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Preface

This collection of problems results from the demand of students for sup-
plementary problems and support in the preparation for examinations.
With the present collection “Engineering Mechanics 1 - Formulas and
Problems, Statics” we provide more additional exercise material. The
subject “Statics” is commonly taught in the basic course of Engineering
Mechanics classes at universities.

The problems analyzed within these courses use equilibrium condi-
tions and the principle of virtual work to analyze static problems and
to compute reaction forces and stress resultants. These concepts are
the basic of many structural analyses of components used in civil and
mechanical engineering.

We would like to make the reader aware that pure reading and trying
to comprehend the presented solutions will not provide a deeper under-
standing of mechanics. Neither does it improve the problem solving
skills. Using this collection wisely, one has to try to solve the problems
independently. The proposed solution should only be considered when
experiencing major problems in solving an exercise.

Obviously this collection cannot substitute a full-scale textbook. If
not familiar with the formulae, explanations, or technical terms the rea-
der has to consider his or her course material or additional textbooks
on mechanics of materials. An incomplete list is provided on page IX.

Darmstadt, Stuttgart, Hannover, D. Gross
Essen and Kaiserslautern, Summer 2016 W. Ehlers
P. Wriggers
J. Schroder

R. Miiller
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Notation
For the solutions of the problems we used the following symbols:

1:  Short notation for sum of all forces in direction of the arrow
equal to zero.

a
A Short notation for sum of all moments with respect to reference
point A (with predetermined direction of rotation) equal to zero.

~ Short notation for from this follows that.
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Equilibrium



2 Equilibrium

Forces with a common point of application in a

plane _ .
A system of forces with a common point
of application can be replaced by a
statically equivalent force

F R:ZFi.

The system is in equilibrium, if

y\
ZFi:O
F;

x 1 or in cartesian components

P =, N i =0

Fyk Here we used the notation

Fi:Fizez+Fiyey7

<
8
X |

Fiyx = Ficosa; ,
Fiy = Fi sin (673

In a graphical solution, the equilibrium condition is expressed by a clo-
sed force polygon.

lines of action force polygon

Forces with a common point of application in
space

Equilibrium exists, if the resultant R = > F; vanishes, i.e. if Y F; =0
or in cartesian components

DB =0, P Ey =0, D =0,



Equilibrium 3
Here, the following notation is used

F; = Fizeq + Fiyey + Fize.

( Fix = Ficosa; ,
P E Fiy = Fi COS ,31 5
Vi F;, = F;cosvy; ,
Q;
Bi Fy . cos? a; 4 cos? B +cos?y; =1,
Fiz Y 2 2 2
V' |Fi|:Fi:\/Fz'z+Fz'y+Fz‘z-
X

General systems of forces in a plane

A general system of forces can be re-
placed by a resultant R = ) F; and
a resulting moment M 1(;‘) with re-
spect to an arbitrary reference point

A. Equilibrium exists, if

SF.=0, Y F,=0, Y M®*=o.

Instead of using the two force conditions, two alternative moment con-
ditions with different reference points (e.g. B and C') may be applied.
Here the points A, B and C' must not lie on a straight line.

Graphical solutions for the resultant force are obtained with the help
of the link polygon and the force polygon.

link polygon in layout diagram force polygon

Pol




4 Equilibrium

e The link lines s; are parallel to the lines S; in the force polygon.

e The line of action r of the resultant R (amplitude and direction
follow from the force polygon) goes through the intersection of the
outer link lines s; and ss5 of the link polygon.

e Equilibrium exists, if the link polygon and the polygon of forces are
closed.

General systems of forces in space

Equilibrium exists, if the resultant of forces

R-Y R
and the resulting moment
MI(%A) = Z’I‘i X Fi

with respect to an arbitrary reference point A vanish:

S Fi=0, Y M®=o0

or in component form

Do = D =0 DR S,
S =0, SmP =0, S MDY=

with

M(A> = yiFi. —2:Fyy Ml(;) = ziFix—x:Fiz Mi(:) =z Fiy—yiFix .
Here, x;, y; and z; denote the components of the position vector 7;,
pointing from the reference point A to an arbitrary point on the action
line of the force F; (e.g., pointing to the point of application).

Remark: As in the plane case, it is possible to replace the force
equilibrium conditions by additional moment equilibrium conditions
with respect to suitable axes.



Forces with a Common Point of Application

Problem 1.1 A sphere with the weight
W is suspended by a wire at a smooth
wall. The wire is fixed at the ball center.
Determine the force S in the wire.

Given: a = 60 cm, r = 20 cm.

ERRRS TR RAR R R

; P1.1

Solution a) analytical: All forces acting on the ball are made visible
in the free-body diagram. Therefore, we cut the wire and separate the

sphere from the wall. The force S in the wire is

acting in the direction

of the wire, the contact force N is acting perpendicular to the smooth
wall, and the external force W points in vertical direction. The three

forces are concurrent forces
The equilibrium conditions are

T Ssina—G=0
Solving for S and N yields
G

sina’

N =Scosa=Gcota.

The angle « follows from the system geometry:

20 1 .
cosa:r: = and sma—\/l—
a

60 3
This yields

3
S = G~1.06G.
V8

b) graphical: We draw a closed for-
ce polygon consisting of the known
force W (magnitude and action li-
ne are given) and the two forces S
and N, with given action lines. We
obtain from the image

S = ¢ N =Gcota.

sina’

BN . ... S
—: N —Scosa=0, L
&
p
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Problem 1.2 A smooth circular
cylinder (weight W, radius r) tou-

ches an obstacle (height h), as de- F
picted in the Figure. —
Determine the magnitude of the re- h

quired force F' to roll the cylinder T
over the obstacle.

Solution a) analytical: We isolate the cylinder from the base and the
obstacle. In the free-body diagram, we see the four concurrent forces
F,W, N1 and Nz acting at the cylinder. The equilibrium conditions are

R Nosina— F =0,
T Ni+ Nacosa—W =0

with the angle a following from
the system geometry:

r—nh
.

COos x =

The two equilibrium conditions contain
the three unknowns

Nl, N2 and F.

The force that initiates the cylinder to roll over the obstacle, also cau-
ses the cylinder to lift-off from the base. Then, the contact force N
vanishes:

w

N1 =0 ~> No = ~> F = Nosinaw=Wtana.
COS «

b) graphical: If Ny = 0, we can draw a
closed force polygon consisting of the
known force W (magnitude and acti-
on line are given) and the two forces
N2 and F' with given action lines. We
read from the image

No = W , F=Wtana.
cos «




Forces with a Common Point of Application 7
Problem 1.3 A large cylinder P1.3
(weight 4W, radius 2r) lies on top
of two small cylinders, each having 5
weight W and radius r. The small
cylinders are connected by a wire S
(length 3r). All surfaces are smooth.
Determine all contact forces and the
7
3r

magnitude of force S in the wire.

Solution We isolate the three cylinders and introduce the contact
forces in the free-body diagram. The forces acting at each cylinder are
concurrent forces. Due to the symme-
try of the problem we have only one

equilibrium condition at the large cy-

linder and two equilibrium conditions @

for one of the small cylinders. These g

are three equations for the three un- ‘k

known forces N1, N2 und S: N, a N,
@ 2N1cosa — AW =0, W) N, N

r 3
3r

S S

2 —: S — Nisina=0,
Ny
T N2 —Nicosa—W =0.

The angle « follows from the geome- 3 .
try of the problem:

. 3r/2 1 o
sina = 3 =9 ~ a=30
V3
~  cosq = , tana = .
3
Solving for the forces yields
= 2w :4\/3W, SzZWtanazz\/gW, No =2W4+W = 3W .
cos & 3 3

Remark: The contact force N2 could have been determined from the
equilibrium condition for the complete system:

Tt 2N —2W —4W =0 ~ Ny =3W .
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Problem 1.4 An excavator
has been converted to a demo-
lition machine.

Determine the forces in the
cables 1, 2 and 3 as well as in
the jib due to the weight W.

Remark: The jib only trans-
fers a force in the direction of
its axis (strut).

Solution We isolate the points A and B.
The equilibrium conditions for point A
yield

f Sacosa-W=0,) g,— V¥

cosa’

—: Sasina— S3=0, S3 = Wtana
and for point B (N is the force in the jib):

—:  —Sysina+ Nsin2a — Sisin3a =0,

T —Sscosa+ Ncos2a — Si1cos3a=0.

Alternatively, we obtain for point B with
a clever choice of the coordinate directi-
ons

v N —Sscosa— Sicosa=0,

N Sisina — Sysina = 0.

Thus, from the 2x2 = 4 equilibrium conditions, we obtain the following
results for the four unkowns Si, S2, S3, N:

S1:S2: ngWtanoz, N:2S2COSO(:2W.



Forces with a Common Point of Application 9
Problem 1.5 A high-voltage P15
power line is attached to an
insulator which is held by
three bars. The tensile force
Z in the sagging power line at
the insulator is to 1000 N.

Determine the magnitude of
the three forces in the three
bars.

Solution Equilibrium at the insulator yields (plane subproblem):
S
T §—2Zsin15° =0, t

~ S=2Zsinl5° =517N. Pl e

With the now known force S, the 3 forces in the bars result from the 3
equilibrium conditions at point A:

> F,=0: Sasina — Sysina =0,

S Fy,=0: Sicosa+ Sacosa+ Sscos =0,

SF.=0: Sgsinff—S=0.

The used auxiliary angles a and f follows from the geometry:

3a
a > T
2a z

Yy ;B
2a 2
l _\/32_12

sina = :;) ~ a=195° tanfB =

30 ~ [ =235.3".

Thus, we obtain the results

S3 = .S =173 5 =895 N,
sin 3
o cosfB S _ _
S1 =5 = S32cosa_ 2tan Bcosa 0,75 § = —388 N.

Remark: Due to symmetry conditions (geometry and load), it holds
So = 51.
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Problem 1.6 The system consists

of bar 3 which is held by two horizontal
wires 1 and 2 and which is loaded by a
force F'.

Calculate the forces in the bar and the
wires.

Solution We isolate point A by passing imaginary sections through the
bar and the wires. The internal forces are visualized in the free-body
diagram, they are assumed to be tensile forces. A suitable coordinate
system, with the base vectors pointing into the direction of the wires
and the force F, facilitates the calculation. The resulting forces lead to

SE,=0: S+ 83, =0, Sy 7

ZFyZOZ SQ+S3y:O7

SF=0: Si3+F=0.

The components of S3 are related to the geometrical lengths (L
length of bar 3)

S31‘ o 4a S3y o 3a 532 _ 5a

S3 L’ Ss3 L’ Ss L
or
531 : 5511 : S3Z =4 :3:5.
Substitution into the equilibrium conditions yields

Soe=-F,  S=-Sy=-.5 = F,

4 4
S1=—83. =—_053.=_F,
1 3 573 5

Ss = ng\/<§>2 + <§>2 +12 = —V2F.

Remark: The negative sign of S3 indicate a pressure force in bar 3.
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Alternative approach: We can also solve the problem by directly starting
from the equilibrium conditions in vectorial form:

S1+S2+Ss+F=0.

Each force is expressed by its directional vector (unit vector) and its
magnitude. For example, the directional vector for S3 is given by

S T P P
37 V42 432 452 5v/2
5 5
Thus, we obtain for the forces
1 0
Si=Se1=810], Sz =5e2=51[1],
0
1 4 0
S3 = S3e3 =53 3 s F=Fer=F]|0 s
5v2 5 1

and the equilibrium conditions now read

1 0 1 4 0
S1]0o]+521]1 +S35\/2 31+F|0]=0.
0 0 5 1

Hence, we obtain for the components

4
S1 + S3=0,
1 5\/23

3
Sa4+ _° Sy=0,
2 5\/2 3

5
Ss+F=0,
5v2 "

which from the forces in the bar and wires result as

S3 = —V2F, Sy ="F, S1=_F.
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Problem 1.7 An isosceles triangluar body
is loaded by the forces F', P and the weight
W.

The forces acting on the body shall first
be replaced by a resultant force and a re-
sultant moment at point A (reduction to
referencepoint A).

Determine the magnitude of the force F,
that the resultant moment around point A
vanishes, such that the body cannot tilt. ‘ ‘ ‘
Given: W =6 kN, P = /2kN, a = 1 m. 2a/3 /3

Solution We solve the problem in vectorial form and introduce a coor-
dinate system with its origin point A. The resultant force R is obtained
from the sum of the individual forces:

2
W=-We,, F=Fe,, P:\éP(em—ey)7

V2 V2 -
R=W+F+P=(F+ [ Ple.—(W+ " Pley. 777 77 =

The resultant moment M, is calculated with the lever arms

Y

a a 2a a
TAW:_3ez+3ey, TAF:_3ez+3ey7 TAPp = G €y

of each force with respect to A as

F 2P
MA:TAWXW"""AFXF-l-TAPXP:Mgaez— 3a62_\/2 Ye..

With the given values for GG, P and a, the magnitude of the force F'
can be chosen such that the moment M4 vanishes. It follows from the

condition M4 L 0:

Wa_ Fa_ V2 Pa
3 3 2

_3V2P

=0 ~ F=W = 6kN —3kN = 3kN.

Remark: In the two-dimensional case, the resultant moment only has
a z-component. This component can be more easily calculated from
the sum of the individual moments with respect to A (pay attention
to positive sense of rotation!) than by evaluating the cross product:

MY = (a/3)G — (a/3)F — a(v/2/2)P.
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Problem 1.8 A uniform beam
(weight W, length 4a) rests upon
the corner A and the smooth wall
at B.

Calculate the angle ¢ for which the
beam is in equilibrium.

T

P

NN

IS

Solution We isolate the beam
and sketch the free-body diagram.
From the condition ,smooth “, it
follows that the unkown forces N;
and N3 are perpendicular to the re-
spective contact plane. Thus, the
equilibrium conditions read

— Nising — N2 =0,
1 Nicosgp —W =0,
[ a

B: Ny —2acos¢p W =0.

cos ¢

They can be used to determine the three unknowns Ni, N2 and ¢. The
solution for ¢ is obtained by substitution equation 2 into equation 3:

aW

; 1
5, —2acosp W =0 ~ cos® = .
cos? ¢

2

The solution can be found more ea-
sily with the aid of the statement:
»Three forces are in equilibrium if
their lines of action pass through
one point and the according force
polygon is closed“. Thus, it follows
from the geometry:

a/ cos ¢

cos¢p ' ‘

2a cos p =

~  cos® ¢ =

P1.8
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Problem 1.9 A beam of length [
and negligible weight is placed hori-
zontally between two smooth inclined
planes. A block with the weight W
rests upon the beam.

At what distance x the block must be
placed in order to obtain equilibrium?
Determine the reaction forces?

Solution a) analytical: We sketch a free-body diagram and formulate
the equilibrium conditions:

T: Acosa+ Bcos—W =0, n%

— Asina— Bsinf =0, /% P{B
' @W —1Bcosf =0. QLJ;J 3

It follows therefrom

sin 8 sin a
A=W B=W
sin(a+ 3)’ sin(a+ 3)’
sinacos B l

sinfc +£) 1+ (tanB/tanc)

b) graphical: Three forces are in equilibrium if their lines of action pass
through one point and their force polygon is closed. Thus, the line of
action w of W follows directly from the intersection of the lines of action
a and b of the reaction forces A and B. We can see from the sketch:

tha+hMHﬁ:l}

htana = x
[
T = .
1+ tan 8/ tan «

The reaction forces (e.g. force A) follow
from the force triangle (sine rule):

A W B
sinf  sin[r — (a+B)]’ 1%
— A= sin 3 /

sin(a+ B)
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Problem 1.10 A homogeneous P1.10
cylinder (weight W, radius ) is held
by three struts and loaded by an ex-
ternal moment M.

Determine the forces in the struts.
For what magnitude of M, the force
in strut 1 is zero?

Solution We isolate the cylinder and sketch the free-body diagram.
The equilibrium conditions lead to

- \22524—53—51:07
T \éQSz—WZO,

2
ﬁ\: T\é So—rS1+M,=0.

Therefrom we obtain

Mo
S = , + W, 52:\/2W, S3 =

M,
o

The required moment follows from setting S1 to zero:

S1=0 ~> M, =—rW.

Remarks:

e Instead of point A, it is more convenient to use point B as the
reference point for the moment equilibrium condition. In this we
have only one unknown:

A M,
B: rW —rS1 + M, =0 ~ S1 = , +W.

e All forces in the bars are tensile forces.

e The force Sz in bar 2 is independent of M.

e The moment M, is in equilibrium due to the forces S; and Ss in
the bars 1 and 3.
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Problem 1.11 A vehicle of weight
W = 10kN and known mass center
C, stands on an inclined, smooth sur-
face (o« = 30°) and is held by a hori-
zontal rope.

Calculate the compressive forces on
the wheels.

Solution We cut the rope, isolate
the vehicle from the plane and sketch
the free-body diagram.

We use the equilibrium condition of
forces in the direction of the tilted
plane and two moment equilibrium
conditions with inclined to points A
and B. For the latter ones, we decom-
pose the forces G and D into their
components in direction of the plane
and perpendicular to it. It follows

A

)
A: 2aB+ aWsina — aW cos

T

Dcosa—Wsina =0,

—aDcosa —3aDsina =0,

)
B: —2aA+aWsina+aW cosa —aDcosa —aDsina =0.

Thus, we obtain

D =Wtana = W =5,7TTkN,

V3
B= V;/(COSOC—SinOé)-‘r ?(cosa—}-?)sina) = \23W:8.66kN,
w D w
A= sina + cosa) — _ (cosa + si = =2.89kN.
5 (sina «) 2( a + sin @) 23

We check the result with an additional equilibrium condition:

N: A+B—-Wcosa—Dsina=0

w
2V/3

V3 V3w
+WYT W - =0
2 2 24/3
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Problem 1.12 A frame A to E is P1.12
pin supported in A and held by a ro- 75/—

pe at B and C, which is passed over F

two pulleys without friction. A B

Determine the force in the rope for 75 4 13/4@
3

a given load F'. The dead load of the
frame can be neglected.

Solution We separate the system and consider, that the forces in the
rope at both sides of the pulleys are equal (hence, the radius of the
pulley does not enter the solution!):

| 9 ‘F
An
—

1 s
Ay

So that the frame is in equilibrium, the equations

1 Ay + S+ Ssina— F =0,
Ag + Scosa=0,

—
e 3a(Scos.oz) =0

2aF —aS — a(Ssina) — 4

must hold. Together with

cosa = 3 _3 sina =
V32442 57 5
it follows
8 8 3
- F Ay = — F Ay =—_F.
=9t =" VT

We calculate the moment equilibrium with respect to C' to check the
result:

8’ aA —|—3aA +aF =0 ~ —3aF—3a8F+aF*0
R - 5 4715 B
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Problem 1.13  Two smooth spheres
(each of weight W and radius r) are
stacked inside a narrow circular tu-
be (weight @, radius R), which stands
perpendicular to the ground (r = 2 R).

Determine the required weight W such
that the tube does not tilt.

4

Solution We separate the spheres and the tube and sketch the free-
body diagrams for the limiting case in which tilting just occurs. Then,
the tube is only supported in point C' by force Ns. (If the tube does not
tilt, the contact force is distributed along the complete circumference
of the tube.)

@ B j‘\“‘vl @
. Ny N. —— j
LQ 27 sin «
v/ i
V2 Ny
C
ﬁu

The equilibrium conditions for the spheres and the tube yield:
M 1: Nesina—W=0, (2 1: N3—Npsina—W =0,
<: Ni— Nzcosa=0, —: Nocosaa— Ny =0,
(B3)«: Ny=Ni=0, *1: N5s—Q=0,
8: (r+2rsina)N1 —rNs— RQ =0.

It follows therefrom
Ny = Ny = t:rll/a’ Ny = silfl/oz’ N3 =2W, Q= N5 = chosoz.
With the geometric relationship
cosa=(R—r)/r=1/3,
we obtain the limit weight for which tilting occurs:
Qtitting = W/2.
Such that the tube does not tilt, the condition
Q > Quilting = W/2

must be fullfilled.
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(weight W, radius r) are connec-
ted by a stiff rope of length a. The .
force F' is applied using a lever of F !

length [.
Determine the forces between the v

drums and the ground.

Problem 1.14 Two smooth drums /\

T
-~

Solution We isolate the drums and the lever:

D, F

D@
D, A
’ le Nz? acoéa \/ 10
N3

For the three separate systems, 2 x 2+ 1 x 3 = 7 equations are available
for the determination of the 7 unknowns (D1, D2, N1, N2, N3, H, S):

1D —: S—Disina=0, 1: Ni—W+Dicosa=0,
@—): Dosina— S =0, T: No—W —=Dgcosa=0,
@—): H+ Disina— Dasina=0,

T: Ns—Dijcosa+ Dacosa— F =0,
O: lcosa F— (acosa+x)Ds+xD1 =0.

The angle « is obtained from the geometry:

. r e
cosa = \/1—4(r/a)?. }<—>{\®/

a/2

Summation of equations 1 and 3 yields D1 = Ds. Thus, we obtain
H = 0 and N3 = F and from equation 7, the unknown distance =
drops out. Solving the equations yields

r

NI:W—FZ\/1—4(T)2, NQ:W+FZ\/1—4( )2,
a a a a

P1.14
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Problem 1.15  The sketch shows
the principle of a material testing
machine.

Determine the tensile force T in
the specimen for a given load F
and weight Q. ‘ r

2b

Solution We separate the system
where we take into account that
the forces at the ends of each bar
are equal with opposite direction:

V ® 5310 7&_‘7

©) S1 =52, (symmetry or moment equilibrium)

T S1+ S =1T),

~ b b b b b

@ A: 2Q+<2—6>52—651—253:0 ~ 51 =353-3Q,
~ b

® C: 353—2bF:0 ~ S3=06F.

Thus, we obtain

T =514 52 =653 —6Q =36F —6Q.

Remarks:

e By choosing suitable reference points for the moments, the support

reactions A and C' do not enter the equations.

e The load @ is used as counterweight to the weight of the levers and

bars, which are neglected here.

e The magnitude of the force transferred to the specimen by the lever

mechanicsm is 36 times the magnitude of the load F'.
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Problem 1.16 A hydraulic P1.16
excavator arm shall be
designed such that it exerts
a force R at the cutting
edge.

Determine the lever arm b
of the cylinder Z2 such that
it operates with the same
pressure force as cylinder
Z1.

Solution We isolate the system and sketch a free-body diagram. Therein,
we a priori presume the same pressure force P in both cylinders.

N P
P
Ay )Nri - 1 \ B <—BH
ﬁ oy b
R \ A \4 A v B 1% P

Then, the equilibrium equations read for the shovel

rA\V: 2aR —aD =0 ~ D =2R,
— Ag—D=0 ~ Ay =2R,
1 R—Ay=0 ~ Av =R
and for point C
—: D—Pcosd5> =0 ~ P=DV2=2V2R,
T: Psind5° —N=0 ~ N=2R
as well as the moment equilibrium for the excavator arm
E: 3aAy +2aN —aPcosd5° —bP =0.
Solving the equations leads to the length of the lever arm:

b:i\/Za.

Remark: The support reactions By and By can be determined from
the equilibrium of forces at the excavator arm.
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Problem 1.17 A rectangular plate
of negligible weight is suspended
by three vertical wires.

a) Assume that the plate is subjec-
ted to a concentrated vertical force
Q. Determine the location of the
point of application of @ so that
the forces in the wires are equal.

b) Calculate the forces in the wires
if the plate is subjected to a verti-
cal constant area load p.

Solution a) We introduce a coor-
dinate system. The unknown coordina-
tes of the point of application of the for-
ce (@ are denoted by zg and ygq. If the
forces in the wires are equal, the equili-
brium conditions (parallel forces) are

S FE.=0: 39 -Q =0,
SMP =0: 4aS-yoQ=0, p
ZM&O):O: —4aS—aS—2aS+20Q =0.

This yields

b) Now the plate is subjected to a con-
stant area load p which can be repla- A S,
ced by a constant resultant force F' = S ;
4-6a’p = 24 pa’®. The forces in the wi- 0
res are denoted by Si, S2 and Ss. The 52“ v vy
equilibrium conditions P

ZFZZOZ 51+SQ+S3—24pa2:0, l
SSMP =0 : 2a24pa® —4aS; =0,

x
SSMP =0 : 3a24pa® —4aS; —aSi —2aSs =0
now lead to

S = 12pa?, S1 =0, Sy = 12pa® .
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Problem 1.18 A rectangular traffic P1.18
sign of weight W is attached to a
wall via two wires in A and B. It is
held perpendicular to the wall by a
joint in point C and a bar in D. All
lengths are given in meters (m).

Determine the forces at the joint, in
the wires and the bar.

Solution We isolate the traffic sign and sketch a free-body diagram
with the components of all forces. Thus, the six spatial equilibrium
conditions yield:

0l D
Y F=0: —A,+B,+C,+D=0, B.A B AN
Az Cz C\

SFE.=0: A.+B.+C.—-W =0, 4, C,

SMP=0: 10,=0,
SM®P =0: —4A.-2B.+2W +1C, =0,

SMP=0: —4A4,+2B,=0.

This provides six equations for 10 unknowns. Another 2 x 2 = 4 equa-
tions follow from the decomposition of the wire forces A and B in-
to components (the components are related to eachother according to
their respective lengths!):

Ay 4 A, 4 B, 2 B, 2

A, 16’ A, 2 B, 16  B. 2’
by solving for the forces, we obtain:

w 2 4

2
Av=By= o, Co=— W, Ay= W, By= W,
w w w 2
Cy_ov AZ_G’ BZ—37 02—2, D——lSW.

With the components of A and B, the forces in the ropes result as:
Sa=04W, Sp=034W.
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P1.19 Problem 1.19 A right-
angled triangle (weight
negligible) is supported
by six bars. It is subjec-
ted to the forces F', (Q and
P.

Calculate the forces in
the bars.

Solution First, we sketch the free-body diagram and choose a coordi-
nate system:

Then we write down the equilibrium conditions (since the geometry of
the problem is very simple, we do not resort to the vector formalism):

ZFZZO: é2S2+\é2S5—|—F:0,

S F,=0: Se cosa =0,

ZFZZOZ —Sl—\éZSQ—S{g—SGSiHOZ—SzL—\2255—Q—P:O,
2

SMm? =0 : —m&rﬁaé Ss—aQ =0,

S MY =0 aSi+§Q+ 5 P=0,

ZM,iO):O : —2a\é2S5—aF:0-

Solving this system of equations for the forces in the bars yields

F—P V2 1
- 2 ) SQ__ZFa S3__2(Q+P)a

S4:;(F—Q), = V2p  Sh—o0.

S1
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Problem 1.20 On the platform of a
television tower, the shown external
forces act due to the attached constructi-
ons and wind loads.

First, the external forces shall be replaced
by a resultant force and a resultant mo-
ment with respect to the support point A
of the platform.

Subsequently, the moment at the bottom
B of the tower shall be determined with
the aid of an offset moment.

Given: o = 45°.

Solution In order to determine the resultant force and resultant mo-
ment with respect to point A, we need the forces and the respective
lever arms. For the vertical single forces F'1, F'2 and F's, it follows with
the shown basis system:

forces: F,=-2Pe,, Fy;=—-Pe,, Fz3=—Pe,,

V2
2

lever arms: Tap, = —rey, TAr, = —T €z, TAF; =

Since the wind load ¢, acts in radial direction at each position, it does
not induce a moment with respect to point A. For the resultant wind
load it follows

\/27r

F, = 2 27“qw(—ez+€y), rar, =0.

The overall resultant is given by

R=F, +Fs+Fs+F, = é2§rqw(—ez+ey)—4pez,

and the resultant moment with respect to A is obtained as

V2 V2

3
M =" rap, x Fy = Pr(2— . :

i=1
Now, in order to determine the moment with respect to point B, the
offset moment My = rpa x R needs to be added to M. 1t is calcu-
lated with the lever arm rga = he. as

\/27r

My =1rga X R = 9 2rqwh(—egc—ey).

Yes + Pr( —1ey.

Hence, the moment at the bottom of the tower is given by

MP =MD 1+ My

r(es+ey).

P1.20
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hQ(L»’_i 3a —— 2a -
Problem 1.21 A system of ¢ %
three pin connected bars T
takes the depicted equilibri-
um position under the given 3a
loading with the forces Fi l
and F5.

a) Determine the required
ratio of Fy/F> for this case. (€
b) Calculate the forces

Sl, Ss and S3 in the bars?

Solution We isolate the joints G1 and G2 and obtain two central sys-
tems of forces, for which we have two equilibrium conditions each. From
the free-body diagram of GG1 we obtain

—: —Sicosa+ Sacos =0,
T Sisina— Sasinf—F1 =0.

This results in the relations

S, = S, cos 8

cosa’

sin « .
So cos B —Sasinf—F =0 ~ Sy;= . .
cos o cos ftan a — sin 8

From the equilibrium conditions at G2
—: —Szcosf+ Szcosd =0,
T Sesinf+ Sssind — Fo =0,

Sy
it follows _
S5 = S, cos 3 7
cos 0
. Sin6 o o FQ
Sasin B+ Sz COsﬁcosé =0~ S= sin 3 + cos Btand

Thus, we have two solutions for S2, one given as a function of the force
Fy and one as a function of F». The ratio of the forces Fi/F> results
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from equating the two solutions:
F 1 F 2

cos Btan o — sin 3 - sin B+ cosBtand ’

- Iy cosftana —sinfS  tana —tanf

Fy,  sinf+cosfBtand  tanf +tand

From the geometry of the equilibrium position, we obtain for the angles:

tana—3a—3 sina = 3 cos v = 2
2a 2 V13’ V13’
a 1 . 1 3
tan 8 = = _, sinf= , cosf = ,
F= 3,73 P V10 7 V10
tan6:4a:2, sind = 2 , cosd = !
2a V5 V5
This results in
F5—-5 9-2 1
o l-2 2412 27
For the forces in the bars, it follows
F 2¢/1
So= 4 50, = \éOF1:0.903F1,
V102 T V10
3 V13 3 V56
S1 = So = 1.545 F Ss = So = 1.916 F; .
1 \/10 9 2 1, 3 \/10 1 2 1

The solution of the problem can also be obtained graphically. First we
sketch the closed triangle of forces with Fi,
S1 and Sp for G1 with the given angles. Then
we sketch the according triangle of forces for
G2 with the same force scaling (the magni-
tude of S2 has to be equal and the direction
of rotation must be opposite). From both tri-
angles of forces we obtain by inspection the
ratio of the magnitudes of the forces F1 and
Fs:
I3

I ~0.5.
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Problem 1.22 The given T y
trapezoidal plate (weight 2a A
is negligible) is loaded by i !

a weight W and a force F'

such that it is in equilibri- v
um.
Calculate the coordinates f 3a

of the loading point A at
the edge of the plate.

Given: W, F = W, a = 30°

Solution We decompose the force F' into its components

F,= Fsina = iWsinBOO

L F
}4‘ |
1 Yy
= Bwl 23w, y l
42 2 YA e
F,= Fcosa = 4WC08300 wa VA e
:3W\/3:3\/3W x 7§7B ‘II
4 2 8 ’

Thus, the moment equilibrium condition with respect to B reads:

B: yaFs + (5a — x4)F, — 3aW = 0.

With
YA 2a 2
= ~ = TA,
TA 3a ya 374

and the components of the force it follows

gwAzG—i— (5a — xA)3\8/3G —3aW = 0.

After solving the equations, we obtain

1 3V3 15v/3
(4— 3 Jza = (3 - 3 )a
o ma= BTBYE 6100,
2—-3v3

Hence, the y-coordinate is calculated as

Yya = §$A = 0.413a.
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Centroid of a Volume

The coordinates of the Centroid of
Volume of a body with volume V' are
given by

f:rdV
A ,
J[av
Jydv
yc: ’
Jav
7fde
Ty = [av -

Centroid of an Area

f:rdA

T = ,
[dA
7fydA
Ye= raa -

Here, fsch = (Cy and fydA = ChL
denote the first moments of the area
with respect to the y- and z-axis, re-
spectively.

For composite areas, where the
coordinates (z;, y;) of the centroids
C; of the individual subareas A; are
known, we have

_ SmAs

By = S A
s — > yidi
YA
Remarks:

Ye

Yi

Le

0

i A,

|

xz

e When analyzing areas (volumes) with holes, it can be expedient to
work with “negative” subareas (subvolumes).

e If the area (volume) has an axis of symmetry, the centroid of the

area (volume) lies on this axis.
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Centroid of a Line

Jzds )
@ = B Yy
* Jds
_ Jyds ve
bl = fds .

If a line is composed of several sublines
of length [; with the associated coordi-
nates x;, y; of its centroids, the location
of the centroid follows from Yy

_ 2zili Yi
=5

_ 2yils

Ye = le .

Tc

Center of Mass

31

The coordinates of the center of mass of a body with density p(z,v, 2)

are given by

. :faspdV :fypdV
T fpav’ YT fpav

[ zpdV
i = .
S pdV

Consists a body of several subbodies V; with (constant) densities p;
and associated known coordinates x;, yi, 2:i, of the centroids of the

subvolumes then it holds

o = LmipVi o= > yipiVi
YooiVi >ooiVi

Remark:

L S zipiVi
X eVi

For a homogeneous body (p = const), the center of mass and the cen-

troid of the volume coincide.
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Location of Centroids

Areas Y _ .
T Yy T3, Ys
triangle
h
l Za, Y2
- T1, N
—a —f ° @
T.=2a Te = 3 (71 + T2 + 73)
Yye=1h Ye = 3(y1 + y2 + ys)
1 T2 —T1 Y2 — Y1
A= ;ah A= ;
T3 —T1 Y3 — Y1
semicircle quater circle quadr. parabola quater ellipse
yT yT v y

- b = T a—

we = 0 =7 =0 =, a
_ 4 _ 4 _ 3 _ 4
Ye = 3 T =3 =5h am 0
_ T2 _T,2 _ 4 _ T
A=75r =, =, bh =, ab
Volumes Line
cone hemisphere circular arc
vt
T y
h «
—
« x
»
x
sin «v
e =0 Te="q T
1 3
yp:4h Ye= 37 Ye =10
Vzéﬂ'rQh Vzgﬂ"r’ l=2ar
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Problem 2.1 The depicted area is

Y
bounded by the coordinate axes and %a
the quadratic parabola with its apex
at z = 0.
Determine the coordinates of the g

centroid.

Solution The equation of the parabola is given by
2
y=—ax +p0.
The constants « and S follow with the aid of the points o = 0, yo =

3a/2 and 1 = b, y1 = a/2 as f = 3a/2 and a = a/b®. Thus, the
equation of the can be written as

y:_a(w)2+3a‘

b 2
With the infinitesimal area dA = ydz, it follows
JzdA  [zydr y
To = =
¢ [dA Jydz
b z\2  3a 1
_ 2
7{"”{ a(y) 2}(19’"72“" 3
b r\?2  3a T b ST
— H
{{ a(b) + Q}dx 6a dz v

In order to determine the y-coordinate, we choose for simplicity again
the infinitesimal area element dA = ydz instead of dA = zdy,

dA =
ydx

because we have already used it above. Now, we have to take into
account that its centroid is located at the height y/2. Hence, we obtain

b
T ydl‘_ 6 x2+9a2 dee 87,
ve = 7 14.ab 4 ~ 140
6 0

P2.1
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Problem 2.2 Locate the centroid
of the depicted circular sector with
the opening angle 2a.

Solution Due to symmetry reasons, we obtain yc = 0. In order to
determine z¢ we use the infinitesimal sector of the circle (= triangle)
and integrate over the angle 6

@

2 1
rcosf rrdf
!a <3 > 2 3 2sin o

ro = o =

J ;rrde

—a

3r2a

2 sina
T3

In the limit case of a semicircular area (a = 7/2), the centroid is located

4
To = r
© 3

Remark: Alternatively, the determination
of the centroid may be done by the decom-

position of the area into circular rings and
integration over x. In this case the centroid «
C™ of the circular rings has to be known or

determined a priori.

We may determine the centroid of a circular segment with the aid of
the above calculations and by subtraction:

i

f— 2o — f=— T =~ Zcim—
2sina o 1 2
r‘aa— _Ssrcosa _ rcosa 3
ro = re A —xe Ay _ 3« 2 3 _ S
A —A, 9 1 12A
ria — 2$rcosa
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Problem 2.3 Locate the centroids of the depicted profiles. The measu- P23
rements are given in mm.
a) b)

} 20—+
: =
T

21 —| 5 |=— 30 |5 f=

- O l
a

45 1

RN

Solution a) The coordinate system is placed, such that the y-axis
coincides with the symmetry axis of the system. Therefore, we know
zc = 0. In order to determine yc, the system is decomposed into three
rectangles with known centroids and it follows

Do yiAi
yo = y
> A T
2(4-45) +14(5 - 20) + 27 (6 - 20)
4.454+5-2046-20
5000
- —12. .
400 5 mim ' 5 |

b) The origin of the coordinate system is placed in the lower left corner.
Decomposition of the system into rectangles leads to

22.5 (4 -45) + 2.5 (5 - 20) + 10 (6 - 20)
o=

4-454+5-2046-20 UT
5500 ]
= =13.
400 3.75 mm ,
~2(4-45)+14(5-20) 4+ 27(6 - 20) F C——
ve = 400 v
= 12.5 mm.

Remark: Note that a displacement of the system in the z-direction does
not change the y-coordinate of the centroid.
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Problem 2.4 Locate the
centroid of the depicted
area with a rectangu-
lar cutout. The measure-

ments are given in cm.

<o o —f

= ro=

Solution First we decompose the system into two triangles (I,II) and
one rectangle (III), from which we subtract the rectangular cutout (IV).
The centroids are known for each subsystem.

vV

IH_|:|

111

The calculation is conveniently done by using a table.

Sub- A; ZT; T A; Yi yiAi
system
i [em?] [cm] [cm®] [cm] [em?]
I 10 10 100 10 100
3 3 3 3
I 4 17 68 10 40
3 3 3 3
7
III 14 9 49 1 14
I\Y -2 7 -7 2 -4
2
170
A=ZA¢=26 Z’IflA1=98 ZyiAiZ 3

Thus, we obtain

o — ZJXAi _98_49 o NwA_170/3 _ 85

2% 13 A 26 39 "
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Problem 2.5 A wire with constant

thickness is deformed into the depic-

ted figure. The measurements are gi- 40
ven in mm. 80

Locate the centroid. 30

Solution We choose coordinate axes, such that y is the symmetry
axis. Then, due to symmetry reasons, we can identify xc = 0. The
y-coordinate of the centroid follows generally by decomposition as

o — > yili
Yl

Three alternative solutions will be shown. The total length of the wire
is

Z:Zli:2-30+2~80+40:260mm.

a)
L 1
Yo = 960 (80,49 H2-40-80)
I s I L 11
9600 b7l K i
= 260 =36.92 mm. —>
b) I
1 Y 40
= 40 -40—2-40 - : 1
Yye 260 (\Ov 9 ~ \Of 39) i L T
I 1T x
= —3.08 mm. —
I 17
c) We choose a specific subsystem IV
such that its centroid coincides with the v yL 40
- . ) N
origin of the coordinate system: T
V 1%
1 =+
yo = [2-(—40)-10] = —3.08 mm. e ]
260 < -~ - 10 10
v

The advantage of alternative c) is, that only the first moment of sub-
system V' has to be taken into account.

P25
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38 Centroid of a Line

_ x
Problem 2.6 A thin wire is bent y=—acoshy +2a

to a hyperbolic function. T
a

Locate the centroid.

Solution The centroid is located on the y-axis due to the symmetry
of the system (z¢ = 0). We obtain the infinitesimal arc length ds with
aid of the derivative y' = —sinh {/ as

= 24 (dy)® = \/1+ (y)%dz = /1 + sinh? "dz = cosh * du.
ds \/(dm) + (dy) \/ + (y")°dz + sin adm cos adx

The total arc length follows by integration:

+a T
s:/ds:/ cosh = dx =2asinhl.
a a

The first moment of the line with respect to the x-axis is given by
2 . 1.
Se = [yds=a 4s1nh1—2smh2—1 .

Hence, the centroid is located at

_ Jyds 74a25inh1—éa2sinh2—a70803
YeT ras T 2 qsinh 1 e

Problem 2.7 From the
triangular-shaped metal sheet
ABC, the triangle CDE has
been cut out. The system is
pin supported in A.

Determine x such that BC' ad-
justs horizontal.

Solution The system is in the required position, if the centroid is
located vertically below A. Consequently, the first moments of the
triangular-shaped subsystems ADC' and ABE have to be equal with
respect to the point A:

L(vs N3, 13 _lavi la
2\ 2 27 32 22 2 32
~ -~ o N~ A

area ADC distance area ABE distance

T = 3\/3(1.



Problem 2.8 A piece of a pipe of
weight W is fixed by three spring scales as
depicted. The spring scales are equally dis-
tributed along the edge of the pipe. They
measure the following forces:

F1=0334 W, F; =0331 W,

F3=0.335 W.

Now an additional weight shall be attached
to the pipe in order to shift the centroid of
the total system into the center of the pipe
(=static balancing). Determine the location
and the magnitude of the additional weight.

Solution We know, due to the different
measured forces, that the system is not ba-
lanced. Thus, the gravity center C' (=locati-
on of the resulting weight) is not located in
the middle of the ring, but coincides with
the location of the resultant of the spring
forces. Therefore, in a first step, we determi-
ne the location of the center of these forces.
This can be done by the equilibrium of mo-
ments about the z- and y-axis:

Center of Gravity
1 1 |2
3

ye W =rsin30°(0.334 W + 0.331 W) — r0.335 W,

~  yc = —0.00257r,

xe W =1cos30°(0.331 W — 0.334 W),

~  xc = —0.00267r.

In order to recalibrate the gravity center
into the center M of the ring, the additional
required weight Z has to be applied on the
intersection point of the ring and the line
CM. The weight of Z can be determined
from the equilibrium of the moments about
the perpendicular axis I:

rZ=CMW ~ rZ =\Jzt +yi W

~  Z =+/(0.0025)2 + (0.0026)2 W = 0.0036 W .

39

P2.8
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Problem 2.9 A thin sheet
with constant thickness and
density, consisting of a square
and two triangles, is bent to the
depicted figure (measurements
in cm).

Locate the center of gravity.

f— o —=f

s

Solution The body is composed by three parts with already known
location of centers of mass. The location of the center of mass of the
complete system can be determined from

_ > pixiVi o = > piyiVi o — > piziVi
YoV YoV > piV;

Since the thickness and the density of the sheet is constant, these terms
cancel out and we obtain

> miAs > uiA . >V
_ZAi7yC_ZAi’ C_ZAZ

The total area is

xTc

xTc

1 1 2
A= A;=4-4 -4-3 -4.3=28 cm”.
> +o04 34,
Calculating the first area moments of the total system about each axis,
in each case one first moment of a subsystem drops out because of zero
distance: xr = 0, yrr = 0, zr = 0. Thus, we obtain

2
1A+ oo Amr 2-16+ (3 +4)6

= = =1.71
rc A 28 71 cm ,
_ yrAr+ynAng  2-164+2-6
Yyo = A = 98 =157cm,
Eget(Loaye
~znAn + zm A _ 3 3 — 043 em.

o= A 28
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Problem 2.10 A semi-circular . P2.10
bucket is produced from a steel sheet _ I

with the thickness ¢ and density ps. b

a) Determine the required distance of

the bearing pivots to the upper edge,

such that it is easy to turn the empty

bucket around the pivots.

b) Consider a steel bucket which is filled with material of the density
pm- How does this change the required distance of the pivots?

Given: b=r, t =r/100, prmr = ps/3

Solution The bucket tilts easiest by positioning the pivots in the axis
of the center of mass.

a) In case of an empty bucket (=homogeneous body), the center of
mass coincides with the center of volume. Since the sheet thickness is
constant, it cancels out. With the centroids of the subareas

.. 4r
semi circle z1 =
3T
.o 2r .
semi circular arc zo =
T
we obtain

4r 27r7"2 2r b
; _znAit A 307 2 +7T7r7" _ 4r+69b ,
2 Al + Ao 71"r’2 37r(r—|—b) '
2 9 + 7rb

b) In case of the filled bucket, we obtain with the mass of the steel
bucket mg = m (r* 4 rb) tpg and the mass of the filling my, = J7r?b py,
the location of the mass center as

4r
o ZopMs + 37rmM _ 4(2r +3b) tps + 4rbpy
" ms + My 3m[2(r+b)tps+1bpy]
Using the given data b= r, t = r/100, par = ps/3 , it follows
1 1
4-5 +4-
1

“os = 37r(.)2T:0'53T’ 100 r=04dr.

ZCF = 3
3m |4 1 + !
%00 T3

Remark: Since the mass of the filling is much bigger than the mass of

the bucket, we find the common center of mass close to the center of
mass of the filling: z¢,, = 4r/(37) = 0.424 r.
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P2.11 Problem 2.11 The depicted stirrer
consists of a homogenous wire that rotates
about the sketched vertical axis.

Determine the length [, such that the cen- j
ter of mass C is located on the rotation
axis.

I
I
. 4 |
Solution Using the given coordinate i
system and decomposing the stirrer in- |

to four subparts, we obtain the center of L— L ——’

mass from
Z; li
o = ZZ L
For convenience, we use a table.
1 a 0 0
9 a a a?
R
3 a 9 9 2 —
a 1 al 1 y
4 ! 2 2 2 2 CL; ®
T S S

The centroid shall lie on the rotation axis. Therefore, from the condition
xc = 0, follows the quadratic equation

5a2 al 12 2
Zmzlzf 8—&—2—270 ~> l—al—4 =0.
It has two solutions
2 2
a a 5a a V6
l1*2_2i\/4 Ty Tty e
from which only the positive one is physically reasonable:

1=

2(1+\/6).
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Problem 2.12 Determine the Y P2.12
location of the centroid for the

depicted surface of a hemisphere

with the radius r.

Solution We choose the

coordinate system, such that the

y-axis coincides with the symme- x
try axis. Therefore, we know: z

zc =0, zc=0.

T he remaining coordinate yc, fol-
lows from

7fydA
YO raa

As infinitesimal area element, we
choose the circular ring with the
width r da and the circumference
27 R as our infinitesimal area ele-
ment:

dA =27 Rrda.
Using R = r cosa and y = r sin «, it follows
dA =27 r’cosa da.

Now, we can determine the surface area as

/2 /2
A:/dA:27Tr2/ cosa da = 27 r? sinw =27 7?
a=0 0
and the first moment of the area as
/2 1 /2
/ydA:27Tr3/ sina cosa da =27 r®_sin® o =,
a=0 S 7 2 0

dsin «

Thus, the location of the centroid results as

1 T
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Problem 2.13 Determine the center
of the volume for the depicted he-
misphere of radius r.

Solution Due to the axisymmetric
geometry, we know

z.=0, 2.=0.

The remaining coordinate is deter-
mined from

f y dV
Yyc = .
[ av
As infinitesimal volume element
we select the circular disk with ra-
dius R and thickness dy:

dV = R*r dy.
By parametrization of the radius R and coordinate y
R=r cosa, y=rsina ~ dy=r cosada,

the volume of the hemisphere follows as

/2 i i /2 i
V:/ dV:/ 7w’ cos‘;adoz:/ 7 r° (1 —sin® &) cos a da
o0 N~ 7

a=0

) dsin «
=77’ (sina sin” & " _2 wrd
B 3 o 3 '
With the the first moment of the area as
4 /2 3 . T 7‘4 4 /2 T 7‘4
ydV =7r cos” asina da = — cos” « = ,
a=0 N~ o~ 7 4 0 4

—d cos a
the center of the volume is determined as

1 art 3 3
yciV/de7 4 27r7"378r'
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Plane Structures

In coplanar systems, we have 3 equilibrium conditions. Thus, we have
maximum 3 support reactions in a statically and kinematically deter-
minate structure. We distinguish the following supports:

Technical term Symbol Support Reactions
simple support h
.y T
hinged support =
. PP W An * Ay
clamped support ﬂ— My & S
A/I? Ay

Note: At a free end, no force and no moment are acting.
Between 2 parts of a structure, the following connecting members can
be present:

Transfered Re-

Technical term Symbol 5
actions

hinge e —_— <-* —

QQ
parallel motion —4}— _Q}\{ —

M M

M
sliding sleeve —— _N) C*—
Q Q

hinged support | et | —_— ol

With the degrees of freedom f, the number of support reactions r, the
number of joint reactions v, and the number parts n, the following re-
lation holds:

f=3n—(r+v).
Note: >0: f-times movable,

f {=0: statically determinate (necessary condition),
< 0: f-times statically indeterminate.
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Spatial Structures

In spatial systems, we have 6 equilibrium conditions. Thus, we have 6

support reactions in a statically and kinematically determinate struc-
ture. We distinguish the following supports:

X

Technical term Symbol Support Reactions y# l

VA

simple support

S
hinged support K A
Y

-~

b4

w

Bl

7
£

N

N

pA.
A, M,

u4\[/*

clamped support

Between 2 parts of a structure, the following connecting members can
be present:

Technical term Symbol Transfered Re- y;/i_>
actions
Q-
hinge —— —Q 4’_> N,
Qy
C\?l
Cardan joint (U-joint) @— — 4’—» —
Qy N, M,
/ y Qz M,
(door) hinge 4 y *

With the degrees of freedom f, the number of support reactions r, the

number of joint reactions v, and the number parts n, the following re-
lation holds:

f=6n—(r+v).

Note:
> 0: f-times movable,

f §=0: statically determinate (only necessary condition)
< 0: f-times statically indeterminate.
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Support Reactions

Problem 3.1 Verify if the following structures are statically determina-
te and serviceable (=kinematically determinate). Note that kinematic
determinacy is independent from static determinacy. For movable sys-
tems (f > 0), kinematic determinacy may be excluded a priori, but
in case of static determinacy (f = 0) or indeterminacy (f < 0), the
kinematic determinacy has to be investigated separately.

a)

2

=a

==

iy

/

77777
e e

Jl—“‘g

I~ —=—a—f

o

e

Solution We have n = 3 (bodies)
support reactions and v = 2 -2+ 3
hinges and 3 bars), we obtain

,r =4
=7 (2

f=3-3-—(4+7) =—

Therefore, the system is statically indetermi-
nate. That it is also kinematically indeter-
minate can be recognized by considering the
middle beam between the 2 hinges together
with the 3 bars as a single rigid body. The
we obtain with n = 3, r =4 and v = 2 -2
f = 1. Therefore, the system obtains 1 kine-
matic degree of freedom and is movable, i.e.
not serviceable.

Solution With n = 3 (bodies), r = 3 support
reactions and v = 6 (3 joints), it follows

f=3-3-(3+6)=0.

This system is statically determined and ser-
viceable. Here an immobile three-hinged is at-
tached on an also immobile beam.

Solution The system consists of n = 3 be-
ams/frames, contains r = 4 support reactions
and v = 4 joint reactions (2 hinges). Thus we
obtain

f=3-3-(4+4)=1.

The system is movable and therefore not ser-
viceable.
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Solution With n = 2 frame parts, r = 3
support reactions and v = 4 joint reactions (2
joints), we obtain

f=32—(34+4)=-1.

The parts of the frame are joined immovable,
such that the system can be considered as a
single rigid, immovable body. This system is
statically determinate supported. These kinds
of systems are externally statically determina-
te and internally statically indeterminate.

Solution Here we have n = 9, r = 7 and
v = 20 (note: each additional beam connected
at a joint grings 2 additional joint reaction).
We obtain

f=3-9-(7420)=0.

This system is statically determinate and ser-
viceable. The lower right vertical beam is
fixed, by its supports. To the left side of that
beam, two immobile three-hinged frames are
attached. This system is extended by two ad-
ditional three-hinged frames on the top.

Solution In this case we have
f=3-10—(4+26)=0.

Although the depicted system is statically de-
termined, it is not serviceable, because an in-
finitesimal movement is possible. Note that
both supports and the joint A, which connects
both subsystems, are on a straight line. This
results in a very “soft” construction which is
not serviceable.
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Problem 3.2 Determine the
support reactions for the depicted D Fy My
system. a>\{ I I I |
Given: Fy =2kN, F=3kN, A | B A
a=1m, My=4kNm,
go = 5kN/m, o = 45°. — @ —=— a —f=— a —~

Solution The beam is statically and kinematically determinate. We
free the beam from its supports and make the reaction forces visible in
the free-body diagram:

Fy qo F,
\ |

{ B‘,,T‘B_H)

We write down the equilibrium conditions

My

2 3 .
: 3aBy — My —2a F> — 2a(q0a)—aF1sma:O,

A
B: —3aA+2aFisina+ a(qa)+aF,— Mo =0,

—: Ficosa— By =0.
They lead to
3 1
4+6+2-5+2-2\/2
By = ) = 6.30 kN,
2.9. 543 5434
A = 2 32 =3.11 kN,

By =2- ;\/2 =1.41kN.
As a check, we use the force equilibrium in the vertical direction:
T A+ By —Fisina—qa—F,=0,
~ 3114+630—-2-0711-5-3=0.

Remark: Note that the support reactions are given with an accuracy of
only two digits after the decimal point. Therefore, this equation is not
satisfied exactly.
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Problem 3.3 Determine the support reactions for the depicted systems
T !
o

'

3| L

2 A i B
fe—a—f=—b —~] a1 2a f=—a—

Solution The free-body diagrams are used to formulate the equilibri-
um conditions from which the support reactions are determined. Ad-
ditionally, we check the obtained results by an additional equilibrium
condition.

a)
s c
A: aB—cF=0 ~ B= F, T
a
ﬁ' —aAy —cF=0 ~ Ay=-°F An
: v = v=-—, -
— Ag+F =0 ~ Ayg=-F. TAV TB
Check:
)
C: —(a+b)Ay —bB—-cF =0
b c
~ (¢c+ ¢F—-b F—cF=0.
a a
b)
a)
I: 2aB+aF —-3aF=0 ~ B=F,

—: —F—5S1cos45° =0 ~ S5 =—V2F,

T: B—F—SQ—S1Sin45O:0 i d 52:
Check:
S
B: 2a8>+aS1cos45° +2aS1sin45° +2aF —aF =0

~ 2aF —aF —2aF +2aF —aF=0.

P3.3
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P34  Problem3.4  Determine Bl n
the support reactions of the a
depicted system. Neglect the ?
friction of the pulley. A Qf
f+—2R——=—3R—

Solution First, we verify that the structure is statically determinate.
The system consists of

r =4 support reactions (2 force components at A
and 2 components at B),
=3 bodies,
v =75 transferred joint reactions (2 reactions at C,
2 reactions at D and the force in the rope).

Thus, the condition

f=3-3— (4 + 5 =0
3n r v

is satisfied. We isolate the three bodies and obtain the sketched free-
body diagrams.

S, ®
C, B, Sy D,
—_— —
@ l Cy TBl/ Tcy TD:I/
A, S

b L

xT

F
®
The, the equilibrium equations read for the pulley @
A
D: RS=RF ~ S=F,

T: Dy:_F7
—: Dy=—-F,



Support Reactions 53

for the angled beam (1)

A 2RC, —2RC, —3RS =0,

T A,=Cy,

— Ay =Cr— S
and for the beam @ (using the results from the pulley)

D: —5RB, —3RC, =0,

T By+C,—F=0,

— B, +C,—F=0.

The four support reactions and the two joint reactions at C' can be
calculated from the last six equations:
3

By,=-"F, C,=A,=

5
F
2 )

2

C,=4F, B, =-3F, A, =3F.

Note that the support reactions in the horizontal direction can also be
determined from the equilibrium condition for the complete system:

A: 6RF+2RB,=0 ~ B,=—-3F,
— A, +B, =0 ~ A, =3F.

In order to find A, and By, we have to cut through the structure
anyway.
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P3.5 Problem 3.5 A homogenous
triangular-shaped plate (specific
weight per unit thickness pg) is
hold in the depicted position.

Determine the force in the rope
and the support reactions. Ne-
glect the the friction of the pul-
leys.

Solution Isolating the triangular plate

S
and sketching the free-body, we re- ) '
cognize the four wunknown forces 30—

Az, Ay, S1, S2. Using the equilibrium -
of the rolls, we obtain A, W‘
— B =
S3 = Sl TA 2
~ S =05s. v
S3 = S
With that the number of unknowns is S3
reduced to 3, since S; = Sz = S. The
resulting weight S
1 S
W = _ahpg :
2
acts in the centroid at distance i a from
support A. Thus, we obtain the equili-
brium equations S
A 2
A: aW —aS=0, A, I/V*
3 — =

S

T Ay —-W+4+S=0, A,
— A, +5=0

and the demanded forces result as

2 1 1 1 1
= = A, = = Ay = — .
S 3 w 3 ahpg , V=g w 6 ahpg , 3 ahpg
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Problem 3.6 Determine the ‘ 2% ! ¢ P3.6
support reactions for the depicted %2
frame. I
Given: F7 = 2000 N,
Fy = 3000v/2 N, 2a
o = 45°,
a=95m.
A X
N
AN
777

Solution  The free-body diagram
shows that the line of action of
F> passes through the support A.
Thus, the equilibrium condition of
the moments with respect to A
yields

A
A: 2aB—2aF1 =0 ~ DB=1I.

Additionally, we obtain from the equilibrium of forces

T Ay+B-—Fycosa=0 ~ A, =Fycosa— Fy,
—: A+ Fi —Fysina=0 ~ A, = Fysina— Fi.

Inserting the numerical values, yields
A, = 3000V/2 ; v/2 — 2000 = 1000 N,

1
A, = 3000V/2 ) V2 — 2000 = 1000 N,

B =2000 N.
Check:
a
B: 3aFysina—3aF —aA, —2aA, =0

~ 15~3000\/2;\/2—15~2000—5-1000—10-1000:0.
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P3.7 Problem 3.7  Determine the 2>,_
A

support reactions for the de- F 179
picted frame. /’@
Given: o = 30°

||

12 1/2

B cl
i

[ —

Solution The sketch of the free-body AL> i/

diagram shows the 5 unknown sup-
port reactions: 2 force components Ay T I

each in A and in C, and the force B / c
in the bar (here assumed to be a com- B !
pressive force).

First, we write down the equilibrium T c
conditions for the complete system k
(the hinges are assumed to be frozen):

A 1 I 1 31
A _ _
lBQ\/2+2B2\/2 Gy F=gl 'y F
—;ch-‘rQlCV:O,
1

1
1 BQ\/2+CV+AV—F2:0,

— AH+B;\/2—CH—F\23:0,

Then, we use moment equilibrium conditions for the part to the left of
hinge I and the part to the right of hinge I'I, respectively:

) l “ ]
I: —lAv—zAHZO, II: 2Cv—lCH:0.

Solving these 5 equations for the 5 unknowns, yields

Ay =0.7440F, Ay =—0372F, B=05261F,
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Problem 3.8 The sketched system P3.8
can be used to determine the force
F' in the rope, if a suitable measu-
ring device is attached to the verti-
cal bar BC.

Determine under the assumption of
a frictionless rope

a) the support reaction in A and B,

b) the support reaction of the rolls.

Solution a) The part BC'is a hinged column. The 3 support reactions
follow from the equilibrium equations

—: Ag =0, F

t: Ay +B=0, A,

A 3aB+3aF =0, *A\, Bf

as

b) We isolate on of the rolls and introduce the support reactions R,
and R,. From the given geometry follows the auxiliary angle a:

sina:a/z:1 ~  a=230°.
a 2

Thus, the equilibrium equations yield finally:

')
M YFP-%s=0 ~ S=F,

T: R,—Scosa=0 ~ Ry =

—: Ry—Ssina—F=0 ~ R,=
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Problem 3.9 Determine all %k T

support reactions for the de-
picted structure. %

Solution The subsystems ABC and DEF are connected by the hinged
column CD. With n = 2, v = 1
and r =3-1+1:2 =5 we obtain
f=3-2—(5+1) = 0. Thus the
necessary condition for statical

determinacy is fulfilled. m

E
We separate the system and sketch *S
the free-body diagram. Therewith *
the equilibrium conditions can be

formulated: B-» m

Equilibrium for subsystem (1): A -
— A+B:O B:qoa 1F‘
T S =qoa 2
a 2 A=—
Al aS—QO; —aB=0 2
Equilibrium for subsystem @:
A q0a2 Fv = 2qoa,

—2aFE =0

3
E = qa,
T: Fv—S—quzo ~ 4

I — 3
—: E—Fg=0 H= ,q00-
Test: Equilibrium of the moments for the complete system

- 2 2

D: 2aA—|—aB+qo2a _q02a —2aFy +alFy =0

2
a 3
~ —QOa2 + doa qoa2 + 2qoa2 =0.

2 2
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Problem 3.10 Determine the | 3a - P3.10
support reaction forces and
moment for the sketched sys- D
tem.

3a

f P
N
(ENYNENNRNNY!
qo0

Solution The free-body diagram
shows all forces acting on the sys-
tem (the bar C'D acts like a hinged n P
column). ‘AV ?\1
Thus the equilibrium conditions A Ly
for the complete system and the M, EEEEEEEE N NI
subsystem @, respectively, can be ’ | ® | @ |
formulated

Complete system:
t: —Dsina— Ay + P+ qoda =0,

—: Ay +Dcosa=0,

~ .

A: —Ma+4aDsina —2aqda—4aP =0,
Subsystem (2):

mn . 1

B: aDsma—Pa—Qaqsz.

Solving the 4 equations for the 4 unknown forces yields with sin a =
3/5 and cos o = 4/5 the support reactions

D:5P+5%a, Av:7

4 2 2
- P- My =— .
3 6 9 qoa, A 6qoa

qoa, Am=—gP =4
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Problem 3.11 A triangular-
The part BC of the struc-
ture is loaded by a triangular-
shaped line force. In addition
a single moment My is exer-
ted to the part AB.
Determine the support reacti-
on in A and C.

Solution The free-body dia-
gram shows all forces and mo-
ments acting on the complete
system. Here the line force has
been replaced by its resultant
R. Thus, the equilibrium con-
ditions for the complete sys-
tem and subsystem @ are gi-
ven as follows:

Complete system:
T Cyv =0,

— —AH-I-CVH-}-I%:O7

do

s 3 1
C: MA—M0+2aAH—3aR:O,

Part (2):

A 2
B: —aCpy— 3aR:O.

Therefrom, with R =  qo a the reactions forces as

1
CH:—3qu7 Cy =0 ,

Ap =

1
6

qoa,

Ma = My —

1
12

a

2
qoa .
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Problem 3.12 The shown
structure is loaded at points
B, C and D by the single
forces P1, P» and Ps. Each li-
ne of action is parallel to one
of the coordinate axes.

Determine the support reacti-
on at point A.

Solution  We recognize from

the free-body diagram three

components of the force and My, As
three components of the mo-
ment acting at point A. Thus,
the equilibrium conditions for
the forces and the moments My,
yield: My, Py

S F,=0: Ay=-P,
ZFy:O . Ay =D,

ZFZ:O : AL =Py,

S MM =0 Ma, =cPs,
ZM§A>:0: May=aP,—bPs,

SMP =0 Ma.=bP.
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is]

P3.13 Problem 3.13 A signpoast is
fixed by bars as depicted. It
is loaded by its weight W and
the resulting wind load Fyw .

s

(IS C

Va

Determine the support. Y

Solution We obtain from the
geometry the following angles

1 1
Cos v = , COsSQg = ,
V5 V5
Cos (xg = \}2 , COosag = ;5 .
S,

Sy
2 w S
ar sty S A0 g
The equilibrium equations o3 f’l Dz? D, ya;)

are given by: f A, ay 1¢.

> Fy,=0: —Sscosas =0 ~ S5=0,
ZMZ(B>:0:—Sgcosa24a—FW2a:0 ~r ng—é\/SFW7

SMP) =0: —W2a— Ssda— Sz sinasda =0
~ SGZ—éW+FW7

SSMP) =0: +8 cosar 2a+ Sacosas2a+ Fwa=0 ~ S5 =0,

S F,=0: —Sicosar — Sscosag — Sacosaz — Fyy =0
~ SSZ_;\/QFW7

ZFZ =0: +W + S4 + Sg + Sz sinas + S5 sin as
+Sisinag + S3sinag =0 ~» S4:—;W—|—éFw.

Thus, the reaction forces result as

ACL‘:_;FW7 Dz:_;FW7

A.='Fw B.= W-lFy, C.=1W—Fw, D.=Fw,

All other components of the support forces are zero.
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Problem 3.14 Determine the P3.14
support reactions forces for the
depicted three-dimensional
structure.

Solution We isolate the system and make visible all reaction forces
and acting external forces in the free-body diagram. Since the supports
at B, C and D are hinged columns, their resulting forces point into the
direction of the hinged column.

From the the 3 equilibrium conditions for the forces and 3 for the
moments, we obtain the following results for the 6 unknown support
reactions. Here it is advantageous to pay attention to a suitable choice
of the reference points for the moments.

S F,=0: Ay —2ga=0 ~ Ay =2qa,
(A _n . 1 _ _ Qa
M =0 : +D.2a —qo ; a2a =0 ~ D, = 9
ZMZSA):OZ —I-Bza—qo;z;:() ~ Bz:q(;a7
ZM;A):(): Cya —2qoaa =0 ~ Cy=2qa,
>F,=0: —-A,+Cy=0 ~ Ay=2qpa,

a

1
SF.=0: —AZ—BZ—DZ—F(JOZCI:O ~ Az:—qog-
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Problem 3.15 A semicircular arc with the
radius a is loaded by a radial line load go
and a vertical force F.

Determine the support reactions.

Solution We replace the radial line load
qo by its resultant R. For this purpose, we
introduce a coordinate system and determi-
ne the force on an infinitesimal piece of the
arc with an opening angle da. The infinite-
simal resultant in radial direction is

dR =@ ada.

dR sin (,MW
-

dR ‘(‘,()S «

The components of the resultant (positive
in positive coordinate direction) are

dR;= —dR cosa, dRy= —dRsina.

Integration over the semicircular arc yields

/2 /2
Rz:—/ qo a cos ada= —qp a sin « =—2qa,
—7/2 —m/2
/2 /2
Ry:—/ qoa sinada= qoa cos« =0.
—7/2 —m/2

The three support reactions follow from the
equilibrium conditions

— AH+Rz:0,
T Ay —F =0,

)

A: —Ma+ Rea=0

as

AH:2(]()G,7 AV:F, MA:—2qoa2.
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Assumptions for an ideal truss:

e All slender members of the truss are straight.

e The slender members are connected by frictionless pins.
e [Eixternal forces are applied at the pins only.

Plane truss: All truss members and forces are in the same plane.

Rule of sign:

O O i i O O <
— ® ~—— -— o ——
tension member compression member

Computation of statical determinacy:

f=2j—(m+r) plane truss,

f=3j—(m+r) spatial truss,
with

f = number of degrees of freedom, 7 = number of joints,

m = number of members, r = number of support reactions.
Note:

> (0 f-times movable,
f =0 statically determinate (only necessary condition),
< 0 f-times statically indeterminate. .

Zero-force members are members with vanishing internal forces. For
plane trusses the following applies:
S

-
a0 S1=52=0
N

s 52
1
e —_ S,
\5‘
S, ’

4——oi>F
Sy =0

\s

2
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Methods for the determination of internal forces:

Method of Joints

is usefull, when all internal forces have to be determined.

a) Analytical approach

Applying the equilibrium conditions to the free-body diagram of
each joint of the truss. Solution of the system of equations yields
the internal forces and the support reactions.

A large number of joints yields a large system of equations.

b) Graphical approach for plane trusses: Cremona diagram

1.
2.
3.

Determination of the support reactions.
Define direction of calculation: counter-clockwise v or clockwise .

Draw a closed force polygon consisting of the external forces and the
support reactions in your defined direction of calculation. (Choose
proper scale for the forces!).

4. Enumerate trusses and identify zero-force members.

5. Starting at a joint with only two unknown internal forces, draw for

every joint a force polygon. The hierarchy to be maintained for the
internal forces is the one defined by the direction of calculation.

. The direction of the forces at the joint have to be transfered in the

free-body diagram in order to detect if we have a tension or a com-
pression member.

. The last force polygon is used for the verification of the calculation.

8. Summarize internal forces (including its sign) in a table.

Method of Sections

according to RITTER, can be applied to plane (spatial) trusses, if sever-
al internal forces only are of interest.

1.
2.

Determination of the support reactions.

The truss is divided by a cut into two parts. The cut has to be made
in such a way that it goes through three members that do not built
a system of coplanar (concurrent) forces.

. The equilibrium conditions applied to the individual parts of the

truss yield the internal forces of the members divided by cutting.
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Problem 4.1 For the given r
truss, the forces in the bars Ia
shall be determined.

A ;QF 7 B

f— 20 —f— 20 —f=— 20 —»]

Solution We sketch a free-body diagram and number the nodes and
the bars. The support reactions result from the equilibrium conditions
of the entire system:

1 (63
- I « 3 5 7 $ \vi
A 211 6V 9
~ 5
A: 4aF +aF —6aB =0 ~ B:GF,
IS 7
B: 6aAy —4a2F +aF =0 ~» AV:6F7
—: —Ag+F =0 ~ Ag=F.

The forces in the bars can be determined from the nodal equilibrium
conditions. Using

. 1
sina = cosa =

2
V5 V5

it follows

1
I 1: Av+S , =0,

V5
S Sg+51;5—AH:0,
~ 51:—7\6/5F7 52:130F,
ar —: Se¢—S2=0, S
1t S3—2F =0, 5 < S
o So= Vg g —oF -
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m . S ! + Ss ! + 853 =0,

V5 V5 Jis B
2 2 N ’
—: =5 + S5 +S4=0, ‘ 2
Vs Vs S s, %
5v/5 2
S5 = — 6 b S4_—3F
2 v F
IV —: —Si+F+5 , =0,
V5 S4<_W
1
LSS =0, ¢S7 S
5v/5 5
Ss=—"¢ F, S1=/F
Sg
2 Q 1%4
VI « Sg+58\/570, S
B
~> SQ:SF

We check the second equilibrium condition at node VI as well as both
nodal equilibrium conditions at node V:

1 5 5
: B=-"F+ F=
Vi ot Sg\/5+ 6t 0,
2 5 5 10
Vo - —Se="F F— F= :
& Ss\/5 S 37 T3 3 g’ Sy
1 S7+Ss\/5—6F—6F—O. S :Z>| > S,

The results of the forces in the bars are summarized in the following
table:

i 1 2 3 4 5 6 7 8 9
Si/F -261 333 2 -0.67 -1.86 333 0.83 -1.86 1.67

The largest forces occur in bar 2 and 6.
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P4.2 Problem 4.2 For the given
truss, all bar forces have to
be determined.

Solution Here, it is not necessary to determine the support reactions
first. The forces in the bars can be obtained by formulating the equili-
brium conditions for all nodes, starting with the loaded node I:

Sy

60°

I 1: S1sin60°—F =0, It S,

—: Sy + S1cos60° =0, ‘F

~ S = 2 F =23.1kN, SQ:—;Slz—ll.GkN.

V3
1
I |: Sisin60°+ Sssin60° =0, /Y’&
—: S4— S1c0s860° + S5 cos60° =0, S1 S3

i d S3 :—Sl = —-23.1 kN7 54251 =23.1 kN.

Iar 1: (Ss+S5)sin60° =0, Sy S.

—: =82+ (S5 — S3)cos60° + 96 =0, Sy M» Se

1
~ S5 =—83=231kN, Ss=—347kN.
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IV |: Sssin60° + S;sin60° =0, 54471‘/?,58

—: =S4+ (S7— S5)cos60° 4+ Ss =0, S 5.

~ Sy =-S5=-23.1kN, Ss=46.2kN.

Table of bar forces:

i 1 2 3 4 5 6 7 8
S;/kN 231 -11.6 -23.1 23.1 23.1 -34.7 -23.1 46.2

To check the results, we determine the forces in the bars 6, 7 and 8
using a RITTER-cut:

A 3 .
v . 2aF—i—asinGO Se =0,

~  Sg=-34TkN,

A
V: 2aF —asin60°Sg =0,

~  Ss =462 kN,

l: F+S7c0s30° =0,

~ S7=—-231kN.

Remark: For cantilever trusses, the forces in the bars can be determined
without previous calculation of the support reactions.
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P4.3 Problem 4.3  For the given truss, the
bar forces have to be determined with
the Method of Joints.

Solution The reaction forces result
from the equilibrium conditions for the I
entire system > 2[
L 4
: = v
— Ag +2F =0, A . 9 U/
T Ay +B—-F=0, . )
\/2 \/2 AV 3 5
~
A: V2aF + a2F — aB=0 I
2 2 T B
to

Ay = —-3F, Apg=-2F, B=A4F.
Equilibrium at nodes I, III and II yields:

V2 !
1/:51—2F2 =0 ~ S =+V2F, /:»gp
Sy Sy

2
AE S4+2F\é =0 ~ S;=—V2F,
a1 S B\/2 S V2 r ” >
: =0 = —-2v2
NSt By, s ’ il
V2
aE S5+32 =0 ~ Sy=-2V2F, B
I «+: 52+\£2S4+\2255_07
Sy = 3F.
To check, we make sure that the equilibrium conditions at node IV are
fulfilled:
vV —: AH-i-\é?Sl-i-Sz-}-é253:—2F+F+3F—2F:07
2 2
T AV—&—\é Sl—\é S3=—-3F+F+2F=0.
Table:
i 1 2 3 4 5

Si V2F 3F —2V2F —\2F —22F
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Problem 4.4 For the given P4.4

truss, the reaction forces
and the bar forces Si, S2
and S3 have to be determi-
ned.

Solution The reaction forces result from the equilibrium conditions of
the complete system:

—~: F—Apg=0, JLF I

T Ay +B-F=0, )

~ Ap
A 2aF 4+ 2aF —4aB =0. ﬁr
A

Therefrom, we obtain "

Ay =0, B=F, Ay=F.

The bar forces of interest follow from the equilibrium conditions of the
sub system. For simplification purposes, we use the right part of the
system:

2
1 \éSz-i-B:O,
2

e 52:—\/2}7, Sl F
N
I: aF—aS1—aB=0, S

~> 51:0, SB

B

—: S3+Sl+éQSz—F:0,

We check the equilibrium conditions in vertical directions for the left
sub system:

\/ZSQZO—F—FF:O.

T Ay — F — 9
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Problem 4.5 How large are AR
the bar forces Si, S2 and S3 a/3 1
for the given system? 9
How do they change, when 3¢
the load F> is applied on no- T
de II? a/3 L
Soluti Th Jibri diti S, Fy
olution e equilibrium con 1t1.ons a‘j L Vi F
for the separated system follow with s 7
the help of angle o and f3: 2%
«
«—: Sicosa+ Sacosf+ Sscosa=0, ‘S)/A
3
T Sisina+ Sasinff — Sssina— Fi1 — Fo =0,
5% 2
A 2alh — 3aSlcosoz =0.
With
sina = ! cos = 3 sinﬂ—cos,@—\/2
V10’ V10’ 2’
it follows

S1=V10F =316 F, S, = 3Z2F: 1.06 F,

—5\210F =—-395F.

S3 =

If load F% is moved to node II, only the moment equilibrium condition
changes:

~ 2
A 2aF) 4+ alFs — 3aSlcosa:0.

Thus, the bar forces result as

S1=2V10F =632 F, Sy =

—3j4/2F =-1.06 F,

S3 =

—7\210F = —5.b03 F.

Remark: With the larger moment, S; and Ss become larger and the
tension bar changes into a compression bar.
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Problem 4.6 For the given P4.6
truss, the forces in the bars
1 through 7 shall be deter-
mined.

Solution The reaction A
forces follow from the equi- o
librium conditions of the A A
complete system: Ay ¥y 2F B F
~ 1
A: 2a2F —4aB—-5aF =0 ~ B:—4F,
5
T Ay +B-2F+F=0 ~ Av:4F,

— AHZO.

The bar forces 1 to 3 can be calculated from the sub system:
C

~ i
C: aAy —aAy—aS;=0, S1
V2 5
. _ — A
T. AV 252 O7 H ,55
—: AH+Sl+SS+\éQSZ:0, 1‘4\/
5 5V 2 5
’\'>53:4F, SQZ ZF, 31:—2F.

Bar 7 is an unloaded bar: Sy = 0. Furthermore, S1 = S1 holds. Equili-
brium at node D finally yields

TZ \22524—\2255—217:0, Sa Ss
S. S
e é255_\é252+56—53:07 5 D ’

2F

= 3\/2F, Se= F.

S=y 4
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Problem 4.7 How large are
the reaction forces and bar
forces in the given jib?

Given: I} = 20 kN |
F> =10 kN,
a =1m.

Solution From the equilibrium

conditions for the complete system,

— AH:O7

TZ Av+B—F2—F1:0,

~

A: 6alFr+8aF, —4aB =0,
the reaction forces follow as

Ay =0, Ay =-25kN,

5/4a
5/4a
1/2a

2a

b

An

B =55kN.

The bars 3, 11, 14 and 15 are unloaded bars. Therefore, it holds

Sz = S4 and 510 = 513 .
Equilibrium at node C,
C
—: Sicosa+ Sacosf =0, a
9‘1 ﬁ 1‘4]
i: Fl—‘rSlSin()(-‘rSQSil’lﬂ:O, 52
yields with
sina = 0 cosa = 8
V89 V89
. 5 4
sin 8 = , cosf=
s V4l P V41
the bar forces
2
Sy = \/89F1 =37T7kN, S>= —5\/41F1 = —51.2kN.

5
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Equilibrium at node D:
Fz Sl
—: Sicosa— Sgcosa=0, o
T: Sisina— Sgsina— Fr — S5 =0, Se Sy
> 56:»517 55:—F2:—10kN.
Equilibrium at node A:
TZ AV+513sina:0, A « Su
—: Si2+ Sizcosa=0, Ay
~  S13 =589 kN =472kN, S =—40kN.
Cutting through bars 6, 7 and 8:
~ 5
E: 4aAy — 9 aSgcosfB =0,

—: S7+ S¢cosa+ SscosB =0,

~  Sg=—10V/41 = —64 kN, S;=8KkN.

Finally equilibrium in vertical
direction at node F yields

T: Sgsina— Sipsina — Sy =0,

~» SS9 =—5KkN.

Equilibrium in horizontal direction at node E can be used for checking

— S7+Sgcosa—510cosa:8+\/8920 8 — 5v/89 8
5 /89 V89

=8+432-40=0.

Table of bar forces:

i 1 2 3 4 5 6 7T 8 9
Si/kN 377 -51.2 0 -51.2 -10 37.7 8 -64 -5

) 10 11 12 13 14 15
Si/kN 472 0 -40 472 0 0
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2F
P4.8 Problem 4.8 For the given truss,
the reaction forces and bar forces -
have to be determined. F la
la
la
A B

Solution The truss has j = 6 joints, m = 8 bars and r = 4 reaction
forces. The condition for statical determinism, f = 25 — (m +1r) =
12 — (8 +4) =0, is therefore fulfilled.

The four reaction forces cannot
be determined from the equilibri-
um conditions of the complete sys-
tem solely. We therefore separate
the system with a cut through two
bars. Then 2 x 3 = 6 equilibri-
um conditions are available for de-
termining the four reaction forces
and two bar forces Sy and Ss.

From the equilibrium conditions of the complete system,

T: Ay + By —2F =0,
— AH—BH+F:0,
~
A: 2aF +4a2F —6aBy =0,
and for the right sub system,
T: By —2F —S;sina=0,
+—: Sicosa+ Ss+ Bg =0,
~
IV : 2aSs+3aBg —2aBy =0,
we obtain with sin o = 1/4/5 and cos & = 2/+/5 the results

Av=,F, Byv=_F, Ay=F, By=2F,
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The remaining bar forces can be obtained from the Method of Joints.
With use of

sinf=cosf=1/v2, siny=3/V13, cosy=2/V13,

one obtains

I —: Apg+ Secosa+ Sicosf=0, A”.

T Ay + Sysina+ S1sinf3 =0,

~ S = ‘ng:O.MF, Sy = —g\/5F: —1.49 F.

Sz
VI <+ : Bpg+ Sscosa+ Srcosy=0, 7/ Ss
™\IL B
T: By + Sgsina+ Sysiny =0,
BV

~ Sy = —‘/31317: —120 F, Sg= —3\/517: —1.49F.

1art: Sz —Sesina=0, Ss

~ 53:—§F:—0.67F. a s,

V1: S¢— Sgsina=0,

s 56:—§F:—0.67F.

The RITTER Method of Sections can only be used in this exercise, if
the reaction forces are already known. Exemplarily, one obtains with a
cut through the bars 5, 6 and 7:

—: S5+ Srcosy+2F =0,

T SG+§F+S7Sin7:0,

2(156—(155:0,

W)

4 2
~ 55:—3F, Se

Il
I
=
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P4.9 Problem 4.9 For the given truss,
the bar forces S1 through S~ shall
be determined.

Solution At first, the bar forces S1 and S5 are calculated with the help
of suitable cuts. Therefore, by exception, we cut through four bars
such that three forces pass through the sa-
me point. The fourth force then follows
from the moment balance at this point (for

a cut through 1, 4, 7 and 8, this is point Si
B): S7h /%
o Sy
B: 2aF +aF —2aS; =0, 8
3 B>
= S,
> Si= gy "YrVF
Analogously, from momentum in C follows S5 A
my 7 92
C: 3al'+2aF —2aS5 =0, 6
3
~r S5 = ;F 8
C S, 4
The cut through 1, 2, 3 and 4 yields YrVr
~ S
D: 2aF+aF—aS +aSis=0, »
V2. R >
1 S3— Y8, —2F =0, D
2 2 g
3
2 2 <t
< 51+S4+\/52+\/53:07 Sy
2 2 YF VYFr
3
~ Si=-F, S3=V2F, Sy=—-V2F.

From equilibrium at node A, S¢ and S7 can be calculated:

2
— Sl—S5—\/SGZO, S5 A S,

2
2
1 S7+\é Se¢ =0,

~ Sg¢=-—V2F, S;=F.
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Problem 4.10 Determine the
bar forces for the given truss.

Solution The truss is symmetrically constructed and loaded. Thus, it
holds that S4 = Ss, S5 = So, S1 = Si2 etc. The vertical reaction forces
in A and B follow as A = B = 3F/2.

Equilibrium at the cut system,
~
I: aA—aS¢=0,

t: A—F+Sysina— Sssinf3=0,

—: S+ Sscosa+ SscosB=0,

yields with sina = 1/v/5 , cosa = 2/+/5 , sin 8 = cos 3 = 1/+/2 the
forces in the bars:

3 2
SG_A_QF, 54_—3\/51?, S5_—6F.

The remaining bar forces can be calculated with the Method of Joints:

ar |: S7+2Sssina=0,

4F Sy

a1
~ Si=oF, )@x
3 Sq Sg =9
3
I — 52256:2F, S3
T Ss=1, S, I Se
P
At A+ SisinB=0, 551
Sh
A

~> 51:—2\/2F.

Table of bar forces:
i 1 2 3 4 5 6 7
Si/F  —=3v2/2 3/2 1 =2v5/3 —/2/6 3/2 4/3

Remark: The largest cut force according to its volume occurs at bar 1.
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P4.11 Problem 4.11 Determine the
bar forces in the shown roof
girder with the help of a CRE-
MONA diagram.

Given: ' = 10 kN.

Solution Only vertical reaction forces occur in A and B:

A=B= ; F =5kN.
We sketch the known forces into the
free body diagram and add the sense
of direction of each bar force at the in-
dividual nodes according to the CRE-
MONA diagram.

CREMONA diagram

2 kN
scale: —

sense of rotation: /7 A\

Table of bar forces:

7 1 2 3 4 5
Si/kN  -106 7.9 50 -106 7.9

Remark: Because of symmetry, it holds that S; =S4 and S = Ss.
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T

Problem 4.12 All bar
forces have to be deter-
mined graphically.

a a

Solution From the equilibrium conditions for the complete system, the
vertical reaction forces result as

A=2F, B=F.

free body sketch:

F F F
1 Y4 VoV 16 20
3 8 All 17 |19
Al 2 5 77 13 [15 21| B
6 10 14 18

The bars 7, 15 and 19 are found to be unloaded bars. From the CRE-
MONA diagram we additionally obtain bar 8 as an unloaded bar.

CREMONA diagram

P A
scale: P 3 2 F
. 4 Y
sense of rotation: /7 X
> F
6,9, 10 y
14,18 i
11 317 217
16,20y
2
bar forces:
i 1 2 3 4 5 6 7 8 9 10 11
Si/F -2 22 -1 -2 /2 3 0 0 -3 3 -1
i 12 13 14 15 16 17 18 19 20 21
Si/F -3 V2 2 0 -1 V2 2 0 -1 2

P4.12
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2a 2a 2a 2a 2a
T

Problem 4.13 Deter-
mine the bar forces for
the given truss.

e
w
|-— S —]

How do the forces
change, if the load 2F is
moved from node I to
node II7

Solution In the shown
truss, the reaction forces
result from the equilibri-
um conditions as

Tll}s 10‘14 IST
A=2F, B=F. A 2 F B

The bar forces can be determined with the help of the CREMONA dia-
gram.

r

scale: _— sense of rotation: /7 X
i Si/F
1 1.33
2 -2.39
3 -2.22
4 1.21
5 1.07
6 1.58
7 -0.38
8 -1.48
9 0.37

10 1.33
11 0.38
12 -1.48
13 0.69
14 1.19
15  -0.54
16 -1.10
17 0.59
18 0.67
19 -1.17



If the force 2F acts on
node II, the reaction
forces result as

A=16F, B=14F.

With the same scale and
sense of rotation, we ob-
tain the following CRE-
MONA diagram:

14

CREMONA-PLAN

© 00 1 O Ut = W N e

e e e e e
© 00 J O U = W NN~ O

Si/F
1.06
-1.92
-1.78
0.96
-0.86
1.91
1.09
-2.38
1.04
2.00
0.12
-2.08
0.94
1.67
-0.72
-1.57
0.83
0.93
-1.67

85

To check the result, the bar forces can be determined with the Method

of Sections analytically. One obtains for Sio
~
C: 3aSo+aF —-5aB=0

~ SlongZZF.

C
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P4.14 Problem 4.14 Determine the unloaded bars, all reaction forces and the
bar forces Si1, S2, S3 and Ss for the shown truss.

2w Ta Ta Ta

Solution The unloaded bars can be determined by examining each
node.

Considering the equilibrium at nodes II, III, VII and XI shows that
bars 6,7, 5, 1, 8 and 11 are unloaded: S¢ = S7 = S5 = 51 = Ss = S11 =
0. Since Si11 = 0, bars 9 and 10 can be identified as unloaded bars by
examining node XIII, hence Sy = S1p = 0. It follows that By = 0.

For the determination of reaction forces, we form the moment equi-
librium at the left part of the system at node IV and for the complete
system at node X:

left part of the system:

m
1V 2&Av—2aAH:0 [ad A\/:AH7
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complete system:
> P
X: —aP+6aAy —2aAg =0 ~ Av:AH:4

The remaining reaction forces can be computed by considering the equi-
librium of forces in horizontal and vertical direction at the complete
system:

5

+: P+Ag-C=0 ~ C=P,

t: Ay —P—By =0 ~ BV:iP.

Using the Method of Sections, the remaining bar forces S, S3 and S4
can be computed:

~
VI =0,
P V2 V2
0 4+ 9 Sq — 9 S3=0,
2P
~ S3:—\/4 ,
P 2
—: P+ +52+\/ S3+\/ S4=0,
4 2 2
~> 52:_P
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Problem 4.15  Determine the
number of degrees of freedom

and the unloaded bars for the Ny
given truss. Then, compute the a
remaining forces in the bars. %
a
il
)
a

1 J

N

= g = q ==a = a ]

Solution The truss consists of j = 7 joints, m = 10 bars and r = 4
reaction forces. The number of degrees of freedom is consequently f =
2j—(m+7r) =2-7—(10+4) = 0. Thus, the system is statically
determined.

By applying the rules for finding unloaded bars, we see that the bar
forces S1 and S4 are zero. With S; = 0, Se also has to be equal to zero.

With the Method of Sections, (cutting through bars 2, 7 and 8) we
divide the complete system into a left and a right subsystem. The re-
spective free body sketches have the following form:

Considering equilibrium of forces of the complete system the reaction
forces in point C follows as

V2 V2

Ni C+P—"P-""P=0 ~ C=((H2-1)P.
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The equilibrium conditions at the right sub system yield

~
IV: —aSs+aP—+v2aC =0 ~» 53:(\/2—1)P,

m
V: V2aS:+vV2aP=0 ~ Sy =-P,
/‘I —Sz—\éZSs—\é2P:O i d SQZ—P.

The remaining forces in the bars can be determined with the Method
of Joints:

P I

m 2 —Ss+ Vip+Visi—o, 2N
2 2 g g
5 7

~ Sy=P, ‘P
v i —Sg—\/QP—\/ZSS—O, So Sio

VIR : S3+P=0,

v

N

57 SE)
VIIT : Sio+C=0,
---X
~ Sw=(1-+2)P. s, s,

We check the results by considering the equilibrium conditions at node

.

¢
&
I
-
o

VX: Si—S3=-P+P=0,

S Sg—Sa=—P+P=0. /
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P4.16 Problem 4.16 Determine the
reaction forces and bar forces
for the given spatial truss.

Solution The truss consists of
7 =4 joints, m = 6 bars and r =
6 reaction forces. Subsequently,
the necessary condition for stati-
cal determination is fulfilled:

f=3j—(m+r)
=12—-(6+6)=0.

From the equilibrium conditions at the complete system,
SFE,=0: A, +F=0,
>F,=0: A, +B,+F=0,
>F.=0: A.+B.+C.=0,
>My=0: aF—aB,=0,
S>My=0: aF+aC.—-aA.=0,
>M.=0: aA,=0,
the reaction forces follow as
A, =—-F, A,=0, A.,=0,
B,=-F, B.=F, C.,=-F.

The forces in the bars can be obtained using the equilibrium conditions
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at the nodes. Under consideration that all bars except of bar 4 are til-
ted at 45° to the respective coordinate axes, we obtain at node I and II:

1 1
I SFR=0: ~S- 's+r=—o,
> \/21 \/23
SF=0: L S4F=0
Yy — . \/22 — Yy
1 1 1
Fo=0: - "&- t5 - tg—o,
> \/21 \/22 \/23

~ 5 =0, Sy=-V2F, S3=+2F.

o Y F,=0: A,— S1— S4— 255:0,

1 1 1
am Y F,=0: By_\/ZSG_\/ZSZ_\/ZSE):O’
~  Se=0

We check our results using the equilibrium at node IV:

S F,=0: \}256-1—544-\/1253:0 ~ 0-F+F=0,
S F, =0 \}256:0,
SF.=0: Cz+\}253:0 ~ —F4+F=0.
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P4.17 Problem 4.17 Determine the forces in the bars for the given spatial
truss.

Solution The truss contains j7 = 7 joints, m = 12 bars and r = 9
reaction forces. Therefore it is statically determined:

F=3j—(m+r) ~ f=21-(9+12)=0.

We calculate the forces in the bars using the Method of Joints with the
spatial equilibrium at the nodes:

node D
> Fp=0: —Sicos45° — Spcos45° — S3cos45° =0,
S>F,=0: S;sind5® — S;sind5° =0,

SSF.=0: P— Sssind5s® =0

~  S3=V2P, 51:52:—;\/213.

node F
s,
ZFZZO i =S+ 5> sin45°:0,
45°
> Fy,=0: Si+ S5 cos45° + Sz cos45° =0, Sy ~t— E
STF.=0: Ss5sin45° =0 Sy Sy

~r S9:—2P, S5:0, 54:213.
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Se
node F Ss s,
. o 7 S
>F.=0: Sgsind5® =0, i -

> F,=0: S1sin45° —S7 — Sgcosy=0,
> Fy,=0: —Sicos45° — Sgcos45° — Sgsiny — Sy =0
~r 56:07 57:— P, SgZO.

(Considering the symmetry of the loading, it can be found that Se =
S5, S7=59,8:=0.)

node G

We introduce the angle a (between bar 12
and a vertical line through G) and g (bet-
ween the projection of bar 12 onto the x-y-
plane and the x-axis). From this, it follows

1 . 10 3
cos = , sina = , cosf3=

V11 V11 V10

The equilibrium condition ) F,, = 0 yields with Sg = S5 = 0 another
conclusion about symmetry: S19 = Si2. The remaining conditions yield
SF.=0: S3c0s45° +2S512 cosa =0,

ZFZZO : —511—2512 SiHaCOSﬂ-FSg SiIl45O:0

11
~> 5102512:—\/2 P, S11=4P.

We compute Si1 from the equilibrium of the complete system in order

to check our results. Therefore, we formulate the moment equilibrium
condition with respect to a parallel to the y-axis through point A and B:

> My=0: 4aP—-aSi1=0 ~ Siu=4P.
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P4.18 Problem 4.18 The spatial
truss is loaded by a force

F.

Determine the forces in
the bars.

Solution We consider
the force acting in bar
9 (hinged column) as a
reaction force. Now, the
truss consists of j = 5
joints, m = 8 bars and
r=14+2x3 =7 re-
action forces. Thus, the
necessary condition for
statical determination is
fulfilled:

f=3i—(m+r)
=15—(84+7)=0.

We introduce the unit vectors e1 to eg in order to express the direc-
tions of the bars and their respective components:

S ) R ) I
1 — — 5 2 = — 9 3 = 3
vis| | vis | 0
S G I O

1T V26 VT °T V18

1 1 ~1

e L _(1) eg = L (1) e L

7 V2 X 8 V2 1, 9 V2
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With the definition of all tensile forces to be positive, the equilibrium
conditions at nodes I, II and III in vectorial (component) form read:

node I:
Sie1 + Sz2ex — Sze3 — Fe, =0,

1 1
Si— S —S85=0,
oot T s
4 4
- % e - Y s —o,
vis Tt 18 7
1 1
Si4+ - Sa—F=0,
vis T y1s

~ 51:—2\/21?, 52:2\/21?, Sy =—F.

node II:
—Sies + Sses + Sees + Ssez3 =0,
3 1 1

Sy + S5 — Se—F =0,

RV, VT ST

4 4 4

v2e Tt v1s Tt vis e

1 1 1

Sa + S5 — Se =0,

node [II:
—S7e7 — Sses — Sgeg — 5282 — 5565 = 0,

1 1 1 3

S;— | Sg+ V2F =0,
N N RNV
1 4 3

- So+ V2F =0,
V218 2
1 1 1 1 3

— S7 — Ss — Sy \/ZFZO,

V2 V2 V2l /18 2
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~ 572—2\/2F7 Ss = —V2F, Sg=2V2F.

The equilibrium condition at nodes IV and V' as well as at bearing
B can be used to determine the Cartesian components of the reaction
forces:

node IV:

Czez + Cyey + Czez + SSeS - SGeG = 07

~ Cz—\}Q\/QF—\;lSi\/?F:O,

Cy—\/zisi\hF:O,

CZ—JZ\/QF—\/llsi\/Qon,

~ Cz:iF’ Cy=F, CZZZF.
node V:

Azez + Ayey + Azez - Slel + S4e4 + S’?e? = 0,

1 3 3 1 1 3
A + V2F - V26 F + V2F =0,
~ V18 2 V26 4 V2 2
4 3 4
A, — V2 F+
Y V18 2 /26

1 3 11 1 3
A, — V2F + V26 F — V2F =0,
V18 2 V26 4 V2 2

~ Az:—ZF7 Ay=F, A.='F,

1
4\/26F—0,

bearing B:

B, =0, By:BZ:—;\/ZSg:—2F.

Remark:
e The largest force acts in bar 9.

e The magnitude of the reaction forces is A = v/90F/4 = 2.37 F ,
B=Sy=2V2F=283F and C =+/66F/4=2.03F.

e (' lies in the plane which also contains S and Ss.
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Stress Resultants

The stress resultants (normal force, shear force, bending moment) re-
place the internal stresses (forces per unit area) distributed across the
cross-sectional area.

Plane systems

cut zz

stress resultants:
normal force N,
shear force Vv,
bending moment M.

e Sign convention:
Positive stress resultants at a
positive face point in the positi-
ve directions of the coordinates.

e Coordinate system: M
x = axis of the beam (points
right in case of a horizontal
beam), 2z downwards for alM
horizontal beam.

e For frames, arches and complex
structures we define the coordi-
nate systems using dashed lines
(lower side): x in direction of
the dashed line, z away from the
dashed line.

For straight beams and straight portions of a frame, the follo-
wing differential relations between loading and stress resultants hold:

av _ ar _ ., M
I dz dzz2 = T

If we integrate the differential relations, the constants of integration
have to be determined using the boundary conditions.
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Boundary conditions:

hinged support F (V #0),
free end — V=0,
clampend support %: (V #0),
parallel motion ﬂ? V =0,
sliding sleeve aﬁ: (V #£0),
Relation of V' and M and loading;:
loading V' diagram
qg=0 — const.

q = const. l—HHHH linear
q = linear m parabola
jump of ¢ Wﬂ kink

concentrated force ‘ jump

external couple :% continuous,

(moment) no kink

M diagram

linear

parabola

cubic parabola

continuous

kink

jump
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Spatial structures

Stress Resultants:

normal force N,

shear forces Vy, Va,
bending moments M, M.,
torque My = Mr.

For straight beams the following differential relations between the
loadings ¢-, ¢, and the shear forces V,, V. and the bending moments
My, M. hold:

av. dM,
dz ~ % de Vs
av, dM.

dCL' — va dCL' — Vy .

If we integrate the differential relations, the constants of integration
have to be determined by using the boundary conditions.

The dependency of the shear forces and bending moment diagrams
due to the characteristics of the loading are conferrable from the plane
systems.



Problem 5.1 Determine the shear T P5.1
force and bending moment diagrams m %

once for the depicted simply suppor-

ted beam, carrying a linearly varying I

line load and additionally for a clam- 757 %
ped support on the right and left side. f [ {

Solution 1. Simply supported beam.
The linearly varying load, which can be described by

x
q(a:) = 4qo 1’

yields by integration

$2

V()= - [ ala)a = -an 5, +C,
23
M(z) = /V(l‘)dx = —qo 6l + Cix+Cso.
The constants follow from the support conditions:
MO)=0 ~ C>2=0,
qol
6
The shear force is obtained by

2 v
V(e) = qu {1 - 3”;2} .

M(l):(] s 01:

qol
6

The values of gol/6 and gol/3 corre-
spond to the support reactions. Due
to the sign convention, a negative
shear force indicates a force into the
upwars direction. The bending mo-
ment diagram results in

lx 22 !

The maximum Mmax appears at the M
root of the shear force: V = 0 for
V31/3 =0.577 1. It follows:

V3 21, 1, V3
3l6(1_3)_27

A/IIIIB.X

Mmax = qo qol2 .
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2. Beam, clamped on the right side

x
q(.’L’) = 4o 1

2

V(@)= a0y, +Cr,
3

M(IL‘):—QO gl +Ciax+C5.

Due to the left boundary conditions

4

V(0)=0~ Ci=0, M(0)=0 ~ Cy=0

we obtain

M|

qol

0012

The result can be checked by determination of the moment at the right

edge by the equilibrium conditions for the complete beam as

1 A l
0o B—Zqol:O7 B : MB+3

8. Beam, clamped on the left side

T
q(x) = qo 1
2
_ _ Qox
V(LU) - 21 + Cl )
3
M(z) = —qg‘”‘; +Chz+ Cy.
Due to the right boundary conditions
V=0~ =%
2 2
M) =0~ Cy = ©F _ = 900
6 3
we obtain
_ ol [, _2* _ ol
v =% -] e ="

qol _
9 =0.

Vv
qol
2

ql?

3| ©

M

3
x x
[2_31 + %

To check the result, the clamping moment is obtained as

~
@ —MA—23lq;l:O ~ Ma=—

(Iol2
3

|



by integration
X
Problem 5.2 A simply supported e
beam is loaded by a trapezoidal sha-
ped load. Determine the location and
the maximum of the bending mo-
ment for go = 2q1.

do

103

vy

e

Solution The function of load is linear: } !
g(x) =a—bzx.

We obtain due to the boundary conditions
9(0)=q ~ a=q,

p="1"1

=@ ~ @=a—-bl ~ .

It follows
qo — q1 z
l

This leads by integration to

q(z) = qo —

_ 2
V(a:):—qoa:—l—qo ; n 332 +Cy,
2 _ 3
M(w):—qoa; + % ; « $6 +Crx+Ca.

Due to the boundary conditions the constants follow as
MO)=0 ~ C>2=0,

_ _ gl g-—aq »
M(l)=0 ~ Ci= 9 ! 6"

The shearing force and the moment are obtained for ¢ = éqo as:

51
V(w):Z(}xQ—qox—i— 150
qo qo 51qo
M@)= e’ =g+,

Since M’ =V, the maximal moment is found at the root of V:

V=0 ~ x*:2li\/4l2—§l2:o.47l.

Inserting z* into M (x) yields

Mooz = M(z) = 0.09 qol” .

P5.2
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Problem 5.3 The depicted
beam is partially loaded by qo.

x
Determine the shear force and — Qo

bending moment diagrams. i 1

Solution Due to the discontinuity of the loading we separate the inte-
gration into two parts:

0<z<a: a<x<l:
q=0, q=qo,
V=C, V =—qxz+Cs,
M = Ciz + Cq, M:—1q0x2+031:+04.

2

The 4 integration constants follow from the boundary conditions and
the transition condition at x = a:

MO)=0 ~ Co=0, MU =0 ~ —;qoz2+cgz+c4:o.

Here V and M have to be continuous (no jumps, since no concentrated
force and no single moment occur)

V(e )=V(") ~ Ci=—qa+Cs,

M(a™)=M(a) ~ Cia=—_qa’+Csa+Cy.
It follows
gl (I1—a)? _ ol ?+a® __qa
01—2 12 , Cy=0, 05—2 2 , Cy= 5
We obtain for the first part 0 <z < a
~qol (I— a)2 _ qol? (1— a)2
V=9 2 > M =" B 7

and for the second part a <z <1

Vo @ [l=a)?

2
5 ; z— (z—a)
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For a = 1/2, the shear-force and bending moment diagrams follow as

\% 1 .
8%

8
ECa— e
@

/2 Ol 5
5 ™M

g Minar

8

Remark:
e Instead of considering the parameter x for the complete length of
the beam, we may also introduce separated parameters x1, x2
e For the special case of a = 0, the first part vanishes, such that we
obtain for the shear force and the bending moment
1

V:;qo(l—Z’L‘), M:zqo(l:p—mz).

Alternative: The diagrams can be determined by use of the FOPPL sym-
bol. Therefore we represent the discontinuous loading for the complete
beam as

q:qo<a:—a>0 fir 0<z<I.

With application of the integration rules for the FOPPL symbol, we
obtain

V:—qo<x—a>1+01,

qo

5 <z—a>+Cix+Cs.

M = —

Due to the boundary conditions, this leads to (the transition conditions
are directly fulfilled)

M(0) =0~ Cy =0

0 (I—a)? _

Ml =0~0=-L(0—a2+c11 ~ ¢ = 5

2

We obtain the solution for the entire beam as

v=t

(120 [(z —la)?‘:c

—2<x—a>1},

M = —<x—a>2}.
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Problem 5.4 Determine the o
shear force and bending moment
diagrams for the depicted beam. * * * * ‘ ‘ h\'\
L B
1 l 1 9 —]

Solution In a first step, the support reaction are determined (with A
and B positive in the upwars direction):

11 19
A—24CI0l, B—24CI0l-
For the left subsection (between A and B) we obtain by the equilibrium
conditions ' 0T
t: A—qz—V =0, M
) €T S
St —wA+ ] (qa)+ M =0, Aﬂf /2
— T |

~ V=A—qu=x, M:Aa:—q;:rQ

and for the right subsection, using an additional
coordinate Z starting at the free edge,

1 T\ _ B
1 —2(qol/2)w+V—0,
A T 1 T
= rT— M=
S 32 (qol/Z)x 0,
— -~
o v=Pg 0 =g z 'z
l 3l
11
Remarks: Vv g 10! .
e The value of the shear force reduces 24q0l\l\
linearly from A to B. At B, it jumps ® \ ®
by the magnitude of the reaction | o
force. On the right section, it decays 11/241 | 18
quadratically. At the free edge, the ! 24
shear force is zero. | 1

|
! - é?()l2
e At the free edge, we obtain ¢ = 0. : M
Due to dV/dz = —¢, the slope of V

is zero (horizontal tangent!) at this
point. M

e Due to the concentrated force, we
obtain a kink in the moment dia-
gram.
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® Mar is located at z = il (since V' = 0) and has a value of
Mmaz - ;(é}l)qulQ =0.105 q0l2.

e The slope of M at A is positive due to the positive V and dM /dx =
V. At the free edge, the slope of M is zero, since V = 0.

e The bending moment at the support B is

_ _Q 3__1 2
My = =30 (1/2)° = = aol’.

In an alternative approach the V. and M diagrams are determined with
help of the FOPPL symbols. In this approach the supporting forces
have not to be calculated a-priori. In a first step, the loading has to be
constituted for the complete beam as the difference of the constant and
linear line loadings:

2
q = qo — ;10<13—l>

1
(the factor 2 is necessary, since ¢ has to be reduced to zero over the
length [/2). We obtain by integration

V=—qx+ qlo <z—1>*4B<z—1>"+C4
(the jump of the shear force due to the unknown supporting force B
has to be considered by an additional FOPPL bracket!)

2
€ q0
M=—
w9 T3 <
The three unknowns C'1, C> and B can be solved, taking into account
the three equations from the boundary conditions:

21> 4B<z—1> +Ciz+Cs.

M@0)=0 ~ Co=0,

3 1
V(gl)zo ~ _2q0l+4q0l+B+01:0,
9 1 I 3
M3l = - 2 4B =0.
(D=0 ~ —cal +  al+B,+,Cil=0
‘We obtain
19 11

B:24q0l, 01:24q0l,

Remark: The constant C; is equal to the shear force at the support A
and thus, the resulting reaction force.
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Problem 5.5 Determine the shear force and bending moment diagrams
for the depicted multi-section beam. Calculate additionally the values
at the intersections.

Use: qo = F/a.
— V' gt
A B
5 3
f— 20—t= g} 3a - 2a —=} 2a —=]

Solution In a first step, we compute the support reactions (positive in
the upwards direction):

A
A: —2aF —4,5a(3qoa) —8a2F +10aB=0 ~ B=3.15F,
T A+B—-F —3ga—2F=0 ~ A=285F.

With help of the free body diagrams, we obtain for the subsections:

0<z<2a:
t: V=A=28F,
< :l)ﬂ]
S: M=xA=285Fx, Aﬂ S
z 'V
2a <z < 3a:
Fi
2 4 5
S: M=zA-(x—-2a)F, 1} x 'V
y Go(x — 3a)
3a < x < 6a: .
t: V=185F — q(x — 3a), }ﬂsl)lf
A] -

A 9 x
S: M=zA—(z—2a)F — Jqo(z — 3a)®, [ —

6a < x < 8a: oF
4. V=—B42F=-115F, ”(TJ:

~
S: M= (10a —x)B — (8a — z)2F, 100 — 2

8a < = < 10a: M (T:
S

4. V=—_-B=-315F, S

10a—x

~
S: M= (10a—2x)B.
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The maximal value of M can be found by the root of V (M’ = V) in
the 3" subsection (3a < = < 6a):

V=18F—q(zr—3a)=0 ~ a"=185F/q +3a=485a.
Thus we obtain

. 1
Moo = M(2") = 4850285 F — 2850 F —  o(1.85 a)? =9.26 Fa.

VIEY 95
30—~ 1.85
2t @ /
L ™ 6q 8a 10a
T 2 3a N
I I I I / e
: L . i-L15 Y15
27 6.3
4 ®
L 5.7 8.6

6 7.55 - Ajmax
sl \\/
M/Fa \

The V and M diagrams can also be determined using the FOPPL
symbol. Therefore, the discontinuities of g(x) and V' (z) have to be taken
into account:

g=q <z—3a>" —qo <z —6a>",
V:—qg<;r—3a>1—|—qo<x—6a>1 —F<z—2a>"
—2F <z —8a > +C1,
1 1
]\4:—2(10<ac—3a>2—|-2qo<ar:—6a>2—F<ar:—2a>1
—2F <z —8a>'+Ciz+Cs.

It follows from the boundary conditions

M@©0)=0 ~ Co=0, M(10a)=0 ~ C; =285F.
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Problem 5.6 Determine the shear force and bending moment diagrams
for the depicted system.

qo =5F/b
— g A
/|
A7 f!\
—2) 1 2b f< b >f=— 20 —f«— 20 —=]
Solution In a first step the support reactions are determined.
=5F/b
; % = 5F/ l oF  3bF AF
I Y
G A
A
) ® © ®, o,

1 A:5§-2b+2F+4F:16F7

N F
A: Ma=3b(5 b -2b) +5b-2F —3bF 4+ 9b-4F =T73b F .

For the calculation of V' and M, we cut the beam at every discontinuity
of the loading with respect to the internal forces and moments. With
the equilibrium conditions, we can determine V' and M with respect to
the external loads and the internal forces and moments.

Vi=16F,

73bF
M; =2b-16 F — 7T3bF = —41bF, ( l)Ml

Y 16r @ 7.
V2:16F—5§-2b:6F, P

73bF
M2:4b~16F—73bF—b(51;~2b) ( : DMZ

= —19bF, r 16F ® 1

Vag = 4F, Var 3bF # AF
Mz =3bF —4b-4F = —13bF, w*(T@ =

Vi=4F,
Vv, 3bF “ 4F

My, =3bF —2b-4F = —5bF .
My, (Tﬁ:
©)
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These results and the general relations between the external loadings
and V and M (e.g. if ¢ = 0, then V = constant and M = linear, see
table at page 97) yield to shear force and bending moment diagrams:

v
F

-10 +

1 \ \
M @ @ ® @
bF

In the section between @ and @ of the bending moment diagram, the
quadratic parabola has to pass tangentially into the straight line, since
there is no concentrated force (concentrated forces lead to kinks in the
bending moment diagram!).
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Problem 5.7 In this problem, the bending moment diagram of the sys-
tem is known.
Determine the related loadings.

AR ]
% 2m ‘ 21m ‘ 2m 7;%7 B oy ‘ 2m \
I T T T T 1
6
10
12 18 ® 10
M [kNm]

Solution We consider the highlighted points at the beam and the M-
diagram in between them:
A B

) @ ® @ ®

Due to the linear behavior, starting at point A with M; = 12kNm =
2m - A, we obtain the reaction force as

A =6kN.

This is followed by a jump at the M diagram at point @, such that we
can identify a single moment at this point

M* = 6kNm
We can check the results, computing the M at @ with A and M*:
Mo =4m-6kN —6kNm = 18 kNm .

At point (@7 we can identify the single force I’ due to the kink at the
M-diagram. It can be calculated by

Mz =6m-6kN —6kNm —2m- F =10kNm ~ F =10kN.

At the right edge, a concentrated force has to act into upwards direction,
since a linear M diagram is considered. It is obtained by

My =2m-P=10kNm ~ P =5kN.
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The quadratic parabola between point @ and @ is caused by a con-
stant line load go. We obtain go by the equilibrium of the right sub
system as:

Mz =4m-5kN—1m- (g -2m)=10kNm ~» ¢o=5kN/m.

Now all external loadings have been determined and can be sketched
as follows:

5 kN/m
6 kNm L 10 kN
.
A 7 T A
A =06kN B 5

The omitted support reaction B follows from:
T: B=104+2-5—-5—-6=9kN.

Finally, we are able to construct the shear-force diagram:

v kN

5 4

P— 7m - ™I

The (local) maximal bending moment can be found at the root of the
shear-force diagram with z = 7m.

kN
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Problem 5.8 The depicted beam P
is loaded by a sinusoidal li- m
ne load. Determine the bending ¢

moment diagram.

Solution We select the left edge of the beam as the origin of the coor-
dinate system, since the shear force and the bending moment are zero
at this point:

. T
q(x) = qosin ;

x
Integration leads to P

T

! +C1,

V(z) = —/qg sin 7rl$da: =qo 7lr cos

l
s

2
M(w):qg( ) sinﬂlx—}—clx—i—Cz.

Using the boundary conditions, we obtain

vo=0 ~ a=-"

M©0)=0 ~ Co=0.

Therefore, the function of the shear force and the bending moment are

_qol T _ _qol2 Tr . T
Viz) = . (cos ; 1) , M(z) = 2 ( ; —sin ) .
The maximal values of V and M are found at the clamped edge =z = I:

2 1
V() = - ql, M) = - ql®.

The sketch of the diagrams yield

Q1

_2q°7lr M
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Problem 5.9 A gantry crane of weight W moves across a bridge with
the length [. The front axle of the crane carries iW, whereas the rear
axle carries }LW. The distance of the axles is b = 1/20.

Determine the maximum value of the bending moment and the corre-
sponding position of the crane.

f— b —

A O—<C
K A’
| l |

Solution In a first step, the support reaction A (positive into the up-
wards direction) is calculated for an arbitrary distance x of the front
axle:

e 3 w 81 =«
B : lA—(l—a:)4W+(l—ac+b)4 ~ A_(80_1>W’

The maximal bending moment may occur at the rear (R) or at the
front (F) axle. We obtain

Mp = (z—b)A= (w— 210) (Zé—?)w,

w 81 «x [
Mp=xA-b 4 7$(80_ Z)W—80W.

The extreme values of the bending moment are obtained at the roots
of the derivatives. Thus, for the front axle,

dMrp 81 T _ . 81
A 780W—2lW70 yields x17160
and therefore
6241
M maxr — .
r 25600 7 !
For the rear axle,
dMgr 81 T 1 _ . 85
du _80W 21W+20W_0 yields 12_160

and therefore

5929
MRmaz - 25600 Wi.

The highest value of the bending moment is obtained at z;.

P5.9
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Problem 5.10 Determine the shear force, bending moment and axial
force diagrams of the depicted hinged girder system.

do l r

50°
AL B G
| |

a 1 a

Solution The free-body sketch is used to determine the support reac-
tions:

F
AH @ do [ 1 GH GH \ @

1 D
v Ay 13 |Gy Gy r Ov
From the equilibrium equations, we obtain
©) ®
— —AH+GH:0, — —GH+FCOS3OO:0,
T Av+B-—qua—Gy =0, T: Gy +C —Fsin30° =0,
(8% a mn
G : 2aAV—|—aB—2q0a:07 G: bFsin30° —2bC =0

Applying sin 30° = 1/2 and cos 30° = 1/3/2 yields

V3 q@a F 3 F
An= "o F,  Av=—"5 = B=j @t
F F V3
— - =Vop.
C=y Gv=y> Gu =",

The internal forces and moments are determined for the indicated
points. At the points A, G and C, we have hinges, therefore the mo-
ment is zero. At the points B and D the shear force has a jump of the
magnitude of the support forces, respectively, the vertical component
of F (Fsin30° = F/2). At D, the axial force jumps with the magnitude
of the horizontal component of F (F cos 30° = v/3F/2). We obtain

Np :AH, o ¢ — My

VBL = Av 5 4—:|l— -

v N,
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Npp =0, Mp_
Vb R = -, A\'U‘ETI:\

. : 2
Mp =bC=b . o b —f

Therefore, the diagrams can be sketched as

N
V3,
@ 2
v
F
qa + 4 F
4
®
o
1 F S) -
2(1(1 4 _
My 4
quadr. parabola
)
@
M Mp

Remark:

e In the area BG, the function of the bending moment is a quadratic
parabola. From the V-function, it follows that the magnitude of the

slope at B is higher than at point G.

The quadratic parabola has to merge into the linear function bet-
ween GG and D without a kink, since no additional load is located

at the hinge.
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Problem 5.11 Determine the shear force, bending moment and axial
force diagrams of the depicted hinged girder system.

Calculate the distance a of the hinge GG, such that the maximal bending
moment is as small as possible.

HH#HHHHHHHH&MHHHHH
BL G
1 ! %" ! |

Solution The support reactions and hinge forces are determined with
the help of the free body sketch
qo

i iy
A4 0 P P I PO P

and the equilibrium equations

® T A+B-G—q(l+a)=0,

~ qo(l +a)?

G: (I+a)A+aB— 9 =0,
® T: G+C—q(l—a)=0,
G- qo(l;a)Q—(Z—a)C:O.
Therefore, we obtain
A—Goc=®l=a) B=q(+a).

2

The bending moment in B can be expressed as

% 2 do

Ma =14=% == ala. TR Y

This leads to the depicted she-

ar force and bending moment Av %%
diagrams 1 l 1
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1%
! (I +a)
ol -0 |@ v ®
| o 1 | o qo(l —a)
| — 2q‘o(l + a) |
~— b — ‘ b —=
| Swle
e
® ~— e
M ;qn(l — a)2
Remark:

e The shear-force diagram is antisymmetric regarding B.

e The shear force in the midpoint between G and C', b=(1-a)/2, has to
be zero. This is a consequence of the symmetric loading regarding
the free-body sketch.

e The shear-force diagram indicates that the magnitude of the slope
of M at A has to be smaller than at B

e The bending-moment diagram is symmetric regarding B.

The relative extreme values of M are located at the roots of V. They
have a distance b = (I — a)/2 from A and from C. We obtain

2 q
M= A= PV g gy ! HJHH)M

2 8

In order to minimize the extremum, A ﬂr
we use — b —=
|Mp| = [M"].

Insertion yields the distance

; IQO(l—a)2 ~ a=(3—-V8)I=0.1721.

(Iola:8
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120 Shear-force and
Problem 5.12 A beam, overlapping at both ends, is loaded by a uni-
form line load.

Find the overlapping length a for a given total length [, which minimi-
zes the extreme value of the moment.

BRREEEREEREEERREREREEEY
A A B L
— 0 — e a —

1 l 1

Solution The local extremal values of the moments are found at the
supports and in the midpoint of the beam:

\ Y A

@ @ |

They can be determined as (with the support reactions, due to the
symmetry, as A = B = qol/2)

M = —qo a2 ;
_ W2 gl (1
My = qo 9 4+ 9 9 a | .
The extreme value is minimal for the case |Mi| = |M2|:

@ _ U (l_N__©
W o =g | 9 g -

Thus, we obtain the overlapping length as
a= ; (V2-1)i=02071

with the corresponding moment as

3—2v2

5 qol? = 0.0214 gol” .

‘M'maz| =

Note that the magnitude of the maximal moment is only 17 % compared
to the case with supports at the edge of the beams (|Mnaz| = qol®/8).



bending-moment diagrams

.
m o

Problem 5.13 Determine the
shear force and bending mo-
ment diagrams for the depic-

AN

121

ted system by integration. A o}

G

7777
|

, —1
.

Solution We obtain by integration of g(x) = goz/I

2 3

l+C1, M(m):—qozlﬂ-cliﬂ-f—cz-

xT

V(z) = —qo 9

B

The constants C1 and Cy are determined by the boundary and transi-

tion conditions. We know that the moment is zero in G and B:

3

M(z=a)=0 : —qozl +Cia+C2=0,

2

M(QZZl)ZO —qu6+Cll+CQZO.

Introducing the abbreviation A = a/l leads to

qol®

a=""01a ), o= p

6

Thus, we obtain

A1+ N).

V)= {(1+)\+)\2) 3 (fﬂ ,

M(z) = —q°6l2 [)\(1+)\)—(1+)\+)\2) () + (””)5} .

v
1 p
gl L+ A+ M@

1 ;
~ g2+ A+ A?)

I
I
I
e |
~——~

1
unl?,\u +A)

M

P5.13
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Problem 5.14 The depicted x o

hinged girder system is loaded by W

a uniform line load ¢o and a con- Aé o

centrated force F' . % B Ia
Determine the shear force and ~a == a == a =

bending moment diagrams.

Solution The line load can be depicted by use of the FOPPL symbol as
glz)=q <z —a>".

We obtain by integration
V(z)=—q <z—a> +B<zx—2a>° +Cq,

1
M(iﬁ):—QQO<3£»‘—6L>2—&-B<x—2a>1 +Cix + Cs.

The unknown supporting reaction B causes a jump in the shear force
diagram. This has to be considered in V' (x)! The support reaction B and
the constants C1 and C5 can be determined by the following conditions:

Vie=3a)=F ~ —2¢a+B+Ci=F,

M(z=a)=0 ~ Cia+C2=0,

M(z=3a)=0 ~ —2ga’+Ba+3aC1+C2=0
This leads to

Ci=-F, Co=alF, B =2qoa+2F.
Thus, we obtain for example in the points A and B

Mys=M(0)=Cs=aF,

1 1
MB:M(Qa):—2q0a2+012a+02:—quaQ—aF.

The diagrams are given as

1
—aF — _qoa®
1% F + qoa 2

o A\
< f
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Problem 5.15 Determine the shear force and bending moment dia- P5.15
grams for the depicted hinged girder system.

I {J {J
7;§7 A A
7777
~—a 1 a } a 1 a f

Solution In a first step, the support and hinge reactions are calculated.
From the equilibrium equations

¥ § 6 Gy yF
A @by ol A @ ot ® )

Ot A+B-F-G1=0, aF —2aB+3aG1 =0,

@T: Gi+C—-G2=0, aGi14+aG2 =0,

99 Q0 20

®1: G2+D-F=0, aGa—aF =0,
the support and hinge reactions are computed

A=F, B=-F, C=2F, D=0, Gi=-F, Gy=F.
We obtain the bending moment at B, C' and F as

Mg =aF, Mp =2aF —aF =alF, Mc = —aF'.

Thus, the diagrams are as follows:

e
-F

—aF

P

M oF
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P5.16 Problem 5.16 The depicted frame is

loaded by a force F' and a uniform li- Foyyiyivvygy®
ne load qo = F/a. f ”””” ) T
Determine the shear force and ben- b |
ding moment diagrams. i e
|
Az, 13}3

Solution The equilibrium equations

e 111 ETTTTTT KU

T A+ By —qoa=0, C D

— F’—BHZO7

B A+ qa®—aF =0

B: —aA+,qa —al = Av By
yield the support reactions f

By
_qa . F _ qoa 3 .
A= 9 = 9 By = 9 —|—F—2F7 By =F.

We cut at the corners of the frame, directly right of C' and directly left
of D. The internal forces follow as

C C L‘[D VL)L
—»r—-> NcR— F, oy A D NDL——F,
F 0 \(R ]VDL -‘\
L Ve Vorp =—F/2, | Vb, = —3F/2,
‘ I
|
A Mc =0, e g Mp=—aF.

Due to the general coherences of the loadings and the internal forces,
we obtain the depicted diagrams (Remark: the bending moments do
not change at unloaded 90°-corners but the normal and shear forces
are interchanged!):

_ F _3
F © ’2% B

T



Problem 5.17 Determine the
normal force, shear force and
bending moment diagrams for
the depicted frame.

Solution We obtain the support

reactions with help of the equilibri-
um equations as
A =2F+2qoa, By =-F, Bg=0.

We obtain the bending moments at
C, D and FE as

Due to the relations between g, V' and

for frames 125
HEIEIIE . psi
| RE
- b
F 7777
fe— @ —f=— a —=
IITIIITI T INTI
Y ‘ Bu

E

F ﬁr A

Mp = Mg =—aA = —2a(F + qoa) .

M together with N-V or V-N

at the corners, we obtain following diagrams:

N diagram

V diagram

F +2qpa
—(F 4+ 2qoa) F,
@
o
—2a(F + qoa) r o
M diagram S)
—2a(F + qoa) I/ ©
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Problem 5.18  Determine the
normal force, shear force and
bending moment diagrams for
the depicted frame.

Solution We obtain the support
reactions with the help of the equi-
librium equations as

F F

Ay =F, Ay= B=

3’ T3

We obtain the bending moments at
the cornes C', D and FE as

Mc =—aF,

MD:2aB—aF:—§aF,
1

ME:3aF.

Thus, the diagrams follow as:
N diagram

= a

1 : -r o
F [©)
3
C] S
1
]
1 ~ @
1o 3"
o) —aF
M diagram
1
3 T~
O

An

—

V diagram
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Problem 5.19 Determine the ET P5.19

normal force, shear force and **************i*** i ¥
R—

bending moment diagrams for
the depicted hinged frame.

|
I

| 2a a | a —=]

Solution With the free-body sketch
qo0

.
Au YIRRRNIYIVNIRORY CuCuyatty ?
b0 ds ve e

the equilibrium equations for the sub systems are obtained as

©) T Av+B—-—Gv —3qa=0, ® T Gv—qa=0,
— AH+GH:0, — —GVH—C’:O7
~ 9 9 ~ 1 5
A —2aB—|—3an+2qoa =0, G : —aC—|—2qoa =0.
Thus, the support and hinge reactions follow by
qoa qoa 15 qoa
Ay = Ay = B= -
Vv 4 ) H ) ) 4 qoa , c 2 )
Gu = _qga , Gv =qoa.
The bending moments result at B and D in
1 2 3 o 15
MB:2aAv—2(q02a) ==, wa’, MD:aC:zqoa.

The diagrams can be sketched as

1
qoa S) |

N diagram 2

8
. 4(100 ®
V diagram o0 . |
4 | ) 1
\ 77 . 2111111
‘ 440
| 3 9
: *2(10(1
|
/] 19.0" |
M diagram S .

Moty 9200
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P5.20 Problem 5.20 The depicted frame
is loaded by a single force F' and a
uniform line load ¢y = F/a.

Determine the normal force, shear for-
ce and bending moment diagrams.

- e

- O e 0 e 20—
Solution We obtain by the equili-

brium equations for the system

— \ézA—FBH:O,

e é2A+Bv—F—2qoa:O,

;\f: aF —3a By —2a By + 6goa® =0 fB @
the support reactions as ‘

14:—\/52F7 BV—156F7 BH—;F.

Considering the equilibrium in the sub systems, we obtain the normal
and shear forces for (T) up to (3 as

N1 =0, X/&:A:—\éQF,
V2 V2 7
Ny=="JF, VQ—A—2F——10\/2F,
V2 6 V2 F
Ny = 2A—F —5F7 Vs —2A_5

The bending moments result in the cutting points B, C' and D in

Mp = —a 2qoa = —2aF,

Mc:a\/QA:—gaF,

MD:2a\/2A—aF:—§aF.
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For subsection (), we obtain

Ny =0, 0

M,
Vz;:—qox:—Fz, <—E¢HH F
N, =
V<—{
M4:—;qox2:—;anz. ! xr

Remark: Since x runs from the right to the left, V4 is positive down-
wards.

Thus, the diagrams follow as depicted. Jumps are obtained in N and V'
at the corners of the frame and at the point of attack of the single-forces;
bending moments are constant over the angles.

N diagram V diagram
vy

—2aF S
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Problem 5.21 The composed structure is connected by a hinge. The
diagrams of the normal force N, shear force V' and bending moment M
are also depicted.

Determine the corresponding loading.

T Il N diagram
|
a 1 @
I o | o
FE T B
bz | bz
|
a : e
i '@
A2 —; qa — 5PX
[«— a —t— g —>]
P Pa
V diagram M diagram
o &) —4Pa
L~ —Lqa —2Pa
> qax Q
©)
[ L o |V .
O

“ap)

Solution The external loadings of the individual part can be recon-
structed starting at the outer boundaries as follows. A subsequent con-
sideration of the equilibrium equations at the middle point provides the
potentially external loadings in this point.

We start the derivation with the left beam (1). We can conclude, due
to the linear development of the shear-force with the boundary values
+ga/2 and the parabola-shaped bending moment with the maximum
of qa®/8, that the subsystem has to be loaded by a uniform line load.

V diagram M diagram Line load

éqa\m 1M 1@%

2
[ sqa
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The additional sub systems exhibit a constant normal force as well as a
constant shear force diagram. The bending moment diagrams are line-
ar. Therefore, we can conclude that no external loadings occur within
the subsystems @, @ and @ Thus, additional external loadings can
only appear at the free edge of subsystem @ and in the middle point.
Consideration of the boundary values of the shear-force and the ben-
ding moment leads to following loading;:

V diagram Single force M diagram Single moment

M = Pa &\

- P ]
p’ j; Pa 3
o a [ o a [

The equilibrium condition at the cut middle point yields the missing
loading;:

A
K: Myrx = M+ Mz — My

=2Pa—4Pa—(-2Pa)=0 ‘”2,\ :
. — 2
~»  no single moment, V11 K
’O’FDM
— HIWKZVQ—V4:—P—(—2P):P V, <e— v
~+»  horizontal single force, My N, ’

T Vuk=Vi—-Vs—Ny
=—lqa—4P+ lqa+5P =P
~  vertical single force.

Thus, we obtain the external loading for the structure:

M = Pa A\
\: P
l
|
! V2P
q },/
.l,f _l — _l — l_ Jl — n
7777 | 7777
|
|
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Problem 5.22 The simplified depicted
crane supports a weight W with a ro-
pe. The rope is clamped in B and is
guided by the frictionless pulleys D

D

and FE. The crane is additionally loa- Byl
ded by its self-weight go (per length |
. |
unit a). o A
Determine the N, V, and M diagrams = @ *l 3a }
for W = qoa
Solution The force in the rope is S = W. Thus, we obtain the

free-body sketch and the equilibrium conditions as follows

490

T =W Av —dgoe — 2900 =0, W ITFIIIIIIII
—  —
— AH = 0’ V['\ *
rj: Ma +3aW + 4qpa® = 0. w o
The support reactions are Ay = ~/ M,

ba

AvZ?W, AHZO, MA:—7CLW.

w

w

Due to the general coherences of the loadings and the internal forces we
obtain the depicted diagrams (Remark: Jumps in N and V are obtained,
because of concentrated forces; at point C' the sum of all moments has

to vanish (Note direction of contributions!)):

w

V2 o .
—(1+ ) W N diagram AW V diagram
© —© w2y, ©
6+ 2 Qa| v
2 V2. w
. —(1 W 2
—(64+ W
2
15
W o W
1 V2
(2 + 9 JaW @
\>™ _(7— ‘éQ)aW
M diagram ©
—TaW
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Problem 5.23  Determine the P5.23
diagrams of the internal forces
and moments for the symmetric
frame.

<
~a =20 —t=a -

Solution We obtain the support reactions, due to the symmetry, as

A=DB=qua.

The internal forces and moments in the sections (@ and (2) are calculated
by the equilibrium equations of the sub systems. They yield with the
help of cosa = 1/\/5 and sina = 2/\/5

o N le—AsinOé:—\?5 qoa, M, /Nl
N Vi=Acosa= \}5 qQoa, S\)Vl
~
S M :xlA:xlqoa,

@—): N2 =0,

e W:A—QOLEQZQO(G—LBQ),
& 1.2
S My = (a+wz2)A— jqo025

= qo(a2 + azrs — éx%)

Thus, the diagrams can be sketched.




134 Shear-force and bending-moment diagrams

P5.24 Problem 5.24 Determine the normal-
force, shear force and bending mo-
ment diagrams for the depicted arch.

Solution In this problem, it is not necessary to determine the support
reaction a priori. The equilibrium equations yield:

St N(a)=Fcosa,

N: V(a)=—Fsina,

?: M(a) =—rF(1—cosa).

We obtain for the vertical part

N=-F, V=0, M=-2rF.

These values are related to the support reactions in A. Thus, the dia-
grams follow

N diagram V diagram M diagram
—F —rF

—2rF

Remark: The internal forces and moments as well as the support reac-
tions are independet of [.
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Problem 5.25 The depicted arc P5.25
is loaded by a constant line load. H;;; ; }QO

Determine the diagrams of the in- a|>:
ternal forces and the extreme values

of N and M.

Solution We obtain the reaction forces by
the equilibrium equations as

Ay = qor, AH:B:q;T.

The internal forces of the arc are determined as

St N(a)=—[Av — qor(1 —cosa)]cosa — Agsinae N

M
. —
= —lqor(2cos® a +sina), Q/S 0
N V(a)=[Av — qor(l —cosa)|sina — Ay cos a o
= éqor(Q cos asin a — cos ) Ay *A”

e - 2 2
S : M(a)=Avr(l—cosa) — Aursina — qor*(1 — cos @)

2

= lqor*(1 —sina — cos® a) ,

with extreme values of the bending moment and normal force as

M
(jia =0: (—1+2sina)cosa =0,
cosar =0 ~ a1 =7/2 ~ M(a1) =0,
qor”
sina2:1/2 ~> a2:7r/6 ~s M(ag):— 08 ,
N
((iia =0: (—4sina+1)cosa=0 ,
cosaz3 =0 ~ az3=m/2 ~> N(a3):_qgr,
1 1
sinaa=1/4 ~ cos?as = 12 MN(aZl)flgqor
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Problem 5.26 Determine the internal
force diagrams for the depicted sys-
tem.

Solution With the equilibrium equations
T: By —F =0,
—: By — A= 0,

~
B: —-3aA+al'=0

the reactions forces follow

F F
A= By =F, Bg=".
30 7Y AT

Therefore, the normal and shear forces in the subsystems (o), (2), @ and
(® are obtained as

N, =A=F/3, Vi=0,

Ny =A=F/3, Vo=—F,
Ny=-By=-F/3, Va=DBy =F,

Ns =—-By =—F, Vs=—-By=—-F/3.

The bending moments are calculated at the loading points C', D and
FE to be

aF

MFZO, MC:—CLF, MD:—gaF, ME: 3

Now, we obtain for the arc in (3)

Ve ng—g(sina—&—iicosa), *F a(l — cosa)
F il ‘>S\i
: N3 = — 3sina), 1. 7
N 8= 4 (cosa — 3sina) 3f KM
|4
S Mz=-— 3 (44 3sina —cosa) . B

a sin«
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Some values of V3, N3 and M3 are summarized in the following table.

! 0 w/4 w/2 3m/4 ™
Vs —F _2v2 F _lp V2 F F
3 3 3
1 V2 2v/2 1
Ny 3F - F —F -7 F —3F

Ms —aF —;(4+\/2)aF —;aF —;(4+2\/2)aF —gaF

N diagram

V diagram - ©

M diagram
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Problem 5.27 Determine the
internal force diagrams for the de-
picted system.

Solution The equilibrium conditions
for the complete system lead to fol-
lowing reaction forces:

A:—I;, o= By-F.

We obtain the bending moment at C'
considering equilibrium for the depic-
ted sub system

Mc =—rByg = —rF.
In the curved part the forces are

St N(a)= _ cosa,

Via)=— 9 sina,

rF
5 (

“

1—cosa).

Therefore, the diagrams can be depicted as

N diagram

] o ]
F@ i
1F —lF
2 2

M diagram

1
72rF

V diagram 1
& F

—rF

-

4
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Problem 5.28 Determine the % P5.28
normal force, shear force and ; ; ; ; J J ‘ .F

bending moment diagrams for the T

depicted three-hinged frame. 2

Solution The equilibrium equations o !
—

C ; G
@ T: Av—Gv—2q0a:0, | Gy

(

A = |
2 u+Gug =0, |®

(

(

G 2aAy — 2q0a2 —3aAg =0,

Ay
@ 1: Bv+Gyv =0, +
—: =Gy +Byg+F =0, Ay
~
G : —aBy —2aByg =0
yield the reaction forces as
24 18 2 9
Ay = "_F, By=-— = _F Ap=-— = _F, Bgp=-—_F.
v=_F v Gv 7B H G 7t H -

The bending moments are calculated as

Mc:—BaAH:—gaF, MD:2aBH:—178aF,

which leads to the following diagrams:

24F N diagram 72F 24 V diagram
- 7 r
7 ®
e
ol _18 18 Op
— F _ F
7 9 7 @
© F
7
6 — 18(1F
— 7rLF ‘ 7
N o7/
S)

M diagram
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Problem 5.29 Determine the 1 l 1
position of the hinge G, such that Pl a +

the value of the maximal bending o
moment is minimal.

Depict the bending moment dia-
gram for that case. l

A, i

Solution We obtain from the equilibrium equations for the complete
system and the right sub system

T: Av+ By =0, — -— :

l Gu !
—: F— Ay —Bu=0, 3 "GV :
~ : !
A: Fl—-IBy =0, ! !

! |
5% ' |
G: IByu—(—a)By =0 — 4, \_Br

yielding the reaction forces as *AV Bv*
a a

By=-Av=F, Bu=F1-7), Au=F.

At the points C' and D the bending moment is obtained as
Mc =1Ay =Fa, Mp =—-IBg=Fa—FlI.

In the entire system the bending moment is linear, therefore we find
the minimum of the magnitude moment by equating

\Mc| = |Mp| : a=1/2.

For that case the moments M¢, Mp and the bending moment diagram
appear as

Mc:—MD:Fl/2 7Fl/2 @ —Fl/2

@ @@

M-Verlauf



Problem 5.30 Consider the
symmetrical loaded three hinged
semi-circular arc. Determine the in-
ternal forces as a function of a.

Solution From the symmetry con-
ditions, we obtain

AV:B\/, AH:BH7 Gy =0.

The equilibrium equations for the
left and the right sub systems yield

Av:Bv:F, Ay =By =-Gu =

at a three-hinged arc 141

F
g -

P5.30

The internal forces are obtained by the equilibrium conditions in the

free-body sketches. They lead for sub system @

and the point of the loading (0 < o < 60°) to

. — 1
/'t Ni=—Fcosa— ,Fsina
= —F(cosa+ }sina),
N: Vi=Fsina— Fcosa

!cosa),

= F(sina — ,

~
S: My =rF(l—cosa)— ;rFsinoz

=rF(l—cosa— }sina).

between support A

In sub system @ between the point of loading and the hinge G, we

obtain
v+ Nz =—1Fcos(90° — )
= —;Fsina,
N Va=—1Fsin(90° — a)

_ 1 .
=—,Fcosa,

D)

My = JFr(l —sina).

¢ 1
— |
2

T

7 cos(90°— )

i
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Some values of N, V and M are given in the following table.

«@ 0 30° 45° 60° 90°
N, —F —1.12 F —1.06 F —0.93 F

No —043 F —F/2
Vi —F/2 —0.07F +0.35 F +0.62 F

Vs —-0.25 I 0
My 0 —0.12rF —0.06 rF +0.07rF
Mo 4+0.07 rF 0

The internal force diagrams are depicted below. At the point of loading,
we obtain a jump in the normal force of the magnitude F cos60° = F'/2
and in the shear force of F'sin60° = 0.87 F. The bending moment
experiences a kink at that point. Due to the symmetry of the structure
and the loading, N and M are symmetric and V is antisymmetric.

N diagram V diagram

1
- F

—0.93F 2

ST,

M diagram
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Problem 5.31 The three-hinged
arc is loaded by a force F' and a con-
stant line load goa = 2F.

Determine the internal force dia-
grams.

P5.31

Solution Considering the equilibrium equations of the complete sys-
tem, the sub systems of the arc @) and the beam (7

T Av-i—Bv—F—qoa:O,A”
—
— AH—BHZO, /
)
® G: aBy —aBg =0,
Al 1 2
@® G: —aAv+ ,q0a" =0,

yield the reaction forces as
Av =F, By = By = Ay = 2F.
The internal forces at the arc are obtained by N\K\M
N: N(a) =—2F(cosa+sina), /V
St V(a) =2F(cosa —sina),

A
S: M(a)=2Fa(l—cosa—sina). acosa ?

By = 2F
The diagrams are obtained as follows. Note that N and M are maximal
in the middle of the arc.

N diagram V diagram

—2F

1
4(LF
—2F

M diagram
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* F * 2F
Problem 5.32 Determine the I o y
internal forces for the depicted sys- L
tem.
e @ = a == a = a
Solution The reaction forces are obtained by the equilibrium equations
of the complete system as
F Gy | 2F
Av=Cr, L T {
N GH__E,__r
B— 7 P, ﬂ \ 2 Gv 4 ap
4 Ay S3 S3
Ag =0. c D
Consideration of the right sub system yields the joint-forces and Ss:
T Gy +B-2F=0 ~> CJ\/:F/él7
N 3
G: aS3+2aF -2aB=0 ~ S3= 2F,
3
—: —Gug—53=0 ~> GH:—2F.
The remaining forces in the bars are obtained by the equilibrium con-
dition at point C. Note that the situation is mirror-inverted at C' and
D (51 = S5, SQ = 54)2
Sy
V2 3
= = =55 = 2F
— 9 S1+S3 0 ~ S1 Ss 2\/ s S
2 3 S3
T SQ+\251:0 ~> 52254:—2F. c

We obtain the bending moment at the point of loading E as
aF

Mg =—-aGy = — .
E \4 4 1 VE GI'I'
. . Mpg c—]—
Analogously, the bending moment at H is
aF ' Gv
My ="" . 1 b @
4 74(1,F
This yields the depicted bending o
moment diagram. @
]\1‘ aF

- o =
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Problem 5.33 Determine the * r * 2F P5.33
internal force diagrams for the T

(@] 1 T

beam and also the internal % a
forces in the bars.

F 1

qdo = 2 a

R S S

Solution The free-body
sketch depicts the sepa-
rated system. First of all

the reaction forces are
determined. Considering

the equilibrium equati- do
ons of the complete sys-

tem

— —AH+2q0a:0,

t: Ay —F—-2F+B=0,

~
A 2qoa2—|—aF+6aF—4aB:0

leads with go = F/2a to
Ay =F, Ay=F, B=2F.

The joint forces and the forces Ss in the bar are determined in the right
sub system. Equilibrium yields with sin 45° = cos 45° = v/2/2

T Gv—QF—\éQSg—FB:O,
— —GH—\QZS;;:O,

m

G 2aF+\é2a53—2aB:O.

Therefore, we obtain

S5 =2V2F, Gy = —2F, Gy = 2F.
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The bar forces of S1 and S> are obtained considering node C' as

— —\é251—|—\é2S3:0 ~ 51 =83,
T \éle—F\éQS:g—FSQ:O ~ SQZ—\/253:—4F.

Finally, the bending moment diagram is obtained with help of the point
values at D, E and H

Mp =2aAp —a(q2a) =aF,
Mg = —a(Gy + S2) =2a F,
My =aB=2aF.

O —2F
N diagram
Sa
-F |g S S3
2F
F
V diagram ® ®
AN
—2F —2F
F
2aF 2aF

aF
® ®
M diagram V/\

quadr. parabola



Problem 5.34 Determine the reaction
forces in A and B and all internal force
diagrams (normal, shear, and bending
moment). Specify also all extreme va-
lues in the A — C (angular frame).

Given: P =qa/4

Solution  In order to determine the
reactions forces, we will simplify the
structure. At first, the hinged column
between B and C' is replaced by a sli-
ding support which is tilted by 45°.
Additionally, the normal forces of the
bars, where the load P acts, can be
computed by equilibrium conditions
at the hinge.
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P5.34

A t

¢ i

—T’

’ I
T

The internal bar forces are obtained by the equilibrium equations at

the hinge as

T —\éZSI—P:O,
2
— —Sz—\/ 51:0,
2
which leads to
S =—V2, So=P.

45°

S

The equilibrium equations for the simplified structure

A~ 2
A \/ZaB+\/2a51—qa =0,

2
2 2
1 Av—l—\/B—i—\/Sl—qa:O,
2 2
— AH+SQ+\/2B+\/ZS1:0

2 2
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yield the reactions forces

3 a
qga, Av:4qa, AH:—q2 .

In order to sketch the internal force diagrams, it makes sense to dis-
assemble the forces B and S into its parts vertical and parallel to the
angular frame. Then an easy assignment to the normal and shear forces
is possible. In addition, Mg at the kink of the frame has to be deter-
mined:

2

My = a(Byg + Siu) = qZ

|— —»

The internal force diagrams are obtained as

N diagram V diagram M diagram

1
2qa

19
44@

:

1.2
499

1
444
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Problem 5.35 Determine for the
given structure all reaction forces A
as well as all extreme values of
the internal forces (normal, she-
ar force, and bending moments)
and the sketch of the internal for-
ce diagrams for the beam A — B.

P5.35

7777
o ==—a—=—a—=f=—a -

Solution With the help of the free-body sketch, we can determine the
reaction forces as follows.
Consideration of the
equilibrium of  sub
system (3) yields

Cag=0.

Therefore, the hori-
zontal reaction  force
FEm vanishes, since the
system does not have

any horizontal loading. ® * * Ss S *
Cy Dy Ey

In order to calculate the remaining vertical reaction forces Cv, Dy,
and Ev, we determine the internal forces of the sub system (7). A han-
dy choice of the equilibrium equations leads directly to the respective
forces:

~ 2
B —ZaW—aRl—\é Sia=0 ~ Si=-2V2(qa+W),
~
F: Bva—Wa=0 ~ By =W,
V2
— 9 S1+Bg =0 ~ Bup=2(qa+W).

Equilibrium in vertical direction of sub system (2) leads to

T: Eyv + By — R, =0.
Thus, the reaction force Ey follow as

Ev =2V2qa—W.
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The remaining reaction forces Cy and Dy can be determined by

~

D:—aFEy+aCy —3aW —2aRs =0 «»Cv:qa(4+2\/2)—2W,
1:Dy+Ey+Cy—W —-Ri —Ry=0~ Dy = —qa(2vV2+2).

The substructure A — B can be idealized as a beam with two supports.
The support reactions By, By and Si have already been determined.
The bending moment in point F' can be computed by

qa’
2

Thus, the internal force diagrams can be sketched as

MF:—Wa—

N diagram

@ 2(qa+ W)

V diagram

W @

—W —qa

W +qa

M diagram Wa— 1qa2
2
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Problem 5.36 Determine the int-
ernal forces for the depicted til- qo A

ted beam. /

. b

T

Solution We introduce coordinate systems in both sub systems
to determine the sign of the
internal forces. We obtain for

sub system (1) by double in- %
tegration of gy and with re- M M,
gard of the boundary conditi- y B
ons V. (0) = 0, M, (0) = 0 L Ny /\[
Z1 ® y
1 2 VB
V. = —qoz1, M =, Q1. .
Ve @
x
Thus, at the angle B, it follows Mg / ZyQ
12,
Ve = Vi(a) = —qoa, MB:My(a):—qua .

For the sub system (2) the equilibrium conditions yield
ZFZZO . VZ:VB:—qoa,
1
S>M,=0: M,=-Mp= 2£I002,

S>My=0: M,=uxVp=—qazxs.

Remark:
e The remaining internal forces are zero.

e The reaction forces at the clamping follow from the internal forces
of sub system (2) by

2
A= —V.(b) = qoa, Mas = My (b) = q°2“ , May, = M, (b) = —qoab.
e The bending moment M, in sub system (7) changes at the angle B

into the torsion moment M, in sub system @ -

P5.36
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Problem 5.37 The clamped semi-
circular beam with radius r is loa-

ded by its body force (go = const).

Determine the internal forces.

Solution The beam is cut at a arbitrary angle «, and

|

coordinate system is introduced, in
order to determine the sign of the in-
ternal forces. Using the arc length ra,
the body force of the subsystem is
equal to gora. This can be idealized as
a unified load in the centroid, which
is located at

o =21 sin ar/2

a

(compare chapter 2). The lever arm is
computed by

«

a=rc sin(a/2) = (2r/a)sin®(a/2) = (r/a)(1 — cos ),
b=1r—rc cos(a/2) = (r/a)|a — 2sin (a/2) cos (a/2)]

= (r/a)(a —sina),

which yields for the equilibrium equations

S>FE.=0: V.(a)=—qraoa,

SSM, =0 : My(a)=blgora) = qor*(a —sina),

SM,=0: My(a)=—a(gra) =—qgr*(l —cosa).

The remaining internal forces
are zero. The reactions forces
can be determined by the in-
ternal forces at o = .

The diagrams of the ben-
ding moment M, and the tor-
que M, are depicted.

M, ay

]\/[;L'/(]Or2
\

NUT/2
M, /qor?

«
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C G =2F/a
re

Problem 5.38 Determine the P5.38

internal force diagrams for the de-

picted structure. Fla
~
S A

Solution The equilibrium conditions yield o

Y
SF,=0: C,—F=0, 2y & G

B F

STF, =0 : B, +C, =0, ”\
SSF.=0: A+B.+C. —q2a=0, *
ZMQED) =0: 2aA—a(q2a)=0, g02a f A

ZM;D)zo : —aB:+aC.—aF =0,
SMP) =0 : aB,—aCy+2aF =0.

Thus, the reaction forces are determined with qo = 2F/a, as
A=2F, B,= By, =-Cy=—-F, C,=F, CZ:QF.

For the following calculations, we
subdivide the system into 4 parts
and introduce individual coordinate
systems. We obtain from the equili-
brium equations:

@ Vy:_By:F7
V.=B.=F/2,
My:BZ:m:;Fa:l,
M. = Byx1 = —Fux1,

@ N=-C,=-F,
Vy =+4+Cy = +F,
V.=-C.=-3F/2,

My:+Cz(a—$2):+§F(a—xz), NM?
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Vz:A—qU$3:2F(1—$3/a), i
M, =—Fa, /'1[( * ©
My
My = Axs — yqoa3 = F (2x3 — 23/a) M, *A
Mz:ng, /F Ty
@ X
V.=-F,
® A/[y\‘/
M, =—Fu,. V.

The sketches of the internal forces are depicted below.

Remark:

e The bending moment at sub system (7) changes into the torque at
sub system (3. The latter causes in the beam BC at point D a jump
of the bending moment M,.

e Analogously, the bending moment M. of sub system (3) causes a
jump of M. of the beam BC.

normal force torque

S

bending moment

M,
A

\

M,

—Fa




Problem 5.39 The depicted semi-
circular arc of radius r is loaded by
a constant radial line load go.

Determine normal force, shear force
and bending moment.

Solution A cut of the arc for an
arbitrary « frees internal forces.
Considering an arc element of the
length rd¢, we obtain an infinitesi-
mal loading gord¢ in radial directi-
on. Decomposition of the force in N
and V direction and integration over
the arc element leads to

—/aqor sin(a — ¢) do
0

N(e)

=—qr (1—cosa),

in spatial structures

V(a) = —/anor cos(a — @) dp = —qo r sina .

155

The infinitesimal moment gord¢ with respect to the cut yields h gorde.
We obtain from the equilibrium equation for the moments using the

lever h = rsin(a — ¢):

M(a):—/OQQO r? sin(a — ¢) dgp = —qo r* (1 — cosa) .

Thus, the internal force diagrams are obtained as

2qo7? qo 21

P5.39
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1. Cables subjected to vertical loads

Loading ¢(xz) is a function of z.

The horizontal force H and the tension of the cable S are
H = const, S =H1+ (2)2.
Integration of the differential equation

2=~ 1 a(a)

leads to the curve of the cable z(x) and the sag n(zx):

z(x):—I;/Oz/ozq(j)didi—i-CLT-FCz, n(@) = 2(z) ;| @

For a given H, the integration constants C'i, C2 are determined by the
geometrical boundary conditions (z(0), z(l)). For an unknown H, an
additional constraint is needed. Possible constraints are:

1. maximum sag Nmax = 1" given,
2. maximum tension Smax = S™ given,
3. length of cable L = L* given.

In the special case of a constant vertical loading g(x) = qo = const,
we obtain for the curve of the cable and the sag

z(z) = (}; 4 2q(}_l1> W= 2@?}0{ z”, n(x) = 0 (lz — 7).
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The horizontal force H is determined by

2
1. n* given: H = ol 7
8n*
2
2. S given: S _H\/1+ (Iflz\ o Qq(}jlr> 7
!
* g * H ’ . , 29
& L ghers L :_2q0 [Z \/1+Z’2+arsmhz]zl
1
with zi:l+;}(}{7 Zé:l_g(}{’

(in cases 2. and 3., H has to be determined using an implicit equation)

2. Cables subjected to self-weight

Loading g(s) is a function of the arc length s (weight per unit length
of the cable). Here the relation ds = v/1 + 2’2 dz holds.

The horizontal force H and the tension of the cable S are
H = const, S=H\1+(2)2.

The curve of the cable follows from

z”:—;}[\/l—i—(z’)z.

For the special case
e weight is distributed constantly over cable length: § = go = const
e both cable supports are at the same height

follows
H Jox
bl : = (1= cosh ) : ¢
cable curve z(x) & ( cosh * (catenary)
sag: n(z) = z(z)+ h, ~ h=Tmax = —2z (1)

cable tension: S(z) = H cosh q;{a: ,

2H . qol
ble length: L = h .
cable leng o sinh
For given n*, S* or L*, the horizontal force H has to be determined
from a transcendental equation.
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Problem 6.1 A supporting rope is
loaded with a line load ¢(x) = qo
between points A and B. The ro-
pe shall be stretched such that the
slope of the rope at point A is zero.

Determine the horizontal tensile * * * { * { + + + * { %
force and the maximum force in the
rope. } 1 |

¥
B
! i

Solution We place the coordinate system in point A. Integrating the
differential equation of the rope curve twice yields

” _ 9
z (1’1)7 H7

z'(w):—ﬁx—i—cl,

z(x) = —ZQ}J{ 2+ Ciz+Co.

The integration constants Ci, C2 and the horizontal tensile force H
follow from the boundary conditions:

Z(0)=0 ~ Ci1=0,

_ _ o 2 _qol?
z2()=—h ~ h—2Hl ~ H= 9 -

The force in the rope can be calculated by

S=Hy\1+ (2)?

7q0l2 2hz\?
_ ¢( n)

It obtains its largest value at 2 = [ (support point B):

Cqol? 2h\?
S = 8 1 (3
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Problem 6.2 A washing line is fixed A ! P6.2

at the end points A and B at the x

heights ha > hp above the ground. B
The clothes on the line resemble

approximately a constant line load [ >

q(x) = qo. ha

Compute the maximal force in the li- ke
ne for a minimal distance of the line to i

the ground given by h™.
Given: ha =5a, hg =4a, h" =3a,l=10a.

Solution With the boundary condition z(0) = 0 and z(I) = ha—hp = a
we obtain the curve of the line, (comp. Exercise 6.1)

/1 10qo a qgo 2
Z(”"’)*(m’L 2H )x om "

The yet unknown horizontal tensile force H can be determined from
the minimal distance h*. It occurs at the position z* with 2’ = 0:

oy L dga q
Z'(z) = 10+ I foo
It follows
. 1 H # (H +50qo a)?
= d max — =
10 q0—|—5a an z z(z™) 200 g0 H

Inserting into A = ha — zmax together with the given values yields the
quadratic equation

H? —300qoa H + 2500 (qoa)® = 0
with the solution
H = (150 £ 100 V2 )go a.

In case of the plus sign, the value of 2™ is not between A and B. Thus,
the solution for the minus sign holds

H = (150 — 100 V2 )go a ~ 8.579qo a..

The maximal force in the line occurs at the position with the largest
value of z’, thus at the higher support of the line:

Simax = S(0) = H\/1+ 22(0) = 10.388 go a..
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Problem 6.3 A rope is stretched by a
weight and loaded with a line load ¢(x).

The pulley at the right bearing is fric- Wn
tionless and its dimensions are negligi-

ble. T
Determine the position and value of the , ' 13
maximal sag. L
Given: qo = ;\/2 W/l
G
z
S —

Solution With the line load given by

a@) = a0 (=7 +2)

integrating the differential equation of the curve of the rope twice yields
” _ qo (_ x 2)
Zz) == (=, +2),

RS TOREH LY

=W L) ()] e

It follows from the geometric boundary conditions

! 1 5ql
==y ~ 01:—3+6qu[.

Thus, the curve of the rope is given by

= () () (D] -

2@ ="y 76\) TU) 6l )l 73"

The yet unknown horizontal tensile force H can be obtained from the
given force in the rope at the position x = I. The condition

SO =W  baw. H\/1+z’(l)2:W

yields together with S

Z’(l):—(gqﬁflJr;):—§(¢2Z+1) )
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the quadratic equation

(W)2 22 (W> S0

H 7 H 7

with the solution

W —? V2 <0 (not feasible),

" V2.
The horizontal tensile force follows as

H = ; VoW =qol,
with the curve of the rope finally calculated as

2
“@=tlg (1) =)+ 5 ()] -5

The curve of sagging yields with h = —1/3

1 /23 z\2 5 /x
=1 {6 (l) B (l) *6 (l)} ‘
The maximum amount of sagging 7max follows from the condition

im0 ()i

which leads to the solutions

‘rl =24/7/3.

The first solution z* = (2 + 1/7/3 )1 > I is geometrically not feasible,
thus nmax occurs at the position

" =(2-4/7/3)1L.

Inserting 2™ yields the value of the maximal sag

7 |7
max = n(x") = —1|1~0.1881.
n n(z”) (9 \/3 >
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Problem 6.4 A rope is stretched
across a street between two poles
of the same height and loaded by

its dead weight qo. At the footing do

of the poles a maximum momen- z Ly

tum M. can be absorbed. J
z

Determine the maximal clearance
height in the middle of the rope
and the maximal force in the ro-
pe.

Given: har =20m, [ =50m, o = 10N/m, Mpaer = 10kNm.

Solution From the absorbable momentum at the footing of a pole, we
can first compute the feasible maximal horizontal tensile force:

H = Mnas =500N.
hy

The curve of the rope in the given coordinate system reads
H ( qox
z(z) = _ (1 — cosh ) .
(z) o I

Thus the maximal sag is

- - H (jol -
Nmaxz = Z(l/2) = o <]. cosh 2H> =6.381m.

The clearance height is obtained as
hp = hv — Nmaz = 13.618 m.

The maximum force in the rope occurs at the fixing points (z = +1/2):

Synaw = H cosh g‘}; — 500 N cosh 0.5 = 563.8 N..

Remark: The length of the rope at the total weight follows as

2H T
L=2Hgm® soim G Lgo=5211N.
qo 2H



Problem 6.5 A measuring tape
(dead weight o) is used to de-
termine the distance between
the points A and B. The actual
distance is given by [.

Determine the force P which is ne-

Ropes 165

A B

~—— | ——————~

cessary to stretch the measuring tape such that the measuring error is
0.5%. Determine the maximal sag of the tape.

Solution With the known measuring error of 0.5 %, the length L of

the tape is calculated as

. 72H. qQol
L=10051= 4o SthH'

Reformulation reveals the transcendental equation for the horizontal

tension H,

1.005 1 _ gy !

2H 2H’
N Gol

b bstitut A=
or by substituting oy

F(A) =1.005\ —sinhA=0.

0.0004

0.0002 ()\)

0.0000

-0.0002

-0.0004
0.00 0.05 0.10 0.15

0.20

A

The solution is obtained from a graphical determination of f = 0, or,
more precisely, through iteration using the Newton method:

Ant1 = Ap — J{ ((’;"n)) with — f'(\) = d{i&’\) = 1.005 — cosh \.
Step 0 (starting value) 1 2 3 4
A 0.2000 0.1777 0.1733  0.1731  0.1731
It follows
A =0.1731 ~ H= Z“Al =2.889 1.

The stretching force P and the maximal value of sag are calculated by

Jo |
P = 5(1/2) = H cosh ;1(}1 = H cosh \ = 2.932Go . b‘/’l;’\(

T —_ (1 — cosh %) =0.04341.

Nmaxz =
qo

P6.5
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Problem 6.6 A rope is laid across
a frictionless pulley (dead weight
negligible) and has a total length
L = T7a. It is loaded with a line
load ¢ and a single load P.

Determine P for a maximal sag
Nmax = a/10 between the points A 4a ‘ ‘ ‘
and B. a a

Solution We first determine the length of the rope in the region A — B
and B — C. It follows for region A — B

H 25
A8 =-, [z' \/1+z’2+arsinhz'} :
q 2

with the horizontal tension H and the limits 2%, z5 given by

ql?  q(4a)? / ql 1 / ql 1
H— — —9 - — - -
gpr g T 20h AT o =g 2T 9 T T

1 /101 1
Inserting yields L% = 20a( \/ () ~401a.
nserting yields a 10V 100 + arsin 10 a

From the geometry, it follows for the length of the rope in region B —C"

1

4(LBC)2—G2.

LB¢ :2\/11)%—}—@2 or wf,:
With L = LA 4+ LBY = 74 and the known length LZ, the maxi-
mal sag in region B — C' yields w, ~ 1.11a. For the angle «, sina =
(wp/ /w2 + a2) holds. Consequently, S5 can be determined from equi-
librium in vertical direction at point P:

P
t: 2889 sina—P=0 ~ SE9= \/wf,—&—aQ.
2wy

Wwith Sg# =S and ______ oz ;
AB Qo l\? _ SaB ;25; \ gBC w,
Sh 7H\/1+(2H) ~20.10qa, S5 B
the magnitude of the force P yields ‘
P

_40.20ga-1.11a

~ =29.87qa.
V1.112 a2 + a? 1
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q1

Problem 6.7 A rope is loaded by two m—r

piecewise constant line loads ¢1 and g2. _
1 17 b

Determine the curve of the rope in the
areas I and II for the known maximal x

rope force Smax. l

Given: q; = 1kN/m, a = 20m, z

¢2=2kN/m, b=4m, Snax = 100kN. |=—a/2 —=|=—a/2 —]

Solution Due to the jump in the load function at the position z = a/2,
the rope is divided into two regions. By integrating the differential equa-
tion of the rope z” = _flz q(x) twice, it follows for the rope curve in
the regions:

1 1
ZI(x):—QHq1x2+Clx+C’z, ZH(x):—Qqux2+Csx+C’4.

The 4 constants can be determined with the help of boundary and
transition conditions:

boundary cond.: z;(0) =0, zi(a) = —b,
transition cond.: zr(a/2) = 2z (a/2), zi'(a/2) = zn'(a/2).

One obtains

b
01:86;{ (3(]1+(]2)—a, C> =0,
a b a?
Os=gpy Ca+de)-  Ci= o (@-a).

In order to completely describe the rope curve, the unknown horizontal
tension force H must be computed:

Sax = H /14 (217(a))? = 100N with zz'(a) = — >0 — 1.
2H 5
The quadratic equation
26 o 38775
95 H”+7H — 4 = 0

has the solution (H2 is negative and thus physically not admissible!)

—7 4+ /40375
Hyo = gg
25

H = H; =~ 93.24kN.

P6.7
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Problem 6.8 A rope hangs
between two bearings at the sa-

me height and is loaded by a T
triangular line load with the

maximal amplitude ¢o in the h
middle of the rope. i

do
Determine the force in the ro- /m

pe at the lowest point of the
rope and the shape of the rope 1 2a |
curve.

Solution Choosing the coordinate system in the middle between the
bearings, the load is given by

T

q(w):qo(l—a), 0<z<a.

Integrating the differential equation of the rope curve twice yields

HZ,,:$—17
q0 a
H z? ‘

/

=Y 2401, i
qoz % r+ C1 P
H 3 2

Z:x _:L‘ +Ciz+Cs.
qo 6a 2

We obtain the integration constants from the boundary conditions:
o2
Z(0)=0 ~ C1=0, z(a)=0 ~ 02:3.
The curve of the rope then reads (symmetry!)
2 2

3
q [ x T a
= —_ < < .
: (Ga 2+3>’ 0sz<a

The horizontal force H is calculated from the boundary condition
2 2
qo a qoa
H =
H3 3h

Then the force in the rope at the lowest point follows as

z(0)=h ~ h=

2
qo a

S=H\1+(z)? mit 2(0)=0 ~ S=H= ah
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Work

A force F' acting along an infinitesimally displacement dr accomplishes
the work

FT «
dU = F -dr = F' dr cosa. dr

S

Analogously, the work of a moment M along
a rotation de is

dU =M - de.

In case that force and displacement vectors or moment and rotation
vectors, respectively, are parallel to each other, the relations simplify
to scalar expressions

dU = Fdr bzw. dU = M dep.

Principle of Virtual Work

Instead of the displacement dr, one introduces in statics a “virtual”
displacement ér. As a result, the Principle of Virtual Work can be
formulated: A system of forces, which is in equilibrium, does not ac-
complish virtual work along a virtual displacement d7:

oU =0.

Virtual Displacements are:
1. imagined
2. infinitesimally small

3. compatible with the kinematic constraints of the system.

Remarks:

e In case that support reactions or internal forces have to be deter-
mined, it is necessary to use a free-body diagram and to introduce
the support reactions or the internal forces as external loads.

e The symbol J indicates the relation to the variational calculus.

e The work of a force along a finite path is given by

T2
U:/ F -dr.
1
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Stability of an Equilibrium Position

Conservative forces (weights, spring forces) can be derived from a po-
tential V = —U via

o0V = —=0U.

The equilibrium condition reads
6V =0.

The stability of the equilibrium position results from the sign of 62V:
> (0 stable,
v
< 0 wunstable.
If V is given as a function of one spatial coordinate z, then

7dV 2 _ 2
6V—dzéz, 6V—2d22 (62)

apply. Therewith and given z # 0, the following statements hold:

d
equilibrium condition =0,
dz
s d?v [ >0 stable position,
stability 5 =
dz < 0 labile position.
Remarks:
2
e In case of ¢ ‘2/ = V" =0, it is necessary to investigate higher deri-

vatives.

e The equilibrium position is indifferent, if in addition to V" = 0 also
all higher derivatives are zero.

e The potential of a weight W is V. = W z, if z is counted vertically
upwards from the zero level.

e The potential of a spring tensioned by =z (spring constant k)
isV = ;kazQ.

e The potential of a torsion spring tensioned by ¢ (torsion spring
constant kz) is V = Lkr ¢°.
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P7.1 Problem 7.1 A ladder (weight W, length
1) leans on a smooth wall.

What is the magnitude of I’ to obtain an
equilibrium state for the angle a?

Solution  For the determination of equilibrium positions using
the principle of virtual displacements, it
is suitable to define the coordinates of
the acting points of the forces. In the
chosen coordinate system, they are gi-
ven by x and yy,. Then, dxp and dyy,
are oriented against F' and W, respec-
tively. Therefore, the equilibrium posi-
tion is found as

oU=—Fdéxp —Wdoyw = 0.

Yw

With
. l
rp=Ilsina, yw =, cosa,
.
orp =1l cosada, 6yW:—2 sin ada,

it follows that

oU = —Fl cosada + ; Wilsinada =0

1
~ F:ZWtana.

This result can be easily verified by for-
mulating the equilibrium conditions for the
acting forces:

TZ Nl_WZO, N1:W,

— No—F =0, Ny =F, ?V
1 M

m —

A Nzlcosa—;Wsina:(L F—QWtana,
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Problem 7.2 A crank AC' is hinged in P7.2
A and loosely bolted in C' with the rod
BC. At the rod’s end, the piston in B
is subjected to the force F. Moreover,
a moment M is acting on the crank.

Determine M (a) for equilibrium. Ne-
glect the weight of the crank, the rod
and the piston.

Solution The displacement f of the piston is introduced. Since F' is
acting in the opposite direction of § f just as M acts against the virtual
rotation dc, the equilibrium equation (principle of virtual work) reads

§U = —Méba— Fsf =0. ]

From the sketch, one obtains d

f=rcosa+lcosf

f
~ 0f =—rsinada—Isinfp ip.
a
The angle 8 needs to be eliminated. Based on
the sketch, it is a)r

. . . o,
a=Ilsinf=rsina -~ sm,B:lsma.

Differentiation yields

T COS (v

cosﬂdﬂzrcosada ~  0f = .
l [ cospf

With cos 8 =+/1—sin?8=+/1—(r/l)2sin«, one obtains
r r cos o
—Mdéa+ F(rsinada+1 sina o) =0
( ! L\/1—(r/1)?sin®a )
or

M = Fr sina( reosa )

1+
VI2 — r2sin? o
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Problem 7.3 Determine the ratio
of the load @ and the pulling
force F' at the example of a
power pulley

a) in the sketched case F
(3 free pulleys)

b) in the general case
(n free pulleys)?

-

Solution The load @ is fixed at C;. Under a virtual displacement d¢
of @, C; also rises with dq.

The pulley I rotates around Ay, sin-
ce the point A; is fixed by a rope at the
top. Therefore, B1 and, thus, C'> move
by 24dq.

Analogous considerations for the
pulley IT (As is fixed) yield 4 §q = 2%0q
for the virtual displacement of Bs.

The pulley, fixed at the top, rotates
around its center point. Therefore, the
displacement ¢ f of the pulling force F'
corresponds to the displacement of the
point B, at the final pulley.

Following the equilibrium condition

0U=-Qdéq+Fof=0,
it is found that

a) for 3 free pulleys with 6f = 235 = 8 6g

—923 _g.
r 8

b) For n free pulleys one obtains with 6 f = 2"dq

Q

=2".
F

Remark: This result explains the notion power pulley!



Problem 7.4 The depicted

[
balance is constructed such }« @ —= b

o

-
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that the amplitude of @ is in-

dependent of the position of
the weight W on the load arm
AB.

Q

Determine the ratio of the di-
mensions b, ¢, d and f for a
given length a as well as the

EON

relation between Q and W.

(-
e d —
B

i
f
]

Solution In order to fulfil the requirement, the load arm AB must stay

horizontally. Thus,

Op

04 =0B.
According to the sketch, a ro-
tation of the upper beam with \ -
d¢ yields o ‘/

A=0b0¢g, o = foy.
Both angles are coupled via
the displacement of the bar
EF:
F=cdp=dp =08 ~ b= Ccl 5.

Therefore, one obtains
5A:b5¢:f§5¢:55 ~ i: g.

@ results from the principle of virtual work via
Qég—Wda=0

with
0q=adod

to

P7.4
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Problem 7.5 Determine the support reactions in A, B and D for the
illustrated girder with two hinges by using the principle of virtual work.

¢ =1kN/m F =5 kN ¢ =2 kN/m
YIPVVVIIEIVYY + \REEEERXEERIE
2 A 2B A D&
fe— 3= | = = 22— 4 {

Solution To obtain the reaction force in B, this support reaction is
introduced as external force and the system is subjected to a kinema-
tically admissible displacement.

=& ¢ &= F G2
K] + YIVVVVIVIVIVY
3 A 2
0
B

A consideration of both parts of ¢ yields
1

3
5U:/QI5qu€I+/Q15qn déyr — Bép =0.
0

0
With
Sp=1-6¢, 6qr=¢&06, oqr=(1+En)dy,

it follows that
3? 1?
By =q ") 66+ (1+ ) )&p.
Including the geometrical relation at the hinge,
2
0 =30p =26 ~ O¢p= 361#,

leads to

3% 2 1
B=a") 3+(;1(1+2)_4.5>q1

or

B =45kN.



Support Reactions

2) Using the free-body diagram, the support reaction in A results

& -—
(KEXXRLNBREIG * YYVVVVIIRIIY
Al ‘\/ % A %
Fe

from the virtual-work equation

3
5U:—A5A+/ 01 dE =0

0
and the geometrical relations
oqn =&0a, da =30a

leading to

2

—3A6a+q132 ba=0 ~ A:i;ql:l.SkN.

3) The free-body diagram for the support reaction D yields

BIN | TKN” =~y 5N 8 kN
- * s % op S~
m\‘\\r‘\d(\ /% \\\\"\(iA *D
| 3 1= 1 3 | 4 —

The following geometrical relations hold:

3da=148 da = o7,

>
30y=168 0B =30dv.

177

For the application of the principle of virtual work, the distributed loads

are replaced by their resultant forces. Then, one obtains
3-156a+1-0508—-5-26y+8-20y—D-46y=0,

from which the support reaction yields

D:i(4.5+1.5—10+16):3kN.

4) The support reaction in C' is finally obtained by equilibrium in ver-

tical direction:

C=F+q -44¢-4—A—-B—-D=8kN.
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P7.6 Problem 7.6 For the illustrated system, composed of beams and rods,
the force Si in the rod (7) has to be determined.

I
) |
|

@

2q0

RITRETTIRRERINLN)

Solution The resultant forces of the distributed loads are placed in
the respective area centroids, and the system is subjected to a virtual
displacement after rod (1) is cut free.

Ve 51*

T~ 2 2
S S S

o |

The following geometric relation holds:

20 6 =a o ~ S =200¢.
The principle of virtual work yields

8U = — qoa - gaéé—Sl-a5¢)+51-2a51j}—2q0a- 62‘ 5 =0
or

—;’ q0a’8d — S1ad¢p +2a 51266 — qoa’28¢p = 0

7 7
s 351:2q0a s Slzﬁqoa.

Remark: The vertical distributed load at the lower beam can not be
replaced by one resultant load in the hinge.
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Problem 7.7 Determine for the depicted beam the function of the in-
ternal moment between the pins by using the principle of virtual work.

qo F
AYIIYTTIVIVVITTTY i
A 2

1 l t—a =

Solution In order to determine the internal moment M at an arbitrary
position x by means of the prin-

ciple of virtual work, one needs

to introduce a hinge at x and }—T, M - /‘ F
has to let M acting as an exter- ‘T’ — ~

nal load on the adjacent parts of A 2 oPA -~ -

the beam. For a virtual displa- 0 > o7
cement, it follows that - n -
T l—x
8U = =M 8p— M sv—Fadi+ [ an(€6)dg+ [ ao(nov)an=o.
0 0
With the geometric relation
l—x
rop=(1-2)0p ~ Jp= L O
one obtains
_ 27 Ry
M (l xm +1> §p = [—Fa—i—qoa; N 2:::) 8.

After some rearrangements, the requested function for the internal mo-
ment is found as

M (z) = “; l:—Fa—FQOQZQ (1— ?)}

1
Obviously, proceeding from the support reaction A = 9 qol — le F and

1
the equilibrium equation M = Ax — 9 go z°, the same result for M (x)
is found.

P7.7
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q
Problem 7.8 A frame is sub- \/ (\ * i *
jected to a distributed load ¢ N C
and a moment M.
Determine the horizontal sup- I 17

port reaction in B by using the
principle of virtual work.

[e— = —

A7;§7 7;;3

P

Solution For the determination of the horizontal support reaction By,
the horizontal support of the hinge B is released and By is applied
as an external load. Then, the (now movable) system is subjected to a
virtual displacement.

To obtain the correct displacement figure, the centers of rotation of the
frame components I and II have to be found. For part I, the hinge
in A acts as the center of rotation DP;. For part II, one needs to
find two possible motion directions of two points at II. The center
of rotation can then be found at the intersection of two lines, which
can be constructed perpendicular to the motion directions of these two
points. In the present case, the motion possibilities of points C' (linked
to part I) and B (in horizontal direction) are known. This determines
the center of rotation DPy;.

The virtual-work equation reads

0U =2qadug — Mdp — By dup .
With the geometrical relations
6uq:;5g0, dup =2bdyp,
it follows that
oU = (qga® — M —2bBp) ¢ = 0.

This yields the horizontal support
reaction By:

2
_ga —M
Br=""4,
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Problem 7.9 The illustrated system
is loaded by the forces Pi, Pa, Ps
and the moment M.

P7.9

Using the principle of virtual work,
the value of the force P; should be
determined such that the moment
in A vanishes.

Solution In order to obtain the moment in A, the clamped support
is replaced by a hinge and the couple moment M4 is introduced as an
external quantity. The now moveable system can be subjected to a vir-
tual displacement. To evaluate the geometrical relations, the displaced
system is constructed.

o

DPyg

. v

()7:‘\/1/' }}[*07:
, i :
S

Ny

a
i P X

DP;

For the determination of the particular centers of rotation, one pro-
ceeds from beam I. Its center of rotation DP; can be found at point
A. Due to the obtained movement abilities of points B (endpoint of
beam I), C (in horizontal direction) and D (in vertical direction), the
centers of rotation of the beams I and II] can be obtained according
to the above sketch. Hence, all virtual displacements can be expressed
in terms of . The equilibrium condition is then given as

U =Madp+Mbép+ Psadp+ P2adp—P12adp=0.

Using the constraint M4 = 0, one obtains the required force P;:

M 1
P = Ps+ Ps.
1 2a+2 3+ o
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Problem 7.10 A homogeneous bar
with weight @ is connected with a
triangular disc (weight W). Further-
more, the system is hinged in A.

Calculate all possible equilibrium
positions and investigate the stabi-
lity of theses equilibrium positions.

a a
e § e

Solution First, the system is deflected by an arbitrary angle «, see

sketch.
a

- 6 =

=

In consideration of the position of the center of gravity, the potential
energy of the system comparing the non-deflected (o« = 0) with the
deflected system yields

V=aQ (; sin o + gcosa) + W (—Zsina— gcosoz) .
Thus, one obtains the equilibrium equation

dv =Q (21 (cosa —sina) — W Z (cosa — sin )

a

w .
=, (Q— 3)(c0sa—sma):0.

Following this, the possible equilibrium positions can be calculated:

3
2) cosa—sina=0 ~ tana=1 ~ o= m,

.

NGNS Ny S

Qo =
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For the investigation of the stability, the second derivative and, if ne-
cessary, higher derivatives of V' are determined.

In the first case, the second and all higher derivatives of V' are equal
to zero. Following this, the equilibrium for this special weight ratio is
neutral and thus equilibrium is possible in any position (see examples):

B b

In the second case, one obtains

V//
da?

—g (Q— V;) (sina + cos ) .

Thus, the sign of this term depends on « and on the weight ratio.
Finally, one obtains

a) a; = Z :
W 1
Q> 3 V"(c1) <0 ~» unstable,
Q< V;/ ~ V"(a1) >0 ~» stable,
5
b) as = 4 T
Q> V:I; ~ V"'(a2) >0 ~» stable,
W 1’
Q< 53 V"(a2) <0 ~» unstable.
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Problem 7.11 For the illus-
trated system, the equilibri-
um position o« = «p and
the corresponding limit ca-
ses should be discussed.
Assume that the rolling ra-
dii are negligibly small and
that the length [ of the rope
is given.

Solution Weight forces are conservative forces and accordingly have
a potential character. Using the coordinate z (directed vertically up-
wards), the position of the weights can be determined by the geometry:

a
=—-b— _ tana,
Z1 9 n o

2= (122 sua) = (= a)-

Thus, the potential energy of the system can be formulated as

V =Wizr + Wazo = —Wl(b+ 62” tana) —Wz(l— Coza) =V(a).

The equilibrium position can be determined by the condition

dVv a 1 asin
=0 —W =0
da ~ 12 cos2a % cos?
yielding
s' 1 WL
11 g — .
7T 2 Wy

Limit cases:

Wi >2Ws ~s no possible equilibrium
(because of sin g < 1),
Wi=2Ws ~ ap=m/2,ie.a=0fora
finite length of the rope,
W1 = 0 e Qg = 0.

Note: The length [ of the rope and the distance b have no effect on the
solution.
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Problem 7.12 A disc (radius ) /

is hinged in its center and is
connected to two weights via
two rods (length a). A weight Q
is attached to a rope which is
wrapped around the disc.

Calculate all equilibrium positi-
ons and investigate the stability
of these equilibrium positions.

Solution Since all active forces are weight forces, the system is conser-
vative. Assuming an unwounded rope length [ and specifying the zero
level for a = 0, the potential energy of the system for a deflection rela-
ted to a certain angle o can be computed as follows

V=-2Wasina+Wasina—Q(l —ra)
or
V=-Wasina—Q((—ra)=V(x).

The equilibrium positions result from

av- _ _Qr
daio' Wacosa+Qr=0 -~ cosafwa.

Due to the ambiguity of circular functions, two solutions exist:

Qr
(Y1 = arccos a2 — —Q1 .
Wa’

The second derivative
2
V" = ?ia‘g =W a sin«

specifies the stability at the equilibrium positions. One obtains
V"'(a1) =Wasinag >0,
V' (az) = —Wasina; <0,

i.e. the state a; is stable and the state s = —a is unstable.

Note: Because of cosa < 1, these solutions only exist for Qr < W a.

In the limit case Q7 = W a one obtains cos @ = 1, i.e. the system is in
equilibrium if the rods are horizontal.

P7.12
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Problem 7.13 A straw (weight W,
length 2a) lies in a hemispherical
glass with ideally smooth walls.

Calculate the equilibrium position
a = ap and investigate its stability.

Solution Specifying the zero level to lie on the edge of the glass and
using the coordinate z (directed vertically downward), the distance to
the center of gravity of the straw can be determined as follows:

z=rsin2a —asina.

Thus, the potential energy of the system can
be calculated as

V(z)=-Wz=—-W (rsin2a —asina).
Using the equilibrium condition, one obtains

dv
da

V' = =W (—2r cos2a+a cosa) =0.
Furthermore, using cos 2a = 2cos? a — 1, the equilibrium state follows

2
4r cos"a—acosa—2r=20

or

a+ a2+ 3272
cos g = gr ,

where only angles o > 0 are useful. With the second derivative
V" =W (47sin20 — a sina) = W (87 cos a — a) sin

of the potential energy of the system and by inserting ag, one obtains
V" (aw) = W/a2? + 3272 sinao.

The equilibrium is stable since this expression is positive for 0 < ap <
/2.
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Problem 7.14 A disc (radius a) is hinged P7.14
in its center and has two circular holes (ra-
dii 71 and 72) each at a distance of b from
the hinge.

Calculate the equilibrium positions and
investigate the stability at these equilibri-
um positions for r1 = V2 ra.

Solution Since the disc without the holes is in equilibrium in any posi-
tion, only the influence of the two holes needs to be taken into account.
Therefore, the holes are considered as “negative” weights which must
be “added” to the disc. Specifying the hinge as zero level, the potential
energy of the system can be formulated as

V = Wibsin o + Wasin(180° — 120° — o) = V(«) .
The states of equilibrium result from
V' = Wibcosa — Wabcos(60° —a) = 0.

With the weights
Wi = mripg = 2rripg,  Wa=mripg

one obtains

V' = mr3pg|2 cos o — cos(60° — a)] = 0

and thus
1 3 .
ZCosa—zcosoz— 281na:0 ~  tana = V3
~  a; =607, o = 240° .

The second derivative
V" = —Wibsin a — Wabsin(60° — «)

specifies the stability at the equilibrium position yielding

V" (1) = —Wib \23 <0 ~ unstable,

V" () = +Wib \23 >0 ~» stable.

Note: Since the center of gravity of the perforated disc is located above
the support for ay and below the support for as, the statement about
the stability is well illustrated.
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Problem 7.15 A rod with weight W
is leaned against a vertical, smooth
wall. The lower end of the rod rests
on the smooth ground and is suppor-
ted by a rope (length L), which is
loaded with a weight Q.

How heavy does the weight @) have
to be for a given angle o to ensure
that the system remains in position?
Is this equilibrium position stable?

Solution Compared to the ground, the potential energy of the system
is obtained by

V:Wésina—Q(L—lcosa).

The equilibrium equation

iz :Wécosa—Ql sina =0
yields the required weight Q:
Q=W co; « .

From the second derivative
SR%
da?

it follows by inserting the required weight Q:

= —Wésina—Ql Cos (v,

Wil
2sina

d2v
da?

Thus, the equilibrium position is unstable for an angle

= —Wésina—W;cotacosa: —

s
0<a< _.
,0572

Note: The length L of the rope has no effect on the solution.
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Problem 7.16 A system consis-
ting of rigid, weightless beams, a
spring (stiffness k) and a torsion
spring (stiffness k) is in equili- —(
brium in the depicted position. I

b

Calculate the critical load Ferit

for which the system becomes

unstable. > ~ P
1

Solution  Deflecting the system
to a certain angle ¢, the potential
energy of the system consists of
the potentials Vr of the load,
Vi of the spring and Vi, of the
torsion spring:

1 1
=Fh+ zkx%—i— 2kT(2g0)2
1
=Flcosp+ 9 k(I sin ¢)?
1 1
+2kT (2¢)° = Flcosp+ 9 ki*sin® o + 2kr o°.
The equilibrium positions result from

dv
de

Besides the equilibrium position ¢ = 0, further equilibrium positions
can be determined numerically from the transcendental equation, if re-
quired. Using the second derivative
d*v
dp?

=—F1 singo—i—kl2 sinp cosp+4kre=0.

= —Flcosp+kl? cos2p+ 4 kr

of the potential energy, one obtains for the position ¢ = 0
d*v

e =—Fl+kl®>+4ky.

©=0
If the second derivative is negative, this position becomes unstable. Fol-
lowing this, the critical load can be determined from V"' = 0 such that
k
Fcrit :kl+4 T .

l

P7.16
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Problem 7.17 A homogeneous trian-
gular plate with weight W hangs
on two rope drums (radius 7). The
drums are connected with each other
by gearwheels (radius R). A spring
(stiffness k), unstretched for a = 0,
is connected in A and B.

Calculate the angle « for which the
system is in equilibrium assuming
Wr/k R? = 1. Increasing W r/k R,
what ratio limits the domain of equi-
librium?

Solution Deflecting the system to a certain angle «, the spring is stret-
ched by xr = 2R sin a and the triangular disc is moved downwards by
rw = ra. Following this, the potential energy of the system can be
determined as follows:

1 1
V= 2]@1:%—me: 2k:(ZR)QsinQa—Wroz.

Using the equilibrium equation

av 1

25 _
do 2k(2R) 2sinacosa—Wr =0,

one obtains
sin 2a = W
T 2kR2°

The equilibrium positions can be determined inserting the given nume-
rical values yielding

1
sin 2 = ~ a1 =15, az =175, a3=195°, a4 = 255°.

2
From the second derivative
2
V" = v = 4kR2(:os2a,
da?

for stability at the equilibrium positions follows
V"(a1) >0 stable, V"(a2) <0 unstable,

V"(as) >0 stable, V() < 0 unstable.

Because of sin 2« < 1, equilibrium is only possible if W r/k R? < 2.
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Problem 7.18  An isosceles triangle P7.18
with constant thickness ¢ made of

aluminium (density pq;) is attached Dl T

to a semicircular disc with the same 9

thickness made of copper (density h

peo)- . J

Determine the maximum height h of
the triangle to ensure that the system
returns to its initial position after a
deflection of || < 90°.

Solution Introducing a distance a between the overall center of gravity
C and the center of the semicircle, the potential energy of the system
for an arbitrary position (—90° < ¢ < 90°) yields

V=-We +Wa)a(l—cosy),

where the weight of the semicircular plate can be calculated as

2
Wco =g Mco , Mco = Pco tTZTr .
The weight of the triangular disc is %T//
7F —_
b

Wal:gmal: mal:palgtrh.

The equilibrium positions result from

S~ 7
R T T T d

dv =0 ~ —(Weo+Wgu)asinpg=0.
de
Following this, only ¢* = 0 provides an equilibrium position. This

equilibrium state is stable for

av

di? >0 ~ —(Weo+Wa)a>0.

5

©

This condition is fulfilled, when a < 0, i.e. the overall center of gravity
must be below the center of the semicircle:

Meo Zeo + Mal Zal

zZc = >0 > Meco Zeco > —Mal Zal -
Meco + Mal
. . 4 h .
Using the centers of gravity zco = 3 rand zq = — 3 one obtains
T
2
remw 4 h Pco
co t r > Pa tr h d h <r 2 .

Peo g gp" 7 Pal BT \/ Pal
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Static and Kinetic Friction
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Static Friction

F
Based on the surface roughness, a W —
body remains in equilibrium until
the static friction force H is smaller )
than the limit force Ho. Ho is pro- * 144
portional to the normal force V. F

H
‘H|<H(), Ho = poN A\Yg

o = coefficient of static friction.

The static friction force is a reaction force. In a statically determinate
system, it can be determined from the equilibrium conditions.

Static friction angle: For the direction of the resultant of N and Hy

(limiting friction), it follows that

tan po = po = 0o = static friction angle .

0
N )

Kinetic Friction

As a result of surface roughness, a direction of motion

moving body is affected by the ki- F
netic friction force R. The kinetic W p—
friction force is an active force. It
is proportional to the normal force 7
Lo * W
N (CouLOMB’s friction law): F
e

R=uN R
DN

= coefficient of kinetic friction.

Kinetic friction angle: For the direction of the resultant of N and
R, it follows that

tan o = p = o = kinetic friction angle .

R
N ’
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Problem Types:
1. Static friction: H < poN
2. Limiting friction: H = poN

3. Kinetic friction: R = pN

Remarks:

e The static friction force applies in the contact area of the bodies.

e The direction of the static friction force is opposite to the direction
of relative motion (that would occur if it would not be hindered by
static friction).

e The magnitude of the static friction force is independent of the con-
tact area.

e In case of static friction, the resultant of N and H is located inside
of the static friction cone with the opening angle go (a < o).

e The coefficient of static friction is generally larger than the coeffi-
cient of kinetic friction.

e Coefficients of static and kinetic friction (approximate values) for
dry materials:

material Lo o
steel on steel 0.15-0.5 0.1-04
steel on teflon 0.04 0.04
wood on wood 0.5 0.3
leather on metal 0.4 0.3

car tyres on streets 0.7-0.9 0.5-0.8

Static and Kinetic Belt Friction:

static belt friction: S1 < Speto®

kinetic belt friction: S1 = Spet®
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P8.1 Problem 8.1 A block with weight W F ¢
is resting on a rough inclined plane. 1o
Specify the range of the external force 1)

F for which the block stays at rest.

Solution From the equilibrium conditions w ‘
. F H
St Fcosa—W sina—H =0, #%
N: —Fsina—Wcosa+ N =0, \N

the static friction force and the normal force can be determined:
H=F cosa— W sina, N =F sina+ W cosa.

An upward movement is prevented if
H < poN .

This condition is fulfilled, when

sin a + o cos «
F<W Ho cos e
cos v — o Sin «

Using the addition theorems and inserting po = tan go, one obtains
F < W tan(a+ o) -

To prevent a downward movement, the direction of H has to be reversed.
Following this, the static friction condition can be formulated as

—H < po N
yielding

Py Sihe— o cosa s F > W tan(a — 9o) -
COS v + 1o SIn Qv

Thus, one obtains

tan(a — go) < < tan(a + o) -

W

Note: The two static friction conditions can be summarized as
follows: |H| < po N .
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Problem 8.2 A cylindrical roller with P8.2
weight W is resting on an inclined pla-
ne (slope angle «).

Specify the external force F' and the
coefficient of static friction uo such Ho
that the roller stays at rest. F

Solution Using the equilibrium conditions

N: N—(W+F)cosa=0,

S H—(W+ F)sina=0, @

:{ Fr—Hr =0 H f

: r— Hr = \ F

and the static friction condition N

H < poN
one obtains

sin av

F=W . , po > tanac.
1 —sina

Problem 8.3 How large does the force F' have P8.3

to be in order to ensure that the cylindrical o
roller with weight W is set in motion, assuming
that the coefficient of static friction po is the 1o

same at both contact points?

Solution Using the equilibrium conditions
—: No—H; =0,
T Ni+Ho+F-W=0,
2: Hir+ Hor — Fr=0

and the static friction conditions
Hy = poNy, Hy = po N2

one obtains

1
F=W /-1‘0( +//¢0)2-
1+ po + 215

Remarks: - The system is statically indeterminate.
- The forces Hi and Hz are oriented in the opposite
direction of the incipient motion.
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Problem 8.4 An eccentric device
with dimensions [ and r is incli-
ned by an angle « and is loaded
with an applied force F'.

Determine the required value of
the eccentricity e such that the
normal force N acts at the con-
tact point B for a given coefficient
of static friction po.

Solution The free-body diagram of the system results in:

Using the equilibrium conditions
—: Ag+H+ Fsina=0,

T —Av+ N —Fcosa=0,

~

C: F(l—e)— Apgesina— Ayecosa— Hr =0
and eliminating Ay and Ay, one obtains

__Fl—Necosa

r—esina

H
Furthermore, using the static friction condition
|H| < poN ,
it follows that
Fl—Necosa< poN(r—esina).

This yields the eccentricity e:

lF— r
N~ He

e > . .
COS &x — o SIn &
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Problem 8.5 A wedge with weight
Wi and inclination angle « is res-

S
ting on a horizontal plane. A cylin-
drical roller with weight W5 lies on
the wedge and is held by a rope S.
Determine the required values of Jloy — W
the coefficients of static friction o1 o L
T

(between the wedge and the plane) 7
and po2 (between the roller and the Lot
wedge) in order to prevent slipping.

Solution From the equilibrium conditions for the roller

—: S+ Hacosa— Nasina =0, S
T: —Wa+ Hasina+ Nacosa =0, I I
2
~
A: Sr—Hyr=0 \N2
and the wedge H,
N /ﬂ
1t: —Wi1+ N1 — Hasinaw— Nacosa=0,
—: —H; — Hsycosa+ Nasina =0, 7{_?
!
the forces at the contact points are determined as M
sin «
No = W- Hy =W-
2 2 2 *14cosa’
N1 =Wi 4+ Wa, Hy =Wy sma .
1+ cosa

Using the static friction conditions
Hy < po1 Ny, Hs < po2No
one obtains the required values of the coefficients of static friction

Was sin « sin «v

> .
Hon (W1 + Wa)(1 +cosa)’ poz > 1+ cosa

P8.5
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Problem 8.6 A block with weight W5
is resting on a smooth inclined plane
and is held by a rope. A rough wedge
is pushed between the block and the
plane (coefficient of static friction pg).

a) Calculate the required rope force S
and the normal force N7 between the
plane and the wedge.

b) Determine the necessary value of
the coefficient of static friction po such
that the system stays at rest.

Solution a) The equilibrium conditions for the overall system yield

S S= (W4 Wa)sina,

N Ny = (Wi + Wa)cosa.

b) Using the equilibrium conditions for
the wedge

St Hy—Wisin2a + Nisina =0, \N2

H,
N —No—Wicos2a+ Nicosa =0 %
Wi

and inserting the normal force N1, one obtains

Hy = Wisin2a — (W1 + Wa)sinacosa = ;(Wl — W) sin 2a,

1 1
Ny = (W1 + Wa) cos? o — Wi cos 20 = 9 (Wh + Wa) — 9 (W1 — Wa) cos 2a.

Furthermore, using the static friction condition
|H2| < poNa,
the necessary value of the coefficient of static friction follows as

|W1 — Wa|sin 2«

HO 2 W+ W — (Wi — Wa) cos2a

Note: Depending on the values of Wi, W3 and «, the wedge moves
downwards or upwards in case of a violation of this condition.
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Problem 8.7 A block (weight W5)

is clamped between two cylinders Ho
with the weight W, resting on incli- {0\
ned planes (slope angle «). All sur- Wi Wi

faces are rough (coefficient of static

friction po). W,

Find the required value of W5 in
order to prevent slipping.

Solution Using the equilibrium conditions for the block
T 2Hs — W3 =0

and for one cylinder

T: Nicosa— Hs — Hysina—W; =0,
—: Nisina+ Hicosa— N2 =0,

~
A: Har—Hir=0,

H I H
1
one obtains 4& Ny

Wa e

H, = Hy = 5 Ny
Wa(l +sina) + 2W;
N; = ,
2cos
Wa(l+sina) + 2Wi sina
Ny = .
2cos «

Furthermore, using the static friction conditions
Hy < poNy, Hy < polN2

it follows that

210 210 sin «

W
2 cosa — po(1l + sin )

Wi W
b 2<cosa—,uo(1+sina)

With sin @ < 1, one obtains
210 sin «

cosa — po(1l + sin )

Note: If po = cosa/(1 + sina), the right term is tending to infinity.
Thus for po > cos /(1 + sin o), the system is self-locking.

P8.7
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P8.8 Problem 8.8 A rod (length [, weight

Q) is supported in A and is leaned
against a cylindrical roller (weight

W, radius r) at an angle of a.

Determine the required values of the
coefficients of static friction o1 and
o2 in order to keep the system in
equilibrium.

Solution Using the equilibrium conditions for the roller

—: —H; 4+ Nasina— Haycosa =0,

$: Ni—W — Nacosa— Hasina =0, —
~ -¢

B: Hiyr— Hr=0

and for the rod

e [ «
A Q2 cosoz—Ngrcot2 =0,

one obtains

l Cos &

N1 =W

! +@ 2r cot (a/2)’ A

l COoS «

No —

2=0 2r cot (a/2)’

l sin « - cos «

Hi = Hs = . ——

! 2= @ 2r cot (a/2) (1 + cos ) ? H,

Furthermore, using the static friction conditions
Hy < poi Ny, H> < po2Na2

it follows with
e 1+ cosa
cot . = .
2 sin «v
that
1

>
W 2r cot? (a/2) ’
0 I cos o + cot (a/2)

o1 po2 > tan(o/2) .
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Problem 8.9 A block is clamped P8.9
between a rod with weight Wy and a
wall. Block and wann have rough sur-
faces. The coefficients of static friction
o1 and po2 at the two points of con-
tact are given.

Determine the weight W of the block
in order to prevent slipping.

Solution Using the equilibrium conditions for the rod and for the block

~
A Nllsina—Hllcosa—WHécosa: 0,

t: Hi+Hx—W=0,
—: N1 —N2=0,
the static friction conditions
Hy < po1 Ny, Hs < o2 N2

and the assumption that po1 < tan a, one determines after eliminating
Hi, H> and N2 the two inequalities
WH 2w + WH

Ny < :
'™ 2(tana — por) 2(tan v + poz2)

< Ny .

Thus, it follows that
2W + Wa Wr
<
2(tana + po2)  2(tana — por)
or

Wra  por + po2

W < .
2 tana — por

Remarks:

e If yip1 = tana, the denominator becomes zero. Following this, W
can be increased as required. Generally, the system is self-locking
for po1 > tan o independently from Wiy.

e The system is statically indeterminate. Thus, the forces H; and N;
can not be determined.

e Assuming the limiting friction case with Hy = puo1 N1 and Hy =
po2N2, the “<”-sign needs to be replaced by the “=”-sign in the
final result.
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Problem 8.10 A homogeneous cu- o —
boid with weight W is resting on a -—
rough inclined plane. /\

Determine the required values of F b
the applied force I’ and the coeffi-
cient of static friction po such that
the cuboid moves in form of slip-
ping or tilting. Ho

Solution From the equilibrium conditions

yacosa —bsina)

S0 H—F—Wsina=0, F
N: N—Wcosa=0,

N A
A I/;/(acos.a—bsina)—Fb—Nc:O, H,\N
\‘A/

cC

the forces in the contact surface and the position of N can be determi-
ned:

)

H=F+Wsina, N =Wcosa, c:l .
W cos

9 (a —btana) —
In order to cause slipping, the following must apply:
H = Ho = uoN, c>0.

This yields
. 1 a
F =W (uocosa —sina), u0<2(b+tana).

In order to cause tilting around the point A, the following must hold:
c=0, H < uoN .
Thus, one obtains

acosa — bsin « 1. a
F=W 9 , ,uo>2(b+tana).

Hence tilting is only caused in case of a sufficiently rough plane.
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Problem 8.11 Two cubes and a cylindri- P8.11
cal roller each with weight W are resting
between two inclined planes. The coeffi-
cient of static friction is po on all contact
surfaces.

Determine the required force F' needed to
pull the roller upwards. What is the ma-
gnitude of po to prevent the cubes from
tilting?

Solution Considering the symmetry
and using sin a = cos a = v/2/2, the
equilibrium conditions can be deter-
mined as

V2 V2
® T F—W—22N1—22H1—0,
V2 V2 V2 V2
: N- H. Hy — N-
® — 9 2 + 9 2 + o 1 g M1
V2 V2 V2 V2
1 2N2— 2H2+ 2H1+ 2N1—W—0,
N

A: Nab—Nia=0.

In order to overcome the friction, the following must hold:
Hy = polNy, Hy = poN> .

Thus, one obtains from the first three equilibrium conditions

1+ po +

F=2W
1+ g3

From the fourth equilibrium condition, it follows that
b=a L+ po .
1-— Mo
In order to prevent tilting around point B, the following must hold:

b<2a.
This leads to

1 1
+'u0<2 ~ o < .
1—/.1,0 3

Note: Pulling the roller upwards, the contact forces between the roller
and the inclined planes disappear. The orientation of the static fric-
tion forces must be plotted correctly (in the opposite direction of the
beginning motion).
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Problem 8.12 Determine the re-

quired value of the coefficient of ] A |
static friction po such that the load F
W can be held by the stone pin- —g
cers. %
C
d
L] w
e N o
f— f —
Solution Using the equilibrium
conditions for the overall system
t: F-W=0, < g Fg
for the point A ? Sy :\\1 v S
Sv LY
t: F—2Sy =0, Su A Su
K
for the body @
T 2H-W =0 N - @*W -N
and for the body @ V H

C: Nd+H(f—e)—Sv(f—a)—Su(b+c) =0,

one obtains with

Sy a
Sy b
for the forces H and N:
4 _ W ac+be
H= 2’ N= 2 bd

Furthermore, using the static friction condition
H < poN,

it follows that

bd

> .
Ho ac + be
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Problem 8.13 A climbing iron - c a
is clamped onto a pole and is

subjected to the force F. Ho \

Determine the required value of
1o in order to prevent the clim-
bing iron from slipping. \

Solution Using the equilibrium conditions
—: No— N; = 0,

LEh
? N
TZ H1—|—H2—F:0, - ‘F

~
A: Fa+ Hic— Nib=0, —_
yields ?Hz

a

Ny = Ny, Hl:Nlb—Fa7 Hy=F(1+ )—Nlb
c c c c

From the static friction conditions
Hy < poNy, Hy < poNa,

one derives
b— b
NPT F and F< N, T
a ct+a
or
b— cpo - b+ cuo
a c+a
Solving the equation for po, the required value of the coefficient of static
friction follows
b

> .
Ho c+ 2a

Remarks:

e As the system is statically indeterminate, the forces N1, No, H1 and
H> cannot be determined.

e Alternatively, one can also solve the problem by discussing the li-
miting friction case. Then, the inequality is replaced by an equation
and the determined value pg corresponds to the lower limit of the
coefficient of static friction.

P8.13
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Problem 8.14 A rod, length [ and
weight W, is leaned against a
rough wall at an angle of a. The
lower end of the rod is supported
by a rope which is wrapped around
a rough pin.

Specify the range of the applied
force F' such that the system is in
equilibrium.

Solution Using the equilibrium conditions
- S - N2 = 0,

T: ]\/vl-}-fvtlz—‘/V:O7

~
A Nllcosa—Slsina—W;Cosoz:O7 \(/

yields ) f s

szvg—Stana, No=S.

Furthermore, using the static friction condition
|Ha| < p1o1 N2,

it follows that

w

9 — Stana < po1 S or —W+Stana<u015

2
depending on the orientation of Hs. Therefore, one obtains

w w
< S < .
2 (tan a + po1) 2 (tan a — o)

Belt friction at the pin may occur if
Se ho2m/2 o p oo GeTHo2m/2

Inserting the lower (upper) bound of S in the left (right) term, it follows
that
e Ho27/2 F ethro27m/2

2 (tan o + po1) Sw < 2 (tan v — po1)
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> P8.15
F

Problem 8.15 A block with weight W is
supported by a rope. The coefficient of

static friction po between the surface

and the block or the rope is given.

Specify the limits of the force F' such
that the block stays at rest.

Solution The equilibrium conditions
N: N—Wcosa=0,
S H+S—Wsina=0,

lead to

N =W cosa, H=Wsgina— 5.
Furthermore, using the static friction condition

|H| < polN,
yields

W(sina — ppcosa) < S < Wisina + pocosa).
With the static friction condition for the rope

Se M < F < Selo
one obtains

e

ﬂtoa( Moa(

. F .
sina — pocosa) < W < e sin « + po cos @) .

Problem 8.16 Determine the maximum over- P8.16
hang x of the heavy rope with total length [ Ho

in order to prevent slipping.

e ]

Solution The equilibrium conditions lead to

l—ZL‘ €T M'l—l
N=W H=8S=wW". l
1 s ! _L_>

S

Inserting these relations in the static friction H } N *
condition H < puoN, it follows that . |
X Mo
< )
l 14 po +
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Problem 8.17 A block with weight W can [T
move vertically between two smooth walls.
It is held by a rope which passes around
three fixed rough pins.

N 45°

Determine the minimum for the force F,
such that the block does not slide. Fur-
thermore, find the forces which are exerted
from the walls onto the block.

N —
/

Solution Using the equilibrium conditions

T: Ss—W—-F=0, -
1\“2
—: N; — Ny = 0, Sa
N G
A Wéa—l—Fc—Sgc—Ngb:O S1q
and the static friction conditions A -
F* !

S < FeMOWM7 So < S1€M0ﬂ/2, S3 < Sze”ow/47

one obtains

s> Y NN w2
eHtom™ — 1

Problem 8.18 Determine the required H2
value of the force F' such that the block
with weight W can be raised with uni- =
form velocity assuming that the plane F
and the curved surface are rough.

S a+

P
S F

Solution Using the equilibrium conditions

N: N—Wcosa=0,
2

S S—R—Wsina=0
and the static friction conditions

R=mN, F=S8e?0tm/2 ‘R/\ N

one obtains

F = We'2 @t/ (gin o + g cos ) .
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Problem 8.19 A braking torque Mp
is applied to a rotating shaft by a
band break. Determine the magnitu-
de of the applied force F' for a given
coefficient of kinetic friction p, when
the shaft is rotating

211

P8.19

a) clockwise or
b) counterclockwise.

Solution Using the equilibrium
condition for the lever

~
A: —S22r+Fl=0,

yields
l S S
S =F o °
" S1 1 S
For a clockwise rotation, the kinetic

friction condition results in
S1 = Syet, A

and the breaking moment can be calculated as
Mp =S1r—S2r =587 (" -1).

Further using the result of S2, one obtains

2Mp

FR:l(e‘”—l)'

For a counterclockwise rotation, the kinetic friction condition results in

Sy = S1e"”
and the breaking moment can be calculated as
Mp =Sor—5S1r=58r(1—e*m).
Inserting the result of Sa, one obtains

2Mp et™

Fr = .
BT (e — 1)

Note: Due to e*™ > 1, F, > Fr holds for the same value of Mp.
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Problem 8.20 A block with weight
W should be raised with uniform ve-
locity by pushing a weightless wedge
forward.

Determine the required value of the
force F' assuming a coefficient of ki-
netic friction p; in the contact are-
as of the wedge and a coefficient
of kinetic friction p2 at the contact
points of the rod.

Solution Using the equilibrium conditions for the wedge and the rod

@®—+: F—Ri—Racosa— Nasina=0, *W
, N,

T: Ni— Nacosa—+ Rosina =0, —>@

| s

® —: Nasina+ Rocosa— N3+ Ny =0, + 3
-
A A‘\'3

T: Nacosa— Rasina— Rz — Ry —W =0, N \R
1N 2

~
A: —Nsa+Nyg(l+a)=0

and the kinetic friction conditions
Ry = p1 N1, Ry = 1 N2, R3 = p2N3, Ry = p2Na,

one obtains the required force by solving the system of equations for
F', such that

p1(cos a — pisin ) + (sin « + p1 cos @)

l

F=W
. +2a , .
(cosa — pa sina) — s ; (sin o + p1 cos @)

Remarks:

e The kinetic friction forces are oriented in the opposite direction of
the motion.

e If the denominator tends towards zero (F — oo), the system is
self-locking.
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Problem 8.21 A body with weight P8.21
W is resting on a rough inclined pla-
ne. A force F is applied to the body
through a rope at an angle 3 (paral-

lel to the inclined plane).

Specify the required value of the co-
efficient of static friction po such
that the system stays at rest.

Solution At first, a suitable coordi-
nate system is introduced. The free
body diagram shows the acting
forces, which have to fulfil the equi- F
librium conditions

ZFzzo : Hy—Fcosf =0,

> Fy=0: Hy+Fsinf—Wsna=0, N

ZFZ:O : N—Wecosa=0.

Therein, H, and H, characterize
the static friction force H. One finds
for H and N

|H| = \/Hg—l—Hg = \/FQ—ZFWsinasinﬁ-i-WzsinQa,

N =Wcosa.

Inserting into the static friction condition

H
|H| < poN resp. o > ‘N|

yields the required value of po:

VF? — 2FW sin asin 8 4+ W2sin? a

>
Ho W cos
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Problem 8.22 A rigid body (weight
W) rests eccentrically on two rails
and is subjected to forces at one
end. The body can slide in B in -
direction.

Determine the maximum force for
that the body stays at rest.
Given: F, = F, = F, = F, a =1,
Mo = 2/3.

Solution The reaction forces at the supports can be determined by
using the equilibrium conditions

Ay =F,

3 7
Ay=—F, By = ,F,
w 3 3 7
A, 4 + 4F , B. 4W - 4F
The normal forces and the static friction forces at A and B read
w 3 5
Na=A.= ', +'F,  Ha \/A1+Ay W
3 7 7
Ng = B. = ~"F, Hp=|B,="F.
s My 5 =Bl =,
When a motion is considered at A, the limiting friction condition yields
Ho 2
A= poNa ~ 1=W 5— 30 9
In case of a motion at B, one obtains
3,[10 6
Hp = uoN, =W =
B = olNp ~ 2 T(1+ po) 35

Since Fi > F5, the motion initiated at B in case F' exceeds the critical
force F5.
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Problem 8.23 A rope is clamped by P8.23
two clamping jaws, which are fixed
by two hinged supports in A and B.
A force of magnitude I is applied to
the rope.

Determine AT7

a) the reaction forces in A and B, and le— 7

b) the coefficient of static friction puo, *
such that there is no slipping. F

Solution a) Draw the free-body diagram:

y\r H H ]\v
AU *4; —»f f‘—A —»* BH
. ! H( ]?._
By

Ay
|

The reaction forces can be determined by evaluating the equilibrium
conditions for the subsystems.

Rope t: 2H—-F =0 ~ H=

[CIS

The equilibrium conditions at the left clamping jaw yield

"2 T T
A: Nh—Hr=0 ~ N=_ H=_ F,

h 2h
t: Ay —H=0 ~ Av:;F7
T
— AH—N—O ~> AH—ZhF.

Since the overall system is symmetric, one finds By = Ay and By =
Ay.

b) As long as the condition |H| < po|N| is fulfilled, slipping does not
occur:

h
<,LL0FT ~ 'UJO>7‘-

2 2h

This result is valid for any F'. Hence, the system is self-locking.
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Moments of Inertia are used in beam theories (cf. Volume 2). Mo-

ments of second order of an area A, as for example of a cross sectional
area of a beam, are defined as follows:

@:/XM

A
_ 2
I = / y dA y
A
Iyz = Izy = _/yZdA
A
@:@+L:/ﬁM. z
A
Iy, I. : rectangular moments of inertia with respect to the y- or z-axis, respe
I,. : products of inertia (centrifugal moments),
I, : polar moment of inertia.

Note: Moments of inertia depend on the position of the coordinate ori-
gin and the orientation of its axes

Radii of gyration: = “distance” ry of the area A, from which by
multiplication with A one recovers the moment of inertia:

Iy =1I,+ 234,
15 :IZ—'_Q%A: y

Ig;j == Iyz - ?305014-

i]

C = area centroid,
y,z = centroidal axes.
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Rotation of the Coordinate System (transformation equations)

I I I, — I
Iy = y; 4 y2 * cos2p + I, sin 2,
I, = Iy;Iz _ 1 ;Iz cos2p — I, sin2¢,
I, — I
I = — Y * sin2¢ + I, cos 2.

2

Principal Moments of Inertia: For each area, there exists a system
of axes perpendicular to each other (principal azes), for which I, and
I assume extreme values (principal moments of inertia) and the pro-
ducts of inertia I,¢ vanish.

Principal Moments of Inertia:

2
na="v71" i\/(fy;fz) +12,.

Directions of Principal Azes:

21,.

tan 2" = .
S =

Remarks:

e In case of symmetric areas, the axis of symmetry and the axis per-
pendicular to the axis of symmetry are principal axes.

e Moments of inertia are coefficients of a tensor (moment of inertia
tensor).

e Plotting the pairs (I, I,¢) or (I¢, I, ¢), respectively, for all possi-
ble angles in a coordinate system (abscissa = rectangular moment
of inertia, ordinate = product of inertia), one obtains the circle of
inertia. The construction of the circle of inertia is performed ana-
logously to MOHR’s stress circle (cf. Volume 2).

e The quantities I, + I¢ = I, and I,I; — Iﬁc are invariants,
meaning that they are independent of the angle ¢.
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Rectangle
Tl bl
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1l

||
S

Circle

[— o —

183

(Thin-walled)
Circular Ring

(7
¥

t

~

<

Isosceles
Triangle —

<
&
— > —»

b |—=

bh? V3
[y_127 Tgy*6h7
I :hb3 T —\/3b
o127 6
[y2:07
Ip:1y+1z:bh(h2+b2)
12
4
a V3
[y:Iz:127 Tgy = Tgz = 6 a,
4
a
Iy = .
P 6
4 4
Tr wd 77
I,=1I. = 4 64 rgy:ng:2a
7 _7r7"4_7rd4 . _\/ZT
P T 327 W og
Iy:Iz:W(Ti—T?% Tgy:ngzl\/T3+7’-2,
4 2 *
I, =21, Tgp:\é2 T2 + 17,

with t = r4 — r; and rp, = (1o + 73)/2 follows
for the thin-walled profile (t < )

v
2

~ 3 P ~
Iy =1, =R r,t,rgy = Tg> = m -

7 _ bh? . h
Yy — 36’ gy_3\/2’
;. _ bt L _ b
2748 96
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Problem 9.1 Determine for a quadrant
with radius a:

a) Ig, Ig, Igg

b) Iy, I., I,. ({y,z}: centroidal axes)

¢) the direction of the principal axes,

d) the principal moments of inertia.

z z

Solution a) It is convenient to use polar coordinates. With the diffe-
rential area element in polar coordinates

dA = rdrdy, y oS ¢

the solution reads rsing —

/2 a -

o s o dA T ’
Igz/y dA = //(r cos” p)rdrde \ L7
A >
0 0

rdy ]\;\\’
- A (SD + 1 sin 2 ) ” = mao A A -
o N2 T T g6 :
Iy =1I: (symmetry !),

/2 a
a4 a

1
Iz = //rcosnp rsmgp)rdrdcp_—4 e
0 0

b) Applying the parallel-axis theorem with jc = zZc = 4a /37 (cf. Cen-

ter of Gravity, pp. 32), one finds

4 2
daN?ma s 4
I,=I1 =1, —32A="¢ _( ) :( _ )4
¥ 7% 16 3r) 4 16 o9r)

o 1 4 4
I = Iy A= (— ) .
y g + Yyczc S + on a
c) Symmetry leads to

Pl =7/4 ~ ps =] +m/2=37/4

d) With I, = I. one can find the principal moments of inertia

1
11:Jy+1y2:(17r6—8)a4,

P9.1
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Problem 9.2 Determine for a right- | |
angled triangle the moments of in-
ertia Iy, 1., Iy-.

z

Solution The crucial step is the choice of a convenient area element.
Three different possibilities are examined for I,.

1st approach: Area element dA (width y, height dz) with distance z to
the y-axis.

z Y ——|
)’ y d:¢

I, :/z2dA:/z2(ydz) - /hz2b(1— ;)dz T

0

dA = ydz, y:b(l—
| A

_, ( 3 - 24)
3 4h
2nd approach: “Summation” (= Integration) of the moment of

inertia of infinitesimal rectangles
(height z, width dy).

" bR
.12

1A
dA =z dy, dy:—bdz. _ &
h z/2
Since the centroidal axis of the area T

element dA does not coincide with
the y-axis, the parallel-axis theorem
needs to be applied. With

dy 2° z\2 1
Iy =", +(2) 2dy =g

—

dy

2dy,
one obtains by integration

0 40 3
b b =z 7bh

b
— P 3 _ — f—
Iy_/djy_ 3h/2d2 3ho4|, "~ 12
0

h

(as y is integrated from 0 to b, z needs to be integrated from h to 0!).
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3rd approach: Consider the area ele-
ment dA (width dy, height dz) with
the distance z from the y-axis:

dA =dy dz. y

Integration yields

Iy://zzdydz

b [ =(v)

:/ /szz dy

h—"ly b 3 3 3
1 h h h
}dy_ 3/{h3—3by+3b2y2— b3y3}dy
0

o | o
b
{5
3
0

1 3_33 3_13 _
73[hb 2hb—|—hb 4hb}f

0

1.3
12bh .

Clearly, the Ist approach is the simplest alternative, since the area ele-
ment has a constant distance to the reference axis.

The moment of inertia I, can be calculated according to the procedure
for I, by interchanging the sides h and b of the triangle:

3
I. = ho .
12
The product of inertia is computed with the area element from the
1st approach. Since the product of
inertia vanishes with respect to the

centroidal axes, the remaining part y/2
results from the parallel-axis theo-
rem: Y dz Iz

Iyz:—//gz(ydz)
y
h 2
_ 1 5 Y z P
= /ZZb (1 2h—|—h2>dz

0
SN U A U W
) 2 3 4 ) 24
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Problem 9.3 Determine the direction
of the principal axes and the princi- a

pal moments of inertia for the dis- }k 4‘
played profile with constant thick-

ness t. t

a
y 4*‘

a

—

o]

Given: ¢ = 10 cm, t = 1 cm.

Solution First, the moments of inertia are determined with respect to
the y- and z-axis. Therefore, the pro-

file is divided into three rectangles. a/2~1t/2
According to the parallel-axis theo- \+—{ 7
rem, the moment of inertia for each e ]

rectangle is composed of the moment
of inertia with respect to the respecti-
ve centroidal axes and by considering a+t/2
the perpendicular distance of the rec- 1 l

tangular area to the reference axes:

17

The product of inertia for the partial areas vanishes with respect to
their centroidal axes. Therfore, I,. can be calculated by considering
the parallel-axis theorem for partial areas II.

t a t 4
[,, = —2 _ —_94 .
y {(a—&— > ( >at} 5 cm
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The direction of the principal axes can be determined with

21 2. 945
tan2p" = V7 = = —0.822
S =, 1T 2873 — 573

and results in

20" = —=39.4° ~ @]

—-19.7°,

03 = o +90° =70.3°.

The principal moments of inertia follows as

2
. 2873+573i\/<2873—573> 9452 — 1723 4 1488

’ 2 2
~  I; = 3211 cm*, I, =235 cm®.
The allocation of the principal z
axes to their respective principal

moments of inertia can be derived
by the transformation equations.
In the present case, it is clear that

the maximum principal moment of Prr

inertia I; belongs to the direction Dok \
represented by 7 , since the distan-

ce of the areas in that case is larger I, = 3211

compared to the direction ¢5.

;IZ =235

e The invariants can be verified for the numerical example:
a) Iy + 1. = I + Iy = 3446 cm®

b) I,l.—1I}.=11=7510° cm®.

Remarks:

e Terms of higher order can be neglected for a thin-walled profile
(t < a), such that

Iy ~ 2ta3 = 2667 cm4, 1, ~ gta3 = 667 cm4,
I,. ~ —ta® = —1000 cm?, p* ~ —22.5°
I ~ 3080 cm?, Iy ~ 252 cm®.

However, these approximations lead to inaccurate results for the
present numerical example, since the condition t < a is not suffi-
ciently fulfilled.
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Problem 9.4 Determine for thg thi'n— § 30—~

walled cross section (¢t < a) the direction

of the principal axes and the principal

moments of inertia with respect to the C

. 4a Y

centroidal axes. i -~ T 5a

A J
¥

Solution Initially, the center of gravity is determined:

a5at 3 B 2a bat + gaSat 9

5.5ar — 4% = 2.5at 4"

The moment of inertia for the oblique
partial area with respect to its centro-
idal axes can be derived by introducing
the coordinate s, whereby the following
holds:

yo =

dA=tds and s*=¢>+ 2>.

With the slope m of the corresponding
part of the cross section, Z can be ex-
pressed by Z = my, such that ¢ and 2
can be expressed by s:

IS 1 s2 52— m’ 52
4 14+m2° "’ 14+m2°
The moments of inertia result in
2.5a 2
125 -
Iy= [ 22dA= Ztds= " °t,
v / /25a1+m28 Togm2 12

2.5a
1 1 125
I.= [ 9*dA = 2tds = 3¢
/y /7245411"'7”28 ° 14 m? 12@ ’

2.5a
IO m 2 m 125 3
Iy: = — A= = — .
g /yzd /2.5a1+m28 tds 14 m2 12at

For the given cross section, the slope is m = g, such that

20
3

q 1 9 9
adt, I; = 5a5t, 1@5:—5(1315.

I, =
Y 4
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Another way to derive this result is to apply the transformation equa-
tions. For the given geometry, I; can be determined with the moments
of inertia in the rotated configuration: I,, = (5a)*t /12, I = I,c =0
and the corresponding angle ¢ = — arctan i = —36.87°. Thus,

Ig:L’;IC+I";I<cos2np+lngsin2<p
! oy (Ba)®t 20 4
—2[1+COS( 73.74%)] 19 = 3¢ t.

For the calculation of the moments of inertia for the complete cross
section with respect to the centroidal axes, the parallel-axis theorem
needs to be applied for each part of the cross section, such that

20 9 5a)%t 5 9 425 .
I, = 3a3t+5at(4a—2a)2—|—( 1; —|—5at(2a—4a)2: 04 a’t,
15 4 3 3 3 o 225 g4
sz4a t+5at(2a 4a) —|—O+5at(4a) = 24a157
3, 3 3 9 3 .5 9
I,.=—-b5a"t 5at(2a 4a)(2a 4a) Sat ( 4a)(2a 4a)
:—?at
With these results, the directions of the principal axes are
25
21, — a0t 3 o} = —18.43°,
tan2¢” = = =— ~
Iy— I 425;4225a3t 4 g5 = TL5T°.

One can derive the result also by consi-
dering the symmetry of the cross section
with respect to the axis 2-2. The slope of
the axis 2-2 is

mo_2 = 3,

which leads to ¢35 = 71.57°.

The principal moments of inertia are
425 4 225 425 — 225\ 2 25\2| 3
/( ) () |
48 \/ 48 tlg) |

325 | 125] o
= +
{ 24 T 24 } !

I12 =

75
11:4a3t, 12:3at.
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f— 20 —f
P9.5 Problem 9.5 Determine for the non- | —
symmetric and thin-walled Z-profile ot
(t = const, t < h,b) the rectangular el
moments of inertia I, I. and the pro- h/2
duct of inertia ..
y T
z h/2
Solution The area is decomposed into three ‘ i
rectangles. The parallel-axis theorem is applied: L1
s =b-
~ 3 -~ ~
t\t t h\2
= (2b+ 2) 12 +t(2b+ 2) (2)
big
7 3\ I
t(h—t
-1
12
biig
- 5 -~ ~ 17
t\t t h\2
el ]
When t < h, b, the expression can be simplified to
z
I big 1T
117
AN AN AN
I 72bth2+th3+bth2 (3 L0
v 4 12 4 4 12b)°

When terms of higher order are also neglected for I. and I,., the fol-
lowing expressions can be derived

I 17
- 3A S -~ N
o t(?b) 2 th b2 _ 3
Iz_{ o +(2bt)b}+{12+bt(2)}_3tb,
I 17
- hA N -~ bAh S
— —5 2
L,=- {b(—2)2bt}+[(—2)2bt} =, toh.

Remarks:

e The origin of the {y,z}-coordinate system does not coincide with
the center of gravity.

e The product of inertia [, vanishes for the partial areas with respect
to their centroidal axes. The above results can be derived by using
the parallel-axis theorem only.
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a |

T

Problem 9.6 The ratio of the
moments of inertia for the sha- T
ded area with respect to the
axes ¢y and Z is 1:5.

P9.6

Determine the length b of the <
small square. a

Solution The moments of inertia of a square (length a) with respect
to the centroidal axes are

4
a
I,=1,= , I,.=0
Y 12 Y C
and for rotated axes n, ¢ after applying Y
the transformation equations
. oo
a i z
I, =1 =
n S 12

(the centroidal and principal axes coincide for a square!). Therefore,
one finds for the given area

at v 1

I = — —=
Y7120 12 12

(@ + %) (a® = b%).
With the parallel-axis theorem, it follows
2
o 1 4 4 \/2 2 42
Iz—12(a b)+(2a) (a” =07).

When the requirement

is taken into account, length b follows:

48 a® 22
ORISR G

(a4—b4) 1+(b>2
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Problem 9.7 Determine for the
shaded area

<

a) the location gc, Zc of the cen-
ter of gravity,

b) the moments of inertia with re-
spect to the centroidal axes vy, z.

Solution a) The calculation of the /Z - A
center of gravity is carried out by consi-
dering the center of gravity of the partial
areas:

(3a)8a” — (2a)a® — (2a— 41/2 a)a®
8a? —a? —a?

- (éa)SaQ—(lea)az—(2a—4f/2a)a2

Zo = ~1.43a.

6 a2

Yo = ~1.14a,

b) The moments of inertia of the partial area IIT
with respect to the local coordinate system {7, N

Z} has already been derived in previous examp- 4

les. These can be transformed into the {g,2}- .
coordiante system by a 45° rotation: i ©

31 1.3 :

I~7(2a) ,a a I (3a) 2a  a* I —o

Yooz 3 T 12 48

1 17 1 5

~> Ig215:2(15+15)296a4, I@A:2(Ig—fg):32a4.

As a next step, the moments of inertia are calculated with respect to
the {g, Z}-coordinate system in A by considering I and III as negative
partial areas:

(et et et 1T a2 o9y 4
I; = 19 (48+16) (96a +(2a 4\/2)a)~17.75a ,
o (4(1)4 a* 4 17 4 a 2 2y 4
I: = 19 (3+4a) (96a +(2a 4\/2)a)~13.50a ,
(4(1)4 a* 5 4 a 2 2 4
Iz = — _ — — —(2a — ~ —1. .
o4 (0 2) (32a (2a 4\/2) a”) 7.00a



Moments of Inertia 231

Applying the parallel-axis thereom yields the moments of inertia with
respect to the centroidal axes:

I, =I; -2 A  =~17.75a" — (1.43a)® 6a* ~ 5,48a",
I, = —g4A =~1350a* — (1.14a)® 6a* ~5.70a",

Iys = Iy + Zc§c A~ —7.00a* + (1.43a) (1.14a) 6a* ~ 2.78a”.
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Problem 9.8 Determine for the
shaded area:

a) Iy, I., Iy, I
b) the direction of the principal Ky
axes, I
¢) the principal moments of iner- T
tia. z AN
b2 o]
a  a a  a

Solution a) The area is devided into five partial areas. Since the
area is point-symmetric with re-
spect to C, the values of the mo-
ments of inertia of the partial are-
as I and [ are the same as is for IT

and 1.
I
I and I I TIT
- 4 -~ ~ I 11
. a a\2_. o
Iy_2{3+(2) 2a}+
Il and 11 yig
~ -~ N AN
P a4+(_a)2 a’ +2a4_23a4
36 6/ 2 2 12’
Iand T 1T and 1T 1
~ ~ ~ ~ -~ N A~ o
4 4 2 9 3
a 24 o a 4a\" a a (2a)
I.=2 2 2 2
[3+(“) “}+ 36+(3) Q}Jr 12
115

6 ¢
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Iand I I and I 11
- -~ ~ 4 4/‘ B =~
a a a a a
Iyzzz[o—(za) (2) 2a2}+2[72—<3)(—6) 2}+ 0
15 4
=—""a

b) With these results, the directions of the principal axes can be found
as

21 90
tan2¢* = v = T =11.75° 5 =101.75° .
an2y I,— 1.~ 207 ~ 1 757, pp =101.75

¢) One obtains for the principal moments of inertia

| 23+230 23 —230Y° 15\ .
Lz = o4 :I:\/( 24 >+<—4> a
253 | [5661| .
24i\/64]a

~ 1 ~1995a", Iy~1.14a".

Remark: The match of the principal axes to their respective principal
moments of inertia can be derived by the transformation equations. In
the present case, it is clear that the smaller principal moment of inertia
I corresponds to the direction with angle 7. The areas have in average
a much smaller distance to the axis with direction ¢7 than to the axis
with direction 3.
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P9.9 Problem 9.9 Determine for the three cross sections the moments of
inertia about the y-axis.

= b M M e
L

Y Y Y

—

z z z

le— B al B DB

i
|

Solution The respective cross sections are decomposed into a shaded
area and a white area. The moment of inertia of the cross sections can
be derived by considering the moment of inertia for the rectangle B x H
and subtracting the moment of inertia for the white area b X h. Since
the z-coordinate of the center of gravity is the same for all of these
white areas, the solution is identical for all cross sections:

_BH® bk

Ly 12 12 °
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Problem 9.10 Determine the moments b/2b/2 P9.10
of inertia with respect to the \

{y,z}-coordinate system. —‘T
b
i

a

|

Solution Since the cross section is symmetric with respect to the z-
axis, the product of inertia vanishes: I,,. = 0.

There are two possibilities to calculate the remaining moments of inertia
I, and I.. The first alternative is shown for I,: The cross section is
devided into three rectangles. According to the parallel-axis theorem,
the moment of inertia I, for the cross section reads

e /2l /25|
z

I, =2 (“;b)g“a;b)“(;ﬂ
+b(a1—26)3+b( _b)(a;b)27 ; | I Em
b et -

Iy:(a—b)C; +b

The other possibility to determine the
moments of inertia is shown for I.: the
cross section is devided into two areas, 11
the shaded area and the white area. Ap-
plying this procedure yields

aa:”_bb:”iazl—b4 I

L= = 19 12
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P9.11 Problem 9.11 Determine the moments
of inertia of the cross section with
respect to the {g, Z}-coordinate sys-
tem.

O

Solution It is convenient to start with
the calculation of the moments of inertia
with respect to the principal axes y and
z. Therefore, the cross section is devided
into four isosceles triangles and one rec-
tangle. For each triangle, the moment of
inertia about the y-axis reads

2ah3+ah h+b 2
36 3"72)

The principal moment of inertia I, is the sum of the moments of inertia
of the triangles and the rectangle:

2a h® o ob\? dab®
Iy—4< 55 tah (3+2)>+ 19 -

With the cross sectional area A = 4a(h + b) and the parallel-axis theo-
rem I; = I, + (b/2)? A, one obtains

2a h? hoob\? 4a b b\ 2
Iy—4< 36 +(3+2) ah)-i— 12 +4a(h+b)(2) .

Analogously, one obtains

~(h(2a)® 2 b(4a)?
12_4( s Tehd |+

Considering the parallel-axis theorem again yields

I =1+ (20)%A = 1;a K+ 1361) a® + da(h + b) (2)°.

For Iz, one finds with I,. =0

b

Iyz = Iyz — ,20A = —4a®b (h + ).
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