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Preface

The work on sea wave problem I started many years ago when I had graduated from
the university. It was the time when all specialists in the earth sciences were
impressed by the progress in application of computers in the geophysical fluid
dynamics and, particularly, by a great success in the numerical modeling of
three-dimensional atmosphere launched by Prof. Josef Smagorinsky. Being not
quite well prepared for a purely analytical investigation, I felt a strong doubt about
such methods since I believed that all the results obtained analytically are based on
severe simplifications; therefore, they cannot be a perfect reflection of nature (my
present feeling is about the same). This is why the author of this book began to
meditate on the possible application of the computer modeling for sea waves. The
problem of boundary layer was more familiar to me, so the first series of works was
devoted to a wind–wave interaction problem. The work on mathematical modeling
of sea waves was started in the 1970s, when a model for investigation of wind–
wave interaction was completed. Actually, it was an attempt to construct a coupled
windwave model, but the wave counterpart (despite the fact that it was based on the
full equations) was able to generate only monochromatic linear waves. I was
inspired by the publication of my first paper on this topic by Journal of Fluid
Mechanics (1978). Now, I realize that the paper was quite imperfect, but the
publication gave me a strong momentum for moving in this direction. The fol-
lowing numerous papers (see review in Chalikov 1986) considered the structure
of the wave boundary layer (WBL) above 1-D wave surface assigned as a super-
position of linear waves with random phases and the prescribed empirical spectrum.
Gradually, I distanced myself from this activity because of growing dissatisfaction
with the formulation of the problem. The model of WBL as well as its modifications
was based on a finite-difference scheme with poor resolution and could not be used
for investigation of a thin structure of boundary layer. Besides, the model did not
use the advantages of Fourier presentation. Finally, I left my model to colleagues
and students and continued working on the problems which had nothing to do with
wave problems, such as the theory of ice ages, super-rotation of Venus atmosphere,
and global ocean–atmosphere interaction.
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A real breakthrough in the numerical wave modeling happened in 1989 when the
conformal transformation of 1-D potential equation was first applied. In 1991, I was
invited for work at the National Center for Environment Prediction (NCEP/NOAA)
where excellent conditions due to the support of then Director of NCEP Eugenia
Kalnay gave me a good possibility to continue my study. One of the directions of
my work at NCEP was construction of the parameterization schemes for the input
and dissipation of energy in the WAVEWATCH wave prediction model jointly
with Hendrik Tolman. The experiments on application of the neural network
(NN) technique, carried out by Vladimir Krasnopolsky with my participation, can
be also referred to this direction. The construction of the first numerical model for
surface waves was accelerated due to collaboration with Dmitry Sheinin.
A discussion of the problem with Vladimir Zakharov was also quite useful. The
extended results of simulation of the wave dynamics were first shown at Conference
(Arizona University) organized by V. Zakharov (Chalikov and Sheinin 1994). It is
funny that neither I nor Sheinin knew that conformal mapping had been used before
in many other works (see references in Chap. 1).

The model allowed us to obtain a lot of new results which we believe are true.
After investigation of different types of wave processes, we came to the conclusion
that wave motion is a more complicated phenomenon than it was assumed before.
Generally speaking, wave motion should be defined as a liquid motion with free
surface in a physical space. Most of the wave specialists seem to overestimate the
role of presentation of natural wave field as a set of almost independent wave modes
whose energy defines the continuous wave spectrum. In reality, spectrum is not
continuous, and wave surface in a statistical sense is not a physical image of
spectrum because the statistical properties of surface depend on the resolution of
spectrum. A spectrum of strongly nonlinear processes (e.g., the breaking spectrum)
cannot be treated as a physical reality because the nonlinearity can shift the spectral
density far away from its true location in the wave number space. For example, the
breaking process happens at sharp crests of more or less large waves in the narrow
intervals of physical space. The Fourier image of such d-like behavior turns out to
be distributed over many wave numbers, while in reality, the breaking makes lower
the heights of nonlinear waves.

Some of the facts discovered with the 2-D conformal model are confirmed by
our 3-D model. The three-dimensional modeling is not as elegant as the
two-dimensional one; besides, it takes a lot of computer time. Another property of
3-D wave simulation is that it sensitive to the initial conditions. Fortunately, this
sensitivity refers to the individual solution, and to the less extent, it concerns its
statistical characteristics. Anyway, for obtaining the smooth, statistically significant
results. it is necessary to use the ensemble modeling, which is convenient to carry
out using multiprocessor computers. The speed of the calculations remains low,
which makes the entire problem quite uncomfortable. The most striking result
obtained with the 3-D model is irregularity of the 2-D wave spectrum and sensi-
tivity of its shape to the initial phases. The results obtained allow us to suggest that
the Hasselmann’s theory is not as universal as it was considered before. The sep-
aration of nonlinear interactions into reversible and irreversible interactions cannot
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be universal. For example, the reversible interactions can initiate the wave breaking
which makes them finally irreversible. Wave breaking not only decreases the wave
energy but also redistributes the energy between wave components.

A thoughtful reader can find some contradictions in different parts of this book.
Some of these contradictions appear as a result of transformation of author’s views.
I prefer to leave in the book some of the contradictory points of view, since until
now I have not been sure which of them are true. The physics of waves is too
complicated; therefore, this book can be just considered as a first look at this
marvelous phenomenon, using no sophisticated mathematics or complicated tools
and sensors, except for computer.

Saint-Petersburg, Russia Dmitry V. Chalikov
Melbourne, Australia
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Chapter 1
Introduction: Different Approaches
to Numerical Modeling of Sea
Waves—Specifics of Current Approach

Abstract Development of the mathematical modeling of wave processes and the
advantages of the conformal coordinates for investigation of a two-dimensional
flow with free surface are discussed. Different approaches to the numerical mod-
eling of a three-dimensional flow are briefly analyzed.

Very often the term mathematical modeling is applied to any theoretical scheme
describing the object in terms of mathematics and aimed to obtain the numerical
results, which characterizes somehow the real process. On our opinion it is incor-
rect, since such methods are often based on very simple formulations, which is able
to describe correctly only one side of real phenomenon. The essence of mathe-
matical modeling is complete replacing of real object by mathematical construction
like it used in physical laboratory modeling. It is better to define the mathematical
modeling as a method of investigation of complicated processes based on a full
mathematical formulation of a problem. One of the typical examples of mathe-
matical modeling is the simulation of natural liquid objects on a basis of fluid
mechanics equations, i.e., the Navier–Stokes (or the Euler) equations.

Computational techniques for numerical solution of the Navier–Stokes equation
have brought new development to geophysical fluid dynamics. Using modern
numerical models, the structure, and evolution of many complicated dynamical
phenomenon in different fluids, including the atmosphere and ocean, can be suc-
cessfully simulated. Unfortunately, the applications of these methods to the problem
of surface wave were on unknown reasons greatly delayed. Even now, the authors
developing the numerical modeling of surface waves often meet fierce resistance of
reviewers, who probably prefer the traditional analytical and semi-analytical
methods. However, the number of works devoted to mathematical modeling of
waves is quickly growing.

The subject of this book is describing the application of mathematical modeling
to sea waves. We limit the scope of review to those works, which is devoted to free
periodic waves and based on the principal equation for potential waves.

The problem of numerical simulation of surfacewaves has a long history. Themost
general approach to simulate a motion with a free surface is based on some sort of
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Lagrangian approach (Harlow andWelch 1965)which assumes the tracing of variable
surface in a fixed grid with different order accuracy (see, e.g., Noh and Woodward
1976; Hirt and Nichols 1981; Prosperiti and Jacobs 1983; Miyata 1986). At present,
the applicability of this method is restricted by simulation over relatively short-term
periods. However, accuracy of this method will increase significantly when very high
resolution become possible. An advantage of this method is that it can be used for
simulation of 3-D rotational motion of viscous fluid even for non-single-value
interface. The simulation of nonlinear unsteady potential flow with a free surface
began with the development of the Eulerian–Lagrangian boundary integral equations
approach by Longuet-Higgins and Cokelet (1976) for steep overturning waves. The
instability of waves was generated by asymmetric pressure applied on a surface. This
method, in principle, may be generalized for 3-Dmotion, but it needs the considerable
computational resources. A motion with a single-value 1-D and 2-D interface is
readily simulated using simplest surface-following coordinates ðx; y; z� gðx; y; tÞÞ
where (x, y, z) are Cartesian coordinates and η is a surface elevation (Chalikov 1978).
This system of coordinates is unsteady and non-orthogonal, so equations of motion
become complicated. Still, this method was effectively applied for simulation of
interaction of waves with a shear flow by Dimas and Triantafyllou (1994). Evidently,
this approach may be joined with the MAC method applied locally in the intervals
with large steepness. Waves on finite depth have been investigated by transforming
the volume occupied by fluid into a rectangular domain (Dommermuth 1993). Much
more complicated surface-following transformations have been constructed even for
the case of a multiple-valued surface (Thompson and Warsi 1982). Grid method was
generalized with adaptive grids (e.g., Fritts et al. 1988) and in finite-volume approach
(Farmer et al. 1993).

The long-term simulations of a nonlinear multi-mode wave field is difficult to
perform, since the numerical schemes based on the initial Euler equations fails to
provide sufficient accuracy for treating the nonlinearity of wave motion. The main
source of errors is primarily due to finite-difference presentation of the vertical
structure of the flow when waves with different wave numbers are present. Thus,
the theoretical and numerical investigations of surface gravity waves are usually
based on the equations for potential flow with a free surface. In this case, the flow is
fully determined by the form of the surface and three-dimensional velocity
potential. The potentiality assumption idealizes, of course, the phenomenon, since
actual wave motion is both rotational and turbulent.

However, many observed properties of surface waves are reproduced well on a
basis of a potential approach. For example, it is well known that even linear wave
theory gives the estimation of phase velocity with accuracy of the order of 1 %. The
numerical methods for inviscid free-surface flow have been reviewed by Mei
(1978), Yeung (1982), and Hyman (1984), and for viscous flows by Floryan and
Rasmussen (1989). The review of numerical methods for incompressible nonlinear
free-surface flow was presented by Tsai and Yue (1996).

The main advantage of potential motion is that the system of Euler equations is
reduced to Laplace equation with two nonlinear boundary conditions. However, the
solution of the problem if surface wave motion is complicated by the requirement to
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apply the kinematic and dynamic boundary conditions (both nonlinear) on the free
surface, the location of which is unknown at any given moment. Some attempts
have been made previously to reproduce the evolution of waves in Cartesian
coordinate system (e.g., Prosperetti and Jacobs 1983), but such technique is inap-
plicable to long-term simulation of waves. Note that applying of this approach is
unavoidable when surface loses its non-single-value properties (when wave breaks),
but in his case, the simulation can be done only over very short interval less than
one wave period (e.g., Iafrati 2009). A more feasible approach is based on a
formulation of the governing equation in a surface-following coordinate system; the
simplest technique uses the ‘height’ accounted from surface along with Cartesian
coordinates in the horizontal. However, this does not eliminate all the problems
since the Laplace equation is transformed into a general elliptic equation. This
equation was solved in 2-D case by Chalikov and Liberman (1991) by iteration
method. Another approach is based on expansion of velocity potential was devel-
oped by Watson and West (1975) and Dommermuth and Yue (1987).

All above-cited works considered the 2-D flow with a free surface. Here is
appropriate to make clear some terminology. We will call the flow and model as
2-D flow or model when we consider the motion in vertical plane (x, z); the waves
taken as surface phenomenon are reasonable to call 1-D or unidirected waves. The
unidirected waves often can be considered as a good approximation of wave field
with very narrow angle distribution. In some cases when 2-D model is reduced to
1D model, it is also possible to call such model as one-dimensional. Consequently,
the 3-D model describes the 3-D stricture of flow and 2-D surface waves.

The complexity of wave modeling depends on additional assumptions. The
conditions of periodicity simplifies significantly the construction of model since in
such case is possibly to use the Fourier presentation for construction of numerical
scheme. This assumption works well when the domain can be considered as a small
part of large domain with slowly changing over s space integral characteristics.
Periodic modes usually use the precise Fourier transform method, so they are well
suited for long-term numerical simulation of wave field transformation due to
nonlinearity, input, and dissipation of energy. For non-periodic processes, such as
waves in restricted domain or waves above non-periodic bottom topography, the
Fourier presentation is inapplicable and numerical schemed should be based on
finite-difference presentations. Generally, such models are not exact compared with
models based on Fourier presentation, but in most cases the finite-difference models
consider the short-lasting processes when high accuracy is not needed.

The book devoted to investigation of periodic wave field only. At present, two
different models use the principal 2-D fully nonlinear equations for potential flow
with a free surface: a numerical model based on a boundary integral formulation for
2-D problem was developed by Vinje and Brevig (1981), Baker et al. (1982), and
Roberts (1983). This method was used by Tanaka et al. (1987), who studied the
instability and breaking of a solitary wave. Dommermuth and Yue (1987) compared
the solution based on Cauchy integral method with precise measurements in the
experimental wave tank and obtained good agreement. The boundary integral
method was extended by Dold and Peregrine (1986), described in detail by Dold
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(1992), and a model based on conformal mapping. Actually, Dold’s model was one
of the first models for surface waves simulation based on fluid mechanics equations,
opposite to numerous approaches using simplified, severely truncated, or crippled
1-D equations (see information in reviews by Tsai and Yue (1996), and Kharif and
Pelinovsky (2003). It is interesting that the sophisticated numerical analysis was
often used also for solution of substitute 1-D equations. It remains unclear, what
those efforts have been undertaken for, since the tiny initial 1-D equations could be
solved easily with the highest accuracy at least 25 years ago? The Dold’s (1992)
approach has been successfully used for simulation of nonlinear group effects
(Henderson et al. 1999), for investigation of many problems including wave
breaking (Song and Banner 2002). However, later it was found that a simpler and
more precise scheme could be constructed on a basis of conformal mapping. For the
stationary problem, the mapping represents a classical complex variable method
(e.g., Crapper 1957, 1984), originally developed by Stokes (1847). For the sta-
tionary problem, the method employs the velocity potential U and the stream
function W as independent variables. In fact, the approach based on non-stationary
conformal mapping had been formulated even before it was used for numerical
integration. It had been introduced by Whitney (1971) and Ovsyannikov (1973),
and later, it was considered by Kano and Nishida (1979), Fornberg (1980). Tanveer
(1991, 1993) used that approach for investigation of Rayleigh–Taylor instability
and generation of surface singularities. However, no authors of those works used
conformal transformation for simulation of long-term multi-mode periodic wave
dynamics. Such 2-D model was completed in 1992, when a systematic use of the
new approach to different problems was initiated. A numerical scheme based on
conformal mapping (and its validation), as well as the results of long-term simu-
lations, were presented at the ONR meeting held in Arizona in 1994a (see also
Chalikov and Sheinin 1994b, c). The scheme for arbitrary depth was described in
detail by Chalikov and Sheinin 1996, 1998, hereafter ChSh). More details for the
case of shallow water were given by Sheinin and Chalikov (2001). Later, the
method developed was used with some minor modifications by Zakharov et al.
(2002, 2006), to demonstrate certain nonlinear properties of steep waves.

The non-stationary conformal mapping for finite depth allows rewriting of the
principal equations of potential flow with a free surface in a surface-following
coordinate system. The Laplace equation retains its form, while the boundaries of
the flow domain (i.e., the free surface and, in the case of finite depth, the bottom) are
coordinate surfaces in the new coordinate system. Accordingly, the velocity
potential in the entire domain receives a standard representation based on its Fourier
expansion on the free surface. As a result, the hydrodynamic system of equations
(not simplified) is represented by two simple evolutionary equations which can be
solved numerically in a straightforward way and used for theoretical investigations.
The assumption of potentiality simplifies the approach so significantly that the
numerical scheme does not require any finite-difference approximations since the
derivatives can be calculated precisely using the Fourier presentations, while
nonlinearities can be approximated on a dense grid with the well-estimated accu-
racy. For restricted order of nonlinearity, this method is also precise and depends on
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a number of digits assigned for calculations. The model represents a rarity in
geophysical fluid dynamics (though the potential one), when a real process can be
simulated with nearly computer accuracy. This statement can be fully correct if
surface steepness is not too high. Increase of local steepness often results in
developing of instability and even overturning of sharp crests. Formally, conformal
mapping exists up to the moment when an overturning volume of water touches the
surface. In such an imaginary evolution, the number of Fourier modes required
increases up to infinity. If some special measures (smoothing, see, e.g., Dold 1992)
are not taken, the calculations normally terminate much earlier, due to strong crest
instability (Longuet-Higgins and Tanaka 1997) shortly manifesting itself by sepa-
ration of the falling volume into two phases. This phenomenon is obviously
non-potential. Hence, as in many branches of geophysical fluid dynamics, some
special measures (which are probably arrogant from the point of view of potential
theory) must be taken to prevent numerical instabilities, at the same time consid-
ering the physical consequences of such events.

Naturally, the method of conformal variables cannot be extended for a case of
three-dimensional waves. Majority of the models designed for investigation of the
three-dimensional wave dynamics are based on simplified equations. Overall, it is
unclear which effects are missing in such simplified models. The most developed
methods are based on the full three-dimensional equations and surface integral
formulations (Clamond and Grue 2001; Clamond et al. 2005; Fochesato et al.
2006). These methods can be applied both to periodic and non-periodic flows. The
main advantage of such methods is their high accuracy. The methods do not impose
any restrictions on wave steepness, so they can be used for simulations of the waves
that even approach the breaking (Grilli et al. 2001). However, these methods seem
to be quite complicated. The application of method was illustrated by simulations of
relatively simple wave fields, and it is unlikely that it can be applied to simulation
of a long-term evolution of a large-scale multi-mode wave field. Implementation of
a multi-pole technique for a general problem of the sea wave simulations obviously
leads to considerable algorithmic difficulties.

Another method for 3-D waves includes an elliptic boundary layer problem
solved by the finite-difference methods. Such approaches to simulation of the
unsteady free-surface flows based on the full equations have been under develop-
ment for at least three decades (see, e.g., Asaithambi 1987; Haussling and Van
Eseltine 1975; Yeung 1982). Related applications were later described by Bingham
and Zhang (2007). The main advantage of these methods is that it is based on initial
equations being transformed into the surface-following coordinate system. The
Laplace-type equation obtained by transformation into the sigma-coordinate system
was solved in Cai et al. (1998) by the iterative conjugate gradient method, using the
three-dimensional finite element discretization. The finite-difference multi-grid
model for a 3-D flow was developed in Engsig-Karup et al. (2009). All of the
papers of this group were mostly dedicated to technical applications of the water
wave theory, for example, to calculations of a dynamic load on submerged bodies,
or to simulation of wave dynamics in a domain with a complicated shape.
A long-term evolution of such flows was not simulated; this is why the exact
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conservation of energy was not the main priority of such models. Applicability of
these models to investigations of the nonlinear properties of sea waves is also
uncertain.

This book is devoted to numerical modeling of 1-D and 2-D periodic surface
waves and different application of models. Main attention is given to nonlinear
properties of waves: statistical characteristics of waves, Benjamin–Feir instability,
formation of extreme (freak) waves, the process of wind–wave interaction, and
wave–turbulence interaction. The attempts of numerical modeling of wave field
development have been made.
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Chapter 2
Two-Dimensional Wave Model

Abstract A method for numerical investigation of the nonlinear wave dynamics
based on direct hydrodynamical modeling of the 1-D potential periodic surface
waves is described. The model is a part of an interactive windwave model. Using
non-stationary conformal mapping, the principal equations are rewritten in a
surface-following coordinate system and reduced to two simple evolutionary
equations for elevation and velocity potential of surface. Fourier expansion is used
to approximate these equations.

2.1 2-D Equations of Potential Motion with Free Surface

The 1-D model is based on a non-dimensional form of the principal 2-D equations
for potential waves written in the Cartesian coordinates, i.e., the Laplace equation
for the velocity potential U (Table 2.1)

Uxx þUzz ¼ 0 ð2:1:1Þ

and two boundary conditions at free surface h ¼ hðx; tÞ the kinematic condition

ht þ hxUx � Uz ¼ 0 ð2:1:2Þ

and the Lagrange integral

Ut þ 1
2
ðU2

x þU2
z Þþ hþ p0 � rhxxð1þ h2xÞ�3=2 ¼ 0; ð2:1:3Þ

where p0 is external pressure (the independent variables in subscripts denote partial
differentiation with respect to these variables). The equations are solved in the
domain

�1\x\1; �H� z� hðx; tÞ; ð2:1:4Þ
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where H is either a finite depth or infinity. The variables U and h are considered to
be periodic with respect to x:

Uðxþ 2p; z; tÞ ¼ Uðx; z; tÞ; hðxþ 2p; tÞ ¼ hðx; tÞ; ð2:1:5Þ

and normal velocity at the bottom is assumed to be zero:

Uzðx; z ¼ �H; tÞ ¼ 0: ð2:1:6Þ

Equations (2.1.1)–(2.1.3) are written in a non-dimensional form with the fol-
lowing scales: length L, where 2pL is dimensional period in the horizontal, time
L1=2g�1=2, and the velocity potential L3=2g1=2 (g is acceleration of gravity). Pressure
is normalized by water density (so the pressure scale is Lg). The last term in
Eq. (2.1.3) describes the effect of surface tension, and

r ¼ C
gL2

ð2:1:7Þ

is a non-dimensional parameter (C ¼ 8� 10�5 m3s�2 is the kinematic coefficient of
surface tension for water).

2.2 Conformal Coordinates and Equations
in the Conformal Coordinates

System (2.1.1)–(2.1.3.) should be solved as an initial value problem for the
unknown functions U and h with the given initial conditions Uðx; z = hðx; t = 0Þ
and hðx; t = 0Þ. Note that though Eqs. (2.1.2) and (2.1.3) are written for a free
surface, there are no straightforward ways to reduce the problem to a 1-D problem,
since, to evaluate Uz the Laplace Eq. (2.1.1) should be solved in the domain (2.1.4)
with a curvilinear upper boundary that can be an arbitrary function of x. This
difficulty makes integration of the system in the Cartesian coordinates either not
sufficiently accurate or too expensive computationally. So, for the time periods
much greater than the timescale, this way of solution is not efficient. [It is perhaps
even more problematic to design an efficient numerical scheme for the stationary
version of system (2.1.1)–(2.1.3)].

To make a numerical solution feasible, we introduce a time-dependent
surface-following coordinate system that conformally maps the original domain
(2.1.4) onto the strip

�1\n\1; �~H� f\0 ð2:2:1Þ

with the periodicity conditions given as

2.1 2-D Equations of Potential Motion with Free Surface 9



xðnþ 2p; f; sÞ ¼ xðn; f; sÞþ 2p; zðnþ 2p; f; sÞ ¼ zðn; f; sÞ ð2:2:2Þ

where s is the new time coordinate, s ¼ t.
According to a complex variable calculus, the conformal mapping exists and is

unique up to an additive constant for x. Note that for the stationary problem this
mapping represents a classic complex variable method (e.g., Crapper 1957, 1984)
originally developed by Stokes (1847) who employed the velocity potential U and
the stream function W as independent variables. In this case, it can be shown that
U ¼ �cbnþU0 and W ¼ �cbfþW0 where �c is the mean velocity at the bottom,
while U0;W0 are constants. In a non-stationary case, the mapping is clearly
time-dependent, and no analog of the last relations holds.

It is easy to show that, due to the periodicity condition (2.2.2), the required
conformal mapping can be represented by Fourier series:

x ¼ nþ x0ðsÞþ
X

�M� k\M;k 6¼0

g�kðsÞ
cos kðfþ ~HÞ

sin kH
#kðnÞ; ð2:2:3Þ

z ¼ fþ g0ðsÞþ
X

�M� k\M;k 6¼0

gkðsÞ
sinh kðfþ ~HÞ

sinh k ~H
#kðnÞ; ð2:2:4Þ

where gk are the coefficients of Fourier expansion of free surface gðn; sÞ with
respect to the new horizontal coordinate

gðn; sÞ ¼ hðxðn; f ¼ 0; sÞÞ ¼
X

�M� k\M

gkðsÞ#kðnÞ; ð2:2:5Þ

#k denotes the function

#kðnÞ ¼ cos kn; k� 0
sin kn; k \0

�
: ð2:2:6Þ

M is a truncation number. The non-traditional presentation of Fourier coefficients
with definition (2.2.6) is, in fact, convenient for calculations, since

ð#kÞn ¼ k#�k;
@

@n

X
ðak#kÞ ¼ �

X
ka�k#k: ð2:2:7Þ

Note that in presentation (2.2.6) the indices k� 0 refer to the real part of the
complex presentation (i.e., coefficients at COS), while k[ 0 refer to the imaginary
part (i.e., the coefficients at SIN with an opposite sign). The Fourier coefficients ak
form an array að�M : MÞ, which makes convenient compact programming.

The time-dependent x0ðsÞ can be chosen arbitrarily, though it is convenient to
assume
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x0ðsÞ ¼ 0 ð2:2:8Þ

The lower boundary condition cannot be chosen arbitrarily, since the relation

zðn; f ¼ �~H; sÞ ¼ �H ð2:2:9Þ

must hold, which yields after substituting expansion (2.2.4)

~H ¼ Hþ g0ðsÞ: ð2:2:10Þ

Since g0 is determined by the Fourier expansion (2.2.5) and is generally an
unknown function of time, ~H is also time-dependent. The conformal coordinates
yield the Cauchy–Riemann conditions

xn ¼ zf; xf ¼ �zn: ð2:2:11Þ

Simple derivations show that Laplace equation retains its form

Unn þUff ¼ 0: ð2:2:12Þ

From conditions xx ¼ 1; xz ¼ 0; zx ¼ 0; zz ¼ 1, it follows that

fz ¼ J�1xf ¼ J�1zf ¼ nx;

�fx ¼ �J�1xf ¼ J�1zf ¼ nx;
ð2:2:13Þ

where

J ¼ x2n þ z2n ¼ x2f þ z2f ð2:2:14Þ

is the Jacobian of the transformation.
Since g does not change along z, i.e., @g/@z ¼ 0, it follows that

gnnz þ gffz ¼ gnnz þ gfnx ¼ 0: ð2:2:15Þ

So

gf ¼ �gnnzf
�1
z ¼ z2nx

�1
n ; ð2:2:16Þ

Note that if the differentiation is taken over n or s, we can replace functions gs
and gn by zs and zn, respectively, since both g and zðf ¼ 0Þ represent the elevation
of surface f ¼ 0. Consider the terms gt and gx in the left-hand side of Eq. (2.1.2)

2.2 Conformal Coordinates and Equations in the Conformal Coordinates 11



gt ¼ zs þ znnt þ gfft ¼ zs þ znnt � z2nx
�1
n ft; ð2:2:17Þ

gx ¼ gnnx þ gffx ¼ znJ
�1ðxn þ z2nx

�1
n Þ ¼ znx

�1
n ð2:2:18Þ

Then, considering that

xt ¼ xs þ xnnt þ xfft ¼ xs þ xnnt � znft
zt ¼ zs þ znnt þ zfft ¼ zs þ znnt þ xnft

ð2:2:19Þ

and xt ¼ 0; zt ¼ 0 we obtain the equations to define nt and ft:

�xnnt þ znft ¼ xs; ð2:2:20Þ

�znnt � xnft ¼ zs: ð2:2:21Þ

Finally, we obtain

nt ¼ J�1ð�xnxs � znzsÞ; ð2:2:22Þ

ft ¼ J�1ð�xnzs � znxsÞ: ð2:2:23Þ

The derivatives of the velocity potential Ux and Uz take the following form

Ux ¼ J�1ðxnUn � znUfÞ; ð2:2:24Þ

Uz ¼ J�1ðznUn � xnUfÞ: ð2:2:25Þ

Inserting (2.2.17), (2.2.18), (2.2.22), (2.2.23), and (2.2.24) in (2.1.2) following
some elementary calculations, we obtain the simple kinematic condition written in
conformal variables

xnzs � znxs ¼ Uf; ð2:2:26Þ

After inserting the expressions for xs and zs into Eq. (2.2.23), we obtain

ft ¼ J�1Uf: ð2:2:27Þ

Further simplification can be done taking into account that functions xs and zs at
k 6¼ 0 satisfy the Cauchy–Riemann conditions. Considering the connections
between two pairs of the coefficients (2.2.22) and (2.2.23), it can be shown that the
functions nt and ft for k 6¼ 0 are connected by the Cauchy–Riemann relations (see
ChSh, Chalikov and Sheinin 2005),
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ðntÞn ¼ ðftÞf; ðntÞf ¼ �ðftÞn; ð2:2:28Þ

while the Fourier coefficients ðntÞk and ðftÞk for functions nt and ft for k 6¼ 0 are
connected by the relation (which is called the Hilbert transform)

ðntÞk ¼ ðftÞ�k coth k ~H: ð2:2:29Þ

and the Fourier coefficient for ðntÞ0 is equal to

ðntÞ0 ¼
1
2

X
�M� k�M;k 6¼0

kg�k sinh
�2 k ~H ð2:2:30Þ

Actually, the relation (2.2.29) follows from the fact that definition of the new
coordinates is based on the same function gðnÞ. So, the second of the Eq. (2.2.20)
can be considered as an equation for calculation of evolution of surface zðsÞ where
variable ft is calculated using Eq. (2.2.24), while variable nt is calculated with
(2.2.26) and (2.2.27).

After transformation to the conformal coordinates, the time derivative Ut in
dynamic condition (2.1.3) takes the form

Ut ¼ Us þ ntUn þ 1tUf; ð2:2:31Þ

then using (2.2.21), we obtain

Ut ¼ Us þ J�1Unð�xnzs � znxsÞþ J�1Ufð�xnzs þ znxsÞ ð2:2:32Þ

The last term describing an effect of surface tension takes the form
rJ�3=2ð�xnnzn þ znnxnÞ.

According to (2.2.24) and (2.2.25),

U2
x þU2

y ¼ U2
n þU2

1 ð2:2:33Þ

Finally, after use of (2.2.32), (2.2.33), (2.2.23), (2.2.26), and (2.2.27) we obtain
the system of evolutionary equations in the conformal coordinates

zs ¼ xnnt þ znnt; ð2:2:34Þ

us ¼ ntun �
1
2
J�1ðu2

n � U2
fÞ � z� p0 þ rJ�3=2ð�xnnzn þ znnxnÞ; ð2:2:35Þ

where u(lower case) denotes the velocity potential on the surface z ¼ g.
The boundary condition (2.1.6) is rewritten as
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Ufðn; f ¼ �~H; sÞ ¼ 0 ð2:2:36Þ

The solution of Laplace equations (2.2.33) with the boundary condition (2.2.36)
is yielded by Fourier expansion

Uðn; f; sÞ ¼
X

�M� k�M

ukðsÞ
cosh kðfþ ~HÞ

cosh k ~H
#kðnÞ ð2:2:37Þ

where ukðsÞ are the Fourier coefficients for the surface potential u. Strictly
speaking, the values of u cannot be considered as a boundary condition for the
Laplace Eq. (2.2.34) which must use the instantaneous conditions (2.2.35) and
(2.2.36). However, we use some sort of a time-splitting method, assuming that the
vertical derivative Uf

Ufðn; 0; sÞ ¼
X

�M� k�M

kukðsÞtanhk ~H#kðnÞ ð2:2:38Þ

can be taken from the previous time step. In this case, we can consider Eqs. (2.2.34)
and (2.2.35) as the evolutionary equations for variables zðn; sÞ and uðn; sÞ. Indeed,
this assumption dramatically simplifies the problem.

Thus, the original system of equations is transformed into two simple 1-D
Eqs. (2.2.34) and (2.2.35) and diagnostic relations (2.2.27), (2.2.29), (2.2.30). Both
spatial derivatives of U are obtained by differentiating the series (2.2.37) and can be
solved using the Fourier transform method. These equations allow a precise
investigation of the 1-D periodic potential waves in broad ranges of the two
non-dimensional parameters such as depth H and capillarity r.

For deep water ðH ¼ �1Þ, the coefficients in expansions (2.2.37) and (2.2.38)
become simpler. The domain (2.2.1) turns into semi-plane f\0ð1 ! �1Þ, the
condition which replaces (2.2.36). The conformal mapping (2.2.3) and (2.2.4)
acquires the form

x ¼ nþ
X

�M� k�M;k 6¼0

signðkÞg�kðsÞ expð kj jfÞ#kðnÞ; ð2:2:39Þ

z ¼ fþ
X

�M� k�M;k 6¼0

gkðsÞ expð kj jfÞ#kðnÞ; ð2:2:40Þ

the solution of Laplace equations (2.2.12) becomes

Uðn; f; sÞ ¼ �
X

�M� k�M

/kðsÞ expð kj jfÞ#kðnÞ; ð2:2:41Þ
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and operator (2.2.29) takes the form

ðntÞk ¼ signðkÞðftÞ�k ð2:2:42Þ

2.3 Numerical Solution of Potential Equations

For spatial approximation of the system (2.2.34) and (2.2.35), we use a
Galerkin-type (or ‘spectral’) method based on Fourier expansion of the prognostic
variables with the finite truncation number M. The problem is thus reduced to a
system of ordinary differential equations for the Fourier coefficients
gkðsÞ;/kðsÞ;�M� k�M :

ðgkÞt ¼ Hkðg�M ; g�Mþ 1; . . .gM ;/�M ;u�Mþ 1; . . ./MÞ; ð2:3:1Þ

ð/kÞt ¼ Fkðg�M ; g�Mþ 1; . . .gM ;/�M ;u�Mþ 1; . . ./MÞ; ð2:3:2Þ

where Hk, Fk are the Fourier expansion coefficients, respectively, for the right-hand
sides of Eqs. (2.2.34) and (2.2.35) as functions of n.

All the calculations described in this book use the so-called Fourier transform
method. To calculate Hk and Fk as functions of the prognostic variables gk and /k,
differentiation of the Fourier series is used (spatial derivatives are thus calculated
exactly) and the nonlinearities are calculated (Orszag 1970; Eliassen et al. 1970) on
a spatial grid. If YðuðnÞ; vðnÞ;wðnÞÞ is a nonlinear function of its arguments which
are represented by their Fourier expansion, the grid point values uðniÞ; vðniÞ;wðniÞ
are first calculated, i.e., the inverse Fourier transforms are performed; after that
YiðuðniÞ; vðniÞ;wðniÞÞ are calculated at each grid point. Finally, the Fourier coeffi-
cients Yk of the function Y are found by direct Fourier transform. Here,
ni ¼ 2pðj� 1Þ/N where N is a number of grid points. This approach is exploited
extensively in the geophysical fluid dynamics, particularly, in the global atmo-
spheric modeling.

For the method to be a purely Galerkin one, i.e., to ensure the minimum mean
square approximation error, the Fourier coefficients Hk;Fk must be calculated
exactly for �M� k�M. For this purpose, we must choose

N[ ðmþ 1ÞM ð2:3:3Þ

where m is the maximum order of nonlinearity. Since the right-hand sides of
Eqs. (2.2.34) and (2.2.35) include division by the Jacobian J, the nonlinearity is of
infinite order so that the above condition for N cannot be met. However, the
numerical integration shows that if to choose a value of N providing exact evalu-
ation of the cubic nonlinearities [m ¼ 3 in (2.3.3)], a further increase of N (with
fixed M) does not affect the numerical solution. For the results presented in this
book, N = 4M was taken.
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Potential waves in absence of the input energy and non-potential disturbances
are theoretically conservative, i.e., the sum of the potential and kinetic energies
calculated by integration over the whole domain should remain constant. This
property cannot be observed in a numerical model because of formation of the
nonlinear flux of energy from the low to high wave numbers and partly because of
the errors of time integration scheme. The total energy in a numerical model
remains constant on condition that the spectral domain is very broad; hence, the flux
of energy into a high wave number part of the spectrum is not restricted. For a finite
size of the domain, the flux of energy into the truncated part of the spectrum always
occurs. A corresponding decrease of the total energy can be considered as dissi-
pation. Such dissipation also exists at natural conditions, i.e., the nonlinear inter-
actions generate a flux of energy to the high-frequency waves which, in turn,
quickly dissipate. However, high the spectral resolution might be, for the long-term
simulations of strongly nonlinear waves an energy flux into the severed part of the
spectrum ( kj j[M) must be parameterized; otherwise, the spurious energy accu-
mulation at large wave numbers can corrupt the numerical solution. To achieve
stability, simple dissipation terms were added to the right-hand sides of
Eqs. (2.2.34) and (2.2.35) in Fourier domain:

@gk
@s

¼ Ek � lkgk; ð2:3:4Þ

@uk

@s
¼ Fk � lkuk ð2:3:5Þ

(Ek and Fk are the Fourier components of the right-hand sides of the equations) and

lk ¼ rM kj j�kd
M�kd

� �2
if kj j[ kd

0 if kj j � kd

(
; ð2:3:6Þ

where kd varies within the range of M/2 < Kd < 9M/10 (depending on the model
resolution), and r = 0.25. The algorithm (2.3.5)–(2.3.7) was suggested and vali-
dated in ChSh. The sensitivity of the results to the reasonable variations of r is low.
This sort of dissipation (which we call ‘tail dissipation’) effectively absorbs the
energy if wave numbers are close to the truncation number M, the longer waves
being virtually intact. This is why the total effect of ‘tail dissipation’ is very small.
However, this algorithm provides stability. Note that parameterization (2.3.5)–
(2.3.7) describes the real process. To avoid smoothing, a similar model (Zakharov
et al. 2002) uses the number of modes M = 1,000,000, which can be hardly con-
sidered as a rational solution of the problem. The spectrum in a finite domain cannot
be conservative, since the flux of energy into a high wave number part of the
spectrum always exists due to the nonlinear interactions. If we wish to reproduce
the quasi-stationary regime, such loss of energy should be compensated by the
corresponding energy input. We call this regime ‘quasi-adiabatic.’
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For time integration, the fourth-order Runge–Kutta scheme was used. The choice
of time step requires special consideration. For any time integration scheme, the
stability criterion has the form: Ds�Cx�1

max(if dissipation does not play a major
role) where Ds is a time step, and xmax is the maximum frequency of waves. The
linear frequency can be found from the linear dispersion relation

xmax ¼ ckk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ rk3Þ tanh kH

p
ð2:3:7Þ

where xmax ¼ xM . However, this approach works only for the essentially linear
waves (i.e., for the waves with very small amplitudes). In most cases, strong
nonlinear effects produce quite a chaotic movement of high-frequency waves, and
thus, the dispersion relation (2.3.7) becomes inapplicable. Sometimes, the time step
is restricted directly by the growing right sizes of Eqs. (2.2.34) and (2.2.35). This is
why in most cases the time step Ds must be chosen empirically on the basis of
stability considerations and the accuracy of energy conservation. For example, for
the number of modes M = 1000, the time step Ds equals 0.001.

The main difficulty in construction of a numerical method for non-stationary
potential waves is how to deal with the vertical dimension which, in order to
simplify the problem, must be eliminated from the prognostic equations which are
to be solved by numerical time integration. This problem was avoided in the
numerical scheme by Chalikov and Liberman (1991), where the iterative algorithm
calculation of Fourier coefficients for the velocity potential in the fixed coordinate
system was developed. Such model allowed obtaining some important results, but
the scheme turned out to be too complicated and numerically non-effective. The
non-stationary surface-following conformal mapping used for construction of the
numerical scheme for 1-D full equations is probably the most effective way to
resolve this problem and make the model capable for long-term multi-mode
simulations.

2.4 Conclusion

The method of conformal mapping developed by Stokes (1847) for stationary
potential waves was extended to the non-stationary case where the conformal
transformation becomes time-dependent and the surface-following coordinates are
no longer the velocity potential and stream function. The method proved to be
efficient because the original system consisting of Laplace equation and two non-
linear boundary conditions on curvilinear surface is reduced without any simplifi-
cations to a system of two one-dimensional non-stationary equations. Like in the
Cartesian coordinates, the dependent variables are the elevation and velocity
potential on the surface; however, their dependence on the Cartesian horizontal
coordinate x is represented parametrically via the new coordinate n. The
Eq. (2.2.26) contains both derivatives over time zs and xs, but this inconvenience
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can be easily eliminated due to the fact that the coordinate transformation is based
on the same function η. The transformed system may be solved by numerical
integration which is done efficiently by calculation of nonlinearities via the Fourier
transform method. The system can be also used for analytical investigations based
on various methods developed for the original system (see references in Chap. 1),
an important advantage being that the problem of extrapolation for the velocity
potential in the vertical does not exist. The 2-D model for periodic surface waves is
probably the most exact model of the geophysical fluid dynamics describing real
processes.
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Chapter 3
Stationary Solutions of Potential
Equations

Abstract For stationary equations, the proposed approach coincides with the
conventional complex variable method. For this case, the numerical algorithms for
solution of gravity (Stokes) and gravity-capillary wave equations are proposed, and
the examples of numerical solutions are given. The results suggest that
gravity-capillary waves do not approach Stokes waves as the capillarity coefficient
decreases. Both stationary and non-stationary schemes use Fourier series repre-
sentation for spatial approximation and the Fourier transform method to calculate
the nonlinearities. The main properties of Stokes, gravity-capillary, and capillary
waves for infinite depth are discussed. The properties of Stokes waves for finite
depth are investigated.

The behavior of nonlinear waves is difficult to investigate analytically on the basis
of full (non-simplified) potential equations. Even for the stationary equations exact
solutions are known only for a specific case of pure capillary waves at deep water
(Crapper’s waves, Crapper 1957, 1984). For the case of stationary gravity deep
water (Stokes) waves, the construction of analytical expansions for consecutive
Fourier coefficients provides only an approximation for the truncated Fourier series
and is, actually, a numerical procedure in which an amount of calculations increases
sharply with increase of truncation number. As for the general non-stationary wave
fields, the analytical investigation is clearly impossible without drastic simplifica-
tions which may lead to unpredictable consequences.

The stationary solution of potential equations is interesting not only as a
mathematical object. The main role of such equations is that they can serve as a tool
for validation of non-stationary models, when used as initial conditions for a
non-stationary problem.

© Springer International Publishing Switzerland 2016
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3.1 The Stationary Form of Equations

For a stationary problem, the method of conformal mapping is a well-known
approach based on using the velocity potential U and stream function W as the
independent variables (e.g., Crapper 1984). It is easy to show that in this case

U ¼ �cnþU0; W ¼ c1þW0 ð3:1:1Þ

where �c is the velocity of mean flow, Ux ¼ �Wz while Uz ¼ Wx are the horizontal
and vertical Cartesian velocity components, respectively, and U0 and W0 are
constants.

For the stationary version of the system (2.2.34) and (2.2.35), the periodicity
condition for U (which suggests a zero mean flow velocity) must be replaced by a
weaker condition of periodicity for velocity components, i.e., the spatial derivatives
of U. In the coordinate system moving with the wave’s phase velocity, the mean
flow velocity is equal to �c, and the velocity potential U is given by the relations
(3.1.1) where U0 can depend on time (since the stationarity is assumed rather for the
velocity field than for the velocity potential). Consequently, if the external pressure
p ¼ 0, the system (2.2.34) and (2.2.35) is reduced to one equation written for the
surface f ¼ 0:

1
2
c2J�1 þ z� rJ�3=2 �xnnzn þ znnxnð Þ ¼ a; ð3:1:2Þ

where a ¼ �dU0=ds; and, since the left-hand side of (3.1.2) does not depend on
time, a is a constant (thus, the dependence of U0 on s can only be linear).

To solve the Eq. (3.1.2) means to find the conformal mapping

xðn; fÞ ¼ nþ
X

�M� k\M

gk
cosh kðfþHþ g0Þ

sin kðHþ g0Þ
#kðnÞ ð3:1:3Þ

zðn; fÞ ¼ fþ g0 þ
X

�M� k\M

gk
sinh kðfþHþ g0Þ

sin kðHþ g0Þ
#kðnÞ ð3:1:4Þ

for which the upper boundary condition is f ¼ 0. The lower boundary condition is
f ¼ const (which is denoted below as eH and which is not preliminarily known). If
H ¼ 1, then the horizontal derivative of f tends to zero at z ! �1 which is
equivalent to condition limðznÞ ¼ 0; and is ensured by replacement of the fraction
in (3.1.3) and (3.1.4) by expðkfÞ: The horizontal boundary conditions are 2p-
periodicity.

Since the“mappingdepth” eH replaced in (2.2.34) and (2.2.35) according to (2.2.10)
is not known, the problem is not yet formally closed. AsH is to be the “true depth,” the
mean value over x of the surface elevation must be zero:
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1
2p

Z2p
0

hðxÞdx ¼ 1
2p

Z2p
0

z n; f ¼ 0ð Þxn n; f ¼ 0ð Þdn ¼ 0, ð3:1:5Þ

which, in Fourier space, means that

g0 þ
1
2

X
�M� k�M;k 6¼0

k coth k Hþ g0ð Þð Þg2k ¼ 0: ð3:1:6Þ

Similarly, a in the right-hand side of (3.1.2) is not a prescribed parameter but yet
another unknown value to be determined. For the case of deep water, there is a
simple expression for a (see below) that, however, does not hold in a general case.
Finding this value should be a part of the numerical procedure. The phase velocity
c is also calculated by the algorithm.

The Eq. (3.1.2) is solved numerically using the Fourier expansions (3.1.3) and
(3.1.4) for x and z and the corresponding expressions—for their derivatives. Thus,
the values to be determined by scheme are the Fourier coefficients gk and the phase
velocity c.

Note that because r is a factor in the term of the highest differential order, we
may face an effect of singularity for the small r. Indeed, we should develop two
different schemes for the case of pure gravity and gravity-capillary waves. It can be
seen that in the latter case the numerical solution does not approach a pure gravity
wave as r decreases. Similarly, the Navier–Stokes equation does not approach the
Euler equations when viscosity is going to zero.

3.2 Pure Gravity Waves

At r ¼ 0, the solution of Eq. (3.1.2) describes the pure gravity wave. For the case
of infinite depth (Stokes wave), the method based on expansion of the Fourier
coefficient for the surface height in power series of wave amplitude was originally
proposed by Stokes (1847, 1880) who in his latter work obtained a fifth-order
approximation. In recent studies, the method has been further developed into a
computer-oriented recursive scheme which produces the consecutive power
expansion coefficients; Drennan et al. (1988) carried out the power series calcula-
tions up to 170 terms. Later this record was beaten by Dallaston and McCue SW
(2010) who calculated 846 terms.

A far more effective method of calculation of the Stokes waves, for both infinite
and finite depths, was developed by D. Sheinin (see Sect. 3.1 in Chalikov and
Sheinin (1998) for the case of infinite depth; and Sect. 3.1 in Sheinin and Chalikov
(2001) for the case of finite depth). The solution in a form of the Fourier expansion
coefficients for surface height is found numerically with an iterative algorithm valid
for both the cases of infinite and finite depths.
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For pure gravity waves, Eq. (3.1.2) can be rewritten in the form

log
1
2
c2

� �
� log J ¼ logða� zÞ ð3:2:1Þ

Introducing complex variables q ¼ n + if and rðq; sÞ ¼ xðn; f; sÞþ iz(n; f; s)

and denoting w ¼ log dr
dq

� �
, we can see that

log J ¼ 2Rew; zn ¼ Imðexp wÞ: ð3:2:2Þ

Thus, if the Fourier expansion for log J is known, Imw can be calculated with

Imwð Þk¼ log Jð Þ�kcoth k eH ð3:2:3Þ

After that w and exp w can be evaluated at the grid points (i.e., by inverse
Fourier transform). This yields zn, and upon finding the corresponding Fourier
coefficients by direct Fourier transform, z can be obtained by integration in Fourier
space. Thus, z can be easily found, if log J is known. This allows us to reduce the
differential relationship (3.1.6) to the equation with integral operator, which can be
solved by a simple iterative procedure.

Assuming that z is an even function of n, it is convenient to choose

s ¼ 1
4

log J n ¼ 0; f ¼ 0ð Þ � log J n ¼ p; f ¼ 0ð Þð Þ tanh eH ð3:2:4Þ

The determining parameter s is the amplitude of wave (in linear approximation
s is equal to the amplitude for wavenumber k ¼ 1). With v½n� denoting the value of
any variable v on nth iteration, the scheme can be rewritten as follows (all of the
calculations are performed for surface f ¼ 0, unless it is indicated otherwise).

Step 1. Assume that n ¼ 0; log J0 ¼ 2s cothH cos n (this is the solution of the
linearized problem, g0 ¼ 0;H½0� ¼ H).

Step 2. For the given log J ½n�, use Hilbert transform (2.2.29) (with the given eH ½n�)
for complex calculation and integration in Fourier space to find z½n� (i.e.,
the Fourier coefficients g½n�k for k 6¼ 0; g½n�0 are already determined), as
described above. If the maximum surface grid point value of z½n� � z½n�1��� ��
is less than the prescribed accuracy e (usually taken *10−10), then the
iterations are completed, z½n� being an approximate solution within the
accuracy given.

Step 3. Calculate

J�1 ¼ 1
2p

Z2p
0

J�1dx ¼ 1
2p

Z2p
0

J�1xndn ð3:2:5Þ
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which is a mean value over x of the inverse Jacobian. This can be done
using the relation

J�1 ¼ 1
2p

Z2p
0

dn

xn n; f ¼ �eH� � , ð3:2:6Þ

xn n; f ¼ �eH� �
¼ 1þ

X
�M� k�M;k 6¼0

k sinh�1 k eH� �
gk#k nð Þ ð3:2:7Þ

(since in our case surface is an even function, gk ¼ 0 for k\0, i.e., the
actual summation in (3.2.7) is over positive k). The denominator in (3.2.6)
is determined in Fourier space according to (3.2.7) with the obtained

values gk ¼ g½n�k and eH ¼ eH ½n�, then it is evaluated at the grid points (in-

verse Fourier transform) to calculate J�1 ¼ J�1½n� by (3.2.6).
Step 4. Obtain [see (3.1.6)]

g½nþ 1�
0 ¼ 1

2

X
1� k�M

k coth k eH þ g½n�0

� �� �
g½n�0

� �2
; ð3:2:8Þ

Let [according to (2.2.10)]

eH ½nþ 1� ¼ eH þ gnþ 1
0 : ð3:2:9Þ

Step 5. Calculate

a ¼ a½nþ 1� ¼ expð4s coth eH ½nþ 1�Þznðn ¼ 0Þ � z½n�ðn ¼ pÞ
expð4s coth eH ½nþ 1�Þ � 1

ð3:2:10Þ

This will ensure relation (3.2.4) for the next iteration. Since from (3.1.2) it

follows that 1
2 c

2J�1 ¼ a, let 1
2 cnþ 1ð Þ2¼ Ja½nþ 1�. Calculate grid point val-

ues of

log J ½nþ 1� ¼ � log
a½nþ 1� � zn

1
2 ðc½nþ 1�Þ2 ð3:2:11Þ

Step 6. Find the Fourier expansion of log J ½nþ 1� (direct Fourier Transform); let
n ¼ nþ 1 and return to Step 2.

Relation (3.2.11) follows from the observation that the expression in the latter

integral in (3.2.5) is the real part of an analytic function: J�1xn ¼ Re dr
dq

� ��1
; hence,

according to Cauchy theorem, its contour integrals are zero; so, from the periodicity
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condition it follows that all its integrals over n with the different constants f are of
the same value: In particular, the latter integral in (3.2.5) (where f ¼ 0) is equal to

the integral over the bottom f = � eH� �
; which is the right-hand side of (3.2.5),

since at the bottom zn ¼ 0 and thus J ¼ x2n. The expansion (3.2.10) is obvious from
(3.1.3).

For the infinite depth (Chalikov and Sheinin 1998), the algorithm becomes
simpler; in particular, 12 c

2 ¼ a, since the mean over x of the inverse Jacobian tends
to 1 at f ! �1 and thus is equal to 1 at any f-level including surface. This
eliminates the calculations at Step 3 and Step 4.

This algorithm turns out to be the simplest and fastest as compared to all the
schemes for calculations of exact Stokes waves, which were developed before. The
accuracy of the method is, in principle, infinite and restricted only by the length of
word in computer. For the case of deep water, the algorithm converges up to the
steepness ak ¼ 0:44. Such wave is very unstable and being taken as the initial
condition for a non-stationary problem quickly breaks (Chalikov and Sheinin
2005). The wave with steepness ak ¼ 0:43 exhibits the periodic regime, i.e., all
modes of Stokes wave fluctuate, while the amplitudes of fluctuations slowly
increase in time with development of crest instability (Longuet-Higgins 1978;
Longuet-Higgins and Tanaka 1997). Finally such a wave also breaks. If Stokes
wave is disturbed by noise, the Benjamin–Feir (B.–F.) instability starts to develop
(Benjamin and Feir 1967). This type of instability was discussed in many works and
numerically investigated by Chalikov (2007). The B.–F. instability under the
pseudonym “modulation instability” is considered as a mechanism of the freak
wave generation (see Chap. 6).

The calculation of the most steep Stokes wave with AK ¼ 0:44 and the number
of modes M ¼ 3200 was done on a Dell PC (speed 3.11 GHz) with 550 iterations
performed for 4.17 s. The number of modes with the amplitudes larger than e in this
case is equal to 1932 (Fig. 3.1, panel 1). The calculations for AK ¼ 0:30 took 52
iterations and 0.37 s. In this case, the number of modes required was 28. The phase
speed (panel 2) reaches the maximum value c ¼ 1:0926 at AK ¼ 0:44. The total
volume V, the horizontal momentum Mh, the potential Ep, and kinetic Ek energies
of waves were calculated with the exact relations:

V ¼ ð2pÞ�1
Z2p
0

zzndn; Mh ¼ ð2pÞ�1
Z2p
0

uznzdn; Ep ¼ ð2pÞ�1
Z2p
0

z
2
xndn;

Ek ¼ �ð2pÞ�1
Z2p
0

uUfdn;

ð3:2:12Þ
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The dependence of Mh and exceeding of phase velocity over the linear value
C � 1 on steepness AK is shown in Fig. 3.1, panel 2. The dependence of sum of the
kinetic and potential energies

E ¼ Ep þEk on AK is shown in panel 3 (Fig. 3.1, solid line). Naturally, the

energy is growing with steepness, though faster than ðAKÞ2 because of the increase
of crest sharpness and vertical asymmetry of surface (see dependence of skewness

Fig. 3.1 Characteristics of stationary solutions for Stokes waves as functions of steepness
AK ¼ 0:01�0:44ð Þ: a Tc—time of calculation in milliseconds, Ni—number of iterations, kl—
number of Fourier mode with amplitude less than 10�11; b C � 1 (C is a phase velocity), Mh—
horizontal momentum; c E ¼ Ep þEk—total energy, averaged over period (Ep—potential energy,
Ek—kinetic energy); Emax—maximum value of total energy; d skewness sk, kurtosis ku
(Reproduced with the permission from Chalikov (2007). © 2007 AIP Publishing LLC)
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Sk and kurtosis Ku for Stokes waves on steepness AK in panel 4, Fig. 3.1). The
examples of profiles of Stokes waves are shown in Fig. 3.2 along with the profiles
of columnar potential ep and kinetic ek energies calculated by the relations:

epðxÞ ¼ z2

2
; ekðxÞ ¼

Zz

�H

ðu2 þw2Þdz ð3:2:13Þ

where u and w are the velocity components calculated through the two-dimensional
velocity potential u. The integral in (3.2.13) was calculated on a stretched vertical

Fig. 3.2 Profiles of Stokes waves of different steepness, profiles of potential (dashed curve) and
kinetic (dotted curve) energy
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grid, the lower limit being z ¼ 6p. The most interesting feature of Stokes waves is
the concentration of total energy in the crest column with increase of steepness. As
it follows from Fig. 3.1 (panel 4), for Stokes waves with AK ¼ 0:25 the ratio of
maximum value of energy e ¼ ep þ ek to the averaged energy E is about 2.5, but for
Stokes waves with AK ¼ 0:42 this ratio is 12.6 (see last panel in Fig. 3.2).

Such focusing of energy for the critical steepness can explain a destroying power
of very large and steep breaking waves (freak waves). The problem of freak waves
is discussed in details by Kharif and Pelinovsky (2003). The numerical modeling of
freak waves is described in Chalikov 2009 (see Chap. 6).

The properties of Stokes wave at finite depth were investigated by Chalikov and
Bulgakov (2015) for M ¼ 1000 and the number of grid pointsM ¼ 4000 within the
steepness range 0\ak� 0:43 and depth range 0\d� 2p. The most specific feature
of a stationary gravity wave at finite depth is the sharpening of wave with decrease
of depth (Fig. 3.3). All of the results in Fig. 3.3 refer to the steepness ak ¼ 0:01. As
shown, the length of positive values shrinks, and wave tends to become periodic
d-function. The phase velocity of wave with the steepness ak ¼ 0:01 at depth
d ¼ 0:1 is equal to 0.338.

The dependence of phase velocity on ak and d is given in Fig. 3.4. Note that the
phase speed of linear wave ðak ! 0Þ is equal to 1. The curve in the bottom of the
picture shows the area of existence of the solution obtained with the algorithm
described above. It would be reasonable to suppose that stationary waves in this
domain do not exist or are highly unstable. The absence of solution is confirmed by
the fact that upon approaching the area of instability the second derivative quickly
grows, which means violation of continuity of the first derivative. For Stokes wave
at deep water, the sharpening of wave occurs at ak ¼ 0:443. However, this effect
takes place at finite depth at smaller steepness. In upper domain stationary waves
evidently exist, but they probably are unstable in the presence of disturbances
similar to the Stokes wave at deep water. The line separating instability domain can
be approximated by

Fig. 3.3 Wave profile for
different depths (see legend)
for steepness ak ¼ 0:01
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d
2p

¼ �0:0021þ 0:2013ak � 0:03755ðakÞ2
0:47� ak

ð3:2:14Þ

As shown, for depth d[ p the solution is close to that for the Stokes wave; that
is, the phase velocity with increase of steepness grows from 1 for a nearly linear
wave up to 1.0922 for the steepness ak ¼ 0:443. At smaller depth, the situation
changes: The phase velocity decreases together with shrinking of the stability area
(see right panel in Fig. 3.5). The smallest phase velocity c ¼ 0:0412 was obtained
at ak ¼ 0:0001 and d ¼ 0:0015. Probably, the phase velocity goes to zero simul-
taneously with d and ak. This hypothetic behavior is not taken into account in
approximation (3.2.14).

Fig. 3.4 Phase speed of wave as function of depth d and steepness ak. Right panel corresponds to
lower left corner of left panel

Fig. 3.5 Ratio of crest height Hc to trough depth Ht
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The vertical asymmetry of stationary wave at finite depth is shown in Fig. 3.5
where the ratio of wave height Hc in crest and trough depth Ht is represented. For
the linear wave, the ratio is equal to 1, while for the steepest Stokes wave this ratio
is equal to 2.056. When depth and steepness become smaller, the ratio Hc=Ht

increases. For example, Hc=Ht is equal to 633.19 for ak ¼ 0:0001 and d ¼ 0:0015.
Probably, this characteristic goes to infinity; hence, its limit value does not exist.
The maximum value of the local steepness maxð@g=@xÞ ¼ 1:971 is reached at
ak ¼ 0:443 for Stokes wave. The behavior of the second derivative characterizing
sharpness of wave is more complicated. The absolute value of @2g=@2x in wave
peak exceeds @2g=@2x in trough many times. At ak ¼ 0:0001 and d ¼ 0:0002, the
value @2g=@2x has extremes −20.1 and 6.1; and at ak ¼ 0:44 and d ¼ 2p, the
extremes are equal to −287.5 and 0.3.

3.3 Gravity-Capillary Waves

An iterative algorithm similar to that described above has been worked out to obtain
a numerical solution of (3.1.2) with r[ 0 Here again we assume that surface
elevation is an even function of x and, hence, of n. To describe the algorithm, it is
convenient to rewrite (3.1.2) in the form

1
2
c2�J

�1=2 þ J1=2
a

aþ 1
z� a�

� �
� 1
aþ 1

J�1ð�xnnzn þ znnxnÞ ¼ 0; ð3:3:1Þ

where a ¼ 1=r; a� ¼ aa=ðaþ 1Þ; c2� ¼ c2a=ðaþ 1Þ ¼ c2=ð1þ rÞ. Note that c� is
the ratio of the actual phase speed to the phase speed of the linearized problem

cl ¼ 1
k
þ rk

� �1=2

¼ 1
k
þ k

a

� �1=2

ð3:3:2Þ

for the wave number k ¼ 1; the convenience of representing the results in terms of
this ratio is that it does not depend on the choice of time scale.

Considering the last term on the left-hand side of (3.3.1), it can be seen that

J�1 �xnnzn þ znnxnð Þ ¼ Im
dw
dq

� �
¼ ImðwnÞ ¼ ðImwÞn ð3:3:2Þ

where w and q have the same meaning as in (3.2.2). Also, if we assume that the
mean of the surface height over x coordinate is zero, we come to the following
choice of the 0th Fourier coefficient:
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g0 ¼
1
2

X
1� k\M

kg2k ; ð3:3:3Þ

Then, parameters a� and c� are connected by the relation

a� ¼ 1
2
c2� : ð3:3:4Þ

For pure gravity wave, this property directly follows from the results by
Longuet-Higgins (1975); for a general case of gravity-capillary waves, the relation
(3.3.3) still holds, as it can be deduced from the observation that the mean of the
capillarity term in (2.1.3) over x is zero.

Relations (3.2.2), (3.3.2), and (3.3.4) allow us to rewrite (3.3.1) as follows:

�2ðaþ 1Þa� sinhðRewÞþ a expðRewÞz ¼ ðImwÞn: ð3:3:5Þ

S ¼ � 1
2

Imwnðn ¼ 0; f ¼ 0Þ � Imwnðn ¼ p; f ¼ 0Þð Þ ð3:3:6Þ

As for the parameter determining wave amplitude [like s in (3.2.4), it is equal to
the amplitude for the linearized problem], we can now formulate an iteration
scheme as follows:

Step 1. Assume n ¼ 0; ðImwÞ½0�n ¼ �Sef cos n (solution of the linearized
problem).

Step 2. For given ðImwÞ½n�n , find w½n� in Fourier space by integration and a Hilbert

transform [as in the equality (2.2.29)] at each grid point, then find z½n� by a
Fourier transform and integration according to the second relation (3.2.2),
with the integration constant defined by (3.3.3). If the maximum surface
grid point value of z½n� ¼ z½n�1� is less than the prescribed accuracy e, the
iterations are completed, and z½n� is an approximate solution within the
accuracy given.

Step 3. Calculate surface values of ðImwÞ½nþ 1�
n as the right-hand side of (3.3.5) by

substituting w ¼ w½n�; z ¼ z½n� into the left-hand side. Similarly to Step 3 (in

the scheme for gravity waves) a� ¼ a½nþ 1�
� must be chosen so that (3.3.6)

holds for w ¼ w½nþ 1�:

a½nþ 1�
n ¼ a

2ðaþ 1Þ
g½n�ð0Þ exp R½n�ð0Þ� �� g½n�ðpÞ exp R½n�ðpÞ� �

sinh R½n�ð0Þð Þ � sinh R½n�ðpÞð Þ ; ð3:3:7Þ
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where

g½n�ðnÞ ¼ z½n�ðn; f ¼ 0Þ; R½n�ðnÞ ¼ Rew½n�ðn; f ¼ 0Þ: ð3:3:8Þ

Step 4. Find the Fourier expansion of ðImwÞ½nþ 1�
n by a Fourier transform; let

n ¼ nþ 1 and return to Step 2.

Convergence of the algorithm and dependence of wave amplitude on the
parameter s for a different a are characterized by Table 3.1. Since the wave profile
obtained for a large a has two maxima, the values of Â

Â ¼ 1
2

max g nð Þð Þ �min g nð Þð Þð Þ ð3:3:9Þ

are indicated along with A

A ¼ 1
2

gðn ¼ 0Þ � gðn ¼ pÞð Þ ¼ 1
2

hðx ¼ 0Þ � hðx ¼ pÞð Þ ð3:3:10Þ

For Â ¼ 0:4 and Â ¼ 0:1, the samples of the calculated wave profile with the
different a are given in Fig. 3.6 in panels a and b. It can be seen that with the
increase of a (i.e., with the capillarity coefficient r decreasing), the wave profiles do
not approach those of pure gravity waves, but rather shift the energy to the smaller
scales where capillarity effects are more pronounced. Starting from a ¼ 2 the two
maxima emerge; thus, x ¼ 0 becomes a local minimum (the absolute minimum
being always at x ¼ p); at the same time, the speed of convergence decreases
rapidly, especially for small amplitudes. The values of a which ensure equal phase
velocities (3.1.21) for two neighboring wave numbers k; kþ 1, are a ¼ 2ðk ¼ 1Þ
and a ¼ 6ðk ¼ 2Þ.

The scheme for calculation of capillary-gravity waves does not converge for the
values a[ 6; ðr ¼ 1=6Þ. When capillarity decreases, the phase velocity decreases
and does not approach its value at r ¼ 0. This effect is explained by the structure of

Table 3.1 Number of
iterations Nit for
gravity-capillary waves
calculated for different a I S

0.001 0.1 0.2 0.4 0.6 0.8 1

0 4 16 18 20 21 21 20

0.5 22 41 41 39 39 43 43

1 37 61 48 47 44 43 42

1.5 79 93 58 48 43 41 39

2 7966 157 81 44 41 40

3 152 106 88 62 54

4 161 134 122 97

5 212 178 157 138

6 2,771,779 2051

Blank entries mean that the scheme failed to converge
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the capillary term in Eq. (2.1.3) since the effect of capillarity is described by the
high-order differential terms. Though the scheme may fail to reproduce some
existing stationary solutions, the behavior of the profiles and phase velocities, as
described above, suggests that for a small r the solution may be unstable or simply
nonexisting.

3.4 Pure Capillary Waves

Pure capillary waves are described by (3.1.20) if we formally set a ¼ 0. In this case,
the solution is represented by a simple formula (Crapper 1957, 1984). In our
notations, it can be written as follows:

xðn; fÞ ¼ nþ 4q sin n
1� 2q cos nþ q2

ð3:4:1Þ

zðn; fÞ ¼ nþ 4qðcos n� qÞ
1� 2q cos nþ q2

� 1
2
A ð3:4:2Þ

Fig. 3.6 Profiles of
gravity-capillary waves,
Â ¼ 0:4: a Curve (1) a ¼ 0
(Crapper’s wave), (2) a ¼ 1,
(3) a ¼ 2, (4) a ¼ 3;
b Â ¼ 0:1. (1) 0, (2) a ¼ 4,
(3) a ¼ 3, (4) a ¼ 2, (5) a ¼
0 (Crapper’s wave)
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where

q ¼ be1; b ¼ �2þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þA2

p

A
ð3:4:3Þ

and A, S are defined by the expression:

A ¼ S ¼ 4b
1� b2

; ð3:4:4Þ

and phase speed c� is defined as

c2 ¼ 2ð1þ rÞffiffiffiffiffiffiffiffiffiffiffiffiffi
4þA2

p : ð3:4:5Þ

The last term in (3.4.2) may be any constant but here it is chosen to satisfy
condition (3.3.4).

The exact solution (3.4.1)–(3.4.5) was used as another means to validate the
scheme for the calculation of gravity-capillary waves with r = 0. For all the
amplitudes tested, up to the maximum possible amplitude (e.g., Crapper 1957,
1984), the maximum rms difference between the numerical ðM ¼ 96Þ and exact
solution was less than 5� 10�12. The phase velocity coincides with the theoretical
values with the accuracy of 6 digits.

3.5 Conclusion

The exact and fast numerical methods for solution of stationary equations for
gravity and gravity-capillary waves have been developed. The method allows us to
obtain the solutions with computer accuracy. The method is based on the repre-
sentation of differential equations for surface height, written in the new coordinates
(which in this case are proportional to the velocity potential and stream functions)
via operator of integration and (generalized) Hilbert transformation calculated in
Fourier space. Again, the use of Fourier transform method to calculate nonlinear-
ities allows a highly efficient implementation of the method. It should be noted that
two separate algorithms for pure gravity and gravity-capillary waves were devel-
oped, and that in the latter case our algorithm fails to converge when the
non-dimensional capillarity coefficient becomes small. This problem requires fur-
ther investigations. It was shown that with decrease of values of the capillary
coefficient the phase velocities of gravity-capillary waves decrease rather than
approach the values of the Stokes phase velocity. Thus, the Stokes waves do not
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appear to be an asymptotic form of gravity-capillary waves as the capillarity goes to
zero. This, together with the non-convergence of the algorithm (and its various
modifications) for small capillarity can be an indication that stationary
gravity-capillary waves which are only slightly affected by the capillary forces are
unstable or just nonexisting.
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Chapter 4
Two-Dimensional Wave Modeling Based
on Conformal Mapping

Abstract High accuracy was confirmed by validation of a non-stationary model
against known solutions and by comparison between the results obtained with dif-
ferent resolutions in the horizontal. Themethod developed is applied for simulation of
wave evolution with different initial conditions. The numerical experiments with the
initially monochromatic waves of different steepness show that the model is able to
simulate the breaking conditionswhen the surface becomes amulti-valued function of
the horizontal coordinate. An estimate of the critical initial wave height that separates
non-breaking and eventually breaking waves is obtained. Simulation of nonlinear
evolution of a wave field represented initially by twomodes with close wave numbers
(amplitude modulation) and a wave field with a phase modulation is given. Both runs
result in appearance of large and very steepwaves. Both of them also break if the initial
amplitudes are sufficiently large. The interaction of two monochromatic waves at
water surface enters a different dynamic regime if their wave numbers become very
close. In the course of evolution of twowaves, downshifting of the initial wave energy
and growth of the first mode occur depending on wave steepness and a relative
distance between modes in Fourier space.

4.1 Validation of Two-Dimensional Model by Comparison
with the Stationary Solutions

The stationary solutions described in Eqs. (3.1.2, 3.1.3, and 3.1.4) were used for
validation of the non-stationary model (2.2.34), (2.2.35). The wave generated in a
moving with phase velocity coordinate system was used as initial conditions for
calculation of a progressive wave on the basis of non-stationary equations. If such a
wave is stable with respect to the truncation errors, it should propagate with the
specific phase velocity without changing its shape. Note that such validation is not
always accurate. Let us, for example, place the components of Stokes wave at wave
number k = n,2n,3n. . . In this case, the solution can be disturbed by the interme-
diate modes growing as the results of B-F (Benjamin and Feir 1967) instability. If
these modes are assigned as noise in the initial conditions, we can observe a

© Springer International Publishing Switzerland 2016
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selective enhancement of their amplitudes (Chalikov 2007, see Chap. 6). If the
initial disturbances are not introduced, the solution will finally be distorted by the
modes initiated by the truncations errors, and development of B-F instability will
take place anyway. In both cases, validation of the model will be unsuccessful. The
only way to avoid development of such scenario is dense assigning of the initial
solution at wave numbers k = 1,2,3. . .. In this case, we leave no room for devel-
opment of unstable modes. The same consideration is valid for capillary-gravity
waves and for capillary waves.

The model was validated against all the three types of waves: pure capillary
deepwater (Crapper’s) waves (which are analytical solutions), pure gravity, and
gravity-capillary waves obtained numerically with the algorithm described above.
The calculations were done for M = 96 and N ¼ 432. For all the test cases, a visual
comparison of instantaneous wave profiles obtained during the simulations showed
that the wave profiles moved without any perturbations. To estimate ‘steadiness’ of
the numerical solution quantitatively, we calculated the phase velocities and
amplitudes of the Fourier components for consecutive moments of time and
obtained their temporal means and standard deviations over the period of integra-
tion. The Crapper wave was assigned with amplitude Ac ¼ 0:7. The exact phase
velocity cc was equal to 0.971524, which exactly coincides with the phase velocity
calculated by the results of the non-stationary solution. For Stokes wave with
amplitude As ¼ 0:3, the exact and calculated phase velocities were 1.046040 and
1.045997, respectively. For gravity-capillary wave, both of these values were equal
to 1.160514. Hence, even for the cases of steep waves, the calculated phase
velocities were very close to their exact values (i.e., those obtained for the sta-
tionary solutions) for all the three types of waves (pure gravity, gravity-capillary,
and pure capillary waves). Since conservation of the amplitudes was also very
accurate (deviation of their values from their initial values during the simulations
was always less than 10−7 for Stokes wave and less than 10−11 for capillary and
gravity-capillary waves), the modes retained their initial energies and remained
consistent in phase; consequently, the simulated waves did not change their shapes
during the integration. This result confirms that these waves are stable with respect
to the truncation errors and that the numerical solutions yielded by the model,
approximate the solutions of the original differential equations with high accuracy.
For all model simulations described in (Chalikov and Sheinin 2005), a difference
between the solutions presented and their versions obtained with M twice as large
was practically absent, which confirms convergence of the numerical scheme.

An additional validation (Chalikov 2005) was performed by simulation of very
steep Stokes waves for ak = 0:42 for better resolution (M = 1000, N = 4000,
Ds ¼ 0:0025). The evolution of the first 880 amplitudes is given in Fig. 4.1. It is
shown that the amplitudes and, consequently, the shape of Stokes wave remained
unchanged with a very high accuracy. These integrations can be continued much
longer without noticeable changes of amplitudes. After 2,686,500 time steps (932
periods), the total energy for ak = 0:42 and M = 1000 decreased only at 3 � 10�8%.
The calculations for ak = 0:42 performed by Dold (1992) were quickly terminated
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due to the numerical instability. The exact phase velocity of Stokes wave obtained
for the stationary solution for ak = 0.42 was 1.089578. A direct calculation of phase
velocity of the simulated Stokes wave gave value 1:089579� 10�6:

Note that the validation based on simulation of running Stokes waves is full and
not trivial, because the non-stationary equations ‘do not know’ the stationary
solution obtained in a moving coordinate system with a different method.

Now, it becomes clear that solution for Stokes wave is not just an interesting
mathematical result; i.e., the Stokes waves themselves begin to play an important
role in investigation of the physics of surface waves. The traditional approach to
investigation of nonlinear properties of waves was based on suggestion that wave
field can be represented as a superposition of linear waves, so interaction of the
linear objects was considered. Hence, such approach can be referred to as a
quasi-linear approach. Of course, the spectral presentation can be introduced for
nonlinear waves, but the information on phases is missing. However, the phase
distribution in nonlinear waves is not random, since some part of shortwaves moves
with the phase velocity of long waves, so, strictly speaking, they are not the waves
but just auxiliary modes taking part in construction of shape of nonlinear waves
(this is why the term ‘bound waves’ is misleading). The simple visual observing of
sea surface shows that large wave has mostly sharp crests and smooth troughs. The

Fig. 4.1 Long-term
evolution of amplitudes of
first 880 constituents of stokes
waves: (ak = 0.42, each 10th
constituents is shown) during
2,686,500 time steps (932
periods). (Reproduced with
permission from Chalikov
(2007) © 2007 AIP
Publishing LLC)
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Fourier analysis of exact solution shows that the field of gravity waves is rather a
superposition of Stokes waves than that of the linear waves (Chalikov 2005). These
properties have a deep physical background; i.e., Stokes wave is an exact solution
of principal equations, while the linear waves are unstable and quickly transform,
turning into… Stokes waves (Chalikov 2010, see Chap. 6).

4.2 Examples on Non-stationary Solutions

The progressive gravity, capillary, and gravity-capillary waves represent a very
specific case of nonlinear interactions; they consist of Fourier modes which, rather
than obeying the linear dispersion relation, propagate with one and the same phase
speed. It is evident that this effect can also be observed in more general situations:
Due to the impact of nonlinearity, a multi-mode wave motion cannot be represented
as a superposition of the Fourier modes propagating with their own phase speed;
moreover, a certain wave number is not strictly associated with any single-phase
speed. Perhaps, the most striking manifestation of nonlinearity is that some shorter
waves propagate with the phase speed close to that of the long waves. The
instantaneous phase velocity of kth mode can be calculated with the relation:

ck ¼
g�k

@gk
@s � zk

@g�k
@s

k g2k þ g2�k

� � ð4:2:1Þ

An existence of such forced (‘bound’) components was clearly demonstrated in
many laboratory and observational studies (see, e.g., Yuen and Lake 1982). Various
explanations have been proposed for this phenomenon including the wind–wave
and wave–current coupling, but in the works cited, it was found that this effect is
mainly due to the nonlinearity of waves themselves. A realistic wave field contains
both types of modes, i.e., free and ‘bound’ for the same wave number; thus, the
‘observed’ phase velocities reflect a combined effect of these two types. The par-
tition of the energy between these types of waves depends on their density in wave
spectrum. This phenomenon was reproduced in the 1-D potential model by
Chalikov and Liberman (1991) who pointed out that each wave component with the
wave number higher than that of a carrying wave turns out to have phase speed
much greater than that predicted by the linear theory. They also found that phase
velocity varies in time and that its standard deviation increases with wave number.

Another numerical experiment we consider as a simulation of Lake and Yuen
(1978) laboratory experiment where the nonlinear interaction of two gravity waves
with the wave numbers close to each other was investigated. The above authors
evaluated phase velocities of different modes by calculating the coherence of the
surface elevation values in two sections of wave and found out that the phase
velocities of the waves not produced by wave maker were close to those of the
primary waves. It is hardly possible to exactly reproduce their experiment since the
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amplitudes of waves were not reported, and there are uncertainties as to modeling of
the forcing. In the model, to obtain the flow which is qualitatively similar to the
experimental one, we use a superposition of` the 3rd and the 5th modes with equal
amplitudes of 0.04 as the initial conditions for surface elevation. The corresponding
surface velocity potential was assigned by the formula of small-amplitude waves.
The simulation was performed with time step 0.01 up to t = 1000. It was found that
the energy of 3rd mode is nearly conserved, while the energy of 5th mode became
considerably less.

In Fig. 4.2, the temporal means and standard deviations of the instantaneous
phase velocities are shown. It is seen that the linear dispersion relation is observed
only for the wave numbers 2� k� 5. For k[ 5, waves propagate significantly
faster than the corresponding linear waves though slower than the primary waves.
This effect is clearly pronounced only for the temporal means of phase velocities;
the instantaneous values vary highly (as pointed out by Chalikov and Liberman
1991), which is reflected by a large standard deviation for the wave numbers k[ 5.
This scattering is caused by the presence of both ‘bound’ and free waves.

More information on free and ‘bound waves’ and their phase velocities is pro-
vided by the wave number–frequency spectrum Sðk;xÞ shown in Fig. 4.3 along with
the logarithms of the time-averaged wave number �Sxk and frequency �Sxk spectra. The
picture of S looks as if it consists of patches; this effect is achieved by use of high
density of contour lines. To calculate S for each k, the instantaneous Fourier
expansions with respect to the x coordinate were stored during the entire period of
simulation 0\t[ 1000 with the time interval of 0.08, and Fourier transform with
respect to time was used. In this and other runs, the length of simulation ensured a
sufficient frequency resolution dx ¼ 2p=1000, which is essential for the analyses of

Fig. 4.2 Simulation of Lake
and Yuen (1978) experiment.
Time-averaged phase velocity
(asterisks) and its standard
deviation (vertical bars) as
function of wave number.
Curve corresponds to linear
dispersion relation
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the spectra; the maximum resolved frequencyx ¼ p=0:08 far exceeded any possible
‘physical’ values of x and thus rendered the transforms aliasing error negligible.

The most remarkable feature of the wave number–frequency spectrum is that it is
split into a set of branches in a regular way. This effect is well pronounced for the
waves propagating in the direction prescribed for k[ 0 domain, but it is also
noticeable for the waves moving in the opposite direction which were not presented
in the initial conditions at k\0. Note that the sign of k is determined by the sign of
the component’s phase velocity, while x is assumed positive. The considerable part
of energy belongs to the components which nearly obey the linear dispersion
relation (curve 1 in Fig. 4.3). The remaining energy mostly belongs to what is
called ‘bound’ components which propagate with the phase velocities of their
carrying waves and lie at the branches approximated by curves

x2 ¼ n kj j; ð4:2:2Þ

where n (number of branch) is a positive integer. Some energy is concentrated near a
straight line passing through the origin. The nature of these modes is unclear, so a
further investigation is required for explanation of these features. Strictly speaking,
not all of the component (4.2.1) with n[ 1 can be called ‘bound,’ since those with
k which is not a multiple of n have no ‘carrier.’ However, they propagate as if they
were ‘bound’ to a free wave with the wave number k=n. Note that separation of modes

Fig. 4.3 SimulationofLake andYuen (1978) experiment. Time-averaged spectral characteristics for
the period dt ¼ 1000 (about 160 peak wave period). Curve 1—linear dispersion relationx2 ¼ k, the
other parabolas correspond to dependence x2 ¼ nk ðk ¼ 1; 2; 3; . . .; 9Þ. The contour lines of
log10 Sðk;xÞ (wavenumber–frequency spectrum)are seenas concatenated inpatches.Curve2 is log10
SkðkÞ (wave number spectrum, right axis) and curve 3 is log10 S

xðxÞ (frequency spectrum, top axis)
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into ‘bound’ and free is not determined well, since some free waves have definitely
their own ‘bound waves.’ So, the wave structure turns out to be quite complicated.

Another experiment was designed to approximate real ocean surface waves
assigned by the amplitudes

ak =
A0

k
kp

� �P
k0 � k� k0 + Mm � 1

0 otherwise

(
ð4:2:3Þ

where A0 is amplitude of k0th mode, while power P\0 is the amplitude decrement.
The Fourier coefficients were calculated as

gk ¼ ak
sin/k k� 0
cos/k k[ 0

;

�
ð4:2:4Þ

where /k is the random phase.
The Fourier coefficients for the initial surface velocity potential were assigned in

such a way that in linear approximation, all wave components propagated in pos-
itive directions:

uk = signðkÞg�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rk2

k tan h ðkHÞ

s
. ð4:2:5Þ

The values A0 = 0:01, kp = 5, P = � 1:5, and r ¼ 0 were chosen. The wave
number–frequency spectrum calculated for this case is shown in Fig. 4.4. This
picture is quite similar to that in Fig. 4.3. Again, most of the energy is concentrated
along the ‘main’ branches (4.2.2), and ‘quasi-rectilinearity’ is again quite distinct. It
is not excluded that the modes belonging to this branch are the artifacts of

Fig. 4.4 The same
characteristics as in Fig. 4.3
but for initial conditions
approximating real spectrum
(4.2.3)
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processing. The formula for calculation of phase velocity (4.2.1) was derived
assuming that Fourier components for elevation gk are constants. It is shown in
Chap. 5 that such assumption is not always correct.

In the next experiment, the gravity-capillary waves were simulated with the
non-dimensional parameters A0 ¼ 0:001; kp ¼ 16;P ¼ �1:5; so the potential,
kinetic, and kinetic capillary energies were of the same order. The integration was
carried out with time step 0.001 up to t = 1000. The evolution of a different type of
energy for this case is shown in Fig. 4.5.

The horizontal momentum Mh and the volume V are conserved with the relative
error margins of the order of 10�13 and 10�11, respectively. It is shown that while
all the energy components show significant fluctuations, their sum (curve 3) is
nearly constant, its slow decrease being due to damping at high wave numbers. The
dependence of phase velocity on wave number for this case and its standard

Fig. 4.5 Simulation of gravity-capillarywaves ðr ¼ 0:05Þ. Time evolution of gravitational potential
energy ep (curve 1), potential energy of surface tension (2), kinetic energy (3), and their sum (4)

Fig. 4.6 Simulation of
gravity-capillary waves
ðr ¼ 0:05Þ. Time-averaged
phase velocity (asterisks) and
its standard deviation (vertical
bars) as function of wave
number. Curve corresponds to
linear dispersion relation

42 4 Two-Dimensional Wave Modeling Based on Conformal Mapping

http://dx.doi.org/10.1007/978-3-319-32916-1_5


deviation are shown in Fig. 4.6. As in the runs with pure gravity waves, the phase
velocity at low wave numbers follows the linear dispersion relation (4.2.2), though
with considerable scattering.

4.3 Simulation of Steep Waves

The method developed was applied to simulation of nonlinear growth of deepwater
gravity waves (with the external pressure pe ¼ 0) and initial stages of their
breaking. Obviously, a breaking wave, as a solution to the potential flow equations,
exists only within a limited time interval. A potential flow model is thus unable to
reproduce later stages of wave breaking which occur after the potential flow
solution ‘blows up,’ and the actual flow becomes rotational and turbulent.

Two groups of model runs were carried out (Table 4.1): integrations starting
from monochromatic waves of different amplitudes (runs 1–4) and the cases where
the initial wave profiles represent amplitude (run 5) and phase (run 6) modulation.
For cases 1–6, the period of wave was about 2p, and for cases 5 and 6, the linear
estimations for the group periods were 40.7 and 5, respectively.

The integration time T in the table can be considered in comparison with the
periods of the simulated waves. In linear approximation, these periods are as fol-
lows: Skx for runs 1–4, 2p=

ffiffiffiffiffiffiffiffiffi
10:5

p
for run 5, and 2p=

ffiffiffi
5

p
for run 6. For all the runs

except run 4, T is the time of collapse of the numerical solution and can be closely
identified with the time of existence of the potential flow solution (see discussion of
convergence in the previous section). For the solution in run 4, the time of existence
is apparently infinity. As a test of the model’s ability to simulate evolution of very
large waves, we first chose the initial data that can be somewhat unrealistic, namely
a monochromatic wave with the maximum slope (non-dimensional amplitude)
a ¼ maxðhxÞ ¼ 0:5.

The results are shown in Fig. 4.7 where the instantaneous surface height profiles
as well as velocity fields and deviations of pressure from its generalized hydrostatic
component (i.e., pþ f, according to Sect. 4.2) are depicted for different moments of
time. The initial conditions are shown in the upper panel; the middle panel corre-
sponds to the moment when the maximum slope max hxj j first turns into infinity (the
overturning begins); the lower panel represents the condition close to the collapse,
with the overturning already in advanced stage. Note the pressure ‘bubble’ in the
middle panel, which becomes somewhat less pronounced later, when ‘excessive
mass’ of the overturning crest is about to be released. The results also illustrate one
more advantage of the conformal mapping method, which is its ability to reproduce
surface height profiles that are multi-valued functions of the horizontal coordinate x.

In Fig. 4.8, the same instantaneous fields are presented for the case of the
initially monochromatic wave with a ¼ 0:3 (run 2). This wave, too, eventually
breaks, but it is only a relatively small portion of mass in a close vicinity of the peak
that overturns. Unlike the previous case, by the moment when overturning begins
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ðt ¼ 5:45Þ, the crest sharpens dramatically, which accelerate overturning; simula-
tion of this effect required a higher resolution than in run 1. The middle panel of
Fig. 4.7 depicts the wave well before its overturning but with a high pressure area
under the crest, already well developed, and other features of the nonlinear
behavior, such as sharpening of the wave crest, increase of its height (more than 1.6
times of its initial value), and large velocities at crest—already strongly pro-
nounced. The lower panel represents a moment during the short period between the
beginning of overturning and collapse of the solution. At this stage, as well as

Fig. 4.7 Surface profiles, velocity vector fields (scaled by the linear phase velocity of the base
wave shown at the left upper corner of each panel), and deviations of pressure from its generalized
hydrostatic component (contour lines) for the initially monochromatic wave with the maximum
slope a = 0.5 (run 1) at different times t (indicated at the right upper corner). (Chalikov and
Sheinin 2005 © 2005 Elsevier Inc. with permission of Elsevier)

4.3 Simulation of Steep Waves 45



during the breaking stage in run 1, the velocities at the crest exceed the (linear)
phase velocity by 1.1–1.3 times.

Time evolution of maximum slope max hxj j; maximum velocity max ~V
�� �� ¼

max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

x þU2
z

q� �
; maximum surface height maxðhÞ; and wave height Dh ¼

maxðhÞ �minðhÞ for the cases of initially monochromatic waves with a ¼ 0:28
(run 3) and a ¼ 0:27 (run 4) is shown in Figs. 4.7 and 4.8, respectively. Again, the

Fig. 4.8 The same as shown in Fig. 4.7 but with a = 0.3 (run 2). (Chalikov and Sheinin 2005 ©
2005 Elsevier Inc. with permission of Elsevier)
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behavior of both waves is highly nonlinear, and during the initial stage of about one
wave period, the two waves exhibit quantitatively similar growth, steepening, and
acceleration at the crest. However, while this initial evolution results in breaking for
the former wave in a manner similar to run 2, the latter wave survives its climax,
and its characteristics reverse their tendencies to reach their initial values and then
continue to oscillate in a quasiperiodic manner. It suggests that for the initially
monochromatic waves, the critical value a� of the initial amplitude (the values at
which the waves with a[ a� eventually break and the waves with a\a� do not) is
between 0.27 and 0.28. Note that these conclusions were obtained with a
high-resolution scheme for which the influence of dissipation was shifted to very
high frequencies.

Thus, the wave in run 4 is close to the highest non-breaking initially
monochromatic wave. It is worth mentioning that the maxima of its height Dh
(about 0.62, see the lowest panel in 4.13), let alone its initial height 2a ¼ 0:54; are
considerably less than the height of the steepest Stokes wave (0.886) or the Stokes
wave of the highest energy (0.858). Likewise, the total energy of the wave in run 4
is only about 0.50 of the maximum energy of Stokes waves. Thus, both the
maximum height and energy of the non-breaking initially monochromatic waves
are significantly less than those for the Stokes waves, so the latter characteristics
cannot serve as the criteria of breaking.

It is noteworthy that for all the simulations with the initially monochromatic
waves, the growth of the maximum surface height (the height of the crest) maxðhÞ
significantly exceeded that of wave height Dh (see 2, 3; cf. 3rd and 4th panels in
Figs. 4.9 and 4.10), and sharpening of the crest was accompanied by flattening of
trough. Skewness was also increasing. For non-breaking waves, these processes
turn out to be fully reversible (run 4, Fig. 4.10). It is interesting to note that the
values of Jacobian less than J = 0.2 were never observed. Hence, division by
Jacobian in Eq. (2.2.35) did not play a significant role for instability. On the
contrary, very large values of J in the vicinity of sharp crests (up to J = 100) were
typical. It did not influence the stability directly, but imposed additional restrictions
to time step.

Runs 5 and 6 simulate a nonlinear evolution of the wave fields which have a
relatively low initial maximum slope max hxj j (0.209 and 0.239, respectively). Runs
5 and 6 result in the development of steep breaking waves. In run 5, the initial
condition is a superposition of two monochromatic waves with the same amplitude
and close wave numbers. The elevation can be described by the expression
h ¼ 0:02 cos 0:5x cos 10:5x; thus, it represents ‘single’ wave with slowly changing
amplitude. The results are shown in Fig. 4.11 (instantaneous fields) and Fig. 4.12
(time evolution of the geometric characteristics). Note that while a monochromatic
wave overturns in about one wave period or less (if ever), it takes some 26 wave
periods for the modulated wave in run 5 to reach the breaking stage. In the former
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case, an individual wave has initially sufficient energy to grow nonlinearly up to the
breaking point, while in the latter case, an individual wave that eventually breaks
does not have a ‘critical’ initial energy but grows as a result of a relatively slow
process of energy redistribution along the wave train.

Fig. 4.9 Temporal evolution of geometric characteristics of the initially monochromatic wave

with a = 0.28 (run 3): 1—maximum slope max hxj j; 2—maximum velocity max V
!��� ���; 3—maximum

surface elevation maxðhÞ; 4—wave height Dh ¼ maxðhÞ �minðhÞ. (Chalikov and Sheinin 2005 ©
2005 Elsevier Inc. with permission of Elsevier)
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In run 6, the initial condition represents phase (or frequency) modulation of the
base wave with wave number k = 5. The results (Figs. 4.13 and 4.14) are basically
similar to those for the case of the amplitude modulation (run 5): redistribution of
energy along the wave train, which continues for many periods of the base wave
(13 wave periods in run 6) and is clearly shown in Figs. 4.11 and 4.13, eventually
results in the formation of a very high and steep breaking wave that has a sharp
crest where the velocity exceeds the phase velocity. The crest is followed by a deep

Fig. 4.10 The same as shown in Fig. 4.9 but with a = 0.27 (run 4). (Chalikov and Sheinin 2005
© 2005 Elsevier Inc. with permission of Elsevier)
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trough; a high pressure area is formed under the crest; the maximum surface ele-
vation becomes about twice as large as its initial value (Figs. 4.6 and 4.8, lower
panel).

A special feature of run 6 is that the numerical simulation survives the first
wave-breaking event (Fig. 4.13, 2nd panel; note the corresponding maxima of the
geometric characteristics in Fig. 4.14). The critical stage begins at t � 32:5, and the

Fig. 4.11 The same as shown in Fig. 4.7 but for the simulation starting from a base wave with an
amplitude modulation (run 5). (Chalikov and Sheinin 2005 © 2005 Elsevier Inc. with permission
of Elsevier)
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exact solution (for which the numerical solution with M = 12288 proves a close
approximation) collapses at t = 33.16. However, this event turns out to be a
‘mini-breaking’ that affects only a very narrow vicinity of the top of the sharp crest.
A coarser resolution M = 3072 used in run 6 initiates a greater numerical dissi-
pation and allows it to absorb this event, with the release of energy as small as
4 � 10�4 of its total value, before the critical stage the solution practically coincides
with that obtained with a higher resolution. The artificially lowered resolution
allowed us to follow the wave-train evolution beyond the first wave breaking,
though, obviously, with a lower accuracy. In Fig. 4.13, 3rd panel, we see the wave
that previously underwent breaking followed by subsiding, while the successive
wave has become sharper and higher. In the lowest panel, this last wave exhibits a

Fig. 4.12 Temporal evolution of geometric characteristics for the simulation starting from a base
wave with an amplitude modulation (run 5): 1—maximum slope max hxj j; 2—maximum velocity

max V
!��� ���; 3—maximum surface elevation max(h). (Chalikov and Sheinin 2005 © 2005 Elsevier

Inc. with permission of Elsevier)
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surface height maximum that is significantly greater than that reached during the
first breaking (see Fig. 4.6, lower panel), while the crest sharpens and accelerates
dramatically. At this point (t = 37.40), the wave is already in the breaking stage,
and the numerical solution finally collapses at t = 37.44.

Fig. 4.13 The same as shown in Fig. 4.7 but for the simulation starting from a base wave with a
phase modulation (run 6). (Chalikov and Sheinin 2005 © 2005 Elsevier Inc. with permission of
Elsevier)
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4.4 Interaction of Surface Waves at Very Close
Wave Numbers

An evolution of bichromatic waves represents a substantial interest in the fluid
mechanics, oceanography, and maritime engineering (e.g., Badlock et al. 2000;
Trulsen and Stansberg 2001; Madsen and Furhman 2006; Chiang et al. 2007), as
well as in the other fields of physics (e.g., Leibisch et al. 2012). In this section, the
evolution of surface water waves is considered to make it clearer to what extent the
bichromatic wave modes can be close in the frequency/wave number space before
the dynamics of their interactions changes, if at all. In this regard, the topic may be
relevant to various applications for nonlinear waves in dispersive media (see
Babanin et al. 2014).

In this section, like in Chalikov (2012), the wave steepness was chosen in such a
way that the waves do not break. In the case when breaking occurrence was
detected (see Babanin et al. 2010), the simulation run was stopped and the results

Fig. 4.14 The same as shown in Fig. 4.12 but for the simulation starting from a base wave with a
phase modulation (run 6). (Chalikov and Sheinin 2005 © 2005 Elsevier Inc. with permission of
Elsevier)
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were not used in this section. The breaking does not just lead to a decrease of the
local energy; it also produces a new type of nonlinear interactions and redistribution
of energy across the spectrum (e.g., Tulin and Waseda 1999). The wave breaking
would need some parametric treatment, and at this stage, we intended to concentrate
on the nonlinear evolution of waves which can be explicitly modeled on the basis of
the fundamental equations.

In this study, initially, the energy of bichromatic waves is placed on the
neighboring dimensionless wave numbers k1 and k1 + 1, i.e., 10 and 11, 100, and
101, up to 1000 and 1001 (note that the dimensional wave number of primary wave
can be regarded the same in every case). Thus, the relative separation of the modes
dk=k1 decreases from 0.1 down to 0.001, respectively. The steepness of the indi-
vidual modes is defined as e=2 ¼ akk1 ¼ akþ 1 kq þ 1

� �
and prescribed, and there-

fore, the initial amplitude a is a bound parameter. Integration, unless specified
otherwise, is over 1000 wave periods.

In Fig. 4.15, an evolution of the initially bichromatic spectra with k1 = 800 is
shown. The overall steepness is e ¼ 0:2 (i.e., ak ¼ 0:1). The initial spectrum is
shown in black and is captured after the first 5 periods of the wave evolution
(integration step is 1/1000 of a wave period). The yellow spectrum is the last in the
computations, after 1000 wave periods of the evolution. The blue spectra corre-
spond to the output every 5 periods.

In Fig. 4.15, even though the energy was initially placed at k1 ¼ 800 and k2 ¼
801 linear harmonics only, it can be seen that already after 5 wave periods, it
appears at a set of bound harmonics at k = 1600 (+2) and k = 2400 (+3); i.e., the
initial sinusoidal waves immediately turn themselves into Stokes-like waves. Also,
apparent is the subharmonic k ¼ dk ¼ k2 � k1. Both effects are expected (e.g.,
Agnon and Mey 1985; Toffoli et al. 2007; Osborne 2010; Chalikov 2012).

Fig. 4.15 Evolution of bichromatic waves with initial wave numbers k1 = 800 and k1 = k1 + 1
= 801, steepness e = 0.2. Black spectrum is initial, after 5 periods of wave evolution, and yellow
spectrum is the last, after 1000 periods. Blue spectra are output every 5 periods. (Babanin et al.
2014 © 2014 Springer-Verlag Berlin Heidelberg. with permission of Springer)
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The evolution of this train of Stokes waves over 1000 wave periods leads to
reduction of the energy of the primary bichromatic set and its bound harmonics,
downshifting of the energy of the main peak and growth of the subharmonics. The
yellow spectrum, although the last in the evolution, is not the highest between the
peaks, i.e., the spectral density fluctuates. This observation is consistent with the
evolution of the nonlinear spectrum in Chalikov (2012).

Details of the evolution of the original spectral peak at k1 and of the newly
growing peak at the first mode k = dk are shown in Fig. 4.16. The first subplot
demonstrates downshift of the original peak kshift=k1 where kshift is the wave number
of this peak after 1000 wave periods of evolution, as a function of the initial sepa-
ration of the bichromatic waves in the Fourier space, dk=k1 ¼ 1=k1: Panel b, below
shows decay of the spectral density of the peak, Sshift=S1, over this period of time.

For the low steepness of e = 0.05, the original peak remains approximately
where it was (Fig. 4.16a) and its energy does not significantly change (Fig. 4.16b).
For steeper waves shown in Fig. 4.16b, the energy of the original peak progres-
sively reduces as the steepness increases. As we can see in panels (c) and (d), a
substantial part of this energy is passed on to the subharmonic at k = 1.

The pattern is different andmore complicated with respect to the downshift kshift/k1
as in Fig. 4.16a. For the waves steeper than e = 0.05, downshifting for very close
wave numbers, i.e., at 1/k1 = 0.001, ultimately reaches some 20 %. For e = 0.1, such

Fig. 4.16 Behavior of the original spectral peak at k1 (spectral density S1) and the first mode at
k = 1 (spectral density S0). kshift and Sshift are wave number and spectral density of the original
peak shifted after 1000 periods of evolution, respectively. S0original and S0end are the initial and final
spectral density of the first mode, respectively. In all panels, asterisks correspond to steepness
e ¼ 0:05, circles to e ¼ 0:1, squares to e ¼ 0:15, and x-marks to e ¼ 0:2. Bottom scale is
dk=k1 ¼ 1=k1. a Peak shift, kshift=k1. b Decay of the spectral energy in the original peak, Sshift=S1.
c Ratio of spectral densities of the new peak at the first mode and the original peak, after 1000
periods, S0end=Sshift. d Growth of the spectral density of the new peak at the first mode S0end=S0original .
(Babanin et al. 2014 © 2014 Springer-Verlag Berlin Heidelberg. with permission of Springer)
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shift is achieved gradually as dk/k is reduced from 0.1 to 0.001. For e = 0.15 and
e = 0.2, the peak wave numbers drop to much lower values, below 60 % of the
original peak between dk/k = 0.1 and 0.0025, but for dk/k < 0.0025, the downshift
bounces back up and levels around the same 80 %mark. It appears as if for such close
wave numbers the peak shift is no longer dependent on the steepness.

The change of behavior of steep waves at dk/k * 0.0025 mark is most
noticeable in panels (c) and (d) on the right. These panels deal with the dynamics of
the first-mode peak. Here, S0 is the spectral density of this peak in the beginning
(‘original’) and after 1000 wave periods (‘end’) of simulations. In panel (c),
S0end=Sshift shows the growth of the first mode at the expense of the original peak at
k1. The ratio demonstrates a clear dependence on the mean steepness. The growth
increases toward lower values of the wave number separation 1/k1, but at
dk/k * 0.0025, there is a sudden jump in the growth, by two orders of magnitude
for ak = 0.1 − 0.15. For the waves with steepness ak = 0.15 − 0.2, the new peak at
k = 1 exceeds the original peak after 1000 periods of evolution. A similar behavior
is shown in Fig. 4.16d for the growth of the first mode S0end /S0original . For
dk/k < 0.0025, this ratio depends on steepness, but for dk/k > 0.0025, it levels at
approximately 100, independently of the steepness.

There is no apparent jump in the right panels for the wave trains with low
steepness of e = 0.05. Does this signify a threshold-like behavior of the observed
instability in terms of steepness?

4.5 Conclusion

While the properties of stationary solutions suggest lots of intriguing problems, we
use these results mainly as a tool to validate the non-stationary model. The vali-
dations were performed by using the solutions obtained in Sect. 4.2 as the initial
conditions for the non-stationary problem. Since the coordinate system of the latter
was attributed to the mean flow rather than to the wave profile, the model simulates
the running Stokes and gravity-capillary waves. It should be emphasized that the
validation was far from trivial, as the non-stationary model is based on the equa-
tions much more complicated than the stationary ones and on the numerical pro-
cedure of its own which ‘does not know’ that the simulated waves are supposed to
retain their shape even for large amplitudes. The result proves that (1) Stokes and
gravity-capillary waves are stable with respect to the truncation errors of the
non-stationary model and that (2) these errors are small enough.

We use the non-stationary models for case studies of evolution of nonlinear
wave fields (full description of the experiments is given in Chalikov and Sheinin,
Technical Note. 1996, available on request). The cases chosen were somewhat
arbitrary, as our aim was to provide a possibly broader variety of applications of the
technique developed. The effect of ‘bound waves’ is most clearly seen in the
simulation designed to approximate the laboratory experiment by Yuen and Lake
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(1982). The most surprising feature of the multi-mode wave fields was a clear
separation of wave number–frequency spectra into the regular curvilinear branches
with most of the energy concentrated along what we call ‘main branches.’ This set
of branches satisfies a dispersion relation which form is given by (4.2.1) where the
number n of the branch is 1 for the branch containing free waves and is greater than
1 for the branches consisting of ‘bound waves.’ In this structure, the nonlinear
effects were manifested both in the existence of multiple branches and in deviation
of the parent curve (n = 1) from the linear dispersion relation for relatively large
wave numbers. In most cases, the deviation is clearly pronounced when the curve
approaches a straight line and the group velocity tends to constant; however, this
effect needs further analyses. The nonlinearity also produces other regular branches.
The energy of the modes belonging to the additional branches is usually very small,
sometimes with a remarkable exception of a peculiar pattern (or group of patterns)
which, at least for the wave numbers that are not too small, could be roughly
approximated by a straight line passing through the origin. The nonlinear behavior
of small shortwaves was perhaps most strongly manifested in the case of a long
Stokes wave with the superimposed small shortwaves where a free wave branch is
poorly represented, while propagation of shortwaves is largely controlled by the
interaction with the Stokes wave. On the other hand, the nonlinear energy flux to
higher wave numbers was remarkably larger in the case of gravity-capillary waves
than in all other runs which included the pure gravity and pure capillary wave
simulation with the same initial surface height. This case also needs further
investigation, as the structure of the wave number–frequency spectrum was par-
tially obscured by apparent merging of the branches.

The evolution of an initially monochromatic wave is one of the simplest
examples of nonlinear interaction. Our simulations showed that such waves exhibit
growth of the wave height, an even greater growth of the crest height, sharpening,
and acceleration of the crest and flattening of the trough. With the initial maximum
slope a� 0:27, such waves do not break, and the behavior of their geometric
characteristics is quasiperiodic in time, so the above-listed tendencies prove fully
reversible. For a� 0:28, these tendencies result in wave breaking which occurs
within approximately one wave period or less; the overturning is well reproduced in
the simulations, the picture being especially impressive for larger waves reminis-
cent of a ‘wall of water,’ observed by many sailors. The quantitative estimate of the
critical a may depend on definition of the velocity potential for initial monochro-
matic wave. In our case, the potential was represented by one Fourier component
(such as surface height) whose phase was determined in such a way that the wave
propagate in one direction.

We also considered two cases of the wave fields with more complex initial
conditions. The first initial condition was the two Fourier components with close
wave numbers, i.e., the base wave with the amplitude modulation. The other initial
condition was the base wave with the phase modulation. Both simulations were
characterized by redistribution of energy along the wave train, which continued for
many periods of the base wave and resulted in formation of the large steep breaking
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waves with sharp crests. The whole picture is qualitatively close to the extreme
waves observed (Magnusson et al. 1999).

To summarize the above, we investigated an evolution of the bichromatic wave
trains with close and very close wave numbers by means of a fully nonlinear wave
model. We should emphasize that this is an academic study the physical implica-
tions of which should be further explored. In the academic model, although the
subharmonic wavelengths become very large, we are still able to use the deepwater
environment for wave propagation. In any experiment, very long waves would
inevitably find themselves in finite depths, a complication which we decided to
neglect at this stage. The academic model also gives us an advantage of keeping the
wave energy constant, as the dissipation and wave breaking would be another
complication.

Without such complications, we find that the interaction of two monochromatic
waves at water surface enters a different dynamic regime, if their wave numbers
become very close. While the downshifting of the initial wave energy and the
growth of the first mode in the course of evolution of bichromatic waves can be
expected, their apparent dependence on the wave steepness and dk/k appears new.
A behavior of these features changes, if dk/k < 0.0025: Both the downshifting and
the growth rate become independent of dk/k. The effect investigated here indicates
that there probably exists a physical limit for approximation of the continuous
spectrum.

Since two adjacent modes create more or less continuous spectrum, it is not
surprising that the spectrum undergoes downshifting. However, it seems that this
downshifting occurs too fast, as compared with the downshifting modeled by
Chalikov (2012). It happens because two adjacent modes always create a mode with
wave number k ¼ 1. The interaction of other modes with the first mode definitely
accelerates the downshifting. Such effect should be considered as artificial, since the
energy cannot move outside the spectral domain. If the spectrum is very dense, a
flux of energy can go to a very small wave number; i.e., the interaction of infinitely
close modes creates outflux of energy to the infinitely long waves. It is unlikely that
such mechanism of the ultra-long wave energy dissipation exists in reality.
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Chapter 5
Statistical Properties of One-Dimensional
Waves

Abstract A numerical model for long-term simulation of gravity surface waves is
described. The model is designed as a component of a coupled wave boundary
layer/sea waves model for investigation of a small-scale dynamic and thermody-
namic interaction between ocean and atmosphere. The statistical properties of a
nonlinear wave field are investigated on the basis of direct hydrodynamical mod-
eling of the 1-D potential periodic surface waves. The high accuracy was confirmed
by validation of the non-stationary model against known solutions and by com-
parison between the results obtained with different resolution in the horizontal. It is
shown that the scheme allows to reproduce propagation of a steep Stokes wave for
thousands of periods with a very high accuracy. The method developed is applied
for simulation of the evolution of wave fields with a large number of modes for
many periods of dominant waves. The statistical characteristics of a nonlinear wave
field for the waves with different steepness have been investigated: spectra, curtosis
and skewness, dispersion relation, and lifetime. The main result that wave field can
be presented as a superposition of linear waves is valid just for small amplitudes. It
is shown that a nonlinear wave field is rather a superposition of Stokes waves than
that of the linear waves.

5.1 ‘Lifetime’ of Wave Components

The method of numerical simulation of surface waves, described in Chap. 2, is
applied here to the investigation of statistical properties of a nonlinear wave field
(Chalikov 2005, see also Agnon et al. 2005). In general, this investigation is
complicated because of the specific wave instability, i.e., wave breaking. If the
initial wave energy is large, the onset of wave breaking inevitably leads to termi-
nation of calculations. Such instability can be effectively eliminated with some
algorithms of breaking parameterization. However, if such algorithms are applied,
the statistics of free waves might be distorted. For example, such smoothing
algorithm sometimes eliminates appearance of high sharp waves.
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This is why we first investigated the dependence of time on the initial conditions,
up to onset of wave breaking. The appropriate integral characteristics for a fixed
length scale might be the initial energy of waves. Naturally, for different timescales,
this characteristic is incomplete. The initial integral (effective) steepness of surface
s turns out to be more convenient:

s /
ZM
0

k2S kð Þdk
0
@

1
A

1
2

ð5:1:1Þ

The initial conditions were assigned as a superposition of the linear modes with
amplitudes

ak ¼ a0 k
k0

� ��p
k0 � k� kd

0 otherewise:

(
ð5:1:2Þ

and random (different for each case) set of phases. The mode with wave number k0
has amplitude a0, and amplitudes above k0 decrease as k�p p[ 0ð Þ. The value of k0
defines resolution of spectrum, so it cannot be too small. In most calculations,
k0 ¼ 10 and p ¼ 6 were taken. Further increase of k0 did not change the results
described below. The statistical results were also very close when p ¼ 5 was
chosen. A large value of P was finally chosen to avoid the numerical instability
leading to breaking. As the steepness s for steep (but still not breaking) waves
slightly decreases during long-time simulations due to the tail dissipation (2.3.4)–
(2.3.6), an effective steepness for each run was obtained by the averaging over time.
The number of modesM was 400, the number of grid points N = 1600, and the time
step Ds ¼ 0:0025. The calculations were performed for 70 cases

a1 ¼ 0:009þ 0:001 � l; l ¼ 1; 2; 3 . . . 70 ð5:1:3Þ

The onset of breaking was recognized when the total energy started growing and
exceeded its initial value at 1 %. This criterion indicates the time of breaking onset
with high accuracy, because the fourth-order Runge–Kutta scheme develops
instability very quickly. The onset of breaking depends not only on the total
nonlinearity of an initial wave field, but also on the initial set of phases. This
dependence is weaker than the dependence on steepness. To take into account the
effect of the initial phases, the calculations (5.1.3) were repeated with different sets
of phases. The total number of runs was equal to 980. The dependence of the time
up to breaking Tl(time s normalized by a period of peak wave Tp ¼ 2p/

ffiffiffiffiffi
k0

p
) on the

effective steepness is shown in Fig. 5.1. Each point is obtained by averaging over
the sampling set. Each set includes 160,000 values (100 wave profiles).
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As seen, the stability of wave field and its life without breaking decreases
quickly with the increase of steepness. For large initial steepness the breaking
occurs immediately, and the dependence on the initial phases becomes more sig-
nificant. However, for the effective steepness s less than 0.11, the breaking was
virtually absent. This statement cannot be considered as precise; we can just testify
that we never observe the breaking onset below s ¼ 0:10 in the runs up to t ¼ 2500.
The dependence of Tk on s can be approximated by the formula

Tk ¼ 4:6� 10�4s�5:61; ð5:1:4Þ

Approximation (5.1.4) has correct asymptotic behavior (Tk ! 1; when s ! 0),
but it is unlikely that a specific form of this dependence is correct for the values of
s smaller than it was explored. Note that the number of modes used in our calculations
wasmuch larger than that in the calculationsmade by Song andBanner (2002), but the
threshold for onset of breaking s = 0.10 obtained here is close to that in the cited paper.

5.2 Statistical Characteristics of a Multi-mode Wave Field

For calculations of statistical characteristics of wave, ten long-term runs were
produced up to 1,000,000 time steps (790 periods of peak wave) with the initial
peak steepness in the range of a0k0 = 0.0001–0.09 corresponding to the effective

Fig. 5.1 Dependence of time to onset of breaking instability on rms steepness. Dotted line is
approximation (5.1.4) (Chalikov 2005)
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steepness in the range s = 0.0001–0.106. The number of modes M for the cases 1–7
was 400, the number of grid points N = 1600, and the time step Ds ¼ 0:001. For
the cases 8–10 corresponding to large steepness, the tail dissipation (2.3.4)–(2.3.6)
for M = 400 was large. To reduce this effect, the number of modes for these cases
was increased toM = 1000 (N = 4000), while the time step and the number of steps
were the same as for M ¼ 400. The amplitudes ak and a corresponding effective
steepness for these cases are given in Table 5.1.

The wave spectra and a rate of dissipation are presented in Fig. 5.2. As seen, a
high wave number part of the spectrum is fluctuating within the range of the order
of its averaged values, while the amplitudes of these fluctuations grow with the
increase of the initial steepness and wave number. Gray area in the right part of the
frames corresponds to the tail dissipation function [see Eqs. (2.3.4)–(2.3.6)]

Table 5.1 Parameters of numerical experiments

# 1 2 3 4 5 6 7 8 9 10

a0 0.00001 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

s 0.0001 0.013 0.026 0.029 0.039 0.052 0.079 0.089 0.099 0.106

M 400 400 400 400 400 400 400 1000 1000 1000

Fig. 5.2 Averaged for t = 2500 (790 peak wave periods) wave spectra, initially assigned by
Eq. (5.1.2). The curves in the right side of each panel are the rate of dissipation of potential energy
[see Eqs. (2.3.4)–(2.3.6)]. Straight line corresponds to S ¼ k�6 function. The gray vertical bars
correspond to the rms of the spectra and the rate of dissipation (Chalikov 2005)
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Dk ¼ lk z2k þ z2�k

� � ð5:2:1Þ

Tail dissipation is located in the high-frequency part of the spectrum. It removes
effectively the fast growing but very small modes in the vicinity of the cut wave
number M. This dissipation is so weak that it does not significantly influence con-
servation of the total energy. For the cases 1–7, the total energy decreased over the
period of integration in the 10th decimal digits, and for the steepest initial conditions
(case 10), the energy decreased at 10�3 %. In general, an accuracy of preservation of
the total energy grows quickly with the increase of the spectral resolution (and
shifting of the tail dissipation to the higher wave numbers). Straight line in Fig. 5.2
corresponds to the spectrum S/ k�6. As seen, the averaged spectrum follows closely
this dependence. Note that this property is not connected to the form of the initial
conditions (5.1.2). We used the value P = 6 just because it corresponds to the
spectrum developing in the process of integration. An initial spectrum can be
assigned in an arbitrary form providing the rms steepness beyond the critical values
s = 0.011. The same spectrum was obtained as in Fig. 5.2 when p ¼ 5 and kd ¼ 10
were chosen. As we can see below, the main reason for fast adjustment of the
spectrum to its quasi-equilibrium shape is a strong nonlinearity which makes the
timescales for the individual high wave number components very short.

Fast modification of the wave field due to nonlinearity is clearly seen in Fig. 5.3
where a long-time evolution of the amplitudes of thefirst 6 components (with thewave
numbers k = 10–15) for different rms steepness is given. Only for extremely flat waves
with the rms steepness of the order of 10�4(the steepness of peak wave a0k0 is also
equal to 10�4), wave amplitudes remain constant for a long time. For the rms steepness

Fig. 5.3 Evolution of five consequent amplitudes starting from peak wave number k = 10 for
different steepness during 790 peak periods (Chalikov 2005)
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ak ¼ 0:013, the 15th amplitude fluctuates significantly. With the increase of steep-
ness, these fluctuations spread between all the modes in spectral peak, and the
amplitudes of fluctuations grow with the increase of steepness. A small part of these
fluctuations can be attributed to the exchange between the potential and kinetic
energies. However, since the fluctuations are much larger than the sum of the kinetic
and potential energies for each component, an explanation of such behavior cannot be
given without consideration of fast energy exchange between the wave modes. It is
important that such strong variation of the energy of wave components occurs at very
strict conservation of total energy (we remind that the cases with the development of
breaking instability were excluded). Qualitatively, this process is similar to conver-
gence of energy in a physical space which was studied by Song and Banner (2002).

It makes sense to consider the timescale Tl characterizing a typical ‘lifetime’ of
wave components

Tk ¼ Ep
k
1
2

2p
@Ep

@t

� �2
 !�1

2

; ð5:2:2Þ

where Ep ¼ 1
2 h2k þ h2�k

� �
is the potential energy of kth wave component in the

Cartesian coordinate system. Timescale Tk is normalized formally by period of the
wave component following from the linear wave theory. Dependences of Tk on the
wave numbers for different rms steepness are given in Fig. 5.4 together with their

Fig. 5.4 ‘Lifetime’ of the components of the wave field ~Tk expressed in periods for the every
specific component (Eq. (5.2.2), solid lines). Gray lines indicate the scatter of ~Tk . Dotted lines are
the averaged wave spectrum. The numbers in the upper right corner are the effective steepness
(Chalikov 2005)
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scatter. Again, all the wave components are stable for a very small steepness only,
i.e., their amplitudes remain constant over hundreds and thousands of periods. With
the increase of frequency Tk in the vicinity of the wave peak, the timescale
decreases to 100 for s ¼ 0:026 and then to 10 for s = 0.106. For k[ 20, the
timescales are very small (of the order of one period of the linear wave with the
same wave number) for any steepness considered, except for the case with
s ¼ 10�4. The spectral energy of the wave components for k ¼ 20 is smaller by 3
decimal orders than that in wave peak. Evidently, such fast fluctuations cannot be
attributed to free surface waves.

This statement becomes more evident after consideration of the phase velocities
of waves calculated with formulas (2.7.4) and (2.7.5) and rms of phase velocity ck

crms ¼ ck � ckð Þ2
� �1

2 ð5:2:3Þ

The dependencies of the phase velocities and their rms on wave number for
different values of steepness are shown in Fig. 5.5. Each value of the phase velocity
is calculated over an ensemble of 2500 wave records. Each record has length
N = 1600 (for cases 1–7) or N = 4000 (for cases 8–10). As seen, a linear dispersion
relation ck ¼ k�1=2 is perfectly correct only for s ¼ 0:0001. For the waves with
s = 0.013, fluctuations of the phase velocity for k = 20 become noticeable. With
further increase of steepness, the phase velocity of high modes increases and its
fluctuations grow. A simple explanation of these phenomena was given in ChSh. In
fact, at each wave number, several modes coexist, i.e., one mode is a free wave,
while others are the so-called bound waves which correspond to the additional

Fig. 5.5 Phase velocities of wave components as function of wave number (see Eq. 4.2.7).
Dashed line is a linear dispersion relation. Gray vertical bars correspond to the rms of phase
velocities (Eq. 6.3.5). Dotted line is a wave spectrum (right axis) (Chalikov 2005)
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modes attached for every steep enough wave. The calculation of the phase velocity
based on (2.7.4) and (2.7.5) gives some weighted value between the velocities of
free and bound modes. At present, it is unclear how to separate bound waves and
free waves during processing. Since the bound modes attributed to different car-
rying waves may have the same wave numbers and the amplitude of carrying
waves is changing in time due to the nonlinearity (see Fig. 5.3), the situation
becomes quite complicated. To understand how the shape of wave differs from that
assumed in the linear theory, the calculations of high-order moments for different
value steepness were performed.

Function z nð Þ was transferred from the conformal coordinates to function g xð Þ in
the Cartesian coordinates using the fourth-order periodic polynomial spline (pro-
viding accuracy of the order of 10�11) and then recorded for processing. Every 100
of such records were linked in a single set with the length of L = 160,000 which
was used for calculation of the statistical characteristics such as mean �g, variance V,
skewness S, and kurtosis K:

�g ¼ 1
L

XL�1

j¼0

gj; V ¼ 1
L� 1

XL�1

j¼0

gj � �g
� �2
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p
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�3;

ð5:2:4Þ

Fig. 5.6 Skewness S of wave field as function of the effective steepness. Each point obtained by
averaging over sampling set with total length of 160,000 values (100 wave profiles) (Chalikov
2005)
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The value of �g is very small and remains constant (because of strict conservation
of the volume), and V is a doubled potential energy. When wave field is a super-
position of a large number of small-amplitude harmonic waves, both the skewness
and kurtosis are equal to zero. Skewness S characterizes asymmetry of the distri-
bution of probability. If the positive values of g are larger than the negative values,
then S[ 0. Kurtosis is positive if crests are sharper and troughs are smoother than
those in the case of linear waves. As shown in Fig. 5.6, the skewness is really close
to 0 for s = 0.001 only, but with the increase of the nonlinearity, it grows fast and
reaches the value as large as S ¼ 0:35, which corresponds to a significant increase
of the values of crest heights over the depth of troughs. Qualitatively, the same
properties are supported by the data on the kurtosis (Fig. 5.7) which grow with the
increase of nonlinearity, thus proving that wave crests become sharper, while
troughs get gentler when nonlinearity grows.

The data on skewness and kurtosis in Figs. 5.6 and 5.7 and the analysis of wave
height records and the results of simulations based on the principal wave equations
always exhibit the fundamental properties of a nonlinear wave field, i.e., real waves
tend to be sharper and higher than the harmonic waves.

Fig. 5.7 The same as in Fig. 5.6, but for kurtosis of wave field (Chalikov 2005)
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5.3 Mysterious Properties of ‘Upper’ Conformal
Coordinates

There are questions to be answered: Do the Stokes waves have any practical value
or are they just a beautiful example of the analytical solution for the stationary
gravity waves which are so unstable that they never exist? Probably, a routine
Fourier presentation used in most of the theoretical and experimental investigations
distorts the nonlinear nature of large waves.

Trying to answer these questions, we made an attempt of presentation of a
nonlinear wave field as a superposition of Stokes waves. Naturally, the functions Sk
corresponding to the Stokes waves are not orthogonal, so the calculation of the
coefficients rk in expansion

h xð Þ ¼
XM
0

rkSk ð5:3:1Þ

becomes a minimization problem. Because the shape of Stokes waves Sk depends
on its amplitude rk , it is a nonlinear problem. This problem is complicated but still
resolvable. However, we found a much more elegant solution.

Let us consider the conformal coordinates for the upper domain z[ g.

x ¼ nu �
X

�M� k�M;k 6¼0

m�kðsÞ cosh k Hu½ � � 1uð Þ
sinh kH

0k nuð Þ

z ¼ fu þ
X

�M� k�M;k 6¼0

m�kðsÞ sinh k Hu½ � � 1að Þ
sinh kH

0k nuð Þ;
ð5:3:2Þ

where mk are the Fourier coefficients for interface, while nu; fu are the conformal
coordinates in the upper domain. The transformations (2.2.3) and (2.2.4) have a
somewhat opposite behavior of ‘density.’ Where the Jacobean in the lower coor-
dinate is small (in the crests), in the upper coordinate, it is large. The opposite
situation is with the troughs. The system of coordinates (3.3.2) is used for modeling
of the turbulent flow above waves and windwave interaction (Chalikov 1998,
Chap. 9). In this work, we use the transformation (5.3.2) for the infinite height Ha.
The advantage of this transformation is that for the same accuracy of approxima-
tion, the sharp waves in the lower coordinates need a significantly larger number of
modes than those in the upper coordinates. The number of modes for the approx-
imation with the same accuracy in the Cartesian coordinates is somewhere in
between. The convergence of Fourier expansion is the fastest in the upper coor-
dinates and the lowest in the lower coordinates. For k ¼ 10, the value of Fourier
mode in the upper coordinates is by 2 decimal orders smaller than that in the
Cartesian coordinates and by 3 decimal orders smaller than that in the lower
coordinates. This statement is illustrated in Fig. 5.8 representing the spectra of
Stokes waves (thin curves) with the steepness ak ¼ 0:05; 0:10; 0:15; 0:20; 0:25

68 5 Statistical Properties of One-Dimensional Waves

http://dx.doi.org/10.1007/978-3-319-32916-1_2
http://dx.doi.org/10.1007/978-3-319-32916-1_2
http://dx.doi.org/10.1007/978-3-319-32916-1_3
http://dx.doi.org/10.1007/978-3-319-32916-1_9


(for infinite depths) calculated in the lower coordinates [Eqs. (2.2.3) and (2.2.4)]
with the method described in Sect. (2.4.2). Thick curves represent the function
a cos nuð Þ in the upper coordinates (Eq. 3.3.2), transferred to the lower coordinates
by periodic spline interpolation with the accuracy of the order of 10�11.

In general, the steepness of sea waves rarely exceeds the value ak ¼ 0:30, so the
Fourier presentation of wave surface in the upper coordinate can be considered with
high accuracy as the expansion over Stokes waves which are nearly orthogonal in
the upper coordinate system and orthogonal in the Cartesian coordinate system with
the weights corresponding to the inverse Jacobian. In Fig. 5.9, the left panel rep-
resents the averaged wave spectra calculated in the Cartesian coordinates for 10
cases (Table 3.1), while the right panel shows the difference between the averaged
wave ‘spectrum’ in the upper coordinate and the spectrum in the Cartesian coor-
dinates. As seen, the difference at low wave number is large and positive, while in
high wave number, it is negative. It means that the presentation of surface as a
superposition of Stokes waves is more compact than the routine presentation as a
superposition of linear waves. It is well known that sea waves usually have sharp
crests and gentle roughs. All quasi-linear theories ignore such evident property of
real wave fields. This property explains qualitatively the increase of the skewness
and kurtosis for steep waves shown in Figs. 5.6 and 5.7.

Visual observations of a long-wave evolution of surface show that a steep
enough wave field exhibits the quasi-periodic behavior: A period of more or less

Fig. 5.8 Thick curves correspond to Stokes wave spectrum in lower coordinates [Eqs. (2.2.3) and
(2.2.4)], and thin curves correspond to a cos nuð Þ in upper coordinates (Eqs. 5.3.2) transferred to
power coordinates by periodic spline interpolation. 1—a ¼ 0:05, 2—a ¼ 0:10, 3—a ¼ 0:15,
4—a ¼ 0:20, 5—a ¼ 0:25 (Chalikov 2005)
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smooth waves follows the period when large waves become sharper (the same
effect was observed by Song and Banner 2002). In our calculations, the length of
domain was equal to 10 lengths of peak wave. During the period of sharpening,
several waves may become sharper simultaneously, though more often it happens
with just one wave. In Fig. 5.10 (panel 1), an evolution of the kinetic and potential
energies for s = 0.089 is given. Both energies fluctuate with the amplitude up to
10 %, but their sum remains constant within many decimal digits. In panel 2, the
top curve represents an evolution of the maximum wave height defined over the
whole period for 2500 wave profiles separated by interval Dt ¼ 1; bottom curve
corresponds to the evolution of the minimum value of the second derivative @2g/
dx2 for the same set. As seen, the periods of the wave height increase always
coincide with the periods of the minimum of the second derivatives corresponding
to the sharpening of crests. In panel 3, the ‘sharpest’ wave profile for time t = 815
corresponding to the minimum of @2g/dx2 is presented (dotted curve), while solid
line is the smoothest wave profile (the minimum of absolute value of @2g/dx2). It is
evident that both profiles are equally smooth, except for the first of them which has
a single high peak. The wave number spectra of these profiles are given in panel 4.
The spectrum corresponding to the first case has large high wave number values. In
fact, all these components were required for correct approximation of a single sharp
peak in the domain. So, for most of the cases with a developed wave field, a
considerable part of high-frequency spectrum does not correspond to real waves. It
is just an artifact created due to the effort of the linear presentation of a strongly
nonlinear process. In reality, concentration of energy occurs in a physical space
making its Fourier presentation meaningless. This might also explain why the
formally calculated timescales (Eq. 3.16 and Fig. 5.4) for high-frequency waves are
so small.

Fig. 5.9 Left panel the same as in Fig. 5.2 spectra in linear k-scale; right difference between
spectra and ‘spectrum’ over Stokes waves (Chalikov 2005)
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5.4 Conclusions

Consideration of the timescales for a multi-mode wave field with initially random
phases shows that the low-frequency waves preserve their individuality, but their
‘lifetime’ decreases with the increase of steepness. The total energy of each mode
always fluctuates because of the quasi-periodic reversible energy exchange between
the wave components. It is intriguing that the length of the period of such fluctu-
ations on the average equals 9 wave peak periods. It reminds the famous sailor’s
rule of ‘ninth wave.’ For high frequencies, the lifetime is of the order of one period,
and these disturbances cannot be attributed to waves, rather to ‘wave turbulence.’

Fig. 5.10 1 The evolution of kinetic and potential energies (thin lines). Their sum (thick line)
remains constant all over the time. 2 the top curve represents evolution of the maximum wave
height defined over whole period for 2500 wave profiles separated by interval Dt ¼ 1; bottom
curve—the evolution of the minimum value of the second derivative @2g/dx2 for the same set.
3 the ‘sharpest’ wave profile for time t = 815 corresponding to the minimum of @2g/dx2 (dotted
curve); the ‘smoothest’ wave profile for time = 2224, corresponding to the maximum (minimum
of the absolute value) of the @2g/dx2 (solid line). 4 the wave spectrum corresponding to the
‘sharpest’ wave profile (dotted line) and ‘smoothest’ wave profile (solid line) (Chalikov 2005)
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The applicability of 1-D approach and even of the potential assumption for
high-frequency waves is highly questionable. This approach obviously cannot
properly simulate the processes where 2D nonlinear interactions are of essence.
However, from the results of this work, an important conclusion follows for 2-D
waves as well. Naturally, all the nonlinear effects in a 2D case should be clearer
pronounced. Such interactions are more intense in potential approximation formally
because of an infinitely larger number of interacting modes. However, for the
windwave interaction problem, the 1-D wave model is acceptable because it is able
to produce a broad spectrum of waves and surface disturbances which generate rich
statistics of nonlinear fluctuations in the airflow above waves.

It is well known that in real wave field, the dominant waves have more or less
sharp crests and gentle troughs. Naturally, when a routine Fourier presentation is
used, for approximation of such waves, additional modes are required which are
sometimes called ‘bound waves.’ For some reason, the shape of dominant waves is
close to Fourier modes in the ‘upper’ coordinate system. Naturally, these modes
form an orthogonal basis in the ‘upper’ coordinate system, being also orthogonal in
the Cartesian coordinate system with the weights equal to the inverse Jacobian of
transformation to the ‘upper’ coordinate. It is remarkable that the Fourier expansion
for stationary solutions for potential waves in the ‘upper’ coordinate system (Stokes
waves) converges faster than those in the Cartesian coordinate system. For real
wave field with the moderate steepness, the superposition of Fourier modes in the
‘upper’ coordinate is very close to the superposition of Stokes waves in the
Cartesian coordinates.

The most important application of the scheme developed is the coupled mod-
eling of waves and wave boundary layer (see Chalikov 1998, 9). The majority of
works are actually based on the small-amplitude assumption. This oversimplified
approach can be used for simple qualitative analysis only. The linear approaches are
definitely inapplicable for giving recommendations on such complicated issues as a
type of closure scheme for a full nonlinear problem. Lots of works use the nonlinear
approach based on Reynolds equations, most of them considering the stationary
flow above monochromatic waves (e.g., the simulations of Mastenbroek et al. 1996;
Meirlink and Makin 2000, based both on the model created by Chalikov 1978). It is
known that even small disturbances of such obstacles as sharpening of crest pro-
duce a dramatic change of the pressure field and form drag (this effect is well
known in the engineering fluid mechanics). It is also known that just a simple group
effect can produce high and steep waves (in physical space) with the deep minimum
of pressure behind the crests. The nonlinearity enhances the effect of sharpening,
thus strongly increasing the pressure difference. On the total, wave drag and energy
exchange are the results of the ensemble effect of the essentially non-stationary
fluctuations of pressure and surface stresses. It is clear that all these processes are
completely absent in routine monochromatic stationary models.

It cannot be proved that the multi-mode wave field interacts with atmosphere as
a set of independent waves and that true integral result could be obtained by simple
superposition of monochromatic cases. It is well known that even a single wave
produces a broad spectrum of pressure fluctuations which complicate the flow. The
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atmospheric response to a strongly non-stationary wave field is also essentially
non-stationary. The structure of the non-stationary flow (e.g., a distribution of
surface pressure) can be completely different from the stationary one. The first
attempt to take into account such nonlinearity and group effects was made using our
old finite-difference model (see review Chalikov 1986) where wave surface was
assigned as a superposition of running waves with different frequencies. Such
approach is much closer to reality than that based on the stationary models, because
it allows us to reproduce group structure of waves and its nonlinear consequences.
However, it was found that such approach, being a lot better (and much more
complicated) than the monochromatic stationary approach, turned out to be
imperfect too, because the specifics of the real wave shapes and nonlinear group
structure were not represented.

The main disadvantage of 1-D approach is weak nonlinearity. It is known that in
2-D case, the nonlinearity is much stronger formally, because of an infinite number
of interacting waves. Weak nonlinearity results in the formation of a fast decreasing
spectrum (s/ k�6. Unfortunately, the 1-D model cannot provide a more saturated
spectrum. However, the main conclusions of this work concerning inapplicability of
the linear dispersive relation and a transient character of high-frequency waves are
definitely true for 2-D waves.
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Chapter 6
Nonlinear Interaction in One-Dimensional
Wave Field

Abstract Full nonlinear equations for one-dimensional potential surface waves
were used for investigation of evolution of the initially homogeneous train of exact
Stokes waves with steepness AK ¼ 0:01� 0:42. The numerical algorithm for
integration of non-stationary equations and calculation of exact Stokes waves is
described. Since the instability of the exact Stokes waves develops very slowly,
a random small-amplitude noise was introduced in the initial conditions.
Development of instability occurs in two stages: In the first stage, the growth rate of
disturbances was close to that established for small steepness by Benjamin and Feir
in (1967) and for medium steepness—by McLean (1982). For any steepness, Stokes
waves disintegrate and create a random superposition of waves. For AK\0:13,
waves do not show tendency for breaking which is recognized by surface
approaching a non-single value shape. Sooner or later, if AK[ 0:13, one of the
waves increases its height and finally comes to a breaking point. For the large
steepness AK[ 0:35, the rate of growth is slower than for medium steepness, but it
does not turn to zero, as it was predicted by McLean (J Fluid Mech 114:315–330,
1982) on the basis of linearized equations for disturbances. The data for spectral
composition of disturbances and their frequencies are given. The model is used for
investigation of evolution of the wave field initially assigned as a train of harmonic
waves. It is shown that a harmonic wave of any amplitude quickly generates new
modes which undergo complicated evolution. These modes cannot be referred to
neither as bound waves nor as free waves. The results of numerical simulation of
adiabatic evolution of the waves assigned in the initial condition with empirical
spectrum are presented. It is shown that wave spectrum is subject to strong fluc-
tuations. Most of such fluctuations are reversible; however, a residual effect of the
fluctuations causes downshifting of the spectrum. The rate of downshifting depends
on the nonlinearity.
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6.1 Adiabatic Transformation of Stokes Waves

In this chapter, the investigation of nonlinear properties of 1-D surface wave is done
for the wave train of Stokes waves. The stability of such an initially uniform wave
train was a subject of many investigations. It was shown that for weakly nonlinear
waves, it is unstable to low-frequency perturbations (Lighthill 1965), Benjamin and
Feir (1967), (hereafter B.-F.). The numerical investigations (Longuet-Higgins 1978)
extended those results to the large-amplitude waves and long-wave perturbations.
The most detailed results were obtained by McLean (1982) who investigated
numerically the stability of exact Stokes waves to two-dimensional small-amplitude
disturbances. The evolution of disturbances was investigated using linearized
equations. An experimental investigation of the 2-D instability of finite-amplitude
waves was performed in (Melville 1982).

This work deals with the 1-D finite-amplitude Stokes waves disturbed by the
small-amplitude initial noise, on the basis of the fully nonlinear equations. In this
case, the development of disturbances and their interaction with the initial waves
are simulated in a fully nonlinear manner, being regulated by conservation of the
total energy and momentum.

Here, we applied the method for numerical simulation of the surface waves
developed in ChSh, to the investigation of the evolution of Stokes waves with the
wave number K and the amplitude A (capital letters A and K are used for description
of the initial conditions at t = 0, while a and k—for variables).

Choosing the value of K is not a trivial problem. If K = 1 is assigned, then a
successive mode (not existing in the initial conditions) has a wave number k = 2, so
it is twice shorter. Obviously, such a poor approximation imposes restriction upon
the nonlinear interactions and generation of the additional modes. Assigning K = 1
is convenient for validation of the model by comparison with the analytical sta-
tionary solution, because such a ‘dense’ presentation of waves (e.g., Stokes waves
or Crapper waves) does not leave room in the Fourier space for development of the
intermediate modes by instability. This is why the solution for running Stokes
waves demonstrated in Chap. 4 was stable during thousands of periods. Putting
K� 2 (the analytical solution is described in this case by the modes with the wave
numbers k ¼ nK, n is an integer) changes the situation dramatically, i.e., the
potential possibility of development of waves at wave numbers ðn� 1ÞK
þ 1\k\ðnþ 1ÞK � 1) arises. Theoretically, these waves cannot appear in a
model, but like in nature, the noise (mostly the errors of time derivatives approx-
imation) always creates the background. No a matter how small the parasitic per-
turbations are, they do inevitably grow, resulting finally in a major transformation
of wave surface. Increasing accuracy of the numerical scheme can delay this
development, though for investigation of the geophysical fluid dynamics problems,
it is not necessary, because the presence of noise and development of instability
correspond to the physical reality. Even very small-amplitude waves with AK ¼
0:01 are unstable, but because the time of development of B.-F. instability for small
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AK is proportional to ðAKÞ2, the integration should be performed over quite long
periods.

All the calculations described below were initially performed for the
monochromatic waves assigned by the linear theory in a range AK ¼ 0:05� 0:40
with no initial disturbances. Since these waves are not a solution of steady equa-
tions, an initial wave train for AK[ 0:28 undergoes strong modification up to a
clear tendency for overturning. The fast growth of modes with the wave numbers
50nðn ¼ 2; 3; 4. . .Þ was observed at the initial stage of run. Such evolution takes
place at precise conservation of the invariants: The sum of the potential and kinetic
energies is preserved with accuracy of the order of 10�15 (the conservation of the
horizontal momentum and volume is even better). The amplitudes of the newly
emerging modes are not small, this evolution occurring for any steepness
AK � 0:05. Strictly speaking, the pure small-amplitude monochromatic linear
waves never exist. It is surprising that a new set of amplitudes was similar to a
corresponding set of ‘bound’ waves for the Stokes wave with approximately the
same amplitude as compared with the amplitude of the initial linear wave. It means
that the wave crest tends to be sharper, while the trough becomes smoother. When
the initial monochromatic waves turn into a complicated multi-mode wave field, the
surface becomes much closer to the superposition of Stokes waves than to the
superposition of linear waves, as it is usually assumed in the quasi-linear theories
(Dold 1992). The same calculations performed for the initially assigned exact
Stokes waves showed that the train of such waves is more stable. Contrary to the
monochromatic waves, introducing of finite-amplitude initial disturbances is
inevitable in this case. Otherwise, the growth of the computational noise turns out to
be very slow, which makes the approach impractical.

Finally, we choose the value K ¼ 50 which provides a fair approximation for the
growing components of the spectrum. Fourier modes for the initial Stokes wave
have the wave numbers k ¼ 50n, where n ¼ 2; 3; 4. . .. The individual evolutions of
the wave surface for different resolutions are different, so upon disintegration of the
initially homogeneous wave train, the solutions can be compared by their statistical
characteristics only, for example, for the averaged on time wave spectrum. The
simulations of the evolution of Stokes waves calculated by the algorithm described
in Part 2 were performed for the number of modes M ¼ 2000 and the number of
grid points N = 8000, which provided sufficient resolution both in the Fourier and
physical spaces even for the steepest waves. The initial small-amplitude noise for
variable z is assigned as a random function of a number of points in grid space,
uniformly distributed within the range ½�10�6A; 10�6A�. The velocity potential for
noise was calculated on the basis of the linear theory. The time step Ds was equal to
0.002. The application of a twice-shorter time step for the strongly nonlinear cases
proves that the differences between the results are negligible. The calculations were
done for 42 different values of initial steepness: AK ¼ 0:42� 0:01i where
i ¼ 0; 1; 2; 3. . .41. Stokes waves were calculated in the ðn; fÞ coordinates with the
algorithm described in Chap. 3. The post-processing was done for the data trans-
ferred back from the ðn; fÞ coordinates to the Cartesian coordinate by a periodic
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spline interpolation providing the accuracy of the order of 10�11 for very steep
waves and 10�30 for the small-amplitude waves. The maximum length of inte-
gration smax was chosen equal to 4000, which corresponds to 4500 periods of the
initial wave. The runs for AK[ 0:13 were terminated upon approaching to over-
turning. A criteria for terminating the run was defined by the first appearance of a
non-single value of surface g:

xðiþ 1Þ\xðiÞ; i ¼ 1; 2; 3. . .N � 1 ð6:1:1Þ

It was possible to continue integration after that point; however, the details of
that development are not the subject of this chapter. It is important to note that after
the moment when the criterion (6.1.1) has been reached, the solution would never
return to stability; the volume of the fluid crossing the vertical xðiÞ quickly
increases. Up to this moment, conservation of the sum of the potential and kinetic
energies of the horizontal momentum and the volume was excellent. The over-
turning always starts on the crest of the steepest wave. When the surface becomes a
non-single value, at the initial stage of further evolution, the conservation of
invariants remains good, but later, a sharp increase of energy occurs, and further
integration becomes pointless. Usually, it happens just for one Runge–Kutta time
step, so the primary cause of such numerical instability is probably the growth of
the right-hand sides of Eqs. (2.2.34) and (2.2.35). Application of the dynamic time
stepping (similar to that used by Zakharov et al. 2002) can prolong this agony,
though for a very short time. The numerical instability connected with breaking has
a physical nature. In reality, the falling volume of water becomes rotational and
splits into small patterns (which manifests itself, e.g., as whitecapping).
A well-pronounced long jet simulated in Dold (1992) was probably obtained by
applying a severe smoothing in a physical space. We do not apply such smoothing.

According to the Benjamin and Feir instability theory for the first-order Stokes
waves, the amplitudes of disturbances ak in the vicinity of the main mode with the
wave number k ¼ K grow exponentially

ak/expðbktÞ; ð6:1:2Þ

In our notations, the explicit formula for bk derived in B.-F. can be represented in
the form

bk ¼ ckK
1=2; where ck ¼ 0:5 dkj j 2ðAKÞ2 � d2k

� �1=2
; ð6:1:3Þ

where dk characterizes a relative ‘distance’ in a Fourier space between the modes
with the amplitude ak and the main mode AK

dk ¼ k
K

� �1=2

�1

 !
: ð6:1:4Þ
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Below, the function c is represented as a function of two parameters: AK and dk
where

dk ¼ k
K
� 1; ð6:1:5Þ

hence

dk ¼ ðdk þ 1Þ1=2 � 1: ð6:1:6Þ

The numerical investigation of instability of exact Stokes waves based on the
linearized equation for disturbances was done by McLean (1982). It was found that
for small dk , the results perfectly coincide with the predictions of B.-F. theory, but
with increase of dk (or dk), the rate of growth becomes considerably less than that
predicted by B.-F. It was also found that with increasing steepness, the
one-dimensional perturbations are stable and the three-dimensional perturbations
become the most unstable.

Analysis of the results of our calculations showed that a simple scenario
described by Eq. (6.1.2) and investigated in (McLean 1982) is not complete.
The fully nonlinear equations predict two regimes of development of instability.
The examples of evolution of amplitudes for different steepness and values of dk are
given in Figs. 6.1 and 6.2. In Fig. 6.1, the development precisely corresponds to
(6.1.2). After a short initial period of fast fluctuations at t\10, the modes k ¼
33ðd ¼ �0:34Þ (solid line) and k ¼ 67ðd ¼ 0:34Þ (dashed line) for the steepness
AK ¼ 0:21�0:26 grow exponentially until reaching the quasi-equilibrium regime,
when all the modes fluctuate in time (see examples in Chalikov 2005). The newly
emerging modes are nearly symmetrical relative to the central modes with
wave number K ¼ 50. The examples of the second type of evolution are repre-
sented in Fig. 6.2. As shown, the amplitudes of modes with wave numbers K ¼
10ðd ¼ �0:80Þ and k ¼ 90ðd ¼ 0:80Þ undergo two stages, i.e., slow and fast
development. Obviously, the B.-F. instability theory and the numerical results of
McLean (1982) are valid for the first regime, while the second regime remains
unexplained. The numerical model of McLean (1982) assumed one-way interaction
between the unperturbed Stokes wave and small-amplitude disturbances. The val-
ues of b as a function of AK and dk were calculated by the rms method approxi-
mating the equation

logðakÞ ¼ logða0Þþ bðAK; dkÞt; ð6:1:7Þ

(a0 is an initial value of ak) for the first and second stages separately. A formal
definition of the point where the first regime is replaced by the second regime is
difficult, so these values were chosen for each case manually. Duration of each
regime expressed in periods of Stokes wave as a function of steepness AK is given
in Fig. 6.3. A dotted line indicates duration of the first stage of development.
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A thin dotted curve corresponds to the second period where the growth
was considerably faster than in the first period. A solid line indicates the total
duration of run up to the point of onset of breaking. For AK ¼ 0:13, the waves
survive over 1921 periods, while for AK ¼ 0:12, the breaking does not happen at
least within 4500 periods. Hence, the critical initial steepness falls in the interval

Fig. 6.1 Examples of first type of development: initial evolution of the amplitude of the modes
with wave numbers k ¼ 33ðd ¼ �0:34Þ, solid line, and k ¼ 67ðd ¼ 0:34Þ (dashed line) for
steepness AK ¼ 0:21�0:26. Horizontal axis corresponds to time and vertical axis to amplitude
(Reproduced with permission from Chalikov 2007. © 2007 AIP Publishing LLC)
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(0.12 and 0.13). An attempt to define this value with a third digit was unsuccessful,
because the precise evolution is sensitive to the choice of initial disturbances. In
general, the data on initial development of disturbances in the first regime (curve 1)
cannot be considered as absolute, because development can be stretched by
decreasing the level of the initial noise. A thick dotted line corresponds to
dependence t / ðAKÞ�2 following from the B.-F. theory. It is remarkable that this
dependence is valid at least for AK\0:15.

Fig. 6.2 The same as in Fig. 6.1 but for second type of development: wave numbers k ¼ 10ðd ¼
�0:80Þ and k ¼ 90ðd ¼ 0:80Þ for steepness AK ¼ 0:23�0:28 (Reproduced with permission from
Chalikov 2007 © 2007 AIP Publishing LLC)
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The example of development of unstable modes for AK ¼ 0:13 is given in
Fig. 6.4. The initial spectrum represents the modes of Stokes wave at wave num-
bers k ¼ nK; n ¼ 1; 2; 3. . . and superimposed noise. As shown, disintegration of
Stokes waves occurs in a more complicated manner than it was predicted by the B.-
F. theory: The similar disturbances grow around all the modes with wave numbers
k ¼ nK; n ¼ 2; 3; 4. . .. This result proves the prediction of the McLean (1982)
theory describing development of one-dimensional disturbances (Class 1 in
McLean’s notation) in a form

g0 ¼
X1
�1

aj exp i ð1þ dÞjx� rtð Þð Þ ð6:1:8Þ

where aj is the amplitudes.
The amplitudes of the modes emerging around the modes of Stokes wave are

much smaller than the amplitude of the main mode ðk ¼ K ¼ 50Þ. Obviously, the
bound disturbances for these modes cannot result from the local interactions in the
vicinity of the modes with the wave numbers k ¼ nK for n[ 1, because according
to Eq. 4.3, the energy of these modes are too small to be able to support such a
development simultaneously with developing around the first Stokes mode.
Distributions of new modes growing around the modes of Stokes wave are similar
to each other. It is most likely that these modes grow due to quadratic
self-interactions which were demonstrated in Chap. 4.

The rate of growth c for the disturbances around the first mode of Stokes wave in
the first period, as function of d for different steepness, is shown in Fig. 6.5. For
small steepness, the calculated data are in excellent agreement with the B.-F. theory,

Fig. 6.3 Duration of the first
regime (curve 3), the second
regime (curve 2), and total
time up to terminating of run
due to breaking onset (solid
line 1) as function of initial
steepness AK Curve 4
corresponds to dependence
t / ðAKÞ�2. All times are
expressed in periods of wave
with wave number K ¼ 50
(Reproduced with permission
from Chalikov 2007 © 2007
AIP Publishing LLC).
(Reproduced with permission
from Chalikov (2007). ©
2007 AIP Publishing LLC)
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but with increasing of steepness, the numerical model gives smaller values of c. The
same results were obtained with the linearized equations integrated in a strongly
nonlinear environment (see McLean 1982). For AK ¼ 0:40, the linear B.-F. theory
for the first-order Stokes wave overestimates c by one decimal order. The numerical
experiments predict also additional areas of fast growth with the maximum in the
vicinity of d ¼ þ 0:7. For d ¼ 0:7, this area can be referred to the area of influence
of the second Stokes mode at K ¼ 100. These maxima are repeated around each

Fig. 6.4 Example of evolution of spectrum due to development of unstable modes for AK ¼ 0:13.
Vertical axis corresponds to wave numbers and horizontal axis to amplitudes (Chalikov 2005)
(Reproduced with permission from Chalikov 2007 © 2007 AIP Publishing LLC)
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Fig. 6.5 Non-dimensional growth rate c in the first stage of development as function of d and AK.
Solid lines correspond to B.-F. analytical results and the dots are estimations obtained with
Eq. (6.1.7) (Reproduced with permission from Chalikov 2007 © 2007 AIP Publishing LLC)

84 6 Nonlinear Interaction in One-Dimensional Wave Field



Stokes mode. The cause of growth of the super-harmonics of Stokes wave around
c ¼ �0:7 is unclear. For the large steepness AK[ 0:25, the rate of growth becomes
nearly constant for all d. The calculations (McLean 1982) predicted decrease of c at
AK[ 0:35. Our calculations do not confirm this behavior, rather supporting the
results obtained by Kharif and Ramamonjiarisoa (1988). McLean predicted
appearance of two-dimensional disturbances for large AK initially identified by
Longuet-Higgins (1978). The current model, being essentially one-dimensional,
predicts unstable regime in the entire d domain. The three-dimensional problem is
discussed in Chap. 12.

The data on maximum growth rate cmax in the interval ð�1\c\1Þ for the first
period is given in Fig. 6.6 (solid lines). The location of this point relatively to the
main mode ðd ¼ 0; k ¼ 50Þ is given in the top panel. As shown, for jdj\0:2, the
location of maximum growth coincides precisely with the predictions of B.-F.
theory. In the interval 0:2\d\0:4, the results are very close to the data obtained by
McLean (1982). For d[ 0:4, an agreement with the McLean calculations is poor,
because the location of the point of maximum is difficult to define (see panel for
AK ¼ 0:30 in Fig. 6.5). The second maxima of growth are located around d ¼
þ 0:8 (dotted lines). At large AK, their position is also unstable. The dependence of
cmax on steepness AK is given in the bottom panel (Fig. 6.6). Again, cmax at small

Fig. 6.6 Results of
estimations of the growth rate
for first stage. Upper panel
maximum rate of
development disturbances as
function of d (Eq. 6.1.5): 1
B.-F. theory; 2 estimations
with Eq. (6.1.7) for primary
maximums; 3 the same
estimations for secondary
maximums; 4 maximum rates
calculated by McLean (1982).
Bottom panel—1 B.-F. theory;
2 estimation with Eq. (6.1.7)
for primary maximums
(values for d[ 0 and d\0
are practically coincide); 3
ðd\0Þ and 4 ðd[ 0Þ are
estimations with Eq. (6.1.7)
for secondary maximums
(Reproduced with permission
from Chalikov 2007 © 2007
AIP Publishing LLC)
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AK agrees with the B.-F. theory; however, starting from AK ¼ 0:2, the cmax
becomes smaller: At AK ¼ 0:35, it is 5 times smaller than in the B.-F. theory. The
same data as in Fig. 6.6 but for the second stage of growth are given in Fig. 6.7. As
shown, the rate of growth of disturbances at this stage is considerably higher than at
the first stage, but for large steepness, the rate of growth is also decreasing.

The generalized data on the rate of growth c as a function of steepness AK and d
for the first stage are given in Fig. 6.8. The value d ¼ 0 corresponds to the zero
mode of Stokes wave ðK ¼ 50Þ. The contours of c are nearly symmetrical with
regard to d ¼ 0. The maximum value c ¼ 0:027 was found in point
d ¼ 0:5;AK ¼ 0:32. A close value c ¼ 0:025 was obtained in symmetrical point
d ¼ �0:5;AK ¼ 0:32.

The more specific data on disturbances at the first stage are given in Fig. 6.9
where the wave number spectrum Sk , frequency spectrum Sx, and wave number/
frequency spectrum Skx are presented. For these calculations, we used the records
of the amplitudes of the Fourier components gkðtÞ in the Cartesian coordinate
system

Fig. 6.7 The same as in
Fig. 6.6 but for second stage
(Reproduced with permission
from Chalikov 2007 © 2007
AIP Publishing LLC)
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gðx; tÞ ¼
X

�M� k�M

gk#kðxÞ; ð6:1:9Þ

(where functions #k are defined by 2.2.6). Then, gkðtÞ are represented by the Fourier
series over time

gðx; tÞ ¼
X

�M� k�M

X
0\l\X

hkl#ðtÞ#kðxÞ: ð6:1:10Þ

The density of spectrum Skx can be calculated by the formula

Skx ¼ 1
2

hk;l � h�k;�l
� �2 þ hk;l � h�k;l

� �2� �
; ð6:1:11Þ

and frequency x is connected with index l by the relation

x ¼ 2p
Tr

l; ð6:1:12Þ

Fig. 6.8 Rate of growth c
(contours) in a first stage as
function of d and AK
(Reproduced with permission
from Chalikov 2007 © 2007
AIP Publishing LLC)
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where Tr ¼ 214:26r and l is length of period (consisting of 21,426 records
including 2Mþ 1 ¼ 4001 Fourier amplitudes gk through the time interval
Dt ¼ 0:01). The spectrum Skx is defined in a range of the wave numbers
ð�M� k�MÞ and in a range of the frequencies 0�x�Xð Þ where X is a maxi-
mum frequency X ¼ 2p=Dt ¼ 200p.

The solid curve shown in Fig. 6.9 corresponds to the wave number spectrum Sk
normalized to its maximum value (the lower part of the right axis) obtained by
summation over x

Sk ¼
X
i¼0;J

SkxDx ð6:1:13Þ

where J ¼ 0:5ðTr=Dt � 1Þ is dimension of Skx over frequencies. Dotted curve
corresponds to the wave number spectrum SxðxÞ (left part of the top axis) nor-
malized to its maximum value obtained by summation over k

Sx ¼
X

k¼�M;M

SkxDk: ð6:1:14Þ

Fig. 6.9 Wave spectrums for AK ¼ 0:32 obtained by averaging over first stage of instability
development. Wave number/frequency spectrum is drawn by dots of different sizes and color (see
legend and explanations in a text): 1 linear dispersive relation and 2 dispersive relations for modes of
the Stokes wave.Wave number spectrum is drawn in a bottom right quadrant (bottom horizontal axis
corresponds to wave numbers and right vertical axis to wave number spectrum). Frequency spectrum
is drawn in left right quadrant (left vertical axis is a frequency, and top horizontal axis corresponds to
frequency spectrum (Reproducedwith permission fromChalikov 2007© 2007AIP Publishing LLC)
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Both spectra contain well-pronounced peaks at wave numbers of the Stokes wave
modes. The structure of disturbances between the consequent modes of Stokes
wave is the same. These disturbances are less pronounced in the frequency spec-
trum Sx because the amplitudes of disturbances fluctuate in time. Much more
information is delivered by the wave number–frequency spectrum Skx. Physically,
the Skx is the doubled density of the potential energy in a cell ðk; kþDkÞ;ð
ðx;xþDxÞÞ where Dkþ 1 and Dx ¼ 2p=Tr. The negative values of k correspond
to the waves running to opposite direction (these waves were not assigned in the
boundary conditions). These waves are also generated, but their energy is small, so
we neglect them. Actually, the spectrum Skx decreases quickly with the growth of
k and x, so we consider domain only for the relatively low- positive wave ðk\300Þ
numbers and low frequencies ðx\40Þ. The spectra Skx are shown in Fig. 6.9 for
the initial stage of run with AK ¼ 0:32. The left axis corresponds to the frequency
x, while the bottom axis shows the wave number k. The spectrum is drawn as the
circles whose size and blackness depend linearly on log10ðSkxÞ (see legend). Hence,
the main components of Stokes waves correspond to the black circles, while small
disturbances are shown by gray dots. All components of Stokes wave lie precisely
on a straight line (2) corresponding to the theoretical seventh-order phase velocity
of Stokes waves Cs ¼ 0:1488 with the accuracy up to 4 digits. The dotted line
represents dependence x ¼ k1=2 (linear phase velocity for k ¼ 50 equals to 0.1414).
The disturbances are represented by their averaged values for the entire first stage of
development, so their actual values up to the end of this period are larger than those
represented in Fig. 6.9. The amplitudes of modes of Stokes wave in the presence of
disturbances are not constants due to the fast (and obviously reversible) nonlinear
interaction between the modes and disturbances. This is why each point corre-
sponding to the Stokes wave modes is surrounded by a broad vertical halo (gray
vertical lines, aggregated, in fact, from a large number of gray points). The addi-
tional modes growing due to B.-F. instability between the Stokes wave modes also
have variable amplitudes. Each mode of Stokes wave is surrounded by two families
of disturbances arising below and above the wave number of mode ks of Stokes
wave. The disturbances with k\ks move faster than Stokes wave, while the dis-
turbances at k[ ks move slower. Only the first group of waves which are the
super-harmonics for Stokes wave satisfy well to the linear dispersive relation. All
other growing modes can be attributed neither to free waves (because they lie far
away from the dotted line corresponding to the linear dispersive relation) nor to the
‘bound waves’ of Stokes wave (because they do not fall to the solid straight line).
The connection between frequency x and wave number k for disturbances can be
approximated by formula:

x ¼ xs þ ckðk � ksÞ ð6:1:15Þ

where xs ¼ Csks are the frequencies of the Stokes modes. Dependences (4.1.15) are
shown in Fig. 6.9 by dashed lines. Remarkably, those disturbances grow sym-
metrically relatively to the Stokes modes in a wave number space, an empirical
coefficient ck ¼ 0:097 preserving its value with good accuracy for all Stokes modes.

6.1 Adiabatic Transformation of Stokes Waves 89

http://dx.doi.org/10.1007/978-3-319-32916-1_4


6.2 Quasi-Stationary Regime

The time of instability development (see Fig. 6.3) depends strongly on the initial
nonlinearity characterized by steepness AK. An evolution of 25 modes with the
wave numbers k ¼ 25þ 2n; n ¼ 1; 2; 3. . .25 for AK ¼ 0:15 is shown in Fig. 6.10.

It is shown that some of the modes are developing exponentially until reaching a
quasi-stationary regime, and other modes are developing in two stages, slow and
fast. By the end of this development, the disturbances absorb most of the energy of
zero Stokes mode. Finally, the wave surface becomes a random superposition of
running nonlinear waves with fluctuating amplitudes. This quasi-stationary regime

Fig. 6.10 Top panel evolution of amplitudes of modes with wave numbers k ¼ 25þ 2n, n ¼
1; 2; 3. . .25 adjacent to main mode of Stokes wave (K = 50); bottom panel last recorded surface
z before breaking (Reproduced with permission fromChalikov (2007).© 2007AIP Publishing LLC)
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was explicitly simulated for all the values of steepness AK[ 0:04. Presumably, for
smaller steepness, this regime can be reached too, but the time scale for develop-
ment of the B.-F. instability increases as ðAKÞ�2 (see Fig. 6.3, curve 4); hence, such
development takes a very long time. The final surface on the way to breaking
(bottom panel in Fig. 6.11) is a typical multi-mode wave surface. Note that the peak
of spectrum in a quasi-stationary regime is shifted to the lower wave numbers as
compared with its initial location.

The nature of the modes appearing due to the nonlinearity is fairly complicated.
The simulated quasi-stationary regime for t > 250 was used for calculating phase
velocities and spectrum (top and bottom panels in Fig. 6.10). The calculation of an

Fig. 6.11 Characteristics of wave field in quasi-stationary regime for AK ¼ 0:15; 250\t\950,
top panel phase velocity c as function of wave number k calculated with Eq. (6.3.4). Dotted line
corresponds to initial phase velocity of Stokes wave, cs ¼ 0:1488 and dashed line is a linear
dispersive relation c ¼ k1=2. Bottom panel is a wave spectrum in quasi-stationary regime. Gray
vertical lines characterize the scatter of spectrum; gray dotted line corresponds to initial spectrum
of Stokes wave. (Reproduced with permission from Chalikov 2007 © 2007 AIP Publishing LLC)
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instantaneous value of the phase velocity of the kth wave component can be done
with the relations (2.7.4 and 2.7.5).

For a developed spectrum, the lowest modes ðk ¼ 20�80Þ obey dispersive
relation, but the phase velocity for high wave numbers is larger than that for the
linear waves. A simple explanation of such phenomenon was given in Chalikov and
Sheinin (1998). In fact, at each wave number, several modes coexist: One is a free
wave; all others are the so-called bound waves corresponding to the additional
modes attached to every steep enough wave. Naturally, these ‘bound’ waves run
with the phase velocity of carrying wave. The calculations of the phase velocity
based on (5.2) give a weighted value between the velocities of free and several
bound modes. Evidently, the nonlinear waves cannot obey a strict dispersion

relation x ¼ jkj1=2 because the calculation type of the relation (4.2.1) assumes that

amplitude of any wave Ak ¼ ða2k þ a2�kÞ1=2 remains constant. Figure 6.12 and the
statistical data on ‘life time’ of waves given in Fig. 6.3 prove that only the low-
wave number modes with large amplitudes remain more or less steady. For the
high-wave number modes, a timescale of unsteadiness is of the order of one period,
and such waves are rather a nonlinear object than the free waves. A scatter of the
dispersion relation can be also increased by Doppler effects, i.e., the phase velocity
of short waves is affected by orbital velocity fields produced by all waves.

Let us suppose that the wave field represented by a set of nonlinear waves, as
well as the frequencies of main modes xi0, satisfies the dispersive relation

xi0 ¼ k1=2i ð1þ f ðaikiÞÞ1=2; ð6:2:1Þ

Fig. 6.12 The same as in
Fig. 6.11, but for
AK ¼ 0:15; 250\t\950.
Solid lines correspond to
generalized dispersive relation
(Eq. 6.2.3) for n = 0, 1, 2, 3
(Reproduced with permission
from Chalikov 2007 © 2007
AIP Publishing LLC)
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where f is a function correcting the linear dispersive relation for the case of finite
amplitude.

Let us define that Eq. (6.2.1) corresponds to the bound mode of 0th order and
find a frequency of the n-order bound mode xkn (n = 1, 2, 3, …) at wave number
k. The bound mode has the same phase velocity as its main carrying mode with the
wave number km ¼ k=ðnþ 1Þ and frequency xm ¼ k1=2m . Hence, the frequency of
the n-order bound mode xkn can be found from the proportion

km
xm

¼ k
xkn

; ð6:2:2Þ

and the general dispersion relation for any order of bound modes obtains the form

xkn ¼ ðnþ 1Þkð Þ1=2 1þ f ðamkmÞð Þ1=2; ð6:2:3Þ

where km ¼ k=ðnþ 1Þ and xm ¼ k1=2m are the wave number and frequency of the
carrying wave. Neglecting the correction f, Eq. (6.2.3) obtains a simple form

xkn ¼ ðnþ 1Þkð Þ1=2 ð6:2:4Þ

The branches for n ¼ 0; 1; 2 ðk[ 0Þ and n ¼ 0ðk\0Þ are shown in Fig. 6.12 by
thin lines. Three branches of the dispersive relation for n ¼ 0; 1; 2 ðk[ 0Þ and for
n ¼ 0 ðk\0Þ are clearly pronounced. However, the spectrum reveals a lot of new
features which are not so easy to explain. Firstly, all dependencies of frequency on
wave numbers have a large scatter increasing with growth of wave numbers.
Secondly, for all the branches, dependence of frequencies on wave numbers sys-
tematically declines off the dispersion relation (6.2.3) at high wave numbers.
Probably, this effect can be explained by a high non-steadiness of these modes.
Thirdly, there is a linear branch x ¼ 0:14k which probably reflects the group
effects. The contribution of different branches in the total energy is represented in
Fig. 6.12 where Skx is represented as a function of frequency x for different (only
positive) wave numbers k ¼ 25n; n ¼ 1�8. Note that the results represented in
Fig. 6.12 (bottom panel) are similar to the results obtained by Chalikov and Sheinin
(1998, Fig. 10) where up to 14 branches of the dispersion relation were found.

Note that the calculations of a well-defined wave number–frequency spectrum
even for 1-D waves require a very long time series. For calculation of spectrum in
one panel in Fig. 6.12, a number of ‘measurements’ as large as 240,000,000 were
used. These data can be considered as ‘precise.’ Similar calculations with the
observational data need a significantly larger volume of the data. This is why just
plain confirmation of linearity usually has been obtained.
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6.3 Transformation of Harmonic Wave on Deep Water

Harmonic waves play an important role in the theory of surface waves and technical
applications. It is often assumed that the real wave field can be represented as a
superposition of such wave with randomly distributed phases. In many cases, such
suggestion is exact enough if the exchange of energy between modes is not
important. Such wave-to-wave interactions can depend on many details. For
example, for investigation of the Benjamin–Feir instability, a development
(Benjamin and Feir 1967) is necessary to take into account at least the first term of
Stokes expansion. Hence, if carrying wave is assigned as a harmonic wave, the B.-F.
instability should not arise. However, the exact modeling in the conformal coordi-
nates shows that the B.-F. instability does arise and develops not slower than for
Stokes waves. Such development manifests itself in appearance and development of
the new wave components (‘bound waves’) due to quadratic interactions; then, the
B.-F. instability starts to develop and finally the full stochastization of wave field
occurs (Chalikov 2007). It is followed by formation of irreversible fluxes of energy
producing the high-wave number dissipation and shift of energy to the lower wave
numbers (downshifting). The dissipation can be reduced by extension of domain in a
Fourier space, but the downshifting remains in any case (Chalikov and Babanin
2014). Remarkably, this clearly pronounced and fast process cannot be reproduced
on the basis of the Hasselmann’s theory (Hasselmann 1962). Steep waves have two
regimes of instability. The evolution of train of harmonic waves with steepness
AK[ 0:28 is terminated by their simultaneous breaking. The waves with steepness
AK\0:28 get transformed producing new modes. The rate of such transformation
depends on the initial steepness, but the evolution is finally terminated by breaking if
the initial steepness of carrying wave Ak[ 0:12 (Chalikov and Sheinin 2005). Here,
the evolution of harmonic wave of small and medium steepness is investigated on
the basis of the 2-D conformal model (Eqs. 2.2.34 and 2.2.35). The aim of this
investigation was to prove that harmonic waves are unstable ‘per se’ in the absence
of disturbances.

The initial condition for elevation gðn; s ¼ 0Þ and surface velocity potential
/ðn; f ¼ 0; s ¼ 0Þ for a train of harmonic waves were calculated with the formulas
of the linear theory:

gðnÞ ¼ A cosðKxÞ; /ðn; f ¼ 0Þ ¼ �AK1=2 sinðKxÞ; ð6:3:1Þ

where A is an initial value of the wave amplitude with wave number K. In fact, the
number K defines accuracy of approximation. Here, the value K ¼ 20 was chosen.
The number of modes M was equal to 4000 and the number of knots N ¼ 16;000.
An accuracy of the numerical scheme was demonstrated earlier by simulation of a
running Stokes wave. An additional proof of accuracy is the exact conservation of
full energy:
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E ¼ ð2pÞ�1
Z2p
0

ðz2xn � uufÞJ�1dn ð6:3:2Þ

The value of E changed by less than 10�7E in all runs is described below. Since the
subject of the investigation was an initial evolution of wave, the calculations were
performed over 50 periods of carrying wave.

The linear theory prescribes that the kinetic energy of waves is equal to the
potential energy. For nonlinear waves, this is incorrect: Between these two kinds of
energy, a permanent quasiperiodic exchange occurs. The amplitude of such fluc-
tuation grows quickly with the increase of steepness. An example of such fluctu-
ations for the initial steepness AK ¼ 0:255 is given in Fig. 6.13 where an evolution
of the potential and kinetic energy and their half sum is given. As seen, for this case,
both components of the energy can change in the range �5%. The total energy
remains strictly constant.

The main results for the waves with the initial steepness AK ¼
0:005; 0:105; 0:255 are shown in Fig. (6.14) where the trajectories characterizing
the evolution are given in space ðf ; aÞ (a is the amplitude of mode and f is a fetch
for the given mode calculated by the formula

fk ¼
Zs
0

ckdt; ð6:3:3Þ

where ck is the phase velocity of kth mode calculated by the formula (4.2.7).
The derivatives on time are just the right-hand side of the Eq. (2.2.34) written for

the Fourier components of z. It is convenient to use Eq. (6.3.4) for calculations by
the rms method

ck ¼ AD

D2
; ð6:3:4Þ

Fig. 6.13 Example of evolution of kinetic energy (dotted curve), potential energy (dashed curve),
and their half sum (solid curve) normalized by their initial values as function of time, expressed in
periods of carrying wave (Chalikov 2005)
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(ck is the rms mean phase velocity, A is numerator, and D is denominator in (4.2.7)).
The averaging was done over 100 consequent time steps.

The uppermost curve at each section shown in Fig. (6.14) corresponds to the
amplitude of wave with wave number K ¼ 20. Because of logarithmic scale only
for the case AK ¼ 0:255, the energy of carrying wave is not a constant. As shown,
the harmonic wave immediately produces new modes at wave numbers k ¼
nKðn ¼ 2; 3; 4. . .Þ through the irreversible quadratic interactions. The new modes
are not attached to carrying wave, and on the contrary, their phase velocities
fluctuate within wide ranges. However, a fetch for each mode is comparable with
that for the carrying wave. The modes with the wave numbers different from
k ¼ nK do not emerge even for a very long integration, which confirms high
accuracy of the numerical scheme.

An evolution of amplitude of the carrying mode ðK ¼ 20Þ and the amplitudes of
the first three new modes is shown in Fig. 6.15. For convenience, not absolute

Fig. 6.14 Evolution of
amplitude of carrying mode
with wave number K ¼ 20
(top, practically straight lines)
and amplitudes of additional
modes with wave numbers
k ¼ nK as functions of fetch
expressed in lengths of
carrying wave) (Chalikov
2005)
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values of amplitude �ak but their disturbances normalized by the averaged values are
represented here.

bk ¼ ak � ak
ak

; ð6:3:5Þ

As shown, amplitude of the mode with wave number k ¼ 40 changes in
counter-phase with the amplitude of carrying wave, the fluctuations of the modes
with higher wave numbers being similar to the fluctuations of the first disturbances
with wave number k ¼ 2K.

It is most interesting that after the averaging of spectrum over time, the
amplitudes of disturbances are qualitatively close to the amplitudes of Stokes wave
for wave number K (see Fig. 6.16).

Fig. 6.15 The averaged over
time wave amplitudes as
functions of wave numbers
for initial steepness
AK ¼ 0:255. The stars
correspond to amlitudes of
modes for Stokes wave

Fig. 6.16 The wave number
kp in a maximum of spectrum
as a function of time (Case 6)
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6.4 On Nonlinear Energy Transfer in Unidirected
Adiabatic Surface Waves

Here, the model was used for simulation of a deepwater wave evolution for very
long periods (Chalikov 2012). The wave field in the initial condition was assigned
as a superposition of linear waves with random phases and a spectral distribution
described by the one-dimensional JONSWAP spectrum for different inverse wave
ages X ¼ U=cp (U—a wind velocity, cp is a phase velocity of wave in the peak of
spectrum), i.e., for different wave steepness. Since the equations were integrated
over thousands of wave periods, the details of initial conditions as well as a specific
set of phases were of no significance.

In the course of evolution, the wave spectrum was changing due to the nonlinear
interactions. Opposite to the linear case, a value of the integral potential energy Ep

in the nonlinear wave field is not a constant, since the potential Ep and kinetic Ek

energies fluctuate. However, the total energy E ¼ Ep þEk is an adiabatic integral
invariant. The total energy in the numerical model remains constant on condition
that a spectral domain is very broad and a flux of energy into the high-wave number
part of the spectrum is not restricted. For a finite size of the domain, a flux of energy
into the truncated part of the spectrum occurs. A corresponding decrease of the total
energy can be considered as dissipation. To make the process quasi-stationary, such
a weak loss of energy was compensated by appropriate correction of the total
energy E. The procedure of the high-wave number smoothing and maintaining of
the total energy was described in Sects. 2.3 and 8.3 (see also Chalikov 2005).

The equations were integrated with the total number of modesM ¼ 1000 and the
number of grid knots N ¼ 4000 with time step Dt ¼ 0:001 for 5,000,000 steps,
which corresponds to 8000 initial peak wave periods Tp ¼ 2p=xp, where xp is
frequency in the maximum of the initial spectrum Sðt ¼ 0;xÞ connected with the
peak wave number kp by the dispersion relation xp ¼

ffiffiffiffiffi
kp

p
. The initial value of kp

was always equal to k0 ¼ 100. The initial spectrum decreases fast for the wave
numbers k\kp, while for k[ kp, it was assigned in a wave number space up to the
wave number kp þ 20. We do not give more details, because a specific shape of the
initial spectrum is of no significance, and only the integral characteristics are
important (see Table 6.1).

Table 6.1 Integral
characteristics of numerical
runs (see text)

No U/cp s1 s2 Δtk

1 1.0 0.064 0.029 12

2 1.5 0.078 0.036 19

3 2.0 0.092 0.042 30

4 2.25 0.097 0.044 33

5 2.5 0.103 0.047 34

6 3.0 0.113 0.051 42

7 3.5 0.123 0.055 50
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The main parameter of JONSWAP spectrum is the so-called inverse wave age
U=cp (U is wind velocity, cp ¼ k�1=2

p is phase velocity in the peak of spectrum)
which characterizes the stage of the sea wave development. The value U=cp ¼ 3:5
corresponds to the case of steep (‘young’) waves when wind velocity exceeds phase
velocity 3.5 times. The value U=cp ¼ 1 corresponds to the case of ‘old sea,’ when
wind velocity is equal to the peak phase velocity. In this case, the waves do not
obtain energy from wind. In our calculation, the parameter U=cp is used as an index
for the cases with different wave steepness. The wave steepness is characterized by
the two integral parameters:

s1 ¼
XM
1

k2SðkÞDk
 !1=2

; ð6:4:1Þ

s2 ¼ kp
XM
k¼1

SðkÞDk
 !1=2

: ð6:4:2Þ

where S(k) is the spectral density in the interval Dk ¼ 1. The parameter s2 char-
acterizes the steepness of a low-wave number part of spectrum, while parameter s1
characterizes the steepness created mostly by the high-wave number modes and the
local steepness in a physical space. The calculations were made for 6 different
values of U=cp. As shown, the steepness s2 in our calculation varies from 0.064 to
0.123 (the values corresponding to a developed wave field and the so-called young
sea, respectively). The runs with a larger initial steepness were terminated by
breaking instability followed by the local steepness approaching infinity in a
physical space. The breaking can be prevented by introduction of a breaking
parameterization algorithm. However, such cases cannot be referred to the adiabatic
cases, so they were excluded from consideration.

The aim of this work was the observation of the spectrum evolution. It was
found that at the initial stage of development, the energy spreads quickly over a
high-wave number part of the spectrum, forming a spectral ‘tail.’ The energy moves
also to a low-wave number domain, but it is a slow process. At all stages of the
development, the amplitudes of each mode quickly fluctuate in time even in the
peak of spectrum. Such fluctuation can be recognized as manifestation of the
reversible nonlinear interactions. However, an alternative explanation can be based
on a purely geometrical consideration. When the spectral resolution is high, the
Fourier series represents just an approximation of surface. Since each Fourier
coefficient is a product of integration over the entire domain, the small disturbances
of surface can misplace the energy from one mode to another (probably, the closest
to the initial one). The interpretation of wave field as a superposition of the linear
modes with fixed phases and phase velocities is too straightforward to be correct.

Fast fluctuations of amplitudes obscure a directed evolution of the spectrum, but
the averaged over wave number spectrum obtains a two-peak structure in all of the
runs: On the low-wave number slope of the spectrum, a new peak starts to grow,
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while the initial peak weakens. Finally, the spectrum shifts to the lower wave
numbers. Both of the spectral peaks fluctuate, which is why the largest amplitude
can belong to either of the first or the second peak, alternatively.

It is well shown in Fig. 6.17 where the location of a spectral maximum is shown
as a function of non-dimensional time. The top group of points belongs to the
high-wave number peak, while the bottom group refers to a new peak (see Fig. 6.20).

Fig. 6.17 Results of calculations with a number of modes M ¼ 1000 and with correction of total
energy: a dependence of a weighted wave number kw (Eq. 6.4.3) on a time t; b dependence of the
integral steepness s1 on a time t. In both frames, fluctuating gray curves show actual dependence;
solid curves are the product of the moving averaging with a window width equal to 41 (Chalikov
2012)
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The bottom cloud of points becomes denser with time, since the low-wave number
peak becomes the main one. The scatter reflects fluctuations of the amplitudes. Note
that the smooth spectra demonstrated in various investigations are often obtained at
low spectral resolution. Note also that contrary to the wave number spectra, the
frequency spectra obtained over the long enough periods are always smooth, since
the fluctuations of energy at the adjacent wave numbers cause the averaging of
spectrum in a frequency space.

As shown in (6.1.7), the formally defined wave number kp in a maximum of
spectrum has a very large scatter due to the amplitude fluctuation. The mean
spectrum-weighted wave number kw defined by the following expression

kw ¼
XM
k¼1

kSðkÞ
XM
k¼1

SðkÞ
 !�1

ð6:4:3Þ

is more convenient.
In Fig. 6.18, the weighted wave number kw is represented as a function of

non-dimensional time t. For all the cases, the time was equal approximately to 8000
initial peak wave periods. As shown, all the spectra move monotonically to the low
wave numbers. The rate of this downshifting increases with increase of the initial
steepness (given in Table 6.1), while the steepness s1 decreases due to the spectrum
broadening. It is particularly noticeable for the initial high steepness (cases 1 and 2).

As shown in panel a, the total energy decreases up to 50-60 % from the initial
value. Accordingly, the integral steepness decreases also two times (panel c). This
is why the rate of downshifting became much lower than that for the same cases 1,
2 and 4 with the permanent level of energy. However, downshifting appears in
these cases as well. A systematic downshifting was not reproduced in the
one-dimensional wave field simulations carried out on the basis of the nonlinear
Schrödinger’s equation and Zakharov’s equation (Janssen, 2003). Both of the
approaches assume a weak nonlinearity of wave fields and use a number of sim-
plifying hypotheses. Probably, the wave field simulated in this investigation was
not steep enough to show the downshifting. It is also quite possible that the sim-
plified 1-D equations in no way can reproduce the downshifting. The level of
energy was maintained in all of the numerical experiments with an accuracy of 6
digits. The reviewer of paper (Chalikov 2012) suggested that downshifting can be
produced by this input of energy. Such statement can be hardly correct, since the
input of energy in every spectral bin is proportional to the energy contained in this
bin. To validate this statement, three additional runs for cases 1, 2, and 4
(Table 6.1) were performed for M = 2048 with no correction of energy. In this
case, the truncation area was shifted far toward the high wave numbers. The results
are shown in Fig. 6.19.

The total shift of the weighted frequency Dkw=k0 over the entire period of
integration as a function of the initial steepness s1 is shown in Fig. 6.20. As shown,
downshifting in a unidirected adiabatic wave field can be quite significant. The
three lowermost points shown in Fig. 6.4 were obtained with no correction of the
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Fig. 6.19 Dependence of the
total change of the weighted
wave number kw for the entire
period of integration
(normalized by the initial
wave number k0) on the initial
integral steepness s1
(Chalikov 2012)

Fig. 6.18 Results of the
calculations with a number of
modes M ¼ 2048 with no
correction of the total energy:
a dependence of the total
wave energy on a time t;
b dependence of the
spectrum-weighted wave
number kw (Eq. 6.4.3) integral
steepness s1 on a time t;
c dependence of the integral
steepness s1 on a time
t (Chalikov 2012)

102 6 Nonlinear Interaction in One-Dimensional Wave Field



total energy. As shown, the rate of downshifting for these cases is much smaller
than that for the cases with large steepness, because the wave energy dissipates due
to the flux to a truncated part of the spectrum. As a result, the averaged steepness
becomes small.

The wave spectrum SðkÞ and a rate of spectrum change due to the nonlinear
interactions SnðkÞ are shown in Fig. 6.20. The spectra SðkÞ are averaged over 5
successive intervals, while the spectra SnðkÞ are just a simple difference between the
successive averaged wave spectra

SnðkÞ ¼ ðDtÞ�1 Sðk; tþDtÞ � Sðk; tÞð Þ ð6:4:4Þ

The wave spectra have a multi-peak structure most of the time. It can be
explained by the specific initial conditions, i.e., all the energy was assigned to the

Fig. 6.20 The averaged over the consecutive periods of length dt ¼ 1000wave spectra, S(k) (solid
curves) and the spectrum of the nonlinear interaction rate Sn (k) (dotted curves). The spectral
density below k = 40 is very close to 0

6.4 On Nonlinear Energy Transfer in Unidirected Adiabatic Surface Waves 103



unidirected modes with no angle spreading. The angle spreading lowers the energy
of modes directed along the x-axis. The spectral peak in the initial condition was
probably too high for 1-D simulations. Anyway, the presence of an additional peak
does not change the results qualitatively. The spectrum of the nonlinear interactions
rate SnðkÞ reflects a tendency for the wave spectrum evolution. The spectrum SnðkÞ
is mostly positive on the low-wave number slopes of the wave spectrum and
negative on the high-wave number slopes of the wave spectrum, which results in
shifting of the spectral energy to the left.

6.5 Conclusions

In this chapter, we applied the method for numerical simulation of periodic surface
waves, developed in ChSh, for a long-range simulation of the initially homoge-
neous Stokes wave train contaminated with small initial noise. The initial condi-
tions representing the exact Stokes waves with steepness AK ¼ 0:01�0:42 are
calculated with a simple and very fast algorithm developed for the stationary
solution (Chapter 3). It is shown that an initial development of disturbances agrees
with the B.-F. instability theory up to the steepness AK ¼ 0:1 and for the larger
steepness with the results of McLean (1982). The unstable modes develop around
each mode of Stokes waves. In most cases, the initial relatively slow growth is
followed by the second stage of development (Fig. 6.2), when growth occurs
several times faster than in the first stage. The development in the second stage is
characterized by decrease of the zero-mode energy; hence, it occurs under the
control of the conservations laws. The dependence of the rate of growth c in the first
stage is calculated in a broad range of wave numbers and steepness (see Fig. 6.8).
The calculated wave number/frequency spectrum shows that the newly arising
waves cannot be referred to the free linear waves or bound modes of Stokes waves.
All Stokes waves (at least with AK � 0:04) finally disintegrate and create a
quasi-stationary multi-mode regime (Fig. 6.10). For steepness AK[ 0:12, one of
the waves comes to overturning, thus terminating the run. The wave fields born by
Stokes waves with initial steepness AK � 0:12 are virtually stable. The threshold
0:12\ðAKÞc\0:13 is established accurately. It does not depend either on the
resolution of the model or on the wave number of a zero mode of Stokes wave. The
definition of a more precise value of ðAKÞc is difficult because the development
depends on the structure and amplitudes of the initial noise. The phase velocities of
low-wave number waves at K\20 are difficult to calculate because of their low
energy. In the energy-containing part of spectrum ð20\k\60Þ, the waves in
quasi-stationary regime agree strictly with the linear theory, but for the larger wave
numbers, the phase velocity is systematically higher than that of the linear waves. It
happens because the calculations of phase velocity based on (5.2) give a weighted
by energy value between the velocities of free waves and several bound modes. The
calculations of the wave number–frequency spectrum prove that the dispersive

104 6 Nonlinear Interaction in One-Dimensional Wave Field

http://dx.doi.org/10.1007/978-3-319-32916-1_3
http://dx.doi.org/10.1007/978-3-319-32916-1_5


relation consists of several branches. Each of them corresponds to a different order
of bound waves. An explicit form of the dispersive relation was derived. The wave
surface can be represented by a set of Stokes waves much more accurately then by
superposition of the linear modes.

An applicability of the 1-D approach and a potential assumption of high fre-
quency waves are questionable. Obviously, this approach cannot properly simulate
the processes where irreversible 2-D nonlinear interactions are essential. The model
developed can be applied for a broad range of the situations in which the 1-D
approximation is acceptable. Fortunately, a lot of wave phenomena are largely
controlled by strong nonlinear interactions which are relatively fast and for which
the 1-D approximation is often adequate. The formation of extreme waves is one of
such phenomena. As yet, the model simulations of very large waves are far from a
merely academic interest. It has long been known that the nonlinear redistribution
of energy can result in a sudden emerging of extremely large and steep waves,
commonly known as freak or rogue waves.

The harmonic waves are not a solution of the exact equations of the potential
wave theory. Hence, even in the absence of any disturbances, they undergo a
complicated evolution creating the discrete spectrum of non-stationary waves. On
the average, this spectrum is close to the spectrum of Stokes wave. When the initial
steepness becomes larger, the rate of development of such instability increases.
When the initial steepness exceeds 0.28, the instability results in the appearance of a
non-single-value surface and wave breaking. Meanwhile, the Stokes wave in the
absence of disturbances up to the critical steepness remains stable. In the long-term
calculations, the B.-F. instability can arise due to the errors of approximation of
time derivatives or to the not sufficient enough resolution in grid space, or to any
details of the numerical scheme. Definitely, the harmonic waves represent a good
basis for presentation of the wave field, but it is unlikely that the wave modes can
be considered as the real physical objects, since the set of their amplitudes and
phases depends on spectral resolution. The properties found in Sect. 2.7 show
that nonlinear interactions of the linear modes can lead to unpredictable
consequences.

In this chapter, the results of numerical modeling of the multi-mode unidirected
adiabatic wave evolution were represented. It is shown that due to the nonlinearity,
the irreversible nonlinear interactions and downshifting develop. The rate of
downshifting increases with increase of the nonlinearity. This conclusion contra-
dicts to the Hasselmann’s results. The Hasselmann’s theory is based on the
numerous simplifying assumptions. Representing a wave field as a superposition of
linear modes with random phases is most restricting assumption. In the Benjamin
and Feir investigation, it was shown that keeping just the first Stokes correction for
a harmonic wave resulted in the instability development. Later on, it was demon-
strated that there was no need in assigning nonlinear modes because initially the
1-D harmonic waves took a Stokes-like shape. After that, the B.-F. instability
developed, and a fully random wave field was generated at the nonlinear stage.
Hence, the absence of the 1-D interactions is inherent to the linear waves only. It
follows from the Hasselmann’s integral that in a 2-dimensional wave field, all the
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interactions between the modes running in the same direction are missing.
Evidently, the inaccuracies of the nonlinear interaction calculations with
Hasselmann’s integral grow with narrowing of spectrum. Our calculations suggest
that the unidirected wave interactions have probably the same intensity as those
between the two-dimensional waves. This effect is important for many practical
problems, especially for the wave forecasting problem.
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Chapter 7
Modeling of Extreme Waves

Abstract This chapter describes the results of more than 4000 long-term (up to
thousands of peak wave periods) numerical simulations of nonlinear gravity surface
waves performed for the investigation of properties and estimation of statistics of
extreme (‘freak’) waves. The method of solution of 2-D potential wave’s equations
based on conformal mapping is applied to the simulation of wave behavior assigned
by different initial conditions, defined by JONSWAP and Pierson–Moskowitz
spectra. It is shown that nonlinear wave evolution sometimes results in the
appearance of very big waves. There are no predictors for appearance of extreme
waves; however, a height of dimensional waves is proportional to a significant
wave height. The initial generation of extreme waves can occur simply as a result of
linear group effects, but in some cases, the largest wave suddenly starts to grow. It
is followed sometimes by a strong concentration of wave energy around a peak
vertical. It is taking place typically for one peak wave period. It happens to an
individual wave in a physical space, no energy exchange with surrounding waves
taking place. Probability function for steep waves has been constructed. Such type
function can be used for the development of operational forecast of freak waves
based on a standard forecast provided by the 3-D-generation wave prediction model
(WAVEWATCH or WAM).

7.1 Extreme Wave Phenomenon

In sixties, the author of this manuscript was earning his living as a crewman on a
fishing trawler. Dragnet fishing routes ran in North Atlantic as well as in the Barents
and Norwegian seas. One day, when working on deck, we heard our sailing
master’s loud warning from the above porthole: ‘Look out, guys!’ And immediately
after that our sailing master’s head disappeared behind the porthole, the deadlights
thoroughly closed up. We turned back and instead of a usual skyline saw a huge
water mountain rapidly approaching our vessel. Normally, the skyline was clearly
seen from the four meter height of our deck. All the crewmen working on deck,
except of me, rushed to the tackle and got a tight hold of it. The boat was lying
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athwart, but suddenly she slid violently to one side, a powerful flow of water
immediately having swept over the deck. The wave was much taller than me, and in
a moment, it washed overboard many tons of the fish we had caught. It also tried to
throw me overboard, but fortunately, though standing fully in the cold water, I
managed to reach up a shrine and was almost convulsively grasping it. Shortly after
that, the wave was gone leaving behind just an empty deck. We had nothing to do
but wait for another lift of our dragnet. Afterward, the crewmen having behind their
shoulders many years of navigation in these waters told me that such wave has been
appearing here almost every year.

The author did not know then that many years later, he would be studying this
phenomenon on the professional basis. However, that experience of my youth had
left such a deep impression in my soul that being already a scientist I could give a
graphic description of that freak wave: (a) Its height had been somewhat around
5–7 m, while all other waves height had not exceeded three meters; (b) the
wavelength along its crest had been no less than several hundred meters, while
the wavelength along its movement direction had been significantly less; (c) before
the wave front, a big trough had been formed, which had been the cause of such a
steep roll of the boat; (e) upon wave approaching its upper slope had looked almost
vertical.

The extreme waves called ‘freak’ or ‘rogue’ are formally defined as waves
whose height exceeds the significant wave height Hs ¼ 2 (sometimes, 2.1 or 2.2).
Sailors used call such waves ‘monster’ waves. So, if the significant wave height is
equal to one meter, then all the waves with a trough-to-crest height exceeding two
meters should be referred to the category of ‘freak’ waves. It is hard to imagine that
such waves can be characterized as ‘monster’ waves even if they are observed from
board of a small vessel. On the other side, if a steady west wind with a speed of
20 m/s in the South Ocean generates a wave with the height of around 20 m and
length of around 0.5 km (according to the reports of oceanographers sailing in those
areas, such waves are not rare), then such a wave would just lift and drop a vessel,
the only damage incurred, being yet another attack of seasickness among the vessel
crew. According to the marine folklore, freak waves appear as ‘walls of water’ with
‘holes in the sea’ around them. Quite naturally, no one would pay attention to the
‘walls’ or ‘holes’ of 1 m high. It is assumed that such ‘walls’ should be consid-
erably higher than the elevation of observer above the peak of an incoming wave.
For a small yacht, a breaking wave with a trough-to-crest height of four meters can
appear as a ‘freak wave.’ The same wave, however, seems to be just a usual steep
wave for a skipper of a huge tanker. Such a wave is definitely dangerous and can be
obviously called ‘a monstrous wave’ by inhabitants of the land of Lilliputians.

Evidently, the current scientific definition of the term ‘freak wave’ is imperfect.
Remarkably, the sea folklore provides a better description of freak wave properties,
focusing on their shape, and assuming, of course, that they are very big. The term
‘vertical walls’ definitely indicates that the waves surge before observer and
undergo the active phase of breaking. The linear velocities of water in breaking
waves approach the phase speed of wave, which for the developed sea is close to
the wind speed. A ‘vertical wall’ does not lift a vessel, it hits it. Such waves at wind
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40 m/s can develop the dynamic pressure about 106 Pa, which is too much even for
a tanker. Obviously, the great energy releasing at breaking is not the only weapon
carried by extreme waves. Another dangerous property of extreme waves is a high
gradient of slope or a vertical acceleration: A big vessel can be just broken on a
wave of great curvature. Definitely, other properties are also important. Big and
long, though, non-breaking waves can be dangerous for sea platforms, while they
are relatively safe for sea vessels.

Thus, the classification of dangerous waves must be different for different
objects, floating or fixed, for deep sea or near-shore area, and it must consider not
only the size of waves, but also their shape and mechanical properties.

Considering the practical application of the rare wave theory, we can also come
to the conclusion that a strict unconditional ‘definition’ of freak waves is not
required at all. For better use of research recommendations, it would be more
efficient to define the categories of freak waves, as it has been done, for examples,
for tropical storms. A reasonable warning on appearance of such waves should
sound as follows: ‘from 6 am today until 6 am tomorrow in a specific area of
100 � 100 km a breaking wave as high as 10 m (category three) will be one of
1000� 200 waves; a breaking wave with a height of 15 m (category five) will be
one of 8000� 1000 waves,… etc.’ For unbreaking waves, the probability of such
waves is somewhat higher. The probability of coming across a freak wave is
convenient to express in terms of expectance time for the waves of different cat-
egories. A set of most important dynamic characteristics of such waves can be also
provided. Potential customers can decide for themselves, whether it is a real ‘freak’
wave, and modify their route or degree of preparedness accordingly. Similar rec-
ommendations can be developed for the ship designing, sea constructions, and
insurance purposes. Naturally, an extreme wave is the phenomenon which mani-
fests itself in direct contact with an object. Such cases can be relatively frequent in
uncomfortable areas with high winds and low intensity of navigation (e.g., in the
middle and high latitudes of the South Ocean) and, therefore, remain unnoticed. On
the contrary, in the areas of recommended routes (off the coast of South Africa),
even a single catastrophic event may create a ‘freak wave’ of publications. If the
probability of extreme waves could be connected with the more or less standard
oceanographic characteristics (e.g., the data on wind and wave climate), the esti-
mations of climatology of dangerous waves of different categories might be very
useful for industry, navigation, ship design, and, of course, insurance purposes. The
reliable data on direct registration of the freak wave events are few; thus, the
operational monitoring of extreme waves from satellites is the most important,
though, perhaps, not resolved problem.

The attempts to completely attribute generation of big waves to focusing of wave
energy on a specific geometry of currents or topography, or certain wind conditions,
cannot be taken seriously. Each of such mechanisms can increase an effect of wave
growth, but it is unlikely that it plays an important role in general statistics (in-
dependent of the specific location) for open ocean. It is well known that the fre-
quency of big wave occurrence greatly exceeds the values calculated with plain
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extrapolation of regularities obtained on the basis of the linear theory. At present,
the ‘scientific community’ is coming to the opinion that the main role in appearance
of such a phenomenon is played by a strong nonlinearity of waves, which makes the
process of ‘freaking’ much more frequent than it might be predicted on the basis of
the linear theory. This statement is also true for other branches of the geophysical
fluid dynamics: For example, the probability of a very strong wind also greatly
exceeds the estimations based on the Gaussian distribution. For insurance purposes,
it would be a great mistake to do estimations of tornado probability using the
Gaussian extrapolation of the wind speed climatic probability.

At present, freak waves are the subject of intense research. Various theoretical
investigations and laboratory experiments were conducted over the recent years (see
reviews Kharif et al. 2003, 2009; Dysthe et al. 2008). As it usually happens at the
initial stage of any studies, the generation of freak waves was explained by many
different mechanisms. The linear theory is evidently unable to describe an extreme
wave onset. That is why the linear theory additionally assumes the possibility of the
wave energy geometry focusing on specific structures of surface currents or/and
bathymetry. However, it is known that freak waves appear both in deep and shallow
waters, in the presence or absence of appropriate current systems. Besides, it is
unlikely that the focusing can provide such fast development. All the processes
mentioned above have been investigated within the framework of weakly nonlinear
models, such as the nonlinear Schrödinger equation, the Davey–Stewartson system,
the Korteweg–de Vries equation, and the Kadomtsev–Petviashvili equation. These
approaches considerably simplify principal equations, since they reduce them to the
single equation for surface elevation. Janssen (2003) explained the freak wave
occurrence as a consequence of a four-wave interaction. His suggestion is based on
the Zakharov’s equation (Zakharov 1968) which predicts deviation of the Gaussian
process resulting in the nonzero kurtosis, but still zero skewness. Real waves have
always positive skewness. It is unlikely that the model which cannot simulate a
simpler and a more important third-order moment (skewness) is able to correctly
simulate a much more complicated fourth-order moment. There also exists a
hypothesis that freak wave can arise due to the specific atmospheric forcing. This
statement is evidently true. Homer (edition of 2000) had once noticed: ‘…it is the
force of wind that makes the waves so great.’ However, the timescales of wind
forcing are too great to explain a sudden rise of one out of many waves. The wind
forcing creates high density of wave energy, but it is just a long prehistory of
stochastic ‘freaking’ process, connected with the spontaneous transformation and
release of huge amounts of energy. Benjamin–Feir instability (Benjamin and Feir
1967) is considered to be an important mechanism of developing the wave spec-
trum homogeneity due to slow growth of the new wave components; however, it is
inapplicable for the finite-amplitude fast wave evolution controlled by conservation
of energy and a strong nonlinearity (Chalikov 2007). The similarity between the
B-F instability criteria, applicable to a discrete spectrum and the so-called BFI index
(Janssen 2003) introduced for a developed spectrum, is doubtful.

The most popular tool for investigation of nonlinear waves is the nonlinear
Schrödinger equation. This equation has been playing an important role in
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investigation of a freak wave generation. The numerical calculations based on the
Schrödinger equation show that some of the freak wave cases can appear as a result
of modulation instability and the focusing of energy (Henderson 1999; Dysthe and
Trulsen 1999; Osborne et al. 2000). Using the JONSWAP spectrum, Onorato et al.
(2000) performed numerical experiments to investigate a freak wave generation and
its statistics. In particular, it was shown that for a narrow spectrum (an increased
value of ‘enhancement’ coefficient in the JONSWAP spectrum), the probability of
the rogue wave occurrence is increasing. However, the numerical approach based
on the Schrödinger equation can be referred to as a qualitative method, because the
results of such simulation look strange sometimes: They make an impression that
the waves simulated in this way seem unnaturally big. Some of the calculations
(e.g., Slunyaev et al. 2002) show that an enhancement of amplitude can be 7 times
as high. The simulations based on the equations of the fluid dynamics show that big
waves always tend to a strong asymmetry before breaking (Chalikov and Sheinin
2005; Babanin et al. 2007). The simplest definition of asymmetry is a ratio of the
distance between the forward trough and crest to the distance between the back
trough and crest. This characteristic is most important as an indicator of the
breaking onset. The breaking restricts growth of amplitude and makes the statistics
of big waves more natural. The evident advantage of the numerical approach based
on the Schrödinger equation is that it can be generalized for a qualitative investi-
gation of 2-D waves (Osborne et al. 2000). In the numerical investigation of a
one-dimensional wave evolution, a use of precise numerical models based on the
fluid mechanics equations is evidently preferable.

The work is considering simulation of numerous cases of the nonlinear evolution
of a 1-D wave field leading to breaking or/and formation of extreme waves. The
results obtained are used for preliminary estimations of occurrence, statistics, and
some mechanical properties of extreme waves. It is shown below that extreme
waves are a relatively rare but quite a typical phenomenon which can be well
simulated using full fluid mechanics equations. The limitations of
two-dimensionality make the results less general than those which could be
obtained with the use of the 3-D model. However, it would be premature to start the
simulations using a highly complicated and expensive 3-D model before trying all
the possibilities suggested by a fast and precise 2-D model. Most of the scientific
communities keep to the opinion that the formation of freak waves (at least, in its
last stage) is mainly a one-dimensional process, as the rate of strong nonlinear
interactions between the unidirectional waves is probably higher than that for the
directionally spread waves (Onorato et al. 2009).

7.2 Description of the Numerical Experiments

In this study, the method of approximation of wave surface by superposition of
Stokes waves, described in Sect. 5.3, was used. Briefly, the method is based on the
use of the ‘upper conformal coordinates’ ðnu; fuÞ (Eq. 5.3.2) for domain z[ g. It
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was shown that the superposition of linear waves assigned in this coordinate system
after interpolation to the Cartesian coordinates turns into the superposition of Stokes
waves with high accuracy. Note that full equations at any reasonable initial con-
ditions, after some accommodation period, reproduce this effect too, since harmonic
waves tend to turn into Stokes-like waves. This chapter describes how the initial
generation of Stokes waves was done to accelerate transition to the statistically
homogeneous regime.

In this study, we applied the above-described method for the numerical simu-
lation of surface waves for investigation of evolution of a wave train assigned by
the one-dimensional version of JONSWAP spectrum Sf (Hasselmann et al. 1973)
for finite fetches as a function of frequency x:

SfðxÞ ¼ ag2

x5 exp �b1
xp

x

� �4� �
cr; ð7:2:1Þ

where b1 ¼ 1:25; c ¼ 3:3; xp is a parameter and whose value is close to the
frequency of spectral peak Sp. Other parameters can be expressed through xp:

r ¼ exp �ðx� xpÞ2
2r2x2

p

 !
; a ¼ 0:0099X0:66; r ¼ 0:07 x�xp

0:09 x[xp
;

�
ð7:2:2Þ

where X ¼ xpU10

g ¼ U10
cp

is the non-dimensional frequency in spectral peak and cp is

phase velocity.
It is well known that an approximation (7.2.1) overestimates spectrum at low

values of non-dimensional frequencies X� 1:3 (large fetches). To keep the right
asymptotic behavior, the approximation (7.2.1) was combined with Pierson and
Moskowitz spectrum (PM, Pierson and Moskowitz 1964) for fully developed waves

S1ðxÞ ¼ ag2

x5 exp �b2
xp

x

� �4� �
ð7:2:3Þ

by the following relation:

S ¼ S1W þ Sf ð1�WÞ; ð7:2:4Þ

where W is weight which is convenient to represent as a function of X. It is easy to
calculate that X1 ¼ 0:855 for PM spectrum. Since transition from spectrum S1 to
Sf happens in a small interval of X, function W quickly decays with growth of
distance X� X1. The function WðXÞ was approximated by the formula:

W ¼ exp �15ðX� X1Þð Þ: ð7:2:5Þ

In the initial JONSWAP approximation, the enhancement parameter for spec-
trum c was accepted as constant: c ¼ 3:3. Later, some investigators came to the
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conclusion that this parameter can be a function of fetch or peak frequency xp.
According to (Babanin and Soloviev 1998), c increases with X as

c ¼ 1:224X ð7:2:6Þ

Merging was done in a very narrow interval [0.855 − 1] (see 7.1). The number of
cases falling in this interval is so small that it does not influence the statistics.
Approximations (7.2.1) and (7.2.3) were rewritten in terms of wave numbers using
the dispersion relation valid at least up to 3Xp (Chalikov 2005). The
non-dimensional wave number kp in spectral peak is a parameter of initial condi-
tions. To describe the low wave number, the slope of spectrum, kp, should exceed 1,
and for good approximation of the entire spectrum (as well as its spreading due to the
nonlinearity), kp should be considerably smaller than the total number of modes M.
Actually, kp is a parameter of accuracy of approximation. The initial conditions for
Fourier coefficients of free surface gðxÞ were assigned in the following form:

jhkj ¼ 2SðkÞDkð Þ1=2; gk ¼ hkj jsin(uÞ; g�k ¼ hkj jcos(uÞ; k¼ 1; 2; 3. . .km
ð7:2:7Þ

where hkj j is an amplitude of kth mode; gk; g�k are Fourier coefficients in the
Cartesian coordinates; and u is the random (over k and over different runs) phases
of modes uniformly distributed in the interval 0–2p. The Fourier coefficients fk for
surface potential f ðxÞ were assigned by

fk ¼ � kj j1=2a�k; k ¼ �Mi;Mi; ð7:2:8Þ

where Mi is the number of modes assigned in the initial conditions. After inverse
Fourier transform, functions gðxÞ and f ðxÞ were transferred from the ‘upper coor-
dinates’ ðnu; fuÞ to the ‘lower coordinates’ by periodic spline interpolation, pro-
viding accuracy of the order of 10�11 for very steep waves, and 10�30—for the
medium amplitude waves. Post-processing was done for the data transferred back to
the Cartesian coordinates by the same algorithm. Peak of spectrum was placed at
kp ¼ 8; X ¼ ffiffiffi

k
p ¼ 2:83 or at kp ¼ 20; X ¼ 4:47. The number of waves assigned

in the initial conditions km was equal to 32, so the amplitude of the smallest
assigned wave was by 43 smaller than the amplitude hp in the peak of spectrum.

The spectral tail was developing during the first period of the peak wave at
higher frequencies. This evolution occurs for any steepness. Simulation of the wave
evolution assigned by (7.2.2)–(7.2.8) was performed for the number of modes
M = 2000 and the number of grid points N = 8000, which provided a sufficient
resolution both in the Fourier and physical space. The control runs with resolution
M = 4000 and N = 16,000 revealed the same statistical properties of the solution.
The time step Ds was equal to 0.002 (and 0.001 for M = 4000). An application of a
twice shorter time step for strongly nonlinear cases proves that the difference
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between the results is negligible, except for small variations at the last time steps
before breaking. Many runs were terminated due to some wave tendency for
overturning. Several dozens of runs for a relatively small steepness lasted up to
2000 periods with no breaking event. A criterion for terminating a run was defined
by the first appearance of a non-single value of surface g (Eq. 6.1.1). It was possible
to continue the integration shortly after that moment (see Chalikov and Sheinin
2005), but the details of this development are not the subject of this chapter. It is
important to emphasize that after the moment when the criterion (7.2.9) has been
reached, the solution would never return to stability: The volume of fluid crossing
the vertical xðiÞ quickly increases. Up to this moment, conservation of both the sum
of the potential and kinetic energies and the horizontal momentum and volume was
excellent. When the surface becomes a non-single value (at the initial stage of
breaking), conservation of the invariants still holds, though later, a sharp increase of
energy occurs, and further integration becomes useless. Usually, it happens just for
one Runge–Kutta time step, so probably, the primary cause of the numerical
instability is the growth of the right-hand side of Eqs. (2.2.34) and (2.2.35).
Disintegration of the solution happens mostly due to inapplicability of potential
approximation and, in general, of fluid dynamic equations for the single-phase fluid.

Extreme waves are a rare phenomenon in nature. Therefore, they are seldom
reproduced in the numerical simulations too. The statistical characteristics of wave
field, as well as the probability of extreme waves, seem to depend on the inverse
wave age X and the initial set of phases, especially for young steep waves.
Dependence on the preassigned set of phases can be excluded by repeated calcu-
lations for the same set of amplitudes with a random choice of phases. One cycle of
the calculations includes 60–90 cases for different peak frequencies:

Xn ¼ X1 þ 0:0294n; n ¼ 1; 2; 3. . .; 60� 90; ð7:2:9Þ

where n is the number of runs in a cycle and X1 ¼ 0:855 is a non-dimensional
peak frequency for the Pierson–Moskowitz spectrum. The upper limit of X is equal
to 3.50, which corresponds to the young sea. The cycle was repeated 64 times. The
cycles 1–48 were performed with the use of the fixed enhancement parameter
c ¼ 3:3 and the peak wave number kp ¼ 8, while cycles 49–64 were performed
when c was assigned by the formula (7.2.6) and kp ¼ 20. The total number of runs
was equal to 4294. The calculations performed on a Dell workstation (speed is
3.1 MHz) took about three months. To trace the generation and evolution of
extreme waves, the wave profiles containing waves with a trough-to-crest height
greater than 2Hs were recorded. Many statistical characteristics, including different
moments, were calculated in the course of simulations. The total volume of data
selected and recorded was around 100 Gbt.

The parameter X ¼ U10=cp (or non-dimensional fetch) is convenient for calcu-
lation of the explicit form of wave spectrum. However, the use of X in the oper-
ational analysis of wave spectra (measured or calculated by a wave forecasting
model) is not convenient, as wave spectrum can be a non-single-peak spectrum, or
it can be blurred with a swell whose energy might be comparable to the energy of
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wind waves produced by local wind. If the swell is strong, its interaction (e.g.,
through Benjamin–Feir–McLean instability) with the locally produced wind waves
can result in generation of extreme waves. That is why we introduce more robust
characteristics expressed as a product of significant wave height Hs and wave
number ks weighted by the spectrum:

St ¼ ksHs; where Hs ¼ 4:
ffiffiffi
S

p
and ks ¼

PM
0 kSkPM
o Sk

ð7:2:10Þ

For the JONSWAP-PM spectrum (Eq. 7.2.4), the dependence of St on X is
monotonic (Fig. 7.1). This function for parameter c defined by (7.2.6) is approxi-
mated by the following relation:

St ¼ S0 þA0ðX� X0Þ1=2; ð7:2:11Þ

where S0 ¼ 0:316; X0 ¼ 0:855; A0 ¼ 0:118 (dotted line). Point X0 corresponds to
PM spectrum for the developed sea. Parameter St characterizes the non-dimensional
density of wave energy. For young waves, the parameter St is larger than for the old
waves, because the energy is concentrated in small wavelengths (large wave
numbers).

Fig. 7.1 Dependence of steepness parameter St on wave age X0 ¼ U10=cp: Solid line corresponds
to the calculation with a combined JONSWAP/PM spectrum (Eq. 7.2.1) with c ¼ 3:3; dashed line
corresponds to the same spectrum, but with c defined by Eq. (7.2.6), and dotted line corresponds to
approximation (7.2.11) (Reproduced with permission from Chalikov 2007 © 2007 AIP Publishing
LLC; Reproduced with permission from Chalikov 2009 © 2009 AIP Publishing LLC)
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7.3 The Breaking and Surviving Extreme Waves

For practical needs, consideration of wave crest height above mean level z ¼ 0 does
not make any sense, because the destructive wave power depends on the overall
wave height from its trough to crest. It is not easy to detect this height formally. The
calculation of a vertical distance between the maximum and its nearest minimum
does not give the right answer, because there can be some local extremes there;
hence, the wave height might be underestimated. Hence, the trough-to-crest height
is essentially a non-spectral concept and this characteristic should be detected in
physical space. Obviously, an extreme wave should be found between large waves.
That is why the height of extreme waves Htc in each record gðxÞ was defined here as
a difference between the absolute maximum and absolute minimum in a moving
window of length Le. It would be reasonable to define Le ¼ 1:5LP where Lp is the
wavelength in peak of spectrum, Lp ¼ 2p=kp, and kp is the actual wave number in
the spectral peak. The extreme waves with the length exceeding 1:5Lp were prac-
tically absent. Generalization of this algorithm for 2-D wave field is discussed in
Chap. 12. It will be demonstrated below that development of freak waves happens
very quickly, i.e., normally, within one or two wave periods. Let us define the
single event as a run of wave over its single period. This suggestion allows esti-
mating the total number of events used for statistical processing as equal to about 15
million. In this chapter, the main attention will be focused on the statistical prop-
erties of a non-dimensional trough-to-crest wave height Hf ¼ Htc=Hs.

If extreme waves were always breaking, the number of such waves would be
close to the number of runs (there are few cases when a run reaches the designated
end without breaking). In fact, the recorded ensemble of large waves was much
greater, since development of extreme waves was not always interrupted by
breaking. This conclusion is opposite to the results obtained by Dyachenko and
Zakharov (2005) who concluded that all freak waves are breaking waves. Many
waves return to medium sizes again after they have gone through intense
enhancement. The probability distribution for breaking and non-breaking waves
(normalized by the total number of waves) is shown in Fig. 7.2 by dashed and solid
lines, respectively.

A fast decrease of probability for small Hf simply shows that there are no small
waves in the selected window, while a decrease of probability for large Hf reflects
scarcity of freak waves. An estimation of probability for a smaller window (up to
0:5Lp) shows that even short waves can break; however, this phenomenon is out-
side the scope of the subject covered by the current chapter. The ratio of the total
number of non-breaking waves to that of breaking waves Rnb (showed by dotted
curve in Fig. 7.2) equals 140 for the selected window. However, for each wave
height, this ratio rnbðHfÞ is different: For freak waves Hf [ 2, the ratio rnb
approaches 10. The exponential extrapolation of rnb (thin line)

116 7 Modeling of Extreme Waves

http://dx.doi.org/10.1007/978-3-319-32916-1_12


rnb ¼ 10�4:51þ 1:65Hf ð7:3:1Þ

to high values of Hf shows that all waves exceeding Hf ¼ 2:7 do break. This limit
value looks reasonable, though the critical value of Hf cannot be considered as
well-estimated.

It would be quite useful to find connection between the trough-to-crest wave
height and certain integral properties of wave field. For these purposes, we plot the
value of the biggest trough-to-crest height defined for every record of surface
against integral characteristics of the wave field calculated for the same wave
profile. The dependence of the biggest trough-to-crest wave height on the statistical
characteristics calculated over the entire instantaneous wave profile is given in
Figs. 7.3, 7.4, and 7.5. In Fig. 7.3, the dependence of the largest trough-to-crest
wave on parameter St is given. The parameter St characterizes wave age, and in
general—the density of potential energy. Note that the parameter St is not invariant,
but, being a low-order moment, it remains relatively stable.

It could be expected that a high energy wave field typical for young waves and
strong nonlinearity can generate non-dimensional large waves (normalized by Hs)
more frequently than the waves of low energy and weak nonlinearity. However, as
shown in Fig. 7.3, such suggestion proves to be incorrect: Large waves rather have
a tendency to appear in the old wave field with low steepness. It becomes even
more evident for freak waves ðHf � 2Þ which are generated according to our data

Fig. 7.2 Distribution of
probability of trough-to-crest
height Hf for breaking
(dashed line) and
non-breaking (solid line)
waves defined with the use of
window length 1:5Lp. Dotted
line is a ratio of number of
breaking wave and the
number of non-breaking
waves; thin line represents
approximation (7.3.1)
(Reproduced with permission
from Chalikov 2009 © 2009
AIP Publishing LLC)
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only in a developed wave field ðU10=cp � X\1:4Þ. The tendency for a freak wave
population increase with decrease of St is well traced for the cases of breaking
waves (indicated by asterisks in Fig. 7.3). However, it is shown that some of the
freak waves (gray dots in the upper part of the panel) do not break at all.

Thus, the nonlinearity seems to be working opposite to what it was expected. It
is a paradox; however, this result can be still explained by the influence of non-
linearity. If a wave–wave interaction is quite energetic, the waves come to a
breaking point earlier than in the case of weak interactions, before the process of
‘freaking’ (considered below) takes place. This effect is clearly demonstrated in
Fig. 7.4, where the time period up to the breaking point is plotted against parameter
St characterizing a degree of nonlinearity. The waves with Hf [ 2 are indicated in
the plot by asterisks, while all other waves are shown by gray dots. As shown, large
waves appear mostly in the wave field with low steepness, and steep wave height
seldom exceeds the value Hf ¼ 2. To express it in terms of metaphor, active waves
become jealous of the excessive growth of their neighbors.

An investigation of connection between the extreme wave probability and the
integral characteristics was continued for the high-order moments, i.e., skewness Sk
and kurtosis Ku (5.2.4). The maximum values of trough-to-crest height in a single
record Hf are plotted in Fig. 7.5 against skewness Sk calculated over this record.
Skewness reflects the vertical asymmetry of disturbances. As shown, the skewness

Fig. 7.3 Dependence of extreme wave height Hf on parameter St (Eq. 7.2.12). Aggregated gray
dots correspond to non-breaking waves (1,637,316 cases), while asterisks correspond to breaking
waves (4742 cases). Solid line represents distribution of the number of cases for non-breaking
waves, and dashed line shows the same distribution for breaking waves, both of them normalized
by the corresponding number of events (Reproduced with permission from Chalikov 2009 © 2009
AIP Publishing LLC)
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Fig. 7.5 Extreme wave
height Hf versus skewness Sk.
Gray point, black asterisks,
and lines are the same as in
Fig. 7.3. The number of
points is the same as in
Fig. 7.3 (Reproduced with
permission from Chalikov
2009 © 2009 AIP Publishing
LLC)

Fig. 7.4 Time of wave
evolution up to onset of
breaking (expressed in peak
wave periods) versus
parameter St (Eq. 7.2.12). In
the upper panel, a linear scale
for time is used, while in the
bottom panel, a logarithmic
scale is used. Gray dots
correspond to the case when
values of Hf before breaking
were less than Hf ¼ 2, and
asterisks represent the cases
with Hf [ 2 (Reproduced
with permission from
Chalikov 2009 © 2009 AIP
Publishing LLC)
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values considerably exceed zero. It indicates that the wave field is closer to the
superposition of sharp-crested modes than to that of linear waves. In fact, a
skewness value of wave profiles corresponding to the events of breaking is
somewhat higher than that for non-breaking cases. The asterisks are shifted up
compared to gray dots, and the maximum of probability for breaking cases (dotted
line) is shifted to higher values of skewness for non-breaking cases. However, there
is no evident connection between the height of extreme waves and their corre-
sponding skewness.

It is remarkable that the connection of Hf with kurtosis Ku (Fig. 7. 6) looks a lot
more pronounced, i.e., the growth of Hf is distinctly succeeded by higher values of
Ku both for breaking and non-breaking waves. (The number of cases included in
Fig. 7.6 is smaller than that for Figs. 7.3 and 7.5, as recording of Ku was imple-
mented starting from case #49.) This connection seems to have proved Janssen’s
hypothesis (Janssen 2003) that kurtosis can serve as predictor for freak waves. To
clarify the nature of this dependence, the cross correlation functions Rt between
variables Ku and Hf were calculated for 288 randomly chosen (and long enough)
runs (Fig. 7.7). Time lag Dt is expressed in peak wave periods. As shown, the
simultaneous values of Ku and Hf are well correlated at Dt ¼ 0 (where
Rt ¼ 0:7� 0:8), though the correlation quickly decreases with growing Dt. At
Dt ffi 10� 20 peak wave periods, the correlation becomes insignificant. For a real
large wave with the period of order of 20 s, this time is equal to 6 min. Hence,
kurtosis and an extreme wave are interconnected at the distances up to several
hundreds meters. The experiments described in (Onorato et al. 2009) have proved
that kurtosis is a good indicator of big wave appearance in a wave tunnel.

It means that kurtosis cannot serve as a predictor for practical applications, but it
is rather an indicator of local conditions. It is not surprising, as both high kurtosis

Fig. 7.6 The same as in
Fig. 7.5, but for kurtosis Ku.
The plot includes 501,365
cases of unbreaking waves
and 1165 cases of breaking
waves (Reproduced with
permission from Chalikov
2009 © 2009 AIP Publishing
LLC)
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and the presence of large wave(s) reflect the same geometrical properties of wave
profile, i.e., sharpness and heights of crests. An explanation of this effect is quite
simple: Since the moment has 4th order, the contribution of high elevation is big.
For the 6th, 8th, and any other even moments of higher order the connection should
be closer. Note that our conclusion is obtained using relatively short wave profiles
containing 10–20 peak waves, so that the weight of the extreme wave turns out to
be comparatively high. Consequently, the connection of kurtosis and the extreme
wave height is overestimated in our example. For far larger wave ensembles, an
impact of rare extreme waves on the values of kurtosis evidently becomes negli-
gibly small. It completely eliminates any possibility of using kurtosis not only as a
predictor, but also as an indicator of freak waves. The wave spectrum predicted by
the wave forecasting models reflects conditions averaged over elementary cell of a
numerical scheme. The cell can include many thousands of waves. Just several of
them during very short periods of ‘freaking’ can get very large. It is known that
high-order moments are very sensitive to perturbations. Definitely, any calculations
of the fourth-order moment on the basis of the averaged wave spectrum predicted
with low accuracy are quite impossible. It is not surprising that such scheme for
freak wave forecast implemented in the operational practice of ECMWF turned out
to be unsuccessful.

An example of the extreme wave evolution is given in Fig. 7.8 (top panel). Each
value of Hf is defined for a single record including 18–22 peak waves. The time
interval Dt between the records was equal to 0.71 of the peak wave period. It can be
seen that high values of Hf appear sporadically and that life of such wave is very
short. To illustrate this statement, the autocorrelation functions RðDtÞ for the cases
of Fig. 7.7 are plotted in the bottom panel. As shown, R decreases quickly with the
lag increase, and throughout dozens of the periods, the correlation becomes

Fig. 7.7 Cross-correlation
functions RtðKu;HfÞ for
kurtosis Ku and extreme
trough-to-crest wave heights
Hf , calculated for 288
randomly chosen runs. Lag
time expressed in periods of
peak wave (Reproduced with
permission from Chalikov
2009 © 2009 AIP Publishing
LLC)
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insignificant. The timescale of the correlation TR ¼ R T0 Rdt (T is a period that is long
enough for the accuracy of estimation) averaged for all 288 cases is equal to 5.5
periods of wave peak.

Note that the run of Fig. 7.8 reproduces the largest extreme wave ðHf ¼
2:59 at t ¼ 1250Þ ever recorded in our numerical experiments.

7.4 The Properties of Extreme Waves

The densities of potential Ep and kinetic Ek energies averaged over x (or n) can be
calculated by the formulas:

Ep ¼ ð2pÞ�1
Z 2p

0
z2xndn; Ek ¼ ð2pÞ�1

Z 2p

0
uufdn; Ec ¼ Ep þEk ð7:4:1Þ

The energy of a unit water column ec was calculated by the formulas derived in
the conformal coordinates:

ep ¼ 1
2
z2; ek ¼ 1

2

Z0
�1

U2
n þU2

f

� �
J�1df; ec ¼ ep þ ek; ð7:4:2Þ

Fig. 7.8 Top panel is an
example of extreme wave
height Hf evolution, while
bottom panel represents the
autocorrelation function
calculated for the cases of
Fig. 7.7 (Reproduced with
permission from Chalikov
2009 © 2009 AIP Publishing
LLC)
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where the integral over depth was calculated with high accuracy in a stretched
vertical grid, assuming that Dfjþ 1 ¼ eDfj, where j grows downward, and the
stretching parameter e equals to 1.10. A typical wave profile including a freak wave
with Hf ¼ 2:5 at x ¼ 0:7 is given in Fig. 7.9, panel (a). The corresponding profile
of the overall columnar energy normalized by Ec is given in panel (b). The dif-
ference between the energy of usual waves and that of freak waves is so great that
we had to plot the energy E ¼ ec=Et in the logarithmic scale. The energy at peak of
freak wave exceeds the averaged energy Et by 150 times! It happens due to the
concentration of energy in the vicinity of the freak wave crest. The evolution of the
normalized trough-to-crest height Hf of the largest wave for the period ð0� 7:1Þ is

Fig. 7.9 The non-dimensional columnar energy kpec=H2
s versus trough-to-crest height of extreme

waves. a Example of a wave surface containing a freak wave with Hf ¼ 2:5 before its breaking;
b is a profile of total columnar energy, normalized by the averaged columnar energy (in panels а
and b abscissa corresponds to horizontal distance); c is a temporal evolution of extreme wave
heights Hf , and maximum values of ekm, potential epm, and total ecm columnar energy prior
breaking. Abscissa corresponds to time (Reproduced with permission from Chalikov 2009 © 2009
AIP Publishing LLC)
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shown in panel c of Fig. 7.9. As shown, an extreme wave height was increasing
from Hf ¼ 2:1 to Hf ¼ 2:5 over this period, but its energy has grown up to 10 times
of the initial value. At the final stage, before breaking, the columnar kinetic energy
exceeds the potential energy by 1.5 times at the peak of spectrum. The connection
between the columnar energy ec and wave height Hf is shown in Fig. 7.10. As
shown, this dependence is close to the exponential one.

Details of the extreme wave development from t ¼ 5:06 to t ¼ 7:15 are given in
Fig. 7.11. As shown, a freak wave is developing just over two wave periods. The
energy in peak column amplifies over this period of time by approximately 10
times. Fast growth of the maximum value of surface velocity normalized by the
phase velocity vm of the extreme wave is shown in panel c of Fig. 7.11. It is shown
that the fluid velocity approaches the phase velocity before wave breaking. The
evolution of energy Ef averaged throughout the trough-to-trough interval (which is
assumed to be the overall energy of the chosen wave) as well as the maximum of
energy at wave peak is given in panel d of Fig. 7.11. The most surprising feature of
this picture is that the total energy of a developing wave remains nearly constant (it
cannot be an exact constant as the domain has open boundaries), while its peak
value grows dramatically. In some other cases, the total energy of certain waves is
even decreasing. It proves that the freak wave goes through a self-amplification
phase with no substantial exchange of energy with other waves. Therefore, any
considerations of the freak wave generation in Fourier space are pointless: Just one
wave in a wide set of similar waves unpredictably starts developing fast, accom-
panied by the powerful concentration of energy in the vicinity of wave peak.
Evidently, it is the main property of the extreme wave, which makes the largest of

Fig. 7.10 Non-dimensional
columnar energy kpec=H2

s
versus trough-to-crest height
of extreme waves
(Reproduced with permission
from Chalikov 2009 © 2009
AIP Publishing LLC)
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Fig. 7.11 Example of a run for U10=cp ¼ 1:6 St ¼ 0:105ð Þ. In the panels a, b, and c, the
horizontal axis is а distance: Panel a represents successive profiles (separated by interval
Dt ¼ 0:02) of the largest wave within the time range from t = 5.06 (Hf ¼ 2:10 at t ¼ 2:28 periods)
up to the overturning moment at t = 7.15 (3.22 periods); b corresponding to (a) evolution of
columnar energy ec; c corresponding to (a) evolution of the absolute value of surface velocity
normalized by phase velocity of peak wave Vm. In panels d and е, the horizontal axis corresponds
to time: d shows temporal evolution of maximum values of total Em, columnar kinetic ðEkÞ,
potential ðEkÞ, and total ðEÞ energy; e represents temporal evolution of skewness ðSkÞ, kurtosis
ð0:1KuÞ, and asymmetry ð0:1AsÞ (Reproduced with permission from Chalikov 2009 © 2009 AIP
Publishing LLC)
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those waves a freak one. The mechanisms of this evolution are still unknown, and
prediction of time and location of the wave development (‘freaking’) are impossible
even in a numerical experiment. Fortunately enough, such knowledge would not
make any sense for practical use. Much more important is the statistics of such
events and mechanical characteristics of freak waves. The above problem is similar
to that of the numerical forecast of thunderstorms: the atmospherics model can
predict the possibility of storm generation in a cell of a numerical model, but not an
exact location and time of such events.

Another type of wave evolution which was not terminated by breaking is shown
in Fig. 7.12. In this case, the columnar energy ec is also concentrating around the
crest and reaching very high values, but upon passing the maximum values it starts
to decrease, quickly returning to the normal level. It is impossible to explain why
one wave comes to breaking while another one, being even higher, can survive.
Obviously, each individual development depends on the details of current envi-
ronment in a physical space: In some cases, group effects can initiate breaking
which can start due to a very small disturbance. The final stage of this development,
i.e., breaking, is characterized by a higher concentration of energy as compared to
the energy accumulated for the case of a surviving wave. It is clearly shown in
Fig. 7.13 where distribution of a surface energy probability for extreme waves with
a trough-to-crest height Hf [ 2:1 is shown.

The probability is normalized by the total number of breaking and non-breaking
waves. The probability of non-breaking waves is higher than that of breaking
waves, but the maximum of surface energy is considerably shifted to higher values
of extreme waves. This conclusion is also proved to be correct by the data shown in
Fig. 7.14 where the maximum columnar energy Ecm and the surface velocity Vm

(normalized by peak phase velocity cp) for each case of an extreme wave devel-
opment are shown as a function of Hfn. Dots in this figure correspond to
non-breaking waves, while asterisks show breaking waves. It is seen than most of
the asterisks (but not all of them) fall mostly on the upper part of the figure. It
means that large breaking waves generate a higher surface velocity and dynamic
pressure on the surface of either floating or fixed objects; hence, they are more
dangerous than non-breaking waves. The distribution of velocity on top of breaking
wave is represented in Fig. 7.15.

It is shown that velocity reaches the value of phase velocity (which is the actual
cause of the overturning). Being observed from the upfront trough, the top of wave
looks exactly like a ‘wall of water.’ The topmost part of wave has height 0:2Hf , and
it is really vertical. The dimensional parameters of such wave look quite impressing.
Let us assume that waves and wind have reached the state of equilibrium, and wave
spectrum is described by the Pierson–Moskowitz formula. In this case, the phase
velocity cp of peak waves equals 1:17U10, and the significant wave height Hs equals
0:22U2

10=g. It follows that for U ¼ 20m=s, the trough-to-crest extreme wave height
Hf is equal to 23 m, for U = 25 m/s—35 m and for U = 30 m/s—50 m. The
dynamic pressure P ¼ qwU

2 (qw is water density) created by a moving water can
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Fig. 7.12 The same as in Fig. 7.11 but for non-breaking wave: a shows successive profiles
(separated by interval Dt ¼ 0:08) of the largest wave within the time range from t = 25.84
(Hf=Hs ¼ 2:10 at t ¼ 11:63 periods) up to the moment of wave height fall to the value 2:1Hs at
t = 29.88 (3.22 periods). The maximum value Hf=Hs ¼ 2:51 was observed at t ¼ 27:04. All other
panels for this case are the same as in Fig. 7.11 (Reproduced with permission from Chalikov 2009
© 2009 AIP Publishing LLC)
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Fig. 7.13 Probability
distribution of the surface
kinetic energy (normalized by
squared phase velocity c2p) of
extreme waves with
trough-to-crest height
Hf [ 2:1: Thin line represents
non-breaking waves (1092
cases) and thick line shows
breaking waves (379 cases)
(Reproduced with permission
from Chalikov 2009 © 2009
AIP Publishing LLC)

Fig. 7.14 All of the events
when the value of
trough-to-crest height is
higher than 2:1Hs: a is the
maximum value of columnar
energy Ecm (Eq. 7.4.1); b is
the maximum value of surface
velocity (normalized by phase
velocity cp). In both panels,
the horizontal axis is the
maximum value of extreme
trough-to-crest height Hf .
Dots correspond to
non-breaking extreme waves
and asterisks show breaking
extreme waves (Reproduced
with permission from
Chalikov 2009 © 2009 AIP
Publishing LLC)
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Fig. 7.15 Examples of extreme wave shapes and velocity fields in the top part of waves: a is a
sharp-crested breaking wave with high asymmetry As and skewness Sk: ðHs ¼ 0:045; Hf ¼ 2:36;
Sk ¼ 0:84; As ¼ 4:07Þ; b is a sharp-crested breaking wave with small asymmetry As and
skewness Sk: ðHs ¼ 0:038; Hf ¼ 2:10; Sk ¼ 0:08; As ¼ 0:55Þ; c is a flat-crested breaking wave
with high asymmetry As and skewness Sk: ðHf ¼ 0:039; Hf ¼ 2:16; Sk ¼ 1:06; As ¼ 4:28Þ; d is
a sharp-crested non-breaking wave with medium asymmetry As and high skewness Sk:
ðHs ¼ 0:031; Hf ¼ 2:62; Sk ¼ 0:88; As ¼ 0:49Þ. The arrow on top indicates phase velocity
(Reproduced with permission from Chalikov 2009 © 2009 AIP Publishing LLC)
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reach 5:5 	 105; 8:6 	 105 and 1:2 	 106 Pa, respectively. If a wave does not break,
the estimations for velocity should be reduced by 1.5–2 times, while for pressure—
by 2–4 times.

7.5 Statistics of Extreme Waves

Figure 7.3 shows a slight tendency of an extreme wave height increase with decrease
of steepness (wave age). Probably, a very energetic wave field destroys the growing
waves before they reach large heights. However, it is reasonable to expect that with a
further decrease of steepness, the generation of extreme waves should be less
intense. To check up this statement, very long runs for different wave age of the
combined JONSWAP/PM spectrum were performed. Because of the presence of a
slow flux of energy to the high wave number range of spectrum, the wave field can
gradually lose energy. To make a long run uniform, an imitation of energy flux from
wind was added by multiplying all the Fourier components gk and /k ðk ¼ �M;MÞ
at each time step by coefficient d ¼ ðE0

c=EcÞ1=2, where Ec is the total energy and E0
c is

the total energy at the initial conditions. A typical value of the coefficient d was
1.000001. Since this operation changes only the integral energy, it evidently does not
influence the structure of spectrum and shapes of individual waves. The calculations
were done for 5 cases starting from a very young sea ðX ¼ U=cp ¼ 3Þ up to the
artificially ‘old’ sea whose wave spectrum was assigned by the PM spectrum mul-
tiplied by coefficient 0.1. The integral probability distributions for trough-to-crest
heights calculated with moving window with length 1:5Lp are given in Fig. 7.16
(each curve was interpolated from Hf ¼ 0 to Hf ¼ 1 with Raleigh formula).

The results of these calculations were unexpected: the largest extreme wave with
the maximum value Hf ¼ 2:65 was simulated for the youngest wave field with
X ¼ 3, but a considerably larger number of waves with Hf [ 2:5 were found for the
case X ¼ 2. The cases X ¼ 0:855 (PM spectrum for the developed sea) and the
cases with reduced by factor 0.5 PM spectrum gave a reasonably smaller number of
extreme waves, though a very gentle wave field with spectrum 0:1S1 (the thin
curve nearly coinciding with the thick one) showed the same statistics of extreme
waves as the steepest wave field (the thickest curve). These results convince us that
the frequency of freak waves is not directly connected with the energy of wave
field; thus for obtaining the representative statistics, it is necessary to perform a long
series of calculations for a broad range of the initial conditions characterized by
wave spectrum and a set of initial phases. This approach was described in Sect. 7.2.
It is remarkable that the statistical properties calculated for each run were dependent
not only on the shape of the initial spectrum (which is understandable), but also on
the phases of modes. For the same spectrum and different phases, the statistics of
rare cases can be different: One run reproduces several extreme waves, while
another one does not reproduce them at all. Extreme waves can appear either in the
beginning of the run or after continuous integration. It means that the generation of
extreme wave is an essentially random process which is initiated by very delicate
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and unpredictable properties of a local wave field in physical space. Later (see
Chap. 12), we came to the conclusion that the reliable statistical characteristics of
wave field can be obtained only with use of the ensemble modeling.

The data on the integral probability P of waves (probability of the waves whose
crest-to-trough height exceeds Hf ) in the interval 1\Hf\2:5 calculated over all
4294 runs are represented in Fig. 7.17 where contours PpðP;HfÞ correspond to the
number of cases falling in the cells with sizes DHf ¼ 0:02 and Dlog10P ¼ 0:1 (the
initial distribution of the points is also shown in Fig. 7.18).

The total number of points used for Fig. 7.17 is 190,337, and the number of
trough-to-crest heights exceeding Hf ¼ 2 is 11,955. As shown, the data on the
integral probability of trough-to-crest heights have a very large scatter, which is a
reflection of a random nature of the extreme wave generation. This scatter excludes
the possibility of use of the averaged integral probability, since distribution of the
data inside the cloud of points should be taken into account. The attempts to stratify
the data in Fig. 7.17 over parameter St (Eq. 3.9) characterizing the energy of waves
were unsuccessful: The points corresponding to different runs obey the Gauss-like
random distribution inside the cloud of data. Surely, it does not mean that statistics
of the dimensional extreme waves does not depend on wave energy. It proves that
normalizing of wave heights with the significant wave height is so effective that the
statistics of non-dimensional extreme waves tends to be independent of wave
energy. Figure 7.18 represents probability Pt, i.e., the integrated over P number of
cases Np by Hf bins and normalized by the total number of cases in bins

Fig. 7.16 Probability
distribution of trough-to-crest
heights, calculated throughout
long runs up to 2000 peak
periods for initially assigned
JONSWAP/PM spectrum:
1� X ¼ 3 (very young sea);
2� X ¼ 2 (young sea);
3� X ¼ 0:855 (developed
sea); 4� X ¼ 0:855; S ¼
0:5S1 (PM spectrum
multiplied by 0.5); 5� X ¼
0:855; S ¼ 0:1S1
(Reproduced with permission
from Chalikov 2009 © 2009
AIP Publishing LLC)
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PiðP;HfÞ ¼
PP

0 NpðP;HfÞPP1
0 NpðP;HfÞ

; ð7:5:1Þ

where P1 ¼ 10�6 was chosen. The contours of Pi are plotted in Fig. 7.18 together
with the initial data on the integral probability P. As shown, the data on Pi

demonstrate a regular behavior, which gives the possibility to estimate the distri-
bution of probability for the waves exceeding a specific value Hf . It is convenient to
introduce the time expectance Tf of extreme wave instead of the probability (fre-
quency) of wave

sf ¼ TpðPPiÞ�1 ð7:5:2Þ

The examples of estimation of the time expectance for extreme waves exceeding
the values fHs; ðf ¼ 2:1; 2:2; 2:3; 2:4; 2:5Þ for different significant wave heights Hs

from 2 to 12 m are given in Fig. 7.19. The connection between Hs and Tp was

Fig. 7.17 Contours PpðP;HfÞ corresponding to number of cases falling into cells of the following
sizes DHf ¼ 0:02 and D log10P ¼ 0:1. Dotted line is an averaged value for each bin (Reproduced
with permission from Chalikov 2009 © 2009 AIP Publishing LLC)
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established with the Pierson–Moskowitz spectrum; however, for this purpose, any
wave spectrum can be used.

The vertical axes correspond to time expectance sf in days (logarithmic scale).
The horizontal axis corresponds to the probability of meeting coming across the
wave with height Hf and expectance sf (logarithmic scale). Different curves cor-
respond to different Hf (indicated in the legend in every frame). The thin vertical
lines correspond to the probability Pt ¼ 0:5. To make clear the use of this graph, let
us give some examples. If the significant wave height Hs equals 4 m (top middle
frame), then, with the probability 0.5, the time expectance of wave with
trough-to-crest height Hf ¼ 8:2m will be 0.4 day; and for Hf ¼ 10m, the time
expectance sf ¼ 10 days. For Hs ¼ 10m and Hf ¼ 22m with probability 0.5, the
expectance time sf ¼ 0:6 days, and for Hf ¼ 25m sf ¼ 20 days. The curves in
different frames shown in Fig. 7.19 look very similar due to the logarithmic scales.
It is a direct consequence of universality of the probability functions for
non-dimensional wave heights. If the time expectance were expressed in terms of
the periods of peak wave Tp, then these frames would be identical. The dimensional

period Tp grows as H1=2
s , and sf increases, correspondingly.

Fig. 7.18 Probability Pt integrated over P number of cases by Hf bins and normalized by the total
number of cases in the bins. Examples of estimations of time expectance for extreme wave values
exceeding Hf ; ðf ¼ 2:1; 2:2; 2:3; 2:4; 2:5Þ for different significant wave heights Hs in the range
from 2 to 12 m (Reproduced with permission from Chalikov 2009 © 2009 AIP Publishing LLC)
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7.6 Conclusion

In this chapter, the results of over four thousand numerical experiments were
analyzed to investigate some properties of freak waves and calculate the probability
of their appearance. Because of the self-similarity of governing equations, they can
be used in a non-dimensional form; hence, the statistical results of long-term
numerical simulations depend on the following initial conditions only: profiles of
elevation gðxÞ, surface velocity potential uðxÞ, and a set of initial phases.
Considering the practical application of the theory of rare waves, we came to the
conclusion that a strict ‘definition’ of freak waves in a non-dimensional form is not
required at all. Instead, it makes sense to introduce the categories of dimensional
extreme waves, like it was done, for example, for classification of hurricanes. For
example, the nth category of freak wave can be defined as a wave with the
trough-to-crest height equal to 3n m.

The attempts were undertaken to stratify the wave statistics over some general
integral characteristics, such as skewness, kurtosis, and initial density of energy or
an enhancing parameter for spectrum. The results of the above efforts turned out to
be quite unexpected at first sight: In a broad range of parameters for wind wave,

Fig. 7.19 Examples of estimations of time expectance for extreme wave values exceeding
Hf ; ðf ¼ 2:1; 2:2; 2:3; 2:4; 2:5Þ for different significant wave heights Hs in the range from 2 to
12 m (Reproduced with permission from Chalikov 2009 © 2009 AIP Publishing LLC)
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spectrum integral probability of freak waves was found to be virtually independent
of spectrum shape.

Finally, we arrived at the conclusion that it is naive to expect that the high-order
moments such as skewness and kurtosis can serve as predictors for freak waves.
Firstly, the above characteristics cannot be calculated with the use of spectrum,
usually determined with low accuracy. Such calculations are definitely unstable to a
slight perturbation of spectrum. Secondly, even if spectrum is determined with high
accuracy (e.g., calculated with the use of an exact model), the high-order moments
cannot serve as predictors, since they change synchronically with variations of
extreme wave heights. Appearance of freak waves occurs simultaneously with
increase of the local kurtosis; hence, kurtosis is simply a passive indicator of the
same local geometrical properties of wave field. This effect disappears completely,
if spectrum is calculated over a very wide ensemble of waves (see Chap. 12). In this
case, an existence of freak wave is just disguised by other waves, not freak ones. It
is quite evident that kurtosis is not a predictor but an extreme wave indicator that is
representative for such a small area that it can be observed as easily as a freak wave
itself. Freak wave is even better recognizable than kurtosis. Thirdly, all the
high-order moments are dependent on the spectral presentation; i.e., they increase
with increase of the spectral resolution and cut-off frequency.

The statistics of non-dimensional waves as well as emergence of extreme waves
is the innate property of a nonlinear wave field. The most pronounced indicator of
freak wave is the freak wave itself.

The most surprising result was discovery that the probability of non-dimensional
freak waves (normalized by the significant wave height) is virtually independent of
the wave energy density. It just proves that normalization of wave heights by the
significant wave height is so effective that the statistics of non-dimensional extreme
waves tends to be independent of wave energy. The independence of freak wave
probability on wave energy can be an indicator of the linear mechanism of
‘freaking’ (see Chap. 12). For superposition of linear modes, the significant wave
height is a universal characteristic, so the probability of the non-dimensional wave
height does not depend on energy of waves. The wave energy is not an indicator of
the wave field steepness. Note that defining the integral steepness is actually not so
easy, as any definition turns out to be dependent on the spectrum resolution, i.e., the
value of wave number for spectrum peak and the total number of modes assigned
for description of spectrum. This statement remains valid for routine presentation of
wave field as a random superposition of linear modes. For true nonlinear waves, a
dependence on resolution (if it is sufficiently high) should be insignificant. Firstly,
spectrum should decrease with increase of wave number quickly enough for con-
vergence of any important moments. Secondly, the waves with very close wave
numbers cannot run as independent waves, they would probably interact, quickly
forming a single nonlinear mode. The spectrum assigned with an excessively high
resolution turns into a discrete spectrum (Zakharov et al. 2005; Chalikov et al.
2014). The wave field is rather a superposition of finite number of the nonlinear
modes distorted with the random small-scale quasi-turbulent noise.
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The shape of freak waves varies within a wide range: Some of them are
sharp-crested and others are asymmetric, with a strong forward inclination. The
investigations show that only the breaking and large waves can be referred to as
freak waves. Some of them can be very big, but not steep enough to create dan-
gerous conditions for vessels (not for fixed objects). An initial concentration of
energy can occur merely as a result of group effects, but in some cases, the largest
wave suddenly starts to grow. The growth is followed sometimes by strong con-
centration of wave energy around the peak vertical. It is taking place in the course
of a few peak wave periods.

The results of this chapter can be considered as preliminary. To obtain more
representative statistics of extreme waves, it is necessary to perform a significantly
greater number of the numerical experiments using a 2-D model, probably, with a
better resolution. The disadvantage of the current approach is the termination of run
after it has reached the infinite slope (in the conformal coordinates, the slope is
always finite). This effect can be avoided by introduction of the breaking param-
eterization. This algorithm performs local smoothing of surface, followed by loss of
the excessive potential and kinetic energy (Chalikov and Sheinin 2005). In this
chapter, the breaking parameterization was not introduced intentionally to avoid
distortion of the statistics of extreme waves.
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Chapter 8
Numerical Investigation of Wave Breaking

Abstract Results of numerical investigations, based on full dynamic equations,
are presented for wave breaking in one-dimensional environment with wave spec-
trum. The breaking is defined as a process of irreversible collapse of an individual
wave in physical space, and the incipient breaker is a wave which reached a dynamic
condition of the limiting stability where the collapse has not started yet, but is
inevitable. Main attention is paid to documenting the evolution of different wave
characteristics before the breaking commences. It is shown that the breaking is a
localized process which rapidly develops in space and time. No characteristics such
as wave steepness, wave height, and asymmetry can serve as a predictor of the
incipient breaking. Process of breaking is intermittent; it happens spontaneously and
is individually unpredictable. Evolution of geometric, kinematic, and dynamic
characteristics of the breaking wave describes the process of breaking itself rather
than indicating an imminent breaking. It is shown that the criterion of breaking, valid
for the breaking due to modulation instability in one-dimensional wave trains, is not
universal if applied to the conditions of spectral environment. In this context, more
important is development of algorithms for parameterization of breaking for wave
prediction models and for direct wave simulations. Prototype of such algorithm is
proposed on the basis of the diffusion-type highly selective operator. It is suggested
that the main parameter is differential steepness calculated over entire spectrum.
Thousands of exact short-term simulations of evolution of two superposed wave
trains with different steepness and wave numbers were performed to investigate
the effect of wave crests’ merging. Nonlinear sharpening of the merging crests is
demonstrated. It is suggested that such effect may be responsible for the appearance
of the typical sharp crests of surface waves, as well as for wave breaking.

8.1 Wave-Breaking Phenomenon

The wave breaking is important among a great variety of geophysical and engi-
neering applications. In the geophysical system of air–sea interactions, the breaking
controls the whitecapping dissipation of surface waves and, thus, the wave growth
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(e.g., The WISE Group 2007). The breaking modifies the drag coefficient in the
atmospheric boundary layer and, therefore, momentum and energy exchange
between wind and waves; it produces turbulence for the upper-ocean mixing (e.g.,
Chalikov and Belevich 1993), and it also determines to a great extent the gas, heat,
and moisture exchanges across the interface (e.g., Bortkovskii 1987). In the
hydroacoustics, it is a primary source of the underwater sound (Kerman 1992); in
remote sensing, it produces sea spikes (e.g., Melville et al. 1988) and whitecapping
which then serve either as a proxy of wanted properties or an unwanted noise which
needs to be dealt with (e.g., Sharkov 2007). In engineering, it is responsible for
impacts on structures and vessels, may directly affect the bottom boundary layer in
shallow areas, or may limit the maximum in probability distributions of wave
height, among many other contributions and influences (see, e.g., Babanin (2011)
for a review).

For many years, the breaking was regarded as a poorly understood phenomenon
which is hard if not impossible to approach by the theoretical, numerical, and even
experimental means. Indeed, it is a strongly nonlinear process where a wave (or
rather a wave group which includes a breaking wave) suddenly, within a fraction of
wave period, looses the energy accumulated from the wind over hundreds of wave
periods. These events are sporadic; i.e., they do not cover the entire wavy surface,
and this is in the wave system where all the other processes responsible for the wave
evolution are presented. There are even accounts that the breaking distribution on
the ocean surface is fractal (Zaslavskii and Sharkov 1987). Such features are dif-
ficult to explain in the analytical theories, difficult to reproduce in the numerical
models, and difficult to measure.

In the past decade, however, an essential progress has been made in under-
standing the causes of wave breaking and quantifying the breaking probability as a
function of environmental properties, first of all, those of the wave field itself. For
monochromatic wave trains (or quasi-monochromatic, i.e., a combination of a
carrier wave and small sideband perturbations), the breaking onset was identified
with a limiting steepness of Hk/2 � 0.44, where H is a breaking-wave
crest-to-trough height and k is its wave number (Brown and Jensen 2001 for
linear-superposition breaking, Babanin et al. 2007, for modulational-instability
breaking, Toffoli et al. 2010 for oceanic waves). Parameterizations of the breaking
probability were suggested, based on the laboratory (Babanin et al. 2007) and field
(Banner et al. 2000; Babanin et al. 2001) observations. Both revealed a threshold
for the breaking onset, in terms of the background mean steepness of wave
trains/fields. For the spectral environments, such an important feature as cumulative
effect of the breaking at small scales was found (Babanin and Young 2005;
Manasseh et al. 2006; Young and Babanin 2006).

It should be mentioned that a majority of investigations of the wave breaking in
the laboratory and field were conducted for the breaking stage after the breaking
onset (e.g., Holthuijsen and Herbers 1986; Xu et al. 1986; Jessup et al. 1997;
Gemmrich and Farmer 1999; Melville and Matusov 2002; Kleiss and Melville
2011, among many others), whereas a majority of analytical and numerical research
for the incipient-breaking stage (Longuet-Higgins 1969; Srokosz 1986; Yuan et al.
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1986; Papadimitrakis 2005, among others for probability models, Banner and Tiang
1998; Song and Banner 2002; Irisov and Voronovich 2011 for numerical models).
In the experiment, whitecapping signature or its derivatives such as underwater
sound, void fraction, infrared surface trace, and radar reflection are typically used to
detect the breaking events, and otherwise, it is difficult to judge on whether
the wave is going to break or not. The theory, on the contrary, cannot describe the
complicated nature of the multi-phase fluid mechanics of rapid wave collapse and
concentrates either on the dynamics of a nonlinear wave evolution to the point
where the collapse starts, or on interpreting the statistical properties of such point.
We should note, however, that the physics of the prebreaking and post-breaking
evolution is essentially different: The former is the nonlinear wave dynamics, and
the latter is the water surface collapse. This chapter will be only considering
the prebreaking stage and analyzing a wave evolution to the breaking onset and the
onset itself, but not the breaking past this onset when the wave starts exhibiting
the whitecapping.

Since the conclusion was drawn that a wave is to reach the limiting steepness in
order to break, then any physical mechanism which can lead to such steepness will
result in breaking. There can be lots of such mechanisms, i.e., the wave focusing or
just superposition, modulational instability, modulation of short waves by longer
waves in the spectral environments, strong wind forcing, and interactions of waves
with currents or with the bottom. The latter four are specific to the wave scales or
environmental conditions, and the former two are general and can occur in deep-
water no-forcing circumstances.

If so, the question was which of the two would be more frequent in field con-
ditions? Babanin et al. (2011) argued that the superposition of waves, with the typ-
ical field-wave steepness of the order ofHk/2 � 0.1, is possible, but its probability is
very low in the field. Besides, signatures of breaking allow us to distinguish between
the focusing- and instability-breaking types. For example, the above-mentioned
mean-steepness threshold cannot be a feature of the superposition-caused
breaking. This argument is indirect, but many other signatures point to the modu-
lational instability more directly. These are double-breaking (Donelan et al. 1972),
upshift of the spectral energy prior to breaking, oscillations of wave skewness/
asymmetry, cumulative effect, which were observed in the field, but in the
laboratory-simulated breaking, they clearly associate with the modulational insta-
bility (Babanin et al. 2010).

The modulational instability, however, is expected to be impaired or even
suppressed in directional wave fields, as opposed to the unidirectional wave trains
typically used in wave flumes (Onorato et al. 2009a, b; Waseda et al. 2009). In
order to investigate this issue, a dedicated experiment was conducted in a
three-dimensional wave tank, with the waves quasi-monochromatic in frequency
domain, but with a broad range of wave-steepness and directional-distribution
values (Babanin et al. 2011). In author’s opinion, the result was encouraging: For
wave trains with steepness and directional spread typical of those in the ocean, the
modulational instability can be still active.
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The present study is the first attempt to investigate the evolution of waves prior
to breaking and the breaking onset in the environment with full wave spectrum,
based on full nonlinear equations (Babanin and Chalikov 2012, see also Agnon
et al. 2005; Babanin et al. 2010). The study is conducted by means of fully non-
linear one-dimensional potential model ChSh. This model is based on first princi-
ples, and it proved stable and energy conserving over thousand of wave periods of
integration and does not have limitations in terms of wave steepness. It has been
extensively used for numerical simulations of evolution prior to breaking in
monochromatic and quasi-monochromatic wave trains and demonstrated excellent
agreement with the laboratory experiments.

The contradiction between the results of simulations and experiments can be
attributed to the presence of different types of deviations of ideal conditions in
experiments. For example, the wave generation in laboratory deals with generation
of surface only. However, the distribution of velocity (the second fundamental
variable) is usually out of control. In Song and Banner (2002, hereinafter SB), for
example, it was mentioned that the measured velocity field agrees with the calcu-
lations with accuracy 2 %. In fact, such disagreement is quite rough, since the
imposing of disturbances of such magnitude would affect the numerical solution
significantly. The wave dynamics is organized so well that comparison of 1-D
numerical modeling with an ideal 1-D laboratory modeling can highlight applica-
bility of the potential assumption only, but all other discrepancies should be
attributed to imperfection of the laboratory data.

8.2 Description of the Numerical Experiments

Previously, the breaking was investigated with numerical models for the cases when
wave field was represented by a small number of modes (Banner and Tian 1998;
Song and Banner 2002). Irisov and Voronovich (2011) investigated breaking in the
presence of continuous spectrum tail. Here, the investigation of breaking will be
done for the multi-mode wave field corresponding to real wave spectrum.

In this study, we applied the above-mentioned method for numerical simulation
of surface waves for investigation of a wave field evolution assigned by the
one-dimensional version of JONSWAP spectrum Sf (Hasselmann et al. 1973) for
finite fetch as a function of frequency x (Eq. 7.2.1).

In the initial JONSWAP approximation, an enhancement parameter for spectrum
c was accepted as constant: c ¼ 3:3. Later, some investigators came to the con-
clusion that the above parameter can be a function of fetch or peak frequency xp.
According to Babanin and Soloviev (1998), c increases with Xp: c ¼ 1:22Xp.

The approximations (8.2.1), (8.2.2) were rewritten in terms of wave numbers
using a dispersion relation that is precise at least up to 3Xp (Chalikov 2005).

The initial conditions for Fourier coefficients of free surface gðxÞ were assigned
in the following form:
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jhkj ¼ ð2SðkÞDkÞ1=2; gk ¼ jhkjcos(ukÞ; g�k ¼ jhkjsin(ukÞ; k ¼ 1; 2; 3 . . .Mi

ð8:2:1Þ

where jhkj is amplitude of kth mode; Mi is the number of modes assigned for the
initial conditions; gk; g�k are Fourier coefficients in the Cartesian coordinates, and
uk is a random (over k and over different runs) phase distributed uniformly over the
interval ð0� 2pÞ. The Fourier coefficients fk for the surface potential f ðxÞ were
assigned through:

fk ¼ sign ðkÞjkj�1=2a�k; k ¼ �Mi;Mi; ð8:2:2Þ

In this study, the model was applied for investigation of the breaking waves’
onset. More details of the model, numerical scheme, and model validation can be
found in Chap. 2. The peak wave number was equal to 16. The number of modes
M was equal to 1000 and the number of knots N = 4000. Since the peak wave
number was equal to 16, this resolution was even excessive.

An increase of the local steepness often results in development of instability and
even in the overturning of sharp crests. Formally, the conformal mapping exists up
to the moment when the overturning volume of water touches the surface. In such
imaginary evolution, the number of the Fourier modes required increases up to
infinity. If some special measures are not taken, the calculations normally terminate
much earlier due to the strong crest instability (Longuet-Higgins and Tanaka 1997)
followed by splitting of the falling volume into two phases. This phenomenon is
obviously non-potential.

8.3 Results of the Numerical Experiments

The problem of breaking has recently been a subject of extensive theoretical and
experimental research (see review in Babanin 2011). The ChSh model, as a precise
and fully nonlinear model which can describe the wave-train evolution from any set
of the initial conditions all the way to the breaking start, was lately extensively
employed in this kind of research. Babanin et al. (2007) used it to predict the
breaking onset, the prediction of which was then checked in a laboratory study of
wave breaking. In Babanin et al. (2010), the model was used for a detailed research
of the nonlinear properties of waves evolving to breaking, of the characteristics of
the imminent breaker, and, coupled with the atmospheric boundary layer model of
Chalikov and Rainchik (2011), for investigations of the wind influence on this
evolution and the onset. In Babanin et al. (2010), the initial conditions were uniform
wave trains. Galchenko et al. (2010, 2012) employed ChSh model to set up a
variety of combinations of carrier wave and seeded perturbations to achieve dif-
ferent instability rates. It was presumed that such different rates would lead to
different breaking severity, which was confirmed in an accompanying laboratory
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experiment. Thus, in all these studies, the simulations with ChSh model were
combined with the laboratory tests, and in all the cases, the agreement was
excellent.

The results of the numerical investigations of the breaking onset on the basis of
the Dold–Peregrine (DP) model were published in several papers of Banner with
co-authors (Banner and Tian 1998; Song and Banner 2002, 2004; Banner and Song
2002; Banner and Pierson 2007). All these works considered evolution of the single
wave with two superimposed disturbances. The onset of breaking was recognized
by development of the numerical instability of the solution. Such criterion is evi-
dently imperfect, since the numerical instability can develop long before the
physical instability.

In our model, the onset of breaking was defined by the first appearance of
non-single value of surface (Eq. 6.1.1). The details of this development are not the
subject of this investigation. Once the criterion (8.3.1) has been reached, the
solution never returns to stability: The volume of fluid crossing the vertical x
(i) increases rapidly. Up to this moment, the conservation of the sum of the potential
and kinetic energy, horizontal momentum, and volume was excellent. Opposite to
the criterion used in the works mentioned above, the criterion (8.3.1) is exact. In all
the cases simulated here, the formation of ‘vertical wall’ occurred in the vicinity
of wave crest. When the surface approaches non-single value (at the initial stage of
breaking), the conservation of invariants still holds, though later, a sharp increase of
energy occurs, and further, integration becomes useless. Usually, it happens just for
one Runge–Kutta time step, so, probably, the primary cause of the numerical
instability is growth of the right-hand side of Eqs. (2.3.4) and (2.3.6) and, partic-
ularly, the growth of the first and second derivatives. Disintegration of solution
happens mostly due to inapplicability of the potential approximation and, generally,
of the fluid dynamics equations for single-phase fluid.

When the model is set for simulation of a long-time development of spectrum,
the termination of run due to the breaking can be prevented by the introduction of
the breaking parameterization algorithm based on the selective high-frequency
smoothing of the interface and surface potential profile in physical space (Chalikov
2005; Chalikov and Rainchik 2010). Since the current work is devoted to inves-
tigation of the breaking itself, this smoothing was disabled, and each model run was
terminated using criterion (8.3.1).

It was found that, unlike the breaking in idealized conditions, in a multi-mode
wave field, the breaking is an essentially random phenomenon. An onset of the
breaking depends on many poorly controlled factors. Even if wave spectrum in the
initial conditions is fixed, the time up to the onset of breaking is different for a
different initial set of phases #k . This effect is also clearly pronounced in the process
of freak wave formation. Therefore, the statistics of breaking should be investigated
by means of ensemble modeling.

To accelerate the breaking, the initial conditions were generated for JONSWAP
spectrum at Xp ¼ 2. Hence, the phase velocity at wave peak was twice less than
wind speed, what corresponds to the case of developing waves. Time step Dt was

142 8 Numerical Investigation of Wave Breaking

http://dx.doi.org/10.1007/978-3-319-32916-1_6
http://dx.doi.org/10.1007/978-3-319-32916-1_2
http://dx.doi.org/10.1007/978-3-319-32916-1_2


equal to 0.0001. As many as 5000 runs with random set of phases were performed
up to the termination due to breaking. Limiting time t = 1000 (503 periods of peak
wave) was reached just in several runs, and these cases were excluded from con-
sideration. For detailed study of breaking, it is necessary to record a large volume of
data with a very small time interval. Such recording was not possible to provide
over the entire period of integration, since it takes too much of the computer
memory. This is why the simulations were performed in two stages. In the first
stage, the calculations were done up to the point of breaking; the recording of all
data including restart was done with the interval dt ¼ 5. In the second stage, the last
record of restart was taken as the initial conditions for continuation of runs up to the
point of breaking. In the course of these calculations, the records were stored with
the interval dt ¼ 0:1, which provided a good description of breaking development.
These runs will be called ‘final runs.’ Each instantaneous record includes the fol-
lowing fields: surface elevation z, surface potential U, surface velocity components
u0 and w0 and their individual derivatives on time (accelerations) ðdu=dtÞ0 and
ðdw=dtÞ0, local surface inclination @z=@x, curvature @2z=@x2, local columnar
potential ep, kinetic ek energy, and total et energies, which is defined as

ek ¼ 1
2
z2; ð8:3:1Þ

ek ¼ 1
2

Z0

�1
ðU2

n þU2
fÞJ�1df; ð8:3:2Þ

et ¼ ep þ ek: ð8:3:3Þ

For recognition of breaking the height of wave crest above a mean level z ¼ 0
does not make any sense, because wave stability depends on the overall wave
height from its trough to crest. It is not easy to detect this height formally.
Calculation of the vertical distance between the maximum and its nearest minimum
does not give the right answer, because there can be some local extremes; hence, the
wave height can be underestimated. Obviously, an extreme wave must be found
between large waves. That is why the height of extreme waves Htc in each record
gðxÞ was defined here as a difference between the absolute maximum zmax ¼ Hm

and the absolute minimum zmin ¼ min Dd ; Duf g in the moving window of length
Le. The upwind trough depth Du and downwind trough depth Dd were usually
different before breaking (see fragment of wave surface in Fig. 8.1).

It is reasonable to define Le ¼ 1:5Lp where Lp is length of wave in peak of
spectrum, Lp ¼ 2p=kp and kp is the actual wave number in the spectral peak. Large
waves with the length exceeding 1:5Lp were practically absent. In each record, the
length of the largest wave Lm can be defined as a distance between x-coordinates of
right Xtd and left Xtu minimums: Lm ¼ Xtd � Xtu (see 8.1). The lengths of upwind
Lmu and downwind Lmd slopes are defined as Lmu ¼ Xm � Xtu and Lmd ¼ Xtd � Xm,
correspondingly, where Xm is x-coordinate of the crest of largest wave. Note that
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small-scale waves add some uncertainty to the definition of geometrical charac-
teristics of the selected wave.

The main difficulty of the breaking analysis is that the largest wave during the
final run (the duration is less that 2.5 peak wave periods) can preserve its indi-
viduality only within a short period, so that the waves in different locations can play
the role of the largest wave in the record at different moments. However, in most
cases, it is the largest wave in the record that finally comes to breaking. The cases
when the breaking occurred with not the largest waves were excluded from the
consideration. To investigate a wave evolution, the tracing of the horizontal
coordinate xp of the largest wave peak was introduced, the waves with a continuous
evolution of xp up to the point of breaking being only selected. Remarkably,
duration of the breaking development tb is very short. The probability distribution
for tb expressed in peak wave period Tp is shown in Fig. 8.2. As shown, the
maximum of the probability falls on the period 0:35Tp. It suggests that the breaking
is an impulsive phenomenon developing very fast upon reaching the appropriate
conditions. These conditions can be formed by reversible interactions which are

Fig. 8.1 Scheme used for processing of wave surface records. Hm is the maximum wave height;
Xm is the x-coordinate of peak of such wave; Dd is the maximum depths of front trough; Xtd is the
x-coordinate of this point; Du Xtu are the same characteristics for back trough; X0d and X0u are the
zero downcrossing and upcrossing points correspondingly. Chalikov and Babanin 2012 ©
American Meteorological Society. Used with permission

Fig. 8.2 Probability
distribution PðtbÞ for the
period of breaking
development tb. Chalikov and
Babanin 2012 © American
Meteorological Society. Used
with permission
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much stronger and faster than the irreversible ones. If the breaking happens, then,
obviously, the reversible interactions become irreversible. The breaking can be an
efficient mechanism of nonlinear interactions, manifesting itself in downshifting
(Melville and Matusov 2002; Donelan et al. 2012).

All the results presented below were obtained for the final time period of the
single largest wave evolution preceded by breaking. The runs not terminated by
breaking, as well as the cases when duration of a final run was less than 0:2Tp, were
excluded (in calculation of probability tb shown in Fig. 8.2 they are accounted
though).

An additional criterion of data quality was introduced by control of total
energy Et

Ep ¼ ð2pÞ�1
Z2p
0

z2xndn; ð8:3:4Þ

Ek ¼ ð2pÞ�1
Z2p
0

##fdn ð8:3:5Þ

Et ¼ Ep þEk; ð8:3:6Þ

where Ek is the kinetic energy and Ep is the potential wave energy. In the absence of
the wind input and dissipation, the waves are adiabatic, but due to a slow flux of
energy in the subgrid part of spectrum, the total energy can decrease. The variation
of energy due to this effect is much slower than an increase of energy through the
wind input. However, if wave surface approaches overturning, the local large
gradients of elevation and surface potential cause the numerical instability which
results in fast change of the total energy. In all the cases, this phenomenon took
place very close to the moment when condition (8.3.1) is reached. For eliminating
this effect, the cases when the energy change exceeded 0.01 % were excluded.
Finally, only 2260 cases were used for further analysis.

The integral probability for the non-dimensional crest-to-trough height Htc=Hs

(Hs is the significant wave height, Hs ¼ 4
ffiffiffiffiffi
Ep

p
) is given in Fig. 8.3.

The sampling interval was equal to 0.1, and for calculations of probability
670,764,710, the elementary events were used. As shown, large waves are not a rare
phenomenon: The integral probability of waves exceeding significant wave height
twice as much is equal to 10�4, i.e., one of ten thousand waves can be attributed to
the so-called freak waves. Due to the self-similarity of the equations, this result for
non-dimensional height is universal; however to be really ‘freak,’ the wave should
be high enough indeed. Note that not all ‘freak’ waves break, but the portion of the
breaking freak waves increases with its non-dimensional height Htc=Hs (Chalikov
2009), and depending on Hs and a dominant wavelength, the breaking limits the
maximum possible ratio Htc=Hs in the field.
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A typical example of a wave evolution terminated by breaking is shown in
Fig. 8.4a. As shown, the wave increases its crest height twice from 0:7Hs to 1:5Hs.
The depth of back trough remains more or less the same, while the depth of front
trough decreases (see also Babanin et al. 2007, 2010). In panel b, an evolution of
columnar energy ec is presented. It is seen that the maximum columnar energy prior
to breaking exceeds the average energy 8 times. This effect is demonstrated more
clearly in Fig. 8.5 where the time evolution of the averaged over distance Lm energy
Em is represented together with the evolution of maximum value of the columnar
energy Emax. The averaged wave energy Em changes insignificantly, mostly because
of some uncertainty in definition of Lm caused by the presence of local extremes.
However, the maximum of columnar energy Emax changes several times. It will be
shown below that such growth is provided by the concentration of the energy
around crest vertical. It was found that this effect was the primary cause of the freak
wave generation (Chalikov 2009). Evidently, the breaking waves and freak waves
have a similar nature. However, large wave height is not a necessary condition of
breaking, since smaller waves also break. This fact suggests that in the spectral
environment, the breaking is not necessarily connected with the overall wave
characteristics, but rather with a rapidly changing local condition in the vicinity of
wave crest.

The results presented below are obtained by the processing of all the 2260 final
runs. Evolution of the total energy of wave averaged over its length Le and nor-
malized by the total energy Et as a function of time (expressed in peak wave
periods) prior to breaking

Fig. 8.3 Integral probability
Pi Htc=Hsð Þ for trough-to-crest
wave height Htc, normalized
by significant wave height Hs.
Chalikov and Babanin 2012
© American Meteorological
Society. Used with
permission
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Em ¼ 1
EtLe

Z
Le

etdx ð8:3:7Þ

is shown in Fig. 8.6a. The solid thick curve is averaged over all cases’ evolution of
Em, while the distance between the dotted lines indicates the dispersion. As shown,
wave energy before breaking is close to the doubled averaged energy Em, but it can
be also several times larger or smaller than Em. The dispersion shown in Fig. 8.6a is
very stable and small, just of the order of 0.1. It is most interesting that on the
average, the approaching of breaking does not manifest itself by the growth of wave

Fig. 8.4 a Example of evolution of selected wave profile z up to onset of breaking. b Evolution of
columnar energy etðxÞ normalized by mean energy et for the same period

Fig. 8.5 Evolution of averaged over wavelength columnar energy Em and maximum of columnar
energy Emax for the development shown in Fig. 8.4. Chalikov and Babanin 2012 © American
Meteorological Society. Used with permission
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Fig. 8.6 a Evolution of the energy of selected wave Em (Eq. 8.3.6) averaged over wavelength Lm
prior breaking as function of time t, expressed in peak wave periods. Aggregated gray lines
correspond to single cases, solid line represents the averaged over all cases’ evolution, and dotted
lines correspond to dispersion. Moment of breaking corresponds to time t = 0; b the same as in
panel a, but for maximum value Emax of columnar energy Et in selected window; c evolution of d
(Eq. 8.3.9) for idealized initial conditions; d evolution of d in spectral environment. The style of
curves in panels b and c is the same as in panel a. Chalikov and Babanin 2012 © American
Meteorological Society. Used with permission
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energy. This fact proves that a breaking wave in the spectral environment does not
necessarily take energy from other waves. In the events simulated here, develop-
ment of the breaking instability occurs because of modification of its shape; i.e., the
wave becomes more sharp-crested with concentration of its energy around its peak;
the crest itself becomes unstable, and the wave breaking starts. It is demonstrated
clearly in Fig. 8.6b where an evolution of maximum columnar energy max ðetÞ is
shown. As shown, the maximum energy increases on the average 1.5 times, though
an individual growth can reach the value 3. Note that in the developing extreme
(freak) waves, an amplification of maximum energy can reach a value as high as 10.
Thus, the level of energy is not an indicator of breaking. In paper by Banner and
Tian (1998), it was suggested that the onset of breaking can be recognized by the
rate of growth of the energy averaged over wavelength Em.

bE ¼ 1
xEm

dEm

dt
ð8:3:8Þ

The behavior of this parameter was investigated with a numerical model of Dold
(1992) based on the surface integral method. In the initial condition, one harmonic
carrying wave and two small-amplitude disturbances were assigned; an evolution of
energy of carrying wave was investigated. It was assumed that upon development
of the modulation instability, the approaching of breaking can be recognized by
parameter bE exceeding some critical value. In fact, even for such highly idealized
situation, Song and Banner (2002) found that ‘parameter bE did not provide a
robust indicator for resolving the onset of breaking.’ This is why they introduced an
alternative parameter based on the maximum value of wave energy ðEmÞmax

d ¼ 1
xðEmÞmax

dðEmÞmax

dt
ð8:3:9Þ

In fact, replacing bE by ðbEÞmax cancels the role of the modulation instability,
since the growth of maximum columnar energy can occur without the growth of
overall wave energy (see Fig. 8.6a, b). Finally, authors came to the conclusion that
the ‘calculations indicate that breaking or recurrence may be determined by a
common threshold dth in the range ð1:3� 10�3; 1:5� 10�3Þ for the non-
dimensional growth rate.’

A practical role of the criterion similar to (8.3.9) is doubtful. Firstly, the authors’
primary idea was an explanation of the breaking on the basis of modulation
instability when one wave grows at the expense of the others. Criterion d cannot
describe such process, because it is based on the maximum energy of waves, which
depends essentially on a shape of wave and can change without modification of the
selected wave energy. This effect is clearly demonstrated in Fig. 8.5: The average
wave energy slightly decreases, while the peak energy increases nearly three times.
Secondly, this criterion is offered for the idealized situation of single harmonic
wave with two superimposed disturbances, and it is unclear how to apply it for
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parameterization of breaking in the spectral models or in direct modeling of mul-
timode wave field.

For investigation of breaking in idealized conditions, a series of experiments
similar to those performed by SB were repeated with ChSh model. The carrying
wave mode with amplitude ap was placed at wave number k ¼ kp, where kp was
changing in a range of 3–10, while steepness kpap was changing in a range of
0.085–0.185. A total of 160 long-term simulations were done up to the point of
breaking or up to the non-dimensional time t = 500 which corresponds to 138–252
periods of carrying waves. The disturbances with amplitudes 0:1ap were assigned at
wave numbers kp þ 1 and kp � 1, which, for the given resolution, provided fast
enough growth of disturbances (see Chalikov 2007). The number of modes was
M = 2000, while the number of grid points was N = 8000; i.e., a sufficient accuracy
of approximation was maintained. This series of the numerical experiments was
initially intended for investigation of breaking, but then, we focused on the simu-
lation of breaking in spectral environments. A criterion for terminating a run was
defined by Eq. (8.3.1).

The evolution of d (Eq. 8.3.9) prior to the wave breaking for such idealized wave
field is shown in 8.6c. Gray curves correspond to the evolution of d in individual
runs, while solid line shows an averaged evolution, and dashed lines indicate vari-
ance. Time t is normalized by a period of carrying waves. As shown, for the
less-steep waves, DP model performs reasonably well and behavior of d in idealized
conditions reminds somewhat a quasiperiodic regime obtained by SB. The evolution
of d, however, is less regular than it was demonstrated in SB, since the simulated
wave field has been modified due to appearance of new modes. The current calcu-
lation shows that criterion d can exceed the recommended values dth ¼ ð0:7� 2:8Þ
�10�3 at least for one decimal order. It means that an exact model based on con-
formal transformation is much more stable, so the recurrence occurs upon reaching
large values of d. Note that breaking can also occur at very small values of d.

The data on d obtained in a similar simulation of breaking in the spectral
environment are shown in Fig. 8.6d. As shown, the data on evolution of d exhibit a
great scatter. It is not surprising, since d is an overall characteristic, and for a
complicated wave surface, its value is very sensitive to the definition of wavelength
Lm. Besides, the height of a sharp-crested wave approaching the breaking point in
the spectral environment can change very quickly; thus, the criterion (8.3.9)
demonstrates irregular fluctuations. The parameter d can obtain both negative and
positive values exceeding many times the above-mentioned limit dth. These results
suggest that even a modified formulation of the breaking criterion (8.3.9) cannot
describe a variety of the situations. Note that the data in 8.6d describe the period
just prior to breaking. However, large values of criterion d occur very often when
growth of wave energy is reversible. The probability distribution of d obtained for
all the runs over the entire period of integration is shown in Fig. 8.7. As shown, the
probability of both negative and positive values of d is approximately the same, its
absolute value greatly exceeding dth. Note that a part of breaking cases shown in
Fig. 8.7 is less than 0.001 %.
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Thus, we come to the conclusion that criterion d does not signify the breaking;
the waves are much more stable than those reproduced by the model used in the
papers cited. Hence, an investigation of a role of the energy input to waves, as well
as the vertical gradient of mean velocity, performed by SB on the basis of criterion
(8.3.8), was premature. Actually, the Dold’s model is an excellent tool for inves-
tigation of wave dynamics when steepness is not too large; however, it is inap-
plicable for investigation of extreme conditions of breaking. Hence, it is most likely
that the papers cited above discussed not the breaking instability, but the limits of
the numerical stability of the model used. The model ChSh used in our calculation
is able to precisely reproduce the dynamics of extremely steep waves (see long-term
simulations of Stokes waves in Chalikov and Sheinin 2005; Chalikov 2005). The
criterion (8.3.1) is exact, since up to the moment of the ‘vertical wall’ appearance an
accuracy of solution is very high.

Some investigators (see, e.g., Zakharov et al. 2006) suggested that the breaking
occurs due to reaching the limit form of Stokes waves Htc=2Lm ¼ 0:43, where Lm is
the length of wave. An evolution of the largest trough-to-crest wave height Htc

normalized by the significant wave height is shown in Fig. 8.8a. Growth of the
averaged height occurs only in the last stage, and it has the order of 0:2Hs. As
shown, the breaking occurs in a wide range of Htc=Hs between the values 1.0 and
2.5, so the trough-to-crest height of wave cannot serve as indicator for the wave
breaking, though an increase of Htc=Hs is always followed by growth of a breaking
probability (Chalikov 2007). In multimode wave field, length L cannot be defined
straightly, since the largest peak wave is distorted by smaller waves. An evolution of
Lm, normalized by the spectral peak wavelength Lp ¼ 2p=kp is shown in Fig. 8.8b,
which proves that on the average, wavelength changes insignificantly with a weak
tendency to decrease by 10 %. This effect was confirmed by SB. However, the
scatter of these data is very large. The data on the overall steepness Stc ¼ Htc=2Lm of
the largest wave prior to breaking is given in Fig. 8.8c. It is seen that just several
waves break at high overall steepness Stc ¼ 0:4, but the breaking also occurs at such

Fig. 8.7 Probability
distribution for criterion d
(Eq. 8.3.9). Chalikov and
Babanin 2012 © American
Meteorological Society. Used
with permission
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small steepness as Stc ¼ 0:1. The averaged steepness of breaking waves is not too
small, and it is equal to 0.2, but it is twice smaller than the critical steepness for
Stokes waves. The gray curves, corresponding to the individual cases are concen-
trated very close to the averaged curve, while very small dispersion of the results
(shown by dotted curves) proves that scatter of wave steepness prior to breaking is
very small. So, the overall steepness of waves is also not a criterion of wave
breaking. The probability distribution of overall steepness shown in Fig. 8.9 proves
that waves in the spectral environment break well in advance before they become
very steep. It can be concluded that in multimode wave field, the parameter of overall
steepness Stc is not a reliable criterion for recognizing of breaking.

Fig. 8.8 a Evolution of trough-to-crest wave height Htc normalized by Hs prior breaking as
function of time t; b Evolution of ratio of actual wavelength Lm to spectral wavelength of peak
wave Lp; c Evolution of overall steepness Stc. The styles of curves are the same as in Fig. 8.6.
Chalikov and Babanin 2012 © American Meteorological Society. Used with permission
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The important characteristics of wave shape closely connected with wave
breaking are wave asymmetry As defined as (see Fig. 8.1) (Tulin and Landrini
2001; Caulliez 2002; Young and Babanin 2006; Babanin et al. 2007, 2010)

As ¼ X0d � Xm

Xm � X0u
ð8:3:10Þ

The negative asymmetry As\0 corresponds to the wave tilted forward in the
direction of propagation. In Fig. 8.1, the wave has a large positive asymmetry due
to the secondary peak at a downwind wave slope. This example proves that an
estimation of overall wave characteristics is often complicated due to some
uncertainty. An evolution of asymmetry prior to breaking is shown in Fig. 8.10a for
small number of modes. These calculations prove that in the idealized calculations
with a wave field, the waves have a negative asymmetry. Similar analysis of the
data obtained in the spectral environment is given in Fig. 8.10b. As shown, the
asymmetry has a very large scatter varying from −0.9 waves to the values
exceeding 1. On the average, the waves have a slight negative asymmetry, but just
before the breaking the asymmetry changes the sign and becomes positive. This
effect can be explained by a sharp modification of wave shape before breaking
(similar to that shown in Fig. 8.1).

Kjeldsen and Myrhaug (1980) found that the front trough of the incipient breaker
is shallower as compared with the rear trough, which is a persistent feature of the
wave breaking observed in laboratory (Babanin et al. 2010). This was proved by the
calculations with the idealized wave field, but the data obtained in the spectral
environment rather contradict this conclusion; i.e., the front trough Df of the

Fig. 8.9 Probability
distribution for criterion
overall steepness Sst .
Chalikov and Babanin 2012
© American Meteorological
Society. Used with
permission
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breaking waves (Fig. 8.10b) is on the average deeper than the rear trough Dr

(Fig. 8.10c). Note that both of the characteristics have a large scatter.
The theoretical analysis of breaking is usually based on presentation of wave

field as a superposition of harmonic waves. Such restriction leads to the assumption
that one mode grows taking the energy from other modes. If the number of modes is
small, such transformation occurs within the length of a wave group. For the case of
wind sea spectrum, such interval does not exist, so we should suppose that the
growth of energy leading to breaking occurs everywhere in the area represented by
wave spectrum. In reality, just few waves grow and break in physical space, this

Fig. 8.10 a The evolution of asymmetry As (Eq. 8.3.10); prior of breaking as function of time t,
expressed in peak wave periods; b the same characteristics obtained in the calculation of spectral
environment; c evolution of upwind rear depth Du normalized by Hs; d evolution of front trough
depth Du normalized by Hs. The styles of curves are the same as in Fig. 8.6. Chalikov and Babanin
2012 © American Meteorological Society. Used with permission.
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process being represented in wave spectrum in a highly distorted form. A shape of
wave approaching the point of breaking is very far off the harmonic function. It is
illustrated in Fig. 8.11 where the ratio of wave height above a mean level to the rear
trough (Fig. 8.11a) and to the front trough (Fig. 8.11b) is represented. As shown,

Fig. 8.11 The evolution of geometrical characteristics prior breaking: a the ratio of wave height
above mean level to depth of rear trough Dr ; b the ratio of wave height above mean level to depth
of rear trough Df ; c skewness Sk of waves; d the kurtosis Ku of waves. The styles of curves are the
same as in Fig. 8.6. Chalikov and Babanin 2012 © American Meteorological Society. Used with
permission
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the wave height is twice as large as compared with the depth of troughs, while the
depth of the front trough is on the average slightly deeper than the depth of the rear
trough (see also Babanin et al. 2007, 2010). This effect is illustrated by Fig. 8.11c
and d where the skewness Sk and kurtosis Ku calculated over the wavelength Lm are
represented. As shown, the skewness of waves is on the average positive; hence, the
crests are considerably higher than the depth of troughs. The kurtosis is on the
average negative, which means that the areas of positive elevation are less extended
than those of the negative elevation.

In fact, we came to the conclusion that not a single characteristic considered
provides a reliable criterion for wave breaking in the spectral environment. Note
also the scatter with respect to the mean. All the properties considered can be rather
referred to the ‘overall’ characteristic whose definition is quite sensitive to real
shapes of waves and strongly depends on the spectral resolution and shape of
spectrum. Neither of these characteristics (including non-dimensional rate of wave
height growth (Eq. 8.3.8) cannot be considered as a reliable criterion of the
breaking onset. It is rather a local slope near the crest, as indicated below.

Considering Figs. 8.6a, b, and d, 8.8a–c, and 8.10a–c, we can conclude that
opposite to the idealized conditions (see 8.6c), simple geometrical characteristics
are very unstable. The shape of peak waves can be distorted by smaller waves;
therefore, the values of wave height and wavelength as well as the overall steepness
Stc and asymmetry As can depend on small details. It explains the large scatter of
these characteristics.

Now, we consider an evolution of the local characteristics of wave approaching
the point of breaking, i.e., maximum smax and minimum smin slopes in the interval
Lm ¼ Xtd � Xtu (Fig. 8.12a, b). As shown, the positive steepness (i.e., the steepness
at rear slope) changes insignificantly, while the steepness at front slope can reach
quite large negative values. Even a clearer is the characteristic of wave peak
sharpness defined by a maximum value of the second derivative (Fig. 8.12c). Note
that the value of the second derivative is multiplied by Hs for making this char-
acteristic independent on the model parameters. In the numerical model, the value
of the second derivative could reach several thousands, which forced us to modify
the time step. However, all the differential characteristics reveal a large scatter; i.e.,
the breaking could occur both at large and small steepness and at large and small
negative peak sharpness. The attempts to find a threshold value for the negative
steepness were unsuccessful, since the process can be reversible up to very large
values of smin, and only appearance of a non-unique surface (in fact, the onset of
breaking itself) can be for sure accepted as a criterion of breaking. The same
conclusion can be made for kinematic characteristics of surface: the maximum and
minimum values of the surface orbital velocity components (Fig. 8.13a–d) and the
components of acceleration (individual derivatives of velocity) dU=dt and dW=dt
(Fig. 8.14). Deceleration of the horizontal velocity (Fig. 8.14b) and acceleration of
the negative vertical velocity (8.14c) are pronounced most clearly. Again, the
scatter of these characteristics is very large.

Finally, we come to the conclusion that all the characteristics considered cannot
serve as a criterion of the breaking development. Some of them exhibit a tendency
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for instability, but these features are developing during a very short period pre-
ceding the breaking, so they correspond to the process of breaking itself, rather than
to the prescribing of an imminent breaking.

Such a detailed consideration of the breaking process allows us to formulate the
question: ‘How is it possible to use a predictor for the breaking in the spectral
environment?’ Definitely, the instability of interface leading to the breaking is an
important problem of the fluid mechanics. This process is strongly nonlinear;
therefore, the theory of breaking is expected to be highly complicated. The onset of

Fig. 8.12 Differential characteristics of surface: a The evolution of maximum value of steepness
max ð@z=@xÞ; b the evolution of minimum value of steepness min ð@z=@xÞ; c the evolution of
minimum value of curvature min ð@2z=@x2ÞHs taken with opposite sign. The styles of curves are
the same as in Fig. 8.6. Chalikov and Babanin 2012 © American Meteorological Society. Used
with permission
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Fig. 8.13 The evolution of surface kinematic characteristics: a the evolution of maximum value
of horizontal velocity Umax=cp; b the evolution of minimum value of horizontal velocity Umin=cp;
c the evolution of maximum value of vertical velocity Wmax=cp; d the evolution of minimum value
of vertical velocity Wmin=cp. All velocities are normalized by peak phase velocity cp. The styles of
curves are the same as in Fig. 8.6. Chalikov, Babanin 2012 © American Meteorological Society.
Used with permission
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Fig. 8.14 The evolution of surface dynamic characteristics (accelerations normalized by
acceleration of gravity): a the evolution of maximum value of horizontal particle acceleration
maxðdU=dtÞg�1; b the evolution of minimum value of horizontal particle acceleration
minðdU=dtÞg�1; c the evolution of maximum value of vertical particle acceleration. The styles
of curves are the same as in Fig. 8.6. Chalikov and Babanin 2012 © American Meteorological
Society. Used with permission
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breaking is similar to the onset of free convection in liquid at unstable stratification.
The criterion of convection instability is just appearance of unstable stratification in
some part of liquid. It can result from different processes producing redistribution of
density. Similarly, we can define as criterion of instability the appearance of a
non-unique part of surface, when some volume of fluid becomes non-supported by
pressure from the surrounding liquid and starts to move independently under the
action of inertia and gravitation forces. The breaking can start under the influence of
many factors producing the non-uniqueness of surface. Probably, the main of them
is an appearance of the horizontal velocity exceeding the velocity of the shape
propagation. It was proved by special numerical experiments with very high time
and space resolution, performed by Chalikov and Sheinin (2005). It was shown that
the horizontal velocity in the peak of wave before breaking always exceeded the
phase velocity.

The breaking is a dissipative process leading to the loss of the kinetic and
potential wave energy and to transition of energy to the horizontal flow and tur-
bulence, so this process should be taken into account in different types of models
designed for simulation of wave evolution. The most important models of such type
are wave forecasting models [e.g., WAVEWATCH model (Tolman 2008)].
Evidently, no criterion of breaking can be used in such models, because they
operate with wave spectrum; hence, the information on real wave surface is absent.
In such models, the dissipation process is presented in a distorted form. Since the
breaking occurs in the relatively narrow space intervals separated by broad parts
with no breaking, the spectrum of the dissipation rate is distributed mostly in a
high-frequency part of the spectrum, while in reality, the breaking reduces the
height of the largest wave represented in spectral peak. The cause of this contra-
diction is that in the spectral model, the wave field is assumed to be a superposition
of linear modes, while the breaking (and growth of freak waves) occurs due to
transformation of a specific wave shape; i.e., the wave before breaking, as a rule,
becomes sharp-crested. Therefore, the breaking reduces the height and energy of a
nonlinear mode.

Appearance of a non-single-value surface in direct simulation is always followed
by the numerical instability and termination of run. Since the termination can
happen at a relatively low integral frequency, the long-term simulations, especially
with the input energy from wind, are impossible. This is why an algorithm of the
breaking parameterization based on the local elimination of breaking was devel-
oped. The algorithm (the basic concept of such algorithms is very close to that used
for parameterization of free convection in atmospheric models) is designed to
prevent the breaking instability by the highly selective high-frequency smoothing of
the interface profile. Many schemes to parameterize such phenomenon were tested,
the most efficient of them being based on a simple diffusion-type algorithm:

gs ¼ Eg þ J�1 @

@n
B
@g
@n

; ð8:3:11Þ
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us ¼ Fu þ J�1 @

@n
B
@u
@n

; ð8:3:12Þ

where E and FU are the right-hand sides of Eqs. (2.2.34) and (2.2.35), while the
coefficient of diffusion B depends on the second derivative of the interface:

B ¼ Cb Dn @2z
@n2

� �2
@2z
@n2

[ s

0 @2z
@n2

� s

8<
: ; ð8:3:13Þ

where the coefficient Cb is of the order of 0.1, while the critical value of the second
derivative s is of the order of 300. The algorithm of the ‘tail dissipation’ (8.3.11)–
(8.3.13) does not change the volume but reduces the local energy and momentum of
waves. It is assumed that some portion of the energy (and momentum) loss is
transferred to the horizontal flow, while another portion is transferred to turbulence
(such transformations can be considered separately, see Chalikov and Belevich
1993). Note that the intensity of breaking in the presence of input energy does not
depend much on parameters Cb and s: The waves can become on the average a little
more sharp-crested, but the integral energy lost in the process of breaking finally
remains approximately the same. An example of the local evolution of the surface
affected by breaking is shown in Fig. 8.15.

Solid line corresponds to wave surface, while thin line shows a change of wave
surface Dzb due to the breaking described by the algorithm (8.3.11)–(8.3.13). As
shown, the height of wave in the vicinity of crest decreases ðDzb\0Þ, since water is
transferred to the front slope. A smaller volume of water falls also to the rear wave
slope. The algorithm (8.3.11)–(8.3.13) is currently used in a long-term simulation
of the wave field evolution. It effectively prevents development of the numerical
instability arising as the surface gets closer to a non-single value profile and
describes well (at least qualitatively) dissipation of wave energy. Such scheme does

Fig. 8.15 Local evolution of
surface in a course of
breaking simulated by
algorithm (8.3.11)–(8.3.13).
Solid curve represents the top
of breaking wave, and thin
curves correspond to change
of surface 100Dzb at
consequent time steps with
interval Dt ¼ 0:01. Chalikov
and Babanin 2012 ©
American Meteorological
Society. Used with
permission
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not influence solution in the absence of breaking. We do not consider this algorithm
as a final solution of the problem, since it cannot prevent collapse in cases of a very
high initial steepness or high energy. However, for normal steepness of sea waves,
as well as for the cases of a typical growth rate of the local energy, it works well.
After implementation of the algorithm (8.3.11)–(8.3.13) with Cb ¼ 0:1 and s ¼ 300
in the ChSh model, the termination of run happened quite seldom. The results of a
long-term simulation of the wave field evolution were demonstrated in Chalikov
and Rainchik (2010) on the basis of the air/water coupled model. It was shown that
the wave breaking is a highly intermittent process correlated with steepness. Of
course, the rate of dissipation and the intermittence index depend on the stage of
wave development and the magnitude of energy input.

The spectrum of breaking can be easily determined by a special post-processing
of the results based on recorded fields of surface elevations and surface potential
and different terms of the dynamic equations, including all dissipation terms. This
algorithm has been generalized for 2-D wave field and implemented in the exact
3-D wave model constructed on the same basic principles as the 2-D model used in
the current work. For investigation of energy balance and spectral decomposition of
the dissipation term, a special series of numerical experiments for the inverse wave
age U=cp ¼ 1; 2; 3; 4 were performed. Each run was repeated 100 times for dif-
ferent random sets of phases. Unlike in the calculations performed for investigation
of breaking, the algorithm (8.3.11)–(8.3.13) in this series was activated.

The spectral energy balance equations can be represented in the following form

dSk
dt ¼

dSk
dt

� �
NL

þ dSk
dt

� �
INP

þ dSk
dt

� �
BR

þ dSk
dt

� �
TL

þ dSk
dt

� �
NU

1 2 3 4 5 6
ð8:3:14Þ

where term 1 corresponds to the rate of total change of the spectral energy Sk equal
to the sum of the potential and kinetic energy in a wave number interval Dk = 1;
term 2 is a rate of nonlinear transformations (due to the nonlinear terms in the
equations); term 3 is an increase of energy due to the wind input; term 4 is a change
of spectrum due to the wave breaking; term 5 is the tail dissipation due to a flux of
energy to the subgrid waves; and term 6 is a change of energy due to the errors of
the numerical scheme. The last term 6 originates mostly from approximation in
time, because errors of space approximation are practically absent. Since the
fourth-order Runge–Kutta scheme for time stepping was used, error 6 is negligible.
The change of spectrum due to the nonlinear interaction can be calculated on the
time substep based on Eqs. (2.2.34) and (2.2.35) before calculating the input and
dissipation. The potential energy and kinetic energy fluctuate, but their sum con-
serves with high accuracy, the calculation of term 2 being exact. The input energy
(term 3) should be calculated with use of b-function (Chalikov and Rainchik 2010),
but in the current work, this effect was taken into account by including an additional
term in the right-hand side of Eqs. (2.2.34) and (2.2.35)
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@hk
@s

¼ � � � þ hkðDsÞ�1q;

@fk
@s

¼ � � � þ fkðDsÞ�1q;
ð8:3:15Þ

where the symbol … denotes the rest of the terms in Eqs. (2.2.34) and (2.2.35); hk
and fk are the Fourier coefficients for elevation and surface potential; Ds is time
step; q is defined by a ratio of the initial energy E0 (at s ¼ 0); and the current total
energy E (Eq. 8.3.6) is as follows:

q ¼ ðE0=EÞ1=2 � 1; ð8:3:16Þ

where a typical value of q is 10�10. Since q is very small, the substep (8.3.15) was
performed using an explicit scheme at the time substeps preceding the calculation
of tail and breaking dissipation. The scheme (8.3.15) was introduced for main-
taining the total energy without modification of the kinetic and potential energy
spectra. For the periods considered in the current work, the effect of the numerical
dissipation prevented by algorithm (8.3.15) was very small. Each of the terms in
Eq. (8.3.14) was calculated using a split numerical scheme by changing the energy
spectrum at every step.

Separation of numerical dissipation on the basis of the scheme (8.3.14) was done
for investigation of dissipation caused by the breaking and tail terms 4 and 5,
respectively. Evidently, the rate of total (i.e., integral over spectrum) dissipation
should depend on the total energy of wave field E (Eq. 8.3.6) and on another
parameter characterizing the integral steepness of surface. We found that the most
important characteristic responsible for breaking is the differential steepness St
defined by the expression

St ¼
ZM
0

k2SðkÞdk
0
@

1
A

1=2

: ð8:3:17Þ

We call this steepness ‘differential’ opposite to ‘bulk’ steepness (sometimes
called ‘global’ steepness) of the type of kpHs (kp is peak wave number, and Hs is
significant wave height). The bulk steepness does take into account the
high-frequency modes with low weight, and it cannot serve as a governing
parameter of dissipation. If the spectrum at high frequencies has an asymptotic
behavior S�x�5, the integral (Eq. 8.3.17) diverges. This fact indicates strong
dependence of the differential steepness on a high-frequency region. The charac-
teristic (8.3.17) cannot be used as an absolute measure of steepness, but it is
convenient for the comparison of the results for the same spectral resolution. The
dependence of integral dissipation Du
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Du ¼ � Tp
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dk ð8:3:18Þ

on parameters St is represented in Fig. 8.16, showing that the differential steepness
in the presence of the energy input cannot exceed the value S1 ¼ 0:19. The ten-
dency for decrease of the dissipation rate in the range 0:16\S2\0:19 results from
the normalizing factors Tp=E in (8.3.18).

The spectra of breaking dissipation (terms 4) normalized by E3=2xp for five
ranges of the non-dimensional differential steepness St are shown in Fig. 8.17. As
shown, the normalized by E3=2 dissipation spectrum increases with growth of
steepness. The maximum of dissipation falls on the peak of wave spectrum, but the
dissipation spectrum is broad due to the nonlinear nature of this process. Note that
unlike all the previous schemes, Fig. 8.17 represents the spectrum dissipation
obtained in direct simulation of multi-mode wave field on the basis of full
equations.

Fig. 8.16 Dependence of the integral dissipation rate (terms 4 and 5 in Eq. 8.3.14) on overall
wave steepness S13 0:14\S2\0:16ð Þ; 4 0:16\S2\0:18ð Þ; 5 0:18\S2ð Þ (Eq. 8.3.17). Chalikov and Babanin
2012 © American Meteorological Society. Used with permission
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8.4 Nonlinear Sharpening of Waves as a Possible Cause
of Breaking

The main concept of this book suggests that the linear (sinusoidal) waves are not
the physical objects. If produced, for example, by means of a mechanical wave
maker, they turn themselves into Stokes waves before propagating, and this is the
only nonlinear property and behavior among many others. One of the most evident
manifestations of the nonlinearity of surface waves is the wave-breaking phe-
nomenon (e.g., Babanin 2011). This process consists of several stages. At the first
stage, a wave becomes sharp and tends to incline forward, so that the surface, in
some places, can become a non-single value. Such transformation can be well
described using exact models such as the conformal model or any version of the
boundary integral model (e.g., the Dold and Peregrine (1984) model). At the second
stage, the wave breaking itself takes place. This phenomenon is characterized by
fast distortion of the wave shape; i.e., some volume of water moves forward and
quickly loses its single-phase nature, becoming a mixture of water and air
(whitecaps). This stage is characterized by formation of sprays in the air and
bubbles in the water. Within the frames of the models mentioned above, the con-
tinuity of ‘jet’ can be artificially supported by using different smoothing procedures,
while in general, simulation of this process should be based on some sort of the
Lagrangian approach for two-phase liquid (see, e.g., Iafrati 2011). At the last stage

Fig. 8.17 Spectrum of dissipation rate Dn : 1 S2\0:12ð Þ; 2� 0:12\S2\0:14ð Þ; 3 0:14\S2ð
\0:16Þ; 4 0:16\S2\0:18ð Þ; 5 0:18\S2ð Þ, as function of x=xp. Chalikov and Babanin 2012 ©
American Meteorological Society. Used with permission
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of wave breaking, the local smoothing of surface occurs. It is followed by the local
decrease of the potential and kinetic energy. A part of the momentum is transferred
to the waves and surface currents; the energy is transferred to turbulence (in the
water and air), currents, and adjacent waves or even back to wind (Chalikov and
Belevich 1992; Iafrati et al. 2013). Since the energy is partially distributed between
the wave modes, the breaking initiates some sort of a fast nonlinear wave–wave
interaction process [see discussions of this topic in Tulin and Waseda (1999);
Donelan et al. (2012)]. Since such transformation does not cover all the waves in
the train, the spectral image of the process becomes distorted.

A non-single-value surface in direct (phase-resolving) simulations is usually
followed by the numerical instability and termination of run. Since it can happen at
a relatively low mean steepness, the long-term simulations, especially those with
the input of energy from wind, are impossible. This is why for our simulations an
algorithm of the wave-breaking parameterization based on the local elimination of
breaking was developed (Chalikov and Sheinin 2005). An algorithm is designed to
prevent the breaking instability through a highly selective smoothing of the inter-
face in physical space.

In this section, our attention is concentrated on the first stage of wave breaking.
In other words, we are trying to understand the way the mechanism of the breaking
onset works. This process is definitely connected with the local concentration of
wave energy due to the fast nonlinear wave–wave interactions.

It is generally assumed that a relatively fast (compared with the Hasselmann
resonance theory) transformation of the ocean wave spectrum is described by the
so-called modulation instability theory originally known as ‘Benjamin-Feir (B-F)
instability theory’ (Benjamin and Feir 1967). The concept of this theory is quite
transparent; i.e., a one-dimensional nonlinear wave train in the presence of certain
disturbances can enforce additional modes in the spectral vicinity of the main mode.
Roughly speaking, the B-F theory explains redistribution of the wave energy in the
frequency (wave number) space up to the final homogenization of an initially
discrete spectrum. The original B-F results and numerical investigations of the B-F
instability (Chalikov 2007) show that the timescale of a new mode growth for a
typical ocean wave steepness exceeds hundreds or even thousands of the carrier
wave period. The growth of the new mode amplitude a occurs exponentially

aðtÞ� exp
2pt
Tbf

� �
; ð8:4:1Þ

where Tbf is the timescale which depends on the two parameters: steepness of the
carrier mode AK (A in the amplitude of mode and K is its wave number) and
quantity d ¼ ðk � KÞ=K, which is non-dimensional ‘distance’ in wave number
space between the carrier wave and a new mode with wave number k. The
dependence Ta ðAK; dÞ was studied in the original work by Benjamin and Feir
(1967); it was investigated in detail by using the numerical model based on con-
formal transformation of the coordinates (Chalikov 2007, Chap. 6). The numerical
results confirmed the analytical results and considerably extended them. Values of
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Tbf , if expressed in periods of carrier waves, were calculated within the ranges
0:01�AK � 0:42 and �1� d� 1. The dependence of scale Tbf averaged over d

Tbf ¼
Z1

�1

Td ðAKÞ ð8:4:2Þ

is shown in Fig. 8.18.
As shown, the minimum values of Tbf are located at AK = 0.32. The B-F

instability is theoretically efficient, provided that the carrier wave steepness is
considerably larger than the typical steepness of sea waves. However, in this case, a
steep wave is not isolated in the physical and spectral environments, and after a
short interaction with the other modes, it inevitably approaches the breaking onset
before a relatively slow B-F mechanism starts to act. For the typical steepness of sea
waves AK\0:1, the scale Tbf exceeds hundreds and thousands of the periods. Thus,
a wave should undergo a long history of growth. It is quite obvious that the B-F
instability mechanism cannot be considered as a leading mechanism of wave
breaking.

Both the B-F and Hasselmann nonlinear interaction mechanisms refer to the
so-called irreversible interaction producing slow transformation (or downshifting)
of wave spectrum. However, it is well known that wave spectrum is very unsteady.
The amplitude of every mode fluctuates in time (Chalikov 2005) with no change
of the averaged spectrum, i.e., with no downshifting or angular spreading. It would
be quite natural to assume that due to the reversible interaction, a random con-
centration of energy in physical space can be high enough to initiate the wave
breaking. In some simplified approaches (e.g., in the models based on nonlinear
Schrödinger equation (see Slunyaev et al. 2002), the breaking is missing; hence, the
amplitudes of the simulated waves can be very large. In reality, the wave-breaking
instability prevents an excessive growth of waves. This process is connected with
the local decrease and redistribution of energy both in the physical and Fourier
domains. As a result, in this case, the reversible interactions can finally become the
irreversible ones.

Fig. 8.18 Dependence of the
Benjamin–Feir timescale Tbf
on steepness AK of the carrier
wave
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The breaking is a continuous process of the local instability with a short
timescale. We suggest that a trigger for breaking can be provided by reversible
interactions which locally create a high concentration (focusing) of energy. An
effect of one-dimensional and two-dimensional focusing has been investigated
numerically and experimentally by Johannessen and Swan (1997, 2001, 2003).
Another example of the same mechanism is investigated in the experimental work
by Brown and Jensen (2001). The above-mentioned authors found that the merging
of wave crests with different wave numbers gives a residual trough-to-crest height
of the combined wave that is considerably larger than it follows from their linear
superposition. All the works devoted to the focusing, however, can be referred to as
the cases studies, i.e., when focusing occurs for the specifically selected configu-
rations of the wave modes. In the current work, our attention is given to the
investigation of statistics of focusing in connection with the wave breaking.

The effect can be easily reproduced with the exact 1-D conformal model (ChSh).
The number of modes M was 256 and number of knots N = 1024. In the first series
of the numerical experiments, two linear modes with different steepness and dif-
ferent wave numbers were assigned as initial conditions:

gðxÞ ¼ a1 cos ðk1xÞþ a2 cos ðk2xþuÞ ð8:4:3Þ

where a1 and a2 are amplitudes, k1 and k2 are wave numbers, and u is phase. The
surface velocity potential was calculated by means of the theory of small-amplitude
waves. Integration was done with time step dt ¼ 0:001. The steepness of both
waves a1k1 and a2k2 was assigned within the range of 0:01� 0:30 through the
following relations:

a1k1 ¼ 0:01þ 0:3r; a2k2 ¼ 0:01þ 0:3r ð8:4:4Þ

where 0� r� 1 is a random number different for the two wave trains. The integer
wave numbers are calculated by means of the following expressions:

k1 ¼ 1þ 2r; k2 ¼ k1 þ 10r: ð8:4:5Þ

The trivial cases k1 ¼ k2 were excluded from consideration. The variable r in
(8.4.4) and (8.4.5) is a random number function whose values within the range of
0� r� 1 are different in all cases.

Setting the initial conditions in the form (8.4.3)–(8.4.5) allows us to investigate a
very broad ensemble of situations which can be stratified through their integral
steepness St calculated over the initial surface:

St ¼ 1
2p

Z2p
0

g2xðt ¼ 0Þdx
0
@

1
A

1=2

: ð8:4:6Þ
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The total number of runs is 1000. The aim of these calculations is estimating the
difference between the linear and nonlinear solutions. A relatively short period of
integrations t = 10 was chosen on purpose, in order to exclude any possibility of the
instability development according to the B-F scenario. A considerable part of the
runs was terminated at t\10 because of breaking. The onset of breaking is defined
by condition (8.3.1).

Differences between the linear and nonlinear solutions can be characterized by
the exceedance criterion:

E ¼ max ðgÞ�min ðgÞ
2ða1 þ a2Þ ; ð8:4:7Þ

Evidently, for the linear process E� 1, while the value E � 1 characterizes the
role of the nonlinearity in the process of crest sharpening. The characteristics of
several runs with exceedance E[ 1:2 are given in Table 8.1 where Tm is the time
of appearance of the maximum value of criterion (8.3.1) expressed in periods of the
lower mode.

The wave profiles for the 12 cases calculated at moment t ¼ Tm and included in
Table 8.1 are shown in Fig. 8.19.

As shown, all these profiles contain sharp crests which result from the nonlinear
focusing of energy. The focusing happens when two crests merge. Apparently, the
focusing occurs both for the initially steep and not too steep wave trains, as well as
for the breaking and non-breaking waves with different combinations of steepness
and wave numbers. It appears that the effect of focusing certainly depends on the
initial phase u. All the exceedance data are compiled together in Fig. 8.20 where

Table 8.1 Characteristics of the two initially assigned waves and their solutions

No TðperÞ k1 k2 a1k1 a2k2 St u E B

0 1.172 1 4 0.284 0.052 0.085 2.200 1.20 0

1 1.179 2 10 0.304 0.049 0.097 1.980 1.21 1

2 2.154 2 6 0.048 0.242 0.062 2.486 1.22 0

3 1.226 2 3 0.046 0.294 0.091 1.192 1.21 1

4 2.180 2 7 0.011 0.287 0.084 0.980 1.21 0

5 1.421 2 3 0.297 0.018 0.091 0.757 1.22 1

6 1.154 2 11 0.306 0.020 0.096 0.666 1.22 1

7 2.204 2 5 0.053 0.229 0.056 3.078 1.20 0

8 1.145 2 11 0.310 0.041 0.100 0.409 1.21 1

9 1.892 2 9 0.022 0.299 0.092 2.642 1.22 0

10 1.628 2 6 0.041 0.262 0.071 0.011 1.21 0

11 1.167 2 8 0.309 0.018 0.098 2.647 1.22 1

TmðperÞ is the time of appearance of maximum value of the criterion (8) expressed in periods of the
lower mode; k1 and k2 are wave numbers; a1k1 and a2k2 are respective steepnesses imposed in the
initial conditions; St is the initial integral steepness (Eq. 6, gy ¼ 0); u is a phase; E is exceedance
(Eq. 8); B is type of the termination (B ¼ 0 means no breaking; B ¼ 1 signifies breaking)
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the parameter E is plotted as a function of the initial steepness (8.4.6). Exceedance
E[ 1 is achieved in most of the runs (75 % of the total number of cases). It is
interesting to note that the E[ 1 cases happen even at a very small steepness (of
the order of 0.01).

The largest values of exceedance are obtained at St ¼ 0:1 above which the
exceedance is decreasing. The decrease happens because at such mean steepness
the wave breaks before getting high. The points shown in Fig. 8.20 correspond to
the non-breaking cases, while the ‘plus’ signs correspond to the breaking cases.
A fraction of breaking cases increases with growth of St, and at St ¼ 0:1, it reaches
the value 0.97. At St ¼ 0:14, all runs are terminated by breaking.

It may appear that the effect of exceedance can be explained by the nonlinear
transformation of each mode without nonlinear focusing. It is well known that due
to the quadratic interactions, an initially linear wave quickly transforms into the

Fig. 8.19 Examples of 1-D surface elevations with exceedance E[ 1:2 (see Table 8.1). The
horizontal line corresponds to E ¼ 1
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nonlinear shape close to that of Stokes wave. Therefore, generally speaking, such
transformation can indeed produce an exceedance effect. Simple estimations,
however, show that such exceedance is much smaller. Even for Stokes wave with
the steepness AK ¼ 0:42, the correction given by all the ‘bound’ modes is about
5 %, while the exceedance shown in our computations can be as large as 20 %. For
the waves with medium steepness considered in this paper, the Stokes correction is
less than 1 %. So, it is unlikely that the focusing can be explained by the nonlin-
earity of separate waves. Nevertheless, in order to verify this conjecture, we per-
formed an additional series of computations where the initial conditions were
assigned as two superimposed Stokes waves with the steepness and phases calcu-
lated with Eqs. (8.4.4) and (8.4.5). The exact Stokes wave can be calculated with
the algorithm described in Chalikov and Sheinin (1998) (see Chap. 3). Note that the
superposition of two Stokes waves is not an exact solution of the stationary
equations. Therefore, here, we use a simplified method of Stokes wave generation
described in Chalikov (2005) (see Sect. 5.3). In this case, the criterion (8.4.7)
characterizes the exceedance of the focused wave above the maximum
trough-to-crest height of the wave train consisting of two superimposed Stokes
waves.

As expected, the exceedance for the case of Stokes waves within the interval
0:05\St\0:10 turns out to be a little lower than that for the linear waves. On the
contrary, for St[ 0:10, the exceedance is bigger than for the linear waves. It can be
explained by higher stability of Stokes waves as compared to the linear waves.

Fig. 8.20 Dependence of
exceedance E (Eq. 8.4.7) on
the initial steepness
(Eq. 8.4.6). Dots correspond
to non-breaking waves, while
the sign + marks breaking
waves
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8.5 Conclusions

In this chapter, the exact two-dimensional model was used for investigation of the
breaking onset recognized by the appearance of non-uniqueness of surface. This
criterion is strict, since up to the moment of wave evolution, the conservation of
integral is supported with high precision, and after that moment, the breaking is
imminent. Due to the special strategy of the numerical experiments and archiving
the results, an evolution of the wave close to breaking was registered with high
accuracy. This last period prior to breaking was a subject of the investigation.

Opposite to the considerations based on a small number of modes, the definition
of ‘wave’ in the spectral environment is less certain. In reality, such wave is a
composition of many modes with more or less fixed phases. Due to dispersion
wave, surface has a complicated shape. This is why the definition of an individual
wave is also uncertain. The statistical characteristics of such wave usually have a
large scatter. The spectral approach for investigation of breaking waves is mis-
leading, since breaking occurs in a narrow interval of physical space, its spectral
image being difficult to interpret. The mechanism of breaking in the spectral
environment is quite different to that for the idealized situations when the wave field
is represented by few modes.

The breaking develops very quickly, on the average, faster than for half of a peak
wave period. To some extent, the breaking is similar to the development of freak
waves which generally appear suddenly without any prehistory. Probably, the main
cause of such development can be a reversible wave–wave interaction.

No reliable predictor was found for breaking in the spectral environment, such as
threshold or limiting value of some global wave parameters which indicate an
imminent breaking. The calculations with the exact model show that the criterion
based on the rate of maximum energy can be exceeded many times. It means that a
real process is much more stable than it was demonstrated in Song and Banner
(2001) where the breaking onset was identified with the development of the
numerical instability. The overall characteristics of breaking (such as overall
steepness, asymmetry, overall kurtosis, and skewness) reveal weak connection with
the breaking process.

The differential geometrical and kinematical characteristics such as the first and
second derivatives of elevation, surface orbital velocity, and individual accelera-
tions (as well as criterion d, as in Eq. 8.3.9) indicate development toward breaking
clearer, but they rather describe the process of breaking itself than predict its onset.
In another similar situation, the development does not necessarily result in break-
ing: At some moment prior to breaking, the process can become reversible.

The most striking property of the wave breaking in the spectral environment is
the absence of any evident rules and criteria for breaking onset. We can only be sure
that the breaking starts in most cases at the front slope of wave very close to its
peak. The breaking occurs as a result of the local instability of flow in the areas with
large negative steepness. As a rule, it is followed by deceleration of the horizontal
component of surface orbital velocity and by the negative vertical acceleration.
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The breaking process develops in the space intervals, much shorter than the
dominant wavelength. For spectral description of such modification, high-
frequency (wave numbers) modes are required. In reality, however, the breaking
decreases energy of large wave by changing its shape. In general, the spectral
approach is not fully applicable for the analysis of individual breaking cases which
occur in physical space and cause a hardly interpretable transformation of wave
spectrum.

The main difference is that in the spectral environment, wave surface can
become unstable and collapse at a much lower global steepness than in a simple
case with a small number of modes. This apparently happens due to the wave shape
distortions which would trigger the breaking earlier. These distortions are most
likely to happen in case of random superposition of waves of all scales.

An additional investigation of the fast wave transformation was undertaken,
since some of the existing explanations of this phenomenon based on the B-F
instability theory seem incomplete. The main contradiction of the B-F theory with
the results of our numerical simulation and some other observations is a fast rate of
the freak wave development and a short life of such wave. An additional motivation
for search of the fast mechanism of wave transformation was provided by Brown
and Jensen (2001) who discovered the effect of the nonlinear focusing experi-
mentally. They noted: ‘…conditions under which the Benjamin-Feir instability is
able to act are expected to be satisfied only under extremely rare circumstances in
deep water ocean waves.’ In fact, we have repeatedly simulated their experiment on
the basis of exact 1-D model for a large number of cases and confirmed that the fast
nonlinear focusing is a typical phenomenon that occurs at any steepness.

The question remains whether this effect can explain appearance of freak waves.
We are inclined to think that the answer to this question is rather negative, though
the effect of exceedance can make contribution to the freak wave formation. First of
all, the effect of exceedance is not very significant, while a freak wave height can
reach very large values. Secondly, the effect of exceedance is of high probability,
and it evidently takes place, whenever the crests of two waves with different wave
numbers merge. If this effect were indeed responsible for generation of freak waves,
the probability of such waves would be much higher as compared to what we know
now. It is still possible, however, that the effect of energy focusing is stronger for
three or more waves or for the directionally spread waves; i.e., this phenomenon
should be investigated on the basis of a more general formulation of the problem.
The current investigation is only targeted at highlighting a possible mechanism of
the breaking onset.
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Chapter 9
Numerical Modeling of Wind–Wave
Interaction

Abstract The description of a coupled wind and wave model in conformal coor-
dinates is given. The wave model is based on potential equations for the flow with a
free surface, extended with the algorithm of breaking dissipation. The wave
boundary layer (WBL) model is based on the Reynolds equations with the K–e
closure scheme with the solutions for air and water matched through the interface.
The structure of the WBL and vertical profiles of the wave-produced momentum
flux (WPMF) in a long-term simulation of the coupled dynamics is investigated and
parameterized. The shape of the b function connecting elevation and surface
pressure is studied up to high non-dimensional wave frequencies. The errors of a
linear presentation of the surface pressure are estimated.

9.1 Wave Boundary Layer (WBL)

The basic properties of the wind–wave interaction processes which are valid over a
wide range of wind speeds and wave numbers are yet to be determined on a solid
scientific basis. In the center of these investigations, there should be direct inter-
actions of winds and waves. These processes have been most extensively investi-
gated in the context of the processes describing growth and decay of the ocean wind
waves, i.e., their so-called input and dissipation source terms in wave prediction
models. Even for these processes, the conventional theories are either highly sim-
plified (e.g., Miles’ linear wind input theory) or actually nonexistent (wave energy
dissipation due to whitecapping). Furthermore, direct observations of many char-
acteristics are generally unavailable, as will be discussed below. In order to accu-
rately describe this central interaction between winds and waves, it is necessary to
obtain a detailed information about the following: (1) the physics of wave drag and
exchange by the kinetic energy, heat, and passive substances; (2) the spectral shape
of the wind–wave interaction parameter and its asymptotic behavior both at high
frequencies (spectral tail) and low frequencies (long and fast waves); (3) its
dependence on stratification and gustiness; (4) its directional distribution; (5) limits
of applicability for the quasi-linear representation of wind input; and (6) the physics
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and statistics of wave breaking and its dependence on wave spectrum and wind.
More generally, modeling of the air–sea interaction processes also requires addi-
tional information on the following: (1) the influence of surface waves on the
turbulent exchange of momentum, heat, mass, and passive substances between the
air and water; (2) a role of surface waves in the dynamics of the wave boundary
layer (WBL), the mixed layer (ML), and the upper thermocline (UT).

The main interaction mechanisms are active very close to the moving interface
making it extremely difficult to carry out direct experimental measurements in the
sea, especially at high winds. Most of the measurements are performed at the levels
higher than the wave crests, in fact, at heights where the difference between WBL
and conventional BL is not too large. The technical problems associated with
conducting the measurements where they are actually required, i.e., very close to
the surface, suggest that an adequate experimental solution can be beyond reality.
At present, most of the measurement data available from the field experiments
highlight only the consequences of the interaction but not its mechanics. Even the
laboratory data have to be often considered as qualitative, because of the problems
associated with the scaling and small sizes of the laboratory tanks. For example, the
laboratory wind–wave tunnel measurements are carried out in a very thin layer that
just starts to develop the WBL, while at sea, the WBL is formed at a great distance
from the location of the measurements and is usually well adjusted to the wave
field.

The modern technology developed in the geophysical fluid mechanics was not
actually used for investigation of the WBL. The numerical hydrodynamic modeling
is similar, to some extent, to the perfect laboratory modeling (no scale limitations,
availability of simple ‘observations’ of arbitrary quantities in arbitrary locations),
but its applicability surely depends on the applicability of many theoretical
assumptions used. Being free from the restrictions arising from the scale difference,
an approximation to reality can be sometimes closer than that obtained in physical
simulations. Such situation is typical for many other branches of the fluid dynamics,
especially in technical applications (see Fletcher 1988), and it is often proved that
numerical methods do provide high-quality results which can be combined with
experimental data and generate the results which are impossible to obtain just
experimentally. In a more specific context of modeling of the wave growth under
the action of wind, there are no significant theoretical extensions of the Miles’
theory, since most of the theoretical investigations are done in the framework of
small-amplitude linear assumption (e.g., Belcher et al. 1994). However, it became
clear years ago that successful development of the problem should be based on full
nonlinear equations of turbulent flows.

The WBL is the lowest part of the constant flux atmospheric boundary layer
(Chalikov 1976, 1978, 1980, 1986) where the fluctuations produced by waves are
clearly pronounced. The height of the WBL is of the order of significant wave
height Hs, normally—a few meters. At the bottom, it is in contact with the sea
surface, while at the top, it merges with a surface layer widely known as the
Monin-Obukhov layer (Monin and Yaglom 1971). In most cases, the height of
WBL does not exceed that of a dynamic sublayer; hence, a direct influence of
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stratification on wind–wave interaction is negligible. An indirect influence of
stratification through a low-frequency part of the turbulent spectrum (gustiness) can
be noticeable (Kahma and Calkoen 1992), and it can be included in the WBL model
by use of variable upper boundary conditions. Within the WBL, the motion is
profoundly influenced by the ocean surface waves. Since the WBL is responsible
for wave drag, its structure changes dynamics of the entire constant flux atmo-
spheric layer. The total momentum flux s splits in the WBL into two branches:
wave-produced momentum flux sw (WPMF) transferring energy and momentum to
waves; shear turbulent flux generating currents. The contribution of the WPMF to
the total flux is the biggest on wave surface, while WPMF quickly decreases with
height within the WBL, eventually approaching zero at the top of the WBL where
all of the momentum is transferred by shear turbulence.

The previous investigations of the boundary layer above waves were based
mostly on the conventional theory of the boundary layer above infinite flat and rigid
surface. In fact, the presence of waves was considered only as a sort of inconve-
nience, while the effect they produced was treated as modification of a roughness
parameter. However, it seems to be still unexplained why the roughness parameter
is normally about four orders of magnitude smaller than wave heights; moreover,
no analysis of wind profile close to sea surface in the presence of finite-amplitude
waves has been ever suggested.

A straightforward approach for the hydrodynamic theory of the WBL was first
developed in the sixties (see Phillips 1977). However, only few studies accepted
Phillips’ concept that a lower part of the marine boundary layer has at least one
distinct feature; i.e., its lower boundary is a curvilinear moving surface responsible
for specific types of dynamic interactions. This effect was qualitatively studied in
the linear small-amplitude theory (Miles 1957).

Development of the numerical WBL models began in mid-seventies when
several papers covering this topic were published at the same time. Gent and Taylor
(1976) investigated a stationary wind flow above one single wave for a broad range
of the wave and airflow parameters. They were the first to find the theoretical
dependence of the wind–wave energy exchange on wave frequency. The similar
model, though based on the stream function, was developed by Simonov (1982).
The most important Simonov’s result accounted for the role of different turbulence
closure schemes. It was concluded that for typical magnitudes of wave steepness,
all closure schemes show similar results. The fully nonlinear modeling of wind–
wave interaction (as well as the concept of the WBL) was first introduced by
Chalikov in 1976 and 1978. The second paper considered a fundamental problem of
deriving Reynolds equations for a boundary layer above the curvilinear moving
surface. It was a 2-D WBL model based on the finite-difference approximations in
both directions. In view of the limitations due to old computers, all the calculations
were performed for monochromatic wave field or just for few wave modes
(Chalikov 1986). The most difficult computational problem was development of an
accurate numerical method for solution of a general elliptic equation for pressure
above the nonstationary multimodal surface. The main results obtained with the use
of the old version of the model are as follows:
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(1) derivation of the Reynolds equations in the surface-following coordinate sys-
tem as well as general formulation of the WBL problem;

(2) calculation of the spectral shape of a wind–wave interaction parameter (b-
function) with the preassigned angular distribution based on ‘apparent’ fre-
quency. Investigation of the statistical structure of the WBL (including profiles
and spectral composition of the first, second, and some third moments of the
wave-produced pressure, velocities, and turbulence);

(3) one-dimensional theory of the WBL considering the spectral structure of the
wave-produced momentum fluxes (Chalikov and Belevich 1993; Chalikov
1995);

(4) implementation of the new energy input and dissipation schemes (Tolman and
Chalikov 1994, 1996) in the NWS operational wave forecast WAVEWATCH
model (see Web site http://polar.wwb.noaa.gov/waves). The energy input for-
mulation is more accurate than that used in the family of WAM models. The
extensive comparisons of wave forecasts produced by the WAVEWATCH III
(Version 1.15) and WAM (Cycle 4) models using buoy and satellite data
clearly showed that the WAVEWATCH model provided better forecasts of the
observed wave characteristics, as compared with the WAM model. Certainly,
this improvement was achieved not only due to implementation of new
schemes for energy input and dissipation.

The results of further numerical modeling (Chalikov 2005) showed that it would
be better to replace the term ‘small amplitude’ by the term ‘very small amplitude,’
as even for the steepness of the order of 0.05, the nonlinearity becomes an essential
property of wave dynamics. Also note that applicability of the single-mode linear
analysis for real finite-amplitude multi-modal wave fields has been never seriously
discussed. What makes this problem special is the necessity to use the
surface-following coordinate system for derivation of correct nonlinear equations.
After transformation, the dynamic equations become highly complex and difficult to
integrate; however, they allow describing the essence of the process, i.e., interaction
of the turbulent wind with finite-amplitude waves.

The wind–wave interaction mechanism has been extensively investigated within
the frame of the ocean wave evolution problem. All the studies were targeted at
parameterization of the so-called input and dissipation source terms in wave pre-
diction models. Even for such processes, the existing theories seem to be either
highly simplified (e.g., Miles’ quasi-linear wind input theory) or purely speculative,
as in case with the wave energy dissipation due to whitecapping. Moreover, it is a
bare reality that the frequently cited Hasselmann’s approach with regard to calcu-
lation of the nonlinear interaction was never used in the wave forecasting models
due to its high complexity. Furthermore, direct observations of a number of char-
acteristics are hardly possible. An indirect analysis based on observations of the
spectrum evolution is unable to separate the input, dissipation, and nonlinear
interaction effects.

A standard spectral description of the energy input to waves is based on the
concept of linear superposition of fluxes to the spectral components calculated
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according to Miles’ theory. For steep waves, this principle is incorrect. All the
previous models considered the airflow above single harmonic wave and suggested
the steadiness of flow. Actually, this assumption is acceptable only for
small-amplitude waves. Due to the strong nonlinearity (leading to formation of
bound waves, focusing of energy in physical space and wave breaking), wave field
cannot be represented as a superposition of linear waves with random phases. The
dynamic wind–wave interaction is highly complicated. For example, long waves
modify the local flow which influences the energy input to short waves, while the
short waves produce local drag that influences the flow over large waves. In gen-
eral, all waves ‘spring, burgeon, and fall’ in the environment created by the entire
spectrum. The energy input to waves, even with moderate steepness, is rather
concentrated in physical space than in Fourier space. Hence, a Fourier image of the
input is often difficult to interpret.

The more comprehensive theoretical formulation of the coupled problem became
possible after introduction of the unsteady surface-following conformal mapping
(ChSh). After transformation into the conformal coordinates, the 1-D wave equa-
tions obtain a very simple form. The approach is so precise that any comparison
with observations allows to judge rather of the applicability of a 1-D potential
approach with regard to real process than of the accuracy of the model itself.

The motivations for development of the new approach are quite evident. It is
impossible to prove that the coexisting waves interact with atmosphere as a set of
independent waves, so that the integral result can be obtained by a simple super-
position of monochromatic cases. It is well known that even a single wave produces
a broad spectrum of pressure fluctuations which modifies the flow. The first attempt
to consider the nonlinearity and group effects was made using a finite-difference
model (see review Chalikov 1986), where wave surface was assigned as a super-
position of running waves with different frequencies. This approach is much closer
to reality than that based on the stationary single-mode model. However, it was
found that such an approach, being much better (and much more complicated) than
the monochromatic stationary approach, was also imperfect due to two reasons:
(1) the peculiar wave shapes and a nonlinear group structure are not represented in
the above model; (2) the finite-difference model cannot provide the accuracy
required.

The most reliable approach for investigation of the wind–wave interaction
problem is modeling of the coupled wave and WBL dynamics (Chalikov 1998).
The spectral approach to this problem is quite suitable; however, it should be used
as a method for the numerical solution of equations and for representation of the
results. The most complicated processes, such as group effects, wave breaking,
bound waves, and development of extreme waves occur in physical space; hence,
their spectral image is often not quite representative.

It is obvious that real waves have more or less sharp crests and smooth troughs.
At the same time, Stokes waves are the exact solution of full equations. Stokes
waves are stable in the absence of disturbances, while they slowly transform as a
result of the Benjamin–Feir instability in the presence of disturbances. However,
harmonic waves quickly disintegrate and obtain the shape of Stokes waves even in
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the absence of disturbances. Wave field always includes the so-called bound waves
moving with the phase speed of carrying wave. This expression is not quite ade-
quate, since it obscures a genuine nature of the phenomenon. Actually, large waves
are the more or less stable nonlinear objects consisting of a great number of linear
modes with almost constant amplitudes and fixed phases. As a result, a multi-mode
wave field is approximated rather by a superposition of nonlinear modes (Stokes
waves) than by a superposition of the linear modes with random phases. The
analysis of wave field in terms of Stokes waves was simplified due to an inci-
dentally discovered property. It was found (Chalikov 2005) that the nonlinear (in
the Cartesian coordinates) Stokes modes turn into the single Fourier modes with
high accuracy after transformation to the ‘upper’ conformal coordinates. For
obtaining the same accuracy of approximation of wave surface, the required number
of such modes is small as compared with that of the Fourier modes in the Cartesian
coordinate system.

The nonlinear properties of real waves are closely connected with the problem of
wind and wave interaction. This problem of the geophysical fluid dynamics has
always been the object of extensive investigations; however, the most of the the-
oretical works were based on a small-amplitude assumption. It was never discussed,
to what extent the amplitudes might be small. The numerous analytical investiga-
tions (based on the simplified equations) that followed after the famous Miles’
(1957) work actually did not lead to deep insight into the problem. The structure of
flow and the wave-produced drag above sharp-crested waves differ from those for
harmonic waves. A more realistic approach is based on the numerical modeling of a
stationary flow above the wavy surface (represented by one mode). Such models
based on Reynolds equations and the turbulent closure schemes (Gent and Taylor
1976, Chalikov 1976, 1978) were used for investigation of a boundary layer
structure above the finite-amplitude harmonic waves (see Chalikov 1986). The
results obtained with use of such models are definitely closer to reality than the
results of analytical exercises, though the above models are also imperfect. Despite
the fact that the Chalikov’s model has undergone numerous modifications (see, e.g.,
Mastenbroek et al. 1996), it remains hardly suitable for investigation of real pro-
cesses. Moreover, this scheme was based on a finite-difference approach, while for
the periodic wave problem, it would be more appropriate to use the Fourier
transform method. The pressure field was calculated through solution of the
finite-difference Poisson equation, which imposes tough limitations on the wave
steepness. The first attempts to consider more than one harmonic mode were not
quite successful either.

The current approach to the problem (Chalikov 1998; Chalikov and Rainchik
2010) is based on the new principles. (1) The model is formulated as a
high-resolution spectral problem in the nonstationary surface-following coordinate
system. (2) Waves are the object of modeling; i.e., the full potential wave equations
are solved along with the equations for boundary layer with matching of the
solutions on the interface. (3) The well-developed and powerful Fourier transform
method is used.
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It is obvious that even minor obstacles (such as sharpening of crest) produce a
dramatic change of pressure field and form drag (this effect is well known in the
engineering fluid mechanics). It is also well known that just a simple group effect
may produce high and steep waves (in physical space) with a deep minimum of
pressure behind the crests. The nonlinearity enhances the effect of sharpening, thus
strongly increasing the pressure anomalies. On the whole, the wave drag and energy
exchange is the result of an ensemble effect of the nonstationary fluctuations of
pressure and surface stresses. It is clear that all those processes are completely
absent in routine monochromatic stationary models.

9.2 Equations of WBL

It is impossible to provide an exact formulation of a 2-D wind–wave interaction
problem without the introduction of the surface-following conformal coordinates.
A consistent development of the approach to the problem of wind–wave interaction
began with Chalikov (1976, 1978).

Let us consider a boundary layer above a curved periodic surface g ¼ ðx; tÞ
whose shape is represented by Fourier expansion:

gðx; tÞ ¼
XM
�M

hkðtÞ#kðxÞ: ð9:2:1Þ

Here, hk are amplitudes and M is truncation number, while #kðxÞ denotes the
following function:

#kðnÞ ¼ cosðknÞ k� 0
sinðknÞ k\0

�
ð9:2:2Þ

(note that #kð Þn¼ k#�k , and
P

Ak#kð Þn ¼ �P kA�k#kð Þ. Let us introduce the
conformal surface-following coordinate transformation for domain ð0\x� 2p;
Hw\z\HaÞ:

x ¼ n�
X

�M� k�M;k 6¼0

g�kðsÞ
cosh k ½Ha;Hw� � 1ð Þ

sinh kH
#kðnÞ

z ¼ f�
X

�M� k�M;k 6¼0

g�kðsÞ
sinh k ½Ha;Hw� � 1ð Þ

sinh kH
#kðnÞ

t ¼ s

ð9:2:3Þ

where Ha is WBL height and Hw is the water domain depth. The top signs in (9.2.3)
refer to the air domain, while the bottom signs refer to the water domain. Note that
transformation (9.2.3) is nonlinear, since #kðnÞ are the functions of a new coordi-
nate n. At 1 ¼ 0, the function zðnÞ describes wave surface:
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zðn; 0; sÞ ¼ gðn; sÞ ¼
XM
�M

gkðsÞ#kðnÞ; ð9:2:4Þ

where M is the assigned number of modes, while gk are Fourier coefficients in the
curvilinear coordinate system. These coefficients differ from the Fourier coefficients
hk for water surface in the Cartesian coordinate system. To obtain the same accu-
racy of approximation of surface g, the number of modes in the Cartesian coor-
dinates should be less than in the lower coordinates and more than in the upper
coordinates.

The governing equations should be obtained by averaging Navier–Stokes
equations. In the presence of a moving 2-D interface, the averaging is not a trivial
problem. Phillips (1977) had discussed this problem in detail (see also Chalikov
1978). However, it should be pointed out that the averaging of equations for a 3-D
case is always connected with some ‘apriori’ simplifications, so it cannot be done
formally in the way it was done for a quasi-stationary flow in a simple domain
(Monin and Yaglom 1971). Obviously, the best way to avoid some of the sim-
plifications is to use the LES technique. Above the 1-D surface, the averaging can
be understood as the averaging along y ¼ const. (Phillips 1977).

After transformation into a new coordinate system and averaging, Euler equa-
tions can be written as follows (the sign of averaging for the first-order moments is
omitted):

dJu
ds

¼ � @pxn
@n

þ @pzn
@f

� @ xnu0u0 þ znu0w0� �
@n

� @ �znu0u0 þ xnu0w0� �
@f

dJw
ds

¼ � @pzn
@n

þ @pxn
@f

� @ znu0w0 þ xnw0w0� �
@n

� @ �znu0w0 þ xnw0w0� �
@f

;

ð9:2:5Þ

where p is a deviation from hydrostatic pressure divided by air density; xn and zn are
metric coefficients; and J is the Jacobian of mapping

J ¼ x2n þ z2n; ð9:2:6Þ

d=ds denotes full derivative on time

dJðÞ
ds

¼ @JðÞ
@s

þ @JUðÞ
@n

þ @JWðÞ
@f

; ð9:2:7Þ

U and W are contravariant velocity components

U ¼ J�1 u� xsð Þxn þ w� zsð Þznð Þ; W ¼ J�1 � u� xsð Þxf þ w� zsð Þznð Þ:
ð9:2:8Þ
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The continuity equation takes the form:

@eu
@n

þ @ew
@f

¼ 0; ð9:2:9Þ

where eu and ew are covariant velocity components.

eu ¼ uxn þwzn; ew ¼ �uzn þwxn ð9:2:10Þ

Approaching the surface ‘vertical’ velocity W goes to zero, and kinematic condition
W = 0 becomes valid with an increasing accuracy. On the surface itself W = 0
strictly; hence, u ¼ u0;w ¼ w0 where u0 and w0 are the surface velocity compo-
nents. Equality W = 0 means that momentum and any substance are not transferred
by velocity through interface. To derive Eqs. (9.2.2)–(9.2.9), the next properties of
conformal mapping were used:

xn ¼ zf; xf ¼ �zn; xn ¼ J�1nx; xf ¼ �J�1nz: ð9:2:11Þ

The second- and third-order moments containing fluctuations of metric coeffi-
cients and fluctuations of Jacobian are omitted, as the subgrid moments of such type
quickly attenuate with increase of distance from the surface (see discussion of this
problem in Chalikov 1978). The second-order turbulence moments are represented
as a product of the turbulent viscosity coefficient Km and a corresponding com-
ponent of the velocity strain tensor Uij (Monin and Yaglom 1971). The coefficient
Km is taken in a form:

Km ¼ cke
2=e; ð9:2:12Þ

(K-e model), where e is the kinetic energy of turbulence, e is a rate of e dissipation
(Launder and Spalding 1974), ck ¼ 0:0073, and

u0u0 ¼ 2KmJ
�1U11 ¼ 2KmJ

�1 @uxn
@n

� @uzn
@f

� �
þ 2

3
e

u0w0 ¼ KmJ
�1U12 ¼ KmJ

�1 @ uzn þwxnð Þ
@n

� @ uxn þwznð Þ
@f

� �

w0w0 ¼ 2KmJ
�1U22 ¼ 2KmJ

�1 @wzn
@n

þ @wxn
@f

� �
þ 2

3
e

ð9:2:13Þ

At the upper boundary, the metric coefficients obtain the values: zn ¼ 0 and xn ¼ 1;
hence, the boundary conditions take the following form:

z ¼ f ¼ Ha : u0w0 ¼ s; w ¼ 0; ð9:2:14Þ
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where s is a vertical flux of the horizontal momentum. The tangent turbulent stress
on the surface s0 is calculated with the use of the quadratic law:

s0 ¼ Cl eu1 � eu0j jðeu1 � eu0Þ: ð9:2:15Þ

Here, eu1 and eu0 are the covariant components of velocity in the lowest level and on
the interface, respectively; Cl is a local drag coefficient the definition of which is
given below.

Evolution of e and e is described with the following equations:

dJe
ds

¼ @

@n
Ke

@e
@n

þ @

@f
Ke

@e
@f

þP� e

dJe
ds

¼ @

@n
Ke

@e
@n

þ @

@f
Ke

@e
@f

þ e
e
c2P� c4eð Þ

ð9:2:16Þ

where the diffusion coefficients Ke and Ke are proportional to the coefficient of
turbulent viscosity Ke ¼ Km=ce;Ke ¼ Km=ce, while P is the rate of turbulent energy
production:

P ¼ 0:5JKm U2
11 þ 2U2

12 þU2
22

� �
: ð9:2:17Þ

The rate of production PH at the upper boundary of domain z ¼ f ¼ Ha is calcu-
lated through the formula:

PH ¼ v3�
jHa

ð9:2:18Þ

(v� ¼ s1=2 is friction velocity at z ¼ Ha), and energy of turbulence e and the rate of
e dissipation e are equal to:

eH ¼ c1v
2
�; eH ¼ v3�

jHa
: ð9:2:19Þ

The normal to surface f ¼ 0 vertical diffusion of turbulent energy and diffusion
Ke

@e
@f at the upper boundary f ¼ Ha are both equal to zero. A vertical diffusion of

dissipation rate by the normal to the surface f ¼ 0 and at the upper boundary
f ¼ Ha is equal to:

Ke
@e
@f

f ¼ 0ð Þ ¼ �v4s0z
�1
1 c�1

3 ; Ke
@e
@f

f ¼ Hað Þ ¼ �v4�H
�1
a c�1

3 ; ð9:2:20Þ

respectively, where vs0 ¼ s1=20 is the local tangent friction velocity defined by the
local turbulent tangent stress s0 on the interface. The closure scheme based on
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Eqs. (9.2.16)–(9.2.20) uses a set of empirical constants: j � 0:41 (Karman con-
stant), c1 ¼ 3:7, ce ¼ 1, c2 ¼ 1:92, and c3 ¼ 1:3: In the absence of waves, as it
follows from the self-similarity of logarithmic boundary layer, the constant c4 is
connected with other constants:

c4 ¼ ðc1 � c2Þj�2c�1
3 : ð9:2:21Þ

All of the equations have been written in a non-dimensional form based on the
following scales: length L(2pL—a horizontal scale of domain) and g—acceleration
of gravity. All other scales have been constructed with the use of g and L.

9.3 The Numerical Scheme for WBL Equations

The numerical scheme is based on the Fourier transform method (Orszag 1970) and
the fast Fourier transform (FFT) subroutine for an arbitrary number of modes.
A detailed description of the method applied to the wave modeling problem is given
by Chalikov and Sheinin (1998). The core of the method is that the linear part of
equation is approximated directly, while the products of variables are calculated on
the uniform over n-coordinate grid with the number of knots N ¼ 4M (M—number
of the Fourier modes). Then, the Fourier coefficients of the products are used for
integration on time or for calculation of derivatives over the ‘vertical’ coordinate f.
The derivatives over n are calculated through analytical differentiation of the
Fourier series. The vertical operators are approximated on a stretched grid where the
intervals between the knots Dfj are calculated with the use of formula Dfjþ 1 ¼ cDfj
(c is a stretching coefficient; index j is going up), while the first value of Df (j = 1)
is defined from the following condition:

XK
j¼1

Dzk ¼ Ha; ð9:3:1Þ

where K is the total number of levels in WBL. To improve accuracy of the
finite-difference approximation for the zero-number modes of u and e, it was taken
into account that

u / lnðfÞþ const; e / f�1; ð9:3:2Þ

The Fourier transform method is well developed and widely used for numerical
solution of nonlinear equations. That is why we are not going into further
description of the numerical scheme. For integration on time, the fourth-order
Runge–Kutta scheme was used.
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The most difficult problem arising at solution of the fluid mechanics equations in
the curvilinear coordinates is the calculation of a pressure field that provides con-
tinuity condition (9.2.9). It is well known that the solution quickly becomes
unstable if the equation of continuity is not valid with a high accuracy. The dynamic
equations for covariant components of velocity (9.2.10) take the following form:

@eu
@s

¼ � @p
@n

þ eFu

@ew
@s

¼ � @p
@f

þ eFw;

ð9:3:3Þ

where Fu and Fw are straightforward designations for the sum of turbulent and
convective terms calculated as a combination of the right-hand sides of Eq. (9.2.5)
at each substep of the Runge–Kutta scheme. Eq. (9.3.3) gives a possibility to derive
a standard form of the Poisson equation for the updated pressure pl

@2pl

@n2
þ @2pl

@f2
¼ 1

Dt
@eu
@n

þ @ew
@f

þ @eFu

@n
þ @eFw

@f

 !l�1

; ð9:3:4Þ

that can be solved through a tridiagonal matrix algorithm (TDMA, Thomas 1949)
for the pressure Fourier components pk

k2pk þ @2pk
@f2

¼ Rk; ð9:3:5Þ

[Rk is a Fourier component for the right-hand side in (9.3.4)]. Approximation of a
vertical derivative of pk considers that the vertical profile of Fourier components for
pressure can be approximated through the following function:

pkðfÞ ¼ PkðfÞ exp �2 kj jfð Þ; ð9:3:6Þ

where coefficients pkðfÞ are a slowly changing function of f. To provide the con-
tinuity equation to be valid up to the surface f ¼ 0, the boundary conditions for
pressure are derived on the basis of the boundary conditions for a ‘vertical’ com-
ponent of the surface covariant velocity ew0:

ew0 ¼ �u0zn þw0xn f ¼ 0ewH ¼ 0 f ¼ Ha
; ð9:3:7Þ

where u0 and w0 are Cartesian components of surface velocity. The calculated
pressure is used for correction of the velocity field as presented in Eq. (9.2.5).

This method generalizes a standard approach for solution of the Navier–Stokes
equations for a case of the curvilinear coordinates.
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9.4 The Coupling of Wave Models with the Model of WBL

The coupled model consists of the two main components: wave model (WM) and
WBL model. The models must be integrated simultaneously. However, there is a
small parameter in the coupled problem, i.e., a ratio of density for air and water
qa=qw 	 10�3. That is why the coupled modeling can be carried out as a separate
stepping in time for both models with exchange of the matching information at each
time step. The WBL model calculates the boundary conditions for the WM model:
the surface pressure p0 and normal turbulent stress providing exchange by
momentum and energy between air and water. The WM model calculates a shape of
interface gðnÞ, a rate of ‘vertical’ displacement gs required for calculation of the
metric coefficients for the WBL model, as well as the surface velocity components
u0 and w0 as a boundary condition for the Poisson equation for pressure and for
calculation of tangent stress st on the interface. Along with surface pressure p0,
tangent stress st is responsible for formation of a constant stress layer in the WBL.
st cannot be assimilated in a wave model due to potentiality.

Over the last years, a great attention has been given to the effect of breaking
(Babanin 2011). In our opinion, a role of breaking for the air boundary layer is
overestimated. A nonlinear dependence of pressure extremes on wave steepness
plays a more important role, while the influence of breaking on WBL is just a
consequence of that dependence. The breaking is much more important for water;
moreover, we were lucky to find that a scheme based on conformal mapping allows
a very close approaching to a breaking point. Finally, integration is always ter-
minated in such a case; however, due to high accuracy of the scheme, such mod-
eling of instability represents an example of a unique case in the fluid dynamics
when the numerical and physical instabilities follow each other in a very close
succession. We use two ways of interpretation of the breaking process. When the
breaking process is a subject of investigation per se, it is simulated directly up to the
point of instability. The last unrealistic phase of breaking can be easily detected by
means of energy conservation control. The final stage of breaking is evidently
non-potential. Such direct method is inapplicable when the wave model is used for
a long-term coupled simulation in investigation of the WBL structure, wave drag,
and energy exchange. For integral rms steepness less than 0.09, the breaking
instability never occurs. For rms steepness of the order of 0.15, the breaking
instability occurs immediately—within one peak wave period.

In long-term coupled simulations, the termination is certainly not desirable. This
is why an algorithm of the breaking parameterization based on smoothing of the
interface was developed. The algorithm (i.e., genetically similar to parameterization
of free convection in the atmospheric models) designed to prevent the breaking
instability by a highly selective high-frequency smoothing of the interface profile.
Plenty of schemes to parameterize that phenomenon were tested, the best of them
being based on a simple algorithm (8.3.12)–(8.3.14)

Parameterization of rotational breaking in a potential model allows us to effec-
tively prevent development of real breaking. This scheme does not influence the
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solution if the breaking does not develop. We do not consider this algorithm as a
final solution of the problem, as it cannot prevent collapse in the cases when the
initial steepness or energy is very high. However, for normal steepness of sea waves
and for the cases when the growth of local energy occurs relatively slowly, it works
well.

9.5 The Structure of Surface Pressure Above Solid Waves

The model formulated above was designed for simulation of the periodic regime.
Strictly speaking, periodicity is never observed in natural conditions, because the
characteristics of wave fields change in time and space under the action of input,
dissipation, nonlinear interactions, and due to other causes. A development of
waves in sea occurs over large distance of the order of

xe ¼ b�1Lp
U2

2pLpg

� �1=2

ð9:5:1Þ

Here, xe is a distance of saturation, b / 10�4 is a typical value of the wave
growth parameter, xp and Lp are frequency and wave length in peak of spectrum,
and U is wind velocity. It follows from (9.5.1) that for typical values of Lp, a
quasi-equilibrium regime can be reached over hundreds or thousands of wave
lengths. Naturally, a small part of this distance can be considered as quasiperiodic.
For longer periods and greater space, we can use a traditional approximate
assumption connecting distance xf (fetch) and time tf

xf ¼ tf U ð9:5:2Þ

This assumption was used for simulating a horizontally inhomogeneous flow
with the numerical model which is based on periodicity.

The experimental data on distribution of surface pressure above solid (wooden)
waves were kindly provided by M. Donelan. The length of waves was equal to
8 cm; the number of waves was 11; the steepness of waves varied from 0.07 to
0.25, while the wind speed was in the range of 1–12 m/s. The surface pressure was
recorded through the holes in the wavy plate. The experiment, which we simulate at
present, was in fact devoted to the initial development of a boundary layer above
the solid wavy surface. In this case, the structure of the boundary layer depends on
distance from the initial points or on time—in the periodic mode.

sfin ¼ n
2pL
U

; ð9:5:3Þ

where n is the number of waves.
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It is remarkable that the structure of the boundary layer changed very quickly
just above the first wave, and the solutions reached by the end of the integration
period Tfin were not too sensitive to the values of the initial boundary layer height
Hi if it was taken not too small. At values Hi ¼ 0 (which means an absence of
internal boundary layer in the initial conditions), a deep minimum of pressure was
formed just behind the wave peak. This feature was not observed in a physical
experiment. It means that the initial height of the boundary layer should be finite.
Finally, we choose 0.5 cm. Because the surface stress (9.2.15) and production of
the turbulent energy (9.2.16) were calculated in the same way as for the turbulent
flow, the initial growth of internal boundary layer was very fast.

The major uncertainty in reproduction of this experiment was horizontal inho-
mogeneity. The height of inner hi boundary layer was developing according to the
law hi 	 v� (with the proportionality coefficient of the order of 1); hence, the value
of hi reached just several centimeters by 11th wave. During this time, the profile of
surface pressure is changing. The simulation of flow was done with the model
described in Sect. 9.2. Since the size of waves and the height of boundary layer
were small, the parameterization of the turbulence and boundary condition on the
surface were modified by taking into account the structure of flow in the viscous
sublayer (Monin and Yaglom 1971). These lengthy descriptions are omitted. The
calculations show that for complete adjustment of surface pressure to the airflow,
the number of waves should be at least ten times as large. This is why we can
expect just a qualitative agreement between the measured pexp(x) and calculated
with model surface pressure pmod(x).

The comparison of pmod and pexp is given in Fig. 9.1 for different values of wave
steepness and wind speed. As shown, a clear qualitative agreement between the
simulations and measurements is obvious. Note that such agreement is observed in
a broad range of steepness and wind velocity values. A comparison with the
experimental data for the range of surface pressure variations characterized by

DP ¼ maxðPsÞ �minðPsÞ ð9:5:4Þ

(where Ps is surface pressure) is given for 7th and 8th waves (Fig. 9.2). The value
of DP for different experiments varies within the range of 3 decimal orders. As
shown, the agreement between the experimental and calculated data is reasonable.

The structure of flow above wave essentially depends on shape of wave. The
energy of the wave-produced component of velocity above Stokes wave is larger
than that above the harmonic wave of the same amplitude. The trough of Stokes
wave is smoother than that of harmonic wave. This is why the positive anomalies of
pressure for Stokes wave are much weaker than those above harmonic wave as in
Fig. 9.3.

On the contrary, above sharp crests of Stokes wave, the deep negative anomalies
are well developed. What is even more important that the minimum of pressure
above Stokes wave is more shifted to a downwind slope, which provides higher
correlation of pressure with slope, i.e., larger values of momentum and energy
fluxes. To illustrate this dependence, 24 versions of runs were made for six values
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Fig. 9.1 Comparison of pressure on surface if solid waves: thin curve corresponds the shape of
surface, thick curve is pressure calculated with model, and stars correspond to measurements. The
panels 11–14 correspond to steepness ak ¼ 0:25 for different wind velocity U: (11)—U � 1:2;
(12)—U ¼ 5; (13)—U � 8; and (14)—U � 12 m s−1; the panels 21–24 correspond to steepness
ak ¼ 0:14; the panels 31–34 correspond to steepness ak ¼ 0:07. The wind velocities for panels
21–24 and 31–34 are the same as for panel 11–14. The wind directed from right to left (Chalikov
and Rainchik 2014 © 2010 Springer-Verlag Berlin Heidelberg. With permission of Springer)
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Fig. 9.2 Comparison of experimental dPexp and calculated dPmod values of the surface pressure
on solid waves (Chalikov and Rainchik 2014 © 2010 Springer-Verlag Berlin Heidelberg. With
permission of Springer)

Fig. 9.3 The distribution of pressure above harmonic wave (a) and Stokes wave (b) (Chalikov
and Rainchik 2014 © 2010 Springer-Verlag Berlin Heidelberg. With permission of Springer)
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of steepness in the range of 0.10–0.35 for different friction velocities v�ðLgÞ�1=2.
The averaged over period momentum flux as a function of steepness and friction
velocities for harmonic (panel a) and Stokes (panel b) waves is shown in Fig. 9.4.
As shown, the flux energy to Stokes wave exceeds that for the harmonic wave of
the same amplitudes 1.5 times.

9.6 Description of the Numerical Experiments
with the Coupled Model

In this study, the method of approximation of initial conditions by superposition of
Stokes waves developed in (Chalikov 2005; see Sect. 5.3) was used. Briefly, the
method is based on use of the ‘upper conformal coordinates’ (see Eq. 5.3.2) where
f[ 0 nu; fuð Þ. It was shown that the superposition of linear waves assigned in this
coordinate system turns into the superposition of Stokes waves with high accuracy
after interpolation to the Cartesian coordinates. Note that full equations at any
reasonable initial conditions (after some accommodation period) reproduce this
effect too, since harmonic waves tend to turn into Stokes-like waves (see Sect. 6.3).
In this chapter, the initial generation of Stokes waves was used to accelerate
transition to the statistically homogeneous regime.

Fig. 9.4 Averaged over
period flux of momentum to
wave as function of steepness
ak and friction velocity v�
(labels on curves).
a Harmonic waves; b stokes
waves (Chalikov and
Rainchik 2014 © 2010
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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In this study, we have applied the above method for numerical simulation of
surface waves for investigation of evolution of a wave field assigned with the
one-dimensional version of JONSWAP spectrum Sf (7.2.1) for finite fetches as a
function of frequency x.

The best way of modeling of the WBL might be based on a very high spectral
resolution for reproduction of large and very small waves including capillary
waves. It can be estimated that for such calculations, the number of modes should
not be less than 10,000. A high horizontal resolution suggests a high vertical
resolution, so the number of levels in the WBL should be about 100, so that the
total number of knots would be of the order of 1,000,000. Such calculations are
possible to perform but for few cases. This is why a moderate resolution for
obtaining rich statistical data on the WBL structure was accepted (see below the
description of the numerical experiments). If wave spectrum is not resolved up to a
high wave number, the problem of parameterization of subgrid waves is encoun-
tered. By analogy with a solid rough surface, we assume that the local roughness
parameter zl is proportional to rms hr of ‘rough elements,’ i.e., all subgrid waves:

zl ¼ 0:03 a
Z1
M

k�3dk

0
@

1
A

1=2

¼ 0:0027k�1
r ð9:6:1Þ

Finally, the local drag coefficient in Eq. (9.2.15) can be calculated as follows:

Cl ¼ j2 ln
z1
zl

� ��2

; ð9:6:2Þ

where z1 is the height of the lowest level.

9.7 Evolution of Waves

Figure 9.5 clearly illustrates the essence of the problem being solved.
The above-mentioned figure represents an instantaneous image of interacting

flows for the case when an initial wave field is assigned as a superposition of 1000
linear (in the upper coordinate system) wave modes corresponding to the
JONSWAP spectrum for the non-dimensional peak frequency X ¼ U10=cp ¼ 2.
The number of knots over the ‘horizontal’ coordinate n equals 4000; over the
‘vertical coordinate’f, the number of levels equals 70; and a stretching parameter c
equals 1.07. In fact, the coupled model simulates a periodic process in a circular
wind–wave tunnel, though, with neither wave reflection from the walls nor the
centrifugal acceleration. The periodic domain includes 16 peak waves. It is
impossible to show the entire domain with length L ¼ 2p and height Ha ¼ 0:7;

9.6 Description of the Numerical Experiments with the Coupled Model 193

http://dx.doi.org/10.1007/978-3-319-32916-1_7


therefore, Fig. 9.5 shows just a small fragment with the height equal to 0.1 and the
length equal to 1.2. The thick periodic curve corresponds to water elevation dis-
torted with dispersing waves. The contours in the air domain represent distribution
of pressure (solid lines correspond to positive anomalies, while the dashed ones—to
negative anomalies). A smooth curve in the middle of the picture shows the
averaged wind profile. The horizontal axis for this curve is x� 4:95. The wind and
waves are directed from left to right. The wind speed at the top edge of the picture
equals 0.5. The waves demonstrate a tendency for peak sharpening and trough
smoothing. The vectors correspond to the wave-produced velocity field obtained by
extraction of the averaged wind profile.

Figure 9.5 shows a wave-produced velocity field. The largest distortions of
pressure and velocity fields occur behind wave crests of big waves. In general, the
negative anomalies of pressure and high gradients of wave-produced velocities are
concentrated in narrow intervals with a high negative steepness of wave surface.
Such intervals appear more frequently than those with a high positive steepness;
e.g., a wave has a tendency for inclining forward, while a flux of energy depends
nonlinearly on the local steepness. The spectral presentation of such pressure
becomes less meaningful, since the high-wave number Fourier modes do not cor-
respond to real waves; they rather provide approximation of impulse-like negative
anomalies of pressure. Positive anomalies of pressure are distributed more or less
smoothly over the areas of positive steepness. On the whole, such pressure field
generates a positive flux of momentum from wind to wave.

The main advantage of the mathematical ‘wind–wave channel’ is the possibility
of generation of a full set of all kinematic and dynamic fields. It is easy to install
any ‘sensor’ for registration and calculations of any statistical and spectral char-
acteristics including high-order moments. The total kinetic and potential energy is
defined through the following relations:

Fig. 9.5 An example of 2-D flow structure above waves. The contours represent pressure
distribution (solid lines correspond to positive values and dashed lines to negative values); arrows
are vectors of wave-produced velocity. A small fragment of the reproduced field is drawn: the total
height of domain is about 0.7; length equals 2p (Chalikov and Rainchik 2010 © 2010
Springer-Verlag Berlin Heidelberg. With permission of Springer)
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Ep ¼ ð2pÞ�1
Z2p
0

z2xndn; Ek ¼ ð2pÞ�1
Z2p
0

uufdn; Et ¼ Ep þEk: ð9:7:1Þ

The rate of total energy exchange between air and waves can be calculated as
follows:

Ft ¼ pgs þ s00u
0
0xn; ð9:7:2Þ

where the first term describes the work of surface pressure, and the second term—
that of tangent stress. In general, a flux of energy is directed from wind to waves;
however, in some cases, when a wave spectrum includes a swell which phase
velocity is higher that the wind speed, the energy is directed from waves to wind
(e.g., waves accelerate wind). Such waves are always present in a wind–wave
spectrum, though the effect of the inverse flux of energy in a low-frequency spectral
range is insignificant.

An integral rate of dissipation of kinetic Dk and potential Dp energy is calculated
with the use of:

Dk ¼ gðgsÞd; Dp ¼ uðusÞd ; D ¼ Dk þDp; ð9:7:3Þ

where ðgsÞd and ðusÞd are the sum of dissipation terms. Equation (9.7.3) includes
‘dissipation’ (2.3.4)–(2.3.6), describing a flux of energy into subgrid wave numbers,
and a breaking dissipation described with the algorithm (8.3.14). Note that wave
profiles often do not contain any intervals affected by breaking; however, dissi-
pation due to breaking (when it does occur) is normally greater by orders comparing
to the ‘tail dissipation.’

The evolution of wave energy, input and dissipation of energy for initial con-
ditions assigned by JONSWAP spectrum at Xp ¼ 2, is shown in Fig. 9.6

The wave field in this run was initially represented by 100 wave modes with
kp ¼ 16 and M = 1000. The wave energy increases under the action of wind. In
panel a, the evolution of potential Ep (a thin curve), kinetic Ek (a dotted curve) and
total Et ¼ 0:5ðEp þEkÞ (a thick curve) energy (see Eq. 9.7.1) for the last 30 peak
wave periods is represented. The potential and kinetic energy averaged over the
period ð0; 2pÞ quickly fluctuates, but these fluctuations are not pronounced for the
sum Et. The energy input to waves (panel b, a solid curve) also fluctuates due to the
variable wave steepness that is represented in frame b by the highest absolute value
of steepness in every instantaneous wave profile. In most cases, the negative
steepness is stronger than the positive one, as the waves are asymmetric. That is
why the steepness in panel c is taken with an opposite sign. As shown, enhancing of
input and dissipation correlates with steepness. Such fluctuations cannot be
explained on the basis of the linear theory. Frame d shows the same evolution over
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the total interval of integration (about 370 periods of peak wave periods). In the
above frame, the curves for Ep, Ek, and Et merge into one thick line. The bottom
frame d shows evolution of the total input of energy (an upper quickly fluctuating
curve) and its dissipation (a bottom curve). A dashed straight line close to a zero
line corresponds to input of energy to waves through tangent stress that is much
smaller than the input provided by the pressure field. The input of energy is strongly
intermittent. Such intermittence occurs as the input depends not on the spectrum
(that fluctuates slowly in the energy-containing part), but on geometry of surface in
a physical space.

Fig. 9.6 a Evolution of potential Ep (thin curve), kinetic Ek (dotted curve), and total
Et ¼ 0:5 Ep þEk

� �
(thick curve) energies (Eq. 9.7.1) over the last 30 peak wave periods;

b evolution of input (upper curve, Eq. 9.7.2) and dissipation D (lower curve, Eq. 9.7.3) of
energy for the same period; c evolution of the highest steepness (with an opposite sign) in a wave
profile; d evolution of energy over the total interval of integration (about 370 periods of peak wave
periods). In this frame, the curves for Ep, Ek, and Et merge; e evolution of the total input (upper
curve) and dissipation (lower curve) for the same period (Chalikov and Rainchik 2010 © 2010
Springer-Verlag Berlin Heidelberg. With permission of Springer)
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9.8 Wave-Produced Momentum Flux (WPMF)

The main difference between the WBL and a boundary layer above flat surface is
the presence of a moving curvilinear interface between water and air. In linear
theories, such finite-amplitude fluctuations of the interface are actually ignored;
however, in mathematical simulations, such an approach is unacceptable.
Numerical modeling of a boundary layer and waves is impossible to carry out in the
Cartesian coordinate system, which is the main reason to introduce the
surface-following coordinates. The dynamic equations in curvilinear coordinates
are more complicated compared with those in a standard form. Anyway, in a 2-D
case, it is possible to introduce the conformal coordinates. The equations written in
those coordinates are not simple yet, however, they are much simpler comparing to
those in general curvilinear coordinates. Moreover, the equations written in such
coordinates can be easily interpreted. The main advantage of surface-following
coordinates (9.2.3) is that water and air domains are separated by a coordinate
surface f ¼ 0. The natural boundary condition above a flat surface is w ¼ 0 at
z ¼ 0. In conformal coordinates, the ‘vertical’ contravariant velocity acquires a role
of the vertical velocity W. Since a kinematic condition on the surface is W ¼ 0, it
means that an exchange of finite volumes through the interface is absent.

Let us average the equation for horizontal momentum (5) over a coordinate
f ¼ const

@ Juh i
@t

¼ @

@z
� uWh iþ pzfh iþ �znu0u0 þ xnu0w0� �þ u0w0� �� �
ðIÞ ðIIÞ ðIIIÞ ðIVÞ

ð9:8:1Þ

This is the equation of a horizontal momentum balance. Since fh i ¼ z and
@=@fh i ¼ @=@z, Eq. (9.8.1) can be considered as written in the Cartesian coordinate
system.

A rate of change of momentum depends on the vertical divergence of a vertical
momentum flux provided by: wave-produced velocities (I), pressure (II), fluctua-
tions of stresses (III), and an averaged turbulent flux (IV). Equation (9.8.1) is
similar to the standard equation of momentum balance above a flat surface:

@u
@s

¼ @ u0w0h i
@z

: ð9:8:2Þ

However, Eq. (9.8.1) takes into account additional mechanisms of a vertical
momentum transport. Note that contrary to (9.8.2) averaging in (9.8.1) is performed
along the curvilinear paths. Such type of averaging is suitable in the presence of a
curvilinear surface, as a surface kinematic condition W = 0 at f ¼ 0. Eq. (9.8.2)
makes no sense for the case with a curvilinear boundary, since Eq. (9.8.2) can be
obtained by averaging beyond the highest elevation in ensemble. Through the
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interface, the momentum is transferred by pressure field and tangent stresses. As the
wave model is potential, it cannot assimilate the tangent stress; therefore, waves
obtain energy mostly through a surface pressure field.

At present, very large number of 1-D models are known. All of them are invented
(not derived but just written ‘ad hoc’) in Cartesian coordinate system, so the main
specifics of WBL (splitting of momentum flux into separate branches) cannot be
represented (see, e.g., Belcher and Hunt 1993; Belcher et al. 1994; Kudryavtsev
et al. 1999; Makin and Kudryavtsev 1999). As a whole, the equation used turns out
to be too simple to be useful. It is surprisingly that these ‘equations’ are used then for
investigation of very complicated problems: influence of wave breaking, sea swell,
drops in air, and bubbles in sea. On our opinion, any attempts to derive the
one-dimensional equation for WBL in Cartesian coordinate system are fruitless.

For investigation of a vertical structure of the WBL, the results of the long run
described in the previous section were used. The instantaneous wave-produced
fluctuations of pressure have an irregular structure; however, being averaged over
time, they exhibit distinct regularities. The averaged vertical profiles of the spectral
component for pressure Pk are shown in the upper panel of Fig. 9.7.

As shown, pressure spectrum decays exponentially with height. After normal-
izing of each profile by a surface value and introducing of a non-dimensional
vertical coordinate kz, the profiles of Pk become more or less universal and can be
approximated through the following relation:

Fig. 9.7 Spectral structure of
pressure field. Upper panel
vertical profiles of Fourier
amplitudes for pressure Pk .
Bottom panel vertical profiles
of pressure Fourier
amplitudes, normalized their
surface value P0k as a
function of non-dimensional
height kz (Chalikov and
Rainchik 2010 © 2010
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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Pk ¼ P0 k expð�ApkzÞ; ð9:8:3Þ

where P0k is a surface value of Pk and Ap is a decrement falling within a
0:6\Ap\0:7 range. Hence, pressure fluctuations in a turbulent flow attenuate
slower, compared with those in potential waves. The spectrum of kinetic energy of
wave-produced velocity fluctuations demonstrates similar behavior (see Fig. 9.8)
with the decrement Ae varying in the range of 0:6\Ae\1:0.

An example of surface pressure spectrum is shown in Fig. 9.9 (curve 2) where a
spectrum of elevation (curve 1) and a spectrum of near-surface kinetic energy
(curve 3) are also represented.

The spectrum of near-surface kinetic energy attenuates slower with increase of
wave number than the wave spectrum. It is interesting to note that the maximum of
surface pressure spectrum is shifted from the maximum of wave spectrum to higher
wave numbers. It is located at the maximum of spectral steepness Sk (curve 4)
defined by the following expression:

Sk ¼ k
ffiffiffiffiffiffiffiffiffiffiffi
SkDk;

p
ð9:8:4Þ

where k is a wave number, Sk—values of wave spectrum, and Dk ¼ 1. Hence, the
anomalies of surface pressure depend rather on steepness than on wave amplitudes.

Fig. 9.8 Spectral structure of
a wave-produced velocity
field. Upper panel vertical
profiles of Fourier
components for kinetic energy
of the wave-produced velocity
field. Bottom panel the same
Fourier components
normalized by surface value
as a function of
non-dimensional height kz.
(Chalikov and Rainchik 2010
© 2010 Springer-Verlag
Berlin Heidelberg. With
permission of Springer)
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Different components of a vertical momentum flux (Eq. 9.8.1) normalized by an
outer stress s are given in Fig. 9.10 as a function of z=LpðLp ¼ 2p=KpÞ.

The aggregated gray lines are instantaneous profiles, while the solid lines are the
averaged profiles. As shown, all of the components of the WPMF are concentrated
in the vicinity of surface in a layer with the thickness of the order of 0:2Lp. The
averaged turbulent momentum flux Fa (term IV in Eq. 9.8.1) transfers momentum

Fig. 9.9 Typical spectra of: surface elevation—curve 1, surface pressure—curve 2, surface
kinetic energy—curve 3, spectral steepness—curve 4, Eq. (9.8.4) (Chalikov and Rainchik 2010 ©
2010 Springer-Verlag Berlin Heidelberg. With permission of Springer)

Fig. 9.10 Different components of vertical momentum flux as a function of z=Lp normalized by
the outer stress s. Aggregated gray lines are instantaneous profiles; solid lines are averaged
profiles: Fa—an averaged turbulent momentum flux (0th mode); Ff—momentum flux provided
by wave fluctuations of turbulent stresses; Fp—momentum flux provided by pressure field;
Fw—momentum flux provided by velocity field; F—the total momentum flux (Chalikov and
Rainchik 2010 © 2010 Springer-Verlag Berlin Heidelberg. With permission of Springer)
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to the averaged flow in water (drift currents). Fa reaches the minimum value 0:7s at
height z ¼ 0:01Lp and equals 0:9s on the surface. Hence, in this case, only 10 % of
the total stress is transferred to waves. A flux of momentum transferred by fluc-
tuating turbulent stresses Ff (term III in Eq. 9.8.1) is quite insignificant, which
means that correlation between a tangent surface stress and a tangent component of
an orbital velocity is weak. Pressure transfers the main part of the momentum to
waves Fp (term II in Eq. 9.8.1). In the case under consideration, this flux mono-
tonically increases approaching the surface where it reaches the value of 0:2s.
However, it should be emphasized that the surface value of Fp depends on spectral
resolution (see Sect. 9.10 below). With increase of cut frequency, this value grows
approaching the total stress s. The flux of momentum transferred by the velocity
field Fu (term II in Eq. 9.8.1) reaches the maximum at height z=Lp � 0:1, then
decreases approaching the surface, and it is strictly equal to zero on the surface due
to the surface kinematic condition.

Let us define the kth spectral component of a WPMF skw as the Fourier com-
ponent of the total momentum flux to waves, e.g., the sum of I, II, and III terms in
Eq. (9.8.1). The averaged profiles of spectral components of the WPMF calculated
over the entire run described above are shown as a function of z in Fig. 9.11.

As shown, the shapes of those profiles considerably depend on a wave number.
These data can be regularized by normalizing with a surface value of skw and by
introducing a non-dimensional wave height kz in the same way as it was done with
the data shown in Figs. 9.7 and 9.8. After such transformation, profiles of the skw
look like the profiles in the bottom panel of Fig. 9.7. However, such regularization
can be much more precise when introducing the following dependence:

Fig. 9.11 The upper panel
vertical profiles of the total
WPMF as a function of z;
lower panel the same profiles
but normalized by surface
values as a function of Gkz
(Eq. 9.8.5) (Chalikov and
Rainchik 2010 © 2010
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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skw ¼ skw0 expðGkzÞ; ð9:8:5Þ

where G is a weak function of ex ¼ X=Xp:

G ¼ 0:985þ 0:4ðexÞ0:81; ð9:8:6Þ

Note that ex is also equal to the ratio of dimensional frequencies x and xp.
Spectral components of the profiles of sw=sw0 as a function of Gkz are shown in

the lower panel in Fig. 9.11. As shown, Formula (9.8.5) provides satisfactory
parameterization of a vertical profile of the WPMF spectral components. Note that
the results discussed below do not change significantly, when function GðexÞ is
replaced by a constant.

9.9 Evaluation of b-Function

According to the linear theory, the Fourier components of surface pressure p0 are
connected with a surface elevation through the following expression:

pk þ ip�k ¼ bk þ ib�kð Þ hk þ ih�kð Þ; ð9:9:1Þ

where bk and b�k are the so-called real and imaginary parts of b-function (e.g.,
Fourier coefficients at COS and SIN respectively). It is traditional suggestion that
both coefficients of b are functions of non-dimensional frequency X ¼ xkU (where
U is a non-dimensional wind velocity). It would be reasonable to suggest that a
wind velocity value might be different for different frequencies; hence, the
non-dimensional frequency X could be defined in the following way:

X ¼ xkU kk=2ð Þ ¼ U kk=2ð Þ=ck ð9:9:2Þ

where xk ¼ kj j1=2 is a non-dimensional frequency, ck is a phase velocity of kth
mode and U is a non-dimensional wind velocity at height f ¼ kk/2, where kk ¼
2p/k is a length of kth mode.

One of the main goals of this paper was evaluation of function b in a wide range
of non-dimensional frequency X. For such purposes, forty-seven long-term (up to
several hundred peak wave periods) numerical runs with a different wind velocity
and spectral resolution were performed using the coupled wind–wave model (see
Table 9.1). The wind velocity was assigned through different values of wind stress
s ¼ v� v�j j at the upper level directed along and against the general direction of
waves. The main characteristics of the runs are indicated in Table 9.1. A stretching
coefficient for a vertical grid c was chosen equal to 1.07 (for large wind), while
some of the experiments were repeated with c ¼ 1:05 and even with c ¼ 1:01.
A peak of spectrum was usually placed at wave number kp ¼ 4; however, the runs
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Table 9.1 Parameters of runs

No. v� Xp Xmin Xmax Tp c kp
1 −0.50 −28.75 −48.97 −10.65 57.3 1.07 16

2 −0.40 −24.78 −43.64 −8.97 89.1 1.07 16

3 −0.30 −20.31 −37.04 −7.16 12.7 1.07 16

4 −0.30 −20.31 −37.04 −7.16 19.1 1.07 16

5 −0.20 −8.97 −28.75 −5.18 127.3 1.07 4

6 −0.15 −7.16 −23.72 −4.10 127.3 1.07 4

7 −0.10 −5.18 −17.84 −2.94 222.8 1.07 4

8 −0.10 −5.18 −17.84 −1.64 79.6 1.07 4

9 −0.05 −2.94 −10.65 −1.64 95.5 1.07 4

10 −0.0125 −0.91 −3.53 −0.50 95.5 1.07 4

11 −0.00625 −0.50 −1.98 −0.27 12.7 1.07 4

12 −0.00313 −0.27 −1.10 −0.15 87.5 1.07 4

13 0.00313 0.27 0.15 1.10 76.4 1.07 4

14 0.00625 0.50 0.27 1.98 103.5 1.07 4

15 0.0125 0.91 0.50 3.53 350.1 1.07 4

16 0.025 1.64 0.91 6.19 159.2 1.07 4

17 0.05 2.94 1.64 10.65 127.3 1.07 4

18 0.05 2.94 1.64 10.65 127.3 1.05 4

19 0.08 4.10 2.31 14.46 127.3 1.07 4

20 0.10 5.18 2.94 17.84 127.3 1.07 4

21 0.10 5.18 2.94 17.84 222.8 1.05 4

22 0.13 6.19 3.53 20.91 159.2 1.07 4

23 0.10 6.83 2.94 17.84 495.2 1.01 8

24 0.15 7.16 4.10 23.72 159.2 1.07 4

25 0.15 7.16 4.10 23.72 127.3 1.05 4

26 0.20 5.18 5.18 28.75 143.2 1.07 4

27 0.20 5.18 5.18 28.75 127.3 1.05 4

28 0.15 9.39 4.10 23.72 117.0 1.01 8

29 0.25 10.65 6.19 33.15 39.8 1.07 4

30 0.25 10.65 6.19 33.15 12.7 1.05 4

31 0.30 12.24 7.16 37.04 82.8 1.07 4

32 0.30 12.24 7.16 37.04 57.3 1.05 4

33 0.35 13.74 8.08 40.52 82.8 1.07 4

34 0.35 13.74 8.08 40.52 82.8 1.05 4

35 0.40 15.16 8.97 43.64 70.0 1.07 4

36 0.40 15.16 8.97 43.64 95.5 1.05 4

37 0.20 15.16 5.18 28.75 12.7 1.07 16

38 0.20 15.16 5.18 28.75 22.3 1.07 16

39 0.45 16.53 9.82 46.44 82.8 1.07 4

40 0.45 16.53 9.82 46.44 55.7 1.05 4
(continued)
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29 and 30 were carried out with kp ¼ 8, and the runs 36–44—with kp ¼ 16. The
total number of modes M was normally equal to 100, while some runs intended for
validation of the results were repeated with M = 200, M = 1000, and M = 2000.

It should be noted that though the algorithm of breaking parameterization
(38) and (39) was activated, most of the runs lapsed due to a breaking instability
that occurs following the approach of a downwind slope to vertical. To resume
another run in the automatic mode, a criterion for run termination was defined as the
first appearance of a non-single value of surface g in the Cartesian coordinates (see
Eq. 6.1.1). It is important that after the moment when the criterion (6.1.1) has been
reached, the solution never returns to stability: The volume of fluid crossing the
vertical xðiÞ quickly increases. Overturning always started at the crest of the steepest
wave. When a wave starts to overturn at the initial stage of the evolution, the
conservation of invariants remains good; however, later, a sharp increase of energy
occurs, and further integration becomes senseless. The numerical instability
exhibiting itself in breaking has a physical origin: Actually, a falling water volume
becomes rotational and splits into small patterns (i.e., a whitecapping phenomenon).

Strengthening of stability can be achieved by increase of Cb value and decrease
of s value in Eq. (8.3.14); however, in this case, sharp wave crests become
smoother, which weakens dynamic interaction between wind and waves. That is
why a relatively soft smoothing is chosen. Note that local breaking occurs for some
unpredictable reason, and duration of a run (Tp in Table 9.1, expressed in periods of
peak wave) is found to be dependent even on a set of initial phases for waves.

Each run performed for different Xp provided data required for the calculation of
bðXÞ within the interval Xmin;Xmax½ � (see Table 9.1). The intervals are shown in
Fig. 9.12 by straight lines. A vertical axis corresponds to Xp, and the lines are
stratified as rows in Table 9.1.

As shown, the data cover the interval �50\X\50. Shortening of lines
approaching X ¼ 0 does not mean that the intervals contain less data. Such effect is
caused by nonlinearity of dispersion relation k ¼ x2.

The total number of 1-D records of wave surface (each containing 400 points)
was equal to 27,802. After the Fourier transform of each of those records, the first
50 complex Fourier coefficients for p0 and g were used for calculations of

Table 9.1 (continued)

41 0.50 17.84 10.65 48.97 54.1 1.07 4

42 0.50 17.84 10.65 48.97 63.7 1.05 4

43 0.55 19.10 11.46 51.24 71.6 1.05 4

44 0.60 20.31 12.24 53.29 79.6 1.07 4

45 0.40 24.78 8.97 43.64 19.1 1.07 16

46 0.50 28.75 10.65 48.97 15.6 1.07 16

47 0.50 28.75 10.65 48.97 95.5 1.07 16

v�—friction velocity; Xp ¼ u kk/2ð Þ=cp; Xmin;Xmaxð Þ is a range of Xk covered by run, Tp—length
of run (expressed in peak wave periods); c—stretching coefficient for vertical grid; and kp—peak
wave number

204 9 Numerical Modeling of Wind–Wave Interaction

http://dx.doi.org/10.1007/978-3-319-32916-1_6
http://dx.doi.org/10.1007/978-3-319-32916-1_6
http://dx.doi.org/10.1007/978-3-319-32916-1_8


b-function. The total number of points falling within the interval �50\X\50 was
equal to 1,390,100. For estimation of b values, the above interval was separated
into 100 bins with the width of dX ¼ 0:1. The number of points falling within each
interval was roughly the same—around 1400.

The generation of a great volume of data was necessary, since the b-function
values have a considerable scatter. The one-point value of real bik and imaginary bi�k
parts of b-function can be calculated through the Fourier coefficients for p0 and g:

bik ¼ gik


 

�2

pikg
i
k þ pi�kg

i
�k

� �
; bik ¼ gik



 

�2
pi�kg

i
k þ pikg

i
�k

� �
; ð9:9:3Þ

while the averaged values of bk and b�k were calculated in each bin using rms
method:
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; ð9:9:5Þ

where Ni is the number of points falling in each ith bin. Dispersion of coefficients
for b-function is calculated as follows:

rk ¼ N�1
i

XNi

1

bik
� �2�b2k

 !1=2

; r�k ¼ N�1
i

XNi

1

bi�k

� �2�b2�k

 !1=2

ð9:9:6Þ

b (a vertical axis) as a function of X (horizontal axis) is drawn in Fig. 9.13 for
three intervals �50\X\50, �10\X\10 and �2\X\2. A thick line (white—

Fig. 9.12 Ranges of
non-dimensional frequencies
X covered by the numerical
experiments: the lower line
corresponds to the top line in
Table 9.1, while the topmost
line—to the last line in
Table 9.1 (Chalikov and
Rainchik 2010 © 2010
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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in the left frame) corresponds to bi; a dashed line corresponds to br. The
sign + indicates mean values, while gray vertical lines show dispersion.

As shown, the data on b have a very wide scatter, as if they were obtained from
the experimental data. It will be shown later that such a scatter has a deep physical
nature. However, the volume of data is so big that the shape of b-function, espe-
cially for the range of �20\X\20, can be determined with satisfactory accuracy.
The function b can be approximated through the following expression:

b�k ¼
b1 þ d1 X� X1ð Þ X\X1

b0 þ a0 X� X0ð Þþ a1 X� X0ð Þ2 X1 �X\X2

b2 þ d2 X� X2ð Þ X�X2

8><
>:

bk ¼
b3 þ d3 X� X4ð Þ X\X4

b4 þ a2 X� X3ð Þ2 X4 �X\X5

b3 � d3 X� X5ð Þ X�X5

8><
>:

ð9:9:7Þ

where the numerical parameters are as follows:

X0 ¼ 0:7;X1 ¼ �19:3;X2 ¼ 20:7;X3 ¼ 1:2;X4 ¼ �18:8;X5 ¼ 21:2;

a0 ¼ 0:02277; a1 ¼ 0:09476; a2 ¼ �0:3718; b0 ¼ �0:02; b1 ¼ 37:43; b2 ¼ 38:34;

b3 ¼ �141:0; b4 ¼ 0:07; d1 ¼ �3:768; d2 ¼ 3:813; d3 ¼ 14:80

ð9:9:8Þ

Fig. 9.13 The left frame b as a function of X. Thick lines (white in the left frame) correspond to bi
and dashed line br . The sign + indicates mean values in the bins, while gray lines are dispersion.
The two other frames show the twice zoomed b-function (Chalikov and Rainchik 2010 © 2010
Springer-Verlag Berlin Heidelberg. With permission of Springer)
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The function b is used for calculation of momentum F and energy E flux in the
spectral interval Dx:

FðxÞ ¼ gkb�kðXÞSðxÞDx; EðxÞ ¼ gxb�kðXÞSðxÞDx ð9:9:9Þ

Here k and x are a dimensional wave number and frequency, respectively, and S is
dimensional spectral density. The relations (9.9.9) were suggested in a
small-amplitude theory. Applicability of Eq. (9.9.1) for finite-amplitude waves has
never been discussed. Note that an equation for the spectral energy flux EðxÞ is
obtained from the equation for the spectral momentum flux FðxÞ using dispersion
relation x ¼ ffiffiffiffiffi

gk
p

. For low wave numbers, the dispersion relation is valid, while for
high-frequency waves, a connection between wave number and wave frequency is
actually absent (Chalikov 2005); hence, the flux of energy to high-frequency waves
should be the subject of special investigation.

For validation of function b, the data obtained in additional runs were used. The
runs were carried out for different values of the initial steepness St defined in the
following way:

St ¼
XM
1

k2 gkj j2
 !1=2

ð9:9:10Þ

Note that in general, St cannot serve as an indicator of steepness, since the integral
of k2S diverges at S	x�5. Here, we use a parameter St only for comparison of
different runs. For calculations, 396 runs with St changing within the range of
0.005–0.15 were used. The non-dimensional rms error of the pressure calculated
through b-function pb, as compared with the pressure calculated with the model,
was obtained. The error is normalized by dispersion of anomalies of the ‘true’ (e.g.,
p0) pressure:

e1 ¼ p0 � pbj j
p20
� �1=2 : ð9:9:11Þ

The dependence of e1 on St is shown in Fig. 9.14 by curve 1. The error is growing
until it reaches the value of St = 0.12; then it decreases, since the dispersion of
pressure grows faster than the error. It should be noted that approximation (9.9.7) is
not intended for calculation of the energy flux (or input flux) to the individual wave
modes up to high frequencies.

The dependence of the correlation coefficient rðp0; pbÞ on steepness St is shown
in Fig. 9.14 by curve 2. Both of the characteristics show that a good agreement
between the ‘true’ pressure and that restored with b-function exists only for small
and medium steepness. For medium steepness St = 0.1, the correlation is about 0.7,
which makes the method of flux calculation (9.9.9) still acceptable. For higher
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steepness, the connection between the ‘true’ and ‘restored’ pressure actually dis-
appears. There exist a lot of reasons why the method based on b-function cannot
provide good accuracy of calculations of surface pressure at higher steepness. The
main reason is a nonlinear dependence of the pressure anomalies on the steepness.
Dependence (9.9.1) suggests a linear connection between rms of the pressure and
steepness of wave surface (curve 4 in Fig. 9.14), while the dispersion of pressure
anomalies grows quickly (curve 3 in Fig. 9.14) at high steepness. This effect is
clearly seen from the point-to-point comparison of p0 and pb given in Fig. 9.15 for
different values of steepness.

As shown, for steepness St of the order of 0.01, an agreement between p0 and pb
can be considered as good. For steepness St = 0.05, small anomalies of pressure are
still reproduced well, while big anomalies are underestimated. With further increase
of steepness, disagreement between big values of p0 and pb becomes more sig-
nificant. Such effect can be easily explained. Big pressure anomalies are usually
concentrated in narrow zones in the vicinity of sharp peaks. Such distribution of
pressure does not have a clear spectral analogy; hence, the linear dependence (9.9.1)
becomes meaningless. As a result, steep and sharp waves provide the flux of
momentum and energy significantly exceeding the values that can be obtained on
the basis of the linear connection between elevation and pressure.

The dependence of the local flux of momentum phxj j on the local slope hxj j,
averaged over 396 wave records, is shown in Fig. 9.16.

Fig. 9.14 Comparison of
surface pressure p0, calculated
using the coupled model, with
surface pressure pb calculated
with the use of b-function
(Eq. 9.9.9). Curve 1
normalized difference
between p0 and pb
(Eq. 9.9.11); Curve 2
correlation coefficient for pb
and p0; Curve 3 dispersion of
p0; Curve 4 dispersion of pb
(Chalikov and Rainchik 2010
© 2010 Springer-Verlag
Berlin Heidelberg. With
permission of Springer)
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Fig. 9.15 The point-to-point comparison of surface pressure pb calculated on the basis of
b-function, with surface pressure p0 calculated with the use of the 2-D coupled model for different
integral steepness St (Chalikov and Rainchik 2010 © 2010 Springer-Verlag Berlin Heidelberg.
With permission of Springer)

Fig. 9.16 The local
momentum flux phxj j versus
local steepness hxj j. The
averaged over 398 wave
records. Curve 1 corresponds
to calculations with model;
2 to calculations with
b-function (Chalikov and
Rainchik 2010 © 2010
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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As shown, a simulated growth of flux of momentum occurs much faster with
increase of slope, as compared with growth of the flux of momentum calculated on
the basis of b-function. It means that the magnitude of wave drag depends on
frequency of steep waves. Such properties are well pronounced in the spectrum of
wave drag in Fig. 9.17.

As shown, for small and moderate steepness St ¼ 0:01� 0:05, the agreement
between spectra for p0hx and pbhx is good, while for high steepness St ¼ 0:13, the
spectrum for p0hx is higher than that for pbhx over the entire spectral interval.

Fig. 9.17 Curve 1 wave spectrum; curve 2 surface pressure spectrum calculated using the coupled
model; curve 3 surface pressure calculated with the use of b-function for different integral
steepness; curve 4 corresponds to k�3 dependence. Steepness is indicated in each frame (Chalikov
and Rainchik 2010 © 2010 Springer-Verlag Berlin Heidelberg. With permission of Springer)
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9.10 Conclusions

A coupled model based on full equations is used for simulation of evolution of a
multi-mode wave field under the action of wind. Such calculations cannot be car-
ried out without introduction of the new physics in the wave model. Firstly, the flux
of energy in a subgrid part of spectrum was parameterized by permanent reduction
of the potential and kinetic wave energy at high frequencies (Eqs. 2.3.4–2.3.6).
Without such smoothing, the calculations quickly terminate due to the nonlinear
instability. Secondly, it was necessary to prevent overturning of waves. This pro-
cess was parameterized by introduction of the ‘breaking’ algorithm representing a
highly selective local smoothing of the surface and surface potential in separate
intervals of physical space where approaching a high curvature was observed (Eqs.
8.3.12–8.3.14). The ideas of such smoothing algorithms are widely used in the
geophysical fluid dynamics. In particular, the breaking parameterization is very
similar to resolving of static instability in the numerical atmospheric models.

A closure problem for Reynolds equations is a subject of numerous speculations.
It is well known that the closed system of Keller–Friedmann equation (Keller and
Friedmann 1924) cannot be derived formally (see Monin and Yaglom 1971). That
is why lots of additional assumptions have been introduced ever since. An appli-
cability of the closed equations can be proved by comparison with the experimental
data only. A simple K–e scheme was used in the model. Opposite to the conclusions
of Belcher et al. (1994) made in the frame of the linear approach, we could hardly
find solid arguments in favor of use of a more complicated scheme. It would be
naive to expect that introducing more equations containing many poorly known
constants could lead to improvement of the results. Moreover, our previous expe-
rience proves that a complicated approach, as a rule, turns out to be worse than a
simple one. Normally, most authors prefer not to describe their ‘tricks’ introduced
to provide ‘vitality’ of the model (e.g., preventing appearance of the negative
energy). It was shown in the technical fluid dynamics (see, e.g., Breuer et al. 1996)
that the K–e scheme applied even for the flows with the complicated geometry is
neither better nor worse, as compared with the more complicated schemes. Since
the level of the kinetic energy of a wave-produced velocity is about the same as the
energy of turbulence, a boundary layer above waves can be considered as a weakly
distorted logarithmic boundary layer. That is why for small and medium wave
steepness even the assumption K 	 je1=2f could work well, though the K–e scheme
was introduced in hope to better simulate the flow separation.

The surface-following coordinates allow introducing explicit expressions for
different mechanisms of momentum (and energy) fluxes produced by the averaged
and fluctuating turbulence, as well as by velocity and pressure fields (Fig. 9.10).
The sum of the above fluxes is the so-called WPMF that plays an important role in
construction of a simplified 1-D model of the WBL (Fig. 9.11).

The vertical profiles of Fourier components for the WPMF normalized by its
surface value can be represented as a function of non-dimensional height kz. This
function is used in construction of the 1-D WBL model. If the number of wave
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modes taken into account is great enough, the WPMF on the surface approaches the
value of the total surface stress (which, due to the steadiness, is equal to the outer
surface stress). However, the ultimate proportion of form and tangent stresses is
meaningless, because the WPMF is a function of height and vertical resolution.
When the number of wave modes is not large, the influence of form drag due to
subgrid waves should be taken into account using an appropriate value of a local
drag coefficient. Hence, when waves are described explicitly, the drag coefficient
should be considered as a spectral concept.

The instantaneous boundary layer fields are highly chaotic; however, after
appropriate averaging, they reveal some simple regularities. Vertical distribution of
the Fourier modes for pressure, kinetic energy, and other variables are clearly
stratified over wave numbers.

The obtained data allowed us to evaluate the so-called b-function, i.e., a complex
coefficient in linear connection between the Fourier amplitudes for the elevation and
surface pressure. The data on b-function exhibit wide scatter, but since the volume
of data is huge (about 1,400,000 points), the shape of b-function was defined with
satisfactory accuracy up to high non-dimensional frequencies (Eq. 9.9.7). The main
reason for wide scatter is not the accuracy of modeling, and it rather results from the
nonlinearity of flow: Interaction of wind and waves generates a much broader
pressure spectrum, and then it can be predicted using the linear wave generation
theory (Figs. 9.14, 9.15, and 9.16).

This chapter represents the results obtained with a 2-D coupled model. To obtain
the results that would be more comprehensive, it is necessary to carry out another,
more detailed investigation using a higher resolution and, probably, improved
physics.
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Chapter 10
One-Dimensional Modeling of the WBL

Abstract The b function and the universal shape of the WPMF profile obtained in
coupled simulations allow a formulation of the one-dimensional theory of the WBL
and the carrying out of a detailed study of the WBL structure including the
dependence of the drag coefficient on the wind speed. It is shown that a wide scatter
of the experimental data on the drag coefficient can be explained, taking into
account the age of waves. It is suggested that a reduction of the drag coefficient at
high wind speeds can be qualitatively explained by the high-frequency wave
suppression. A direct wave model based on the one-dimensional nonlinear equa-
tions for potential waves is used for simulation of wave field development under the
action of energy input, dissipation, and nonlinear wave–wave interaction. The
equations are written in conformal surface-fitted non-stationary coordinate system.
New schemes for calculating the input and dissipation of wave energy are imple-
mented. The wind input is calculated on the basis of the parameterization developed
through the coupled modeling of waves and turbulent boundary layer. The wave
dissipation algorithm, introduced to prevent wave breaking instability, is based on
highly selective smoothing of the wave surface and surface potential. The inte-
gration is performed in Fourier domain with the number of modes M = 2048, broad
enough to reproduce the energy downshifting. As the initial conditions, the wave
field is assigned as train of Stokes waves with steepness ak = 0.15 at
non-dimensional wave number k = 512. Under the action of nonlinearity and
energy input, the spectrum starts to grow. This growth is followed by the down-
shifting. The total time of integration is equal to 7203 initial wave periods. During
this time, the energy increased by 1111 times. Peak of the spectrum gradually shifts
from wave number non-dimensional k = 512 down to k = 10. Significant wave
height increases 33 times, while the peak period increases 51 times. Rates of the
peak downshift and wave energy evolution are in good agreement with the
JONSWAP formulation.
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10.1 The One-Dimensional Model of WBL

The 2-D coupled modeling is a complicated problem requiring significant computer
resources. In this connection, it would make sense to develop a 1-D model that
could describe the main features of the WBL, suitable for different practical pur-
poses. Such models have been developed in Chalikov and Belevich (1992) and
Chalikov (1995). The new data obtained with the 2-D coupled model allow for-
mulating this problem more precisely.

All variables in this section are assumed as dimensional. Neglecting the corre-
lations of J, nx with any dynamic characteristics and taking into account that
fh i ¼ z; the one-dimensional equations of the WBL can be obtained by averaging
Eqs. (9.2.5) and (9.2.16) along the coordinate f (a sign of averaging hi for all
variables is omitted):

@u
@t

¼ @

@z
K
@u
@z

þ sw

� �
; ð10:1:1Þ

@e
@t

¼ @

@z
Ke

@e
@z

þP� e; ð10:1:2Þ

@e
@t

¼ @

@z
Ke

@e
@z

þ e
e
ðc2P� c4eÞ; ð10:1:3Þ

where K ¼ cke=e is coefficient of turbulent viscosity, and P is the rate of production
of turbulent energy,

P ¼ @u
@z

K
@u
@z

þ sw

� �
; ð10:1:4Þ

sw is the flux of momentum produced by the wave-produced fluctuations of
velocity, stresses, and pressure [terms I, II, and III in Eq. (9.8.1)]. According to Eq.
(9.8.5), sw can be calculated by integration of the spectral WPMF constituencies:

sw ¼
Zxr

0

skw expð�Gð�xÞkzÞdk; ð10:1:5Þ

where Gð�xÞ is defined by Eq. (9.8.6), and the Fourier component of the WPMF on
surface skw is defined through the following expression:

skw ¼ kg b�k
eXk

� �
SðkÞ; ð10:1:6Þ

where b�k was defined in (9.9.7); eXk ¼ xuðkk=2Þ cos h=g is an apparent frequency;
SðkÞ ¼ 0:5ðh2k þ h2�kÞ is a wave number spectrum.
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The stationary numerical solution for Eqs. (10.1.1)–(10.1.3) was obtained using
the second-order scheme at stretched grid and an explicit time scheme. The whole
scheme requires a very small time step Dt� 10�3 s estimated through the following
relation:

Dt ¼ 0:25min
ðDzÞ2
K

 !
; ð10:1:7Þ

For the stationary solution, condition sz ¼ K@u=@zþ sw ¼ s must be satisfied
over the entire WBL. That is why the criterion for reaching the stationary solution
was chosen in the following form:

maxðszÞ �minðszÞð Þ=s\0:01 ð10:1:8Þ

Since a single run takes little of the computer time, a more efficient scheme was
not used. However, for a regular use of the 1-D model (e.g., in the frame of a wave
forecasting model), a better scheme should be semi-implicit, i.e., based on the
TDMA algorithm (Thomas 1949) and iterations.

The boundary conditions for 1-D equations are similar to those for the 2-D
equations (Eqs. 10.1.1–10.1.3). At the upper boundary z ¼ Ha ¼ 10Hs (Hs is a
significant wave height), the tangent stress is assigned in the following way:

K
@u
@z

����
z¼Ha

¼ s ð10:1:9Þ

The rate of production PH at the upper boundary of domain z ¼ Ha is calculated
through the formula:

PH ¼ v3�
jHa

ð10:1:10Þ

(vs ¼ s1=2 is friction velocity at z ¼ Ha), while the energy of turbulence e and the
rate of dissipation e assume the following values:

eH ¼ c1v
2
�; eH ¼ v3�

jHa
: ð10:1:11Þ

Vertical diffusion of the turbulent energy at Ke
@e
@f at z ¼ 0 and that at the upper

boundary of domain z ¼ Ha are both equal to zero. The vertical diffusion of the
dissipation rate at z ¼ 0 and that at z ¼ Ha are accordingly equal to:

Ke
@e
@f

ðf ¼ 0Þ ¼ �v4s0z
�1
1 c�1

3 ; Ke
@e
@f

ðf ¼ HaÞ ¼ �v4�H
�1
a c�1

3 ; ð10:1:12Þ
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where vs0 ¼ s1=20 is the local tangent friction velocity defined by the local turbulent
tangent stress at the interface s0. The constants j; c1; c3 as well as the relationship
between K;Ke;Ke are given in Sect. 9.2.

The 1-D WBL model is much simpler than the coupled model. This is why wave
spectrum can be extended up to high wave numbers. The highest wave number xr

is limited by upper boundaries of the non-dimensional frequency X ¼ �50 in
approximation (9.9.7). It was assumed that on the horizontal scales of the order of
the limit resolution g=x2

r , the sea surface is a smooth surface, and the local
roughness parameter z0l can be taken in the form:

z0l ¼ 0:1v=v0z; v0z ¼ s1=20 ; ð10:1:13Þ

where v ¼ 0:15� 10�4 m2=s is the molecular kinematic viscosity, v0z is the local
friction velocity, and s0 is the local tangent stress defined by Eq. (9.2.15) with the
drag coefficient:

C1 ¼ k= logðzv=zolÞð Þ2; ð10:1:14Þ

where zv ¼ 60v=v0z is thickness of a viscous sublayer (Monin and Yaglom 1971).
The thickness of the lowest level Dz1 was chosen to be equal to 2zv.

The initial 1-D wave spectrum was assigned in the form (7.2.1), and the 2-D
spectrum S2ðx; hÞ was calculated as:

S2ðx; hÞ ¼ SðexÞwðhÞ; ð10:1:15Þ

where ex is ‘apparent’ frequency:

ex ¼ xuðk=2Þ cosðhÞ; ð10:1:16Þ

h is an angle between the wind direction and direction of a wave mode; uðkx=2Þ is
wind velocity defined at z ¼ kx=2, where kx ¼ 2pg=x2. The values of uðkx=2Þ
were calculated using a log-linear interpolation from uðzÞ profiles. For low-wave
number modes, kx=2 often exceeds Ha, while the value of uðkx=2Þ was calculated
using a log-linear extrapolation which was used for x\xp only. The function w
was taken in the form (Donelan 1980):

w ¼ 0:5sechðbÞ; b ¼ 2:16X1=3
p ; Xp\0:95

2:28X1=3
p ; Xp\0:95

(
: ð10:1:17Þ

The spectrum S2ðx; hÞ can be fixed; however, in our calculations, it was updated
every 100 s with a new value of X10 (Eq. 9.9.2) to obtain the fully adjusted WBL
and wave field. The wave spectrum was approximated on a stretched over fre-
quency x grid Dxiþ 1 ¼ cDxi with a stretching coefficient c ¼ 1:03. The first
frequency step Dx1 was equal to 0:1xp (xp is dimensional peak frequency). The
angle resolution Dh equals 4�.
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10.2 Vertical Structure of WBL

The specific feature of the WBL is that a new mechanism of momentum transfer
develops close to the surface (see Figs. 9.7 and 9.11). The main advantage of the
1-D approach is that wave drag can be considered in a wider range including high
frequencies. Opposite to the purely turbulent stress, the WPMF emerges due to
direct influence of waves, e.g., due to the curvilinearity of the underlying surface.
Since the total momentum flux must be constant over height for a steady wind, the
turbulent momentum flux decreases when approaching the surface. The WPMF
modifies interconnection of the wind profile and stress. This is why the structure of
the WBL becomes different from that of the boundary layer above flat surface. For
investigation of the WBL structure on the basis of the 1-D model, a series of
calculations was carried out for Xp ¼ ð0:855; 1:0; 1:25; 1:5; 2:0; 3:0; 5:0Þ and for
the initial value of u10 varying for each Xp within the interval 8–40 m/s. The initial
conditions for the WBL were assigned similar to those for the logarithmic boundary
layer above flat surface. Due to the appearance of wave drag in the process of
reaching the equilibrium solution, wind velocity u10 decreases and final values of
u10 get lower as compared to those initially assigned.

Wind profiles above the waves of different age for two values of wind speed u10
(about 15 and 30 m/s) are shown in Fig. 10.1 as a function of dimension height
z (m). The thin lines indicate a downward extrapolation of logarithmic wind profile
from the levels where the WPMF equals zero, while the boundary layer preserves
its standard structure.

As shown, in the lowest part of the WBL, the deviation of wind profile from the
logarithmic profile can be as big as several meters for u10 � 14m=s and 10 m for

Fig. 10.1 Wind profiles. In each group, thick curves correspond to the values U10=cp = 0.855,
1.0, 1.25, 1.5, 2.0, 3.0. For the left group, 13:4\U10\15:4, while for right group
—29:5\U10\36:3. Thin lines correspond to logarithmic wind profiles extrapolated downward
from the outside part of the WBL. (Chalikov and Rainchik 2010 © 2010 Springer-Verlag Berlin
Heidelberg. With permission of Springer.)
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m/s u10 � 30m=s. It is important to note that such effect takes place in the vicinity
of wave surface at heights of the order of the wave height. Such features can be
investigated experimentally only using a surface-following measurement technique
similar to that designed by Donelan et al. (2006).

The most obscure problem of wind–wave interaction is dependence of stress on
wind velocity traditionally represented as dependence of the drag coefficient C10 on
u10. It is well known that the experimental data on C10 have large scatter just
indicating that C10 grows with wind velocity at least up to u10 = 25–30 m/s. The
dependence of C10 on wind velocity and wave age calculated with the 1-D model is
shown in Fig. 10.2. As shown, the drag coefficient depends on wave age even more
than on wind velocity. This conclusion is in qualitative agreement with the
observations (Shedman et al. 2003). It accounts for a wide scatter of experimental
data on the drag coefficient as a function of u10 only.

The data on C10 and u10 can be interpreted in terms of the total roughness
parameter z0 formed by all the drag mechanisms. The dependence of non-
dimensional roughness z0g=v2� is given in Fig. 10.3. The data do not prove a uni-
versal character of the Charnock scale Ch ¼ v2�=g. However, the real data in
ðu10;XpÞ space are distributed in a more narrow area than the area covered in 9.12.
For example, only few data can fall in the domain, u10 [ 20;Xp [ 2. Such events
occur, since the early stage of wave development at medium and strong wind does
not last long. Hence, the value of z0g=v2� varies within the range of 0.01–0.02,
which is in a good agreement with the values obtained by Smith and Banke (1975)
and Garrat (1977) and Wu (1980).

Let us consider the integral fluxes of momentum and energy to waves:

Fig. 10.2 The drag
coefficient C10 as a function
of U10 and U10=cp (curves
labeled). (Chalikov and
Rainchik 2010 © 2010
Springer-Verlag Berlin
Heidelberg. With permission
of Springer.)
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TðkÞ ¼ g
s

Zk
0

kb�kSðkÞdk ð10:2:1Þ

EðkÞ ¼ g
EM

Zk
0

xb�kSðkÞdk; EM ¼ EðMÞ ð10:2:2Þ

Functions (10.2.1) and (10.2.2) indicate which part of the total flux of
momentum s and energy EM is transferred to waves within the wave number range
0–k The integral spectra for T and E are shown in Fig. 10.4 (frames b and c) along
with the wave spectrum (panel a).

As shown, with increase of wave number, the energy flux comes more or less
quickly to the saturation level. It is quite different with the integral momentum flux,
as it keeps on growing with increase of frequency for all the values of Xp. It is
impossible to extend the spectrum to higher frequencies, as b-function has been
studied within the range of �50\X\50. The data in panel b of Fig. 10.4 prove
that the flux of momentum is accumulated mostly in a high-frequency (high wave
number) range of the spectrum. The better the high-wave number structure of
surface is described, the bigger part of the momentum flux can be reproduced
explicitly. The ratio of the calculated momentum flux to waves and the total
momentum flux is shown in Fig. 10.5, panel a.

As shown, the momentum sw coming to waves can reach 80 % of the total
momentum flux, while sw decreases with growth of Xp. It is interesting to note that
the ratio of energy flux to waves and energy E ¼ s10u10 transferred downward
through z = 10 m exhibits quite an opposite behavior; i.e., it increases with growth
of Xp. Such properties of the momentum and energy exchange can be explained by

Fig. 10.3 The non-dimensional roughness parameter z0g=v2� as a function of U10 and Xp.
(Chalikov and Rainchik 2014 © 2010 Springer-Verlag Berlin Heidelberg. With permission of
Springer; Chalikov and Rainchik 2010 © 2010 Springer-Verlag Berlin Heidelberg. With
permission of Springer.)
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the properties of spectrum: The high-frequency spectral density responsible for the
momentum flux is high for the young sea (an overshot effect), while low-frequency
waves that absorb the major part of the energy input are larger for the old sea.

There is a possibility that in smooth areas of water surface, some part of
momentum is transferred by molecular viscosity, while in the areas with the high
energy of short waves, the momentum is transferred to small waves.

Since the shape of spectrum and b-function are not known at high frequencies, it
is impossible to investigate the ultimate ratio of the surface WPMF and the total
surface stress. Fortunately enough, this problem has no practical importance. The
high-frequency waves quickly disappear (Chalikov 2005) and transfer the
momentum to currents, while the energy is given to currents and turbulence

Fig. 10.4 a Wave spectrum,
b integral flux of momentum
T(k) (Eq. 10.2.1), c integral
flux of energy E
(k) (Eq. 10.2.2) as functions
of x for different Xp: curve 1
— Xp = 0.855; 2—1.0; 3—
1.25; 4—2.0; 5—3.0; 6—5.0.
(Chalikov and Rainchik 2010
© 2010 Springer-Verlag
Berlin Heidelberg. With
permission of Springer.)
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(Chalikov and Belevich 1992). The most important thing is that the total friction at
wave surface depends significantly on the wave energy at high frequencies (see
Fig. 10.4, panel b).

10.3 Drag Coefficient at High Wind Speed

As demonstrated in Fig. 10.2, the current theory predicts a monotonic growth of
drag coefficient with the increase of wind speed. However, there exist some data
showing that for the wind speed exceeding 25–30 m/s, the drag coefficient reaches
the limit (Powell et al. 2003; Donelan et al. 2004), while for further increase of
wind speed, the above coefficient can even decrease. Earlier, such effect was also
noted in the analysis of the tropical cyclone development (Emanuel 1995).
Currently, some attempts are made to explain such a behavior of drug coefficient on
the basis of a ‘droplet theory’ (Kudryavtsev 2006). According to the theory, the
drops generated by splitting of the falling water volume intensify dissipation of
turbulence, which causes reduction of the drag coefficient. Such speculative scheme
does not look worse than the others, though unfortunately, the model of drop
generation (as well as the mechanism of interaction of drops with turbulence) uses
too many arbitrary assumptions.

According to our data, the effect of wave drag reduction at high wind speed can
be easily explained by the influence of high-frequency waves. It would be quite to

Fig. 10.5 a The ratio of
surface WPMF and total
stress s as a function of U10

and U10=cp, b ratio of energy
flux to waves and total energy
flux transferred downward at
z = 10 m. (Chalikov and
Rainchik 2010 © 2010
Springer-Verlag Berlin
Heidelberg. With permission
of Springer.)
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the point to suggest that the energy of short waves at high wind can be decreased
due to two factors: the presence of foam suppressing short waves and wind speed
deceleration in troughs due to flow separation. The last effect can be investigated
using the coupled wind–wave model directly. The model must take into account a
broad range of wave spectrum from peak waves to capillary waves. The high wind
velocity and the necessity to use high vertical resolution in the WBL make this
problem quite time-consuming; anyway, such calculations are quite possible to
carry out from the technical point of view.

To prove that reduction of drag coefficient is caused by suppression of small
waves, the calculations of drag coefficient with a modified JONSWAP spectrum
were performed. It was suggested somewhat arbitrarily that the waves with the
frequency above some frequency xf are absent. The specific properties of the above
modification are given in Fig. 10.6.

In the upper panel, the ratio of peak frequency and cut frequency xf is shown as
a function of wind speed. This ratio for u10 ¼ 30m=s equals 10, so the length of the
removed waves is 100 times shorter than the peak wave length. The ratio of energy
Sf at frequency xf and energy Sp in spectral peak is given in panel b. As shown, the
waves with the spectral density above 10�5Sp are removed. Roughly speaking, the
height of those waves is about 100 times smaller than the height of dominant wave.
Hence, the modifications of the spectrum are quite insignificant. The above mod-
ifications were introduced into a new series of calculations using 1-D model
(10.1.1)–(10.1.3). The dependence of drag coefficient (the small waves being
removed) on wind velocity u10 is shown in Fig. 10.7. As shown, the drag coefficient
significantly decreases at high wind speed. For developed sea ðXp � 1Þ, the drag
coefficient C10 has a maximum of C10 � 1:5� 10�3 at u10 ¼ 30m=s, and for
younger waves, the maximum is shifting to higher wind velocities.

Fig. 10.6 Parameters for
high-frequency wave
suppression: a ratio of peak
frequency xp and cutoff
frequency xf ; b ratio of
spectral density Sf xfð Þ and
spectral density in a wave
peak Sp (a logarithmic scale)
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It should be emphasized that the result presented in Fig. 10.7 is purely quali-
tative, since the exact shape spectrum is unknown at high wind. Figure 10.7 just
illustrates that a simple explanation of the drag coefficient reduction at high wind
speed can be given on the basis of a high-frequency wave spectrum modification.

10.4 Evolution of Wave Field

In the JONSWAP experiment, the development of waves under the action of wind
was studied for long fetches (Hasselmann et al. 1973). The main result of these
investigations was the formulation of the non-dimensional empirical fetch laws
(Battjes et al. 1987). These laws connect the local characteristics of waves, such as
wave energy, steepness, and peak frequency with the external parameters, such as
wave fetch and wind speed. Similar investigations were performed in the laboratory
wind–wave channels. Unlike the experiments at sea, the laboratory experiments
investigate growth of waves under the wind action for short fetches. It was found
that at the initial stage of wave development, the fetch laws observed in laboratory
are somewhat different from those obtained in the ocean. The causes of such
differences are not clear, and we can suggest, among other potential reasons, that
the boundary layer structure in the wind–wave channels might not be adjusted to
the local wave conditions, and the boundary layer above waves is not developed,
i.e., transient. In the sea, due to large horizontal distances, the boundary layer is
close to the stationary and horizontally homogeneous conditions; hence, the

Fig. 10.7 The drag
coefficient C10 as a function
of U10 and X ¼ U10=cp
(curves labeled), taking into
account suppression of
high-frequency modes.
(Chaliko and Rainchik 2010
© 2010 Springer-Verlag
Berlin Heidelberg. With
permission of Springer.)
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structure of wave boundary layer is fully formed. Consequently, it is quite possible
that the input of energy in a wind–wave channel differs from that in natural
conditions. The development of two-dimensional waves was simulated by
Willemsen (2001, 2002) on the basis of discrete Krasitskii (1994) equations for a
nonlinear wave evolution, by taking into account the simplified input and dissi-
pation terms. The results obtained did not demonstrate a realistic behavior of
the wave energy.

In the current work, the process of wave development is simulated with
one-dimensional fully nonlinear model. The one-dimensional version of the model
was chosen intentionally, in order to investigate an evolution of unidirectional
waves. Recently, it was shown that adiabatic waves (i.e., with no input and dissi-
pation effects) can undergo downshifting with the rate depending on the initial wave
steepness (Chalikov 2012). Note that a similar evolution of wave field was observed
in wave channel (Shemer et al. 2001). Existence of non-resonant interactions which
can be a cause of such effect was predicted on the basis of a narrowband
approximation of Zakharov’s (1968) equation (Janssen 2003) and then investigated
in some details in (Annenkov and Shrira 2006). In the current work, the algorithms
for parameterization of the energy input and wave breaking are added. When
starting this work, we did not expect that the development of unidirectional waves
would occur in accordance with the empirically observed fetch laws. The results of
modeling, however, prove that there is no significant difference between the
one-dimensional and two-dimensional wave evolution.

10.5 Wind Input

An exchange of energy and momentum between air and water occurs through
dynamic surface pressure p0. According to the linear theory (Miles 1957), the
Fourier components of surface pressure p0 are connected with those of the surface
elevation through the expression (9.9.1) where bk and b�k are real and imaginary
parts of the so-called b-function (i.e., Fourier coefficients at COS and SIN,
respectively; qa=qw is a ratio of the air and water densities, respectively). Hence, for
derivation of shape of beta-function, it is necessary to measure simultaneously the
wave surface elevation and non-static pressure on the surface. The experimental
measurement of surface pressure is a very difficult problem, since the measurements
should be done very close to a moving surface with a surface-following sensor.
Such measurements are very few, particularly, in the field. They were carried out
for the first time by a group of authors in laboratory and later in the field (Snyder
et al. 1981; Hsiao et al. 1983; Hasselmann and Bosenberg 1991; Donelan et al.
2005, 2006). The data obtained in this way allowed us to construct the real part of
beta-function which is used in some versions of the wave forecasting models
(Rogers et al. 2012). The second way of beta-function evaluation is based on the
results of numerical investigations of the statistical structure of the boundary layer
above waves on the basis of Reynolds equations with a good closure scheme. In
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general, this method works so well that many problems in the technical fluid
mechanics are often solved using numerical models, not experimentally. This
approach has been developed starting from Chalikov (1978, 1986) and followed
by Chalikov (1995), Chalikov and Makin (1991), and Chalikov and Belevich
(1992). The results were implemented in the third-generation wave forecast
WAVEWATCH model (Tolman and Chalikov 1994, 1996) and thoroughly vali-
dated against the experimental data in the course of developing WAVEWATCH-III
(Tolman 2008). This method was later improved on the basis of a more developed
coupled modeling of waves and boundary layer (Chalikov and Rainchik 2010),
while the beta-function used in WAVEWATCH-III was corrected and extended up
to high frequencies. A direct calculation of the energy input to waves requires both
the real and imaginary parts of beta-function. Note that in the range of relatively
low virtual frequencies, the new method is very close to the scheme implemented in
WAVEWATCH-III.

It is a traditional suggestion that both coefficients are a function of the virtual
non-dimensional frequency X ¼ xkU cos w ¼ U=ck cos w (where xk and U are the
non-dimensional radian frequency and wind speed, correspondingly; ck is phase
speed of the kth mode; w is the angle between the wind and wave mode directions).
Most of the schemes for calculations of b-function consider a relatively narrow
interval of non-dimensional frequencies X. In the current work, the range of fre-
quencies covers the interval ð0\Xp\10Þ, and occasionally, the values of X[ 10
can appear. This is why the function derived in Chalikov and Rainchik
(2010) through the coupled simulations of waves and the boundary layer is used
here. The wave model is based on potential equations for the flow with free surface,
extended with the algorithm for breaking dissipation (see below the description of
the breaking dissipation parameterization). The wave boundary layer (WBL) model
is based on the Reynolds equations closed with the K � e scheme; the solutions for
air and water are matched through the interface. The b-function obtained in CR was
used for evaluation of accuracy of the surface pressure p0 simulations. The shape of
b-function that connects surface elevation and surface pressure is studied up to high
non-dimensional wave frequencies both in positive and in negative (i.e., for the
wind adverse to waves) domains. The data on the b-function exhibit a wide scatter,
but since the volume of the data was large enough (47 long-term numerical runs
allowed generation of about 1,400,000 values), the shape of the b-function was
defined with a satisfactory accuracy up to very high non-dimensional frequencies
ð�50\X\50Þ. As a result, the knowledge of the b-function in such a broad range
allows us to calculate wave drag up to very high frequencies and to explicitly divide
the fluxes of energy and momentum transferred by pressure and tangent stress (see
examples of such calculations in Chalikov and Rainchik (2010), Ting et al. (2012).
This method is free of arbitrary assumptions on the drag coefficient Cd, and on the
contrary, such calculations allow us investigating the nature of wave drag.

The b-function (see Fig. 9.13) is approximated by expression (9.9.7), (9.9.8)
where the non-dimensional virtual frequency Xk is defined by Eq. (9.9.2).
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The main parameter of the scheme for the energy input calculation is wind speed
U10 at standard 10 m height and the inverse wave age U10=cp where cp is
dimensional phase speed at spectral peak. The wind speed is constant over the
integration period, while U10=cp changes due to downshifting of the wave energy
and changes of the form drag.

It was indicated above that the initial wave field is assigned as a train of
Stokes waves with the main mode placed on wave number k0 ¼ 500. An initial
value of X0 ¼ 10 was chosen; i.e., a ratio of non-dimensional wind speed at height

k0=2 ¼ p=500 and phase speed c10 ¼ k1=20 is equal to 10. Such a high ratio cor-
responds to the initial stages of wave development. The values of X for other wave
numbers are calculated by assuming that the wind profile is logarithmic:

Xk ¼ X0
c0
ck
ln

kk
2z0

ln
k0
2z00

� ��1

; ð10:5:1Þ

where z00 is the effective non-dimensional roughness for the initial wind profile,
while z0 is the actual roughness parameter that depends both on the energy in a
high-frequency part of spectrum and on wind profile. We call it ‘effective,’ since
very close to the surface, the wind profile is not logarithmic (Chalikov 1995;
Chalikov and Rainchik 2010). The value of this parameter depends on the wind
velocity and energy in a high-wave number interval of wave spectrum, as well as on
the length scale of the problem. All these effects can be accounted by coupling the
wave model with the one-dimensional WBL model (Ting et al. 2012). Here, a
simplified scheme for the roughness parameter is chosen. It is well known that the
roughness parameter (as well as the drag coefficient) decreases with decrease of an
inverse wave age. In our case, wind speed is fixed, and the dependence for the
non-dimensional roughness parameter is constructed on the basis of the results
obtained by Chalikov and Rainchik (2010):

z0 ¼ 15z00X; ð10:5:2Þ

where z00 ¼ 10�3 is the initial value of the roughness parameter. Equation (10.5.2)
approximates dependence of the effective roughness on the stage of wave devel-
opment. Note that the results are not sensitive to the variation of the roughness
parameter within reasonable limits.

10.6 Wave Dissipation

Algorithms for calculation of wave energy dissipation are developed in spectral
wave forecast modeling (see, e.g., review Babanin et al. 2011). One of such
schemes was implemented in the WAVEWATCH-III model (Tolman and Chalikov
1996). However, most of the results obtained for spectral modeling are not appli-
cable for direct modeling, since the spectral image of wave breaking in Fourier
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space is completely different from the same image in physical space. Since breaking
occurs in the relatively narrow space intervals separated by broad parts with no
breaking (i.e., they are local in physical space), the spectrum of the dissipation rate
based on Fourier transform of such signal is distributed mostly in a high-frequency
part of the spectrum, whereas in reality, the breaking reduces the height of an actual
breaking wave which can represent spectral scales in the vicinity of spectral peak.

This is why over the past several years, the method of parameterization of
dissipation was developed (Chalikov and Sheinin 2005). The parameterization
of dissipation in high-wave number domain is discussed in Sect. 2.3 (Eqs. 2.3.4–
2.3.6). The algorithm was validated in (Chalikov and Sheinin 1968, 2005). The
sensitivity of the results to reasonable variations of r in Eq. (2.3.6) is low. This sort
of dissipation which we call ‘tail dissipation’ effectively absorbs energy if wave
numbers are close to truncation number M, the longer waves being virtually intact.
This is why the total effect of ‘tail dissipation’ is very small. However, this algo-
rithm provides stability.

Another mechanism of dissipation exists due to the interaction of non-potential
small-scale motion and orbital velocities (see Chap. 11). Theoretically, potential
waves cannot generate vortex motion; however, the scale considerations prove that
Reynolds number can exceed critical values if the steepness of waves is not too
small. It means that in the presence of the initial non-potential disturbances, the
orbital velocities can generate vortex motion and turbulence. Babanin and Chalikov
(2012) investigated this problem numerically on the basis of full two-dimensional
(x–z) equations of potential motion with free surface in the cylindrical conformal
coordinates. The recommendations were developed on including the integral tur-
bulent wave dissipation in wave prediction models and the models of upper ocean
layers. However, the preliminary results are not currently included in the simula-
tions described in this paper, since the qualitative algorithm has not been developed
and checked yet. Anyway, the volume dissipation due to turbulence is relatively
weaker than the dissipation due to white capping called here the ‘breaking dissi-
pation.’

The breaking is a dissipative process leading to loss of the kinetic wave energy
and potential wave energy as well as to transition of the energy to currents and
turbulence; therefore, dissipation should be taken into account in different types of
the models designed for simulation of wave evolution. The most important models
of such type are wave forecasting models [e.g., the WAVEWATCH model (Tolman
2008)]. Evidently, no local criterion of breaking can be used in such models, as they
are formulated for wave spectrum, while any information on the real wave surface
is absent. In such models, the dissipation process is presented in a distorted form.
Since the breaking occurs in the relatively narrow space intervals separated by
broad parts with no breaking, the dissipation rate spectrum is artificially extended
over a high-frequency part of the wave spectrum. In reality, the breaking mostly
reduces the height of the largest wave represented in spectral peak. This contra-
diction occurs due to the fact that in the spectral model, a wave field is assumed to
be a superposition of the linear modes, while the breaking (and appearance of freak
waves) occurs due to transformation of a specific wave shape; i.e., as a rule, a wave
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before breaking becomes sharp-crested. Therefore, the breaking decreases height
and energy of large nonlinear waves and reduces their nonlinearity. It is important
to stress that the spectral treatment of dissipation reduces energy in the whole
domain, while in the real process of dissipation in physical space, the wave energy
is reduced locally.

The instability of interface leading to breaking is an important problem of the
fluid mechanics. This process is strongly nonlinear and generally includes
two-phase liquid; hence, the full theory of breaking is expected to be highly
complicated. The onset of breaking is similar to the onset of free convection in
liquid at unstable stratification, in this case, an appearance of unstable stratification
in some part of liquid curves as a criterion of the convection instability. It can result
from the different processes producing redistribution of density. Similarly, we can
define the criterion of instability as an appearance of the local non-single value of
surface when some volume of fluid becomes unsupported by pressure from the
surrounding fluid and starts to move independently under the action of inertia and
gravitational forces. The breaking can start under the influence of many factors
producing non-uniqueness of surface. Probably, the main factor is an appearance of
the horizontal velocity exceeding the velocity of shape propagation. It was proved
by the special numerical experiments with a very high time and space resolution
performed by Chalikov and Sheinin (2005). It is shown that the horizontal velocity
in wave peak before breaking always exceeds the phase velocity. However, the
detailed numerical investigation of the process of approaching the onset of breaking
(Chalikov and Babanin 2013) shows that a reliable criterion for predicting all the
breaking events probably does not exist: The location of breaking is unpredictable;
the breaking develops very fast. Hence, the only way to parameterize this process in
direct modeling is to prevent the overturning of surface.

The appearance of non-single-value surface in direct simulation is always fol-
lowed by the numerical instability and termination of run. Since it can happen at a
relatively low integral frequency, the long-term simulations, especially those with
the input of energy from wind, are impossible. This is why an algorithm of the
breaking parameterization based on the local elimination of breaking was devel-
oped. The algorithm is designed to prevent the breaking instability through the
highly selective high-wave number smoothing of interface. Many schemes to
parameterize such phenomenon were tested, the most efficient of them being based
on a simple diffusion-type algorithm described in Sect. 9.4.

Note that the intensity of breaking in the presence of the input energy does not
depend much on parameters Cb and s in Eq. (2.4.2). If these parameters are
reduced, the waves can become, on the average, a little more sharp-crested, while
the integral energy lost in the breaking process remains approximately the same.

The algorithm (8.3.12)–(8.3.14) is currently used in a long-term simulation of
wave field evolution. It effectively prevents development of the numerical insta-
bility due to the surface approaching a non-single-value shape, as well as properly
describes (at least qualitatively) the dissipation of wave energy. Such scheme does
not influence the solution in the absence of breaking. We do not consider this
algorithm as a final solution of the problem, since it cannot prevent collapse in cases
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of very high initial steepness or high energy. However, for normal steepness of sea
waves as well as for the cases of typical growth rate of the local energy, it
works well and always provides stability. After implementation of algorithm
(8.3.12)–(8.3.14) (with Cb ¼ 10�3 and s ¼ 300), termination of run never hap-
pened. The results of a long-term simulation of the wave field evolution were
demonstrated by Chalikov and Rainchik (2010) on the basis of the air/water cou-
pled model. It was shown that the wave breaking is a highly intermittent process
correlated with steepness. Of course, a rate of dissipation and an intermittence index
depend on the stage of wave development and on the magnitude of the energy
input. Note that the large wave height is not an obligatory condition of breaking,
since smaller waves can also break. It proves that the breaking is not directly
connected with the overall wave characteristics, but rather with a quickly changing
local condition in the vicinity of wave crest. The mechanism of breaking in the
spectral environment differs from that for the idealized situation when a wave field
is represented by few modes only. The breaking develops rapidly, on the average,
taking less time than the peak wave period. To some degree, the breaking is similar
to the development of freak waves which normally appear suddenly without any
prehistory. Both of the processes are connected with the evolution of wave shape
with the increase of horizontal asymmetry and concentration of energy in the
vicinity of wave peak.

The simulations did not show any signs of the modulational instability, such as
growth of the harmonic mode at the expense of others. The situation with wave
breaking and wave ‘freaking’ is just opposite to the scheme that follows from the
quasi-linear approach; i.e., an individual nonlinear wave preserves its total energy,
while the columnar energy is concentrated around the wave crest vertical, which is
why the wave becomes sharper and unstable.

An example of a local evolution of the surface affected by breaking is shown in
Fig. 10.8.

The solid line corresponds to wave surface, while the thin curve marks the change
of wave surface 100Dzb due to the breaking described by algorithm (8.3.12)–(8.3.14).
It happens during the interval equal to 0.05 non-dimensional time units, which cor-
responds to 0.04 of this specific mode period. As shown, the wave height in the
vicinity of crest decreases ðDzb\0Þ, since the water is transferred to the front slope.
A smaller volume of water falls also to the rear wave slope. The wave is moving from
left to right, its height decreasing because of redistribution of the mass mostly over the
forward slope and partially over the back slope. At x[ 3:17, the modification of
surface due to breaking is completely absent. A divergent form of the diffusion
operator in Eqs. (8.3.12)–(8.3.14) guaranties the exact volume conservation. An
evolution of the first derivative @zn@x (tangent of the surface slope) is shown in panel
b. As shown, the largest slope is observed in a forward side of the wave. While the
wave is breaking, its forward inclination is decreasing. In panel c, an evolution of the
second derivative s ¼ @2z=@x2 (curvature of the surface) is shown. This quantity is
selected as the most sensitive criterion of the breaking onset. As shown, the surface
curvature is very large (up to s ¼ 500). When the curvature falls below the threshold
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Fig. 10.8 The local evolution of surface in the course of breaking simulated by algorithm (30, 32)
over 0.05 non-dimensional time units, which corresponds to 0.04 period of this mode. The wave
moves from left to right in all the three panels: a solid curve represents the top of breaking wave,
and thin curves correspond to change of surface 100Dzb at consequent time steps with interval
Dt ¼ 0:01; b is evolution of the first derivative @zn@x (tangent of surface slope); c is an evolution
of the second derivative @2z=@x2 (curvature of the surface). (Chalikov and Babanin 2014 © 2014
Springer-Verlag Berlin Heidelberg. With permission of Springer.)
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s ¼ 300, the breaking terminates. According to the suggested algorithm, the breaking
always smoothes the narrow intervals with large positive curvature and does not
affect other areas. The numerical parameters in (8.3.14) were chosen to compromise
the closest approach to the point of breaking and numerical stability. The total dis-
sipation rate does not depend significantly on these parameters.

10.7 Simulation of One-Dimensional Wave Field
Evolution

The model (2.2.34)–(2.2.35) extended through the algorithms in Sects. 10.5 and
10.6 is used for simulation of the one-dimensional wave field evolution under the
action of nonlinear interactions, wind input, ‘tail,’ and breaking dissipation. The
number of modes M is equal to 2048 (4097 Fourier coefficients), while the number
of grid points N = 8196. The initial wave field was assigned as a train of Stokes
waves with the steepness ak ¼ 0:15. The modes of Stokes wave are placed at k =
500, 1000, 1500, 2000 (thus, 500 Stokes waves are assigned within the interval
(0–2p)). An algorithm for the Stokes wave calculations suggested by Chalikov and
Sheinin (1996, 1998) is described in Sect. 3.2. The simulation with the time step
Dt ¼ 0:001 is carried out for 2,000,000 steps, which corresponds to 20,000
non-dimensional time units or 7117 initial Stokes wave periods Ts � 2p=

ffiffiffiffiffi
kp

p
.

Under the action of wind, the wave energy starts to grow, while the spectral peak
shifts to lower wave numbers. The spectrum is also transforming due to Benjamin–
Feir instability. The spectra Sk obtained by averaging over 5 consecutive periods,
each being equal to 4000 non-dimensional time units, are shown in Fig. 10.9.

Fig. 10.9 Wave spectra Sk
obtained by averaging over 5
consequent periods, each
having the length of 4000
non-dimensional time units.
Thin line shows the
dependence Sk � k�3 or
Sx �x�5. (Chalikov and
Babanin 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer.)
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The first spectrum still contains peaks at k ¼ 500 and k ¼ 1500 of the Stokes
modes. The mode at k ¼ 1000, however, has already disappeared. The thin line
shows dependence Sk � k�3 which corresponds to the Sx �x�5 law. The tendency
to follow this dependence is getting clearer for the high-wave number part of the
spectrum (k > 500), but for the intermediate wave numbers, the slope is larger than
for Sx �x�5 law. Note that we did not intend to reproduce a high-wave number
part of spectrum with a 1-D model, because it is definitely formed by the 2-D
interactions. We do not state that a two-dimensional model has the same properties
as a three-dimensional model.

The initial wave number k was taken equal to 512 to leave a sufficient spectral
space for developing of waves. Let us, for example, suggest that the length of
Stokes wave ~Ls is equal to 0.5 m. Hence, the length of domain is 256 m, while the
length scale L ¼ 40:7m. The amplitude ~a of the initial waves is 0.012 m. The
dimensional wave number ~k is 12:6m�1, dimensional frequency ~x is 11:1 s�1, and
phase velocity ~c is 0:88ms�1. The initial inverse wave age Xp was taken 12; hence,
the wind velocity ~U equals to 0:88ms�1. A significant wave height at the initial
condition equals 0.038 m. By the end of development, the wave peak falls down to
k ¼ 14, which corresponds to ~k ¼ 0:34m�1 and to the wave length ~Ls ¼ 18:5m;
the frequency decreases down to 1:8 s�1, while the peak phase velocity grows up to
5:3ms�1. The significant wave height increases 65 times and approaches 0.975 m.

The waves simulated acquire quite distinct nonlinear features. The probability
distribution of surface elevation normalized by the significant wave height ~H ¼
H=Hs is shown in Fig. 10.10.

These data are obtained over the last 1/3 part of the entire period, when the wave
field is not so non-stationary as during the initial period. As shown, the probability
differs significantly from the Gaussian distribution; i.e., it is non-symmetric with

Fig. 10.10 1 Probability of
surface elevation; 2 a normal
distribution. (Chalikov and
Babanin 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer.)
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respect to ~H ¼ 0. The distribution shows that the probability of large waves is much
higher than the normal distribution predicts. The extreme waves have similar
properties (Chalikov 2009).

The statistical characteristics of wave field are shown in Fig. 10.11.
As shown in panel a, the wave field has large overall steepness St, skewness Sk,

and kurtosis Ku (Eq. 5.2.4). For superposition of linear waves, skewness and kur-
tosis are equal to zero. The positive skewness here indicates that the top of the
probability curve is sharp; the tail on the right-hand side is longer than that on the left
one, while the bulk of the values lie to the right of zero. It means that large values are
more frequent than the normal distribution prescribes. The most evident manifes-
tation of this property is the freak wave phenomenon. For linear waves, kurtosis Ku
is equal to 0. The actual value of kurtosis fluctuates and can reach a value as large as
8. Large values of kurtosis mean that the distribution is narrower than the Gaussian
one, and the extremes are large (in our case, the extremes are positive) while the

Fig. 10.11 Statistical characteristics of waves: a rms steepness; b skewness; c kurtosis
(Eqs. 10.7.1). (Chalikov and Babanin 2014 © 2014 Springer-Verlag Berlin Heidelberg. With
permission of Springer.)
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intervals of small elevation are smooth. The experimental data on skewness and
kurtosis vary in broad limits and quite often show the values close to 0.5 and 1.0,
correspondingly (Onorato et al. 2009). The developing and young waves are sharper
than the developed waves, and this is why the high-order moments for such waves
are larger. There is another effect that can be a cause of large values of the high-order
moments. Opposite to energy (the second-order moment), the values of skewness
and kurtosis depend significantly on the length of domain. At the initial stage, the
number of peak waves is large, while the ensemble is broad. While waves are
developing, the number of waves in domain decreases. By the end of the calculation,
the domain contains just fifteen peak waves. Even if one of them becomes high and
sharp, the values of kurtosis and skewness can become large.

An evolution of the integral characteristics of wave field is shown in Fig. 10.12
as a function of the non-dimensional fetch F defined as:

FðtÞ ¼ 1
k0

Z t

0

cpdt; ð10:7:1Þ

Fig. 10.12 Evolution of the integral characteristics as function of fetch F (Eq. 10.7.2): 1 rate of
energy input; 2 rate of ‘tail dissipation’; 3 rate of breaking dissipation; 4 evolution of the total
energy; 5 the sum of input and dissipation terms. (Chalikov and Babanin 2014 © 20104
Springer-Verlag Berlin Heidelberg. With permission of Springer)
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where cp is a phase speed at peak of spectrum, while k0 is an initial wavelength of
Stokes wave.

Curve 4 corresponds to the growing total energy of waves. Curve 5 shows
evolution of the wind-to-wave energy input. Curve 2 demonstrates a rate of ‘tail
dissipation’ described by algorithm (2.3.4)–(2.3.6), while curve 3 shows a rate of
‘breaking dissipation’ (Eqs. 8.3.12–8.3.14). As shown, the ‘tail dissipation’ is
steady and quite weak, while the ‘breaking dissipation’ is strong and intermittent.
The sum of all the terms for the input and dissipation is presented by curve 5. On
the average, the sum is positive (otherwise, the waves would not grow), but within
the brief intense breaking events, the total input can be negative.

An evolution of the integral characteristics as a function of fetch F (Eq. 10.7.1)
is shown in Fig 10.13. As shown, the values of all the components of the energy
input and energy sink increase, while the wave energy grows (curves 1). Spectral
distributions of different sources of the energy are seen most clearly in panel
d. Thick curve 1 corresponds to the wave spectrum normalized by its maximum.
Dashed curve 3 describes the energy input. As shown, it is positive and its shape is
similar to the spectrum shape. Dotted curve 2 shows the spectral distribution of a
nonlinear interaction rate. This term is very sensitive to the shape of spectrum,
which explains a complicated character of the nonlinear interaction spectrum.
However, at a low-frequency slope of wave spectrum, the nonlinear interactions are
positive, while at the opposite slope, they are negative. It means that the nonlinear
interactions in the energy-containing part of spectrum transfer energy to the longer
wave components and produce downshifting. It is interesting to note that the
breaking dissipation (curve 4) also works for downshifting; i.e., it is positive at a
low-wave number slope of spectrum and in peak of spectrum; it is negative at a
high-wave number slope. The same property can be observed in other panels of
Fig. 10.13.

Firstly, such property can be explained by an incorrect spectral interpretation of
a strongly nonlinear process. Since breaking occurs in the relatively narrow space
intervals (in the vicinity of wave crests) separated by broad paths with no breaking,
the spectrum of dissipation rate is extended toward its high-frequency end. In
reality, the breaking mostly reduces height of the largest nonlinear waves not fully
represented in wave spectrum.

Secondly, an existence of the spectral energy input due to the breaking does not
contradict to the physical constraints. The breaking can be considered as a sort of
irreversible nonlinear interaction. The diffusion-like algorithm (8.3.12–8.3.14) does
not only lower the local potential and kinetic energy but also redistributes the
energy in space; i.e., some parts in the vicinity of breaking obtain the energy, while
others lose it. In the spectral space, the energy is distributed between the higher and
lower wave numbers around the peak wave number. This concept has been pre-
viously formulated in the course of experimental and theoretical investigations. It
was clearly expressed by Tulin and Waseda (1999): ‘…recurrence was prevented
by the spreading of discretized energy to higher frequencies. Strong breaking was
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found to increase the transfer of energy from the higher to the lower sideband and to
render that transfer irreversible. The end state of the evolution following strong
breaking is an effective downshifting of the spectral energy.’ The process of
breaking simulated directly (Tulin and Waseda 1999) is described parametrically in
the current work (see also Gramstad and Stiassnie (2013) on the role of breaking in
nonlinear interactions and wave energy downshifting). Opposite to the usual non-
linear interactions, the breaking works at very small timescales, but both processes
can be treated as the nonlinear energy transfer.

Fig. 10.13 Spectra obtained by averaging over the last four consequent periods, length of each
being equal to t = 400: 1 wave spectrum normalized by its maximum value; 2 rate of nonlinear
interactions; 3 rate of energy; 4 rate of dissipation. (Chalikov and Babanin 2014 © 2014
Springer-Verlag Berlin Heidelberg. With permission of Springer.)
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According to the JONSWAP experimental data (Hasselmann et al. 1973; Battjes
et al. 1987), the non-dimensional wave energy E is a linear function of fetch F.

E ¼ cEUF; ð10:7:2Þ

where cE � 1:7� 10�7 is an empirical constant; U ¼ U2
10
gL is a single

non-dimensional parameter of the problem with the wind forcing. Dependence
(10.7.2) can be represented in the following form:

E ¼ E0

F0
F; ð10:7:3Þ

where F0 and E0 are the reference fetch and wave energy (accordingly) introduced
to eliminate uncertainty of the initial fetch, corresponding to the initial conditions
for the spectrum. The total energy is calculated through the integral:

E ¼ ð2pÞ�1
Z2p
0

ðz2xn � uufÞdn; ð10:7:4Þ

where the first term corresponds to the potential energy; the second one—to the
kinetic energy; x and z are the Cartesian coordinates of surface; n and f are the
conformal coordinates; and u is the velocity potential. The dependence of E on
F (Eq. 10.7.2) is shown in Fig. 10.13a (curve 1). Dependence (10.7.2) calculated
with the use of the reference values E0 ¼ 7� 10�1 and F0 ¼ 30 is represented by
curve 2. As shown, an agreement between the empirical relation (10.7.2) and the
dependence obtained in the course of the numerical simulation is very good.

According to the JONSWAP approximation, the dependence of the non-
dimensional peak wave number on the fetch can be represented in the following
form:

kp ¼ ckU
�1=3F�2=3; ð10:7:5Þ

where ck ¼ 222. Since the parameter U is not defined, dependence (10.7.4) can be
further represented as follows:

kp ¼ �cF�2=3; ð10:7:6Þ

where parameter �c can be defined by the rms method, its value being not essential.
Dependence kpðFÞ calculated with the model (curve 1) and dependence (10.7.5)
(curve 2) are shown in Fig. 10.14b.

Thus, we can come to the conclusion that the empirical laws E�F and
kp �F�2=3 are well reproduced with a one-dimensional model extended with the
theoretical input and dissipation terms. It should be emphasized that no ‘tuning’ of
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the model, i.e., variation of the coefficients in Eqs. (2.3.6) and (8.3.14), for
obtaining a better agreement with the empirical laws, was used.

10.8 Conclusions

Unlike turbulent friction, the WPMF is not an internal property of a turbulent
boundary layer, since it is created by external forcing, i.e., by waves. The presence
of the WPMF brings forward the specific features of the WBL. The wind profile in
the lowest part of the WBL deviates considerably from the logarithmic profile
(Fig. 10.1). The 1-D theory of the WBL allows investigating the dependence of a
drag coefficient C10 on wind velocity u10 (Fig. 10.2). It is proved that a wide scatter
of the experimental data on C10 can be explained by additional dependence on a

Fig. 10.14 Comparison of
the simulated evolution with
that given by JONSWAP
spectrum as the functions of
fetch F (Eq. 10.7.2):
a evolution of the total
energy; b evolution of the
weighted frequency.
(Chalikov and Babanin 2014
© 2014 Springer-Verlag
Berlin Heidelberg. With
permission of Springer.)
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wave spectrum shape. The same effect is clearly pronounced in the roughness
parameter normalized by the Charnock scale (Fig. 10.3).

As demonstrated in Fig. 10.2, the current theory predicts a monotonic growth of
the drag coefficient with the increase of wind speed. However, there exist some data
showing that for the wind speed exceeding 25–30 ms−1, the drag coefficient reaches
the upper limit (Powell et al. 2003; Donelan et al. 2004), while at further increase of
wind speed, the drag coefficient can even decrease. Earlier, such an effect was also
noted when analyzing the tropical cyclone development (Emanuel 1995). Currently,
some attempts are made to explain such behavior of drug coefficient on the basis of
the ‘droplet theory’ (Andreas 2004; Kudryavtsev 2006). According to the theory,
the drops generated as a result of splitting of the falling water volumes intensify
dissipation of turbulence, which causes reduction of drag coefficient. Such scheme
looks reasonable, although the model of drop generation (as well as the mechanism
of drop–turbulence interaction) uses too many arbitrary assumptions.

According to our data, an effect of wave drag reduction at high wind speeds can
be easily explained through the influence of high-frequency waves. It would be
appropriate to suggest that the energy of short waves at high winds decreases due to
two factors: the presence of foam that suppresses short waves and the flow decel-
eration in troughs due to flow separation. The latter can be investigated using the
coupled wind–wave model directly, though the model must take into account a
broad range of wave spectrum from peak waves to capillary waves. A high wind
speed and the necessity to use high vertical resolution in the WBL make this
problem quite time-consuming; anyway, such calculations are possible from the
technical point of view.

Note that the reduction of drag can also be caused by ‘blowing away’ sharp
crests: High winds can smooth the surface and remove the elements responsible for
stress. This effect was directly observed in wind–wave tunnel (Troitskaya—private
communication 2010).

To prove that the reduction of drag coefficient is caused by suppression of small
waves, additional calculations of drag coefficient were performed with use of a
modified JONSWAP spectrum. The somewhat arbitrary assumption suggests that
waves, whose frequency exceeds some value xf , are absent. In our calculations, the
longest removed wave is 100 times shorter than the peak wavelength. The spectral
density at x ¼ xf equals 10�5Sp (Sp is the spectral density in wave peak). The
amplitudes of such waves are about 100 times smaller than the amplitude of a
dominant wave. Hence, the modifications of spectrum are quite insignificant. The
above modifications were introduced in a new series of calculations with use of the
1-D model, Eqs. (10.1.1)–(10.1.3). The dependence of the drag coefficient on wind
speed u10 for such case is shown in Fig. 10.7. As shown, the drag coefficient
significantly decreases at high wind speed; for the developed sea (Xp � 1), the drag
coefficient C10 has the maximum of C10 � 1:5�10�3 at u10 � 30ms�1, while for
younger waves, the maximum is shifted to higher wind speeds.

It should be emphasized that the result presented in Fig. 10.7 is purely quali-
tative, since the exact shape of spectrum is unknown at high wind speeds.
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Figure 10.7 just illustrates a simple explanation of the drag coefficient reduction at
high wind speeds on the basis of high-frequency wave spectrum modification.

Our construction of the 1-D approach developed in this chapter allows repeating
the calculations of the coupled wave WBL dynamics on the basis of a wave model
and a one-dimensional WBL model. These calculations are very efficient, since the
1-D WBL model is much faster than the 2-D model based on Reynolds equations.

The problem solved above can be also formulated for the wave spectrum SðkÞ
rather than for the fundamental variables g and u. In this case, it is possible to use
parameterization for the wind input (9.9.7) and adopt any available spectral
parameterization of breaking dissipation, for example (Tolman and Chalikov 1996).
A traditional scheme for the nonlinear interactions based on Hasselmann’s integral,
in such case, is not required, since it is known that the non-reversible effect of the
nonlinear interaction for unidirectional waves is equal to zero. Thus, it is
straightforward to predict the way of spectral behavior that can be observed in the
course of integration. The initial spectrum will grow until the dissipation remains
less than the input energy, and upon reaching the balance, the stationary solution
can be obtained. Because of the absence of the nonlinear interaction, no down-
shifting can be expected.

The calculations discussed in this paper demonstrate a completely different
picture. It is shown that growth of the wave energy is accompanied by
downshifting.

The aim of this investigation is to find a reasonable compromise between the 2-D
(x/z) and 3-D (x, y, z) direct modeling of wind waves. The fundamental problem of
wave modeling is reproducing of the observed 2-D wave field evolution under the
action of wind, dissipation, and nonlinear interactions. Note that nonlinear inter-
actions do not need to be ‘included’ in any direct model since the nonlinearity is the
essential property of the fluid mechanics equations.

Real waves are always two-dimensional, and their development should be
investigated with the three-dimensional wave model based on full equations and
extended with the appropriate algorithms for the energy input and dissipation. Such
model has been recently completed (Chalikov et al. 2014). In the current paper, we
demonstrate that one-dimensional waves can develop under the strong influence of
1-D nonlinear interactions which, according to (Chalikov 2012), also work in
one-dimensional wave fields. It is shown that the growth of energy and its rate of
downshifting are in close agreement with the observational data obtained in the
JONSWAP experiment. It means that the model with the suggested physics can
describe the observed evolution of wave fields. The downshifting occurs due to
both the one-dimensional nonlinear interactions and the effects of breaking. The
integral of the breaking term over wave numbers is naturally negative; however, the
rate of redistribution of energy over spectrum is more intensive than the dissipation
and loss of energy due to such breaking. Note that spectral distribution of the
breaking input is similar to the spectrum of nonlinear interactions. The breaking
transfers energy from a high-wave number part of spectrum to low wave numbers.
It means that the breaking is a process of irreversible wave–wave interaction, when
some part of the energy is redistributed over the spectral space, while the remaining
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part is transferred to the energy of turbulence and currents, as well as to the work
against buoyancy forces and other mechanisms outside the wave system. Opposite
to Donelan et al. (2012), here we do not deny an existence of the wave–wave
interactions, which has been considered a major source term in the wave system
since the publication by Hasselmann (1962). We are sure that these interactions
play a significant role in the development of wave field. However, the
Hasselmann’s theory cannot be universal, since it is based on many simplifying
assumptions, such as follows: (1) Wave field is assumed to be the superposition of
weakly nonlinear modes with random phases and a linear dispersion relation,
slowly interacting at timescales of thousands of wave periods. The term ‘weakly’
was never clearly specified. In reality, the local inclination of wave surface can be
of the order of 1. The linear dispersion relation is valid only for a low-frequency
part of spectrum. (2) Only the forth-order interactions are considered, mostly
because the next orders present too many analytical difficulties. (3) The
Hasselmann’s theory only describes slow exact resonances and does not describe
fast quasi-resonant interactions which, in particular, lead to the 1-D Benjamin–Feir
instability and also produce redistribution of the spectral energy and, finally,—the
downshifting (Chalikov 2012). (4) The convergence of Hasselmann’s integral with
the increase of the spectral resolution was never proved and may not be the case.

All the points stated above do not mean that the wave–wave resonances do not
exist. The true and full set of nonlinear interactions is much more complicated as
they occur among all the nonlinear objects and are not limited to the resonant
quadruplets. In particular, the nonlinear interactions do occur among the unidi-
rectional modes, which is not presented in the Hasselmann’s equation; however,
this effect is predicted by Benjamin–Feir theory (see also Annenkov and Shrira,
2006, on the role of the latter in 2-D wave fields).

The current work proves that there is no substantial difference between the 1-D
and 3-D waves in the presence of input and dissipation. Such conclusion opens
wide prospects for investigation of many important processes, such as dissipation
(including breaking), energy input, and generation of extreme waves. Such pro-
spects are quite important, since the 3-D modeling requires about 1000 times more
extensive computing, and then, there is no well-tuned physics until now. Most of
the important local phenomena are mostly one-dimensional, so it would be rea-
sonable to investigate them with 1-D model, leaving 3-D modeling for the problems
whose nature is essentially three-dimensional, for example, the problem of angular
spreading of sea waves and its role in the processes of energy supply, wave
breaking, and generation of extreme waves. Such investigations should be based on
the well-established regularities obtained for unidirectional waves.
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Chapter 11
Numerical Investigation of Turbulence
Generation in Non-breaking Potential
Waves

Abstract Theoretically, potential waves cannot generate the vortex motion, but the
scale considerations (Babanin 2006) indicate that if the steepness of waves is not
too small, the Reynolds number can exceed the critical values. This means that in
presence of initial non-potential disturbances, the orbital velocities can generate the
vortex motion and turbulence. This problem has been investigated by means
of linear instability theory (Benilov et al. 1993). It was shown that pure
two-dimensional motion always remains potential because one-dimensional vortex
(in vertical plane) does not interact with the orbital motion. The waves can generate
the vortex in horizontal plane, and further development of vorticity occurs due to
exchange of energy between the components of vorticity. Then, due to nonlinearity,
motion at smaller scales and more or less developed turbulent regime arise.
This problem was investigated numerically on basis of full two-dimensional
(x–z) equations of potential motion with the free surface in cylindrical conformal
coordinates. It was assumed that all variables are a sum of the 2-D potential orbital
velocities and 3-D non-potential disturbances. Because the energy of waves is much
larger than energy of turbulence, currently it was assumed that only one-way
interaction exists: Non-potential motion takes the energy from potential waves. The
non-potential motion is described directly with 3-D Euler equations, with very high
resolution. The interaction between potential orbital velocities and non-potential
components is accounted through additional terms which include the components of
vorticity. The effects of turbulence are incorporated with a use of subgrid turbulent
energy evolution equation. The turbulent scale is assumed to be proportional to grid
resolution (LES technique). For small waves, the approach turns into a direct
simulation method. Numerical scheme is based on 2-D Fourier transform method in
‘horizontal’ (in conformal coordinates) plane and on second-order approximation in
the ‘vertical’. The pressure is calculated by means of Poisson equation in cylindrical
conformal coordinates derived through covariant components of velocity. Poisson
equation was solved with three-diagonal matrix algorithm (TDMA). Initial condi-
tions for the elevations and the surface potential for waves were assigned according
to the linear theory, and 3-D non-potential velocity components were inserted as a
small-amplitude noise. Long-term numerical integration of the system of equations
was done for different wave steepness. The vorticity and turbulence usually
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occurred in vicinity of wave crests (where the velocity gradients reach their max-
imum) and then spreads over upwind slope and downward. Specific feature of the
wave turbulence is its strong intermittency: The turbulent patches are mostly iso-
lated, and intermittency grows with the decrease of the wave amplitude. The
maximum values of energy of turbulence are in qualitative agreement with
experimental data. The results suggest that even non-breaking potential waves can
generate the turbulence, which thus enhance the turbulence created by the shear
current. Further investigation of this process will include the effect of tangential
stress on a sea surface and flux of turbulent energy from the surface generated by
breaking waves.

11.1 Turbulence Generation by Potential Waves.
Theoretical Background

The concept of the wave-induced non-breaking turbulence was recently proposed
by Qiao et al. (2004) and Babanin (2006) and then proved by laboratory mea-
surements (Babanin and Haus 2009; Dai et al. 2010) and in the field (Toffoli et al.
2012). Dai et al. (2010), for example, showed that, in the presence of gently sloped
non-breaking waves, the initially stratified fluid became uniform by two orders of
magnitude faster than in the absence of waves, i.e., in case of pure molecular
diffusion.

Lately, an essential importance of this turbulence for the dynamics of the upper
ocean and for the air–sea interactions has been also clearly demonstrated. In finite
depth environment and at shelves, this turbulence produces mixing through to the
bottom in response to a single storm, this contribution being critical for accurate
modeling of the sediment suspension (e.g., Pleskachevski et al. 2011). When
employed in the ocean-circulation and general-circulation models, an agreement
between the data and the calculated sea surface temperature and the upper-ocean
temperature profiles improved by up to 35 %, depending on the wave climate at a
particular location, as well as on latitude (Qiao et al. 2004, 2010; Huang et al.
2008). In modeling of the current climate, an account for such turbulence might
lead to the increase of the magnitudes of seasonal variation of the main hydrom-
eteorological properties such as temperature, pressure, and other characteristics
(Babanin et al. 2009) (Table 11.1).

While the concept appears new and the wave-induced turbulence is missing from
most of the ocean-mixing schemes, because the waves are routinely treated as
irrotational and, therefore, non-generating turbulence, the idea was in fact
well-familiar to oceanographers over 50 years ago. The book of Kinsman (1965)
includes a chapter on rotational wave motion, i.e., the linear and nonlinear wave
theory in the presence of viscosity, with references to Stokes (1847),
Longuet-Higgins (1953), and Phillips (1977); the book also contains a section on
the wave-induced turbulence in non-breaking waves. We should add Kitaigorodskii
(1961) to this early list of papers.
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It was the success of the potential theories of nonlinear waves, introduced in the
1960s, that made the non-potential wave theories seem redundant and, eventually,
nearly forgotten. Such theories certainly provide a rich range of useful physics, both
deterministic and stochastic. In other respects, however, irrotational theories are
inadequate. Kinsman (1965) noted while giving comments on one of such appli-
cations: ‘Careful measurements of the mass-transport velocity associated with
waves… all suggest that the Stokes wave is unsatisfactory model so far as the
mass-transport velocity associated with water waves is concerned. It would seem
that the argument on which Stokes chose irrotationality was crucially unsound, if a
study of water waves was his object. You do not arrive at the same place by setting
the viscous terms to zero to begin with as you do if you retain them and then let the
viscosity tend to zero at the end of your analysis.’

Another reason for the disrepute of the old rotational wave theories was a
relatively small rate of production of vorticity within these approaches. Such low
rates, however, were a consequence of the two-dimensionality of the old analytical
solutions, and this issue was well-appreciated by the old school of oceanographers:
‘Unfortunately, the analysis of turbulence is very difficult, since the process is
essentially three-dimensional. This means that nothing remotely useful will result
from a two-dimensional analysis of the sort we have used with infinitely
long-crested waves’ (Kinsman 1965).

This problem was later investigated by means of a linear instability theory, and it
was shown that this is not the long crestedness of waves, but the two-dimensionality
which is the setback in 2-D approaches. This instability problem was formulated
first by Benilov and Losovatskii (1977). Later, the idea was further developed by
Kitaigorodskii and Lumley (1983) and Benilov et al. (1993). Within such theory, it
was shown that pure two-dimensional motion remains potential because
one-dimensional vortex (in vertical plane) does not interact with the wave orbital
motion. If turbulence is treated in a three-dimensional sense, however, and the real
turbulence is nearly always three-dimensional, the waves can generate the vortex in
horizontal plane. Such vortex is unstable, and further development of vorticity
occurs due to the exchange of energy between the components of vorticity. Then,
due to the nonlinearity, motion at smaller scales and more or less developed tur-
bulent regime arise on behalf of the wave energy.

Table 11.1 Characteristics of numerical models used for the generation of the ensembles of
surfaces

Spectral
resolution

Grid
resolution

Peak wave
number

Time
step

Number of
time steps

Integration
time tp

� �
3-D model
1st run

256� 128 1024� 512 16 0.005 200,000 636

3-D model
2nd run

512� 128 2048� 512 64 0.0025 100,000 318

2-D model 1000 4000 16 0.001 2,000,000 1273
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Other theoretical and experimental studies should also be highlighted in this
context, even if briefly. Jacobs (1978) introduced additional turbulent viscosity
which remains after the mean orbital wave motion is averaged out, what
Pleskachevski et al. (2011) called the ‘symmetric effect.’ Anis and Moum (1995)
employed both the symmetric and ‘asymmetric’ effects, the latter being production
of the turbulence due to waves being irrotational. In the field, the wave turbulence,
unrelated to the breaking, was explicitly observed and even parameterized by
Efimov and Khristoforov (1971).

The significance of such wave-induced turbulence, in the meantime, is hard to
overestimate. Waves produce turbulence for the upper ocean in a number of ways,
i.e., by breaking (e.g., Chalikov and Belevich 1992) and by interacting with
background turbulence through the Stokes current (e.g., Ardhuin and Jenkins
2006), through triggering Langmuir circulation (e.g., Langmuir 1938; McWilliams
and Sullivan 2000), and through the shear stresses within vertical gradients of the
orbital velocities (see, e.g., Babanin 2011 for a review of these issues). While
the former three mechanisms rely on the downward diffusion or advection of the
near-surface turbulence, the last one generates turbulence directly through the water
column at the scale of the wavelength (100 m) if the associated Reynolds numbers
(wave heights) are large enough.

Thus, as it was mentioned above, the role of this turbulence in the upper-ocean
mixing is essential. It is interesting, however, to quote Kinsman (1965) again with
regard to: ‘… while the vorticity field induced by wave motion is of the second
order and affects the mean motion to the second order, its effect on the fluctuating
motion is of the third order…’

In the present chapter, a new wave-turbulence model is discussed; the results of
its application are demonstrated and compared with experiment (Babanin and
Chalikov 2012). This wave–turbulence model is based on full two-dimensional
(x–z) equations of potential motion with free surface in the cylindrical conformal
coordinates. These equations constitute a fully nonlinear model of 2-D waves which
is coupled with a 3-D model for turbulence. This latter non-potential motion is
described directly with 3-D Euler equations with very high resolution. The inter-
action between potential orbital velocities and non-potential components is
accounted through the additional terms which include the components of vorticity.
The effects of turbulence are incorporated with a use of subgrid turbulent energy
evolution equation. The turbulent scale is assumed to be proportional to grid res-
olution (LES technique). The results suggest that even non-breaking potential
waves can generate the turbulence which thus enhances the turbulence created by
the shear currents.

In this chapter, Sects. 11.2 through 11.5 contain description of different aspects
of the model. The surface-following coordinates are introduced in Sect. 11.2, fol-
lowed by the equations for vortical motion in Sect. 11.3. Section 11.4 describes the
LES approach employed for simulation of turbulence, while Sect. 11.5 describes
the fully nonlinear wave model. Section 11.6 demonstrates the computational
results, while the conclusions are formulated in the final Sect. 11.7.
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11.2 Cylindrical Conformal Coordinates

Let us introduce the curvilinear surface-following conformal in plane
x ¼ x1; y ¼ x2ð Þ cylindrical coordinates ðn; #; fÞ connected with the Cartesian
coordinates ðx; y; zÞ by the relations (z-axis is directed upward):

x ¼ nþ x0ðsÞþ
X

�M� k�M;k 6¼0

sign(kÞg�kðsÞ
cosh kj jð1þHÞ

sinh kj jH hkðnÞ; ð11:2:1Þ

z ¼ fþ g0ðsÞþ
X

�M� k�M;k 6¼0

gkðsÞ
sinh kj jð1þHÞ

sinh kj jH hkðnÞ; ð11:2:2Þ

y ¼ #; ð11:2:3Þ

t ¼ s; ð11:2:4Þ

where the factors containing hyperbolic functions allow us to introduce finite depth
z = H, k is wave number, M is truncation parameter, t is time, gk are Fourier
amplitudes of two-dimensional surface gðn; #Þ (Eq. 2.2.5), and hkðnÞ denotes
function (2.2.6).

The metric coefficients for transformation (11.2.1)–(11.2.4) take the form

xn ¼ 1þ
X

�M� k�M

kj jhk cosh kj jðfþHÞ
sin kj jH #kðnÞ; ð11:2:5Þ

zn ¼ �
X

�M� k�M

kh�k
sinh kj jðfþHÞ

sin kj jH #kðnÞ; ð11:2:6Þ

xs ¼
X

�M� k�M

hsð Þ�k
cosh kj jðfþHÞ

sin kj jH #k nð Þ; ð11:2:7Þ

zs ¼
X

�M� k�M

signðkÞ hsð Þk
sinh kj jðfþHÞ

sin kj jH #kðnÞ: ð11:2:8Þ

Conformal coordinates satisfy conditions (2.2.13) and (2.2.23) and

@J
@s

þ @Jnt
@n

þ @Jft
@f

¼ 0; ð11:2:9Þ

@J
@s

þ @

@n
�znzs � xnxsð Þþ @

@f
znxs � xnzsð Þ ¼ 0 ð11:2:10Þ

where J is a Jacobian of transformation (2.2.14).
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Note that all the metric coefficients do not depend on coordinate #. Below, the
rules of transformations are written out:

@ðÞ
@x

¼ nx
@ðÞ
@n

þ fx
@ðÞ
@f

¼ J�1 xn
@ðÞ
@n

� zn
@ðÞ
@f

� �
¼ J�1 @ðÞxn

@n
� @ðÞzn

@f

� �
;

ð11:2:11Þ

@ðÞ
@z

¼ nz
@ðÞ
@n

þ fz
@ðÞ
@f

¼ J�1 zn
@ðÞ
@n

þ xn
@ðÞ
@f

� �
¼ J�1 @ðÞzn

@n
þ @ðÞxn

@f

� �
;

ð11:2:12Þ

@ðÞ
@t

¼ @ðÞ
@s

þ nt
@ðÞ
@n

þ ft
@ðÞ
@f

: ð11:2:13Þ

11.3 Equation for Vortical Motion

Now, let us consider the Euler equation in the Gromeko–Lamb form

@�u
@t

¼ � @

@x
�pþ �Eþ zð Þþ �xy�w� �xz�v; ð11:3:1Þ

@�v
@t

¼ � @

@x
�pþ �Eþ zð Þþ �xz�u� �xx�w; ð11:3:2Þ

@�w
@t

¼ � @

@x
�pþ �Eþ zð Þþ �xx�v� �xy�u; ð11:3:3Þ

where ð�u;�v; �wÞ are the full components of velocity, �xx; �xy; �xzð Þ are the components
of vorticity, �p is the deviation of pressure off the hydrostatic pressure, and �E ¼
1=2 � �u2 þ�v2 þ �w2ð Þ is the kinetic energy. Since vorticity �Xi of the potential flow is
zero, a similar equation for potential motion described by variables ðU;V ;W ;PÞ
has the form

@ �U
@t

¼ � @

@x
�pþ �Eþ zð Þ; ð11:3:4Þ

@ �V
@t

¼ � @

@y
�pþ �Eþ zð Þ; ð11:3:5Þ

@ �W
@t

¼ � @

@z
�pþ �Eþ zð Þ: ð11:3:6Þ
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Full variables can be represented as a sum of the vortical u; v;w; pð Þ and
potential ðU;V ;W ;PÞ components:

�u ¼ uþU; �v ¼ v; �w ¼ wþW ;

�p ¼ pþP; �xi ¼ xi þXi Xi ¼ 0
ð11:3:7Þ

Hence, from (11.3.1)–(11.3.3), it follows that

@u
@t

¼ � @

@x
pþEþ uUþwW þ zð Þþxy wþWð Þ � xzv; ð11:3:8Þ

@v
@t

¼ � @

@x
pþEþ uUþwWð Þþxz uþUð Þ � xx wþWð Þ; ð11:3:9Þ

@w
@t

¼ � @

@x
pþEþ uUþwWð Þþxxv� xy uþUð Þ: ð11:3:10Þ

Converting (11.3.8)–(11.3.10) to the standard form, we obtain

@u
@t

þ @uu
@x

þ @vu
@y

þ @wu
@x

¼ � @

@x
pþ uUþwWð ÞþxyW ; ð11:3:11Þ

@v
@t

þ @uv
@x

þ @vv
@y

þ @wv
@x

¼ � @

@y
pþ uUþwWð ÞþxzU � xxW ; ð11:3:12Þ

@w
@t

þ @uw
@x

þ @vw
@y

þ @ww
@x

¼ � @

@z
pþ uUþwWð Þ � xyU: ð11:3:13Þ

Equations (11.3.11)–(11.3.13), together with the continuity equation

@u
@x

þ @v
@y

þ @w
@z

¼ 0; ð11:3:14Þ

describe the fluid motion at low Reynolds numbers, on condition that the velocity
components ðU;WÞ of the potential motion are known. Solving these equations in
the presence of curvilinear interface is generally impossible, so these equations
should be rewritten in the surface-following coordinate system; in our case, these
are the cylindrical conformal coordinates. After such transformation,
Eqs. (11.3.11)–(11.3.3) take the form

dJu
ds

¼ x#W � xnPn þ znPn þFn; ð11:3:15Þ

dJv
ds

¼ xfU � xnW � JP# þF#; ð11:3:16Þ
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dJw
ds

¼ �x#U � znPn � xnPf þFf: ð11:3:17Þ

Here, xn;x#;xf are the vorticity components xx;xy;xz multiplied by Jacobian
J, while P is the generalized pressure

P ¼ pþ uUþwW þ 2
3
e: ð11:3:18Þ

Operator d
ds in (11.3.15)–(11.3.17) denotes full-time derivative

dðÞ
ds

¼ @ðÞ
@s

þ @ðÞû
@n

þ @ðÞv̂
@#

þ @ðÞŵ
@f

; ð11:3:19Þ

where v is a lateral component of velocity, and ðû; ŵÞ are the contravariant com-
ponents of velocity defined by the equations:

û ¼ nt þ J�1eu; ŵ ¼ ft þ J�1ew: ð11:3:20Þ

Here, û; v̂ð Þ are the covariant velocity components

eu ¼ uxn þwzn; ew ¼ �uzn þwxn; ð11:3:21Þ

connected with the Cartesian velocity components ðu; vÞ by relations:

u ¼ J�1 ûxn � ŵznð Þ; w ¼ J�1 ûzn þ ŵxnð Þ: ð11:3:22Þ

Components of vector xn;x#;xf
� �

in the curvilinear coordinates take the form

xn ¼ J
@w
@y

� @v
@z

� �
¼ J

@w
@y

� @znv
@n

þ @xnv
@f

; ð11:3:23Þ

x# ¼ J
@u
@z

� @w
@x

� �
¼ @znu

@n
þ @xnu

@f
� @xnw

@n
þ @znw

@n
; ð11:3:24Þ

xf ¼ J
@v
@x

� @u
@y

� �
¼ @xnv

@n
� @znv

@f
� J

@u
@y

: ð11:3:25Þ

Equation of continuity (11.3.14) can be represented through the contravariant
velocity components such as

@J
@s

þ @Jû
@n

þ @Jv
@#

þ @Jŵ
@f

¼ 0 ð11:3:26Þ
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and through the covariant velocity components as follows

@eu
@n

þ @v
@#

þ @ew
@f

¼ 0: ð11:3:27Þ

Equation (11.3.26) provides accurate approximation of advection terms in
(11.3.19), and the continuity equation in the form (11.3.27) served for the
derivation of the Poisson equation for pressure. Let us represent Eqs. (11.3.15)–
(11.3.17) in the following form

@Ju
@s

¼ � xnPn � znPfð ÞþFf; ð11:3:28Þ

@Jv
@s

¼ �J
@P
@#

þF#; ð11:3:29Þ

@Jw
@s

¼ � znPn þ xnPfð ÞþFf; ð11:3:30Þ

where Fn;F#;Ff
� �

are

Fn ¼ � @Jueu
@n

� @Juv
@#

� @Juew
@f

þ Jx#W þ Tn; ð11:3:31Þ

F# ¼ � @Jveu
@n

� @Jvv
@#

� @Jvew
@f

þ JxfU � JxnW þ T#; ð11:3:32Þ

Fn ¼ � @Jweu
@n

� @Jwv
@#

� @Jwew
@f

� Jx#Uþ Tf; ð11:3:33Þ

and Tn; T#; Tf
� �

are the terms describing the subgrid turbulence

Tn ¼ � @J xnu0u0 þ znu0w0� �
@n

� @u0v0

@#
� @J �znu0u0 þ xnu0w0� �

@f
; ð11:3:34Þ

T# ¼ � @J xnv0u0 þ znv0w0� �
@n

� @v0v0

@#
� @J �znv0u0 þ xnv0w0� �

@f
; ð11:3:35Þ

Tf ¼ � @J xnu0w0 þ znw0w0� �
@n

� @v0w0

@#
� @J �znu0w0 þ xnw0w0� �

@f
: ð11:3:36Þ
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The second-order turbulent moments are represented as follows

�u0u0 ¼ 2KmJ
�1U11 ¼ 2KmJ

�1 @xnu
@n

� @znu
@f

� �
: ð11:3:37Þ

�u0v0 ¼ KmJ
�1U12 ¼ Km

@u
@y

þ J�1 @xnv
@n

� @znv
@f

� �� �
; ð11:3:38Þ

�u0w0 ¼ KmJ
�1U13 ¼ KmJ

�1 @ uzn þwxnð Þ
@n

þ @ uxn � wznð Þ
@f

� �
; ð11:3:39Þ

�v0v0 ¼ 2KmJ
�1U22 ¼ 2KmJ

�1 @v
@y

; ð11:3:40Þ

�v0w0 ¼ KmJ
�1U23 ¼ Km

@w
@y

þ J�1 @znv
@n

þ @xnv
@f

� �� �
; ð11:3:41Þ

�w0w0 ¼ 2KmJ
�1U33 ¼ 2KmJ

�1 @znw
@n

þ @xnw
@f

� �
: ð11:3:42Þ

Let us approximate the time derivative by the forward difference. Then, new
values of velocities utþ 1; vtþ 1;wtþ 1ð Þ are defined by the expressions

utþ 1 ¼ �Ds J
tþ 1

� ��1
xnPn � znPfð Þþ J

tþ 1
� ��1

Jtut þDsFn
� �

; ð11:3:43Þ

vtþ 1 ¼ � @P
@#

þ J
tþ 1

� ��1
Jtvt þDsF#
� �

; ð11:3:44Þ

wtþ 1 ¼ �Ds J
tþ 1

� ��1
znPn þ xnPfð Þþ J

tþ 1
� ��1

Jtwt þDsFf
� � ð11:3:45Þ

where Jt and Jtþ 1 are the previous and new values of Jacobian. Equations (11.3.43)
and (11.3.45) both contain gradients of pressure. For derivation of Poisson equation
in the curvilinear coordinates, we transform the Cartesian velocity components into
the covariant velocity components using (11.3.21):

eutþ 1 ¼ �DsPn þUn; ð11:3:46Þ

vtþ 1 ¼ �DsPt þU#; ð11:3:47Þ

ewtþ 1 ¼ �DsPf þUf; ð11:3:48Þ

where Un;U#;Uf
� �

are the combinations of the right-hand sides of Eqs. (11.3.43)–
(11.3.45).
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Now,

@eutþ 1

@n
þ @vtþ 1

@#
þ @ewtþ 1

@f
¼ 0: ð11:3:49Þ

and after introducing (11.3.46)–(11.3.48) into (11.3.48), we obtain Poisson equa-
tion for the diagnostic calculation of pressure

DP ¼ Dsð Þ�1 Uuð Þn þ Uvð Þ# þ Uwð Þ#
� �

: ð11:3:50Þ

Hence, usage of the cylindrical conformal mapping allows us to obtain a stan-
dard scheme for the calculation of the generalized pressure (11.3.18).
Equation (11.3.49) is solved in Fourier space with three-diagonal matrix algorithm
(TDMA, Thomas 1949). Equations (11.3.28) and (11.3.30) are solved by a standard
Fourier transform method. For approximation of vertical operators, the
second-order scheme was used. Equations (11.3.28)–(11.3.30) are solved with high
resolution which allows us to reproduce directly the large-scale part of the turbu-
lence by means of the large-eddy simulations technique.

11.4 Large-Eddy Simulation Approach

The LES approach imposes spatial filtering on instantaneous fields; i.e., all the flow
structures bigger than the imposed filter scales are resolved, and the smaller ones
are filtered out. Now, in order to compensate these filtered-out scales, a subgrid
turbulence model must be imposed to have a correct description of the original
turbulent field. As for the LES approach with regard to the near-wall modeling,
different versions of modeling of the subgrid turbulence are applied. They include
the classical (Smagorinsky 1963) and dynamic (Germano et al. 1991) approaches.
Smagorinsky models as well as the recently proposed coherent-structure scheme
(Kobayashi 2005) are the schemes based on minimization of the theoretical subgrid
dissipation (Vreman 2004). The turbulent boundary layer over flat plate (with the
zero pressure gradient) was simulated by Spalart (1988) by employing DNS
techniques over the range of Reynolds numbers 225\Re\1410. For this particular
case, a numerical database is provided (ERCOFTAC database) which makes it
possible to perform a very detailed comparison for the first and second moments, as
well as for the budgets of the second moments. In addition, the effects of different
numerical grid resolutions can be easily estimated, and validation of the LES results
can be performed. Porte-Agel et al. (2000) proposed a scale-dependent dynamic
subgrid-scale LES model. Opposite to the standard dynamic model, it is not based
on the assumption that the model coefficient is scale-variant. The new model
introduces a secondary test filter which, in addition to the standard test filter, is used
to determine the model coefficient. The new model showed improvements of the
spectral slopes in the near-surface region where a standard Smagorinsky model and
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a standard dynamic model are either too dissipative or not dissipative enough,
respectively. In order to demonstrate applicability of the presented method for the
flows in non-orthogonal geometries, then the configurations with a wavy horizontal
wall are selected. This investigation is compared with the DNS and LES results of
Kretenauer and Schumann (1992), Tseng and Ferziger (2004), and Choi and Suzuki
(2005), as well as with the experimental results of Guenther and von Rohr (2003)
and Kruse et al. (2003).

In the present work, the effects of the subgrid turbulence are taken into account
through coefficient of the subgrid turbulent viscosity, which is used for calculations
of the second-order moments (11.3.37)–(11.3.42). The coefficient of turbulent
viscosity is estimated with formula

Kx;y ¼ Cs J�1DnD#Df
� �1=3

e1=2; Cs ¼ 0:1; ð11:4:1Þ

where lt ¼ J�1DnD#Dfð Þ1=3 is a turbulent length scale, and e is the kinetic energy
of the subgrid turbulence. Evolution of e is calculated with equation

dJe
ds

¼ @

@n
Ke

@e
@n

þ @

@f
Ke

@e
@f

þP� e ð11:4:2Þ

where P is a rate of production of e, while e is a dissipation rate defined by the
relation

e ¼ CDe
3=2l�1

t : ð11:4:3Þ

Expression for P is obtained from Eqs. (11.3.37)–(11.3.42).

11.5 Modeling of Waves

The details of the numerical scheme can be found in Chalikov and Sheinin (1998,
2005), Chalikov (2005, 2007, 2009), and Chalikov and Rainchik (2011).
Equations (11.3.15)–(11.3.17) were integrated here together with the equations for
vortical motion (11.3.28)–(11.3.10). The components of the potential velocity
U and W were calculated through the following relations:

U ¼ J�1 xnUn þ znUfð Þ ð11:5:1Þ

W ¼ J�1 znUn þ xnUfð Þ ð11:5:2Þ

A current formulation of the problem suggests that the kinetic energy can be
transferred from the orbital velocities of wave motion to the turbulence. Since the
energy of turbulence is by 2–3 orders smaller than the energy of wave motion, then
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the attenuation of wave due to generation of turbulence is very slow and can be
neglected. In a more general approach, the direct and inverse interactions should be
taken into account. Note that Eqs. (11.3.15)–(11.3.17) do not guarantee that energy
can be transferred only from waves to turbulence; in some places, the opposite flux
from turbulence to waves can be initiated. However, being averaged for a wave
period or short intervals of time, the opposite flux of energy disappears; hence,
waves always transfer energy to turbulence. Consideration of this effect is difficult
due to the contradictions between the potential and non-potential formulation of the
problems for waves and turbulence. The local input of energy to the orbital motion
can contradict the potentiality assumption. This is why the only way to take into
account an influence of turbulence on waves is the modification of the kinetic
energy of the orbital velocities in terms of the surface velocity potential.

11.6 Results of Simulations

The coupled waves/turbulence model was first used for simulation of generation of
turbulence in a train of monochromatic waves with steepness ak ¼ 0:03�0:24. The
simulations were initially performed with a 2-D version of the model, when lateral
disturbances were absent. In this case, the imposed vortical motion quickly dissi-
pated and the turbulence did not develop. These features follow directly from
Eqs. (11.3.28)–(11.3.30), but such calculations were still conducted for validation
of the entire model.

The figures in this section demonstrate outcomes of the 3-D version. The initial
conditions were assigned on the basis of the linear theory as a train of harmonic
waves with non-dimensional wave number kp ¼ 4 (such setup corresponds to four
waves in domain). To be sure that the model is correct, the first simulations were
done for a purely potential flow in the absence of non-potential disturbances. As
expected, the vortical motion and turbulence were not generated. Other numerical
experiments were then conducted with the superimposed small random noise
introduced as the initial vortical velocity field. The waves remain two-dimensional,
i.e., long-crested and do not change in lateral y-direction. Note that monochromatic
waves with the steepness larger than 0.12 create new modes which finally result in
disintegration of the main modes and breaking. For the steepest wave with steepness
ak ¼ 0:24, the breaking happens at the periods which are still longer than
those considered in the current work. Typical distribution of the sum E of the energy
of explicitly simulated turbulent motion Ev.

E ¼ 1
2

u2 þ v2 þw2� � ð11:6:1Þ

and the energy of subgrid turbulence Et in a top layer with thickness of 0:01Lp (Lp
is peak wavelength) is shown in Fig. 11.1.
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This is a view from above, and the curve at the bottom indicates shape of a
long-crested wave. As shown, the largest disturbances are concentrated along the
wave crests. These disturbances move with the phase velocity of carrying waves,
which proves that the dissipation timescale is small, and the areas of increased
vortical motion are tied with the zones of maximum gradients of orbital velocities.

Figure 11.2 outlines the shape of volume below water surface, which corre-
sponds to the energy level of 0:2max Evð Þ. This figure demonstrates the volume
distribution of the total energy of disturbances for the case ak ¼ 0:24. White curve
indicates the surface elevation; i.e., the turbulent energy is concentrated along the
long wave crests. For convenience, the vertical scales for energy and surface shape
are different.

Distribution of the y-averaged energy of wave-produced disturbances �Ey is
shown in Fig. 11.3.

Fig. 11.1 Distribution of energy Ek ¼ Ev þEt in near-surface layer in relative units (top view, the
vertical scale is the lateral direction). The black areas correspond approximately to 0:001gHs At
the bottom, the wave profile is indicated (Chalikov and Babanin 2012)

Fig. 11.2 Volume distribution of energy Ev ¼ Ek þEt. Volume which corresponds to the
0:2maxðEvÞ energy level is drawn.White curve indicates the shape of long-crested waves (Chalikov
and Babanin 2012)

256 11 Numerical Investigation of Turbulence Generation …



As shown, the disturbances are concentrated near surface and rapidly attenuate
with depth. Such behavior is determined by the properties of orbital velocity field:
The squared Fourier components of velocity deformations (which are responsible
for generation of vorticity) have their maxima at the surface and attenuate as
expð2kzÞ with depth z counted from surface. The time evolution of the volume-
averaged energy of explicitly simulated vortex motion, as well as the energy of
turbulence �En0f

v , is shown in Fig. 11.4 (solid and dashed curves, correspondingly)
for different steepness. As shown, both quantities grow with time and to the end of
the calculation reach more or less stationary conditions over time t ¼ 6 periods.
Further integration was not performed, since we reproduced exact conditions of the
laboratory experiments. The data on vertical distribution of the turbulent viscosity
coefficient normalized by the molecular viscosity coefficient eK = K/v are given for
the waves with initial steepness ak ¼ 0:24 (dotted curves), ak ¼ 0:18 (dashed
curves), and ak ¼ 0:12 (dashed-dotted curves) in Fig. 11.5.

Thin curves correspond to maximum values of eK in domain at each level, while

thick curves correspond to the averaged values of eK n#
. Maximum values of vis-

cosity for all the three cases are typically one decimal order of magnitude larger
than the averaged values, which points to large intermittency of horizontal distri-
bution of turbulent viscosity. Note that for the case ak ¼ 0:08, the average viscosity
is very close to molecular viscosity, which indicates that wave motion is laminar.
However, even in this case, very narrow patches of turbulence in the vicinity of
wave peaks are still generated.

In the absence of breaking [i.e., for the waves with small steepness and transi-
tional Reynolds numbers, see also Babanin (2006)], the turbulence in the model is
strongly intermittent, as shown in Figs. 11.5, and it concentrates at the rear face of
the waves. This is what was also observed in laboratory experiments of Babanin
and Haus (2009).

The intermittence of turbulence is confirmed by vertical profiles (in the Cartesian
coordinates) of the averaged and instantaneous maximal total energy Exy

v (i.e., sum
of energy of the vortical motion and energy of the subgrid turbulence), as shown in
Fig. 11.6.

Fig. 11.3 The distribution of energy Ev
y
averaged over y-axis for case of initially monochromatic

waves with steepness ak ¼ 0:24 (Chalikov and Babanin 2012)
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The records used for calculations were obtained toward the end of the 6th period
of integration. Thin horizontal lines in these subplots correspond to the depths of
wave troughs z ¼ gmin. Above this level, the averaging was done over the area
occupied by water. The dotted line indicates the maximum values observed at the
6th period of integration. Both curves suggest considerable growth of the energy
above wave troughs. As shown, the average values of energy are lower at least by a
decimal order than their maximum values (see also Fig. 11.1). For the largest wave
steepness at the surface, the kinetic energy is equal to 10�2 and it drops by two
orders of magnitude at the vertical scale of p/8 (i.e., at quarter of the wavelength)

Fig. 11.4 Evolution of volume-averaged kinetic energy of vortical motion Ev
n#f

(dashed line) and
kinetic energy of subgrid turbulence (solid line) for initially monochromatic wave of different
steepness (indicated as legend in each subplot) (Chalikov and Babanin 2012)
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and then remains approximately constant. At the lowest steepness, the surface
energy is *10−7, and the two-order-of-magnitude drop occurs over 1/8th of the
wavelength vertical distance too. Thus, in the range of the realistic water wave
steepness, the intensity of the non-breaking wave-induced turbulence changes by 5
orders of magnitude. At ak * 0.1, the surface turbulence energy is *10−5. While
such energy is apparently small as a dissipation source of surface waves, it plays a
very essential role in the upper-ocean processes (Qiao et al. 2004, 2010; Huang
et al. 2008; Babanin et al. 2009), as well as mixing in the stratified fluid (Dai et al.
2010), sediment suspension in finite depth seas (Pleskachevski et al. 2011), and
swell attenuation (Babanin 2011), as described in Introduction.

Vertical profiles of the non-dimensional volumetric dissipation rate (solid
curves) and its variance (dashed curves) obtained by averaging in the Cartesian
coordinate system are shown in Fig. 11.7.

Here, wavelength corresponds to frequency f = 1.5 Hz used in the laboratory
experiment of Babanin and Haus (2009), and therefore, amplitude a shown in the
legend is an indicator of steepness. The comparison of the volumetric dissipation
rates produced by the model and the dissipation rates measured by Babanin and
Haus (2009) is given in Fig. 11.8. Such dissipation rates max(Diss) are plotted as a
function of dimensional wave amplitude a(m), like the volumetric dissipation rate
e m2s�3ð Þ in Fig. 2 from Babanin and Haus (2009). Anyway, it is not exactly the
same property as e in Babanin and Haus (2009). These dissipation rates were
measured below troughs of the highest waves, i.e., always at some distance below
the surface. The values of max(Diss) in Fig. 11.8 indicate maximum dissipation in
the wave-induced turbulence dissipation profile. In practice, this is an estimate of
the volumetric dissipation rate near surface and above the mean water level.

Fig. 11.5 Vertical profiles of mixing coefficient eK ¼ K=m under initially monochromatic waves
for initial steepness ak ¼ 0:24 (dotted curves), ak ¼ 0:18 (dashed curves) ak ¼ 0:12
(dashed-dotted curves), and ak ¼ 0:08 (dashed-double-dotted curves). Thin lines correspond to
maximum values of eK in the domain at each level, and thick lines correspond to averaged values ofeK (Chalikov and Babanin 2012)
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Since it is known that the wave-induced turbulent energy concentrates within
wave crests (Gemmrich 2010), such max(Diss) is expected to be greater than e in
Babanin and Haus (2009). In the model, this happens because generation of tur-
bulence has a maximum at the surface as mentioned above. In 11.8, the shaded area
corresponds to the range of measurements and scatter of the observational data from

Fig. 11.6 Vertical distribution of kinetic energy of the non-potential motion, average (solid line)
and instantaneous maximal (dotted line), for a range of wave steepness from ak = 0.24 (top left
corner) down to ak = 0.03 (bottom right corner), as shown in the legend of each subplot (RE is
respective Reynolds numbers). The scales are dimensionless, the vertical scale is distance to the
surface, and the horizontal scale is the turbulence energy (Chalikov and Babanin 2012)
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Fig. 11.7 Vertical profiles of non-dimensional rates of volumetric dissipation rate m2s�3ð Þ for
different steepness, as shown in the legend of each sub1.1plot (a is amplitude of 1.5 Hz waves, and
Re is respective Reynolds numbers). Solid curves correspond to average profiles, and dashed
curves indicate the dispersion (Chalikov and Babanin 2012)
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Babanin and Haus (2009). It was confirmed qualitatively that for wave amplitudes
of *1.5 cm (the wavelength here, as in the experiment, corresponds to frequency
1.5 Hz), and for higher waves the maximum of dissipation within the crests is
greater than that measured below the troughs. Different subplots show profiles for
different wave amplitudes a and the corresponding wave Reynolds numbers
(Babanin 2006):

Rew ¼ a2x
v

ð11:16:1Þ

denoted as RE in panels. Here, ax denotes orbital velocity, i.e., the velocity scale in
the Reynolds number (x is radian frequency), and m is the kinematic viscosity of
water. It is quite obvious that due to intermittency, production of turbulence does
not actually stop at low amplitudes/Rew, but the magnitude of dissipation rates
becomes so marginal (e� 10�8m2=s3 at Rew ¼ 84) that it is hardly possible to
measure. The lowest dissipation which Babanin and Haus (2009) were still able to
detect above the noise level by their PIV method was of the order e� 10�4m2=s3. If
this is chosen as the reference, then Rew�2000 can be regarded as the critical wave
Reynolds number, close to the estimate Rew�3000 of Babanin (2006).

The next set of the calculations was done for the initially assigned multi-mode
wave field corresponding to Pierson–Moskowitz spectrum. The size of domain in
x-, y-, and z-directions was 1024 � 128 � 30 knots. The rms steepness of this
wave field was equal to 0.06, and explicit breaking events never happened. Some
dissipation of wave energy occurs due to the flux of energy into the high wave
number range, which was simulated through a special algorithm (see Chalikov and
Sheinin 1998, 2005). In order to keep the energy in the wave system constant, the
loss of energy was compensated by the energy input from wind [details of such
simulations can be found, e.g., in Chalikov (2009)]. The initial modes were

Fig. 11.8 Maximal
volumetric dissipation rates
max(Diss) versus wave
amplitude a. The shaded area
corresponds to the range of
measurement and scatter of
the observational data of
Babanin and Haus (2009).
Vertical segments indicate
standard deviation of the
dissipation estimates
(Chalikov and Babanin 2012)
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assigned, again, by a small-amplitude theory, and the energy of random noise was
about 1 % of the wave energy.

Temporal evolution of the volume-averaged kinetic energy Ek (solid curve) and
the energy of the subgrid turbulence Et (dashed curve) during the first 120 periods
of integration are shown in Fig. 11.9. As shown, both energies are growing with a
decreasing rate, and by the end of the integration period, the energy is close to some
quasi-stationary level.

An example of y-averaged distribution of total energy �Ey
v is given in Fig. 11.10

Energy in Fig. 11.10 is represented in non-dimensional units. The turbulent kinetic
energy and wave energy have different magnitudes, so to have an idea on absolute
values of the energy generated by potential waves, it is reasonable to compare the
integrated over depth total turbulent kinetic energy

Exyz
v ¼

Z0

H

Exy
v dz; ð11:6:2Þ

Fig. 11.9 Evolution of volume-averaged turbulent kinetic energy Ek (solid curve) and energy of
subgrid turbulence Et (dashed curve). Both energies are normalized by the total wave energy and
multiplied by length scale which is equal to 1 (Chalikov and Babanin 2012)

Fig. 11.10 Distribution of averaged over y-axis energy Ev
y
(non-dimensional) for the case of

waves with initially assigned Pierson–Moskowitz spectrum (Chalikov and Babanin 2012)
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with the total energy of waves equal to the sum of the potential and kinetic energies
Ew (see Chalikov and Sheinin 1998, 2005). According to the current calculations,
the total turbulent kinetic energy Exyz

v is within the range 0:03� 0:04ð ÞEw. Hence,
the energy of non-potential motion in fully developed waves is not small.

11.7 Coupling Between Waves and Upper-Ocean Layer

The most important problem of the wave–turbulence theory is the rate of wave
energy dissipation (which on the average is equal to production of non-potential
energy Pv). The last numerical experiment with multi-mode wave field gives the
possibility to calculate this production rate of non-potential motion energy Pv on the
basis of the equation for energy evolution obtained directly from (11.3.28)–
(11.3.30).

Pv ¼ xfu� xnv
� �

W þ xfvþx#w
� �

U ð11:7:1Þ

where xn;x0;xf
� �

are components of the vorticity in the cylindrical conformal
coordinates, ðu; v;wÞ are velocity components of the vortical motion, and ðU;WÞ
are components of the wave orbital velocity. Fortunately, when averaged over the
horizontal coordinates, Pv turned out to be essentially positive; otherwise, the
calculations could predict on the average inverse flux of energy from the turbulence
to potential waves, which is hardly possible. The local profiles of the averaged over
the horizontal coordinate production Pxy

v , as a function of non-dimensional depth
k ¼ z=Hs for the last period of integration, are shown in Fig. 11.11 (Hs is significant

Fig. 11.11 Vertical
distribution of
non-dimensional dissipation
rate P (see Eq. 11.7.1) of the
vortical motion as function of
non-dimensional depth ez ¼
z=Hs (Chalikov and Babanin
2012)
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wave height). These profiles are shown by gray lines, while solid curve corresponds
to the mean profile Pxy

v .
Any estimation of Reynolds number (11.16.1) gives here the values by the

orders of magnitude exceeding the critical values of Re � 2000–3000. It means that
real wave fields should generate the fully developed turbulence, while direct
dependence of its intensity on Re number is negligible. This is why the dependence
of non-dimensional variable Pxy

v on non-dimensional depth can be approximated by
a simple relation

�Pxy
v ¼ 6:60� 10�8 exp 17:47zþ 6:76z2

� �
: ð11:7:2Þ

We should note that this parameterization is valid for Pierson–Moscowitz
spectrum, i.e., for fully developed waves. For developing waves, which are steeper,
relative production of turbulence will be larger, but here, such spectra were not
modeled because steep waves also involve occasional breaking which was avoided
in this study.

Taking into account the scaling accepted in the current work, the dimensional
rate of production Pðm2s�3Þ can be represented as follows

H�1=2
s g�3=2P ¼ 3:87� 10�7 exp 0:56ezþ 0:0057ez2� �

; ð11:7:3Þ

and we should remind that the significant wave height Hs can be defined by inte-
gration over wave spectrum

Hs ¼ 4 �
Z
x;h

Sðx; hÞdxdh

0
B@

1
CA

1=2

ð11:7:4Þ

where x is frequency, and h is angle.
The dependence of type of (11.7.2) can be used for the calculations of the

volume input of energy from waves in equation of turbulent energy evolution.
Being integrated over depth, the equation gives the rate of dissipation of wave
energy due to the volume generation of turbulence. Note that the influence of waves
in Eq. (11.7.2) is included through significant wave height only, which possibly
makes this approach suitable for any kind of spectrum. The coefficients in (11.7.2)
should be probably corrected.

11.8 Conclusion

A numerical model for the turbulence unrelated to wave breaking and produced by
the orbital motion of potential waves is developed. The model consists of three
parts: a fully nonlinear potential model of two-dimensional (i.e., long-crested)
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waves, the LES three-dimensional model based on full Reynolds equations
including parameterized subgrid turbulence, and a three-dimensional model of
evolution of subgrid turbulence. The three-dimensionality of turbulence is of major
importance, since the two-dimensional (in vertical plane) vortex does not interact
with the wave orbital motion. The last two modules of the model are new and
written in the cylindrical conformal coordinates. Small perturbations of potential
motion are introduced and then allowed to develop as predicted by the theory.

A long-term numerical integration of the system of equations was done for
different values of wave steepness. The vorticity and turbulence usually occur in the
vicinity of wave crests (where the velocity gradients reach their maximum) and then
spread over upwind slope and then downward. If modeled at low wave steepness,
which is necessary to avoid breaking, a specific feature of such wave turbulence is
its strong intermittency: The turbulent patches are mostly isolated, and intermit-
tency grows with the decrease of the wave amplitude. The maximum values of the
energy of turbulence are in qualitative agreement with the available experimental
data.

The results suggest that even non-breaking potential waves can generate tur-
bulence which thus enhances the turbulence created by shear current or by
breaking. The importance of such turbulence has already been shown across a broad
range of the upper-ocean processes, such as upper-ocean mixing and circulation,
sediment suspension in finite depths, and swell attenuation. The new model can be
used to investigate the phenomenon in a broad range of conditions and to produce
parameterizations necessary for the simulations which cannot reproduce turbulence
explicitly. The wave–turbulence model can be used for qualitative and even
quantitative investigation of the phenomenon (if high resolution for the LES model
can be provided).
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Chapter 12
Three-Dimensional Modeling
of Potential Waves

Abstract A simple and exact numerical scheme for long-term simulations of
three-dimensional potential fully nonlinear periodic gravity waves is suggested. The
scheme is based on the surface-following non-orthogonal curvilinear coordinate
system. Velocity potential is represented as a sum of analytical and nonlinear
components. The Poisson equation for the nonlinear component of velocity
potential is solved iteratively. Fourier transform method, the second-order accuracy
approximation of vertical derivatives on a stretched vertical grid, and the
fourth-order Runge–Kutta time stepping are used. The scheme is validated by
simulation of steep Stokes waves. A one-processor version of the model for PC
allows us to simulate evolution of a wave field with thousands of degrees of
freedom for hundreds of wave periods. The scheme is designed for investigation of
nonlinear two-dimensional surface waves, generation of extreme waves, and direct
calculations of nonlinear interactions.

12.1 Existing Approaches to Modeling of 3-D Waves,
Their Advantages, and Disadvantages

Currently, the most popular approach is the high-order scheme (HOS) model
developed by Dommermuth and Yue (1987) and West et al. (1987). The HOS is
based on Zakharov’s paper (1968), where a convenient form of the dynamic and
kinematic surface conditions was suggested. The equations used by Zakharov were
not intended for modeling, but rather for investigation of stability of finite amplitude
waves. In that work, a system of coordinates where depth is counted from the
surface was used, though the Laplace equation for the velocity potential was
accepted in its traditional form. Zakharov’s (1968) followers, however, accepted
this idea literally. They used two coordinate systems: a curvilinear surface-fitting
system for surface conditions and the Cartesian system for calculation of the surface
vertical velocity. The analytic solution for the velocity potential in the Cartesian
coordinate system is known. It is based on the Fourier coefficients on a fixed level,
while true variables are the Fourier coefficients for the potential on free surface.
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Hence, the problem of transition from one coordinate system to another arises. This
problem is solved by expansion of the surface potential into the Taylor series in the
vicinity of surface. An accuracy of this method depends on the accuracy of esti-
mation of exponential function expðkgÞ with finite order of Taylor expansion. For
small-amplitude waves and for a narrow wave spectrum, such accuracy is evidently
satisfactory. However, for a case of a broad wave spectrum which contains many
wave modes, the order of the Taylor series should be high. Now, the problem is that
the waves with high wave numbers are superposed over the surface of larger waves.
Since the amplitudes of the surface potential attenuate exponentially, the amplitude
of a small wave at positive elevation increases and, on the contrary, can approach
zero at negative elevations.

Let us consider idealized Phillips spectrum ak ¼ a1x�5
k assigned at frequencies

xk ¼ k1=2; k ¼ 1; 2; 3. . . with peak wave steepness a1k1 ¼ 0:1 (k and x are
non-dimensional wave number and frequency, correspondingly). It is easy to
estimate that for the double peak frequency x=x1 ¼ 2, a relative accuracy 10�4 of
projection of the potential to level z ¼ 0 can be reached with 6 terms of the Taylor
series; for x=x1 ¼ 3 with 12 terms; and for x=x1 ¼ 4 with 15 terms. A typical
order of the Taylor expansion in the HOS model equals 3–5. It is clear that such
setting of the HOS model cannot reproduce high-frequency waves, which reduces
the nonlinearity of the model. This is why such model can be integrated for long
periods using no high-frequency smoothing. Besides, the accuracy of the calcula-
tion of vertical velocity on surface depends on full elevation at each point. Hence,
the accuracy is not uniform along wave profile. A substantial increase of the Taylor
expansion order can definitely result in numerical instability due to the occasional
amplification of modes with high wave numbers. A similar point of view was
shared by the authors of the method based on the surface integral (Clamond et al.
2005). We should note, however, that comparison of the HOS method based on the
West et al. (1987) approach with the method of the surface integral for the idealized
wave field (Clamond et al. 2006) shows acceptable results. Still, applicability of the
HOS method for simulation of waves with broad wave spectrum is unclear.

In this work, we develop a new approach specifically targeted at simulation of a
long-term multi-mode wave field evolution in the deep ocean. The domain is
considered as a small part of an infinitely large basin. In this case, it is possible to
use substantial simplification of the problem, assuming periodicity over the hori-
zontal coordinates. In many applications, a wave field in such domain can be
presented as a superposition of running harmonic waves with random phases. Such
linear approach becomes inapplicable for direct investigation of the wave field
evolution resulting from nonlinear interactions of waves or from the development
of wave field under the action of wind and dissipation.

It is well known that the nonlinear transformation and growth of waves occur
over hundreds and thousands of wave periods. The slow rate of development
imposes tough restrictions on the model because such modifications of waves
should not be obscured with the numerical errors. It means that the model should be
exact enough to reproduce a relatively slow spectrum evolution. This condition is
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well satisfied with the 2-D model in the conformal coordinates considered above.
The 3-D waves represent a far more difficult object because it is hardly possible to
reduce the problem to the surface problem (in fact, the surface integral method
cannot be referred to as a 2-D method, since it uses Green function); hence, the
velocity potential should be calculated as a solution of elliptic equation.

12.2 Equations and Transformation of Coordinates

Let us consider a non-dimensional form of the principal 3-D equations for potential
waves written in the Cartesian coordinates, i.e., Laplace equation for velocity
potential,

Uxx þ c2Uyy þUzz ¼ 0; ð12:2:1Þ

two boundary conditions at free surface g ¼ gðx; y; tÞ, i.e., the kinematic condition

gt þ gxux þ c2gyuy � Uz ¼ 0; ð12:2:2Þ

and Bernoulli integral:

ut þ
1
2
ðu2

x þ c2u2
y þU2

z Þþ gþ p ¼ 0; ð12:2:3Þ

where ðx; y; zÞ are the Cartesian coordinate system, t is time; gðx; y; tÞ describes
single-valued interface, i.e., free surface; U is the 3-D velocity potential and u is a
value of U at surface g; and p is the external pressure created by the flow above
surface and normalized using the density of water. The subscripts denote partial
differentiation with respect to the corresponding coordinate. Taking into account the
surface tension effect is quite straightforward. However, in this paper, we are
focused on large waves, so the corresponding term in (12.2.3) is omitted.

Equations (12.2.1)–(12.2.3) are written in a non-dimensional form by using the
following scales: length L where 2pL is (dimensional) period in horizontal direc-
tion; time L1/2g−1/2; and velocity potential L3=2g1=2 (g is acceleration of gravity).
The pressure is normalized by water density, so that the pressure scale is Lg.
Equations (12.2.1)–(12.2.3) at p ¼ 0 are self-similar to transformation with respect
to L.Wave spectrum is normally more or less narrow, that is why it is convenient to
introduce different length scales L and Ly in directions x and y. Since the equations
are solved in square domain ð0\n\2p; 0\#\2pÞ, the ratio c ¼ L=Ly is included
in the equations.

System (12.2.1)–(12.2.3) is solved as an initial value problem for unknown
functions U and g with the given initial conditions Uðx; y; z ¼ gðx; y; t ¼ 0Þ; t ¼ 0Þ
and gðx; t ¼ 0Þ: It should be noted that though Eqs. (12.2.2) and (12.2.3) are written
for free surface, there are no straightforward ways to reduce the problem to a 2-D
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problem, since for evaluation of Uz Laplace Eq. (12.2.1) should be solved in the
domain

f0\n� 2p; 0\#\2p; H\z� gg ð12:2:4Þ

with a curvilinear upper boundary which is a function of n and #. Integration of the
system in the Cartesian coordinates is either quite inaccurate or too expensive
computationally and hardly efficient for the time intervals which are much greater
than the chosen timescale. This is why the existing numerical models of waves are
mostly based on the strongly simplified approaches.

Let us introduce the non-stationary surface-following non-orthogonal coordi-
nate system:

n ¼ x; # ¼ y; f ¼ z� gðn; #; sÞ; s ¼ t ð12:2:5Þ

The periodicity conditions over the ‘horizontal’ coordinates n and # are
assumed:

xðn; #; f; sÞ ¼ xðnþ 2p; #; f; sÞþ 2p;

yðn; #; f; sÞ ¼ yðn; #þ 2p; f; sÞþ 2p;

zðn; #; f; sÞ ¼ zðnþ 2p; #; f; sÞ;
zðn; #; f; sÞ ¼ zðn; #þ 2p; f; sÞ:

ð12:2:6Þ

Variable gðx; y; tÞ ¼ gðn; #; sÞ in (12.2.5) is the moving periodic wave surface
given by Fourier series

gðn; #; sÞ ¼
X

�M\k\M

X
�My\l\My

hk;lðsÞHk;l ð12:2:7Þ

and M and My are the numbers of modes in directions n and #, correspondingly,
while Hk;l is the function:

Hk;l ¼
cosðknþ 1#Þ �Mx � k�Mx; �My\l\0
cosðknÞ �Mx � k� 0; l ¼ 0
sinðknÞ 0� k�My; l ¼ 0
sinðknþ l#Þ �Mx � k�Mx; 0\l�My

8>><
>>: : ð12:2:8Þ

If the accuracy of Fourier approximation in both directions is the same, then
c ¼ Mx=My is a ratio of the domain sides L=Ly in n and # directions. The formu-
lation (12.2.8) that contains real coefficients of Fourier transform in the rectangular
matrice allows us to present amplitudes in a form convenient for compact pro-
gramming. Form (12.2.8) permits simple differentiation over n and # of any
function F represented by the Fourier coefficients Fk;l in Fourier space:
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@

@n

X
�M\k\M

X
�My\l\My

Fk;lðsÞHk;l

0
@

1
A ¼ �

X
�M\k\M

X
�My\l\My

kF�k;lðsÞHk;l;

ð12:2:9Þ

@

@#

X
�M\k\M

X
�My\l\My

Fk;lðsÞHk;l

0
@

1
A ¼ �c

X
�M\k\M

X
�My\l\My

lFk;�lðsÞHk;l:

ð12:2:10Þ

Since the ratio of horizontal scales c is taken into account in definition of
derivative over #, it is not included in the equations given below.

The vertical coordinate (12.2.6) is constructed for a deepwater case. As shown,
the vertical fluctuations of the ‘horizontal’ coordinates n and # do not attenuate with
depth. Such fluctuations do not create any approximation problems. However, the
lower boundary condition is applied at variable level H ¼ fþ g. Since all the
variables in wave motion attenuate with depth exponentially, the difference between
the fixed and fluctuating levels for depth Hj j � gj j becomes negligible. The pos-
sibility of using coordinates (12.2.6) for the finite depth case is mentioned in
conclusion.

12.3 Three-Dimensional Deepwater Wave Model

The main advantage of the surface-following coordinate system is that the variable
surface g is mapped onto the fixed plane f ¼ 0: The 3-D equations of potential
waves in the system of coordinates (12.2.6) at f\0 take the following form:

gs ¼ �gnun � g#u# þð1þ g2n þ g2#ÞUf; ð12:3:1Þ

us ¼ � 1
2

u2
n þu2

# � ð1þ g2n þ g2#ÞU2
f

� �
� g� p; ð12:3:2Þ

Unn þU## þUff ¼ !ðUÞ; ð12:3:3Þ

where U is three-dimensional velocity potential; p is external pressure; and u is a
value of U at surface f ¼ 0, while !ðÞ is the operator:

!ðÞ ¼ 2gnðÞnf þ 2g#ðÞ#f þ gnn þ g##
� �ðÞf � g2n þ g2#

� �
ðÞnn ð12:3:4Þ

Equations (12.3.1) and (12.3.2) are written at free surface the position of which
in the surface-following coordinate system is fixed at f ¼ 0, as mentioned above.
These equations formally look as two-dimensional; however, they include a vertical
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derivative of potential Uf which should be derived from elliptical Eq. (12.3.3) with
the following boundary conditions:

Uðf ¼ 0Þ ¼ u;
@U
@f

ðf ! �1Þ ¼ 0: ð12:3:4Þ

The second condition (12.3.4) in the numerical scheme is replaced by the
condition at finite depth @U

@f ðf ¼ HÞ ¼ 0 where depth H should be large enough to
be considered as infinitely large. The previous calculations with 1-D model show
that such H can be defined by the formula H ¼ 2pn=kp where kp is the wave
number of the mode with the largest amplitude, while 1\n� 2.

Equations (12.3.1) and (12.3.2) were suggested by Zakharov (1968) with no
mention that they are derived formally with transformation (12.2.6). The approach
has not been extended for the full system of the equations.

12.4 Linear (Analytic) and Nonlinear Components
of Velocity Potential. Numerical Solution
of 3-D Equation for Velocity Potential

The 2-D equations for potential waves written in the conformal coordinates have a
remarkable property; i.e., Laplace equation remains the same. This is why the
Fourier modes of the velocity potential can be represented through standard
expansion. It means that the potential and any of its derivatives decrease expo-
nentially from free surface. In a 3-D case in the Cartesian coordinates, as well as in
the curvilinear coordinates, it cannot be precise. However, it would be quite rea-
sonable to suggest that the exponential behavior remains dominant, while the
potential can be represented as a sum of two components, i.e., analytic (‘linear’)
component �U; ð�u ¼ �Uðn; #; 0ÞÞ and arbitrary nonlinear componenteU; ðeu ¼ eUðn; #; 0ÞÞ1:

u = �uþ eu; U ¼ �Uþ eU: ð12:4:1Þ

The analytic component �U satisfies Laplace equation:

�Unn þ �U## þ �Uff ¼ 0; ð12:4:2Þ

1Note that the term ‘linear’ is conventional, since this component is also influenced by the
nonlinearity due to the curvature of surface.
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with the known solution:

�Uðn; #; fÞ ¼
X
k;l

�uk;l exp kj jfð ÞHk;l; ð12:4:3Þ

(�uk;l are the Fourier coefficients of the surface analytical potential �u at z = 0).
Solution satisfies the following boundary conditions:

1 ¼ 0 : �U ¼ �u

1 ! �1 : eUf ! 0
ð12:4:4Þ

The nonlinear component satisfies the equation:

eUnn þ eU## þ eUff ¼ ! eU� �
þ! �Uð Þ: ð12:4:5Þ

Equation (12.4.2) is solved with the boundary conditions:

1 ¼ 0 : eU ¼ 0

1 ! �1 : eUf ! 0
ð12:4:6Þ

Derivatives of the linear component �U are calculated directly with use of (12.2.9)
and (12.2.10). The scheme combines the 2-D Fourier transform method in ‘hori-
zontal surfaces’ and the second-order finite-difference approximation on the stret-
ched staggered grid defined by relation Dfjþ 1 ¼ vDnjðDf is a vertical step, and
j ¼ 1 at the surface). The stretched grid provides an increase of accuracy of
approximation for exponentially decaying modes. The values of the stretching
coefficient v lie within the interval 1.05–1.20. The finite-difference second-order
approximation of Eq. (12.4.5) on the non-uniform vertical grid is quite straight-
forward. The vertical derivatives of the first and second orders for f\0 are
approximated with the following formulas:

@2Uk;l;j

@f2
� A1ðjÞUk;l;j�1 þA2ðjÞUk;l;j þA3ðjÞUk;l;j�1

@Uk;l;j

@f
� A4ðjÞUk;l;j�1 þA5ðjÞUk;l;j þA6ðjÞUk;l;j�1

ð12:4:7Þ

where

A1ðjÞ ¼ 2Dfjþ 1

Dj
; A3ðjÞ ¼ 2Dfj

Dj
; A2ðjÞ ¼ �A1ðjÞ � A2ðjÞ

A4ðjÞ ¼ 2Dfjþ 1

Dj
; A6ðjÞ ¼ 2Dfj

Dj
; A5ðjÞ ¼ �A4ðjÞ � A6ðjÞ

ð12:4:8Þ
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and

Dj ¼ Dfjþ 1ðDfjÞ2 þDfjðDfjþ 1Þ2: ð12:4:9Þ

The number of levels Lw depends on shape of spectrum, and in the calculations
represented below, Lw varies within the limits Lw ¼ 15�100. Opposite to the HOS
and surface integral methods, this numerical scheme for 3-D wave problem is
written directly for the initial system of Eqs. (12.3.1)–(12.3.3).

The diagnostic Poisson-like Eq. (12.4.5) for the nonlinear component of the
velocity potential eU is solved using tridiagonal matrix algorithm (TDMA, Thomas
1949) generalized for a 3-D case through the Fourier presentation over the ‘hori-
zontal’ coordinates. The term !ðeUÞ in the right-hand side of Eq. (12.4.5) is cal-
culated at each iteration using the values of eU obtained at the previous iteration.
The term !ð�UÞ, as well as the coefficients that include derivatives of g in the
right-hand side of (12.4.5), is fixed inside the iterations. The initial eU is equal to
zero, while in the process of calculations, this value is taken from the previous time
step. Iterations continue until the residual error for Eq. (12.4.5) yields accuracy
e� 10�9 � 10�6, depending on the parameters of the vertical grid. Typically, for all
the calculations considered, error e decreases exponentially during iterations. The
speed of the calculations for a multi-mode wave field is reasonably high if the rms
wave steepness does not exceed the value of 0.2. However, the model remains
stable even if the local steepness considerably exceeds 1 at certain points.

The suggested scheme has obvious advantages if compared with the schemes
that do not use splitting into nonlinear and linear parts, i.e., (1) Values of eU are by
two orders less than the values of �U; (2) derivatives �U are calculated with analytical
accuracy. This is why the number of levels and the prescribed relative accuracy of
the solution for eU can be reduced; and (3) the number of iterations is reduced
compared with the scheme for Eq. (12.3.3), so the calculation speed is higher.
A typical number of iterations for Eq. (12.3.3) for e ¼ 10�7 are 5–10, while the
number of iterations for Eq. (12.4.5) seldom exceeds 2. The 3-D solution being
found, the Fourier coefficients for vertical velocity @U=@fð ÞK;l;0 on the surface are
calculated as a sum of linear and nonlinear components:

@U
@f

� �
k;l;0

¼
X
k;l

kj j�uk;lHk;l þA1
j
eUk;l;1 � A2

j
eUk;l;2; ð12:4:10Þ

where A1
j and A2

j are the coefficients used for calculation of the vertical velocity at
f ¼ 0 with the second-order accuracy:

A1 ¼ f1
f1f2 � f22

; A2 ¼ f2
f21 � f1f2

; ð12:4:11Þ
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and f1f2 are vertical coordinates of eUk;l;1 and eUk;l;2, respectively. Note that eUk;l;0 ¼
0 and f0 ¼ 0.

The Fourier transform method assumes that all the nonlinear terms are calculated
on extended grid N � NyðN ¼ 4M;Ny ¼ 4MyÞ in physical space, the result being
transformed into the Fourier space. The description of variables in terms of the
Fourier components is more compact than that in terms of the grid values. That is
why the Fourier components are considered as a basic presentation, while the grid
fields are calculated and stored only when and where they are required.

The asymptotic behavior of eUk;l in the vicinity of f ¼ 0 is very close to the linear
one, which provides high relative accuracy of the order of 10�5�10�4 for the
second-order approximation for vertical derivative in Eq. (12.4.5) at f\0 and for
vertical velocity of the order of 10�7�10�8 on surface f ¼ 0. The profiles of the
Fourier amplitudes of linear and nonlinear components are given in Fig. 12.1. The
calculations were done for the initial wave field defined by Pierson and Moskowitz
(1964) spectrum, with Mx ¼ 256, My ¼ 64, Lw ¼ 15 for t ¼ 500 (which corre-

sponds to 100,000 time steps). As shown, the values of eUk;l are by two decimal
orders smaller than the values of �Uk;l.

The model is mostly intended for simulation of the multi-mode long-term
periodic wave field evolution with realistic spectrum. No matter how high the
spectral resolution might be, for the long-term simulations of nonlinear waves, the

energy flux into a truncated part of spectrum
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

p
[M

� �
must be

Fig. 12.1 Upper panel
vertical profiles of Fourier
coefficients for analytic
components of velocity
potential 104 �Uk;lðfÞ; bottom
panel vertical profiles of
Fourier coefficients for
nonlinear component
106 eUk;lðfÞ (Chalikov et al.
2014 © 2014 Springer-Verlag
Berlin Heidelberg. With
permission of Springer)
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parameterized. Otherwise, sudden energy accumulation violating the energy con-
servation law at large wave numbers always corrupts the numerical solution. In
numerical solutions of the fluid mechanics equations, this effect is suppressed by
introducing different types of viscosity. Thus, the atmospheric models often include
purely artificial operators formulated in the Fourier space. A similar scheme was
described in the previous articles which considered the conformal method for direct
wave modeling (Chalikov and Sheinin 1998, 2005). Following the scheme, simple
dumping terms were added to the right-hand sides of the Fourier form of
Eqs. (12.3.1) and (12.3.2):

@gk;l
@s

¼ Ek;l � lk;lgk;l; ð12:4:12Þ

@uk;l

@s
¼ Fk;l � lk;l/k;l ð12:4:13Þ

where Ek;l and Fk;l are the Fourier coefficients for the right-hand sides of
Eqs. (12.3.1) and (12.3.2), and

lk;l ¼ rM kj j�kd
M�kd

� �2
if kj j[ kd

0 otherwise

(
ð12:4:14Þ

where kj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ c2l2

p
, and kd is radius of the domain which is not affected by

smoothing. The value of kd depends on the spectral resolution and position of
spectrum in the Fourier domain. The value of kd is chosen in the interval (0.5M,
0.9M) in different versions of the model. The value of r ¼ 0:25 is chosen for all of
the runs discussed below, since it was found that the results were reasonably
insensitive to the variations of r. Dissipation effectively absorbs energy at the wave
numbers close to truncation number M and does not affect energy at wave numbers
kj j � kd. Note that increase of truncation number M shifts the dissipation area to
higher wave numbers (if M ! 1, the energy sink due to dissipation tends to be
zero), so the scheme described above retains the approximation of the original
(non-dissipative) system. Note also that the scheme (12.4.12)–(12.4.14) is intro-
duced in order to describe real physical process, i.e., the dissipation of wave energy
due to the flux of energy into a truncated part of spectrum. This process is usually
very slow. The decay of total energy E at each time step is of the order of
10�7 � 10�6
� �

E, but in the absence of such dissipation, the numerical instability
growing exponentially in the vicinity of k = M occurs and finally terminates the
solution. The fourth-order Runge–Kutta scheme was used for time integration of
Eqs. (12.3.1) and (12.3.2). For any explicit time integration scheme, the stability
criterion has the form Ds�Cx�1

max (if dissipation does not play a significant role),

where Ds is time step, xmax ¼ k1=2max is maximum frequency of the system, and C is a

276 12 Three-Dimensional Modeling of Potential Waves



constant depending on the scheme; for the Runge–Kutta scheme, C ¼ 2
ffiffiffi
2

p
. We

should note that such estimation does not always work in our case because of the
strong nonlinear local effects. Finally, time step was chosen empirically. For
example, for M = 256, the time step used was 0.005.

12.5 Validation of the 3-D Deepwater Model

No doubt that at sufficient number of modes, the Eqs. (12.3.1) and (12.3.2) can be
integrated in time with the Fourier transform method and Runge–Kutta scheme with
high accuracy. Thus, the critical point of the entire scheme is the accuracy of the
solution of 3-D equations for the velocity potential (12.4.5) with the boundary
condition (12.4.6). There are several methods of validation of the scheme for
Eq. (12.4.5). The most straightforward method is based on the comparison of the
vertical velocity on surface Uf for the 2-D problem obtained in the current scheme,
with the vertical velocity calculated using the precise scheme based on conformal
mapping. Such comparison was done for the Stokes wave with steepness
ak ¼ 0:40. Transferring the solution from the conformal coordinates to the
uniform-over-x grid was done using the fourth-order periodic spline interpolation. It
was found that the solutions for vertical velocities obtained with 2-D and 3-D
models have coincided, the accuracy being of the order of 10�5ak. Note that the
two-dimensionality assumption used in such validation does not create a problem,
since only the vertical operator is being checked.

The second method of validation is based on analytical solution for Eq. (12.3.3):

Uðn; #; fÞ ¼
X

�Mx\k\Mx

X
�My\l\My

X
1\i\Nx

X
1\j\Ny

u0
k;l exp kj j fþ g ni; #j

� �� �� �
Hk;l;

ð12:5:1Þ

where N and Ny are the numbers of grid points in directions n and #, corre-
spondingly; u0

k;l are Fourier coefficients of the velocity potential at the fixed level
z ¼ 0. Equation (12.5.1) defines the potential on surface u ¼ Uðn; #; 0Þ through the
Fourier coefficients u0

k;l in the Cartesian coordinate system for z ¼ 0. Since coef-

ficients u0
k;l are unknown, then Eq. (12.5.1) cannot be used directly for integration

of the system (12.3.1)–(12.3.3). However, Eq. (12.5.1) is useful for detailed vali-
dation of accuracy of its numerical solution. First, arbitrary Fourier coefficients u0

k;l

for the velocity potential at level z ¼ 0 are chosen. Then, the velocity potential at
free surface z ¼ g is transferred using (12.5.1). The values of the velocity potential
are used as surface boundary condition for Eq. (12.4.5). The calculated vertical
velocity on the surface is then compared with the result calculated directly using
Eq. (12.5.1)
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@U
@f

ðn; #; 0Þ ¼
X

�Mx\k\Mx

X
�My\l\My

X
1\i\Nx

X
1\j\Ny

kj ju0
k;l exp kj jg ni; #j

� �� �
Hk;l

ð12:5:2Þ

Such calculations prove that analytical solution (12.5.1) coincides with the
results of the numerical solution of Eq. (12.3.3), the accuracy being equal to
10�5�10�4
� �

ak.
The second method of validation was applied for the wave field defined by

JONSWAP spectrum at Xp ¼ U10=cp ¼ 2 with directional spreading proportional

to sechðhÞð Þ4, (h is the direction of mode), which corresponds to steep waves. The
exact calculations were made at resolution M ¼ 128, My ¼ 32, with the number of
levels Lw ¼ 100 and accuracy of the solution of Eq. (12.3.3) being equal to
e ¼ 10�10. Then, the solution at a lower resolution was compared with the
high-accuracy solution. In Fig. 12.2, the dependence of rms error Erms

Erms ¼ ðw100 � wLÞ2
� �1=2

; ð12:5:3Þ

is given (w100 and wL are the grid surface vertical velocities obtained at Lw ¼ 100
and at variable Lw). As shown, rms accuracy Erms monotonically decreases when
approaching the number of levels Lw ¼ 100.

The methods described above are targeted at validation of the numerical scheme
for the elliptic Eq. (12.3.3) used at every time step. The most efficient method of
validation of both the numerical scheme and codes for Eqs. (12.3.1)–(12.3.3) is the
comparison of the results of integration of Eqs. (12.3.1)–(12.3.3) with exact steady
solution of the equations obtained in a moving coordinate system. To obtain steady
solutions with very high accuracy (crucial for the model validation), an iterative

Fig. 12.2 Dependence of on
the number of levels Lw.
Sign + corresponds to rms
error Erms (Eq. (12.5.3), sign
* corresponds to maximum
error (Chalikov et al. 2014 ©
2014 Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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algorithm was developed on the basis of integration operators and Hilbert transform
in the Fourier space (see Chap. 3). This method is also used in the current chapter.
The calculations are performed for the Stokes waves propagating along the x-axis
defined at wave numbers k ¼ 1; 2; 3 . . .M;My ¼ 0. This setting is most appropriate
for validation of the numerical scheme, since there is no room for the development
of the Benjamin–Feir instability (Benjamin and Feir 1967). Hence, all the modes
with wave numbers k[ 1 represent the components (‘bound waves’) of Stokes
wave. The similar calculations using the 2-D conformal model demonstrate the
highest stability of the first 800 modes of Stokes wave over hundreds of wave
periods (see Chalikov 2005). Note that Stokes waves can be also assigned at
k ¼ nk0 (n is a whole number); however, unavoidable numerical errors can finally
play a role of disturbances initiating the development of the Benjamin–Feir
instability.

The simulation of a very steep Stokes wave with steepness ak ¼ 0:40 (assigned
in the initial condition) in the current work is performed with the parameters
M ¼ 128, My ¼ 16, Lw ¼ 30, and e ¼ 10�6. Note that for simulation of the 2-D
process, the number of lateral modes My can be chosen as 1. Value Ly ¼ 16 was
used for a purely technical check of the codes, proving that lateral modes are not
generated during integration. The wave surface assigned in the initial condition and
the wave surface obtained after almost 100 periods of the calculations (about
10,000 time steps) are shown in Fig. 12.3.

As shown, the surface remains smooth without any signs of disturbances. The
theoretical phase velocity of the Stokes wave with steepness ak ¼ 0:40 is equal to
1.0822. The phase velocity reproduced by the numerical model is 1.0820. The more
detailed validations show the time evolution of the amplitudes of the first 13 Stokes
wave modes (Fig. 12.4).

As shown, the first several modes of the Stokes wave with the amplitudes as
small as 10�4 remain practically unchanged, while the rest of the amplitudes
fluctuate. The relative magnitude of fluctuation increases with growth of wave
number. However, the average values of amplitudes for each mode do not change,

Fig. 12.3 Shape of Stokes
wave ðak ¼ 0:40Þ at t ¼ 0
and t ¼ 100 periods
(Chalikov et al. 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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their values decreasing monotonically with growth of wave number. There are no
signs of instability which would indicate that high-order Stokes modes start
growing. Evolution of the rms difference Erms between the initial wave surface g0
and the surfaces g simulated in the course of integration

Erms ¼ g0 � gðsÞð Þ
� �1=2

ð12:5:4Þ

is shown in Fig. 12.5 (top curve).
As shown, Erms is a strictly periodic function of time. When phases become

equalized, the rms difference decreases to 10�3ak with no tendency for growing. In
reality, the error is smaller, because the accuracy of coincidence of surfaces depends
on the frequency of sampling. The bottom curve represents a similar rms difference
between the initial g0 and current waves gðsÞ calculated over the interval between
two consequent peaks of the Stokes wave. Since domain 0\n[ 2p contains only
one wave peak, in order to calculate the rms difference, domain was periodically
extended over the interval �2p\n\4p. As shown, this error fluctuates around the
value of 10�3 with no tendency for growing.

Unlike the 2-D model, the 3-D model uses a finite-difference approximation for
the velocity potential equation. This is why the solution for Stokes wave is not as
exact as the same solution in the conformal coordinates. A higher vertical resolution
results in higher accuracy of the solution for velocity potential, though such cal-
culations certainly become more time consuming. Note that this method of

Fig. 12.4 Evolution of amplitudes of steep ðak ¼ 0:40Þ Stokes wave As assigned initially at wave
numbers k ¼ 1; 2; 3; . . .M (Chalikov et al. 2014 © 2014 Springer-Verlag Berlin Heidelberg. With
permission of Springer)
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validation is full and non-trivial and the results being combined with the investi-
gation of the numerical scheme for Eq. (12.3.3) prove high accuracy of the entire
numerical model. For technical reasons, the similar validation was also done for the
Stokes wave propagating along the y-axis.

In the following numerical experiment, the Stokes wave with steepness ak ¼
0:35 was assigned at wave numbers k ¼ 8; 16; 24 . . .M, while surface was initially
distorted by random linear waves with the amplitudes by five decimal orders
smaller, if compared with the amplitude of the Stokes first mode. The calculations
were done in rectangular Fourier domain with dimensions Mx ¼ 128 and My ¼ 32.
Since the modes of the Stokes wave were set over the interval Dk ¼ 8, the noise
modes started to grow similar to the process simulated with the 2-D conformal
model (Chalikov 2007). The medium steepness ak ¼ 0:35 was chosen here,
because at larger steepness, the instability develops too fast.

Evolution of extreme values of steepness is shown in Fig. 12.6.
Absolute values of negative steepness are larger than those of the positive one,

which indicates a forward inclination of the waves linked to the horizontal asym-
metry. Wave field finally becomes too steep, while the waves tend to overturn.
Unlike the 2-D conformal model which allows us to reproduce a non-single-valued

Fig. 12.5 Top curve
represents evolution of rms
difference E1

rms Eq. (12.5.4)
between the initial wave
surface g0 and the surfaces g
simulated in the course of
integration. Bottom curve
corresponds to rms difference
between the initial and
superimposed wave profiles
(Chalikov et al. 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)

Fig. 12.6 Evolution of
maximum positive steepness
(dashed curve) and minimum
negative k ¼ 8n; ðn ¼
1; 2; 3. . .Þ with imposed
disturbances (Chalikov et al.
2014 © 2014 Springer-Verlag
Berlin Heidelberg. With
permission of Springer)
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shape of surface, the current model becomes unstable when the local steepness
exceeds 1.1. Before this moment, the total wave energy is preserved with very high
accuracy. A limiting value of steepness depends on the number of modes and
magnitude of the time step.

The initial wave surface and the wave surface prior to breaking are shown in
Fig. 12.7. As shown, the 2-D instability leads to the formation of a ‘horseshoe’
regular structure well known from the experiments (Su 1982) and numerical sim-
ulations based on surface integral (Fructus et al. 2005).

Evolution of amplitudes of the first seven modes of the Stokes wave is shown in
Fig. 12.8. Solid lines correspond to the amplitudes of the Stokes modes, while
aggregated gray lines show growing and fast-fluctuating intermediate modes. The
main mode with the amplitude A8 ¼ 0:35 does not show a visible change; the
amplitudes of all other modes decrease, while the intermediate modes are devel-
oping by taking energy from all the modes of the Stokes wave. The total energy
remains constant within the range of six decimal digits.

The 2-D wave spectrum prior to breaking (which corresponds to the developed
‘horseshoe’ quasi-regular structure of Fig. 12.7) is shown in Fig. 12.9 (top panel).
Since all variables are non-dimensional, the spectrum is shown in conventional units,
the darkest color corresponding to the maximum of spectral density Sm, while white
color is showing the values less than 10�12Sm. The spectrum in Fig. 12.9 demon-
strates that development of new modes in a 2-D case occurs in a more complicated
way; i.e., the nearly discrete disturbances develop not at l ¼ 0 but rather at some
angle to the main modes with wave numbers l ¼ �9; 18; 27. The main mode of the
Stokes wave located at k ¼ 8 generates disturbances at the lateral wave number
l ¼ 9. The ratio of wave numbers is l=k ¼ 1:125 which is reasonably close to the
value l=k ¼ 1:15 found with the linear 2-D instability theory of the Stokes wave

Fig. 12.7 Train of Stokes
waves ðak ¼ 0:35Þ at initial
conditions (t ¼ 0) and a shape
of surface just prior to the
development of numerical
instability (t ¼ 20 periods)
(Chalikov et al. 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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(McLean 1982). As shown, full equations also predict the development of new rows
of modes at l ¼ 9nðn ¼ 1; 2; 3. . .Þ, which corresponds to higher modes of the Stokes
wave. Such evolution of growing modes can be approximated by the expression:

Fig. 12.8 Evolution of
amplitudes of Stokes wave
(ak ¼ 0:35, solid curves)
assigned initially with
superimposed noise.
Aggregated gray lines
correspond to new growing
modes (Chalikov et al.
2014 © 2014 Springer-Verlag
Berlin Heidelberg. With
permission of Springer)

Fig. 12.9 Top panel 2-D
wave spectrum (conventional
units) prior to the
development of breaking (see
Fig. 12.7). Bottom panel rate
of development b of
intermediate mode amplitudes
(Eq. 12.5.5). The values of b
are given outside the frame
for each row. Crosses indicate
the initial position of Stokes
wave modes (Chalikov et al.
2014 © 2014 Springer-Verlag
Berlin Heidelberg. With
permission of Springer)
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Ak;lðsÞ ¼ Ak;lð0Þ exp bk;lxs
� �

: ð12:5:5Þ

The values of bk;l were calculated for Ak;iðsÞ using the rms method. In the bottom
panel of Fig. 12.9, the local maxima of b are shown by dots whose sizes depend on
the magnitude of b. The positions of the original Stokes wave modes are indicated
by crosses. Figure 12.9 shows that disturbances are located symmetrically with
respect to k-axis.

12.6 Simulation of a Multi-Mode Wave Field

The third series of calculations was performed to simulate a multi-mode wave field
initially defined as a superposition of linear modes with random phases, corre-
sponding to Pierson and Moskowitz (1964) spectrum with directional spreading in
the energy-containing part of the spectrum proportional to sech hð Þð Þ4. The simu-
lations were performed in rectangular domain with the number of modes different in
x- and y-directions, i.e., Mx ¼ 256, My ¼ 64. In this case, the grid includes 564,288
knots (130,302 degrees of freedom). All the calculations were conducted on Dell
workstation.

The peak of spectrum was initially placed at ðk; lÞ ¼ ð64; 0Þ. Calculations with
the time step Ds ¼ 0:0025 were performed up to non-dimensional time s ¼ 250
(10,000 time steps), which corresponds to 318 peak wave periods.

Over such a long period of integration, the energy of waves in the absence of any
energy input decreases due to the flux of energy into the subgrid domain, as
described above. Pierson–Moskowitz spectrum corresponds to the statistically
steady wave regime, when the total energy input equals total energy dissipation.
This balance can be introduced by using the energy input from wind, as formulated
in Chalikov and Rainchik (2010), as well as the energy dissipation through the
breaking adjustment as suggested in Chalikov and Sheinin (2005). In any case, at
present stage, implementation of the complicated physics seems premature. This is
why a quasi-stationary regime is reproduced on the basis of a simple scheme
designed to preserve the total energy. It is done by the introduction of additional
terms in the spectral form of Eqs. (12.3.1) and (12.3.2):

@gk;l
@s

¼ Hk;l þð1� cÞgk;l; ð12:6:1Þ

@uk;l

@s
¼ Fk;l þð1� cÞuk;l; ð12:6:2Þ
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where gk;l and uk;l are the Fourier amplitudes for g, while Hk;l and Fk;l are the
Fourier amplitudes of the right-hand sides of Eqs. (12.3.1) and (12.3.2), including
additional terms introduced by Eqs. (12.4.12) and (12.4.13); c is coefficient:

c ¼ E=E0ð Þ1=2; ð12:6:3Þ

and E0 is the initial total wave energy equal to the sum of the kinetic and potential
energies; E is the total energy at the previous time step. Since the coefficient ð1� cÞ
is very small (of the order of 10−6), algorithm (12.6.1)–(12.6.3) supports the total
energy with the accuracy of the order of 10−6, which practically does not change the
structure of the solution either in the Fourier space or in physical space. Note that
algorithm (12.6.1)–(12.6.3) is designed to compensate attenuation of energy due to
the flux to high wave number range.

For typical peak wavelength, corresponding to Pierson–Moscowitz spectrum,
the horizontal size of domain is of the order of several kilometers. The domain
includes too many waves that is why Fig. 12.10 shows a 1/64 part of the computed
wave surface for s ¼ 250. Visually, the surface closely reminds a natural ocean
wave surface. The animations generated in the course of integration depict highly
authentic wave field. Just after one peak wave period, the initially sinusoidal waves
obtain a typical Stokes-like shape with sharp crests and flat troughs. The probability
of surface elevation (normalized by significant wave height) is shown in Fig. 12.11.
For the calculations, 655,360,000 values of gi;j were used. Dashed line represents
reflected branch of the probability distribution for negative z. As shown, the
probability of positive elevation (wave crests) is considerably larger than that of the
negative one (troughs), exactly as in the 2-D modeling. Thin line in Fig. 12.11
corresponds to the Gaussian distribution. As shown, the negative values of g have
smaller probability than the Gaussian distribution predicts, while the probability of
positive values g considerably exceeds the Gaussian probability. It can be explained
by the tendency of waves to approach the Stokes-like shape. This feature also

Fig. 12.10 Example of the surface obtained at 318 periods of simulation of a wave field assigned
initially with Pierson–Moskowitz spectrum. 1/64 part of the entire surface is shown (Chalikov
et al. 2014 © 2014 Springer-Verlag Berlin Heidelberg. With permission of Springer)
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explains the mechanism of wave breaking and extreme wave generation. Some of
the waves change their shape so significantly that they become unstable. It happens
without a noticeable exchange between modes, with no sign of modulational
instability found (see Chalikov 2009). The integral probability of the wave
trough-to-crest height eHf ¼ Hf=Hs (Hs is significant wave height) is shown in
Fig. 12.12. As shown, a wave with non-dimensional height eHf [ 2:1 can emerge as
frequently as one among one thousand waves. Naturally, to be really ‘freak,’ the
wave should be large in physical space. The largest value of eHf was equal to 2.71.

Evolution of the kinetic (solid curve) and potential (dashed curve) energies is
shown in the top panels of Fig. 12.13 as the percentage of the total energy divided
into two. To make the figure clearer, only ten successive peak wave periods of the
initial and final intervals are shown. The potential and kinetic energies fluctuate
considerably (up to 1 %) over the period of adjustment of linear initial conditions to
the nonlinearity. These fluctuations fall in the range of the order of 0.1 %, almost
over the entire period of integration. The sum of the potential and kinetic energies is
preserved with the accuracy of the order of 10�5. In the bottom panel of Fig. 12.13,
evolution of skewness (solid line) and kurtosis (dashed line) is given. During the
initial period, fast transformation of elevation and surface potential (initially

Fig. 12.11 Probability of
surface elevation. Thick curve
corresponds to the model
result, while dashed curve
corresponds to the reversed
probability distribution for
negative values z; thin curve
represents Gauss distribution
(Chalikov et al. 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)

Fig. 12.12 Thick curve
shows the integral probability
of trough-to-crest wave height
Hf normalized by significant
wave height Hs. Thin curve
corresponds to Rayleigh
distribution (Chalikov et al.
2014 © 2014 Springer-Verlag
Berlin Heidelberg. With
permission of Springer)
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assigned according to the linear theory) occurs. Then, the system enters a
quasi-stationary regime maintained for most of the integration time. Both skewness
and kurtosis (exceeding 3) are positive, which is a particular feature of nonlinear
waves.

It is generally accepted that the linear dispersion relation k ¼ x2 (k and x are the
non-dimensional wave number and frequency) is valid in a broad range of wave
frequencies. The experimental data, however, confirm applicability of this formula
to the relatively low frequencies. The numerical model gives us an opportunity to
investigate this problem in more detail.

For the short time periods, when the rate of amplitude hk;l
		 		 change is small, i.e.,

@ hk;l
		 		
@s

	 xk;l hk;l
		 		 ð12:6:4Þ

the mode evolution is described by the following relation:

gðn; #; sÞ ¼
X
k;l

hk;lhk;lðknþ l#� xsÞ; ð12:6:5Þ

which gives

@g
@s

¼
X
k;l

xk;lh�k;�lhk;l knþ l#� xk;ls
� �

; ð12:6:6Þ

Fig. 12.13 The top panels represent evolution of kinetic (solid curve) and potential (dashed
curve) energies; the bottom frames show skewness (solid curve) and kurtosis (dashed curve) of
wave surface. The left panels correspond to the first ten peak wave periods, and the right panels
represent the last ten peak wave periods (Chalikov et al. 2014 © 2014 Springer-Verlag Berlin
Heidelberg. With permission of Springer)
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and instantaneous value of frequency can be calculated as follows:

xk;l ¼
hsk;l

h�k;�l
; ð12:6:7Þ

where notation hsk;l ¼ @hk;l
@s is used. Calculations using (12.6.7) give large scatter. This

is why the rms method for calculating the averaged values of frequency �xk;l is used

�xk;l ¼
hsk;lhk;l

h2k;l
: ð12:6:8Þ

An accuracy of this method was verified with the hk;l and hsk;l data, generated by
the linear version of the model which was integrated over several tens of peak wave
periods. It was found that for this case, the formula (12.6.8) satisfies the linear
dispersion relation k ¼ x2 with very high accuracy. Note that the waves with the
same wave numbers running in opposite directions cannot be separated; i.e., the
formula (12.6.8) gives absolute values of the frequency. In this particular case, it is
not important, since the energy of opposite waves is very small. It was found that a
deviation from the linear dispersion relation depends on the energy of mode, i.e.,
the less the energy, the stronger the deviation. These effects are demonstrated in
Fig. 12.14 where the spectral density of energy is plotted in the coordinates
xlin;xmodð Þ where xlin ¼ k1=2 and xmod ¼ �x.
Different levels of energy (normalized by its maximum) are shown by gray tone

of various densities. Solid curve shows the spectral energy distribution averaged
over equal values of xlin, i.e., over directions. As shown, the modes with large
energy obey the linear dispersion relation; i.e., large energy is concentrated along
the straight line xlin ¼ xmod, while starting approximately from 0:1Sp (Sp is a peak

Fig. 12.14 Distribution of spectral energy log10 �S (�S is spectral density, normalized by its
maximum) in the coordinates xlin;xmodð Þ, where xlin ¼ k1=2 and xmod ¼ �x (Eq. 40). Solid curve
shows the spectral density averaged over directions (Chalikov et al. 2014 © 2014 Springer-Verlag
Berlin Heidelberg. With permission of Springer)
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value of spectrum), the calculated frequency xmod is mostly larger than the linear
frequency xlin. This effect was discovered experimentally and explained by Lake
and Yuen (1978), later being reproduced in numerical models by Chalikov and
Sheinin (1998). In reality, surface waves are nonlinear, each wave being con-
structed from a carrying mode and the so-called bound waves. These waves are not
real waves; they are just shorter modes moving with the speed of the main mode.
Besides, wave field contains free small-amplitude waves whose phase velocity is
close to the linear phase velocity c ¼ x=k. Consequently, at each wave number,
free waves and bound waves coexist. Their averaged calculated frequency is larger
than the linear frequency xlin. This effect is pronounced more clearly if the total
nonlinearity is large, while the energy of free waves remains small.

The most curious property of surface waves is demonstrated in Fig. 12.15.
The spectrum assigned in the initial conditions is smooth (top panel). However,

after just several peak wave periods, the spectrum starts transforming; i.e., sharp
peaks and deep holes appear. Finally, continuous spectrum transforms into the
nearly discrete spectrum which consists of individual peaks. It is tempting to
explain this phenomenon on the basis of the wave–wave resonance mechanism; i.e.,
the resolution is not high enough to cover all possible resonant combinations of

Fig. 12.15 Top panel
corresponds to the initial
Pierson–Moskowitz 2-D wave
spectrum log10 Sð Þ. Bottom
panel corresponds to the final
spectrum after integration
over 318 peak wave periods
(Chalikov et al. 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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wave numbers and frequencies. This explanation, however, should be based on the
assumption that exact dispersion relation is valid. In reality, the phase velocity of
each wave mode is fluctuating due to many reasons, such as nonlinearity, Doppler
effects, and the presence of bound waves. Consequently, the resonant conditions
can get blurred over finite area, and therefore, such an explanation is not valid. If it
were so, the spectrum would have been continuous. Moreover, if resolution were a
problem, then following its increase, the spectrum would have been converging to
the continuous spectrum similar to that in the top panel of Fig. 12.15, which
actually never happens. Note that similar results were obtained using a simplified
model based on the equations derived through expansion of the Hamiltonian up to
the fourth order (Zakharov et al. 2002). The simplified approach allowed authors to
use the resolution several times higher than that used in the current work. However,
the simulation of evolution of the initially homogeneous spectrum resulted in the
strictly discrete spectrum similar to that in Fig. 12.15. Authors of the paper cited
above preferred to explain this effect by the appearance of ‘mesoscopic turbulence,’
which is certainly not an explanation. It should be noted that the discretization effect
can be visible in the 2-D Fourier wave number space, while this effect manifests
itself much weaker in single-point low-resolution frequency spectrum.

Another hypothesis of the wave spectrum tendency for discretization is based on
consideration of a convergence problem. Actually, nonlinear interactions occur in
the orbital velocity field. A change of the spectral resolution results in the modi-
fication of the statistical characteristics of elevation and velocity fields. It is quite
obvious that with increase of the spectral resolution (provided that the total energy
conservation is strictly valid), the statistical properties of velocity and elevation
fields cannot formally come to any reasonable limit. It means that the physical
mechanism that prevents homogenization of spectrum does exist. Probably, the
modes with very close wave numbers cannot exist independently; hence, wave
spectrum consists of finite number of nonlinear modes rather than infinite number of
linear modes (see also Babanin et al. 2014). In other words, wave field probably has
a ‘corpuscular nature.’ This can be an actual cause of the ‘Manhattan-like’ shape of
the 2-D spectrum in Fig. 12.15.

It is interesting to note that the locations of peaks in spectrum are not fixed; peaks
can slowly migrate in the Fourier space. This effect is illustrated in Fig. 12.16 where
a temporal evolution of amplitudes of 25 modes in the vicinity of the initial peak
kx; ky
� � ¼ ð64; 0Þ is represented. The curve seems thick because of high-frequency
fluctuations. Probably, these fluctuations are caused by fast exchange between the
potential and kinetic energies for each single mode visible in Fig. 12.13 (top panel).
Such fluctuations were also observed in the calculations with the exact 1-D con-
formal model (see Fig. 6.13). As shown, each mode in the process of evolution
changes its location quasi-periodically up to several times. The total change of
amplitudes over the entire period reflects the downshifting process.

Looking at the details of the consequent spectra, it is possible to see that each
peak undergoes quasi-periodic fluctuations. The data on the spectrum evolution are
used for the calculations of the nonlinear spectrum transformation rate N
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DSk;l
Dt

¼ Nk;l; ð12:6:9Þ

where DSk;l is changing of the spectral density over time Dt, while Nk;l is the
average rate of evolution of the spectral density due to nonlinear interactions. In
Fig. 12.17, the spectrum �Nl

k integrated over the lateral wave numbers ky is shown

Fig. 12.16 Time evolution of
25 Fourier amplitudes in the
vicinity of the initial wave
peak (Chalikov et al. 2014 ©
2014 Springer-Verlag Berlin
Heidelberg. With permission
of Springer)

Fig. 12.17 a Wave spectrum
integrated over lateral wave
numbers ky. Thick line shows
the initial wave spectrum, and
thin line shows the final wave
spectrum obtained by 318th
wave period. b Thin curve
represents spectrum of a
nonlinear interaction rate
integrated over lateral wave
numbers ky [see Eq. (12.6.9)],
and thick curve shows the
same but smoothed spectrum
(Chalikov et al. 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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(slightly smoothed over the ky wave numbers). As shown, the shape of �Nl
k is

qualitatively similar to the results of the calculations based on the Hasselmann
integral. The energy at the front slope of spectrum increases, while the energy at the
back slope of spectrum decreases, thus providing downshifting. Unfortunately, all
the available schemes for the Hasselmann integral calculations do not allow us to
perform any calculations for such a high resolution used in the present work. Note
that the Hasselmann integral will probably never be checked by direct simulations,
since the numerical models with low resolution are not exact, while high-resolution
calculations of Hasselmann integral are impossible due to the fast growth of
complexity of the algorithm with increase of resolution.

12.7 Ensemble Modeling of 3-D Waves

The instability of wave spectrum as well as its sensitivity to the details of the initial
conditions is not the desirable, though, expected properties of the wave motion.
Evidently, for obtaining stable results, it is necessary to perform multiple simula-
tions of wave field evolution for the same initial wave spectrum, though for dif-
ferent sets of random wave phases. Such calculation is convenient to perform using
multiprocessor computer (see Sanina 2014).

The non-uniformity of wave spectrum is convenient to estimate with parameter R

R ¼
X
k;l

S�1
k;l DS2k;l
� �1=2

ð12:7:1Þ

which characterizes the ratio of the local dispersion of spectrum DS2k;l
� �1=2

(cal-

culated over 4 adjacent points) and the central value of spectrum Sk;l averaged over
the entire spectrum. When the spectrum is smooth, the value of R is small, and R
approaches 1 when the local differences are of the order of the local values of
spectrum.

Evolution of R calculated for 50 runs is shown in Fig. 12.18.
The initial spectra for all the runs were identical, but the wave fields were

assigned with different random sets of phases. As shown, the rates of J growth in
different runs were close to each other, while R increases from R ¼ 0:1 up to
R ¼ 0:48� 0:55 and preserves the tendency for further growth. Such high values
of R indicate that the patchiness of spectrum is a typical phenomenon of a simulated
wave field. The data obtained in different runs allow us to compare the spectra
calculated with the use of the model to the end of each run at 94th peak wave
period. The results of such comparison are given in Fig. 12.19.

Gray curves correspond to different runs, while solid curve corresponds to the
averaged over ensemble spectrum, and dashed curves correspond to dispersion. As
shown, the difference between the spectra is very large, which means that the
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Fig. 12.18 Temporal evolution of ‘patchiness’ index (Eq. 12.7.1). Thin curves correspond to the
data obtained in parallel runs, thick curve shows the averaged over ensemble data, and dashed
curves characterize dispersion of the data (Chalikov et al. 2014 © 2014 Springer-Verlag Berlin
Heidelberg. With permission of Springer)

Fig. 12.19 The wave spectra obtained by 94th peak wave period corresponding to the runs
starting from the same wave spectrum but with a different random set of initial phases. Thick curve
corresponds to the spectrum averaged over ensemble; dashed curve characterizes dispersion of the
data (Chalikov et al. 2014 © 2014 Springer-Verlag Berlin Heidelberg. With permission of
Springer)
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evolution of spectrum depends on a set of the initial phases. The locations of peaks
and holes are different in different runs. It is proved by Fig. 12.20 where in the top
panel, the positions of local maxima in wave spectrum are shown. The local
maxima are defined as the points where the value of spectrum exceeds the values in
all eight surrounding points. To make the plot clearer, only the points where the
spectral density in the central point exceeds 0:01Sp (Sp is the peak spectral density)
are included. The data in the top panel refer to a single spectrum, and the data in the
bottom panel include the points for all of the 50 spectra. As shown, the points in the
bottom panel are distributed over the wave number space more or less evenly. Note
that the maxima can change their location also during a single long integration, but
this process is very slow; i.e., the uniformity shown in the bottom panel of
Fig. 12.20 can be probably reached only over thousands of peak wave periods.
These results completely disregard the idea that peaks and holes can be explained
by the resonance mechanisms.

The results of the calculations with the current model are interesting to compare
with the results obtained with 3-D MNLS model (Dysthe et al. 2003) where the
evolution of a narrow bandwidth spectrum assigned by the Gaussian distribution in
the 2-D Fourier space was calculated using the nonlinear 2-D Dysthe equation
(Dysthe 1979). The initial conditions for spectrum were assigned according to Eq. 7
in the work cited; i.e., the width of spectrum was 0.2 and the steepness was 0.1. The

Fig. 12.20 Top panel shows
positions of local maxima in a
single spectrum. Bottom panel
shows position of maxima in
50 parallel runs (Chalikov
et al. 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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number of modes along x- and y-axes was equal to 128, and the total number of the
Fourier modes was 66,049, while the number of grid points was 262,144. The first
runs were done when a maximum of spectrum was initially located at
kp ¼ 64; lp ¼ 0, but in this case, the spectrum showed unrealistic behavior at high
wave numbers, since the energy was suppressed by dumping (12.6.1)–(12.6.3)
introduced to support stability. In the next runs, a maximum of the spectrum was
shifted to position kp ¼ 32; lp ¼ 0. Like in the work cited above, the results are
obtained by averaging over ensemble of 20 runs for various sets of the initial
random phase distribution. The spectrum simulated with our model is compared
with the spectrum obtained with the Dysthe’s model in Fig. 12.21.

As shown, both of the models identically reproduce the angle widening of
spectrum. The asymmetry of this evolution can be explained by different wave
steepness in high-frequency and low-frequency parts of spectrum; i.e., the
root-mean-square steepness of the initial wave field is equal to 0.073, while
the steepness formed by the modes with wave numbers k� kp is equal to 0.042, and
the steepness formed by the modes with wave numbers k
 kp is equal to 0.063.
Crowding of contours at panel a in Fig. 12.21 can be probably explained by using
filter outside the domain:

k � kp
kp

� �2

þ l
kp

� �2

¼ 1; k[ kp: ð12:7:1Þ

A qualitatively similar effect was observed in our calculations with kp ¼ 64. We
found that the location of spectrum at kp ¼ 32 provided room for smooth devel-
oping of spectrum toward high wave numbers. Hence, the computational domain in
panel b has the size 4 � 4, while in panel a, it is 2 � 2. The spectrum obtained in
Dysthe et al. shows downshifting. The same effect was obtained in our calculations.

Fig. 12.21 The wave spectrum log10 S in coordinates k=kp; l=kp
� �

. Panel a represents the
calculations of Dysthe et al. (2003) obtained after integration for Tp ¼ 95 wave peak periods ,
panel b calculation with model (11)–(13) obtained after integration for Tp ¼ 67. Both spectra are
normalized by their maximum value (Chalikov et al. 2014 © 2014 Springer-Verlag Berlin
Heidelberg. With permission of Springer)
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The low-energy ‘horns’ in a low-wave number part of spectrum b (Fig. 12.20) were
not reproduced in the current calculations, but they were clearly pronounced in the
calculations with higher accuracy (Sanina 2014). In general, it can be concluded
that our results are in a reasonable qualitative agreement with the results of Dysthe
et al. (2003).

12.8 Comparison of Linear and Nonlinear
Extreme Wave Statistics

The most popular theory suggested for explanation of the freak wave phenomenon
is the ‘modulational instability theory’ originally known as ‘Benjamin–Feir (B.–F.)
instability theory’ (Benjamin and Feir 1967). The concept of this theory is quite
transparent; i.e., the one-dimensional nonlinear wave in the presence of certain
disturbances can produce additional modes arising in the vicinity of the main mode.
Roughly speaking, the B.–F. theory explains redistribution of wave energy in the
frequency (wave number) space up to the final homogenization of the initially
discrete spectrum (Chalikov 2007). Most scientists believe that this mechanism can
explain an abnormal growth of one wave mode. In case of broad spectrum typical
for the wind-generated waves, such explanation is difficult to accept. First of all, it
is unclear why one mode enjoys such preference and why this mode preserves its
individuality in the course of its long development in a wave field with random
phases. The original B.–F. results, as well as the numerical investigations of B.–F.
(Chalikov 2007), showed that the period of new mode growth for typical sea wave
steepness exceeds hundreds or thousands of carrying wave periods. Thus, freak
wave should undergo a long course of development. Why do not interactions with
other waves stop this growth, as if other waves do not exist?

The modulation instability theory of freak waves operates with such a poorly
defined measure as the so-called Benjamin–Feir Index (BFI) parameter calculated
as a ratio of the wave steepness AKp(A is wave amplitude at spectral peak, and Kp is
its wave number, both being dimensional), to the spectral bandwidth DK=Kp, DK
being the measure of width of the spectrum estimated as half-width at the
half-maximum of spectrum (Onorato et al. 2009a,b). Actually, amplitude A at
spectral peak essentially depends on the spectral resolution. The value of ’width’ of
spectrum is also uncertain since wave spectrum normally embraces a wide range of
frequencies, so the value of BFI finally depends on somewhat arbitrary definitions.

Spectral analysis seems to be effective when it describes more or less uniform
process like quadruplet interactions or energy input to waves, while it is rather
pointless when applied to the analysis of extremely rare events represented by
single- or multi-peak disturbances of the vast wave field. Such disturbances are
evidently created locally in physical space, while they cannot manifest themselves
in the wave spectrum which characterizes a large area.

296 12 Three-Dimensional Modeling of Potential Waves



The role of ensemble size in relationship of kurtosis and extreme wave was
investigated with the new exact model of potential waves. The initial conditions
were assigned similar to those used in Sect. 12.5. Amplitudes of waves with ran-
dom phases were calculated with the JONSWAP spectrum for the angle distribution
proportional to sechðhÞð Þ4. Peak of spectrum was placed at wave number
k ¼ð32; 10Þ. By now, the calculations have been done for about 100 periods of
peak wave. The results recorded allowed to calculate dependence of the correlation
coefficient of the highest wave in domain and kurtosis calculated for the same
domain for different sizes of 2-D domains (expressed in squared length of peak
wave). 990 wave surfaces containing 512 � 512 knots were used for calculations
of correlations. This dependence is shown in Fig. 12.22.

As shown, for the smallest domain the size of which is equal to 1/256 of the entire
domain, the correlation coefficient is about 0.8. The coefficient decreases down to
0.4 with increase of domain size up to 1/4 of the entire domain. Obviously, with
further increase of the domain size, the connection between kurtosis and the highest
wave becomes insignificant. It proves that a clear relationship between kurtosis and
extreme wave for the same ensemble disappears with ensemble extension.

No detailed data on time/space development of large waves are available;
however, the results of the 2-D and 3-D mathematical modeling based on full
equations show that the process of ‘freaking’ is very fast, while life of extreme
waves is short. Such data do not prove an importance of the modulational instability
theory for the explanation of the freak wave phenomenon. The aim of this chapter is
to demonstrate new views on the freak wave problem.

The results presented below are obtained with the two-dimensional (2-D) and
three-dimensional (3-D) wave models. Both models were used in a quasi-adiabatic
mode. It means that a small output of energy due to the flux of energy to the subgrid
domain is compensated by the input energy which is proportional to wave spec-
trum. Below, the non-dimensional variables are used.

Fig. 12.22 Correlation
coefficient between height of
largest wave in ensemble and
number of waves in ensemble
(Chalikov et al. 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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The initial conditions in the models were assigned as a superposition of linear
modes with random phases and amplitudes corresponding to the Pierson and
Moskowitz (1964) spectrum. In the 3-D model, a symmetric directional distribution
was assigned for the energy-containing part of the spectrum proportional to
coshnðhÞ where n = 4 was taken. The fields of surface elevation with time interval
of dt ¼ 1 were recorded.

The analysis of the results was done in terms of the non-dimensional
trough-to-crest wave height Htc. The value Htc was defined as a difference
between the maximum Hmax and minimum Hmin values of elevation normalized by
the significant wave height:

Htc ¼ H�1
s Hmax � Hminð Þ ð12:8:1Þ

in the window with the size of 1:5Lp � 1:5Lp where Lp ¼ 2p=kp is non-dimensional
peak wavelength. In 1-D case, the window turns into a linear segment. The window
was moved discreetly in both directions by 0:5Lp step. Such window parameters
were chosen in order to take into account all the range of possible values of 0�Htc.
Actually, 99 % of Htc exceeds 1. The shift was equal to 0:5Lp; however, just few
values of Htc were sometimes taken more than once; anyway, it does not influence
the statistics.

Such type of processing needs some explanation. Actually, we do not see any
other ways to construct true ensemble of Htc values; however, there is a substantial
difference between 1-D and 2-D cases. In 1-D case, the maximum and minimum of
elevation fall on the same direction. In 2-D case, these values can fall on different y-
positions. That can be the main reason why the probability of large waves in 1-D
case is normally lower than that in 2-D case. Naturally, with narrowing of spectrum
(i.e., at increase of power n), the 2-D distribution should approach the 1-D
distribution.

The probability of Htc wave height in 2-D case can also be calculated with a
unidirected algorithm, when each vector of elevations along x is processed as a
result of the unidirected modeling. In this case, the maximum and the nearest
minimum of elevation coincide with a general direction of wave propagation. Note,
however, that the 2-D algorithm (based on square window) appears to be more
practical.

A typical example of freak wave appearance is given in Fig. 12.23 where five
consequent surfaces in a small fragment of the simulated domain are shown. The
surfaces are reproduced through the interval of 0:32tp (tp � 1:57 is the period of
peak wave). As shown, the trough-to-crest height for a short period of the order of
one peak wave period varies in the range of 1:90\Htc\2:66 (value Htc ¼ 2:66 is
the top value obtained in these simulations). In general, the shape of surface
changes for such a short period significantly. The evolution of surface in Fig. 12.23
looks rather like an effect of dispersing superposition of different modes than
appearance of modulation instability.
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The ‘history’ of extreme waves in domain 0\y\2 for the period 600\t\640
is shown in Fig. 12.24 where the locations of large trough-to-crest waves (inde-
pendent of their x-locations) are indicated: Blue dots correspond to the values of
Htc [ 1:7, while red dots correspond to the values of Htc [ 2. As shown, the dots
are concentrated in groups, thus proving their belonging to the same physical
object. Many of the groups start with the blue dots and end also with the blue dots,
while in the middle of the groups, red dots indicate freak waves. What is remarkable
is that all these groups are short. Freak waves seem to arise suddenly with no
prehistory, which also looks like as effect of superposition.

Fig. 12.23 Example of a
short-term evolution of
elevation. The same fragment
of the surface is given for a
different moments, separated
by the interval 0:32tp. The
largest normalized
trough-to-crest wave height in
the fragment is indicated
(Chalikov et al. 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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Let us consider local characteristics of wave fields, i.e., the steepness averaged
over squared domain size 1:5Lp � 1:5Lp ‘jumping’ with the step 0:5Lp

r ¼ ð1:5LpÞ�2
X
x

X
y

g2x

 !1=2

ð12:8:2Þ

Examples of the instantaneous field of rms steepness calculated in this moving
window are given in Fig. 12.25.

The upper panel refers to the data generated by the 3-D nonlinear model, while
the bottom panel represents the data generated as a random superposition of linear
waves.

Fig. 12.24 History of extreme wave appearance in coordinates ðt; yÞ for the period 600\t\640
and the strip 0\y\2. Blue points correspond to the values 1:7\Htc\2, and red points
correspond to the values Htc [ 2 (Chalikov et al. 2014 © 2014 Springer-Verlag Berlin Heidelberg.
With permission of Springer)

Fig. 12.25 Examples of the
instantaneous field of rms
steepness calculated in a
moving window (see
description of window in the
text). The upper panel refers
to the data generated by 3-D
nonlinear model; the bottom
panel represents the data
generated as a random
superposition of linear waves.
The size of spots characterizes
the height of freak waves (see
legend) (Chalikov et al.
2014 © 2014 Springer-Verlag
Berlin Heidelberg. With
permission of Springer)
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g ¼
X
k

X
l

ak;l cos kxþ lyþ/k;l

� �
; ð12:8:3Þ

where k and l are wave numbers along the axes x and y, and 0\uk;l\p is a random
phase; amplitudes ak;l are calculated as follows:

ak;l ¼ 2Sk;lDkDl
� �1=2 ð12:8:4Þ

ðDk ¼ Dl ¼ 1Þ, and Sk;l is the energy density spectrum.
Different sizes of dots in Fig. 12.25 characterize height of freak wave. The field

shown in the bottom panel of Fig. 12.25 looks like a typical member of the entire
ensemble. Note that generating the fields with nonlinear models took about two
months, while the same size of the ensemble of the fields calculated as a superpo-
sition of linear waves was generated for just 30 min. It can be expected that the wave
fields obtained in such a different manner should be different as well. In particular,
we expected that the averaged over window wave steepness of a random superpo-
sition of linear modes should be more or less uniform. To our surprise, the pictures
and animations generated for both cases demonstrated very similar features; i.e., the
more or less uniform fields always contained small areas with the highly increased
steepness. The locations of freak waves (marked as black dots in Fig. 12.25) always
fell into these areas. It is difficult to understand what primary cause of such collo-
cations is as follows: Either freak waves themselves increase local steepness or the
increased local steepness is followed by the appearance of freak waves (the
‘chicken-and-egg’ dilemma). Anyway, it is quite evident that the local steepness and
height of an extreme wave in the window are connected with each other.

This connection is demonstrated in Fig. 12.26 where the extreme trough-to-crest
wave height is plotted as a function of the local steepness. Note that the high-order
moments, such as skewness and kurtosis, should demonstrate a much closer con-
nection with the extreme wave height than steepness does. Of course, all these
characteristics cannot serve as predictors of freak waves (see Janssen 2003), as well

Fig. 12.26 The rms
steepness of elevation
calculated over the moving
windows (see description of
window in the text) versus Htc

found in that window
(Chalikov et al. 2014 © 2014
Springer-Verlag Berlin
Heidelberg. With permission
of Springer)
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as freak waves are not predictors for high-order moments. The connection between
the high-order moments and wave height is essentially local, which restricts
applicability of spectral analysis for the freak wave’s phenomenon (see Fig. 12.22).
The transient nature of freak waves demonstrated in Fig. 12.24 is well seen in the
animations constructed from the pictures similar to Fig. 12.25. Both of the series
demonstrate a very similar behavior.

The transitory character of extreme wave life can be also proved by Lagrangian
tracing of the wave height represented in Fig. 12.27.

The more or less random choice of freak wave events demonstrates that freak
wave develops rapidly and lasts approximately one peak wave period. Such
behavior cannot be explained by the modulation instability theory; it looks rather
like manifestation of a linear superposition of modes with different wave numbers
and amplitudes.

Fig. 12.27 Lagrangian evolution of trough-to-crest height Htc. The horizontal line indicates value
Htc ¼ 2 (Chalikov et al. 2014 © 2014 Springer-Verlag Berlin Heidelberg. With permission of
Springer)
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The most convincing demonstration of the linear nature of extreme waves is
given in Figs. 12.28 and 12.29 showing integral probability of the trough-to-crest
height Htc of waves.

In Fig. 12.28, curves 1 and 3 are calculated using the results of the numerical
simulation with the 3-D model (runs 1 and 3 refer to different resolutions); curves 2
and 4 are calculated over the same size ensembles of the fields composed as a
superposition of linear waves. Surprisingly, linear calculations give the same high
values of large trough-to-crest heights. Despite the fact that the data on the extre-
mely high waves Htc [ 2:5ð Þ are not stable, they do not allow us to state that the
probability of rare events is clearly different in all the cases considered. Note that
the probability of Htc shown in Fig. 12.28 is considerably larger than that obtained
with 1-D models (see, e.g., Fig. 7.16). It can be explained by a more general
definition of freak waves in 2-D case.

One-dimensional treatment of Htc (when square matrix turns into 1-D vector
directed along the wave propagation) gives the probability smaller by more than
one decimal order as compared to the previous algorithm. Remarkably, the prob-
ability obtained over the similar ensemble of linear fields actually coincides with the
nonlinear results (curves 5 and 6 in Fig. 12.28). Curve 7 represents the Raley
distribution calculated by the following relation:

R ¼ exp � Htc � Htc
� �2

2r2tc

 !
; ð12:8:5Þ

Fig. 12.28 Integral probability of trough-to-crest height Htc. (1, 2) resolution 256� 128; (3, 4)
resolution 512� 128; (1, 3) full 3-D nonlinear model; (2, 4) 2-D superposition of linear modes;
(5, 6) 1-D treatment of Htc; (5) full nonlinear 3-D model; (6) superposition of 2-D linear modes;
(7) Raley distribution (Chalikov et al. 2014 © 2014 Springer-Verlag Berlin Heidelberg. With
permission of Springer)
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where Htc ¼ 1:31 and rtc ¼ 0:22 are the mean value and variance of Htc obtained
by averaging over the data used for calculation of the probabilities 1, 2, 3, and 4, as
described above.

The effect of window narrowing in y-direction is quite similar to narrowing of
wave spectrum (i.e., increasing n). Such effect is demonstrated in Fig. 12.29 where
the curves calculated for different values of n are represented. Curve 1 is the same
as the curve 1 in Fig. 12.28. As shown, with narrowing of spectrum, the probability
converges to that obtained with the 1-D model and the corresponding ensemble of
1-D linear surfaces.

12.9 Conclusions

In this paper, a straightforwardmethod of numerical solution of the three-dimensional
potential wave equations is suggested. The method uses the surface-following
coordinate system. In the new coordinates, the kinematic and dynamic conditions on
surface become more complicated, but if we consider them as the evolutionary
equations for surface potential and elevation, we come to the conclusion that these
conditions can be easily integrated in the same way as similar as one-dimensional
equations in the conformal coordinates. However, calculations of vertical derivative
of the potential on the surface become more complicated, since the Laplace equation
for 3-D velocity potential turns into elliptic equation that should be solved at every
time step, which requires the use of extensive computer resources. However, it should
be noted that this problem is still a lot simpler than; for example, standard integration

Fig. 12.29 Integral probability of trough-to-crest height Htc for different angular spreadings: (1)
P = 4; (2) P = 8; (3) P = 16; (4) P = 64; (5) P = 256; (6) 1-D full nonlinear model; (7)
superposition of 1-D linear modes (Chalikov et al. 2014 © 2014 Springer-Verlag Berlin
Heidelberg. With permission of Springer)
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of 3-D Navier–Stokes equations (or LES equations) in the curvilinear coordinates
when a problem of solving the elliptic equation for pressure arises.

The potential wave problem gives a unique opportunity for validation of full
nonlinear model in comparison with the exact stationary solution obtained in a
moving coordinate system. This solution is obtained with a completely different
algorithm; hence, such validation can be considered as full, non-trivial, and exact.
Since the model uses finite-difference approximation in the vertical direction, we
cannot expect a perfect agreement between the exact and approximate solutions,
though the results of such comparison are quite convincing. The structure of Stokes
wave was supported within a long interval of integration. If the numerical schemewas
not accurate enough, the evolution of modes would exhibit chaotic behavior and the
Stokes wave would quickly disintegrate due to the numerical instability. Such evo-
lution was observedmany times in the course of development of codes. The scheme is
consistent, since with increase of resolution, its accuracy increases. Note that a highly
efficient method by Clamond and Grue (2001) has been generalized for 3-D finite
variable water depth by Fructus and Grue (2007). Currently, we investigate the
possibility of application of the model for the finite depth problem. Such idea is based
on presentation of the analytic component of surface potential in the following form:

�Uðn; #; fÞ ¼
X
k;l

�uk;l
cos kj j fþHð Þð Þ

cos kj jHð Þ Hk;l; ð12:9:1Þ

where H is depth. Because the nonlinear component of the velocity potential
attenuates with depth faster than the analytical one, the scheme of solution remains
essentially the same.

The model was used here for simulation of evolution of a steep Stokes wave
train with the superimposed initial noise. In case of directional wave fields, it was
shown that evolution of wave field occurs in a different way, as compared to that of
a unidirectional case; i.e., the new developing modes are oblique toward propa-
gation of a carrier wave.

The most disappointing and unexpected property of the wave model is that the
results depend essentially on the initial set of phases; hence, the most reliable results
can be obtained using ensemble modeling. Such simulation can be effectively done
in parallel processors. It is not excluded that the stable and smooth results can be
obtained by introducing local viscosity in the Fourier space. Currently, it is unclear
in what way this property can be brought into correlation with the natural process.
However, we came to the conclusion that the primary physical variables are rather
the fields of velocity (in the potential assumption, it is the velocity potential) and
elevation. The Fourier modes are the result of formal presentation of wave fields,
while they do not necessarily present real objects.

The numerical experiments are performed under quasi-adiabatic conditions.
However, the model is designed for investigation of the nonlinear mechanics
of two-dimensional surface waves, particularly, for investigation of extreme waves.
After implementation of the energy input scheme and wave-breaking parameterization,
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the model can be used for direct simulations of two-dimensional wave field evolution
under the action of wind, nonlinear interactions, and dissipation.

All of the numerical results presented in the current work were obtained using a
standard one-processor Dell computer with speed of 3.00 GHz. Since the model is
based on the Fourier transform method, the parallel version of the model does not
provide many advantages, while parallel processors are convenient to simultaneously
run many versions of the same model, as well as to perform ensemble modeling.

Definition of freak wave is based on the concept of the trough-to-crest wave
height, which is reasonable from the practical point of view. A natural wave field
usually looks quite chaotic as a superposition of many dispersing modes which, in
addition, are not conservative due to the fast reversible interactions. In our opinion,
the only reasonable way to detect the instantaneous value of the trough-to-crest
height is the detection of maximum difference of elevations in the prescribed
window. Since freak waves should be most likely associated with the spectral peak,
it would be reasonable to choose the window with the size of the order of peak
wave length Lp and even somewhat bigger than that—for the elimination of
uncertainty of real wave length. Our experience shows that the size of domain
should be of the order of 1:5Lp. In this case, we do not take into account all possible
extremes (because the maximum and minimum can sometimes be at a distance
exceeding 1:5Lp), but the same structures can be taken twice. Such rare events
happen sometimes; however, their influence on the statistics is quite insignificant.

In one-dimensional wave field, such a trough-to-crest height definition gives
quite definite results. However, in a two-dimensional wave field, some uncertainty
arises because the positions of maxima and minima can be shifted with respect to
the direction of wave propagation. The simplest way to avoid uncertainty is to give
a definition of the trough-to-crest height as the difference between the maximum
and minimum along the direction coinciding with that of peak wave propagation.
Such treatment of freak wave does not seem to be quite adequate, as the wave
power depends on full range of elevation.

The main result of the current investigation is comparison of the extreme wave
statistics generated by full nonlinear models, and the statistics obtained over the
ensemble of surfaces generated as a superposition of linear modes. In both cases,
the integral energy is the same, and the spectra of surfaces are similar. The results
obtained in this study are as follows: (1) Freak wave is a transient phenomenon; it
develops and disappears approximately over a peak wave period. (2) The wave
fields generated as a superposition of linear modes with random phases show the
properties very similar to those of the wave fields generated by 1-D and 3-D
nonlinear models. (3) Both methods of generation demonstrate high probability of
freak waves. (4) Integral probability of large waves for nonlinear and linear waves
is roughly the same. (5) 2-D treatment of freak waves results in a significantly
higher probability of freak waves as compared with 1-D treatment or 1-D nonlinear
simulations. (6) Probability of freak waves decreases with narrowing of spectrum
and approaches the probability obtained with 1-D models and 1-D superposition of
linear modes.
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Afterword: What Has Been Done

The work on mathematical modeling of sea waves started in 1970s, when a model
for investigation of wind–wave interaction was completed (Chalikov 1976, 1978).
Actually, it was an attempt to construct a coupled windwave model, but the wave
counterpart was able to generate only monochromatic linear waves. The following
numerous papers (see review in Chalikov 1986) considered the structure of the
wave boundary layer (WBL) above 1-D wave surface assigned as a superposition of
linear waves with random phases and a prescribed empirical spectrum. That model
of WBL, as well as its modifications, was quite imperfect. The real progress in
numerical wave modeling was achieved in 1989 when conformal transformation of
1-D potential equation was first applied. The construction of the first conformal
numerical model was greatly accelerated by collaboration with Dmitry Sheinin. The
extended results of the wave dynamics simulation were first presented at the con-
ference organized by V. Zakharov (Chalikov and Sheinin 1994). It is funny that the
authors of that work did not know that conformal mapping had been already used in
many previous works (see references in Chap. 1), and initially, this approach had
been suggested in the classical publications by Stokes (1947, 1980). The main
difference between our approach and the previous approaches was that we used the
advantages of conformal mapping for the construction of a numerical model for
non-stationary equations. The initial highly complicated equations were trans-
formed into the system of 1-D equations which can be solved with the highest
accuracy by Fourier transform method (Chap. 2). The model is an example of most
exact model in the geophysical fluid dynamics designed for simulation of the real
process.

Being inspired by unlimited possibilities of the new approach, author of this
book began to apply the model for investigation of some intriguing problems of the
nonlinear wave physics. Opposite to the pure theoretical approaches, the motiva-
tions for investigation were provided by observations of the numerical results as if
they were the observational data obtained at sea. Some of the most important results
of numerical investigations are summarized below.

Employment of developed modern technologies in modeling of the WBL was far
behind other branches of the geophysical fluid mechanics. The numerical hydro-
dynamic modeling is similar to perfect laboratory modeling. Being free of the
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restrictions arising from the scale difference, an accuracy of description of the
natural processes in numerical simulation can be often much higher than that
which can be achieved in physical simulation. Such situation is typical for other
branches of the fluid dynamics, perhaps better developed, especially in technical
applications. It was proved that numerical methods really do provide high-quality
results which can be combined with those obtained from experiments. A good
illustration of this statement is the experiments in wave channels. Very often
experiments in the channels are devoted to the nonlinear transformation of waves,
but investigators never know exactly the characteristics of waves they generate,
because they are able to control only one fundamental variable, i.e., surface shape,
while another variable, i.e., the velocity potential, remains unknown. The uncer-
tainty greatly increases when multi-mode or angle-distributed wave fields are
investigated. A relatively small size of wave channels makes impossible the
investigation of nonlinear processes usually developing over large time and space
scales. This is why wave channels only allow simulation of artificially strong
interactions of waves with specifically chosen amplitudes and phases.

The exact and fast numerical methods for solution of stationary equations for
gravity and gravity-capillary waves have been developed (Chap. 3). The algorithms
turned out to be much more efficient than any algorithms suggested before. It
should be noted that two separate algorithms for pure gravity and gravity-capillary
waves were developed. In the latter case, our algorithm fails to converge when the
non-dimensional capillarity coefficient becomes small. It was shown that with
decrease of values of the capillary coefficient, the phase velocities of gravity-
capillary waves decrease rather than approach the values of the Stokes phase
velocity. It means that the equations with no surface tension terms are not a limit
form of the equations for capillary-gravity waves in the same way as the Euler
equations are not a limit form of Navier–Stokes equations while the viscosity is
tending to zero.

While the properties of stationary solutions suggest a lot of intriguing problems,
we used these results mainly as a tool for validation of non-stationary model
(Sect. 4.1). We used a unique possibility to validate the non-stationary solution by
comparison with the stationary solutions obtained in a moving with the phase
velocity system of coordinates. It should be emphasized that the validation was far
from trivial, as non-stationary modes are based on the equations much more
complicated than the stationary ones, and on a numerical procedure of its own
which ‘does not know’ that the simulated waves are supposed to be well preserved
even for large amplitudes. It was shown that stationary solution remained
unmodified during hundreds of periods. This suggests that Stokes and gravity-
capillary waves are stable with respect to the truncation errors of non-stationary
model, these errors being small enough.

We use non-stationary models for the case studies of evolution of nonlinear
wave fields for different initial conditions assigned as a superposition of linear
waves (Chap. 4). The most surprising feature of multi-mode wave fields was clear
separation of the wavenumber–frequency spectra into regular curvilinear branches
with most of the energy concentrated along what we call the ‘main branches.’
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An effect of ‘bound waves’ is most clearly seen in the simulation designed to
approximate the laboratory experiment by Yuen and Lake (1982). Special pro-
cessing of the data shows that in some cases the number of recognizable branches
can reach the value as large as 14.

For any single-value elevation field, it is possible to calculate the corresponding
wave spectrum. The opposite procedure of restoration of the wave surface corre-
sponding to wave spectrum is impossible, because information on the phases is
missing. However, if we suggest that phases are a random function of wave
number, the surface corresponding to spectrum can be calculated. There is no
guarantee that the surface restored would have the same statistical characteristics
(for example, high-order moments) as the initial surface, since distribution of
phases is not random in reality. The situation becomes more uncertain if we con-
sider spectrum as a sufficiently smooth function of wave number for presentation
of the surface with higher resolution. Evidently, for denser spectrum amplitude of
each mode will be less than the initial amplitude. It means that the results of
calculation of nonlinear evolution of spectrum can depend on the spectral and space
resolution. The simplest way to estimate this effect is simulation of interaction of
the two modes assigned in the initial condition at adjacent wave numbers. Such
calculations were done by Babanin et al (2014) (see Sect. 4.4).The results were
quite unexpected. Initially, at wave number k = 1 a new mode was generated due to
nonlinear interactions. This mode started to interact with the initially assigned
modes, which resulted in the formation of a more or less dense spectrum slowly
moving toward the lower wave numbers, i.e., the downshifting has occurred. As a
whole, this result should be considered as abnormal, since wavenumber k = 1
characterizes the resolution of the model and nothing else. The modes infinitely
close to each other can send energy to infinitely large scales; that is, the dissipation
of energy is formed. It is unlikely that this mechanism of the ultra-long wave energy
dissipation does exist in reality. Fortunately, it was found that such effect occurs
only if the initial modes are very close to each other, this effect being absent at
medium resolution. It allows suggesting existence of a limit resolution of spectrum.
The use of higher resolution can lead to the generation of artifacts.

The effect considered can be completely attributed to the approximation prob-
lem, such as presentation of real surface as a superposition of the finite number of
Fourier modes. The high resolution of spectrum as well as an insufficient resolution
can lead to the unpredicted effects. Since the set of modes, their amplitudes, and
phases depend completely on the resolution, it would be incorrect to consider these
modes as real physical objects. Naturally, the nonlinear properties of each set of
modes (for example, high-order moments) should be highly unstable with regard to
the resolution. It is very unlikely that Hasselmann’s integral for the same spectrum
converges to any reasonable limit with increase of resolution.

The problem of nonlinear interactions is closely connected with the stability of
wave spectrum. In most investigations, it is assumed that wave field can be rep-
resented as a superposition of linear wave modes with random phases. We have
already seen that this assumption is not correct, since wave field is rather a
superposition of the main modes and their ‘bound waves,’ i.e., a superposition of
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nonlinear modes. It is also interesting to check how stable the spectrum in a
quasi-stationary regime is. Such calculations were done in Chalikov 2005 (see
Chap. 6). Consideration of the timescales for a multi-mode wave field with the
initially random phases shows that low-frequency waves preserve their individu-
ality, but their ‘lifetime’ decreases with increase of the steepness. The total energy
of each mode always fluctuates because of the quasi-periodic energy exchange
between the wave components. For high frequencies, the lifetime is of the order of
one period, and these disturbances cannot be attributed to waves, but rather to
‘wave turbulence.’ Applicability of 1-D approach and even the potential assumption
is very questionable for high-frequency waves. According to the general opinion,
this approach obviously cannot simulate the processes properly where irreversible
2-D nonlinear interactions are of essence. However, from the results of this work an
important conclusion follows for 2-D waves as well. Naturally, all the nonlinear
effects in a 2-D case should be pronounced clearer. These effects should appear in
potential approximation, formally, because of an infinitely larger number of the
interacting modes, and physically, because of a more complicated orbital velocity
field.

The conformal model can be applied for a broad range of processes where the
1-D approximation is acceptable. However, many wave phenomena are largely
controlled by strong nonlinear interactions which are relatively fast and for which
the 1-D approximation is often adequate. The formation of extreme waves is one of
such phenomena, and the model simulations of these waves are far from being of a
purely academic interest. It has long been known that the nonlinear redistribution of
energy is the characteristic of wave trains and may result in a sudden emergence of
very large and steep waves commonly known as freak or rogue waves.

It is well known that in real wave field the dominant waves have more or less
sharp crests and gentle troughs. Naturally, when the routine Fourier presentation is
used, for approximation of such waves the additional modes are required which are
sometimes called ‘bound waves.’ This unfortunate expression obscures the essence
of the phenomenon, because real big waves are evidently rather single nonlinear
modes which preserve their individuality for long time. For some unknown reasons,
the shape of such waves is close to the Fourier modes in the ‘upper’ coordinate
system. Naturally, these modes form an orthogonal basis in the ‘upper’ coordinate
system and they are also orthogonal in the Cartesian coordinate system with the
weights equal to inverse Jacobian of transformation to the ‘upper’ coordinate. It is
remarkable that the Fourier expansion for stationary solutions for potential waves in
the ‘upper’ coordinate system (Stokes waves) converges faster than in the Cartesian
coordinate system. For real wave field with moderate steepness, the superposition
of Fourier modes in the ‘upper’ coordinate is very close to that of the Stokes waves
in the Cartesian coordinates. Probably, the fast convergence for Stokes solution for
the potential waves in the upper coordinate makes good sense. The nonlinear
transformation, somehow, ‘absorbs’ the nonlinearity, and the single mode in the
upper coordinate (opposite to that in the usual coordinates) is a good approximation
of the solution of strongly nonlinear equations. Derivation of equations in the
‘upper’ coordinates is tricky, because ‘there is no fluid.’ However, this idea does
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not look completely crazy, because potential 2-D wave equations are essentially
the ‘surface’ equations. Besides, these coordinates correspond to the case of a
two-layer flow with the interface, if the density of upper liquid approaches zero. An
additional important advantage of the ‘upper’ coordinate system is that the singu-
larities of the interface can disappear or at least become much weaker.

In Chap. 6, we applied the method for numerical simulation of periodic surface
waves, developed in ChSh, particularly, for a long-range simulation of the initially
homogeneous Stokes wave train contaminated with small initial noise. It is shown
that an initial development of the disturbances agrees with B.–F. instability theory
up to the steepness AK ¼ 0:1, and for the larger steepness with McLean (1982)
results. The unstable modes are developing around each mode of Stokes waves but
not around the main mode only, as it was predicted by B.–F. theory. The phase
velocities of low wave number waves are difficult to calculate because of their low
energy. In the energy-containing part of spectrum, the waves in a quasi-stationary
regime strictly agree with the linear theory, but for larger wave numbers the phase
velocity is systematically higher than that of the linear waves. It happens because
the routine calculations of phase velocity give a weighted by energy value between
the velocities of free and several bound modes. Calculations of the wave number–
frequency spectrum prove that the dispersive relation consists of several branches.
Each of them corresponds to a different order of bound waves. Wave surface can be
represented by a set of Stokes waves much more accurately than by superposition of
linear modes.

Harmonic waves are not the solution of exact equations of the potential wave
theory. Hence, even in the absence of disturbances they undergo the complicated
evolution creating discrete spectrum of non-stationary waves. On the average, this
spectrum is close to the spectrum of Stokes wave. When the initial steepness
becomes larger, the rate of development of such instability increases. Meanwhile,
Stokes wave in the absence of disturbances remains stable up to the critical
steepness. The B.–F. instability can occur due to the errors of approximation of time
derivatives or as a result of insufficient resolution in grid space, or due to any details
of the numerical scheme. Definitely, harmonic waves represent a good basis for the
presentation of wave field, but it is unlikely that Fourier modes can be considered as
real physical objects, since the set of their amplitudes and phases depends on the
spectral resolution. The properties considered in Sect. 4.4 prove that calculation of
nonlinear interactions of linear modes can sometimes give quite unpredictable
results.

The results of numerical modeling of the multi-mode unidirected adiabatic wave
evolution performed with use of precise 1-D fully nonlinear model are presented in
Chap. 6. It is shown that due to nonlinear interaction the irreversible nonlinear
interactions and downshifting develop. The rate of downshifting increases with
increase of the nonlinearity. This conclusion contradicts the Hasselmann’s results
based on the numerous simplifying assumptions. Presenting wave field as a
superposition of linear modes with random phases and a fixed linear dispersion
relation is the most restricting assumption. It was shown in the Benjamin and Feir
investigation that keeping just the first Stokes ‘correction of harmonic wave resulted
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in the developing of instability. Later it was demonstrated that assigning the non-
linear modes was unnecessary: The initial 1-D harmonic waves took a Stokes-like
shape due to quadratic interactions. Then, the B.–F. instability develops, and fully
random wave field is generated at the nonlinear stage Chalikov (2005). Hence, the
absence of 1-D interactions is inherent to the artificially linear waves only. It
follows from the Hasselmann’s integral that in a two-dimensional wave field all the
interactions between the modes running in the same direction are missing.
Evidently, the inaccuracies of the nonlinear interaction calculations with
Hasselmann’s integral grow with narrowing of spectrum. Our calculations prove
that the unidirected wave interactions have probably the same intensity as those
between two-dimensional waves. This effect is important for many practical
problems, especially for the wave forecasting problem.

Extreme wind waves are a rare, though regular, phenomenon in the World
Ocean. Such waves hold a huge destruction power. Navigation, sea technologies, in
particular, oil and gas production, as well as the recreation industry persistently
require investigation of the origin and physics of extreme waves as well as
development of some technique for their forecasting.

The mechanical properties of extreme waves, their probability, and geographical
distribution are still unknown, and no reliable prediction techniques still exist. The
observational data on such waves are scratchy, and the laboratory experiments are
difficult due to the extremely rare occurrence of such waves and short fetches. Since
freak waves are an extraordinary phenomenon, it is unlikely that their statistics,
mechanics, and the number of other quite delicate questions concerning the above
problem can be investigated on the basis of various substitute equations.

For some reasons, the above techniques were not used before in the statistical
investigations of wave processes. The pure spectral approaches used in wave pre-
diction models for solution of the given problem are not suitable.

Extreme waves are as infrequent in computer simulations as in the ocean. This is
why the investigation should cover a great number of the numerical experiments to
be subjected to thorough analysis. The numerical approach is based on a 2-D (x–z)
model of potential waves and allows obtaining rich statistical material. According
to the recent simulations of 3-D waves carried out in (Onorato et al. 2009;
Dyachenko and Zakharov 2005), the probability of large waves increases for
long-crested waves. It means that 2-D simulations are a limit case of such waves.
However, large waves in a stormy sea are often long-crested, and the 2-D approach
for investigating their statistics is hardly acceptable. This opinion is supported by
the authors of WAM model (Janssen 2003), who implemented the 1-D analysis for
experimental forecast of freak waves. However, there are no solid evidences that
this scheme works. Note that the above authors never described the procedure of
freak identification (see discussion of this problem in Chaps. 7 and 12).

The results of over four thousand numerical experiments are analyzed in Chap. 7
to investigate some properties of freak waves and calculate the probability of their
appearance. Because of self-similarity of the governing equations, they can be used
in a non-dimensional form; hence, the statistical results of long-term numerical
simulations depend on the following initial conditions only: profiles of elevation
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gðxÞ, surface velocity potential uðxÞ, and the set of initial phases. Considering the
practical application of the theory of rare waves, we came to the conclusion that a
strict ‘definition’ of freak waves in a non-dimensional form is not required at all.
Instead, it makes sense to introduce categories of dimensional extreme waves, as it
was done, for example, for classifications of hurricanes.

The shape of freak waves varies within a wide range: Some of them are
sharp-crested; others are asymmetric, with a strong forward inclination. The
investigations show that only breaking and large waves can be referred to freak
waves. Some of them can be very big, but not steep enough to create dangerous
conditions for vessels (but not for fixed objects). The initial concentration of energy
can occur merely as a result of group effects, but in some cases the largest wave
suddenly starts to grow. The growth is sometimes followed by strong concentration
of the wave energy around the peak vertical. It is taking place in the course of a few
peak wave periods.

The attempts have been undertaken to stratify wave statistics over some general
integral characteristics, such as skewness, kurtosis, and the initial density of energy
or the enhancing parameter for spectrum. At the first sight, the results of the above
efforts turned out to be quite unexpected. In a broad range of the parameters for the
wind wave spectrum, the integral probability of freak waves was found to be
virtually independent of the spectrum shape.

We arrived to the conclusion that it would be naive to expect that the high-order
moments such as skewness and kurtosis can serve as predictors for freak waves.
Firstly, the above characteristics cannot be calculated using the spectrum usually
determined with low accuracy. Such calculations are definitely unstable with regard
to a slight perturbation of spectrum. Secondly, even if the spectrum is determined
with high accuracy (for example, calculated using the exact model), the high-order
moments cannot serve as predictors, since they change synchronically with varia-
tions of extreme wave heights. Freak waves occur simultaneously with increase of
the local kurtosis; hence, kurtosis is simply a passive indicator of the same local
geometrical properties of wave field. This effect disappears completely if spectrum
is calculated over a very wide ensemble of waves (see Chap. 12). In this case, an
existence of freak wave is just disguised by other waves, not the freak ones. It is
quite evident that kurtosis is not the predictor but the extreme wave indicator
representative for such a small area that it can be observed as easily as a freak wave
itself. Freak wave is even better recognizable than kurtosis. Thirdly, all the
high-order moments depend on the spectral presentation; i.e., they increase with
increase of the spectral resolution and cut-frequency.

One researcher of freak waves criticizing our results, noted: ‘… the wave starts
to grow, hence, increases its potential energy and this must come from somewhere’
(from private correspondence). The author of this book replied that probably the
wave always appears as a sinus for this scientist. The process starts with an indi-
vidual wave in physical space with no significant exchange of energy with sur-
rounding waves. Sometimes, the crest-to-trough wave height can be as large as
nearly three significant wave heights. On the average, only one-third of all simu-
lated freak waves come to breaking, creating extreme conditions, however, if the
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wave height approaches the value of three significant wave heights, all of the freak
waves break. Evidently, this process cannot be investigated on the basis of purely
spectral equations. The phenomenon of freak waves is a manifestation of innate
properties of the nonlinear wave field, and they appear inevitably on condition that
the time of observations or numerical simulations is long enough. The individual
prediction of freak waves is impossible; however, the probability of their generation
can be estimated.

Our investigations do not give any answer as to why freak waves occur. The
problem is interesting, though it has very little practical application. It can be
illustrated by an example from a much more developed branch of the numerical
geophysical fluid dynamics, i.e., the large-scale atmospheric dynamics. It is well
known that cyclones result from the instability of baroclinic waves on frontal
surfaces. It is quite difficult to predict which of the numerous waves running over
the frontal surface starts to grow and finally loses stability becoming a ‘freak’
baroclinic wave, breaking and turning into the cyclone. Until now the problem of
cyclogenesis remains a semi-resolved problem of the numerical weather forecast.
Nevertheless, the well-developed high-resolution atmospheric models predict cli-
mate probability of cyclogenesis with good accuracy.

The unexpected results concerning the freak waves statistics were obtained with
three-dimensional model (see Sect. 12.8), which demonstrated that the freak wave
appearance can be also explained by superposition of linear modes with realistic
spectrum. The integral probability of trough-to-crest waves is calculated by two
methods: The first one is based on the results of the numerical simulation of wave
field evolution, performed with the one-dimensional and two-dimensional nonlinear
models. The second method is based on calculation of the same probability over the
ensembles of wave fields constructed as a superposition of linear waves with
random phases and the spectrum similar to that used in nonlinear simulations. It is
shown that the integral probabilities for nonlinear and linear cases are of the same
order of values. It is not excluded that freak waves do not require a special theo-
retical explanation; i.e., their nature can be explained in a straightforward way just
using geometrical considerations. We should state that such results undermine all
the previous cumbersome investigations based on numerical modeling as well as
the numerous attempts to construct special theories of freak waves. It is not
excluded that the nature of freak waves might be much simpler that it was thought
before. At present, we have to admit that such uncertainty still remains.

The results of numerical investigation of wave breaking in spectral environment
on the basis of full equations are given in Chap. 8. Most of the investigations on
breaking mechanism done before were based on consideration of the wave field
consisting of few modes. The process in real rich spectral environment is quite
different from the process in such oversimplified situation. In our investigation, the
main attention is paid to the documentation of evolution of different characteristics
before breaking. It is shown that breaking is a local process developing in the
narrow intervals in physical space over very short periods. Not a single criterion
such as wave steepness, wave height, and asymmetry can serve as predictor of the
incipient breaking. The process of breaking is intermittent; it happens
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spontaneously and is individually unpredicted. The breaking process develops in
intervals which are much shorter than the dominant wave length. For spectral
description of such modification, high-frequency (wave numbers) modes are
required. However, in reality, the breaking decreases energy of large wave by
changing its shape. In general, the spectral approach is not fully applicable for the
analysis of individual-breaking cases which occur in physical space and cause
unclear transformation of wave spectrum.

Evolution of the geometric, kinematic, and dynamic characteristics of a breaking
wave describes the process of breaking itself rather than indicates the imminent
breaking. It is shown that the criterion of breaking based on modulation instability
is not universal, if applied to the conditions of spectral environment. More
important is the development of algorithms for parameterization of breaking for
wave prediction models and direct wave simulations. The prototype of such
algorithm is developed on the basis of a diffusion-type highly selective operator.
The examples of dissipation spectrum are given.

The effect of one-dimensional and two-dimensional focusing has been investi-
gated numerically and experimentally by Johannessen and Swan (1997a, b, 2003).
Another example of the same mechanism is investigated in the experimental work
by Brown and Jensen (2001). The above-mentioned authors found that merging of
wave crests with different wavenumbers gave the residual trough-to-crest height of
combined wave that is considerably larger than it follows from their linear super-
position. All the works devoted to the focusing so far can be referred to the case
studies, i.e., when focusing occurs for the specifically selected configurations of
wave modes. In the current work, our attention is given to the investigation of
statistics of focusing in connection with wave breaking.

Thousands of exact short-term simulations of evolution of two superposed wave
trains with different steepness and wavenumbers were performed to investigate the
effect of wave crests merging. The nonlinear sharpening of merging crests is
demonstrated. It is suggested that such effect may be responsible for the appearance
of typical sharp crests of surface waves, as well as for wave breaking.

The question remains whether this effect can explain appearance of freak waves.
We are inclined to think that the answer to this question is rather negative, though
the effect of exceedance can make contribution to the freak wave formation. First of
all, the effect of exceedance is not great, while the freak wave height can reach very
large values. Second, the effect of exceedance is of high probability, and it evidently
takes place, whenever the crests of two waves with different wavenumbers merge. If
this effect were indeed responsible for the generation of freak waves, the probability
of such waves would be much higher as compared to what we know at present.

The effect of focusing certainly explains apparent sharpness of surface waves in
a multi-mode wave field, and most likely is connected with the mechanics of
wave-breaking onset. The computations proved that frequency of breaking occur-
rence grows as a function of mean steepness of sea waves. This fact explains why
the breaking happens more frequently in young seas.

Chapter 9 describes first attempts to simulate the wind and wave interaction
process on the basis of a coupled windwave model. Both of the models are written
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in the conformal surface-following coordinates. The use of such coordinates is the
only way to construct an efficient coupled model. The conformity allows doing
considerable simplifications in formulation of the problem and numerical scheme.
Opposite to all previous investigations, the problem of wind–wave interaction is
formulated as a statistical fluid dynamics problem: A coupled model was used for
simulation of statistical regime of flows; physical conclusions were obtained by
processing huge data volumes.

The fundamental concept of Wave Produced Momentum Flux (WPMF) is
introduced in Chap. 9 and analyzed. The presence of WPMF is the main factor
which makes the marine boundary layer different from the boundary layer above
flat surface. It is shown that WPMF consists of several components of different
nature. The structure of WPMF and its dependence on wave spectrum is investi-
gated with 2-D-coupled windwave model and then used for construction of 1-D
WBL model (Chap. 10). This model being joined with 1-D wave model is used for
long-term simulation of sea waves. These calculations are very efficient, since the
1-D WBL model is much more efficient than the 2-D model based on Reynolds
equations. It is demonstrated in Chap. 9 that one-dimensional waves can develop
under the strong influence of the 1-D nonlinear interactions which, according to
Mellville (1982), also work in one-dimensional wave fields. It is shown that the
growth of energy and its rate of downshifting are in close agreement with the
observational data obtained in the JONSWAP experiment. It means that the model
with the suggested physics can describe the observed evolution of wave fields. The
downshifting occurs due to both the one-dimensional nonlinear interactions and the
effects of breaking.

Of course, the best way to avoid the problem of turbulence parameterization
would be implementation of the LES technique, assuming that the large-scale part
of the turbulence is simulated explicitly, while the subgrid part of the turbulence is
parameterized in a relatively simple form. Construction of such model in the
surface-following coordinates is complicated, still, more or less straightforward.
However, the use of the model is connected with considerable troubles. Firstly,
such model should be three-dimensional. The surface-following coordinate system
for 3-D case leads to 3-D general elliptic equation for pressure to be solved with
iterations. Secondly, the LES modeling implies very high 3-D resolution, which
suggests very large computational resources. Hence, the problem becomes com-
putationally ineffective or at least cumbersome. The alternative way to make the
task more realistic is assumption of the two-dimensionality for waves and use of the
cylindrical conformal coordinates. Evidently, this assumption makes applicability
of the results dramatically lower. In any case, this problem is a great challenge for
young scientists who wish to obtain really advanced results.

The problem of coupled dynamics of the atmospheric boundary layer and sea
waves is similar to the problem of turbulent boundary layer in the upper ocean. The
presence of turbulence in the upper ocean is quite evident as it can be generated by
the currents with vertical gradients of velocity. For a long time, it was believed that
potential waves cannot generate vorticity, and hence, they cannot make contribution
to turbulence. Indeed, the potential motion formally always remains potential.
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However, it is correct if the background vorticity is completely absent. In reality,
both types of motion are presented in the upper ocean, and the point is in what way
they can interact with each other. This problem was first formulated by Benilov and
Losovatskii (1977) and then developed in some subsequent works of Benilov and
others. A detailed description of this problem is given in Chap. 10 where the
mathematical model of coupled dynamics of waves and vortical motions is offered.
Unfortunately, the formulation of this model is highly complicated.

Theoretically, potential waves cannot generate vortex motion, but the scale
considerations indicate that if the steepness of waves is not too small, the Reynolds
number can exceed critical values. It means that in the presence of initial
non-potential disturbances orbital velocities can generate vortex motion and tur-
bulence. This problem had been previously investigated by means of the
linear-instability theory and within this theory it was shown that the pure
two-dimensional motion remains potential because the one-dimensional vortex (in
vertical plane) does not interact with the wave orbital motion. However, if the
turbulence is considered as three-dimensional, waves can generate vortex in hori-
zontal plane. Such vortex is unstable, and further development of vorticity occurs
due to the exchange of energy between the components of vorticity. Then, due to
the nonlinearity, the motion at smaller scales, as well as more or less developed
turbulent regime arise on behalf of wave energy.

In Chap. 11, this problem was investigated numerically on the basis of full
two-dimensional (x–z) equations of potential motion with free surface in the
cylindrical conformal coordinates. It was assumed that all variables are a sum of
2-D potential orbital velocities and 3-D non-potential disturbances. Because the
energy of waves is much larger than the energy of turbulence, it was currently
assumed that only one-way interaction exists: The non-potential motion takes
energy from potential waves. The non-potential motion is described directly with
3-D Euler equations with very high resolution. The interaction between potential
orbital velocities and non-potential components is accounted through additional
terms which include components of vorticity. The effects of turbulence are included
using the subgrid turbulent energy evolution equation. The turbulent scale is
assumed to be proportional to the grid resolution (LES technique). The numerical
scheme is based on 2-D Fourier Transform method in ‘horizontal’ (in the conformal
coordinates) plane and on the second-order approximation in ‘vertical.’ The pres-
sure is calculated by means of Poisson’s equation in the cylindrical conformal
coordinates derived through the covariant components of velocity. Poisson’s
equation was solved with Three Diagonal Matrix Algorithm (TDMA). The initial
conditions for elevations and surface potential for waves were assigned according
to the linear theory; 3-D non-potential velocity components were inserted as
small-amplitude noise.

The long-term numerical integration of the system of equations was done for
different wave steepness. Vorticity and turbulence usually occur in the vicinity of
wave crests (where the velocity gradients reach their maximum) and then spread
over the upwind slope and downwards. The specific feature of wave turbulence at
low steepness (steepness was kept low in order to avoid wave breaking) is its strong
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intermittency: The turbulent patches are mostly isolated and intermittency grows
with decrease of wave amplitude. Maximum values of energy of turbulence are in
agreement with the available experimental data.

Two-dimensional ðx� zÞ modeling considered in the book cannot be considered
as the ultimate method since real waves are, no doubt, three-dimensional. However,
one-dimensional waves can often be considered as a good approximation of real
waves, as wave crest length is usually much longer than wave length. Nevertheless,
many processes such as wave breaking or generation of freak waves and their
interaction with wind can be successfully investigated with two-dimensional model.
At least, such investigation is reasonable to start with two-dimensional conformal
modeling, because this method is highly efficient and allows considering a large
number of numerical experiments with different parameters. Any 3-D model is not
able to deliver such possibility due to its complexity and high demands to com-
putation resources (mainly, the speed of calculations).

Anyway, three-dimensional modeling allows reproducing an evolution of sur-
face waves due to nonlinear interaction. Therefore, developing a 3-D modeling is
highly desirable. Such straightforward method of numerical solution of
three-dimensional potential wave equations is suggested (Chap. 12). The method
uses the surface-following coordinate system. The kinematic and dynamic condi-
tions on the surface in the new coordinates become more complicated, but if we
consider them as the evolutionary equations for the surface potential and elevation,
we come to the conclusion that these conditions can be easily integrated in the same
way as the similar one-dimensional equations in the conformal coordinates.
However, calculations of vertical derivative of potential on the surface become
more complicated, since the Laplace equation for 3-D velocity potential turns into a
general elliptic equation that should be solved at every time step, which requires the
use of extensive computer resources. However, it should be noted that this problem
is still much simpler than, for example, standard simulations of 3-D Navier–Stokes
equations (or LES equations) in the curvilinear coordinates when the problem of
solving of the elliptic equation for pressure arises.

The potential wave problem gives a unique opportunity for validation of full
nonlinear model by comparison with the exact stationary solution obtained in the
moving coordinate system. This solution is obtained with a completely different
algorithm; hence, such validation can be considered as full, non-trivial and exact.
Since the model uses a finite-difference approximation in the vertical direction, we
cannot expect a perfect agreement between the exact and the approximate solutions,
though the results of such comparison are quite convincing. However, the structure
of Stokes wave was supported over a long interval of integration. If the numerical
scheme were not accurate enough, the evolution of modes would exhibit chaotic
behavior and Stokes wave would quickly disintegrate due to the numerical insta-
bility. Such evolution was observed many times in the course of development of
codes. The scheme is consistent, since with increase of resolution its accuracy
increases. Currently, the possibility of application of the model for the finite depth
problem is considered.
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The model was used here for the simulation of evolution of steep Stokes wave
train with the superimposed initial noise. For the case of directional wave fields, it
was shown that evolution of wave field occurs in a different way as compared to
evolution of the unidirectional case; i.e., the new developing modes are oblique
toward propagation of carrier wave.

The most disappointing and unexpected property of the wave model is that the
results depend essentially on the initial set of phases; hence, the most reliable results
can be obtained with the ensemble modeling. Such simulation can be effectively
done in parallel processors. It is not excluded that the stable and smooth results can
be obtained by introducing the local viscosity in the Fourier space. Currently, it is
unclear in what way this property can be brought into correlation with the natural
process. However, we came to the conclusion that the primary physical variables
are rather the fields of velocity (in the potential assumption, it is the velocity
potential) and elevation. The Fourier modes are the result of formal presentation of
wave fields, while they do not necessarily present real objects.

The numerical experiments are performed under the quasi-adiabatic conditions.
However, the model is designed for investigation of the nonlinear mechanics of
two-dimensional surface waves, particularly, for investigation of extreme waves.
After implementation of the energy input scheme and wave-breaking parameteri-
zation, the model can be used for direct simulations of the two-dimensional wave
field evolution under the action of wind, nonlinear interactions, and dissipation.
This model can be combined with the 3-D LES model for the atmospheric WBL,
being formulated in the same coordinate system. Such approach can be considered
as the ultimate solution of the wind–wave interaction problem.

All of the numerical results presented in the current work were obtained using
standard one-processor Dell computer with speed of 3.00 GHz. Since the model is
based on the Fourier transform method, a parallel version of the model does not
provide many advantages, while parallel processors are convenient to simultane-
ously run many versions of the same model, as well as to perform ensemble
modeling.

The definition of freak wave is based on the concept of trough-to crest wave
height, which is reasonable from the practical point of view. A natural wave field
usually looks quite chaotic as a superposition of many dispersing modes which, in
addition, are not conservative due to the fast reversible interactions. In our opinion,
the only reasonable way to detect the instantaneous value of trough-to-crest height
is the detection of maximum difference of elevations in the prescribed window.
Since freak waves should be most likely associated with spectral peak, it is rea-
sonable to choose the window with the size of the order of peak wave length and
even somewhat bigger than that—for elimination of uncertainty of real wave length.

In one-dimensional wave field such a trough-to-crest height formulation gives
quite definite results. However, in two-dimensional wave field some uncertainty
arises because the positions of maxima and minima can be shifted with respect to
the direction of wave propagation. The simplest way to avoid uncertainty is to
define the trough-to-crest height as the difference between the maximum and
minimum along the direction coinciding with that of the peak wave propagation.
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Such interpretation of freak wave does not seem to be quite adequate, as wave
power depends on the full range of elevation.

The main result of the current investigation is comparison of the extreme wave
statistics generated by full nonlinear models and the statistics obtained over the
ensemble of surfaces generated as a superposition of linear modes. In both cases,
the integral energy is the same, and the spectra of the surfaces are similar.

The main advantage of 2-D model is that conformal transformation reduces
the initial system of equation to two simple evolutionary equations which can be
effectively solved with the Fourier transform method. In 3-D case even the
orthogonal transformation is impossible, so the problem remains essentially three-
dimensional. The surface integral method cannot be referred to two-dimensional,
since it is based on Green function. The HOS method relies on Taylor series, which
accuracy is not uniform along surface; what is more important this method is
potentially unstable for high-order Taylor series.

One of the possible versions of such new scheme is offered in Chap. 12. This
scheme is used for calculation of 3-D nonlinear interactions. The unexpected sur-
prise is that for the same initial spectrum the results depend on the initial set of
phases; hence, for obtaining reliable statistical results, it is necessary to perform
ensemble modeling for different sets of initial phases. Such calculation shows that
2-D wave spectrum is highly irregular; i.e., it consists of peaks and holes, and what
is most surprising, these patterns fall on different locations in the 2-D wavenumber
space. It probably means that the nonlinear interactions are not connected with the
fixed combinations of wavenumbers and frequencies, which Hasselmann’s theory
suggests. This result requires further discussion and explanation.
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