 
when the generally damped model is used.

In addition to the above six major design steps, several miscellaneous yet important issues are 
also considered in this chapter. First, the supporting stiffness of a damper is often not infinite, so it 
needs to be designed, or the effectiveness of the supplemental damping will be undermined.

The design safety and safety factors, in many cases, need to be carefully considered due to the 
randomness of seismic excitations and structure-device uncertainty. One of the concerns comes 
from the nonlinearity of dampers as well as structures. The linear approach used in this chapter 
is simple but sometimes not accurate. In fact, most dampers are nonlinear and the assumption of 
linear viscous damping is based on certain linearization computations. Linearization may intro-
duce unsafe errors, such as directly using the approach of Timoshenko damping. Thus, a corre-
sponding safety factor may be used to improve the situation. Another commonly accepted safety 
treatment is to account for the quality of commercially available damping devices. In addition, 
several miscellaneous safety issues were introduced, and most of them need to be further studied 
and determined.
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8 Nonlinear	Damping

Similar to linear damping devices, major decisions for nonlinear damping are based on the antici-
pated dynamic behavior of a given system, associated damping ratios and periods. In addition, 
specific types of damping are chosen to satisfy the basic requirements of structural response, as 
well as types of construction.

In Chapter 7, the design procedures for linear structures with linear damping were discussed. 
Although the linear assumptions cannot easily be satisfied, when both the amount of damping and 
the design ductility of the structures are small, the linear approach can provide simple yet accept-
able designs. Otherwise, nonlinear design must be considered, which is the focus of this chapter.

8.1  OVERVIEW OF DESIGN APPROACHES

As with the linear system approaches, there are three major phases for nonlinear damping design: 
the choice of damping type and the corresponding model, the response estimation, and the damping 
specification.

8.1.1  gEnEral dEscriPtion

For spectra-based deisgn of nonlinear systems, the total structural response is also treated as a 
product of the response of a single-degree-of-freedom (SDOF) system and a shape function. The 
SDOF system, often referred to as a “substitute” system, is one of the modes of a linear system. The 
approach evolves from the first mode of the linear system due to the addition of nonlinear damping, 
and/or due to inelastic deformation of the system. If only nonlinear damping is used and the base 
structure remains linear, higher “effective” modes can be considered. In this case, more than one 
SDOF system needs to be considered, along with responses and the corresponding shape functions.

To determine the response of the substitute SDOF system, the first approach is to linearize the 
nonlinear damping through the concept of effective damping and stiffness. By using Timoshenko 
damping and/or force-based effective damping, the effective damping ratio, ξeffi, and period, Teffi, for 
the ith mode of a multi-degree-of-freedom (MDOF) system can be obtained. In Chapter 6, the cor-
responding formulas were discussed. After the effective modal damping ratio and period are calcu-
lated, the linear damping design can be achieved exactly as discussed in Chapter 7. To simplify the 
design procedure, the nonlinear damping is classified into bilinear and sublinear dampings, which 
are discussed in Sections 8.2 and 8.3, respectively.

A second approach to determine the response of the substitute SDOF system is based on non-
linear design spectra, which covers the effects on an elastic structure when nonlinear damping is 
installed. In this case, while the structure remains mainly elastic, its damping and stiffness are 
altered. These cases should be addressed when the amount of nonlinear damping added to a struc-
ture becomes sufficiently high. This second approach is considered for sublinear damping within a 
linear structure in Section 8.4.

The third approach deals with supplemental damping installed in an inelastic structure. This also 
employs the nonlinear design spectra and is described in Section 8.5.

In each case, after determining the response(s) of SDOF system(s), the deformation shape func-
tions need to be determined to distribute the response to each story of the building. As mentioned in 
Chapter 5, when bilinear damping is used, its damping adaptability is zero, so the damping force is 
close to constant. The deformation shape functions will not be significantly affected by the damping 
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force if the supplemental damping is comparatively small. Thus, the same shape functions are used 
to estimate the seismic response with different amounts of damping.

Sublinear damping has nonzero damping adaptability. The damping force will increase when 
the displacement increases. This makes the shape function to have a larger variation than bilinear 
damping. This is the main reason why the damping design is classified into bilinear and sublinear.

Note that the damping adaptability of linear viscoelastic damping is unity, but its energy dissipa-
tion loop is close to bilinear. The corresponding shape function will change because its damping 
adaptability is unity. However, the bilinear model can be used to design this type of damping. On 
the other hand, most viscoelastic damping devices are not suitable for aseismic building because 
they often do not allow sufficient damper displacement. Therefore, only bilinear and sublinear 
dampings will be discussed.

8.1.1.1  Condition of Using Supplemental Damping
Similar to the situation for a linear system, the first step of design is to evaluate the base structure 
to determine whether it has a small original damping ratio and whether the fundamental period 
indicates that using damping will be beneficial.

8.1.1.2  Amount of Damping
Once the need to use supplemental damping is established, the seismic response can be estimated 
and the criteria can be checked in a similar way as in the evaluation of linear systems. Detailed steps 
are described by Equations 7.25 through 7.29.

8.1.1.3  Type of Damping Devices
The third major task is the selection of the type of damping devices.

 1.  The advantages and disadvantages of linear damping as well as its limitations have been 
discussed in Chapter 7.

 2.  To decide if bilinear damping should be used, two criteria are considered: damping force 
and cost. If the structure is designed to have large ductility, dampers with larger damping 
adaptability will eventually provide a great amount of damping force, whereas bilinear 
damping will not; thus, it can be a better choice. In addition, many types of bilinear damp-
ers are comparatively inexpensive. Thus, for construction projects with limited budgets, 
bilinear damping may be a better selection. A more detailed discussion on the pros and 
cons of bilinear damping is presented in Section 8.2.1.

 3.  The decision to use sublinear damping can primarily be based on the required quality 
control of the devices. Sublinear damping is often provided by hydraulic devices, whose 
design parameters, such as working forces and damping coefficient, are usually more accu-
rately guaranteed by experienced vendors. A more detailed discussion on the pros and cons 
of sublinear dampers is presented in Section 8.3.1.

8.1.1.4  Models for Reevaluation of Structural Responses
 1.  If the design damping ratio is sufficiently small, the linear proportionally damped model 

can be used. This was discussed in Chapter 7.
 2.  If the design damping ratio is greater than 10%, but more and less smaller than 15%, the 

linear nonproportionally damped model can be used, which was also discussed in Chapter 7.
 3.  If the damping ratio is large, especially greater than 15%, and a bilinear type of damper 

is used, a bilinear damping model with a linear base structure should be used. This is dis-
cussed in Section 8.2, where the structure is designed to remain in the elastic range.

 4.  If the damping ratio is large, especially greater than 15%, and a sublinear type of damper is 
used, the sublinear damping model with a linear base structure should be considered. This 
is discussed in Sections 8.3 and 8.4, where again the structure is designed to remain in the 
elastic range.
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 5.  If the damping ratio is large, especially greater than 15%, and the structure is designed to 
allow large inelastic deformations, a nonlinear model should be used. This is discussed in 
Section 8.5 for the case of bilinear damping.

As mentioned earlier, the above are only the cases discussed in this book as examples to deal 
with nonlinear damping design. Many other possible cases are not addressed for lack of sufficient 
knowledge at present.

8.1.1.5  Structural Ductility
In building seismic design, the principle of life safety or noncollapse under strong earthquakes is 
typically followed. Thus, in strong earthquake zones, large ductility is a standard requirement.

While design with large ductility in general is beyond the scope of this book, it is fair to say 
that the inelastic dynamic response of structures due to large earthquake ground motions is still a 
current research frontier (Aref et al. 2001, Whittaker et al. 2003, Filiatrault et al. 2004, Grant et al. 
2005, Deierlein et al. 2010, and Bruneau 2011). Here, the only concern is for the design of a ductile 
structures with added damping devices.

8.1.2  tyPEs of daMPing

8.1.2.1  Bilinear Damping
The energy dissipation loop of a bilinear damper is close to a rectangular shape, which is often the 
most effective damping, as discussed in Chapter 5. However, its damping adaptability is close to 
zero and it only works well if the dynamic range of the vibration is small. Therefore, bilinear damp-
ing is more suitable for applications when the vibration amplitude is predictable and the dynamic 
range is not very large. In addition, bilinear damping devices require more precise computation, 
especially for the selection of the strength characteristic.

The use of bilinear dampers is often cost-effective, because these damping devices are relatively 
inexpensive. Normally, the price per bilinear damper can be one-third to one-fifth that of hydraulic 
dampers. However, the cost of installation is virtually the same for all types of dampers, as are 
business interruption costs.

Some bilinear dampers can deliver large displacement, such as most friction dampers. A metal-
lic damper, which is also bilinear, cannot satisfy very large damper displacement. Viscoelastic 
devices, which can provide somewhat good bilinear damping, have a more limited capability for 
large damper displacement.

Some bilinear dampers can be relatively small. For example, a special friction damper utilizes a 
V-shaped friction surface to magnify the equivalent friction coefficient to 5–10 times and its friction 
force remains stable (Lee et al. 2006). However, other types of friction dampers with a planar sur-
face do not offer this advantage. Metallic dampers, on the other hand, typically occupy more space.

Bilinear dampers typically have an excellent capability to resist forces in the lateral direction. 
This is because these are often made of materials with good strength, such as steel.

Another notable advantage of bilinear dampers is the capability to suppress the first extra-large 
peak response. Often, strong earthquake ground excitations reach the structure with an increased peak 
after a few seconds, which introduces a large response of the structure. Generally speaking, using 
pure damping does not provide much help in limiting the response due to a large peak excitation that 
occurs during the initial records of the ground motions; the stiffness of the structure will need to be 
increased to limit such responses. Pure passive sublinear dampers, which typically use hydraulic fluid, 
cannot contribute to the effective stiffness of the structure. Bilinear dampers, on the other hand, may 
provide a certain amount of stiffness, depending on the strength characteristic design. Therefore, in 
earthquake zones where sudden ground motion pulses may occur, bilinear damping is a better choice.

Bilinear damping can provide additional stiffness before yielding; that is, it contributes to the 
stiffness to help reduce structural displacement during small levels of earthquakes, winds, and 
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traffic-induced vibration. However, during strong earthquakes, the contribution to the total yielding 
stiffness by bilinear damping is often negligible.

Another main advantage of bilinear damping is that its damping force will not increase signifi-
cantly when the structure becomes inelastic with large ductility. This is discussed in Section 8.5.

The major disadvantage, besides the near-zero damping adaptability, is that most bilinear damp-
ers do not have the capability of self-centering. After a strong earthquake with a large permanent 
displacement, the dampers must be readjusted.

The other major disadvantage of bilinear dampers is that they are not as stable as hydraulic 
devices. The friction surface can wear out and the friction force will drop accordingly, or they can 
develop adhesion after many years in a stationary state. For example, the moving surface of a fric-
tion damper can be locked due to corrosion. The yielding metallic dampers can have significant 
low-cycle fatigue problems, so that they would need to be replaced after a strong earthquake.

Briefly, bilinear dampers, especially friction dampers, are more suitable for structures that are 
located near strong seismic zones with a history of long period ground motion and where the primary 
budget for the structures is limited. Bilinear dampers are not as suitable for structures subjected to 
frequent dynamic loading, such as heavy wind loads, or regions with frequent seismic activity.

8.1.2.2  Sublinear Damping
The major advantage of using sublinear dampers is their effectiveness in vibration reduction when 
compared to other types of dampers. Due to the uncertainty of the excitation amplitude of the seis-
mic ground motion, the dynamic range of the earthquake-induced vibration should be considered 
as large. Sublinear damping can reduce vibration more effectively than bilinear damping, though its 
damping adaptability is still less than that of linear damping. Therefore, if the predicted dynamic 
range is not extremely high, which is often true in earthquake-induced vibration, it is better to use 
sublinear damping to effectively reduce the structural responses. The second advantage of sublin-
ear damping is that it has a self-centering capability after the earthquake. The third advantage is 
its durability. Sublinear dampers can be used for multiple hazards, such as earthquakes, wind, and 
traffic-induced vibration, as well as shock absorption.

The main disadvantage of sublinear dampers is the cost, which can be significantly more expen-
sive than bilinear dampers. However, most sublinear dampers are reusable after strong earthquakes, 
whereas many bilinear dampers have a limited lifespan. Therefore, the cost of sublinear dampers 
should be recalculated considering the replacement cost of bilinear dampers. Furthermore, as men-
tioned previously, installation and business interruption costs are comparable for all damper types 
and often dominate the overall costs.

8.1.2.3  Basic Differences between Bilinear and Sublinear Damping
In terms of damping design, the major differences between bilinear and sublinear dampings may be 
summarized by the following three items.

First, bilinear damping will apply additional lateral stiffness to the structure, whereas sublinear 
damping does not contribute extra stiffness. Therefore, in bilinear damping design, the total stiff-
ness matrix needs to be modified. The periods of the system will also be altered. These effects are 
not significant for sublinear systems.

Secondly, if the amount of supplemental damping is not sufficiently large, i.e., the resulting 
design damping ratio is less than 20%, i.e.,

	 ξ ξ ξdesign 0 a %≈ + < 20  (8.1)

then for bilinear damping, the mode shape of the base structure can be used. Here, ξ0 is the damping 
ratio of the original base structure and ξa is the additional damping ratio contributed by the supple-
mental dampers. Thus, the mode shapes of systems with sublinear damping will not significantly 
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change. Since the base structure can usually be modeled as a proportionally damped system, the 
mode shapes are real valued and much easier to obtain and handle.
On the other hand, with sublinear damping, especially when the damping adaptability is

	 fadp > 0 4 0 5. .∼  (8.2)

it is better not to use the normal mode shape as the shape functions. Consequently, this will increase 
the computational complexity for sublinear systems.

Thirdly, to achieve more accurate response estimation, more effective modes need to be employed 
for sublinear systems, whereas for structures with bilinear damping, fewer “modes” are used. In 
many cases, it is possible to only use the first effective mode in bilinear damping design.

8.1.2.4  Other Types of Dampers
In addition to linear, bilinear, and sublinear dampers, there are other types of damping devices, such 
as the viscoelastic (VE) dampers. Since most aseismic designs for structures need to consider rela-
tively large damper displacement, VE dampers are not suitable due to their limitations in providing 
large displacement.

8.1.3  dEsign ProcEdurEs

Compared to the linear systems discussed in Chapter 7, nonlinear damping design requires 
more careful selection of the dampers and thus has a more complicated design procedure. In 
Table 8.1, the basic design approaches and corresponding sections where they are discussed are 
listed. In the following paragraph, the criteria for choosing the approaches listed in Table 8.1 
are considered.

8.1.3.1  Equivalent Linear Systems
If the design damping ratio is not sufficiently high, i.e.,

	 ξdesign %< 15 30% ~  (8.3)

then the method of equivalent linear systems can be chosen. Namely, an equivalent linear SDOF 
system or systems are found first and the corresponding effective period and effective damping ratio 
are calculated. Then, the effective mode shape functions are found and the “modal” displacement 
and acceleration are distributed to each story using shape functions. This method is discussed in 
Sections 8.2 and 8.3.

8.1.3.2  Nonlinear Response Spectra
When the damping ratio is large, the equivalent linear system approach may introduce significant 
errors due to nonproportional damping. Alternatively, a nonlinear response spectra approach can 
be adopted.

TABLE 8.1
Design Approaches for Nonlinear Systems

Nonlinear Damping Type

Design Approach Bilinear Sublinear

Equivalent linear system Linear structure (8-2) Linear structure (8-3)

Nonlinear response spectra Nonlinear structure (8-5) Linear structure (8-4)
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On the other hand, for a significant amount of bilinear damping, the entire system becomes 
inelastic while the base structure remains elastic. For example, suppose bilinear dampers with a 
yielding ratio of a = 5, yielding ductility of μ = 4, and assume that the additional stiffness contribut-
ing to the base structure is twice the yielding stiffness of the damper. When a 35% damping ratio is 
designed, the supplemental bilinear damper can contribute about 10% more stiffness, which affects 
the elastic behavior of the entire system. In this case, to estimate the response more accurately, the 
nonlinear response spectra are used, which is discussed in Section 8.5.

8.2  EQUIVALENT LINEAR SYSTEMS APPROACH WITH BILINEAR DAMPERS

When the effective damping ratio is relatively small, the design procedure for bilinear damper is 
identical to that for linear systems. The conceptual decision making, the response estimation, and 
the damper specification are the basic design phases. For response estimation, a linearized damping 
ratio, as well as an effective period, is considered so that the design spectra can be adopted. Bilinear 
devices have zero damping adaptability, which simplifies the design procedure so that for MDOF 
systems, the shape function obtained through the base structure can be used. Since a bilinear damp-
ing system is essentially nonlinear, special considerations must be given when a large amount of 
damping exists.

8.2.1  gEnEral dEscriPtion

8.2.1.1  Selection of Design Models
In Section 8.1, the main approach for selecting the type of dampers, such as bilinear or sublinear 
dampers, was discussed. Suppose a bilinear damper is chosen to be used. The model and method for 
response estimations must now be specified. In addition, more detailed consideration must be given 
to some practical issues as well as the damper specifications.

8.2.1.2  Response Estimation and First Round of Damper Design
8.2.1.2.1 Estimation of Seismic Response of Original Structure
Estimation of the seismic response of the original base structure is carried out first to determine the 
amount of damping, which is the same approach used for linear systems. In Chapter 7, the procedure 
for response estimation was discussed.

On completion of this task, the period Ti and mode shape pi of the base structure are obtained. 
However, unlike for a linear system, in bilinear damping design, the period often needs to be recal-
culated, which is discussed after the damper specifications are selected.

8.2.1.2.2 Determination of Damping Ratio and Damping Configuration
After the initial response estimation, the design damping ratio is determined as shown in Equations 
7.29 and 7.75.

The damping configurations also need to be determined so that the configuration matrix Ccon and 
geometric magnification factors Gmj are available.

8.2.1.2.3 Damper Specifications
Different from linear damping, which is defined by a damping coefficient, a bilinear damper is 
identified by characteristic strength qd, unloading stiffness ku, yielding stiffness kd, and the yielding 
ratio a. Among these five parameters, only three are independent. For example, yielding displace-
ment, yielding ratio, and unloading stiffness are often used to characterize a bilinear damper. These 
parameters should be provided in the specification sheets from the vendor.
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8.2.1.2.3.1 Required Damping Ratio When the supplemental damping is not very large, the 
Timoskenko damping approach can be used. That is, the effective damping of the first mode of the 
equivalent linear system can be used as the damping ratio for a structure with bilinear dampers. 
This was introduced in Chapter 5 and is repeated as follows:

	
ξeff

d ij y
j 1

L

max
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max
i

i i

2q x d
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∑
πd Kd

1, ,  (8.4a)

where S is the number of modes considered. If only the multi-story-single-period (MSSP) system is 
considered, then in Equation 8.4a, i = S = 1.

Note that for nonlinear damping design, the Penzien constant, pc, often needs to be considered 
for the first effective mode. Then, Equation 8.4a can be rewritten as
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where xij and dmaxi are the maximum relative displacement of the ith effective modes between 
the jth and ( j – 1)th ends of the corresponding damper and the floor displacement, respectively. 
Meanwhile, dy is the yielding displacement of the bilinear damping; and L is the number of 
nominal dampers.

Furthermore,
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That is, the maximum relative displacement is now computed without safety factor S (see 
Equation 7.14D). However, when only the first effective modal response is included, the safety fac-
tor should be considered.

Note that in Equation 8.5, pi is the ith mode shape of the original structure, which is assumed to 
be linear. As previously defined,

	 p 1ni =

For the sake of design simplicity, for most bilinear damping design, the first effective mode is the 
focus and the MSSP approach is often used. In this special case, i = 1, and in Equation 8.4b, the 
number of modes, S, is equal to 1. In a later discussion, the feasibility of using S = 1 is explained.

To calculate the effective damping ratio ξeffi, the maximum displacements xij at each of the jth 
stories are needed. However, without knowing the damping ratio, xij cannot be determined. Here, 
an iterative approach may be used.

To avoid iteration, the method similar to that for the SDOF systems is used. In order to carry out 
this approach, Equation 8.4b is rewritten as
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where Ccon is a damper configuration matrix, in which the geometric magnification factors are con-
sidered. (Note that Ccon is different from the configuration matrix Ccon mentioned in Chapter 7.) If 
all the dampers are installed in only the adjacent levels,

	
C con mj jdiag G=  ( )2 h  (8.7)

where the Heaviside function, hj, used as a locator and is defined as

	
hj=

, damper installed in jth story

, no damper installed

1

0






 (8.8)

For example, suppose all the geometric magnification factors are identical and denoted as Gm, then 
Ccon can be seen as shown in Example 8.1. In Equation 8.6, qc is the damper configuration vector, 
whose jth element is equal to hj. Also in Equation 8.6, Rs is a square matrix, which transfers the rela-
tive displacement vector pi into floor drift. That is,
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Furthermore, in Equation 8.6,

	 ccon
T

con s ii = J RC p � (8.10)

	 gy
T

c c= J q p  (8.11)

and, in Equation 8.6, Γi is the modal participation factor, repeated as
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and the effective modal mass is repeated as
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Example 8.1

A four-story building structure, with one nominal damper installed in the first and second stories 
only (see Figure 8.1), is used as an example. The damper configuration matrix and vector are, 
respectively, given as

	

C qcon =
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8.2.1.2.3.2 Direct Computation of Displacement Note that Equation 8.6 can be rewritten as a 
quadratic equation in ξeffi. Thus, by using these notations, the effective damping ratio of the ith mode 
can be calculated as

	
ξeffi

i i i i

i
= − ± −B AC

A
B2 4
2  (8.13)

To evaluate the effective damping ratio, the parameters Ai, Bi, and Ci need to be calculated. In the 
following discussion, some examples are used to demonstrate this idea. For simplicity, the geomet-
ric magnification is Gm = 1 and the safety factor is S = 1. When the effective period Teffi is greater than 
TS and less than TL, the parameters can be written as

FIGURE 8.1  Four-story structure with two dampers.
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	 Ai
2

y y36 g d= − π  (8.14a)

	 Bi con effi i g
2

y y 0 effi g
2

c d3c T I 24 g d 3 0.9 m I p 2qi= − +( ) −Γ π ξ π  (8.14b)

	
Ci 0 effi con i g

2
y y 03 0.9 T c I 4 g d 3 0.9i= +( ) − +( ) ξ π ξΓ  (8.14c)

In Equations 8.14b and 8.14c, Ig is the input level,

	
I S Igg D1= ( )R m s2

 (8.15)

The parameters SD1, I, and R are defined in Chapter 7. For an elastic structure, R = 1.
When the effective period, Teffi, is equal to or less than Ts,

	 A i
2

y y36 g d= − π  (8.16a)

	 B i con effi i g
2

y y 0 effi effi g
23c T  I 24 g d 3 0.9 m T I p 2qi= − +( ) −2 2Γ π ξ π c dd  (8.16b)

	
Ci 0 effi con i g

2
y y 03 0.9 T c I 4 g d 3 0.9i= +( ) − +( ) ξ π ξ2 Γ   (8.16c)

Note that in this case,

	
I S Igg Ds= ( )R m s2

 (8.17)

where SDs is defined in Chapter 7.
In real applications, Gm ≠ 1, Teffi can be less than T0 or greater than TL. In these cases, the direct 

computation of the effective damping ratio can also be obtained following the same procedure.
Equation 8.13 has two solutions, but only one solution makes engineering sense.

Example 8.2

Suppose in Example 8.1, M = diag([100.8089, 99.51468, 96.4605, 92.0809]) (t)
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× ( )104 m

Originally, the system has proportional damping and the damping ratio of the first mode is 0.02. 
It can be calculated that Γ1 = 1.2478 and p1 0 0 0 0 0000T = [ ]. , . . †.352  6593, 8835, 1 . The effective 
mass, meff1, is 347.37 (t). The input factor Ig = 2.9542 (m/s2). Suppose the response is too high so 
that an additional damping ratio of approximately 15% is used for the first mode. The bilinear 
damper is designed to have dy = 0.02 (m); qd = 700 (kN); a = 0; Gm = 1; and pc = 0.65. Since only 
two nominal dampers are used and installed in the first and second stories, g / 3 77y = =2 0 65 0. .  
and c 6593coni = 0. .

Suppose the period of the base structure is not affected by the two supplemental dampers, and 
its fundamental period is still around Teff1 = 1.50 (s). For simplicity, let S = 1, thus Equations 8.14 
through 8.16 can be used to calculate A1 = –21.8650, B1 = –7.4792, and C1 = 1.2603. Equation 8.13 
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has two roots: – 0.4658 and 0.1237. The design damping ratio is 0.02 + 0.124 = 14.4%. Note that 
if pc = 1, the design damping ratio will become 26.3%, which overestimates the damping ratio.

With the effective damping ratio calculated, the numerical damping coefficient and the effec-
tive modal responses can also be calculated. That is,

	 ξ ξ ξdesigni effi oi≈ + � (8.18)

where ξdesigni, ξeffi, and ξoi are, respectively, the ith design damping ratio, the effective damping 
ratio contributed by the bilinear damper, and the damping ratio contributed by the base struc-
ture. Also,

	 B 3 9i designi= +ξ 0.  (8.19)

Now, the parameters needed to realize the design damping ratio have been calculated. As seen 
from Equation 8.6, the characteristic strength, qd, is proportional to the required effective damping 
ratio, that is,

	 qd effi∝ ξ  (8.20)

From the above notation, it is seen that if the required damping ratio is not satisfied in the initial 
estimation, the needed quantity, qd, can be obtained. Note that the yielding displacement, dy, is 
often predetermined according to the specific type of damping materials. These parameters are 
nominal terms and are not yet included in the specifications of individual dampers.

8.2.1.2.3.3 Equivalent Stiffness and Characteristic Strength of Bilinear Dampers Typically, the 
elastic or unloading stiffness, ku, the yielding or damper stiffness, kd, and the characteristic strength, qd, 
of a bilinear damper are provided by vendors. These are marked with italic letters. After installation, the 
values of these parameters change in most applications. Therefore, the equivalent unloading stiffness, ku, 
damper stiffness, kd, and characteristic strength, qd, which are the system parameters, need to be clearly 
distinguished for bilinear damper design.

To establish the relationship between the structural parameters ku, kd, and qd, and the damper 
parameters ku, kd, and qd, recall the concept of the geometrical magnification factor, Gm, introduced 
in Chapter 5.

Therefore, the initial damper stiffness is affected from the viewpoint of the total structural sys-
tem. When a bilinear damper is installed with the geometrical magnification factor, the equivalent 
damping stiffness for the structure should be written as

	 k Gd d= ( )m kN m2 k  (8.21)

The equivalent characteristic strength can be written as

	 q Gd d= ( )mq kN  (8.22)

In certain cases, the equivalent yielding displacement, dy, should also be used. This can be written 
as

	 d Gy y= ( )d m m  (8.23)

where dy is the yielding displacement of the bilinear damper.

8.2.1.2.3.4 Structural Parameters Suppose the original structure is an SDOF system with stiffness 
k. The yielding and unloading stiffness of the structure, denoted as kD and kU, respectively, will be
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	 k k kD d= + ( )kN m  (8.24)

	 k k kU u= + ( )kN m  (8.25)

The characteristic strength, qD, and yielding displacement, dY, remain unchanged, that is,

	 q qD d= ( )kN  (8.26)

and

	 d dY y= ( )m  (8.27)

8.2.1.2.3.5 Equivalent System for Bilinear Damper with Finite Supporting Stiffness When a 
bilinear damper is installed, the supporting stiffness is likely a finite value. Practically speaking, a 
finite supporting stiffness can significantly reduce the effectiveness of the bilinear damper. Therefore, 
at the design stage, it is necessary to quantify the effect of finite supporting stiffness.

If the damping is purely bilinear, then for an SDOF structure with finite supporting stiffness, 
the entire system can also be treated as a bilinear system. Two typical cases of finite supporting 
stiffness are shown in Figures 8.2a and b. In these figures, ks stands for the value of the supporting 
stiffness of the system. In Figure 8.2b, the stiffness k11 and k12 represent the structural stiffnesses.
The system shown in Figure 8.2a can be replaced by the equivalent bilinear system shown in 
Figure 8.2c with the equivalent structural stiffness kE1 and the equivalent damper stiffness kE2, 
which are expressed as

	
k k k

k k
kN mE1

1 s

1 s
=

+
( )  (8.28)

and

	
k k k

k k k k k
kN mE2

2 s
2

1 2 s 1 s
=

+ +( ) +( ) ( )  (8.29)

Furthermore, the equivalent yielding displacement, dYe, is given by

	
d k k k

k
d mYe

1 2 s

s
y= + + ( )  (8.30)

where dy is the yielding displacement as previously defined. The equivalent characteristic strength 
qDe can be written as

	 q d k kNDe Ye E2= ( )  (8.31)

Using Equations 8.28 through 8.31, a new bilinear system with the control parameters kE1, kE2, qDe, 
and/or dYe is defined. And, it is relatively simple to use Equations 8.28 through 8.31 to account for 
the case described in Figure 8.2b.
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Damper design for an SDOF system is a systematic procedure based on predetermined con-
trol parameters. However, design of nonlinear dampers for an MDOF structure is not a systematic 
process. The differences between SDOF and MDOF systems with added bilinear dampers are dis-
cussed in the following paragraphs.

First, the control parameters of an SDOF system, namely, the unloading stiffness ku and the char-
acteristic strength qd, are fixed values and directly depend on the properties of the bilinear damper. 
Even the effective period Teff, which must be determined by considering the structural stiffness 
and deformation, can be obtained from the structural parameters and by assuming the maximum 
deformation to be tolerated.

For MDOF systems, these parameters will largely depend on the dynamic process of the entire 
system. Suppose several dampers are installed at different locations in a structure. The yielding 
points of these dampers are probably not at the same level, which must not only depend on the 
amplitude of the ground excitations, but on the vibration prior to given time points. In other words, 
the yield point of identical bilinear dampers installed at different locations cannot be predicted. 
Furthermore, different ground excitations will dictate the occurrence of the yield point of these 
dampers.

Therefore, the unloading stiffness kU, the characteristic strength qD, as well as the effective 
period Teff, obtained through the approach described above, will no longer have fixed values, but 
are time variables:

	 k k t kN mU U= ( ) ( )  (8.32)

	 q q t kND D= ( ) ( )  (8.33)

and

	 T T t seff eff= ( ) ( )  (8.34)

However, using an SDOF system to design the dampers for an MDOF system is the essence of 
the method based on the response spectrum. In the next subsection, determining these time-
variable design parameters is discussed in detail. Included in the discussion is a method to 
determine the uncertain deformation shape function in bilinear damper design.

k1

m

k2

ks

(a)

m

ks

k11

k12

k2

(b)

m

kE1

kE2
(c)

FIGURE 8.2  (a–c) Finite supporting stiffness and equivalent system.
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8.2.2  rEsPonsE EstiMation

8.2.2.1  Equation of Motion
After the number configurations and specifications of the dampers are determined, the stiffness 
matrix Kδ contributed by the bilinear dampers can be found,

	
Kδ =   ( ) = …k kN m , i, j 1 2 n,Dij , , ,  (8.35)

In Equation 8.35,

	

k
1 G , damper installed between the i and j fl

Dij
dij mij

2 th th

=
−( )δ ij k ooor

, no damper installed between the i and j floorth th0






 (8.36)

where Gmij is the geometric magnification factor in between the ith and jth floors as previously 
defined, and kdij  is the effective damper stiffness of the bilinear damper installed between the ith and 
jth floors. Note that kdij  is neither the unloading stiffness ku nor yielding kd of the specific damper. 
Furthermore, kdij  is not the secant stiffness of the damper. The effective stiffness should be deter-
mined from Equation 6.41. That is,

	
kdij

ij

ij
u

1 a 1
k kN m=

+ −( ) ( )µ
µ

2

2  (8.37)

where a is the stiffness yielding ratio and μij is the corresponding ductility of the damper. Since μij is 
a variable, the stiffness kDij will also be a variable. A rough estimation of the ductility can be given 
by using the Penzien constant pc, that is,

	
µ ij

c mij i j

y
mij

i j

y

p G x x
d

G
x x

d
=

−
=

−
0 65. 	 (8.38)

Note that in Equation 8.36, δij is a Kronecker delta function defined as

	
δ ij =

=
≠





0 i  j 
1 i j 

 (8.39)

For a multiple-story structure with bilinear dampers installed, the following simplified governing 
equation can be obtained:

	 M C K K�� � ��x x x MJx f+ + +( ) = − −� δ δg  (8.40)

where the coefficient matrices M, C, and K are as previously defined for linear systems. In par-
ticular, C can be treated as a proportional damping matrix that provides a small amount of original 
damping, i.e., the original damping ratio is less than 5%. The stiffness Kδ is defined in Equation 
8.35. The term fδ is the damping force, which is a function related to the sign of the relative velocity 
and related to whether the relative displacement is greater than or equal to the yielding displace-
ment, dy.
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Next, the transpose of the deformation shape function pT is premultiplied on both sides of 
Equation 8.40,

	 p p p p pT T T T
g

T xMx Cx K K x MJ f�� � ��� �+ + +( ) = − −δ δ  (8.41)

where p is in fact a mode shape of the M-C-(K + Kδ) system. Note that the nth element of p, which 
is the roof displacement, is normalized to be unity and p is a dimensionless vector.

Again, let

	 x yt t( ) = ( )p  (8.42)

	
p p p p p p p p p pT T T T T

g
T  + xM C K K M( ) + ( ) + ( ) ( )  = − −� ��� � ��y y y J fδ δ  (8.43)

Dividing the scalar quantity pTMp on both sides of Equation 8.43 results in

	
�� � ��y 2 y x  

eff eff
2

d g

T

T+ + = − −ξ ω ω δ
0 y Γ p

p p
f
M

 (8.44)

In Equation 8.44, the effective frequency ωeff
2  is defined as

	
ω δ δ

eff

T

T

T

e1m
rad s=

+( )











=
+( )











( )p p
p p

p pK K
M

K K
1 2 1 2

 (8.45)

Also, in Equation 8.44, ξ	0 is the original damping ratio and Γd is a scalar, which can be seen as an 
effective mode participation factor.

In Equation 8.45, for convenience,

	 m te1
T= ( )p pM  (8.46)

Note that both M and K are positive definite. Thus, ωeff > 0. The effective period is

	
T 2 seff

eff
= ( )π

ω
 (8.47)

On introducing the linear MDOF system, it is seen that the natural period T and mode shape p can 
be further written as Ti and pi specifically for the ith modal parameters. Furthermore, the ith modal 
participation factor, denoted as Γdi, is also obtained.

Now, consider the term p i
Tfδ , which is only related to the ith mode and not intertwined with other 

modes. Therefore, Equation 8.44 actually only describes the ith mode. Since the system is nonlinear, 
the concept of “mode” is actually the “effective mode.” In practice, only the fundamental effective 
mode is considered.

Example 8.3

The four-story system described by Equation 8.40 is used as an example, where the geometric 
magnification factors are identical in each story, denoted as Gm (see Figure 8.1). Consider the first 
mode only. Thus,
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Here, the term h y(() )| | d⋅ ≥  is a Heaviside function. When | | d()⋅ ≥ y, it equals unity; otherwise, it 
equals zero.

In most cases, for the first mode,

	 p p p p 111 21 31 41< < < =

Therefore, in a single quarter cycle, i.e., the structure moves toward a positive direction, assuming 
that all the Heaviside functions are h ( )(|)| d⋅ ≥ y = 1 ,

	
p1T m

2
d 11 21 11 21 11 m

2
d 11G q p p p p p G q pfδ = − −( ) + −( )  = ( )� kN

Consider the entry cycle. When all the Heaviside functions are h )(|()| d⋅ ≥ y = 1,

	 p1T m
2

d 11 m
2

d 11G q p sgn x G q p sgn yfδ = ( ) ≈ ( ) ( )� �1 1 kN

It is seen that the term G q p sgn(xm
2

d 111 � ) is a time variable and a function of velocity �x1, which makes 
the following equation nonlinear:

	
�� � ��

�
��y 2 y y x G q p  sgn x

m
xeff eff d g

m
2

d 11 1

e1
d g+ + = − − ( ) ≈ −ξ ω ω0

2� Γ Γ −− ( )� �q sgn yd 1

Thus, linear modes do not exist. However, when the bilinear damping G q p sgn(xm d 11 1
2 � ) is small, a 

near constant shape function p1 and effective natural period T1 can be approximated. Similarly, a 
near constant shape function pi and effective natural period Ti are obtained. In the above equa-
tion, the term �qd is a normalized modal characteristic strength:

	
�q G p q  

md
m
2

11 d

e1
= ( )g

Note that the value p11 here is the first element of the dimensionless shape function p1. Therefore, 
�qd should be a deterministic value with units of (m/s2) or (g).

From this example, it is also realized that for higher modes, the effect of pi
Tfδ, i >	1 will be 

comparatively smaller, because the mode displacement has different signs, whereas the modal dis-
placement of the fundamental mode has the identical sign. Furthermore, consider the value of the 
modal displacement of a damper, Gm (pji – pj−1,i). Compared to the yielding displacement dy, it can 
be understood that the difference is small; and in many cases, dy >	Gm (pji – pj−1,i). In this case, the 
bilinear damper does not dissipate a significant amount of energy in the higher modes. The first 
effective mode is often chosen and the MSSP approach is used for bilinear design.

8.2.2.2  Response Reevaluation
8.2.2.2.1 Mode Shape and Natural Period of Fundamental Mode
In the first steps in damper design, after the response of the base system is calculated and the 
required damping ratio is found, the nominal damper specifications qd, ku, kd, dy, and a for individual 
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dampers and damping configuration of the total system are determined. Next, the additional stiff-
ness matrix Kδ is calculated. Then, the corresponding effective period Teffi, damping ratio ξeffi, 
participation factor Γdi, and shape function pi are determined. The accumulated modal mass ratio, 
γmS, is also available.

From these parameters, the responses of effective SDOF systems are calculated. That is, from 
Equation 7.11,

	 B 3 9i effi oi= +( ) +ξ ξ 0.  (8.48)

8.2.2.2.2 Lateral Displacement
The maximum values of lateral floor displacement of the ith effective mode are given by
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( )Γ �p m  (8.49)

Here, the parameters Γdi and pi are calculated in the previous steps, while the spectral displacement, 
diD, is determined with the help of Equation 7.51 in Chapter 7.

The total maximum lateral displacement is calculated using the square-root-of-the-sum-of-
squares (SRSS) as
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1 2/

 (8.50)

In Equation 8.50, similar to the linear systems discussed in Chapter 7,

	 SM mS9 1= ( )0. ~ γ  (8.51)

where SDn is given as in Equation 7.56. For example, again using the 99 earthquake records scaled 
by PGA,

	 SDn 8 4 5 2 46 8 6 1 n 1 257 1 n 7 763 1 n 173n 4288= − × + × − × + +− − −1 0 0 0 0 0 0 0. . . . .(( )

Meanwhile, SDξ is recommended as in Equation 7.58. For example, using the 99 earthquake records,

	 SD design1 0.9697 + 0.6987ξ ξ= ( )

8.2.2.2.3 Absolute Lateral Acceleration
The pseudo lateral acceleration vector of the ith effective mode is as approximately given by
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The total maximum absolute lateral acceleration can be calculated through modified SRSS as
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In Equation 8.53, SM is the same as defined in Equation 8.51 and SAi can be determined using 
Equation 7.63.

Similar to linear systems, the jth element in the acceleration vector aa is denoted as aaj, whereas in 
the equation for the ith effective modal acceleration, the jth element is denoted as aaji.

In Equation 8.54, SAn is given by Equation 7.64. For example, using the 99 earthquake records 
results in

	 SAn 6 3 4 21 4 825 1 n 7 453 1 n 346 n 383= × − × + +( )− −. . . .0 0 0 0 0

and SAξ is given in Equation 7.65. Again, using the 99 earthquake records,

	 SA design1 8754 9596ξ ξ= +( )0 0. .

8.2.2.2.4 Lateral Force and Base Shear
The lateral force at the jth floor can be calculated using Equation 7.66, while the base shear of the ith 
effective mode can be evaluated from Equation 7.70.

8.2.3  dEsign issuEs

8.2.3.1  SDOF Systems
In Chapters 1 and 2, linear damping for SDOF systems was discussed. When the original damp-
ing of a structure is small, it is always beneficial to use linear dampers. In Chapter 5, the basic 
design concepts from currently used codes, such as NEHRP 2009 (BSSC 2009), were explained. 
Essentially, if the structural responses are larger than the desired value, it is safe to add damping, 
regardless of whether the damping is linear or nonlinear. (All nonlinear damping is linearized).

However, the above statement is not always true, especially for bilinear dampers. This can be 
shown by using numerical simulations, where a linear structure with very little damping is used as a 
reference. Consider bilinear dampers with 5% linear damping, making the corresponding effective 
damping equal to or greater than 5%. The effective damping is calculated using both Timoshenko 
damping and force-based effective damping. Numerical simulation results from the responses of the 
linear structure and the structure with bilinear damping are compared in Figure 8.3. The calcula-
tions are made by using the following procedure.

Suppose a structure has 5% viscous damping, under the aforementioned 99 earthquake record 
(see Example 4.7 in Chapter 4). The absolute acceleration or the structural forces are calculated by 
using the mean-plus-one-standard-deviation. For comparison, consider the same structure installed 
with some bilinear dampers with an initial viscous damping ratio assumed to be zero. Such an 
assumption is practical for many structures whose damping ratios are rather small, for example, 
2%–3%. By changing the characteristic strength and the yielding stiffness of the bilinear dampers, 
and by varying the period of the base structure, the responses of the corresponding structural forces 
and displacement can be calculated.



Nonlinear	Damping	 493

Three parameters are needed to describe the properties of a structure with bilinear damping. For 
convenience, the characteristic strength qd, the unloading stiffness of the damper ku, as well as the 
period of the base structure, T, are choosen to calculate the lateral stiffness of the structure k. In 
this process, a proportional parameter of ku / k is actually used. For simplicity, the geometric mag-
nification factor is assumed to be unity. In order to compare the responses of structures with linear 
viscous damping and with bilinear damping, the ratios of the corresponding structural forces of the 
two cases are calculated and the ratios of the corresponding displacements are also evaluated. To 
visualize the corresponding effective damping ratios, the Timoshenko damping ratio and the force-
based effective damping ratio are also computed. These ratios are then plotted vs. the characteristic 
strength. In these computations, the structure is assumed to have unit mass. Thus, the characteristic 
strength can be represented with the unit (g).

In each of the comparisons given in Figure 8.3, four curves are plotted. The solid line is the 
ratio of the displacements. To obtain this ratio, the mean-plus-one-standard-deviation values of 
the displacement of the structure with bilinear dampers, dB, and that of a structure with 5% linear 
damping, dL, are first calculated.

Note that for linearized SDOF systems, the ratio of dB/dL is exactly the numerical damping coef-
ficient B. However, in order to improve the process of the linearization procedures, the concept of 
a numerical damping coefficient is not initially used. Instead, the reciprocal ratio of dL/dB is used. 
The ratio dL/dB vs. the characteristic strength qd are plotted under different conditions with a given 
value of the bilinear damping stiffness, kd. It is understandable that the inequality,

	 d dL B > 1  (8.54)

means the displacement of the structure when the bilinear damping is smaller than for the corre-
sponding linear system. Hence, using the bilinear damper is beneficial.

Similarly, the mean-plus-one-standard-deviation values of the structural force (the absolute 
acceleration) of the structure with bilinear dampers, aB, and that of the structure with 5% linear 
damping, aL, are also calculated. Then, the ratio aL/aB vs. the characteristic strength qd are also plot-
ted and shown with broken lines, which are also under different conditions with a given value of the 
bilinear damping stiffness, kd. When

	 a aL B > 1 (8.55)

the structural force of the structure with bilinear damping is smaller than for the corresponding 
linear system. Hence, using bilinear dampers is effective. Also, note that using bilinear dampers 
enlarges the responses.

For reference, the calculated effective damping ratios are also plotted in Figure 8.3. The dotted 
lines represent Timoshenko damping, while the dot-dash lines indicate force-based effective damping.

In Figures 8.3a through d, the period of the structure is fixed to be 0.4 (s). The corresponding 
damper stiffness is, respectively, 0.32, 0.72, 1.28, and 2.0 times the stiffness of the structure. It 
is seen that when the damper stiffness is small, i.e., 0.32 k, both the force ratio and the displace-
ment ratio are smaller than 1. This means that both the force (or absolute acceleration) and the 
displacement of the structure are actually greater than the 1 with 5% linear damping. Note that in 
these cases, the effective damping calculated by Timoshenko and force-based effective damping are 
almost always greater than 5%.

When the damper stiffness of the bilinear damper becomes larger, i.e., 0.72 k, the displacements 
are reduced; however, the force is still magnified. As the damper stiffness becomes larger, i.e., 
greater than 1.28 k, both the force and the displacement are reduced.

From Figures 8.3e through h, a similar tendency is observed; except in this case, the period is 
chosen to be 1.0 sec and thus the required damper stiffness should be higher.
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From Figures 8.3i and j, it is further noted that the tendency of requiring a higher damper stiff-
ness to reduce both the force and the displacement is also true. In addition, it is seen that when the 
period is increased, the requirement becomes more demanding.

Furthermore, the characteristic strength, qd, of the bilinear damping can also greatly influence 
the effectiveness of the reduction of both the force and the displacement. From Figure 8.3, it is 
seen that when qd is very small, increasing its value will help further reduce the structure force and 
the displacement. However, when qd is sufficiently large, continuously increasing its value becomes 
less effective.
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FIGURE  8.3  Comparisons of responses, 5% viscous vs. bilinear damping: (a) ku = 0.32 k T = 0.4 (s); 
(b) ku = 0.72 k T = 0.4 (s); (c) ku = 1.28 k T = 0.4 (s); (d) ku = 2.0 k T = 0.4 (s); (e) ku = 0.98 k T = 1.0 (s); (f) ku = 
1.62 k T = 1.0 (s); (g) ku = 3.38 k T = 1.0 (s); (h) ku = 5.12 k T = 1.0 (s); (i) ku = 1.28 k T = 2.0 (s); (j) ku = 5.12 k 
T = 2.0 (s).
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Increasing the elastic (unloading) stiffness of the structure ku will first lower the effectiveness of 
the force reduction, followed by lowering the effectiveness of the displacement reduction.

Some further observations can be made from Figures 8.3a through d. When the period is 0.4 (s), 
the characteristic strength can be selected to be higher than 0.4 (g). Thus, practically speaking, if a 
structure has mass m, or weight W,

	 q 4 mg 4 W kNd = = ( )0 0. .  (8.56)

When the period is 1.0 (s), the best characteristic strength that can be chosen is 0.3 (g). Thus, 
qd = 0.3 mg = 0.3 W. Therefore, in design, the following formula may be used to make the initial 
choice of the characteristic strength for a simplified SDOF model:

	 q I m g kNd g eff1= ( )  (8.57)

Although the phenomena observed from Figure 8.3 are the results from a particular example, 
they are somewhat general. The authors have used other groups of earthquake records, and differ-
ent combinations of the period, damper stiffness, and characteristics strength have been tried. In 
most cases, using a statistical approach, similar phenomena have been obtained, but are not reported 
herein.
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8.2.3.2  MDOF Systems
Bilinear damper design for the seismic response reduction of MDOF structures involves a complex 
relationship between the seismic forces and the deformations of the structures. An SDOF system 
has only a single relationship to define energy dissipation. MDOF systems with multiple bilin-
ear dampers have many energy dissipations paths, because dampers can have different yielding 
points. Therefore, using a unified loop to represent these relationships is only an approximation. 
Furthermore, both the deformation shape function and the acceleration shape function differ from 
the mode shape function obtained from their corresponding linear MDOF systems. These two non-
linear shape functions are also distinct from each other. Therefore, using the linearized approach, 
although very simple, is difficult to estimate the errors involved in the approximation. In Section 
8.5, a number of issues and approaches to bilinear damper design for the response reduction of 
MDOF structures are discussed, using a multi-story frame as the base structure. Whenever possible, 
the design spectrum approach is used.

8.2.3.3  Brief Summary
Several statements can now be made based on the above discussions with respect to using bilinear 
dampers to control the earthquake-induced vibrations for structures whose original damping is 
small. General statements to aid in developing nonlinear design approaches include:

 1. For bilinear damping, if the design damping ratio is larger than 5%, the structural 
responses may not necessarily be reduced when compared to a structure with 5% linear 
damping.

 2. Elastic SDOF structures with linear damping can be characterized by two control param-
eters, whereas those with bilinear damping require three parameters, e.g., the period of 
the original structure T, the yielding stiffness kd, and the characteristic strength, qd, of the 
bilinear damper. The effects of these parameters on damping reduction require further 
study with respect to damping design of structures with supplemental damping.

 3. Structural force and displacement are typically used to analyze the effects of these control 
parameters. In general, the reduction of the displacement is easier to accomplish than the 
reduction of structural force.

 4. A threshold value of the unloading damper stiffness, ku, exists. If ku is smaller than a given 
threshold, the vibration cannot be reduced. Once the threshold is reached, increasing the 
damper stiffness, ku, seems to always be beneficial in reducing both the displacement and 
the force. Note that varying ku, though beneficial, is not significant. In addition, ku is often 
specified by vendors, so the designer does not have many choices. Therefore, in practical 
design, less attention is given to the value of the elastic damper stiffness.

 5. The yielding displacement dy, which is closely related to the characteristic strength qd and 
the stiffness ku, plays a more significant role in response reduction than ku. Generally, the 
smaller the value of dy, the better the results that can be achieved. However, dy is related to 
the material properties of the damper and thus it is also often specified by vendors.

 6. The effect of the period T is more complex to visualize directly. In general, to reduce the 
force, if T is increased, stronger unloading stiffness ku is needed. (These are has some 
exceptions, especially when the characteristic qd is comparatively small.) This statement 
particularly applies to the case of displacement reduction. Generally speaking, when qd is 
small, increasing T will make the displacement reduction more effective. However, with 
larger qd, increasing T will make the displacement reduction less effective. In the next 
subsection, these issues are discussed from a quantitative perspective.

 7. For the value of the damper unloading stiffness ku, larger is better for response reduc-
tion. For the characteristic strength of the bilinear damper, the value should be neither too 
large nor too small for vibration reduction. Thus, qd has optimal value when the damping 
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stiffness kd and the period T are given. This is directly related to the quality of the damper 
design and should be the first consideration in bilinear design. In the next subsection, these 
issues are also quantitatively described.

 8. When the effective damping ratio is large, using an equivalent linear approach may intro-
duce large errors.

8.2.4  daMPEr sPEcification

Several practical issues concerning the choice of damper specifications are discussed in the follow-
ing paragraphs.

8.2.4.1  Basic Parameters

8.2.4.1.1 Characteristic Strength
In SDOF systems, characteristic strength can have an optimal value. In MDOF systems, this is also 
true. With a full damper configuration, the following formula can be used to estimate the optimal 
value of the characteristic strength:

	
q a

n b gD ≥ + ( )  (8.58)

where n is the number of stories of the structure, and a and b are generic parameters. Equation 8.58 
is obtained based on empirical regression from limited computer simulations. As an example of 
using Equation 8.58, a 10-story building with bilinear dampers installed in every story is given in 
the following. In this example, a is chosen to be 0.72 and b is chosen to be 0.1 ± 0.05, and the nor-
malized characteristic strength is chosen to be between 0.122 and 0.222 (g).

Similar to the case of SDOF systems, increasing the value of the unloading stiffness ku always 
reduces the displacement, although the acceleration can be increased.

8.2.4.1.2 Influences of the Structural Stories
When a bilinear damper is installed in an SDOF system, the total damping of the system is likely 
to be bilinear. On the other hand, bilinear dampers installed in MDOF systems do not necessarily 
yield bilinear damping. To understand this point, Figure 8.4 shows several plots of the accelera-
tion (seismic force) vs. the displacement. These curves are obtained by using different numbers 
of stories, marked above each energy dissipation plot. When the number of stories is small, a near 
perfect parallelogram can result. However, as the number of stories becomes larger and larger, the 
force–displacement relationship progressively deviates from the typical bilinear plot and becomes 
increasingly similar to sublinear plots, which are described in Section 8.3.

These phenomena are understandable, because the yielding point of the bilinear dampers 
installed at different locations will, in general, not be reached at the same time. As the number of 
stories increases, each with a damper fully installed, the point of change of the stiffness becomes 
less obvious.

In general, this effect can also be determined by considering different damper configurations. In 
any case, when the total damping of the structure is bilinear, it is best to use the bilinear model to 
calculate the responses. When the total damping differs from the bilinear damping, such as the last 
two plots shown in Figure 8.4, using the bilinear damping model may introduce errors.

A simple rule of thumb that may be used to determine the suitability of using the bilinear model 
for multi-story structures is given by

	 D nC <  (8.59)



498	 Structural	Damping:	Applications	in	Seismic	Response	Modification

–0.06 –0.04 –0.02 0 0.02 0.04 0.06
–30

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

–20

–10

0

10

20

30

40

Normalized displacement

A
cc

el
er

at
io

n 
(m

/s
ec

2 )
Response of a 2-story building

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5
–30

–20

–10

0

10

20

30

Normalized displacement 

A
cc

el
er

at
io

n 
( m

/s
ec

2 )

Response of a 5-story building

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8
–50

–40

–30

–20

–10

0

10

20

30

40

50

Normalized displacement 

Ac
ce

ler
at

io
n 

(m
/s

ec
2 )

Response of a 10-story building

–1.5 –1 –0.5 0 0.5 1 1.5
–25
–20
–15
–10

–5
0
5

10
15
20
25

Normalized displacement 

A
cc

el
er

at
io

n 
(m

/s
ec

2 )

Response of a 15-story building

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5
–30

–20

–10

0

10

20

30

Normalized displacement 

A
cc

el
er

at
io

n 
(m

/s
ec

2 )

Response of a 19-story building

–4 –3 –2 –1 0 1 2 3 4
–40

–30

–20

–10

0

10

20

30

40

Normalized displacement 

A
cc

el
er

at
io

n 
(m

/s
ec

2 )

Response of a 21-story building

–5 –4 –3 –2 –1 0 1 2 3 4
–8

–6

–4

–2

0

2

4

6

8

Normalized displacement

Ac
ce

ler
at

io
n 

(m
/s

ec
2 )

Response of a 23-story building

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8
–10

–8

–6

–4

–2

0

2

4

6

8

Normalized displacement

A
cc

el
er

at
io

n 
(m

/s
ec

2 )

Response of a 27-story building

FIGURE 8.4  Influence of number of stories on force–displacement relationships: (a) 2-story; (b) 5-story; (c) 
10-story; (d) 15-story; (e) 19-story; (f) 21-story; (g) 23-story; (h) 27-story.



Nonlinear	Damping	 499

where DC is a design control parameter and n is the preset number of stories of a structure. If the 
inequality is satisfied, then the bilinear model is used for the damper design. Otherwise, an alterna-
tive formula of sublinear damping should be used. Based on limited computational simulations, DC 
is suggested to be 10 for the estimation of the acceleration and 20 for the estimation of the displace-
ment. However, this is based on a limited number of numerical simulations.

8.2.4.1.3 Selection of Damper Stiffness
According to the rectangular law expressed in Chapter 5, the minimal possible peak displacement, 
denoted as dmin, is defined by:

	 E 4q gdd d min=  (8.60)

From Equation 8.60, a minimal peak displacement cannot be obtained unless the unloading stiff-
ness of the bilinear damper is infinitely large or the yielding displacement, dy, is zero. Otherwise,

	
E 4q g d dd d min y= −( )  (8.61)

Suppose the seismic work is kept constant. To obtain the smallest peak displacement, the small-
est possible yielding displacement should be,

	 dy → 0  (8.62)

and/or the largest possible unloading stiffness. The interpretation of the best possible bilinear 
damper design also relates to the largest possible unloading stiffness,

	 ku → ∞  (8.63)

Equations 8.62 and 8.63 define the initial criteria for selecting the stiffness of a bilinear damper.

8.2.4.1.4 Selection of Characteristic Strength
From the nonlinear spectra, it is seen that in order to lower the acceleration, the characteristic 
strength, qd , should be as small as possible. However, from Equation 8.60, it can also be seen that 
the demand increases the characteristic strength. Actually, for given period and damper stiffness, 
the optimal characteristic strength can be obtained. Figure 8.5 shows the curves of the product of 
(aadmax) vs. the normalized characteristic strength qd, when the period is chosen to be 0.4 (s) and the 
input acceleration level is 0.4 (g).

Figure 8.5 shows that it is better to limit the characteristic strength to a given range, especially 
when the damper yielding stiffness is small compared to the structural stiffness.

8.2.4.1.5 Compromise between the Acceleration and the Displacement
In typical seismic response reduction design, compromise needs to be made between the design 
parameters of acceleration and displacement. A smaller acceleration can imply a larger displace-
ment. This characteristic is described by the following notation for linear damping:

	 W a ds a∝ × max  (8.64)

Equation 8.64 is also true for bilinear systems. Thus, the design must be a compromise solution 
between the acceleration and the displacement.
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8.2.4.2  Selection of Bilinear Dampers
Once the basic parameters are determined, individual dampers are selected to realize these param-
eters. This procedure is the same in principle as the selection of linear viscous devices. During the 
selection, safety issues must also be considered.

8.3  EQUIVALENT LINEAR SYSTEMS APPROACH WITH SUBLINEAR DAMPERS

Sublinear damping can provide a significant amount of energy dissipation and the quality of the 
dampers is easier to control. In most applications, the dampers are reusable after earthquakes. 
Similar to linear damper design, the conceptual decision making, response estimation, and damper 
specification are also the basic design phases. For response estimation, a linearized damping ratio is 
used so that linear design spectra can be adopted. Sublinear devices have nonzero damping adapt-
ability, making the shape functions comparatively more difficult to obtain. A more precise approach 
for sublinear damping design can be carried out using a nonlinear spectra approach, which is illus-
trated in Section 8.4.

8.3.1  gEnEral dEscriPtion

In this section, the design of MDOF structures with added sublinear dampers is discussed. A more 
complex procedure than currently used for nonlinear damper design is required. Nonlinear design is 
based on the assumption of proportional damping and Timoshenko damping ratios, and uses direct 
iteration to account for the structural nonlinearity. However, in practical applications of hydraulic 
damper design, the equivalent linear system as an intermediate product is often nonproportionally 
damped and often contains overdamped pseudo modes. In addition, the direct iterations rarely con-
verge to accurate values. To overcome these difficulties, several different approaches are proposed 
in this section. First, the effective damping ratio, the fundamental period, and the damping exponent 
are specified as control parameters to establish the corresponding equivalent damping matrix. The 
approximation of a linearized model based on Timoshenko and force-based effective damping is 
used to find the corresponding shape functions, so that the parameters of the SDOF system can be 
used for the MDOF system.

The task of conceptual decison making for linear and bilinear dampings was discussed in 
Sections 8.1 and 8.2. Consequently, only the basic formulas are presented in this section.
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To use simplified sublinear design, namely, to use the concept of the effective damping ratio 
and equivalent linear approach, the corresponding damping ratio should be comparatively small, 
that is,

	 ξ ξ ξdesign a 2 25%= + <0 0% ∼  (8.65)

Otherwise, a nonlinear response spectra-based approach may be tried, as illustrated in Section 8.4.

8.3.1.1  Response Estimation and First Round of Damper Design
Similar to bilinear damping design, the following tasks are carried out.

8.3.1.1.1 Estimation of Seismic Response of Original Structure
This procedure is identical to the linear damping design approach.

8.3.1.1.2  Determination of Damping Ratio and Damping Configuration
This procedure is identical to the bilinear damping design approach. After this step, the required 
damping ratio for the fundamental effective mode, ξeff1, is obtained as well as the damper configura-
tion matrix, Ccon.

Information on the base structure, namely, the mass, damping and stiffness matrices, M, C and 
K is also needed. The damping matrix does not need to be accurate. A small amount of damping 
is assumed, so that C can be generated to provide small and proportional damping, i.e., the corre-
sponding damping ratio is about 2%	∼	5%.

From the proportionally damped system, M, C and K, the modal parameters, including natural 
period Ti and mode shape pi, as well as modal participation factor Γi and accumulated modal mass 
ratio γmS are obtained.

8.3.1.1.3 Damper Specifications
Based on these parameters, the initial damper decision, ξeff1 and Ccon, can be selected. Generally 
speaking, the equivalent damping coefficient, ceq, the damping exponent, β, and the number of 
dampers need to be considered.

In most cases, the exact damping exponent β cannot be arbitrarily selected, for it is provided by 
vendors. Therefore, based on the required effective damping ratio, the equivalent damping coeffi-
cient for individual dampers as well as the total number of dampers need to be determined as design 
parameters.

Based on the formula of the effective damping ratio, ξeff1, through Timoshenko damping as shown 
in Equation 5.15, the required equivalent damping coefficient for an MSSP system is

	

c 2  

A x
kN-s meq

eff max
T

max

1 j1
1

j 1

S
1 1 1

1 1

= ( )
+

=
∑

π β βξ

ωα
β

β

d dK  (8.66)

Here it is supposed that a total of S dampers are installed and dmax1  is the displacement vector of 
the first effective mode. See Equation 8.7 for a general description of the displacement vector of the 
ith effective mode. In Equation 8.66, ω1 and xj1 are the first natural frequency or effective natural 
frequency and modal amplitude at the jth location, respectively, and

	 x G d d mj1 mj j1 j 1,1= −( ) ( )−  (8.67)
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Here dj1 and dj−1,1 are the floor displacements of the first effective mode, and Gmj is the geometrical 
magnification factor.

The exponents αi and βi are taken as constant for each mode, which is found from the vendor 
specification sheet. For simplicity, however, in Equation 8.66 as well as in the equations for the ith 
effective damping ratio (discussed later),

	 α α β β β1 i 1 i= = = =  (8.68)

and approximately (see Equation 5.19),

	 A A 0.298 1.147 41
2

β β β β= = − +  (8.69)

Similar to the design of linear viscous dampers described earlier, once the nominal parameter ceq 
is calculated through Equation 8.66, the number of corresponding bays and the size of the dampers 
can be examined to determine the number of dampers.

8.3.2  rEsPonsE EstiMation

8.3.2.1  Mode Shape Computations
Different from bilinear damping, the design for sublinear damping may require recalculation of the 
mode shapes, which are not likely to be normal.

To construct an equivalent linear damping matrix, Ceq, the initial estimated damping matrix is 
denoted as

	
C Ceq

1
eq conc kN-s m( ) = ( )β β  (8.70)

Using Ceq
( )1  as well as the mass M and stiffness K matrices, the corresponding damping ratio ξ1

(1) 
of the first mode can be calculated. Then, the equivalent linear damping matrix, Ceq, is determined as

	
C Ceq

2 eff
eq
11 kN-s m( )

( )
( )= ( )ξ

ξ1
1

β β  (8.71)

Now, based on the equivalent linear system, M C K- -eq
(2) , the mode shape pi can be calculated. 

Note that in the initial response estimation discussed above, the mode shape pi is taken through 
the linear system M-C-K and is real valued. However, in this case, it is likely to be complex 
valued.

Therefore, if the design damping ratio is relatively large, i.e.,

	 ξeff1 1 % 15%> 0 ~  (8.72)

the eigen-decomposition through the M C K- -eq
(2)  system should be used.

In addition, different from the bilinear damping design, more than one effective mode may have 
to be chosen. In this case, overdamped effective modes are likely, and using the M C K- -eq

(2)  system 
is suggested.

Similar to the case of generally damped linear MDOF systems, once the modal parameters ωi, 
ξi, and pi are calculated, the accompanist vector, qi, as well as vectors 𝚽i and 𝚿i can be obtained 
(see Equation 7.85).
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8.3.2.2  Response Reevaluation
8.3.2.2.1 Effective Damping Ratios
In the first round of damper design, the response of the base system is calculated and the required 
damping ratio is determined. Then, the nominal damper specifications, ceq, as well as the damping 
exponent β for individual dampers and the damping configuration of the total system, are obtained. 
The damping configuration matrix Ccon and equivalent damping matrix Ceq

( ) †2  are determined by the 
corresponding effective period Ti, participation factor Γi, and shape function pi, as well as the vec-
tors Φi and Ψi. The accumulated modal mass ratio, γmS, is also available.

From the complex-valued mode shape pi (if it is indeed complex valued), it is possible to work 
with the corresponding real-valued shape function p i, given by (see Equation 7.96)

	
p

p
pi

i

ni
i ijp

sgn p j 1 2 n=











( ) = { } = …i , , , ,  (8.73)

where the shape function pi is obtained through the proportionally damped M-C-K system. Note 
that, when −90°	<	∠(pij)	<	90, sgn(pij)	=	1. Otherwise, sgn(pij)	=	−1.

If the displacement vector dmaxi  is known, the ith effective damping ratio can be calculated by

	
ξ

ωβ
β

β

eff
(.)

eq i ji
1

j 1

S

max
T
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i

i i

c A x

2
=

+

=
∑

πd dK
 (8.74a)

Here superscript (.) of the damping ratio ξeffi
(.)  means that an iterative approach may be needed to 

achieve the proper effective damping ratios. For simplicity, in the following discussion, superscript 
(.) is omitted. The design engineer should be careful to identify whether the (.)th iteration is needed.

However, dmaxi  is often unknown before the structural responses are calculated. Unlike bilin-
ear design where the quadratic Equation 8.6 and its solution Equation 8.13 can be used, dmaxi  and 
the other responses in Equation 8.74a have to be found by iterative approaches. This is discussed 
in the next subsection (see, e.g., Equation 8.96b) and the iterative approach can provide the value 
of the effective damping ratios.

Note that not using the Penzien constant often affects the first effective mode, so that if the 
Penzien constant, pc, is considered, Equation 8.74a can be rewritten as

	
ξ

ωβ β
β

β
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eq 1 j1
1

j 1
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1 1

(p )  c A x

2
(.) =

− +

=
∑

πd dK
 (8.74b)

In Equations 8.74, it is supposed that a total of S dampers are installed. Here ωi and xji are the ith 
effective natural frequency and modal amplitude at the jth location, respectively, and

	 x G d d mji mj ji j 1,i= −( ) ( )−  (8.75a)

When the Penzien constant is considered,

	 x p G d d mj1 c mj j1 j 1,1= −( ) ( )−  (8.75b)
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8.3.2.2.2 Numerical Damping Coefficient
Equations 8.74 and 8.75, the responses of the effective SDOF systems, are calculated by finding the 
ith numerical damping coefficient, etc. That is,

	 B 3 9i effi oi= +( ) +ξ ξ 0.
 

(8.76)

8.3.2.2.3 Modal Participation Factor
As mentioned in Chapter 4, for generally damped systems, the modal participation factor of the ith 
mode is no longer a scalar, but a vector. For the case of complex modes, the jth element of the vector 
is given by Equation 7.88. That is,
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(8.77)

The total modal participation vector of the ith mode is
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Γ

Γ
Γ

Γ  

(8.78)

Note that if the effective damping ratio to be designed is not very large, a normalized shape func-
tion can be used to calculate the modal participation factor, which reduces to a scalar. In an example 
given in Section 8.3.3, this simplified approach is discussed in more detail.

For an overdamped subsystem, the modal participation factor is still a scalar, given by

	 Γ i
R

j
R= q J

 
(8.79)

8.3.2.2.4 Seismic Response Factors and Modal Displacement
The seismic response factors, Csi, and spectral displacement, diD, for vibration modes (real and com-
plex) can be calculated using Equation 7.51. For an elastic structure, R = 1.

Similar to linear systems described in Chapter 7, if the first S “modes” contain one or more 
overdamped subsystems, the seismic response factors, Csk

R , and spectral displacement, dkD
R , for the 

corresponding overdamped subsystems need to be specified.
And overdamped displacement spectral values are needed to compute the term dkD

R , which can 
be obtained using Equation 4.233. A simplified approximation can be obtained through numerical 
simulations. For example, using the 99 earthquake records, the special displacement, SDo, can be 
established as

	 S 748 T 145ln T T 252Do
R 1 2 R R= ( ) + ( ) − +0 0 0 0 0 0128 0 0. . . .

/

 
(8.80)

Thus, the spectral displacement, diD
R , can be written as

	 d S S miD
R

D1 Do�= ( )  (8.81)
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Overdamped velocity spectral values are needed to compute the term Csk
R , which can also be 

obtained by using numerical simulations. For example, using again the 99 earthquake records, the 
special displacement, SVo, can be established as

	 S 857 T T T 1 35 sVo
R 1 2 R= − ( ) + ( ) + ≤ ( )� . . . , .

/
0 0 447 1 928ln R

 
(8.82a)

	 S T 54 T 1 814 T sVo
R R R= ( ) − + > ( )0 0002 0 00 0 1 35

2
. . . , .

 
(8.82b)

The spectral acceleration, Csi
R, for the overdamped case can be written as

	
C S 2

T
Ssk

R
D1

k
R Vo= π

 
(8.83)

8.3.2.2.5 Lateral Displacement
The lateral displacement of the ith complex mode is given by Equation 4.269. That is,

	 dmax iD i ii d m= ( )Γ i p
 (8.84)

where the shape function pi is given by Equation 8.73. Meanwhile, the lateral displacement of the 
jth normal mode is repeated as

	 dmax j jD jj d m= ( )Γ �i p
 (8.85)

Here, the mode shape vector pj is taken from the normal mode and is real valued.
The lateral displacement of the kth overdamped subsystem is given by

	 dmaxk
R

kD
R

i
R

k
Rd m= ( )� Γ i p

 (8.86)

Similar to the proportionally damped system case, the total maximum lateral displacement can be 
calculated by using SRSS as

	
d dmax M Dn D

i=1

S
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/

2

1 2

 

(8.87)

in which the safety factors SM, SDn, and SDξ are defined in Equations 7.16, 7.59, and 7.60, respec-
tively and the overdamped cases are included as mentioned in Chapter 7. Here,

	
SDn

7 3 5 21 6 1 8 1 n 5 719 1 n 15n 525= × − × + +( )− −. . . .0 0 0 0 00 0

	 SD design1 3 3 12ξ ξ= − +( ).

8.3.2.2.6 Absolute Acceleration
The calculated pseudo acceleration of the ith complex mode is given by

	
aa si i ii C g m s= ( )Γ i p 2

 (8.88)

where the shape function p i is given by Equation 8.73.
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The pseudo acceleration of the ith normal mode is given as
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(8.89)

The pseudo acceleration of the kth overdamped subsystem is given by

	
as

R
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R
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R

k C g m s= ( )Γ p 2

 (8.90)

The procedure for an overdamped subsystem for sublinear damping can be carried out as 
described for linear generally damped systems.

Similar to the case of a proportionally damped system, the total maximum absolute acceleration 
can be calculated by using modified SRSS in the form
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(8.91)

In Equation 8.91, the term asi
 includes the acceleration as

R
i. Also, in Equation 8.91, SM is the same 

as defined in Equation 7.16 and SAi is determined by Equation 7.63. The safety factors SAn and SAξ 
are defined in Equations 7.64 and 7.65, respectively. Again,

	
SAn

6 3 4 21 5 9868 1 n 9 63 1 n 395 n 4 92= × − × + +( )− −. . . . ;0 00 0 0 0 0 0

	
SA design

2
design1 193 7 25 2 2 76ξ ξ ξ= − − +( ). . .

†

8.3.2.2.7 Lateral Force and Base Shear
For nonproportionally damped systems, the lateral force can also be calculated through Equation 
7.66 and the base shear is calculated through Equation 7.70.

8.3.2.3  Summary of Simplified Design
The design procedure may be stated in the following three steps.

First, suppose the mass, stiffness, and the damping exponent β of the structure have been deter-
mined. Then, from the mass M and stiffness K, the fundamental period T1, the corresponding 
mode shape p1 can be determined. In previous chapters, the method of how to find T1 and p1 was 
discussed. With given parameters T1 and β, the corresponding displacement d1 and acceleration a1 
can be determined, as well as the effective damping ratio ξeff1. Consequently, the equivalent damp-
ing coefficient, ceq, can be obtained.

Second, through the individual damping coefficient ceq, the damping coefficient matrix, Ceq, for the 
corresponding linear system can be constructed. The system has the identical damper configuration 
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and identical damping ratio of the first mode (or effective mode for the sublinear system). Similar to 
the system with bilinear damping, the corresponding linear system provides more information about 
the higher modes, when the first effective mode is not sufficient to represent the total responses. By 
using mass M and stiffness K, the first several modal parameters can be obtained. Practically speak-
ing, the newly formed M-Ceq-K system is generally damped.

Third, by using response estimation, such as SRSS, the responses of the higher modes of the 
newly generated system can be included. An alternative approach is to employ all the modal con-
tributions of the corresponding linear system, instead of counting the second and higher modes, 
whereas the fundamental “modal” contribution is taken from the nonlinear system. This approach 
is simpler. When the nonlinearity of the system is not too high, say the damping exponent is larger 
than 0.75 and the supplemental damping is not very heavy, this approach often yields acceptable 
results.

If the computed responses are not satisfactory, trial-and-error iteration must be carried out until 
good design parameters are determined. A good estimation of the response is needed in order to 
reduce the computational burden.

8.3.3  dEsign issuEs

In the above discussion, the procedure for simplified design when the required effective damping 
ratio is comparatively small, was presented. One of the issues is the expected errors if the effec-
tive damping ratio is not negligibly small. In the following paragraph, these possible errors are 
summarized.

8.3.3.1  SDOF Systems: Effective Mode
8.3.3.1.1 Iterations
Unlike bilinear damping, an iterative method to calculate the response of a structure for sublinear 
damping is necessary. Associated with iteration is the issue of converging to incorrect values or even 
nonconvergence. The methods of convergence are briefly discussed in the following paragraphs.

The computation of the effective damping ratio ξeff usually employs the Timoshenko equation, 
as shown in Equation 5.15. For convenience, Equation 8.74a is rewritten using Equation 8.84 as 
follows:
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where T T Ts effi L< <

	

ξ

Γ

π

β
β β

βeffi

eq eff i m
+1

ji
1

j 1

S

+1
eff  

c T  A G p

  2 m

i ij

i

��=
( )
( )

+

=
∑ ∆

3 ξξ ξ

Γ

β

−β

β
β

β

eff 0

g
1    

eq eff g
1

i m

i i

i ij

I

c T  I A G

+( ) + 

=
( )

−

− +

0 9
1

.

11
ji

1

j 1

S

+1
eff  

eff 0

p

  2 m i

i i

∆ β

βπ
ξ ξ

+

=
∑

( )



















+( ) +3 0.99
1

 
−β

 

(8.93)



508	 Structural	Damping:	Applications	in	Seismic	Response	Modification

where

	 ∆p p p mji ji j 1,i= − ( )−  
(8.94)

Denote
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(8.95)

Thus,
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effi i eff 0a i i= +( ) + 
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(8.96a)

This is a single variable nonlinear equation, which can be solved by iterative computations. That is, 
an assumed value ξ ξeffi effi

(1)=  is substituted into the right side of Equation 9.86a and the second value 
of ξeffi

(2)
 is calculated. The kth iteration is written as
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(8.96b)

The iteration will be stopped if a particular preset criterion of the iteration is satisfied. For example,

	 ξ ξ ξ εeffi
i+1

effi
i

effi
i  ( ) ( ) ( )− ≤  (8.97)

as the criterion, where ε is a small number, i.e.,

	 ε = 0.1%  (8.98)

In normal cases, the convergence is fast and usually, Equation 8.96b can be satisfied after 3	∼	5 
iterations.

Example 8.4

A base structure with identical mass and stiffness matrices as given in Example 8.2 is used in this 
example. Its original damping ratio is 2%. Two nominal dampers are installed in the first and sec-
ond floors for a design damping ratio equal to 15% (see Figure 8.1). With supplemental dampers, 
the effective mode shape will be altered.

The shape function is approximated by using an equivalent linearly damped system with two 
linear viscous dampers installed in the first and second stories. The corresponding first mode 
shape and the shape function calculated using Equation 8.73 are, respectively,

	

p1 =

0.3544 + 0.0476j 
0.6639 + 0.0858j
0.8855 + 0.0305j 
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Using this shape function, the modal participation factor, effective mass, and effective period of 
the first effective mode can be found as
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Suppose the ground input level, Ig = 2.634 (m/s2), and the nominal sublinear damper has β = 0.3; 
and ceq = 500 (kN/(m/s)0.3). The iteration in Equation 8.95b is used to calculate the desired effec-
tive damping ratio.

First, according to Equation 8.95, a1 = 0.1074. Assume that ξeffi 13() .1 0= . Then, ξeffi
(2) 1325= 0. , 

ξeffi
(3) 133= 0 0. , and the iteration converges to ξeffi

(4) 1332= 0. . For comparison, assume that ξeffi
(1) 5= 0 0.

. Then, ξeffi
(2) 1295= 0. ; ξeffi

(3) 1324= 0. ; ξeffi 1331( ) .4 0= ; and the iteration converges to ξeffi
(5) 1332= 0.

. As a first comparison, assume that ξeffi
(1) 1= .0. Then, ξeffi

(2) 2815= 0. ; ξeffi 1624( ) .3 0= ; ξeffi
(4) 1391= 0. ; 

ξeffi
(5) 1344= 0. , and eventually the iteration converges to ξeffi

(7) 1332= 0. .
Equations 8.92 and 8.95 only work when Ts < Teffi < TL. The iterative formulas for the cases of 

Teffi < T0, T0 < Teffi < Ts as well as TL >	Teffi can also be found. Once the proper value of the effective 
damping ratio is calculated, Equation 7.51 can be used to calculate the seismic response factors, 
Csi, and the spectral displacement, diD. Then, the procedure discussed in the above subsection can 
be followed to estimate the structural responses. Since this method does not directly calculate the 
displacement, it is referred to as indirect iteration.

In the literature, many authors suggest that the displacement can be found iteratively by first 
assuming an initial displacement dm ax

(1)
i
 and using Equation 8.74 to calculate the effective damp-

ing ratio ξm axi
(1) . Then, the numerical damping coefficient B(1) is found, which is used to provide the 

second round of iterative value dmax
(2)

i
. However, such a direct iteration may converge to incorrect 

points. 

8.3.3.1.2 Displacement and Acceleration
It has been shown that when damping becomes larger in linear SDOF systems, the relationship 
between the relative displacement, dmax, and the absolute acceleration, aa, expressed in Equation 
8.99 can yield large errors:

	 a da n= ω2
max  (8.99)

Thus, an alternative approach is recommended as

	 a 1 4 da
2

n= + ξ ω2
max  (8.100)

to improve the estimation. When the damping exponent is close to unity, Equation 8.100 can be used 
as a simplified approach. However, when the damping exponent is closer to zero, Equation 8.100 
will be insufficient. A practical way to improve this situation is to introduce a factor that is a func-
tion of the damping exponent, effective damping, and the number of the degrees-of-freedom, which 
is discussed in the next section.

8.3.3.1.3 Effective Damping Ratio of SDOF System
Problems in bilinear damping design on the modeling or formulation of effective damping also 
exist in sublinear damping. In general, Timoshenko damping often overestimates the damping 
effect.
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Thus, if the nonlinearity introduced by the sublinear dampers is high, the currently used design 
approach can be improved by introducing a twofold effort. The first is using the force-based effec-
tive damping ratio to reduce overestimation. The second is to manipulate the MDOF system through 
specific sublinear response spectra. When nonlinearity is not sufficiently high, however, other meth-
ods can be used, as discussed in Section 8.2.

The formula of force-based effective damping is used for the sublinear damping as the secondary 
choice, which is repeated here as

	 ξ β
β

eff
0

1c x
2 k

=
−

 
(8.101)

8.3.3.1.4 Justification for Computation of Displacement due to Damping Exponent
In the above discussion, the effective damping ratio is formulated by equating the linear and nonlin-
ear damping forces. From the concept of Timoshenko damping, if the damping force of a sublinear 
system is equal to a linear system, the displacement of the sublinear system should be smaller than 
in the linear system. This is conceptually seen in Figure 8.6, where the areas under the curves of the 
damping force vs. displacement represent energy dissipated by damping and the two areas are equal.

In Figure 8.6, the sublinear system is generated with a damping exponent of 0.2. In order to simplify 
the comparison, the damping force is normalized to be unity and the displacement of the linear system is 
also normalized to be unity. Note that Figure 8.6 only shows the energy dissipation in the first quadrant.

With respect to the issue of equal energy dissipation, when the damping exponent β equals unity, 
the displacement is normalized to be unity. When the damping exponent β is equal to zero, the 
displacements will be smaller. The corresponding factor is 4/π	≈	0.79. If the damping exponent β is 
between 0 and 1, the two displacements of the linear and sublinear system will have approximately 
the following ratio, given by
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(8.102)

where dβ and d1 denote the displacements of the sublinear and linear systems, respectively.
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FIGURE 8.6  Comparison of linear and nonlinear displacements.
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Equation 8.102 is further approximated by using a linear function,

	
d
d

a b
1

β β≈ +
 

(8.103)

where a and b are constant coefficients.
In conclusion, by considering the effect of the damping exponent on the displacement compu-

tation, the calculated response based on the effective damping mentioned in the previous section 
needs to be justified.

8.3.3.1.5 Justification for Computation of Displacement due to Effective Damping Ratio
In the above discussion, the necessary modification of the displacement caused by the nonlinear 
effect on the damping exponent was explained. A second necessary modification due to the linear-
ization procedure on the effective damping ratio is now considered.

In Chapter 7, it was mentioned that when the damping ratio is not 5%, the spectral value needs to 
be modified by the numerical damping coefficient B, approximately defined as

	 B 3 9≈ +0 0. .ξ

This damping ratio is taken from a linear system with viscous damping. When the damping ratio is 
taken from a sublinear system, it should also be modified, and the modification factor can be written 
as a function of the effective damping ratio.

Similar to the modification expressed in Equation 8.103, it appears reasonable that

	
d
d

a b
1

eff
ξ ξ≈ +

 
(8.104)

where a and b are coefficients. In Equation 8.104, a and b are also generic coefficients, unrelated to 
those used in Equation 8.103. Furthermore, in Equation 8.104, dξ and d1 denote the displacements of 
the sublinear and linear systems, respectively. Subscript ξ denotes the consideration of the effective 
damping exponent ξeff.

Practically speaking, the effect of both the effective damping ratio and the damping exponent on 
the displacement estimation for a sublinear system can be combined to simplify the design proce-
dure. For this purpose, the following expression may be used:
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d

a b c d e f
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eff eff
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eff
ξβ ξ ξ β β ξ β≈ + + + + +2

 
(8.105)

where dξb stands for the estimated displacement affected by the damping ratio ξ and the damping 
exponent β, which is seen as the estimated displacement of the sublinear system through the linear-
ization approaches. Here, a, b, c, d, e, and f are coefficients.

8.3.3.1.6 Further Justification for Computation of Displacement due to Effective Frequency
The above justifications are based on the logic that effective damping is obtained by equating the 
maximum sublinear and linear viscous damping forces by assuming that the responses are steady-
state sinusoidal displacements. In addition, Timoshenko damping is determined by equating the 
energy dissipations of the sublinear and linear systems with the same assumption of sinusoidal 
displacements.
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However, neither the force-equating approach nor the energy-equating approach can precisely rep-
resent equal displacement, because the system is nonlinear, for which the pure sinusoidal approach 
is only an approximation. In addition, the responses of the structure are not steady-state responses. 
In Timoshenko damping, the influence of the natural frequency is not considered. However, under 
earthquake excitations, the influence of the effective frequency is a concern. It can be expressed as 
the third modification factor, which may be approximately written as a linear function of the effec-
tive natural frequency as

	
d
d

a b
1

eff
ω ω≈ +

 
(8.106)

where a and b are also generic coefficients. Also in Equation 8.106, dω and d1 denote the displace-
ments of the sublinear and linear systems, respectively. Subscript ω denotes the consideration of the 
effective frequency ωeff.

If the influence of the frequency is considered independently, the following approximation can 
be used:

	

d
d

a f b 49 f 2 12
1

eff eff
ω

ωη= = + ≈ +0. .

where feff is the effective natural frequency.
In the previous chapters, it was shown that the natural frequency or period is affected by the 

number of stories n. That is, 

	 T 1 n s= ( )0.

In sublinear systems, since the value of the first effective period is taken from the original structure, the 
above equation can still be used. In fact, the proportional relationship between the period and the number 
of stories often provides a valid approximation. Replacing T by Teff, the above equation is rewritten as

	 T 1 f a n seff eff= = ( )  (8.107)

where a is again a generic coefficient.

8.3.3.1.7 Damping Nonproportionality and Overdamping
Since the dampers are sublinear, the total system must be nonlinear and the conventional approach to 
determine if the system is generally damped cannot be used. However, similar effects of nonpropor-
tional damping and overdamping still exist for nonlinear MDOF systems. These effects include some 
of the energy transferred between the effective modes and contained in the overdamped pseudo modes.

As mentioned in Chapter 4, it is the energy transfer among vibration “modes” that results in the 
complex modal parameters. This energy transfer results from damping nonproportionality. Thus, 
it is understandable that in nonlinear damping, for the most part, energy transfers are magnified. 
In addition, it is rare that the linearized damping matrix, Ceff, which was obtained in the previous 
section, is purely proportional.

In addition, certain modes of the MDOF system with sublinear damping are likely to be over-
damped. It is quite common that with the linearized damping matrix, Ceff, obtained in the previous 
section, the equivalent linear system contains overdamped subsystems.

To determine if the system is overdamped, it is neccessary to see if real-valued eigenvalues exist. 
To check if the system has complex modes, several indicators can be used also. These indicators are 
discussed previously.
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Since the effective natural periods are not significantly affected by using the normal mode 
approach, the initial estimation of the periods can be carried out by assuming proportional 
damping. To use this approach, the complex-valued mode shape must be rewritten with pure real 
numbers.

8.3.3.1.8 Cross Effect
In Chapter 6, cross effect in linear systems, especially those in between two horizontal direc-
tions, was only briefly introduced. A structure with sublinear dampers cannot be decoupled as 
a linear system, because energy transfer always exists. In this case, cross effect may be magni-
fied. A practical way to consider cross effect for the design of sublinear dampers is to use larger 
safety factors.

8.3.3.1.9 Supporting Stiffness
Similar to linear and bilinear systems, the supporting stiffness is also an important issue for sub-
linear systems. Compared with linear viscous damping, the damping force of a sublinear damper 
will not vary as much as a linear damper. Therefore, a sublinear damper can enter the range of 
insufficient supporting stiffness considerably earlier than linear viscous dampers. This, therefore, 
demands a stronger supporting stiffness, as is the case for bilinear dampers.

8.3.3.2  MDOF Systems
8.3.3.2.1 Mode Shapes
From SDOF to MDOF systems, mode shapes are used to distribute the effective modal responses. 
Similar to a linear MDOF system, choosing an incorrect shape function will be a major source of 
inaccuracies in sublinear damping design. To date, there is no effective method to reduce the design 
error. Therefore, for precise design, time history analysis should be used together with spectra-
based design.

8.3.3.2.2 Damping Exponent
It is assumed that all sublinear dampers for an MDOF system have the same damping exponent β. 
When the entire system is represented by several effective modes, i.e., S effective modes of interest, 
they are all affected by an identical damping exponent β. That is,

	 β βi cont  i 1,2, S= ≡ =. ,…  (8.108)

Practically speaking, this assumption is not exactly correct. The damping exponents of individual 
dampers are rarely identical. The authors have investigated the possible errors by using Equation 
8.92 and have concluded that the errors are comparatively small. Figure 8.7 shows an example of 
simulated earthquake response of damping force vs. displacement of a 55-story building installed 
with sublinear dampers, whose damping exponent is equal to 0.15 and the effective damping ratio 
of the first effective mode is 15%. From this example, it is realized that the plot aggregates well with 
the damping force, f c x sgn(xd eq

0.15=  � � ).

8.3.3.2.3 Period
When the mass and stiffness matrices of a structure are given, the undamped period, Toi, is deter-
mined. It is assumed that the effective period, Teffi, for the first several effective modes is fixed to 
equal T0i. That is, they are not affected by damping, as expressed by Equation 8.109:

	 T T s i 1,2, Seffi oi≡ ( ) = …,  (8.109)
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This assumption is also not exactly correct. The effective periods will vary for these effective 
modes when the displacements vary. Therefore, Toi cannot be defined exactly. In addition, the 
supplemental damping will also change the value of Toi. The authors have investigated the errors 
introduced by Equation 8.109. In general, these errors are also of negligible magnitude. In the 
following discussion, for simplicity, Teffi is not distinguished from Toi and Ti unless specifically 
addressed.

8.3.3.2.4 Modal Participation Factor
The above discussion actually implies an important assumption; that is, the total responses of a 
sublinear system can be represented by its first several effective modes and those effective modes 
do exist. Thus, to identify these modes, the modal participation factors obtained by assuming pro-
portional damping are not supposed to change; that is,

	 Γ i cont. i 1,2, S≡ = …, 	 (8.110)

Again, this assumption is an approximation with acceptable errors.
With the above assumptions, the basic approach of the sublinear damper design can be performed 

based on the response spectra approach. Since the system can be highly nonlinear, similar to a bilin-
ear system, nonlinear response spectra may need to be generated. Once the nonlinear, specifically 
sublinear, response spectra are generated, the remaining design procedure is similar to the spectra 
design approach commonly used in the design profession.

The authors did not exhaust all possible combinations of earthquake records in this formulation. 
Because sublinear response spectra are highly dependent on the selection of input earthquakes, the 
numbers used in this book should be treated as illustrations of a generic methodology, for which 
the step-by-step procedure of the sublinear spectrum generation is given so that users can generate 
their own sublinear response spectra. In the next section, these spectra are given. Similar to bilin-
ear damping design, the nonlinear response spectra should be generated by using code-compatible 
ground excitations specified for local applications.
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FIGURE 8.7  Damping force vs. displacement of a sublinear system.
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8.3.4  daMPEr sPEcifications

Similar to linear viscous dampers and bilinear dampers, once the response estimation is satis-
factory and the basic parameters of a nominal damper are determined, the next step is to choose 
the devices. Since sublinear dampers are likely to be hydraulic devices, the damper specifica-
tions and selections are similar to those used for linear viscous dampers, which are considered 
in Section 7.2.

8.4  NONLINEAR RESPONSE SPECTRA APPROACH WITH SUBLINEAR DAMPERS

8.4.1  gEnEral dEscriPtion

In the above section, the simplified design procedure was presented and the possible errors were 
discussed. It is seen that one of the most serious sources of errors comes from the iterative approach, 
when the effective modal response is calculated. When the required damping ratio is large, this 
type of error can be significant. To improve the design, nonlinear spectra can be used to avoid the 
iteration process.

A major step in damper design is to determine the proper damping coefficient, cβ, and to 
calculate the corresponding relative displacement vector, dmax, and absolute acceleration, aa, of 
the structure. From dmax and aa, other control parameters, such as base shear, floor drift, and 
overturning moment, can be determined. In addition, the amount of supporting stiffness may 
also be needed. Thus, determining the effective modal response is one of the key steps.

The sublinear response spectra can be used to calculate the effective modal response, which can 
reduce the errors generated through iterative approaches.

8.4.1.1  Control Parameters and Response Spectra
Suppose the parameters of the ith effective mode have already been determined, namely, the 
effective period Ti, the effective damping ratio ξeffi, and the damping exponent βi. The next step 
is to estimate the modal response. This task can be carried out using the sublinear response 
spectra.

Alternatively, proper design parameters of the ith effective mode based on an estimated response 
can be obtained, followed by using the sublinear spectra.

8.4.2  rEsPonsE EstiMation

For an SDOF sublinear system, the governing equation can be written as

	 mx cx c x sgn x kx mxg�� � � �+ + ( ) + = − ′′β
β

 (8.111)

where cβ is the damping coefficient of the sublinear damper, which can be expressed as

	 c 2 m kN-s meq effβ
β βξ ω= ( )  (8.112)

where ωeff is the effective “natural” frequency with

	
ωeff

k
m

rad s≈ ( )

Substituting Equation 8.112 into Equation 8.111 and dividing mass m on both sides of the equation 
yields
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	 �� � � �x 2  x 2  x sgn x x xeff eq eff eff
2

g+ + ( ) + = − ′′ξ ω ξ ω ωβ
 (8.113)

in which the effective “natural” frequency can be replaced by the effective period as

	
ωeff

eff

2
T

rad s= ( )π

Equation 8.113 contains three control parameters: the effective period Teff, the equivalent damping 
ratio ξeq, and the damping exponent β. In other words, to generate the sublinear response spectra, 
these three parameters are sufficient. The effective damping ratio, ξeff, is used under the consider-
ation described in Equation 8.112. Now, by using a group of prespecified earthquake records, the 
relative displacement, absolute acceleration, and damping force of the mean value plus one standard 
deviation can be obtained. Table 8.2 shows an example of these factors.

In Table 8.2, the damping exponent is β = 0.1. Similar tables are developed for different val-
ues of β. Table 8.2A lists the displacement with unit (cm) and Table 8.2b gives the acceleration 
with unit (g). Note that when the responses are calculated, the mass of the SDOF system is assumed 
to be m = 100 (t). Thus, the damping force can also be provided as a ratio of 100 (kN)/100 (t).

In both tables, the columns are marked by different periods from 0.4 to 3.0 (s), and the rows 
provide different equivalent damping ratios from 0.01 to 1.00.

The sublinear responses and the linear responses are examined first. As an example, consider a 
system with a damping ratio of 0.05, a period of 1 sec, and 0.4 (g) input. In this case, the displace-
ment is 15.8489 (cm), the acceleration is 0.6862, which implies 0.6862 (g), and the damping force 
is 586.4 (kN) with the mass equal to 100 (t). If the system is linear with the viscous damping, it is 
seen that according to the equations suggested by NEHRP 2003 (BSSC, 2003), d = 0.1 T = 10 (cm), 
which is considerably smaller than 15.8 (cm).

Additionally, the acceleration is a = 0.4/T = 0.4, also much smaller than 0.69 (g). On the other 
hand, the amplitude of the damping force is fd = 2 × 0.05 × (2π/T) m = 6.28 (kN), which is obvi-
ously larger than 586 (kN).

Furthermore, if the system is linear, the relationship between the displacement and the accelera-
tion is given approximately by

	 a d g= + ( )1 4 4
9.8 T

2
2

2ξ π
 

(8.114)

TABLE 8.2A
Displacement (cm), 𝛃 ∙ 0.1, Input Level ∙ 0.4 (g)

T (s)

𝛏eq
0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.01 5.7088 12.9384 19.6412 26.9801 37.0336 45.1123 83.3525

0.05 2.5065 6.2830 9.9336 15.8489 22.4376 30.3342 56.0481

0.10 0.9362 2.9292 5.5945 9.2355 15.6599 22.1647 40.0841

0.20 0.0436 0.5341 1.6672 3.2021 7.8998 12.7648 22.9006

0.40 0.0128 0.0184 0.0476 0.2549 1.6871 3.9294 10.2584

0.60 0.0088 0.0128 0.0166 0.0204 0.2714 1.1991 4.3906

0.80 0.0068 0.0098 0.0128 0.0157 0.0303 0.2780 1.9457

1.00 0.0056 0.0080 0.0104 0.0128 0.0185 0.0492 0.7984
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With ξeq = 0.05 and Teff = 1 (s), the calculated value is (1 + 0.052)1/2(4π2)0.1585/9.8 = 0.6549 (g). 
Compared to the value of 0.6862 (g), the calculated acceleration is 4.6% smaller.

In fact, all the other pairs of displacements, d, and accelerations, a, can be examined, but none 
will exactly follow the description shown in Equation 8.114. Rather, for a sublinear system, a factor 
of η >	1 is chosen, such that

	
a 1 4 4

9.8 Teff
2

2

eff
2= + ξ π

η d g( )
 

(8.115)

Note that each pair of d and a are actually the “modal” displacement and acceleration. For 
simplicity, these notations are used for now and the main design procedures will be revisited in 
Section 8.5.

8.4.2.1  Linear Interpolations
In the above tables, only eight equivalent damping ratios and seven damping exponents were pro-
vided. When values are not given, linear interpolations can be used.

As stated earlier, there is a basic difference between a sublinear system and a bilinear system. 
In an MDOF bilinear system, although several dampers may enter yielding status at differ-
ent times, it can still be assumed that the entire system will have an equivalent parallelogram 
force– displacement relationship without introducing significant errors. Therefore, the control 
parameters of the equivalent parallelogram can be directly determined based on the parameters 
of the stiffness of the structure and the parameters of these dampers. Sublinear dampers, on the 
other hand, do not allow us to directly link the control parameters of the SDOF system to the 
real-world MDOF system.

The reason Tables 8.2A and 8.2B are generated is to find the so-called “equivalent damping 
ratio” ξeq, instead of using the control parameter ξeff. However, the effective damping ratio ξeff, 
(instead of the equivalent damping ratio ξeq) should be used as the control parameter. To account 
for this issue, several steps are required. The first is to assume that the four input levels of 0.4, 0.6, 
0.8, and 1.0 (g) are sufficient to represent all the practical cases. If the four levels are insufficient, 
linear interpolation can be used as described by the following example. Assume the input level is, 
for example, specified as 0.4 (g).

The second step is to use the specific parameters of the effective period and damping exponent 
to generate two columns of vectors. The first column is the displacement at specific periods and 
damping exponent (including the input level) through linear interpolations. The second column is 
the corresponding effective damping ratios using the formula linking the effective and equivalent 
dampings.

TABLE 8.2B
Acceleration (g), 𝛃 ∙ 0.1, Input Level ∙ 0.4 (g)

T (s)

𝛏eq
0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.01 1.4590 1.4626 1.2475 1.0958 0.6690 0.4588 0.3761

0.05 0.7441 0.7808 0.6842 0.6862 0.4337 0.3295 0.2672

0.10 0.4608 0.4845 0.4715 0.4692 0.3461 0.2727 0.2131

0.20 0.3940 0.3631 0.3439 0.3246 0.2755 0.2301 0.1714

0.40 0.4003 0.4000 0.3924 0.3657 0.2953 0.2449 0.1868

0.60 0.4004 0.4002 0.4001 0.3994 0.3636 0.3093 0.2303

0.80 0.4006 0.4003 0.4002 0.4001 0.3962 0.3629 0.2821

1.00 0.4007 0.4004 0.4004 0.4002 0.4001 0.3919 0.3276
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The third step is to use interpolation again to finally determine the corresponding displacement, 
followed by the acceleration and the damping force.

This simplified approach can be summarized quantitatively as follows:

 1. Specify the input level, for example, 0.4 (g).
 2. With the specific period T and damping exponent b, find four columns of vectors, namely, 

D(T1,β1), D(T2,β1), D(T1,β2), and D(T2, β2). Here

	 T T T1 2< < ( )s  (8.116a)

  and

	 β β β1 2< < 	 (8.116b)

  In the above paragraph, d(T1, β1) is the column of displacement, when the period and the 
damping exponent are T1 and β1, respectively, and so on.

 3. Using linear interpolation,

	 d
d d

d1
2 1 1 1

2 1
1 1 1

T , T ,
T T

T T T , cm= ( ) − ( )
−

−( ) + ( ) ( )β β
β  (8.117a)

  and

	
d

d d
d2

2 2 1 2

2 1
1 1 2

T , T ,
T T

T T T , cm= ( ) − ( )
−

−( ) + ( ) ( )β β
β

 
(8.117b)

  Furthermore, the displacement vector is determined by

	
d d d d= −

−
−( ) + ( )2 1

2 1
1 1 cm

β β
β β

 
(8.117c)

  Note that the vector d has eight elements in this case, that is,

	 d = { } ( ) = di cm i 1, 2, 8, ,…  (8.118)

  Each element di is associated with the ith equivalent damping ratio ξeqi.
 4. The column of equivalent damping ratios ξeqi is now used to find the corresponding column 

vector with elements ξeffi. In more general cases,

	
c
c  p

eq
1

1β β ββ= −
11  

(8.119)

  where p11 is the first element of the mode shape of the M-K system; p11 is not necessar-
ily equal to the first story modal displacement under the triangle assumption such that 
p11 = 1/n. The shape function should be normalized to let the top level (the roof) modal 
displacement equal unity. That is,
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	 pn1 = 1

  Now, since

	
c 2 eff effβ ξ ω= ( )kN-s mβ β

  and

	
c 2eq eq eff= ( )ξ ω kN-s mβ β

  results in

	 ξ ξ ωβ β−1
eff eq  p≈ 1 11  (8.120)

  Therefore, for the eight elements,

	 ξ ξ ωβ β
effi eqi 1 11

1 p  i 1, 2, 8≈ =− …,  (8.121)

 5. Using the given design value of ξeff, the interpolation method is used again to finally deter-
mine the required displacement d, as follows:

	
d

d d
d= ( ) − ( )

−
−( ) + ( ) ( )ξ ξ

ξ ξ
ξ ξ ξeff1 eff2

eff2 eff1
eff2 eff eff2 cm

 
(8.122)

  Here, d(ξeff(.)) is the displacement, when the effective damping ξeff(.) is used, and

	 ξ ξ ξeff1 eff eff2< < 	 (8.123)

 6. The corresponding acceleration can be calculated as follows:

	
a

a a
a1

1 1 2 1

2 1
2 2 1

T , T ,
T T

T T T ,= ( ) − ( )
−

−( ) + ( )β β
β

 
(8.124a)

	
a

a a
a2

1 2 2 2

2 1
2 2 1

T , T ,
T T

T T T ,= ( ) − ( )
−

−( ) + ( )β β
β

 
(8.124b)

  and

	
a a a a= −

−
−( ) +2 1

2 1
1 1β β

β β
 

(8.124c)

  where a(T1,β1) is the column of acceleration, when the period and the damping exponent 
are T1 and β1, respectively. Vector a has eight elements in this case. That is,
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	 a  ai= { } ( ) =g i 1, 2, 8, ,…
 

(8.125)

  Each element ai is determined by using the ith effective damping ratio ξeffi. The required 
acceleration of the fundamental effective mode is given by

	
d

a a
a= ( ) − ( )

−
−( ) + ( ) ( )ξ ξ

ξ ξ
ξ ξ ξeff1 eff2

eff2 eff1
eff2 eff eff2 g

 
(8.126)

  where a(ξeff(.)) is the displacement, when the effective damping ξeff(.) is used.
 7. The damping force can be similarly calculated.

8.4.2.2  MDOF Systems
Returning to the main design procedures, the nonlinear spectra approach outlined above actually 
obtains the “modal” displacement, diD, and acceleration, Csi. That is,

	 d diD = ( )m  (8.127)

and

	 C asi = g  (8.128)

Once the effective modal responses are determined, Equations 8.84 through 8.91 can be used to 
determine the corresponding displacement, acceleration, and lateral force vectors, as well as base 
shear.

8.4.3  dEsign issuEs

In the above procedure, the use of nonlinear spectra to determine the seismic responses can be 
seen as effective modal responses. These responses belong to some SDOF systems. To obtain these 
SDOF systems from an MDOF structure, certain conditions should first be satisfied. Without loss of 
generality, consider a simple example shown in Figure 8.8.

In Figure 8.8a, three sublinear dampers are installed, one in each story. For the sake of simplic-
ity, suppose the geometric magnification factors in each floor are identical and equal to unity. Also, 
suppose all the dampers have the same specifications with an identical damping coefficient ceq and 
exponent β. The mass, velocity, and the ith mode displacement (mode shape function) are marked 
in Figure 8.8a, and are also used in Figures 8.8b and c. Also, for simplicity, assume that the base 
structure is proportionally damped. The equation of motion can be written as

	

Mx Cx Kx M�� � ��

� � � � � �

+ + = − −

( ) + − −

Jx

c x sgn x c x x sgn x x

g

eq 1 1 eq 1 2 1 2
β β (( )

− ( ) + − −( )
−

c x x sgn x x c x x sgn x x

c x
eq 1 2 2 1 eq 2 3 2 3

eq 3

� � � � � � � �

� �

β β−

xx sgn x x2 3 2
β � �−( )



















 

(8.129)

Based on the method of modal decoupling discussed in Chapter 4, letting x = pi y, and pre- 
multiplying p i

T on both sides of Equation 8.129 results in
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p p p p p p pi
T

i i i
T

i i i
T

i i i
T

g

1i eq 1

y y y  = J x

p c x sgn x

M C K M�� � ��

� �

+ + −

− β
11 eq 1 2 1 2

2i eq 1 2 2 1

c x x sgn x x

p c x x sgn x x

( ) + − −( )





− − (

� � � �
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β

β − )) + − −( )





− − −( )

c x x sgn x x

p c x x sgn x x

eq 2 3 2 3

3i eq 3 2 3 2

� � � �

� � � �

β

β



  

(8.130)

It is seen that although the base system is decoupleable, with sublinear dampers, the system 
cannot be decoupled. In other words, the corresponding SDOF systems cannot be obtained as 
pure modes (effective modes) and the above-mentioned spectra-based design cannot be carried 
out.

Next, assume that the fundamental mode shape can be written as a triangular-shaped modal 
displacement (BSSC/NEHRP 2009):
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(8.131a)

and the velocity vector can be written as a triangular-shaped velocity vector:

	

�
�
�
�

�
�
�

x =











=













x
x
x

y
y
y

1

2

3

1

1

11

2
3

 

(8.131b)
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FIGURE 8.8  (a–c) Examples of a structure with dampers.
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Substituting Equations 8.131a and 8.131b into Equation 8.130 with i = 1 results in

	

�� � �� � �y 2 y y  x  1 c y sgn y c1 eff 1 eff
2

1 g
1
T

1
eq 1 1+ + = − − ( ) +ξ ω ω βΓ1 3p pM eeq 1 1

eq 1 1 eq 1 1

y sgn y

c y sgn y c x sgn y

� �

� � � �

β

β β

−( )



{

− ( ) + −( )


2  − ( )



}

− − ( )

3

1

c y sgn y  

 x  
c y sgn y

eq 1 1

g
eq 1 1

1
T

1

� �

��
� �

β

β

= Γ
p pM

Here,
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1
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1
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1
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M

=

=

=

ξ ω

ω2

Γ

Furthermore, letting

	

ceq

1
T

1
eq effp pM

= 2ξ ω

results in

	 �� � � � ��y 2 y y sgn y + y  x1 eff 1 eq eff 1 1 eff
2

1 g+ + ( ) = −ξ ω ξ ω ωβ2 1Γ  (8.132)

Comparing Equations 8.132 and 8.113, the only difference is the proportionality factor Γ1. 
Therefore, under the “triangular” assumption described by Equation 8.131, the desired SDOF sys-
tem can be obtained. Therefore, in the case of two dampers, shown in Figure 8.8b or c, Equation 
8.132 becomes

	
�� � � � ��y 2 y y sgn y y  x1 eff 1 eq eff 1 1 eff

2
1 g+ + ( )



 + = −ξ ω ξ ω ωβ2

3
2 1Γ

and if only one damper is used,

	
�� � � � ��y 2 y y sgn y y  x1 eff 1 eq eff 1 1 eff

2
1 g+ + ( )



 + = −ξ ω ξ ω ωβ1

3
2 1Γ

Generally speaking, in an n-story building with N nominal dampers,
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�� � � � ��y 2 y N

n
y sgn y y  x1 eff 1 eq eff 1 1 eff

2
1 g+ + ( )



 + = −ξ ω ξ ω ωβ2 1Γ

or

	
�� � � � � ��y 2 y y sgn y + y  x1 eff 1 eq eff 1 1 eff

2
1 g+ + ( ) = −ξω ξ ω ωβ2 1Γ

 (8.133)

where

	
ξ ξ�

eq eq
N
n=

 
(8.134)

In this case, it is assumed that the shape function is written in a triangular form as
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(8.135a)

and the velocity vector is written as
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(8.135b)

The requirements described in Equations 8.135a and 8.135b represent a restrictive condition. A 
slightly relaxed condition can be given as
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(8.136a)

and the velocity vector written as
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Here, the proportionality coefficients s(.) are constant.
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In this case, the virtual work done by the sublinear damping force and the virtual displacement 
p i

T is also related only to the fundamental effective mode. For example, consider premultiplying the 
last term in Equation 8.129 by p i

T
:

	

p i
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Since all the elements in shape function pi are constant and both s(.) and β are constant,

	
�c c p p p s s p p s s kN-eq eq 11 21 11 1 2 31 21 2 3= + −( ) − + −( ) −





β β = const ss mβ β( ).  (8.137)

Although Equation 8.137 only describes the case shown in Figure 8.8, it can easily be extended to 
n-DOF sublinear systems, provided that Equation 8.136b holds. That is, as long as the conditions in 
Equations 8.136a and 8.136b are satisfied, Equation 8.133 can always be obtained, where the term 
ξ� eq is redefined as

	
ξ

ω
� �

eq
eq

eff 1
T

1

c
=

2 p pM
 (8.138)

Example 8.5

In order to use Equation 8.138, the term �ceq needs to be evaluated. Furthermore, from 
Equation 8.137, the equivalent damping coefficient is ceq. The nonlinear spectra is used to 
determine ceq.

A four-story system with an identical stiffness matrix as given in Example 8.1 is used to demon-
strate this procedure. The system has T1 = 1.5 (s), and the shape function p1 is identical to p1 used in 
Example 8.4. The system is subjected to a ground excitation with a level 0.4 (g) as well as I = R = 1. 
Four sublinear dampers are chosen for each story with α = β = 0.1 and Gm(.) = 1; and ξeq = 0.10. For 
convenience, it is assumed the modal participation factor Γ1 = 1.0 and all the safety factors SD(.) = 1.0.

If dmax1
 as well as xji, j = 1,…,4 can be found, then from Equation 8.66, this term can be calculated.

From Table 8.2a, it is seen that d1D = 15.67 (cm). Note that Aβ = 3.89. Using normal mode 
approach, from Equation 8.85,
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Note that for the nonlinear systems, the symbol ξeq is used instead of ξeff1 to denote the damping 
ratio in Equation 8.66 and

	

c 2     

A x
185.0 kN -s meq

eq m ax
T

m ax

1 j1
1

j 1

S
1 1

1
1

1

= = (
+

=
∑

πξ

ω β
β

d dK

α

β β ))

Practically speaking, it is very rare for the conditions in Equations 8.135 and 8.136 to be fully sat-
isfied, so that an MDOF system cannot be exactly decoupled. In these cases, continuing to use 
the method based on the nonlinear spectra still will introduce errors. This is especially true for 
structures with significantly higher modes. Thus, if the method based on nonlinear spectra is used, 
only one effective mode is often used.

If using methods based on linearization of the damping force to achieve effective damping 
ratios, such as Timoshenko or force-based effective damping, more modes are needed. However, 
the linearization approach also introduces errors as mentioned above.

In the authors’ experience, if a building is somewhat regular and the effective damping ratio is 
comparatively high, the method based on the nonlinear spectra provides better response estima-
tion. If the structure enters the inelastic range, a nonlinear spectra approach is also recommended. 
This is discussed in the next section.

If a building has a large mass, stiffness, and damping irregularities (e.g., weight, plan irregulari-
ties), the effective modal combination method is suggested.

The above statements are based on a limited number of numerical simulations and the accuracy 
of the response estimation is highly input sensitive. To be more confident of its use in damping 
design, additional intensive theoretical and experimental research is needed.

8.5  NONLINEAR RESPONSE SPECTRA APPROACH WITH BILINEAR DAMPERS

When a structure enters the inelastic range, the effective period becomes much longer, and a signifi-
cant amount of energy can be dissipated with virtually zero damping adaptability. If supplemental 
damping is used, it can absorb another large amount of energy, which helps protect the structure 
from further damage. In many cases, the entire system becomes overdamped. The basic idea of 
response estimation is still the production of the effective modal response and the shape function 
to distribute the response to each story. A highly ductile system can be treated as an MSSP model, 
because its fundamental effective mode is most dominant. This simplifies the design, if the funda-
mental shape function can be found. Since the system is highly nonlinear, care must be given to the 
use of spectra-based design approach, and to the response modification coefficient R that is greater 
than unity.

8.5.1  gEnEral dEscriPtion

8.5.1.1  Supplemental Damping and Inelastic Structures
In Chapter 6, it was mentioned briefly that when a structure enters the inelastic range, supplemental 
damping can absorb a great deal of energy. Depending on the degree of damping adaptability, as 
the value of fadp increases, the ratio of energy dissipated by supplemental damping and the energy 
dissipated by the base structure also increases.

As discussed in previous chapters, the energy dissipation capability of a system is directly related 
to its dynamic stiffness. The larger the dynamic stiffness is, the lower the seismic response that can 
be achieved. Therefore, using supplemental damping can also be beneficial for structures that can 
enter the inelastic range.
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A simpler approach is to let the response modification coefficient R >	1 reduce the level of load 
and then use the same procedure described in Sections 8.2 and 8.3. Due to space limitations, these 
design details are not repeated, but note that in this case, the period can be estimated by

	 T seff 1 T= ( )µ  (8.139)

where μ is the design ductility and T1 is the fundamental period when the structure remains 
elastic.

Since the damping adaptability is not zero, when the ductility is large, the damping force can be 
quite large. Thus, for structures designed with large ductility, sublinear damping with β >	0.3 is not 
recommended.

8.5.1.2  Displacement-Based Design
Until now, all the damping design procedures in Chapters 7 and 8 have been based on force. In 
Chapter 6, the idea of equal displacement and equal energy was introduced, which may lead to 
displacement- and energy-based design.

8.5.1.2.1 Indirect Displacement-Based Design
One of the displacement-based design procedures for aseismic structures is the indirect approach. 
The method using pushover curves, mentioned in Chapter 6, is an indirect displacement-based 
design (IDBD) approach. Indirect methods are based on monotonically increasing the static lat-
eral forces. The corresponding displacements are then accumulated until a predefined targeted 
level is achieved. In the procedure of increasing lateral forces, it is difficult to distinguish the 
conservative and damping forces. It is also difficult to distinguish the resistance contributed 
by stiffness and the desired damping. Therefore, this method, at least to date, is not popular in 
damping design.

8.5.1.2.2 Direct Displacement-Based Design
Direct displacement-based design (DDBD) uses a different approach (e.g., Kowalsky 1994; Priestley 
1996; Grant 2005). The DDBD uses an equivalent force–displacement linear SDOF system 
(Chapter 6), which is called the “substitute structure.” It is has been claimed that the DDBD can be 
used for supplemental damping design (Lin et al. 2003). The main approach of this method also 
consists of conceptual decision making, response estimation, and damper specification. The basic 
idea of response estimation is still based on calculation of a damping ratio. The response is a product 
of the effective modal response, in this case called the response of the substitute structure, and the 
deformation shape function.

In the following discussion, the response of the SDOF system is considered first. The correspond-
ing shape function to distribute the response to each story is determined next.

8.5.1.2.3 Response of Substitute Structure
8.5.1.2.3.1 Substitute Structure As shown in Figure 8.9, an MDOF structure with damping is 
replaced by an SDOF system with mass meq, damping ceq, and stiffness keq. Here, the equivalent 
mass is

	
m

m h

h
teq

i i
i=1

n

n
= ( )

∑
 (8.140)

where mi and hi are, respectively, the mass and the height of the ith floor, as defined in Figure 8.9.
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The stiffness of the substitute system is given in Equation 6.57 and repeated as follows:

	
k m 2

T
kN meq eq

eq

 2

=








 ( )π  (8.141)

Here, the term Teq is the equivalent period, which is found through linear displacement spectra. In 
the initial design, the equivalent period can be estimated by Equation 8.139.

8.5.1.2.3.2 Design Damping Ratio The substitute structure has equivalent damping ceq, which 
accounts for the capability of energy dissipation of the original linear structure, the supplemental 
dampers, and the yielding mechanism. That is, when the structure enters the inelastic range, the 
design damping ratio can be written as

	 ξ ξ ξ ξdesign 0 h a= + + 	 (8.142)

where ξ0, ξh, and ξa are the damping ratios contributed by the elastic base structure, the yielding 
structure, and the supplement dampers, respectively.

While ξ0 is assumed as a small value, say 2%–5%, ξa and ξh are calculated by a direct assign-
ment, namely, the targeted maximum displacement x0. Suppose the yielding displacements of each 
story in the structure are identical, denoted as dy, and the corresponding story yielding occurs simul-
taneously. The displacement ductility μ is defined in Equation 6.29.

The damping ratio ξh contributed by the inelastic deformation is given by the following empirical 
formula:

	

ξh b
eq

da 1 1 1 1
T c
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µ

 (8.143)

Here, the parameters a, b, c, and d can be found in Table 8.3 (Grant et al. 2005).
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FIGURE 8.9  Substitute system.
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The damping ratio ξa contributed by supplemental damping can be calculated through the con-
cept of effective damping, such as Timoshenko damping. For example, if bilinear damping is speci-
fied, Equation 8.4 can be used. If sublinear damping is considered, Equation 8.74 with i = 1 is used.

The shape function is needed in both Equations 8.4 and 8.74. Note that when a structure yields, its 
first effective mode is dominant. Therefore, the MSSP approach is used so that one shape function 
is needed. In the literature about DDBD, the shape function is suggested to be triangular. However, 
the triangularly shaped deformation is not always accurate because when dampers are installed in a 
structure, they are likely to alter the deformation shapes. Thus, using the shape function mentioned 
in Section 8.3 is recommended. In addition, an equivalent damping matrix Ceq

2( ) is defined as

	
C Ceq eq conc kN-s m2( ) = ( )β β

 (8.144)

where ceq is obtained though the sublinear damping design approach mentioned in Section 8.3. Note 
that to actually determine ceq, it is necessary to find out if the system is overdamped. As mentioned 
in Chapter 6, when a structure enters the inelastic range, it is quite easy to be overdamped. However, 
at this time, whether or not the first effective mode is an overdamped system needs to be known. 
Although precise judgment needs to be carried out through an iterative approach, the occurrence of 
overdamping can be roughly estimated by the value of the ductility. For example, if μ >	5, the first 
effective mode is likely to be overdamped. In this case, the value of ceq can continue to be increased 
until the resulting shape function of the fundamental mode becomes real. Otherwise, Equation 8.73 
can be used to obtain real-valued shaped functions.

8.5.1.2.3.3 Displacement Iteration Once the damping ratios are calculated, ξdesign and x0 will 
be obtained. Recall the displacement design spectrum, which is used to find the spectral displace-
ment d1D. Now this term is redenoted by symbol x0, if the set of parameters T and ξ are given. This 
procedure indicates that given any pair of parameters among the triple < T, ξ, X0 >, the third quan-
tity can be determined. In this case, ξdesign and x0 are known. Then, the period Teq can be figured 
out. For convenience, in the iterative approach, the initial guess of the equivalent period is denoted 
as Teq

( )1 . The next one obtained in the displacement spectrum is denoted as Teq
( )2 . Substituting Teq

( )2  into 
Equation 8.143 achieves a more accurate damping ratio, now denoted as ξh

( )2 ; and ξdesign
( )2  and x0 can 

be used to further define Teq
( )3 , if necessary. Once the period is determined, the equivalent stiffness 

keq is finally established.
Although designing structures with keq is beyond the scope of this book, in the above design 

procedure, the parameters of bilinear and/or sublinear dampers can be adjusted to enable more 
accurate structural design.

8.5.2  rEsPonsE EstiMation

8.5.2.1  Overview
A different approach to design inelastic structures is to use nonlinear spectra. Compared to DDBD, 
this method can be more accurate and simpler. However, methods to generate the nonlinear spectra 

TABLE 8.3
Parameters in Equation 8.143

Model a b c d

Bilinear (EPP) 0.222 0.397 0.287 1.295

Bilinear (general) 0.161 0.952 0.945 2.684
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need to be thoroughly investigated. This includes selection and scaling of the ground excitations, 
and the selection of peak responses. In this section, the 99 earthquake records used in previous dis-
cussion in this book are used again used to generate the nonlinear spectra to illustrate the concept 
of nonlinear spectra-based design for bilinear dampers.

When a structure yields, if it can be modeled as a bilinear system, then with bilinear supple-
mental damping, the total system is still bilinear. Detailed equations of the specific characteristic 
strength, the unloading and yielding stiffness, etc., are not given herein due to space limitations.

All spectra, including the nonlinear spectra, are obtained through SDOF systems. In Section 
8.4.2 on sublinear damping design, it was shown that this SDOF system can be obtained though 
modal decoupling under specific conditions. The same type of conditions can also be applied to 
bilinear systems. Following the same logic described by Equations 8.129 through 8.133, the virtual 
work done by the damping force Fδ and displacement pT is briefly considered, namely, the term pTFδ 
(see Equation 8.41). It is seen that when the conditions in Equations 8.135a and 8.135b hold,

	
p T

m d 1 yG q N
n sgn(y ) y d kNfδ δ= ≥( ) ( )2

1�  (8.145)

where y1 is the temporal variable of the fundamental effective modal displacement.
An SDOF bilinear system has now been achieved. With the more relaxed conditions,

	
� �x s y m s1 1≈ ( )  (8.146a)

	
� �x x m s j 2,...,nj j 1≥ ( ) =− ,  (8.146b)

results in
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and here the Heaviside function h(.) is defined in Example 8.8.
Again, the conditions described by Equation 8.146 are not always satisfied, and thus using this 

method may introduce errors. Similar to the case of sublinear damping design, the irregularity of 
a structure needs to be considered and a decision on whether or not the method based on nonlinear 
spectra can be used needs to be made.

In the following discussion, several tables are given to list the bilinear spectra generated by the 
99 records. From these tables, if the ground input level, the normalized characteristic strength, and 
the yielding ratio are known, the corresponding displacement, d1D, and the acceleration, Cs, can be 
determined. The participation factor (see Equation 8.44) Γd can be written as

	
Γd

T

T
J = p

p p
M
M

 (8.149)
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With the shape functions, the displacement and acceleration vectors are obtained, and the lateral 
force, base shear, etc. (see Equations 8.49 through 8.53), can be computed.

8.5.2.2  Response Estimation Based on Bilinear Spectra
The response estimation based on the bilinear spectra consists of first replacing the MDOF system 
with an SDOF system, which are both bilinear, to determine the required three basic parameters, 
such as yielding stiffness kD, characteristic strength qD, and yielding displacement dY. The effective 
modal participation factor, Γd, should also be calculated. The next task is to find the response d1D 
and Cs. In the third phase, the shape function is used to estimate the response of each story.

The steps for using nonlinear spectra to find d1D and Cs are as follows:
First, determine a specific group of earthquake records to generate the bilinear spectra.
Second, use the bilinear SDOF system that assumes small initial damping ratios and given period 

ranges to compute the responses of the displacements, the accelerations, and the damper forces. 
The statistical mean value plus one standard deviation is then calculated and listed in Tables 8.4 
through 8.9. For example, the responses are listed in Tables 8.4 through 8.9.

Third, use the method of interpolation to determine the corresponding displacement, accelera-
tion, and the damper force from the values given in these tables.

If the computation provides satisfactory responses, the corresponding damper design is work-
able. The next step is to realize these parameters in dampers, as discussed in Section 8.2.1. If the 
responses are still too large, a further round of trial-and-error must be carried out.

8.5.2.3  Bilinear Design Spectra
The tables are examined next. Using Table 8.4, the characteristic strength qD can be calculated 
as 0.03 mg, where m is the mass of the SDOF system. Note that in Table 8.4, for convenience, the 
characteristic strength is actually taken to be qD/m, denoted as qD with unit (g). And, from Tables 
8.4 through 8.9, qD can be taken to be 0.04 mg up to 0.4 mg. Similarly, qD, which are 0.04 (g) to 
0.4 (g), etc., are listed. In each group of tables, (A) lists the displacement with unit (cm) etc., (B) 
lists the acceleration with unit (g), and (C) lists the damper forces with unit (MN). In each table, the 
columns are arranged according to a different period. From a period of 0.4 ∼ 3 (s), a total of seven 
columns are listed. Additionally, in each table, the rows are arranged according to the unloading 
stiffness of the damper, which is achieved by listing the ratio of the unloading stiffness and the 
structural stiffness. For example, the number 0.4 means that kD = 0.4 (kN/m).

TABLE 8.4A
Displacement (cm) qD = 0.03 (g), Input = 0.4 (g)

T (s)
kD/k 0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 5.8848 11.7410 16.4819 22.9247 28.8176 35.0578 62.4114

0.50 5.8336 11.6386 16.3339 22.6634 28.2036 34.1123 59.7268

0.60 5.8040 11.5536 16.2249 22.4613 27.7814 33.4514 58.0277

0.70 5.7842 11.4844 16.1472 22.3079 27.4995 33.0146 56.7065

0.98 5.7534 11.3833 16.0237 22.0361 27.0710 32.3593 54.3306

2.00 5.7013 11.2988 15.8266 21.8415 26.4927 31.2979 51.3725

2.88 5.6871 11.2714 15.7778 21.7385 26.2156 31.0312 50.5114

3.92 5.6760 11.2599 15.7432 21.6823 26.0177 30.8374 49.8384

5.12 5.6685 11.2529 15.7279 21.6458 25.8786 30.7634 49.3354

8.00 5.6593 11.2408 15.715 21.5894 25.7499 30.6866 48.7470

12.5 5.6563 11.2354 15.7057 21.5523 25.6193 30.6249 48.4165
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8.5.2.3.1 Period
Using these tables, if a group of design parameters can directly match the parameters listed, the 
corresponding responses can be obtained. For example, if in a design for a structure with a period of 
T = 0.4 (s), the characteristic strength, qD, and the damping stiffness, kD, of the bilinear damper are, 
respectively, 0.01mg and 0.5k. Then the displacement can be found from Table 8.4A to be 7.8925 
(cm), the acceleration from Table 8.4B is 1.9971, which means 1.9971 (g) and the damper force is 
26.1415 (MN).

When the control parameters are not exactly listed in these tables, the interpolation method 
can be used. To determine the displacement for a period not listed in Tables 8.4A through 8.9A, 
Equation 8.150 can be used. That is,

	 d T   a T  b T  c T + dT
3

T
2

T T( ) = + + ( )cm  (8.150)

where d(T) is the displacement at the specific value of the period T. The coefficients aT, bT, cT, and 
dT are determined by the following least square method as

TABLE 8.4B
Acceleration (g) qD	= 0.03 (g), Input = 0.4 (g)

T(s)
kD/k 0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 1.5116 1.3438 1.0674 0.9536 0.5460 0.3834 0.3096

0.50 1.4988 1.3324 1.0581 0.9430 0.5350 0.3737 0.2975

0.60 1.4913 1.3228 1.0513 0.9348 0.5274 0.3670 0.2898

0.70 1.4863 1.3151 1.0464 0.9287 0.5224 0.3625 0.2839

0.98 1.4786 1.3038 1.0386 0.9177 0.5147 0.3560 0.2733

2.00 1.4655 1.2943 1.0262 0.9099 0.5043 0.3452 0.2599

2.88 1.4619 1.2913 1.0231 0.9057 0.4994 0.3425 0.2561

3.92 1.4591 1.2900 1.0209 0.9035 0.4958 0.3406 0.2531

5.12 1.4572 1.2892 1.0200 0.9020 0.4933 0.3398 0.2508

8.00 1.4549 1.2878 1.0192 0.8997 0.4910 0.3390 0.2482

12.5 1.4541 1.2872 1.0186 0.8982 0.4887 0.3384 0.2467

TABLE 8.4C
Normalized force (MN) qD = 0.03 (g), Input = 0.4 (g)

T(s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 20.3911 17.3191 13.6555 11.3139 6.8752 4.8926 3.5619

0.50 20.1781 17.1449 13.4651 11.1606 6.6801 4.7315 3.4041

0.60 20.0519 17.0217 13.3400 11.0119 6.5375 4.6159 3.3020

0.70 19.9723 16.8994 13.2458 10.8917 6.4408 4.5486 3.2208

0.98 19.8314 16.6938 13.1001 10.6973 6.2887 4.4037 3.0719

2.00 19.6330 16.4536 12.8546 10.4951 6.0748 4.1688 2.8780

2.88 19.5765 16.3902 12.8038 10.4089 6.0059 4.1058 2.8240

3.92 19.5319 16.3565 12.7639 10.3573 5.9491 4.0622 2.7788

5.12 19.5012 16.3322 12.7395 10.3195 5.9093 4.0422 2.7432

8.00 19.4691 16.2896 12.7146 10.2645 5.8742 4.0175 2.6965

12.5 19.4548 16.2640 12.6914 10.2225 5.8426 4.0002 2.6689
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where

	 T , T , T , T , T , T ,T   0.4, 0.6, 0.8, 1.0, 1.5, 21 2 3 4 5 6 7  = ..0, 3.0  ( )s

and d(.) are the corresponding displacements listed in the specific tables at the specific period T(.). For 
example, if under the condition qD = 0.01 mg and kD = 0.4 k,

	d , d , d , d , d , d ,d   7.9024, 15.6856, 21.9754, 281 2 3 4 5 6 7[ ] = ..2762, 36.3029, 41.6237, 73.7052[ ] ( )cm

TABLE 8.5A
Displacement (cm) qD	=	0.05 (g), Input	=	0.4 (g)

T(s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 4.9945 10.2026 14.5974 20.2292 27.3763 34.3455 61.1032

0.50 4.8948 10.0002 14.1762 19.6955 26.4092 32.6520 56.8997

0.60 4.8395  9.8465 13.9019 19.3221 25.7328 31.4758 53.7137

0.70 4.7998  9.7177 13.7277 19.0680 25.2157 30.6070 51.1950

0.98 4.7239  9.5514 13.4095 18.6024 24.2381 29.0557 47.0976

2.00 4.5998  9.3784 12.9588 18.0145 22.7472 26.9840 41.6483

2.88 4.5588  9.3119 12.8123 17.7942 22.2470 26.3575 39.9497

3.92 4.5387  9.2789 12.7271 17.6913 21.8361 25.9268 38.8616

5.12 4.5231  9.2423 12.6583 17.5898 21.5496 25.6995 38.0041

8.00 4.5117  9.1941 12.5658 17.4992 21.2358 25.4410 37.0315

12.5 4.5057  9.1564 12.5087 17.4681 21.0106 25.1607 36.5365

TABLE 8.5B
Acceleration (g) qD = 0.05 (g), Input = 0.4 (g)

T(s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 1.3075 1.1917 0.9690 0.8652 0.5406 0.3976 0.3244

0.50 1.2824 1.1690 0.9423 0.8435 0.5231 0.3801 0.3058

0.60 1.2685 1.1518 0.9250 0.8284 0.5110 0.3679 0.2915

0.70 1.2585 1.1374 0.9141 0.8182 0.5018 0.3587 0.2800

0.98 1.2394 1.1188 0.8940 0.7994 0.4840 0.3430 0.2614

2.00 1.2081 1.0994 0.8657 0.7757 0.4573 0.3218 0.2365

2.88 1.1978 1.0920 0.8565 0.7668 0.4483 0.3154 0.2288

3.92 1.1927 1.0883 0.8511 0.7627 0.4410 0.3111 0.2240

5.12 1.1888 1.0842 0.8468 0.7586 0.4358 0.3088 0.2201

8.00 1.1859 1.0788 0.8409 0.7549 0.4302 0.3062 0.2158

12.5 1.1844 1.0746 0.8373 0.7537 0.4262 0.3034 0.2135
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Then under this condition, as an example, according to Equation 8.60, the following can be obtained:

	 a , b , c , d   39.5763 76.7307 17.4354T T T T[ ] = − −[ ]8.0401,   , ,

Therefore, the following equation can be used to determine the displacement with the period not 
listed in the table:

	 d T   8.0401 T 39.5763 T + 76.7307 T 17.4354 cm3 2( ) = − − ( )

For example, if T = 1.25 (s), d(1.25) can be computed to be 32.34 (cm). Note that this value is very 
close to the result obtained from linear interpolation:

	 28.2762  36.3029 32.29 cm+( ) = ( )2

Thus, linear interpolation can also be used for simplicity.

TABLE 8.5C
Normalized force (MN) qD = 0.05 (g), Input = 0.4 (g)

T (s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 18.0535 15.8532 12.7899 10.9206 7.1692 5.2767 3.9114

0.50 17.6387 15.4577 12.3753 10.6136 6.8944 5.0714 3.7280

0.60 17.4357 15.1698 12.1000 10.3559 6.6840 4.9216 3.5786

0.70 17.2959 14.9387 11.9049 10.1565 6.5068 4.8046 3.4342

0.98 16.9770 14.5500 11.5646  9.8048 6.2202 4.5359 3.2266

2.00 16.5399 14.1352 11.0887  9.3264 5.7730 4.1400 2.9817

2.88 16.4181 14.0045 10.9377  9.1470 5.6447 4.0137 2.8710

3.92 16.3340 13.9350 10.8406  9.0495 5.5290 3.9273 2.8024

5.12 16.2712 13.8557 10.7850  8.9656 5.4443 3.8878 2.7422

8.00 16.2314 13.7491 10.6967  8.8725 5.3420 3.8394 2.6591

12.5 16.2191 13.6729 10.6243  8.8223 5.2794 3.7800 2.6203

TABLE 8.6A
Displacement (cm) qD	 =	0.1 (g), Input	=	0.4 (g)

T(s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 4.1987 9.1297 12.7663 18.5619 28.2884 38.5718 68.6337

0.50 3.9799 8.6406 11.8782 17.3423 26.3839 35.4735 60.2889

0.60 3.8168 8.2667 11.3611 16.3433 24.6886 32.8917 54.4997

0.70 3.7224 8.0018 10.9495 15.6371 23.4167 30.8668 50.4883

0.98 3.5372 7.5996 10.2209 14.2105 21.3388 27.4345 44.1303

2.00 3.2691 6.9401  9.1019 12.3839 18.2601 22.9228 32.8726

2.88 3.1846 6.7422  8.7450 11.8841 17.2873 21.4385 30.1138

3.92 3.1450 6.5817  8.5096 11.6447 16.5663 20.2701 27.5374

5.12 3.1310 6.4808  8.3087 11.4985 15.9838 19.4066 26.2544

8.00 3.0985 6.3511  8.1418 11.2475 15.2179 18.4886 25.0700

12.5 3.0933 6.2536  7.9991 11.0930 14.6404 17.7083 23.6746
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To determine the acceleration for a period not listed in Tables 8.4B through 9.8B, Equation 8.152 
can be used. That is,

	 a T   a T  b T  c T  d T e gT
4

T
3

T
2

T T( ) = + + + + ( )  (8.152)

where a(T) is the acceleration at the specific value of the period T. The coefficients aT, bT, cT, dT, and 
eT are determined by the following least square method as
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TABLE 8.6B
Acceleration (g) qD	 =	0.1 (g), Input	=	0.4 (g)

T (s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 1.1571 1.1219 0.9058 0.8503 0.6112 0.4939 0.4035

0.50 1.1020 1.0672 0.8486 0.7999 0.5762 0.4634 0.3677

0.60 1.0610 1.0250 0.8157 0.7593 0.5453 0.4368 0.3448

0.70 1.0372 0.9954 0.7895 0.7305 0.5223 0.4159 0.3284

0.98 0.9906 0.9504 0.7433 0.6731 0.4837 0.3798 0.3019

2.00 0.9231 0.8766 0.6729 0.5989 0.4278 0.3321 0.2499

2.88 0.9018 0.8545 0.6504 0.5787 0.4096 0.3163 0.2365

3.92 0.8918 0.8365 0.6356 0.5691 0.3967 0.3045 0.2245

5.12 0.8883 0.8252 0.6230 0.5632 0.3862 0.2955 0.2179

8.00 0.8801 0.8107 0.6125 0.5531 0.3725 0.2862 0.2129

12.5 0.8788 0.7998 0.6035 0.5469 0.3621 0.2783 0.2060

TABLE 8.6C
Normalized force (MN) qD	 =	0.1 (g), Input	=	0.4 (g)

T (s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 17.0783 15.9117 12.9075 11.8822 8.5267 6.5506 4.8196

0.50 16.1968 14.9694 12.1092 11.1972 8.1426 6.2960 4.5138

0.60 15.5907 14.2525 11.6031 10.5998 7.7305 6.0426 4.3485

0.70 15.1722 13.7668 11.2441 10.1830 7.4461 5.8620 4.1993

0.98 14.4139 12.9348 10.5118  9.3152 6.8318 5.4341 4.0078

2.00 13.3597 11.8039  9.4287  8.2342 6.0222 4.8223 3.6438

2.88 13.0188 11.4985  9.0335  7.8395 5.7934 4.5821 3.5657

3.92 12.7893 11.2276  8.8066  7.6523 5.5561 4.3978 3.4082

5.12 12.6836 11.0530  8.6086  7.5009 5.4128 4.3001 3.3390

8.00 12.5568 10.8389  8.4196  7.2878 5.1977 4.1253 3.2168

12.5 12.5042 10.6232  8.2631  7.1414 5.0305 4.0157 3.1441
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Here, T(.) is defined in Equation 8.152:

	 T , T , T , T , T , T ,T   0.4, 0.6, 0.8, 1.0, 1.5, 21 2 3 4 5 6 7  = ..0, 3.0  ( )s

and a(.) are the corresponding accelerations listed in the specific table at the specific period (.). For 
example, if under the condition q 0.01(g)D =  and k 4 kD = 0. ,

	 a , a , a , a , a , a , a   1.9996, 1.7652, 1.3932, 1.11 2 3 4 5 6 7[ ] = 4491, 0.6600, 0.4292, 0.3399[ ]

then the following can be calculated:

	 a , b , c , d , e   0.1206, 0.7204, .9949, .9698, T T T T T[ ] = − − −0 0 22.5195[ ]

Therefore, the following equation can be used to determine the acceleration for a period that is not 
listed in the table:

TABLE 8.7A
Displacement (cm) qD	 =	0.2 (g), input	=	0.4 (g)

T (s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 4.2586 9.4290 13.8618 20.4512 34.4728 47.4664 80.6420

0.50 3.7769 8.3606 12.4086 18.1947 31.4078 43.7763 71.6059

0.60 3.5606 7.6282 11.1748 16.0857 28.6111 40.1462 64.2992

0.70 3.2996 7.0104 10.3709 14.6659 26.2925 37.2988 61.0113

0.98 2.8427 5.9819  8.8084 12.5516 22.5591 31.3549 52.2255

2.00 2.1524 4.3445  6.6792  9.2502 16.3105 22.1821 36.7146

2.88 1.9289 3.9064  5.8659  8.1236 13.7997 18.8831 30.6252

3.92 1.7973 3.5629  5.2851  7.3202 11.8692 16.6110 26.1828

5.12 1.6910 3.2494  4.9664  6.7106 10.8639 14.9997 23.7877

8.00 1.5752 2.8857  4.5724  5.8196  9.3133 12.8058 19.0533

12.5 1.5219 2.6672  4.0722  5.3585  8.2674 10.8742 16.3006

TABLE 8.7B
Acceleration (g) qD	=	0.2 (g), Input	=	0.4 (g)

T (s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 1.2724 1.2596 1.0856 1.0341 0.8190 0.6529 0.4986

0.50 1.1509 1.1393 0.9920 0.9440 0.7709 0.6319 0.4724

0.60 1.0965 1.0554 0.9120 0.8582 0.7242 0.6077 0.4482

0.70 1.0308 0.9847 0.8598 0.7996 0.6826 0.5838 0.4431

0.98 0.9157 0.8702 0.7562 0.7121 0.6147 0.5298 0.4260

2.00 0.7419 0.6861 0.6204 0.5727 0.4990 0.4353 0.3782

2.88 0.6856 0.6371 0.5692 0.5275 0.4491 0.3983 0.3507

3.92 0.6525 0.5987 0.5327 0.4949 0.4164 0.3750 0.3304

5.12 0.6258 0.5636 0.5126 0.4703 0.3956 0.3536 0.3157

8.00 0.5966 0.5229 0.4878 0.4344 0.3667 0.3304 0.2950

12.5 0.5832 0.4985 0.4563 0.4159 0.3480 0.3097 0.2763
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	 a T   0.1206 T  0.7204 T 0.9949 T 0.9698 T  2.5195 g4 3 2( ) = − + − − + ( )

For example, if T = 1.25 (s), a(1.25) can be computed to be 0.87 (g). Note that this value is very close 
to the result obtained from the linear interpolation:

	 1.1491 + 0.6600 2  0.9045 g( ) = ( )

Thus, for simplicity, linear interpolation can also be used to obtain rough estimates.
In the design of the damper force, since a sufficient safety factor must be used to guarantee the 

working condition of a bilinear damper, the linear interpolation method can be used.

8.5.2.3.2 Characteristic Strength qD 

To determine the displacement for a characteristic strength not listed in Tables 8.4A through 8.9A, 
Equation 8.154 can be used, that is,

TABLE 8.7C
Normalized force (MN) qD	= 0.2 (g), Input	=	0.4 (g)

T(s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 20.3282 19.1746 16.0540 14.6693 10.9338 8.0348 5.5316

0.50 18.6638 17.3429 15.0257 13.8005 10.6657 8.0753 5.3758

0.60 17.6047 16.2153 14.0559 12.8560 10.1597 8.0032 5.2451

0.70 16.5160 15.3043 13.3502 12.1294  9.7343 7.8691 5.2384

0.98 14.5253 13.3958 11.9035 11.0018  8.9159 7.4724 5.3098

2.00 11.7124 10.9310  9.9302  9.1089  7.7807 6.7585 5.3217

2.88 10.7921 10.2023  9.0708  8.4159  7.2220 6.3322 5.2676

3.92 10.4257  9.5934  8.5316  7.8989  6.7382 6.0017 5.1148

5.12 10.0248  9.0780  8.2594  7.5230  6.5574 5.9255 5.1504

8.00  9.5139  8.3355  7.7451  7.0489  6.1537 5.6002 4.9154

12.5  9.2194  7.9769  7.2508  6.6864  5.8142 5.3644 4.8554

TABLE 8.8A
Displacement (cm) qD	 =	0.2 (g), Input	=	0.4 (g)

T(s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 4.8302 10.5588 15.9089 23.0275 39.6296 52.6675 84.3503

0.50 4.1464  8.8663 14.2601 20.8185 36.5847 50.4254 75.4187

0.60 3.8022  7.9141 12.5394 18.4238 33.1689 46.3210 67.6530

0.70 3.4629  7.1070 11.5038 16.5569 30.0974 42.5714 65.4271

0.98 2.7336  5.7327  9.3418 13.6825 25.3216 36.3202 58.7662

2.00 1.7734  3.7836  6.2423  8.8246 16.7531 24.7004 41.5828

2.88 1.4027  3.1480  5.0424  7.4112 13.1278 20.1380 34.6287

3.92 1.1778  2.5818  4.2437  6.2210 10.7895 16.7074 28.9539

5.12 1.0116  2.2356  3.7372  5.3086  9.7029 14.4339 24.5457

8.00 0.8072  1.7467  2.9622  4.2221  7.7366 11.0264 19.0756

12.5 0.6685  1.4250  2.3727  3.4927  6.1621 8.9224 14.7352
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	 d a  b  c  d eq q q q qq q q q q cmD D D D D( ) = + + + + ( )− − −3 2 1  (8.154)

where d qD( ) is the displacement at a specific value of the characteristic strength qD . The coefficients 
aq, bq, cq, dq, eq are determined by the following least square method as
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 (8.155)

Here, qD(.)  is defined in Equation 8.154, for example,

TABLE 8.8B
Acceleration (g) qD	 =	0.3 (g), input	=	0.4 (g)

T(s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 1.5225 1.4963 1.3170 1.2329 0.9706 0.7364 0.5284

0.50 1.3452 1.3076 1.2200 1.1537 0.9419 0.7476 0.5060

0.60 1.2575 1.1968 1.1114 1.0624 0.8918 0.7306 0.4832

0.70 1.1720 1.1008 1.0449 0.9887 0.8429 0.7040 0.4921

0.98 0.9883 0.9492 0.9011 0.8696 0.7685 0.6726 0.5030

2.00 0.7465 0.7234 0.6931 0.6610 0.6204 0.5714 0.4934

2.88 0.6532 0.6523 0.6200 0.6017 0.5476 0.5234 0.4771

3.92 0.5965 0.5889 0.5671 0.5507 0.5086 0.4921 0.4592

5.12 0.5547 0.5502 0.5352 0.5154 0.4825 0.4586 0.4353

8.00 0.5032 0.4955 0.4865 0.4701 0.4385 0.4225 0.4093

12.5 0.4683 0.4595 0.4493 0.4407 0.4111 0.3952 0.3812

TABLE 8.8C
Normalized force (MN) qD	=	0.3 (g), Input	=	0.4 (g)

T(s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 24.3322 22.7880 18.8792 16.8065 12.2353 8.5982 5.6891

0.50 22.3537 20.5157 18.1786 16.2546 12.3064 8.9890 5.5729

0.60 21.0621 19.2141 17.0044 15.4689 11.8867 9.0747 5.4629

0.70 19.7303 18.0751 16.1756 14.7115 11.4621 8.9875 5.5732

0.98 16.6976 15.5941 14.4004 13.4530 10.7980 9.0192 5.9356

2.00 12.7897 12.3524 11.8211 10.9862  9.7444 8.5551 6.5764

2.88 11.3905 11.2572 10.5612 10.2683  9.0722 8.1453 6.8010

3.92 10.4687 10.3317  9.8915  9.5247  8.4909 7.7977 6.8155

5.12  9.7806  9.6332  9.3791  8.9432  8.2828 7.7864 6.8409

8.00  8.9099  8.8086  8.6307  8.3562  7.8705 7.3403 6.6696

12.5  8.4144  8.2089  8.0414  7.8570  7.3890 7.0997 6.6762
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q q q q q q q q q qD1, D2, D2, D3, D4, D5, D6, D7, D8, D9[ ]
= 0.01, 0..03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6[ ] ( )g  

and d(.) are corresponding displacements listed in the specific tables at the specific characteristic 
strength qD(.). For example, if under the condition T = 0.4 (s) and k 0.4 kD = , then d1 = 7.9024 (cm), 
d2 = 5.8848 (cm), and so on.

Under this condition, for example, the following equation can be used to determine the displace-
ment for a characteristic strength not listed in the table as

	 d   a  b  c   d   eT T T T Tq q q q q cmD D D D D( ) = + + + + ( )− − −3 2 1  (8.156)

For example, if q  D = 0.015 (g), then d(0.015) can be computed to be 7.260 (cm). Note that this 
calculated value 6.8935 (cm) is also close to the result of the linear interpolation. Thus, for rough 
estimation, linear interpolation can also be used for the sake of simplicity.

TABLE 8.9A
Displacement (cm) qD = 0.4 (g), Input = 0.4 (g)

T(s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 5.4756 11.8611 17.8607 25.5747 41.8835 55.8070 84.3502

0.50 4.6668  9.7775 16.1698 23.4702 39.7146 53.9463 75.5723

0.60 4.2374  8.7505 14.1549 20.9629 36.7739 49.2080 67.8694

0.70 3.7621  7.8095 12.8276 18.7596 33.1123 46.1179 67.3518

0.98 2.8734  6.1984 10.3165 15.1668 28.2927 40.1913 64.0741

2.00 1.7424  3.7279  6.3723  9.2669 18.1414 27.3652 46.0316

2.88 1.3090  3.0604  4.9817  7.4855 13.9643 21.7038 37.7465

3.92 1.0629  2.3772  3.9652  5.9427 11.2308 17.8822 31.1057

5.12 0.8794  2.0191  3.4026  5.0112  9.7156 14.9490 27.2378

8.00 0.6662  1.4155  2.4763  3.7051  7.2597 11.1080 20.2075

12.5 0.4714  1.0452  1.8792  2.7242  5.4946 8.4424 15.2690

TABLE 8.9B
Acceleration (g) qD = 0.4 (g), input = 0.4 (g)

T(s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 1.7899 1.7425 1.5224 1.4051 1.0424 0.7845 0.5286

0.50 1.5856 1.5206 1.4398 1.3522 1.0473 0.8091 0.5074

0.60 1.4740 1.4023 1.3177 1.2640 1.0198 0.7888 0.4861

0.70 1.3513 1.2929 1.2367 1.1815 0.9615 0.7760 0.5108

0.98 1.1242 1.1171 1.0769 1.0364 0.9068 0.7753 0.5586

2.00 0.8387 0.8172 0.8044 0.7927 0.7558 0.6991 0.5790

2.88 0.7296 0.7425 0.7243 0.7122 0.6784 0.6497 0.5831

3.92 0.6676 0.6660 0.6496 0.6432 0.6318 0.6182 0.5710

5.12 0.6214 0.6259 0.6142 0.6104 0.5971 0.5795 0.5590

8.00 0.5677 0.5584 0.5559 0.5493 0.5337 0.5383 0.5261

12.5 0.5187 0.5170 0.5183 0.5097 0.5065 0.5032 0.4987
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To determine the acceleration for a characteristic strength not listed in Tables 8.4B through 8.9B, 
Equation 8.157 can be used. That is,

	 a   a  b c d   eq q q q qq q q q qD D D D D( ) = + + + +− − −3 2 1  (8.157)

where a qD( ) is the acceleration at the specific value of the characteristic strength qD. The coeffi-
cients aq, bq, c q, dq, and eq are determined by the following least square method as
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 (8.158)

Here, qD(.) is defined in Equation 8.157 and a(.) are the corresponding accelerations listed in the 
specific tables at the specific characteristic strength qD(.). For example, if under the condition 
T = 0.4 (s) and kd = 0.4 k, a1 = 1.9996 (g), a2 = 1.51116 (g), then under this condition, for example, 
according to Equation 8.67, the following equation can be used to determine the acceleration with 
a characteristic strength not listed in the table:

	 a 0.413  10 2.8830  10   0.03437  + 2.7 4q q q qD D D D( ) = × − × +− − − − −3 2 1 77603 0.5767q gD + ( )

For example, if q 15D = 0 0. , a(0.015) can be computed to be 1.8773 (g). Note that this value is 
somewhat close to the result of the linear interpolation 1.7556 (g).

8.5.2.3.3 Damper Stiffness kD

To determine the displacement for a coefficient of damper stiffness, kD/k, not listed in Tables 8.4A 
through 8.9A, Equation 8.159 can be used. That is,

	 d ( )  a b c + d + ed K K K K D Kκ κ κ κ κ= + + ( )− − −
D D D cm3 2 1  (8.159)

TABLE 8.9C
Normalized force (MN) qD = 0.4 (g), Input = 0.4 (g)

T(s)
kD/k

0.4 0.6 0.8 1.0 1.5 2.0 3.0

0.40 27.4833 25.7009 20.9474 18.3748 12.7291  8.8560 5.6897

0.50 25.7338 23.4725 20.6831 18.2995 13.1518  9.3811 5.5800

0.60 24.8310 22.1334 19.5119 17.7352 13.0046  9.4969 5.4777

0.70 23.0659 20.8959 18.6165 16.9926 12.5210  9.5287 5.6715

0.98 19.6642 18.3068 16.7967 15.5888 12.2098  9.9617 6.3009

2.00 14.8820 14.4857 14.0817 13.0850 11.5267 10.0464 7.3784

2.88 13.1875 13.2527 12.5746 12.3722 10.9654  9.7506 7.9511

3.92 12.1205 12.0552 11.7341 11.4815 10.4179  9.5071 8.1586

5.12 11.3252 11.3257 11.1840 10.8363 10.1262  9.5881 8.4204

8.00 10.3478 10.3361 10.2600 10.1252  9.7715  9.1768 8.2161

12.5  9.5916  9.6291  9.6679  9.5294  9.2199  8.9054 8.4515
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where d(κD) is the displacement at the specific value of the coefficient κD, with κD used to denote 
the ratio kD/k. That is,

	 κD Dk k=  (8.160)

The coefficients aK, bK, cK, dK, and eK are determined by the following least square method as
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 (8.161)

Here, κD(.) is defined in Equation 8.159:

	

κ κ κ κ κ κ ,κ κ κ κ κD1 D2 D3 D4 D5 D6 D7 D8 D9 D1 D11, , , , , , , , ,0[ ]
= 0.4, 0.5 0..6 0.7, 0.98, 2.0, 2.88, 3.92, 5.12, 8.0, 12.5[ ]  (8.162)

and d(.) are the corresponding displacements listed in the specific tables at the stiffness coef-
ficient κD(.). For example, if under the condition T = 0.4 (s) and qD = 0.01 mg = 0.01 (kN), then 
d1 = 7.9024 (cm), d2 = 7.8925 (cm).

Under this condition, for example, according to Equation 8.161, the following equation can be 
used to determine the displacement for a characteristic strength not listed in the table:

	 d  0.0642  10 + 0.0224  10 + 0.0292 0.03D
2 2κ κ κ κ( ) = − × × −− − − − −

D D D
3 2 1 004  10 7.838 cm2

D× + ( )− κ

For example, if κD = 0.45, d(0.45) can be computed to be 7.9 (cm). Note that this calculated value 
is very close to the result 7.9 (cm) from linear interpolation. Thus, linear interpolation can also be 
used for simplicity.

To determine the acceleration with a damper stiffness kD not listed in Tables 8.4B through 8.9B, 
Equation 8.163 can be used. That is,

	 a   a  b c d eD K K K K D Kκ κ κ κ κ( ) = + + + + ( )− − −
D D D g3 2 1  (8.163)

where a(κD) is the acceleration at the specific value of κD. The coefficients aK, bK, cK, dK, and eK are 
determined by the following least square method as
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where, κD(.) is defined in Equation 8.163 and a(.) are the corresponding accelerations listed in the spe-
cific tables at the specific value of κD(.). For example, if under the condition T = 0.4 (s) and kD = 0.4 k, 
then a1 = 1.9996 (g), a2 = 1.5116 (g).
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Under this condition, for example, the following equation can be used to determine the accelera-
tion for a value of κD not listed in the table as

	 a 0.0162 10 0.056 10 0.7357 10 0.0D
2 2 2κ κ κ κ( ) = − × + × + × −− − − − − −

D D D
3 2 1 0077 10 1.98352

D× + ( )− κ g

For example, if κD = 0.45, a(0.015) can be computed to be 1.9983 (g). Note that this value is very 
close to the result obtained by linear interpolation, 1.9984 (g).

8.5.2.3.5 Input Level
In the above discussion, using Tables 8.4 through 8.9, the input level is 0.4 (g). When the input level 
is not 0.4 (g), additional computations must be performed.

If the input level does not exactly equal 0.4, 0.6, 0.8, or 1.0 (g), then an interpolation method 
must be used again. In this case, both displacement and acceleration can share the same form as 
described in Equation 8.165, that is,

	 x I   a I b I  cI
2

I I( ) = + +  (8.165)

where x(I) can be either the displacement or the acceleration at the specific input level Ig. The coef-
ficients aI, bI, and cI can be calculated through the following equation:
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Here, x(.) is the displacement or acceleration at input level (.). For example, when qD = 0.01 mg, 
T = 0.4 (s), and kD = 0.4 k at levels of 0.4, 0.6, 0.8, and 1.0 (g), the displacements are 7.90, 12.73, 
17.66, and 22.72 (cm), respectively. From these data, a rather good linearity is observed between 
the input levels and displacements. However, the reason the quadratic interpolation described in 
Equation 8.95 is used instead of linear interpolation is because when the period becomes longer, 
the relationship between the input and the response will become nonlinear. In order to unify the 
interpolation, Equation 8.165 is used.

With these data and by using Equation 8.166, the result for displacement can be

	 d I   1.4183 I 22.7047 I 1.40492( ) = + − ( )cm

Another example is found when qD = 0.01 mg, T = 0.4 (s), and kD = 0.4 (kN) at levels of 0.4, 0.6, 0.8, 
and 1.0 (g), the accelerations are 2.00, 3.22, 4.46, and 5.73 (g), respectively. By the same token, the 
results for acceleration can be

	 a I   0.3571 I 5.7165 I 0.34372( ) = + − ( )g

8.5.2.3.6 Higher-Dimensional Search
All the above-mentioned interpolations are focused on one variable. For example, when the period 
T is considered, other possible variables, such as the characteristic strength qD, the damper stiffness 
kD, as well as the input level I, are assumed to have the values listed in the corresponding tables. In 
this case, finding the response at a specific value of the variable is regarded as a one-dimensional 
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search. However, in many cases, there can be more than one variable, which is not listed in the 
tables. For example, suppose not only the period T, but also the characteristic strength qD, the 
damper stiffness kD, and the input level I are not listed. In this case, a higher-dimensional or multi-
dimensional search must be carried out.

From the discussion on one-dimensional searches, it is seen that over a relatively small range, 
linear interpolation can be used to calculate the response with acceptable accuracy. Therefore, for 
simplicity, linear interpolation can be used for multidimensional searches.

For example, suppose the parameter κD is taken between κDi and κDi+1, T is taken between Tj and 
Tj+1, and qD is taken between qDkand qDk 1+ . Note that κDi and κDi+1, Tj and Tj+1, and also qDk	and qDk 1+  
are listed in the table with fixed input I, i.e., I = 0.4 (g). Thus, the corresponding displacements dijk, 
di+1,j,k di,j+1,k, di,j+1,k, di+1, j+1, k di, j+1, k+1, and di+1, j+1, k+1 can be found in the tables. Here, subscripts i, j, 
and k are used and correspond to κdi, Tj, qDk. In this case,

	
d , T,Dκ q D D

q q
q q D cmDk

2 1

Dk 1 Dk
D Dk 1( ) = −

−
−( ) + ( )

+
 (8.167)

where

	
D d d

T T
T T d cm1

2 1

j 1 j
j 1= −

−
−( ) + ( )

+
 (8.168)

	
D d d

T T
T T d cm2

4 3

j 1 j
j 3= −

−
−( ) + ( )

+
 (8.169)

In Equations 8.168 and 8.169,

	
d d d d cm1

i 1,j,k i,j,k

Di 1 Di
D Di i,j,k= −

−
−( ) + ( )+

+κ κ
κ κ  (8.170a)

	
d d d d cm2

i 1,j 1,k i,j 1,k

Di 1 Di
D Di i,j 1,k= −

−
−( ) + ( )+ + +

+
+κ κ

κ κ  (8.170b)

	
d d d d cm3

i 1,j 1,k i,j 1,k

Di 1 Di
D Di i,j 1,k= −

−
−( ) + ( )+ + +

+
+κ κ

κ κ  (8.170c)

	
d d d d cm4

i 1,j 1,k i,j 1,k

Di 1 Di
D Di i,j 1,k= −

−
−( ) + ( )+ + +

+
+κ κ

κ κ  (8.170d)

Similarly, to find the acceleration a , T,Dκ q gD( )( ) ,

	
a , T, q A A

q q
q q A gD D

2 1

Dk 1 Dk
D Dk 1κ( ) = −

−
−( ) + ( )

+
 (8.171)

where

	
A a a

T T
T T a g1

2 1

j 1 j
j 1= −

−
−( ) + ( )

+
 (8.172a)
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A a a

T T
T T a g2

4 3

j 1 j
j 3= −

−
−( ) + ( )

+
 (8.172b)

and, in Equations 8.172,

	
a a a a g1

i 1,j,k i,j,k

Di 1 Di
D Di i,j,k= −

−
−( ) + ( )+

+κ κ
κ κ  (8.173a)

	
a a a a g2

i 1,j 1,k i,j 1,k

Di 1 Di
D Di i,j 1,k= −

−
−( ) + ( )+ + +

+
+κ κ

κ κ  (8.173b)

	
a a a a g3

i 1,j 1,k i,j 1,k

Di 1 Di
D Di i,j 1,k= −

−
−( ) + ( )+ + +

+
+κ κ

κ κ  (8.173c)

	
a a a a g4

i 1,j 1,k i,j 1,k

Di 1 Di
D Di i,j 1,k= −

−
−( ) + ( )+ + +

+
+κ κ

κ κ  (8.173d)

Here, aijk, ai+1,j,k ai,j+1,k, ai,j+1,k, ai+1,j+1,k ai,j+1,k+1, and ai+1,j+1,k+1 are accelerations according to κDi, Tj, 
and qDk. These values are found in the corresponding tables.

8.5.3  dEsign issuEs

When a structure deforms into the inelastic range, its dynamic stiffness for acceleration reduction 
becomes much larger. From the viewpoint of dynamics, the fundamental effective period of the sys-
tem becomes drastically elongated, so that the seismic load is reduced. However, on the other hand, 
its dynamic stiffness for displacement decreases and a very large displacement can be observed.

For highly nonlinear systems, the experience gained from a static point of view is important 
but with limitations. Drifting of the equilibrium points may significantly enlarge the displacement. 
There are other problems associated with dynamic excitations, such as resonance, cross effects, 
three-dimensional stress, possible continuation of stiffness reduction, etc.

Using supplemental damping is an effective way to regulate the large structural displacement 
for inelastic structures. When a structure yields, its fundamental effective mode is dominant. In this 
case, the single period vibration becomes easier to realize. This is the main reason why the MSSP 
model and the DDBD method can be used to find the “substitute” SDOF responses first and then the 
shape function can be used to estimate the seismic responses in each story, to simplify the design 
procedure. However, a method to determine if the system becomes overdamped is also needed.

Example 8.6

The four-story structure shown in Figure 8.1 is used to illustrate how the response spectra can be 
used to estimate the responses. Suppose a structure yields when it is subjected to strong earth-
quake load. With bilinear dampers installed in the lower two stories, the entire system behaves 
like a bilinear structure. The modeling of this system can be described by Equation 8.40. However, 
in this case, the stiffness K and Kδ should be the yielding stiffness of the base structure and the 
damper system.

Suppose the yielding stiffness, unloading stiffness, and characteristic strength of the damper 
are, respectively, kd = 1.317 (MN/m), ku = 3.776 (MN/m), and qd = 5.625 (kN). The mass matrix is 
100 I (t) and the yield stiffness matrices K and Kδ are given as
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Furthermore, the unloading stiffness matrices of the base structure and the bilinear damper sys-
tems are, respectively, denoted as KU and Ku and given by
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Suppose the dimensionless shape function can be approximately described as p1 0 0 0T 25 5 75 1= [ ]. . . . 
The equivalent mass me1 is p p1

T
1 187 5 (t)M = . . The equivalent period is p p1

T
1 e1/m 15( ) .K K+ =δ 	(s). The 

ratio of yielding and unloading stiffness is p p / p p1 0T
1 1

T
u 1 4( ) ( ) .K K K KU+ + =δ . The normalized modal 

characteristic strength q q /m 3 (g)D d e1= = 0 0. .
If this structure is subjected to input of 0.4 (g), then from Tables 8.4a through c, it is seen that 

the spectral displacement is d1D = 0.288 (m), the seismic response factor is Cs = 0.541, and the 
damper force is fD = 6.88 (MN). For simplicity, let all the safety factors, denoted as S, Gm, and pc, 
be unity. Note that Γ1 = 1.333. Therefore, the displacement, acceleration, and lateral force are:
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8.6  SUMMARY

Several important issues in nonlinear damping design are discussed in this chapter. The focus is 
given to response estimations through response spectra analysis. A design procedure for structures 
with nonlinear damping is briefly summarized in the following paragraphs.

8.6.1  PrEliMinary dEcision Making

As mentioned in Chapter 7 and earlier in this chapter, there are many issues to consider in pre-
liminary decision making. Here, the focus is on identification of the types of damping, as well as 
computational approaches.
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At the outset, designers should be aware of the type of damping to be used, including the type of 
supplemental damper and the response of the estimated structure with added dampers.

The simplest linearized type of realistic structure with supplemental damping is the proportion-
ally damped linear viscous system. Although this case is rare, when the damping ratio is low, i.e., 
5%, this model of damping can be used, regardless of the type of dampers that are actually installed. 
The 5% damping ratio is assumed by most building codes, which considers the possible inelastic 
deformation of the total structure. Actually, when a structure remains linear, the damping ratio of 
the fundamental mode is rarely as high as 5%. However, a 5% damping ratio for an assumed linear 
system is still a possible and acceptable design target.

Another simple linearized type of system is a generally damped system with linear viscous 
damping. This model improves the design accuracy and eliminates some underestimation of the 
resulting structural responses. From the viewpoint of structural design, nonproportional damping 
is the result of damping irregularity. This damping model has been discussed earlier. Note that 
the assumption of linear damping has limitations. Therefore, the condition for using this model is, 
again, the amount of damping should not be too high, i.e., a damping ratio of less than 7%∼20%, 
which depends on damping irregularity of the structure.

Dampers installed in a structure can produce a parallelogram-shaped relationship between 
the damping force of the first effective “mode” and the displacement. These damping devices 
are referred to as bilinear dampers. To estimate the system responses, specific bilinear response 
spectra are used. To further obtain the response vectors of the nonlinear MDOF systems, sepa-
ration of the displacement and the acceleration are carried out and the combination of the first 
several effective “modes” is obtained. One of the major criteria to use the bilinear damping model 
is the degree of structural inelastic deformation. When the structure yields with sufficient ductile 
deformation, it is better to consider the bilinear damping model, regardless of the actual type of 
damping device.

Another major type of damping is known as sublinear damping. Even if the selected damping 
devices are of the bilinear type, when the dampers are installed in a structure with different yield-
ing time points, the total structure can behave as a sublinear system. In this chapter, the problem 
associated with direct iteration is analyzed, and the use of sublinear response spectra is encour-
aged. Different from bilinear damping, where the interested effective “modes” of interest can all be 
treated bilinearly, sublinear damping rarely contributes accurate information for higher “modes.” 
Therefore, an alternative approach for an equivalent linear MDOF system, likely to be a generally 
damped system, is presented.

8.6.2  initial daMPing dEsign

A systematic procedure for damping design of linear systems was discussed in Chapter 7 for a base 
structure that needs supplemental damping. In general, there is no straightforward design process 
for nonlinear damping. A two-step design procedure is generally used.

The first step is to use a linearized damping model with either Timoshenko or alternative force-
based approximations to estimate the effective damping ratio. The design procedure for select-
ing damper specifications, optimal damper configurations, general damping matrices, mode shape 
normalization, as well as response estimation is then carried out. This is referred to as the initial 
damping design.

8.6.3  rEsPonsE EstiMation witH ProPEr ModEl of daMPing

8.6.3.1  Parameters of an SDOF System
For either linear or nonlinear damping design, the key challenge is response estimation. Generally 
speaking, if supplemental dampers are already designed and selected, response estimation becomes 
more complex. Here, the estimations are based on design spectra. For linear or equivalent linear 
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systems, only two parameters are needed. For nonlinear spectra, more parameters are required, so 
that to use the design spectra, these parameters need to be calculated ahead of time.

In linear damping design, the response estimation is comparatively simpler than for nonlinear 
dampers. The design parameters of nonlinear dampers cannot usually be directly determined 
in one step. In order to calculate the damping ratio, the structural responses are needed, which 
in turn are also functions of the damping ratio. For bilinear dampers, the relationship of the 
damping ratio and the response can be determined by quadratic equations, so that the results 
can be directly calculated. For sublinear dampers, on the other hand, iterative computations are 
involved.

In most cases, for equivalent linear systems, Timoshenko damping and a linear damping model 
are used to calculate the structural response. This can introduce errors. Therefore, after the initial 
design, the structural responses need to be reexamined, based on the nonlinear design spectra. This 
approach is established by using real-world earthquake records to check the seismic response via 
time history analyses and is recommended for the initial design. When the system becomes nonlin-
ear, a simplified approach by letting the response modification coefficient R 	>	 1 to reduce the level 
of load is recommended, before proceeding with further design steps as described in Sections 8.2 
and 8.3. This approach ensures a good design by using the response spectra-based estimation, along 
with validation by time history analysis.

8.6.3.2  Shape Function and Modal Participation Factor
Once the effective modal responses for an SDOF system are obtained, they need to be dis-
tributed to each story via shape functions. Thus, the estimation of shape functions is equally 
important. In addition, the corresponding effective modal participation factor also needs to be 
determined.

8.6.3.3  Trial-and-Error Iteration
When the peak response is considered to be safe, by using both the design spectra-based analysis 
and the time history analysis, the initial damper design may be accepted.

If one set of peak responses, either forces or deformations, exceeds the preset safety level, then 
the iterative process must be carried out to redesign the dampers. The criteria are

	
f max f  fj j

S
j
T  ≥ { }( ) ( ),  (8.174)

	
d maxj j

S
j
T  ≥ { }( ) ( )d , d  (8.175)

where [fj] and [dj] are, respectively, the allowed force (moment, shear, stress, etc.) and allowed 
deformation (lateral displacement, rotation, shear strain, etc.) at the jth story. Meanwhile f and fj

(S)
j
(T)  

are, respectively, the estimated maximum response of force under spectra analysis and time his-
tory analysis at the jth story. Finally, d and dj

S
j
T ( ) ( )	represent, respectively, the estimated maximum 

response of deformation under spectral analysis and time history analysis at the jth story.
If Equations 8.174 and 8.175 are not satisfied, the process should return to step 1 to reselect 

damping devices and the corresponding modeling approach, followed by step 2 (simplified damper 
design), and step 3 (response estimation), until these criteria are satisfied.

8.6.4  sElEction of daMPing dEVicEs

The final task of damper design is to select proper devices that can fully realize the design param-
eters. In most cases, the dampers in response design are only nominal or theoretical. To realize the 
nominal dampers, see Section 7.2.4, and safety issues should also be considered.
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