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Preface

Predicting natural disasters is extremely important in mitigating disaster related
destructions. In most scenarios, it is equally difficult to predict such events due to
the multitude of factors which affect the formation, propagation and spread of
natural disasters.

This book specifically focuses on predicting the mean first passage time to reach
a known trigger state for natural disasters modelled as dynamic random processes.
An engineering perspective is followed to describe the prediction methods that
particularly look at random processes which govern natural disaster dynamics that
shows directional dependence and spatial inhomogeneity. Several applications are
referred throughout the book including flood, cyclone and fire predictions.

Some of the material presented here can also be found in the following research
publications:

1. I. Wijesundera, M.N. Halgamuge, T. Nirmalathas, and T. Nanayakkara (2012),
“A geographic primitive based Bayesian framework to predict cyclone induced
flooding”. Journal of Hydrometeorology, (2012) [1].

2. I. Wijesundera, M.N. Halgamuge, T. Nirmalathas, and T. Nanayakkara (2015),
“Bias modified MFPT prediction for minimal intervention in robotic walkers”,
[Under review].

3. I. Wijesundera, M.N. Halgamuge, T. Nirmalathas, and T. Nanayakkara (2015),
“Mean first passage time for cyclone motion modelled as biased random walks”,
[Under review].

4. I. Wijesundera, M.N. Halgamuge, T. Nirmalathas, and T. Nanayakkara (2015),
“MFPT calculation for random walks in inhomogeneous networks”, [Under
review].

5. I. Wijesundera (2015), “Estimation of mean first passage time (MFPT) in nat-
urally biased inhomogeneous environments”, [PhD Thesis, The University of
Melbourne, Australia, 2015] [2].

Melbourne Isuri Wijesundera
February 2016
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Chapter 1
Introduction

A complex natural process that occurs on earth is referred to as a natural disaster
when it results in catastrophic life, economic and structural losses. Ranging from
cyclone activity, bushfire, and tsunami waves to thunderstorms, earthquake and
floods, the severity of natural disasters keeps on increasing along with population
growth. Health disasters such as epidemics also add to the above list of catastrophic
events. The complexity of the natural processes result in inherent randomness in the
formation, development, and propagation of natural disasters.

Forecasting natural disasters is indeed a formidable task. However, timely and
accurate forecasts are essential for disaster management operations. Natural disaster
management involves several techniques including mitigation, prevention and relief
management. The forecasts required are dependent on the disaster type as well as
the point of interest (i.e. application). Taking the example of cyclone propagation,
desired predictions include severity and track forecasts, rainfall forecasts and flood
predictions. While people living on slopes will be interested in the rainfall in terms
of possible landslide threats while those living on valleys will be more concerned
about the possibility of floods.

This book concentrates on situations where first encounters define the manage-
ment process. For example, how much time left until evacuation is required before a
wildfire reaches ones village? How long until a tsunami wave is expected to hit the
local coast following an earthquake at a remote location? How long until the internal
activity reaches a threshold forcing a volcanic eruption? These are some of the sit-
uations where natural disasters governed by random processes, or more specifically
first encounters play a major role in deciding the future of ones actions. Although in
some cases it might not be as obvious, a large class of complex processes leading to
natural disasters can be modelled as random walks in their respective state spaces.

© Springer Science+Business Media Singapore 2016
I. Wijesundera et al., Natural Disasters, When Will They Reach Me?,
Springer Natural Hazards, DOI 10.1007/978-981-10-1113-9_1
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Fig. 1.1 Cyclone motion over the North Atlantic ocean (observed within the year of 2012) forming
random walks

1.1 Natural Disasters as RandomWalks

The state changes of a natural disaster process can be modelled as random walks
owing to the high variability of dynamic environmental factors as well as feedback
of the processes themselves. The spatial motion of the eye of a cyclone is an example
that can be easily visualised as a random walk (Fig. 1.1).

Random Walk
A random walk is a fundamental dynamic process [1] which consists of a
path made up of a succession of random steps. At each step the walker takes a
decision on the next step either froma set of statically or dynamically connected
nodes.

However, the state transitions of most other natural disasters can also be mod-
elled as random walks but these might not be as obvious. Taking the example of
volcanic eruptions; if the state of the system is expressed as a vector of temperature,
earthquake magnitude and sulphur levels, the temporal state transitions result in a
three-dimensional random walk.

As described earlier, the main interest of a given random walk changes with the
walk itself and the point of interest. Two observers could relate to the same random
walk with different interests. For example, while people living in a cyclone prone
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coastal area could be more concerned about the estimated landfall time of a cyclone
in view of the possible destruction brought by it, people living in drier inner lands
would bemore interested in the actual path taken by the cyclone in view of howmuch
rain it could bring. The transport properties of a random walk is therefore defined
with the interested result decided by it. These properties are generally obtained by the
joint characteristics of the randomwalker and the impact of the topological properties
of the network [2]. This topic will be discussed further in Chap.2 under Sect. 2.1.5
and revisited in Chap.4 under Sect. 4.2.

This book focuses on the large class of processes where the future of the systems
depend greatly on the first time a particular target is reached by a randomwalker (i.e.
a particular state is reached).

First passage time (FPT)
The FPT is defined as the time required for a random walker to first reach a
predefined target state or set of states [3].

This is sometimes referred in terms of the First passage probability (F(T, t̂)),
which is the probability of the randomwalker’s FPT to some target T being some spe-
cific time t̂ . Then FPT is given as the time dependence of first passage probability [3].

The significant role played by first encounters has made the analysis of first pas-
sage properties of high importance for many diverse randomwalk applications. With
examples ranging from natural disasters propagation [4–6], propagation of diseases
[7–9], spread of gossip [10], stock price changes [11] to fluorescence quenching [3],
first passage properties have been discussed widely in physical literature and biol-
ogy. However, research has not been as extensive in the engineering context possibly
due to the highly theoretical treatment of the subject [12]. Many natural processes,
including those that govern natural disaster dynamics, can be modelled as random
walks in an engineering perspective where the performance relies on first passage
properties.

1.1.1 The Mean First Passage Time (MFPT)

For any random walk, the exact solution to finding FPT is almost impossible espe-
cially in unbounded domain [13]. Therefore, there are other transport properties that
are used to get an indication of FPT. One such transport variable is the probability
distribution of FPT being a certain value. The integral of the probabilities as time
tends to infinity is 1. An important estimate that is commonly used to get an idea
of time to failure is the value at the mean of this probability distribution. Although
this value does not entirely represent the probability profile, this metric contains
important information and the estimation of this value is much more feasible for

http://dx.doi.org/10.1007/978-981-10-1113-9_2
http://dx.doi.org/10.1007/978-981-10-1113-9_4
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most random walks. Therefore, the Mean First Passage Time (MFPT ) will be used
as the main transport property of interest for the rest of the book.

Mean first passage time (MFPT)
The MFPT to a target node is the average time expected for a random walker
to first find that target on a given network [14].

First passage properties in general and MFPT in particular has been used widely
to indicate the efficiency of transport for a random walker in a network [2]. For each
application, the random walker triggers some event at the first encounter at a specific
target state and depending on the application one might want to minimise, maximise
or just observe to make precautions. While for target search processes, the aimmight
be to minimise the MFPT [15], epidemic management would look at maximising
MFPT [16] and for natural disaster management the objective might be to get the
prediction for minimising damage [17].

Baring the high importance of MFPT estimation, first passage properties have
been studied extensively during the last few decades. Powerful results have been
published for networks with specific properties and will be referred to during the rest
of this book.

1.1.2 Two Common Traits

Twomajor attributes present inmost processes that governnatural disasters andwhich
translated to random walks in their respective state spaces are the network inhomo-
geneity [7, 18] and network specific bias [19, 20]. These two generally increases the
complexity of analysis. This book aims to discuss numerical and probabilisticmodels
to capture the effects of these two characteristics on applications in an engineering
perspective.

Biased random walk
A walk which is more likely to move in one direction than another. For such
walks, there exists concentration gradients among exit points in a sphere of
any radius r from the source node of the random walker. The degree of bias
depends on the relative magnitude of the gradient in one direction relative to
others.

The bias or potential fields that shape random walks are formed according to the
applications, some examples being; thermal gradient for cyclone motion [21], wind
distribution for fire propagation [22], topography for flood propagation [23, 24],
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population density for disease propagation [25] and more generally state space
attractors for any system modelled as random walks in its state space.

Current research on predicting MFPT for biased random walks mostly consider
network bias in terms of node degree distribution [26] and node weight distribution
[27]. These methods view the networks categorised by special characteristics such
as scale-free property [28, 29] or the small world property [30]. These concepts will
be discussed in detail in Chap. 2. A large class of real-world biased random walks do
not possess such ideal conditions to classify by these characteristics. Some of them
demonstrate temporal connectivity [31] where a node degree distribution is time
dependent and does not represent the whole network. Therefore one major objective
of this book is to discuss generic methods to analyse directionally biased random
walks and calculate MFPT to reach a target state T .

In the context of this book, a network is defined to be inhomogeneous when a
random walker’s transition probabilities depend on its position.

Inhomogeneous network
A network on which a random walk shows different transport characteristics
in different parts of that network.

Taking the example of fire propagation as a randomspread, the speed, anddirection
of propagation is dependent on many factors such as wind, fuel and topography of
an area [32]. Therefore, the propagation characteristics vary according to the locality
of the walker in the network. Similarly, in the spread of diseases, differences in
population density and interaction lead into inhomogeneity of the network [25].

Current literature addressing network inhomogeneity in terms of MFPT calcula-
tions commonly view the inhomogeneity in terms of node degree distribution [1, 33,
34] giving specific focus to scale free networks. The second objective of this book is
developing methods to calculate the MFPT for networks that exhibit inhomogene-
ity in transport properties. This book takes a generic view when inhomogeneity is
defined in terms of the variability of transport properties which are used to calculate
the MFPT . This book tries to use the observation that many inhomogeneous net-
works consist of ‘homogeneous patches’ [25] into developing a generic approach to
calculate the MFPT .

Continuing this discussion, it can be stated that this book will mainly focus on
two major areas of MFPT calculations in natural disaster predictions; to address
directional bias and inhomogeneity in transport properties. This book will focus on
several diverse applications when describing random processes including cyclone
propagation, and flood propagation.However, it is shown that by keeping themethods
generic, the results obtained are not limited to these applications.

This book analyses random walks for obtaining the MFPT for a large class of
processes governing natural disaster activity in an engineering perspective.

http://dx.doi.org/10.1007/978-981-10-1113-9_2
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The main focus of this book can be stated as
The design of methods to predict the mean first passage time for ran-
dom walks resulting from state transitions of processes leading to natural
disasters, overcoming the complexities imposed by directional preference
and behavioural inhomogeneity.

1.2 How to Read This Book

The main structure of the flow of this book is illustrated in Fig. 1.2 including the
details of the case studies used to verify the presented models. The book starts with
a discussion of the background for the remaining chapters and includes a literature
survey. The novel developments presented in this book starts with a comprehensive
case study for the application of predicting cyclone induced flood propagation which
is analysed as a collection of interdependent and sequential random processes influ-
enced by the effects of bias and network inhomogeneity. A modularised geographic
primitive based Bayesian framework is presented generating efficient real-time pre-
dictions. This book then focuses on application independent generic models for
MFPT prediction for processes translating into randomwalks in directionally biased
media. A novel concept of using bias modified transport variables is introduced in
the presented model and verified with archived cyclone track data. The book next fo-
cuses on processes translating onto random walks on networks with inhomogeneous
transport property distributions. A heuristic approach is used to develop algorithms
to partition the network using the novel concept of ‘network primitives’ and using a
hop-wise calculation approach.

The remaining chapters of the book, shown in Fig. 1.2, are outlined below.

Chapter 2: Background guide to random walk analysis

This chapter outlines the background and the state of art for the generic problem of
MFPT prediction for biased walks in inhomogeneous media in an engineering appli-
cations perspective. The material presented are divided into three major subsections
which will be useful throughout the remaining chapters. The first part consists of the
main notion in the context of book with an adaptation of the theoretical background.
The second part presents a literature review of recent advancements in MFPT pre-
dictionmethods and the last part includes an introduction to a fewmathematical tools
used in the next chapters.

http://dx.doi.org/10.1007/978-981-10-1113-9_2
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Fig. 1.2 Overview of the general research areas discussed and case studies in relation to the book
structure

Chapter 3: Predicting cyclone induced flood: A comprehensive case study

Chapter3 of this book comprises of a comprehensive study on developing methods
for the specific application of predicting the MFPT for cyclone induced flood prop-
agation. Introducing the novel concept of geographic primitives (GP), the terrain is
divided using the flood propagation vector fields to account for network inhomogene-
ity. Easy and flexible data assimilation is obtained through a modularised approach
which allows integrating outputs of other numerical models when they become avail-
able while being able to provide earliest predictions with minimal data. Transition
probability matrices per GP are used to summarise simultaneous events distributed
in the environment resulting in biased propagation, facilitating efficient real-time
predictions using Markov chain analysis. Comparative studies are presented show-
ing the improvements of efficiency and accuracy when compared to other models
commonly used.

Chapter 4: First arrival time for natural disasters modelled as biased networks

This chapter aimsondevelopinggenericMFPT predictionmethods for randomwalks
subject to directional bias irrespective of application. Analysing an array of simulated
random walks on a set of hypothetical networks, a case invariant modification of
transport variables is presented as a viable solution to the problem of addressing
directional bias. The empirical relationship obtained on calculating the bias modified
walk dimension is shown to increase the prediction accuracy in the presence of

http://dx.doi.org/10.1007/978-981-10-1113-9_3
http://dx.doi.org/10.1007/978-981-10-1113-9_3
http://dx.doi.org/10.1007/978-981-10-1113-9_4
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directional bias when compared to using conventional transport variables. Finally
a detailed case study is presented using the real dataset of archived cyclone track
data over the North Atlantic Ocean for the past 60 years. The comparative studies
of prediction results and the generic nature of model development indicate wider
applicability of the presented methods.

Chapter 5: Calculating MFPT for processes mapping into random walks in
inhomogeneous networks

This chapter explores MFPT prediction methods for processes which lead to state
changes behaving as random walks on a network inhomogeneous in transport prop-
erties (which are discussed in Chap.4). For such networks, the application of MFPT
calculation methods introduced in Chap.4 along with many other methods described
in literature are not straight forward. This chapter proposes a solution through using
the concept of dividing the node distribution into patches/clusters known as network
primitives (NPs) where all nodes within each primitive share common transport vari-
ables, and adopting a hop-wise approach to calculate MFPT between any source and
target pair as an extension to the methods described in Chap.4. This methodology’s
potential is demonstrated through simulated random walks and with a case study
using the dataset of past cyclone tracks over the North Atlantic Ocean. The predic-
tions using the presented method are compared to real data averages and predictions
assuming homogeneous transport properties (discussed in Chap. 4).

Chapter 6: Conclusions and future research directions

The major conclusions of this book are summarised in Chap.6, followed by possible
directions for future research. A short discussion of initial simulations on MFPT
calculation for random spreads (such as spreading of bush-fires) is also included.

1.3 Summary

This chapter provided an introduction and an entrance into the rest of the book
which discusses methods of predicting time-to-fail for natural disasters by
modelling the state changes as random processes. Specific attention is given
to two common properties of such random processes (i.e. directional bias and
spatial inhomogeneity). The rest of the book discusses predictionmethodswith
several example disaster scenarios.
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Chapter 2
Background Guide to RandomWalk Analysis

Abstract This chapter consists of three major subsections. Following a discussion
of the ability to model a large class of environmental processes governing natural
disasters as random walks, this chapter provides the theoretical background for this
book which will be useful throughout the rest of the chapters. The first subsection
will summarise the main notion used throughout the book and the adaptation of
the theoretical background for natural disaster prediction in an engineering applica-
tions perspective. The second subsection will review recent research advancements
in MFPT prediction methods. The final subsection will briefly describe some math-
ematical tools used in the proceeding chapters.

Random walks and their properties have been studied widely in literature due to
the important role played by them in a range of disciplines. These methods can be
adapted and improved for predicting natural disasters. This chapter discusses the
literature background for the remaining chapters.

2.1 Introducing Some Basic Notions

Some common concepts that are used in the next chapters are presented in this
section in the perspective of this book. Since the main focus of this book is on natural
disasters, these definitions might be slightly different from traditional definitions in
different disciplines. The more common definitions referred throughout this book
are presented in the Glossary at the end of the book.

2.1.1 Random Processes

This bookwill use the term ‘random’with themeaning of being unpredictable or non-
deterministic. When one tosses a coin, it is commonly understood that one of the two
sides would turn up with almost equal likelihood. Although it might be theoretically
possible to calculate exactly which side turns up using the initial conditions such
as coin weight distribution, initial velocity and point of contact, the complexity
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of the dynamics and the interaction with the surrounding environment makes this
calculation practically very difficult. For problems such as these, it is common to
use probability distributions rather than absolute values to describe and analyse the
system. An experiment tossing a coin a large N number of times and showing the
‘head’ up nh number of times would describe the system with a probability of nh/N
of getting a ‘head’ and a (1 − nh/N ) of getting a ‘tail’.

This book suggests that considering complex dynamic systems like the motion
of tropical cyclones as random processes is a feasible approach of getting better
understanding of such systems.

• A random process is a probabilistic process characterised by a probability
distribution(s) of one or more random variables [1].

• A random variable is one which can take any value out of a continuous or
discrete range but the exact value is not deterministic.

There is a large class of complex real world random processes that govern the dynam-
ics of natural disasters and of which the states map into randomwalks in their respec-
tive state spaces.

2.1.2 Random Walks

A random walk is a fundamental dynamic process [2] which consists of a path made
upof a succession of randomsteps.At each step thewalker takes a decision on the next
step either from static or dynamically connected nodes. This book defines a random
walk as a stochastic process which results in a non-deterministic array of state
changes. The state space is application dependent. An example of a one dimensional
randomwalk is themonthlymean temperature profiles. Figure2.1 shows themonthly
mean temperature profiles of Melbourne, Australia between 1971 and 2016.

A few diverse example random walks which result from real world dynamic
systems are temporal variation of share prices and exchange rates [1], disaster prop-
agation [4–6], spread of epidemics and pandemics [7], path of gossip spread [8],
routing of information packets in large-scale infrastructures such as the Internet [9],
and many other state transitions of physical non-perpetual systems.

Analysing random walks have also gained a lot of popularity due to them being
one of the simplestmechanisms of exploring of and search on networks [10]. Random
search processes are widespread in nature ranging from target searching molecules
in living cells [11] to animals searching for food [12]. Search processes have been
shown to be optimal if the walker follows the shortest path (i.e. one with the smallest
number of links) between the two nodes under consideration [2]. But the shortest
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Fig. 2.1 One dimensional randomwalk of the monthly mean temperature of Melbourne, Australia
between 1971 and 2016 (data from [3])

path can be only found theoretically when the global connectivity of the network
is known, which is not always possible. Therefore, random walks have been used
extensively as a mechanism to explore a network where only local connectivity is
known at each node.

It has been observed that a large class of random walks resulting from natural
processes are not purely Brownian [1]. This is true for many complex systems in
natural disaster dynamics and therefore the methods described in the later chapters
do not require the processes to be Brownian.

2.1.3 Networks

In the context of random walks of interest in this book, a network is defined as
follows:

A network is the complete set of states which the random walker can occupy.

Networks can either be discrete or continuous. A discrete network for a random
walker is one where there are a limited number of nodes which are reachable by
the walker on that network. A continuous network is one where the states which are
achievable by the walker are continuous in nature and therefore infinite. For such
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network, the probability of a random walker being at a location is expressed in terms
of a subset on state space as opposed to a single point and a ‘probability density
distribution’ (PDD) is used to calculate this.

For a d dimensional state space, the probability that a walker is inside the
subspace ∀i=1:d ai < xi < bi is given as

∫
PDD(xi , ..., xd).

Another differentiation between continuous networks is that when the state space
that is reachable by the walker under any circumstance is limited, the network is said
to be bounded where boundaries can be reflecting or absorbing.

Random walks on a continuous state space or network space can be either con-
tinuous or discrete in nature. For engineering solutions, even continuous walks are
usually discretised by measurement and therefore a random walk consists of a suc-
cession of steps in the time domain. Selecting the next step of the walk could either
by solely dependent on the current step, where such random walk is said to possess
theMarkovian property, or might be shaped by the history of preceding steps (non-
Markovian). Either way, the sum of the probabilities of the immediate neighbours
being selected is equal to one.

Connected networks are ones where there would be edges that would connect the
nodes such that therewould be at least one path thewalker can take to reach any target
node from its current node. The chemical distance between two connected nodes is
the shortest number of nodes between them [13]. The degree of a node is the number
of edges connected to that node. There is another class of dynamically connected
or temporal networks [14] where the connections or the edges of the network are
dynamic and dependent on the current state of the network and walker. These types
of networks, although have been given relatively less attention, are quite common in
real world dynamic systems. For example, if there is a bushfire of which the spread
relies on the fire at a single point reaching discrete fuel nodes (e.g. trees, bushes), the
reachability of nodes depends on the spread rate which is defined by the wind and
topography in the area. Therefore nodes that would otherwise be isolated could be
connected given stronger winds. For a discrete connected or dynamically connected
network, the probability of the walker being at any given node is a value dependent
on the current state of the network and would always add up to one for the total node
set. Most parts of this book would consider network connections to be temporal.

2.1.3.1 Random Walks on Complex Networks

A discrete network is said to be complex when the node structure becomes
complicated and different from a normal lattice structure.
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Table 2.1 Common features of complex networks

Scale-free networks The degree distribution of these networks follow the power-low (at
least asymptotically) where the probability that a given node has k
neighbours is P(k)/k [1]. Some example scale-free networks [24] are
social networks [14], protein interaction networks [17] and metabolic
network

Scale-invariant
networks

The network properties would remain almost unchanged irrespective
of the scale on which the network is looked at [18]. For such networks
the number of nodes within a shell of size r is N (r) ∝ rd f , where d f is
the fractal dimension [1] common at any node. Among these networks,
deterministic fractal networks are when the same pattern is observed at
all scales

Self-similar networks The main properties (e.g. degree distribution) of these networks remain
unchanged under length scale renormalisation. In [13] renormalisation
is when a fractal network is covered with NB number of
non-overlapping boxes and when each box is replaced by a super-node
and the links between boxes are transferred to boxes

Small-world networks The network diameter D or the longer chemical distance between any
two nodes, is proportional as D ∝ ln(N ) for a network with N nodes
[1]. A phenomenon observed as early as 1929 and is well known as the
six degrees of separation [15]

A considerable portion of current literature on MFPT estimations looks at com-
plex networks. The study on complex network structures began in the 1950s with
Erdös-Renyi random graph which assumes that complex networks are wired ran-
domly together [15]. This hypothesis was the basis of most initial work on complex
networks in sociology, biology and computer sciences. Scientists have now identified
several topological properties common in complex networks that are very different
from usual Euclidean lattices [1]. Some common complex features are presented in
Table2.1.

Many real world networks have been shown to possess one or more of these
features [2, 19]. An example such network that is commonly used to describe these
properties is the yeast protein interaction network (PIN) which is scale-free and also
has the small-world structure [1]. Some other such networks are the world wide
web [20], social networks [14] and electric power transmission grids [21]. This book
discusses the applicability of some of these features for networks on which random
walks that describe the processes governing natural disasters occur.

Many theoretical methods have been researched on to predict the motion of a ran-
domwalker in networks having a deterministic node structure (i.e. for networkswhich
would fall under a predefined network classification whether simple or complex).
An observation worth noting here is that there are many random walks describing
processes that govern natural disaster dynamics that do not fall into such determinis-
tic structures or are composed as a compound of several such structures having ideal
temporal, directional, and spatial conditions.
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2.1.4 Random Spread Versus Diffusion

Up to this point the considered networks consisted of only a single propagator in
the network. Extending this concept, the cumulative behaviour of a large number of
independent random walkers in the same network is defined as random diffusion.
Diffusion is the continuum limit of a random-walk process [22]. As common as dif-
fusions are in real world systems (e.g. Brownian motion), a contrasting phenomenon
of random spreading exists where it is also a large collection of random walkers but
which are interdependent. A similar concept is a branching random walk where at
each step, several steps are branched out. The network is changed by each passing
walker and therefore will have to be considered in calculations. An example random
spread is the spread of bushfire over a network of fuel distribution biased by wind
and topography (see Sect. 6.1 of Chap.6). Anomalous diffusion is when the mean
square displacement r2 is no longer proportional to the time t [1].

2.1.5 Transport Characteristics Describing Random Walks

Understanding the properties of transport for random walks describing natural
processes is crucial for a large class of applications [13]. Depending on the appli-
cation and the network type, different transport properties are used to evaluate the
performance of a system [19]. Some of the main such transport characteristics are
summarised in Table2.2.

In addition to the characteristics described in Table2.2, there are several others
which have been used to describe random walks such as ‘transience’, ‘recurrence’,
‘number of distinct sites visited’, ‘average recurrence time’, ‘number of returns to
origin’, and ‘occupancy of set by a randomwalk’ [26, 27]. Other transport properties
such as the ‘walk dimension’ (dw), ‘fractal dimension’ (d f ), ‘spectral dimension’
(ds), ‘random walk centrality’ (C) [2], etc. which are commonly used to measure
certain characteristics of the network are also used in literature to derive methods
to calculate the properties such as the MFPT . These will be discussed in detail in
Chap.4.

For networks of regular lattices, most of these transport properties can be deter-
mined analytically. This is however not the case for many real-world networks and
therefore have been an objective of active research [10]. This book mainly focusses
on calculating the MFPT for real world dynamic systems behind natural disasters of
which state transitions form random walks on Euclidean state spaces.

http://dx.doi.org/10.1007/978-981-10-1113-9_6
http://dx.doi.org/10.1007/978-981-10-1113-9_4
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Table 2.2 Common transport properties

Cover time The time for a random walk to visit all sites of the network [23]

Mean exit time from
a sphere (texi t )

This is the first time a random walker reaches any point at a distance r
from its starting point. This quantity is commonly used in analysing
Brownian motion in Euclidean spaces [16]. In many cases, the
length-scale-invariant properties of the random walk leads to the
scaling form texi t/rdw, which defines the walk dimension dw [24].
This will be discussed in detail in Chap.4. As opposed to MFPT , texi t
is not sensitive to the confining environment as only a sphere of r
radius is explored

Mean first passage
time (MFPT )

This is the probability that a random walker or a diffusing particle hits
a specified target point T for the first time starting from a source point
S. As discussed in the introduction, this metric is the most common
transport feature used in applications where first encounters trigger
important events. It has been shown in [24] that the MFPT crucially
depends on the confining environment and the distance between S and
T [23]

Mean return time The average time the walker takes to come back to the starting node
[10]

Mixing time The time scale that determines how the probability distribution
approaches its limiting behaviour [23]

Number of nodes
visited

This is the number of nodes visited during a given time period t

Occupation probability The probability that a diffusing particle is located at a known location
T at time t [22]

Relaxation time Asymptotic time of convergence to the stationary distribution [25]

Splitting probability In the existence of two absorbing boundaries (B1, B2), this is the
probability of absorbing in B1 and B2 as a function of S [22]

Stationary distribution The probability density distribution of the random walker’s position as
t → ∞

Survival probability For an absorbing domain, this equals the integral of the first passage
probability over all time and spatial extent of the boundary [22]

2.2 MFPT : A Literature Survey

Estimating MFPT for random walks has gained a lot of attention in various fields
in the past decade due to the significant role played by first encounters in a large
range of application fields. This book looks at two of the main approaches that have
been used in literature to address this problem. One approach is through analytical
expressions using transport properties of joint characteristics of the network and the
random walker. The next is to use Eigen value analysis on transition probability
matrices (TPM) for the state transitions modelled as random walks.

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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2.2.1 Estimating MFPT Using Random Walks’ Transport
Characteristics

Analysing transport properties of random walks on networks with known charac-
teristics can be found in numerous studies. Among them are Brownian motion [16,
28], Lévy flights [24, 29], random walks on scale-invariant media [24], fractals [30],
scale-free networks [2, 31] and many others. Studies have also been conducted on
randomwalkswhich combines several types ofmotion [7]. Until recently,mostmeth-
ods of determining first passage properties in bounded domains have been mainly
limited to one-dimensional geometries with higher spatial dimensions considered
only in homogeneous media [24]. This book will discuss some of these methods in
Chap.4 with special consideration to methods presented in [24] that uses the pseudo
Green function, that is referred throughout several chapters. However one limita-
tion in most of the methods proposed in literature is that the results are generally
applicable to deterministic networks with homogeneous node distributions [32, 33].

2.2.2 Analysing the Transition Probability Matrix to Estimate
MFPT

The other method commonly discussed in many MFPT prediction methods is by
Eigen value analysis on transition probability matrices (TPM) for dynamic systems
modelled as random walks on their respective state spaces. For random walks pos-
sessing the ‘Markovian’ property (discussed in the next subsection), TPMs are a
useful tool for reducing the complexity of MFPT computation.

Transition probability matrix (TPM)
For a system with n possible discrete states (network nodes), an n × n TPM
gives the transition probabilities from a state i to j in the (i, j)th cell.

If the state transitions are Markovian, TPM for M state changes is simply obtained
by the Markov chain with the result being the current state vector multiplied by
[TPM]M . The probability distribution of a regular Markov chain will converge to a
unique stationary distribution regardless of the starting position [19].

Eigen value analysis gives the relaxation time of a Markov Chain in a global
result as 1/(1 − ε2), where ε2 is the second largest eigenvalue [19].

Therefore if the state space can be digitised, TPM is a useful tool.

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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This is a more popular approach for many engineering applications such as that
discussed in [34]. One advantage of this approach is that it is possible to derive
the transition probability matrix from prior knowledge of the system either in the
form of system modelling or past datasets. These will be discussed in detail in
Chap.3. One major drawback of this approach is that the global connectivity of the
network generally needs to be known for generating the TPM and the analysis is only
applicable to connected networks [19]. And since the computation involves multiple
matrix multiplication, when applied to large scale networks with millions of nodes,
the computational complexity makes the method infeasible for many applications
[19]. Moreover, the solutions obtained from this fundamental matrix approach are
known to be too generic to interpret when it is unclear on which factors (eigenvalue,
node degree, connectivity, etc.) govern the MFPT from the solution expression [19].
Therefore, although the TPM method provides a very versatile approach for MFPT
calculations, there still exists room for further improvements.

2.2.3 Random Walks in Natural Disaster Dynamics

Most MFPT prediction methods described in literature assume that the random
walker has no memory. This is called the ‘Markov property’ (discussed under math-
ematical tools). However, most random walks governing natural disaster dynamics
do not follow the strict Markov conditions. It has also been observed that a large
class of natural processes are not always Brownian [1]. This book looks at systems
which deviate from such ideal conditions especially in the existence of directional
bias and network inhomogeneity. Current literature on these aspects are discussed in
the following sections.

2.2.3.1 Bias on Natural Systems

An isotropic random walk that starts at the origin [22] is the basis on which many
prediction methods depend on. However, in the past few years more literature has
addressed the question of bias in MFPT calculations [2, 12, 19, 22]. In [22] it is
shown that for a biased random walk, MFPT is dominated by the bias.

For a walk on a d dimensional Euclidean space, where d > 1, biased random
walks are mainly within a narrow cone of t length along the bias direction and
having a width of t1/2 where t is the time.

Themost popular approach in current literature on the definition of bias in random
walks is in the form of bias resulting from the node degree distribution [35]. Zhuo
et al. [19] have shown that there are cases where the nodes share the same node

http://dx.doi.org/10.1007/978-981-10-1113-9_3
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degree while having greatly different local topologies. Here they look at bias as
being controlled by arbitrarily controlled node weights and show that the MFPT
is a function of both node degree distribution and node weight distribution. The
work in [36] shows that directed self-avoiding walks show anisotropic behaviour by
decomposing the random walk as a forward walk along the preferred direction and
a random walk perpendicular to that direction.

In one example, animal motion’s central foraging behaviour is described as biased
random walks in [12] describing MFPT through the effect of landscape on animal
movement and search time. Directional bias has been introduced into the model with
an advection term which describes the directed motion component. The relation
between the magnitudes of the directed and random components of movement is
shown to determine the shape of the MFPT curve.

When the random walks are biased

MFPT (S → T ) �= MFPT (T → S). (2.1)

The asymmetry is characterised with the difference in the MFPT ’s [22, 23]. In [2]
it is shown that the difference can be determined by the random walk centrality.

The directional bias has also been addressed using TPMbasedmethods in order to
calculate MFPT for random walks [19] but is still computationally infeasible when
networks topologies are not 100% known or when networks have millions of nodes.
This book discusses both methods of addressing directional bias on random walks
in Chaps. 3, and 4.

Effect of Bias in Anomalous Diffusion

Biased anomalous diffusion has been shown in [37] as constant external fields giving
rise to constant currents which increase with the strength of the biasing field. The
drift velocity is shown to respond non-monotonically to the biasing field.

Correlated Walks and Biased Random Walks

Initial work analysing random walks considered the walkers to be ‘uncorrelated’.

Uncorrelated walks are where each step taken by the walker is essentially
independent from the previous step. Such motion sums up the concept of
‘Brownian’ motion.

It has long been realised that a large class of random walks are in fact correlated in
the form of either auto-correlation where the walkers current step is shaped by its
previous steps or cross-correlationwhere there is a relationship between twowalkers

http://dx.doi.org/10.1007/978-981-10-1113-9_3
http://dx.doi.org/10.1007/978-981-10-1113-9_4
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in that network. The effect of problem specific bias, is another factor shaping random
walks in that network. The effect of bias may or may not lead to correlated random
walks as will be explained with the following examples. Animal migrating paths
which are shaped by biasing factors such as wind, temperature or water [12] as well
as life history and morphological traits [38] often lead to correlated random walks
as the vector field biasing the network remains more or less unchanged. But in the
example of fire spread, the dynamicity of the vector field created by winds make the
random walks biased but not correlated [39]. This book concentrates on the effect of
bias on random walks irrespective of correlation.

A network without loops is generally called a ‘tree’ and it is impossible for a
walker with the memory of the last step to go in a loop in a network with a tree
structure. Loops in the network can lead to loops in the random walks. The vector
field resulting from biasing factors in a network could be a deciding factor for the
existence of loops in a random walk. This book considers random walks without
loops for simplicity and limitation of computational resources. Moreover, the effect
of biasing vector fields often shape the probability density distribution of selecting
the next step at each step of a random walk. The probability of reaching nodes in
the network is also shaped by the biasing vector field. Furthermore, biased networks
lead to ‘directed’ links where the motion from one node to another is not the same
when the nodes are reversed.

2.2.3.2 Inhomogeneous Networks

Network inhomogeneity is defined when a random walk has transition proba-
bilities dependant on its position.

In most MFPT prediction methods found in literature, transport properties are
assumed to be scale-invariant. Most use network renormalisation schemes such
as those found in [13, 15, 24], that use self-similarity and scale-free properties.
However, in recent work, network inhomogeneity has been addressed in several
approaches. Structural inhomogeneity effects of nature of the diffusive and relax-
ation dynamics of a random walk has been studied in [2]. The majority of literature
on network inhomogeneity looks at the inhomogeneity in node degree distribution
[2, 13, 40] with some also looking at local weight distributions [19]. For animal
motion, network inhomogeneity has been introduced in terms of landscape features
in [12] where landscape heterogeneity on animal movement is considered in two
parts: movement rate and movement direction. Seasonal hot-spots have been identi-
fied in motion of some predatory animals in [41]. In [2] it is shown that for homoge-
neous networks, randomwalks’ centrality is the same for all nodes and any difference
determines the difference of MFPT .
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2.3 Some Mathematical Tools

In this section, a summary of some of the mathematical tools used throughout this
book is included. The reader is encouraged to refer to this section for clarifications
regarding the mathematical tools in the context of the methods discussed in the next
chapters. The tools which are used only once are discussed within the chapter itself.

2.3.1 Bayesian Probability Theory

Contrasting to the Frequentist view of probability being a result of infinitely many
attempts, in theBayesian view, probability is ameasure of belief of predicted outcome
[42]. It uses prior data to refine prediction and hypothesis.

The main equation governing Bayesian probability is

P(h|D) = P(D|h)P(h)

P(D)
(2.2)

where h is the hypothesis (prior probability) and D denotes the prior data
(evidence). P(h|D) gives the posterior probability and P(D|h) gives the gen-
erative model or the likelihood.

In making an inference, several tools are available depending on the problem.

2.3.1.1 Maximum Likelihood (ML) Hypothesis

This is considered a good prediction option when no past data is available but not
the ideal choice when there is available prior knowledge. The equation for this is

hML = argmaxh∈H P(D|h). (2.3)

2.3.1.2 Maximum A Posteriori (MAP) Estimate

The MAP estimate gives the hypothesis with the highest probability given observed
data. It is still a point estimate and obtained using
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hMAP = argmaxh∈H P(D|h)P(h). (2.4)

2.3.1.3 The Bayesian Estimate

This method uses the full probability density distribution to infer on the system.

2.3.1.4 Bayes’ Filtering Method

The method of Bayes’ filtering is a practical approach which uses the posterior prob-
ability as the prior probability in the next step. This is used for rainfall prediction in
Chap.3. This method is used in many practical applications through many variations
such as in Kalman filter which assumes linear dynamics and Gaussian noise, and a
more recent version known as the particle filter. This gives the probability of being at
a state Xt at time t given a sequence of observations y = (y1, y2, . . . , yt ) per [42] as

P(Xt |y1, y2, . . . , yt ) ∝ P(yt |Xt )P(Xt |Xt−1)P(Xt−1|y1, y2, . . . , yt ). (2.5)

2.3.2 Markov Matrices

A Markov Process is one where when given the current state of a process at
time t , any information regarding the states of the process until time t does not
effect on the prognosis of the system state after time t [43, 44].

In the context of a random walk, this is when the walker is at the i th node, the
probability Pi, j to jump to j th node does not depend on previous steps [1]. This
memoryless property is called theMarkovian property.

The Markovian property for a random walks is

P(sn+1 = x |s1, s2, . . . , sn) = P(sn+1 = x |sn). (2.6)

http://dx.doi.org/10.1007/978-981-10-1113-9_3
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This probability condition defines the Discrete Markov Chain. AMarkov matrix,
also known as a stochastic matrix, describes the transitions of a Markov chain. The
j th element of the i th row consists of the non-negative value Pi, j . A process with n
possible states produces an n × n Markov matrix (An×n). Two major properties of
this matrix are,

• ∑n
i=1 pi j = 1, ∀ j ∈ {1, 2, . . . , n} and

• 0 ≤ pi j ≤ 1, ∀i, j ∈ {1, 2, . . . , n}.
The largest Eigen-value of a Markov matrix is 1. Finally, because when a random

walk has no memory, it is “renewed” every time a specific node is reached. Thus
recurrence also implies that every site is visited infinitely often for an isotropic
random walk with the Markovian Property.

2.3.3 Linear Least Square Fitting Technique

When a data model is developed to explain a given system, and when such model
is linear in the model coefficients, linear regression is used to fit the model to the
dataset. The most common linear regression type is the linear least square fit. This
method is used throughout this book to fit linear models.

If a linear model is given as

y = f (x) (2.7)

the least squares method minimises the sum of the square of residuals. A residual
for the kth data point (rk), is the difference between the response observed (yk) and
the model response (ŷk) given as

rk = yk − ŷk (2.8)

and the sum of square of residuals (S) is

S =
n∑

k=1

r2k =
n∑

k=1

(yk − ŷk)
2 (2.9)

for n number of data points included in the fit.
The individual regression coefficients are found by solving the differentiation of

S with respect to each parameter as

∀
(i=1,2,...,m)

∂[S]
∂pi

= 0 (2.10)

where pi ; i = 1, 2, . . . ,m are the parameters.
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2.3.4 Monte-Carlo Simulations

Monte Carlo simulations serve the objective of estimating a stochastic characteristic
γ with an estimator γ̂ computed from observed data [45]. The roots ofmodernMonte
Carlo methods run back to the 1940s with the use of random numbers to examine
problems from a stochastic perspective [46]. Monte Carlo methods have proven to be
extremely useful in solving problems where analytical solutions do not exist or when
conditions required for mathematical theory to be valid do not hold. Monte-Carlo
simulations offer an alternative to analytical mathematics for understanding systems
behaviour using random samples of known simulated data populations.

The basic steps of a Monte-Carlo simulation are as follows [45]:

The basic Monte-Carlo simulations are therefore very simple. The accuracy of a
Monte-Carlo estimate depends upon creation of the pseudo-population in the thor-
oughness with which it is explored through pseudo-samples. Improvement of the
result could be possible simply by increasing the number of trials. Therefore, a major
limitation of Monte-Carlo simulations is the limitation of computational resources.
This method is used extensively in the next several chapters of this book.
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2.4 Summary

This chapter outlined the basic concepts and notions, a literature review of
MFPT prediction methods and a few mathematical tools used throughout the
rest of this book. The main objective of the rest of this book is on discussing
new techniques to calculate the transport property introduced as MFPT , for
random walks under different conditions and situations commonly imposed
by processes governing natural disaster activity. The concepts and definitions
introduced in this chapter will be used throughout the book. It is encouraged
to revisit this chapter and the literature cited herein whenever clarifications are
needed.
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Chapter 3
Predicting Cyclone Induced Flood:
A Comprehensive Case Study

Abstract The prediction of MFPT in the propagation of cyclone induced flood is
comprehensively discussed in this chapter as a special case study to gain an entrance
to a more generic study in the proceeding chapters. The inhomogeneity in terrain is
addressed using a novel concept of dividing the terrain into geographic primitives
(GPs) identified through flood propagation vector fields. A modularised approach
including a Bayesian framework is followed allowing easy and flexible assimilation
of data and integration of outputs from other models when they become available.
Simultaneous events distributed in the environment leading to biased propagation are
encapsulated into transition probability matrices (TPM) allowing efficient real time
predictions via computation through a Markov chain. Comparative studies using real
datasets show the models ability of predicting up to 3 h ahead of official forecasts
with a 33 % improvement of accuracy when compared to other models currently
used.

3.1 Introduction

Flooding induced by cyclone activity is a result of a combination of several simulta-
neous and distributed random processes in the environment [1, 2]. The effectiveness
of managing cyclone induced flood is highly dependent on how fast reasonably accu-
rate predictions can be made, which is a particularly difficult task given the multitude
of highly variable physical factors affecting. Even with supercomputers, collecting
and processing vast amounts of data from numerous asynchronous sources makes it
challenging to achieve high prediction efficiency.

The highly complex and distributed dynamic system that results in cyclone
induced flooding events can be roughly divided into three major groups as processes
leading to the spatial motion of cyclones [3], cyclone induced rainfall [4], and
propagation of flood [5]. Both common network traits introduced in the preceding
chapters; network specific bias and network inhomogeneity, are present in all three
processes which show different propagation mechanisms in their respective domains.
For this reason, this chapter discusses this specific application to gain an entrance
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addressing the effects of bias and network inhomogeneity in a more generic approach
of analysing MFPT for random walk processes governing the dynamics of natural
disasters.

3.2 Cyclone Activity: One of the Major Forms of Natural
Disasters

The past few decades has shown a great increase in the vulnerability to natural dis-
asters all over the world, leading to social, economic and environmental tragedies.
The tragic flooding in 2010–2011 in the state of Queensland, Australia, alone has
resulted in over 200,000 people affected, with 35 confirmed deaths as stated by [6]
(2011) and [7] (2011). The resulting damage was over AUD 1 billion with an esti-
mated reduction of AUD 30 billion in Gross Domestic Product (GDP). According to
the “Intergovernmental Panel on Climate Change”, economic losses from weather
and climate-related disasters have increased in the past few decades and heavy rain-
falls associated with Tropical Cyclones (TC) are likely to increase with continued
warming [8].”

To add to the increase in the importance of disaster monitoring, there has been
some decline in monitoring infrastructure, as a result of disasters themselves [9].
Millions of dollars are being spent on disaster management sensor networks signify-
ing the importance of efficient sensor deployment and management for which predic-
tions of disaster dynamics are of high importance. With such knowledge, one method
of extending the lifetime of a wireless sensor network is to optimise the on-board
energy consumption of nodes. In order to conserve on-board energy, many design
approaches have been researched on, such as network architecture, efficient sensing
circuitry, algorithms and communication protocols [10, 11]. Various dynamic power
management techniques have also been proposed which mainly address sleeping
patterns and idle states dynamically [12]. In addition to power management in sen-
sor nodes, efficiency and the effectiveness of a network can be improved drastically
using Just-In-Time sensor deployment as described in [13].

An expected time-to-flood for a given area prone to cyclone induced flooding
will immensely improve the effectiveness of disaster management operations. This
includes for power management techniques and dynamic deployment of sensor net-
works, which would help obtaining a perfect balance between reducing network cost
and capturing the most important data. It has been shown in [14] that the losses at
a catastrophic event such as a natural disaster, decreases with the increase of pre-
dictability of the event.

3.2.1 Numeric Flood Prediction Models

There are several deterministic flood models in use today predicting likely inun-
dations resulting from TC activity. Digital Elevation Model (DEM) of increasing
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resolution is used to model water flow [9, 15, 16], taking into consideration that
flood inundation extent is highly dependent on topography [15]. It has been shown
in [15] that the predictive ability deteriorates with the decrease in resolution of DEM
data used. This is especially true when levee structures are smoothed with lower
resolution landscape. However, it has also been shown that the improvement of
prediction accuracy with increased resolution is marginal for smoother landscape.
Therefore, one drawback in this approach is the fact that it uses high resolution data
throughout the landscape which results in increased computational cost. This raises
the importance of using different resolutions based on the geography of the area.

3.2.2 The Concept of Geographic Primitives (GPs)

Dividing the landscape into primitives identified by water-flow characteristics has
been presented as a viable solution to address the geography-optimised prediction
of flood propagation [17].

Geographic Primitives (GPs)
A GP can be defined as a portion of landscape where the main driving force
of a disaster shows statistically stereotypical behaviour (e.g. distinguishable
water flow patterns can define GPs in the process of flood prediction, where
a few identifiable GPs would be basins, mountain ranges, valley’s, flat land,
etc.).

Identifying GPs is done through visual inspection of contour patterns that would
give low modal vector fields with patterns typical to the GP type. For flood prediction,
it is the simplest unit that can be identified in terms of water flow patterns without
being biased by any structural or agricultural aspect where the only focus is to identify
simple low modal vector fields of water flow. The dominant factor forming the vector
field is the contour patterns of the catchment. With the increasing availability of
high resolution topography data, identifying GPs in this simplest form is feasible
irrespective of availability of any other data. But if more data is available, such as of
land use and Pedology, vector fields can be formed considering effects of all these
factors. It’s worth noting that complete and accurate datasets are needed if other
factors are to be considered, as the accuracy of the prediction is decided by the
quality of data used.

At this point a manual partitioning approach is discussed due to the complexity of
the global vector field. Stereotypical behaviour of vector fields such as converging,
diverging, directing, and scattering are visually identified on the flood vector field
to demarcate GPs such as valleys, mountain crests, mountain ranges and flat land.
While low-modal vector fields are recommended, uni-model vector fields would be
the ideal case for a GP.
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Literature gives many distribution models that aim to overcome the burden of spa-
tial representation [18]. These can be divided mainly into two groups; one in which
model elements are selected entirely upon topography data (e.g. gridded elements,
contours and streamlines, triangulated irregular network facets and conceptual ele-
ments of hill-slopes and stream segments), and the other where layers of data are
overlay in order to identify particular combinations of elevation, land cover, slope,
aspect, soils, etc. (e.g. Hydrologic Response Units (HRU), Representative Elemen-
tary Columns (REC), and hydro-landscape units [19]). Model elements identified by
any of these methods could pass as GPs if their flood vector fields show statistically
tractable behaviour. In some cases there may be multiple identifiable GPs within
one modal element or vice-versa in some others. The main difference between the
definition of GPs and above mentioned hydrological model elements are that GPs
only take vector field of surface water flow as the variable and not put any abstract
label on the primitives.

3.2.3 Data Assimilation in Flood Prediction Models

Models have also been developed to incorporate data assimilation [16, 20]. In [16],
the authors have addressed the problem of obtaining a topographically optimum
model to improve the representation of “raw” topographic data so that its integration
with lower-resolution numerical inundation models is optimal. The authors of [20]
integrates flood model outputs with the Geographical Information System (GIS). A
model currently in use for stream flow monitoring is the Geospatial Stream Flow
Model (GeoSFM), which is a semi-distributed hydrological model developed as an
extension of the ArcView GIS software [21]. GeoSFM software uses a wide range
of inputs, including satellite rainfall estimates, soil data, land cover and elevation
data, to predict stream flow. One shortcoming of this model is its inability to predict
absolute flow magnitudes due to the absence of regional and seasonal bias correction
[5] which is a difficult task with data limitations when trying to use a generic model
for diverse regions. The GeoSFM model only finds abnormalities in water flow. One
other limitation is that the output is numerical and the probability aspects are not
present in the output.

The concept of GPs also address the large file size problem for high resolu-
tion topography. This division could be a regular grid or an irregular division as
suggested in the deployment of disaster management wireless sensor networks in
[22]. Figure 3.1 shows some identified geographic primitives on the landscape of
Queensland, leading to some stereotypical flood distributions including scattering,
converging and diverging. As topography will not always give clearly distinguishable
primitives, catchments need not have strict boundaries and using overlapping bound-
aries is more appropriate. It should also be noted that the runoff between certain GPs
would show stereotypical behaviour.
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Fig. 3.1 Identifying geographic primitives which define the accuracy of prediction. a Some GP’s
on the landscape of Queensland. b A Valley. c A flat land. d A mountaion range. e An isolated crest
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3.2.4 Predicting Cyclone Induced Rainfall

The lead time for TC induced flood prediction can be increased by predicting TC
induced rainfall which results in floods. Although there has been great advancements
in numerical prediction models in the past decade [23–25], these models still have
room for improvement due to the multitude of factors affecting TC induced rainfall
and getting data on all these factors in real time is not practical while a probabilistic
approach would be more viable.

3.2.5 Bayesian Theory for Natural Disaster Prediction

Bayesian probability approach has been increasingly used in natural disaster predic-
tion (in [14, 26, 27]) due to the many advantages and flexibility associated with it.
One main advantage in the approach is that it incorporates prior knowledge, pragmat-
ically optimised by the user, which allows for probabilistic predictions as opposed to
binary true/ false outcomes, which have a risk of misleading forecasts. In addition,
this approach accounts for parameter uncertainty, reducing error from over-fitting of
training data, and provides natural interpretation of regularisation [28]. Therefore,
given the large amount of factors affecting cyclone induced rainfall characteristics
[4], possibility of errors in observed data, and the ability to use prior knowledge in
prediction [29], using a Bayesian framework can be identified as a suitable candidate
for TC induced rainfall prediction.

3.2.6 Predicting the Spatial Motion of Cyclones

Including the prediction of the path of a cyclone could further increase the lead time
of flood prediction by the model. Cyclone track prediction models have come a long
way since the use of purely statistical models such as the CLIPER (CLImatology
and PERsistence) model, proposed by [30], which is now used solely as a bench-
mark for assessing the skill of other models. Dynamic models, which use numerical
weather prediction, are used most widely at present. These models generally require
supercomputers to solve the mathematical equations governing the physics of the
atmosphere and use numerical methods to solve these equations in order to generate
forward-in-time forecasts of the track of the cyclone [31]. The Geophysical Fluid
Dynamics Laboratory (GFDL) model [32] is one of the dynamical models used most
widely. The dynamic models use a large range of data sources for assimilation includ-
ing, satellite data, specialised aircraft data, and local area sensor networks. Gall et.al
(2011) [33] states that GFDL is only a regional model as well a “Late” model where
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the first prediction is only available 4–6 h after the initial track advisory is released,
despite being high in accuracy. The output of this model could be used for the flood
prediction model considering these limitations as well.

3.3 A Comprehensive Model for Cyclone Induced Flood
Prediction

An ideal flood prediction would be available with high lead times using minimal
available data and would be refined with any subsequently available data. This section
presents a comprehensive and modularised prediction approach facilitating easy data
assimilation.

Consider a geographical area prone to TCs, with a height profile h(x1, x2), where
x1 and x2 describe the location in terms of latitudinal and longitudinal coordinates,
respectively. Prediction starts with available minimal data of the cyclone while it
is refined with incoming data. Let t = T, 2T, 3T, . . . , kT be prediction times for
k number of periodic predictions at T time intervals. Let the geographical area
consist of many geographical primitives (GP) where the propagation of flood shows
statistically stereotypical behaviour (e.g. basins, mountain ranges, valley’s, flat land,
etc.). Let Π be the set of node clusters with data currently available, and Π̄ be those
which are yet to sense any data. Prediction of failure time (i.e. time to flood) for node
i with data, FTi∈Π , as well as for nodes in Π̄ start as soon as cyclone data is sensed
anywhere in the total network. This data is used initially for cyclone path prediction,
of which the output is used in the rainfall density distribution prediction phase and
finally into flood density distribution prediction as explained in Fig. 3.2.

All data as well as predictions from more sophisticated models at each stage
(cyclone path and rainfall) are used in refining the prediction as data becomes avail-
able. The failure time for the nodes in clusters (i ∈ Π̄ ) can be inferred from available
data (i ∈ Π ). This estimate can be recalculated as more data is obtained, and the
FTi estimate at a given time can be used to deploy and manage the i th node cluster.
This is possible even when there is no current available data at any of the nodes
(i.e. Π ∈ �) where the prior is mainly decided by historical data and mathematical
simulations of water flow. The summary of the main symbols used in describing the
model are listed in Table 3.1.

The modularised calculation flow is given in Fig. 3.2. Prediction starts with incom-
ing cyclone best track data, which are used for cyclone path prediction to get a linear
approximation of the path using a sliding window of samples where the window size
and deviation depends on the speed of the eye of the cyclone. The output is used as an
input to the rainfall prediction phase. Probability distribution of rainfall is predicted
using Bayesian learning, with the initial prior taken from the R-CLIPER model and a
likelihood function generated using the available rainfall data. The rainfall prediction
is used for the next stage for flood prediction by considering the dynamics of water
flow on a landscape approximated by a linear combination of Gaussian functions.
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Fig. 3.2 Flowchart of the prediction model

The area is segmented into geographic primitives identified by water flow patterns
during the learning phase and the calculation of time-to-failure is made more efficient
with the use of probability transition matrices for each segment.

This model is developed on a few assumptions, mainly for simplicity and to focus
more on the new concepts introduced herein. The main assumptions can be listed as
(a) the terrain is frictionless (b) that soil absorption is negligible (c) evapotranspiration
during prediction time is negligible (d) topography of the area remains unchanged
during the time of prediction. Although the first three effects are out of the scope
at this point, they can be readily integrated into the model in the motion equations
and probability transition matrices, which are described in detail later in the chapter,
and thereby improve on the accuracy. Assumption (d) is the basis of the proposed
off-line calculations.
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Table 3.1 Parameters used Symbol Definition Units

T Prediction time interval s

h Height profile m

v Velocity m s−1

x1 Distance in latitudinal direction ◦

x2 Distance in longitudinal direction ◦

GP Geographical primitive −
Π Node clusters with data −
FTi∈Π Failure time for i th cluster in Π s

FTi∈Π ′ Failure time for i th cluster in Π̄ s

Method assumptions

• The terrain (through which the water flows) is frictionless.
• Soil absorption is negligible during floods.
• Evapotranspiration during the calculation time is negligible.
• Topography of the area remains unchanged during the time of prediction.

(This is the basis behind the concept of geographic primitives introduced in
this chapter.)

• Rainfall during one prediction time period is limited to an area of 500 km
radius. (This is true for most scenarios but neglects rainfall due to conver-
gence along coasts during extratropical transition.)

3.3.1 Step 1: Predict Cyclone Path with Available Data

The future track of the cyclone, using any available data, is done in this step using
a curve fitting technique. After comparative studies with many standard curves,
including exponential, higher order polynomials and Gaussian, the best prediction
has been identified with fitting a first order polynomial with track data available at
each step using a windowing technique.

The aim of this step is to get the best prediction of the future track of the cyclone
using best-track data available at the time of prediction. A curve fitting approach
is taken using standard curves commonly used for such applications. The predicted
track output from all these curves are compared to actual track taken after the time of
prediction. The equations governing the four standard curves used for the comparison
are given in Table 3.2.
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Table 3.2 Standard curves
used for curve fitting

Function Equation

Linear polynomial f (x) = ax + b

Exponential f (x) = ae(bx)

Gaussian f (x) = ae(−((x−b)/c)2)

Higher order (cubic)
polynomial

f (x) = ax3 + bx2 + cx + d

Figure 3.3 shows a graphical comparison of four curve fitting outputs using these
four standard curves. The lines show the curve fitting using linear polynomial, expo-
nential, Gaussian and higher order (3rd) polynomial functions respectively. The three
columns show comparison at three sample prediction points. Initially the higher order
polynomials (last row) are ruled out from the comparison since although it provides
a good fit for existing points, the prediction was deviated away from the track with
the effect of the higher order terms. For Gaussian curves (third row), even though
the error is less than the earlier case, high bias towards the origin of coordinates
made prediction less accurate for most cases (Fig. 3.3h, i). Deciding between the
linear polynomial and exponential curves are a tough choice as both curves produce
good results in most cases. But when there is a slight change of direction of a curved
track, using a linear polynomial proved to be a better predictor as shown in Fig. 3.3c
compared to Fig. 3.3f. Therefore, considering the fact that using linear polynomial
would eliminate any errors arising from bias, it is chosen for use in the cyclone track
prediction step.

This selection is mainly due to non existence of any bias to the origin of the fit.
The first order polynomial used can be expressed as

x1t = a + bx2t , (3.1)

where x1t is the latitude and x2t is the longitude at time t , b is the slope and a is the
intercept of the line. The unknown coefficients a and b are computed through linear
regression using least squares fitting technique on past track data. The sum of the
squares of the deviations of the linear approximation (R2) of a set of n data points
can be expressed as

R2(a, b) =
n∑

i=1

[x1i − (a + bx2i )]
2

and the regression coefficients can be found by solving

∂[R2]
∂a

= −2 ×
n∑

i=1

[x1i − (a + bx2i )] = 0 and

∂[R2]
∂b

= −2 ×
n∑

i=1

[x1i − (a + bx2i )] × x2i = 0

(3.2)
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Fig. 3.3 Four common standard functions compared that are used for the prediction of future track
followed by a cyclone through curve fitting technique. Three prediction steps are compared in the
three Columns. The rows show predictions using linear polynomial, exponential, Gaussian and
higher order polynomial functions respectively

The central track of the predicted motion of the cyclone (before adding the allowable
deviation) is calculated using Eq. (3.1) and x1t = (x1p−x1(p−1))t/(δt) where p is the
position of the cyclone according to latest data, and δt is the time interval between
readings. The probability distribution of the cyclone path is iteratively predicted
with incoming data using a sliding window technique using a window size n, which
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reduces as speed of the travel of the eye of the cyclone decreases. This is because
a cyclone slows down when it turns. The calculation algorithm is as described in
Algorithm 1.

Algorithm 1 Algorithm used for cyclone path prediction

Step 1: Set i = 0;
Step 2: Collect i th location data input until i = n, where n is the default size of the moving window
used for calculations;
Step 3: Calculate the current speed of the cyclone and adjust window size for Step 4 accordingly (a
default step size of 5 is used in the calculation which reduces to 3 when two consecutive readings
show 30 % below average speed and further reduces to 2 when three or more closest readings show
30 % below average speed;
Step 4: Use linear regression from Eq. (3.2) to get a and b;
Step 5: Calculate upper and lower margins of the distribution using the standard deviation weighted
by speed of the travel of the eye of the cyclone and the R2 value of fit;
Step 6: Continue at Step 3 for each received location data point.

The predicted probability distribution of cyclone path, refined as data arrives, is
used as an input to the calculation of rainfall probability distribution.

3.3.2 Step 2: Predict Rainfall Density Distribution
with Available Data

Using the knowledge of the current and (predicted) future track of the eye of a
cyclone, a prediction of rainfall density distribution can be made. As the cyclone
path prediction gets refined with incoming data, the rainfall prediction also changes
accordingly. Probability density distributions of locality of rainfall are calculated
through Bayes filtering technique, where the prediction (i.e. posterior) for one time
step is used as a prior for the next prediction step. The rainfall probability density
distribution is calculated as

prediction = likelihood ∗ priori. (3.3)

Division by the probability of data, as used in conventional Bayes theorem is not
used here as it is just a scaling factor. The predicted distribution is normalised to
get the probability density distribution of rainfall locality where the integral of the
distribution over the considered area equals one. In the initial prediction, where there
is no available data of rainfall, the priori estimate is taken as the output from the
R-CLIPER model [34].
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The R-CLIPER model (Rainfall CLImatology and PERsistence Model)
For tropical cyclone rainfall, the R-CLIPER model was developed for pre-
dictions based upon climatology and persistence. As explained in [34], in the
R-CLIPER model, a climatological rainfall rate is determined and then inte-
grated along the storm track. Because the primary interest in tropical cyclone
rainfall is over land, the variation in rainfall rate after landfall has been taken
into account. Asymmetries are not taken into account in the R-CLIPER model
because most significant factor for this asymmetry appears to be the storm
response to the environmental vertical wind shear which depends on the par-
ticular synoptic environment. This is a major limitation of the model.

The equation governing the model is given as

R(r, t) = [a exp(−αt) + b] exp(−(r − rm)/re), (3.4)

where parameters a and b are defined from the fit to the gauge data by radius,
and rm is the radius of maximum rainfall (which is at the origin) and re is the
radial distance to the edge of the distribution which is usually taken as 500
km.

The major advantage to the R-CLIPER is the simplicity afforded by its
use of the forecast storm intensity as an additional factor. One issue with this
method is that the algorithm slightly underestimated the rain estimates because
it assigned the values derived for the three intensity ranges to the middle of each
intensity range. The storm intensity statistics suggest that the rain estimates
are more representative of the lower edge of each intensity range.

The rainfall climatology and persistence (R-CLIPER) model is widely used
as a benchmark for cyclone induced rainfall prediction.

3.3.2.1 Finding Likelihood Function for Rainfall Prediction

Several approaches are compared to get a suitable likelihood function from available
rainfall data at time of prediction. Looking at the rainfall distribution, first it was
attempted to fit the rainfall distribution with distance to an inverted Mexican hat
distribution (Fig. 3.4) and curve fitting for several positions; are plotted in Fig. 3.5.
However, this did not prove to be a very effective likelihood function as there exists
a lot of asymmetries in the rainfall distribution resulting from cyclone activity. The
equations governing the surface fitting functions used in this section are summarised
in Table 3.3.

The curve fitting by combinations of Gaussians for the same 8 cyclone eye posi-
tions are shown in Fig. 3.15. The fitting is done first by smoothing the readings with a
moving average and then by curve fitting. The comparison of rainfall predictions of
the presented model with actual rain and the R-CLIPER model are plotted in Figs. 3.6
and 3.7 and a comparison of the results are given in Table 3.4.
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Fig. 3.4 Initial
approximation of rainfall
using an inverted Mexican
hat distribution

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

45

50

Radial Distance

R
ai

nf
al

l

As soon as data is received, a likelihood function is computed, which is used in
prediction of rainfall after a T time period. Many models are attempted in obtaining
a suitable likelihood function which would produce a more accurate prediction as the
posterior using Eq. (3.3). A surface-fitting technique is used on available rainfall data
with common 3D functions. First attempt is to approximate the available rain data
to a 3D Gaussian function without orientation. Then a sum of two Gaussians is used
to replicate an inverted Mexican hat surface which captures the low rainfall usually
occurring within the eye of the cyclone (i.e. within 50 km radius from the centre of the
cyclone). Finally, comparative studies on resulting posterior distributions showed that
using a bivariate Gaussian function with orientation used as the likelihood function
produced the best predictions. This function can be expressed as

fl = f (x1, x2, r, θ, σ )

= r exp
[
−

(
a(x1 − x1o)

2 + 2b(x1 − x1o)(x2 − x2o) + c(x2 − x2o)
2
)]

(3.5)

where fl = likelihood function, a = cos2θ/2σ 2
x + sin2θ/2σ 2

y , b = −sin2θ/4σ 2
x +

sin2θ/4σ 2
y , c = sin2θ/2σ 2

x + cos2θ/2σ 2
y , θ = angle, σ = width and r = maximum

rainfall. The distributions on all cases are limited to 500 km (i.e. σ = 500 km)
around the centre of the cyclone (x1o, x2o) . The final rainfall probability distribution
obtained under this stage is used as an input to the flood prediction stage.

3.3.3 Step 3: Predict Water Deposit Density Distribution
with Available Data

The next step in the presented model is to calculate flood distribution through water
flow calculations using the predicted rainfall distribution as input.
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Fig. 3.5 Curve fitting for real rainfall data with a ‘Inverted Mexican Hat’ type function with respect
to distance for Cyclone Yasi. a Cyclone eye position 1 at (Latitude = −19.3, Longitude = 123.4) on
2011-02-03-0000. b Cyclone eye position 2 at (Latitude = −19.8, Longitude = 121.3) on 2011-02-
03-0600. c Cyclone eye position 3 at (Latitude = −20.3, Longitude = 120.2) on 2011-02-03-1200.
d Cyclone eye position 4 at (Latitude = −20.8, Longitude = 139.3) on 2011-02-03-1800. e Cyclone
eye position 5 at (Latitude = −22.3, Longitude = 137.9) on 2011-02-04-0600. f Cyclone eye
position 6 at (Latitude = −25.2, Longitude = 134.7) on 2011-02-05-0600. g Cyclone eye position
7 at (Latitude = −25.4, Longitude = 135.4) on 2011-02-05-1200. h Cyclone eye position 8 at
(Latitude = −25.6, Longitude = 135.3) on 2011-02-05-1800
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(a)  Rainfall prediction at 15 readings
           of position of cyclone
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(b) Actual Rainfall
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(c) Prediction using RCLIPER
         model
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(d) Prediction at 18 readings
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(e) Actual Rainfall
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(f) Prediction using RCLIPER
         model
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(g) Prediction at 19 readings
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(h) Actual Rainfall
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(i) Prediction using RCLIPER
         model
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(j) Prediction at 20 readings
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(k) Actual Rainfall
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(l) Prediction using RCLIPER
         model

Fig. 3.6 Comparison of rainfall prediction using the presented model and prediction using the
RCLIPER model compared to actual rainfall of cyclone ‘Yasi’ [6]
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Table 3.3 Standard functions used for surface fitting

Function Equation Notes

Inverted mexican hat f (x) = a1e
(−((x−b1)/c1)2) + a2e

(−((x−b2)/c2)2

3D Gaussian f (x, y) = ae(−((x−b1)/c1)2)e(−((y−b2)/c2)2)

R-CLIPER f (r, t) = [ae−αt + b]e−(r−rm )/re From Eq. (3.1)

3D Gaussian with
orientation

f (x1, x2) =
re

−
(
a(x1−x1o)

2+2b(x1−x1o)(x2−x2o)+c(x2−x2o)
2
) Equation (3.5) of

main text

Table 3.4 Comparison of
Prediction with R-CLIPER
model: The distance of the
centroid of the mean contours
of the prediction to that of the
actual rainfall is compared.
(The predictions are in km)

Cyclone position Prediction RCLIPER
prediction

1 293 297

2 340 332

3 456 447

4 485 491

5 185 363

6 262 288

7 299 370

3.3.3.1 The Dynamics of Water-Flow

In the presented model, water flow calculations are carried out in latitudinal and
longitudinal directions. In this model, it is assumed that the rainwater would go
down a slope at a constant velocity between two sample times. The algorithm used
for calculating water flow for one direction in one sub portion of a time period is
given in Algorithm 2.

A hypothetical simulation is presented with an area of a hilly geographical primi-
tive considered. The objective of the simulation is estimating the mean-first-passage-
time for flooding after a particular hurricane, with given rain probability distribution
function, hits the area. The rainfall distribution prediction is used as an input for this
and is refined with actual rainfall data as they become available.

In the first stage of simulation, a 2D vertical cross section of an imaginary land-
scape is shown in Fig. 3.8a. The hills are simulated using the addition of two Gaussian
functions.

h(x) = h1 × 1
√

πσ 2
1

exp

{

− x − μ2
1

2σ 2
1

}

+ h2 × 1
√

πσ 2
2

exp

{

− x − μ2
2

2σ 2
2

}

(3.6)

where hi is the height, σi is the standard deviation, μi is the mean and i = 1, 2.
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(b) Actual Rainfall
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(c) Prediction using RCLIPER
        model
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(d) Predictionat 22 readings
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(e) Actual Rainfall
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(f) Prediction using RCLIPER
        model
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(g) Predictionat 23 readings
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(h) Actual Rainfall
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(i) Prediction using RCLIPER
        model
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(j) Predictionat 24 readings
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(k) Actual Rainfall
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(l) Prediction using RCLIPER
        model

Rainfall prediction at 21 readin-
gs of position of cyclone

Fig. 3.7 Cont. Fig. 3.6; Comparison of rainfall prediction using the presented model and prediction
using the RCLIPER model compared to actual rainfall of cyclone ‘Yasi’ [6]

The first derivative of this function with respect to horizontal axis is then calculated
to get the slope at each point of the simulated landscape. This is later used to calculate
water flow. The probability distribution of rain is taken as a having a particular
Gaussian distribution. Here, it is assumed that this is prior knowledge (i.e. we take
the probability distribution of rain as our prior). Figure 3.8a shows the artificially
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Algorithm 2 Algorithm used in calculating water flow. Here, the T time period is
broken down to m number of iterations for increased accuracy.

for time ∈ {t1, . . . , tm} do

if |Current Slope - Last Slope| > |Current Slope| &
|Current Slope - Last Slope| > |Last Slope| then
Accumulate

end if

if Slope at x <0 then
x = x + velocity × T

m × cos (arctan (slope))
end if

if Slope at x >0 then
x = x - velocity × T

m × cos (arctan (slope))
end if

end for

simulated 2D landscape with the simulated rainfall distribution superimposed. Then
the time-to-flood is calculated at the valley using the rainfall probability distribution
and dynamics of water flow in the given landscape. Figure 3.8b shows the water flow
and accumulation with respect to time. It can be observed that as time goes to infinity
all the rainwater will flow into a valley in the given scenario.

As the next step, the water flow equations for 3D landscape are presented with
synthetic data before moving on to real datasets. The simulation results are illustrated
in Fig. 3.9 for a virtual 3D landscape having a virtual Gaussian rainfall distribution.
It is observed that a part of rainfall would accumulate into the valley towards the
centre of the landscape and the rest would flow out of the considered portion of land
through three river valleys. Therefore, a similar calculation on a real landscape would
assist in the identification of locations in the area prone to flooding and landslides.

In order to calculate the two dimensional displacement, partial derivatives of
the landscape height profile h, on two perpendicular horizontal axes, ∂h/∂x1 and
∂h/∂x2, are used to get the slopes for calculating the water flow. The volume of
water initially at (x1s , x2s) would end up at (x1, x2) after a time period of T . The
displacement equations in these directions are given by,

x1 = x1s − vT cos
(

arctan
{ ∂h

∂x1

})

x2 = x2s − vT cos
(

arctan
{ ∂h

∂x2

}) (3.7)
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Fig. 3.8 Water flow for a 2D
landscape. a Imaginary
rainfall distribution over 2D
landscape. b Water
accumulation for a 2D
landscape as a function of
location
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where v is the velocity of water flow. For the above calculation, the landscape needs
to be approximated with some differentiable function. Alternatively, numerical gra-
dients could have been used at the cost of requiring a large amount of memory to
store the gradient matrix. This would also have the disadvantage of a roughness in
landscape height profile resulting from the limitation of resolution of available topol-
ogy data. Therefore, in the presented model, the landscape is approximated using a
sum of bivariate Gaussian functions.

3.3.3.2 Gaussian Approximation of Topography Data

Here, the presented model is discussed using the landscape of Queensland, Australia.
The area is simulated using 250 m data from Shuttle Radar Topography Mission
(SRTM) [35] and resolution is coarsened to 25 km by taking the simple arithmetic
mean. It should be noted that the model would give better results with the original
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Fig. 3.9 Dynamics of water flow in a 3D landscape with t = T, 10 T, 20 T, 25 T [T =
Time interval = 0.02 s]: Probability distributions of water accumulation superimposed on the
landscape. a After 1 time interval (t = T). b After 5 time intervals (t = 5 T). c After 10
time intervals (t = 10 T). d After 15 time intervals (t = 15 T). e After 20 time intervals
(t = 20 T). f After 25 time intervals (t = 25 T)

higher resolution data if computational resources are not a limitation. The landscape
of Queensland was reconstructed using a bootstrapping technique to approximate
with a linear combination of bivariate Gaussian functions with orientation. The rea-
sons for this step are that the landscape was required to be approximated by a differ-
entiable function in order to be used in the Eq. (3.7), to generate unlimited off-line
data from limited available topography data, to remove errors in calculation result-
ing from the roughness of raw data, and to reduce computational costs associated
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with large datasets when dealing with numerical gradients. The approximation is
done with an initial equally spaced matrix of Gaussian functions, iteratively min-
imising a cost function dependent on error, and adjusting height and angle variables
as explained in the steps below.

A bivariate elliptical Gaussian function centred at location (x1o, x2o) can be
expressed as

h = f (x1, x2,w, θ, σ )

= we

[

−
(
a(x1−x1o )2+2b(x−x1o )(x2−x2o )+c(x2−x2o )2

)]
(3.8)

where a = cos2θ/2σ 2 + sin2θ/2σ 2, b = −sin2θ/4σ 2 + sin2θ/4σ 2, c =
sin2θ/2σ 2 + cos2θ/2σ 2, θ = angle, σ = standard deviation and w = weight of
Gaussian.

Let hc be the initial combination of Gaussians forming the height equation for the
landscape. It can be expressed as a linear summation of elliptical Gaussian functions
(using Eq. (3.8)):

hc =
∑

∀i, j
f (x1i , x2 j ,wi j , θi j , σi j ) (3.9)

Error at each coordinate point (i, j) could be obtained by subtracting the current
height (hc) obtained from Eq. (3.9) from the actual height for each coordinate point
as ei j = hi jr − hi j . Since error is a scalar, the cost function is J = (1/2)e2 and the
new weights can be obtained minimising the cost function

wi jnew = wi j − η
∂ J

∂wi j
.

which can be calculated using the chain rule for ∂ J/∂w as

∂ J

∂wi j
= ei j .e

[

−
(
a(x1−x1o)

2+2b(x−x1o)(x2−x2o)+c(x2−x2o)
2

)]

(3.10)

The error is reduced until stable below a threshold value by iterating the above
steps. Same procedure was followed with angle θ as the variable. The above steps
are summarised in Algorithm 3. This method reduces the amount of raw data that
is needed for the calculations and thereby reducing the computational cost. If the
cost function does not go below the recommended value, the number of Gaussians
used is increased. But the amount of data needed to reconstruct the landscape would
always remain below the amount of raw data by a large margin. The method has
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been validated with data for one sub-area of landscape in simulations [17] where the
model accurately predicts the area of flooding with respect to the flood distribution
map downloaded from the Australian Bureau of Meteorology website [36].

Algorithm 3 Algorithm used in approximating the landscape with a summation of
bivariate Gaussian functions with orientations
it = 0
hc = Σ∀i, j f (x1i , x2 j ,wi jo, θi jo, σi j )

while it ≤ itmax do {max no. of iterations = itmax }
it = it + 1
for each coordinate point i , j do
error = hactual − hc
if error ≤ ε then {check stopping criterion}

break;
end if
J = (1/2)e2

wi jnew = wi j − η ∂ J
∂wi j

θi jnew = θi j − η ∂ J
∂θi j

end for
hc = Σ∀i, j f (x1i , x2 j ,wi jnew , θi jnew , σi j )

end while

While the limitations arising from the use of numerical gradients are reduced with
the above approximation, the water flow calculations for any given landscape take
up a considerable amount of processing since the water displacements need to be
calculated for each sampling period and for each coordinate point on the landscape.
This is especially true when the area of the landscape considered is large, and would
not be efficient on a real time system. Using the fact that dynamics of water would not
change with time for a given landscape, the products of the calculations can be stored
in a matrix which is used to get the probability distribution of water accumulation at
any future referencing time, given the initial rainfall distribution probability.

3.3.3.3 Transition Probability Matrix to Improve Calculation Efficiency

The static nature of topography is used to increase the efficiency of water flow
calculations using a Transition Probability Matrix (TPM). This removes the need
to recalculate the water flow using the gradient method for every different rainfall
distribution and prediction time. When there is no further precipitation on the land,
the water deposit distribution at some future time would only depend on that at the
earlier time step. In this calculation only the surface run-off is considered and the
soil moisture or evapotranspiration are not taken to account for reasons stated earlier.
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The probability transition matrix for a landscape with n states (i.e. grid loca-
tions) can be expressed in a matrix A = [pi j ]n×n and is given by

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Next States

p11 p12 . . . p1n

Current p21 p22 . . . p2n

States
...

...
. . .

...

pn1 pn2 . . . pnn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where pi j denotes the probability of the water deposit at location i to be moved
to location j after a time interval of T .

The matrix is obtained by considering the dynamics of a unit rainfall distribution
at each grid location of the considered landscape and calculating water flow resulting
from it. The columns in the matrix are normalised.

The TPM possessed the following properties:

• ∑n
i=1 pi j = 1, ∀ j ∈ {1, 2, . . . , n}

• 0 � pi j � 1, ∀i, j ∈ {1, 2, . . . , n}

Therefore the TPM is a Markov matrix and the water deposit distribution for
any future time can be obtained by multiplying the water deposit distribution at the
earlier time-step by the TPM when there is no further precipitation and no inflow
from outside the GP. If the time step is defined as T and the current state is k, the
probability distribution at time (k + 1) can be obtained by

P(k + 1) = AP(k) (3.11)

where P(k) is the probability distribution at time k. The states at future times (for
intervals of T ) can be obtained as a Markov chain. Therefore, the probability distri-
bution after m time steps is

P(k + m) = AP(k + m − 1). (3.12)

From Eqs. (3.11) and (3.12), water deposit distribution at any future time m is given
as



3.3 A Comprehensive Model for Cyclone Induced Flood Prediction 53

P(k + m) = Am P(k). (3.13)

As time-to-failure is calculated for each GP, TPMs are calculated for each of them.
Dividing the landscape intoGPs, in addition, reduces the sizes of TPMs thus increas-
ing efficiency in calculations. The characteristics of the GP are encapsulated in the
properties of its TPM. For example, if the GP is a valley, there would be an absorbing
state and the TPM would be an absorbing matrix where water deposit at any initial
location would eventually end up at one of the absorbing states. But if the GP is a flat
land, although there would be absorbing states the TPM would not be an absorbing
matrix. In this case, although some water deposit will be stagnated at those points,
another portion would flow away. The importance is that the properties of the topog-
raphy in a given area can be identified mathematically through the properties of its
TPM.

The absorbing rate of the Markov matrix is defined by its second-largest-
eigenvalue (SLEV ) which bounds the time needed to reach the steady state.
Therefore, for the TPM of each geographic primitive, the time-to-failure can
be defined through its 1/(1 − SLEV).

In a more complex setting where where water is being added to the current distrib-
ution through precipitation or through boundaries of a GP, Eq. (3.13) cannot directly
be applied. For this scenario, the water distribution calculations are done for each
time step using a slightly different form of Eq. (3.11) as

P(k + 1) = A(P(k) + D(k)) (3.14)

where D(k) is the water deposit distribution introduced at time k through run-off
and inflow. The water deposit distribution prediction after m time periods (at time
(k + m)) can be generalised as

P(k + m) = Am P(k) +
m−1∑

i=0

Am−i D(k + i). (3.15)

Equation 3.15 reduces to Eq. (3.13) when there is no water introduced during m time
periods and the second portion of Eq. (3.15) reduces to a Geometric series when the
only amount of water introduced into the GP is from inflow. In all three scenarios,
maximum complexity is O(nm). In all calculations, conversion of distance between
positions to metric lengths and vice-versa are done as described in the Appendix 1
at the end of the chapter.
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3.4 Two Case Studies

A comparison of prediction results is discussed here with two data sets; those of
cyclone “Yasi” and cyclone “Tasha”, which made landfall on Queensland, Australia,
in, January–February, 2011, and December 2010 respectively. The simulations of
cyclone “Yasi” is presented in detail while a few simulation steps with data of cyclone
“Tasha” is included. The landscape of Queensland was taken as the considered land
with x1 (Latitude) ranging from 30 to 10S and the x2 (Longitude) between 135E and
155E. The velocity of water flow was taken to be v = 0.25 m s−1 and computing time
interval as T = 15 min = 900 s. The radius of the earth was taken as 6378100 m. The
topography of Queensland was modelled using the coarsened SRTM terrain data as
previously described. 48 × 48 number of Gaussian functions are linearly combined
to approximate the landscape of Queensland as described under Sect. 3.3.3.2 and
setting i = 1, 2, . . . , 48 and j = 1, 2, . . . , 48 in Eq. (3.9). The landscape plotted
from SRTM data is compared to the landscape simulated using the above method in
Fig. 3.10.

The data source GES-DISC Interactive On line Visualisation ANd aNalysis
Infrastructure ([37] (2011)) as part of the NASA’s Goddard Earth Sciences (GES)
Data and Information Services Centre (DISC) was used to obtain ‘Yasi’s’ rainfall
data. The best-track-data of cyclone “Yasi”, which entered Queensland, Australia in
January–February 2011, was obtained from the Regional and Mesoscale Meteorol-
ogy Branch ([38] (2011)) and is plotted in Fig. 3.11. The same data was obtained for
cyclone “Tasha” which entered Queensland on the 24th of December, 2010.

Cyclone ‘Yasi’s’ path prediction with incoming data, with 95 % confidence bounds
using the prediction steps, with a moving window, is depicted in Fig. 3.12. The four
graphs show how the prediction changes with incoming data and the use of the moving
window, and compares it with the actual track of the cyclone. The allowable deviation
is calculated taking the speed of cyclone into consideration, and the window size for
prediction dependent on the R2 value of linear fit and the speed as discussed under

Fig. 3.10 a Topography of Queensland generated using SRTM topology data, compared to
b Topography approximated through bootstrapping technique using a linear combination of
Gaussian functions with orientation
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Fig. 3.11 Track of cyclone “Yasi” in January–February, 2011. The cyclone track is shown, plotted
over the landscape of Queensland (The surrounding white space denotes sea and land which does
not belong to Queensland). Topography is according to colour-bar

the presented model. Table 3.5 compares the official 12 h track forecast from JTWC
(Joint Typhoon Warning Center) advisories to the proposed model’s track forecast.
A similar simulation for cyclone “Tasha” is shown in Fig. 3.13.

Verifying the predicting step for rainfall distribution is shown next. In Fig. 3.14, the
output of the presented model is compared with actual rain gauge data for Queens-
land in January–February 2011. Comparisons are with the predictions using the
R-CLIPER model and using the same Bayesian inference model proposed, with a
bivariate Gaussian likelihood function without orientation (Figs. 3.6 and 3.7). The
error for each step of rainfall prediction stage, as shown in Fig. 3.14, is calculated as
the distance of the prediction’s mean contours centroid from that of the mean rain-
fall. The same comparison for cyclone “Tasha” in shown in Fig. 3.15, which made
landfall in Queensland, Australia in late December 2010.

Table 3.5 Comparison of
errors (to the nearest km) of
official 12 h cyclone track
forecasts with presented
model’s forecasts

Prediction time Official forecast
error (km)

Model forecast
error (km)

2011-01-31 12:00 78 44

2011-02-1 00:00 31 53

2011-02-1 12:00 24 76

2011-02-2 00:00 60 54

2011-02-2 12:00 31 9

2011-02-3 00:00 81 49
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Fig. 3.12 Cyclone track prediction using a moving window (size dependent on speed of cyclone)
of past data of Cyclone Yasi at 6, 11, 14 and 17 best-track data points available. Dots show the past
track, bold line shows the centre of predicted path up to 30 h ahead, the shaded area is the allowed
deviation (changing depending on R2 value of linear fit) and the stars (*) show the actual path
taken by cyclone after prediction time. a Path projection with 6 received readings. b Path projection
with 11 received readings. c Path projection with 15 received readings. d Path projection with 17
received readings

Fig. 3.13 Cyclone track prediction using a moving window of past data of Cyclone Tasha at 4 and
9 data points of past cyclone track available. Dots show the past track, bold line shows the centre of
predicted path up to 30 h ahead, the shaded area is the allowed deviation (changing depending on
R2 value of linear fit) and the stars (*) show the actual path taken by cyclone after prediction time
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Fig. 3.14 Comparison of real rainfall gauge data with predicted rainfall over Queensland Australia,
as a result of the activity of cyclone ‘Yasi’. Three prediction steps are compared in the three rows of
sub-figures. The columns show prediction using the R-CLIPER model, using a bivariate Gaussian
likelihood function with Bayesian Inference, and using a bivariate Gaussian likelihood function with
orientation with Bayesian Inference, respectively. In all three cases the predictions (sets of contours
which are unique for each figure) are plotted on top of actual rain data (the irregular shaped contour
sets that repeat in all three figures in a row). Prediction error is taken as the distance of the centroid
of contour of the prediction’s mean from contour centroid of actual rain mean. a Error = 50.9 km.
b Error = 43.3 km. c Error = 43.0 km. d Error = 202.2 km. e Error = 100.9 km. f Error = 100.9 km.
g Error = 163.5 km. h Error = 70.0 km. i Error = 70.2 km

Initial simulations obtained GPs by dividing the landscape into overlapping sub
areas of dimensions 3◦ latitude by 3◦ longitude and the overlapping in 0.833◦ in each
direction. This was done for simplicity in simulations. Flood distribution with time
was simulated using a TPM for each of these sub-areas. The fact that accuracy of
prediction depends on the GP type is elaborated in Fig. 3.16. The GP is a valley in
the top two figures, where the flood prediction is less affected by a small error in the
rainfall distribution approximation. In contrast, the error in flood prediction stage
is magnified for the terrain in the bottom two figures where the GP is composed
of a mountain range dividing the area into two portions. Therefore, in the output
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Fig. 3.15 Rainfall prediction versus actual rainfall for cyclone “Tasha” for two prediction steps
(i.e. positions of cyclone eye) shown in two lines of sub-figures. In both cases the predictions (sets
of contours which are unique for each figure) are plotted on top of actual rain data (the irregular
shaped contour sets that repeat in both figures in a row). Prediction error is taken as the distance
between the centroid of contour of the prediction mean from contour centroid of actual rain mean.
a Error =139.5 km. b Error = 142.6 km. c Error = 54.5 km. d Error = 55.9 km

prediction, the variance of the output is highly dependent on the GP type. The topo-
graphic contour plots of three sub-areas with the contour plots of their TPMs are
given in Fig. 3.17 illustrating the TPM’s dependency on landscape. The absorbing
states of the TPM of the landscape in Fig. 3.17c shows that the valley is an absorbing
state for water deposit distributions. Therefore, it is evident that the properties of the
topography in a given area can be identified mathematically through its Probability
Transition Matrix and its properties. This is especially important when the landscape
is complex where the TPM can be used to identify GPs.

Further simulations are run on identified GPs of irregular shapes. Two such GPs
are plotted in Fig. 3.18. First GP is a valley that can be treated as an independent por-
tion of calculations where water would neither enter nor leave the GP. The absorbing
states plotted as dots show that the bottom of the valley is an absorbing state and
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Fig. 3.16 Flood prediction a for a valley, using real rainfall gauge data b for the same valley, using
rainfall prediction with added error c for an area containing a mountain range, using rainfall gauge
data d for the same area containing a mountain range, using rainfall prediction with added error.
Flood distributions for all cases are predictions after three time steps

there are two such minimum points in this sub-area. The bottom two figures show
another GP of one side of a mountain range. There are no absorbing states in this
TPM and water will only flow out of it and never into it. Therefore in both these GPs
water flow calculations can be run ignoring the inflow term in Eq. (3.15).

3.4.1 Model Summary

A distributed Bayesian framework, defined across a set of predefined geographical
primitives discussed that predicts the time to flood resulting from complex processes
leading to the formation, development, and propagation of cyclones. Moreover, it
allows starting flood prediction as soon as sufficient data points of cyclone path are
received. This would be before the cyclone makes landfall allowing preparation well
in advance. The prediction gets more and more refined with any incoming data.
Furthermore, the partitioned approach allows asynchronous data to be input at any
stage of the computation.

The flexibility in data assimilation resulting from the model’s modularised struc-
ture is an important attribute of the presented model. In the rainfall prediction stage
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Fig. 3.17 Dependence of
the Transition Probability
Matrix (TPM) on landscape
for three sub-areas if
Queensland. The brown
contours are of the landscape
(shade gets lighter with
increasing height) and the
TPM contours are according
to the colour-bar. c Shows
the absorbing states of the
TPM as green dots which
can be observed located at
the bottom of the valley in
this case

of the model, all available rainfall data was used but not any other features such as
wind shear or topology. The results summarised on Table 3.6 shows a 33 % increase of
accuracy for rainfall density distribution prediction suggesting that by using Bayesian
inference technique with recurrent learning, the prediction could be better than with
methods using more sophisticated data assimilation. The main reason for the increase
in accuracy is the ability of the proposed Bayesian learning based method to combine
the advantages of data driven and heuristic modelling by amalgamating past knowl-
edge through the prior distribution and new data through the likelihood function.

The comparison results in Table 3.5 makes evident the effectiveness of using a
simple approach with minimal features in short term cyclone path prediction stage.
The model forecasts are better for most cases, while noting that official forecasts are
released three hours later than forecast of model due to the need of collecting a large
amount of data from many sources.
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Fig. 3.18 Two identified GPs on Queensland in the first column and their TPM’s (according to
colour-bar) and absorbing states (dots) plotted on top of landscape on second column. a A valley
identified as a GP. b PTM of GP on top of its topography. c A slope on one side of a mountain
range identified as a GP. d PTM of GP on top of its topography

The concept of GPs that encapsulate the dynamics of water-flow on static topo-
graphical primitives, is a main feature of this model. Through statistically sum-
marising simultaneous events that are spread in geography, it allows a distributed
updating algorithm leading to parallel computation. The better understanding of the
distributed nature of flood propagation and their relation to any geographical feature
permit clustering of these primitives. It was measured that the speed of calculations
increase by almost 20 times with the use of TPM onGPs as opposed to using gradient
based calculations for each prediction time step. At this point manual demarcation
of GPs is discussed in order to simplify the computational process. However this
could be extended to mathematically identifying GPs for example by using numer-
ical methods such as Delaunay triangulation [39]. The efficiency increases further
when predicting for multiple time steps using Markov chains. The accuracy was
reduced by the resolution of the states of the TPM which resulted in a maximum
possible error of 6 km (at transition states of the TPM) with the resolution used in
simulations. This reduces further with time as the TPM would approach absorbing
states where water would be stagnated resulting in floods. The significance of this
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error is further reduced with the use of variable resolutions considering the type of
GP (e.g. Using higher resolution in valleys and lower resolution in flat land).

Complimenting the accurate predictions, the presented stochastic process for iden-
tifying GPs, with overlapping boundaries, using complex intrinsic statistics of flood
propagation, allows identification of areas with flood risk mathematically even before
using any rain data. This knowledge can be used in optimising disaster management
strategies including land use. The terrain approximation provides a differentiable
function permitting the development of a Markov chain process based on simulation
data that bootstraps the real time computation based on measured rainfall data.

The discussed model however, has a few limitations as described below. One
considerable limitation is that in the rainfall prediction step, projection is limited to an
area of 500 km around the eye of the cyclone. This neglects the resulting rainfall due to
convergence along the coasts during Extratropical Transition (ET) and accumulation
of rainfall in rain-band echoes over specific regions further away from the eye of the
cyclone as pointed by [24]. Additionally, although simplicity has its advantages, the
model could be further improved by including some of the most significant features
affecting cyclone activity, which will have less effect on efficiency. A more complete
treatment of hydrologic aspects can make the predictions more generic by relaxing
some of the assumptions such as frictionless and impermeable surfaces. If there are
already existing relevant datasets for the area, they can be readily used to get a better
flood vector field for the use in demarcation of GPs. It is still worth noting that
although such comprehensive approaches make the prediction more realistic, great
care has to be taken to get high quality data since the accuracy of prediction is highly
sensitive to the used data. However, one important feature in using Bayesian updating
is that it is purely data-driven and therefore for the rainfall prediction step, any error
arising from the initial assumptions is suppressed after a few calculating time steps.
It was also noticed that, for the cyclone path prediction step, while the model’s
12 h prediction has indicated to be better, the 72 h prediction of the JTWC advisory
was generally better than the 72 h prediction of the proposed model. Therefore, the
model’s prediction could be further improved using these outputs as input to the
model using its modularised structure. Meanwhile, it should be noted that the model
produces the predictions 3 h before the official forecasts are available, which would
be much helpful for Just-In-Time sensor deployment and management and the JTWC
advisories would serve only to improve on that prediction.

Existing water storages need to be included in the calculations. This could be
included simply by considering the water levels of existing storages as a part of the
landscape and building the Gaussian approximation of land from it. The flood levels
can be defined by reducing the maximum capacities of water storages.

Although validated with two case studies from Queensland, it is worth noting that
the mathematical framework discussed in this chapter does not use any assumptions
specific to Queensland. Proposed is a probabilistic model of which the output is
dependent solely on data. Therefore datasets of any cyclone in any region could be
used with the presented model without further modification.
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Table 3.6 Performance summary of major steps of the presented model

Prediction step Efficiency comparison Accuracy comparison References

Cyclone path
prediction (12 h
horizon)

3 h beforea official
forecast

6.5 % Increaseb,c Table 3.5

Rainfall prediction 10 % Reduction ind

processing speed
33.7 % Increasee,f Figures 3.7 and 3.8

Flood prediction 18.9 times fasterg Max Error = 6 kmh,i

3 % faster with use of
irregular GP

aCompared with official JTWC advisories
bOverall improvement over 12 h horizon compared to official JTWC advisories
cDistance error compared
dCompared to R-CLIPER prediction
eDistance error between centroids of mean rainfall contours taken for comparison
f Averaged from 5 prediction points and compared to the R-CLIPER prediction
gCompared to gradient based method
hDepends on the resolution of TPM used in calculations. Error can be reduced with increase in

resolution
iSignificance of error further reduces with the use of variable resolution in GPs

3.5 Discussion and Conclusions

This chapter discussed a comprehensive case study of predicting MFPT for the nat-
ural disasters of flood induced by cyclone activity. A Bayesian framework combining
the advantages of data-driven and heuristic modelling, is used on a topographical net-
work divided into GPs identified through flood propagation vector fields. The data
driven prediction ensures that any initial errors diminish with time. The presented
stochastic process for identifying GPs with overlapping boundaries, using complex
intrinsic statistics of flood propagation, allows mathematical identification of areas
with flood risk even before using any rain data.

Methods presented herein provide several advantages over numerical methods
including real-time calculation efficiency, high lead time, easy data assimilation,
and flexible model integration. It was seen that a probabilistic approach considering
the effects of network inhomogeneity and bias can provide accurate and efficient
predictions for temporal dynamics of cyclone induced flood density distributions.
Identifying GPs using flood propagation vector fields provide a natural division
of the problem, thus addressing both issues of network inhomogeneity and high
computational complexity. It was also observed that a topography optimum model
can be obtained using geography dependant resolution. Another advantage of the
described TPM based method is that it is capable of handling a large class of bias
scenarios even including a non-linear Manifold type bias distributions. This is not
possible with many generic MFPT prediction models which require any biasing
factors to be modelled in network properties such as degree distribution [40].
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Reconstructing the landscape to a differentiable function allows generation of
unlimited off-line data of desired resolution and permits the development of a Markov
chain process for prediction. Oriented bivariate Gaussian gave the best likelihood
function. The limitations of the model results from its initial assumptions discussed
earlier.

Though the methods presented in this chapter are specific to the application, they
provide the background to the development of more generic methods discussed in
the next several chapters and the concepts used such as GPs and Eigenmode analysis
on TPMs are revisited throughout the rest of this book.

3.6 Summary

This chapter presented a comprehensive case study on developing methods to
predict MFPT for cyclone induced flood propagation considering the effects
of network inhomogeneity and bias in propagation. A modularised approach
is presented dividing the process into three stages; cyclone track forecast-
ing, cyclone induced rainfall forecasting and prediction of flood propagation.
The distributed Bayesian framework defined across the inhomogeneous media
divided into predefined set of GPs allow efficient real-time prediction by encap-
sulating the effects of bias on flood propagation into TPM for each GP. The
model was compared with several established modes and verified with two
real datasets of cyclone data from 2010–2011 cyclone season where it was
observed that the model was capable of predicting up to 3 h ahead of official
forecasts with a 33 % improvement of accuracy.

Appendix 1: Conversion Between Position and Distance

Latitude degrees are parallel to each other and therefore, the distance between two
degrees of Latitude does not change with position (neglecting the earth’s slightly
ellipsoid shape) and could be taken roughly equal to 111 km. Distance between
two Longitudinal degrees would significantly change with location as degrees of
Longitude are further apart near the equator and approaches zero at the poles. The
distance between two longitudinal points is therefore taken by approximating the
earth to a sphere.

The radius of the circle at latitude φ is calculated as

R =
√

(a2 cos(φ))2 + (b2 sin(φ))2

(a cos(φ))2 + (b sin(φ))2
(3.16)

where a is the Earth’s equatorial radius and b is the Earth’s polar radius.
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The distance in meters can be converted to degrees longitude by

λ = 180

π
× distance

R
. (3.17)
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Chapter 4
First Arrival Time for Natural Disasters
Modelled as Biased Networks

Abstract Taking forward the concept of calculating the mean first passage time for
natural disasters, this chapter focusses on discussing genericmethods for calculations
in directionally biased networks. Following a short discussion on the current state
of art in MFPT prediction for biased random walks, a case invariant modification
of transport variables is described as a viable solution to the problem of addressing
directional bias. The empirical equation that modifies the walk dimension leads
the way to significantly better MFPT estimations when compared to the use of
conventional transport variables. A range of simulated randomwalks on hypothetical
networks are used to describe this model. Following this, a comprehensive case study
is presented to validate the model with the real dataset of archived cyclone tracks
over the North Atlantic Ocean. The comparative studies of prediction results and the
generic nature of model development indicate wider applicability of the presented
methods.

4.1 Introduction

For a large class of random walks describing the processes behind natural disaster
dynamics, the existence of direction dependent bias is an all too common phenom-
enon. Effects of such directional bias on the MFPT calculations is a question worth
investigating while stepping towards an application independent approach, where
the networks are viewed as generic node distributions (either continuous or discreet)
on Euclidean state space.

The complexity inherent in natural processes lead to state transitions for natural
systems tooftenbehaveas randomwalks. It is alsovery common thatmany suchwalks
are biased by various environmental phenomena. This is true for widely distributed
dynamical systems like the propagation of fire biased by wind and fuel distributions
[1, 2], flood propagation biased by topography [3–5], epidemics biased by population
density distributions [6] and cyclones biased by weather conditions [7], as well as for
more localiseddynamical systems.Scientists have longbeen interested inunderstand-
ing the significance of network inherent bias onMFPT calculations. It is also interest-
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ing to investigate on any common features of suchwalks in diverse applicationswhich
could lead to more generic approaches of addressing directional bias.

As discussed in detail under Chap.2 current work onMFPT prediction for random
walks has advanced to finding efficient and accurate methods for random walks on
a range of special networks including those on complex scale invariant media [8],
fractals [9], scale-free networks [10], and lévy flights [8]. But when the randomwalks
are results of state transitions for real world dynamic systems, such ideal conditions
are not always met. These walks are commonly biased towards attractors formed by
non-linear interaction dynamics between the system and the environment.

Bias, or drift occurs naturally in many real world dynamic systems [11] including
those resulting from source-sink type topologies, and advection on flow potential
[11, 29] amongmany others. This chapter specifically concentrates on randomwalks
affected by directional bias and in the context of this chapter, it is assumed that the
networks are homogeneous in transport characteristics; or in other words, when the
properties of the random walker are independent on which part of the network the
walks currently is.

Literature gives various definitions for bias in random walks. The most common
way is describing bias in terms of node degree distribution as described in Chap.2.
For networks that cannot be described by a degree distribution (i.e. when the links
between the nodes are dynamic and probabilistically dependent on the bias [12, 13],
biased random walks are described in different terms for different types of networks.
Fronczak et al. [14] defines it as “preferential transition probability in networks
having nodes with arbitrary degree distribution”. Some have extended this method to
include the node weight distribution in bias correction [15]. Skarpalezos et al. [16]
describe it as “the bias is represented as the probability P of the particle to travel
along the shortest path to the target node”.

This chapter targets a different class of random walkers where the network con-
nections are temporal [13] and decided only at the time each step is taken. The reason
behind this focus is that most common bias present in processes behind natural dis-
aster activity is of this kind. For example, when looking at fire propagation, the next
fuel point that catches fire is dependent on a range of factors including the tempera-
ture, wind direction, wind speed, fuel type, distance, etc. Therefore, for this example
although the effects of bias are clear, a node degree distribution does not make sense.

More specifically, networks showing temporal connectivity resulting from biased
transitions need to be looked at [17]. Past literature has shown that the first passage
time characteristics for such walks are largely dominated by bias [18]. For a state
space of a dimension larger than one (i.e. d > 1), a biased random walk mostly
occupies nodes within a narrow cone along the bias direction. While the length of
this cone is proportional to time t , the width is proportional to t1/2 giving a density
of visited nodes within the cone as t/t (1+(d−1)/2) t (1−d)/2 [18].

The transport characteristics of biased random walks can be summarised into a
range of transport variables which are commonly used for MFPT calculations.

http://dx.doi.org/10.1007/978-981-10-1113-9_2
http://dx.doi.org/10.1007/978-981-10-1113-9_2
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4.2 Predicting Failure Time Using Transport Variables

Extensivework has been done on predictingMFPT using various transport properties
introduced in Chap.2. Two of the most common transport properties used in MFPT
prediction methods [8, 19–21] are the two characteristic dimensions; the fractal
dimension (df ), and the walk dimension (dw). These two metrics jointly have been
used to describe the transport characteristics of random walks.

4.2.1 The Fractal Dimension (df)

For a given random walk on a d dimensional state space the df can be introduced as;
If there are N number of nodes within a d dimensional sphere of radius r , then N
for a fractal network shows as proportional to rdf [8, 20]. The df is thus known to
characterise the density of nodes in a network or in other words the reachability of
nodes for the random walker.

The general expression for df is

N ∝ rdf . (4.1)

For a continuous state space, df follows the dimension of that state space.

For complex networks with a scale-free degree distribution, an alternative to the
standard fractal dimension has been proposed to be the Box dimension (dB). This is
when renormalising is possible by covering with NB non overlapping boxes of size
lB where NB/N ∝ l−dB

B [8].

4.2.2 The Walk Dimension (dw)

The path resulting from a random walk can be viewed as a random object which has
been found out to be self-similar as per [22]. The fractal dimension of such a trail
of a random walk is called the ‘walk dimension’ of that walk and denoted as dw.
This characterises the mean square displacement from the source as a function of the
number of moves.

http://dx.doi.org/10.1007/978-981-10-1113-9_2
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The length-scale invariant properties of the random walks result in the scaling
of the form

texi t ∝ rdw (4.2)

defining the walk dimension for an unbiased network. Here, the texit is the
exit-time from a sphere of radius r from the source S.

The dw is a measure of the ease with which the walker can move away from the
source and therefore accounts for any obstacles and potential fields influencing the
walk. The higher the dw is, the harder it is for the walker to leave its immediate
neighbourhood. The dw = 2 for regular diffusion but in fractals formed by random
walks, generally it tends to be that dw �= 2 resulting in ‘anomalous diffusion’.

4.2.3 Network Exploration by a Random Walk

Important insights of a random walk on a given network can be observed by compar-
ing the magnitudes of df and dw [23]. If dw < df , it signifies that the walk follows
a ‘non-compact exploration’ meaning that the walker does not need to traverse a
large part of the immediate neighbourhood to exit from it. The walker moves further
away from the source with time. The dependence of source location is lost when the
distance to the target is higher. In contrast, networks with dw ≥ df shows ‘compact-
exploration’ where the starting point always matters since each node is eventually
visited as obstacles make it harder for the walker to move away from the source.
Random walks with d < 2 would result in the walker visiting each site within the
sphere infinitely often thus making way for compact exploration always [18] and
time to return to origin diverges for d ≤ 2.

Relaxation time (refer Chap.2) has also been used to describe network exploration
characteristics. Random walks with short relaxation times are also known as random
walks with non-compact exploration [15]. In the context of random walk based
searching, it has been shown that the physical principle underlying an improved
search efficiency is an optimised balance between the search space being much
larger, equal and smaller than the target [24]. In other words, it has been shown that
non-compact exploration is more useful in bringing the random walker closer to the
target but once closer, compact exploration performs better in hitting the target from
closer proximity.

In the context of this book, a network homogeneous in df and dw is called a
network primitive (NP) which will be described in detail in Chap.5. For this chapter,
it is assumed that the network consists of a single NP.

With respect to the relative values of df and dw, Condamin et al. have presented
a powerful MFPT prediction method analysed using the pseudo Green function [8].
They have shown relations of MFPT to the network size (N ) and distance between

http://dx.doi.org/10.1007/978-981-10-1113-9_2
http://dx.doi.org/10.1007/978-981-10-1113-9_5
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the source and the target (r ). The general applicability of their result to non-fractal
networks has been discussed in [15, 25]. This generic theory allows reasonably
accurate evaluation of theMFPT in complexmedia for a range of stochastic processes
characterised by length-scale invariant properties [8].

The next part of this chapter discusses an adaptation of the methods presented in
[8] and extending it for directionally biased networks. Condamin et al. [8] present
a powerful result which facilitates simplicity and compatibility with older models
[23]. Condamin et al. [8] show that for a length-scale-invariant network, the MFPT
can be obtained as

MFPT ∼

⎧
⎪⎨

⎪⎩

N (A − Brdw−d f ), if dw < d f

N (A + B ln x), if dw = d f

N (A + Brdw−d f ), if dw > d f

(4.3)

where N is the number of nodes, ∼ indicates large N asymptotic equivalence, and
A & B are domain dependent constants. The rest of this chapter describes that this
method can be extended for networks showing directional bias, by bias-modifying
the transport variables df & dw.

4.2.4 Assumptions

Several assumptions are used in the prediction methods presented in the rest
of this chapter.

• Networks are homogeneous in transport properties.
• The effects of bias at any location can be quantified as an intensity towards
a direction on Euclidean state space.

• Network connections are temporal and the global connectivity is not known
at the time of prediction. Although this is not a limitation, the effectiveness
of the presented methods is more significant for such applications.

• For the case study, it is assumed that best-track data are correct and represents
the actual path of the eye of the cyclone.

4.3 Time to Reach in Biased Media

The main focus of this chapter is on discussing the methods of predicting MFPT for
dynamic systems which result in random walks showing directional bias.
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A biased network can be defined as a network where there are concen-
tration gradients in exit points in a sphere of any radius r . The degree
of bias depends on the relative magnitude of the gradient in one direction
relative to others. In a slightly different definition, for biased random walks
the MFPT from a given source (S) to a given target (T ) is directed (i.e.
MFPT (S → T ) �= MFPT (T → S)).

Therefore for such application, any MFPT prediction method needs to account
for the aforementioned biased motion common in real world dynamic systems. This
chapter shows that this can be done by bias-modifying the transport variables df and
dw. As df is merely a property of the network it is not altered. In contrast, dw should
indeed account for any potential fields shaping the walk. Firstly, the probability
of reaching (Pr ) any given T is dependent on the relative angle between the line
connecting S to T and the bias direction θ (Fig. 4.1a), and the bias intensity U .
Therefore, with increasing U , although the rate of displacement from S is higher,
the angle segment in which the targets have significant Pr ’s lowers. Thus, the overall
reachability of the network decreases with increasing U . For a generic prediction
model, it was required to find a generic bias modified walk dimension dwb, for all
nodes within an NP, such that the variances of dwb and df are negligible.

Bias-modified walk dimension (dwb)
The characteristic dimension which defines the relationship between texi t and
r for a directionally biased random walk.

In a biased network where there are concentration gradients in exit points in a
sphere of any radius r , the effective bias modified dw is dependent on the relative
direction of the walk from the source. The next section discusses the process of
empirically obtaining dwb. For this, a dataset constructed of simulated randomwalks
on a set of hypothetical 2D networks was used as described in the next subsection.

4.3.1 Simulated Biased Random Walks

In order to discuss the empirically developed expression for a generic dwb, a set
of hypothetical unconnected 2D networks is used. To derive a large set of NP’s, a
uniform network with evenly spaced nodes is modified changing the locality of the
nodes by moving them within a fixed standard deviation. Starting with a uniformly
distributed 50 × 50 NP (a section shown in Fig. 4.1b), several NP’s are derived by
adding Normal noise with a fixed standard deviation (σ ) as
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Fig. 4.1 Empirical derivation of a case invariant relationship between dw and dwb. a An example
profile for Pr for a network (σ = 0.3, θ = 45◦) with respect to relative angle. Several NP’s are used
including b a uniformly distributed NP and c, d NP’s derived from that in b with added σ ’s of 0.15,
and 0.5. e The profile for dw for a similar network as (a) with 6 initialisations of the network. f An
example Gaussian probability density distribution (PDD) for selecting next step in a random walk
(θ = 45◦). Nodes shown as stars and dimensions of PDD’s base ellipse with major Eigen vector
having the same direction as bias. g The relationship obtained empirically through comparing the
values calculated for dw with the optimal dwb for 48 Bias-Source-Target combinations for each of
five network scenarios (σ = 0, 0 (with higher sparsity), 0.15, 0.5 and 0.8)

∀i (xni , yni ) = (N (xi , σ ),N (yi , σ )) (4.4)

where (xi , yi ) is the position of the the i th node without noise (Fig. 4.1c, d). The σ ’s
are kept low (0 < σ ≤ 0.9) for all nodes to belong to a single NP. Each initialisation
of such network is essentially different from the next even though both share the same
noise level. Several initialisations are used with each σ to assure the consistency of
results.

Random walks are simulated with a bi-variate Gaussian probability density dis-
tribution (PDD) at each step of the walk as

PDD(x, y) = e−(d(x−Cx )
2+2e(x−Cx )(y−Cy)+ f (y−Cy)

2) (4.5)

where (Cx ,Cy) is the centre of the base ellipse after shifting the current position
a distance of c in the θ direction (Fig. 4.1f), d = cos2θ/2σ 2

x + sin2θ/2σ 2
y , e =

−sin2θ/4σ 2
x + sin2θ/4σ 2

y , and f = sin2θ/2σ 2
x + cos2θ/2σ 2

y . The values for σx

and σy , are chosen from a = (R+R/HB)/2LB (minor axis) and b = (R+R/HB)/2
(major axis) depending on θ . c = b − R/HB where R = rate of spread (speed of
the walk without bias), Length-to-Breadth ratio LB = e0.25U and Head-to-Back ratio
HB = LB2.5. The LB and HB are taken such that for an environment without bias,
LB would be 1 and HB would be an augmentation of LB. This PDD was inspired by
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a fire propagation model [26] that used Huygens principle, which is generally known
to be a universal model of propagation [27] for natural environments (for a short
summary see Appendix 1 at the end of the chapter). This elliptical PDD also relates
to the variability in ellipses of cyclone forecast error profiles (see [28]) as well as
many other natural propagation scenarios.

4.3.2 Calculating Transport Properties for Each NP

A large collection of NP’s obtained as described above was used to empirically
develop a generic expression for dwb. For each NP, df was calculated using Eq. (4.1)
and dw using a Monte-Carlo approach described below. Figure4.1e shows the dw
for six initialisations of an NP with σ = 0.3 and θ = 45◦. The dw is lowest at θ

where the walker experiences highest ease of motion.

4.3.3 Calculating the Walk Dimension (dw)

The steps followed to calculate the dw are summarised in Algorithm 1. The dw is
pre-calculated and recorded in a lookup table with respect to the bias intensity U
(0.6 ≤ U ≤ 1.6 for the simulations) and relative direction (Φ = −π : π/24 : π ).
The calculation for each U is iterated a large number of times (mI ter = 500 in
the simulations) for the average dw to converge into a stable value. Random walks
are generated having a predefined maximum hops per walk (max_hops). The next
node is selected using PDD (Fig. 4.1f). The distance (r ) and Φ for the new node are
calculated and recorded alongside the hop number with respect to the angle segment
of the new node. Finally dw is calculated using curve fitting (dw f i t) for the relation
texi t ∝ rdw by non-linear least squares method.

4.3.3.1 Dependence of dw on Relative Direction of Propagation

To capture the effect of bias on the ease of which the walker can move in directions
relative to bias the results are divided into angle segments in obtaining the dw of the
hypothetical networks on 2D space using Monte-Carlo simulations. Figure4.2c, f,
i and l show the dw response for 4 systems with varying noise levels (of standard
deviations 0.1, 0.3, 0.5 and 0.7, respectively) and a uniform bias towards a 30◦ angle.
Six initialisations of each noise level are considered in each graph. It can be seen
that dw tends to be lowest in the direction of bias which is explained by the fact that
the ease with which the walker moves further away from the source is highest in
the direction of bias. Similar results are obtained with simulations having different
values for θ , R and σ .
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Algorithm 1 Obtaining dw table at a given source node
[csx , csy] = coordinates of source node
define mI ter , max_hops
initialise vectors U , Φ

for ∀u ∈ {U } do
for i = 1 : mI ter do
for s = 1 : max_hops do

current node → [c1x , c1y] =
{

[csx , csy], if s = 1.

[c2x , c2y], otherwise.
define θ , U ← f (u), R
PDD ← f (c1x , c1y, θ,U, R) {Eq.4.5}
Next node [c2x , c2y] ← f (PDD, F)

dist =
√

((c2x − c1x )2 + (c2y − c1y)2)

hop_dir = ±tan−1((c2y − c1y)/(c2x − c1x ))
hop_segment ← f (Φ, hop_dir)
if max(texi t (u, hop_segment, :)) < dist then
texi t (u, hop_segment, end + 1) = s
r(u, hop_segment, end + 1) = dist

end if
end for

end for
for ∀seg ∈ {Φ} do
dw(S, u, seg) = dwn ← dw f i t (texi t , r; texi t = ardwn )

end for
end for

4.3.3.2 Bias Modified dwb

A generic relationship for obtaining dwb is the main objective at this point. With the
aim of obtaining a case invariant relationship between dw with dwb, a large number
of scenarios were considered (9 NPs (0 < σ ≤ 0.9) × 6 initialisations of each ×
8 (S, T ) sets × 6 U ’s). In order to get deterministic dwb values, the MFPT ∗ values
are obtained numerically using Monte-Carlo simulations from a fixed S to reach a
set of T ’s at different distances. Each network was considered as a small portion of
a much larger domain and therefore a large value L (L =10,000 in simulations) was
used as the FPT for instances where the target isn’t reached within the max_hops
and MFPT ∗ = (MFPT r − L)Pr + L where MFPT r is the MFPT given the target
is reached. This simulation was repeated for all 48 bias-source-target combination
for each NP initialisation. The best curve fit for each scenario was obtained using
non-linear least squares method for the custom equation MFPT = N (A − Br D)

following work of [8] (Eq.4.3) where N is the number of nodes in the network, r
is the distance between S and T and (A, B, D) being variables. From the achieved
best fit, dwb was obtained using D = dwb − df .
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Fig. 4.2 Obtaining a relationship between dw and dwb. a, d, g, j Samples of networks having
noise levels of 0.1, 0.3, 0.5 and 0.7 respectively. b, e, h, k The relationship of dwb to dw obtained
empirically, for network on the left, through comparing the values calculated for dw with the
optimal dwb. The values are taken from 48 Bias-Source-Target combinations for each network.
c, f, i, l Dependence of dw on the relative angle of the line connecting the source and target to the
direction of bias for 6 initialisations of networks with noise levels same as leftmost figures in each
row
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U= 1.0, and c U = 0.8. The r-squared value sets obtained for predictions using conventional and
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respectively
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The values for (dw, dwb) for all scenarios were compared and for each a
relationship was observed to follow an inverse power function of the form

dwb ∝ C1/dw (4.6)

where C is a constant. The constant C was calculated empirically as being
approximately π/2 for all tested scenarios (Fig. 4.1g, Fig. 4.2) thus producing

dwb =
(π

2

)1/dw
(4.7)

as a generic relationship.

A few comparisons of MFPT predictions are shown in Fig. 4.3 while Fig. 4.4
shows a set of comparisons for a range of noise levels as well as bias scenarios.
When compared to the deterministic counterparts, the figures prove how themodified
transport variables facilitate far superior predictions. In the next section the presented
prediction model for predicting MFPT is validated using a case study with past data
of cyclone tracks over the NA Ocean.

4.4 Case Study: Calculating the Expected Arrival Time
for Cyclone Motion Modelled as Biased RandomWalks

This section presents a case-study using an archived dataset of past cyclone tracks
over the North Atlantic (NA) Ocean.

4.4.1 Background

Tropical cyclones (TC) are one of the most destructive types of natural disasters.
An estimated 1.9 million TC related deaths have been recorded according to [29],
indicating the extent of damage caused byTCactivity.Accurate forecasts of TC track,
intensity, structure and TC induced rainfall are of extreme importance in terms of
prevention andmitigation of associated losses. Forecasting cyclone activity is an area
plaguedwith complexity. Cyclone activity is governed by a range of factors including
but not limited to wind pressure, sea surface temperature, Coriolis effect, ocean
currents and tropical temperature profiles [7]. Combining these parameters with
basin specific factors, climate change effects and other factors to facilitate accurate
and efficient numerical predictions is indeed a formidable task. The complexity
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Fig. 4.4 Comparisons of MFPT prefictions for random walks starting from a fixed source S
to reach a set of targets having the same relative angle to S but at increasing distances from S
for five different networks with respective noise levels of 0.1, 0.3, 0.5, 0.7, 0.9 are represented
in each row of sub figures. The three columns of sub figures correspond to bias intensities of
0.8, 1.0 and 1.2. The bold dots show the numerically obtained mean first passage times using
Monte-Carlo simulations compared to the theoretical curve fits using conventional and bias modi-
fied transport variables. The r-squared value sets obtained for curve fitting using conventional and
bias-modified variables for a–o are ([0.6302, 0.81632], [0.63888, 0.90035], [0.63348, 0.90279],
[0.64693, 0.95868], [0.73777, 0.92564], [0.48401, 0.8083], [0.83784, 0.92949], [0.61473, 0.86012],
[0.81793, 0.8981], [0.52259, 0.84617], [0.57366, 0.84689], [0.65008, 0.82429], [0.52259, 0.84617],
[0.57366, 0.84689], [0.65008, 0.82429], [0.35366, 0.7097], [0.38286, 0.58259], and [0.40216,
0.78947]) respectively
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increases further when TCmodifies its environment and thus induces feedback to the
system [30].

Forecasting TC tracks have shown continuous improvements in skill levels
resulting from rigorous efforts during the past several decades [31, 32]. These ad-
vancements are greatly due to improvements in numerical weather prediction (NWP)
models, including improvements in resolution, methods of initialisation, better phys-
ical parameters, and more skill in models resulting in consensus forecasts [28].
Cyclone track prediction models have shown much higher skill improvements with
respect to other aspects of prediction such as cyclone induced rain, cyclone intensity
and structure. However there still exists instances where models’ sensitivity to initial
conditions and model error could lead to considerable deviations in track forecasts
[33] between ensemble members of the same model as was the case in predicting
cyclone Sandy in 2012 according to [30].

An estimate of the mean first passage time (MFPT ) for a cyclone to reach a
known location is a useful metric for disaster planning operations. A prediction of
the expected time for a cyclone to reach any target location, can compliment the
cyclone forecasts of track, intensity, structure and rainfall. Rumpf et al. [34] have
shown that TCs can be statistically modelled as random walks. This case study
presents a novel approach of predicting the MFPT for the eye of the cyclone to reach
any known location (given in latitude and longitude coordinates) using the coupled
properties of the of the random walker (spatial motion of the eye of the cyclone) and
the network (set of states the walker can occupy) as described earlier in this chapter.
These transport properties are used to predict the expected arrival time at any target
location (T ) given the knowledge of the current position (S) of the TC. Although
there has been debate over methods of determination of the centre of a cyclone [35],
such errors are neglected for this case study. The transport properties can be obtained
from past data, and simulations using physical modelling. For this case study only
past data is used for simplicity but it is worth noting that the accuracy of the model
increases with the knowledge of the system.

Ideal conditions required for many MFPT prediction methods found in literature
are rarely met when random walks are results of state transitions for natural systems
such as motion of cyclones. These walks are commonly biased towards attractors
formed by non-linear interaction dynamics between the system and the environment.
Given the relationship of wind and temperature through thermal wind balance, prop-
erties such as shallow convection which determine the tropical temperature profile
can lead to biases in TC motion [36]. This section presents a bias modified MFPT
prediction model useful under such biased environments.

The spatial motion of the eye of the cyclone can be viewed as a random walk and
it can be shown that the methods described earlier to predict the MFPT based on
coupled properties of the walker and the network is a suitable model for prediction.
This method can provide useful insight into the MFPT profile for a range of target
points even for areas outside of the forecast cones [37] thus allowing the possibility
of complex paths.
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4.4.2 The Dataset

The dataset used in this section consists of best-track data from HURDAT2 [38]
dataset for getting the training and validation data for the presented model. HUR-
DAT2 is a publicly available dataset providing a record of TCs in the North Atlantic
Ocean observed from 1851 to 2013, available online at http://www.nhc.noaa.gov/
data/#hurda. The data of all cyclones above the NA Ocean from 1950 to 2011 are
used as the training dataset for simulations in this section. The dataset consists of the
observed position of the eye of the cyclone in 6hour time intervals. For this dataset
any errors possible in determining the centre of a cyclone was neglected.

4.4.3 MFPT Predictions for Case Study

With each prediction time step, the cyclone tracks going through the closer neigh-
bourhood of the current position of the cyclone are filtered from the total dataset.
The reason being the inhomogeneity in transport properties throughout the entire NA
Ocean area. This inhomogeneity has also been addressed in previous work in [39]
and further addressed in detail in Chap. 5. An example subset of the dataset used for
predicting MFPT when the current location is at longitude −35◦ and latitude 0◦ is
shown in Fig. 4.5a.

Initially, the transport dimensions (df and dwb) are calculated from the training
dataset. As the state-space of all possible locations is continuous, df follows the
dimension of the continuous state space (i.e. d f = 2). The values for dw and dwb are
calculated fromEqs. (4.2), and (4.7) for angle segments ofπ/24 limited by the dataset
(refer Sect. 4.3.3 and Algorithm1). Figure4.5b compares the numerically obtained
average FPT s to reach a fixed group of targets at different distances in the direction
of bias, to predictions using bias modified transport variables. The prediction gave
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Fig. 4.5 MFPT prediction for TC motion over the NA Ocean. a Filtered set of cyclone tracks as
training dataset for prediction at S ≈ [0,−35]. bComparison of numerically obtained MFPT s with
predictions using bias modified transport variables
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Fig. 4.6 MFPT predictions using the presented model compared to best-track data for a 3 TC’s
in 2012; b Tropical storm Oscar (for angle segment 8 [ −5
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12 π ]), and d Tropical storm Joyce (for angle segment 4 [ −9
12 π, −8

12 π ]). Forecasts
were done at time period 8 (i.e. at the 8th forecast point) for all three cases shown here

an r-square value of 0.866 with the real data indicating high goodness of fit by the
presented theoretical prediction.

The calculated transport variables (using the training dataset of TC tracks between
1950–2011) are used to predict MFPT for comparing with predictions for three
separate cyclones during the year 2012which originatedwithin the region considered
in Fig. 4.5a. Figure4.6 compares theoretical predictions using presented model to
actual data for TC’s ‘Oscar’, ‘Nadine’ and ‘Joyce’ in their most common segments.
These prediction curves gave r-square values of 0.93, 0.96 and 0.92 respectively
showing high goodness of fit with real data. The predictions were done with df and
dwb pre-calculated using the training dataset and the variables A and B calculated
using a moving window of 3 data points of the current TC track data available at the
time of prediction.

Prediction error profiles(normalised) for four cyclones from 2013 cyclone season
are shown in Fig. 4.7 with the training dataset consisting of best track data of all
cyclones between 1950–2012. Predictions were done at each available best-track
location update for each cyclone. Figure4.7 depicts these error profiles for cyclones
‘Dorian’, ‘Humberto’, ‘Ingrid’, and ‘Gabrielle’. Finally a comparison of MFPT
values predicted using the presented model to official forecasts from the National
Hurricane Centre data archive [40] and best track data is presented. For these com-
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Fig. 4.7 Normalized prediction error profiles (mean and standard deviation) of four cyclones in
2013 comparing error of prediction with respect to actual FPT. a Cyclone Dorian b Cyclone Hum-
berto c Cyclone Ingrid d Cyclone Gabrielle

parisons, it was required to find instances where a forecast overlaps (or at least get
very close to) a best track data point after a re-curving or looping track. Figure4.8
shows three such instances. Figure4.8a depicts the track of cyclone Ingrid in a solid
line with the dots showing the actual best-track positions at foretasted times. The
dashed line and squares show forecast locations from the issued third forecast for
Ingrid. One comparison point is shown here where the forecast point is very close to
a best track location. Figure4.8b shows two such comparisons for cyclone Humberto
with the 24th official forecast. The resulting times to reach for these three compar-
isons for official forecast, best track data and presented prediction are (i) [72 hours
(3 days), 96 hours (4 days), 4.1927 days] (ii) [48 hours (2 days), 72 hours (3 days),
3.3456 days] (iii) [72 hours (3 days), 96 hours (4 days), 3.9646 days] respectively.

4.4.4 Case Study: Discussion

Following the presented comparison scenarios, several observations prevail. Firstly,
the high goodness of fit resulting in Figs. 4.5 and 4.6 show the suitability of the
presented model for MFPT prediction for cyclone motion. The error profiles in
Fig. 4.7 show that although the normalised error profiles appear promising, there
are some inconsistencies when comparing the four graphs. In addition, especially in
Fig. 4.7b, a sharp change of error standard deviation is observed. Both these effects
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Fig. 4.8 Three comparisons of the expected time to arrive using official forecasts to best track
data for a 3rd available forecast for cyclone ‘Ingrid’ and b 24th available forecast for cyclone
‘Humberto’. The forecasts are available for lead times of [12 24 36 48 72 96 120] hours from the
forecast point. The MFPT predictions using the presented method were higher in accuracy for the
three comparisons by 20.2%, 44.9% and 24.1% respectively (with respect to official forecasts)

are resulting from the limited training dataset used. The predictions are better in
segments where a larger training dataset is used. One other limitation of the discussed
model is that when there is zero data available for some segment, no prediction is
possible. Both these issues can be addressed by increasing the quantity of high quality
training data used. This can be done by incorporating as much knowledge available
of the random walker and the network (i.e. using complex physics behind cyclone
formation and motion and the interaction with the surrounding environment) into the
training phase. With this, in addition to best track data of past cyclones, simulated
data using the physical modelling of the complex processes governing the large-scale
and inner-core characteristics of TCs and their interaction with the environment can
be used to derive the transport variables. As this is out of the scope of this book,
for now it is stressed that the skill of the model increases with knowledge of the
system. Figure4.8 presents a few instances showing how the presented model could
compliment TC forecasts by estimating the expected arrival time at any location.

When the transport variables (df and dw) are calculated off-line, efficient real
time predilections are available within a few seconds after each recorded TC location
update, showing the models low sensitivity to computational resources in real time
prediction. All simulations and analysis presented herein were done usingMATLAB
R2014b on an Intel(R) Core(TM) i7-4770 CPU.

4.5 Conclusions

This chapter focussed on discussing generic methods for predictions for processes
governing natural disasters that state changes take place in directionally biased net-
works. Following a short discussion on the current state of art in MFPT prediction
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for biased random walks, a case invariant modification of transport variables is de-
scribed as a viable solution to the problem of addressing directional bias. With
pre-processed transport variables, real-time prediction is shown to be less dependent
on computational resources and predictions are available as soon as location updates
are received. The methods described here are very generic and therefore indicates
wider applicability.

The dependence of the prediction accuracy on the size of the training dataset
as seen in some case studies can be addressed by including various environmental
conditions or storm characteristics in terms of complex physical modelling of TCs
in calculating the transport variables. This is outside the scope of this book and is
left for future work. Another limitation of the transport variable based method is that
it is only capable of handling directional bias. In a non linear manifold type bias for
example, where there is bias which can not be modelled in Euclidean state space, the
discussed method is not applicable. The TPM based method presented in Chap.3 is
more suitable for such random walks.

Finally, it is worth noting that although the methods presented in this chapter were
verified for 2D networks, they are equally applicable to random walks on higher
dimension state spaces.

Several important conclusions can be made from the material discussed in this
chapter. Firstly it was shown that a large class of processes that translate to state
space random walks show direction dependent bias. Then the ability was shown to
incorporate directional bias into MFPT calculations through bias modifying trans-
port variables used in the calculations. The comparisons showed that bias modified
transport variables show higher prediction accuracy (for directionally biased random
walks) when compared to methods assuming isotropic motion of random walks.
Simulations using the real dataset of archived cyclone track data verify the presented
methods. Further, it was shown that an estimation of MFPT to reach a set of target
locations compliments cyclone forecasts allowing disaster preparation for areas even
outside of the track forecast cones.

Following these conclusions, the next chapter concentrates on addressing network
inhomogeneity in MFPT calculations for natural disaster systems.

4.6 Summary

This chapter discussed the problem of addressing network specific bias in
predicting MFPT for processes governing natural disaster activity. A novel
method of predicting the MFPT for a directionally biased random walker
to reach any target state is presented. The transport variables df and dw are
modified to account for the effects of bias. A generic expression is obtained
that represent a relationship that allows direct computation of bias modified

http://dx.doi.org/10.1007/978-981-10-1113-9_3


4.6 Summary 85

walk dimension. This relationship is tested with simulated random walks on
many hypothetical networks with varying noise levels and bias conditions.

A comprehensive case study is presented using the archived dataset of
cyclone tracks over theNAOcean since 1950. Themotion of TC’s are treated as
biased random walks and the joint transport properties of the random walker
and the network of locations the walker can occupy are used to predict the
MFPT for the walker to reach any target point. The transport properties are
bias-modified to account for the potential fields that shape the random walks.
Comparisons with official forecasts demonstrate the usefulness of the predic-
tions in complimenting forecasts. The model’s ability to predict the expected
time of arrival at any given location gives valuable information for expected
lead times even for areas outside of the forecast cones even allowing the pos-
sibility of complex paths. This knowledge compliments the official cyclone
track forecasts which are generally available 3 hours after the best-track loca-
tion updates.

Appendix 1: A Fire Spread Model Using Huygens Principle

Most simulated randomwalks used in this book had probability density distributions
to select the next step based onHuygens principle (HP) as it is generally known to be a
universal model of propagation [27] for natural environments. It has been shown that
HP applies to any propagation phenomena which can be described through explicit
linear differential and difference equations.

The two-dimensional network with dynamic connectivity described in Chaps.4
and 5 was inspired by a two-dimensional deterministic fire growth model named
FARSITE [26]. The section of FARSITE model that describes surface fire spread
as the base was used for obtaining the probability density distribution (PDD) for
identifying the next hop of a random walk. The main approach is to apply HP at each
vertex at the spread perimeter to shape and orient an elliptical wavelet at each time
step. The size is determined by the spread rate and the length of a computation time
step and the shape is determined by the direction and effective intensity of bias. The
LB (Length-to-Breadth ratio) an HB (Head-to-Back ratio) for the FARSITE model
are found using

LB = 0.936e(0.2566U ) + 0.461e(−0.1548U ) − 0.397,

HB = (LB + (LB2 − 1)0.5)/(LB − (LB2 − 1)0.5)
(4.8)

formulated empirically [26]. In the simulations, the wavelet was converted into a
probability density distribution, thus reducing the spread to a random walk.

http://dx.doi.org/10.1007/978-981-10-1113-9_4
http://dx.doi.org/10.1007/978-981-10-1113-9_5
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Chapter 5
CalculatingMFPT for Processes Mapping
into RandomWalks in Inhomogeneous
Networks

Abstract Dynamic processes leading to natural disasters often translate into ran-
dom walks in state spaces which are inhomogeneous in transport characteristics.
In other words, such random walks will behave differently in different parts of a
network which would have different values for transport properties (df and dw if
using methods from Chap.4). Thus, for such networks the application ofMFPT cal-
culation methods introduced in Chap.4 along with many other methods described in
literature are not straight forward. This chapter proposes that using the novel concept
of dividing the node distribution into patches/clusters known as network primitives
(NPs) where all nodes within each primitive share common transport variables, and
adopting a ‘hop-wise’ approach to calculate MFPT between any source and tar-
get pair as an extension to the methods described under Chap. 4, can be a viable
solution for predicting MFPT for random walks in inhomogeneous networks. This
methodology’s potential is demonstrated through simulated random walks and with
a case study using the dataset of past cyclone tracks over the North Atlantic Ocean.
The predictions using the presented method are compared to real data averages and
predictions assuming homogeneous transport properties.

5.1 Introduction

Majority of natural real world systems have been proven to show strong variability
in transport properties [1]. This inhomogeneity affects the many stochastic processes
which occur on that network such as random walks.

Network inhomogeneity generally increases the network analysis complexity.
However, some applications such as random search processes also find advan-
tages in network inhomogeneity through higher rates of arrival at the target [2].
They have shown that in optimal inhomogeneous search tests, MFPT on such net-
works are completely dominated by those trajectories heading directly towards the
target.

Network inhomogeneity has been defined in various ways in literature. The
most common definition is the inhomogeneity in terms of node degree distribution
[1, 3, 4]. One of the most common such network type that is studied in literature are
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the Scale Free (SF) networks. These are networks which show a power-law degree
distribution [1].

Network inhomogeneity is an issue common for a range of real world applica-
tions. This inhomogeneity is defined in this chapter as the spatial inhomogeneity in
transport properties (e.g. node density, ease of propagation) experienced by a ran-
dom walker on that network. This chapter discusses the effect the inhomogeneity of
transport characteristics have on MFPT calculations on such networks. It specially
focusses on the fact that many such inhomogeneous networks consists of homoge-
neous patches in developing methods to handle this inhomogeneity inMFPT calcu-
lations. A discussion on how to identify such homogeneous partitions is followed by
an extension of MFPT calculation methods from Chap.4 to accommodate network
inhomogeneity.

Some real world examples of inhomogeneous networks (on which random walks
take place) are the atmosphere on which a cyclone would travel through [5], a terrain
on which flood will propagate through [6], an area where fire will spread through
[7, 8], or even the density of people throughwhich a diseasewill spread [9]. In the real
world, the networks representing the mobility pattern of individuals among different
subpopulations are inmany cases highly inhomogeneous [10]. In animalmotion it has
been shown that the calculation for expected time needed for a predator to locate small
patches of prey in a 2-D landscape has two components; random and directed [11].
Although animal motion itself is isotropic they are possibly spatially inhomogeneous
due to inhomogeneity in landscape. Random walks in all these scenarios will go
through different portions of a network where the network itself will behave in such
different ways making the estimation of arrival time at a given destination extremely
difficult to calculate as a whole.

5.1.1 Random Walks on Inhomogeneous Networks

Random walks are among the basic stochastic processes which are affected by inho-
mogeneity of a network. As discussed earlier in this book, random walks have been
studied extensively for decades on regular lattices, fractal networks, and many other
specialised networks [1]. Much work has considered network nodes as well-mixed
homogeneous populations [9, 10, 12]. Although there exists many mathematical
methods that produce excellent results on estimating MFPT on different types of
networks, a common requirement is that every node in the network shares some
transport properties that are used in MFPT calculations. In other words, the proper-
ties of the network and the random walker need to be length-scale invariant. Most of
these methods share the necessity that some transport properties that describe how
a random walker would move through the network are common at all nodes of the
network. For example, the method presented in [13] works only for networks where
df and dw remain spatially homogeneous.

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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5.1.2 Current Trends in MFPT Estimation
in Inhomogeneous Networks

PredictingMFPT in inhomogeneous networks have been given much attention spe-
cially for networks which possess characteristics such as small-world property, and
scale-free property [4]. The findings in [14] show that theMFPT depends on source-
target distance and the degree-distribution for scale-free networks. They have also
shown significant differences of these properties when the networks show non-
compact explorations as opposed to compact explorations (Chap.4). The transit and
commute times tend to diverge when the network consists of more than one cluster
because the graphs are not connected (this is presented in [4] with respect toMFPT
calculations on an Erdös-Renyi random graph).

A common approach of addressing network inhomogeneity is through providing
a global result which is the average ofMFPT over a set of starting points distributed
uniformly over all the other nodes of the graph [1, 2]. A large focus has been set
on scale-free networks [2]. The reason being that there are a considerable class of
networks which are shown to satisfy the scale-free condition. However, the focus
of this chapter is on estimating the MFPT for random walks on networks that are
inhomogeneous in transport properties and which are not necessarily scale free.

Earlier in this book, a method of reducing the calculation complexity by divid-
ing the problem of predicting flood propagation through identifying ‘Geographic
Primitives’ based on the terrain slope profile was presented (Chap.3). However in
this chapter, a somewhat different approach is taken [15] following a more generic
method to identify primitives using the transport variables df and dw introduced
in Chap.4. Using the knowledge that many inhomogeneous networks commonly
include frequent homogeneous patches (e.g. fuel distributions for fire propagation,
distribution of cities for disease propagation, etc.), it is understood that if it is pos-
sible to divide the network into portions where all nodes within that sub-network
have (approximately) equal values for df and dw, the complexity of the problem
would reduce considerably asMFPT prediction between any two points within such
network portion would be straight forward using methods from Chap.4. With this
knowledge, the concept of network primitives (NP) is introduced.

5.1.3 Network Partitioning

Following the above discussion, the focus is now brought on to calculating MFPT
through addressing network inhomogeneity by dividing the network into simpler
portions: that is to follow a divide-and-conquer method to reduce the complexity of
the problem. The next question is which properties of a network should be considered
when trying to divide the network. There are numerousways inwhich a network could

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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be divided by. The work in [2] has considered the network as two concentric regions
with piece-wise constant diffusivity. Ferguson et al. has shown in [16], many ways in
which an inhomogeneous network canbe looked at in termsof epidemic transmission.
The most basic method is to assume homogeneous mixing. However, this suppresses
many features of the transmission and does not give adequate intelligence of the
system. The first method of network division proposed was by age/social structure
to account for different probabilities of contact between these subgroups. The next
was to identify a static network structure. But this has been shown to be difficult if
not impossible for many systems [9]. The fourth method is to identify homogeneous
patches in the network. Such patch, or a subpopulation is generally a natural unit
of study. Although deterministic models which give exact solutions provide rapid
simulations, it is extremely important to account for stochasticity in transmission
events [16].

The patch identification method is given more emphasis in this chapter for the
purpose of dividing an inhomogeneous network into homogeneous patches. This
chapter proposes that if the network is divided into patches homogeneous in the
transport properties used to calculate MFPT within a patch, that would be a viable
solution for calculatingMFPT for randomwalks in networks that are inhomogeneous
in transport properties. A hop-wise approach can be followed in obtaining theMFPT
for any predefined source-target set on an inhomogeneous network divided into
homogeneous ‘primitives’. The paths could be weighted to get the final path-integral
representation of random walk properties.

Assumptions
Some assumptions that are used in the methods discussed in this chapter are
as follows:
• Randomwalks show only directional bias with one prominent bias direction
(see Sect. 5.2.2).

• Inhomogeneous networks consist of homogeneous patches.
• Bias (direction and intensity) is static during any given prediction interval.
• There are no loops in biasing vector fields.
In addition to these, the assumptions used in Chap.4 are also used in this
chapter. Refer to Sect. 4.2.4 for details.

5.2 Network Primitives (NPs)

In the context of transport property basedMFPT calculations for an inhomogeneous
node distribution, an NP can be technically defined as follows:

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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An NP (N) is defined as a subset cluster of a network with ν governing transport
variables where ∀ ζ ⊆ N, ∃ Δi s.t. σi < Δi, i = 1, 2, . . . , ν where σi is the stan-
dard deviation of the transport variable di for all nodes in ζ andΔi is sufficiently
small.

In other words, an NP is a subset/patch within a given network where all nodes
within an NP are homogeneous in transport properties (i.e transport variable
variation below a small threshold)

Since in this chapter follows theMFPT computationmethods presented inChap.4,
the governing transport properties are df and dw (or dwb in the existence of directional
bias). Therefore to identify NPs, the only necessity is that the df and dw distributions
are known for the network. These can be either calculated directly from the network
structure or from prior knowledge either in the form of prior data of random walks
on the network or knowledge which can help in simulating random walks on that
network structure. Calculating these properties was discussed in detail in Chap.4.
It is also worth noting at this point that if a different method is used for computing
MFPT within an NP, transport properties used in that particular calculation method
should be used in identifying the NPs.

For the calculation ofMFPT over several NP’s to be possible, theNP identification
process uses the distributions of df and dw over all nodes of that network. One main
requirement is that every node in the network should belong to an NP. It is also
understood that the smaller the NP’s are, the higher the complexity of calculation
would become. Therefore, one aim in an NP identification process should always be
to identify NPs to be as large as possible.

5.2.1 Hop-Wise MFPT Estimation

As the final prediction output, getting back to the bigger picture, the MFPT needs
to be calculated for a random walker initially at source S to reach a known target T ,
irrespective of which NPs the S and T belongs to. A hop-wise calculation approach
is adapted to make this possible. Figure5.1 shows a network divided into 15 NPs
on which a random walk takes place. Since the walk crosses many NP boundaries,
first passage time calculation can be broken down to n number of hops as shown
in Fig. 5.1. This is possible because MFPT for any one hop can be calculated using
methods described in Chap.4. The final MFPT can be obtained for this particular
hop sequence from:

MFPT = T̂1 + T̂2 + · · · + T̂n

where Ti is the MFPT to reach the NP exit point at the ith hop. In a real prediction
scenario, as there would be many possible exit points for a random walker to leave

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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Fig. 5.1 Hop-wiseMFPT calculation. a An example calculation ofMFPT to reach a known target
(T ) over several NPs. b The dataset for this example consists of the cyclone tracks over the North
Atlantic Ocean between 1950 and 2012 (Sect. 5.2.3.1)

its current NP, the hop-wise prediction is done using parallel processing of many exit
points weighed by a probability density distribution (PDD) which is covered in detail
later in the chapter. The final prediction of MFPT would be

< T >=
n∑

i=1

wiMFPTi (5.1)

where n is the number of alternate paths considered andwi is the probability of path i
which is calculated from the training dataset as will be discussed later in the chapter.

The calculation complexity of the hop-wise estimation is greatly reduced by iden-
tifying NPs to be convex in shape by reducing multiple cross-over points between
two adjacent NPs, and eliminating enclosed NPs and possible infinite loops in cal-
culation. The next section discusses the steps followed in developing an algorithm
to identify NPs such that the following aims (as summarised below) are achieved.

NP identification : Aims

• All nodes belonging to any given NP should be homogeneous in df and dw
values (having a standard deviation below a given threshold).

• Every node should belong to one and only one NP (total coverage and no
overlapping). ∀

i, j
N Pi ∩ N Pj = ∅. At this point the NPs are limited to be

non-overlapping to reduce the complexity of identifying NP exit points.
• NPs should be convex (for unique exit points per hop).
• It is desirable to have larger NPs (to reduce calculation complexity).
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Fig. 5.2 ‘Network Y ’: Node distribution. a The extended network used for calculating the transport
properties. b Portion of Network Y considered for MFPT calculations

The following sections detail the steps followed in identifyingNPs taking a generic
two dimensional node distribution. Nevertheless, these concepts are applicable to
networks of higher dimensions as will be discussed later in the chapter.

A hypothetical 2D node distribution, hereafter called network Y is introduced in
order to discuss the network identification process (Fig. 5.2). For simulated random
walks, since df and dw calculations are sensitive to the edges of the considered portion
of the network (with non reflecting boundaries), amargin around this network section
is considered in the calculations (Fig. 5.2a). The transport properties for this generic
discrete 2D network are calculated at each node similar to the calculation in the
hypothetical networks in Chap.4 Sect. 4.3 with a consistent and uniform bias at an
angle of 45◦ clockwise to the north assumed. The only difference in the calculation
is that as multiple node types are assumed (shown in different colours/symbols in
Fig. 5.2), the R value (Rate of spread) of these node type differ from each other. This
in turn changes the PDD for selecting the next step for each node type thusmaking it an
anomalous walk [17]. This is a common characteristic in many naturally occurring
random walks and can be visualized with the example of fire propagation where
depending on the fuel type (e.g. short grass, timber grass, short brush, dormant brush,
hardwood litter, etc. [18]), the rate of spread differs. Figure5.3 shows an example
random walk and PDD at each step. From this it is clear how the PDD changes with
node type. The rest of this discussion assumes that the values of df and dw (or dwb

in directionally biased media) are known for every node in the network.

5.2.2 Identifying Homogeneous NPs

The most important step of the hop-wise MFPT calculation process is identifying
the different hypothesis that exists as ‘NP types’ in a given network with known df

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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Fig. 5.3 The effect of node type on probability density distribution for next step selection. The
footprint of PDD differs for different node types

and dw distributions, and which type each node is of. A hypothesis or NP type is a
type of predefined behaviour at each node and in this case is defined by a unique pair
of transport variables Hi = [dfi, dwi]. Depending on the complexity of the network,
different hypotheses can be identified either by manually observing the distributions
of df and dw or by using model selection techniques such as Gaussian Mixture
Models (GMM) on the same [19]. The final output will be a limited set of NP
types (η) where each type is identified by a unique vector Hi, i ∈ [1, 2, . . . , η]. The
calculation efficiency of the presented hop-wise MFPT prediction method is higher
for networks with a smaller set of NP types (which would result in a smaller NP set).

Similar to methods described in Chap.4, the dw is a function of the relative angle
(with respect to bias) of the walk. Therefore in order to identify possible hypotheses
for NP type identification process, it is required to select one dw value for each node.
Using the highest probable routes, the dw used for NP identification is chosen to be
in the direction of the bias. The calculated distributions of df and dw for network Y
are shown in Fig. 5.4. One limitation of this method is that when dwb distribution
with θ has many separate peaks, the effectiveness is lowered as prominence is only
given to one peak.

A common method often used for data clustering when clusters are of differ-
ent sizes and correlation is by using the Gaussian Mixture Model (GMM). It is a
parametric probability density function represented as a weighted sum of Gaussian
component densities [19, 20]. GMM uses an iterative algorithm to select compo-
nents to maximise posterior probability. GMM is used for hypothesis selection for

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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Fig. 5.4 The transport property distributions a df and b dw for network Y , with respect to the
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network Y where the number of hypothesis (η) is selected using both Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion (BIC) to avoid any error
from underestimation or overestimation [21]. Figure5.5 shows these values obtained
with different number of components used in using GMM for hypothesis selection.
A number of 4 NP types (η = 4) were selected considering these results and desired
simplicity of real-time computation. Figure5.6 shows the combined distribution of
resulting Gaussians on top of the discrete (df, dw) distribution.

For network Y (η = 4), the hypotheses are defined as H1 : H4. The NP type at
each node was calculated using the following steps.

1. Identify the set of η number NP types/Hypotheses using GMM (i.e. identify the
values of d f and dw for each NP type/hypothesis).

∀
i=1:η Hj = [d f j , dwj ] (5.2)

2. Calculate likelihood of each node belonging to each hypothesis given the d f and
dw at each node. (Denoted as P(Hi|dw) and P(Hi|d f ); i = 1 : η)

Fig. 5.5 The number of
components/NP types or
GMM for network type
identification selected using
Akaike Information Criterion
(AIC) and Bayesian
Information Criterion (BIC)
for network Y
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Fig. 5.6 The df versus dw
distribution and GMM with
η = 4 components for
network Y
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∀
i=1:η P(Hi|d f ) =

1
|d f −Hi(1)|

1∑

i=1:η
|d f −Hi(1)|

∀
i=1:η P(Hi|dw) =

1
|dw−Hi(2)|

1∑

i=1:η
|dw−Hi(2)|

(5.3)

3. Get joint probability for H1 : Hη at each node. This is obtained by element-wise
multiplication of the above likelihood matrices.

∀
i=1:η Θi = P(Hi|d f ) ∗ P(Hi|dw) (5.4)

4. Use Maximum A’Posteriori (MAP) estimate at each node to identify which
hypothesis each node is most likely to be of.

H = argmaxΘ
d f,dw

(5.5)

The resulting NP type distribution for network Y (i.e H ) is shown in Fig. 5.7 and
the next stage of the hop-wise estimation process is clustering the nodes of the same
NP type into separate NPs. Following the set of aims of NPs described earlier in the
chapter, a heuristic approach is taken to identify NPs where the nodes of the same
NP type are initially clustered into ellipses and then optimised using self-organising
hierarchical particle swarm optimiser (HPSO) [22] and finally broken into convex
Voronoi regions. Initial clustering of nodes (using a GUI) of same NP type into areas
of elliptical shapes is done because of the convexity of the shape as well as the ease of
identification/demarcation. Then the number, size, shape, position, and orientation of
ellipses are optimised using HPSO as it is capable of handling the possible multiple
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Fig. 5.7 Distribution of NP
type (hypotheses) node-wise.
Every node belongs to one of
NP types H1 : H4 for
network Y
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local optima and converging to a global optimum through individual and social
behaviour of particles as well as reinitialising velocities of particles stagnated at
local optima [22]. These steps are discussed in detail in the following subsections
andusing a case-studyof cyclone tracks over theNAOcean (Sect. 5.2.3 andFig. 5.13).

5.2.2.1 Initial Manual Demarcation of NPs

In the first step of the demarcation process, the simplest approach of clustering nodes
is by manually drawing ellipses over a visual graph (Fig. 5.7) of the network in order
to identify patches of nodes of similar NP types together. This gives a basis for gen-
erating the initial population to work on to optimise the NP demarcation. Ellipses are
identified by (centre(x,y), major axes length, eccentricity, and orientation). Figure5.8
shows the manually selected ellipses for network Y .

Fig. 5.8 Network Y :
Manual NP demarcation
using an interactive
MATLAB plot. Most
prominent NP’s are identified
with ellipses over a contour
plot of NP type distribution
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5.2.2.2 Optimising Elliptical NPs Using Self-organising Hierarchical
Particle Swarm Optimisation (HPSO)

The initially selected ellipses have to be optimised for NP identification. For this,
the particle swarm optimisation (PSO) method is used. It is a population-based,
self-adaptive search optimisation technique introduced in 1995 by Kennedy and
Eberhart [23]. A population of ‘particles’ (defined by the dimensions) are allowed to
move around the ‘search-space’ until it converges to an optimal solution. With both
cognitive and social components, PSO has been known to converge to a reasonably
good solution very quickly [22, 24]. As there are many networks where the network
connectivity pattern and the random walk process dynamics are unfolding on the
same time scale [25], the quick optimisation process of PSO is useful when networks
change in real time. In order to eliminate particles from stagnating at suboptimal
solutions, the extended version called self organising hierarchical particle swarm
optimisation (HPSO) is used [22].

Particle swarm optimisation (PSO)

PSO [22] is a population based search optimisation technique originating from
animal social behaviour such as fish schooling or bird flocking, developed by
Kennedy and Eberhart [23] in 1995. Being a population based optimisation
algorithm, it initiates with n number of particles inm dimensional search space
wherem is the number of variables for optimisation. Unlike genetic algorithms
which are also population based search algorithms, PSO itself does not include
genetic mixing of properties between particles. Each particle achieves optimal
position considering its individual behaviour as well as social behaviour. A
reward function defined by the application decides the fitness of each particle
after each generation/iteration. For each particle a location and a velocity is
defined at each iteration. The position of each particle after each generation is
given for each dimension d as

xid = xid + vid (5.6)

where xid = (x1i, x2i...xmi) is the current position of the ith particle and vid =
(vi1, vi2, ...vmi) is the current velocity of the particle’s trajectory towards its
optimal position. vid is calculated as

vid = vid + c1 × rand(1) × (pid − xid) + c2 × rand(1) × (pgd − xid)
(5.7)

where vid of previous generation provides the momentum for the particle
to keep moving towards its optimal position. The second component of the
statement is called the cognitive component and is the bias towards the best
performance for the individual particle whereas the third component or the
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social component is the drive for the particle towards global optimal position.
Pid = (p1i, p2i, ...pmi) and Pg = (p1g, p2g, ...pmg) gives the best position so
far for the ith individual particle (giving the highest reward) and the best posi-
tion among all particles respectively.

The initial population can be initiated randomly or based on some prior
knowledge. The fitness of each particle is evaluated and stored in memory
along with the positions of all particles (Pid ). After each new generation,
the fitness values are compared to the best so far and updated accordingly.
Generally, in order to keep the particles from drifting outside the search space,
a maximum velocity (Vmaxd ) is defined for each dimension. Whenever this is
exceeded, the velocity in that dimension is set to Vmaxd . For the simplicity of
implementation and fast convergence rates, PSO has become very popular and
it is used in the Chap.5 in the process of identifying NPs.

Ratnaweera et al. [22] have presented an extension which improves the
convergence rate of PSO considerably. This method, known as HPSO-TVAC
(Hierarchical ParticleSwarmOptimiserwithTime-VaryingAccelerationCoef-
ficients) is discussed below.

The original form of PSO has the characteristic that the relative magnitudes
of cognitive to social component result in different behaviours of the motion of
particles. Higher cognitive components result in the particles wandering over
the search space while the opposite will lead to particles settling prematurely
at local optimums. Kennedy et al. [23] have suggested setting c1 = c2 = 2.
Although this improves the optimisation and reduces convergence times to
some extent, the suggestions in [22] provide a more logical approach to better
tackle the problem.Taking in to consideration the general desire of encouraging
particles to wander about the search space in the initial generations in order to
avoid being stagnated at a local optimal point, and contrastingly, the necessity
of converging quickly after the global optimal point is found, the goal of this
development has been to time-vary the coefficients c1 and c2 in a way to meet
both objectives so that the global optimal point is found efficiently. Under
TVAC, Ratnaweera et al. [22] suggest that the coefficients are varied as

c1 = (c1 f − c1i)
iter

M AX IT R
+ c1i (5.8)

c2 = (c2 f − c2i)
iter

M AX IT R
+ c2i (5.9)

where c1i, c1 f , c2i, and c2 f are constants, iter is the current iteration number
and MAX IT R is the maximum number of allowable iterations. The authors
have found the values for c1min = 0.5; c1max = 2.5; c2min = 0.5; c2max =
2.5; to give optimal solutions for many search problems and therefore the
same coefficients are used in this chapter. The next improvement suggested
in [22] is the “self-organising hierarchical particle swarm optimiser (HPSO)”

http://dx.doi.org/10.1007/978-981-10-1113-9_5
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where the problem of particles stagnating at local minima for multimodal
systems (systemswithmany localminima), the effect of velocity of the particle
reaching zero is avoided by resetting the velocity to a reinitialisation velocity
proportional to Vmax as

vid =
{
r2Vmax , r1 < 0.5

(−)r3Vmax , otherwise
(5.10)

where r1, r2, and r3 are random values between 0 and 1.

In identifying NP’s, HPSO is used to optimise these ellipses to maximise a reward
function concerning coverage, overlap and uniformity. The optimisation is done in
two phases with the first phase restricting the movement of the ellipse centres and the
number of ellipses. And the second phase is developed to optimise on the uniform
coverage.

NP Optimisation: Phase I

The variables for this phase are the length of major axis, eccentricity and orientation
of each of the ellipses. The total number of dimensions (nd ) for the optimisation
problem is the number of variables for each ellipse (nd = 3 for Phase I) times the
number of ellipses (M) while the centres and the ellipse numbers are kept fixed. The
optimisation problem can be stated as;

min
d1,d2,...dnd

f0(d1, d2, . . . dnd )

subject to di > 0, i = 1, 4, . . . , nd − 2 For length of ellipse
0 < di < 1, i = 2, 5, . . . , nd − 1 For eccentricity

(5.11)

where f0 is the cost function. The adaptation of HPSO algorithm to solve the optimi-
sation problem stated above is detailed in Algorithm5. A population of N particles
are initiated in nd dimensions in terms of a position vector Xi where i ∈ (1, 2, . . . , N )

and a velocity vector V . This initial population of particles with position vectors Xi

are obtained from adding a Gaussian noise with a small standard deviation to the
original particle obtained frommanually drawn ellipses. In particle motion, the max-
imum velocity in each dimension is defined as Vmaxd = max(Xd) as usually done
in PSO to reduce roaming outside the search-space [22]. The initial velocities are
defined as fractions of Vmax . The best localisation of each particle Pid (which shows
the highest fitness), and localisation of fittest particle so far (Pg) is updated with each
iteration. The new positions of each particle are updated with new velocities.

Reward Function for Optimisation Phase I (f 0I)

The objective of Phase I is to identify the main clusters which would form the largest
NPs. This is an important step as the final MFPT estimation would greatly depend
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Fig. 5.9 Network Y : optimisation Phase I. a HPSO reward function. b Identified elliptical NPs at
the end of Phase I

on the accuracy of calculation within these largest NPs. With this objective in mind,
the reward function for this phase ( f0I ) is formulated as a weighted sum for the
following.

• Reward for uniform coverage (i.e the proportion of nodes covered by a single
ellipse); RUC

• Penalty for the number of overlapped nodes; PO

• Higher penalty for ellipses that are totally overlapped by others; PTO

• Penalty for individual size of ellipses being below a threshold; PI S

The fitness for each of the N particles is calculated for Phase I as

f0I (x) = w1RUC − w2PI S − w3PO − w4PTO

where f0I (xi) is the fitness of the ith particle (xi), w1 : w4 are the weights for
each reward or penalty. The weights w1 : w4 for the rewards and penalties used
were selected by observing the convergence rate and fitness for a range of possi-
ble fitness functions. The reward function is used for network Y with weights as
[w1,w2,w3,w4] = [1, 0.4, 0.2, 0.4]. Figure5.9a shows the individual rewards and
the total reward function with respect to the iteration numbers and Fig. 5.9b shows
the NP cluster ellipses at the end of Phase I.

NP Optimisation: Phase II- HPSO for Optimising Coverage and Identifying
Smaller Primitives

Themain (largest) NP’s are identified roughly by the end of Phase I. The next stage is
concerned with clustering the isolated nodes outside of the first set of ellipses either
by merging into larger NPs or by forming smaller NP’s by themselves. A function
called ‘grains’ that is used in MATLAB for image processing for clustering similar
areas to identify object boarders is used to identify the centroids of uncovered areas.
The next generation of ellipses are initialised partially with these centroids and the
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Algorithm 5 (HPSO in Phase I)
1: begin
2: Initialise population of N particles
3: X1 = [Xmaj1, Xecc1, Xori1, ...XmajM , XeccM , XoriM ] {Position vector for 1st particle}

4: ∀
2< j<N

X j = X1 + [η1 j , η2 j , . . . , η3Mj ], η ∼ N (0, σ 2){Add noise to get other particles}

5: Vmax = max(X j ) {Initialize velocity matrix}

6: ∀
j
V j = 0.1 Vmax

7: Define
8: fitness threshold = fth
9: f0I = 0, F = [0 0 . . . 0]1×N
10: maximum iterations = Imax
11: [c1min, c1max , c2min, c2max ] = [0.5, 2.5, 0.5, 2.5] {Acceleration coefficients}
12: [w1,w2,w3,w4] {Reward function weights}
13: I = 0;
14: while f< fth & I < Imax do
15: c1 = (c1min − c1max )I/Imax + c1max ;
16: c2 = (c2max − c2min)I/Imax + c2min ;
17: i = 1 : N
18: f0I (x) = w1RUC − w2PI S − w3PO − w4PT O {Calculate fitness}
19: Update Pid and Pg
20: if Fi < f0I (x) then
21: Fi = f0I (x) {Update best fitness matrix}
22: Pid = Xi {Best position of each particle}
23: if indexOF(max(F))==i then
24: Pg = P0I {Fittest particle so far}
25: end if
26: end if
27: for d = 1: 3M do
28: Update velocity
29: Vid = c1×rand(1)×(Pid − Xid ) − c2×rand(1)×(Pgd − Xid ) {New velocity}
30: if Vid == 0 then
31: if rand(1) < 0.5 then
32: Vid = rand(1) x Vmax (d)

33: else
34: Vid = (-)rand(1) x Vmax (d)

35: end if
36: end if
37: Vid= sign(Vid ) × min(abs(Vid ),Vmax )
38: Xid = Xid + Vid
39: if limits violated then
40: reset Xid
41: end if
42: end for
43: I = I + 1;
44: end while

rest with the output of the earlier phase. A modified reward function is used in this
stage to give more prominence to total coverage and added penalties for uncovered
area. The reward function for this phase is
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Fig. 5.10 Network Y : optimisation Phase II. a NP clusters at the end of optimisation Phase II.
The newly added patches are marked in red dashed lines. b Reward function ( f0II) with respect
to iterations in optimisation Phase II. The sharp changes in the curves correspond to removal of
smaller ellipses in subsequent iterations

f0II(x) = w1RUC + w2RI S − w3PO − w4PI S − w5PTO

where RI S is the reward for individual NP sizes. The weights of the individual
rewards were [w1,w2,w3,w4,w5] = [0.33, 0.67, 0.5, 0.5, 0.5]. Sparsely interlaced
iterations were used to identify and delete ellipses smaller than a fixed lower limit.
Iteration outputs for optimisation Phase II for network Y are shown in Fig. 5.10a, b
gives the individual and total reward functions ( f0II) with respect to iterations.

NP Final Demarcation Using Voronoi Regions

In real-time computation, the hop-wise MFPT calculation complexity increases
largely with the number of NP’s in a network. Therefore, the ellipses resulting from
the previous optimisation steps can be divided as ellipses of considerable size and
ones which, if considered as individual NPs are very small and will increase the
MFPT estimation complexity. Therefore, the set of ellipses are divided into two
groups depending on their coverage areas. The threshold is taken as having a major
axis at least three times the rate of spread. This is done in the sense that if the walker
is able to reach the furthermost end of the primitive in less than three steps, such
NPs are considered inefficient by increasing calculation complexity. Nodes within
ellipses such as these are merged into the NPs closest to them. The centres of gravity
for larger ellipses are adjusted by a weighted average of coverage areas with the
positions of added clusters.

As the final step of the NP identification process, the total continuous area is
divided into convex network primitives using the centres of gravity for the remaining
ellipses as centres of Voronoi regions. Finally, the infinite edges of Voronoi regions
are clipped off at the network boarder in order to make hop-wise MFPT estimation
feasible. The final NP demarcation for network Y is depicted in Fig. 5.11 with a total
of eight NPs identified.
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Fig. 5.11 Network Y : final
demarcation of NPs
identified through Voronoi
regions with the infinite
edges clipped off with the
network boarder
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This method of NP identification is presented here for a 2D unconnected node dis-
tribution but the concepts are adaptable for higher dimensions using higher dimension
ellipsoids and Voronoi regions and even for complex connected networks.

NP Transport Properties

As described at the beginning of this chapter, an NP is a part of a network uni-
form in transport properties. Therefore, for each identified NP, transport properties
have to be identified. Calculating the MFPT for a random walker to reach any tar-
get T within the same NP as the source point (i.e one hop) is straight forward
using methods from Chap.4 given that the values for df and dw and constants A
and B in Eq. (4.3) are known. If another method is used for computing the MFPT,
this calculation is still straight forward if the transport properties for that method
were used in identifying NPs. Ideally every node within an NP should have the
same values for df, dw and bias (and thereby A and B). However, since the NP
identification process needs to allow some robustness when dealing with real world
networks, there could be slight variations in these values between nodes in the same
NP. Yet, it is important for the hop-wise MFPT calculation that common values for
these dimensions are found for each NP such that Eq. (4.3) can be applied. One
way of obtaining these values are using the df and dw values set by the hypothe-
sis of the most common NP type of within the NP. But to add robustness through
customisation, the transport variables df, dw, α, A(α),& B(α) for each of the prim-
itives were recalculated dividing the dataset between the NPs and again into Ψ

number of angle segments i.e.α ∈ Φ | Φ{(−π,−π + 2π/Ψ ), (−π + 2π/Ψ,−π +
4π/Ψ ), . . . , (−π + 2(Ψ − 1)π/Ψ,−π + 2Ψ π/Ψ )}. It was decided to useΨ = 24
angle segments for the simulations after compromising between (limited) training
dataset size and accuracy.

http://dx.doi.org/10.1007/978-981-10-1113-9_4
http://dx.doi.org/10.1007/978-981-10-1113-9_4
http://dx.doi.org/10.1007/978-981-10-1113-9_4
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In the next section the NP identification process is used and extended to the hop-
wise MFPT prediction presented with the case study of cyclone motion in the NA
Ocean.

5.2.3 Case Study: MFPT for Cyclone Motion

The methods discussed that estimate MFPT for a random walker at a known source
point S to reach a given target point T in inhomogeneous networks are now discussed
using a case study of predictingMFPT for cyclonemotion using a dataset of the paths
followed by cyclones over the NA Ocean.

5.2.3.1 Case Study: Dataset

The dataset used for this case study is the same as what was used in Chap.4 which
gives the complete set of cyclone track archive for the cyclones observed over the NA
Ocean since 1950 [26]. It can be observed that with respect to cyclone track history
over other Oceans, the dataset over NAOcean shows a clear correlation with the Beta
effect and thus becomes a good candidate for an example biased random walks. This
gives a good case study where random walks are biased by environmental factors.
Although the complexity of the atmosphere and stochastic nature of the cyclone
motion itself creates an uncorrelated set of random walks, the biasing factor imposes
broad limitations to the movement.

This data source provides 6 hourly best track coordinate locations of the eye
of the cyclone for every documented cyclone in the categories of Tropical Depres-
sion, Tropical Storm, Hurricane, Extra tropical cyclone, Subtropical cyclone, Low,
Tropical wave and Disturbance. The selected complete dataset is shown in Fig. 5.12
that discusses how the dataset consists of a network inhomogeneous in transport
properties.

5.2.3.2 Case Study: Calculating Transport Properties

The df for the case study obtained as being equal to 2 which results from the contin-
uous two-dimensional Euclidean state space. Using the dataset of cyclones between
1950–2012 as the training dataset, dwb was calculated using Eqs. (4.2) and (4.7) fol-
lowing Algorithm4. When calculating dw at different points in the state space, it is
observed that the values vary considerably throughout the considered area (i.e. state
space). In order to get the distribution of dwb, the area is divided into a grid-world
and used the datasets of cyclones originating from each grid cell to calculate dwwith
respect to direction.

http://dx.doi.org/10.1007/978-981-10-1113-9_4
http://dx.doi.org/10.1007/978-981-10-1113-9_4
http://dx.doi.org/10.1007/978-981-10-1113-9_4
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Fig. 5.12 Case study: past cyclone tracks showing inhomogeneous transport characteristics. a The
complete dataset of archived cyclone track data over the NA Ocean since 1950. b–f Subsets of
tracks filtered by the initial track location (initially observed within the circles shown at the base
of each arrow in a). The dots show 6 hourly positions of the eye of the cyclones. It is seen how the
bias direction (directional inhomogeneity) and bias intensity(inhomogeneity of density of nodes)
is changing with location

5.2.3.3 Cases Study: NP Identification

The NP type/hypothesis at each location are obtained using the dwb and df profiles
similar to network Y . Due to the network being continuous, it was required to use
the above mentioned grid-world for NP type identification. Also due to the state
space being continuous, the df remained constant for every point in the state space
and therefore it was only required to identify hypotheses for dwb, as it is the only
variable transport property of importance for NP identification. Similar to network
Y , the dwb distribution used for NP type selection is composed of dwb values in the
direction of maximum bias.

The hypotheses/NP type identification is done manually by observation since
the only variable is dwb. Four hypotheses were identified from this distribution
which fixed the NP type set at η = 4. The point-wise NP type distribution is shown
in Fig. 5.13b. NP identification process for this case study follows the procedure
explained with the example of network Y and the outputs and intermediate steps are
illustrated in Fig. 5.13.

A total number of 15 convex NPs are obtained using the 4 identified hypotheses.
The values for df and dwb for each of the 15 NPs were identified by using the dataset
divided by the NP in which each cyclone was originally recorded in. (i.e. from the
initial recorded position). A unique value set of {df, dwb(α), A(α), B(α), α} where
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Fig. 5.13 Identifying NPs for the case study of cyclone tracks over the NA Ocean. a The flowchart
of NP identification process. b Point-wise NP type/hypothesis distribution. c Manual demarcation
of elliptical NP patches. d, e Resulting NP distribution at the end of optimisation Phase I, and its
reward function. f, g The same for Phase II. h Identified NP set

α is the direction of the hop is stored for each NP for the real-timeMFPT prediction
for each hop using Eq. (4.3). The angles are divided intoΨ = 24 segments limited by
training dataset. These values are stored in a cell structure to be accessed in real-time
computation.

5.2.3.4 Hop-WiseMFPT Estimation

A hop-wise MFPT prediction method follows the NP identification process. Unlike
the point to point estimation as in the case of a single NP where there is only one pair

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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of S and T considered by the walker in a single attempt, when the network is divided
into patches with different characteristics, the paths a walker would take in the next
‘hop’ differ largely depending on the exit point of the previous NP. Therefore, it
is required that multiple exit points are considered for each starting points within
the current NP. This as a result will increase the calculations exponentially with
each ‘hop’. The scalability of the presented methods will be discussed later using
calculation complexities.

The hop-wise estimation starts with selecting the exit points for each NP the
walker enters (given that the final target point T , is not inside the NP the walker
enters). There is one assumption in this hop-wiseMFPT calculation that is that there
are no loops in the hops. If that was the case, the calculation might crash in an
infinite loop until the maximum hops are reached. Although it is possible to extend
the calculation to include this case, due to the limitation of computational resources,
this assumption is enforced as a limitation to the number of hops.

Focussing back on the question of selecting exit points for a random walker to
exit from its current NP, for directionally biased random walks, the main influence is
from the network bias. When the bias direction is known, this is the most common
exit direction from the NP. If the bias intensity is also known, the size of the angle
segment of possible exit points can also be calculated. Without a loss of generality,
an angle segment of Δ is chosen around the bias direction with 95% confidence
interval that random walkers in that NP would exit through. This is obtained from
the training dataset used in getting the transport variables. In getting the actual exit
points, it is straight forward for a discrete network by selecting the set of nodes
closest to the boundary of the NP within the angle segment of possible exit. When
the network is continuous, it is required to find a discrete number of exit points
from the current NP. This number is a compromise between the required precision
and the affordable computational complexity. In order maximise the utilisation of
knowledge encapsulated in transport variables calculated from previous data, an exit
point is used for each angle segment transport variables are pre-calculated for (Φ)
andwhich are within the probabilistic region. For isotropic randomwalks, this region
extends the complete NP boundary.

5.2.3.5 Probabilistic Path Selection

Regardless of the selection of NP exit points, it is inherent in its biased motion that
it is more likely that some paths are taken than others. The probability of exiting
through a node directly in the direction of bias is more likely than in other directions.
Therefore, probability of path selection obtained from past data, is integrated into
the hop-wiseMFPT prediction. The probability of any given random path being the
actual randomwalk is the joint probability along the hops of that path. Thus, the final
MFPT estimation is an averageMFPT weighted by the probability of that particular
path. Figure5.14 shows a few examples of the selected hop ‘branches’ for a selected
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Fig. 5.14 Hop-wise MFPT
estimation for the case study
of cyclone tracks over NA
Ocean for one pair of S and
T . The ‘branches’ of
hop-wise routes considered
in theMFPT estimation
process are shown. Different
hops are shown in different
colours and two sample
routes (collection of hops)
are highlighted in red and
black

source and target set. It is worth noting that the plots are not random walks but rather
the connectivity of a few hops of random walks.

5.2.3.6 Real-Time Prediction with Parallel Processing

The computational complexity resulting from the need to consider many alternate
paths of a single randomwalk depending on transit points betweenNPs is a drawback
in using the hop-wise MFPT prediction in real-time. This increases the number of
computations required exponentially with each NP interface a random walker needs
to cross in order to reach the target point. This makes computational resources a bot-
tleneck for the estimation. But an important factor in this calculation is that although
multiple paths of a single random walker has to be considered, these paths are inde-
pendent of each other because in reality although multiple paths are considered a
walker can only take one at a given time. To make use of this independence, the
MATLAB code developed to implement this methods in simulations uses parallel
processing functions to improve calculation efficiency. To preserve the efficiency
provided by parallel processing, variables used in each parallel process needs to be
independent of each other. Therefore parallel processing is used only per hop to
calculate MFPT via multiple exit/transit nodes which are independent.

The hop-wise MFPT prediction method has a real-time computational complex-
ity of O(nhd) where nd is the total number of dimensions of the state space and
h is the maximum number of hops considered. Therefore with scaling in terms of
higher dimension random walks, the real time computational complexity will not be
effected. However, in obtaining df and dw distributions, the calculation complexity
will exponentially increase with dimensions of the state space. This could be signifi-
cantly reduced by parallel processing as calculations are still mutually independent.
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5.2.3.7 MFPT to Reach Any Target T

TheMFPT estimates obtained for each hop of the calculation are stored in a (MAT-
LAB) cell structure until the final estimation converges or if the hop number has
reached a threshold. When the networks are biased and when the bias does not form
loops, after a limited number of steps, if the target is not reached, it can be assumed
that theMFPT tends to infinity. This number of steps is reduced with the increase in
bias intensity.With the number of iterations set to the converging threshold of the net-
work, Algorithm6 presents the pseudo code followed in the final MFPT estimation
process.

5.2.3.8 Case Study: Hop-WiseMFPT Estimation

For this case study, the number of maximum hops is limited to hmax = 20 by obser-
vation since the results generally converged by 10 hops. Figure5.15 shows theMFPT
prediction for ten (S,T ) pairs with respect to the number of hops considered (here
the branches which have not yet reached the target are considered as misses). The
(S, T ) pairs are the same as the ten cases presented in Table5.1. It can be concluded
that after 20 hops, any walkers which have not yet reached the target have indeed
missed it as the probability of returning against the bias path is extremely low (given
that there are no loops in the bias vector field in this example). If there were loops in
the bias vector field, convergence would be delayed.

5.2.4 Case Study: Results Comparison

The predictionsmade using the hop-wisemodel are comparedwith real data averages
and predictions using homogeneous transport properties for several (S,T ) pairs. Ten
such comparisons are presented in Table5.1 and from this it is shown that breaking
the problem into NPs reduces the average error from 18.8 to 5.4% with respect
to the homogeneous network assumption, but at the cost of 12 times increase in
processing time required. However, this increase in processing time is subjective
and the importance changes with the application. For example, in the cyclone track
dataset, new data points were available every 6h and the increase in processing
time in the order of one or two minuets does not make any difference. It is also
noted that the processing time is dependent on the resolutions used. Figure5.15
presents the MFPT convergence rate with the number of ‘hops’. All simulations
and calculations presented in this chapter were done using MATLAB coding on
an Intel® core™ i7-4770 CPU with 16GB available RAM. In conclusion, while
requiring more computational power, breaking the problem of MFPT estimation
on an inhomogeneous network by dividing the network using the concept of NPs
increases the estimation accuracy considerably. Comparisons were done with only
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Fig. 5.15 MFPT estimation for the 10 presented comparisons in Table5.1. The convergence of the
iterativeMFPT estimation is observed
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Algorithm 6 Hop-wise MFPT calculation
1: Begin
2: Define S, T, f rontline = S{Input Source and Target}
3: Load N Ps, df, dw, A, B, PDD{Import NP & Transport properties}
4: Identify NP containing S&T → N PS, N PT
5: set hmax {maximum number of hops}
6: if S == T then
7: hops{1} = {source = S, Pr = 1,m f pt = 0, prevN P = 0, reached = 1}
8: else
9: hops{1} = {source = S, Pr = 1,m f pt = 0, prevN P = 0, reached = 0}
10: for hop = 2 : hmax do
11: for n=1:length(frontline) do
12: For every boundary node from previous hop
13: if hops{hop}.reached > 0 then
14: Append hops[hop]|hops[hop − 1](n){Append nth elements}
15: else
16: [new f rontline,m f ptall , N PS, reachedall ]=getNexthop
17: Pr1 = PDD{N PS}.hops{hop − 1}.Pr(n)

18: Append hops{hop}|{source = f rontline, Pr = Pr1,m f pt = m f ptall , reached =
reachedall , prevN P = N PS}

19: end if
20: end for
21: f rontline = new f rontline;
22: end for
23: end if

getNexthop
24: if N PS == N PT then
25: calculate final MFPT using Eq. (4.3)
26: return T,m f pt, N PS, reached = 1
27: else
28: Identify exit points from N PS → frontline
29: Start ‖ processing
30: for every point on the previous frontline do
31: if target reached then
32: calculate final MFPT using Pr
33: return T,m f pt, N PS, reached = 1
34: else
35: calculate new frontline
36: calculate MFPT to reach every ith point on frontline
37: return { f rontline,m f pt, N PS, reached = 0}
38: end if
39: end for
40: End ‖ processing
41: end if

larger distances between S and T where the hop-wise calculation made sense (for
S and T to be in different NPs). Currently 120h is the maximum lead time official
forecasts can provide.

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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5.3 Conclusions

This chapter discussed the effect of inhomogeneity of transport variables are shown
on state spaces onto which processes leading to natural disasters translate into. The
concept of dividing an inhomogeneous network into NPs is introduced. This enables
straight forwardMFPT calculation between any two nodes within an NP and makes
way for hop-wise MFPT estimation to reach any target point in the inhomogeneous
mediawhen theNPs are convex in shape.An algorithm to identify convexNPs for any
given 2D node distribution is discussed which can be extended to higher dimensions
with the use of higher dimension ellipsoids andVoronoi regions.A ‘Hop-wise’MFPT
prediction method is shown to get a final approximation ofMFPT to reach any target
point in the complex media. The effect of probability of reaching a target given the
effect of biasing factors is demonstrated in this hop-wise MFPT estimation.

Several important conclusions can be observed from material discussed in this
chapter. Firstly it was shown that a large class of processes leading to natural disaster
dynamics translate into random walks that encounter inhomogeneity in networks’
transport properties. Such inhomogeneity can not always be modelled through node
degree distributions or weight distributions especially when connectivity within net-
works are temporal. Dividing the network into homogeneous network primitives is
shown to be a feasible approach to address this problem. It was shown that PSO
techniques can be used to optimise the NP identification process that is described
through a generic algorithm that identifies NPs using the transport property distrib-
utions. The discussed methods were demonstrated using simulated and real datasets
where predictions showed better results with the dataset of archived cyclone tracks
when compared to predictions assuming homogeneous networks.

5.4 Summary

Randomwalks resulting from state changes of processes leading to natural dis-
aster activity commonly show network inhomogeneity. Therefore, this chapter
investigated the possibility of estimatingMFPT for a random walker to reach
a target T starting from a source node S in inhomogeneous media using the
concept of NPs to divide the problem. NPs are identified by their transport
properties df and dw, and clustered to be convex in shape to facilitate hop-wise
MFPT prediction. The methods are described initially with random walks on
a hypothetical two dimensional generic discrete node distribution denoted as
network Y . Then a case study using the dataset of past cyclone tracks over the
NA Ocean for the past 65 years was used to verify the methods by comparing
results with numerical MFPT values and estimation results assuming homo-
geneous transport properties using methods from Chap.4. Comparison results
showed a 3.5 times less error with the presented methods.

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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One issue with the method is that when there is zero prior knowledge of
cyclone tracks in an NP in some direction, this method cannot be used to
predict for that direction (as no transport variables can be calculated). Finally,
it is worth noting that this method of using multiple possible exit points from
an NP can be directly used to extend this method in calculating MFPT for
random spreads such as fire propagation.
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Chapter 6
Conclusions and Future Research Directions

This book discusses natural disaster prediction methods by analysing the state
changes of the dynamics behind natural disasters. It shows that many such state
changes behave as random walks in their respective state spaces. Therefore, this
book mainly focusses on methods that predict theMFPT for random walks resulting
from natural processes leading to natural disasters viewed in an engineering per-
spective. The main objective of this book is to address network inhomogeneity and
directional bias that affect randomwalks’MFPT calculations. Themotivation behind
this discussion is the large class of process behind natural disaster dynamics of which
the state transitions translate to random walks where the non-linear interactions with
the environment result in biased random walks showing inhomogeneous transport
characteristics.

The first part of this book presents a discussion of an end-to-end prediction model
for the specific application of cyclone induced flood prediction. This particular appli-
cation was chosen due to its construction based on many interdependent random
processes affected by network inhomogeneity and biasing factors. Chapter3 presents
a modularised model allowing flexible data assimilation and easy integration of pre-
dictions from other models. A novel concept of dividing the terrain into Geographic
Primitives (GP) is used to accommodate network inhomogeneity where a transition
probability matrix (TPM) per GP is used to summarise the effects of bias. Efficient
real-time predictions are obtained through the use of the TPM in a Markov chain
and properties of the network identified through Eigen-value analysis. A Bayesian
framework combines the advantages of data-oriented and heuristic modelling and
the proposed model is validated using two complete datasets of past cyclones from
2010 to 2011 season.

The second part of the book concentrates on addressing the directional bias affect-
ing a large class of random walks that result from real-world dynamic systems. In
Chap.4 MFPT calculation using bias modified transport variables is suggested as
a feasible generic approach to this issue. An algorithm is developed to capture the
effects of bias on the ‘walk dimension’ and a case invariant relationship is obtained
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empirically to calculate the novel metric called the bias modified walk dimension that
is shown to improve the MFPT prediction accuracy in the presence of directional
bias. A question might arise on the dependence of the proposed model on the set
of hypothetical networks used to derive this relationship. However, the diversity of
the case studies that are used throughout the book to validate the methods indicate
wider applicability. A case study with the complete dataset of cyclone tracks over
the North Atlantic Ocean is presented validating the methods proposed in Chap.4.

The final part of the book concerned the development of methods to address inho-
mogeneity in network transport properties experienced by a randomwalker.Chapter 5
presents a novel concept of dividing the network into homogeneous patches known as
Network Primitives (NP) and adapting a hop-wise prediction method. An algorithm
is heuristically developed to identify convex NP’s for a given network optimised
using particle swarm optimisation methods. Simulations using the same cyclone
track dataset (that was also used in Chap. 4) show the improvement of prediction
accuracy from this method when compared to predictions assuming homogeneous
transport properties.

Overall, this book has presented that state changes for a large class of natural
disaster dynamics can be translated into biased random walks in inhomogeneous
media and a prediction of theMFPT to reach some target states can be a useful tool
inmanagement of such situations.One commonproperty of all presentedmethods are
that they are data-driven. Therefore, these methods are easily applicable to systems
where stochasticity makes numerical analysis extremely difficult. While data-driven
models facilitate the use of all current knowledge of the system, the downside is
that the accuracy of the models depend on the quality and quantity of training data
used to tune the models. A limitation of data-driven models come from the increase
of computational resources needed for manipulating large volumes of data. The
methods presented in this book have always used parallel processing techniques to
reduce such effects wherever required.

6.1 Future Research

A range of applications that can exploit the generic methods discussed in this book
make way for an array of possible future research topics. Some proposed future
research objectives are summarised below with respect to the contributions of this
book.

Prediction of Cyclone Induced Flood Propagation

The objective of Chap.3 was to analyse an end-to-end real world natural disaster
dynamic system consisting of interdependent random processes affected by network
inhomogeneity and biasing factors. However, this model has given promising results
for a basis of a practical cyclone induced flood prediction model which can be
improved by:

http://dx.doi.org/10.1007/978-981-10-1113-9_4
http://dx.doi.org/10.1007/978-981-10-1113-9_5
http://dx.doi.org/10.1007/978-981-10-1113-9_4
http://dx.doi.org/10.1007/978-981-10-1113-9_3
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• Using the modularised approach to integrate outputs of sophisticated prediction
models at each stage as and when they become available. This would facilitate the
maximum use of the knowledge of the system while having the ability to generate
initial predictions well ahead of time with minimal available data.

• In the presented model, several assumptions were made to simplify the calcula-
tions. A more complete treatment of the hydrological features affecting propa-
gation can improve the prediction accuracy by relaxing some of the assumptions
such as surfaces being frictionless and impermeable.

• The rainfall prediction Bayesian framework can be extended for non-cyclone
induced rainfall prediction scenarios.

• TheEigen-value analysis used for the flood prediction stage can be taken in abstract
to an array of prediction applications given available data at reasonable resolutions.

MFPT Calculation for Biased Random Walks

The objective of Chap.4 was to develop generic methods to predictMFPT for natural
processes translating to random walks under the influence of directional bias.

• Due to the generic nature followed in developing the relations and algorithms,
the possible future research applications are vast. As long as the systems’ state
transitions can be represented as directionally biased random walks, the proposed
methods can be applied for these natural disaster systems.

• Although all hypothetical and real case studies used in Chap.4 concerned
2-dimensional random walks, the methods are developed to be generic and
extendible to networks of higher dimensions. A useful future objective is to extend
these methods and verify with example datasets.

MFPT Calculation for Random Walks in Inhomogeneous Networks

The methods proposed in Chap.5 can be extended to a range of natural disaster
prediction applications that can be modelled as random walks in inhomogeneous
networks with identifiable homogeneous patches. These methods customised to such
applications give rise to an array of possible future research projects.

The main extension that can be proposed for methods proposed in Chaps. 4, and 5
is for theMFPT prediction for branching randomwalks and random spreads. Several
complications arise when using the proposed methods to random spreads.

Figure6.1 shows the simulations of fire spread on a hypothetical fuel distribution.
A uniform node distribution is considered where nodes in some areas did not carry
any fuel, thus making them obstacles for the propagation. Figure6.1 presents the fire
spread at 3, 8, 13 and 18 time-steps. The area with and without fuel are indicated
on the figures. The red ellipses show the probability density distributions of the next
steps of the spread. The initial bias towards a westerly direction is changed suddenly
at time-step 13 towards a south-easterly direction. This is indicative of possible
changes of wind direction possible in fire propagation. A change of spread indicative
of the bias change is observed in Fig. 6.1d. The transport properties df and dw for this
is obtained in methods similar to those used in Chaps. 4 and 5. An extended version
of the algorithm to calculate dw for fire propagation is included in Appendix 1 at the
end of this chapter.

http://dx.doi.org/10.1007/978-981-10-1113-9_4
http://dx.doi.org/10.1007/978-981-10-1113-9_4
http://dx.doi.org/10.1007/978-981-10-1113-9_5
http://dx.doi.org/10.1007/978-981-10-1113-9_4
http://dx.doi.org/10.1007/978-981-10-1113-9_5
http://dx.doi.org/10.1007/978-981-10-1113-9_4
http://dx.doi.org/10.1007/978-981-10-1113-9_5
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Fig. 6.1 Simulating fire propagation as a random spread to calculate transport dimensions df and
dwb. The fire spread and the available fuel distributions after a 3, b 8, c 13, and d 18 time steps

From these figures, some observations present the challenges in extending these
methods for predictingfire propagation as a randomspread. The large number of steps
per time-step results in the increase of computational complexity. This isworsened by
the interdependence of simultaneous walkers. For fire propagation, the complexity
further increases as the node distribution is dynamic (i.e. the fuel point might be
occupied by a parallel walker or run out), and the vulnerability of biasing factors
to sudden changes. These are common attributes of real world random processes.
Therefore future research can address the higher computational complexity through
methods such as parallel processing, distributed computing and optimisation.

Appendix 1: Calculating the Walk Dimension (dw)
for a Dynamic Network

The steps followed to calculate the dw at a given source point (S) of a known dynamic
2D network is summarised in Algorithm 7. This is an extension to Algorithm 4 from
Chap.4, including the consideration of dynamicity in network node distribution. The
dw is calculated prior to theMFPT calculation and recorded in a matrix with respect
to bias intensity (bias_range = 0.6 − 1.6 for the simulation) and relative direction.

http://dx.doi.org/10.1007/978-981-10-1113-9_4
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Algorithm 7 Obtaining dw table for given source node
1: begin
2: [csx, csy] = coordinates of source node
3: define max_iterations, max_hops
4: initialise vectors bias_range, Φ
5: for ∀u ∈ {bias_range} do
6: for i = 1 : max_iterations do
7: obstacle_reached = 0
8: for s = 1 : max_hops do
9: coordinates of current node → [c1x, c1y] =

{
[csx, csy], if s = 1.

[c2x, c2y], otherwise.
10: define θ , U ← f (u), R
11: dynamic node status matrix → F
12: if obstacle_reached == 1 then
13: break;
14: end if
15: PDD ← f (c1x, c1y, θ,U,R) {Obtain PDD for identifying next hop}
16: coordinates of next node [c2x, c2y] ← f (PDD,F)

17: if [c2x, c2y]==null then
18: obstacle_reached = 1
19: continue
20: end if
21: dist =

√
((c2x − c1x)2 + (c2y − c1y)2)

22: Find angle segment the node belongs to
23: hop_dir = ±tan−1((c2y − c1y)/(c2x − c1x))
24: hop_segment ← f (angle_segment_range, hop_dir)
25: Update vectors
26: if max(texit(u, hop_segment, :)) < dist then
27: texit(u, hop_segment, end + 1) = s
28: r(u, hop_segment, end + 1) = dist
29: end if
30: end for
31: end for
32: Update table
33: for ∀seg ∈ {angle_segment_range} do
34: dw(S, u, seg) = dwn ← dwcurvefit(texit, r; texit = a × rdwn )

35: end for
36: end for

The results are divided into angle segments (Φ = −π : π/24 : π in the simulations)
to capture the effect of bias on the ease with which the walker can move in different
directions relative to bias. Therefore, the calculation is repeated for the possible
range of bias intensities and iterated a large number of times (max_iterations = 500
in the simulations) such that the average dw would converge into a stable value.
Random walks are generated having a predefined maximum number of hops per
walk (max_hops). The status of each node is kept in a reference matrix (F), to
capture the dynamicity of node availability and to identify obstacles. The next node
at each hop is identified using a probability density distribution (PDD) which is a
function of bias intensity (U), bias direction (θ ) and the rate of spread (R) that is the
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speed of the walk without bias and is a property of the network. For the simulated
randomwalks in the main text, the Length-to-Breadth ratio (LB), Head-to-Back ratio
(HB), length of major axis (be), length of minor axis (ae) and the shift of centre in
the direction of bias (ce) (Fig. 4.1b) were obtained using

LB = e0.25U ,

HB = LB2.5,

ae = 0.5 ∗ (R + R/HB)/LB,

be = (R + R/HB)/2,&

ce = b − R/HB

(6.1)

respectively. The equations for LB and HB are taken such that for an environment
without bias,LBwould be 1 andHBwould be an augmentation ofLB. The coefficients
for LB and HB were selected at random. The orientation of the ellipse is equal to θ .
The Gaussian PDD for selecting the next node is

PDD(x, y) = exp(−(de(x − Cx)
2 + 2ee(x − Cx)(y − Cy) + fe(y − Cy)

2)) (6.2)

where (Cx,Cy) are the coordinates of the centre of the ellipse obtained by shifting
the current position a distance of c in the θ direction. de = cos2θ/2σ 2

x + sin2θ/2σ 2
y ,

ee = −sin2θ/4σ 2
x + sin2θ/4σ 2

y , fe = sin2θ/2σ 2
x + cos2θ/2σ 2

y where σx and σy, the
standard deviations in x and y directions, are chosen from ae and be depending on
θ . The next node is selected using PDD and F. The distance and relative direction
for the new node is calculated and recorded alongside the hop number (i.e. time-
to-reach) with respect to the angle segment the new node belongs to. Finally dw is
calculated using curve fitting (dwcurvefit) for time-to-reach (texit) versus distance
(r) using linear least squares method.

http://dx.doi.org/10.1007/978-981-10-1113-9_4


Glossary

Adjacency matrix A matrix of which the element Ai j = 1, if there is a link from
i to j (Aii = 0 otherwise).

Anisotropy The property of being directionally dependent, as opposed to isotropy.
Anomalous Abnormal/deviating from what is standard, normal, or expected.
Anomalous diffusion Mean square displacement (r2) is no longer proportional

to t .
Asymptotic Approaching a value or curve arbitrarily closely.
Biased-random walk A random walk which is more likely to follow one path

than another.
Bosonic systems Network nodes can be occupied by any number ofwalkers simul-

taneously.
Branching random walk A random walk where at each step, several steps are

branched out.
Connected graph There exists a path from every node to every other.
Degree of node The number of links connected to a node.
Disordered media Structures with highly irregular geometry (e.g. Fractals).
Heuristic Approach in problem solving not guaranteed to be optimal or perfect

but sufficient for immediate goals.
Levi Flights Step lengths → heavy tailed.
MCT Mean Coverage Time: Time taken to cover all nodes of a network.
MFPT Mean First Passage Time: Expected time for a random walks to first reach

a target or set of targets.
MRT Mean Return Time: Expected time for a randomwalk to return to the source

node.
Numerical weather prediction (NWP) Prediction modes that use mathematical

models of the atmosphere and oceans to predict the weather based on current
weather conditions.

Random walk A walk which follows no discernible pattern or trend.
Relaxation time The time taken for a system to converge to steady state (or a

stationary distribution).
Scal-invariant network Networks where properties are conserves at all scales.
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Scale-Free network A network where the degree distribution follows the power
law (i.e. degree of connections declines as the power law [e.g internet]).

Self similar network Have exactly the samepattern at an infinite number of length
scale (if scale-invariant networks have the same property in average at all scales,
self-similar networks like deterministic fractals have exactly the same pattern at
an infinite number of length scale).

Short relaxation time Networks with non compact exploration.
Small-world type network Diameter scales like the logarithm of volume (A ran-

dom walk on such network can reach a given node from another one, following
the path with the smallest number of links between the nodes, in a very small
number of steps).

Stochastic Can be determined randomly; usually has a random nature that may
be analysed statistically but may not be predicted precisely.

Undirected network A network where Ai j = A ji .
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Akaike information criterion, 97

B
Bayes’ filtering, 13
Bayesian, 12
Bayesian estimate, 13
Bayesian information criterion, 97
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Biased random walk, 4
Bias-modified walk dimension, 72
Bivariate elliptical Gaussian function, 50

C
Complex networks, 4
Correlated walks, 10
Cyclone induced flood, 29

D
Diffusion, 6

F
First passage time, 3
Fractal dimension, 6, 69

G
Gaussian approximation, 48
Gaussian mixture model, 96
Geographic primitives (GP), 31

H
Hop-wise estimation, 93

Huygens principle, 85

I
Inhomogeneous networks, 5, 11

L
Linear least square fitting, 14

M
MAP estimate, 12
Markovian property, 8
Markov matrices, 13
Markov property, 13
Maximum likelihood, 12
Mean exit time, 7
Mean first passage time (MFPT), 4, 7, 10
Mean return time, 7
Mixing time, 7
Monte-Carlo simulations, 15

N
Natural disaster, 1
Network, 3
Network partitioning, 91
Network primitives (NP), 92
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Occupation probability, 7
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Particle swarm optimiser, 100
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R
R-CLIPER model, 40
Random process, 2
Random spread, 6
Random walk, 2
Reward function, 102

S
Scale-free networks, 5
Scale-invariant networks, 5
Self-organising hierarchical particle swarm

optimiser, 98, 100
Self-similar networks, 5
Small-world networks, 5
Spectral dimension, 6
Splitting probability, 7

Stationary distribution, 7
Survival probability, 7

T
Transition probability matrices (TPM), 8
Transition probability matrix, 51
Transport characteristics, 6

V
Voronoi regions, 105

W
Walk dimension, 6, 69


	Preface
	Contents
	About the Authors
	Acronyms
	Mathematical Notations
	Notation Common Throughout the Book
	Chapter 3
	Chapter 4
	Chapter 5

	1 Introduction
	1.1 Natural Disasters as Random Walks
	1.1.1 The Mean First Passage Time (MFPT)
	1.1.2 Two Common Traits

	1.2 How to Read This Book
	1.3 Summary
	References

	2 Background Guide to Random Walk Analysis
	2.1 Introducing Some Basic Notions
	2.1.1 Random Processes
	2.1.2 Random Walks
	2.1.3 Networks
	2.1.4 Random Spread Versus Diffusion
	2.1.5 Transport Characteristics Describing Random Walks

	2.2 MFPT: A Literature Survey
	2.2.1 Estimating MFPT Using Random Walks' Transport Characteristics
	2.2.2 Analysing the Transition Probability Matrix to Estimate MFPT
	2.2.3 Random Walks in Natural Disaster Dynamics

	2.3 Some Mathematical Tools
	2.3.1 Bayesian Probability Theory
	2.3.2 Markov Matrices
	2.3.3 Linear Least Square Fitting Technique
	2.3.4 Monte-Carlo Simulations

	2.4 Summary
	References

	3 Predicting Cyclone Induced Flood:  A Comprehensive Case Study
	3.1 Introduction
	3.2 Cyclone Activity: One of the Major Forms of Natural Disasters
	3.2.1 Numeric Flood Prediction Models
	3.2.2 The Concept of Geographic Primitives (GPs) 
	3.2.3 Data Assimilation in Flood Prediction Models
	3.2.4 Predicting Cyclone Induced Rainfall
	3.2.5 Bayesian Theory for Natural Disaster Prediction
	3.2.6 Predicting the Spatial Motion of Cyclones

	3.3 A Comprehensive Model for Cyclone Induced Flood Prediction
	3.3.1 Step 1: Predict Cyclone Path with Available Data
	3.3.2 Step 2: Predict Rainfall Density Distribution  with Available Data
	3.3.3 Step 3: Predict Water Deposit Density Distribution  with Available Data

	3.4 Two Case Studies
	3.4.1 Model Summary

	3.5 Discussion and Conclusions
	3.6 Summary
	References

	4 First Arrival Time for Natural Disasters Modelled as Biased Networks
	4.1 Introduction
	4.2 Predicting Failure Time Using Transport Variables
	4.2.1 The Fractal Dimension (df)
	4.2.2 The Walk Dimension (dw)
	4.2.3 Network Exploration by a Random Walk
	4.2.4 Assumptions

	4.3 Time to Reach in Biased Media
	4.3.1 Simulated Biased Random Walks
	4.3.2 Calculating Transport Properties for Each NP
	4.3.3 Calculating the Walk Dimension (dw)

	4.4 Case Study: Calculating the Expected Arrival Time  for Cyclone Motion Modelled as Biased Random Walks
	4.4.1 Background
	4.4.2 The Dataset
	4.4.3 MFPT Predictions for Case Study
	4.4.4 Case Study: Discussion

	4.5 Conclusions
	4.6 Summary
	Appendix 1: A fire spread model using Huygens principle
	References

	5 Calculating MFPT for Processes Mapping into Random Walks in Inhomogeneous Networks
	5.1 Introduction
	5.1.1 Random Walks on Inhomogeneous Networks
	5.1.2 Current Trends in MFPT Estimation  in Inhomogeneous Networks
	5.1.3 Network Partitioning

	5.2 Network Primitives (NPs)
	5.2.1 Hop-Wise MFPT Estimation
	5.2.2 Identifying Homogeneous NPs
	5.2.3 Case Study: MFPT for Cyclone Motion
	5.2.4 Case Study: Results Comparison

	5.3 Conclusions
	5.4 Summary
	References

	6 Conclusions and Future Research Directions
	6.1 Future Research

	 Glossary
	Index



