
123

S P R I N G E R  B R I E F S  I N  M E T E O R O LO G Y

Wayan Suparta
Kemal Maulana Alhasa

Modeling of 
Tropospheric 
Delays Using 
ANFIS



SpringerBriefs in Meteorology



SpringerBriefs in Meteorology present concise summaries of cutting-edge research
and practical applications. The series focuses on all aspects of meteorology
including, but not exclusive to; tornadoes, thunderstorms, lightning, hail, rainfall,
fog, extratropical and tropical cyclones, forecasting, snowfalls and blizzards, dust
storms, clouds. The series also presents research and information on meteorological
technologies, meteorological applications, meteorological forecasting and meteoro-
logical impacts (reports of notable worldwide weather events). Featuring compact
volumes of 50–125 pages (approx. 20,000–70,000 words), the series covers a range
of content from professional to academic such as: a timely reports of state-of-the art
analytical techniques, literature reviews, in-depth case studies, bridges between new
research results, snapshots of hot and/or emerging topics. Author Benefits: Books in
this series will be published as part of Springer’s eBook collection, with millions of
users worldwide. In addition, Briefs will be available for individual print and
electronic purchase. SpringerBriefs books are characterized by fast, global electronic
dissemination and standard publishing contracts. Books in the program will benefit
from easy-to-use manuscript preparation and formatting guidelines, and expedited
production schedules. Both solicited and unsolicited manuscripts are considered for
publication in this series. Projects will be submitted for editorial review by editorial
advisory boards and/or publishing editors. For a proposal document please contact
your Publisher, Dr. Robert K. Doe (robert.doe@springer.com).

More information about this series at http://www.springer.com/series/13553

http://www.springer.com/series/13553


Wayan Suparta • Kemal Maulana Alhasa

Modeling of Tropospheric
Delays Using ANFIS

123



Wayan Suparta
Space Science Centre (ANGKASA)
Universiti Kebangsaan Malaysia
Bangi
Malaysia

Kemal Maulana Alhasa
Space Science Centre (ANGKASA)
Universiti Kebangsaan Malaysia
Bangi
Malaysia

ISSN 2199-9112 ISSN 2199-9120 (electronic)
SpringerBriefs in Meteorology
ISBN 978-3-319-28435-4 ISBN 978-3-319-28437-8 (eBook)
DOI 10.1007/978-3-319-28437-8

Library of Congress Control Number: 2015958860

© The Author(s) 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland



Preface

The Global Navigation Satellite Systems (GNSS) technology was implemented in
the field of meteorology in the early 1990s, where scientists successfully developed
a technique for determining water vapor in the troposphere by exploiting the signal
errors during propagation from satellite to a receiver. One of the main sources of
error in the GNSS and its impact, which are crucial in efforts to improve the
accuracy of positioning, is the zenith tropospheric delay (ZTD). If ZTD is produced
with fine temporal and spatial resolution, the value and variability can be applied to
meteorological studies. In other words, ZTD in this case is the main parameter that
plays an important role in determining the parameters of water vapor in the
atmosphere.

In the advantages of GNSS such as GPS technology for atmospheric research
applications, it was found that this method or other methods do not always excel in
all circumstances. For example, GPS data is not always available for a full 24-h
period, especially for a remote location or a strategic area where the GPS receiver is
not installed, while the accessibility and accurate estimation of this parameter is
necessary. Hence, we look at a different approach that is cost-effective and robust in
retrieving the value of ZTD by applying a soft computing technique such as
adaptive neuro-fuzzy inference system (ANFIS) as a new alternative. There are
various approaches by other soft computing techniques, such as genetic algorithms
(GA), artificial neural network (ANN), fuzzy logic model (FLM), and particle
swarm techniques. However, ANFIS was selected as it is emerging as a potential
and robust optimization tool in recent years. ANFIS is a method that combines
ANNs and a fuzzy inference system. In this technique, a fuzzy clustering algorithm
is adopted to enhance the performance of the models, which is able to minimize the
number of membership functions and rules for better efficiency of the models.

To investigate the accuracy of the ZTD models developed, a combination of the
surface pressure (P), temperature (T), and relative humidity (H) is analyzed to
obtain the best estimation of ZTD. The results demonstrate that ANFIS models with
three inputs network (P, T, and H) agree very well with the ZTD obtained from
GPS. Finally, the three-input network is selected for developing the ZTD predictive
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models. To perform the ZTD model, five selected stations over Antarctica and three
selected stations in regions of Malaysia and Singapore were used to examine the
applicability of ANFIS. The ZTD prediction is performed from one to eight-step
ahead for Antarctica region and from one to fifteen-step ahead for the equatorial
region. The results demonstrate that ANFIS is capable of predicting ZTD with high
accuracy.

This book is prepared to help students, lecturers, engineers, geodesists, meteo-
rologists and climatologists, or practitioners to develop new knowledge in appli-
cations of the soft computing technique. The example application of soft computing
presented here is for estimation and prediction of tropospheric delays. On the other
hand, the ZTD parameter obtained from the models or measurements needs to be
converted into precipitable water vapor (PWV) to make it more useful for weather
forecasting, analysis of atmospheric hazards such as tropical storms, flash floods,
landslides, and earthquakes, as well as for climate change studies.

In this book, readers are presented with a detailed theoretical background of
ANN and ANFIS in Chap. 2. Chapter 3 describes the modeling of tropospheric
delay and mapping functions from GPS observations. Chapter 4 presents the
implementation of ANFIS model for estimation of ZTD. In this chapter, the ZTD
value from both ANFIS models and GPS measurements for Antarctica and the
equatorial regions is compared. The accuracy of each ZTD model for each input
used in the training, testing, and validation is comprehensively elucidated, and
finally in Chap. 5 the reader is introduced to the prospect of ZTD estimation using
ANFIS, which focuses on how to predict the ZTD value using the surface mete-
orological data as input. With its simple writing style, it is hoped that this book will
provide complete knowledge to readers on application of soft computing, in par-
ticular, for meteorological applications and processes involved in the method of
observation, data processing, analysis, and methods of data interpretation.

In addition to the content of the book, the authors are particularly grateful to
agencies such as Scripps Orbit and Permanent Array Center (SOPAC) for archiving
GPS data, Crustal Dynamics Data Information System (CDDIS) NASA for
archiving the ZPD data, the Australian Antarctic Division (AAD) and the British
Antarctic Survey (BAS) for the surface meteorological data, and ANZ and NIWA
for the Scott Base data where some data used in the analysis is their contribution.
Finally, the author also expresses his gratitude to the publishers for agreeing to
publish this book.

Wayan Suparta
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Chapter 1
Introduction

Abstract Tropospheric delay is one of the atmospheric quantities, which today
plays a crucial role in meteorological studies and weather forecasts as well as the
positioning accuracy in altitude determination. The current state analysis revealed
that the tropospheric delay is retrieved from the Global Navigation Satellite
System (GNSS) receivers, which is known as the total troposphere zenith path delay
(ZPD), or often referred to as zenith tropospheric delay (ZTD). In this method,
GNSS (e.g., Global Positioning System (GPS) for simplicity) satellite sends elec-
tromagnetic signals through the atmosphere to a receiver on the ground at a fixed
location. The electromagnetic signals are delayed due to the high amount of dry gas
and water vapor in the troposphere layer. Total delay in the GPS signals is mea-
sured, and ZPD is obtained from a summation of dry and wet components
(Hofmann-Wellenhof in Atmospheric effect on the global positioning system,
theory and practice. Springer, Berlin, 2001). Because of the importance of ZPD
data, Byun and Bar-Sever (Adv Eng Soft 31:312–321, 2009) have updated the
legacy of new ZPD products for all available IGS stations with improving con-
sistency of time series, which enhance climate studies.

Keywords Tropospheric delays � GPS � Artificial intelligence � Numerical
modeling � Meteorological applications

The significance of zenith path delay (ZPD) data, such as is to improve numerical
weather prediction (NWP) models and weather forecasting, where the accuracy of
its value is converted into the amount of water vapor in the atmosphere, which is the
so-called precipitable water vapor (PWV). PWV is one indicator of the critical
components of our atmosphere, where their distribution and content are critical
variables that can explain the evolution of various physical processes in the
atmosphere. The role of water vapor as noted by a variety of authors (Dai et al.
2009; Ware et al. 2001; Valeo et al. 2005; Choy et al. 2013) is not only important in
the formation process of clouds and aerosols and the chemistry of the lower
atmosphere, but also closely related to the formation of rain, snow, and thunder-
storms. Thus, the information about the quantity of water vapor is very important
because it is useful for research, mainly in the field of hydrology, climate, and
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meteorology. These two parameters that are derived from Global Positioning
System (GPS) signals should be available with high temporal and spatial resolu-
tions. The availability of this data with high accuracy and accessible is necessary,
especially lately there has been a striking increase in climate change which must be
mitigated and adapted.

Since 1990, GPS has become a versatile tool with a low cost for remote sensing
of ZPD (e.g., Bevis et al. 1992; Bar-Sever et al. 1998; Gendt 1998; Pottiaux and
Warnant 2002; Suparta et al. 2008; Vázquez and Grejner-Brzezinska 2013). The
data obtained has an advantage with high spatial and temporal resolutions and the
cost of receiver maintenance is low. However, the performance of the most
ground-based GPS systems is still lacking in providing continuous data for a full
24-h period, particularly in remote areas, and in some cases there is no GPS receiver
installed. This condition may affect the achievement of ZPD data for retrieving the
water vapor data with high spatial and temporal resolutions and thus it can affect the
accuracy of weather forecasting system. Here, we propose artificial intelligence
(AI) method, which is progressively and successfully applied to model the non-
linear systems in engineering and scientific applications. One part of a popular AI is
the artificial neural networks (ANN). ANN has been adopted by scientists to model
complex nonlinear systems and has also been widely applied to problems in the
field of climate forecasting. In the field of hydrology, Luk et al. (2001) employed
the three methods of ANN, i.e., Multi-Layer Feed-Forward Network (MLFN),
Elman neural networks and Time Delay Neural Network (DNN) to develop a
forecasting model of rain. Their results for the entire neural network can make a
reasonable prediction of rainfall for one-step forward (15-min). Bodri and Cermak
(2000) have also successfully modeled the rainfall and rainfall forecasting.
Furthermore, Kisi (2007) has used ANN to predict the flow of a river in the United
States. He adopted three learning algorithms: back propagation, conjugate gradient,
and Levenberg–Marquardt (LM) to construct the river flow forecasting model. The
results showed that ANN model with LM learning algorithm is the best to forecast
short-term river flow compared to the two other models.

The advantage of ANN over the traditional method is that it does not need to
know about the physical relationship for systematically converting an input to
output. The ANN can adapt itself to self-organize its structure, when the sample
input training is presented. Although ANN offers several advantages, they still have
a number of limitations such as to reach convergence rate is slow, including the
potential trapped in a local minima and difficulty in selecting the appropriate
architecture (Suykens 2001; Dogan et al. 2010).

To overcome this limitation and enhance the capability and accuracy, the inte-
gration of neural networks and fuzzy logic should be conducted to produce a new
method, which is neural-fuzzy. This integration has the ability to transform the
qualitative aspects of human knowledge and reasoning into the exact quantitative
analysis. Here, the new technique namely neuro-fuzzy system (Rajasekaran and Pai
2003) can take the potential benefits of both models into a single framework.
Neuro-fuzzy system can eliminate the basic problem of fuzzy modeling, where it
using the learning capability of ANN for the extraction automatic fuzzy If-Then rule
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and parameter optimization. In addition, this method can utilize the linguistic
information from a human expert knowledge as well as data measured during the
development of the model (Nayak et al. 2004). This method can learn indepen-
dently and adapt itself to its environment. In this paradigm, one of the significant
developments from the integration of neural networks and fuzzy logic is adaptive
neuro-fuzzy inference system (ANFIS). ANFIS model has been shown to be
powerful in various applications such as a power system dynamic load (Altug et al.
1999; Djukanovic et al. 1997), short wind prediction (Negnevitsky et al. 2007; Xia
et al. 2010) and time series simulation (Soto et al. 2013).

This study attempted to apply ANFIS modification network for development of
tropospheric delays to estimate the ZPD value over the Antarctica and Malaysia
regions. Tropospheric delay is a function of the satellite elevation angle and the
geographic position of the receiver, and is dependent on the atmospheric pressure,
temperature, and water vapor characteristics. Therefore, to build the model, we only
considered the surface meteorological data (Pressure (P), Temperature (T), and
Relative humidity (H)) to be used as input data network and ZPD retrieved from
ground-based GPS is used as the target outputs and model validation. In addition,
the multi-layer perceptron (MLP) and multiple linear regressions (MLR) methods
were selected as a comparison model to test the ability of ANFIS model in esti-
mating the value of ZPD. In other words, ANFIS model is developed to estimate
ZPD value, and later without the need to use a GPS receiver to obtain ZPD data.
Indeed, the selection of input variables is the most important step because it has an
impact on the determination of the network architecture of ANFIS models (Nourani
and Komasi 2013). In addition, the amount of data used for training will affect the
ability of the model to capture various characteristics of ZPD in the concerned area.
Finally, the ZPD predictive model from one-step to eight-step ahead is developed
from three input networks (P, T, and H). The accuracy of the predictive model will
be presented in the subsequent chapters.
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Chapter 2
Adaptive Neuro-Fuzzy Interference
System

Abstract This chapter explains in detail the theoretical background of Artificial
Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS).
The detailed explanation of this method will highlight its importance in the esti-
mation of ZTD model.

Keywords Artificial neural network � ANFIS � Fuzzy inference system � Hybrid
learning algorithm � Backpropagation

2.1 Artificial Neural Networks

Generally, an artificial neural network (ANN) is a system developed for information
processing, where it has a similar way with the characteristics of biological neural
systems. It was developed based on the human brain, which is capable of pro-
cessing information, which are complex, nonlinear, and being able to work in
parallel, distributed, and local processing and adaptation. ANN is designed to
resemble the brain systems such as the construction of architectural structures,
learning techniques, and operating techniques. This is the reason that ANN has
been widely adopted by scientists because of its accuracy and its ability to develop
complex nonlinear models and is used to solve a wide variety of tasks, especially in
the field of climate and weather. This section will discuss the capabilities of ANN
such as neurons modeling, architecture, and its learning process.

2.1.1 Neuron Modeling

In the human brain, there are neurons that are interconnected to one another. These
neurons act as a tool that can perform processing of information of human senses.
Haykin (2009) described that a biological neuron consists of a cell body, where
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conditions are covered by the cell membrane (Fig. 2.1). Each cell has branches
called dendrites. Dendritic play a role in receiving the information into the cells of
the body through the axon.

The axon is a long single fiber that can carry the signal from the cell body toward
the neuron—the next neuron. The meeting point between neurons with the next
neuron found in a small space between dendrites and axons is known as a synapse.
The space of synapses is applicable for shipping and receiving all information
processes from the senses. Any information entered will be encoded in the form of
electrical signals. All electrical signals into the synapses are counted and calculated.
When the number of electrical signals regardless of the limits or thresholds spec-
ified in the synapse, the synapses react to a new electrical signal input to be used by
the next neuron. If the electrical signals cannot be separated from the predetermined
threshold, then the synapses will be retarded. Retardation of synapses causes
obstruction of the relationship between the two neurons.

In line with the biological neuron model, McCulloch and Pitt (1943) proposed a
model neuron that has the characteristics of the transmission and receipt of infor-
mation process that is similar to the process that occurs in biological neurons. This
neuron modeling was becoming a reference in the development of ANN model at
current state. A neuron plays a role in determining the function and operation of the
network. The mathematical models of neurons, which are commonly used in the
ANN model is shown in Fig. 2.2.

Neuron modeling based on Fig. 2.2 can be represented by the following
mathematical equation:

uðkÞ ¼
Xn
j¼1

wkjxj and yðkÞ ¼ u u kð Þ
� �þ bðkÞ ð2:1Þ

where uðkÞ is the output of the adder function neuron model, xj is data or input signal
on path synapse j, and wkj is the weighted in the path of synapse j to k neuron. The
output of the neuron is represented by yðkÞ, where it is dependent on the activation

Fig. 2.1 Schematic diagrams of biological neurons (Haykin 2009)
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function uð�Þ and the bias bðkÞ. There are several types of activation functions that
were used in modeling neurons, some of them are fixed limiter function, linear
function, sigmoid function, and bipolar sigmoid function as shown in Fig. 2.3
(Duch and Jankowski 1999; Dorofki et al. 2012).

2.1.2 Architecture

Connections between neurons with other neurons will form a layer pattern,
so-called net architecture. Normally, ANN architecture consists of three different
layers. The first layer is called the input layer. This layer acts as a receiver of data or
input from the external stimuli. Incoming data is then sent to the next layer. In this

Fig. 2.2 Mathematical modeling of neuron

Fig. 2.3 Activation function for (a) the fixed restrictor, (b) purelin, (c) log-sigmoid, and
(d) bipolar sigmoid
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layer, the number of neurons can be more than one. There are no binding rules for
determining the number of neurons; it depends on the number of entries to be used
in the network. The next layer is a hidden layer. This layer contains neurons that
can receive data or electrical signal than the previous layer of the input layer. Data
or electrical signal that goes into these layers is processed using the functions
available such as arithmetic, mathematics, etc. The hidden layer can contain one or
more neurons, which depends on the suitability and complexity of the case at hand.
Data processing results of this layer is then routed to the output layer. Output layer
plays a role in determining the validity of data that are analyzed based on the
existing limits in the activation function. The output of this layer can be used as a
determinant of the outcome of the case at hand.

Based on the pattern of connections between neurons in the ANN, ANN
architecture is divided into two types such as feedforward neural network and
feedback neural network (Jain et al. 1996; Tang et al. 2007; Haykin 2009).
Figure 2.4 shows the taxonomy of both the ANN architectures. Feedforward neural
network is an ANN that does not have a feedback link on architecture. Data or
incoming signals are allowed only to move in one direction only. This means that
the output of each layer will not give any effect to the previous layer. In the
architecture, it can be developed using a single layer or multiple layers. Usually, the
multilayer component consists of three layers, namely a layer of input, output, and
hidden. In a multilayer, hidden layer component plays a role in increasing the
ability of computing power. One-layer perceptron, multilayer perceptron, and radial
basis function are types of ANNs using feedforward neural networks.

Another architecture is a feedback neural network or repetitive. It has a design
similar to the architecture of feedforward neural networks. However, in an archi-
tectural design there are additional feedbacks slow or feedback on the previous layer.
This means the data or electrical signals that are allowed to propagate forward and
feedback can be an input to the neurons before. This network is used for dynamic

Fig. 2.4 Taxonomy of neural network architecture of feedforward and feedback neural networks
adopted from Jain et al. (1996)
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applications such as adaptive control. Hopfield networks, Elman network, and Jordan
network are some examples of the types of ANNs using feedback neural network.

2.1.3 Learning Process

ANN learning algorithm plays a role in the process of modifying the parameters and
the value in the network to adapt its environment. The use of learning algorithms
allows ANN assembles themselves for giving consistent response to input into the
network. During the learning process, the parameters and the weights of synapses
that are in the network will be modified. This is a form of response to the input
stimulus to the output produced in accordance with the desired output. Level of
learning will expire when the resulting output was consistent with the desired
output.

To understand or design a learning process on ANN, there are three steps that
need to be done by the designer (Jain et al. 1996). The steps are (1) learning
paradigm, which refers to a process where a designer in building a system needs to
choose the learning process in accordance with the information environment of the
system; (2) learning algorithm, which refers to a learning rule that is used to modify
the parameters and weights of synapses in the ANN series; and (3) finally, it is
important to assess how much the network can be learned (capacity) and how many
samples are required for training (sample complexity) as well as how fast the
system can learn (time complexity).

Refers to the type of learning in the ANN, two types of learning processes have
been widely adopted, namely supervised and unsupervised learning. Apparent
differences between both are on the information provided by the network. Usually,
the information given to supervised learning is in the form of sample patterns that
have been marked or labeled, while in the unsupervised learning it occurs oppo-
sitely. Thus, for unsupervised learning it worked at random.

In supervised learning, a pattern that was given to the network has been known
its output. Each incoming signals into a single neuron will continue to spread out
along the network until the end layer of neurons in the output layer. In the final
layer, the output pattern will be generated and then compared with the desired
output pattern. Upon the occurrence of an error signal during the process of
comparison between the output patterns generated by the pattern of the desired
output, then the process should be modified to adjust the network weights so that
the actual output will be in accordance with the desired output.

In contrast to supervised learning, unsupervised learning does not have guide-
lines or target output in the learning process. The network only receives many
samples of an input and then puts the sample in any way into some classes or
category. When the stimulus was given to the input layer, the response in the form
of production category or class will have similar characteristics to the input stim-
ulus. In contrast, the network will form a new coding, which led to a new class or
category (Haykin 2009).
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2.2 Adaptive Neuro-Fuzzy Interference System

Modify network-based fuzzy inference (ANFIS) is a combination of two
soft-computing methods of ANN and fuzzy logic (Jang 1993). Fuzzy logic has the
ability to change the qualitative aspects of human knowledge and insights into the
process of precise quantitative analysis. However, it does not have a defined method
that can be used as a guide in the process of transformation and human thought into
rule base fuzzy inference system (FIS), and it also takes quite a long time to adjust
the membership functions (MFs) (Jang 1993). Unlike ANN, it has a higher capa-
bility in the learning process to adapt to its environment. Therefore, the ANN can be
used to automatically adjust the MFs and reduce the rate of errors in the determi-
nation of rules in fuzzy logic. This section will describe in details of the architecture
of ANFIS, FISs, and network flexibility, and hybrid learning algorithm.

2.2.1 Fuzzy Inference System

A FIS was built on the three main components, namely basic rules, where it consists
of the selection of fuzzy logic rules “If-Then;” as a function of the fuzzy set mem-
bership; and reasoning fuzzy inference techniques from basic rules to get the output.
Figure 2.5 shows the detailed structure of the FIS. FIS will work when the input that
contains the actual value is converted into fuzzy values using the fuzzification pro-
cess through its membership function, where the fuzzy value has a range between 0
and 1. The basic rules and databases are referred to as the knowledge base, where
both are key elements in decision-making. Normally, the database contains defini-
tions such as information on fuzzy sets parameter with a function that has been
defined for every existing linguistic variable. The development of a database typi-
cally includes defining a universe, determination of the number of linguistic values to

Fig. 2.5 Fuzzy inference system
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be used for each linguistic variable, as well as establish a membership function.
Based on the rules, it contains fuzzy logic operators and a conditional statement
“If-Then.” The basic rules can be constructed either from a human or automatic
generation, where the searching rules using input–output data numerically. There are
several types of FIS, namely Takagi–Sugeno, Mamdani, and Tsukamoto (Cheng
et al. 2005). A FIS of Takagi–Sugeno model was found to be widely used in the
application of ANFIS method.

2.2.2 Adaptive Network

Adaptive network is one example of feedforward neural network with multiple
layers (see Fig. 2.6). In the learning process, these networks often use supervised
learning algorithm. In addition, adaptive network has the architecture characteristics
that consists of a number of adaptive nodes interconnected directly without any
weight value between them. Each node in this network has different functions and
tasks, and the output depends on the incoming signals and parameters that are
available in the node. A learning rule that was used can affect the parameters in the
node and it can reduce the occurrence of errors at the output of the adaptive network
(Jang 1993).

In learning the basic adaptive network, it is normally using gradient descent or
back propagation and the chain rule. All this learning algorithms had been proposed
by Werbos in 1970 (Jang 1993). Till date, gradient descent or back propagation is
still used as a learning algorithm in an adaptive network. Even so, there are still
found weaknesses in the backpropagation algorithm and further can reduce the
capacity and accuracy of adaptive networks in making decisions. The slow con-
vergence rate and tend to always stuck in local minima are major problems on
backpropagation algorithm. Therefore, Jang (1993) have proposed an alternative
learning algorithm, namely hybrid learning algorithm, which has the better ability
to accelerate convergence and avoid the occurrence of trapped in local minima.

Fig. 2.6 Adaptive network
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2.2.3 ANFIS Architecture

ANFIS architecture is an adaptive network that uses supervised learning on learning
algorithm, which has a function similar to the model of Takagi–Sugeno fuzzy
inference system. Figure 2.7a, b shows the scheme fuzzy reasoning mechanism for
Takagi–Sugeno model and ANFIS architecture. For simplicity, assume that there
are two inputs x and y, and one output f. Two rules were used in the method of
“If-Then” for Takagi–Sugeno model, as follows:

Rule 1 ¼ If x is A1 and y is B1 Then f1 ¼ p1xþ q1xþ r1
Rule 2 ¼ If x is A2 and y is B2 Then f2 ¼ p2yþ q2yþ r2

where A1, A2 and B1, B2 are the membership functions of each input x and y (part of
the premises), while p1, q1, r1 and p2, q2, r2 are linear parameters in part-Then
(consequent part) of Takagi–Sugeno fuzzy inference model.

Referring to Fig. 2.7, ANFIS architecture has five layers. The first and fourth
layers contain an adaptive node, while the other layers contain a fixed node. A brief
description of each layer is as follows:

Layer 1: Every node in this layer adapts to a function parameter. The output
from each node is a degree of membership value that is given by the input of the

Fig. 2.7 a Sugeno fuzzy interference system “If-Then” and fuzzy logic mechanism. b ANFIS
architecture (Suparta and Alhasa 2013)
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membership functions. For example, the membership function can be a Gaussian
membership function (Eq. 2.2), a generalized bell membership function (Eq. 2.3),
or another type of membership function.

lAi xð Þ ¼ exp � x� ci
2ai

� �2
" #

ð2:2Þ

lAi xð Þ ¼ 1

1þ x�ci
ai

��� ���2b ð2:3Þ

O1;i ¼ lAi xð Þ; i ¼ 1; 2 ð2:4Þ

O1;i ¼ lBi�2 yð Þ; i ¼ 3; 4 ð2:5Þ

where lAi and lBi�2 are the degree of membership functions for the fuzzy sets Ai

and Bi, respectively, and {ai, bi, ci} are the parameters of a membership function
that can change the shape of the membership function. The parameters in this layer
are typically referred to as the premise parameters.

Layer 2: Every node in this layer is fixed or nonadaptive, and the circle node is
labeled as P. The output node is the result of multiplying of signal coming into the
node and delivered to the next node. Each node in this layer represents the firing
strength for each rule. In the second layer, the T-norm operator with general per-
formance, such as the AND, is applied to obtain the output

O2i ¼ wi ¼ lAi xð Þ � lBi yð Þ; i ¼ 1; 2 ð2:6Þ

where wi is the output that represents the firing strength of each rule.
Layer 3: Every node in this layer is fixed or nonadaptive and the circle node is

labeled as N. Each node is a calculation of the ratio between the i-th rules firing
strength and the sum of all rules’ firing strengths. This result is known as the
normalized firing strength.

O3i ¼ �wi ¼ wiP
i wi

ð2:7Þ

Layer 4: Every node in this layer is an adaptive node to an output, with a node
function defined as

O4i ¼ �wifi ¼ �wi pixþ qiyþ rið Þ ð2:8Þ

where �wi is the normalized firing strength from the previous layer (third layer) and
pixþ qiyþ rið Þ is a parameter in the node. The parameters in this layer are referred
to as consequent parameters.
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Layer 5: The single node in this layer is a fixed or nonadaptive node that
computes the overall output as the summation of all incoming signals from the
previous node. In this layer, a circle node is labeled as ∑.

O5i ¼
X
i

�wifi ¼
P

i wifiP
i wi

ð2:9Þ

2.2.4 Hybrid Learning Algorithm

In the ANFIS architecture, the first layer and the fourth layer contain the parameters
that can be modified over time. In the first layer, it contains a nonlinear of the
premises parameter while the fourth layer contains linear consequent parameters.
To update both of these parameters required a learning method that can train both of
these parameters and to adapt to its environment. A hybrid algorithm proposed by
Jang (1993) will be used in this study to train of these parameters. The use of this
algorithm is due to the backpropagation algorithm that was used to train the
parameters that exist in the adaptive networks found problematic especially in a
slow convergence rate and tend to be trapped in local minima.

There are two parts of a hybrid learning algorithm, namely the forward path and
backward path. In the course of the forward path, the parameters of the premises in
the first layer must be in a steady state. A recursive least square estimator (RLSE)
method was applied to repair the consequent parameter in the fourth layer. As the
consequent parameters are linear, then RSLE method can be applied to accelerate
the convergence rate in hybrid learning process. Next, after the consequent
parameters are obtained, input data is passed back to the adaptive network input,
and the output generated will be compared with the actual output.

While backward path is run, the consequent parameters must be in a steady state.
The error occurred during the comparison between the output generated with the
actual output is propagated back to the first layer. At the same time, parameter
premises in the first layer are updated using learning methods of gradient descent or
back propagation. With the use of hybrid learning algorithm that combines RSLE
and the gradient descent methods, it can ensure the convergence rate is faster
because it can reduce the dimensional search space in the original method of
backpropagation (Nayak et al. 2004). One level of hybrid learning is called epochs.
Table 2.1 describes briefly a hybrid learning process in ANFIS.

Table 2.1 Hybrid learning
process

Type Path forwards Path backwards

Premise parameter Fixed Gradient descent

Consequent parameter RSLE Fixed

Signal Node output Error rate
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2.2.4.1 BackPropagation Learning for Parameter Premises

The premise parameters {a, b, c} in Eqs. 2.3 and 2.4 are adaptive parameters that
can be trained to get the parameters in accordance with its environments. Suppose
to have an adaptive network and similar to the Fig. 2.7b, where the network consists
of five layers and has a total of N(L) node in layer-L, then the number of square
error in the L layer to p data is 1� p�N, and it can be defined as follows (Jang
1993; Jang and Sun 1995):

Ep ¼
XNðLÞ
k¼1

dk � XL
k;p ð2:10Þ

where dk is the k-th component of the vector of the desired output, while XL
k;p is k-th

component of the vector of actual output generated by adaptive network with input
from the input vector p. The main goal of adaptive learning system is to reduce
errors that occur in the Eq. 2.10.

An early stage of learning begins by calculating the error rate of the output i-th
node and L layer, with derivation equation as follows:

eL;i ¼ @Ep

@L
i;p

¼ �2 di;p � XL
i;p

� �
ð2:11Þ

For internal nodes in the l layer at i position, the error rate can be calculated
using the Chain Rule

@Ep

@Xl;i
¼

XNðlþ 1Þ

m¼1

@Ep

@Xlþ 1
m;p

@Xlþ 1
m;p

@Xlþ 1
m;p

ð2:12Þ

with 0� l� L� 1. Internal node error signal can be expressed as a linear combi-
nation of the error rate in the layer node l (l + 1). Equation 2.12 is used to calculate
the error signal at i-th layer node to l (l < L), while the use of Eq. 2.12 to reach the
final layer. Further, when α is a parameter used in some node, and then the equation
will be obtained as follows:

@Ep

@a
¼

X
x�2S

@Ep

@x�
@x�

@a
ð2:13Þ

where S is the set of nodes containing the parameter α, so that the whole issue of
measurement error of α will produce Eq. (2.14)

@E
@a

¼
Xp
p¼1

@Ep

@a
ð2:14Þ
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with steepest gradient descent method, the equation for repairing parameter α is
obtained:

Da ¼ �g
@E
@a

ð2:15Þ

with η is the learning rate process and stated as follows:

g ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
a @E

@a

� �2q ð2:16Þ

and k is the step size, which can be changed in order to accelerate the convergence
rate in adaptive networks.

2.2.4.2 Learning to Parameter Consequent RSLE

During the premises parameter in a steady state, then all output derived from the
consequent parameters can be specified in a combination linear equation (Jang
1993; Jang and Sun 1995):

f ¼ �w1f1 þ �w2f2
¼ �w1 p1xþ q1yþ r1ð Þþ �w2 p2xþ q2yþ r2ð Þ
¼ �w1xð Þp1 þ �w1yð Þq1 þ �w1ð Þr1 þ �w2xð Þp2 þ �w2yð Þq2 þ �w2ð Þr2 ð2:17Þ

When N training data are given to Eq. 2.17, then the equation will be obtained as
follows:

�w1xð Þ1p1 þ �w1yð Þ1q1 þ �w1ð Þ1r1 þ �w2xð Þ2p2 þ �w2yð Þ2q2 þ �w2ð Þ2r2 ¼ f 1

..

.

..

.

�w1xð Þnp1 þ �w1yð Þnq1 þ �w1ð Þnr1 þ �w2xð Þnp2 þ �w2yð Þnq2 þ �w2ð Þnr2 ¼ fn

ð2:18Þ

To simplify, Eq. 2.18 can be expressed in matrix form as shown in Eq. 2.19:

Ah ¼ y ð2:19Þ

where θ is the vector M × 1. M refers to the number of elements that are consequent
parameter set. While A is the vector P ×M, where P is the number of N data training
provided to the adaptive network and y is the output vector P × 1 whose elements
are N number of output data of an adaptive network. Normally, the amount of
training data is larger than the number of consequent parameters, so the best
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solution for θ is minimizing the squared error Ah ¼ y2


 

. By the least squares

estimator (LSE), the equation for θ is defined as

h� ¼ ATA
� ��1

ATy ð2:20Þ

where AT is the inverse of A and if not singular, ATAð Þ�1 is the pseudo-inverse of
A. By using a recursive LSE method, then the Eq. 2.20 becomes

hiþ 1 ¼ hi þPiþ 1aiþ 1 yTiþ 1 � aTiþ 1hi
� �

Piþ 1 ¼ Pi � Pi þ aiþ 1aTiþ 1Pi

1þ aTiþ 1Piaiþ 1
; i ¼ 0; 1. . .;P� 1

)
ð2:21Þ

where aTi is a row vector of the matrix A in Eq. 2.19, yi is i-th element of y. Pi

sometimes called a covariance matrix and is defined by the following equation:

Pi ¼ ATA
� ��1 ð2:22Þ

2.3 Linear Regression

In general, regression is a statistical method that can provide information about the
patterns of relationships between two or more variables. In the regression method, it
is identified two types of variables, namely (1) response variable or known also as
the dependent variable; this variable is affected by other variables and usually
denoted by Y, and (2) predictor variables are also known as independent variables,
which are variables that are not affected by other variables and are usually denoted
by X (Shafiullah et al. 2010).

The main goal in the regression analysis is to create a mathematical model that
can be applied to forecast the values of the dependent variable based on the values
of any variables. In use, the regression analysis is divided into two simple linear and
multiple linear regressions. A simple regression analysis is a relationship between
two variables, which are independent, and the dependent variables. In the multiple
linear regression analysis, the relationship is found between three or more variables,
which contain at least two independent variables and one dependent variable.

In the multiple linear regressions, the form of equation containing two or more
variables is written as follows:

Y ¼ b0 þ b1X1 þ b2X2 þ bmXm; m ¼ 1; 2; 3; . . .; n ð2:23Þ

where b0 is a cutoff and b1. . .bm are the regression coefficients. To obtain the values
of the intercept and the regression coefficient in Eq. 2.23, the least squares method
is frequently used (Brown 2009). Further, the use of such methods will be described
in detail in Chap. 4 to develop an estimation model for ZPD.

2.2 Adaptive Neuro-Fuzzy Interference System 17

http://dx.doi.org/10.1007/978-3-319-28437-8_4


References

Brown SH (2009) Multiple linear regression analysis: a matrix approach with Matlab. Ala J Math
34:1–3

Cheng CT, Lin, JY, Sun YG, Chau K (2005) Long-term prediction of discharges in Manwan
Hydropower using adaptive-network-based fuzzy inference systems models. Adv Nat Comput
1152-1161

Dorofki M, Elshafie AH, Jaafar O, Karim OA, Mastura S (2012) Comparison of artificial neural
network transfer functions abilities to simulate extreme runoff data. 2012 International
conference on environment, energy and biotechnology, pp 39–44

Duch W, Jankowski N (1999) Survey of neural transfer functions. Neural comput Surv 2:163–212
Haykin S (ed) (2009) Neural network and machine learning. Pearson Prentice Hall, New York
Jain AK, Jianchang M, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Computer 29

(3):1–44
Jang JSR (1993) ANFIS: adaptive network-based fuzzy inference systems. IEEE Trans Sys Man

Cybern 23:665–685
Jang JS, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83(3):378–406
McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity.

Bull Math Biophys 5:115–133
Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2004) A neuro-fuzzy computing technique

for modeling hydrological time series. J Hydrol 291(1):52–66
Shafiullah GM, Ali AS, Thompson A, Wolfs PJ (2010) Predicting vertical acceleration of railway

wagons using regression algorithms. IEEE Trans Intel Syst 11(2):290–299
Suparta W, Alhasa KM (2013) A comparison of ANFIS and MLP models for the prediction of

precipitable water vapor. 2013 IEEE international conference on space science and
communication (IconSpace), pp 243–248

Tang H, Tan CK, Yi Z (2007) Neural networks: computational models and applications. Stud Com
Intell, vol 53. Springer, Berlin

18 2 Adaptive Neuro-Fuzzy Interference System



Chapter 3
Tropospheric Modeling from GPS

Abstract The dynamics of the neutral atmosphere is of great interest to a mete-
orologist who predicts weather and climatologist who performs climate modeling.
Modeling the effect of GPS signals for the above applications require information
about the properties of the atmosphere. This chapter provides a modeling of tro-
pospheric delay from the effect of the propagation GPS signals in the atmosphere.
The modeling will include the overview of the empirical models of zenith tropo-
spheric delay together with the mapping function.

Keywords Atmosphere � GPS signals � Refractive index � Tropospheric delay
modeling � Mapping function

3.1 The Neutral Atmosphere and Its Composition

Monitoring of the dynamics of the atmosphere shows that they are composed of
several chemically distinct gasses, the relative amounts of which within the lower
atmosphere may be determined. The composition and structure of this unique
resource are important keys to understanding circulation in the atmosphere,
short-term local weather patterns and long-term global climate changes.

Characterizing the atmosphere, by the way, radio wave is propagated that leads
to a subdivision of neutral atmosphere and ionosphere. The neutral atmosphere
layer consists of three temperature-delineated regions: the troposphere, the strato-
sphere and part of the mesosphere. It is often simply referred to as the troposphere
because in radio wave propagation, the troposphere effects dominate. Hence, to the
GPS researcher, the “troposphere” is generally referred to the neutral atmosphere at
altitudes 0–40 km (Gregorius and Blewitt 1999). On the other hand, when speaking
of the troposphere, it will be clear from the context, whether it referred to the neutral
atmosphere or the specific layer.

The layers of the troposphere are defined by their characteristics such as tem-
perature, pressure, and chemical composition. Pressure and density decrease as a
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function of altitude following the exponential barometric law. In general, the tem-
perature in the troposphere decreases linearly with height at a rate of 6.5 °C km−1

(on average). The actual value of this temperature gradient is a function of height,
season and geographical location. At the top of the troposphere, at a boundary layer
between 12 and 18 km (mean sea level, MSL), the temperature remains approxi-
mately constant at a level of −60 to −80 °C. However, this boundary still has weather
such as clouds formation and precipitation, wind blows, and the atmosphere interacts
with the surface of the Earth below. This part of the neutral atmosphere is called the
tropopause. The upper part above the tropopause is referred to as the stratosphere,
up to an altitude of 40 km temperature increases again in the stratosphere up about
50 km altitude (as the mesosphere). The stratosphere is mainly responsible for
absorbing the ultraviolet radiation. Between 50 and 80 km above MSL, the tem-
perature drops again in the mesosphere. At the outer reaches of the Earth, atmo-
sphere is the thermosphere with an initial slow temperature increase. Figure 3.1
shows the detailed subdivisions of the atmosphere with characteristic features such
as temperature, ionization, and propagation (Seeber 1993).

3.2 Tropospheric Delay Modeling

Yuan et al. (1993) described that the troposphere affects the propagation of GPS
radio signals in two ways. First, waves travel slower in the atmosphere (‘bending
effect’) than they are in free-space. Second, they travel in a curved path rather than a
straight-line (‘geometrical delay or excess path delay’). Both effects arise

Fig. 3.1 Possible subdivision schemes of the Earth’s atmosphere adapted from Seeber (1993)
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significantly due to the refractivity variations in the atmosphere along the ray path
and the modeling will take into account of these effects.

3.2.1 Refraction of GPS Signals in the Troposphere

Refraction effects are generally caused by an inhomogeneous propagation medium.
The refractive index is often thought of as an “optical density” and for the ordinary
ray it is constant and independent of direction. When the radio signals traverse the
Earth’s atmosphere, they are affected significantly by variations in the refractive
index of the troposphere. Refraction bends the ray path and thereby lengthens it,
further increasing the delay. The refractive index of a material is the factor by which
the phase velocity of electromagnetic radiation is slowed in that material, relative to
its velocity in a free-space. The tropospheric propagation delay can be determined
from models and approximations of the atmospheric profiles.

The refractive index of the troposphere is constituent of gasses slightly greater
than unity. The resulting decrease in velocity increases the time taken for signal to
reach a receiver’s antenna, thereby increasing the equivalent path length. The
combination of these two effects is called the troposphere refraction component of
propagation delay. Both L1 and L2 frequencies of GPS are affected by atmospheric
refraction. This refractive delay obtained from biases between the satellite receiver
range measurements.

3.2.1.1 Refractive Index

Like all electromagnetic waves, the ranging signals broadcasted by the GPS
satellites can be described by Maxwell’s equations. The propagation media in the
equations are characterized by the magnetic permeability (μ) and the electric per-
mittivity (ε). The velocity of an electromagnetic wave is characterized by the
refractive index, n. These represent the ratio of the free-space speed (c) of elec-
tromagnetic wave to its media speed (v) and are related by Maxwell’s equation
(Brunner 1993). Therefore, the refractive index of a medium is given as

n ¼ c
v
ffiffiffiffiffiffi
e l

p ð3:1Þ

Solution of Maxwell’s equation can be difficult to obtain if μ and ε are functions
of position. Basically, Snell’s Law equation is commonly used to determine a
refractive index for a simple case with two or three different mediums. However,
one method based on the first principle of Newton’s second law (see Griffith 1999)
can be used to show where the neutral part of atmosphere acts as a nondispersive
medium for the radio frequency.
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3.2.1.2 Refractivity

The refractivity of the atmosphere determines the amount of “bending” of the radio
waves. The refractive index of moist air is different from unity because its con-
stituents suffer polarization induced by the electromagnetic field of the radio sig-
nals. As the electromagnetic waves in the atmosphere propagate just slightly slower
than in a free-space, the refractive index is close to unity in the terrestrial atmo-
sphere. It is convenient to define the refractivity (Brunner 1993):

N ¼ 106 n� 1ð Þ ð3:2Þ

where n is the refractive index of radio wave in an air at ambient condition and N is
the total refractivity of radio wave.

In the equation of state, total refractivity is a function of temperature, partial
pressure of dry air, and partial pressure of water vapor that can be derived using the
following expression (Smith and Weintraub 1953):

N ¼ Nd þNw ¼ k1
Pd

TK|ffl{zffl}
dry

þ k2
Pw

TK|ffl{zffl}
dipolemoment

þ k3
Pw

T2
K|ffl{zffl}

dipole oritentation|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wet

ð3:3Þ

where ki (i = 1…3) is the refraction constants are empirically determined and the
most significant recent evaluations of the refractivity constants are summarized in
Table 3.1, Pd is the partial pressure of dry air (mbar), TK is the surface air tem-
perature (Kelvin) and Pw is the partial pressure of water vapor (mbar).

Thayer (1994) took into account the nonideal gaseous behavior of the atmo-
sphere and improved the refractivity formula as shown in Eq. 3.3. This reduced the
computation uncertainty of 0.6 % before down to 0.02 %. Therefore, the refractivity
N can be written as

N ¼ k1
Pd

TK

� �
Z�1
d þ k2

Pw

TK
þ k3

Pw

T2
K

� �
Z�1
w ð3:4Þ

Table 3.1 Determinations of the refractivity constants (Bevis et al. 1994; Suparta 2008)

Reference k1 (K mbar−1) k2 (K mbar−1) k3 (K
2 mbar−1) × 105

Smith and Weintraub (1953) 77.61 ± 0.01 72 ± 9 3.75 ± 0.03

Boudouris (1963) 77.59 ± 0.08 72 ± 11 3.75 ± 0.03

Thayer (1974) 77.61 ± 0.01 47.79 ± 0.08 3.776 ± 0.04

Hill et al. (1982) – 98 ± 1 3.583 ± 0.03

Hill (1988) – 102 ± 1 3.578 ± 0.03

Clynch (1990) 77.604 ± 0.02 75 ± 0.1 3.75 ± 0.01

Bevis et al. (1992) 77.60 ± 0.05 70.4 ± 2.2 3.739 ± 0.012

Bevis et al. (1994) 77.60 ± 0.09 69.4 ± 2.2 3.701 ± 1200
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In the above equation, Pw is obtained from relative humidity (H) as recom-
mended by World Meteorological Organization Technical Note No. 8 (WMO 2000)
and given by

Pw ¼ H
100

exp �37:2465þ 0:213166 TK � 2:56908 � 10�4 T2
K

� � ð3:5Þ

Both the dimensionless Z�1
d and Z�1

w are the inverse compressibility factors for dry
air and water vapor constituents, respectively, to account for nonideal gas behavior.
They have been experimentally determined by Owens (1967) and given as follows

Z�1
d ¼ 1þ P� Pwð Þ 57:97� 10�8 1þ 0:52

TK

� �
� 9:4611� 10�4 T

T2
K

� 	
ð3:6Þ

Z�1
w ¼ 1þ 1650

Pw

T3
K

1� 0:01317 T þ 1:75� 10�4 T2 þ 1:44� 10�6 T3� � ð3:7Þ

The first term of the Thayer Eq. 3.4 can be reformulated as a function of total
moist air density (ρtot), allowing its direct integration by applying the hydrostatic
equation (Davis et al. 1985). Consequently, the refractivity constant k2 is also
substituted with a new constant k02 (Bevis et al. 1994) and the final expression for
the total refractivity can be given as a sum of a hydrostatic (as opposed to dry) and
wet components. The expression for total refractivity from Eq. 3.4 can be rewritten
by separating the dry and wet terms as follows:

N ¼ k1
Pd

TK

� �
Z�1
d|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

dry

þ k2
Pw

TK
þ k3

Pw

T2
K

� �
Z�1
w|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wet

ð3:8Þ

By introducing ρtot (Wallace and Hobbs 1997) and measured quantity of pres-
sure, P is, respectively, given as

qtot ¼ qd þ qw and P ¼ Pd þPw ð3:9Þ

The first ideal gas equation, applied to dry air (ρd) and water vapor (ρw) were
introduced by Spilker (1996), respectively.

Pd ¼ qdRdTKZd and Pw ¼ qwRwTKZw ð3:10Þ

A relation between molar mass of dry air and water vapor, and universal gas
constant in the equation of state for ideal gasses in Eq. 3.10 can be approximated by

Rd ¼ R
Md

; Rw ¼ R
Mw

; and
Rd

Rw
¼ Mw

Md
ð3:11Þ
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Let us now consider the dry part of the refractivity formula in Eq. 3.8

k1
Pd

TK

� �
Z�1
d ¼ k1

Pd

TK

qdRdTK
Pd

¼ k1 qtot � qwð ÞRd ¼ k1qtotRd � k1qwRd ð3:12Þ

Considering the ideal gas equation for water vapor in the Eqs. 3.10 and 3.11,
Eq. 3.12 can be written as

k1
Pd

TK

� �
Z�1
d ¼ k1qtotRd � k1

Pw

TK

Mw

Md
Z�1
w ð3:13Þ

Substitution of this expression into the total refractivity formula in Eq. 3.8 yields

N ¼ k1Rdqtot þ k2
Pw

TK
� k1

Pw

TK

Mw

Md
þ k3

Pw

T2
K

� �
Z�1
w ð3:14Þ

where the dry inverse compressibility factor is eliminated. The total refractivity is
then given as

N ¼ k1Rdqtot þ k02
Pw

TK
þ k3

Pw

T2
K

� �
Z�1
w ð3:15Þ

with

k02 ¼ k2 � k1
Mw

Md
¼ 22:1� 2:2ð Þ ð3:16Þ

where R is the universal gas constant (8314.34 J kmol−1 K−1), Rd is the specific gas
constant for dry air (287.054 J kg−1 K−1), Rw is the specific gas constant for water
vapor (461.5184 J mol−1 K−1), ρtot is the total mass density (moist air density) of
the troposphere (kg m−3), ρd is the density of dry air (kg m−3), ρw is the density of
water vapor (kg m−3), Mw is the molar mass of water vapor (28.9644 kg kmol−1),
and Md is the molar mass of dry air (18.0152 kg kmol−1). Expanding on devel-
opment of refractivity as a function of wet and hydrostatic components, it is pos-
sible to examine their individual contribution to the tropospheric path delay.

3.2.2 Tropospheric Path Delay

There are two main parameters which play an important role during the propagation
between transmitter (GPS) and receiver: pseudorange and carrier phases. All these
propagation effects and time offsets have to be determined to account accurate
estimation of position from range data. Thus, to understand comprehensively about
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tropospheric path delay modeling, the basic properties of radio waves propagation
in the troposphere will first be described.

The basic physical law for the propagation is Fermat’s principle: Light (or any
electromagnetic wave) will follow the path between two points (P1 and P2 are ends
of S) involving the least travel time. We define the electromagnetic (or optical)
distance between source and receiver as

L ¼
Z

c dt ¼
Z

c
v
dS ¼

Z
S

nðsÞdS ð3:17Þ

where L is the delay of radio wave (so-called optical path length or electromagnetic
distance, total tropospheric delay), n(s) is the index of refraction which varies as a
function position along the curved ray path L, S is the electromagnetic path, dS is
infinitesimal parts of the path length, and c and v are speed of the radio signals in
free-space and in medium, respectively. If we denote the geometrical distance or the
straight-line (rectilinear) path in a free-space by

G ¼
Z
G

dG ð3:18Þ

where G is the geometrical distance and dG is an infinitesimal part of the path
length in free-space.

Figure 3.2 shows the GPS signals traveling through the troposphere. The total
delay, then, is the sum of these two components and can be written as

DL ¼
Z
S

nðsÞ dS� G ð3:19Þ

or,

DL ¼
Z
S

nðsÞ � 1ð ÞdS�
Z
G

dG ð3:20Þ

DL ¼
Z
S

nðsÞ � 1½ �dS
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
The slowing effect

þ ½S� G�|fflfflffl{zfflfflffl}
The bending effect

ð3:21Þ

where ΔL is the total tropospheric delay stated in terms of equivalent increase in
path length, S is the true path along L which the radio wave propagates and G is the
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shortest geometric path along which the signal would transverse, and assuming as
n = 1. In the first term of Eq. 3.21, the integral is performed along the line increment
dS of straight ray path (excess path delay) from a receiver to a GPS satellite.

The second term indicates the geometric delay due to ray path bending. The
bending term [S − G] is much smaller, about 1 cm or less, for path with elevation
angle greater than 10°. Bending is about 1 mrad for a 15° elevation angle and its
associated excess path length is about 1 cm, which is usually neglected since it
represents *0.1 % of the total path delay (see Bock and Doerflinger 2001). For
rays oriented along the zenith and in the absence of horizontal gradients in index

Fig. 3.2 GPS signals traveling through troposphere and the tropospheric path delay geometry
(Suparta 2008)
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refractivity n, the ray path is straight-line and the bending term vanishes. Excess
path length due to signal retarding in the troposphere in Eq. 3.21, or slant path delay
(Davis 1985), is expressed as

DLz ¼
Z
S

nðsÞ � 1½ �dS ð3:22Þ

where DLz is the total tropospheric delay in the zenith direction, which is referred as
the ZTD.

However, in the troposphere several simplifying assumptions can be made to
simplify Eq. 3.22. First, the atmosphere is assumed to be spherically symmetric,
that is, the Earth is a sphere and the properties of the atmosphere vary only with
geometric radius. In this way, the atmosphere can be considered layered with a
refractive index characterizing each layer. Second, the atmosphere is usually
assumed to be azimuthally symmetric, that is, with no variation of the refractive
index in azimuth of each layer. In this way, the electromagnetic ray is confined to a
plane defined by the start and end points of the ray and the geocentric. These
assumptions allow us to represent the refractive index profile as a function of
geocentric radial distance only, n(h). On application of the refractivity in Eq. 3.2,
Eq. 3.21 for S can then be written as

GþDLz ¼
Zh1
h0

nðhÞ sec bzðhÞdh ð3:23Þ

where the refractive index is integrated along the path between points h0 and h1,
which are the geocentric distance of the user’s antenna and the geocentric distance
of the ‘top’ of troposphere, respectively. Angle αz is the true (unrefracted) satellite
zenith angle and hence constant along the unrefracted path. Angle βz is the actual
(refracted) zenith angle of the ray path at distance h (see Fig. 3.2). The path delay is
caused by variation of n from unity, hence

GþDLz ¼
Zh1
h0

nðhÞ � 1½ � sec bzðhÞdhþ
Zh1
h0

sec bzðhÞdh ð3:24Þ

This gives in the first term the excess delay equivalent path length and in the
second term the geometric length along the curved path. To obtain the total tro-
pospheric delay DLzð Þ, we can subtract the geometric distance in free-space to get
the following integral equation (Langley 1996):
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DLz ¼
Zh1
h0

nðhÞ � 1½ � sec bzðhÞdh
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

symmetric

þ
Zh1
h0

sec bzðhÞdh�
Zh1
h0

sec azdh

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d�asymmtric

2
666664

3
777775 ð3:25Þ

To summarize, the first integral accounts for the difference between the elec-
tromagnetic distance and geometric distance along the ray path and the bracketed
integrals account for curvature of the ray path, i.e., the difference between the
refracted and rectilinear geometric distances. The total tropospheric delay by
inserting Eq. 3.2, can be simplified as

DLz ¼ 10�6
Z

actual

NðhÞdhþ d ð3:26Þ

For easy modeling of the tropospheric delay, the total refractivity at distance h, N
(h) in the troposphere can be explicitly written as the contribution of a wet (Nw) and
a hydrostatic (Nh) component. Therefore, Eq. 3.26 can be written as

DLz ¼
Z

Nhdhþ
Z

Nwdh
� �

10�6 þ d ð3:27Þ

and symbolically, as

DLz ¼ Lh þ Lwð Þþ d ð3:28Þ

where Lh represents the hydrostatic delay and Lw is the wet delay.
Propagation delays at arbitrary elevation angles are determined from the zenith

delay and arecalled the “mapping functions.” As the zenith delay can be expressed
as the sum of the hydrostatic and wet components, mapping functions can be
developed in order to map separately the hydrostatic and wet components.
Tropospheric delays increase with decreasing satellite elevation angle. This is
accounted for by multiplying the zenith delay by a correction factor, m. In general,
total tropospheric delay from Eq. 3.28, following Davis et al. (1985), can be
rewritten as

DLz ¼ mhZHDþmwZWDð Þþ d ð3:29Þ

where DLz is the total delay along the zenith path called zenith path delay (ZPD),
sometimes called the zenith total delay (ZTD) or zenith tropospheric delay (m).
ZHD and ZWD are the hydrostatic zenith delay and the wet zenith delay, which
both in meter, and θ is the satellite elevation angle (degrees). The last symbol
in Eq. 3.29, δ is the tropospheric correction (recently, known as a gradient
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tropospheric delay, d ¼ mðhÞ cot h GN cos az þGE sin az½ � symmetric effects into
account (δ = 0, the asymmetric components are neglected by setting the cutoff
elevation angle ≥ 10°), and m is the obliquity factor from sec αz (αz = 90° − θ, is the
azimuth angle), separated into mh and mw, the hydrostatic and wet mapping
functions, respectively. GN and GE are the components of the gradient vector in the
north and east directions, respectively.

3.3 Empirical Models of Tropospheric Delay

In the past several decades, a number of tropospheric propagation models have been
reported in the scientific literature. Much research has gone into the creation and
testing of tropospheric refraction models to compute the refractivity along the path
of signal travel. The various tropospheric models differ primarily with respect to the
assumption made regarding the vertical refractivity profiles and the mapping
functions to map the delays to the arbitrary elevation angles. To model the tropo-
spheric delay, many models use information about the surface pressure, tempera-
ture, and relative humidity to derive zenith or slant delay estimates. However, most
models require certain conditions in, or make assumptions about, the atmosphere
above the station. Among the commonly used models for the tropospheric delay are
Saastamoinen (1972), Hopfield (1969), Modified Hopfield (Goad and Goodman
1974), Davis (1985), Herring (1992), Lanyi (1984), and Niell (1996, 2000). In this
section, only the first three models are discussed. These models are most widely
used due to their high accuracy, practicality, and suitable with the GPS
measurements.

3.3.1 The Saastamoinen Model

The Saastamoinen model (SAAS) was developed for high elevation angles. This
model has become popular among GPS users due to its accuracy. This model
assumes that the atmosphere is in hydrostatic equilibrium, which follows from the
ideal gas law. Under hydrostatic equilibrium, the local pressure, which is assumed
isotropic, provides the balancing force against the atmospheric weight per unit area.
Models for the ZTD, ZHD, and ZWD as derived by Saastamoinen (1972) will be
described in this subsection.

Considering only the delay in the zenith direction, Eq. 3.25 reduces to

DLz ¼ ZTD ¼
Zh1
h0

nðhÞ � 1½ �dh ¼ 10�6
Zh1
h0

NðhÞdh ð3:30Þ
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or, explicitly using Eq. 3.16,

ZTD ¼ 10�6
Zh1
h0

k1Rdqtotdh

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hydrostatic

þ 10�6
Zh1
h0

k02
TK

þ k3
T2
K

� �
PwZ�1

w dh

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wet

ð3:31Þ

The first term in Eq. 3.31 represents the ZHD. By assuming a radio signal arrives
from a zenith direction, the ZHD can be written as

ZHD ¼ 10�6k1Rd

Z1
h0

qtotðhÞdh ð3:32Þ

Under the condition of hydrostatic equilibrium, the hydrostatic equations is

dP ¼ �gðhÞqtotðhÞdh ð3:33Þ

where dP is the differential change in surface pressure (mbar), g(h) is the accel-
eration due to gravity as a function of height (ms−2), ρtot(h) is the density of moist
air as a function of height, and dh is the differential change in height (m).

Integrating Eq. 3.33 yields

Z0
P

dP ¼ �
Z1
h0

qtotðhÞgðhÞdh ¼ �P ð3:34Þ

Introducing the weighted mean gravity acceleration, gm, the ZHD can be written
as

ZHD ¼ 10�6k1Rd
P
gm

ð3:35Þ

The second term in Eq. 3.31 is ZWD. The ZWD can also be integrated after
specifying suitable relationships for temperature and water vapor pressure with
height. Unfortunately, water vapor is rarely in hydrostatic equilibrium and varies
significantly throughout the troposphere; hence, specifying an accurate relationship
with height is difficult. However, it is common in meteorology to model the average
decrease of water vapor (or total pressure) with height as an exponential function
with exponent γ. From Smith (1966), the mixing ratio (w) of water vapor to moist
air has been given approximately by
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w ¼ w0
P
P0

� �c

ð3:36Þ

where the zero subscript indicate surface (i.e., MSL) value. However,
w ¼ Mw=Mð Þ es=Pð Þ;w0 ¼ Mw=Mð Þ e0=P0ð Þ and by substitution and re-arrangement,
we can obtain:

es ¼ e0
P
P0

� �cþ 1

ð3:37Þ

This provides a relationship for the average decrease in water vapor pressure
with height. Separating the two ZWD components in Eq. 3.32 and ignoring the wet
compressibility factors we have

ZWD ¼ 10�6k02

Zr1
r0

Pw

TK
drþ 10�6k3

Zr1
r0

Pw

T2
K
dr ð3:38Þ

By specifying a linear lapse rate (positive), β for temperature, the temperature
throughout the troposphere can be represented as

T ¼ T0
P
P0

� �Rd b
g

ð3:39Þ

Combined with Eq. 3.35, allows for integration of Eq. 3.38. The formulation
given by Askne and Nordius (1987) for ZWD is

ZWD ¼ 10�6k02Rd

gm cþ 1ð ÞPw þ 10�6k3Rd

gm cþ 1� bRd=gmð Þ
Pw

TK
ð3:40Þ

where the mean temperature of the water vapor Tm ¼ T 1� bRd
gmðcþ 1Þ


 �
units of

Kelvin. By using the models in Eqs. 3.35 and 3.41, a general formulation for the
ZTD is found as

ZTD ¼ 10�6k1
Rd

gm
Pþ 10�6 Rd

gm

k02
ðcþ 1Þ þ

k3
ðcþ 1� bRd=gmÞTK

� �
Pw ð3:41Þ

The ZTD model from Eq. 3.41 assumes that the delay caused by the ray bending
and horizontal layer atmospheres is neglected. In general, because of a radio signal
can come from slant directions, Saastamoinen (1972) and Hopfield (1969) develop
a ZTD model by including slant delays (or slant tropospheric delay, STD) and
internally cover a mapping function.
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To derive of the ZTD model from Saastamoinen, we start with a truncated
Taylor expansion of sec z in Fig. 3.3:

sec z ¼ sec z0 þ sec z0 tan z0Dz ¼ sec z0 1þ tan z0Dzð Þ ð3:42Þ

where, Δz = z − z0 = −θ and tan z = r0 θ/(r − RE). So by approximating tan
z ≈ tan z0, Eq. 3.42 becomes

sec z ¼ sec z0 1� tan2 z0
r � RE

RE

� �
ð3:43Þ

with this expression, the STD reads

STD ¼ 10�6
Z1
RE

N sec z dr ð3:44Þ
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Fig. 3.3 Geometry of a ray arriving through a spherical atmosphere
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¼ 10�6 sec z0

Z1
RE

N dr � R�1
E tan2 z0

Z1
RE

N r � REð Þdr
2
4

3
5 ð3:45Þ

The first term between the brackets in Eq. 3.45 is the zenith delay. The second term
is a correction term of which the integral part can be subdivided into three
sub-integrals

Z1
RE

N � r � REð Þdr ¼
ZrT
RE

N � r � REð Þdr
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

1

þ
Z1
rT

N � r � rTð Þdr
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

2

þ rT � REð Þ
Z1
rT

N dr

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
3

ð3:46Þ

where rT is the radius of the tropopause, S is the traveled distance through the
atmosphere, RE is the radius of the Earth, z is the zenith angle at the top of the
atmosphere, and z0 is the zenith angle at the surface. Saastamoinen assumed the
neutral atmosphere to consist of only two layers: the troposphere and the strato-
sphere. In this model, the troposphere is a polytrophic layer reaching up to rT and
the stratosphere is an isothermal layer, which for practical integration can be
considered infinitely high. Each of the three integrals can be evaluated based on the
refractivity profiles associated with the temperature profile.

The following evaluate of the integrals of Eq. 3.46, where Saastamoinen
obtained his zenith delay model. In the troposphere, the temperature decreases with
altitude. From this, the derivation of a pressure profile based on dry air we have
differential equation

dP
Pd

¼ � gm
Rd T

dh ð3:47Þ

The gravitation to be constant with height and equal to a mean value is
considered.

gm ¼
R1
h0

qmðhÞgðhÞdhR1
h0

qmðhÞdh
ð3:48Þ

For isothermal layer like the tropopause, the pressure profile is found by inte-
gration of Eq. 3.47

Pd ¼ Pd0 exp � h� h0
H

� �
; H ¼ RdT

gm
ð3:49Þ
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In case of polytrophic layers, like the troposphere and stratosphere, the tem-
perature lapse rate (β = −dT/dH) is assumed linear with height (H). We integrate the
right-hand side of Eq. 3.48 over dT,

Pd ¼ Pd0 exp � T
T0

� �lþ 1

; l ¼ gm
Rdb

� 1 ð3:50Þ

From Eqs. 3.12, 3.49, and 3.50, the refractivity profile of dry air can also be
derived. For polytrophic layers

Nd

Nd0
¼ k1Pd=T

k1Pd0=T0
¼ T

T0

� �l

; l ¼ �1 ð3:51Þ

In an isothermal layer (T = T0) we find

Nd

Nd0
¼ Pd

Pd0
¼ exp � h� h0

H

� �
ð3:52Þ

where Pd0 is the pressure of dry air at the surface of the layer (mbar), Nd0 is the dry
refractivity at the surface of the layer, T0 is the temperature at the surface of the
layer (K), h0 is the height above MSL at the surface of the layer (km), h is the height
above MSL (km), and H is the scale height in km (H = r − RE, see Fig. 3.3).

For the first integral in Eq. 3.48

N ¼ N0
T
T0

� �l

and T ¼ T0 � bH )
H ¼ � T0

b

� �
T
T0

� 1
� �

;

dH
dT

¼ � 1
b

8>><
>>: ð3:53Þ

After some straightforward computations, this results in

Z1
RE

N � r � REð Þdr¼
ZTT
T0

N0
T
T0

� �l

� T
b

� �
T
T0

� 1
� �

1
b
dT

¼ Rd

g2m 1� Rdb=gmð Þ N0T
2
0 � NTT

2
T

� 
� Rd

gm
rT � REð ÞNTTT

ð3:54Þ

where N0 is the refractivity at Earth’s surface (the index T stands for values at the
tropopause), T0 is the temperature at surface (or antenna) height (°C), β is the
temperature lapse rate (0.0062 K km−1), μm is the constant, lm ¼ gm

Rdb
� 1, and gm is

the mean acceleration gravity (9.784 ms−2).
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The second integral, can be evaluated by using the assumption of an exponential
profile of Eq. 3.52 and effective height (Hm)

N ¼ NT exp � r � rT
H


 �
; Hm ¼ RdTT

gm
ð3:55Þ

and results in

Z1
rT

N r � rTð Þdr ¼ Rd

gm

� �2

NTT2
T ð3:56Þ

The third integral is similar to Eq. 3.46 and results in

rT � REð Þ
Z1
rT

Ndr ¼ rT � REð Þ10�6k1
Rd

gm
PT ¼ Rd

gm
rT � REð ÞNTTT ð3:57Þ

Summation of the three integral gives the total integral

Z1
RE

N r � rTð Þ dr ¼ Rd

gm

� �2 N0 T2
0 � Rdb=g

2
m


 �
NT T2

T

1� Rdb=gm

2
4

3
5 ð3:58Þ

With Eq. 3.31, the total Saastamoinen model then becomes

ZTDSAAS ¼ 10�6 sec z0

Z1
RE

N dr � R�1
E tan2 z0 �

Z1
RE

N r � REð Þdr
2
4

3
5)

ZTDSAAS ¼ 10�6k1
Rd

gm
sec z0 Pþ 1255

TK
þ 0:05

� �
es � BðrÞ tan2 z0

� 	 ð3:59Þ

where

BðrÞ ¼ 1
RE

gm
Rd

1
k1

Z1
r0

N r � REð Þ dr ð3:60Þ

Tabular values for the correction term B(r) are given by Saastamoinen (1972).
The correction terms δR and B(r) can be interpolated from Table 3.2. Saastamoinen
did not mention the exact theoretical standard atmosphere he used to find the tabular
values of B(r). However, the standard values at MSL as also later used in the 1976
US Standard Atmosphere (TMSL = 288.15 K, PMSL = 1013.25 mbar), as well as the
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values r0 = 6360 km and hT = 15 km, fit quite well. A slightly different table for the
B(r) values can be found in Saastamoinen (1972).

The ZTD of Saastamoinen model has refined his model by adding an additional
term is used to account for the delay caused by the ray bending, δR as a complete
form:

ZTDSAAS ¼ 10�6 k1
Rd

gm
sec z0 Pþ 1255

TK
þ 0:05

� �
Pw � BðrÞ tan2 z0

� 	
þ dR

ð3:61Þ

where k1 is the hydrostatic refractivity constant (k1 = 77.6 ± 0.05 K mbar−1), B(r) is
the correction term of height dependent (mbar), δR is the correction term of ray
bending (m), and z0 is the zenith distance of the satellite or apparent zenith angle
z0 = 90° − θ.

Looked at the first term in Eq. 3.61, the ZHD is with a mapping function sec z0.
The mean gravitational acceleration depends on latitude and height of the antenna.
Based on Saastamoinen (1972) approximation, the weighted mean gravity (gm) is
used to correct the gravitational acceleration at the center of mass of the vertical
atmospheric column directly above the station depends on height at site and
geodetic latitude, and is given as follows (Davis et al. 1985):

gm ¼ 9:784 f u; hð Þ ð3:62Þ

Table 3.2 Correction terms for Saastamoinen neutral delay model (Hofmann-Wellenhof et al.
2001)

Zenith distance Station height above sea level (km)

0 0.5 1 1.5 2 3 4 5

60°00′ 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001

66°00′ 0.006 0.006 0.005 0.005 0.004 0.003 0.003 0.002

70°00′ 0.012 0.011 0.010 0.009 0.008 0.006 0.005 0.004

73°00′ 0.020 0.018 0.017 0.015 0.013 0.011 0.009 0.007

75°00′ 0.031 0.028 0.025 0.023 0.021 0.017 0.014 0.011

76°00′ 0.039 0.035 0.032 0.029 0.026 0.021 0.017 0.014

δR, m: 70°00′ 0.050 0.045 0.041 0.037 0.033 0.027 0.022 0.018

78°00′ 0.065 0.059 0.054 0.049 0.044 0.036 0.030 0.024

78°30′ 0.075 0.068 0.062 0.056 0.051 0.042 0.034 0.028

79°00′ 0.087 0.079 0.072 0.065 0.059 0.049 0.040 0.033

79°30′ 0.102 0.093 0.085 0.077 0.070 0.058 0.047 0.039

79°45′ 0.111 0.101 0.092 0.083 0.076 0.063 0.052 0.043

80°00′ 0.121 0.110 0.100 0.091 0.083 0.068 0.056 0.047

B(r), mbar 0.156 1.079 1.006 0.938 0.874 0.757 0.654 0.563
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Finally, the expression for ZHD from Saastamoinen can be written as follows:

ZHDSAAS P;u; hð Þ ¼ 2:2768� 0:0024ð Þ P
f u; hð Þ ð3:63Þ

where f ðu; hÞ ¼ 1� 0:00266 cosð2uÞ � 0:00028h; is the correction factor for the
local gravitational acceleration, u is the site latitude (in degrees) and h is the height
of the site above the ellipsoid (in km). Accurately, with Eq. 3.63, for any location
on Earth, when the surface pressure is given, the ZHD value can be computed.

From the second term in the bracket of Eq. 3.61, Saastamoinen (1972) determine
the ZWD with an assumption that the partial pressure water vapor and temperature
were decreased linearly with height. The final expression of ZWD is

ZWDSAAS ¼ 0:002277
1225
Ts

þ 0:05
� �

Pw ð3:64Þ

where Ts is the surface temperature in °C and Pw is the partial water vapor in mbar.

3.3.2 The Hopfield Model

Hopfield (1969) developed a dual quartic zenith model of the refractivity with
different quartics for the dry and wet atmospheric profiles using real data of surface
measurements (pressure, temperature, and humidity) covering the whole Earth. This
model assumes that the atmosphere is in hydrostatic equilibrium, which follows
from the ideal gas law. The model also assumes the acceleration due to gravity and
lapse rate in temperature is constant with height derived from a least-square fit to
collected data. The model expresses the total delay in terms up to the fourth power
of the refractive index. A representation of the dry and wet refractivity can be
written as a function of height h above the surface by

NTrop
j ðhÞ ¼ NTrop

j;0 1� h
hj

� �4

ð3:65Þ

with total refractivity at surface of the Earth given as

NTrop
j;0 ¼ NTrop

d;0 þNTrop
w;0 ¼ k1

P
TK|fflffl{zfflffl}

dry

þ k2
Pw

TK
þ k3

Pw

T2
K|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

wet

ð3:66Þ

where j is the subscript for dry component (replace j by d) and wet component
(replace j by w). NTrop

j is the refractivity above the Earth surface, NTrop
j;0 is the

refractivity at the surface of the Earth, k2 and k3 are refraction constants
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(k2 = −12.96 K mbar−1 and k3 = 5.718 × 105 K2 mbar−1), and hj are the hydrostatic
and wet thickness of atmospheric layer (m), respectively.

It assumes the atmosphere is a single polytrophic layer, thickness hd was
obtained by using global radiosonde data (Hofmann-Wellenhof et al. 2001):

hd ¼ 40;136þ 148:72 TK ð3:67Þ

Unique values for hd cannot be given because they depend on location and tem-
perature. Figure 3.4 shows the thickness of polytrophic layers for the tropospheric.
The effective troposphere heights are given as 40 km ≤ hd ≤ 45 km and
10 km ≤ hw ≤ 13 km for dry and wet components, respectively. The effective height
for the wet component hw is usually set to a default value of 11 km. Alternatively,
Mendes and Langley (1998) found the relation between the surface temperature and
the tropopause height denoted as HT (in meters),

hw ¼ HT ¼ 7;508þ 0:002421 exp
T

22:90

� �
ð3:68Þ

Referring to Fig. 3.4, substitution of Eqs. 3.66 and 3.67 into the general Eq. 3.30
for the tropospheric path delay (ZPD) yields

ZPD ¼ 10�6NTrop
j;0

Z
1� h

hj

� �4

ds ð3:69Þ

Dry

h = 0

Observation site

Wet

Earth's
surface

h
w ~ 11 km

h
d ~ 40 km

Fig. 3.4 Thickness of polytrophic layers for the troposphere adapted from Hofmann-Wellenhof
et al. (2001)
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The integral can be solved if the delay is calculated along the vertical direction
and if the curvature of the signal path is neglected. Extracting the constant
denominator, Eq. 3.69 becomes

ZPD ¼ 10�6NTrop
j;0

1
h4j

Zh¼hj

h¼0

hj � h
� �4

dh ð3:70Þ

For an observation site on the Earth’s surface (i.e., h = hs) and after integration,

ZPD ¼ 10�6NTrop
j;0

1
h4j

� 1
5

hj � h
� �5 h ¼ hj

h ¼ hs

�����
" #

ð3:71Þ

The evaluation of the expression between the brackets gives the ZPD as follows:

ZPD ¼ 10�12

5
NTrop
j;0

1
h4j

hj � hs
� �5 ð3:72Þ

where hs is the height position of the receiver at site (in meters). If hs = 0 as shown
in Fig. 3.4, Eq. 3.72 can be rewritten as given by Hofmann-Wellenhof et al. (2001)
and separating the hydrostatic and wet components, the total ZPD (in meters) is

ZPD ¼ 10�12

5
NTrop
j;0 hj ¼ 10�6

5
NTrop
d;0 hd þNTrop

w;0 hw
h i

ð3:73Þ

The model in its present form does not account for an arbitrary elevation angle of
the signal. Considering the line of sight, an obliquity factor must be applied for
projecting the dependence of the zenith delays to the slant direction as a mapping
function. Therefore, a slight variation of the Hopfield model contains an arbitrary
elevation angle θ at the observation site using 1/sin (θ2 + 6.25)1/2 as a mapping
function for the hydrostatic component and 1/sin (θ2 + 2.25)1/2 for the wet com-
ponent. Hence, the total tropospheric delay at a zenith can be written as follows

ZTDHOP hð Þ ¼ ZHDHOPðhÞþZWDHOPðhÞ ð3:74Þ

where

ZHDHOPðhÞ ¼ 10�6

5

77:64 P
TK

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 þ 6:25Þ

q hd ð3:75Þ

ZWDHOPðhÞ ¼ 10�6

5
ð�12:96TKÞþ 3:718� 105

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 þ 2:25Þ

q es
T2
K

� �
hw ð3:76Þ
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3.3.3 The Modified Hopfield Model

The reference of station height on the Earth surface is inaccurate because of the
terrestrial points to be referred to a global frame. To overcome this limitation, the
atmospheric layer is considered to have azimuthally symmetry in ZTD estimation.
Therefore, the modified Hopfield model (Hofmann-Wellenhof et al. 2001) is refined
introducing the lengths of position vectors instead of height to correct the Hopfield
model for the determination of refractivity and denoting the earth’s radius by RE,
the corresponding lengths are rhyd ¼ RE þ hhyd and r ¼ RE þ hwet as shown in
Fig. 3.5. RE is taken as 6,378,137 meters in this paper. The empirical representation
of refractivity to the Modified Hopfield model, Nj as a function of height h above
the surface can be written as (Hofmann-Wellenhof et al. 2001),

NTrop
j ðrÞ ¼ NTrop

j;0
rj � r
rj � RE

� �4

ð3:77Þ

Fig. 3.5 Geometry for tropospheric path delay based on modified Hopfield model is adapted from
Hofmann-Wellenhof et al. (2001)
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where for the hydrostatic refractivity component subscript j is replaced by hyd and
for the wet refractivity component subscript j is replaced by wet, respectively. In the
equation, NTrop

j represent the refractivity above the earth surface and NTrop
j;0 is the

refractivity at the surface of the earth.

In this work, we corrected the refractivity by taking the dry Z�1
dry


 �
and wet

Z�1
wet

� �
inverse compressibility factors into account for the determination of NTrop

j;0

assuming that a nonideal gas represents the neutral atmosphere layer. Both the
formula for Z�1

dry and Z�1
wet have been determined empirically by Owens (1967) as

shown in Eqs. 3.6 and 3.7. By applying the ideal gas equation of state to the dry
refractivity component in the Thayer equation (1974), Ndry ¼ k1 Pdry=TK

� �
Z�1
dry; the

dry inverse compressibility factor Z�1
dry


 �
is eliminated and this term is changed to

the hydrostatic term, Nhyd ¼ k1 P=TKð Þ: The refraction constant k2 in the wet term of
Eq. 3.66 is also corrected with a new constant k02 as shown in Eq. 3.17. The total
refractivity at the surface of the earth is then given as

NTrop
j;0 ¼ NTrop

hyd;0 þNTrop
wet;0 ¼ k1

P
TK|ffl{zffl}

hydrostatic

þ k02
Pwet

TK
Z�1
wet|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

dipolemoment

þ k3
Pwet

T2
K
Z�1
wet|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

dipole orientation

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wet

ð3:78Þ

where in the first term is hydrostatic refractivity in equilibrium state and the last
term is the wet refractivity component. In Eq. 3.78 the ‘dry’ term has been replaced
by ‘hydrostatic’ term.

Taking Eq. 3.78 for the hydrostatic delay and introducing mapping function
1= cos zð Þ; where zenith angle, zðrÞ ¼ 90� � hðrÞ is a variable and θ is the elevation
angle at the observation site as shown in Fig. 3.5, the ZHD after applying the sine
law can be expressed as

ZHD ¼ 10�6 NTrop
hyd;0

rhyd � RE
� �4

Zr¼rd

r¼RE

rðrhyd � rÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2

p dr ð3:79Þ

where the terms in the integral are constant except for r which is variable and
a ¼ RE cos h: Assuming the same model for the wet component, the corresponding
formula is given by

ZWD ¼ 10�6 NTrop
wet;0

rwet � REð Þ4
Zr¼rw

r¼RE

rðrwet � rÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2

p dr ð3:80Þ
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The integral in both equations can be solved by a series expansion of the integrand.
Adopting the series expansion of Goad and Goodman (as cited in
Hofmann-Wellenhof et al. 2001) the solution to the integral rj is given as follows:

rj ¼ R2
E 1þ hj

RE

� �2

� a2
" #1=2

� R2
E � a2

� 1=2 ð3:81Þ

Solutions of the total ZTD (in meters) as a function of θ, P, T, and H from Eqs. 3.79
and 3.80 can be expressed as (Suparta et al. 2008)

ZTD ¼ 10�6NTrop
j;0

1þ 4aj
r2j
2 þ 6a2j þ 4bj


 �
r3j
3 þ 4aj a2j þ 3bj


 �
r4j
4

þ � � � a4j þ 12a2j bj þ 6b2j

 �

r5j
5 þ 4ajbj a2j þ 3bj


 �
r6j
6

þ � � � b2j 6a2j þ 4bj

 �

r7j
7 þ 4ajb3j

r8j
8 þ b4j

r9j
9

2
66664

3
77775 ð3:82Þ

aj ¼ � sin h
hj

and bj ¼ � cos2 h
2hjRE

ð3:83Þ

In general, Eq. 3.82 can be written as (Hofmann-Wellenhof et al. 2001)

ZTD h;P; T ;Hð Þ ¼ 10�6NTrop
j

X9
k¼1

ak;j
k

rkj

 !
ð3:84Þ

In Eqs. 3.82 and 3.83, the factor of 10−6 was corrected from 10−12 in
Hofmann-Wellenhof et al. (2001: 115) to meet a consistency solution from
Eqs. 3.79 and 3.80. In Eq. 3.83, hj (in meters) represent hhyd and hwet are the
effective height for the hydrostatic and wet components, respectively. In this work,
hh in Eq. 3.67 is used and the tropopause height or wet component (hwet) is set to
11 km. The elevation angle is extracted from the GPS signals. In Eq. 3.84, k is the
tropospheric layer.

Comparing the ZTD accuracies for both Hopfield and Saastamoinen models, the
standard deviations of both models have very small difference of about 0.2 and
12.4 mm for the hydrostatic and wet components, respectively. Note that unlike the
Hopfield and Saastamoinen models described earlier for the zenith delay, the
Modified Hopfield model is also introduced for slant delays.
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3.4 The Mapping Function

A mapping function is defined as the ratio of the electrical path length (also referred
to as the delay) through the atmosphere at a geometric elevation, to the electrical
path length in the zenith direction (Niell 2000). It is developed due to the tropo-
spheric delay is the shortest in the zenith direction and becomes larger with
increasing zenith angle. For GPS measurement of zenith PWV, the signal delay in
each direction to each GPS satellite is not generally estimated individually. Instead,
the individual delays are mapped from each individual satellite direction to a single
zenith delay. This mapping method assumes that the delay is independent of azi-
muth. This assumption could never be made because of the significant increase in
delay that is seen when the signal travels through much more of the atmosphere at
lower elevations. Mapping functions account for the delay for individual satellite
view and map them to the zenith direction.

Similar to the tropospheric models, many mapping functions have been pro-
posed, such as Black (1978), Baby et al. (1988), Chao (1972), Davis et al. (1985),
Herring (1992), Hopfield (1969), and Niell (1996). However, three mapping
functions above are widely used because it included the hydrostatic and wet
mapping functions. Those models of Davis, Herring, and Niell are called CfA-2.2
(Harvard–Smithsonian Center of Astrophysics), MTT (Massachusetts Institute of
Technology, MIT Haystack Observatory), and new mapping functions, respec-
tively. The CfA-2.2 mapping function (Davis et al. 1985) was designed to achieve
sub-centimeter accuracy at 5 degrees elevations. The MTT mapping function
(Herring 1992) can be used to represent the elevation angle dependence of the
tropospheric delay with an RMS of less than 0.2 mm for elevation angles larger
than 3 degrees. The last one is the new global mapping function by Niell (1996),
namely the Niell Mapping Function (NMF). The NMF mapping functions almost
similar to the MTT, which can be used for elevation angles down to 3 degrees.

Nowadays, the NMF mapping derived from Very Long Base Interferometry
(VLBI) observations is the most widely used and known to be most accurate and
easily implemented functions. Niell (1996) recognized that mapping functions like
those of CfA-2.2, MTT, and Ifadis (1992) which all depend on surface tempera-
tures. Unfortunately, the temperatures are much more variable in particular at
higher altitudes both diurnally and on longer time scales, resulting in an error in the
mapping. Therefore, NMF was developed to be independent of surface meteoro-
logical parameters. In this section, a simplest (cosecant) mapping function is
introduced, then the Niell mapping function. The selection of this functional model
is based on its ability to perform well in both low and high elevation and its
independence meteorological parameters (Leick 1995).
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3.4.1 The Cosecant Mapping Function

Foelsche and Kirchengast (2001) introduce a simple “geometric” mapping function
(Fig. 3.6), where only the free parameter is an “effective height” of the atmosphere,
corresponding to about the first two scales height above the surface. The simplest
mapping function is the cosecant of the elevation angle that assumes both the
curvature of the earth and the curvature of the path of the GPS signal propagating
through the atmosphere can be approximated as plane surfaces. This is a reasonably
accurate approximation only for high elevation angles with a small degree of
bending.

To simplify Fig. 3.6, the value of ds/dr is defined to be the ratio of the slant
straight-line ray path length within the effective height, Satm (Satm = s) to the Hatm

itself.

ds=dr ¼ Satm=Hatm ð3:85Þ

The above equation in other ways can be written in the form directly expressing
the deviation from the simple cosecant law

ds
dr

¼ 1

cos z Sflat
Satm

ð3:86Þ

where dr is the difference in radius (distance to the center of the Earth) of the two
layers, ds is the distance difference, z is the zenith angle at an arbitrary layer, Sflat

Fig. 3.6 Propagation of GPS signals approximated as a planar surface (Suparta 2008)
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would be the ray path within Hatm in a flat (plane-parallel) atmosphere and ds/dr is
the mapping function, later known as m(z). Therefore, Eq. 3.86 is rewritten as

mðzÞ ¼ 1

cos z Sflat
Satm

ð3:87Þ

For the planar atmosphere, assume that the Earth is flat and refractivity is
constant, hence Satm ffi Sflat: The cosecant mapping function becomes
1/sin (elevation). As can be seen in Fig. 3.6, for an infinitesimal thin layer we have

mðzÞ ¼ 1
cos z

	 sec z ! mðhÞ ¼ 1
sin h

ð3:88Þ

Because of the curvature of the atmosphere, this zenith angle change along the
ray path. A simple mapping function in Eq. 3.88 is limited for use above *60
degrees elevation. As the ratio of the thickness of the atmosphere to the radius of
the earth decreases, the atmosphere appears more planar. This thickness varies with
latitude and season. Thus, a possible proxy for the mapping function is some
quantity that is a measure of the thickness of the atmosphere. The more complex
mapping functions are based on the truncation of the continued fractions. This type
of mapping functions includes Chao (1972), Davis et al. (1985), Marini (1972), and
Niell (1996). The following is the description the Niell mapping function.

3.4.2 The Niell Mapping Function

Differing from most typical tropospheric delay models, Niell has developed
hydrostatic and wet mapping functions with new forms and their combined use to
reduce errors in geodetic estimation for observations as low as 3° in elevation.
Although it has no parameterization in terms of actual meteorological conditions,
they agree as well or better than mapping functions calculated from radiosonde
profiles. In fact, when there is no information about the state of the atmosphere
other than at the surface, the variation of the mapping function is found to be better
modeled in terms of the seasonal dependence of the atmosphere, which is taken to
be sinusoidal and in terms of the latitude and height above sea level of the site. The
form adopted for this mapping function is the continued fraction of Marini (1972)
with three constants but normalized to unity at the zenith as proposed by Herring
(1992).

Marini (1972) was the first one to come up with the idea to use continued
fractions. The most recent mapping functions are those of Herring (1992), Ifadis
(1992), and Niell (1996), which used the continued fractions. Continued fractions
have the advantage over models with Taylor’s expansions like the Saastamoinen
model because they fit for nearly the whole range of zenith angles (see Fig. 3.3).

3.4 The Mapping Function 45



The following is one type of the mapping function presented by Herring (1992)
with continued fractions

Mðz0Þ ¼ 1þ a= 1þ b=ð1þ c=ð1þ � � �ÞÞð Þ
cos z0 þ a

cos z0 þ b
cos z0 þ c

cos z0 þ ���

ð3:89Þ

where a, b, and c are mapping function coefficients to be determined. For low
precision, the coefficients can be set to a = b = c = 0, which yields the cosecant
model as introduced in Sect. 3.4.1.

Based on the continued fraction, Niell (1996) has developed hydrostatic and wet
mapping functions with new forms and combinations. It is used to reduce errors in
geodetic estimation to provide a better fit and give better accuracy over the latitude
range 43° N to 75° N for observations down to 3 degrees elevation. The form
adopted for Niell mapping function is the continued fraction of Marini (1972) with
three a, b, and c constants in the following.

mjðhÞ ¼

1
1þ aj

1þ bj
1þ cj

sin hþ aj

sin hþ bj
sin hþ cj

ð3:90Þ

In addition to a latitude and seasonal dependence due to varying solar radiation,
the hydrostatic mapping function should also be dependent on the height above the
geoid of the point of observation because the ratio of the atmosphere “thickness” to
the radius of curvature decreases with height. This does not apply to the wet
mapping function since the water vapor is not in hydrostatic equilibrium and the
height distribution of the water vapor is not expected to be predictable from the
station height. The Niell mapping function for the hydrostatic (replace j by hyd) and
wet (replace j by wet) components is of the following form

mjðhÞ ¼ mhðhÞþDmðhÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
hydrostatic

þmwetðhÞ ð3:91Þ

For the hydrostatic mapping function, Niell (1996) adjusted the heights above
the geoid. The sensitivity of the hydrostatic mapping function to the height above
MSL was determined by beginning the ray-trace with nine different elevation angles
between 3 and 90 degrees to give both the hydrostatic and wet path delays of each
of the nine standard profiles with the values of pressure, temperature, and relative
humidity at 1 and 2 km altitude. The height correction, Δm(θ), is given by

Dm hð Þ ¼ dmðhÞ
dh

h ð3:92Þ
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where h is the height of the site above geoid in meters. The analytic height cor-
rection coefficients is taken to be

dmðhÞ
dh

¼ DmðhÞ ¼ 1
sin h

� f h; aht; bht; chtð Þ ð3:93Þ

Here, f h; aht; bht; chtð Þ represents the three-term continued fraction expressed by
Eq. 3.94 in the Marini mapping function,

f h; aht; bht; chtð Þ ¼ 1þ aht=ð1þ bht=ð1þ chtÞÞð Þ
sin hþ sin hþ aht=ðsin hþ bht=ðsin hþ bhtÞÞð Þ ð3:94Þ

In the above equation, the coefficients aht = 2.53 × 10−5, bht = 5.49 × 10−3, and
cht = 1.14 × 10−3 was determined by least-square fits to the height corrections at the
nine elevation angles. In these fittings, Niell used one for north latitudes of 15° for
the whole year and two for north latitudes of 30°, 45°, 60°, and 75°, for the months
January and July as tabulated in Cole et al. (1965).

Finally, the hydrostatic mapping function has normalized to yield a value of
unity at the zenith and with a height correction, Δm(θ), which can be written as

mhydðhÞ ¼ 1þ a=ð1þ b=ð1þ cÞÞð Þ
sin hþða= sin hþðb= sin hþ cÞÞ þ

1
sin h

� f h; aht; bht; chtð Þ
� 	

h ð3:95Þ

For Niell, wet mapping function can be written as

mwetðhÞ ¼ 1þ a=ð1þ b=ð1þ cÞÞð Þ
sin hþða= sin hþðb= sin hþ cÞÞ ð3:96Þ

The coefficients a, b, and c in Eq. 3.89 were derived from temperature and
relative humidity profiles of the U.S. Standard Atmosphere which is dependent on
the latitude at North regions 15° (tropical), 30° (subtropical), 45° (midlatitude), 60
and 75° (subarctic) for the months of January (Winter) and July (Summer) and takes
seasonal variations into account. Niell assumes that the Southern and Northern
hemispheres are antisymmetric in time, i.e., the seasonal behavior is the same. In
addition, he assumes the equatorial region is described by the 15° N latitude profile
while the polar region is described by the 75° N latitude profile.

For the hydrostatic component, these coefficients are determined based on
height, latitude, and DoY (day of year). However, for the wet mapping function,
they depend only on the latitude. The coefficients for hydrostatic mapping function
can be interpolated based on the parameter values extracted from Table 3.3 by the
following interpolation rule.
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For latitude uj j 
 15�

Fðu; tÞ ¼ Favgð15�ÞþFampð15�Þ cos 2p
DoY � T0
365:25

� �
ð3:97Þ

For latitude range 15� 
 uj j 
 75�;

Fðu; tÞ ¼ FavgðuiÞþ Favgðuiþ 1Þ � FavgðuiÞ
�  u� ui

uiþ 1 � ui

þ � � � FampðuiÞþ ½Fampðuiþ 1Þ � FampðuiÞ�
u� ui

uiþ 1 � ui

� �

cos 2p
DoY � T0
365:25

� � ð3:98Þ

For latitude uj j � 75�;

Fðk; tÞ ¼ Favgð75�ÞþFampð75�Þ cos 2p
DoY� T0
365:25

� �
ð3:99Þ

where φ is the user’s latitude and the subscripts refer to the nearest tabular latitude,
F is the mapping function calculated coefficients a, b, and c, separated into average
values and amplitudes. T0 is the day of a year for “maximum winter” which is set to
28 for Northern Hemisphere and 211 for the Southern Hemisphere. The average
and amplitude values of the hydrostatic mapping function coefficients are listed in
Table 3.3.

For the latitude uj j 
 15�,

Fðu; tÞ ¼ Favgð15�ÞþFampð15�Þ � cos 2p
DoY� T0
365:25

� �
ð3:100Þ

For the latitude uj j � 75�,

Fðk; tÞ ¼ Favgð75�ÞþFampð75�Þ � cos 2p
DoY� T0
365:25

� �
ð3:101Þ

In case of the wet mapping function, the interpolation rule is also following the
equation, but the average values for awet, bwet, and cwet are shown in Table 3.4.

For the latitude uj j 
 15�,

Fðu; tÞ ¼ Favgð15�Þ ð3:102Þ
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For the latitude range 15� 
 uj j 
 75�,

Fðu; tÞ ¼ FavgðuiÞþ Favgðuiþ 1Þ � FavgðuiÞ
� 

:
u� ui

uiþ 1 � ui
ð3:103Þ

For the latitude uj j � 75�,

Fðu; tÞ ¼ Favgð75�Þ ð3:104Þ

Conclusively, Tables 3.3 and 3.4 show the dependency of coefficients a, b, and
c on temporal and spatial conditions for hydrostatic and wet mapping functions,
respectively. To use the mapping function for any latitude, linear interpolation
between the coefficients is required. Above 75° the same coefficients may be used
as those at 75°. Between 15° N and 15° S, the coefficients may be considered
constant. On this basis, the NMF mapping functions were estimated to be error by
less than 4 mm from 12° down to 3° in comparison to the MTT mapping functions
of Herring, but with smaller biases relative to ray traces than the MTT mapping
functions.
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Chapter 4
Estimation of ZTD Using ANFIS

Abstract This chapter describes the estimation of zenith tropospheric delay
(ZTD) using ANFIS technique followed by obtaining of ZTD data from GPS
together with data location of dataset. This chapter also describes the method of
analysis used in the development of ZTD estimation model. The results of
ANFIS ZTD data will be compared to others models and will be discussed in this
chapter.

Keywords Estimation model � Fuzzy clustering � Statistical analysis � TroWav �
Antarctica � Equatorial region

4.1 Estimation of ZTD Model

One of the most important in the development of estimation model using ANFIS
method is a selection of input variables. Input variables have the power to determine
the design of the network architecture of ANFIS (Chang and Chang 2006). In
addition, the size of the training is also very important, because it can affect the
strength of the model in capturing the various characteristics of ZTD. Figure 4.1
shows the plot development model ZTD estimates with ANFIS method.

In this study, the testing process is used to ensure that the model has been trained
to be able to capture all of the various characteristics of the targets and avoid
excessive overfitting. Overfitting occurs when the model trained is too much, so the
mapping of inputs–outputs will lose the ability to capture all of the characteristics
that are not trained in the model. Therefore, the model built partially will lose the
ability to characterize the parameter in the targeted area.

Furthermore, the input and output data used in this study were normalized by
scaling between −1 and 1. The purpose of this process is to eliminate their
dimensions and ensure that all variables receive the same treatment during the
training of model (Nourami and Tomasi 2013). In addition, the normalized input
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and output can accelerate the convergence process during the model training.
A simple equation to normalize the data is expressed as follows:

Yi ¼ 2
Pi � Pmin

Pmax � Pmin

� �
� 0:5

� �
ð4:1Þ

where Pi and Yi represent true and normalized values, respectively, and Pmax and
Pmin are maximum and minimum values of the actual data, respectively.

4.1.1 Network Configuration Input for Estimation Model

Table 4.1 shows the model configurations that will be used in estimating the ZTD
model. Configuration model consists of three input variables of a different
parameter in surface meteorological data. This configuration is designed to avoid
the limits relating to the availability of surface meteorological data for analyzing the
suitability of each variable in improving the accuracy of the estimated ZTD model.
Seven combinations of variables (A, B, C, D, E, F, and G) were designed to
estimate the value of ZTD. The combinations that have been developed are from
one input to three inputs, where the three variables are P, T, and H.

Fig. 4.1 The proposed method to determine the ZTD using ANFIS model

Table 4.1 Summary of
configuration inputs used in
the development of ANFIS
model for estimation of ZTD

Combination Input Output

A P(t) ZTD(t)

B T(t) ZTD(t)

C H(t) ZTD(t)

D P(t), H(t) ZTD(t)

E P(t), T(t) ZTD(t)

F T(t), H(t) ZTD(t)

G P(t), T(t), H(t) ZTD(t)
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4.1.2 Formation of a Fuzzy Inference System
Using Fuzzy Clustering

In the development of ZTD model estimated using ANFIS method, the first step to
be considered in addition to the variables and the size of the training is the
development of a membership function (MF) and the rule base in FIS. In the
development of the basic rules and membership functions normally using the grid
partition, this method divides the data into exact rectangular subspaces by using
axis-paralleled partition based on the dimension number of membership functions
that have been set (Neshat et al. 2011). This method is often used to develop
membership function and basic rules in the ANFIS method. However, it still has
limitations in controlling the amount of very fast growing rules when increasing the
number of input variables in the FIS. The number of rules that are too large will
affect the future of computing time and the optimization of the rule parameters will
not be easy. Therefore, the fuzzy clustering method is used in this study to facilitate
the establishment and optimization of membership functions, and the basic rule in
ANFIS model. With fuzzy logic clustering method, input–output data will be
grouped into clusters. Information from these clusters would help in the FIS for-
mation of Sugeno type, where one has the ability to model the behavior of input–
output data with a less number of rules.

There are two methods of fuzzy logic clustering that will be used in this study,
which are fuzzy clustering means (FCM) and fuzzy subtractive clustering (FSC).
The two methods are adapted to meet the drawbacks in the ANFIS model. FCM is a
data clustering algorithm in which the existence of each data point within a cluster
is specified by a membership grade. This method was first introduced by Bezdek
et al. (1984). Usually this method first will determine the total number of clusters of
existing data. There are initial cluster centers to be determined and each data point
will be given a membership grade. The iteration is then done to update cluster
centers and the degree of membership of each data point to as close as possible to
the centers of clusters. Iteration is done based on the reduction of criterion function
(objective function) described as follows:

J ¼
Xn
k¼1

Xc
i¼1

l m
ik Xk � Vik k2; 1�m�1 ð4:2Þ

where n is the number of data points, c is the number of clusters, Xk is the kth data
point Vi is ith cluster center, lik is the degree of membership function of the kth data
in the ith cluster, and m is a constant greater than 1 (typically, m = 2)
(Gomez-Skarmeta et al. 1999). Fuzzy partitioning is carried out through an iterative
optimization of the objective function shown above, with the update of membership
and cluster centers by
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lik ¼
1Pc

j¼1
xk�vik k
xk�vjk k

� �2=ðm�1Þ ;Vi ¼
PN

k¼1 likð ÞmXk
.PN

k¼1 likð Þ; 1� i� c ð4:3Þ

Equation 4.3 began with a desired number of cluster c and an initial guess for each
cluster center Vi, i = 1,2,3, … c, and this iteration will stop when the procedure
converges to a local minima. The output of FCM function is a list of the cluster
center and several membership functions for each data. The information generated
from FCM will greatly facilitate the development of initial FIS before training being
done by ANFIS method, particularly in defining the membership functions to
represent the fuzzy logic value of each clustering.

The FSC is one of the automated data-driven methods for constructing the
primary fuzzy models (Chiu 1994) and an extension of the mountain clustering
(Yager and Filev 1994). FSC assumes that each data point is a potential cluster
center and calculates a measure based on the density of surrounding data points.
The main process of subtractive clustering is that each data point is considered as a
potential cluster center instead of a grid point. The density measure of data points at
xi is defined by the following equation:

Di ¼
XN
i¼1

exp � xi � xj
�� ��

ra
2

� �2
 !

ð4:4Þ

where ra is a constant referred to as the neighborhood radius of a cluster center.
After the density of each data point is selected, the point with the highest density
potential Dc1 and the first cluster center xc1 were chosen. Then, the density of each
data point xi can be updated by the following equation:

Di ¼ Di � Dc1 � exp � xi � xc1k k
rb=2ð Þ2

 !
ð4:5Þ

where rb ¼ 1:5 ra. After calculating the density for each data point is updated, the
next cluster center xc2 is selected and all calculations of the density for data points
to be updated again. This process is repeated until the number of generated cluster
centers is sufficient. In this study, subtractive clustering algorithm uses the fol-
lowing samples parameter: the range of influence of the group, which marks the
radius adjacent, ra is 0.2–0.6, the acceptance ratio is 0.5 and the rejection ratio is
0.15, where the acceptance and rejection ratios show the conditions for accepting or
rejecting data point to a cluster center, respectively. The parameter of each model
was determined using the trial and error methods.

The difference between the FCM and the FSC methods lies in the way they
determine the number of clusters. For FCM, initial value and clustering number
should be fixed in order to achieve an optimal solution. On the other hand, the
optimal solution in determining the clustering number through FSC is independent
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of the initial value of the cluster. The number of clusters generated will be used as
the number of fuzzy rule’s premise in the ANFIS model. Finally, the parameters of
ANFIS model can be adapted much more efficiently.

4.1.3 Multi-layer Perceptron Network

Referring to Sect. 2.2 in Chap. 2, there are two types of ANN architecture: feed-
forward and feedback neural networks. In this study, one of the existing ANN
architectures will be applied to develop a comparison model to the ANFIS model.
One of the structures that often used by researchers in ANN modeling is a
multi-layer perceptron network (MLP). MLP is feedforward ANN that consists of
three layers: input layer, hidden layer, and output layer. MLP is a modification of
the standard linear single perceptron. A multi-layer perceptron is very useful to
approach the classification function that maps the input vector to one or more
classes, with optimizing the weights and thresholds for all nodes, the network can
represent a variety of classification functions. In order to optimize the weight of the
synapse, a supervised learning algorithm is typically used in the MLP networks.
A typical feedforward constructed for MLP is shown in Fig. 4.2.

Fig. 4.2 The ANN model with three inputs, one hidden layer with four nodes, and one output
(Suparta and Alhasa 2013)
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In this study, MLP model is developed with a three-layer structure consisting of
an input layer, one hidden layer, and output layer. To train the MLP network, the
Levenberg–Marquadth learning algorithm (Yu and Wilamowski 2011) is applied to
update the weight and bias values. Furthermore, each bipolar sigmoid activation
and linear activation functions are used as an activation function or threshold
functions in the hidden layer and output layer. In determining the MLP network
topology, the number of hidden layer is selected from 3 to 15 nodes to determine
the optimal number of nodes in the hidden layer. After several trials of nodes in the
hidden layer are evaluated, the number of nodes that have been optimum results
will be selected and applied to the model as a comparison method to ANFIS
models.

4.1.4 Multiple Linear Regressions

The second method to be used for comparison of ANFIS model in this study is a
multiple linear regression (MLR). As explained in the Sect. 2.3, the input variables
of MLR will be P, T, and H. From Eq. 3.23, a least squares method is used to
determine the values of intercept b0 and regression coefficients, b1 . . . bm. This
method minimizes the sum of squares of the vertical distance from each data point
on the line (Park et al. 2015). Furthermore, four statistical evaluation criteria are
used to assess the different performance models, namely root mean square error
(RMSE), coefficient of determination (R2), mean absolute error (MAE), and percent
error (PE).

The four of statistical analysis is described below.

1. RMSE

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Pi � Oið Þ
n

r
ð4:6Þ

2. Coefficient of determination (R2)

R ¼ EO � Es

Es
ð4:7Þ

where

EO ¼
Xn
i¼1

Pi � Pi
� �2

and Es ¼
Xn
i¼1

ðPi � OiÞ2 ð4:8Þ
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The scale of the determination coefficient (R2) is defined as follows:

R2
�� �� [ 0:64 Strong
0:36\ R2

�� ��\ 0:64 Moderate
0:16\ R2

�� ��\ 0:36 Low
R2
�� ��\ 0:16 No correlation

3. MAE

MAE ¼
Xn
i¼1

Pi � Oij j
n

ð4:9Þ

4. PE (Chaudhuri and Middey 2011)

PE ¼ Oi � Pij jh i
Oih i ð4:10Þ

where Pi and Oi denote predictions of the ZTD (m) and the observation of
GPS ZTD (m), respectively, and Pi represent the average of the ZTD prediction data
(m) and the observation data of GPS ZTD (m). The symbol n denotes the number of
data samples in the test cases.

4.2 Computation of ZTD from GPS Measurements

4.2.1 ZTD Data Processed from TroWav

If we recall Sect. 3.3 in Chap. 3, when the signal travels through inhomogeneous
space, the code (P) and carrier (Φ) measurements are affected significantly. The
code and the carrier phase observables can be expressed as follows (Dach et al.
2007; Klobuchar and Kunches 2003):

Ps
r ¼ qsr þ dqs þ c dts � dTrð Þþ dsion þ dstrop þ eðPrxÞ þ eðPmultÞ ð4:11Þ

Us
r ¼ qsr þ dqs þ c dts � dTrð Þþ kcw Ns

r � dsion þ dstrop þ e Urxð Þþ e ðUmultÞ ð4:12Þ

where
Ps
r is the pseudorange measurement by the GPS receiver to the satellite (m)

qsr is the true range or “geometrical” distance between satellite and receiver
(m)

dqs is the orbit correction term (m)
c is the speed of light in free-space (3 × 108 ms−1)
dTr is the receiver clock correction (m)
dts is the satellite clock correction (m)
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dstrop is the tropospheric delay term (m)
dsion is the ionospheric delay term (m)
e Prxð Þ is the error in pseudorange measurement due to receiver noise (m)
eðPmultÞ is the errors in pseudorange measurement due to multipath (m)
Us

r is the carrier phase measurement by the GPS receiver to the satellite (m)
e Urxð Þ is the error in phase measurement due to receiver noise (m)
eðUmultÞ is the errors in phase measurement due to multipath (m)
k cw is the carrier wavelength (m cycles−1)
Ns
r is the integer carrier phase ambiguity between the GPS receiver and the

satellite (cycles)

The observation equations in Eqs. 4.11 and 4.12 are differed in two ways. The
ionospheric refraction correction dion has the opposite sign. This means that the
velocity of the carrier wave (the phase velocity) is actually increased (“advanced”),
while velocity of the pseudorange (so-called “group velocity”) is decreased.
Therefore, the pseudorange is considered “delayed” and hence the range (or group)
refractive index is greater than unity (Hofmann-Wellenhof et al. 2001). In addition,
there is no ambiguity term kcw Ns

r for pseudoranges. All errors except multipath and
noise can be reduced using techniques such as single differencing, double differ-
encing, and DGPS corrections (Lachapelle 2003).

From Eq. 4.11, the ionospheric delay (dsion) and tropospheric delay (dstrop) play a
crucial role in investigation of our atmosphere effects. On the other hand, the total
atmospheric delay obtained from the GPS is caused by ionospheric delay and
tropospheric delay, which can be expressed as

Total Atmospheric Delay ¼ Ionospheric Delay þ Tropospheric Delay ð4:13Þ

The ionospheric delay of GPS signals is given in Eq. 4.1, which is
frequency-dependent (dispersive effect) and can be nearly eliminated by observations
using a dual-frequency GPS receiver (Klobuchar and Kunches 2003). In other words,
this allows the ionospheric effects to be largely removed by a linear combination of
dual-frequency data. The magnitude of ionospheric delay on total atmospheric delay
is considered larger and can be neglected. The remaining delay in the neutral
atmosphere is the delay known as the total tropospheric delay. Based on this
assumption, the tropospheric delay can be separated into the wet and the hydrostatic
components. These separations were made in order to simplify the tropospheric delay
modeling. Therefore, the total tropospheric delay can be expressed as

Tropospheric Delay ¼ Hydrostatic Delay þ WetDelay ð4:14Þ

Thus, Eq. 4.1 in zenith direction can be written as ZTD = ZHD + ZWD.
With a reason that the GPS system is not registered with the International GNSS

Service (IGS), and at the same time, we advance our knowledge in atmospheric
studies using a GPS. Hence, we have proposed to develop a tropospheric water
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vapor program, so-called TroWav based on the empirical modeling concept as
explained in Sect. 3.3 of Chap. 3. The program code was written in MATLAB. The
algorithms of the TroWav include satellite elevation angle, ZTD, ZHD, ZWD, and
mapping function calculations. The TroWav ZTD is generated with VMF1 mapping
function (Suparta 2014). The measurement of these quantities in the zenith direc-
tions is further to obtain total water vapor column or vertical integrated water vapor.
In the TroWav program, ZTD is calculated based on the modified Hopfield model,
and the ZHD is calculated using the Saastamoinen model. In this work, the
atmospheric layer is considered to have azimuthal symmetry in the ZTD calcula-
tion. Figure 4.3 shows the flowchart of ZTD processing in the TroWav. Accuracy of
coordinates for the GPS stations is necessary in order to determine the ZHD exactly.
In this case, the assessment of the accuracy coordinates used the International
terrestrial reference frame, ITRF 2008. To cancel the residual tropospheric delay, a
single differencing technique with baseline length below 10 km was implemented in
the preprocessing for precise ZTD estimation.

As shown in Fig. 4.3, the hydrostatic Vienna Mapping Function (VMF1)
(Boehm et al. 2006) was used to map the dependence of the zenith delays to the
satellite elevation angle (Suparta et al. 2011). The cutoff elevation angle was set to
13°, which was able to minimize the multipath effects and to maintain the quality
of the data. In the VMF1, Boehm et al. updated the “b” and “c” coefficients of
the Marini where the continued fraction is formed as shown in the IMF equation

Fig. 4.3 Flowchart for computation of ZTD using GPS signals and surface meteorological
measurements in the TroWav program
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(Eq. 3.95) for the hydrostatic (index h) Niell mapping function, mh(θ). However, the
hydrostatic “a” coefficients are still valid for zero heights:

mhðhÞ ¼ mðhÞþ DmðhÞ

¼ 1þ a=ð1þ b=ð1þ cÞÞð Þ
sin hþða= sin h þðb= sin hþ cÞÞ þ

1
sin h

� f h; aht; bht; chtð Þ
	 


h

ð4:15Þ

where θ is the elevation angle (deg) and h is the height of the site above sea level, in
meters.

For VMF1, the coefficient c as shown in Eq. 4.1 was now modeled to remove the
systematic errors with taking consideration of European Centre for Medium-Range
Weather Forecasts (ECMWF) instead of NWMs:

c ¼ c0 þ cos
DoY� 28

365
2pþw

� �
þ 1

� �
c11
2

þ c10

	 

1� cosuð Þ ð4:16Þ

where DoY is the day of the year and January 28 has been adopted as the reference
epoch (Niell 1996), φ is the latitude (deg), and ψ specifies the northern (0) and
southern hemispheres (π). For the equatorial region, all the coefficients above are set
at half of the value for northern and southern. On the other hand, the ψ value was
selected as π/2, where c0 = 0.062, c10 = 0.0015, and c11 = 0.006. Detailed
parameters for c0, c10, c11, and ψ needed for computing the coefficient c in Eq. 4.1
of the hydrostatic mapping function can be found in (Boehm et al. 2006).

4.2.2 The ZTD Data from IGS

The effort to provide ZTD data is demand. In fact, this contribution can help
scientists and geodesist in achieving their objectives, particularly in the field of
Earth science research, multidisciplinary applications, and education. For example,
IGS provides ZTD data of currently more than 300 globally distributed GPS sta-
tions. The ZTD data is stored into the database Crustal Dynamics Data Information
System (CDDIS) NASA (ftp://cddis.gsfc.nasa.gov/pub/gps/products/troposphere/
ZPD/). In this database, Gipsy–Oasis GPS software was used to generate the ZTD.
The ZTD is calculated using a global mapping function (GMF) and processed at
cutoff elevation angle of 7°, and resulted with a resolution of five minutes.

Beforehand, the analysis centers (ACs) such as the Center for Orbit
Determination in Europe (CODE) of Astronomical Institute University of Bern
(AIUB), Switzerland and GFZ Potsdam (Geo-ForshungsZentrum, Germany) pro-
vided the ZTD data from GPS. GFZ represents the weighted mean of the ZTD
estimates contributed by 2–6 IGS analysis centers (Gendt 1998). They employed
the cutoff elevation angle of 20° with the dry and wet Niell mapping functions for
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CODE and GFZ analyses, respectively, in post-processing mode. Both ZTD
products are available in 2-h intervals. However, the new ZTD data from AIUB can
be found at the ftp://unibe.ch/aiub/CODE/, which is processed using a
Bernese GNSS Software Version 5.3 at the cutoff elevation of 3° with a wet Vienna
mapping function (VMF). The new resulting product is available with the hourly
resolution.

Figure 4.4 shows the ZTD results for Scott Base (SBA: 77.9°S, 166.8°E and
ellipsoid of 28.2 m) and McMurdo (MCM: 77.85°S, 166.67°E and a height of
98.01 m) in Antarctica compared to the IGS ZTD from CODE and GFZ, respec-
tively, for the period of January 2004 at a 2-h resolution. In Fig. 4.4a, a small drift
between TroWav ZTD and IGS ZTD (namely ZTDref) exhibited for two peaks,
where TroWav ZTD reached its highest value the day before. This drift event is
about 2 cm higher from their mean difference. The GPS and ZTD at both stations
exhibit almost similar fluctuation compared to the IGS ZTD and shown a strong
correlation (r = 0.95 at the 99 % confidence level). The mean difference values
between TroWav ZTD and IGS ZTD range from 4.25 to 7.78 cm (see Fig. 4.4b). On
the other hand, the ZTD average from TroWav at SBA and MCM for the period of
January 2004 is 5.85 ± 0.68 cm higher compared to the IGS ZTD (ZTDref).

Looking at the ZTD data for the equatorial region, we compare the ZTD
obtained in Singapore with the ZTD from IGS. The data collected from
NASA CDDIS database of the year 2009 from the Nanyang Technology University
of Singapore (NTUS: 1.35°N, 103.68°E and ellipsoid of 31.23 m) is processed.

Fig. 4.4 The TroWav ZTD results from SBA and MCM compared to the IGS ZTD methods. The
solid horizontal line in the bottom panel is the mean difference between ZTD at SBA and MCM
respect to the IGS ZTD from CODE and GFZ, respectively
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Figure 4.5 shows the comparison of TroWav ZTD and IGS ZTD for the case of
December 2009 at NTUS. A similar result as in Fig. 4.4 was found between ZTD
generated from IGS with ZTD values generated from TroWav, where the IGS ZTD
is greater than the TroWav method. More than this, the trend pattern of ZTD from
TroWav follows the trend of IGS ZTD. The certain difference in value is possibly
due to difference in the approach used. In the TroWav post-processing, the ZTD
value with elevation angle below 30 degrees is removed to focus the result toward
the zenith. This implies that all the errors that caused by the Earth’s surface is
eliminated. In this comparison, the difference between IGS ZTD with ZTD from
TroWav is 2.95 % (or with an average of 7.55 cm).

4.3 Result of ZTD Estimated from ANFIS and GPS
for Antarctica

The performance of estimation of ZTD from ANFIS models that was developed is
tested under different conditions such as training dataset, set of test data, and vali-
dation dataset. For this purpose, we have selected five stations located in Antarctica
with three stations along theAntarctica coast, which are SBA,Davis (DAV1: 68.58°S,
77.97°E and ellipsoid of 44.40 m), Syowa (SYOG: 69.00°S, 39.60°E and ellipsoid of
45m), and two stations in the Antarctica Peninsula, which are Palmer (PALM: 64.80°
S, 295.94°E and 31.23 m) and O’Higgins (OHI2: 63.32°S, 302.10°E and 33.10 m).
At all stations, the surface meteorological data (P, T, and H) and IGS ZTD over the

Fig. 4.5 Comparison results of estimated ZTD values through TroWav and IGS ZTD for NTUS
station for the case of December 2009
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year 2010 are collected. We also tested the performance of ANFIS ZTD models
developed for equatorial region, which are UKM Bangi (UKMB: 2.92°N, 101.77°E
and ellipsoid of 35.64 m), Nanyang Technology University of Singapore (NTUS:
1.35°N, 103.68°E and ellipsoid of 31.23 m), and Universiti Malaysia Sabah Kota
Kinabalu (UMSK: 6.03°N, 116.12°E and ellipsoid of 63.49 m).

Due to the unavailability of IGS ZTD data for SBA station, we did interpolation
method to obtain the ZTD at the station (Suparta and Alhasa 2015). Two stations
nearby the SBA based on the geographical coordinates is selected and used as a
reference in the interpolation method, which are McMurdo (MCM4) and Dumont
d’Urville (DUM1: 66.66°S, 140.00°E and height −1.33 m). From the smallest
average error (bias) analysis between SBA-MCM4 and SBA-DUM1, coordinates
based on longitude have the smallest average of −0.432 mm compared to latitude
(−1.020 mm) and height (22.357 mm) in estimating the ZTD value. Figure 4.6
shows the comparison results of ZTD interpolation data for SBA, MCM4, and
DUM1. The ZTD variation of ZTD at SBA was obtained very close and it has a
similar variation to both stations with PE of 0.02 and 1.46 % for MCM4 and
DUM1, respectively. The ZTD for SBA is 0.032 m lower at DUM1 and 0.012 m
higher at MCM4. To differentiate the pattern, the ZTD variation between the three
stations in Fig. 4.6 is shifted to a value of 0.15 and −0.15 m for DUM1 and MCM4,
respectively.

For testing the model performance, one-year data at five selected stations is
collected with aiming to cover all the various features of ZTD in the existing area.
A large dataset will include all cases that occurred in the targeted area and it is
important to build a model with artificial neural network method or ANFIS
(Chang and Chang 2006). Figure 4.7 shows the results of each comparison between

Fig. 4.6 Linear interpolation of ZTD results for SBA station. The ZTD values for DUM1 and
MCM4, respectively, are shifted to 0.15 m and −0.15 m to distinguish the ZTD patterns
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estimated ZTD using the ANFIS FSC and ANFIS FCM models with seven pos-
sibilities of input and compared with GPS ZTD at SBA station during the period of
training, testing, and validation. The dashed lines (blue and red) in Fig. 4.7 rep-
resent the estimated value of ZTD using both ANFIS models and the black, solid
line represents the GPS ZTD at SBA station. The period of training was from
January until the first week of April 2010, while the period of testing and validation
process was from 7 to 30 April 2010 and September to December 2010, respec-
tively. The blank shown in the figure indicated no GPS or meteorological data
recorded at that time. For the whole process, the ANFIS model that was trained
using hybrid learning algorithm provides satisfactory results in which both
ANFIS FSC and ANFIS FCM models are capable of fully capturing the charac-
teristics of the ZTD pattern at SBA station. Furthermore, the results also show that
the model estimated using a combination of three input variables (P, T, and H) has
the best performance compared with other combinations of input variables than the
only using P, T, or H, or P and T, or P and H, or, T and H. This can be seen from the
figure that ZTD variation in the panel B, C, and F shows tough to follow the pattern

Fig. 4.7 Variation of ZTD estimated from ANFIS FSC and ANFIS FCM models compared with
GPS ZTD data at SBA station during the a training, b testing, and c verification for (A) P, (B) T,
(C) H, (D) P and H, (E) P and T, (F) T and H, and (G) P, T, and H
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of GPS ZTD. However, a combination of two input variables P and T can also be an
alternative model when the surface meteorological data is limited. It has a good
performance, where the coefficient of determination (R2) is greater than 0.90.

Figure 4.8 shows the relationship between ZTD from ANFIS FSC and
ANFIS FCM models and GPS ZTD from Fig. 4.7. Although the figure revealed any
systematic bias distribution in estimating the ZTD and the random error for each
input combination during the validation process, there found strong relationships
with a positive linear trend. In addition, the figure shows that the combination of all
inputs is a good model. However, the estimated ZTD without P, which use either
T or H alone or a combination of both, will produce a output that does not capture
the pattern of GPS ZTD. On the other hand, adding an input variable, particularly

Fig. 4.8 Cross-correlation between ANFIS ZTD model and GPS ZTD data of Fig. 4.7 during the
validation period for a ANFIS FSC and b ANFIS FCM
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P into the ANFIS model, will improve the accuracy of the estimated ZTD using
ANFIS in Antarctica (Suparta and Alhasa 2015).

Similar results were also obtained for two other stations, DAV1 and SYOG
stations. For these two stations, the periods of training, testing, and validation are
the same, which are in January to mid-July 2010, mid-July to August 2010, and
September to December 2010, respectively. Figures 4.9 and 4.10 show the results
of ZTD values and any systematic bias in their distribution at DAV1 station, and for
SYOG station, it is shown in Figs. 4.11 and 4.12, respectively. Referring to the four
panels, a similar result to that of SBA was obtained for DAV1 and SYOG stations,
where the R2 was greater than 0.90. The input with T only (B), H only (C), and
combination of T and H(F) shows a similar problem as in SBA that the model
cannot capture the characteristic of GPS ZTD. These inputs with no strong corre-
lation from Figs. 4.9 and 4.11 are excluded from Figs. 4.10 and 4.12. For the input

Fig. 4.9 Variation of ZTD estimated from ANFIS FSC and ANFIS FCM models compared with
GPS ZTD data at DAV1 station during the a training, b testing, and c verification for (A) P, (B) T,
(C) H, (D) P and H, (E) P and T, (F) T and H, and (G) P, T, and H
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Fig. 4.10 Cross-correlation between ZTD ANFIS model and GPS ZTD data of Fig. 4.9 during the
validation period for a ANFIS FSC and b ANFIS FCM

Fig. 4.11 Variation of ZTD estimated from ANFIS FSC and ANFIS FCM models compared with
GPS ZTD data at SYOG station during the a training, b testing, and c verification for (A) P, (B) T,
(C) H, (D) P and H, (E) P and T, (F) T and H, and (G) P, T, and H

4.3 Result of ZTD Estimated from ANFIS and GPS for Antarctica 69



with a strong correlation, the distributions of bias and random errors are found more
variable, especially for the estimation model that uses a combination of input
variables P and H. For the overall results obtained with ANFIS models, the esti-
mations of ZTD at both stations with combination input variables of P and T were
satisfactory.

Furthermore, the result of two other stations in the Antarctic Peninsula, PALM,
and OHI2 is depicted in Figs. 4.13, 4.14, 4.15, and 4.16, respectively. Referring to
Fig. 4.13, the pattern of ANFIS ZTD model was agreed very well with the pattern
of observed GPS ZTD at PALM station. In contrast, Fig. 4.15 shows the unsatis-
factory results of ANFIS ZTD model, which does not fully capture the character-
istics of the GPS ZTD at OHI2 station. The distribution bias and random error
shown in Figs. 4.14 and 4.16 vary compared with the results obtained in the stations
located in the Antarctica coast. As shown in both figures, this condition is found in
the annual weather of Antarctica Peninsula, where the atmospheric environments
are strongly influenced by the relationship between cyclone, temperature, and sea
ice deep and continuous transition difference between maritime climate patterns and
continental climate regime (Suparta et al. 2009). The atmospheric environment
condition of OHI2 station is more humid with higher pressure depression compared
with other stations. Therefore, the atmospheric environment condition at each

Fig. 4.12 Cross-correlation between ZTD ANFIS model and GPS ZTD data of Fig. 4.11 during
the validation period for a ANFIS FSC and b ANFIS FCM
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Fig. 4.13 Variation of ZTD estimated from ANFIS FSC and ANFIS FCM models compared with
GPS ZTD data at PALM station during the a training, b testing, and c verification for (A) P, (B) T,
(C) H, (D) P and H, (E) P and T, (F) T and H, and (G) P, T, and H

Fig. 4.14 Cross-correlation between ZTD ANFIS model and GPS ZTD data of Fig. 4.13 during
the validation period for a ANFIS FSC and b ANFIS FCM
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Fig. 4.15 Variation of ZTD estimated from ANFIS FSC and ANFIS FCM models compared with
GPS ZTD data at OHI2 station during the a training, b testing, and c verification for (A) P, (B) T,
(C) H, (D) P and H, (E) P and T, (F) T and H, and (G) P, T, and H

Fig. 4.16 Cross-correlation between ZTD ANFIS model and GPS ZTD data of Fig. 4.15 during
the validation period for a ANFIS FSC and b ANFIS FCM
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station will affect the ability of the model to capture all the characteristics of ZTD in
the targeted area.

The results of other statistical analysis such as RMSE, MAE, and PE to evaluate
the model performance at five selected stations in Antarctica during the training,
testing, and validation sets are shown in Fig. 4.17 and Table 4.2. From the results,
the estimation of ZTD from ANFIS FCM and ANFIS FSC models by adding a new
input variable into the configuration model would improve the accuracy of ZTD
values. These results are clearly visible where the error occurred in the model will
gradually decrease during the addition of new inputs such as relative humidity and
temperature.

Based on the performance, results obtained from each station showed that the
ability of both ANFIS models will increase by adding the appropriate input

Fig. 4.17 Statistical comparison of percentage error (PE) between GPS ZTD and ANFIS ZTD
model at five selected stations during the a training, b testing, and c validation
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variables. Furthermore, the ability of the model in estimating the ZTD value in
Antarctica will increase when adding the temperature parameter rather than the
relative humidity. This can be seen in Table 4.2, where the combination input
variables of P and T have the second lowest error behind the three input variables
(P, T, and H). As demonstrated in Fig. 4.17 by PE, the results also show that the
ability of ANFIS FCM model is comparable with ANFIS FSC model, whether in
the training set, testing, or validation processes.

From scatterplot between the GPS ZTD and ZTD from ANFIS, roughly, one
input variable of using surface pressure for Antarctica is capable to develop a ZTD
model. The percentage error of this model is below 1 % and a strong correlation is
obtained for the use of the data with a maximum of a 1-h interval, and the modest
correlation when using the data with a 3-h resolution. However, the best imple-
mentation of the ANFIS model to estimate ZTD in Antarctica is done by using two
input variables, P and T.

4.4 Analysis Results of ANFIS ZTD in the Equatorial
Region

As mentioned in the previous section, three stations namely UKMB, NTUS, and
UMSK in the equatorial region are selected to test the performance of ANFIS ZTD
model. A similar statistical analysis as in Antarctica was used to evaluate the model
performance during different conditions of training, testing, and validation.

Figure 4.18 shows the results of ANFIS ZTD and their comparison with
GPS ZTD at UKMB station. For UKMB, the training set period was from January
until May and six of the first day of September in 2009. For the test set model, it is
trained within the period of September 7–November 30, 2009, while the set vali-
dation period was given for March, August, October, and December 2009.
According to the results obtained from Fig. 4.18, it can be seen that the pattern of
the ZTD estimated from ANFIS FSC and ANFIS FCM models in this area differs to
those found in the Antarctica. However, UKMB station has successfully captured
the patterns of observed GPS ZTD that uses a combination of three input variables
P, T, and H. The other combined model either using P, or P and H, or P and T was
unsuccessful to follow the pattern of GPS ZTD. However, the combination of input
variables T and H is seen as an alternative model to estimate the ZTD.

The difference compared to the Antarctica region is probably because of dif-
ferences in the latitude and altitude of a concerned area, where the altitude affect
changes in the earth’s atmospheric pressure. The increase in altitude will cause low
pressure in the atmosphere and vice versa (Jin et al. 2007). In fact, Antarctica region
has a lower pressure value than the equatorial region. In addition, the surface
pressure greatly affects the results of both ANFIS models in estimating the ZTD in
the Antarctica (Suparta and Alhasa 2015). For the equatorial region, particularly
Malaysia, the relative humidity is shown which significantly affects the results than
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the surface pressure. It can be seen that the correlation coefficient (r) between the
input variables and GPS ZTD is 0.428 and r values for surface pressure and
temperature are −0.120 and −0.147, respectively.

In order to see any systematic bias distribution and relative size of the random
error during the validation period at all combination inputs, Fig. 4.19 shows the
relationship between ANFIS ZTD models and GPS ZTD with all combination
inputs. From the figure, it is shown that the combination of variables (P) and two
combinations of input variables (P and T, and P and H) in estimating the relative
size of ZTD found large random errors and systematic errors. The R2 of the three
variables of combined model is found to be lower than 0.40 or weak
relationship. Similar to the previous finding, the three combinations of input vari-
ables P, P and T, and P and H did not succeed in capturing all the characteristics of
GPS ZTD in the concerned area. On the other hand, the model with three input
variables (P, T, and H) found a strong relationship, where the R2 value is more than
0.999.

A similar result was obtained for the two other stations located in Singapore
(NTUS station) and Borneo (see Figs. 4.20 and 4.21). Referring to Fig. 4.20, the
different resolutions of data indicated different backgrounds of the graph. The solid
and the thin graphs showed the data with 1-h and 3-h intervals, respectively. The
blank data in time series was also due to no GPS or meteorological data. From
Fig. 4.21, it shows that the period of training period was January, February, April,
and mid of May (1–16 May of 2009), the testing period was from May 17 to 31 until
June 30, 2009, while the validation period was March, July, August, and December
2009. For the overall results, input model with three variables (P, T, and H) was the

Fig. 4.18 Variation of ZTD estimated from ANFIS FSC and ANFIS FCM models compared with
GPS ZTD data at UKMB station during the a training, b testing, and c verification for (A) P, (B) T,
(C) H, (D) P and H, (E) P and T, (F) T and H, and (G) P, T, and H
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best performance in estimating the ZTD value at NTUS. The accuracies of combi-
national inputs for T and H are also behind the input values P, T, and H.

The results for UMSK station are shown in Figs. 4.21 and 4.23. The period of
the training period was in May, July, and September 2, 2012, testing period was
28 days from 3 to 31 September 2012, while the validation period was July and
August as shown in Fig. 4.22. Based on Figs. 4.20, 4.21, 4.22, and 4.23, similar

Fig. 4.19 Cross-correlation between ZTD ANFIS model and GPS ZTD data of Fig. 4.18 during
the validation period for a ANFIS FSC and b ANFIS FCM

Fig. 4.20 Variation of ZTD estimated from ANFIS FSC and ANFIS FCM models compared with
GPS ZTD data at NTUS station during the a training, b testing, and c verification for (A) P, (B) T,
(C) H, (D) P and H, (E) P and T, (F) T and H, and (G) P, T, and H
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results are obtained for NTUS and UMSK stations. The ANFIS FSC and
ANFIS FCM models were successful to estimate ZTD values with three input
variables (P, T, and H). By these three input variables, the ZTD model shows a
relatively small error of size distribution and the R2 value was greater than 0.99 (see
Figs. 4.21 and 4.23).

The other detailed statistics (RMSE, MAE, and PE) in performing the estimation
of the ZTD values between ANFIS ZTD models and observed GPS ZTD data for

Fig. 4.21 Cross-correlation between ZTD ANFIS model and GPS ZTD data of Fig. 4.20 during
the validation period for a ANFIS FSC and b ANFIS FCM

Fig. 4.22 Variation of ZTD estimated from ANFIS FSC and ANFIS FCM models compared with
GPS ZTD data at UMSK station during the a training, b testing, and c verification for (A) P,
(B) T (C) H (D) P and H, (E) P and T, (F) T and H, and (G) P, T, and H
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Malaysia station (UKMB and UMSK) and Singapore station (NTUS) are compiled
in Table 4.3 and Fig. 4.24. As shown in Table 4.3, the lowest error at all three
stations using ANFIS FSC and ANFIS FCM models that use a combination of three
input variables (P, T, and H) either during the training, testing, and validation was
smaller. This will provide a convincing finding that in the equatorial region, the best
performance for estimating the ZTD uses three input variables. Although the results
of the performance evaluation model will increase the accuracy and the ability of
ANFIS model in estimating the ZTD, a combination of the two input variables
(P and H) and (P and T) is not suitable for the areas of Malaysia and Singapore.
This can be seen from the Table 4.3, where the error generated is quite large and the
correlation between estimated ZTD with ANFIS model and GPS ZTD is very weak.
The results of second best performance in the estimation of ZTD value at three
selected stations is used by two combination inputs of T and H, where its error is
below the three input variables (P, T, and H). Table 4.3 shows that the configuration
model with three inputs has smallest errors of below 0.1 %.

4.4.1 Comparison of ZTD from TroWav, IGS, and ANFIS

From processing of GPS data, we are now able to compare the ZTD values obtained
from ANFIS FSC and ANFIS FCM models, GPS TroWav, and IGS. For Malaysia,
we used the TroWav program to estimate the ZTD value. Indeed, the IGS ZTD at
NTUS station is employed to compare the ZTD from TroWav and ANFIS models.
The IGS ZTD data from NTUS is available with a resolution of five minutes.

Fig. 4.23 Cross-correlation between ANFIS ZTD model and GPS ZTD from Fig. 4.22 during the
validation period for a ANFIS FSC and b ANFIS FCM
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Figure 4.25 shows the comparison results of estimated ZTD for the case of
December 2009 in a five-minute resolution.

The figure shows that there is a difference between ZTD generated from IGS and
ZTD values generated from TroWav and ANFIS models, where the IGS ZTD is
greater than the other methods. Moreover, the trend pattern of ZTD from TroWav
and ANFIS models is not completely follows the trend of IGS ZTD. This com-
parison gives the impression that the IGS ZTD does not have a strong correlation
with other methods. This condition shows that the ZTD from ANFIS models was
trained using data from TroWav ZTD. Meanwhile, IGS ZTD is processed using
GIPSY software with Niell hydrostatic mapping function with a cutoff elevation
angle of 7° (Byun and Bar-Saver 2009). The TroWav ZTD is generated with VMF1
mapping function (Suparta 2014). On the other hand, a network configuration plan
and design strategies in the processing the ZTD values may affect the product
(Jin et al. 2007). Table 4.4 shows the statistical difference between IGS ZTD and

Fig. 4.24 Statistical comparison of error percentage (PE) between GPS ZTD and ANFIS ZTD
models at the three selected stations in Equatorial region during the process of a training, b testing,
and c validation
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ZTD from TroWav and ANFIS models. From the Table 4.4, the range difference
with the reference value of ZTD estimated using TroWav and ANFIS model is from
−1.391 to −0.214 cm and the RMS is from 0.192 to 0.193 cm.
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Chapter 5
Prediction of ZTD Based on ANFIS Model

Abstract Since the tropospheric delay plays a crucial role in meteorological
studies and weather forecasts as well as positioning accuracy, accurate prediction of
its value is critical to helping monitoring the ZTD variation on a global basis. In the
previous chapter, ZTD has been estimated with a fuzzy inference system that uses a
back-propagation algorithm. The input of the system is surface meteorological data
and the test output is ZTD from GPS. For a test case, a combination of surface
pressure (P), temperature (T), or relative humidity (H) is performed to obtain the
best estimation of ZTD model. Based on the prospect of ZTD estimation using
ANFIS, this chapter will focus on how to predict ZTD value using the surface
meteorological data.

Keywords Estimation of ZTD � ANFIS models � Configuration inputs � Surface
meteorological data � Predictive model

5.1 Configuration Model for Estimation and Prediction
of ZTD

After successfully applying the ANFIS models to estimate and investigate the ZTD
value from three inputs of surface meteorological data, we developed the ANFIS
model to predict ZTD value. We determine the predictive model from one to a
certain step ahead to measure how high the accuracy of ZTD predicted from the
previous data availability. Table 5.1 shows the two different groups (I, II) of model
configuration input used for prediction of ZTD. We developed one input combi-
nation with a different number of variables (P, T, and H) and inserted into the input
layer to predict the ZTD value. The best structure of ANFIS model was examined
according to the evaluation criteria. Afterward, the selection of input variables and
determining the architecture of ANFIS models such as type and number of mem-
bership functions (MFs) are considered to satisfy the predictive models developed.
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This includes the selection of parameters in the training procedure, such as the
epoch number, training goal, and step sizes. Figure 5.1 summarizes how to get the
ZTD prediction using ANFIS model (Suparta and Alhasa 2013a).

5.2 Prediction Results

5.2.1 Results from Selected Stations in Antarctica

After the training process, the ANFIS models showed that they were able to capture
all the characteristics of ZTD. Since the meteorological data obtained was missing
especially for OHI2 stations, we used the November data for the validation process
due to the data accessibility at the five selected stations. Figure 5.2 showed the
results of the general performance of the constructed ZTD model from one-step to
eight-step ahead for both models (FCM (I) and FSC (II)) in comparison with
GPS ZTD at selected stations in Antarctica. The bottom graph in each panel shows
the ZTD data from GPS ZTD. The graph above GPS ZTD as indicated by t + 1 to
t + 8 is the prediction result with meteorological data as input.

As demonstrated in Fig. 5.2, the blank value in the figure shows no data, either
GPS or meteorological data, and the ZTD value in each step obtained from pre-
diction results is shifted every 0.10 m from GPS ZTD to see more clearly their
variations. The similar prediction result for selected stations in Antarctica Peninsula
is presented in Fig. 5.3. As shown in both figures, two ANFIS models (ANFIS FSC
and ANFIS FCM) were used to build the predictive models at all stations. Based on
data availability, we use data at intervals of 10-min (SBA), 5-min (DAV1), and 3-h
(SYOG, PALM, and OHI2) in the development of predictive models for selected
stations in Antarctica. The results clearly show that the models were able to capture
all the characteristics that existed in the GPS ZTD value, and could predict ZTD
very well from one-step to eight-step ahead. On the right panel of each figure also
indicated prediction step from t + 1 until t + 8, which means that t + 1 is ZTD

Table 5.1 Summary of configuration inputs used in the development of ANFIS model for
estimation and prediction of ZTD

Group Combination Input Output

I A1 P(t) ZTD(t)

A2 T(t) ZTD(t)

A3 H(t) ZTD(t)

A4 P(t), H(t) ZTD(t)

A5 P(t), T(t) ZTD(t)

A6 T(t), H(t) ZTD(t)

A7 P(t), T(t), H(t) ZTD(t)

II B1 P(t − 1 s), P(t), T(t − 1 s), T(t), H(t − 1 s), H(t) ZTD(t + i)
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Fig. 5.1 Flowchart of prediction of ZTD from ANFIS model
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prediction for the first 10 min (SBA), or for the first 3-h (SYOG, PALM, and
OHI2). For t + 5, it means that the ZTD prediction is in the 50th min (SBA), or
prediction for SYOG, PALM, and OHI2 at 15:00 h, while ZTD prediction at t + 0 is
obtained similar with the value of GPS ZTD. In other words, the figure shows the
time step of prediction which depends on the interval data used.

Figure 5.4 summarizes the entire value of estimation errors or accuracy of ZTD
prediction for Antarctica. The error was found to be below 1 %, where (a) SBA and
(b) DAV1 showed an almost similar trend of estimation errors compared to
(c) SYOG, (d) PALM, and (e) OHI2. The trend of estimation errors for the last three
stations with a 3-h interval will increase when each step ahead of prediction is

Fig. 5.2 Prediction of ZTD trend from one-step to eight-step ahead during the period of
November 2010 for Antarctica Coast at a SBA, b DAV1, and c SYOG stations for ANFIS FCM
(I) and ANFIS FSC (II), respectively
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increased. This increasing trend confirmed due to a low data interval (3-h) used as
compared to other two stations. The prediction can be made for more than t + 8,
however, its accuracy will be reduced significantly.

Table 5.2 showed the relationship of ZTD obtained between GPS and ANFIS
models (FSC and FCM) from one-step until eight-step ahead. The table simplified

Fig. 5.3 Prediction of ZTD trend from one-step to eight-step ahead during the period of
November 2010 for Antarctica Peninsula: d PALM and e OHI2 stations

Fig. 5.4 The estimation errors of ZTD prediction from one-step until eight-step ahead using the
ANFIS models compared to GPS ZTD for a SBA, b DAV1, c SYOG, d PALM, and e OHI2
stations
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that the coefficient of determination (R2) value obtained was larger than 0.90, which
clarified that the ANFIS models are accurate and consistent in different subsets.
However, at seven and eight steps predictions of SYOG, the ANFIS models were
not able to cover all the characteristics of ZTD value, as indicated by its lower R2

values (below 0.60). The (d) PALM and (e) OHI2 stations with a 3-h data reso-
lution had a similar trend of estimation error with (c) SYOG, where the trend error
will be gradually increased when the step ahead increased. In contrast to other
stations in the Antarctica coast, (d) PALM, and (e) OHI2 were observed to have R2

values lower than 0.80. The moderate values of R2 in these two stations for
increasing step prediction ahead were possibly due to the atmospheric conditions in
the Antarctica peninsula that had affected the model accuracy. Overall, the per-
formance of the two ANFIS models developed was very good as indicated by
smaller estimation error (see Fig. 5.4), which clarifies that the ANFIS models can be
an alternative method to predict the ZTD value (Suparta and Alhasa 2015). From
Figs. 5.3, 5.4, and Table 5.2, we found that one-step until eight-step ahead was the
best in a predictive model for Antarctica region based on the data resolution used.
On the other hand, the prediction with more than nine steps will significantly
decrease its accuracy. We noted that the accuracy of the predictive model devel-
oped, in this case, will be dependent on the data resolution available.

5.2.2 Results from Selected Stations in Equatorial Region

For prediction of ZTD value at selected stations in Equatorial region, the same
structure and algorithm as in Antarctica were employed. For the prediction
development, we used a one-min interval of surface meteorological data (P, T, and
H) for all stations selected as inputs. To realize the configuration in group II (B1),
the overall data for November 2009 has been chosen for UKM station, and month
of December 2012 was chosen for NTUS and UMSK stations. Figure 5.5 shows the

Table 5.2 Correlation of determination (R2) for prediction of ZTD obtained between GPS and
ANFIS models (FSC and FCM) from one-step until eight-step ahead at five selected stations in
Antarctica

Step SBA DAV1 SYOG PALM OHI2

FSC FCM FSC FCM FSC FCM FSC FCM FSC FCM

t + 1 0.961 0.956 0.940 0.939 0.949 0.950 0.825 0.824 0.789 0.759

t + 2 0.956 0.964 0.938 0.940 0.926 0.926 0.790 0.785 0.773 0.759

t + 3 0.958 0.958 0.941 0.942 0.885 0.879 0.737 0.756 0.733 0.729

t + 4 0.950 0.942 0.912 0.942 0.819 0.824 0.680 0.637 0.690 0.689

t + 5 0.965 0.959 0.940 0.936 0.747 0.751 0.622 0.604 0.642 0.644

t + 6 0.963 0.957 0.942 0.942 0.679 0.629 0.520 0.495 0.564 0.594

t + 7 0.960 0.940 0.942 0.924 0.587 0.569 0.431 0.465 0.511 0.537

t + 8 0.957 0.948 0.941 0.941 0.516 0.483 0.428 0.423 0.472 0.485
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prediction of ZTD results for UKMB station. With 1-min data resolution, the
prediction can be made until t + 15 for the best ZTD value. As shown in the figure,
the blank value in the figure shows no data for the period from 17 to 23 November
2009 either GPS or meteorological data. In addition to the similar presentation
results as in Antarctica, the ZTD value in each step is shifted every 0.10 m from
GPS ZTD value.

Similar figure, as in Fig. 5.5 for NTUS and UMSK stations, is depicted in
Fig. 5.6. The blank data for UMSK station was recorded for the period from 18 to
29 December 2012. The trend and variation of predicted ZTD showed no difference
from GPS ZTD data, and for this result, the prediction from one-step to fifteen-step
ahead obtained with a very good correlation. Figure 5.7 summarizes the entire value
of estimation errors in ZTD prediction for selected stations in Equatorial region.
The error was found to be below 0.18 %, where (a) UKMB and (c) UMSK showed
an almost similar trend of estimation errors compared to (b) NTUS. The trend of
estimation errors for (b) NTUS is in the range of 0.07 % to below 0.16 % with
0.01 % different between ANFIS FSC and ANFIS FCM for all steps prediction. The
low error for NTUS is due to no data missing as compared to the other two stations.
Table 5.3 compiled the relationship of ZTD obtained between GPS and ANFIS
models (FSC and FCM) from one-step until fifteen-step ahead. The table simplified
that the R2 value obtained was larger than 0.90, which clarified that the ANFIS
models are accurate and consistent in different subsets.

The combination B1 (group II) as the input layer with a gauss function was
selected as a membership function to satisfy the structure of ANFIS models. We
noted that the number of rules should be determined carefully to prevent
over-parameterization of ANFIS model and to improve time efficiency requested
for training structure and determining parameters. In addition, the selection of
parameters such as training step and iteration number is important because the
appropriate number can progress the model efficiency in training, test, and vali-
dation steps, and prevents the model to be over trained. After training, the different
structure of ANFIS model via different epoch number and step size parameters

Fig. 5.5 Prediction of ZTD trend from one-step to fifteen-step ahead during the period of
November 2009 for a UKMB station in equatorial region
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found that 200 epochs satisfied the training network with 2 × 10−4 as the goal of
performance and 0.05 as the initial step size. With this network, the results
demonstrated that ANFIS has been successfully applied to establish the predictive
models that could provide accurate and reliable ZTD values.

Fig. 5.6 Prediction of ZTD from one-step to fifteen-step ahead for the period of December 2012
at b NTUS, and c UMSK stations in for equatorial region

Fig. 5.7 The estimation errors of ZTD prediction from one-step until fifth teen-step ahead using
the ANFIS models compared to GPS ZTD for a UKMB, b NTUS, and c UMSK stations
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5.3 Estimation of ZTD Value from Model Developed

Group I (A1…A7) from Table 5.1 is set for estimation of ZTD value with an input of
surface meteorological data. We estimated the ZTD for three selected stations
(CAS1, MCM4, and SYOG) in Antarctica. Since the other input or its combination
was shown weak correlation, we only selected four inputs with (a) P, (b) P and T,
(c) P and H, and (d) P, T, and H. In this test case, ZTD value is estimated by using
both ANFIS FCM and ANFIS FSC models. The curve used in the formation of the
membership function is ‘gaussmf’. The formation rule of Sugeno-Takagi with FIS
type is using a linear equation. There are two linear equations in this FIS that has
been optimized to estimate ZTD as expressed in Eqs. 5.1 and 5.2.

ZTD ANFIS FSC ¼
X2
i¼1;2

wifi ¼ wi AiðPÞþBi Tð ÞþCi Hð ÞþDið Þ ð5:1Þ

ZTD ANFIS FCM ¼
X2
i¼1;2

wifi ¼ wi AiðPÞþBi Tð ÞþCi Hð ÞþDið Þ ð5:2Þ

where wi¼1;2 is taken as the normalized firing strength in the third layer and ZTD is
in meter. If the predicate α for the two rules are w1 and w2, then the weighted
average for ZTD can be calculated as

Table 5.3 Correlation of
determination (R2) for
prediction of ZTD obtained
between GPS and ANFIS
models (FSC and FCM) from
one-step until fifteen-step
ahead at three selected
stations in equatorial region

Step UKMB NTUS UMSK

FSC FCM FSC FCM FSC FCM

t + 1 0.980 0.978 0.954 0.949 0.989 0.984

t + 2 0.963 0.961 0.945 0.938 0.981 0.976

t + 3 0.949 0.946 0.933 0.929 0.973 0.969

t + 4 0.938 0.934 0.926 0.925 0.967 0.967

t + 5 0.926 0.921 0.918 0.911 0.960 0.956

t + 6 0.913 0.909 0.907 0.904 0.953 0.949

t + 7 0.908 0.898 0.904 0.897 0.949 0.943

t + 8 0.894 0.887 0.891 0.890 0.941 0.937

t + 8 0.894 0.887 0.891 0.890 0.941 0.937

t + 9 0.885 0.876 0.885 0.883 0.936 0.931

t + 10 0.868 0.866 0.883 0.876 0.930 0.925

t + 11 0.868 0.856 0.873 0.869 0.933 0.929

t + 12 0.847 0.846 0.864 0.861 0.928 0.923

t + 13 0.830 0.829 0.862 0.858 0.928 0.924

t + 14 0.828 0.826 0.857 0.848 0.905 0.899

t + 15 0.828 0.817 0.844 0.842 0.901 0.893
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ZTD ¼ w1f1 þw2f2
w1 þw2

¼ w1f1 þw2f2 ð5:3Þ

w1 and w2 can be calculated using Eqs. 2.5–2.8 (see Chap. 2), where Eq. 2.4 is
calculated using ‘gaussmf’ function in MATLAB. The rule values (consequent
parameters), f1 and f2 are obtained by a least square method. Now, with the Eq. 5.3,
the ZTD at each station can be determined either using FSC or FCM model. For
each station, the linear equation for FSC and FCM are obtained as follows:

CAS1:

f1;FSC ¼ 0:002067Pþ 0:001170T � 0:000158200Hþ 0:25440

f2;FSC ¼ 0:001775Pþ 0:001090T þ 0:00009403Hþ 0:54720

f1;FCM ¼ 0:002237Pþ 0:001783T þ 0:00004162Hþ 0:08865

f2;FCM ¼ 0:002236Pþ 0:002386T þ 0:00042290Hþ 0:05803

MCM4:

f1;FSC ¼ 0:002150Pþ 0:001103T � 0:00001739Hþ 0:11540

f2;FSC ¼ 0:002339Pþ 0:001541T þ 0:00038910H � 0:09675

f1;FCM ¼ 0:002106Pþ 0:000939T � 0:0001247Hþ 0:14760

f2;FCM ¼ 0:002313Pþ 0:001307T � 0:0005171H � 0:08295

SYOG:

f1;FSC ¼ 0:001985Pþ 0:001833T þ 0:00009787Hþ 0:3283

f2;FSC ¼ 0:002286Pþ 0:001246T þ 0:00021780Hþ 0:0098

f1;FCM ¼ 0:002202Pþ 0:001210T þ 0:00009170Hþ 0:0990

f2;FCM ¼ 0:002202Pþ 0:003363T � 0:00040200Hþ 0:1631

where P is the surface pressure (mbar), T is the surface temperature (in degree
Celsius), and H is the relative humidity (in percent). After w1 and w2 obtained, then
ZTD value can be computed using Eq. 5.3.

Figure 5.8 shows the ZTD estimation for Casey station (CAS1). A similar result
for MCM4 and SYOG is presented in Figs. 5.9 and 5.10, respectively. From the
selected surface meteorological data as an input, ZTD estimated with three inputs of
surface meteorological data shows the best performance with high accuracy com-
pared with only one input P, T, or H. Alternatively, the model with two inputs such
as pressure and temperature (P, T) will also be competitive in estimating the ZTD.
However, it has been tested that estimation of ZTD without P, or just with T or
H alone or a combination of T and H as input, will not get any correspondence
with the trend of GPS ZTD. This is to confirm that the combination of T and H,
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or T or H alone as an input in Table 5.1 is not employed to estimate ZTD. For
Antarctica region, the surface pressure likely plays a major role in determining the
characteristic of the atmosphere at the target station. The statistical result of model
comparison from a given input to estimate ZTD from the two ANFIS models is
presented in Table 5.4. From the table, it is shown that ANFIS FSC model is almost
comparable with ANFIS FCM model for estimation of ZTD.

Fig. 5.8 Variation of ZTD estimated from ANFIS FCM and ANFIS FSC models compared with
ZTD data from GPS at CAS1 station, Antarctica for the period from July to December 2005, after
validation process

Fig. 5.9 Variation of ZTD estimated from ANFIS FCM and ANFIS FSC models compared with
ZTD data from GPS at MCM4 station, Antarctica for the period from July to December 2005, after
the validation process
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Figure 5.11 shows the example of ZTD estimation with three meteorological
data (P, T, and H) as the input for a one-hour interval. As shown in the figure, the
variation of ZTD from both models is very closer. In this case, the ANFIS FSC is
more accurate to 2.3 % compared to the ANFIS FCM method. In addition, esti-
mation of ZTD using ANFIS techniques with three surface meteorological data as
the inputs are more promising with an accuracy of 20 % higher compared to other
inputs. This would provide a new alternative where the GPS data is not necessary to
determine ZTD (Suparta and Alhasa 2013b).

Fig. 5.10 Variation of ZTD estimated from ANFIS FCM and ANFIS FSC models compared with
ZTD data from GPS at SYOG station, Antarctica for the period from July to December 2005, after
the validation process

Table 5.4 Statistical result to estimate ZTD between the two models compared to GPS ZTD for
the period from July to December 2005 at three selected stations over Antarctica. The unit for
MAE and RMSE is in cm

Model Input Casey (CAS1) McMurdo (MCM4) Syowa (SYOG)

MAE PE RMSE MAE PE RMSE MAE PE RMSE

ANFIS
FSC

P 1.52 0.67 1.85 1.42 0.64 1.81 1.37 0.61 1.59

P, H 1.41 0.63 1.73 1.15 0.52 1.49 1.29 0.57 1.52

P, T 0.73 0.32 0.96 0.74 0.33 1.10 0.45 0.20 0.60

P, T, H 0.72 0.31 0.96 0.65 0.29 1.01 0.43 0.19 0.57

ANFIS
FCM

P 1.52 0.67 1.84 1.38 0.62 1.77 1.36 0.60 1.59

P, H 1.44 0.63 1.75 1.16 0.52 1.50 1.30 0.58 1.52

P, T 0.73 0.32 0.96 0.74 0.33 1.10 0.44 0.20 0.59

P, T, H 0.79 0.35 1.04 0.66 0.29 1.02 0.44 0.19 0.59
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5.4 Prediction of ZTD Value from Model Developed

After successfully estimating ZTD value using group I configuration, and based on
the accuracy demonstrated in Figs. 5.4 and 5.7, and the strong correlation between
ANFIS ZTD and GPS ZTD in Tables 5.2 and 5.3, we employed the surface
meteorological data for prediction of ZTD. This prediction is proposed to anticipate
the unavailable future data for the estimation process. For the selected surface
meteorological data as an input, the combination input layer B1 (group II) was used
to predict ZTD value at selected stations. We use both the models (FCM and FSC)
that have been trained to predict the ZTD value.

Fig. 5.11 Estimation of ZTD from three surface meteorological data at three selected stations in
Antarctica for the period of January 2010
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The equation to calculate of ZTD prediction is expressed in Eq. 5.4. This
equation is similar to Eq. 5.3, which is capable to determine the ZTD prediction at
each station either using ANFIS FSC or ANFIS FCM models.

ZTD tþ ið Þ ¼ w1f1 þw2f2 þ � � � þwnfn
w1 þw2 þ � � � þwn

; i ¼ n ¼ 1; 2; 3; . . .m ð5:4Þ

where w1, w2, and wn is obtained from multiple incoming signals membership
grades of the input variable as shown in Eq. 5.5, t is time, and f1, f2, and fn are rules
(consequent parameters) or linear equations for the output obtained by a least
square method.

wi ¼ lP t�1ð Þi � lP tð Þi � lT t�1ð Þi � lT tð Þi � lH t�1ð Þi � lH tð Þi; i ¼ 1; 2; 3. . .n ð5:5Þ

where μ is a membership grade of input variable (P, T, and H) calculated using the
gauss membership function equation (see group II or B1 configuration), as
expressed in Eq. 5.6. On the other hand, wi represents the firing strength of a rule.

l ¼ exp � 1
2

x� ci
ai

� �2
" #

; i ¼ 1; 2; 3. . .n ð5:6Þ

where a (sigma) and c (center) are called {a, c} as premise parameters and x is a
data point (e.g., P, T, or H).

For the assessment in Antarctica region, we selected surface meteorological data
on 1–2 January 2011. For an example case, we predict ZTD for SYOG station at
t + 4 (i = 4 from Eq. 5.4). Note that the surface meteorological data at SYOG station
is available at a 3-h of data resolution. By this resolution, we present two days of
data (48 h) to see the trend of prediction results. Although the data is more than one
day, the ZTD is predicted by day per day and superimposed in a graph. The premise
and consequent parameters for the four steps ahead that have been trained for
ANFIS FCM and ANFIS FSC models are compiled in Tables 5.5, 5.6, 5.7, and 5.8,
respectively. Each input is to have a gauss membership function {a, c}. From
Tables 5.7 and 5.8, we found seven rules based on the trial-and-error process to
obtain an optimum value of ZTD prediction. The prediction of ZTD is referring to
the value and trend of GPS ZTD from IGS. Then in each rule, we can produce
seven equations, where each equation is with three inputs (P, T, and H).

From Tables 5.5 and 5.6, the ZTD can be computed using Eq. 5.4 where con-
sequent parameter (f) in each rule in Table 5.6 is summed (from f1 to f7) and the
value of {a, c} (membership functions) in Table 5.5 is computed using Eq. 5.5. The
coefficient or value in front of each variable input in Table 5.6 (e.g., 5.424 × 10−292

in the first rule) is obtained using a least squared method from ANFIS Toolbox of
MATLAB. The number of rules is obtained based on the trial-and-error process.
A similar method for prediction of ZTD based on the ANFIS FSC at t + 4
(*12:00 h) for SYOG is presented in Tables 5.7 and 5.8. It is clearly shown that
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the value of membership functions {a, c} between the two table is not similar
although it is carried out with the same process. The different result is due to the
different method used (FCM or FSC) to generate FIS. By a different initial, FIS will
result in different values in training.

Figure 5.12 shows the result of ZTD prediction for t + 4 or at 12 h ahead at
SYOG station. The figure showed the ZTD predicted by ANFIS (FCM and FSC)
models and ZTD from GPS is plotted for 48 h. ZTD from GPS in this tested case
was obtained from the database of Crustal Dynamics Data Information System
(CDDIS) NASA (see Sect. 4.2.2) with the resolution of one-min. As shown in the
figure, ZTD trend from ANFIS models at t + 4 are closely correlated and are
exhibited with an almost similar trend to the GPS ZTD. However, the ANFIS ZTD
is only captured about 78 % compared to ZTD trend from GPS. This indicated that
more steps of prediction will decrease its trend accuracy. Data resolution also plays
a crucial role in determining the accuracy of prediction. In addition, more step of
prediction will lead to more decrease of its accuracy.

For the assessment of Equatorial region, we selected surface meteorological data
on January 1st, 2010. For an example case, we predict ZTD for t + 8 for NTUS
station. The surface meteorological data (P, T, and H) for ZTD prediction is with a
one-min interval. We use a similar approach as in Antarctica, where the premise and
consequent parameters for eight steps ahead that has been trained are compiled in
Tables 5.9 and 5.10 (ANFIS FCM) and Tables 5.11 and 5.12 (ANFIS FSC). In the
ANFIS FCM model, we found three rules to obtain the best prediction of ZTD.
Then it has been chosen when the ANFIS model reaches an acceptable satisfactory
level. Note that the ZTD from GPS for NTUS is computed using TroWav program
(Suparta et al. 2008; Suparta 2014).

Table 5.6 The consequence parameter of ANFIS FCM model for t + 4 at SYOG station

Rule Then—part

Equation for f = consequent parameter

1 3.971 × 10−3P(t − 1 s) + 5.369 × 10−3P(t) + 6.893 × 10−4T(t − 1 s) + −1.522 × 10−3

T(t) + −4.839 × 10−4H(t − 1 s) + 4.466 × 10−4H(t) + −0.248

2 6.583 × 10−3P(t − 1 s) + −7.503 × 10−3P(t) + −0.138T(t − 1 s) + 0.215
T(t) + 1.354 × 10−2H(t − 1 s) + 4.021 × 10−2H(t) + 0.646

3 4.295 × 10−22P(t − 1 s) + 4.290 × 10−22P(t) + −4.333 × 10−25

T(t − 1 s) + −5.090 × 10−25T(t) + 3.682 × 10−23H(t − 1 s) + 3.664 × 10−23

H(t) + 4.261 × 10−25

4 4.103 × 10−8P(t − 1 s) + 4.104 × 10−8P(t) + 1.022 × 10−11T(t − 1 s) + 1.670 × 10−11

T(t) + 3.608 × 10−9H(t − 1 s) + 3.590 × 10−9H(t) + 4.072 × 10−11

5 −2.868 × 10−3P(t − 1 s) + 3.198 × 10−3P(t) + −6.403 × 10−4T(t − 1 s) + 7.534 × 10−3

T(t) + 1.280 × 10−3H(t − 1 s) + 1.864 × 10−3H(t) + 2.081

6 −7.981 × 10−3P(t − 1 s) + 9.620 × 10−3P(t) + −2.162 × 10−3T(t − 1 s) + 3.225 × 10−3

T(t) + 2.909 × 10−4H(t − 1 s) + 9.033 × 10−4H(t) + 0.623

7 −6.59 × 10−28P(t − 1 s) + −6.566 × 10−28P(t) + −3.104 × 10−31

T(t − 1 s) + 6.115 × 10−32T(t) + −5.800 × 10−29H(t − 1 s) + −5.761 × 10−29

H(t) + −6.582 × 10−31
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Tables 5.11 and 5.12 compiled the premise and consequent parameters for eight
steps head of ZTD prediction at NTUS using ANFIS FSC model. In this opti-
mization, we found five rules for the best prediction of ZTD. The more the rules
found in optimization (trial-and-error process) are likely to be more accurate in its

Table 5.8 The consequence parameter of ANFIS FSC model for t + 4 at SYOG station

Rule Then—part

Equation for f = consequent parameter

1 5.424 × 10−292P(t − 1 s) + 5.425 × 10−292P(t) + −3.767 × 10−295

T(t − 1 s) + −5.920 × 10−295T(t) + 4.706 × 10−293H(t − 1 s) + 4.425 × 10−293

H(t) + 5.382 × 10−295

2 −4.906 × 10−3P(t − 1 s) + 9.469 × 10−3P(t) + 4.146 × 10−4T(t − 1 s) + −1.324 × 10−3

T(t) + −4.716 × 10−4H(t − 1 s) + 5.994 × 10−4H(t) + −2.156

3 −4.934 × 10−3P(t − 1 s) + 6.387 × 10−3P(t) + −3.809 × 10−4T(t − 1 s) + 2.048 × 10−3

T(t) + −1.536 × 10−4H(t − 1 s) + 2.223 × 10−4H(t) + 0.871

4 −1.608 × 10−2P(t − 1 s) + 1.860 × 10−2P(t) + −7.392 × 10−3T(t − 1 s) + 1.123 × 10−2

T(t) + −7.124 × 10−4H(t − 1 s) + 2.224 × 10−3H(t) + 0.0320

5 −1.196 × 10−3P(t − 1 s) + 7.315 × 10−4P(t) + −2.730 × 10−3T(t − 1 s) + 1.761 × 10−3

T(t) + 4.747 × 10−4H(t − 1 s) + −1.790 × 10−4H(t) + 2.626

6 6.310 × 10−2P(t − 1 s) + −6.587 × 10−2P(t) + 0.014T(t − 1 s) + −1.034 × 10−2

T(t) + 9.761 × 10−3H(t − 1 s) + 8.589 × 10−3H(t) + 3.763

7 −6.859 × 10−4P(t − 1 s) + −6.750 × 10−4P(t) + −1.324 × 10−6T
(t − 1 s) + −1.147 × 10−6T(t) + −5.464 × 10−5H(t − 1 s) + −5.149 × 10−5

H(t) + −6.519 × 10−7

Fig. 5.12 The prediction of ZTD for SYOG station at t + 4 for the period on 1–2 January 2011
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predictions but, with consequences, require high computing time. In contrast, the
more the rule obtained does not guarantee the obtained ZTD values as accurate.
This is because each process requires the adjustment of rules and membership
functions to avoid overfitting. In other words, trial-and-error process is the best way
to get how much the rule required for suitable prediction of ZTD.

Figure 5.13 shows the result of ZTD prediction at t + 8 ahead for NUTS station
in UTC time. The figure also shows the prediction after t + 8 until 24 h. The result
shows the ZTD in NTUS that is more tidy and smooth compared to ZTD trend at
SYOG. In this case, the ANFIS models were successfully and completely follow
the pattern of GPS ZTD. This indicates that ANFIS model developed with a
one-min resolution is more accurate to predict the ZTD value. The different
between GPS ZTD and ZTD from ANFIS is below 1 %, which implies that the
highest of resolution data to be used in the prediction process will obtain a high
accuracy of the ZTD value.

The overall assessment showed that the ANFIS models (FCM and FSC) are
capable to estimate and predict the ZTD value. Both models are proven to be most
reliable fuzzy clustering and ability to deal with uncertainties and noise. The MFs of
type (Gauss) for all input variables and linear for output were successfully
demonstrated the best prediction of ZTD. In this method, the number of MFs
assigned to each input variable is chosen by trial-and-error. A good agreement has
been obtained in the predicted values compared with the measurable values. These
results indicate that the ANFIS models with low costs are a reliable and simple
model for predicting the ZTD value with high accuracy. This implies that the
ANFIS techniques offer an alternative approach to conventional techniques and can
serve as reliable and simple predictive tools for the prediction. In other words,
ANFIS model in this study is an alternative technique to estimate and predict the
ZTD value by only using meteorological data as input.

Table 5.10 The consequence parameter of ANFIS FCM Model t + 8 for NTUS station

Rule Then—part

Equation for f = consequent parameter

1 −9.418 × 10−3P(t − 1 s) + 1.168 × 10−2P(t) + 1.503 × 10−3T(t − 1 s) + 1.289 × 10−2

T(t) + 2.686 × 10−4H(t − 1 s) + 2.428 × 10−2H(t) + −0.293

2 7.781 × 10−3P(t − 1 s) + −5.596 × 10−3P(t) + 1.355 × 10−2T(t − 1 s) + −1.675 × 10−3

T(t) + 1.016 × 10−3H(t − 1 s) + 3.908 × 10−3H(t) + −0.300

3 −7.170 × 10−3P(t − 1 s) + 9.118 × 10−3P(t) + 6.440 × 10−3T(t − 1 s) + 6.741 × 10−3

T(t) + 1.307 × 10−3H(t − 1 s) + 2.331 × 10−3H(t) + −0.02684
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