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Preface

Nonlinear mesoscopic elasticity (NME) is the identifier of a collection of ex-
treme/unusual elastic behaviors. The purpose of this book is to describe these
behaviors as seen in particular physical systems, to suggest generalization beyond
the particular based on a simple picture of the underlying physics, and to provide
an analysis/theoretical framework for assessment of behavior and for the descrip-
tion of experiments. Thus we begin here with a brief (so that those who realize
they are in the wrong place find that out sooner rather than later) description of
the physical systems that are candidates for NME; six examples are shown. The
behaviors that are associated with NME are many; eight examples are shown. The
physical state of NME systems is specified in a multidimensional space of pa-
rameters, for example, length scale, time scale, the size of stress/strain fields, the
strength of internal forces, etc. The boundaries of this space are set. At the end of
the following overview we will provide an outline of the book.

Robert A. Guyer, Amherst
Paul A. Johnson, Los Alamos
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1
Introduction

1.1
Systems

Figures 1.1 to 1.6 show six examples of systems that have NME: powdered alu-
minum, thermal barrier coating, sandstone, cement, ceramic, and soil. For each
figure there is a scale bar or caption that makes it clear that the systems of interest
have noticeable inhomogeneities on a length scale smaller than the sample size, say
100 µm, but much larger than the microscopic scale, 0.1 nm. We imagine the phys-
ical systems that possess NME to have very approximately a bricks-and-mortar char-
acter. The bricks [quartz grains in the case of rocks, packets of crystallites (quartz,
feldspar, . . . ) with clay particles in the case of soils, single crystals of aluminum in
the case of powdered aluminum, . . . ] interface with one another across a distinc-
tive, elastically different system, the mortar (a system of asperities in the case of
rocks, a system of fluid layers and fillets in the case of (wet) soil, a layer of defective
material in the case of aluminum powder, etc.). We are interested in these systems
on a length scale that is large compared to that of their bricks. Systems built up to
this length scale have important elastic features conferred by the geometry of the
system that are strikingly different from those of their bricklike constituents.

For example, in the case of a Berea sandstone, the typical elastic modulus is an
order of magnitude smaller than the corresponding modulus of quartz, that is, the

Fig. 1.1 Porous aluminum powder [9]. (Please find a color
version of this figure on the color plates)

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
including Rocks and Soil. Robert A. Guyer and Paul A. Johnson
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40703-3



2 1 Introduction

Fig. 1.2 Thermal barrier coating [10, 11]. (Please find a color
version of this figure on the color plates)

Fig. 1.3 Sandstone (typical grain size 100 µm) [12]. (Please find
a color version of this figure on the color plates)

bricks. This means that a given force, say across a sample, produces ten times as
much displacement as it would if applied across the quartz alone. This displace-
ment must reside in the mortar as the assembly process could not have altered the
stiffness of the bricks. The mortar is a minor constituent of the whole comprising,
perhaps, 10% of the volume. Ten times as much displacement due to 10% of the
volume means that the mortar is very soft and that it carries strains approximately
two orders of magnitude greater than those in the bricks. Accompanying the in-
homogeneity in the structure is an inhomogeneity in the strain. There is a further
important point. Ten percent by volume of soft material randomly distributed in
otherwise hard material could not markedly modify the response of the assembly.
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Fig. 1.4 Cement [13]. (Please find a color version of this figure on the color plates)

Fig. 1.5 Ceramic [14]. (Please find a color version of this figure on the color plates)

Fig. 1.6 Soil (sieved, typical grain size 1 mm) [15, 16]. (Please
find a color version of this figure on the color plates)

The bricks-and-mortar picture captures an essential aspect of the way in which
NME materials are constructed, that is, in such a way that the minority component
(by volume) can effectively shunt the behavior of the majority component.
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In identifying systems of interest with these simple ideas we cast a net that in-
cludes ceramics, soils, rocks, etc. But we do not pretend in any way to do justice
to the disciplines of ceramic science, soil science, concrete science, . . . , or even to
elasticity in ceramics, soils, concretes, . . . These are highly developed fields com-
prised of many subdisciplines. The discussion we present will be relevant more or
less as dictated by the specific types of soil/ceramic/concrete/. . .

1.2
Examples of Phenomena

In Figure 1.7 we illustrate schematically eight examples of elastic behavior that we
associate with NME. These include behavior that is quantitatively different from
the usual behavior, behavior that is qualitatively different from the usual behavior,
behavior that brings to the fore the importance of time scale and behavior in aux-
iliary fields. Not all NME materials possess these behaviors to the same degree.
We sketch what is being illustrated schematically in each panel below. In the fig-
ure caption, information is given that locates an example of these experiments and
characterizes them quantitatively.

1. The velocities of sound, c, of a sandstone are a factor of 2 to 4 less than those
of the major constituent, for example, a quartz crystal. Thus the elastic con-
stants of NME materials, K, K ∝ c2, might be less than the elastic constants
of the parent material by an order of magnitude (even more for a soil).

2. When the pressure, P, is changed from 1 bar to 200 bar, the velocity of sound
of a sandstone changes by a factor of 2. The same pressure change produces
a 1% change in the velocity of sound in quartz (water, other homogeneous
materials). Thus elastic nonlinearity, measured by γc = d ln(c)/d ln(P ), is
very large for NME materials, often several orders of magnitude larger than
that of the parent material.

3. When a sandstone (soil) is taken through a pressure loop, the strain that
results is a hysteretic function of the pressure. In addition, when there are
minor pressure loops within the major loop, the strain at the endpoints of
the minor loop is “remembered”. NME materials can have hysteretic qua-
sistatic equations of state with endpoint memory.

4. A sample is subjected to a step in stress. Accompanying that step is a prompt
step in strain followed by a slow further strain increase that evolves approx-
imately as log(t). Recovery from the release of the step stress has a similar
prompt step in strain and log(t) further reduction in strain. NME materials
exhibit slow dynamics in response to transient loading.

5. The resonance of a bar of NME material is swept over at a sequence of fixed
drive amplitudes. As the drive amplitude is increased, the resonant frequen-
cy shifts (to a lower frequency) and the effective Q of the system, measured
by the amplitude at resonance, decreases. In a plot of the detected amplitude
per unit drive, this is seen as a shift in the resonance peak accompanied by
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Fig. 1.7 Eight experiments. The eight ex-
periments of interest are: (1) The velocity of
sound, hence elastic constants, of a sand-
stone is a factor of 2 to 4 less than that of
the major constituent, for example, a quartz
crystal [1]. (2) When the pressure is changed,
the velocity of sound of a sandstone changes
by a factor of 2 for the application of 200 bar,
whereas the same pressure change produces
a 1% change in the velocity of sound in quartz
(water, other homogeneous materials) [2]. (3)
When a sandstone (soil) is taken through
a pressure loop, the strain that results is
a hysteretic function of the pressure and ex-
hibits elastic endpoint memory [3]. (4) Accom-
panying the step in stress is a step in strain
followed by a slow further strain response,
that is, more strain, that evolves as log(t).
Recovery from the release of the step stress
has a similar strain step and log(t) further

strain [4]. (5) The resonance of a bar of mate-
rial is swept over at a sequence of fixed drive
amplitudes. As the drive amplitude increas-
es, the resonant frequency shifts (to lower
frequency) and the effective Q of the system
decreases [5]. (6) The slow evolution of the
elastic state, brought about by an AC drive
(compare to panel 4), can be seen in experi-
ments in which the elastic state, once estab-
lished, is probed by a low drive sweep over
a resonance [6]. (7) When the temperature is
changed slightly, the elastic response to that
change involves a broad spectrum of time
scales (compare to panels 4 and 6), suggest-
ing log(t) behavior. In addition, the elastic
response to temperature is asymmetric in
the sign of the temperature change [7]. (8)
A stress/strain loop similar to that in panel 3
is changed markedly by the configuration of
fluid in the pore space [8].
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a reduction of the amplitude at resonance. This behavior, which follows the
fast motion of the drive, is an example of fast dynamics.

6. A bar of NME material is brought to steady state in response to a large-
amplitude AC drive. The AC drive is turned off and the subsequent elastic
state of the bar is probed with a low-amplitude drive that is swept over a res-
onance. The resonance, initially with resonance frequency shifted to a lower
frequency as in panel 5, evolves back to a higher frequency approximately as
log(t). The elastic state of the bar, established by a fast dynamics drive, relaxes
once that drive is turned off by slow dynamics.

7. When the temperature of an NME material is changed slightly, the elastic
response to that change, brought about by the temperature-induced inter-
nal forces, involves a broad spectrum of time scales (compare to panels 4
and 6), suggesting log(t) behavior at the longest times. In addition, the elas-
tic response to temperature is asymmetric in the sign of the temperature
change.

8. When an NME material is subjected to the internal forces of fluid configu-
rations, a stress/strain loop similar to that in panel 3 is changed markedly.
Much like a sponge, a rock is softer when wet.

The sequence of experiments sketched here call attention to the physical variables
that are involved in the description of NME systems. The nature of a probe, the
pressure, the temperature, the fluid configurations, the probe size, the duration of
a probe, and the aftereffect of a probe having been present must all be considered
and examined.

1.3
The Domain of Exploration

NME materials are probed in the complex phase space illustrated in Figure 1.8,
that is:

1. Length. There are three length scales associated with NME materials, the
microscopic scale (interatomic spacing) a = 0.1 nm, the scale of inhomo-
geneity b W 1–100 µm, and the sample size L >> b . A quasistatic measure-
ment is at k → 0 (k = 2π/λ), whereas a resonant bar experiment is at
wavelengths related to the sample size, b << λ < L.

2. Strain. There are judged to be two strain values of importance. At strains ε <
10–7–10–6, the nonlinear effects are small and have a more or less traditional
behavior. At strains ε > 10–3–10–2 irreparable damage is done to a sample.
The middle ground 10–7 < ε < 10–3 is the strain domain of NME.

3. Force. The standard for the strength of forces is the pressure given by a typ-
ical elastic constant, K W ρc2, where ρ is the density and c is the speed of
sound, K W 1011 dyne/cm2 = 104 MPa for a sandstone (1 atmosphere is
106 dyne/cm2 = 10 MPa). NME materials may be subject to a wide range of
forces – applied forces, forces delivered to the interior of the systems from
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Fig. 1.8 Phase space. The materials of interest are probed on
different time scales, length scales, and strain scales and with
a variety of applied “fields”.

the complex thermal response of constituents, or forces delivered to the in-
terior of the system from arrangements of fluid in the pore space. The ap-
proximate strain consequence of a force (pressure) is found using ε W P/K ,
where P is the pressure. The strain range given above, 10–7 < ε < 10–2,
implies 10–3 MPa < P < 102 MPa.

4. Time. The fastest time scale relevant to NME materials is approximately the
time for sound to cross an inhomogeneity, τ v 100 µm/c W 10–7 s. A reso-
nant bar measurement is typically at 103–104 Hz (this scale is set by sample
size L), a quasistatic measurement of stress/strain may last 10 min, and the
strain response to a change in temperature may develop over a week. The
range of time scales is enormous, 10–7 to 106 s.

All of these scales – length, time, and force – are far removed from the correspond-
ing microscopic scales, for example, 0.1 nm is the microscopic length scale, 1012 Hz
(a typical Debye frequency) is the microscopic time scale, and a microscopic ener-
gy per microscopic volume (say 0.1 eV/(0.1 nm)3 W 10 GPa) is the microscopic force
scale (stated here in terms of pressure since force alone means little).

1.4
Outline

Our interest is in the nonlinear elasticity of mesoscopically inhomogeneous mate-
rials. We will discuss the theoretical apparatus that is used to describe these mate-
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rials, the phenomenology of the experiments conducted, and the large body of data
that illustrates the behavior that characterizes these materials.

In Part I, Chapters 1–5, we give a theoretical introduction to traditional linear
and nonlinear elasticity. We begin the discussion at the microscopic level. It is here
that the basic structure of linear and nonlinear elasticity is established and the
numbers that determine the magnitude of almost all quantities of interest are set.
It is a short step from a microscopic description to the continuum description that
corresponds to the traditional theory of linear/nonlinear elasticity. These topics are
covered in Chapter 2, which is followed, in Chapter 3, by a series of illustrations of
the consequences of the theory. To get to the domain of elasticity of mesoscopically
inhomogeneous materials we must jump a gap. Across this gap, where we will
work, we start with a theoretical apparatus, having the same form as the traditional
theory of linear/nonlinear elasticity, to which we will add a collection of ad hoc
ingredients that have no immediate source in the domain we have left behind.
A variety of mesoscopic elastic elements, contacts, interfaces, etc. are described in
Chapter 4. So also is an effective medium scheme for turning mesoscopic elastic
elements into elastic constants suitable for a theory of elasticity. The coupling of
the elastic field to auxiliary fields, particularly temperature and saturation, is taken
up in Chapter 5.

In Part II, Chapters 6–9, we introduce hysteretic elastic elements, or strain ele-
ments with an elaborate stress response, Chapter 6. The dynamics of elastic sys-
tems carrying these elastic elements can be complex because of an internal field
that responds to stress slowly in time. A discussion of the resulting fast and slow
dynamics is given in Chapter 7. A set of practical matters related to data analysis
and modeling of data sets is taken up in Chapter 8. This is followed by a description
in Chapter 9 of a wide variety of considerations that relate to using data on elastic
systems for characterization (spectroscopy) and for location (tomography).

In Part III, Chapters 10–13, we discuss experiments. Quasistatic measurements,
including coupling to auxiliary fields, are described in Chapter 10. Dynamic mea-
surements, dynamic/quasistatic to dynamic/dynamic, are described in Chapter 11.
The current picture of fast/slow dynamics is given a full airing. In Chapter 12, field
experiments that touch on NME are described. The final chapter, Chapter 13, con-
tains a description of a wide variety of nondestructive evaluation applications of
NME.
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2
Microscopic/Macroscopic Formulation of the Traditional Theory
of Linear and Nonlinear Elasticity

Following Section 2.1, in which we make a few observations that place the discus-
sion of solids in the context of fluid/solid systems, there are two major sections.
Section 2.2 starts with the description of microscopic elasticity and elaborates on
the connection between the microscopic description of elasticity and the continu-
um description of elasticity, while Section 2.3 sets out the essentials of the continu-
um theory of elasticity, sans microscopic justification. (For those who want to skip
over the foundations in Section 2.2, this is the place to start. Of course, one will
have to be content to learn μ, λ, A, B, . . . , 	, . . . from experiments.) Many analytic
details, Section 2.4, and some useful numbers, Section 2.5, are found at the end of
the chapter.

In Section 2.2.1 we develop a description of the energy of a well-ordered solid,
in terms of small displacements from equilibrium sites, which is the basis of the
microscopic theory; in addition, we introduce the microscopic strains, etc. (Sec-
tion 2.2.1.1). The dynamics of small displacements, due to forces caused by mi-
croscopic strains, leads to the phonon picture, the interacting phonon picture, etc.
(Section 2.2.1.2). Some simple numerical estimates that tie microscopic numbers
to macroscopic numbers are illustrated, for example, a linear elastic constant or
a measure of the cubic anharmonicity. In Section 2.2.2, this mechanical (or quan-
tum mechanical) description is married to an approximate but practical description
of a solid in equilibrium with a temperature reservoir. In Section 2.2.2.1 we sketch
the principle of the Gruneisen approximation, and in Section 2.2.2.2 we examine
the resulting equations at reasonable temperatures, T W 300 K, and find the mi-
croscopic basis of other numbers, for example, the thermal expansion. We close
Section 2.2 with a formal treatment of the microscopic description that results in
the equations of continuum elasticity. Consequently, there is a microscopic link to
the parameters of linear and nonlinear continuum elasticity, for example, μ, λ, A,
B, . . . , 	, . . .

In Section 2.3 we sketch the theory of linear and nonlinear continuum elastic-
ity without recourse to a microscopic picture. The displacement field, strain, and
stress are introduced, as is the elastic energy density, an analytic function of the
strain field (Section 2.3.1). The dynamics of the displacement field are treated in
Section 2.3.2. The coupling of the displacement field to auxiliary fields, tempera-
ture, saturation, . . . is described in Section 2.3.3. The generalization to inhomo-
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Hamiltonian

2.2.1
phonon
model

2.2.2
phonons in 
thermal reservoir, 
quasi-harmonic

2.2.3
continuum elasticity
from Hamiltonian

2.3
phenomenology
continuum elasticity

2.3.3
couple
to auxiliary 
fields,
inhomogeneity

Fig. 2.1 Outline. The discussion in this chapter, from Hamilto-
nian to continuum elasticity, follows two routes, Sections 2.2.1
and Section 2.2.2, to the phenomenological model of elasticity.
These routes supply some of the quantitative underpinnings
of the phenomenological theory, which is able to stand on its
own.

geneous elastic systems is made in Section 2.3.4 (see Figure 2.1). In Sections 2.4
and 2.5 details used in the chapter are provided.

2.1
Prefatory Remarks

First we step back from our immediate goal to look around. What distinguishes
liquids and solids from gases at the atomic level is that in liquids and solids the
particles (atoms or molecules) are self-bound. This means that the attractive forces
between particles are sufficiently strong that they hold the particles near one anoth-
er while the kinetic energy of the particles (their thermal motion, characterized by
the temperature) causes them to move around, to attempt to fly apart. The particles
in a gas are not self-bound; you have to put a gas of particles in a container with
a lid to keep them together. To remove a particle from a liquid/solid you must reach
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in and pull with a force strong enough to liberate it from its neighbors. The basic
physical state of a collection of particles is determined by the ratio of the strength of
the attractive forces, stated as an energy, and the energy of thermal motion, set by
the temperature. Sometimes the thermal motions of the particles in a liquid/solid
will conspire to deliver a large amount of kinetic energy to one particle and allow it
to spontaneously leave the system, that is, evaporate.

And the difference between a liquid and a solid? It is one of degree and struc-
ture [1, 2]. In a solid the attractive forces between particles are sufficiently strong,
compared to the disordering effect of the thermal motion, that a particular spatial
arrangement of particles, each particle sitting advantageously in the attractive po-
tential well of a regular array of neighbors, is the lowest energy state. The energy
of a solid arrangement of particles differs from the energy of a liquid arrangement
of particles by an amount that is small compared to the energy of either; the heat
of fusion (roughly a measure of the energy difference between solid and liquid) is
small compared to the heat of vaporization (by, say, a factor of 10 or so, the familiar
80 cal/g and 540 cal/g of freshman physics). The particles in a solid sit at well-
defined places relative to their neighbors, and this local arrangement of particles is
repeated again and again throughout space, that is, the solid, if it is a single crystal,
has translational symmetry [3, 4]. Thus in a solid, where a particle should be is well
defined; the departure of a particle from where it should be is also well defined.
When you reach into a solid and pull a particle away from where it should be, its
neighbors pull back. A set of internal forces arises in reaction to your pull with an
accompanying set of displacements. The particle on which you are pulling is dis-
placed and so are the particles that contribute the force trying to hold it in place.
These are the manifestations of stress (the forces) and strain (the displacements)
at the microscopic level. A description of what is happening at this level, a job for
a chemist or a band structure physicist, involves looking at a material electron by
electron, chemical bond by chemical bond.

2.2
From Microscopic to Continuum

2.2.1
A Microscopic Description

2.2.1.1 Microscopic Energy and Microscopic Strain
A crystal is an assembly of particles that to good approximation can be taken to
reside near a set of lattice sites that are regularly arrayed in space. The symmetry of
the crystal, for example, cubic, hexagonal, . . . , describes the geometry of this regu-
lar array. Since the crystal is self-bound, it is characterized by atomic scale energies,
forces, and lengths, ε0, ε0/a, and a, respectively, where a is the interparticle spacing.
The typical particle is at a distance of a few Angstroms, tenths of a nanometer, from
its neighbors and involved in an interparticle interaction of strength ε0 W 0.5 eV.



14 2 Microscopic/Macroscopic Formulation of the Traditional Theory of Linear and Nonlinear Elasticity

The forces between particles have strength ε0/a of order 0.5 eV/0.1 nm or 0.1 nN
(nanonewton) or 1000 K/Å or 0.1 (GPa)m2. (The many units displayed here are a re-
minder that the measure of the importance of any energy/force is its size relative
to another, for example, a photon energy in eV, a particle kinetic energy in Kelvin,
an applied pressure in Pa, etc.)

The motion of particle R, at xR , near the lattice site with which it is associated, R,
is described by displacement uR , xR = R+uR , and the corresponding momentum is
pR = mu̇R . The motion of particles away from their lattice sites is small. Typically at
melting one has |uR | W (0.20 – 0.25)a [5]. Thus particle motions are a small fraction
of the intersite distance, and the energy of interaction among the particles can be
developed as a series in the displacements, uR . For the energy in the assembly of
particles we have

E =
∑

R

p2
R

2m
+

1
2

∑
R

∑
R′

V (R – R′ – uR + uR′ ) = K + U , (2.1)

where V (xRR′ ) is the interaction energy between particles separated by xRR′ = xR –
xR′ W R – R′, the equilibrium spacing between the lattice sites associated with the
particles, Figure 2.2. Using Δα = uα

R – uα
R′ (α = x , y , z) we can write

V (xR – xR′ ) = Φ0(R – R′) +
1
2!

Φα	(R – R′) Δα Δ	

+
1
3!

Φα	γ(R – R′) Δα Δ	Δγ

+
1
4!

Φα	γδ(R – R′) Δα Δ	ΔγΔδ

+ . . . ,

(2.2)

x
y

z

R
uR

a

xR

Fig. 2.2 Lattice. The set of vectors R and the displacements uR
allow one to track the particle at xR = R + uR .
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where we use the sum convention on repeated indices and the coefficients Φ, with
m subscripts, involve m derivatives of V with respect to R, for example,

Φα	(R) → ∂2V (R)
∂Rα∂R	

. (2.3)

Since each derivative of V with respect to R brings down a factor of order a, we scale
the displacements Δ by a to form the microscopic strain, eα = Δα/a. Then Eq. (2.2)
becomes a power series in the microscopic strains involving coefficients that are
energies on the order of the energy of interaction, ε0. Take as an example V given
by the Lennard–Jones interaction [6], written here in terms of the near-neighbor
distance a = 21/6σ (σ is the hard core radius):

V (r) = ε0

((a
r

)12
– 2

(a
r

)6
)

, (2.4)

for which

∂2

∂x∂ y
ε0

(a
r

)n ∣∣∣
r=ax̂

= ε0n(n + 1)x̂ ŷ
1
a2 ~

ε0

a2 , (2.5)

where x̂ is the unit vector in direction x.
In terms of the microscopic strains the interaction is

V (xR – xR′ ) = Φ0(R – R′) +
1
2!

Φα	(R – R′) eαe	

+
1
3!

Φα	γ(R – R′) eαe	eγ

+
1
4!

Φα	γδ(R – R′) eαe	eγeδ

+ . . . ,

(2.6)

where Φ1,...,m = amΦ1,...,m , a power series in the microscopic strain having coeffi-
cients with the magnitude set by the strength of interaction, ε0. (Sometimes there
are nontrivial numbers involved, e.g., Φ1,...,m+1 W nΦ1,...,m . For n = 12 this can be
significant. See below.)

For a cubic centimeter of material supporting 1 microstrain, the N L = 1 cm/a W
3 ~ 10+7 planes of atoms in the crystal (a W 0.3 nm) support the strain equally and
move closer to (further from) one another by Δ W 10–6 cm/N L W 10–13 cm, a distance
on the order of the size of the atomic nucleus. Thus e = Δ/a W 10–6. What we have
written is really

e =
Δ
a

=
N LΔ
N La

=
ΔL
L

, (2.7)

where ε = ΔL/L is the macroscopic strain, that is, the relative motion of parti-
cles on the microscopic scale is essentially the same as the relative motion on the
macroscopic scale. In a homogeneous sample, where each part of the sample par-
ticipates equally in taking up the strain field, all strains are equal. With a number
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like e W 10–6 Eq. (2.6) is a rapidly converging power series in e. It makes sense to
view Eq. (2.1) in the form

E = E2 + V3 + V4 + . . . , (2.8)

where

E2 =
∑

R

p2
R

2m
+

1
2

1
2!

∑
R

∑
R′

Φα	(R – R′) eα
RR′e	

RR′ = K + V2,

V3 =
1
2

1
3!

∑
R

∑
R′

Φα	γ(R – R′) eα
RR′e	

RR′e
γ
RR′ ,

V4 =
1
2

1
4!

∑
R

∑
R′

Φα	γδ(R – R′) eα
RR′e	

RR′e
γ
RR′eδ

RR′ ,

...

(2.9)

and the terms in Φ0, a constant energy, have been dropped. The problem posed
by this equation is solved systematically taking E = E2 as a leading approximation.
The E = E2 problem is referred to as the harmonic crystal problem. The remaining
terms, V3, V4, etc., in the energy are the cubic, quartic, etc. anharmonicities, to be
dealt with using perturbation theory. This perturbation theory philosophy, justified
here by the size of |eα|, is carried over to continuum elasticity with the continuum
strain field playing the role of eα. It is not our intention to solve this problem in de-
tail but rather to identify in it those features that work their way into the continuum
theory and into the continuum description of phenomena.

2.2.1.2 Phonons
The E2 problem is usually formulated in terms of the equations of motion for the
displacements [3, 4]. We have

müγ
R = –

∂V2

∂uγ
R

= –
∑
Sα

D γα(R – S)uα
S , (2.10)

where Dγα(R–S), the dynamical matrix, is constructed from Φγα(R–S), D γα(R–S) =
δRS Φγα – Φγα(R – S), and Φγα =

∑
S Φγα(R – S). When one looks for a solution to

the equation of motion for uγ
R with time dependence in the form uγ

R ∝ exp(–iωt),
one sees that Eq. (2.10) is a set of homogeneous equations

mω2uγ
R =

∑
Sα

D γα(R – S)uα
S , (2.11)

involving the 3N displacements uγ
R , an eigenvalue problem for the frequency and

structure of the normal modes. The displacements uR are taken to have plane-wave-
like spatial dependence, uR = U exp(ik · R), with the result that

mω2U = D(k) · U, (2.12)
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where D(k) is the Fourier transform of D(R)

D(k) =
∑

R

D(R)e–ik·R . (2.13)

As U is a displacement vector, there are three vector amplitudes (polarizations) for
each of N wavevectors k, that is, 3N normal modes.

We have proceeded to this point with some generality. (See [4] for careful delin-
eation of the properties of the solid that allow getting to this point.) Let us look
at Eq. (2.12) for a simple model system in which (a) the interaction in Eq. (2.1) is
a function of the magnitude of the separation between particles, V (r) = V (r), for ex-
ample, Eq. (2.4), (b) the interaction is sufficiently short ranged that near neighbors
make the only important contribution to D(R) and (c) the particles are on a simple
cubic lattice. We have

Φα	(ΔRR′ ) = V ′′(a)eα
RR′e	

RR′ = Γeα
RR′e	

RR′ , (2.14)

with ΔRR′ being the vector between near neighbors R, R′ having magnitude a and
components eα

RR′ . Then it follows that Φα	 = 6Γ , where 6 is the number of near
neighbors, and

D α	(ΔRR′ ) = Γδα	(6δRR′ – 1) . (2.15)

Using this result in Eq. (2.12) leads to the frequency/wave vector relation, the
phonon dispersion relation,

ω2 =
Γ
m

[
6 – 2 cos(kx a) – 2 cos(ky a) – 2 cos(ky a)

]
, (2.16)

with k = (kx , ky , kz). In the long wavelength limit, |k|a << 1, this equation is trans-
formed into

ω2 =
Γa2

m
k2 = c2k2 , (2.17)

where c is the phonon velocity. If we estimate Γ from a Lennard–Jones potential,
Eq. (2.4), Γ = 72ε0/a2, we have

c2 = 72
ε0

m
W 6 ~ 1011 (cm/s)2 (2.18)

upon making the choice ε0 W 0.5 eV, m = 60 amu, and a W 0.4 nm. Using ρ =
m/a3 W 2 g/cm3 we have an elastic constant, K W ρc2, of order 1012 erg/cm3.
Both the estimate of c and the estimate of K are sensible. The series of steps from
Eq. (2.10) to Eq. (2.18) serves as a demonstration of the microscopic source of the
numbers that characterize the behavior of elastic systems.

When the motion of the displacement is quantized, it is described by phonons
of wave vector k, frequency ω, and polarization ε that carry momentum �k and
energy �ω. In the harmonic approximation, that is, harmonic crystal problem, the
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phonon excitations are exact eigenstates of the energy. The E2 problem, the har-
monic crystal problem, is the microscopic analog of the normal mode problem in
resonant ultrasound spectroscopy (RUS) [7] that we will encounter in Chapters 8
and 11. The phonons of the harmonic crystal and the normal modes of RUS do not
decay; they have infinite lifetimes. The terms V3, V4, . . . in Eq. (2.8) cause interac-
tions among the phonons, one phonon turning into another, that give the phonons
a finite lifetime [8]. Let us sketch the rudiments of what happens. [There are other
mechanisms, representing a departure of the physical system from the mathemat-
ical ideal, that contribute to phonon (normal mode) lifetime; see Chapter 8.]

Consider the cubic anharmonic term in Eq. (2.9), V3. This term is of order
Φ′′′(δu)3, where Φ′′′ stands for the third derivative of Φ and δu = uR – uR′ . Using
for Φ′′′ the near-neighbor result for a Lennard–Jones potential, |Φ′′′| = 21 · 72ε0/a3

and

V3 W 21 · 72ε0
1
3!

(
δu
a

)3

. (2.19)

A similar treatment of V2 leads to

V2 W 72ε0
1
2!

(
δu
a

)2

, (2.20)

so that we can write

V3 W 7V2

(
δu
a

)
. (2.21)

The energy scales of V2 and V3 differ by one factor of the strain and a numerical fac-
tor, 7 = 21/3. A nonlinear parameter 	, usually defined in the equation of motion
(see below), is essentially this numerical factor. For the dimensionless measure of
the leading atomic nonlinearity (the cubic anharmonicity) we have 	 of order 10,
Figure 2.3.

When the quantized phonon excitations are used in the description of the dis-
placement field, the cubic anharmonicity brings about the interaction of three
phonons. The diagram in Figure 2.4 illustrates a typical process that is allowed
by V3. Two phonons with polarization, wave vector, and frequency, (ε1, k1, ω1) and
(ε2, k2, ω2), interact with strength proportional to 	 to yield a third phonon (ε, k, ω).
In this process energy is conserved, that is, ω = ω1 + ω2, and momentum is con-
served, that is, k = k1 + k2. This three-phonon process gives the infinitely long-
lived phonons of the harmonic crystal a finite lifetime. In continuum elasticity we
will encounter nonlinear interactions between strain fields that are the continuum
manifestation of this process. Some of the details will differ from those here in
important ways because we will have the interaction of three classical fields.

Examination of the microscopic description of a solid, Eq. (2.1), leads to
1. a description of the motion of the displacement field in terms of 3N quan-

tized phonons, N pairs of (k, ω) for each of the three polarizations;
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Fig. 2.3 Lennard–Jones Interaction. (a) The
Lennard–Jones interaction, scaled by the en-
ergy ε, as a function of interparticle separa-
tion, scaled by the length a. Eq. (2.4). (b) The
Lennard–Jones interaction (dots), the har-

monic approximation (dark gray), and the
cubic anharmonicity (light gray). These rudi-
mentary energies are the source of the elastic
constants in the harmonic approximation and
the nonlinear coupling to the third order in
displacement (strain).
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Fig. 2.4 Three-phonon process.

2. a relationship between the velocity of the long-wavelength phonons, the
elastic constants, and the microscopic interparticle interaction;

3. a nonlinear mechanism for coupling the phonons, giving them a finite life-
time, that reveals the importance of k – ω selection rules;

4. an estimate of the strength of the nonlinear interaction between displace-
ment fields based on the microscopic interaction.
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2.2.2
Microscopic Description and Thermodynamics

The discussion to this point has been on the microscopic description of the dis-
placement field in a solid in isolation. We encounter the physical realization of
solids in particular pressure/temperature/saturation/. . . circumstances. A ther-
modynamic description of the solid would let us understand the effect of pres-
sure/temperature/saturation/. . . on the measured macroscopic quantities. To for-
mulate such a description we use the Helmholtz free energy, F (T , V , W , N ), in
which the state of the system is specified in terms of the temperatue, T, volume,
V, number of particles, N, and an auxiliary field W that can be set by control of the
variable μW [9, 10]. In one circumstance the field W is the saturation field and μW

is the chemical potential [11]. The W field is present in this description so that we
can see how a generic auxiliary field would couple to temperature, volume, etc. We
take W to be extensive, W ∝ V , and call it saturation for convenience.

At a fiducial point (T 0, V 0, W 0) the free energy associated with the displacement
field is made up of three pieces:

F (T , V , W , N ) = E S + E Z + F T = E 0 + F T , (2.22)

where ES is the static energy associated with the equilibrium configuration of the
particles, the terms in Φ0 in Eq. (2.6), EZ is the zero-point energy in the phonons,
and FT is the thermal free energy in the phonons. The phonon zero-point energy
is [12]

E Z =
1
2

∑
α

�ωα , (2.23)

where α is the index specifying the 3N modes, N wave vectors with three polariza-
tions each, found from the solution to Eqs. (2.11)–(2.13). The two energies ES and
EZ are independent of T. For the thermal free energy we have [9]

F T = kBT
∑

α

ln
(
1 – e–	�ωα

)
(2.24)

	–1 = kBT . As the temperature, volume, and saturation are changed from (T 0,
V 0, W 0) the physical system is assumed to be qualitatively unchanged; there is no
chemistry, change in crystal symmetry, particle rearrangement, etc. Thus there are
three sources of change in the free energy: (1) a change in FT due to T and a change
in the normal mode frequencies, (2) a change in EZ due to changes in the normal
mode frequencies, and (3) and a change in E0 due to changes in V and W. The
simple Gruneisen model, developed carefully and extensively by Anderson [13],
allows us to go quite far in exploring the effects of T, V, and W on the behavior of
the system.

2.2.2.1 The Quasiharmonic Approximation, in Principle
In the Gruneisen model the effect of a change in volume, dV = V – V 0, is to shift
the frequency of the phonon modes by an amount proportional to dV . We assume



2.2 From Microscopic to Continuum 21

that W also changes the phonon frequencies as here

ωα(V , W ) = ω0
α

(
1 – γα

dV
V 0

– Γα
dW
W 0

)
= ω0

α (1 – da – db) , (2.25)

where ω0
α = ωα(V 0, W 0) and

γα = –
V 0

ω0
α

(
∂ω0

α

∂V

)
,

Γα =
W 0

ω0
α

(
∂ω0

α

∂W

) (2.26)

are the Gruneisen constants of the mode α. The sign of γ is chosen so that a de-
crease in volume, dV < 0, causes an increase in frequency. Quite possibly W 0 = 0
so that some care in using the definition of Γ is called for.

The program of manipulations is slightly lengthy. In outline:
1. Develop a generic series representation for F in powers of dT , dV , and dW .

This series will have coefficients that are thermodynamic derivatives, for
example, P = –∂F/∂V , K = –V (∂F/∂V ), α0K = ∂P/∂T , where P is the
pressure, K is the bulk modulus, α0 is the thermal expansion, etc.

2. Develop a series representation of F using ES, EZ, FT, and Eq. (2.25); see
Eq. (2.29) below.

3. Comparing the two series representations for F results in termwise equa-
tions that relate the thermodynamic derivatives to the changes in the
phonon frequencies.

We begin by developing a representation of F about (T 0, V 0, W 0) in the form of
a generic series in dV , dT , and dW to third-order

F = E S + E Z + F T = E 0 + F T ,

=
∑

l+m+nu3

F lmn

l !m!n!
dT l dV mdW n ,

(2.27)

where F lmn = ∂ l∂m∂nF/∂T l ∂V m∂W n . Many of the coefficients in this equation,
F lmn , are defined thermodynamic derivatives. See Eqs. (2.83. . . ) in Section 2.4.
These definitions can be used when we write F in the following way:

F = F 0 + F 1 + F 2 + F 3 + . . . ,

F 0 = F 000 = F (T 0, V 0, W 0) ,

F 1 = –P dV – SdT + μW dW ,

F 2 =
K
V 0

(dV )2

2!
–

C V

T 0

(dT )2

2!
+ F 002 (W )2

2!
+

– α0K 0(dTdV ) +
K W

W 0
(dVdW ) + F 101(dTdW ) ,

F 3 = +	
K
V 2

0

(dV )3

3!
+ α1

K
V 0

(dV 2dT )
2!

+ . . . ,

(2.28)
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where we have not written out all of the third-order terms. In the last line 	 and
α1 have ad hoc definitions that are a dimensionless measure of cubic anharmonic-
ity and a nonlinear thermal expansion, respectively. Of particular interest are the
second-order terms that couple temperature to strain, dTdV , and saturation to
strain, dVdW (KW is defined by F 011 = K W /W 0), and the third-order terms
that correspond to cubic anharmonicity, (dV )3, and couple strain to temperature,
dT (dV )2 (the Luxemberg–Gorky effect) [14]. How are the coefficients in Eq. (2.28)
related to the microscopic description above?

2.2.2.2 The Quasiharmonic Approximation to F
A microscopic description of the quantities on the RHS of Eq. (2.28) is found from
a Taylor series expansion of the equation for F. For example, the contribution of FT

is found by putting Eq. (2.24) in the form

F T = kBT 0(1 + dc) ln
(
1 – exp

[
–x0(1 – da – db)/(1 + dc)

])
, (2.29)

where x0
α = �ω0

α/kBT 0, dc = dT/T 0, da, and db are as in Eq. (2.25), and carrying
out a Taylor series expansion to order 3 in da, db , dc. Similarly, series expansions
for ES and EZ are developed; the details are in Section 2.4.

The resulting series for F is compared to the series in Eq. (2.28) and correspond-
ing terms identified. The outcome of doing this algebra is an equation that gives
each thermodynamic quantity a microscopic description. Let us look at a few ex-
amples to see what is involved.

1. P = –∂F/∂V = –F 010. There are two terms, one from each of EZ and FT,
Eqs. (2.97) and (2.101). We have

P =
–E 10

Z

V 0
+ P T

0 , (2.30)

where E 10
Z is the term proportional to dV in EZ, Eq. (2.97), and P T

0 , the term
proportional to da ∝ dV in Eq. (2.101), is given by Eq. (2.105):

P =
E 10

Z

V 0
+ P T

0 =
E 10

Z

V 0
+

kBT 0

V 0

∑
α

γα
xα

exα – 1
~

E 10
Z

V 0
+ kBT 0

N
V 0

〈γα〉 .

(2.31)

The last term on the right-hand side of this equation is the high-temperature
approximation. The pressure is made up of two contributions, one from the
zero-point motion and one from the thermal motion of the particles.

2. α0 = K –1∂P/∂T = –K –1F 110. As this quantity depends on the temperature,
it has a contribution only from FT. Since P comes from dV , we look for the
dadc ∝ dVdT term in FT. This is on the second line of Eq. (2.102). From
Eq. (2.110)

α0K =
kB

V 0

∑
α

γα
x2

α

4 sinh2(xα/2)
~

N
V 0

〈γα〉 . (2.32)
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Again, the last term on the right-hand side is the high-temperature approx-
imation.

What can we learn from the microscopic equations for the thermodynamic quan-
tites? Some remarks and observations:

1. All of the sums in the expressions for the thermal contributions to thermo-
dynamic quantities, that is, contributions from FT, increase with increasing
temperature. Thus the sign and qualitative behavior of these contributions
can be read off from Eqs. (2.104)–(2.112). For example:
a. K T , proportional to γ2, is negative and causes an increasing decrease in

the bulk modulus as T increases.
b. The thermal pressure is positive (this depends on the sign of γ, which is

assumed/expected to be positive).
2. The thermal expansion is positive (this depends on the sign of γ, which is

assumed/expected to be positive).
3. The equations for CV and α0 can be combined to give

α0K = γ
C V

V 0
, (2.33)

where γ is a weighted average of γα.
4. From Eq. (2.28) we have

P + dP = –
∂

∂(dV )
(F 1 + F 2) = P – K

dV
V 0

+ α0T 0K
dT
T 0

, (2.34)

K + dK = V
∂2

∂(dV )2 (F 2 + F 3) = K + 	K
dV
V 0

+ α1T 0K
dT
T 0

. (2.35)

a. For dT = 0 and dP =/ 0, dV /V 0 = –dP/K and

dK = 	K
dV
V 0

= –	ddP . (2.36)

Since we expect K to increase with P, we have 	 < 0. The cubic nonlinear-
ity of Eq. (2.19) is the counterpart at the atomic level of description to the
	 term here.

b. For dT =/ 0 and dP = 0, dV /V 0 = α0dT and

dK = K T 0(	α0 + α1)
dT
T 0

. (2.37)

Both contributions to the change in K are negative since 	 < 0, and from
Eqs. (2.110) α0 > 0 and from Eqs. (2.111) α1 < 0. Thus dT > 0 produces
a reduction in K, softening. The factor 	, a measure of the cubic anhar-
monicity, is often quite large.

5. Finally, let us make an assessment of the numerical size of some of the
quantities of interest. There are three energy scales involved, a potential en-
ergy scale, a quantum energy scale, and a thermal energy scale, Section 2.5.
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The potential energy scale is eS = zε0 W 104 K, the quantum energy scale is
eZ = �ωE W 300 K, and the thermal energy scale is eT = kBT W 300 K. We
have

K = K S + K T W K S , (2.38)

α0 = αT , (2.39)

	 = 	S + 	T W 	S , (2.40)

where the approximations on the right-hand side are justified because all
thermodynamic quantities involving E ν scale as eν, ν = S , Z , T , that is,

K S >> K T , etc. We have

K W 8eS n W 1012 erg/cm3 = 105 MPa , (2.41)

α0 = αT = eT n
1
K
〈γ〉 W

eT

8eS
< 10–3 , (2.42)

	 W 56eS n
1
K

W 7 , (2.43)

where the inequality in the equation for α0 arises because we use an esti-
mate based on the high-temperature limit, an upper limit. These numbers
are sensible.

The thermodynamics of a solid in the Gruneisen approximation provides evidence
for the type of thermal/mechanical coupling terms we may have in modeling and it
provides an estimate of the numerical value of important parameters that is found-
ed in the microscopic description.

2.2.3
From Microscopic Model to Continuum Elasticity

In Section 2.2.1 we carried the microscopic picture forward from the basic ener-
gy in Eq. (2.1) to a description in terms of phonons that interact weakly through
the cubic anharmonicity. We related numbers in the microscopic picture to the
parameters of the phonon picture. In Section 2.2.2, using the Gruneisen treat-
ment of the coupling between phonon frequency and volume change, we married
the microscopic picture to thermodynamics and established a connection between
microscopic quantities and thermodynamic quantities. It is the thermodynamic
quantities that are most closely connected to the parameters of continuum elastic-
ity. A numerical estimate of the bulk modulus, thermal expansion, and coefficient
of cubic anharmonicity was possible. Finally, we want to return to the beginning,
Eq. (2.1), and find continuum elasticity directly from the microscopic model. We
do this following the scheme in Ashcroft and Mermin [4].
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Consider a solid, a simple cubic lattice of atoms located at xR near sites R, having
energy of interaction, Eq. (2.1)

U =
1
2

∑
R

∑
R′

V
(
R + uR – R′ – uR′

)
, (2.44)

where the atom at xR = R + uR near lattice site R is denoted by the site label, R, and
V(r) is the energy of interaction between atoms separated by distance r = |xR – xR′ |.
The microscopic (phonon) description of this solid follows from developing V(r) as
a Taylor series in the displacements uR . The continuum mechanics description of
this solid is developed from the same starting point by regarding the displacements
uR as slowly varying functions of R. We will carry through the rudiments of this
development for a special case. This will let us illustrate the type of treatment that
one employs to do the most general problem and it will provide a recipe for finding
the linear and nonlinear parameters of continuum elasticity from the microscopic
interaction.

A systematic development of the potential energy in Eq. (2.44) makes use of the
translation operator, T:

T (a) f (x) = ea·∇ f (x) = f (x + a) . (2.45)

We write

V
(
R + uR – R′ – uR′

)
= T (uR – uR′ ) V

(
R – R′)

= e(uR –uR′ )·∇R V
(
R – R′) .

(2.46)

The idea is to insert this representation V into Eq. (2.44) and to use the Taylor series
expansion of the translation operator. What results is a power series in uR having
coefficients that depend on the potential V and derivatives of V. If we carry through
this program unmodified, it is simply an alternative way to get to Eq. (2.2), et seq.
We carry through this program, but only after treatment of the translation oper-
ator that connects it to the continuum mechanics description of the interaction
energy. The translation operator works on the atom/atom potential. This poten-
tial is typically a function of interatomic separation characterized by a microscopic
length scale, a, say the Lennard–Jones interatomic potential in Eq. (2.4). Consider
V a function of (R – R′)/a, define S = R/a, and write

(uR – uR′ ) · ∇R =
(uR – uR′ )

a
· ∇S . (2.47)

For R and R′ near one another, within the range of the atomic scale interaction,
we assume the displacements uR to be slowly varying in space, let uR → u(x), and
write

uR′ – uR =
[(

R′ – R
) · ∇x

]
u(x)|x=R . (2.48)

Thus we have

(uR – uR′ ) · ∇R =
∑

α

∂uα
R

∂x

(
X – X ′) ∂

∂Sα
==
∑

α

Δα
∂

∂Sα
, (2.49)
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where S = (X , Y , Z ) and for economy of notation and clarity of presentation we
have specialized to the case in which the displacements uR depend only on x. (To
have the complete theory of continuum elasticity, one would need to keep the Y
and Z terms in this equation.) Here ∂uα

R/∂x means ∂uα(x)/∂x evaluated at x = R,
that is, the strain at R. Going forward we will understand this R to be present and
drop it from the notation. The quantities (X – X ′) are of order 1 so the coefficient
of ∂/∂Sα is of the order of the strain and much less than 1. A series expansion of
Eq. (2.46) is a power series in the strain field. Upon using Eqs. (2.46) and (2.49) in
Eq. (2.44) we have

U = U 0 + U 1 + U 2 + U 3 + . . . , (2.50)

where

U 0 =
1
2

∑
R

∑
R′

V
(
R – R′) ,

U 1 =
1
2

∑
R

∑
α

∂uα

∂x
C α ,

U 2 =
1
2

1
2!

∑
R

∑
α	

∂uα

∂x
∂u	

∂x
C α	 ,

U 3 =
1
2

1
3!

∑
R

∑
α	γ

∂uα

∂x
∂u	

∂x
∂uγ

∂x
C α	γ ,

...

(2.51)

and

C α =
∑

S′

(
X – X ′) ∂V

(
S – S′)

∂Sα
,

C α	 =
∑

S′

(
X – X ′)2 ∂2V

(
S – S′)

∂Sα∂S	
,

C α	γ =
∑

S′

(
X – X ′)3 ∂V 3

(
S – S′)

∂Sα∂S	∂Sγ
.

(2.52)

The set of elastic constants, C α, C α	, and C α	γ, . . . , is independent of R. We take
the strain to be a function of x and replace the sum on R with an integral over x.
We have as an example

U 2 =
1
2

∫
dx
V

∑
α	

∂uα(x)
∂x

∂u	(x)
∂x

C α	 , (2.53)

where V is the volume of the sample.
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To acquire some sense of the magnitude and character of the elastic constants,
we will work out the value of C α, C α	, and C α	γ for the case of a central potential.
For V (R – R′) = V (|S – S′|) we have

C α =
∑

S

X
Sα

S
V ′ = 0 ,

C α	 =
∑

S

X 2 SαS	

S2 V ′′ ,

C α	γ =
∑

S

X 3

[
SαS	Sγ

S3

(
V ′′′ – 3

V ′′

S

)
+

Sαδ	γ + S	δαγ + Sγδ	α

S2 V ′′
]

.

(2.54)

Again to reduce complexity we have chosen the sum on S′ to go over the near
neighbors only, replaced S – S′ by S, and placed the near-neighbor distance at the
minimum of the interaction potential. Thus V ′ = 0, C α = 0 and V ′ does not appear
in the equations for C α	 and C α	γ. To evaluate the sum over S we replace it with an
integral over a solid angle (all of the particles contributing to the elastic constants in
this model are equidistant from R, the first shell of neighbors of R, at |S| = S = 1).
For C α	 we find

C α	 = C xx δαx δ	x + C y y δα	
(

δαy + δαz
)

,

C xx = V ′′∑
S

X 4 =
1
5

zV ′′ ,

C y y = V ′′∑
S

X 2Y 2 =
2
15

zV ′′ ,

(2.55)

with ∑
S

= z
∫

dΩ
4π

, (2.56)

where z is the number of near neighbors of site R. For C α	γ we find

C α	γ = C xxx δαx δ	x δγx + C x y y P δαx [δ	y δγy + δ	zδγz ] ,

C xxx =
1
35

z
(
5V ′′′ + 6V ′′) ,

C x y y =
1
35

z
(
V ′′′ + V ′′) ,

(2.57)

where P is the permutation operator on the indices α, 	, and γ.
Finally, to see some numbers we need a model for the pair interaction V. Once

again we take the Lennard–Jones potential, Eq. (2.4), which can be put in the form

V (S) = ε0

(
1

S12 –
2

S6

)
. (2.58)
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Then

V (S = 1) = –ε0 ,

V ′(S = 1) = 0 ,

V ′′(S = 1) = 72ε0 ,

V ′′′(S = 1) = –21 · 72ε0 ,

Bxx =
72
5

,

B y y =
48
5

,

Bxxx =
–7128

35
,

Bx y y =
–1440

35
,

(2.59)

where Bν = C ν/(zε0). With Bν we measure the strength of the linear and nonlin-
ear elastic constants in units of the microscopic energy, eS = zε0, Eq. (2.119). Of
most interest are the ratios; we have C y y /C xx = 0.6667, C xxx/C xx W 14.14, and
C x y y /C xxx W 0.20. Compare to Eqs. (2.21).

Using the expressions for C α	 and C α	γ from Eqs. (2.55) and (2.57) leads to the
energy as a function of the strain field given by

U 0 = –
z
2

ε0 ,

U 1 = 0 ,

U 2 =
1
2

1
2!

∫
dx
V

[
C xx

(
∂u
∂x

)2

+ C y y

(
∂v
∂x

)2

+ C y y

(
∂w
∂x

)2
]

,

U 3 =
1
2

1
3!

∫
dx
V

[
C xxx

(
∂u
∂x

)3

+ 3C x y y
∂u
∂x

[(
∂v
∂x

)2

+

(
∂w
∂x

)2
]]

,

(2.60)

where we have used u = (u, v , w ). We find the stress σxx and σyx from U to be,
Eq. (2.75),

σxx =
δU
δux

=
1
2

C xx
∂u
∂x

+
1
4

C xxx

(
∂u
∂x

)2

+
1
4

C x y y

[(
∂v
∂x

)2

+

(
∂w
∂x

)2
]

,

σyx =
δU
δvx

=
1
2

C y y
∂v
∂x

+
1
2

C x y y
∂u
∂x

∂v
∂x

.

(2.61)

From these stresses we find the equation of motion for the x and y strains [15],
Eq. (2.76),
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ρ
∂2u
∂t2 =

∂σxx

∂x
=

1
2

C xx
∂2u
∂x2 +

1
2

C xxx
∂u
∂x

∂2u
∂x2 +

1
4

C x y y
∂

∂x

[(
∂v
∂x

)2

+

(
∂w
∂x

)2
]

,

ρ
∂2v
∂t2 =

∂σyx

∂x
=

1
2

C y y
∂2v
∂x2 +

1
2

C x y y
∂

∂x

(
∂u
∂x

∂v
∂x

)
.

(2.62)

These equations have the same form as the equations treated by Goldberg [16],
Polyakova [17], McCall [18], and others. We will come back to them below.

So far we have employed the microscopic description of a solid to develop a mi-
croscopic description of the displacement field, to establish the proper setting
for the coupling between the displacement field and thermodynamics, to see the
source of continuum elasticity, and to find numbers. But there are circumstances
in which the nature of a physical system is such that stepping back to the micro-
scopics is inconvenient and may not even be a good idea. The theory of elasticity
covers these cases.

2.3
Continuum Elasticity and Macroscopic Phenomenology

2.3.1
Displacement, Strain, and Stress

The macroscopic theory of elasticity has no microscopic underpinnings. It follows
from several simple assertions. A physical system is taken to be such that all of the
pieces of material in the system have a well-defined position when the system is in
mechanical and thermal equilibrium. Displacement of a piece of the material away
from equilibrium is described by the strain tensor [15],

ui j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
+
∑

k

∂uk

∂x j

∂uk

∂xi

)
= ûi j +

1
2

(∑
k

∂uk

∂x j

∂uk

∂xi

)
,

ui j = u ji , i = 1, 2, 3, j = 1, 2, 3 ,
(2.63)

where (x1, x2, x3) = (x , y , z) and (u1, u2, u3) = (u, v , w ) are the displacements in
directions (x , y , z). The quantities ûi j are termed the rudimentary strains. The en-
ergy density, eV, that results from a strain can be developed as a power series in
the strain. The leading terms in this series, correct to the second order in the
rudimentary strains, are [15]

eV =
1
2

∑
i jkl

ûi j ci j ,kl ûkl , (2.64)

where ci j ,kl is the elastic tensor. The form of the elastic tensor as well as the form
of the most general power series for eV is limited only by the spatial symmetry of
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the physical system. As we are concerned with physical systems that are a random
assembly of mesoscopic pieces, we may assume they are spatially isotropic. In this
circumstance, ci j ,kl = (K – 2μ/3)δi j δkl + μ(δikδ j l + δi l δ j k), where K and μ are the
linear elastic parameters, the bulk and shear modulus, respectively [15]. We then
have the energy per unit volume in the form

eV = μS(u · ∗u) +

(
1
2

K –
1
3

μ
)

T (u)T (u)

+
A
3

T (u ∗ u ∗ u) + BS(u · ∗u)T (u) +
C
3

T (u)T (u)T (u) + . . . ,

(2.65)

where A, B, and C are the leading nonlinear elastic parameters (the analog of cubic
anharmonicity) allowed by isotropic symmetry [15]. The strain field is described by
the tensor

u =

⎡
⎣ uxx ux y uxz

u yx u y y u yz

uzx uz y uzz

⎤
⎦ , (2.66)

where ∗ is standard matrix multiplication, ·∗ is element-by-element matrix mul-
tiplication, T is the trace of the matrix and S is the sum over all elements of the
matrix. For example, T (u) =

∑
k ukk , S(u · ∗u) =

∑
i

∑
j ui j ui j =

∑
i

∑
j u2

i j , etc.
Because of the second-order term in ∂u/∂x in the definition of ui j , the energy eV is
not in the form of a power series in the rudimentary strain, that is, ∂u/∂x . Putting
it in that form we find

eV =
μ
2

[
S(u · ∗u) + T (u ∗ u)

]
+
(K

2
–

μ
3

)
T (u)T (u)

+

(
μ +

A
4

)
S(u ∗ u · ∗u) +

(B
2

+
K
2

–
μ
3

)
S(u · ∗u)T ((u)

+
A
12

T (u ∗ u ∗ u) +
B
2

T (u ∗ u)T (u) +
C
3

T (u)T (u)T (u) + . . . ~ ,

(2.67)

where henceforth u has the simple form

u =

⎡
⎣ ux u y uz

vx v y vz

wx w y wz ,

⎤
⎦ (2.68)

with ux = ∂u/∂x , etc. This representation of the elastic energy is very convenient
for examining a series of problems related to the practical use of nonlinear elasticity
as well as formulating a description of schemes for learning the values of nonlinear
coefficients.

Let us make contact between macroscopic elasticity theory and the results,
Eq. (2.60) in Section 2.2.3, from the microscopic description. The situation devel-
oped in Section 2.2.3 is limited to variation of the displacements in the x-direction.
That would mean taking

u =

⎡
⎣ ux 0 0

vx 0 0
wx 0 0

⎤
⎦ (2.69)
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in Eq. (2.68) with the result

eV =
(2μ

3
+

K
2

)(
∂u
∂x

)2

+
μ
2

[(
∂v
∂x

)2

+

(
∂w
∂x

)2
]

+

(
2μ
3

+
K
2

+
A
3

+ B +
C
3

)(
∂u
∂x

)3

+

(
2μ
3

+
K
2

+
A
4

+
B
2

)
∂u
∂x

[(
∂v
∂x

)2

+

(
∂w
∂x

)2
]

.

(2.70)

The involvement of the strain field in this equation is the same as that found in
Eq. (2.60). The macroscopic theory of elasticity has no qualitative phenomena that
are not also in the microscopic theory of elasticity. But the quantitative connection
is less exact. Since for a uniform system E =

∫
dxeV , comparison of this equation

with Eq. (2.60) leads to

nC xx/4 =
2μ
3

+
K
2

(2.71)

nC y y /4 =
μ
2

, (2.72)

nC xxx/12 =
2μ
3

+
K
2

+
A
3

+ B +
C
3

(2.73)

nC x y y /12 =
2μ
3

+
K
2

+
A
4

+
B
2

, (2.74)

where n = N/V is the volume per particle. The generality of an energy based solely
on symmetry allows greater flexibility in the behavior of the elastic constants than
does the Hamiltonian model. For elastic systems built up from mesoscopic elastic
elements we have no reason to reject any of the possibilities in the macroscopic
theory.

2.3.2
Dynamics of the Displacement Field

The dynamics of the macroscopic elastic field is given by an equation for finding
the stress associated with a strain,

σi j =
∂eV

∂(∂ui /∂x j )
, (2.75)

and the analog of F = ma,

ρüi =
∑

k

∂σik

∂xk
, (2.76)

where ρ is the mass density. For example, from these equations and the energy
density in Eq. (2.70) (or Eqs. (2.59) and (2.60)) the equation of motion for a y dis-
placement, v, propagating in the x-direction is

ρv̈ =
∂σyx

∂x
=

1
2

C y y
∂2v
∂x2 +

1
2

C x y y
∂

∂x

(
∂u
∂x

∂v
∂x

)
, (2.77)
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where we have used the definition of linear and nonlinear coefficients from
Eq. (2.60) for economy of writing.

2.3.3
Coupling Continuum Elasticity to Auxiliary Fields

The macroscopic elastic field can couple to other fields in the system. The nature
of this coupling may be complicated by system-specific details. Let us ignore these
for the moment and adopt the isotropic model above for both the temperature
and the fluid configurations in the pore space. We couple changes in temperature
dT = T – T 0 << T 0 to the strain field as in Eq. (2.28) with the role of dV /V 0 taken
by ∇ · u = T (u),

eT
V = –α0K T (u)dT + α1K T (u)T (u)dT , (2.78)

where α0 is the linear thermal expansion. The second term here is the analog of
the last term in Eq. (2.28). Under certain circumstances such a term can produce
the elastic equivalent of the Luxemburg–Gorky effect. We couple the saturation SW

to the strain field in a similar manner, Eq. (2.28),

eW
V = K W T (u)dSW , (2.79)

where KW is a coefficient to be learned from experiment and/or from examination
of the forces exerted between a liquid arrangement in a pore space and the walls of
the pore space.

2.3.4
Inhomogeneous Elastic Systems

There are circumstances when the linear and nonlinear elastic constants depend
on position, x. This might also be true of the constants characterizing the coupling
of the elastic field to the auxiliary fields. The range of possibilities is too extensive
to attempt to write equations of suitable generality, but a few examples serve to
suggest what is possible. For a linear elastic system that is layered in the z-direction
(say bedding planes) one would write the energy

eV =
μ(z)

2

[
S(u · ∗u) + T (u ∗ u)

]
+
(K (z)

2
–

μ(z)
3

)
T (u)T (u) . (2.80)

A spatially local nonlinearity might lead to a term in the elastic energy like, see
Eq. (2.67),

e(C )
V =

C (x)
3

T (u)T (u)T (u) . (2.81)

A spatially local source of coupling a nonlinear strain field and the temperature
field would arise from

eT
V = α1(x)K T (u)T (u)dT . (2.82)
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In some cases it might be necessary to have equations describing the dynamics
of the auxiliary fields, for example, a diffusion equation for the time evolution of
temperature. We will encounter some of these more complicated situations below
and deal with them appropriately. These few examples are primarily a forewarning
of what is possible in a place where general principles are under discussion.

Our next task is to examine some consequences of the theory of continuum elas-
ticity. We must know what it says in order to know when we encounter phenomena
beyond its purview.

2.4
Thermodynamics

2.4.1
Thermodynamic Derivatives

The thermodynamic derivatives of interest are

S = –
∂F
∂T

= –F 100 , (2.83)

P = –
∂F
∂V

= –F 010 , (2.84)

μW =
∂F
∂W

= F 001 , (2.85)

C V = T
∂S
∂T

= –T
∂2F
∂T 2 = –T F 200 , (2.86)

K = –V
∂P
∂V

= V
∂2F
∂V 2 = V F 020 , (2.87)

K W = –W
∂P
∂W

= W
∂2F

∂W ∂V
= W F 011 , (2.88)

αK =
∂P
∂T

= –
∂2F

∂V ∂T
= –F 110 , (2.89)

	 =
V 2

K
∂3F
∂V 3 =

V 2

K
F 030 (2.90)

where S = entropy, P = pressure, CV = specific heat at constant volume, K = bulk
modulus, α = thermal expansion, and μW is the thermodynamic conjugate of W.

2.4.2
Series Expansion for ES

To have a tractable form for ES we create the simple model

E S = N zV (r(V , W )) , (2.91)
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where z is a coordination number, V(r) is from Eq. (2.4), and

r(V , W ) = a

(
1 +

1
3

dV
V 0

+
λ
3

dW
W 0

)
. (2.92)

The coefficient λ describes the influence of W on the equilibrium separation be-
tween particles. Then

E S

N zε0
= –1 + 4

(
dV
V 0

)2

+ 8λ
dV
V 0

dW
W 0

+
28
3

(
dV
V 0

)3

+ . . . ,

(2.93)

where we have kept terms out to dV 3 but only the leading term in dW . There is
no first-order term in dV or dW . The contribution of ES to the thermodynamic
derivatives of interest is

K S = 8zε0
N
V 0

, (2.94)

K S
W = 8λzε0

N
V 0

, (2.95)

	S = 56zε0
N

K V 0
. (2.96)

2.4.3
Series Expansion for EZ

Using Eq. (2.25) in Eq. (2.23) we have

E Z = E 00
Z + E 10

Z
dV
V 0

+ E 01
Z

dW
W 0

, (2.97)

where

E 00
Z = –

1
2

∑
α

�ω0
α ,

E 10
Z = –

1
2

∑
α

�ω0
αγα ,

E 01
Z = –

1
2

∑
α

�ω0
αΓα .

(2.98)

The contribution of EZ to the thermodynamic derivatives of interest is

P Z = –
E 10

Z

V 0
, (2.99)

μZ
W =

E 01
Z

V 0
. (2.100)
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2.4.4
Series Expansion for FT

1. Terms in dT 0

F 0
T

kBT 0
=
∑

α

ln(1 – e–xα )

–
∑

α

xα

exα – 1
da –

∑
α

xα

exα – 1
db

–
∑

α

x2
α

4 sinh2(xα/2)

(da)2

2!
–
∑

α

x2
α

4 sinh2(xα/2)
dadb

–
∑

α

x2
α

4 sinh2(xα/2)
xα coth(xα/2)

(da)3

3!

+ · · · .

(2.101)

in
2. Terms in dT 1

F 1
T

kBT 0
=
∑

α

(
–

xα

exα – 1
+ ln(1 – e–xα )

)
dc

–
∑

α

x2
α

4 sinh2(xα/2)
dadc –

∑
α

x2
α

4 sinh2(xα/2)
dbdc

–
∑

α

x2
α

4 sinh2(xα/2)

(
xα coth(xα/2) – 1

) (da)2

2!
dc

+ · · · .

(2.102)

3. Terms in dT 2

F 2
T

kBT 0
= –

∑
α

x2
α

4 sinh2(xα/2)

dc2

2!

–
∑

α

x2
α

4 sinh2(xα/2)

(
xα coth(xα/2) – 2

)
da

(dc)2

2!

+ · · · .

(2.103)

From these results find the thermal contribution to the following thermodynamic
derivatives:

S = kB

∑
α

( xα

exα – 1
– ln(1 – e–xα )

)
~ kB

∑
α

ln(xα) , (2.104)

P T =
kBT 0

V 0

∑
α

γα
xα

exα – 1
~

kBT 0

V 0

∑
α

γα, (2.105)
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μT
W = –

kBT 0

V 0

∑
α

Γα
xα

exα – 1
~

kBT 0

V 0

∑
α

Γα, (2.106)

C V = kB

∑
α

x2
α

4 sinh2(xα/2)
~ kB

∑
α

1 , (2.107)

K T = –
kBT 0

V 0

∑
α

γ2
α

x2
α

4 sinh2(xα/2)
~ –

kBT 0

V 0

∑
α

γ2
α , (2.108)

K T
W = –

kBT 0

V 0

∑
α

γαΓα
x2

α

4 sinh2(xα/2)
~ –

kBT 0

V 0

∑
α

γαΓα , (2.109)

α0K =
kB

V 0

∑
α

γα
x2

α

4 sinh2(xα/2)
~

kB

V 0

∑
α

γα , (2.110)

α1K = –
kB

V 0

∑
α

γ2
α

x2
α

4 sinh2(xα/2)
(xα coth(xα/2) – 1) ~ –

kB

V 0

∑
α

γ2
α

x2
α

3
,

(2.111)

	T = –
kBT 0

K V 0

∑
α

γ3
α

x2
α

4 sinh2(xα/2)
xα coth(xα/2) ~ –2

kBT 0

K V 0

∑
α

γ3
α . (2.112)

In these equations the second formula on the right-hand side comes from a high-
temperature treatment of the integrand in each sum.
In those cases where the quantity of interest is related to a temperature change, the
only contribution comes from FT and there is no T superscript, for example, S, C,
. . . from Eqs. (2.83), (2.86), . . . For quantites like P and K, Eqs. (2.84), (2.87), . . . ,
there are nonthermal contributions from ES and EZ.

2.4.5
Assemble the Pieces

For the quantities that have nonthermal contributions we have:
P:

P =
E 10

Z

V 0
+ P T

0 =
E 10

Z

V 0
+

kBT 0

V 0

∑
α

γα
xα

exα – 1
~

E 10
Z

V 0
+ kBT 0

N
V 0

〈γα〉 ; (2.113)

μW :

μW =
E 01

Z

V 0
+ μT

W =
E 01

Z

V 0
–

kBT 0

V 0

∑
α

Γα
xα

exα – 1
~

E 01
Z

V 0
– kBT 0

N
V 0

〈Γα〉 ; (2.114)

K:

K = 8zε0
N
V 0

+K T
0 = 8zε0

N
V 0

–
kBT 0

V 0

∑
α

γ2
α

x2
α

4 sinh2(xα/2)
~ 8zε0

N
V 0

– kBT 0
N
V 0

〈γ2
α〉 ;

(2.115)
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KW:

K W = W 0
∂2F

∂W ∂V
= 8λzε0

N
V 0

–
kBT 0

V 0

∑
α

γαΓα
x2

α

4 sinh2(xα/2)

~ 8λzε0
N
V 0

– kBT 0
N
V 0

〈γαΓα〉 ;

(2.116)

	:

	 = 	S + 	T = 56z
ε0

K
N
V 0

–
kBT 0

K V 0

∑
α

γ3
α

x2
α

4 sinh2(xα/2)
xα coth(xα/2) ,

= 56z
ε0

K
N
V 0

– 2
kBT 0

K
N
V 0

〈γ3
α〉 .

(2.117)

In these equations we use the definition

〈X 〉 =
1
N

∑
α

X α . (2.118)

Typically γ is of order 1, so 〈γ〉 and 〈γ2〉 are numbers of order 3 since α has 3N
values.

2.5
Energy Scales

The quantities that are assembled to form the thermodynamic variables have values
that can be estimated as here. There are three energy scales, the potential energy
that scales as zε0, the zero-point energy (a quantum mechanical energy), and the
thermal energy, kBT . We consider the case in which the mass of each particle is
m = 60 amu, the strength of the interparticle interaction is ε0 = 0.5 eV, and the
interparticle spacing is a = 0.4 nm.

1. Potential energy:

eS = zε0 W 60 000 K , z = 12 . (2.119)

2. Quantum energy: We use the Einstein oscillator approximation

E Z =
1
2

∑
α

�ωα W
3
2

N�ωE , (2.120)

where ω2
E = Γ2/m and Γ2 from Eq. (2.20) is

Γ2 = 36z
ε0

a2 . (2.121)
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Thus the basic quantum energy is to within a numerical factor the geometric
mean of the zε0 and �

2/ma2:

eZ = �ωE = 6

√
zε0

�2

ma2 W 300 K . (2.122)

3. Thermal energy:

eT = kBT W 300 K (2.123)

at room temperature.
4. We have

eS >> eZ W eT . (2.124)

The high-temperature approximations in Eqs. (2.104)–(2.112) are for eT >>
eZ .
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3
Traditional Theory of Nonlinear Elasticity, Results

In this chapter we sketch some of the consequences of the traditional theory of
nonlinear elasticity described in Chapter 2. In so doing our idea is not to produce
the contents of a text on elasticity theory but rather to look at those phenomena
that will receive treatment later on, using nontraditional nonlinear elasticity. To
have a standard for comparison we want to see what things look like in the tra-
ditional theory. Further, much of the analytic apparatus we employ is introduced
as we go. The chapter is organized in five sections that go from quasistatic to dy-
namic and from linear to nonlinear. See Figure 3.1, which serves as a rough out-
line. In Sections 3.1.1 and 3.1.2 we examine the linear and nonlinear quasistatic
stress-strain response. The essential consequence of nonlinearity is the coalesence
of strain fields. Thus the leading nonlinear quasistatic response is the joining of
two quasistatic strain fields to form a third. In Section 3.2 we discuss the linear
dynamic stress-strain response, that is, the linear wave equation. Because of non-
linear coupling, a quasistatic strain and a dynamic strain interact to give a dynamic
strain at shifted velocity. This is discussed in detail in Section 3.3.

The bulk of the chapter is devoted to nonlinear elasticity in dynamics, Section 3.4.
The basic equations, nonlinear coupled wave equations, are set out in Section 3.4.1.
Wave propagation and resonance bar phenomena are described in Sections 3.4.2.1
and 3.4.2.2, respectively. Two particular processes, l + l → l and l + t → t , are
decribed for both wave propagation and in a resonance bar. Higher-order processes
and selection rules for interacting waves are discussed in Section 3.4.2.3.

In Section 3.5 we examine the Luxemberg–Gorky effect, an example of the non-
linear coupling of a strain field to an auxiliary field, the temperature. In this sec-
tion and throughout we emphasize the diagrammatic description of interaction
processes. This description allows us to identify the important physical variables
in a process from a picture of the process. The Luxemberg–Gorky effect provides
a nice example of this way of thinking.

A final section, Section 3.6, has some details of the Green functions that are used
in the description of displacement field propagation.

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
including Rocks and Soil. Robert A. Guyer and Paul A. Johnson
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40703-3
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quasistatic strain

dynamic strain

L

NL

(a)

(e)

(d)

(c)

(b)

dynamic stress

quasistatic stress

Fig. 3.1 Outline. The phenomenological the-
ory of nonlinear elasticity is in the leading
approximation a linear theory. A quasistatic
stress produces a quasistatic strain; a dynam-
ic stress produces a dynamic strain. Nonlin-
ear coupling produces coalesence of these
strains. (a) Linear quasistatic: a quasistatic
stress produces a quasistatic strain through
the agency of a linear elastic constant. (b) Lin-
ear dynamic: a dynamic stress produces a dy-

namic strain through the agency of a linear
elastic constant. Cubic nonlinearity couples
pairs of strain fields in three qualitatively dif-
ferent ways: (c) two quasistatic strain fields
produce a nonlinear quasistatic strain, (d)
a quasistatic strain distorts a material and
causes a shift in the velocity of propagation
of a dynamic strain field, and (e) two dynamic
strain fields coalesce to produce a third dy-
namic strain field.
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3.1
Quasistatic Response; Linear and Nonlinear

3.1.1
Quasistatic Response; Linear

The linear elasticity of an isotropic system is described by the elastic energy in the
first line of Eq. (2.67):

eV =
μ
2

[
S(u · ∗u) + T (u ∗ u)

]
+
(K

2
–

μ
3

)
T (u)T (u) , (3.1)

in conjunction with the equation for the stress, Eq. (2.75). The recipe is to (a) set
the strain and (b) find the stress. The elastic constants K and μ are associated with
simple compression and simple shear. We show this by considering two choices
for u in Eq. (2.68), Figure 3.2.

x
y

V0

V0

V1

V1

u 0
0 u

u v
v u

0 v
v 0

V1

(a)

(b)

(c)

force

Fig. 3.2 Notation, u. The energy is developed
using Eq. (2.67) and the matrix of strains u in
Eq. (2.68). By convention the displacements
are (u, v , w ), so the diagonal elements of u
correspond to compressional strains. When
the strains are uniform, the strain from the

first column is used for all; (a)–(c) are two-
dimensional examples of the notation. When
it is necessary to have a single strain for the
purposes of calculating the stress, the appro-
priate displacement is denoted (U , V , W ).
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For the case of uniform compression choose

u = uK =

⎛
⎝ U x 0 0

0 ux 0
0 0 ux

⎞
⎠ , (3.2)

where v y = wz = ux and Ux is denoted specially so that we can implement the
stress equation. We have

eV =
μ
2

(
2U 2

x + 4u2
x

)
+
(K

2
–

μ
3

)
(U x + 2ux )2 , (3.3)

σxx =
∂eV

∂U x
= 3K

∂u
∂x

. (3.4)

From the symmetry of uK we have σy y = σzz = σxx .
For the case of uniform shear choose

u = uμ =

⎛
⎝ 0 vx vx

V x 0 vx

vx vx 0

⎞
⎠ , (3.5)

where vx = V x , and we have

eV =
μ
2

(
V 2

x + 2V x vx + 9v2
x

)
, (3.6)

σx y =
∂eV

∂V x
= 2μ

∂v
∂x

. (3.7)

From the symmetry of uμ, σx y = σyz = σzx , and σi j = σ j i , i =/ j . We read causal-
ity in Eqs. (3.3) and (3.7) from right to left. In response to a uniform compressive
strain the system carries a uniform compressional stress proportional to the strain.
In response to a uniform shear strain the system carries a uniform shear stress
proportional to the strain. These results provide a recipe for learning K and μ from
suitable experiments. What could be learned from similar experiments on nonlin-
ear materials?

3.1.2
Quasistatic Response; Nonlinear

Using uK from Eq. (3.2) in the full equation for eV, Eq. (2.67), we find

eV = 2
(

K –
2μ
3

)
U x ux +

(K
2

+
2μ
3

)
U 2

x

+
(

K –
2μ
3

+ 2B + 4C
)

U x u2
x +

(
K –

2μ
3

+ 2B + 2C
)

U 2
x ux

+

(
K
2

+
2μ
3

+
A
2

+ B +
C
3

)
U 3

x

+
(K

2
+

2μ
3

)
u2

x +

(
2K +

2μ
3

+
2A
3

+ 4B +
8C
3

)
u3

x ,

(3.8)
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from which

σxx =
∂eV

∂U x
= 3K

∂u
∂x

+
(9K

2
+ A + 9B + 9C

)(
∂u
∂x

)2

, (3.9)

cf. Eq. (3.4).
Using uμ from Eq. (3.5) in the full equation for eV, Eq. (2.67), we find

eV =
μ
2

(
2V x vx + V 2

x

)
+ (3μ + A)V x v2

x

+
9μ
2

v2
x + (3μ + A)v3

x ,

(3.10)

from which

σyx =
∂eV

∂V x
= 2μ

(
∂v
∂x

)
+ (3μ + A)

(
∂v
∂x

)2

, (3.11)

cf. Eq. (3.7).
Using the simple mixed strain

u = uK μ =

⎛
⎝ U x 0 0

V x 0 0
0 0 0

⎞
⎠ (3.12)

in the full equation for eV, Eq. (2.67), we find

σxx =
∂eV

∂U x
=
(

K +
4μ
3

)
∂u
∂x

+
(3K

2
+ 2μ + A + 3B + C

)(
∂u
∂x

)2

+

(
K
2

+
2μ
3

+
A
4

+
B
2

)(
∂v
∂x

)2

,

(3.13)

σyx =
∂eV

∂V x
= μ

(
∂v
∂x

)
+

(
K +

4μ
3

+
A
2

+ +
B
2

)(
∂u
∂x

)(
∂v
∂x

)
, (3.14)

cf. Eqs. (3.4) and (3.7).
The three strain choices uK , uK μ, and uμ have three different nonlinear responses

that afford the means to measure the phenomenological coefficients, A, B, and C.
The recipe is to (a) set the strain and (b) find the stress, just as above. This is the
theoretical view. One could equally well take the point of view that stress is applied
and strain results. As an example, rearrange Eq. (3.14) using the notion that the
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strains are small. The sequence of moves is

u(1)
x =

σxx

K + 4μ
3

,

v (1)
x =

σyx

μ
,

∂v
∂x

=
σyx

μ
–

K + 4μ
3 + A

2 + B
2

μ

(
∂u
∂x

)(
∂v
∂x

)
,

∂v
∂x

=
σyx

μ
–

K + 4μ
3 + A

2 + B
2

μ
u(1)

x v (1)
x + . . . ,

∂v
∂x

=
σyx

μ
– 	1

(
σxx

μ

)(
σyx

μ

)
+ . . . ,

(3.15)

where 	1 = 1 + ( A
2 + B

2 )/(K + 4μ
3 ). We read meaning into the last line. The coeffi-

cient 	1 is the strength of the coupling between two quasistatic stress fields, one
compressional and one shear. The coupling of these quasistatic stress fields brings
about the nonlinear behavior of the quasistatic shear strain. The shear strain ∂v/∂x
is uniform throughout the system. As we expect less (more) strain per unit stress at
higher stress, we expect 	1 > 0 (	1 < 0). From a measurement of vx as a function of
σxx at fixed σyx one could in principle learn about A and B. Employing other stress
fields would allow measurements that get at A alone, Eq. (3.11), or combinations of
A, B, and C, Eq. (3.9), and would provide a means to learn these (see Chapter 10).

3.2
Dynamic Response; Linear

The dynamic response of an elastic system is found from the F = ma equation, the
equation of motion for the displacement field, Eq. (2.76),

ρüi =
∑

k

∂σik

∂xk
. (3.16)

The dynamics of concern to us are those of small-amplitude displacement fields,
elastic waves, or sound waves. Because the system is isotropic, the propagation
properties of a small-amplitude disturbance are independent of direction. Thus
we consider waves propagating along the x-axis. These could have a displacement
amplitude, d, parallel or perpendicular to the direction of propagation.

For the case of a longitudinal wave, d = (u(x , t), 0, 0), ux = ∂u/∂x , and in the
linear approximation,

u = uL =

⎛
⎝ ux 0 0

0 0 0
0 0 0

⎞
⎠ , (3.17)

σxx =
(4

3
μ + K

)
ux , (3.18)
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and

ü =

( 4
3 μ + K

ρ

)
∂ux

∂x
= c2

L
∂2u
∂x2 , (3.19)

where cL is the speed of a longitudinal wave.
In the case of a shear wave, displacement amplitude d = (0, v (x , t), 0), vx =

∂v (x , t)/∂x , and in the linear approximation,

u = uT =

⎛
⎝ 0 0 0

vx 0 0
0 0 0

⎞
⎠ , (3.20)

σyx = μvx , (3.21)

and

v̈ =

(
μ
ρ

)
∂vx

∂x
= c2

T
∂2v
∂x2 , (3.22)

where cT is the speed of a transverse wave.
The elastic-wave excitations, typically thought of as displacement fields or strain

fields, are accompanied by a stress field, or stress waves. An equation of motion
for the stress field is found by replacing u and v in Eqs. (3.19) and (3.22) with the
corresponding stress from Eqs. (3.18) and (3.21). For an elastic wave of amplitude
A and polarization ν = L, T propagating with wave vector k, the amplitude of the
corresponding stress is σ W ρc2

νkA, where c2
ν is the appropriate sound speed.

3.3
Quasistatic/Dynamic Response; Nonlinear

Above we described quasistatic stress-strain fields in a nonlinear system. Methods
of examining their behavior, learning about nonlinear parameters, etc. involve qua-
sistatic measurements. As the behavior of an elastic wave is sensitive to the elastic
environment in which it moves, it is possible to probe the nonlinearity of an elastic
system by monitoring the effect of a quasistatic stress field on a dynamic stress
field. As an example consider u given by

u =

⎛
⎝ U x + ux 0 0

0 0 0
0 0 0

⎞
⎠ , (3.23)

where Ux is a quasistatic strain field and ux (x , t) is a dynamic strain field. From the
formulation applied above we find

σxx =
∂eV

∂U x
=
(4

3
μ + K

)
U x +

(4
3

μ + K
)

ux

+ (4μ + 3K + 2A + 6B + 2C )U x ux .
(3.24)
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Because formally Ux and ux enter u and eV on an equal footing, we can find the
stress from the dependence of eV on either. Confirmation of this comes from the
symmetry of σxx under interchange U x ↔ ux . Since Ux is a quasistatic strain
field and ux is a dynamic strain field, we split σxx into two parts, a quasistatic part,
σS

xx = (4μ + 3K )U x/3, and a dynamic part that gives the force in the equation of
motion, σxx = σS

xx + σD
xx ,

σD
xx =

(4
3

μ + K
)

ux + (4μ + 3K + 2A + 6B + 2C )U x ux . (3.25)

We have

ü =
∂σD

xx

∂x
= c2

L (1 – 	2U x )
∂2u
∂x2 = c2

L(U x )
∂2u
∂x2 , (3.26)

where 	2 = 3 + 3(2A + 6B + 2C )/(4μ + 3K ). So a quasistatic strain field, in the
direction of propagation of a longitudinal elastic wave, produces a velocity shift
proportional to the strength of the quasistatic field. In the language introduced
above, the nonlinearity makes itself known as a coupling between a quasistatic
strain field and a dynamic strain field, coupling constant 	2, that modifies the be-
havior of the dynamic strain field. Since for quasistatic compression U x < 0 we

wave vector

polarization

quasistatic strain

Fig. 3.3 Quasistatic/dynamic coupling. For the case of a uni-
axial compressive quasistatic stress there are six elastic waves
that can be used to probe the consequences of that stress, as
illustrated here. Not all of these potential experiments are inde-
pendent. See Table 3.1.
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Table 3.1 Examples of quasistatic/dynamic experiments. Col-
umn: (1) the matrix u, Eq. (2.68), (2) coefficient of linear elas-
ticity, (3) coefficient of quasistatic field, Eq. (3.25).

u linear coefficient quasistatic coefficient

(
U x + ux 0 0

0 0 0
0 0 0

)
K + 4

3 μ 3K + 4μ + 2A + 6B + 2C

(
U x 0 0
vx 0 0
0 0 0

)
μ K + 4

3 μ + 1
2 A + B

(
U x 0 0
0 0 0

wx 0 0

)
μ K + 4

3 μ + 1
2 A + B

(
ux 0 0
0 V y 0
0 0 0

)
K + 4

3 μ K – 2
3 μ + 2B + 2C

(
0 0 0

vx V y 0
0 0 0

)
μ K + 4

3 μ + 1
2 A + B

(
0 0 0
0 V y 0

wx 0 0

)
K + 4

3 μ K – 2
3 μ + B

expect (1 – 	2U x ) > 1 or 	2 > 0. Measurement of the velocity shift brought about
by Ux can be employed to learn about A, B, and C. This could in principle be done
by time of flight or resonant bar methods. By employing various combinations of
quasistatic strain fields and dynamic strain fields (direction and polarization) com-
plete determination of A, B, and C is possible, for example, [2]. See Figures 3.1 and
3.3, Table 3.1 and Chapter 10.

3.4
Dynamic Response; Nonlinear

3.4.1
Basic Equations

Finally the nonlinear coupling in Eq. (2.67) brings about the coupling of two dy-
namic strain fields. Our study of this problem will be quite extensive as experi-
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ments involving coupled dynamic strain fields are fundamental to understanding
and to many investigations of elastic nonlinearity. We begin with the problem treat-
ed by Goldberg [3], Polyakova [4], McCall [5], and others of strain fields propagating
in the x-direction with displacements (‖ or ⊥ to the x-axis) that depend on x only.
To describe this situation we write

u =

⎛
⎝ ux 0 0

vx 0 0
0 0 0

⎞
⎠ . (3.27)

From this u we find the pair of equations

ρü =
(

K +
4μ
3

)
∂2u
∂x2 + 	

∂

∂x

(
∂u
∂x

)2

+
γ
2

∂

∂x

(
∂v
∂x

)2

,

ρv̈ = μ
∂2v
∂x2 + γ

∂

∂x

(
∂u
∂x

)(
∂v
∂x

)
,

(3.28)

where

	 =
3K
2

+ 2μ + A + 3B + C ,

γ = K +
4μ
3

+
A
2

+ B ,
(3.29)

cf. Eqs. (3.9) and (3.14). The coefficient 	 is a measure of the nonlinear coupling of
a longitudinal wave to itself (or another longitudinal wave), l + l → l , and the coeffi-
cient γ is a measure of the nonlinear coupling of a longitudinal wave to a transverse
wave, l+t → t , or of a transverse wave to itself (or another transverse wave), t+t → l .
Let us explore the consequences of Eqs. (3.28) in detail.

3.4.2
Wave Propagation

3.4.2.1 l + l → l
We begin with the case that there is only an x displacement, u, and suppose there
is a source at x = 0 with time dependence f(t). For the equation of motion of u we
have

∂2u
∂t2 +

1
τ0

∂u
∂t

=
1
ρ

∂

∂x
K 0

(
∂u
∂x

+ 	
(

∂u
∂x

)2

+ δ
(

∂u
∂x

)3

+ . . .

)
+

f (x , t)
ρ

,

(3.30)

where K 0 = K + 4μ/3 and we have introduced several generalizing features that
require comment. (1) On the left there is a simple phenomenological damping. (2)
On the right we have added a term in strain cubed, the term in δ, that is in the
form appropriate to quartic anharmonicity in eV. (3) And we have failed to pass ρ
through ∂/∂x and ∂/∂x through K0, 	, and δ because, while the systems we are
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dealing with are isotropic, they may not be homogeneous. In principle we have
to be prepared for the case that ρ, K0, 	, and δ depend on x. We will encounter
examples of these finer points below. For now let us proceed with the simplest case

∂2u
∂t2 +

1
τ0

∂u
∂t

= c2
L
∂2u
∂x2 + 	c2

L
∂

∂x

(
∂u
∂x

)2

+ F (x , t) , (3.31)

where c2
L = K 0/ρ and F = f /ρ. We use a Fourier representation of u(x , t) and F(t)

in the form

F (x , t) =
∫

dω
2π

F ω(x)e–iωt ,

u(x , t) =
∫

dω
2π

uω(x)e–iωt .
(3.32)

Then the amplitude uω(x) obeys(
–ω2 – i

ω
τ0

– c2
L

∂2

∂x2

)
uω = c2

L	
∫

dω′

2π
∂uω′

∂x
∂uω–ω′

∂x
+ F ω(x) . (3.33)

We turn this equation into a hierarchy of equations in powers of the amplitude of
F ω. To do this replace F ω with λF ω, write uω as a power series in λ,

uω = λu(1)
ω + λ2u(2)

ω + λ3u(3)
ω + . . . , (3.34)

and substitute into Eq. (3.33). Grouping terms with like powers of λ leads to the
hierarchy

D –1
ω u(1)

ω = F ω(x) ,

D –1
ω u(2)

ω = c2
L	

∂

∂x

∫
dω′

2π
∂u(1)

ω′

∂x
∂u(1)

ω–ω′

∂x
,

D –1
ω u(3)

ω = c2
L	

∂

∂x

∫
dω′

2π

(
∂u(1)

ω′

∂x
∂u(2)

ω–ω′

∂x
+

∂u(2)
ω′

∂x
∂u(1)

ω–ω′

∂x

)
,

...

(3.35)

where

D –1
ω (x) =

(
–ω2 – i

ω
τ0

– c2
L

∂2

∂x2

)
. (3.36)

From F ω you learn u(1)
ω , from u(1)

ω you learn u(2)
ω , etc. The hierarchy in Eq. (3.35) is

solvable by a systematic procedure. We will be content to see how this works with
the first two of Eqs. (3.35).

A solution is found using the Green function that is the inverse of D –1
ω ,

D –1
ω (x)Gω(x |x ′) = δ(x – x ′) , (3.37)
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and the identity∫
dx ′D –1

ω (x)Gω(x |x ′)A(x ′) = A(x) . (3.38)

Then

u(1)
ω =

∫
dx ′Gω(x |x ′)F ω(x ′) ,

u(2)
ω = c2

L	
∫

dω′

2π

∫
dx ′Gω(x |x ′)

~
∂

∂x ′

∫
dx ′′

∫
dx ′′′ ∂Gω′ (x ′|x ′′)

∂x ′
∂Gω–ω′ (x ′|x ′′′)

∂x ′ F ω′ (x ′′)F ω–ω′ (x ′′′) .

(3.39)

This formal apparatus takes on some meaning when we consider a particular ex-
ample. We retreat to the case originally discussed F ω(x) = Aωδ(x) and have

u(1)
ω (x) = Gω(x |0)Aω (3.40)

and

u(2)
ω (x) = c2

L

∫
dω′

2π

∫
dx ′ ∂Gω(x |x ′)

∂x
	(x ′)

∂Gω′ (x ′|0)
∂x ′

∂Gω–ω′ (x ′|0)
∂x ′ Aω′Aω–ω′ ,

(3.41)

where we have used one integration by parts and G(x |x ′) = G(x – x ′) to move
∂/∂x ′ onto x. A source at frequency ω at 0 gives rise to a displacement at frequen-
cy ω at x > 0 given by Gω(x |0)Aω, Eq. (3.40). If displacement ∝ G, then strain
∝ ∂G/∂x . In Eq. (3.41) two amplitudes, Aω′ and Aω–ω′ , propagate to x ′ and pro-
duce two strains that interact there through the agency of 	(x ′). The disturbance
at x ′ propagates on to x, Gω(x |x ′), to produce the second-order contribution to the
displacement at frequency ω. We have used 	(x ′) to call attention to the working of
the nonlinearity pointwise throughout the domain 0 < x ′ < x .

To get an explicit answer we require the Green function defined by Eq. (3.37) and
a choice of Aω. For the case at hand we have, Eq. (3.112),

Gω(x |x ′) =
i

2c2
Lkω

eikω|x–x ′ | , (3.42)

where we use c2
Lk2

ω = ω2 + iω/τ0. For the amplitude Aω choose

Aω = –2πikωc2
LA0

[
δ(ω – ω0) + δ(ω + ω0)

]
. (3.43)

Then

u(1)
ω (x) = Gω(x |0)Aω = πA0eikωx

[
δ(ω – ω0) + δ(ω + ω0)

]
,

u(1)(x , t) =
∫

dω
2π

u(1)
ω (x)e–iωt = 2A0 cos(kω0 x – ω0t) ,

(3.44)
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where k–ω = –k∗ω. The source at x = 0 has been so chosen that at x, in the absence
of nonlinearity, a plane wave signal is detected. Using Eqs. (3.42) and (3.43) in
the equation for u(2)

ω (x) leads to terms involving combinations of frequency delta
functions, δ(ω′ – ω0)δ(ω–ω′ –ω0), δ(ω′ –ω0)δ(ω–ω′ + ω0), δ(ω′ + ω0)δ(ω–ω′ –ω0),
and δ(ω′ + ω0)δ(ω – ω′ + ω0), that give ω = 2ω0, ω = 0 (two terms), and ω = –2ω0.
For the term involving ω = 2ω0 we have

u(2)
ω (x) =

1
2

(kω0 A0)2eik2ω0 x δ(ω – 2ω0)
∫ x

0
dx ′	(x ′)ei(2kω0 –k2ω0 )x ′

. (3.45)

If the damping due to τ0 is weak, ω0τ0 >> 1, kω = ω/cL + iκ, κ = 1/cLτ0, and the
phase factor exp i (2kω0 – k2ω0 )x ′ = e–κx ′

W 1 for x within the attenuation length
b = κ–1. Then, for the case 	(x ′) = 	 at all x ′, the integration over the domain of the
nonlinear coupling yields a factor x	. Thus

u(2)
ω (x) =

1
2

	(kω0 A0)2xeik2ω0 x δ(ω – 2ω0) ,

u(2)(x , t) =
1
2

	(kω0 A0)2xei(k2ω0 x–2ω0t) .
(3.46)

This is a well-known result. We derive it in a way that calls attention to the physics
that is operating. The source at ω0 broadcast a strain that couples to itself with
strength 	 at all points beyond the point of initial launch. At each coupling point
a signal of strength proportional to 	(kA)2 is broadcast. As the broadcast signals
are in phase they add over the path from 0 to x to give the factor x in Eq. (3.46). It
is apparent how a number of variations on this result would go. For example, if the
nonlinearity were present at a single point in space, 	(x) = 	0aδ(x –x0), or in a strip
of length d, 	(x) = 	0θ(x – x0)θ(x0 + d – x), we would replace 	x in Eq. (3.46) with
	0a and 	0d, respectively. The influence of attenuation would make itself known in
an obvious way. The two signals that couple at x ′ are each attenuated by exp –κx ′.
The signal broadcast from x ′ to x is subject to attenuation over the path |x – x ′|.

There is a term in u(2) with the same amplitude as in Eq. (3.46) with frequency
ω = –2ω0 and a DC term that would be seen in principle by a conventional strain
gauge, that is, at ω = 0 [6, 7].

3.4.2.2 t + t → l and l + t → t
Consider the case in which there are two sources at x = 0; one launches a longi-
tudinal wave with (frequency,amplitude) = (ω, A0) and the other launches a shear
wave with (frequency,amplitude) = (Ω, B0). These waves will bring into play the
terms in γ in Eqs. (3.28). We can talk through the basic physical idea using the
understanding from above. Let us consider the effect on u first.

1. There will be two first-order disturbances u(1)
ω (x ′) ∝ A0 and v (1)

Ω (x ′) ∝ B0

at x ′ that are carried there by the Green functions Gω and gΩ for u and v,
respectively.

2. Because of the coupling 	(x ′), the longitudinal wave u(1)
ω (x ′) will interact

with itself and launch a longitudinal wave that will propagate to x. This is
described above, l + l → l .
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3. Because of the coupling γ(x ′), the transverse wave v (1)
Ω (x ′) will interact with

itself at x ′ and launch a longitudinal wave that will propagate to x, t + t → l .
a. The longitudinal wave launched from x ′ is at frequency 2Ω and has an

amplitude proportional to v (1) ~ v (1) and phase exp(i2qΩx ′).
b. The longitudinal wave launched from x ′ to x has a further phase evolution

exp(ik2Ω[x – x ′]) so that the phase of the longitudinal wave at x is

eik2Ωx ei(2qΩ–k2Ω)x ′
= eik2Ωx eφ(x ′) , (3.47)

where qΩ = Ω/cT , c2
T = μ/ρ from the the second of Eqs. (3.28). For the

case studied above, l + l → l , the phase factor φ(x ′) was essentially zero
and the longitudinal waves launched from all x ′, 0 u x ′ u x to give the
factor x. Here that is not the case and we have∫ x

0
dxeiφ(x) = –ia(1 – ei(2qΩ–k2Ω)x ) = –iaF , (3.48)

an oscillatory function of x with amplitude a, 2π/a = 2Ω(1/cT – 1/cL).
c. The amplitude of u(2)(x) scales as γ(qΩB0)2a and is multiplied by the os-

cillatory factor F .
4. Because of the coupling γ(x ′), the transverse wave v (1)

Ω (x ′) will interact with
the longitudinal wave u(1)

ω (x ′) and launch a transverse wave that will propa-
gate to x, l + t → t .
a. The transverse wave launched from x ′ is at frequency ω + Ω.
b. The transverse wave launched from x ′ to x has phase

eiqω+Ωx ei(qΩ+kω–qω+Ω)x ′
= eiqω+Ωx eφ(x ′) . (3.49)

We have∫ x

0
dxeiφ(x) = –ia(1 – ei(kω–qω)x ) = –iaG , (3.50)

an oscillatory function of x with amplitude a, 2π/a = 2ω(1/cT – 1/cL).
c. The amplitude of v (2)(x) scales as γ(qΩB0)(kωA0)a and is multiplied by the

oscillatory factor G.

The three processes we have looked at are schematically l + l → l , t + t → l , and
l + t → t .

3.4.2.3 l + l + l → l, l + 2l → l and more
There are many possibilities beyond those considered above. In Figure 3.4 we show
schematically several interaction processes among dynamical strain fields that are
variations on the theme discussed here. For the most general case of cubic anhar-
monicity in an isotropic solid Jones and Kobett [8] have worked through the details
of what is possible and presented the results as a set of selection rules. Their calcu-
lations do not use the restricted geometry and particular circumstance used here
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2 , 0

+3 , +
3 ,

(a)

(b)

(d)

(e)

(c)
+

t,

Fig. 3.4 Elastic-wave interactions due to cubic
anharmonicity. There are three rudimentary
elastic wave interactions due to cubic anhar-
monicity. These are shown schematically in (a)
l + l → l, (b) t + t → l, and (c) l + t → t . Quartic

anharmonicity leads to the process shown in
(d) in which three longitudinal elastic waves
coalesce to form a fourth, l + l + l → l. A pro-
cess similar to the quartic process can occur
as a second-order cubic process (e).

and as a consequence contain results of great generality. What one wants to take
away is not just the results, selection rules, but additionally the set of physical con-
ditions that are necessary to have two elastic waves coalesce in a volume of space to
form a distinctive third wave. The physical content of the calculation of Jones and
Kobett is illustrated in Figure 3.5.

1. Plane waves (A1, k1, ω1) and (A2, k2, ω2) are launched from transducers 1
and 2 and carried into the interior of the system by the appropriate Green
functions.

2. In the interaction volume V, where they encounter one another, these plane
waves interact through the cubic anharmonicity producing a system of
sources with strength proportional to (k1A1)(k2A2), spatial structure deter-
mined by k1 and k2, and time dependence determined by ω1 and ω2.

3. Broadcast from the system of sources is carried out of the interaction vol-
ume by the appropriate Green function. The broadcast amplitude is large in
those directions in which the phase factors,

eiφ(x) = eik1 ·xeik2 ·xe–ik3 ·x , (3.51)

add over the interaction volume. Here k3 is the wave vector of the excitation
leaving the interaction volume at a frequency related to ω1 and ω2.
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1. A, k1, 1

2. B, k2, 2

3. C, k3, 3

V

Fig. 3.5 Three-wave processes. Waves (A, k1, ω1) and
(B , k2, ω2) interact in volume V, via a cubic anharmonic interac-
tion, from which elastic energy is broadcast. Under certain con-
ditions the broadcast from V is sufficiently coherent that a third
elastic wave is created, (C , k3, ω3), C ∝ AB , and wavevector
and frequency related by the selection rules, Eq. (3.52).

4. When specific choices are made for the characteristics of the two incident
waves, one can assess the characteristics of the outgoing waves. For exam-
ple, when the two incident waves are transverse, a coherent outgoing wave
that is longitudinal can be formed.

5. For t + t → l the wavevector-frequency selection rules are

k1 + k2 = k3 ,

ω1 + ω2 = ω3 ,
(3.52)

essentially momentum and energy conservation. The amplitude of the out-
going wave scales as

A3 ~ Γ(k1A1)(k2A2)
kV
r

, (3.53)

where Γ is a measure of the strength of the cubic anharmonicity, cf. the dis-
cussion below Eq. (3.48). The amplitude of the outgoing wave scales as the
product of the strain fields in the interaction volume and as V, the analog of
x in Eq. (3.46). An extensive body of careful further work extended these the-
oretical developments and a large body of experimental work has confirmed
them in all details for appropriate materials. See Chapter 10.
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3.4.3
Resonant Bar

We look at two cases: (1) the analog of l + l + l → l and (2) the analog of l + t → t .

3.4.3.1 l + l + l → l
Consider the situation shown in Figure 3.6, a resonant bar system driven at the left.
To describe this, we write the equation of motion, Eq. (3.30),

ü +
1
τ

u̇ = c2
L
∂2u
∂x2 + c2

Lδ
∂

∂x

(
∂u
∂x

)3

+ F (t)
a
m

δ(x) , (3.54)

where a is a constant that carries the dimensions lost in δ(x) and in place of the
terms from cubic anharmonicity that are in the equations above, proportional to 	,
γ, we have a term from the quartic anharmonicity, proportional to δ. The reason
for this choice will be clear as we proceed. The method of analysis starts much the
same as above. Using Fourier analysis of u and F and the development of uω in the
form u(1)

ω + u(3)
ω + . . . we have the set of equations

D –1
ω u(1)

ω =
a
m

F ωδ(x) , (3.55)

D –1
ω u(3)

ω = δc2
L

∂

∂x

∫
dω′

2π

∫
dω′′

2π
∂u(1)

ω′

∂x
∂u(1)

ω′′

∂x
∂u(1)

ω–ω′–ω′′

∂x
, (3.56)

... (3.57)

Using the Green function properties in Eqs. (3.37) and (3.38) we find

u(1)
ω (x) = Gω(x |0)

a
m

F ω , (3.58)

F, A( )

L0

Fig. 3.6 Resonant bar experiment. In a typical
resonant bar experiment, the bar is driven at
one end and the strain field or its function-
al equivalent is detected at the other end. It
is usual to fix the drive amplitude, F n , n =
1 · · ·N , and sweep the frequency over a res-

onance. The location and shape of the res-
onance as a function of drive amplitude is
studied. Since An (ω) is simply proportional
to Fn for a linear system, one often studies
An (ω)/F n .
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u(3)
ω (x) = δc2

L
a3

m3

∫
dx ′Gω(x |x ′)

∫
dω′

2π

∫
dω′′

2π

~
∂

∂x ′

(
∂Gω′ (x ′|0)

∂x ′
∂Gω′′ (x ′|0)

∂x ′
∂Gω–ω′–ω′′ (x ′|0)

∂x ′

)
~ F ω′F ω′′F ω–ω′–ω′′ . (3.59)

For F ω we take F ω = A[δ(ω – ω0) + δ(ω + ω0)]. Let us focus on the amplitude at
x = L, the detection point, at frequency ω0. We have one term in u(1)

ω proportional
to δ(ω–ω0). In u(3)

ω we can get δ(ω–ω0) from the three combinations of ω′, ω′′, and
ω–ω′ –ω′′ that yield ω0. (The cubic nonlinearity, treated above in wave propagation,
does not appear prominently in the description of the resonant bar because the
interaction does not return the fundamental frequency.) We have

u(1)
ω (L) = δ(ω – ω0)

aA
m

Gω(L|0) , (3.60)

u(3)
ω (L) = δ(ω – ω0)3δc2

L
a3A3

m3

∫
dx ′Gω0 (L|x ′)

~
∂

∂x ′

(
∂Gω0 (x ′|0)

∂x ′
∂Gω0 (x ′|0)

∂x ′
∂G–ω0 (x ′|0)

∂x ′

)
. (3.61)

To develop these equations further we use the Green function for the resonant bar

Gω(x |x ′) =
1

kc2
L

cos kx ′ cos k(L – x)
sin kL

, x > x ′ , (3.62)

where ω2 + iω/τ = c2
Lk2 and k(–ω) = –k(ω)∗. Then

u(1)
ω = –δ(ω – ω0)

1
kc2

L

aA
m

1
sin kL

(3.63)

and

uω = u(1)
ω + u(3)

ω = –δ(ω – ω0)
1

kc2
L

aA
m

(
1

sin kL
+ 3

δ
c4

L

(
aA
m

)2
1

sin4 kL
J

)
,

(3.64)

where J, from the integral over x ′, is of the form J = Js sin kL + Jc cos kL. This
equation undergoes a series of rearrangements, trying to bring it into the form of
Eq. (3.63), with the result

uω = δ(ω – ω0)B
1

sin
(
kL

[
1 – 9

8 δ(kuω0 )2
]) , (3.65)

where B is a complicated constant. This equation is an implicit equation for uω.
The resonance of the bar at k0L W nπ for δ = 0 is shifted for δ =/ 0 approximately as
here

kL W k0L
(

1 +
9
8

δε2
ω

)
, (3.66)
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f=ω/2π

A
/F

Fig. 3.7 Resonant bar example. The amplitude An (ω)/F n as
a function of ω, for the quartic problem in Eq. (3.54), from
Eq. (3.65). Resonance curves like this put simple definitions of
measures of attenuation to a severe test.

where εω = kuω. Thus there is a frequency shift, proportional to the strain field
squared, that respects the sign of δ, Figure 3.7. In addition to the frequency shift
there is a nonlinear attenuation that causes a reduction (increase) in the amplitude
on the side of the resonance peak from (to) which the frequency shifts. This result
makes it clear that a nonlinear contribution to the elasticity need not necessarily
produce an addition to the attenuation. It is a matter of phase. The attenuation
depends on the phase relationship between the drive and the velocity field. For
F = F 0 sin ωt and v (t) = A cos ωt + B sin ωt

W =
∫

F (t)dx =
1
2

F 0B = F 0R sin φ , (3.67)

R =
√

A2 + B2 and tan φ = B/A. In the resonant bar case the phase of the strain
fields in the bar affect the outcome markedly. For examples of sensitivity to phase
in the case of wave propagation, see below, Eq. (3.47), and the discussion of RTMF
in Chapter 8.

3.4.3.2 l + t → t
Consider the truncated form of Eq. (3.28) in which we retain only one of the non-
linear terms, the uv term in the equation for v,

ü = c2
L
∂2u
∂x2 + F (t)

a
m

δ(x) , (3.68)

v̈ = c2
T

∂2v
∂x2 + γc2

T
∂

∂x

(
∂u
∂x

)(
∂v
∂x

)
+ H(t)

a
m

δ(x) , (3.69)
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where F(t) and H(t) are forces due to a compressional and shear transducer, re-
spectively, and ∂u/∂x = ∂v/∂x = 0 at x = 0 and x = L. We want to look at the
case where F drives the compressional displacement near a normal mode and H
drives the shear displacement near a normal mode. We then have u = u(1) and
v = v (1) + v (2) + . . . , where

u(1)(x , ω) = GL(x |0, ω)F (ω) ,

v (1)(x , Ω) = GT (x |0, Ω)H(Ω)

v (2)(x , ω) = –γc2
T

∫ L

0
dx ′ ∂GT (x |x ′; ω)

∂x ′

~
∫

dω′

2π
∂u(1)(x ′, ω′)

∂x ′
∂v (1)(x ′, ω – ω′)

∂x ′ ,

(3.70)

and the factors of a/m have been absorbed into the definitions of F (ω) and H(Ω).
Using the equations for u(1) and v (1) leads to

v (2)(x , ω) = –γc2
T

∫ L

0
dx ′ ∂GT (x |x ′; ω)

∂x ′

~
∫

dω′

2π
∂GL(x ′|0; ω′)

∂x ′
∂GT (x ′|0; ω – ω′)

∂x ′

~ F (ω′)H(ω – ω′) .

(3.71)

Choose the forces to be F (ω) = F 0δ(ω – ω1) and H(ω) = F 0δ(ω – ω2). Then

v (2)(L, ω) = –δ(ω – ω3)γc2
T F 0H0

~
∫ L

0
dx ′ ∂GT (L|x ′; ω3)

∂x ′
∂GL(x ′|0; ω1)

∂x ′
∂GT (x ′|0; ω2)

∂x ′ ,
(3.72)

where ω3 = ω1 + ω2. Use the Green functions

GL(x |x ′; ω) =
1

c2
Lkω

cos kωx ′ cos kω(L – x)
sin kωL

, x > x ′ , (3.73)

GT (x |x ′; ω) =
1

c2
T qω

cos qωx ′ cos qω(L – x)
sin qωL

, x > x ′ , (3.74)

with kω = ω/cL and qω = ω/cT . Then

v (2)(L, ω)
L

= δ(ω – ω3)γ
F 0

c2
L sin (kω1 L)

H0

c2
T sin (qω2 L)

F , (3.75)

where

F =
1
L

∫ L

0
dx

sin (qω3 x)
sin (qω3 L)

sin (kω1 x) sin (qω2 x) . (3.76)

The factor F contains detailed information about how the modes couple. It has
no sharp features as a function of frequency unless there is a shear mode with
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frequency ω3. Further interpretation of Eq. (3.75) uses the equations for u(1) and
v (1) in the form

kωu(1)(L, ω) =
F 0

c2
L sin (kω1 L)

δ(ω – ω1) = εL(ω1)δ(ω – ω1) , (3.77)

qωv (1)(L, ω) =
H0

c2
T sin (qω2L)

δ(ω – ω2) = εT (ω2)δ(ω – ω2) . (3.78)

Thus the amplitude v (2) is proportional to the product of the strain fields created by
F(t) and H(t), the dimensionless nonlinear parameter γ, and the mode-dependent
form factor F ,

v (2)(L, ω)
L

= δ(ω – ω1 – ω2)γεL(ω1)εT (ω2)F . (3.79)

3.5
Exotic Response; Nonlinear

Let us examine a situation in which the displacement field couples nonlinearly to
an auxiliary field. Consider the interaction of a pump wave (displacement field 1)
and a probe wave (displacement field 2) due to nonlinear coupling to a dynamic
“auxiliary” field, a local temperature field. The physical system is a resonant bar, 0 u
x u L. We go outside of the domain of traditional nonlinear elasticity to construct
a nonlinear coupling. Suppose the coupled elastic/thermal system is described by
the free energy

F (T ) = F 0(T ) +
1
2

K ε2 – K α0δT ε – K α0γ(x)δT
ε2

2
, (3.80)

where α0 = (∂V /∂T )/V and δT = T – T 0. The first three terms on the right-
hand side are the standard terms from linear elasticity, Section 2.2.2.1. The last
term, which we will eventually take to be spatially local, is the nonlinear coupling
between strain and the temperature suggested as the analog of the Luxemburg–
Gorky effect [9]. We introduced such a term in Eq. (2.28). The equation of motion
for the displacement field is

ρ
(

ü +
1
τ0

u̇

)
=

∂σ
∂x

=
∂

∂x
∂F
∂ε

(3.81)

and the equation of motion for the temperature field is

T 0
∂S
∂t

= –T 0
∂

∂t
∂F
∂T

= κT
∂2δT
∂x2 , (3.82)

where S = –∂F/∂T is the entropy and κT is the thermal conductivity. Using
Eq. (3.80) and C = T 0∂S/∂T we have
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ü +

1
τ0

u̇

)
= c2

L
∂

∂x

[
ε – αδT – αγ(x)δT ε

]
, (3.83)

C δṪ = κT
∂2δT
∂x2 – K T 0α0ε̇ – K T 0α0γ(x)εε̇ . (3.84)

Use the definitions δT = δT/T 0, Γ0 = T 0α0, Γ = Γ0γ, D T = κT /C , and r =
K /(C T 0). Find(

ü +
1
τ0

u̇

)
= c2

L
∂

∂x
ε – c2

LΓ0
∂δT
∂x

– c2
L

∂

∂x
ΓδT ε + F δ(x) + f δ(x) , (3.85)

δṪ = D T
∂2δT
∂x2 – rΓ0 ε̇ – rΓεε̇ , (3.86)

where F and f are the pump and probe forces, respectively. We will drop the linear
terms, proportional to Γ0 in both equations (these terms lead to the linear atten-
uation and adiabatic sound speed) and direct our attention to the two nonlinear
terms, involving δT ε and εε̇. In what is by now a familiar procedure, we perform
a Fourier analysis on the equations of motion. With the definition

g (t) =
∫

dω
2π

gωe–iωt (3.87)

and u(t) ↔ uω, δT (t) ↔ Aω, F (x , t) ↔ F ωδ(x), f (x , t) ↔ f ωδ(x) we have[
–ω2 –

iω
τ0

– c2 ∂2

∂x2

]
uω =–c2 ∂

∂x
Γ
∫

dω′

2π
Aω–ω′uω′ +(F ω + f ω)δ(x) ,

(3.88)[
–iω – DT

∂2

∂x2

]
Aω = i rΓ

∫
dω′

2π
ω′uω–ω′uω′ . (3.89)

We imagine the pump displacement field to be relatively large and the probe dis-
placement field to be relatively small. The temperature field is only nonzero be-
cause it is driven by the displacement fields in places where Γ(x) is nonzero. To
focus on the sidebands of the probe frequency we divide uω into two parts, uω =
U ω + uω, where in leading order U ω ∝ F ω and uω ∝ f ω. We are interested in u
and A. If Λ and λ are measures of the size of F and f, respectively, a systematic treat-
ment of U, u, and A would use U ω = ΛU (10)

ω , uω = λu(01)
ω + Λ2λu(21)

ω + Λλ2u(12)
ω + . . . ,

and Aω = Λ2A(20)
ω + ΛλA(11)

ω + . . . , where the superscripts (μ, ν) correspond to the
powers of Λ and λ, respectively. Using these expansions in Eq. (3.89) we have

G–1
ω U (10)

ω = F ωδ(x) , (3.90)

G–1
ω u(01)

ω = f ωδ(x) , (3.91)

G–1
ω u(21)

ω = –c2 ∂

∂x
Γ
∫

dω′

2π
A(20)

ω–ω′u
(01)′
ω′ – c2 ∂

∂x
Γ
∫

dω′

2π
A(11)

ω–ω′U
(10)′
ω′ ,

(3.92)



3.5 Exotic Response; Nonlinear 61

G–1
ω u(12)

ω = –c2 ∂

∂x
Γ
∫

dω′

2π
A(11)

ω–ω′u
(01)′

ω′ , (3.93)

...

g–1
ω A(20)

ω = i rΓ
∫

dω′

2π
ω′U (10)′

ω–ω′U
(10)′
ω′ ,

(3.94)

g–1
ω A(11)

ω = i rΓ
∫

dω′

2π
ω′

(
U (10)′

ω–ω′u
(01)′
ω′ + u(01)′

ω–ω′U
(10)′
ω′

)
, (3.95)

where

G–1
ω =

[
–ω2 –

iω
τ0

– c2
L

∂2

∂x2

]
,

g–1
ω =

[
–iω – D T

∂2

∂x2

]
,

(3.96)

and u′ = ∂u/∂x , etc. Look at the equation for u(21)
ω . Consider the ways in which

modulation of the pump U could feed into u. The two diagrams in Figure 3.8 il-

U

u

A

U

U

U

A

u

u

u

(a)

(b)

probe

pump

auxiliary field

Fig. 3.8 Pump, probe, and temperature I. Possible schemes
for coupling the temperature, pump elastic wave, and probe
elastic wave. Elastic waves create a temperature disturbance
from which there is further elastic-wave scattering. The tem-
perature carries aspects of the elastic waves that created it and
transfers these to the scattered wave.
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lustrate the two terms in the equation for u(21)
ω . The diagram at the top involves the

pump driving the A field; the product UU transfers modulation of U to A, which
is then probed by u, the first term on the right-hand side of the equation for u(21)

ω .
The diagram at the bottom involves the pump and probe driving the A field which
is then “probed” by U, the second term on the right-hand side of the equation for
u(21)

ω . We examine the case corresponding to the top diagram. Simplify notation
with U = U (10), v = u(01), w = u(21), and A = A(20) and use Eqs. (3.96) to write

U ω(x) = Gω(x |0)F ω , (3.97)

vω(x) = Gω(x |0) f ω , (3.98)

wω(x) = c2
∫ L

0
dx ′ ∂Gω(x |x ′)

∂x ′ Γ(x ′)
∫

dω′

2π
Aω–ω′ (x ′)vω′ (x ′) , (3.99)

Aω(x) = i r
∫ L

0
dx ′ gω(x |x ′)Γ(x ′)

∫
dω′

2π
ω′U ′

ω–ω′ (x ′)U ′
ω′ (x ′) , (3.100)

where in the equation for wω we have done an integration by parts. We are in-
terested in wω. Since U ω and vω are simply created by the applied forces, it is
straightforward to write the equation for wω. We find, taking Γ = Λδ(x – R) and
detecting wω at the bar end x = L,

wω(L) = i rc2
LΛ2

∫
dω′

2π

∫
dω′′

2π

~
∂Gω(L|R)

∂R
gω–ω′ (R|R)

∂Gω–ω′–ω′′ (R|0)
∂R

∂Gω′ (R|0)
∂R

∂Gω′′ (R|0)
∂R

~ F ω–ω′–ω′′F ω′ f ω′′ .

(3.101)

Suppose that the time dependence of the pump and probe are such that

F ω = F 0
(
δ(ω – ωP ) + δ(ω + ωP )

+ m
[
δ(ω – ωP + Ω) + δ(ω – ωP – Ω)

+δ(ω + ωP + Ω) + δ(ω + ωP – Ω)
] )

, (3.102)

f ω = f 0(δ(ω – ωp ) + δ(ω + ωp )) , (3.103)

where m is the amplitude of the modulation of ωP at Ω. There are many possi-
bilities for transfer of the frequencies of the pump to the probe. Consider, for ex-
ample, the transfer of +Ω to the probe. This can happen in two ways, Figure 3.9a,
(ω′ = –ωP + Ω, ω – ω′ – ω′′ = ωP ) and (ω′ = ωP + Ω, ω – ω′ – ω′′ = –ωP ), with the
result

wω(L) ∝ δ(ω – ωp – Ω)mrc2
LΛ2 gΩ(R|R)H p (R) f 0HP (R)F 2

0 , (3.104)

where HP (R) and H p (R) are form factors that describe the consequences of the
system geometry, for example, the location of the coupling point, R, source point,
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U, P + v, p

w, p +A,

U, - P

U, P +

A,

U - P

w,0

(a)

(b)

Fig. 3.9 Pump, probe, and temperature II.
(a) The physical process followed in detail in
Eqs. (3.100)–(3.106) is described by this elab-
orated version of the diagram in Figure 3.8
in which the amplitudes and frequencies of
the participants are labeled. (b) A process

not described in detail, but of potential in-
terest, is that in which a modulated thermal
disturbance, caused by the pump, “emits”
a modulated elastic wave. The amplitudes and
frequencies involved are shown.

and detection point relative to the structure of the disturbance in the bar at fre-
quencies ωP and ωp ,

H p (R) =
sin kωR
sin kωL

sin k p (L – R)
sin k pL

, (3.105)

H p (R) =
sin kP (L – R)

sin kP L
sin kP (L – R)

sin kP L
, (3.106)

kP = kωP , and k p = kωp . The pump drives the temperature field at R at frequency Ω
with amplitude HRF 2

0. The probe field samples the temperature field at R, picks up
the frequency Ω, and carries the consequences of its encounter to L with amplitude
H p f 0. The temperature field may propagate through the sample, but in the specific
case chosen for study both the pump and probe encounter the temperature field at
the single point R, hence the factor Λ2 gΩ(R|R).

The diagram in Figure 3.9 exhibits the pieces you have to assemble to carry
through the calculation for the model, Eqs. (3.85) and (3.86), and provides a guide
to what has to be considered in getting to the final answer. This answer contains
the evidence of the pieces assembled in a distinctive way that, if the answer is sup-
posed to describe the outcome of a measurement, provides a test of the physical
model, for example, the dependence on F 2

0, m, Ω, etc.
We have looked at one of many possibilities associated with Eqs. (3.85) and (3.86),

that associated with the two terms in Γ . There are many other possibilities (phe-
nomena). For example that shown in the lower panel of Figure 3.9 in which the
pump produces a local temperature source at R at frequency Ω that, through Γ0,
the linear coupling, broadcasts a strain field at Ω directly into the sample.



64 3 Traditional Theory of Nonlinear Elasticity, Results

The subject in this chapter is wide ranging. However, there are several ingredi-
ents present in all aspects of the discussion:

1. a Green function description of the fields that propagate in the system,
elastic wave at ω, elastic wave at 3ω, diffusive auxiliary field, . . . ;

2. nonlinear parameters as coupling constants that bring about the interaction
between these fields;

3. a diagramatic picture of the resulting physical processes, from which most
of the physical variables involved in a description of the processes can be
identified.

3.6
Green Functions

3.6.1
Green Function, Free Space

The equation for the Green function (in the frequency domain) is(
–ω2 – i

ω
τ0

– c2 ∂2

∂x2

)
Gω(x |x ′) = δ(x – x ′) , (3.107)

where c2 = K 0/ρ0. The Green function satisfies the boundary conditions

G<(x |x ′) = G>(x |x ′) , x = x ′ ,

∂G<(x |x ′)
∂x

–
∂G>(x |x ′)

∂x
=

1
c2 , x = x ′ ,

G<(x |x ′) → 0 , x << x ′ ,

G>(x |x ′) → 0 , x >> x ′ ,

(3.108)

where G = G< at x u x ′ and G = G> at x v x ′. When there is no ambiguity about
the frequency ω associated with the Green function, we suppress the ω subscript.
In instances when frequency is an issue, we use G (<,>)

ω . The solution for G is found
by choosing

G< = Aeikx ,

G> = Beikx ,
(3.109)

where

k2c2 = ω2 + i
ω
τ0

, (3.110)

and subjecting this ansatz to the boundary conditions. The complex wave vector k
carries the sign of ω and has an imaginary part that leads to the appropriate behav-
ior for G at |x – x ′| → ∞, that is, k(–ω) = –k(ω)∗. For ωτ0 >> 1 we have

k =

√
ω2

c2 + i
ω

c2τ0
=

ω
c

+ i
1

2cτ0
+ . . . (3.111)
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For G we find

G<(x |x ′) =
i

2c2k
exp ik

(
x ′ – x

)
,

G>(x |x ′) =
i

2c2k
exp ik

(
x – x ′) .

(3.112)

Because of translational invariance, G depends only on x – x ′; we have

∂G(x |x ′)
∂x

= –
∂G(x |x ′)

∂x ′ . (3.113)

When the displacement satisfies the equation of motion(
–ω2 – i

ω
τ0

– c2 ∂2

∂x2

)
uω(x) = SU (ω)δ(x – x1) , (3.114)

we have

uω(x) = Gω(x |x1)SU (ω) . (3.115)

A wave propagting to the right, that is,

u(x , t) =
∫

dωuω(x)e–iωt = U 0 cos ω0

(x
c

– t
)

, (3.116)

results from

SU (ω) = AU (ω)
δ(ω – ω0) + δ(ω + ω0)

2

AU (ω) =
2cω

i
U 0 .

(3.117)

A tone burst propagating to the right, that is,

u(x , t) =
∫

dωuω(x)e–iωt = U 0 cos ω0

(x
c

– t
)

e– α2
2 ( x

c –t)2

, (3.118)

results from

SU (ω) = AU (ω)
1

α
√

2π

[
e– (ω–ω0)2

2α2 + e– (ω+ω0)2

2α2

2

]

AU (ω) =
2cω

i
U 0 .

(3.119)

3.6.2
Green Function, Resonant Bar

The equation for the Green function is(
–ω2 – i

ω
τ0

– c2 ∂2

∂x2

)
Gω(x |x ′) = δ(x – x ′) , (3.120)
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where c2 = K 0/ρ0 and 0 u x u L. The Green function satisfies the boundary
conditions

G<(x |x ′) = G>(x |x ′) , x = x ′ ,

∂G<(x |x ′)
∂x

–
∂G>(x |x ′)

∂x
=

1
c2 , x = x ′ ,

∂G<(x |x ′)
∂x

= 0 , x = 0 ,

∂G>(x |x ′)
∂x

= 0 , x = L ,

(3.121)

where G = G< at 0 u x u x ′ and G = G> at x ′ u x u L. When there is no ambiguity
about the frequency ω associated with the Green function, we suppress the ω sub-
script. In instances when frequency is an issue, we use G (<,>)

ω . The solution for G is
found by choosing

G< = A cos(kx) ,

G> = B cos(k(L – x)) ,
(3.122)

where

k2c2 = ω2 + i
ω
τ0

, (3.123)

and subjecting this ansatz to the boundary conditions.
For G we find

G<(x |x ′) =
–1
c2k

cos k(L – x ′) cos kx
sin kL

,

G>(x |x ′) =
–1
c2k

cos kx ′ cos k(L – x)
sin kL

.
(3.124)

We have

G<(x |x ′) = G>(x ′|x)

G–ω = G∗
ω

(3.125)

but no simple relationship between ∂/∂x and ∂/∂x ′.
When the displacement satisfies the equation of motion(

–ω2 – i
ω
τ0

– c2 ∂2

∂x2

)
uω(x) = SU (ω)δ(x) , (3.126)

there is a source on the left at x = 0, the displacement on the right, at x = L, is

uω(L) = G>
ω(L|0)SU (ω) . (3.127)

To have u(L) = U 0 cos ω0t we require

u(L, t) =
∫

dωuω(L)e–iωt = U 0 cos ω0t (3.128)
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or

SU (ω) = AU (ω)

(
δ(ω – ω0) + δ(ω + ω0)

2

)

AU (ω) =
U 0

G>
ω0

(L|0)
.

(3.129)
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4
Mesoscopic Elastic Elements
and Macroscopic Equations of State

In this chapter we begin the transition away from traditional nonlinear elasticity.
In Section 4.1 we note where we have been in the previous chapters and sketch
what is to come, a description of elastic materials with properties importantly in-
fluenced by mesoscopic elastic elements. We begin in Section 4.2 with a description
of candidate mesoscopic elastic elements, Hertz–Mindlin contacts (Section 4.2.1),
hysteretic Hertzian contacts (Section 4.2.2), Hertzian asperities (Section 4.2.3), van
der Waal surfaces (Section 4.2.4), and other (Section 4.2.5). In Section 4.3 we devel-
op a simple effective medium theory that will let us learn the macroscopic elastic
constants of a material comprised of mesoscopic elastic elements. In Section 4.4
we take Hertzian contacts, Section 4.4.1, and van der Waals surfaces, Section 4.4.2,
through the recipe of Section 4.3. The van der Waals surfaces are hysteretic and the
description of an assembly of them requires a bookkeeping space, a Preisach space.
Generalization and caveats are found in Section 4.4.3.

4.1
Background

We have just completed a description of phenomena found in traditional nonlin-
ear elasticity. The possibility of these phenomena depends on the structure of the
theory. The importance of these phenomena depends on the numbers that go in-
to the theory, linear and nonlinear elastic constants, the parameters in the equa-
tion of state (EOS) of an elastic material, etc. In Chapter 2 we suggested that for
certain materials these numbers have their source in the interatomic potential.
For other elastic materials, those of primary concern to us, these numbers arise
from the workings within the material of mesoscopic elastic elements, things like
cracks, Hertzian contacts, asperities, etc. A mesoscopic elastic element, for exam-
ple a crack, has an equation of state, resides in an elastic material, and contributes
to the elasticity of that material in a way that depends on how it is placed. The
elastic element may be dilutely distributed, uniformly distributed, . . . throughout
an otherwise unexceptional elastic material. It may be densely distributed in the
mortar of a bricks-and-mortar elastic material having bricks of unexceptional elas-

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
including Rocks and Soil. Robert A. Guyer and Paul A. Johnson
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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tic properties. We must understand how the EOS of a mesoscopic elastic element
feeds into the EOS of an elastic material.

In this chapter we look at several candidates for mesoscopic elastic elements.
We develop an effective medium theory that allows us to gain some understanding
of the contributions the EOS of a mesoscopic elastic element makes to the EOS
of an elastic material. When we face the question of practical implementation, we
will bring to the fore a number of important issues that arise in attempting to turn
mesoscopic EOSs into macroscopic EOSs.

4.2
Elastic Elements

4.2.1
Hertz–Mindlin Contacts

The most basic continuum elastic element is a Hertzian contact [1], for example,
an isotropic elastic sphere, radius R, that is pushed down against a hard flat surface
with external force N as in Figure 4.1. The volume δV W a2h of the sphere, which

h

R

Fig. 4.1 Hertzian contact, compressive forces. The force across
a Hertzian contact is due to the pressure at the contact surface
that arises from the excess material pushed up into the con-
tact. When the thickness of the indented layer is h, the radius
of the contact area is a W

√
Rh , and material of volume a2h

is pushed into volume a3. The resulting strain h/a causes the
pressure, Eq. (4.1).
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would be below the surface of the hard material if this material were absent (a2 W
Rh is the contact surface area), is pushed up into a volume of order a3. The strain
in this volume, ε W δV /a3 W h/a, produces pressure P W K ε W K h/a that pushes
down on the contact surface area. Thus the force carried by the contact surface is
N W Pa2 W K ah , or

N W K
√

Rh3 , (4.1)

that is, h is set by N.
Suppose the sphere is pushed against the surface with force N and then a shear-

ing force T is applied at, say, the sphere center, as shown in Figure 4.2. If the sphere
contact area is “glued” to the surface, then the surface contact area is unchanged.
A displacement Δs will build up across the volume δV producing shear strain
Δs/a, traction τ W μ(Δs/a), and shear force

T W a2τ W μaΔs . (4.2)

The shear displacement Δs is set by T and dependent on N through a.
Equations (4.1) and (4.2) describe a Hertz–Mindlin contact [2]. Careful treatment

of these contacts in the domain of elasticity theory is found in many places [3–
5]. Our back-of-the-envelope description is intended to emphasize that the basic
physics resides in the domain of continuum elasticity. In addition, the elastically

Fig. 4.2 Hertzian contact, shear forces. A shearing force T
displaces the center of the sphere by Δs. This displacement
occurs over volume a3, that is, there is a shear strain Δs/a and
a shear stress on contact area a2 that balances T, Eq. (4.2).
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active part of the elastic element is a3/R3 W N/(K R2). At an applied pressure of
10 MPa, N/R2 W 10 MPa and a3/R3 W 10–3. The elastically active part of the elastic
element is small.

4.2.2
Hysteretic Hertzian Contacts

Hysteresis is not intrinsic to elastic elements made from continuum elastic mate-
rial, for example, Hertz–Mindlin contacts. It is conferred by the force protocol to
which the contact is subjected. Consider a Hertzian contact subject to an (N , T ) pro-
tocol, for example, the sequence of normal/shear force pairs (N 1, T 1) . . . (N M , T M ).
The EOS for the contact will depend on the rule that determines the relative motion
of adjacent segments of the contact area [6, 7]. In one extreme, pieces of the contact
area that first touch one another upon an increase in N to above Nm become/stay
glued to one another until N decreases to below Nm. In another extreme, pieces
of contact area slip by one another as long as the traction on them exceeds a pre-
scribed limit set by the coefficient of friction. In these and related situations the
behavior of a single contact depends importantly on the (N , T ) protocol and the
rules for material engagement. In some cases the contacts exhibit hysteresis. We
discuss several simple results for hysteretic Hertzian contacts in Chapter 6.

4.2.3
Hertzian Asperities

The interaction of two superficial surfaces, each of area wL, is sometimes modeled
as the encounter between a set of Hertzian contacts carried by one of the surfaces
toward the other [8, 9]. The contacts model a set of asperities (Figure 4.3). Suppose
the contacts all have the same radius, R, and that the probability density for their
height, z, measured from a fiducial surface, line B, is φ(z), where

∫ b0

R
φ(z)dz = 1 . (4.3)

A force N applied to the surfaces, just touching at N = 0 and taken to be rigid along
lines A and B, causes the indentation of those contacts for which z > b . The set of
forces from these contacts carries force N. A contact at height z > b carries force

δN W a2δP W K R1/2(z – b)3/2 , (4.4)

where a2 = R(z – b), and the total force carried by the set of all contacts is

N = N AwL
∫ b0

b
K R1/2(z – b)3/2φ(z)dz , (4.5)

where NA, the number of contacts per unit area, is chosen by some argument such
as: when all the contacts are crushed, b < R, the force is N = K wL(b0 – b)/b0. For
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z

b0

A

B

b

A

B
Fig. 4.3 Set of asperities. The interface between two surfaces
is modeled as the encounter between a flat surface and a set
of independent Hertzian contacts. Displacement of the upper
surface toward the lower causes indentation of some of the
contacts and a net force that is the sum of the force at each
contact, Eq. (4.6).

example, for the case φ(z) equal to a constant for R u z u b0, we would have

N = K wL
(1 – b/b0)5/2

(1 – R/b0)3/2
= K wL

1
(1 – R/b0)3/2

(
h
b0

)5/2

, (4.6)

where b = b0 – h , cf. Eq. (4.1). It is apparent that by suitable choice of φ(z) and
of a probability density for the radii, �(R), a broad range of N(h) EOSs could be
constructed. An aspect of this model is that in both static and dynamic responses
the contacts are taken to be independent of one another. This simplification suits
computation but may need to be abandoned in certain circumstances, for example,
it is possible that the quasistatic response of a contact can modify the response
of another or an elastic wave launched by one contact can disturb (trigger) the
response of another.

4.2.4
Van der Waals Surfaces

Consider a half-space of material made up of atoms at density ρ that interact with
one another through a Lennard–Jones interaction [10, 11],

v (r) = 4ε0

[(σ
r

)12
–
(σ

r

)6
]

, (4.7)
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qL

D K

pL

foot

root

w

Fig. 4.4 Van der Waals contact. Two surfaces that interact
through the van der Waals force are initially separated by D and
in parallel with a piece of elastic material, the foot. The root
is taken to be relatively rigid so that a force across the whole
causes strain in the foot/van der Waals system.

where ε0 is an atomic energy scale, say 0.5 eV, and σ is an atomic length scale,
say 4 Angstroms, Chapter 2. Adjacent to this half-space is a half-space of similar
material of size pLw , 0 u p u 1, see Figure 4.4. The potential energy of this system,
when the separation between the two half-spaces is D, is

V 0(D ) = ερ2 pLwσ4

[( σ
D

)8
–
( σ

D

)2
]

, (4.8)

where ε ∝ ε0 contains a collection of numerical factors and σ here is 41/6σ from
Eq. (4.7). Parallel to the two half-spaces is a uniform piece of material called the
foot. When the separation of the half-spaces is D, the foot is stretched uniformly by
D – D 0, where D0 is its unstretched length. The foot has energy

V 1(D ) =
1
2

D 0qLwK

(
D – D 0

D 0

)2

, (4.9)

where q = 1 – p . The root, Figure 4.4, has negligible elastic energy compared to the
energy of the encounter of the half-spaces and the foot. Suppose this system is sub-
jected to force N. The internal force carried by the elastic element, –∂(V 0 +V 1)/∂D ,
is equal to N. We can gain some understanding of this mechanical equilibrium
problem by looking at the energy

E = V 0 + V 1 = pε
Lw
σ2

([( σ
D

)8
–
( σ

D

)2
]

+
Λ
2

(D
σ

–
D 0

σ

)2
)

, (4.10)
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Fig. 4.5 Energy of a van der Waals contact. The energy of a van
der Waals contact, Figure 4.4, as a function of D/σ has two
minima, one due to the elasticity of the foot and a sharper,
deeper one due to the van der Waals interaction between the
surfaces. Certain applied forces can be supported at multiple
values of the contact separation, D/σ. Thus the van der Waals
contact is a hysteretic elastic element.

where we have used the simple approximations ρ W 1/σ3, K W ε/σ3 to get at the
essential structure. The parameter Λ = qσ/(D 0 p) controls the relative size of the
two energy contributions. The energy E is plotted in Figure 4.5. From the figure we
see that a given force, slope of E vs. D/σ, has the same value at locations separated
by points of inflection. Thus there will be a hysteretic solution to the equations of
mechanical equilibrium, the EOS. We return to this below where we discuss the
van der Waals surfaces in detail.

Note that in contrast to the cases involving Hertzian contacts, where we use only
continuum elasticity, the description of van der Waals surfaces has an energy based
in microscopic physics, ε and σ, as well as an energy that comes from continuum
elasticity.

4.2.5
Other

There are many other possibilities for elastic elements that we will not discuss
here in detail. Among these are various types of cracks (simple cracks, cohesive
cracks, . . .) [12, 13], systems of linked rods, frictional sliders [14], fluid-modified
contacts [15], etc. Some of these will come up in later chapters. The point of the
discussion here is to introduce some of the basic elastic elements that one might
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be prepared to consider in building up a material. An elastic element isn’t an elastic
material. We turn to our primary concern: finding the EOS of a material given the
set of elastic elements it comprises.

4.3
Effective Medium Theory

The description above is of particular models of elastic elements. If one imagines
that such an elastic element is present in a system, how do you go about assess-
ing its consequences. One procedure is to construct models in which the elastic
element is the only actor, for example, a system of carefully arranged spheres
for Hertzian contacts or cubes for van der Waals surfaces, what might be called

(a)

(b)

Fig. 4.6 Simple elastic systems. When an elastic system is
built up of a regular array of identical elastic elements, (a)
a close-packed set of spheres or (b) a uniform tiling of van
der Waals contacts, the elastic properties of the system are
essentially those of the elastic element.
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bathroom-tile models, Figure 4.6. In these cases the EOS of the elastic element
basically becomes the EOS of the material. But one expects that there would be dif-
ferent arrangements of a particular elastic element in a material, for example, van
der Waals surfaces arranged at random among conventional pieces of material as
illustrated in Figure 4.7. Or there might be a topology that places a particular set of
elastic elements in a featured location, for example, a bricks-and-mortar arrange-

(a)

(b)

Fig. 4.7 Complex elastic systems. (a) A sys-
tem built up of a random arrangement of
five types of elastic elements, van der Waals
contacts with four possible orientations and
a normal elastic element. (b) A system built
up of a uniform array of normal elastic ele-
ments that see one another through a random

arrangement of Hertzian contacts. Elastic
constants for (a) can be found from a simple
effective medium theory. Elastic constants
for (b) come from an extension of the simple
EMT that allows one to preserve the bricks-
and-mortar geometry.
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ment, with a system of Hertzian contacts (mortar) that mediate the interaction
between conventional pieces of material (bricks), Figure 4.7. Location matters.

In order to assess the participation of a system of elastic elements in the elas-
tic properties of a piece of material, we develop a simple effective medium theory
(EMT) for the elastic EOS of materials like those pictured in Figure 4.7, that is, ma-
terials that are built up out of elastic elements with known properties. In addition
to providing a recipe for doing EMT, these calculations serve a pedagogic purpose.
They allow us to call attention to a number of points we think important. The EMT
we develop here can be placed in the context of the highly developed subject of
EMT for elastic systems, on which there are several excellent references [16, 17].

The idea behind EMT, as we will employ it, is sketched in Figure 4.8. To find
the effective elastic constants of a material, made up, say, of a random mixture
of elastic elements having van der Waals surfaces and elastic elements of normal
material (both the van der Waals elastic elements and the normal elastic elements
could have a spectrum of properties), proceed as here.

1. Have in hand the EOSs for all instances of the elastic elements from which
the material is built, 1EE, 2EE, . . . NEE; denote these elastic elements by
iEE. Also, have in hand the EOS of an elastic element for a uniform isotropic
material, called the medium; denote this elastic element by mEE. The elastic
parameters of the mEE are found in step 5.

2. Solve the problem of a system made up of many mEE with one iEE, called
the representative elastic element, embedded in the interior. This problem is
solved with applied forces set by 3.

3. If one is interested in the compressive response of the material, put a set of
compressive forces at the boundaries, etc.

4. If, for example, compressive forces have been placed on the boundaries, find
the compressive response, that is, compressive displacement, of the repre-
sentative elastic element. This displacement will depend on the particular
instance of the iEE and on the parameters assigned to the mEE.

5. Average the compressive displacement of the representative elastic element
over all instances. Ask that this average be the same as that which would
be found if the entire system were made of mEE. The resulting equation
connects the parameters assigned to the mEE to an average over the iEE.
Solve for the parameters of the mEE.

6. Approximate the properties of the elastic system by those of the mEE.
7. This procedure results in a set of elastic constants for the material. These

can be manipulated to find the EOS of the material, nonlinear elastic con-
stants, etc.

Let us work through this program. (Numerous simplifications will be made with-
out sacrificing the essentials. This is so we can be explicit while at the same time
have a manageable set of equations. We work in two dimensions and call the elastic
elements tiles. Thus it is the EOS of instances of tiles that is input to these calcula-
tions.) Consider a uniform system of tiles (mEE from above), size a ~ a, that have
displacement in only one direction, y (Figure 4.9). The lower left corner of each tile
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i m

(a)

(c)

(b)

Fig. 4.8 EMT, the principle. The principle of
effective medium theory is to relate the prop-
erties of three elastic systems, (a) an elastic
systems built from a disordered arrangement
of elastic elements, (b) an elastic system built
as an ordered arrangement of elastic elements

(having to be found elastic parameters) into
which an elastic element from (a) is embed-
ded, and (c) an ordered elastic system having
elastic parameters found from an average of
(b) over all instances of the embedded elastic
element.

is tracked with the displacement y α = y mn . The tiles are taken to be “glued” to their
neighbors along the common borders [18]. When a particular tile is being referred
to, it is labeled y α and the three neighbors that locate its other corners are y α1,
y α7, and y α8, as shown in Figure 4.9. There are three rudimentary strains associ-
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1

7 8x
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m

n

a

(m,n)

A B C

(c) (s) (b)

Fig. 4.9 Tile space. The elastic elements,
tiles, are in a D = 2 arrangement, glued along
common edges to their neighbors so that
each is described by a single displacement
(lower left corner). There are three distortions
of each tile, compression (c), shear (s), and

bending (b) associated with elastic constants
A, B, and C, respectively. These distortions
involve the displacement coordinate of a tile
and the displacement coordinate of its 7,8,1
neighbors, Eqs. (4.11)–(4.13).

ated with each tile and an elastic energy associated with each strain. The strains
are compressive, c, shear, s, and bending, b, illustrated at the bottom of Figure 4.9,
given by

Δy c
α = [–y α – y α1 + y α7 + y α8] , (4.11)

Δy s
α = [–y α + y α1 – y α7 + y α8] , (4.12)

Δy b
α = [+y α – y α1 – y α7 + y α8] , (4.13)

and the corresponding energies are

E α =
A
2

(
Δy c

α

)2
+

B
2

(
Δy s

α

)2
+

C
2

(
Δy b

α

)2
, (4.14)

where numerical factors and factors of a have been lumped into the elastic con-
stants, A, B, and C, the parameters of the effective medium. The total energy is
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E 0 =
∑

E α and the equation of motion for y α is given by

–ρ ÿ α =
∂E 0

∂ y α
– F α , (4.15)

where F α is the applied force on tile α (applied forces are typically on the edges of
the system; it is not necessary to specify them in detail).

The first step in developing EMT is to consider the system that differs from the
uniform system (all mEE tiles) with energy E0 by having one tile that is an in-
stance of the elastic elements, iEE. Assume that the tile at (0, 0) has elastic con-
stants Ai , Bi , C i ; i is the index for instances. The energy of this new system can be
written as

E = E 0 +

(
δAi

2

(
Δy c

00

)2
+

δBi

2

(
Δy s

00

)2
+

δC i

2

(
Δy b

00

)2
)

, (4.16)

where δAi = Ai – A, δBi = Bi – B , and δC i = C i – C . Let us follow one of
the changes in elastic energy, choose δA, through the equations of motion. From
Eq. (4.15) (E 0 → E ) we have

–ρ ÿ α =
∂E 0

∂ y α
+ δAi Δy c

00D c
α,00 – F α , (4.17)

where

D c
α,00 = [–δα,00 – δα,10 + δα,01 + δα,11] . (4.18)

For the coupling between the displacements, ∂E 0/∂ y α, we have

∂E 0

∂ y mn
= 4(A + B )y mn

– (A + B )(y m+1n–1 + y m–1n–1 + y m–1n+1 + y m+1n+1)

+ 2(A – B )(y mn – y mn–1 + y m–1n – y mn+1) .

(4.19)

(For simplicity we keep only two of the elasticities in E0 as this is enough to
illustrate the interplay of the different displacements.) Let us agree to look at the
quasistatic response, that is, drop the inertial term. To find y perform a Fourier
analysis of Eq. (4.19) as here:

δα,α′ =
1

N 2

∑
μ

∑
ν

eiμ(m–m′)eiν(n–n′) , (4.20)

y α =
1

N 2

∑
μ

∑
ν

eiμmeiνnU μν , (4.21)

D c
α,00 =

1
N 2

∑
μ

∑
ν

eiμmeiνnD c
μν , (4.22)

F α =
1

N 2

∑
μ

∑
ν

eiμmeiνnF μν , (4.23)
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with

D c
μν = [–1 – e–iμ + e–iν + e–iμe–iν] . (4.24)

From Eq. (4.17) find

U μν =
1

Mμν
F μν – δAi Δy c

00
1

Mμν
D c

μν , (4.25)

where

Mμν = 4(A + B )(1 – cos μ cos ν) + 4(A – B )(cos μ – cos ν) . (4.26)

Equation (4.25) is a mixed representation of y, involving U μν and Δy c
00. Use U μν

from Eq. (4.25) to find Δy c
00, that is, from Eq. (4.13), Δy c

00 = –y 00 – y 10 + y 01 + y 11,
and Eq. (4.23) obtain

Δy c
00 =

1
N 2

∑
μ

∑
ν

eiμmeiνn [–δmn,00 – δmn,10 + δmn,01 + δmn,11]U μν ,

=
1

N 2

∑
μ

∑
ν

D c∗
μνU μν,

= S
(

D c∗
μν

1
Mμν

F μν

)
– δAi Δy c

00S
(

D c∗
μν

1
Mμν

D c
μν

)
,

(4.27)

where S stands for N –2
∑

μ

∑
ν. Solve for Δy c

00 and rearrange the resulting equa-
tion in the form

Δy c
00 = S

(
D c∗

μν
1

Mμν
F μν

)
–

δAi Λcc

1 + δAi Λcc
, (4.28)

with

Λcc = S
(

D c∗
μν

1
Mμν

D c
μν

)
=

1
N 2

∑
μ

∑
ν

(
D c∗

μν
1

Mμν
D c

μν

)
. (4.29)

Central Dogma

The basic equation of effective medium theory comes from the equation for Δy c
00.

The first term on the RHS of this equation gives the compressive response at tile
(0, 0) of uniform mEE material under compressive stress. If we require that the
average of Δy c

00, over the iEE, be that of uniform mEE material, we must have〈
δAi Λcc

1 + δAi Λcc

〉
= 0 , (4.30)

or, since Λcc is simply a number,〈
Ai – A

1 + (Ai – A)Λcc

〉
=

M∑
i=1

Ai – A
1 + (Ai – A)Λcc (A, B , C )

= 0 . (4.31)
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bb0

b0

b0 - R
K , μ

R

Fig. 4.10 Hertz tile. A tile appropriate to a Hertzian contact
consists of a root and attached half-sphere having elastic con-
stants K , μ. The root is treated as rigid so that the elasticity
of the tile is that of the half-sphere, Hertzian contact. The size
of the tile is b0 with the contact just touching the lower sur-
face. When the tile has size b < b0, the contact is indented by
h = b0 – b .

With B and C fixed, A is chosen so that the average over the Ai yields zero. The
elastic constant characterizing a particular strain depends on the geometry of that
strain through the factors D

t

μν, t = c, s, b , different for the three elastic constants,
and the elasticity of the A, B , C system through Mμν. It may be that Λ has to be
calculated numerically for each A. Various strategies for finding A, B, and C are
possible.

4.4
Equations of State; Examples

Let us look in detail at two examples of the use of EMT (1) a system of Hertzian
contacts and (2) a system of van der Waals surfaces.

4.4.1
Hertzian Contacts

In Figure 4.10 we show a tile appropriate to a Hertzian contact. The equation of
state for a tile of size b0 ~ b0, all of whose elasticity is taken to be that of a contact
of radius Ri, is from Eq. (4.1)

b0 – b =

(
F

K
√

Ri

) 2
3

, (4.32)
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Fig. 4.11 EMT elastic constants for Hertzian
contacts I. The compressional elastic con-
stant A from solution to Eq. (4.31) is plotted
as a function of σ/K , the middle curve. The
value of B is fixed at 0.02K. The upper and low-
er curves, each with slope 1/3, are 〈A〉 and

〈A–1〉–1, respectively. The middle curve, A,
trends from 〈A〉 at low σ to 〈A–1〉–1 at high σ.
This evolution from parallel-like to serieslike
behavior is due to the shear support of com-
pressional distortion.

where h → b0 – b and K is the elastic constant of the contact material. For the
compressive elastic constant of the tile, Ai, we have

Ai

K
=
( σ

K

) 1
3

(
Ri

b0

) 1
3

, (4.33)

where σ = F/b2
0 is the compressive stress on the tile. We take the shear elastic

constants of all contact tiles to be the same, Bi = μ ∀ i . Thus the set of instances of
elastic constants for the contact tiles is (Ai , μ) with the spectrum of Ai determined
by the probability density of r i = Ri /b0. These tiles may be mixed with tiles of
uniform material, having elastic constants (A0, B0), at concentration x = N c/(N 0 +
N c ), where Nc and N0 are the number of contact and normal tiles, respectively.
It is apparent from Eq. (4.33) that a convenient dimensionless description of this
system is given upon scaling all elastic constants by K and all lengths by b0. We do
this.

In Figure 4.11 we show A/K , the effective compressional elastic constant, as
a function of σ/K from the solution to Eq. (4.31) for the case x = 1.0, B = μ =
0.02K , 10–6 u σ/K u 1, and the probability density for r
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p(r) ∝ 1
r1.001 , 10–5 u r u 1.0 . (4.34)

The upper and lower curves in the figure, both with slope 1/3, are A = 〈Ai 〉 and
A = 1/〈A–1

i 〉, respectively, and the middle curve, with open circles, is from the
solution to Eq. (4.31). (Here 〈. . .〉 is the average over the probability density p(r).) In
these calculations the value of the shear modulus was chosen to be in the middle
of the range of compressional moduli to illustrate the way in which the two moduli
affect one another. As background for this discussion we note:

1. When a set of springs, with a spectrum of elastic constants, is arranged to
carry a force in series, with each spring supporting the same force, the ef-
fective elastic constant of the assembly is Γ = 1/〈γ–1

i 〉, where the individual
spring elastic constants are γi and 〈. . .〉 is the average over these. The effec-
tive spring constant notices the weakest spring as this must carry the same
force as the strongest.

2. When a set of springs, with a spectrum of elastic constants, is arranged in
parallel, with each spring having the same displacement, the effective elastic
constant of the assembly is Γ = 〈γi〉, where the individual spring elastic
constants are γi and 〈. . .〉 is the average over these. The effective spring
constant notices the strongest spring as this must be displaced by the same
amount as the weakest.

3. It can be established by formal rearrangments of Eq. (4.31) alone that [19]
a. For Q = B/A << 1

A =
1

〈A–1〉

(
1 + Q

〈(δA–1)2〉
〈A–1〉2

)
+ . . . , (4.35)

where δA–1
i = (1/Ai ) – 1/A;

b. For Q = A/B << 1

A = 〈A〉
(

1 – Q
〈(δA)2〉
〈A〉2

)
+ . . . , (4.36)

where δAi = Ai – A.
Thus 〈A–1〉–1 u A u 〈A〉.

When a set of elastic elements is embedded in a medium, the compressional force
the elastic element must support, say from top to bottom, is shared with its neigh-
bors, to the left and right, in a way that depends on the shear modulus. If the shear
coupling is zero, there is no way to transfer force to the left/right neighbors and
the elastic element responds to force as if in a series arrangement. If the shear cou-
pling to the neighbors is very strong, then much of the force the elastic element
must support can be shared by the left/right neighbors and the elastic element re-
sponds as if in a parallel arrangement. Thus the geometry of an elastic system has
an important effect on the sensitivity of the system to extremes in the behavior of
the elastic elements. The ability to shunt force around an unusual elastic element
typically makes systems of elastic elements much less exciting than individual elas-
tic elements. Sociology is much less exciting than psychology.
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Consider a set of Hertzian contact tiles mixed at concentration x with tiles of
normal material. In Figure 4.12 we show A/K , the effective compressional elastic
constant, as a function of x from the solution to Eq. (4.31) for the case 0.01 u x u 1,
Bi /K = (1/3)Ai /K ∀i , the probability density for r given by Eq. (4.34), and the
constituent with concentration 1 – x having Ai /K = 1 and Bi /K = (1/3)Ai /K . The
contacts dominate the behavior of the whole for x > 0.40, and in the regime where
they dominate, their behavior is rather closely serieslike, that is, the shear coupling,
Bi = Ai /3, does not allow much force to be shunted.

From results like those in Figure 4.11 one can construct an EOS for the material,
for example, for the light gray A = dσ/dε ~ (σ/K )0.29. Thus

ε(σ) – ε(0) =
∫ σ

0

dσ′

A(σ′)
~ σ0.71 . (4.37)

We are able to proceed in this very naive way because by constuction the shear
modulus is constant as A varies. So this calculation suggests a principle, but the
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Fig. 4.12 EMT elastic constants for Hertzian contacts II. The
compressional elastic constant A from solution to Eq. (4.31)
is plotted as a function of the concentration of Hertzian con-
tacts, x, the middle curve, for fixed σ/K = 0.001. The upper and
lower curves are 〈A〉 and 〈A–1〉–1, respectively. A 40% concen-
tration of contacts reduces the elastic constant by an order of
magnitude.
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proper venue for such calculations is the surfaces of A and B in (σ, τ) space. We
will have more to say about this below.

It is also possible from results like these to deduce nonlinear elastic constants.
We have

A
K

~
( σ

K

)μ
, ε ~

( σ
K

)ν
,

A
K

~ εμ/ν ,

	 ~
∂

∂ε
log(A) ~

1
ε

~
(K

σ

)ν
,

(4.38)

where μ = 0.29 and ν = 0.71. The nonlinear coefficient is singular at σ → 0 and
decreases from large values as σ increases. It is this qualitative property, already
present in Eq. (4.1), that makes the Hertzian contact a popular model for the de-
scription of nonlinear elastic systems.

4.4.2
Van der Waals Surfaces

In Figure 4.13 we show a tile appropriate to an encounter between van der Waals
surfaces. This case is considerably more complicated than that of Hertzian con-
tacts. Each instance of a tile has two geometrical parameters, p, which gives the
fraction of the surface that involves the van der Waals interaction, and D0, the inset

b0

b0 b

D K , B

pb0 qb0

Fig. 4.13 Van der Waals tile. A tile appropriate to a van der
Waals contact consists of a root and foot having elastic con-
stants K , B and a pair of interfacing van der Waals surfaces.
The root is treated as rigid so that the elasticity of the tile is
that of the foot in parallel with the van der Waals contact. The
size of the tile is b0 ~ b0 when the van der Waals surfaces are
separated by D0.
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of the van der Waals surface, (D 0, p), q = 1– p . The foot of the tile is very soft. Thus
the root is taken to be infinitely stiff as is the half-space on which the foot rests. As
a consequence, a force is carried by the elastic element through the adjustment of
the length D. This adjustment involves the elasticity of the foot in parallel with the
elasticity of the van der Waals encounter. For the energy of the tile in the presence
of an applied force F we have

E = V 0

[( σ
D

)8
–
( σ

D

)2
]

+
1
2

V 1

[
D – D 0

D 0

]2

+ F D , (4.39)

where V 0 = ερ2 pb2
0σ4, V 1 = K qb2

0, and D –D 0 = b –b0. For purposes of illustration
we use K = ε/σ3, scale all lengths by σ, scale E by ε, scale F by ε/σ, and write

E = pG

[(
1
D

)8

–

(
1
D

)2
]

+
1
2

qG
1

D 0
(D – D 0)2 + F D ,

E = p

[(
1
D

)8

–

(
1
D

)2
]

+
1
2

q
1

D 0
(D – D 0)2 + ΣD = E0 + E1 + ΣD ,

(4.40)

where G = b2
0/σ2 and the second line follows from dividing by G and defining

the effective stress Σ = F/G. For each instance of the tile, (D 0, p), we want the
EOS of the tile, b, as a function of Σ, and the elastic constant of the tile, A, as
a function of Σ. For the EOS we solve the problem –∂E/∂D = 0. As illustrated in
Figure 4.5, this equation has multiple solutions. Thus we specify a Σ protocol and
follow the state of the tile through that protocol. Both the state, b or D, and the
elastic constant, A, will be a hysteretic function of Σ. We will go through this case
in some detail to illustrate what is called for. To make it possible to write out most
of what is involved, we approximate the problem set by Eq. (4.40) as here.

1. Replace the van der Waals interaction, E0, by a Taylor series expansion to
second order in D – r about its minimum at r = 2

1
3 :

E0 W p

[
–

3
4r2 +

1
2

12
r4 (D – r)2

]
θ(D c – D ) ,

E1 =
1
2

q
1

D 0
(D – D 0)2θ(D – D c) ,

(4.41)

where θ(z) is the Heaviside function and Dc is the value of D at which E0 =
E1 (Figure 4.14).

2. For D > D c the tile is said to be in the elastic state η = –1, and for D < D c

the tile is said to be in the elastic state η = +1. We adopt the convention that
stresses that tend to compress the tile are positive and those that expand it
are negative.

3. a. If the tile is in the elastic state –1 and Σ becomes more positive, the state of
the tile makes the transition –1 → +1 at Σ = Σc > 0. The new equilibrium
of the tile is at D in E0, where the stress is Σc . A further increase in Σ
drives D up the left wall of E0.
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c
o

+1 -1

E0 E1

Fig. 4.14 Energy of the van der Waals tile. The energy of the
van der Waals tile is approximated by two adjacent parabolic
contributions, one for the foot, E1, and the second for the in-
terfacing van der Waals surfaces, E0. The stresses (Σc , Σo ) are
determined by the slope of E vs D at Dc. The state variable η is
+1 for D < Dc and –1 for D > Dc .

b. If the tile is in the elastic state –1 and Σ is reduced, the tile will pass
through Σ = 0 and become negative while remaining in the state η = +1
until Σ = Σo < 0, when η = +1 → –1. A further decrease in Σ drives D up
the right wall of E1.

In summary

Σc = (1 – p)(D 0 – D c)/D 0 , η = –1 → +1 ,

Σo = 12 p(r – D c)/r4 , η = +1 → –1 ,
(4.42)

where r < D c < D 0.
4. The elastic constant of a tile depends on its state

A( p , D 0) =
1 – p
D 0

, η = –1 ,

A( p , D 0) = p
12
r4 , η = +1 .

(4.43)

To carry through an EMT calculation for van der Waals surfaces
1. choose a set of instances,
2. choose a stress protocol and set the initial state of each instance according

to the initial stress,
3. follow the state of each instance through the stress protocol and at each

stress value determine the elastic constant of each instance, and
4. at each value of the stress in the protocol use the elastic constants from the

set of instances to determine an effective elastic constant from Eq. (4.31).
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We show the results of a calculation of A from Eq. (4.31) in a series of figures.
1. The instances of van der Waals tiles were chosen with the probability density

for D0 proportional to D –1
0 for D < u D 0 u D > (D < = 5r(1 + 1/

√
8)/4, D> =

8D<) and for p uniformly distributed between 0.2 and 0.8.
2. The spectrum of elastic constants associated with these instances is shown

in Figure 4.15, a histogram of log10(A(D 0, p)). There are two parts to the
probability density: (a) a set of weak elastic constants, A W 0.01, associated
with the foot and due to the factor D0 in Eq. (4.39) and (b) a set of strong
elastic constants that are associated with the van der Waals surface. When
an instance is in the state η = –1, its elastic constant is from those in (a),
and when it is in the state η = +1, its elastic constant is from those in (b).

3. The stress pairs (Σc , Σo) associated with the instances are shown in Fig-
ure 4.16. The space of control variable pairs for two state units is called
a Preisach space [20, 21]. Here the control variable is the stress and the
Preisach space is (Σc , Σo ) space, Figure 4.16. Such a space is a bookkeeping
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Fig. 4.15 Spectrum of instances of A. The compressive elastic
constants for the instances of the van der Waals tile is approx-
imately bimodal, Eq. (4.43). The small elastic constants occur
for η = –1 and the large elastic constants occur for η = +1. The
spectrum arises from choosing a spectrum of D0 and a spec-
trum of p, 8.53 u D0 u 68.21 and 0.20 u p u 0.80. See
Figure 4.14.
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device that can be used very effectively to provide qualitative understanding
and sometimes even quantitative understanding. We will see further exam-
ples of Preisach bookkeeping spaces as we proceed. Note that the closing
stresses are positive and are weaker than the opening stresses, which are
negative.

4. We choose a stress protocol, based on the range of (Σc , Σo ) in the Preisach
space, that begins at Σ = –1.5, goes to Σ = +0.5, and returns to Σ = –1.5.
Thus the initial state for all tiles is η = –1.

5. In Figure 4.17 we show the average state of the tiles, 〈η〉, as a function of Σ.
Initially η = –1 for all instances and 〈η〉 = –1. Since all of the (Σc , Σo ) pairs
lie in the lower right quadrant, transitions η = –1 → +1 begin at Σ = 0+.
Similarly, as Σ decreases from 0.5, transitions η = +1 → –1 begin at Σ = 0–.

6. In Figure 4.18 we show A from the solution to the EMT equation, Eq. (4.31),
in the form log(A) vs. Σ. In implementing Eq. (4.31) we used B = A/3.
The elastic constant is hysteretic varying from A W 0.016 at negative stress
to A W 0.22 at positive stress. The change in A with Σ follows closely the
change in 〈η〉 with Σ since for the model under discussion the probability
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Fig. 4.16 (Σc , Σo ) space. The pairs of values of (Σc , Σo ) are
in the lower right quadrant of a (Σc , Σo ) Preisach space. Each
value of (Σc , Σo ) corresponds to a particular value of (D0, p).
The convention that compression is positive and tension is
negative leads to the difference in signs here compared to Fig-
ure 4.14.
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Fig. 4.17 〈η〉 vs. stress. The average value of the state variable,
η, as a function of applied stress. For Σ << 0, 〈η〉 → –1, and for
Σ >> 0, 〈η〉 → +1.
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Fig. 4.18 Equation of state of van der Waals material. The
compressive elastic constant as a function of Σ for van der
Waals material from solution to Eq. (4.31).
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density for (A, η) is approximately δ(A – A(a) )δη,–1 + δ(A – A(b))δη,+1, where
A(a) and A(b) are the average of A over the weak and strong part of the elastic
constant spectrum, respectively; see 2 above.

7. In Figure 4.19 we show 〈D〉 = 〈b0 – b〉 as a function of Σ, the EOS. The
softness of the foot dominates the behavior for Σ < 0. The strain stays in
on stress reversal if the van der Waals part of the encounter between tiles is
involved.

8. In Figure 4.20 we show the nonlinear coefficient

	 =
∂A
∂Σ

(4.44)

as a function of Σ. The nonlinear coefficient, a measure of the change in
dynamic modulus brought about by a change in stress, is largest where
the dynamic modulus changes most rapidly with stress. For this model the
changes in the dynamic modulus are brought about by a change of state. The
most rapid change of state with stress is as Σ advances to above Σ = 0. This
nonlinear coefficient is necessarily a quasistatic quantity. Should an elastic
wave impinge on the system at ambient stress, where the quasistatic non-
linear coefficient is large, it will initially cause changes of state of the elastic
elements. But successive stress oscillations cannot undo these changes, see
Figure 4.16, so that the dynamic nonlinear modulus will be very different
from the quasistatic nonlinear modulus. Because of the quadratic approxi-
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Fig. 4.19 EOS of van der Waals material. The displacement–
stress relationship for van der Waals material, that is, 〈D〉
vs. Σ.
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Fig. 4.20 Nonlinearity vs. Σ. The nonlinear parameter, 	 =
∂A/∂Σ as a function of Σ, Eq. (4.44).

mation to the potential in Eq. (4.41), the dynamic nonlinear modulus is zero
(see Chapter 10).

4.4.3
Generalization and Caveats

The results described above are for two particular models. In fact, in one case they
are for an approximation to the model. They have a number of features that are
model independent and noteworthy. Turning a model elastic element into a set of
elastic constants for a material, via the EMT equations above, requires a solution to
an auxiliary problem. If the elastic elements are springs, the auxiliary problem is
simple. For van der Waals surfaces the auxiliary problem is slightly more complex
but nothing untoward. Regardless of the complexity of the auxiliary problem, when
the elastic element is characterized by a state, there is an important caveat. The elas-
tic constants are calculated at a fixed state. Thus they are appropriate to a dynamic
stress disturbance, at fixed ambient stress, that does not cause a change in the state
of the elastic elements. This is in contrast to a situation we will encounter below
in which a change of state will be importantly involved in the behavor of dynamic
disturbances.
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Fig. 4.21 Bricks-and-mortar tile. For a bricks-and-mortar sys-
tem it must be possible to surround a brick with mortar. This
can be done by choosing a tile with unit cell having four elastic
pieces. The three shaded pieces can be assigned soft elastic
constants relative to those of the brick, unshaded.

The two examples we looked at in some detail do not span the very broad range
of possibilities we initially considered. However, the idea of how to proceed is clear
and technical detail is all that is called for in doing more complex problems. As
an illustration of one such problem we show in Figure 4.21 an example of the sort
of tile that would be used in a bricks-and-mortar situation, that is, a tile that allows
one to surround the brick with soft material. We will come upon this example in
the next chapter where we discuss auxiliary fields.
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5
Auxiliary Fields

In Chapter 4 we developed and worked through examples of an EMT that would let
us assess the macroscopic elastic consequences of a set of mesoscopic elastic ele-
ments. As final preparation for going on to discuss mesoscopic elastic systems we
introduce the set of auxiliary fields to which these systems may be coupled. These
fields are internal fields, the temperature field, the saturation field, and a third field
that we denote X. Here we establish some features of the quasistatic behavior of the
auxiliary fields. (Their dynamics is slow dynamics and dealt with in Chapters 7, 10,
and 11.) We employ two models that illustrate further generalization of the ideas
developed in Chapter 4. In Section 5.1 we describe the temperature field and the
set of internal stress/strains brought about by an anisotropic thermal expansion.

In Section 5.2 we describe the saturation field using a bricks-and-mortar mod-
el (alluded to at the close of Chapter 4). The saturation field, the fluid configu-
ration in a pore space, is a hysteretic function of the chemical potential. Unam-
biguous description of the saturation field requires a chemical potential protocol.
Thus a bookkeeping space, with chemical potential as the control variable, is neces-
sary to describe the saturation field, Section 5.2.1. The saturaton field can be an
inhomogeneous field that produces inhomogeneous internal stress/strain fields in
a material, Section 5.2.2.

The X field is introduced in Section 5.3.

5.1
Temperature

The model system is a two-dimensional lattice of elastic elements (tiles), Figure 5.1.
For illustrative purposes we allow displacement motion in only one direction, the
y-direction [1]. The elastic energy of this system is expressed as a sum over the
compressional and shear strain fields of the elastic elements, Eq. (4.14):

E = E L + E T + E N L

E L =
∑

α

A
2

(
Δy c

α

)2
+
∑

α

B
2

(
Δy s

α

)2
,

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
including Rocks and Soil. Robert A. Guyer and Paul A. Johnson
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40703-3
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 1
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 66  7  8

Fig. 5.1 Tile notation 1. An elastic element (tile) labeled α,
with displacement yα located in the lower left corner, partic-
ipates in the compressional and shear energy of four elastic
elements (shaded) and is coupled to the displacement of eight
neighboring elastic elements. These displacements are com-
pactly denoted as yα,n , where n = 1, . . . , 8 as here.

E T = –
∑

α

Aλα
(
Δy c

α

)
δT ,

E N L =
∑

α

A	
(

Δy c
α

)3
+
∑

α

Aγ
(
Δy s

α

)2
(Δy c

α) , (5.1)

where α runs over elastic elements and λα is the thermal expansion of elastic ele-
ment α. There are three contributions to the energy, a linear elastic energy that is
the same for each elastic element, EL, a nonlinear elastic energy that is the same
for each elastic element, E N L, and a coupling between the elastic system and the
change in temperature, δT = T – T 0, that is different for each elastic element be-
cause of λα, ET [2]. In principle the linear and nonlinear elastic constants for the
elastic elements, A, B, 	, and γ, are found by some scheme, for example, the EMT
scheme from Chapter 4, and are appropriate for equilibrium at temperature T0.
The system is uniform in all respects except for the thermal expansion, which is
the subject of the present discussion. For a material like quartz the thermal expan-
sion is strongly anisotropic [3, 4]. Thus the elastic elements, should they represent
quartz grains with different orientation, would have very different thermal expan-
sions. We take this to be the case.

Let us begin with the equation of motion for y α:

m ÿ α = –
∂E L

∂ y α
+ AδT [λα,3 + λα,4 – λα,5 – λα] , (5.2)

= –M · y + AδT Λ , (5.3)

where we have neglected the nonlinear terms, the first term on the RHS is given
by Eq. (4.19), and the notation λα, j denotes the thermal expansion of the elastic
element, which is the jth neighbor of elastic element α as in Figure 5.1. In the
static limit, d/dt = 0, we have

y = AδT M –1 · Λ . (5.4)
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Fig. 5.2 Thermal forces. A system with m = 1. . .M = 40 and
n = 1. . .N = 20, made up of square elastic elements that are
a ~ a, is subject to the forces from ET in Eq. (5.1). As each of
these thermal forces works on adjacent elastic elements, the
net effect of all of them can be replaced by forces at the top and
bottom of the system, those on rows n = N + 1 and n = 1,
respectively.

From y we can form Δy c
α and Δy s

α for each tile. An illustration of what is found
is shown in Figures 5.3–5.5 for the example of a system of size (M , N ) = (40, 20),
A = 1, B = 1/4, δT = 0.1, and λ = 1 + 0.5sign(r) with r uniformly distributed
from –1 to +1, Figure 5.2. In Figure 5.3 we show the configuration of the sys-
tem; elastic elements with λ > 1 are colored red and those with λ < 1 are colored
white. The system is expanded from its equilibrium height 20 by approximately
N 〈λ〉δT W 2, 〈λ〉 = 1.110. Because of the anisotropy of the thermal expansion there
is a spectrum of compressional strains, Δy c , Figure 5.4, and shear strains, Δy s ,
Figure 5.5. The compressional strains are broadly distributed with an average of
0.2022 (a factor of 2 more than 〈λ〉δT because of the definition of Δy c ). (Here 〈λ〉
is the average thermal expansion that might be found by extending the EMT ideas
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Fig. 5.3 Thermal configuration. An anisotropic thermal expan-
sion, λα = 1 + 0.5sign(rα), is assigned to each elastic element
(λ > 1 red and λ < 1 white). This produces an average expan-
sion of the system, as well as compressional and shear forces
on individual elastic elements. The spectrum of these inter-
nal forces is shown in Figures 5.4 and 5.5. (Please find a color
version of this figure on the color plates)

from Chapter 4 to this case.) The shear strains are broadly distributed with an aver-
age of 0.00022, essentially zero. There is no external manifestation of these shear
strains. The stresses associated with the compressional and shear strains are AΔy c

and BΔy s , respectively. Compressional stresses arise in part from the thermal ex-
pansion within each elastic element λαΔy c

α. For shear stresses there is no direct
temperature/shear strain coupling. Shear stresses arise from forces exerted on an
elastic element by its neighboring elements.

At a bare minimum the temperature bathes the system in a uniform internal
compressional stress field A〈λ〉δT about which there are fluctuations A(λα–〈λ〉)δT .

In an elastic system that is nonuniform, say one having a sprinkling of elastic
elements with weak shear elastic constants, there could be a system of internal
strains much larger than one could infer from external observation. If the sprin-
kling of elastic elements is of sufficient volume, their unusual strain would be seen
in a neutron scattering experiment [5].

Should the large strain on an elastic element elicit an anomalous elastic re-
sponse, the temperature would be seen to drive such a response.
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Return to Eq. (5.1) and use Δy α = Δy α + δy α, where Δy α is from the solution to
Eq. (5.4). Then we have a total energy in the form

E = E 0 =
∑

α

A
2

(
1 + 6	Δy c

α

)
(δy c

α)2

+
∑

α

B
2

(
1 + 2γΔy c

α

)
(δy s

α)2

+
∑

α

BγΔy s
αδy s

αδy c
α ,

(5.5)

where we have lumped a set of constant energies involving Δy α into E0, used
Eq. (5.4), and dropped terms involving 	 and γ that are linear in δy α (δy c

α =
δy α7 + δy α8 – δy α1 – δy α and δy s

α = δy α8 + δy α1 – δy α7 – δy α), Figure 5.1. The ther-
mal expansion leads to a modified set of elastic constants for the elastic elements.
Replace Δy c

α and Δy s
α with the averages found above.

1. There would be no coupling of δy c to δy s , see Figures 5.4 and 5.5.
2. As typically 	 < 0, there would be a reduction softening of the compressive

elastic constant with a temperature increase.
3. The sign of γ is in general unknown so the effect of thermal expansion on

the shear modulus is in general unknown.

If we were to replace Δy c
α and Δy s

α with the averages we found above, there would
be no coupling of δy c to δy s , see Figures 5.4 and 5.5.
While what we have here is a set of phenomena not much different from those
implied by the discussion of traditional nonlinear elasticity, for example, see
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Fig. 5.4 Compressional forces, temperature.
The probability density (unnormed) for the
compressional strain of the elastic elements,
p(Δyc

α), as a function of Δyc
α for the circum-

stance described below Eq. (5.4). The units
used in the calculations and this figure carry

dimensions. This strain is made dimension-
less by dividing by 2a. It is scaled to physical
units by equating the average compression-
al strain to 〈λ〉δT . Application of EMT as in
Chapter 4 to the thermal expansion yields
〈λ〉 = (

∑
λα)/N M .
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Fig. 5.5 Shear forces, temperature. The prob-
ability density (unnormed) for the shear strain
of the elastic elements, p(Δy s

α), as a function
of Δy s

α for the circumstance described below
Eq. (5.4). The units used in the calculations
and this figure carry dimensions. This strain

is made dimensionless by dividing by 2a. It is
scaled to physical units by equating the com-
pressional average strain to 〈λ〉δT . The shear
response to the forces of thermal expansion
yields 〈Δy s〉 = 0 since δT does not directly
drive Δy s .

Eqs. (2.28), the important qualitative point is that a change in temperature de-
livers a complex system of internal stress fields to the elastic elements in a system.
In response to these internal stress fields the elastic elements, conceivably more
exotic than simple nonlinear elements considered here, are possibly the source of
unexpected behavior [6, 7].

5.2
Saturation

5.2.1
Saturation/Strain Coupling

Consider the case of an elastic system that is threaded by a pore space in which
a fluid can have a variety of configurations. We model this system with a general-
ization of the model above. In place of a single elastic element per unit cell, Fig-
ure 5.1, we use four elastic elements in a bricks-and-mortar geometry, Figure 5.6.
One idea behind this physical picture is that of an elastic system built of relatively
rigid elastic units (bricks) that are separated from one another by an elastic system
that is relatively soft (mortar). Examples are rock, soil, granular media, . . . Con-
tiguous with the mortar of this system we place a pore space that is to be filled
with pore fluid according to a prescribed chemical potential protocol. We have to
describe the elastic system, the pore space, the configurations of the pore fluid and
the set of forces on the elastic system from the configurations of the pore fluid.
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B m, v

m, h c

(a)

(b)

Fig. 5.6 Tile notation 2. (a) To describe the
more complicated situation associated with
an elastic system sharing a space with a pore
fluid, a bricks-and-mortar model is used. (b)
The unit cell has four elastic elements (tiles)
denoted B (brick), h (horizontal mortar), v
(vertical mortar), and c (contact). These elas-
tic elements have size a ~ a, a ~ b , b ~ a,
and b ~ b for B, h, v, and c, respectively,
b = a/10. The unit cells are glued to one
another along their common boundaries, as
indicated by the solid line surrounding the
representative unit cell in (a). In addition, the
four elastic elements in a unit cell are glued

together along their common boundaries (sol-
id line in (b)). There is a displacement variable
associated with the lower left corner of each
elastic element (the small squares in (b)),
yα,ν , ν = B , h , v , and c. The system is peri-
odic in m and the lower edge of the bricks in
the unit cells in row n = 1 are fixed at y = 0.
The elastic elements have elastic constants
AB = 1, Ah = Av = Ac = AB /100, Bn = An/4.
This choice of elastic constants gives a bulk
elastic constant of approximately AB /10, that
is, the bulk elastic system is soft compared to
the bricks because of the mortar.

1. Elastic System. The elastic unit cell has four elastic elements (tiles), Fig-
ure 5.6, a brick with relatively large elastic constants, B, horizontal and ver-
tical mortar, h, v, that are elastically soft, and a contact, c, that is elastically
soft. The elastic energy of this system is written as

E L =
∑

ν

∑
α

Aν

2

(
Δy c

α,ν

)2
+
∑

α

Bν

2

(
Δy s

α,ν

)2
, (5.6)

where α denotes the unit cell and ν goes over the four elastic elements in the
unit cell. As above the cells are glued to one another along their common
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boundary, and the elastic elements in a cell are similarly glued. Thus a sin-
gle displacement variable, taken to be the lower left corner of each elastic
element, suffices for a description of the elastic energy.

2. Pore Space and Fluid Configurations. The pore space is taken to be contigu-
ous with the mortar/contact elastic elements and to have their geometry,
Figure 5.7. The pores are assigned the properties of a set of cylinders of vary-
ing radius [8]. Thus associated with each pore is a chemical potential pair,
(μF , μE ), where μF is the chemical potential at which a pore, having a thin
fluid film on its walls, makes a transition to being full of fluid on chemical
potential increase (capillary condensation) and μE is the chemical potential
at which a pore, full of fluid, makes a transition to having a thin fluid film on
its walls on chemical potential decrease. This latter process, pore emptying,
is subject to the access condition [9], leading to invasion percolation [10]
and inhomogeneous fluid configurations in the pore space. When a pore
has a thin fluid film on its walls, it is in the empty, E, state. When capillary

Fig. 5.7 Tile notation 3, the pore space.
The pore space is contiguous with the mor-
tar/contact system. Each pore is assigned
a chemical potential pair (μE , μF ) that de-
termines the chemical potential at which
the pore makes a change in fluid state. The
pore space is occupied by fluid according to

a chemical potential protocol. When a pore
is empty (there is a thin fluid film on the pore
wall) there are forces of tension exerted on
the pore walls. When a pore is full, there are
forces of compression trying to pull the pore
walls into the pore.



5.2 Saturation 105

invasion
starts

A

B
C1.0

homogeneous

inhomogeneous

μ

1
2

3

Sw

A

B

C

1.0

homogeneous

inhomogeneous

1

2
3

time

μ
A

B

C1
2

3

(a)

(b)

(c)

 –  – ε

Sw

Fig. 5.8 Chemical potential protocol and . . .
(a) The chemical potential (related to the va-
por pressure) goes from large negative values
(for which there is only a thin film of liquid
on the pore wall) to the value corresponding
to bulk liquid (all the pores are full of fluid)
back to large negative values. (b) The satu-
ration of the pore space increases slowly as
the thin film on the pore walls thickens and
increases relatively rapidly when capillary con-
densation begins to occur (after A). Eventually
all of the pores are full of liquid and the sat-
uration ceases to change (at B). On lowering
the chemical potential, because of the access

condition for vapor invasion, the pore space
remains full of liquid until the invasion perco-
lation event occurs (at C). In the domain in
which there are pores full of liquid, the satu-
ration is a hysteretic function of the chemical
potential and has endpoint memory [8]. (c)
The average strain that attends these changes
in liquid configurations in the pore space.
The precise numbers are a function of details.
But the qualitative idea is that on average the
forces that liquid configurations bring to bear
tend to be tensionlike, and the average size
of a sample increases with increases in fluid
content.
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condensation has occurred for a pore it is in the full, F, state. Since chemical
potential scales with vapor pressure (μ ∝ ln(P v/P v ,sat), where Pv and P v ,sat

are the fluid vapor pressure and saturated vapor pressure, respectively), we
can state this evolution in terms of vapor pressure increase, E → F , and va-
por pressure decrease, F → E . The evolution of a fluid configuration in the
pore space is taken to be that associated with an adsorption isotherm; the
chemical potential (vapor pressure) goes from large negative values (very
low pressure) to the chemical potential of bulk liquid (saturated vapor pres-
sure) and back to large negative values (very low pressure).

3. Coupling of the Elastic System to the Pore Fluid. As we are illustrating mat-
ters of principle we take a very simple model for the forces that a fluid con-
figuration exerts on the elastic system in which it resides [8].
a. When a pore is empty, the primary effect is for the fluid to reduce the

surface energy of the pore walls. This is equivalent to forces of tension
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Fig. 5.9 System configuration, Sw = 0.70,
filling. Displacement of the elastic elements
in a 20 cell by 20 cell realization of the elastic
system with Sw = 0.70. The bricks are red. The
space allocated to the mortar and contacts
is treated as the pore space and filled blue
(mortar) and green (contact) if there is fluid
in the associated pore and white otherwise.
All elastic elements are shown as if they are of
the same size, see the caption to Figure 5.6.
This configuration, formed on chemical poten-

tial increase, has homogeneous filling of the
pore space. Elastic elements adjacent to filled
vertical pores feel forces of tension tending
to elongate the elastic element. Elastic ele-
ments adjacent to filled horizontal pores feel
forces tending to pull the elastic element into
the pore space. This appears as the pulling
of bricks toward the pore. See Figure 5.12.
(Please find a color version of this figure on
the color plates)
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that elongate the pore. In the simple elastic model used here, these forces
work to elongate the surfaces shared by the v-mortar and the bricks. While
the strength of these forces for a particular pore depend on the pore ra-
dius and the film thickness, we ignore this subtlety and choose a single
number for the forces of tension for all pores.

b. When a pore is full, the primary effect is for the fluid to pull the pore walls
into the pore space. In the simple elastic model here, these forces work
to pull the bricks toward the h-mortar. As with the forces of tension we
assign a single number for these forces independent of pore radius and
chemical potential (pressure in the pore fluid).

c. Note that the one-dimensional motion permitted by the model we use
means that the v-mortar, which exerts forces of tension when the pore
associated with it is empty, exerts no force when the pore is full of fluid.
Similarly, the h-mortar, which exerts forces of compression when the pore
associated with it is full, exerts no force when the pore is empty.

d. In this model the state of a pore is an Ising-like variable that can be
followed in a (μF , μE ) Preisach space. The forces that are approximately
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Fig. 5.10 System configuration, Sw = 0.90,
emptying. Displacement of the elastic ele-
ments in a 20 cell by 20 cell realization of the
elastic system with Sw = 0.90 as the chemical
potential is being lowered. This configuration
occurs near the onset of invasion percolation.
As the vapor invades the pore space from the

surface, well below the interface between full
and partially empty pores, the pore space is
uniformly filled. Shear forces occur only near
the outer edge of the system. See Figure 5.13.
(Please find a color version of this figure on
the color plates)
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Fig. 5.11 System configuration, Sw = 0.59, emptying. Displace-
ment of the elastic elements in a 20 cell by 20 cell realization of
the elastic system with Sw = 0.59 as the chemical potential is
being lowered. See Figure 5.14. (Please find a color version of
this figure on the color plates)

Ising-like are strictly Ising-like here because of the extreme simplicity of
the force model we use.

Because of the nature of this model and of the approximations we make to illustrate
the major points, a number of important details are lost. We will come upon these
later on and remark about them accordingly.

5.2.2
Saturation/Strain Response

We have taken the pore space of this elastic system through the chemical poten-
tial/saturation protocol shown in Figure 5.8 for a particular realization of (μF , μE )
Preisach space. At several points along the chemical potential protocol we find the
forces exerted by the fluid configuration on the elastic system and solve for the
displacements y α.ν and the set of strains on the elastic elements. In the lower two
panels of Figure 5.8 we show schematically the saturation as a function of chemical
potential and the total compressional strain across the elastic system as a function
of the saturation. We report the configuration of the system and the probability
density of the internal strains in detail. In Figures 5.9, 5.10, and 5.11 we show
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Fig. 5.12 Strain probability density, Sw = 0.90,
filling. For the case of Sw = 0.90 on chemical
potential increase the unnormed probabil-
ity density of the (a) compressional strain
in the bricks, (b) the compressional strain
in the h-mortar, and (c) the shear strain in
the v-mortar is plotted as a function of the

strain. As most of the bricks are surrounded
by liquid, the probability density for Δyc is ap-
proximately a delta function. The shear strains
that arise from an unbalanced fluid configura-
tion near the v-mortar are broadly distributed
about Δy s = 0.

the configuration of the fluid and of the elastic elements. The first of these fig-
ures, corresponding to point 1 in Figure 5.8, is at a point encountered on filling
the pore space to Sw W 70%. For purposes of presentation the unstrained contacts
and unstrained mortar are one unit in size, the same size as the bricks. Vertical
brick surfaces adjacent to empty pores are pulled together. Horizontal brick sur-
faces adjacent to filled pores are pulled together. The complex system of strains
that the fluid causes in the elastic elements is shown in Figure 5.12 for the bricks,
the h-mortar and the v-mortar. On filling the pore space the fluid configuration is
spatially uniform. This is in contrast to what is seen in Figure 5.10 for the case
corresponding to point 2 on Figure 5.8. This configuration occurs on emptying
the pore space [10]. As the emptying process corresponds to invasion of the pore
space (by air) from the surface inward, the fluid configuration is very inhomoge-
neous. The system of strains corresponding to this case is shown in Figure 5.13.
The probability density for various strains is not strikingly different between the
two cases shown in Figures 5.12 and 5.13. But the location of these forces is very
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different. For Sw W 0.90 in the invasion region all of the shear forces are near the
surface of the elastic system and all of the compressional forces are in the fluid-
filled interior. As the invasion process continues, Figure 5.11, the domain of shear
forces moves toward the interior of the elastic system. Compare the distribution
of strains in Figures 5.13 and 5.14. At a chemical potential well below that of the
onset of the invasion process, the fluid configurations are qualitatively similar to
those found on initial chemical potential increase.

If we were to add a set of nonlinear elastic terms to the energy of the system, as
we did for the case of internal forces due to temperature, the last line in Eq. (5.1),
we would find a shift in the effective elastic constants analogous to those in Eq. (5.5)
with the strains y α,ν due to the fluid configuration. When the fluid configuration is
inhomogeneous, the nonlinear elasticity is similarly inhomogeneous.
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Fig. 5.13 Strain probability density, Sw = 0.90,
emptying. For the case of Sw = 0.90 on chem-
ical potential decrease the unnormed proba-
bility density of the (a) compressional strain
in the bricks, (b) the compressional strain in
the h-mortar, and (c) the shear strain in the
v-mortar is plotted as a function of the strain.
As most of the bricks are surrounded by liq-
uid, the probability density is approximately

a delta function. Compare to the similar delta
function in Figure 5.12. The forces of ten-
sion, all near the top of the system, shift the
location of the delta function away from the
value seen in Figure 5.12. The shear strains
that arise form an unbalanced fluid configura-
tion near the v-mortar are broadly distributed
about Δy s = 0 and are due to shear forces
near the surface of the elastic system.
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What we want to take away from this discussion is
1. the fluid configurations in a pore space are complex, a function of the chem-

ical potential protocol with which they are created, sometimes spatially ho-
mogeneous and sometimes spatially inhomogeneous;

2. these fluid configurations deliver a set of internal forces that can have fea-
tures unlike any that can be delivered by an external force [11];
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Fig. 5.14 Strain probability density, Sw = 0.20,
emptying. For the case of Sw = 0.20 on chem-
ical potential decrease the unnormed proba-
bility density of the (a) compressional strain
in the bricks, (b) the compressional strain in
the h-mortar, and (c) the shear strain in the

v-mortar is plotted as a function of the strain.
The compressional forces on the bricks are
relatively small. Many bricks feel almost no
force from the liquid configuration. A broad-
ly distributed system of shear forces occurs
throughout the elastic system.
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3. should the elastic elements have an unusual elastic response, the forces de-
livered by fluid configurations will elicit this response in much the same
way as an external force [12].

5.3
The Conditioning Field, X

In addition to the auxiliary fields associated with temperature and saturation, there
is evidence for an additional field (or fields) of unknown nature that couples to
the elastic system [13]. We will have more to say about this when we discuss slow
dynamics in Chapters 7, 10, and 11.
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6
Hysteretic Elastic Elements

In this chapter we describe the essentials of a phenomenology for assessing the
influence of hysteretic elastic elements on various types of elastic behavior. We do
this using an extreme picture in which the hysteretic elastic elements have very
rudimentary motions and in which these motions have no dynamics. The elastic
elements are called finite displacement elastic elements, FDEE, a name intended to
emphasize their properties. These elastic elements are introduced in Section 6.1
where their behavior under quasistatic stress is established. One of the virtues of
these elastic elements is that quasistatic data, which is influenced by them, can be
inverted to learn something of their nature. This is discussed in Section 6.2. The
behavior of FDEE in dynamic response is discussed in Section 6.3, the resonant bar
in Section 6.3.1, and wave mixing in Section 6.3.2. To have an equation into which
we can easily introduce an equation of state (EOS) for the FDEE, we transform the
wave equation into a lumped element equation, Section 6.3.1.1. We develop an EOS
for the FDEE for a resonant bar in Section 6.3.1.2. The analysis of the resonant bar
is carried through in Section 6.3.1.3. Section 6.3.2 is devoted to wave mixing. In
Section 6.4 we suggest that most models of hysteresis are equivalent to the FDEE
model. (A detailed demonstration appears in the appendix, Section 6.6.) Conse-
quently, a form of universality obtains. Summarizing remarks are in Section 6.5. In
the appendix, Section 6.6, we examine several model of hysteretic elastic systems:
shear contacts with friction (Section 6.6.1.1), an fcc lattice of Hertzian contacts
(Section 6.6.1.2), the Masing rules (Section 6.6.2), and the endochronic formalism
(Section 6.6.3).

6.1
Finite Displacement Elastic Elements; Quasistatic Response

6.1.1
Finite Displacement Elastic Elements: The Model

The original picture of hysteretic elastic elements is that of McCall and Guyer,
MG [1]. This picture was anticipated by Holcomb [2], even if not all of the details
had been worked through. Suppose we have an elastic material built up of elastic

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
including Rocks and Soil. Robert A. Guyer and Paul A. Johnson
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40703-3
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a
b0

a

Ai , i = -1

Ai , i = +1

Fig. 6.1 Two-state compressive elastic element. A model for
a two-state elastic element is a spring, spring constant A, that
enforces two different displacements between its endpoints,
b0 ± a = b0 + ηa, according to its state, η = ±1.

elements, shown schematically in Figure 6.1, having elastic constants Ai that at-
tempt to enforce two relative displacements between their ends according to the
state ηi = ±1, that is, bi = b0 + ηi a. There is a known rule for establishing the
state ηi . The discussion of van der Waals surfaces in Chapter 4 provides an exam-
ple of how such rules might arise. And, in accordance with the language of that
discussion, index i runs over the set of instances of the elastic element. However,
initially we want to proceed without regard for the the details of a particular model.
We formulate an EMT description of this material. (The discussion of hysteresis,
here in the context of elasticity, resides in a much more general context that can be
visited in the three volumes by Berttoti and Mayergoyz [3].)

In EMT (Chapter 4) the elastic element would be associated with a tile with elastic
energy

E i =
1
2

Ai (Δy c – bi )
2 , (6.1)

and it would be placed in a medium with tiles of elastic energy

E m =
1
2

A (Δy c – b0)2 . (6.2)

Analogously to Eq. (4.16), we would write

E = E 0 +
1
2

δAi
(
Δy c

00 – b0
)2

+ A(Δy c
00 – b0)Δbi , (6.3)

where δAi = Ai – A, Δbi = bi – b0. We have kept only first-order terms in de-
parture from Em, used E 0 = ΣE m , and dropped all but the compressional energy
contribution. In the spirit of EMT we would solve for Δy c

00 and find, analogous to
Eq. (4.27),

Δy c
00 = S

(
D c∗

μν
1

Mμν
F μν

)
– δAi Δy c

00S
(

D c∗
μν

1
Mμν

D c
μν

)

– AΔbiS
(

D c∗
μν

1
Mμν

D c
μν

)
.

(6.4)
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This is one step before applying the central dogma of EMT. We take the simplest
model, one in which the different instances of an elastic element involve differ-
ent bi only, Ai = A ∀i . We call these elastic elements finite displacement elastic
elements (FDEEs). From the central dogma

〈Δy c
00〉 = S

(
D c∗

μν
1

Mμν
F μν

)
, (6.5)

and 〈Δbi 〉 = 0 or

b0 = 〈bi 〉 . (6.6)

This is the EOS of the MG model. Briefly, the LHS is the size of the system and the
RHS is an average that depends on the state of the FDEE, which in turn depends
on the stress protocol. The simplicity of this equation is deceptive. We are going to
discuss it at some length.

Aside.
Before we do that let us consider the issue from a slightly more general perspective.
Suppose we have elastic elements that attempt to enforce both two-state compres-
sive and two-state shear displacements, Figure 6.2. We would write

E m =
1
2

A (Δy c – b0)2 +
1
2

B (Δy s – c0)2 ,

E i =
1
2

A (Δy c – ηi b i )
2 +

1
2

B (Δy s – τi ci )
2 ,

(6.7)

where the state of the compressive (shear) part of the elastic element is determined
by the state variable ηi (τi ). A prescribed stress protocol drives (ηi , τi ). In setting
Ai = A and Bi = B for all instances we concentrate on the contribution of the
change in displacement to the elasticity. In Eq. (6.3) we would have

E = E 0 + AΔy c
00Δbi + BΔy s

00Δci , (6.8)

where Δbi = bi – b0 and Δci = ci – c0. We calculate the average of y c
00 and y s

00 over
instances, apply the central dogma of EMT to 〈y c

00〉 and 〈y s
00〉 separately, and find

〈Δy c
00〉 = S

(
D c∗

μν
1

Mμν
F μν

)
,

〈Δy s
00〉 = S

(
D s∗

μν
1

Mμν
F μν

)
,

〈Δb〉AΛcc + 〈Δc〉BΛcs = 0 ,

〈Δb〉AΛsc + 〈Δc〉BΛss = 0 ,

(6.9)

where S stands for the sum, as in Eq. (4.27), and Λα	 are integrals over the excita-
tion spectrum, analogously to Eq. (4.29), that produce numbers that are nonzero.
Consequently, we have 〈Δb〉 = 0 and 〈Δc〉 = 0, or

b0 = 〈bi〉 ,

c0 = 〈ci〉 .
(6.10)



116 6 Hysteretic Elastic Elements

-1 , +1

-1 , -1

+1 , -1

+1 , +1

Fig. 6.2 Two-state compressive/shear elastic element. In anal-
ogy to the compressive-only elastic element illustrated in Fig-
ure 6.1, there can be elastic elements that are described by
two-state variables, (η, τ). These elastic elements enforce two
values of the compressive displacement, b0 ± a = b0 + ηa, and
two values of the shear displacement, c0 ± d = c0 + τd, τ = ±1.
The four states of a tile (EMT) are shown.

The compressional and shear equations of state are independent [4, 5]. This is
in contrast to the EMT relationship between the compressive moduli and shear
moduli, which are strongly coupled. See, for example, Eq. (4.2) (Hertzian contact
model).

End Aside.

6.1.2
Finite Displacement Elastic Element: Implementing the Model

When the important response to a stress protocol has to do with the state-
dependent aspects of the energy, we obtain the EOS given by Eq. (6.6). To turn
this equation into something useful, we need (a) specification of the displacement
associated with the instances of b, the bi, and (b) a rule for determining the elastic
state of each instance. We will begin with the simplest model, that of McCall and
Guyer [1]. This model is intentionally nonspecific; it uses a description that might
apply to many possible models of an elastic element. Its ingredients are:
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1. two displacements that are the same for all instances of the elastic element,
when ηi = –1, bi = L0 and when ηi = +1, bi = L0 – ΔL;

2. a stress pair (Σi
c , Σi

o ), for each instance, i, of the elastic element, that sets the
state of the elastic element
a. if ηi = –1 and Σ increases to above Σc , ηi → +1,
b. if ηi = +1 and Σ decreases to below Σo , ηi → –1.
There is a Preisach space associated with the (Σi

c , Σi
o ) pairs, and in principle

there is a density ρ(Σc , Σo ) of these pairs in this space [6, 7]. Where the
context makes clear what we mean we replace the cumbersome ρ(Σc , Σo )
with ρ(X , Y ). In general

ρ(X , Y ) =
∑

i

δ
(
X – Σi

c

)
δ
(
Y – Σi

o

)
, (6.11)

which may have an analytic representation.

To illustrate the qualitative behavior of this extreme model, we will look at sever-
al examples. We need three further ingredients: (1) specification of ρ(X , Y ), (2)
specification of the initial value of the ηi , and (3) a stress protocol. We take the case
in which ρ has a diagonal part, ∝ δ(X – Y ), and a constant off-diagonal part in
a triangular region of the Preisach space,

ρ(X , Y ) =
p

2S δ(X – Y ) +
1 – p
2S2 , (6.12)

for –S u X u +S , –S u Y u S . We consider two stress protocols, shown in
Figure 6.3.

Case 1
The stress is taken from below –S to above +S and then back to below –S , upper
left of Figure 6.3. Initially ηi = –1 ∀i . Thus b0 = L0 until Σ exceeds –S . As Σ
increases to above –S the change in b0 can be found using

b↑
0(Σ) = 〈bi〉 = L0 – ΔL

∫ Σ

–S
dX

∫ X

–S
dY ρ(X , Y ) ,

b↑
0(Σ) = L0 – ΔL

[
p

(
Σ + S

2S

)
+ (1 – p)

(
Σ + S

2S

)2
]

,

(6.13)

–S u Σ u +S . As Σ advances to above +S there is no further change in b0 as there
is no further change in the state of the instances, b0 = b↑

0(+S) = L0 – ΔL. Now as Σ
is reduced and passes to below +S , b0 is given by

b↓
0(Σ) = b↑

0(+S) – ΔL
∫ +S

Σ
dX

∫ +S

X
dY ρ(X , Y ) ,

b↓
0(Σ) = L0 – ΔL + ΔL

[
p

(S – Σ
2S

)
+ (1 – p)

(S – Σ
2S

)2
]

,

(6.14)
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(b)

Fig. 6.3 Stress protocol and strain response.
A simple quasistatic stress protocol is shown
in (a), and a stress protocol that tests end-
point memory is shown in (b). The x-axis is
“time”. (c) The displacement response to
stress protocol (a). (d) The displacement
response to stress protocol (b). In stress pro-

tocol (b) there are two revisits to the stress
value denoted 2, (4,6) and one revisit to the
stress value 3, (7). While there are three dif-
ferent displacements at stress 2, 4, 6, there
is only one displacement at stress 3, 7. See
Figures 6.4 and 6.5.

–S u Σ u +S . Note b↓
0(–S) = b↑

0(–S) = L0. The moves described here can be
followed in Preisach space. A schematic of such a space is shown in Figure 6.4.
The instances in state ηi = –1 are shaded light gray; the instances in the state
ηi = +1 are shaded darkly. The qualitative behavior of shaded areas in Preisach
space translate directly into qualitative behavior in the b0 vs. Σ plot (upper right
panel of Figure 6.3).

The average strain of an elastic element is sensibly defined as ε(Σ) = (b0(Σ) –
L0)/L0. Further, by the EMT construction this is the strain of the material. This
strain is hysteretic (upper right panel of Figure 6.3). To exhibit the hysteresis in
a simple way, form the sum and difference of b↑

0 and b↓
0. We have, b = b+ + b–,

b+ =
b↑

0 + b↓
0

2
= L0 – ΔL

S + Σ
2S ,

b– =
b↓

0 – b↑
0

2
= –ΔL(1 – p)

S2 – Σ2

4S2 ,

ε(Σ)± =
–ΔL
L0

(S + Σ
2S – s(Σ̇)(1 – p)

S2 – Σ2

4S2

)
,

(6.15)
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1 2 3

4 5 6

7

c

o X

Y

Fig. 6.4 Stress protocol in Preisach space. The stress proto-
col in (a) of Figure 6.3 can be followed in Preisach space. The
elastic elements at (X , Y ), shaded gray, have η = –1, and those
at (X , Y ), shaded black, have η = +1. Points (2,6) are at the
same stress but correspond to different displacements because
of the different state of the elastic elements at these points. So
also for the points (3, 5). See Eqs. (6.13) and (6.14).

where s(Ṡ) is the sign of dS/dt , as is the subscript on ε. This strain has two compo-
nents; the first, independent of s(Ṡ), is a typical result from elasticity theory (in this
particular case linear elasticity) and the second is a hysteretic term that depends on
the sign of the change in stress. The compliance, defined by k = –∂ε/∂Σ, is given
by

k =
ΔbL
L0

1
2S

(
1 + s(Σ̇)(1 – p)

S
Σ

)
. (6.16)

The strain, Eq. (6.15), and the compliance, Eq. (6.16), are shown as a function of Σ
in Figures 6.6 and 6.7 for the case S = 1 and p = 0.25.

Case 2
The stress is taken from below –S to Σ3 < +S , reversed and taken to Σ5 > –S ,
reversed again and taken to Σ8, Σ3 < Σ8 < S , lower left of Figure 6.3. Initially ηi =
–1 ∀i . As above b0 = L0 until Σ exceeds –S . The strain evolution that accompanies
this stress protocol is shown in the lower right panel of Figure 6.3. This stress
protocol is too elaborate to make analytic treatment useful. There are two qualitative
points that can be gleaned from looking at the relationship between the state of
instances in Preisach space and b0 vs. Σ.

1. The stresses Σ2, Σ4, and Σ6 are the same, but the displacement b0 is differ-
ent in all three cases. This is because the state of the instances in Preisach
space is different for each of these cases, as illustrated in the lower left of
Figure 6.5.
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1 2 3

6 5 4

7 8

2

4

6
2

6

3 7

Fig. 6.5 Endpoint memory stress protocol.
The stress protocol in (b) of Figure 6.3 can be
followed in Preisach space. The three visits
to the stress at 2 involve different fillings of
Preisach space and consequently different dis-
placements (strains). See the three “fillings”
at the lower left. The filling of Preisach space
at 3 and 7 is the same. The approach to this
state 3 = 7 is from 2 initially and 6 second-
ly. The number of elastic elements changing

state for the stress move 2 → 3 is different
from the number changing state for the stress
move 6 → 7. See the “fillings” at the lower
right. Thus the slopes on the two approaches
to 3 = 7 are different. The slope on leaving
3 = 7 is independent of how 3 = 7 is ap-
proached and is the same as the slope for the
protocol 2 → 3 → 8; 3 = 7 is an endpoint
of the segment of the stress protocol in (b) of
Figure 6.3 until 3 = 7 is passed.

2. For Σ3 and Σ7 the state of the instances in Preisach space is the same, but
the slope 2 – 3 is different from the slope 6 – 7. This is because the ap-
proach to 2 from 3 involves a change in the state of the instances that differs
from the change involved in the approach to 7 from 6, lower right of Fig-
ure 6.5. The displacement on continuation of the stress from 7 to 8 is the
same as on continuation of the stress from 3 to 8. This is an illustration of
endpoint memory [8]. One might say that the state of the material at 3 was
remembered in that the stress moves in going from 3 to 7 leave the system
unchanged; at 7 the state of the instances is the same as it was at 3.

The two cases examined here illustrate important qualitative properties of a mate-
rial in which the important displacements are those associated with the change in
state of elastic elements. This is not all materials, nor is it one material all of the
time. One could surround the domain of application of this extreme model with



6.1 Finite Displacement Elastic Elements; Quasistatic Response 121

−1.5 −1 −0.5 0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Σ

ε−
0.
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Fig. 6.6 Stress vs. strain. The strain as a function of stress for
stress protocol (a) from Figure 6.3. The strain, calculated from
the displacement as in Eq. (6.15), is shifted by 0.5 to exhibit
symmetry about (Σ, ε) = (0, 0). This symmetry is specific to
the particular model used for ρ(X , Y ). The sense in which the
hysteresis loop is traversed is shown; it is described by the
strain stays in. See also the hysteresis loops in Figure 6.3.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

Σ

k

Fig. 6.7 Compliance vs. stress. The compliance, calculated
from Eq. (6.16), as a function of the stress. The sense in which
this curve is traversed is shown. Its qualitative properties can
be read from Figure 6.6.

lots of caveats. But the fact is it works where it works and it doesn’t work where it
doesn’t work. Where it works, that is, one finds macroscopic hysteresis with end-
point memory, it is reasonable to assume that the physics underlying these obser-
vations is a set of elastic elements with hysteretic displacements, possibly meso-
scopic, possibly microscopic. The nature of these elastic elements is not a part of



122 6 Hysteretic Elastic Elements

the model. There are many potential candidates for them, the van der Waals sur-
faces from Chapter 4, the Hertz–Mindlin contacts of Johnson and Norris [9], the
frictional contacts of Nihei and coworkers [10], surfaces with asperities [11], etc. It
is unlikely that one of these candidates provides the answers to all questions.

Before we go on to explore this model further, we want to describe another of its
virtues, that is, that it is invertible. Because it is, one has in principle the means to
interrogate a hysteretic elastic system about the elastic elements that reside in it.

6.2
Finite Displacement Elastic Elements: Inversion

The principle associated with the idea of inverting to learn the nature of the elas-
tic elements comes from Eq. (6.15) or, equivalently, Eqs. (6.13) and (6.14). From
Eq. (6.13)

Δε+ = –
ΔL
L0

[∫ Σ

–S
dY ρ(Σ, Y )

]
ΔΣ , (6.17)

and from Eq. (6.14)

Δε– = –
ΔL
L0

[∫ S

Σ
dX ρ(X , Σ)

]
ΔΣ . (6.18)

As illustrated in Figure 6.8, the changes in strain Δε are related to integrals over
the density ρ(Σc , Σo) in columns or rows in Preisach space [12]. Thus a suitable
experimental exploration, with the stress/strain protocol tailored to probe regions
of Preisach space, could reveal the strengths of the stresses that cause the state
changes of the elastic elements. This philosophy is not limited to the simple sug-
gestion here. As illustrated in Figure 6.9, more imaginative stress/strain proto-
cols can focus very specifically on elastic elements in particular regions of Preisach
space.

Let us not oversell the point. What a suitable experiment can do is reveal the
relative number of elastic elements that have hysteretic behavior characterized by
a particular (Σc , Σo ). To the degree that this information can inform choices among
competing models of elastic elements it can be very useful. Applications of these
ideas are discussed in Chapter 10.

6.3
Finite Displacement Elastic Elements: Dynamic Response

Let us look at finite displacement elastic elements (FDEE) in dynamics: (a) in a res-
onant bar experiment and (b) in a wave mixing experiment.
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(X,Y)dY

-S

dX (X,Y)

S

-S

S
1

2

1 2(a)

(b)

Fig. 6.8 Inversion in Preisach space. (a) An infinitesimal up-
ward stress step ΔΣ at Σ, (1 → 2), yields a change in strain
due to the elastic elements in the strip (Σ + S)ΔΣ and given by
the integral in Eq. (6.17). (b) An infinitesimal downward stress
step ΔΣ at Σ, (1 → 2), yields a change in strain due to the elas-
tic elements in the strip (S – Σ)ΔΣ and given by the integral in
Eq. (6.18).

6.3.1
Finite Displacement Elastic Element: Resonant Bar

We consider the case of a resonant bar experiment as shown schematically in Fig-
ure 6.10. As discussed above the idea is to study the low-lying resonances of a res-
onant bar as a function of the amplitude. The response of interest is the Fourier
component of the displacement of the bar end, u(L), at the drive frequency [13], as
a function of the amplitude of the drive. For the displacement field in a resonant
bar we have the equation of motion [Eq. (3.54)]

ρü + ρ
1
τ

u̇ =
∂Σ
∂x

+ f (t)
L
2

[
δ
(

x +
1
2

L

)
– δ

(
x –

1
2

L

)]
. (6.19)

Before we turn to the use of the EOS of the FDEE we replace the resonant bar
equation of motion by a lumped element equation that simplifies doing this.

6.3.1.1 Lumped Element Model
We consider the fundamental mode, in which the RHS of the bar moves mirrorlike
with respect to the LHS of the bar, and integrate Eq. (6.19) over x, –L/2 u x u 0, to
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Fig. 6.9 Inversion in Preisach space; elabo-
rate stress protocols. The regions of Preisach
space, shown with color coding in (a), are
swept over by the stress protocol in (b) with
the same color coding. The elastic elements
in the red region (of Preisach space) are re-
sponsible for the strain as the stress evolves
2 → 1′ (1′ → 2′). The elastic elements in
the blue region are responsible for the strain
as the stress evolves 3 → 2′′ (2′′ → 3′).

The elastic elements in the blue, yellow, and
red regions are responsible for the strain as
the stress evolves 3′ → 2′′′ → 1′′. By ma-
nipulating the stress protocol the strain due
to elastic elements in a particular region of
Preisach space can be found. In more physi-
cal terms, the strains due to elastic elements
that respond to particular stresses can be de-
termined. (Please find a color version of this
figure on the color plates)

find

ρÜ L(t) + ρ
1
τ

U̇ L(t) = Σ(0, t) + f (t) , (6.20)

where

U L(t) =
2
L

∫ 0

–L/2
dx u(x , t) . (6.21)

The equation for the RHS of the bar is the same except for the sign of the terms on
the RHS. Thus U R (t) = –U L(t). To find U L(t) we need the stress at the bar center,
Σ(0, t). We imagine we know Σ(0, t) as a function of the strain at the bar center. We
close this equation by relating U L(t) to the strain at the bar center. To do this we
use the amplitude relations among displacement and strain appropriate to a simple
linear system at the fundamental resonance

u = A sin(kx) , (6.22)

u′(0) = kA , (6.23)

U R =
2
π

A , (6.24)
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- L / 2 + L / 2

Fig. 6.10 Resonant bar → lumped element.
The equation of motion of a resonant bar driv-
en symmetrically, so that the center of mass
stays fixed at x = 0, can be replaced approxi-
mately by the equation of motion for a lumped
element. The lumped element is the aver-
age position of the RHS of the bar. The RHS

vibrates against its opposite, the average po-
sition of the LHS. The forces on the lumped
element are the net force, for example, applied
force at x = L/2, and the stress at the bar cen-
ter, Eq. (6.26). The internal forces away from
the bar center do not appear.

e =
2
L

(U R – U L) =
8
π

A
L

=
8

π2 u′(0) W u′(0) , (6.25)

where k = π/L. To within a numerical factor of order 1 the average strain defined
by e and the strain at the bar center are equal. If we define ε as the strain at the bar
center and relate UL to ε using Eqs. (6.25), we have

ε̈ +
1
τ

ε̇ = –φ(ε) – F (t) , (6.26)

where φ = π2Σ/4Lρ and F = π2 f /4Lρ. This equation, a lumped element equation,
is for the motion of the strain field at the bar center in terms of the stress at the bar
center. To this point there is no input that is specific to FDEE.

6.3.1.2 Stress-Strain for Finite Displacement Elastic Element
To find Σ for use in Eq. (6.26) we need a specific model for ρ(X , Y ) in Preisach
space. Since the stress/strain field involved in a resonant bar experiment are typ-
ically several orders of magnitude lower than those used in quasistatic measure-
ments, say less than one atmosphere (0.1MPa), we take a model appropriate to
a small local region of Preisach space

ρ(X , Y ) = Aδ(X – Y ) + α , (6.27)

where A and α are parameters to be set below. Let us assume that F(t) is a sinusoidal
drive, amplitude F0, that sweeps the stress at the bar center back and forth between
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±C , C ∝ F 0. We can use the same scheme as illustrated above, Eqs. (6.13) and
(6.14), to find ε↑ = (b↑ – L0)/L0 and ε↓ = (b↓ – L0)/L0 with the result

ε = ε(0) + ε0

[
(A + αC )Σ – s(Σ̇)

α
2

(C 2 – Σ2)
]

, (6.28)

where ε(0) = AC + αC 2 and ε0 = Δb/L. We shift ε by ε(0) and scale it by ε0. Then,
solving for Σ we have

Σ = K 0

(
ε – αC Σ + s(Σ̇)

α
2

(C 2 – Σ2)
)

, (6.29)

where K 0 = 1/A. An iterative solution for Σ in terms of ε leads to

Σ = K 0

(
ε – γεmε + s(ε̇)

γ
2

(ε2
m – ε2) + . . .

)
, (6.30)

where γ = αK 2
0 and εm = C /K 0 is the maximum strain at the bar center. Using this

stress/strain relation in Eq. (6.26) results in

ε̈ +
1
τ

ε̇ = –ω2
0

(
ε – γεmε + s(ε̇)

γ
2

(ε2
m – ε2) + . . .

)
– F (t) , (6.31)

where we have combined numbers and physical constants to form ω2
0, which must

necessarily be the resonant frequency of the fundamental mode of the bar at low
strain. We have in this equation a lumped element equation of motion for a bar
with EOS given by Eq. (6.28). As a review of the procedure for getting to this equa-
tion will show, it is an equation for the strain at the bar center that contains two
parameters that characterize the linear, ω2

0, and nonlinear, γ, elastic properties of
the bar in the approximation that the important strains are due to FDEE, the FDEE
of the MG model.

1. The strength of the nonlinear terms is measured by γ = αK 2
0. The back-

ground density, α in Eq. (6.27), has units (stress)–2. An approximate mea-
sure of the size of γ can be made from quasistatic data, like that de-
scribed above, which provides an estimate of α. Of course, K0 is of order
1010–1012 dyne/cm2. This is discussed in detail in Chapter 10.

2. The amplitude of the strain field εm enters the equation of motion impor-
tantly. This is because the number of FDEE contributing to the nonlinear
response depends on the area of Preisach space swept over by the stress at
the bar center. This number could be characterized by the amplitude of the
stress, C, or by the strain this stress induces.

3. We expect the linear elastic response to be several orders of magnitude
greater than the nonlinear elastic response. Consequently terms of higher
than the leading order are handled approximately but consistently.

6.3.1.3 Resonant Bar Response
We wish to find the frequency response of the resonant bar described by Eq. (6.31).
More precisely, we want the Fourier component of ε at ω, the frequency of the
drive, as a function of ω, at fixed drive amplitude, for various drive amplitudes. To



6.3 Finite Displacement Elastic Elements: Dynamic Response 127

do this we will introduce a computational procedure, useful beyond this specific
domain of application, that will let us get to what we want quickly.

1. Assume F(t) is of the form

F (t) = F 0 sin(ωt + φ) , (6.32)

where by introducing the unknown phase φ we are free to choose the strain
to have zero phase,

ε(t) = R sin(ωt) , εm = R . (6.33)

2. Substitute F(t) and ε(t) into Eq. (6.31) and project the resulting equation
onto (S ,C) = (sin(ωt), cos(ωt)). Since ε̈ = –ω2RS and ε̇ = ωRC, we have

–ω2R = –ω2
0(1 – 2Λ)R – F 0 cos φ – ω2

0RΛ〈S|s(C)C2〉
ω
τ

R = –F 0 sin φ – ω2
0RΛ〈C|s(C)C2〉 ,

(6.34)

where Λ = γR/2, T = 2π/ω, and

〈a|b〉 =
1
T

∫ T

0
dt a(t) b(t) . (6.35)

The projections 〈S|s(C)C2〉 and 〈C|s(C)C2〉 have the numerical values 0 and
4/(3π), respectively. Thus we have

–ω2R + ω2
0(1 – 2Λ)R = –F 0 cos φ ,

ω
τ

R + ω2
0

4
3π

ΛR = –F 0 sin φ ,
(6.36)

from which R and φ are to be found. We square these equations, add, and
rearrange to find R as a function of Ω = ω/ω0 in the form

R =
1√(

Ω2 – (1 – γR)2
)2

+
(

Ω
Q0

+ 4
3π γR

)2
F 0 , (6.37)

where Q0 = ω0τ and factors of ω0 have been absorbed into F0.
3. When R = 0 on the RHS of this equation, we find the expected linear result,

Ω = 1 and Q = Q0. At finite R we find a resonant frequency shift to lower
frequencies, proportional to γR,

δΩ = –
γR
2

, (6.38)

and an increased attenuation proportional to γR:

δ
1
Q

=
1
Q

–
1

Q0
=

4
3π

γR, Ω W 1 . (6.39)

These results are shown in Figures 6.11 and 6.12.
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Fig. 6.11 Resonant response of a bar with
hysteretic elastic elements. The amplitude, in
the form A/F 0 , as a function of the driving
frequency, f = ω/(2π), for a range of values of
F0, 0.001 u F 0 u 0.05. As the amplitude of the
drive increases, the resonant frequency shifts
to a lower frequency and the apparent atten-

uation increases. The attenuation estimate is
from the behavior of the maximum of the res-
onance curves, Amax W QF 0, 1/Q W F 0/Amax .
Both the frequency shift and the added atten-
uation are a function of the strain in the bar,
which is measured by the amplitude at the
resonance maximum, Amax .

4. Let us argue for these results so that their status, independent of details, can
be established.
a. δΩ. The FDEE are such that when the stress sweeps over Σ there is a dis-

placement (strain) beyond the linear displacement, ε(1) W Σ/K 0, propor-
tional to the number of elastic elements involved, that is, ε(2) W nΔL/L,
n W αΣ2. Thus

Δε W ε(1) + ε(2) W
Σ

K 0
+ αΣ2 ΔL

L
. (6.40)

This is more strain per unit of stress, that is, a softening of the modulus.
To achieve something like the result in Eq. (6.37), use the definition of γ,
replace one factor of Σ/K 0 in the second term with Δbε, and rearrange

Δε W
1

1 – γ(Δε) ΔL
L

· Σ
K 0

=
Σ
K

, (6.41)
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Fig. 6.12 Frequency shift and 1/Q . (a) The frequency at the
maximum of the resonance curves, from Figure 6.11, is plotted
as a function of the amplitude at resonance. (b) The inverse of
Q, defined by 1/Q = F 0/Amax , is plotted as a function of the
amplitude at resonance. The amplitude at resonance, Amax, is
a measure of the strain field in the bar.

K = K 0(1 – γ(Δε)ΔL/L). The important involvement of γ(Δε) is the same
as above, Eq. (6.38). The different involvement of ΔL/L has to do with the
scaling of ε by ε0 above. What is important is the number of FDEE affected
by the sweep of Σ and the size of the displacement associated with each.

b. Δ(1/Q ). The quantity 1/Q is related to the ratio of the work done per
cycle to the energy stored per cycle, ΔW /W 0. For W0 we have K 0(Δε)2 W
Σ2/K 0. For the additional work done per cycle we again look at the n W
αΣ2 FDEE swept over by the stress. Strain steps ΔL/L occur at Σc and Σo ,
Δw W (Σc – Σo)ΔL/L W ΣΔL/L. Thus ΔW W nΔw and

Δ
1
Q

=
ΔW
W 0

W γ(Δε)
ΔL
L

. (6.42)

Compare to Eq. (6.39).
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5. A general set of scaling relations for ΔK and for Δ(1/Q ) can be constructed
following the argument above. We have

ΔK
K 0

= n(Σ)

〈
Δb
b0

〉(
Σ

K 0

)–1

,

Δ
1
Q

=
n(Σ)〈Σc – Σo〉〈Δb/b0〉

Σ2/K 0
.

(6.43)

That is, the frequency shift and shift in Q–1 depend on the number of elastic
elements swept over by a stress field of amplitude Σ, n(Σ), the average dis-
placement of each elastic element, 〈Δb〉, and the average of the difference
between the two values of the stress at which the displacement steps occur,
〈Σc – Σo〉. Assume we have the scaling relations

n(Σ) ~ αK 2
0 xν = γ xν ,〈

Δb
b0

〉
~ x μ ,

〈Σc – Σo〉 ~ K 0 x η ,

(6.44)

where x = Σ/K 0. Then

ΔK
K 0

~ γ x μ+ν–1 ,

Δ
1
Q

~ γ x μ+ν+η–2 ,

K 0

ΔK
Δ

1
Q

~ x η–1 .

(6.45)

The MG model has ν = 2, μ = 0, and η = 1, or ΔK /K 0 ~ Δ(1/Q ) ~ Σ ~ Δε.
Other results are possible.

6.3.2
Finite Displacement Elastic Element: Wave Mixing

Finally, let us turn to an example of the workings of hysteretic elastic elements in
a wave mixing scenario. We consider a case similar to one explored in Chapter 3
involving traditional nonlinear elasticity: two compressional waves moving colin-
early. We begin with the equation of motion, Eq. (3.30),

ü +
1
τ0

u̇ = c2
L
∂2u
∂x2 + Λ[Σ] + λ1 f 1(t)δ(x) + λ2 f 2(t)δ(x) , (6.46)

where sources f1 and f2 at x = 0 launch two compressional waves, angular frequen-
cies ω1 and ω2, having different (or not) amplitude and phase, and Λ[Σ] is a hys-
teretic nonlinearity. We construct a specific model for Λ[Σ] based on the physical
picture of how the FDEE work,

Λ[Σ] = c2
L

Δb [Σ(x ′)]
2a

(δ(x – x ′ – a) – δ(x – x ′ + a)) , (6.47)
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where Δb , a displacement, is a function of the stress field at x ′, Δb = Δb0n[Σ(x ′)].
To construct n[Σ(x ′)], we use ρ(X , Y ) = α and

n(t) = n(0) +
∫∫

[Σ]
ρ(X , Y )η(X , Y ) dX dY , (6.48)

where here and above the square bracket, [Σ], is a reminder that the quantity in-
volved is a function of the history of Σ. We have made this choice of Λ so that in
the quasistatic limit ( f 1 = f 2 = 0, d/dt = 0) if ∂u/∂x = 0 for x < x ′ – a and
∂u/∂x = 0 for x > x ′ + a, then ∂u/∂x = Δb/(2a) for –a u x – x ′ u +a. Thus, there
is a displacement between x ′ + a and x ′ – a, u(x ′ + a) – u(x ′ – a) = Δb0n[Σ(x ′)],
a function of the history of the stress at x ′. We solve Eq. (6.46) using what is by
now a standard procedure: perform a Fourier analysis of u, f1, f2, and Δb , write
uω = λ1u(1)

ω + λ2u(2)
ω + λ1λ2u(3)

ω , and find

D –1
ω u(1)

ω = f (1)
ω ,

D –1
ω u(2)

ω = f (2)
ω ,

D –1
ω u(3)

ω = c2
L

Δb (3)
ω

2a
(δ(x – x ′ – a) – δ(x – x ′ + a)) ,

(6.49)

where to construct Δb (3)
ω we form Δb(t) using Σ(x ′, t) = K 0(ε(1)(x ′, t) + ε(2)(x ′, t))

from u(1)
ω and u(2)

ω . We focus on u(3)
ω , the amplitude broadcast from x ′ ± a, the

location of the hysteretic nonlinearity. Inverting D ω and using the delta functions
on the RHS of the u(3)

ω equation we have

u(3)
ω (x) = c2

L
Gω(x |x ′ + a) – Gω(x |x ′ – a)

2a
Δb (3)

ω =
1
2

eikω(x–x ′) Δb (3)
ω , (6.50)

where the representation on the right comes from using the appropriate Green
function, Eq. (3.112), and assuming a → 0. Except for the phase factor exp ikω(x –
x ′) the amplitude u(3)

ω is the amplitude Δb (3)
ω .

The amplitude Δb (3)
ω results from the stress at x ′. This stress in turn is due to the

superposition of the strain fields ε(1) and ε(2) at x ′. Without loss of generality we
can take these strain fields to produce a stress at x ′ of the form

Σ(t) = sin (ω1t) + r sin (ω2t + θ) , (6.51)

where ω1 and ω2 are the frequencies of sources f1 and f2, respectively, and, since
our concern is the frequency structure of Δb , we have a phase and r to measure the
relative amplitude of the two frequency components. The amplitude Δb3(t), con-
structed from Σ(t) and the “transformation” represented by Eq. (6.48), is Fourier
analyzed to produce Δb (3)

ω . In general this calculation cannot be carried out man-
ually. We illustrate the outcome in a sequence of figures in which we show, for
various choices of ω1, ω2, r, and θ, the stress-displacement relationship, Σ(t) vs.
Δb(t), and the power spectrum of Δb (3)

ω . Let us look at these figures. There are four
choices of the frequency pair ( f 1, f 2) = (ω1, ω2)/(2π), ( f 1, f 2) = (1, 1), (1, 14/16),
(1, 7/16), and (1, 2π/16). For most of these cases we look at the Δb(t) and Σ(t) vs. t,
the “phase portrait” Δb(t) vs. Σ(t) and the power spectrum of Δb(t).
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Fig. 6.13 Displacement vs. t, ( f 1, f 2) = (1.0, 1.0). (a) The
displacement Δb(t) from Eq. (6.49) as a function of time. The
two frequencies are commensurate. (b) The power spectrum
of Δb(t) as a function of frequency, f = ω/(2π). (c) Displace-
ment vs. stress. The displacement Δb(t) from Eq. (6.49) as
a function of the stress Σ(t) from Eq. (6.51).

1. ( f 1, f 2) = (1, 1). The two strain fields at x ′ are of the same frequency, am-
plitude, and phase. The strain fields add simply, r = 1, θ = 0 in Eq. (6.51),
and a simple Δb(t) – Σ(t) relationship results, Figure 6.13. The persistence
of the strain on stress reversal, for example, at Σ W ±2, is seen directly in
Figure 6.13, Δb(t) vs. Σ(t) at t = . . . 0.5, 1.0, 1.5 . . . It is this discontin-
uous rate of strain evolution that is responsible for the dominance of odd
harmonics in the power spectrum of Δb(t), Figure 6.13b.

2. ( f 1, f 2) = (1, 7/8). In this case the two strain fields have similar frequen-
cies so at x ′ a phase evolution occurs with the strain amplitude at x ′ alter-
nating between adding and subtracting. Since f1 and f2 are commensurate,
8 f 2 = 7 f 1, over time a repeating pattern occurs, Figure 6.14. The Δb(t) vs.
Σ(t) relationship is much more complicated than that for ( f 1, f 2) = (1, 1),
Figure 6.14c. The power spectrum of Δb(t) continues to be dominated by
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Fig. 6.14 Displacement vs. stress, ( f 1, f 2) = (1.0, 7/8). (a) The
displacement Δb(t) from Eq. (6.49) as a function of time. The
two frequencies are commensurate. (b) The power spectrum
of Δb(t) as a function of frequency, f = ω/(2π). (c) Displace-
ment vs. stress. The displacement Δb(t) from Eq. (6.49) as
a function of the stress Σ(t) from Eq. (6.51).

the basic “odd” harmonic structure seen for ( f 1, f 2) = (1, 1). There is de-
tail in the power spectrum that represents the amplitude modulation that
occurs as the two strains go in and out of phase.

3. ( f 1, f 2) = (1, 7/16). Again f1 and f2 are commensurate, 16 f 2 = 7 f 1, and over
time a repeating pattern occurs, Figure 6.15 (there is just one repetition of
the pattern in time in this figure). The complex, but repeatable, phase por-
trait is shown in Figure 6.15c. The power spectrum of Δb(t), Figure 6.15b,
is relatively complex, with the superficial vestiges of “odd” harmonics much
less apparent. The basic physical event, persistence of Δb(t) on stress re-
versal, continues, but these events occur in a complex way as time evolves.
Thus the “ragged” power spectrum.

4. ( f 1, f 2) = (1, π/8). In this case f1 and f2 are incommensurate. As a conse-
quence the time evolution of Δb(t) is followed out to a longer time. Nonethe-
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Fig. 6.15 ( f 1, f 2) = (1.0, 7/16). (a) The displacement Δb(t)
from Eq. (6.49) as a function of time. The two frequencies are
commensurate. (b) The power spectrum of Δb(t) as a function
of frequency, f = ω/(2π). (c) Displacement vs. stress. The
displacement Δb(t) from Eq. (6.49) as a function of the stress
Σ(t) from Eq. (6.51).

less, direct observation of Δb(t) vs. t is not very informative; a small segment
is shown in Figure 6.16a. The phase portrait, Figure 6.16c, reveals a complex
structure that is suggestive of chaotic motion. However, the power spectrum
of Δb(t) is relatively simple. Over a long period of time the fundamental
frequencies in the motion come to dominate the relatively slowly varying
features that make the phase portrait so complex.

The discussion here reveals that a rudimentary hysteretic elastic element, for ex-
ample, a localized set of FDEE with ρ(X , Y ) constant, irradiated by a pair of strain
fields broadcasts, a strain field with a complex time signature. Thus, in principle
a careful study of such an elastic element with sets of ( f 1, f 2) pairs provides the
means to learn something of the nature of the elastic element. For a hysteretic elas-
tic element that is spatially local, such as the one we have treated, this is an imag-
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Fig. 6.16 ( f 1, f 2) = (1, π/8). (a) The displacement Δb(t) from
Eq. (6.49) as a function of time. The two frequencies are incom-
mensurate. (b) The power spectrum of Δb(t) as a function of
frequency, f = ω/(2π). (c) Displacement vs. stress. The dis-
placement Δb(t) from Eq. (6.49) as a function of the stress Σ(t)
from Eq. (6.51).

inable scenario. So think about a crack, a single set of asperities, etc. For a spatially
distributed set of hysteretic elastic elements we face the problem of the phase of
strain field arriving at each space point and the problem of the coherent superposi-
tion of the signals broadcast from each space point. This is, of course, the bread and
butter of calculations like those of Jones and Kobett. For the relatively complicated
interaction like Λ in Eq. (6.47) such a program is not feasible with any generality.
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We are content to call attention to the difficulty. The few calculations that have been
carried out for specific models/circumstances will be mentioned below [14, 15].

There are a few principles. In general the sum of the strain amplitudes incident
on a scatterer determine the amplitude of the scattered signal. The simple ampli-
tude rules of classical nonlinear elasticity do not apply. Similarly, the dynamics of
the scatterer cause the broadcast of frequencies not present in the incident strain
fields, so the rules of frequency addition from classical nonlinear elasticity do not
apply.

6.4
Models with Hysteresis

The essential feature of the model described above was the presence of hystere-
sis in the displacement of elastic elements and in the resulting equation of state.
There are other studied models for the behavior of contacts/elastic systems that
explicitly introduce hysteresis, for example, Hertzian contact models [10], the Mas-
ing rules [16], and the endochronic model [17]. We describe these in the appendix,
Section 6.6, and we show their connection to the FDEE model. We do not exam-
ine what these models have to say in every imaginable context but rather consider
the behavior of each in the context of a resonant bar experiment. In the context of
a resonant bar all of these models are identical to the FDEE model. Thus we take
the FDEE model as representative of a large class of models.

6.5
Summary

In this chapter we have looked at the behavior of hysteretic elastic elements in
a number of experimental scenarios. We have done this using elastic elements
that have a single property, two different displacements that they move between
according to the stress that they must support, the FDEE. The rule for motion be-
tween displacements (states) is hysteretic. A Preisach space was introduced to aid
in the bookkkeeping necessary to follow the history of the states (displacements) of
the elastic elements. We considered the behavior of collections of such elastic ele-
ments in three scenarios: (1) quasistatic response to a stress protocol, (2) dynamic
response to a sinusoidal stress drive in a resonant bar, and (3) wave mixing. The
fundamental lesson from all of this is that there are important features in what
is seen that depend critically on stress protocol. Scenarios that are relatively sim-
ple in continuum elasticity are often complex when hysteretic elastic elements are
involved.

We have examined a number of other models for the behavior of an elastic sys-
tem with hysteresis. We showed that all of these are essentially equivalent to the
FDEE model. The single exception is the endochronic model, which has the same
hysteretic behavior as the other models, but does not have the amplitude-dependent
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change in modulus that is found in the other models. Thus the FDEE model of
McCall and Guyer captures the essential features of all of the hysteretic models
examined. This is a form of universality.

In every instance in which we have considered the response of FDEE, we have
taken it as given that they have no intrinsic dynamics. The FDEE respond instan-
taneously, that is, change state instantaneously, whether in quasistatic or dynamc
scenario, to the demands of the stress that they feel. This may be far from the truth.
In the next chapter we look at modeling of the dynamics of elastic elements, and
in Chapters 10 and 11 we examine some experimental evidence of their dynamics.

6.6
Models with Hysteresis, Detail

6.6.1
Hertzian Contacts

In Chapter 4 we discussed single Hertzian–Mindlin contacts under conditions of
simple forcing in some detail and we alluded to the possibility of complicated be-
havior under more elaborate forcing conditions. These complications arise when
one adds to the mechanics of material distortion, the emphasis of our earlier dis-
cussion, the consequences of contact slipping in the presence of friction. A detailed
discussion of this subject is beyond the scope of our inquiry. However, there are
several results, for specific contact models, that are relevant here.

6.6.1.1 The Mindlin Model; Shear Contact with Friction [18]
For a Hertzian contact, with friction coefficient μ and under normal load N, the
equation for the shear strain that results from an oscillatory shear force T is

ε∗↑(x , Y ) = 1 + (1 – Y )2/3 – 2
(

1 –
Y
2

–
x
2

)2/3

, Ṫ > 0 , (6.52)

ε∗↓(x , Y ) = –ε∗(–x , Y )↑ , Ṫ < 0 , (6.53)

where x = T/(μN ) and –Y u x u +Y . These equations have their sterile appearance
because we have incorporated the elastic constant, the Poisson ratio, and numbers
into the scaled form ε∗. We put this equation of state in standard form, Eq. (6.15)
or (6.29),

ε∗ = ε∗B + s(ẋ)εH , (6.54)

2ε∗B = ε∗↑ + ε∗↓ , (6.55)

2ε∗H = ε∗↑ – ε∗↓ , (6.56)
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where we might read the subscript B (H) as backbone and hysteretic. Assume Y << 1
and develop a series expansion for ε∗B and ε∗H in x and Y. Find

ε∗B =
2
3

x +
1
9

Yx +
1
81

x3 + . . . , (6.57)

ε∗H = –
1

18
(Y 2 – x2) + . . . (6.58)

Of particular interest are the two terms that depend on the amplitude of the shear
force, Y. To emphasize these we write

ε∗ = · · · +
1
18

[
2Yx – s(ẋ)(Y 2 – x2)

]
+ . . . (6.59)

and compare to Eq. (6.28). As the analytic forms are identical, we expect the same
qualitative/quantitative behavior from a system described by the Mindlin model as
we found above for a system described by the MG model.

6.6.1.2 An fcc Lattice of Hertz–Mindlin Contacts [10]
Nihei and coworkers have developed a model for a rock that involves an fcc lattice of
Hertzian contacts. For the case of uniaxial strain, x = εzz , taken through a periodic
loop, they find

σ∗
↑ = (1 – μ)x3/2 + 2μ[(1 + K 2)X – K 2x ]3/2 , ẋ > 0 , (6.60)

σ∗
↓ = (1 + μ)x3/2 + 2μ[(1 + K 2)X – K 2Z ]3/2

– 2μ[(1 + K 3)Z – K 3x ]3/2 , ẋ > 0 ,
(6.61)

where the upper (lower) limit of the strain is X (Z), Z u x u X , and the constants
Kn are K 3 = –1 – K 2, K 2 = –(1 + μK 1)/(2μK 1), and K 1 = (1 – ν/2)/(1 – ν). As with
Eq. (6.53), various numbers and elastic constants are incorporated in the definition
of the ∗ quantities. We make one further scaling by dividing by X 3/2 and redefining
σ∗. We have

σ∗
↑ = (1 – μ)x3/2 + 2μ[(1 + K 2) – K 2x ]3/2 , ẋ > 0 , (6.62)

σ∗
↓ = (1 + μ)x3/2 + 2μ[(1 + K 2) – K 2Z ]3/2

– 2μ[(1 + K 3)Z – K 3x ]3/2 , ẋ > 0 ,
(6.63)

with Z = (Z/X ) u x = (x/X ) u 1. Proceeding as above we put these equations in
standard form:

σ∗ = σ∗
B + s(ẋ)σH , (6.64)

2σ∗
B = σ∗

↑ + σ∗
↓ , (6.65)

2σ∗
H = σ∗

↑ – σ∗
↓ . (6.66)
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We consider small strain change from the maximum strain x = 1 and develop σ∗

in Taylor series, x = 1 – δ, Z = 1 – Δ, 0 u δ u Δ << 1, with the result

σB = 1 + C 10δ + A11Δδ + C 20δ2 + C 30δ3 + . . . (6.67)

σH = A11δ(Δ – δ) + . . . (6.68)

The coefficients C nm lead with the numerical factor appropriate to the expansion
of (1 – x)3/2 and have corrections proportional to μ:

C 10 = –
3
2

+ 3μ
(

K 2 +
1
2

)
,

C 20 =
3
8

–
3
4

μ
(

K 2 +
1
2

)
,

C 30 =
1
16

–
1

16
μ
(
1 + 3K 2 + 3K 2

2 + 2K 3
2

)
.

(6.69)

The coefficient giving the linear frequency shift in σB as well as the leading term
in σH is

A11 = μ
3
4

K 2(1 + K 2) . (6.70)

For the choice ν = 0.16, μ = 0.2, K 2 = –2.7826, and A11 = 0.74405. If we measure δ
from Δ/2 = u, δ = (Δ/2) + u, we have

σ∗ = · · · + A11[2uu – s(u̇)(u2 – u2)] + . . . (6.71)

This is to be compared to Eqs. (6.59), (6.29), and (6.28).
An fcc lattice of Hertzian contacts is a specific mechanical model for an intergan-

ular bond that has exactly the same properties as the MG model. The MG model,
deliberately constructed without microscopic/mesoscopic underpinnings, leads to
behaviors discussed above that we can immediately take over as the behaviors of
an fcc lattice of Hertzian contacts because of Eqs. (6.59) and (6.71).

There is a final pedagogic point. The result in Eq. (6.58), for shear forces only,
has no term in x2. A term that scales as x2 in the force/strain relation would come
from a term in the energy that scales as x3 and would permit a t + t → t wave mix-
ing process. There is no such process in continuum elasticity, and the mechanical
model is consistent with this. On the other hand, for the force/strain relation for an
fcc lattice of Hertzian contacts there is a term in δ2, Eq. (6.67), a l + l → l process is
allowed and consistent with continuum elasticity. See the discussion in Chapter 3.

6.6.2
The Masing Rules [16]

The Masing rules are a model used for elastic systems with complex quasistatic
stress/strain relations. This model is qualitatively similar to the MG model but
different in detail as it uses the memory of only the most recent strain reversal:
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1. If the strain reversed from decreasing to increasing at strain/stress point
(ε1, σ1), then the stress/strain relationship is

σ↑ = σ1 + G
ε – ε1

1 + L
2 (ε – ε1)

, (6.72)

while ε̇ remains greater than 0.
2. If the strain reversed from increasing to decreasing at strain/stress point

(ε2, σ2), then the stress/strain relationship is

σ↓ = σ2 + G
ε – ε2

1 – L
2 (ε – ε2)

, (6.73)

while ε̇ remains less than 0.

Here G is the linear elastic constant, ε = ε1 + δε in Eq. (6.72), with Lδε << 1, and L
is related to the stress at large strain; ε → ∞ in Eq. (6.72) gives σ → 2G/L. A strain
protocol with a sequence of strain reversals results in stress given by alternate use
of Eqs. (6.72) and (6.73).
For the case of a resonant bar in steady state we have (ε1, σ1) = –(ε2, σ2) = (ε0, σ0).
When σB and σH are calculated as above, Eq. (6.64), the result is

σB = Gε
1(

1 + L
2 (ε0 + ε)

) (
1 + L

2 (ε0 – ε)
) , (6.74)

σH = G
L
2

(
1 + L

2 ε0
)

(1 + Lε0)
ε2

0 – ε2(
1 + L

2 (ε0 + ε)
) (

1 + L
2 (ε0 – ε)

) . (6.75)

The small numbers are Lε0 and Lε, –Lε0 u Lε u Lε0. Carrying out the Taylor series
expansion in these variables leads to

σB = Gε
[

1 – γ +
(

1 –
P
4

)
γ2 + . . .

]
(6.76)

and

σH =
1
2

Gε0P
[

γ –
3
2

γ2 + . . .
]

, (6.77)

where γ = Lε0 and P = 1 – ε2/ε2
0. We have

σ = G
(
ε – Lε0ε + s(ε̇)2L(ε2

0 – ε2) + O (γ2)
)

, (6.78)

which is to be compared with Eq. (6.30), to which it is identical. The Masing
rules have the same physics as the MG model featured above. The measure of the
strength of the nonlinear coupling L can be found from quasistatic measurements
that probe large strain, see below Eq. (6.73).
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6.6.3
The Endochronic Formalism [17]

Endochronic formalisms for the behavior of elastic systems are used widely in cir-
cumstances where plastic motion is prominent. Minster and coworkers have adapt-
ed this formalism for the description of geophysical materials, and we will sketch
a simplified version of their treatment of a Berea sandstone. We begin with a set of
three coupled equations for the stress, strain, and plastic strain, γ,

dε =
dσ
K

+ dγ , (6.79)

σ =
M∑
i=1

qi (γ : . . .) , (6.80)

qi = ki

∫ z

0
e–αi (z–z′)s(γ̇(z′))dz′ , (6.81)

where s(γ̇) is the sign of γ̇ and

dz = |dγ| = s(γ̇)dγ . (6.82)

The first of these equations describes the strain that results from the stress in the
usual way, σ/K , plus an additional additive strain, the plastic strain γ. The plastic
strain is the analog of the discontinuous displacements of the MG model, that is,
it is a displacement that appears without apparent additional stress. The second
equation states that the stress is built up as a sum over stress elements qi that are
found from the third equation. It is the third equation that requires attention. The
derivative of qi with respect to z can be written in the form

dq
dγ

= –α[s(γ̇)q – Λ] , (6.83)

where Λ = k/α and we have dropped the index i until required. This equation
has the same formal structure as the equation of motion for a strain element in
the model of slow dynamics introduced by Lomnitz, Eq. (7.2). Chronic is in the
description of this formalism because of the analogy between z in Eqs. (6.81) or γ
in Eq. (6.83) and time.

While in general the endochronic formalism is hard to work with, in the special
case of a resonant bar, one can get quite far analytically. When Eqs. (6.79)–(6.81) are
used to describe the material in a resonant bar, ε, γ, and σ undergo cyclic motion
(–ε0, –Δ, –σ0) → (ε0, Δ, σ0) → (–ε0, –Δ, –σ0). Thus we integrate the two forms of
Eq. (6.83) (dq = –αqdγ + kdγ from –Δ to γ and dq = αqdγ + kdγ from Δ to γ) to find

q↑(γ) = Λ –
(
Λ + q(Δ)

)
e–αΔe–αγ , γ̇ > 0 , (6.84)

q↓(γ) = –Λ +
(
Λ + q(Δ)

)
e–αΔe+αγ , γ̇ < 0 . (6.85)
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Setting q↑(γ = Δ) = q(Δ) in Eq. (6.85) leads to q(Δ) = Λ tanh(αΔ),

q↑(γ) = Λ
[
1 – sech(αΔ)e–αγ

]
, (6.86)

q↓(γ) = Λ
[
–1 + sech(αΔ)e–αγ

]
, (6.87)

and

σ↑(γ) =
M∑
i=1

Λi
[
1 – sech(αi Δ)e–αi γ

]
, (6.88)

σ↓(γ) =
M∑
i=1

Λi
[
–1 + sech(αi Δ)e+αi γ

]
. (6.89)

These are equations for the stress on strain increase and strain decrease as a func-
tion of the strength of the plastic strain, γ, which is unknown. To proceed we find
an analogous set of equations for the strains ε↑ and ε↓.

Carry out integrations of Eq. (6.79) to find

ε↑(γ) = –ε0 + γ + Δ +
1
K

(σ↑ + σ0) , (6.90)

ε↓(γ) = ε0 + γ – Δ +
1
K

(σ↓ – σ0) . (6.91)

The requirement ε↑(γ = Δ) = ε0 leads to σ0 = K (ε0 – Δ). Note q↑(γ) = –q↓(–γ),
σ↑(γ) = –σ↓(–γ), and ε↑(γ) = –ε↓(–γ).

To find ε as a function of σ, solve Eq. (6.88) for γ as a function of σ to be used in
Eq. (6.90) [and Eq. (6.89) for use with Eq. (6.91)]. It is convenient to solve Eq. (6.88)
from the Taylor series expansion of the RHS (to second order in γ as this is the
leading NL term),

σ↑ =
M∑
i=1

ki

[
γ + αi

1
2

(Δ2 – γ2) + O (γ3)

]
,

= K
[

γ +
a1

2
(Δ2 – γ2) + O (γ3)

]
,

(6.92)

where K =
∑

ki and an =
∑

ki αn
i /K . Rearrange

γ =
σ
K

–
a1

2
(Δ2 – γ2) + O (γ3) (6.93)

and iterate to find

γ =
σ
K

–
1
2

a1

(
σ2

0

K 2 –
σ2

K 2

)
+ O (γ3) , (6.94)

where we have used Δ = σ0/K . [The result Δ = σ0/K is the leading approximation
to σ(Δ) = σ0 =

∑
Λ tanh (αΔ) from above Eq. (6.86).] Using this equation for γ in

Eq. (6.90) leads to

ε↑ = –ε0 +
1

K 0
(σ + σ0) –

1
2

a1

(
σ2

0

K
2 –

σ2

K
2

)
, (6.95)
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where

1
K 0

=
1
K

+
1
K

. (6.96)

Similar treatment of Eqs. (6.89) and (6.91) leads to

ε↓ = ε0 +
1

K 0
(σ – σ0) +

1
2

a1

(
σ2

0

K
2 –

σ2

K
2

)
. (6.97)

With the “up” and “down” components of the stress/strain relation in hand we
proceed as above and form the “backbone” and hysteretic parts:

ε = εB + s(ε̇)εH ,

2εB = ε↑ + ε↓ ,

2εH = ε↑ – ε↓ ,

(6.98)

with the results

εB =
σ

K 0
+ O (γ3) (6.99)

and

εH = –
1
2

â1

(
σ2

0

K 2
0

–
σ2

K 2
0

)
+ O (γ3) , â1 = a1K 2

0/K
2

. (6.100)

Thus we have

ε =
1

K 0

[
σ – s(ε̇)

1
2

â1

K 0

(
σ2

0 – σ2
)

+ O (γ3)

]
, (6.101)

to be compared to Eqs. (6.59), (6.29), and (6.28). In contrast to the models above,
the MG model, models based on the behavior of Hertzian contacts, and the Masing
rule models, while the endochronic model yields attenuation proportional to the
strain field, it has no first-order change in the modulus proportional to the strain
field.

Before we leave the endochronic model it is useful to interpret the results we have
found. From Eqs. (6.99) and (6.96) it is apparent that the elasticity of the system is
that of a parallel arrangement of hysteretic strain elements in series with a conven-
tional strain element. The individual hysteretic elastic elements have stress that
depends on the plastic strain:

qi = ki

[
γ + s(γ̇)

αi

2

(
Δ2 – γ2

)
+ O (γ3)

]
. (6.102)

This interpretation might suggest a number of models, able to be built up from
considering the arrangement of various elastic elements and having the same
physics as the endochronic model, that are based on a less abstract formalism.
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7
The Dynamics of Elastic Systems; Fast and Slow

In this chapter we take up the problem of the dynamics of elastic elements. In this
context, fast dynamics,slow dynamics, and conditioning appear. As we proceed these
words and possibly related jargon will be given careful meaning. We begin with
a discussion of fast and slow dynamics for the elastic elements in linear elastic
systems, Section 7.1; quasistatic response is treated in Section 7.1.1 and dynamic
response in Section 7.1.2. In Section 7.2 we allow nonlinear elastic elements, the
FDEE of Chapter 6, to have finite time dynamics and extend the ideas from Sec-
tion 7.1 to these. Fast and slow dynamics are defined in these discussions in terms
of the response time of elastic elements. A second use of slow dynamics is in the
description of the time evolution of auxiliary fields that influence the elastic state
of a system, temperature, saturation, and the conditioning field, a field caused by
a large amplitude AC pump. This is discussed in Section 7.3. In Section 7.3.1 we
describe the dynamics of the conditioning field. In Section 7.3.2 we describe the
dynamics of response to the temperature field (Figure 7.1). (Further, extensive di-
cussion of fast dynamics, in the context of resonant bar measurements, appears in
Chapter 11.) Our summarizing remarks are in Section 7.4.

7.1
Fast/Slow Linear Dynamics

For the discussion of fast and slow linear dynamics of elastic elements we use the
treatment of Lomnitz [1]. While this does not give the most general description
of phenomena, it has the great advantage of being based on a physical idea that
survives generalization well. Based on the EMT result from Chapter 5, we assume
that the strain in a material at stress Σ can be built up as the sum of the strains in
a set of instances of an elastic element, that is,

ε(Σ) = 〈εi (Σ)〉 =
1
N

N∑
i=1

εi (Σ) , (7.1)

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
including Rocks and Soil. Robert A. Guyer and Paul A. Johnson
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40703-3
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Fig. 7.1 Fast/Slow Dynamics. Fast and slow dynamics occur
in two distinct contexts: (a) when the dynamics of elastic el-
ements is fast/slow (this may be linear or nonlinear) and (b)
when the elastic elements respond to a slow auxiliary field as
in the case of “conditioning” (where the slow auxilliary field X
is created by a large-amplitude fast drive), temperature, and
saturation.

where the index i labels instances of the elastic element. Following Lomnitz we
assume that each instance of an elastic element obeys an equation of motion

dεi

dt
= –

1
τi

(
εi –

Σ
A

)
, (7.2)

where all instances of an elastic element have the same elastic constant, A, but
different relaxation times, τi .

7.1.1
Quasistatic Response

When the material is subject to a step in stress, Σ(t) = Σ0θ(t), εi (t < 0) = 0, we have

εi (t) =
Σ0

A

(
1 – e–t/τi

)
, (7.3)
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and

ε(t , Σ0) =
Σ0

A
1
N

N∑
i=1

(
1 – e–t/τi

)
=

Σ0

A
1
N

N∑
i=1

Bi (t) =
Σ0

A
〈B (t)〉 , (7.4)

〈B (t)〉 =
1
N

N∑
i=1

(
1 – e–t/τi

)
, t v 0 . (7.5)

1. Assume that the τi are distributed between τ< and τ> according to

p(τ) =
C
τμ , (7.6)

where μ > 1,
∫

dτ p(τ) = 1, and C = (1 – μ)/(τ1–μ
> – τ1–μ

< ).
2. For τ< < t < τ> make the simple approximation to Bi in Eq. (7.5):

Bi = 1 , t > τi ,

Bi = 0 , t < τi .
(7.7)

3. Using Eq. (7.7) in Eq. (7.5) gives

ε
ε∞

= 〈B (t)〉 =
∫ t

τ<

p(τ)dτ ,

=
1 – rμ–1

1 – rμ–1
0

, μ > 1 ,

=
ln(1/r)
ln(1/r0)

, μ = 1 , (7.8)

where ε∞ = Σ0/A, r = τ</t , τ< u t u τ> → τ</τ> = r0 u r u 1. In Figure 7.2
we show an example of 〈B (t)〉 as a function of t for τ< = 0.0001, τ> = 1.0,
2 u μ u 1.1, and μ = 1, which leads to log(t) behavior.

Several remarks are in order.
1. On a time scale faster than any of the relaxation times, t << τ<, none of the

elastic elements can respond to the applied stress, Bi W 0, ∀i , and ε ~ 0.
2. On a time scale slower than any of the relaxation times, t >> τ>, all of the

elastic elements can respond to the applied stress Bi W 1, ∀i , and ε ~ ε0.
3. The important time scales for seeing evidence of the dynamics of the elastic

elements are times within the domain of the relaxation time spectrum. Then
what one sees depends importantly on the nature of the relaxation time
spectrum.
a. For μ = 2 there are relatively more short relaxation times than long, and

the evolution of ε to ε∞ occurs early in the time interval that covers the
relaxation time spectrum. See Figure 7.2.

b. For μ → 1 there are equal numbers of relaxation times in all decades of
the relaxation time spectrum, and the evolution of ε to ε∞ occurs uniform-
ly over all times that cover the relaxation time spectrum. See Figure 7.2.
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Fig. 7.2 Strain response to Transient Stress. The value of the
average strain, Eq. (7.8), as a function of time for p ∝ τ–μ,
0.0001 u τ u 1 and 2 u μ u 1.1. For μ = 2, 〈B (t)〉 rises quickly
to 1, the upper curve. For μ → 1, 〈B (t)〉 ~ log(t), the lowest,
dashed, curve.

c. The ideas that are descriptive here can be made formal by using the cumu-
lative probability, P (τ) ∝ ∫ τ p(z)dz. In the case of p ∝ 1/τ, P (τ) ∝ ln(τ)
and is uniform in all decades.

In the present context we see that when there is a set of instances of elastic ele-
ments, with response characterized by a broad spectrum of time scales, some of
the elastic elements are fast and respond to an applied stress, and some of the
elastic elements are slow and are unable to notice an applied stress. A given elas-
tic element is judged fast/slow depending on the relationship of the time scale on
which it responds to a time scale of observation. In the example here on time scale
t << τ<, all of the elastic elements show evidence of what is termed slow dynamics.
On time scale t >> τ> all of the elastic elements show evidence of what is termed fast
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dynamics. The important point is that the notions of fast/slow dynamics are defined
relative to a careful statement of the circumstance of observation. Roughly, when
the time scale of observation influences the outcome of observation, one is seeing
evidence of slow dynamics. For example, in an early measurement Lomnitz found
the strain relaxation of a sandstone to be approximately log(t) for 1 s u t u 106 s [2].

7.1.2
AC Response

Suppose the elastic elements, described by Eq. (7.2), are subject to a sinusoidal
drive, Σ(t) = Σ0 sin ωt . Then in steady state, that is, after all transients have died
away, the strain εi is

εi = ai sin ωt + bi cos ωt ,

ai =
1

1 + (ωτi )2 ε∞ ,

bi =
–ωτi

1 + (ωτi )2 ε∞ ,

(7.9)

where ε∞ = Σ0/A. From the equation for the in phase response we define an effec-
tive frequency-dependent compliance using the average over instances

1
A(ω)

=
∫

dτ p(τ)
1

Ai
,

1
Ai

=
ai

A
=

1
1 + (ωτi )2

1
A

. (7.10)

From the energy lost per period (per unit volume) we have

ΔW =
∫

dτ p(τ)ΔW i ,

ΔW i =
∫ T 0

0
Σ(t)dεi (t) = –πωΣ0bi

=
ωτi

1 + (ωτi )2 πΣ0ε∞ ,

(7.11)

where T 0 = 2π/ω. Carrying out the average over instances for the case p(τ) ∝ 1/τ
and using the definition of 1/Q above, Eq. (6.42), we have

A
A(ω)

= 1 +
ln
(

1+(ωτ>)2

1+(ωτ<)2

)
ln
(

τ>
τ<

) ,

1
Q

=
arctan(ωτ>) – arctan(ωτ<)

ln
(

τ>
τ<

) .

(7.12)

In Figures 7.3 and 7.4 we show A/A(ω) vs. ω and 1/Q vs. ω, respectively.
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Fig. 7.3 Strain response to AC stress, elastic constant. The
value of the effective elastic constant, A(ω), as a function of ω
for the case μ = 1 and 0.0001 u τ u 1, Eq. (7.12). As ω → 0,
A(ω) decreases because more and more elastic elements are
able to follow the force; there is more displacement per unit
force.

From Figure 7.3 we see that A(ω) decreases, becomes softer, as ω → 0. This
is understood by the same type of argument as that offered above. In the current
context the frequency ω sets the time scale. As ω → 0 the time that separates slow
from fast becomes larger and larger, and more and more elastic elements are able
to respond in phase with the AC drive. There is more strain (displacement) per
cycle; the system is elastically softer.

From Figure 7.4 we see that 1/Q is essentially independent of ω except near the
edges of p(τ). The reason for this is that b(τ), Eq. (7.9), has a maximum at τ = ω–1,
where its value is 1/2. More than 50% of the contribution to 1/Q comes from τ
close to 1/ω, that is, in the range 1/(3ω) u τ u 3/ω. As ω changes, the values of τ
that contribute importantly to 1/Q change, but not 1/Q ; it is independent of ω.
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Fig. 7.4 Strain response to AC stress, damping. The value
of the damping constant, 1/Q , as a function of ω for the case
μ = 1 and 0.0001 u τ u 1, Eq. (7.12). Because the primary
contribution to the attenuation comes from strains that re-
spond on time scale ω–1, the attenuation is independent of ω
for τ< u ω–1 u τ>.

Let us restate these results in different language. From Eq. (7.9) we can write εi

in terms of an amplitude and a phase

εi = ε∞Ri sin (ωt – φi ) , (7.13)

where Ri = 1/
√

1 + (ωτi )2 and φi = ωτi Ri . At ωτi = 1, Ri = 1/
√

2 and φi = π/4. At
fixed ω in the interior of the range of 1/τ there are three groups of elastic elements,
Figure 7.5:

1. τ< < τ < 1/(3ω) (φi << π/4): the motion of these elastic elements is essen-
tially in phase with the drive. These elastic elements exhibit fast dynamics.

2. 3/ω < τ < τ> (φi >> π/4): the motion of these elastic elements is essentially
out of phase with the drive. These elastic elements exhibit slow dynamics.
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Fig. 7.5 Linear slow dynamics. (a) At time t
following a step in stress the elastic elements
with time scale less than t are able to respond
(those with time scale greater than t are es-
sentially inert). So the strain builds up propor-
tional to the number of such elastic elements,
as log(t) for μ = 1. (b) When the system is
subject to an AC drive at frequency ω, the ar-

gument in (a) applies to elastic elements with
time scale less than ω–1. The attenuation in-
volves primarily elastic elements that respond
on time sale ω–1 and is independent of ω.
Elastic elements with τ < t (τ < ω–1) are ex-
hibiting “fast dynamics”, and those with τ > t
(τ > ω–1) are exhibiting “slow dynamics”.

3. 1/(3ω) u τ u 3/ω (φi W π/4): the motion of these elastic elements, neither
slow nor fast, contributes most of the energy loss.

Often one finds that the distribution of relaxation rates is more complex than
Eq. (7.6), for example, of the form

q(τ) = (1 – f )δ(τ) + f p(τ) , (7.14)

where p(τ) is given by something like Eq. (7.6). That is, there is a finite fraction,
1 – f , of essentially infinitely fast relaxation rates. So that in an experiment there is
an instantaneous response, fast dynmaics, independent for all practical purposes
of time scale. The elastic elements so responding contribute nothing to the attenu-
ation, 1/Q , and nothing to the frequency shift and appear as an instantaneous net
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strain in a transient measurement of amplitude (1 – f )ε∞. Thus a factor f in each
of Eqs. (7.8), (7.10), and (7.11) accounts for what happens.
The treatment of the dynamics of linear elastic elements, due to Lomnitz, has
a number of generalizations [3]. The results of these generalizations can be cast
as a quantitative relationship between Q, the frequency shift, and the amplitude of
log(t). So also can Eqs. (7.8) and (7.12) [4, 5].

7.2
Fast Nonlinear Dynamics

In the discussion of the dynamical response of finite displacement only elastic ele-
ments (FDEE) in Chapter 6 we called attention to the explicit assumption of instan-
taneous dynamics. That is, the elastic elements changed state instantaneously and
the end-to-end displacement across an elastic element followed suit. The elastic
elements we are concerned with are typically associated with mesoscopic physical
structures. Indeed on some time scale their behavior is effectively instantaneous.
There are other time scales on which one would expect to capture the motion of
the elastic elements. In this section we describe a particular example of dynamical
generalization of the model of FDEE.

Consider the one-dimensional chain of elastic elements described by the equa-
tion

mük +
m
τ

u̇k = γ
[
(uk+1 – uk – bk) – (uk – uk–1 – bk–1)

]
+ F k , (7.15)

where bk = b0 + ηkΔb and ηk = ±1. This is a linear chain of elastic elements,
like those in Eq. (6.1), that enforce a separation between their ends according to
the state of the elastic element, specified by η, Figure 7.6. The displacement vari-
ables are associated with a set of sites separated by b0 and the state variables are
associated with the bonds to the right of the sites. In the picture from Chapter 6
the dynamics of the ηk is the instantaneous dynamics given by the rules above
Eq. (6.11) that is followed in a (Σc , Σo ) Preisach space. The physics in the rules is
that an elastic element undergoes a finite displacement at particular values of the
stress. This stress is the stress carried by the elastic element, Σk ∝ γ(uk – uk–1 – b0)
in leading approximation. One way to proceed is to give ηk a dynamics that is driv-
en by an energy landscape is Σk . A model called the dynamic McCall–Guyer model
(DMG model) does this [6]. We will look at this model in some detail.

In the DMG model, Eq. (7.15) for uk is complemented by an equation of motion
for ηk :

η̇k =
1
τη

(
–αk + 	kηk – η3

k

)
, (7.16)

where

	k =
T k

c – T k
o

2
, (7.17)



154 7 The Dynamics of Elastic Systems; Fast and Slow

k-1 k k+1

uk-1 uk uk+1

k-1 k k+1

  =  1

  =  + 1

2 b

=

Fig. 7.6 Dynamic hysteretic elastic elements. Hysteretic elastic
elements may enforce two displacements between their ends.
The state variable that determines which displacement is to be
enforced can have a dynamics, Eq. (7.16), that involves motion
in an energy landscape that depends on the force carried by the
elastic element (Figure 7.7).

αk =
T k

c + T k
o

2
, (7.18)

T k
c = tanh (κ( f k

c – f k)) , (7.19)

T k
o = tanh (κ( f k

o – f k)) , (7.20)

and f k = γ(uk+1 – uk – b0). The state variable ηk moves in an energy landscape
shaped by fk, the force carried by the elastic element. Of course, in this case we
have an energy landscape characterized by two force values, ( f c , f o), instead of two
stress values. The parameter κ controls the sharpness of the response to fk. In the
absence of other understanding, the state variable is given Brownian dynamics,
Eq. (7.16).

The hysteretic response of the elastic element is determined by the behavior of
the state of the elastic element, η. The state of the elastic element is taken to de-
pend on the internal force, f k = γ(uk+1 – uk – b0), that it is required to support.
In mechanical equilibrium we have f k = F , where F is the applied force. Thus
uk+1 – uk = b0 + F/γ. The force and state conventions are that F >> 0 is a force of
tension, to the right, and that η = +1 under large applied tension. Similarly, under
a large applied compression, F << 0, η = –1. Thus the state, an Ising-like variable,
has a sign that is the sign of the applied force F.

The equation of motion for η is complicated by the involvement of the internal
force, fk, in the determination of α and 	. The essential content of this equation of
motion can be seen by replacing the internal force in the element by a force pre-
scribed from outside, f k = F . Then the RHS of the equation for η can be regarded
as coming from a potential. We write Eq. (7.16) as

τηη̇ = –
∂V (η, F )

∂η
, (7.21)
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Fig. 7.7 Energy landscape. The energy landscape for ( f c , f o ) =
(1.0, 0.0), see Eq. (7.20) and the discussion below, Eq. (7.22).
(Please find a color version of this figure on the color plates)

where

V (η, F ) = α(F )η – 	(F )
η2

2
+

η4

4
(7.22)

and α(F ) and 	(F ) are found from Eqs. (7.16)–(7.20) with fk replaced by F. The
potential V (η, F ) is the sum potential of a particle in an external field of strength
α(F ) and a potential symmetric in η → –η, a φ4 potential. Because f o < f c , 	(F )
is always greater than or, at most, equal to zero ( f o = f c). For η near 0 the 	 term
in the potential always pushes η away from 0. For large |F |, T c W T o W –sign(F ),
α(F ) → –sign(F ), 	(F ) → 0, and V (σ, F ) → –sign(F )η + η4/4. At large negative
F (the elastic element is under compression) η is pushed toward –1, and at large
positive F (the elastic element is under tension) η is pushed toward +1.

In Figure 7.7 we show a contour plot of the potential V (σ, F ) as a function of
F and η for the case ( f c , f o) = (0.0, 1.0) and κ = 16.0. This potential, an energy
landscape, has a well at η = +1 for η > 0 that terminates abruptly near F W f o = 0.0
and a second well for η < 0 that terminates abruptly near F W f c = 1.00.
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In Figure 7.8 we show η as a function of time (lower panel) from the solution
to Eq. (7.16) for the case that F is a function of time that “chirps” up in frequency
(upper panel). The parameters for the force on η are those for the energy landscape
in Figure 7.7; we use τη = 1/16 and the chirp is from period T 1 = 1 to T 6 = 1/32. In
Figure 7.9 we plot η as a function of F. The trajectory in this plot could be overlaid
on the energy landscape in Figure 7.7. What one sees is a sequence of hystere-
sis loops that begin with loops that have a range of ±1, (ωτη)/2π = 1/16, and as
the force moves more rapidly evolve toward loops that are at almost constant η,
(ωτη)/2π = 1.2. This particular elastic element exhibits fast dynamics if driven
at frequencies (ωτη)/2π < 1/4; it exhibits slow dynamics if driven at frequencies
(ωτη)/2π > 1/4. Thus for the model in Eqs. (7.15)–(7.20) the system will exhib-
it fast nonlinear dynamics involving those elastic elements for which τη is such
that ωτη << 1. Numerical simulations of Eqs. (7.15)–(7.20) yield the result shown
in Figure 7.10. Analysis of these resonance curves for the frequency at resonance
and for the dependence of the amplitude at resonance on amplitude, Eq. (6.39),
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Fig. 7.8 Force protocol and η response. (a) The force protocol,
a chirp as a function of time. (b) The behavior of η as a func-
tion of time, Eq. (7.16). See Figure 7.9.
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Fig. 7.9 Motion of the state variable. The motion of the state
variable, η, in an energy landscape depends on the time scale
of the force on η and on the time scale τη . Here the force is
chirped, Figure 7.8, from T 0 = 1 (broad light gray) to T 0 =
1/32 (dark gray) for τη = 1/16, where T0 is the period of the
force oscillation. The response of η goes from “fast” to “slow”
as T0 decreases.

find agreement with the results of the model in Chapter 6. These numerical re-
sults are achieved in the limit (ωτη)/2π >> 1 for all elastic elements, that is, in the
fast dynamics limit. This fast dynamics is the fast dynamics of the hysteretic elas-
tic elements participating in the elastic response. Fast is defined by the frequency
of the drive, for example, in a resonant bar by a frequency determined by the bar
length and the linear elastic constant. Such a frequency has no fundamental mean-
ing. Thus it remains to carry out investigations of hysteretic elastic elements on
a time scale that exposes something of their intrinsic dynamics (see the discussion
of quasistatic hysteresis in Chapter 10).

Just as there are hysteretic elastic elements that are fast compared to a typical
resonant bar frequency, there may well be hysteretic elastic elements that respond
slowly to the demands of an external force. In the picture here such a force induces
change in the energy landscape in which the elastic element resides. There are few
experiments to allow much more than speculation in this regard. However, as must
be clear from the preceding discussion, a set of such elastic elements could cause
slow time evolution in the response to a change in applied stress. This response
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Fig. 7.10 Resonance of a Hysteretic Chain [6].
The amplitude of the response of a hysteretic
chain, Eqs. (7.15)–(7.20), near resonance as
a function of frequency for five values of the
drive force. The amplitude is in the form of
amplitude per unit force and the frequency
is scaled by the resonance frequency at low
amplitude. The chain has N = 500 elastic ele-
ments, each with intrinsic damping Q0 = 2000

and τη = 1.0. The chain has a natural frequen-
cy ΩN = π/N W 0.0063 << 1/τη , so that all
elastic elements are in the fast dynamics limit.
The Preisach space for the elastic elements
was filled uniformly with 0 u | f c | u 1.5 and
0 u | f o | u 1.5. The amplitude dependence
of the resonance frequency and of the ampli-
tude at resonance, 1/Q , are in accord with the
predictions of Eqs. (6.38) and (6.39).

would be distinguishable from that due to slow linear dynamics because it should
have hysteretic features.

7.3
Auxiliary Fields and Slow Dynamics

In the discussion above the actors have been the elastic elements (linear elastic
elements in Section 7.1, hysteretic elastic elements in Section 7.2). We turn now
to a description of slow dynamics of the elastic state of a system that is not in
the dynamics of the elastic elements but the dynamics of auxiliary fields to which
the elastic elements couple. There are at least three experimental realizations of
this, a slow dynamics in response to changes in temperature, a slow dynamics in
response to changes in saturation, and a slow dynamics in response to a large-
amplitude AC strain field.
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Suppose that the displacement field of an elastic system in a resonant bar obeys
the equation

ρü = K (X )
∂2u
∂x2 + F (t) , (7.23)

where F(t) is the external drive and K(X) is an elastic constant that depends on an
auxiliary field in the form

K = K 0(1 + λX X ) . (7.24)

Here λX is a constant and X the auxiliary field. For an example of how this form of
K(X) might arise in traditional nonlinear elasticity see the discussion surrounding
Eq. (3.23). We first treat the case of an auxiliary field driven by a large-amplitude
AC strain field, a pump [7, 8].

7.3.1
X = The Conditioning Field

To deal with an auxiliary field that responds to a large-amplitude AC strain field we
rewrite Eq. (7.23) to include two applied fields, a large-amplitude pump field F P (t)
at frequency ωP (whose strain field drives the auxiliary field) and a low-amplitude
probe field fp at frequency ωp (to test the elastic state of the system):

ρü = K (X )
∂2u
∂x2 + F P (t) + f p (t) . (7.25)

We separate the displacement field into two parts:

ρÜ = K 0
∂2U
∂x2 + F P (t) , (7.26)

ρü = K 0(1 + λX X )
∂2u
∂x2 + f p (t) , (7.27)

where we have dropped the term in 1 + λX X in the equation for U to emphasize
our interest in the effect of X on the probe field. The influence of X on the field
causing X, the pump U, is of minor consequence. We look at the behavior of the
probe field. The probe field, u, sees the presence of the pump field, U, through the
way in which the pump field drives the field X. We employ a leaky ratchet model [9]
for the coupling of X to U:

dX
dt

= –r1(X – 	U )θ(	U – X ) – r2X θ(X – 	U ) , (7.28)

where 	 is a constant and the rates r1 and r2 obey ωP >> r1 >> r2. The way in which
the terms on the RHS work is illustrated in Figure 7.11. When X is below 	U , it
is driven toward 	U at the rate r1 << ωP , that is, slowly, so that in a single cycle of
the pump there is little change in X. When X is above 	U , it relaxes toward 0 at the
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Fig. 7.11 Equation of motion of X, AC drive. The auxiliary field
X seeks 	U if X < 	U and it seeks 0 if X > 	U . Because the
decay to 0 for X > 	U is extremely slow, X ratchets up to that
point at which the impulse received while 	U > X balances the
decay while 	U < X .

rate r2 << r1 << ωP , that is, very slowly, so that little of the increase in X that occurs
during the part of the drive for which 	U > X is lost. Then what happens is that X
ratchets up toward 	U until a balance is reached between the gain in X during the
small part of a pump cycle for which 	U > X and the loss in X over the rest of the
pump cycle (most of it).

In Figure 7.12 we show the result of the solution to Eq. (7.28) for 	 = 1, U =
U 0 sin (ωP t), U 0 = 0.10, and (r2, r1, ωP ) = (0.01, 0.2, 2π). Because of the choice of
ωP = 2π, the units of time are the period of the pump. Early in time X climbs to an
asymptotic value of approximately 0.078, where it stays until t = 200, at which time
the pump is turned off. Thereafter X decays toward zero at the rate r2. In the two
insets the behavior of X in two time segments is shown, (a) early in time while X
is ratcheting up and (b) later in time when X is in steady state. While X is in steady
state, held there by the pump, the probe senses the presence of the auxiliary field
through the frequency shift in a resonance probed by ωp , Eq. (7.27). Decay of the
resonance frequency from its shifted value is seen at times beyond t = 200 as X
decays to zero.

In the treatment here we have been content to use an X field characterized by
two time scales. In highly inhomogeneous systems one expects a spectrum of both
time scales, that is, r–1

1 and r–1
2 , and nonexponential long time behavior.

From the form of Eq. (7.27) the changes in X feed back into the equation for U.
However, in known examples of “conditioning”, the sobriquet associated with the
phenomena under discussion, the frequency shift due to X is modest. If one insists
on using ωP at a low-frequency resonance in order to have a large pump field U,
and if one insists on maintaining U at constant amplitude, it will be necessary
to account for the changes in K brought about by X. The initial “conditioning”
experiments used ωP on a resonance and ωp swept over the same resonance to
test the conditioned state. This is not necessary, and quite possibly it complicates
the matter.
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Fig. 7.12 Time evolution of X, AC drive.X as a function of t for
a protocol in which U = 0.10 sin (2πt) for 0 u t u 200 and zero
thereafter, r1 = 0.2, r2 = 0.01. Two insets, early in time and in
steady state, show the behavior of X vs. t in detail.

The basic structure of the problem of the auxiliary field X as formulated in
Eq. (7.27) features the use of two displacement fields, one to manipulate X, the
pump field U, and a second to test for the consequence of X, the probe field u. To
the degree that these two displacement fields are independent, that is, to order the
coupling due to K(X), a number of NMR-style scenarios suggest how to learn about
X. One uses the pump field to set the elastic state and the probe field to investigate
the time evolution of the elastic state. In Chapter 11 the sequence of experiments
that led to our present understanding of X are described.

Finally, in contrast to the discussion in Sections 7.1 and 7.2, the discussion here
is not about the slow dynamics of elastic elements but about the slow dynamics of
an auxiliary field that the elastic elements see. As formulated, it would seem that
a fast dynamical displacement field, the pump field, causes the auxiliary field, the
field with slow dynamics.
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7.3.2
X = Temperature

In the continuum picture of an elastic system, the coupling of temperature to a dy-
namic displacement field involves two steps, as in Eq. (2.37). The temperature
through the agency of the thermal expansion creates a quasistatic thermal strain
field, εT = αδT , to which a dynamic strain field couples via the cubic nonlinearity,
	εT ε, as in Figure 3.1. Indeed the qualitative behavior seen in experiment is roughly
as suggested by Eq. (2.37), but there are striking slow dynamics effects that com-
mands one’s attention [10]. One extreme model that captures some of these effects
will be described here. It is appropriate to first make the point that temperature,
unlike stress, cannot be imposed on a physical system instantaneously. For a stress
field instantaneously means a time scale of order L/c, where L is the sample size and
c is the velocity of sound, for example, L/c W 10–5 s for L = 1 cm and c = 105 cm/s.
For a temperature field instantaneously means a time scale of order L2/D , where D
is the nominal thermal diffusion constant, for example, L2/D W 100 s for L = 1 cm
and D = 0.01 cm2/s for sandstone [11]. When we refer to slow dynamics involv-
ing temperature for a material, we mean phenomena on time scales at least long
compared to L2/D .

Suppose that the displacement field of an elastic system in a resonant bar obeys
the equation

ρü = K (X )
∂2u
∂x2 + F (t) , (7.29)

T

X

T

T > TB

. .
T < 0 T > 0

T < TB

Fig. 7.13 Equation of motion of X, T drive. The auxiliary field X
seeks α>(T – T B ) for T > T B , Eq. (7.32). It seeks α<(T – T B )
for T < T B but in a way that depends on the sign of the rate of
change of T. Approximately, the behavior is as if X slips back on
reversal in the sign of Ṫ .
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where F(t) is the external drive and K(X) is an elastic constant that depends on an
auxiliary field in the form

K = K 0(1 + λX X ) . (7.30)

Here λX is a constant and X, the auxiliary field, is driven by temperature. While
these equations are similar to Eqs. (7.23) and (7.24), this does not mean that we
believe the auxiliary field here is the same auxiliary field as that discussed above.
We have no evidence of a connection between the two [8].

For the equation of motion of the auxiliary field X we take

dX
dt

= –r>[X – α>(T – T B )]θ(T – T B )

– r<[X – α–
<(T – T B )θ(–Ṫ ) – α+

<(T – T B )θ(Ṫ )]θ(T – T B ) ,
(7.31)

Ṫ B = –rB (T B – T ) . (7.32)

The terms on the RHS of this equation require explanation, see Figure 7.13.
1. The auxiliary field X is driven by the temperature in a way that depends on

the sign of the temperature relative to a background temperature, TB, that
is very slowly varying. In the illustration here we will fix TB at the ambient
temperature T0 from which an experiment starts.

2. For T > T B the field X approaches the value, α>T , on time scale set by r>.
3. For T < T B the behavior is:

a. for Ṫ < 0, that is, T decreasing to below TB, X approaches the value, α–
<T ,

on a time scale set by r<. This value differs from that for T > T B , α±
< < α>

and r< < r>;
b. for Ṫ > 0, that is, T increasing back toward TB, X collapses relatively quick-

ly toward TB.
4. There are three time scales, rB << r< < r>, and two thermal expansions,

α±
< < α>.

There are two striking features of this model: (1) the asymmetry, here with respect
to the sign of T –T B , having an analog in Eq. (7.28) and (2) the rate dependence for
T < T B . One necessarily prescribes a T protocol in describing an experiment. As an
illustration of the kind of behavior that is seen, we show the solution to Eqs. (7.31)–
(7.32) in Figure 7.14: (a) the temperature protocol T vs. t and (b) ΔK /K 0 ∝ –X
vs. t. The parameters that produced this particular result are in the figure caption.
The asymmetry between T > T B and T < T B is apparent in this result as is the
dependence on rate for T < T B . Look for behavor qualitatively similar to this in
experiments (Chapter 10).

7.4
Summary

Mesoscopic elastic elements are by their nature large compared to microscopic
elastic elements, which are atomic in scale. Rate processes involving microscop-
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Fig. 7.14 Time evolution of X, T drive. X as a function of t for
a protocol(a) in which T (light gray) is above TB for four cycles
and then below TB for four cycles. (b) The behavior of λX X
(λX = –1) as a function of t (expect the frequency shift of an
oscillator described by Eq. (7.29) to follow λX X ). This result is
for the case (α>, α<+, α<–) = (2.0, 0.5, 0.125) and r>, r<–, r<+) =
(1.5, 0.125, 0.5).

ic elastic elements proceed at rates set by microscopic energy scales, for example,
exp (–ε0/kBT ), and microscopic frequencies, for example, ωD = kBΘD/�. Rate pro-
cesses involving mesoscopic elastic elements can be much slower since mesoscop-
ic energy scales are much larger than microscopic energy scales. Also, mesoscopic
elastic elements are subject to fields that are of a different character from the fields
on microscopic elastic elements. Consequently there are, for both the response of
mesoscopic elastic elements and for the fields that affect mesoscopic elastic ele-
ments, a broad range of time scales. The discussion above calls attention to a num-
ber of models for these phenomena with particular emphasis on the slow dynamics
behavior that might be expected.
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8
Q and Issues of Data Modeling/Analysis

The emphasis of the discussion to this point has been on the elastic properties of
materials. By that we mean the character and description of the forces within a ma-
terial that bring about the motion of the displacement field. Little has been said
about attenuation and physical processes that degrade the amplitude of the dis-
placement field. Our concern with attenuation focuses on what it can tell us about
the material under investigation. This will lead us to discuss several methods of
data analysis that are particularly appropriate to nonlinear systems. We begin in
Section 8.1 with a short review of attenuation in linear elastic systems. We dis-
tinguish between wave vector dispersion, Section 8.1.1, in which the energy con-
tinues to reside in the elastic system (albeit in wave vector states different from
those launched) and energy extraction, Section 8.1.2, in which the energy leaves
the elastic system. The flow of energy out of the elastic system requires coupling
the elastic system to another system having the capacity to take up energy and
carry it away. Linear coupling to the temperature field, to fluid configurations, to
variegated dashpots all do this, Section 8.1.3. We discuss nonlinear attenuation for
Section 8.2.1, properly called energy dispersion, energy continues to reside in the
elastic system, albeit at different frequencies from those launched. And hysteretic
attenuation, in which the elastic system is coupled nonlinearly to a dynamical sys-
tem having the capacity to take up energy and carry it away, is discussed in Sec-
tion 8.2.2. The next two sections are about attenuation (and its surrogate, Q–1)
more generally: Section 8.3, what can be learned from measurement of Q–1, Sec-
tions 8.4.1 and 8.4.2, how to measure Q–1 in linear and nonlinear systems, respec-
tively.

We turn to a careful discussion of the resonant bar in nonlinear elasticity in
Section 8.5. Two schemes of data processing that do not require a model of the
elastic system are described in detail: constant field analysis in Section 8.5.2.1, and
resonance template matched filtering (RTMF) in Section 8.5.2.2.

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
including Rocks and Soil. Robert A. Guyer and Paul A. Johnson
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40703-3
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8.1
Attenuation in Linear Elastic Systems

8.1.1
Wave Vector Dispersion

A tone burst of amplitude A0 is launched from x at time t0 in a space that has
weakly inhomogeneous elasticity. The tone burst, of sufficient duration that it can
be characterized by the single frequency ω0, is detected at x′, where its amplitude is
A. If the amplitude at x′ is less than the anticipated result, for example, A0/|x – x′|,
then the wave traveling at ω0 is said to be attenuated. There are two qualitatively
different sources for this attenuation [1]. The first of these, which might be termed
wave vector dispersion, arises from the scattering of the elastic wave from static inho-
mogeneity in the medium through which it propagates. For example, the equation
of motion for the case at hand can be written

ρ
∂2u
∂t2 = ∇ · (K (x)∇u

)
= K∇2u + ∇ · (δK (x)∇u

)
, (8.1)

where δK (x) = K (x) – K and K is the average of K (x) over the region of interest.
The first term on the RHS describes a uniform system with elastic constant K and
sound velocity c. The second term, possibly handled using perturbation theory, de-
scribes the scattering of the displacement field from the static δK (x) field. This
scattering of u from δK (x) produces no change in frequency or loss of elastic en-
ergy. Rather the displacement field, at ω0, is scattered to many wave vectors. Some
of the scattered displacement field may be multiply scattered and eventually arrive
late to x′ as the coda. Some sensible measure of the amplitude of arrival of the elas-
tic wave at x′ at t W |x – x′|/c will find a reduction in amplitude to below A0/|x – x′|,
that is, evidence of attenuation.

8.1.2
Extracting Elastic Energy

The physical situation described by Eq. (8.1) is in marked contrast to that described
by Eqs. (3.84) in Chapter 3. Equations (3.84) describe the coupling of the displace-
ment field to a dynamic field, the temperature field [2]. This dynamic field is capa-
ble of taking energy delivered to it by the displacement field and carrying it away.
Let us look in some detail at Eq. (3.84) to see this physical process at work. Equa-
tions (3.85)–(3.86), to linear order, are(

ü +
1
τ0

u̇

)
= c2

L
∂

∂x
ε – c2

LΓ0
∂δT
∂x

, (8.2)

δṪ = D T
∂2δT
∂x2 – rΓ0 ε̇ . (8.3)

The coupling between u and δT , arising from the K 0αεδT term in the free energy,
Eq. (3.80), is symmetric in the involvement of the coupling constant, Γ0 ∝ α. If
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one looks for a solution to these equations in the form δT ∝ u ∝ exp i (kx – ωt),
one finds

ω2 + i
ω
τ0

= c2
Lk2

(
1 + Γ0

r
1 + iM

Γ0

)
, (8.4)

where r = K 0/(C 0T 0) and M = k2D T /ω. The nature of the solution is controlled
by M, a measure of (1) the time to carry thermal energy over a wavelength of the
displacement field, 1/(k2D T ), compared to (2) the time the displacement field is in
place, approximately a period of 2π/ω. For M → 0, the RHS of Eq. (8.4) is real and
there is no attenuation due to the coupling of u to δT . However, there is a stiffening
of the system, and the isothermal elastic constant goes over to the adiabatic elastic
constant, c2

L → c2
L(1 + Γ2

0 r)[4]. For finite M > 0, some energy can be carried away by
the temperature field during a period of the wave, and there is attenuation beyond
that associated with 1/τ0,

1
τ0

→ 1
τ0

+ Γ2
0 rk2D T . (8.5)

The physics is different from that above. Here energy is transferred out of the elas-
tic system and fully or partially returned (depending on the dynamics of the system
to which it is transferred). When it is only partially returned, there is extraction of
energy from the elastic system, attenuation.

8.1.3
Other

The two attenuation mechanisms we have discussed above are linear mechanisms;
the energy extracted per unit of stored energy is independent of the amplitude of
the displacement field [5]. This observation follows from the form of the equations
we have used to describe wave vector dispersion, Eq. (8.1), and extracting elastic
energy, Eq. (8.3). Earlier we passed by another linear attenuation mechanism, Sec-
tion 7.1, where a system of elastic elements moved with damped motion toward
equilibrium [6]. This situation is similar to that above, u ↔ δT , except that no
explicit description of the system carrying the energy out of the elastic system is
provided. Behind equations like Eq. (7.2) is the notion of energy transferred out of
the elastic system to the system of phonons or some surrogate that is in contact
with the thermal reservoir in which the system resides.

In rock physics a well-established mechanism of attenuation is the squirt-flow
mechanism [7]. A strain field in the framework that defines a pore space can distort
the pore space and force the fluid within it to undergo rearrangement. The fluid
flows that accomplish this are coupled to the framework through the fluid viscosity.
Energy is transferred out of the elastic system to fluid flow and through the working
of the viscosity to the thermal reservoir in which the system resides.

It is apparent from this discussion that the study of attenuation mechanisms
involves a detailed understanding of energy transfer and transport phenomena, for
example, thermal transport, fluid transport, etc. For that reason it is our plan to
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give an extensive discussion of neither linear or nonlinear attenuation. Rather we
sketch the simple ideas that underlie an understanding of some aspects of this
subject.

8.2
Nonlinear Attenuation

In Chapter 3 we found that traditional nonlinear elasticity admitted a process in
which a second harmonic was generated from the coalescence of two fundamen-
tals, Eq. (3.46). Energy flows from the fundamental to the second harmonic, damp-
ing the fundamental. In Chapters 6 and 7 we encountered several models in which
hysteresis was prominent. We showed there that a nonlinear attenuation resulted.

8.2.1
Nonlinear Dampling: Traditional Theory

Let us examine the situation associated with Eq. (3.46). A strain field source at
x = 0 (amplitude A1, frequency ω1, and wave vector k1 = ω1/c) broadcasts into
a material to the right of x = 0, which has cubic anharmonicity, the 	 term in
Eq. (3.31). As a consequence, a wave at frequency ω2 = 2ω1 and amplitude A2

builds up to the right of x = 0 with amplitude proportional to x, A2 ∝ 	(k1A1)2x .
Let us assume that only the amplitudes A1 and A2 are present in the elastic system.
Energy conservation requires that the energy density at x at t

e(x) =
1
2

K ε2
1(x) +

1
2

K ε2
2(x) , (8.6)

(where K is the elastic constant, ε1 = k1A1 and ε2 = k2A2), be the same as the
energy density at x + dx at t + dx/c as both waves move with the speed, c. Writing
A1(x + dx) = A1 + δA1 and A2(x + dx) = A2 + δA2 we have

k2
1A1δA1 = –k2

2A2δA2 . (8.7)

But the physics behind A2 ∝ 	(k1A1)2x is that the amplitude A2 builds up in dx by
δA2 ∝ 	(k1A1)2dx . Thus (k2 = 2k1)

δA1

A1
~ –	2k4

1A2
1xdx . (8.8)

Because A1 is delivering energy to A2, we write A1(x) = A1(0) exp{–
∫ x

0 α1(z)dz} or

α1(x) = 	2k4
1A2

1x , (8.9)

an attenuation coefficient for A1 that scales as A2
1 and with x. Results of this kind

are typical in nonlinear acoustics. Nonlinear acoustics, in which the nature of the
nonlinearity is not in doubt, is a highly developed and very successfully applied
discipline [8].
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In this simple example elastic energy is transferred among the modes of the
elastic system while remaining within it. In analogy with the language suggested
above, Eq. (8.1), we would call the processes caused by traditional nonlinear elas-
ticity frequency dispersion.

8.2.2
Nonlinear Damping: Hysteretic Elasticity

In Chapter 6 we found that the model of McCall and Guyer [9] for FDEE gave rise
to an equation of state (EOS) of the form, Eq. (6.30),

Σ
K 0

= ε + γεmε + s(ε̇)
γ
2

(
ε2

m – ε2
)

+ . . . (8.10)

The second term in this EOS, ∝ s(ε̇), describes hysteresis and is responsible for
the damping found in the discussion of the modes of a resonant bar, Eq. (6.39).
This damping is due to the network made by the elastic elements. In the hys-
teretic force/displacment relations that characterize the elastic elements in the
FDEE model, an infinitesimal stress change, σc → σc + δσ, triggers finite dis-
placement, +a → –a, and an infinitesimal stress change, σo → σo + δσ, triggers
the reverse nite displacement, –a → +a , σo < σc , Figure 6.1. In the dynamic ver-
sion of this model, Chapter 7, the rate at which the finite displacement takes place
is controlled by a viscous damping [10]. These models contain no evidence of the
mechanism of energy transfer out of the elastic system. However, whether the sim-
ple or more elaborate model is involved, there is a set of excitations generated by
friction that take up the energy that leaves the elastic system and carry it to the
temperature reservoir in which the system resides.

From the discussion in Section 6.6 we know that the functional form of the non-
linear damping of most hysteretic models of nonlinear elasticity is essentially the
same. A stress/strain relation like that in Eq. (8.10) describes most models, albeit
with different numbers. In the case of the MG model [9] and the Masing rules
model [11], there is a quantitative connection between quasistatic data and the am-
plitude of the nonlinear damping, see Section 6.6.2 and the discussion in Chap-
ter 10. In the Hertzian contact models of hysteretic elastic elements, a coefficient
of friction controls the numbers [12]. In the endochronic model [13], parameters
that characterize the plastic strain, having no apparent physical interpretation, de-
termine the numbers.

8.3
Why Measure Q?

Why do you want to know Q? (1) A measurement of Q provides a direct measure-
ment of the thermal diffusvity, for example, Eq. (8.5). (2) The relationship between
seismic signals assembled from many Fourier components and propagated from x
to x′ depends on the relative attenuation of the Fourier components. (3) Verification
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of a particular model for the behavior of an elastic system, including coupling to
pore fluid, rests on confirmation of a prediction for the pressure dependence of the
attenuation. (4) Progressive damage of a worked part makes an additive contribu-
tion to Q that scales with damage beyond some threshold. And so on. The reasons
may be many. It may be necessary to learn the numerical value of Q as precise-
ly as possible, (1). It may be of interest to learn how Q scales with frequency (2),
pressure (3), etc. It may be of interest to monitor the behavior of Q over time, (4).

8.4
How to Measure Q

8.4.1
Measurement of Q in a Linear System

In principle Q is defined by [5]

1
Q

=
1

4π
ΔE
E

, (8.11)

where ΔE is the energy lost per period and E is the average stored energy in a pe-
riod. As one cannot buy an energy lost per period meter or an average stored energy
gauge at the hardware store, this formal definition, useful in evaluating theoretical
models, has to be given practical meaning.

1. For a propagating wave at frequency ω in a linear material (for which the
attenuation produces a small change in amplitude in a period), the energy
difference in adjacent periods is

ΔE = E (A) – E (A – δA) = E

[
1 –

(
A – δA

A

)2
]

= 2E
δA
A

(8.12)

and

1
Q

=
1

2π
δA
A

. (8.13)

Thus Q can be measured by measuring the time evolution of the amplitude.
Adjacent periods occur in adjacent material segments of length λ = cT , T =
2π/ω. For A = A(0) exp –αx the amplitudes in adjacent material segments
differ by δA = αλA, αλ << 1, so that

1
Q

=
α
k

, (8.14)

where k = 2π/λ. This can be rearranged to read

α =
k
Q

, α–1 = lα =
1

2π
Qλ . (8.15)
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It is this last rewriting that leads to the rough rule of thumb a wave is attenu-
ated in Q wavelengths. Measurement of the decay of amplitude with distance
from its source is a primary method of measuring Q. In a linear system this
measurement is independent of where it is carried out.

2. For a resonant bar of linear material driven at frequency ω the material
comes to a nonequilibrium steady state. It is in this steady state that the ma-
terial is studied. In the nonequilibrium steady state the rate at which energy
is delivered to the material by the external forces in one period, ΔE in, exact-
ly balances the rate of energy loss from the material in the period, ΔE out.
Using Eq. (8.11) we have

E =
1

4π
Q (ΔE in) . (8.16)

Thus in the nonequilibrium steady state the material has elastic energy of
order Q (ΔE in); it takes of order Q periods to build up the nonequilibrium
steady state and of order Q periods for the nonequilibrium steady state to
decay away. These are two more rules of thumb.
To look at the nonequilibrium steady state in somewhat more detail, we
consider the equation of motion of a linear resonant bar, Eq. (3.54),

ρ
(

ü +
1
τ0

u̇

)
= K

∂2u
∂x2 +

F
a2 {δ(x – L/2) – δ(x + L/2)} , (8.17)

where a2 is the cross-section of the bar end. Employing the lumped element
procedure from Section 6.3.1 we have

Ü +
1

Q0
U̇ = –U +

F
M/2

, (8.18)

where t → ω0t , Q0 = ω0τ0 = Q/2 (from k2 = ω2 + iω/τ0, ω0τ0 >> 1), ω0 is
the frequency of the fundamental resonance of the bar and M is the mass of
the bar. For F = F 0 sin (ωt + φ) we have U = A sin (ωt) with

A(ω) =
1√

(ω2 – ω2
0)2 + ω2ω2

0
Q2

0

2F 0

M
. (8.19)

The quantity of interest, Q0, is related to two simple features of A(ω). For
Q0 >> 1 the maximum amplitude of A(ω) is at resonance, ω = ω0–1/(2Q2

0) W
ω0, and

1
Q0

=
2

Mω2
0

F 0

A(ω0)
; (8.20)

Q0 is related to the amplitude at resonance as in F = ma, that is, Q0F 0 =
(M/2)ω2

0A(ω0). For ω± = ω0(1 ± √
3/2Q0), A(ω±) = A(ω0)/2. Thus the
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frequency width from ampitude A(ω0)/2 to the left of the resonance to am-
plitude A(ω0)/2 to the right of the resonance, Δω, is related to Q0 by

1
Q0

=
1√
3

Δω
ω0

. (8.21)

Finally, one can learn the Q of a mode of a resonant bar by letting the mode
ring down. This event is described by Eq. (8.17) with F = 0. Using the homo-
geneous solution of the corresponding lumped element equation we have
ω = ω0 + i/(2τ0) for Q0 >> 1 and A(t) = A(0) cos(ω0t) exp(–t/(2τ0)). Thus the
ratio of the amplitude in two adjacent periods is

A(t + T )
A(t)

= e– T
2τ0 = e– π

Q0 (8.22)

or

1
Q0

= –
1
π

ln

(
A(t + T )

A(t)

)
, (8.23)

cf. Eq. (8.13) with Q0 = Q/2. This measurement is independent of the time
in the ring down.
For a linear material one can learn about Q0 by studying the amplitude
of the resonance curve at resonance, by examining the width of the reso-
nance curve, or by letting the nonequilibrium steady state ring down. The
latter two methods are preferred because only directly observed quantities
are called for, amplitudes in Eq. (8.23) or frequencies in Eq. (8.21).

8.4.2
Measurement of Q in a Nonlinear System

In a nonlinear elastic material the basic forces at work in the material and the
mechanisms of energy loss from the elastic system depend on the amplitude of the
displacement field. In the context of a resonant bar this physics can be reduced to
a rewriting of Eq. (8.19) as

A(ω) =
1√

(ω2 – ω2
0(A))2 + ω2ω2

0(A)
Q2

0(A)

2F 0

M
, (8.24)

that is, the frequency ω0 and Q0 depend on amplitude. This means:
1. the ring down of a resonant bar from the nonequilibrium steady state may

be more rapid at an early-time, large-amplitude, nonlinear energy loss than
at a late-time, small-amplitude, linear energy loss;

2. the shape of a resonance curve is distorted, for example, Figures 6.11, 7.10,
and 11.38 in Chapters 6, 7, and 11, respectively. Making use of the width as
a measure of attenuation requires a model for the nonlinearity;
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F/Ar

Ar

/Q0

Fig. 8.1 Q–1 and amplitude at resonance. For Q >> 1 the
amplitude at resonance is proportional to Q so that Q–1, the
physical quantity, can be found from experiment by forming
F /Ar , Eq. (8.25). The constants that turn the proportionality
in Eq. (8.25) into values of Q–1 can be found from learning the
linear (low amplitude) value of Q by suitable means.

3. the amplitude at resonance, Ar, gives Q at that amplitude, that is,

1
Q (Ar )

=
2

Mω2
0

F
Ar

. (8.25)

This last method of measuring Q is particularly useful for extracting the nonlinear
contribution to Q. The quantity F/Ar is easily formed from experimental data.
If this quantity is plotted as a function of Ar, a curve like that in Figure 8.1 may
result. For example, from Eq. (8.25) F/Ar ∝ 1/Q (Ar ) = Λ/Q (Ar ). The constant
of proportionality can be found from knowing Q (Ar → 0) = Q (0), which can be
reliably found by treating the low F data by the linear methods above. Application
of this amplitude at resonance method is illustrated in Chapter 11, Section 11.3.

The discussion up till now has been somewhat loose. Below we describe a pair of
data analysis procedures that resulted from the demands of nonlinear resonant bar
data. These employ unconventional methods in an attempt to extract the maximum
amount of information about the material of a resonant bar from data on it without
recourse to a model for the bar material.
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8.5
Resonant Bar Revisited

One of the most precise ways to learn the elastic state of a material is to do a reso-
nant bar measurement. In the absence of complications, this method allows one to
drive at a fixed frequency, achieve steady state, and measure the in-phase and out-
of-phase components of the response at the frequency of the drive. A collection of
such data for a range of drive amplitudes and frequencies is the basic experimental
output. There are two aspects related to such experiments that we want to address.
The first is the connection between the physical system, a resonant bar, and the
model system that is used to ground the analysis of the data, and the second has to
do with particular methods of data processing.

8.5.1
Modeling a Resonant Bar

A resonant bar, say a cylinder 2 cm in diameter and 20 cm long, has a funda-
mental mode resonant frequency of order 5 kHz, f = c/(2L) = 5 ~ 104 Hz for
c = 2 ~ 105 cm/s. While this is the fundamental mode of a two-dimensional system
(it is assumed that the end of the bar is driven uniformly so that the modes have
at most a radial structure away from the bar axis [14]), it is typically approximated
as the mode of a one-dimensional line. For compressive motion along a line one
takes an equation of motion like

∂2u
∂t2 +

1
τ

∂u
∂t

= c2 ∂2u
∂x2 + F (t) . (8.26)

But usually, for data analysis, not even this equation is solved. It is conventional to
analyze data as if each mode of a resonant bar can be mapped onto the mode of
a lumped element, that is, the mode of

ü +
1
τ

u̇ = ω2
0u + F (t) , (8.27)

where an ω2
0 and τ are chosen for each bar mode. We saw in Chapter 6 that

a lumped element equation, like Eq. (8.27), for a resonant bar could be derived
from Eq. (8.26). Then, u in Eq. (8.27) is understood to be some measure of the
average strain field in the bar. Nonlinearity in the response of the bar may be able
to be introduced explicitly into Eq. (8.27) from a model of the bar material, as in
Eq. (6.26), or it may be introduced phenomenologically,

ü +
1

τn(u)
u̇ = ω2

n(u)u + F (t) , (8.28)

where both the resonant frequency and the attenuation for a mode are taken to
depend on the amplitude of the strain field. The u dependence of ω2

0 is taken to
represent the strain dependence of the elastic state of the bar, and u dependence
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F0

Fig. 8.2 Resonant bar data; in and out. In a resonant bar ex-
periment in which one detects the steady-state amplitude at
the drive frequency, the response has two components. The
in-phase component is found from the time-averaged product
of the drive signal and the detected signal. The out-of-phase
component is found from the time-averaged product of the
drive signal shifted by 90◦ and the detected signal, Eqs. (8.29)–
(8.31).

of τ is taken to represent the strain dependence of the dissipative mechanisms
operating in the bar. A particular choice of ω2

0(u) could well give rise to a nonlin-
ear attenuation that is in addition to any nonlinear attenuation that is introduced
through τ(u). The result in Eq. (6.39) is an example of this.

A particular nonlinear lumped element model must be solved for the response.
This is usually the detected amplitude at the frequency of the drive. When the drive
is F 0 sin ω0t there are three outputs, the in-phase amplitude of the response, the
out-of-phase amplitude of the response, and the magnitude of the amplitude of the
response. Formally these quantities are

a0 = 〈S0(t)|u(t)〉 , (8.29)

b0 = 〈C 0(t)|u(t)〉 , (8.30)

u0 =
√

a2
0 + b2

0 , (8.31)

where S0(t) = sin ω0t and C 0(t) = cos ω0t . This computational procedure, the
projection procedure illustated in Chapter 6, mimics exactly the experimental de-
tection procedure carried out by a lock-in amplifier, Figure 8.2, that is, homodyne
style detection [15]. It is a, b, and u that are the model quantities that interface with
experiments. Thus, between the elastic response of a resonant bar and the model it
interfaces with is (1) dimensional reduction, 3 → 2 → 1 → 0, (2) the introduction
of nonlinear lumped element parameters, (3) a solution to the resulting nonlinear
lumped element equation, and (4) projection of the desired experimental quantities
out of the solution.
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8.5.2
Data Processing

A primary use of resonant bar measurements is to monitor changes in the elastic
state of the bar material. In this application it is not as important to have an exact
theory of how to go between Eqs. (8.26) and (8.27) as it is to have reason to believe
that there is a one-to-one correspondence between the elastic state of the bar mate-
rial and u. When one wants to sense small changes in the elastic state, it is crucial
to carry out a data analysis that carefully fits the solution to Eq. (8.28) to resonant
bar data. The discussion here addresses this point.

In Figures 8.3 and 8.4 we show an example of resonant bar data and the results
of data analysis [16]. Figure 8.3 is a plot of the strain amplitude as a function of
frequency for 12 drive amplitudes. It is apparent from these curves that the reso-
nance frequency, defined as the frequency of maximum amplitude, shifts to a lower
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Fig. 8.3 Resonant bar data; Berea sandstone.
The magnitude of the strain, ε, as a function
of frequency, f, for 12 values of the drive (volt-
age to a PZT) for a Berea sandstone. There
are 81 frequency points spaced by 0.5 kHz
at each drive level. The resonance frequency

is found as the maximum of each constant
drive curve, Figure 8.4a. The value of Q–1 is
found from F /Ar , Eq. (8.25), and Q0 from the
width of a resonance curve with very low drive,
Figure 8.4b [16].
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Fig. 8.4 Resonance frequency and Q–1. The resonance curves
in Figure 8.3 yield (a) resonance frequencies and (b) values
of Q–1 as a function of the strain at resonance. The frequency
shift and shift in Q–1 is approximately linear in strain over the
strain range covered in the experiment [16].

frequency as the drive amplitude increases. Accompanying this frequency shift is
a distortion of the resonance curve away from symmetry about the resonance fre-
quency. The resonance frequency as a function of the strain at resonance is plotted
in Figure 8.4a; a shift of about one part in a thousand is brought about by a strain
of order 10–6. The attenuation, Q–1, as a function of the strain at resonance, found
from the data using the amplitude-at-resonance method above, Eq. (8.25), is plotted
in Figure 8.4b. When data are as nice as those being discussed here or when a res-
onance curve is weakly distorted from those appropriate to linear systems, there is
little need for sophisticated data analysis.
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Perhaps the first place one notices the need to exercise caution in getting num-
bers from resonance curves is in the calculation of Q–1. A usual way of getting at
this quantity is to make some measurement of the width of a resonance curve at
half height, Eq. (8.21). It is apparent, for example, from Figure 3.7 (Chapter 3) and
Figure 11.38 (Chapter 11) that distortion of the shape of a resonance curve puts
this “definition” in doubt.

But we have to step back for a moment. The point of any of these measurements
is to characterize the elastic state of a system. For a nonlinear material a single res-
onance curve has information about many elastic states of the material. If the pa-
rameters that characterize the elastic state have different values at different points
on a resonance curve, then one wants to make pointwise measurements along the
resonance curve. The focus on the resonance, the maximum in the curve, picks out
only one elastic state, albeit the one of maximum strain, and disregards the others.
A nonlocal measurement of the attenuation, say using the notion of line width, is
some average over many different elastic states.

Finally there are 972 data points that probe the elastic state of the Berea sand-
stone shown in Figure 8.3 – 81 frequencies at each of 12 drive levels. Very few of
these data points are used to acquire the information displayed in Figure 8.4. It
would be useful to have methods of data analysis that take maximum advantage of
the data available and that avoid the potential ambiguity introduced by nonlineari-
ty. We describe two such schemes: (1) constant field analysis [16] and (2) template
filtering [17].

8.5.2.1 Constant Field Analysis, CFA
We will process the data in Figure 8.5, from a hypothetical sample, using constant
field analysis. The data in Figure 8.5 are the displacement, U (i , j ), for 80 values of
the frequency, f i = 0.85 + 0.00253 ∗ (i – 1), i = 1, . . . , 80, for 40 values of the drive
force, F j = 0.001 + 0.00254 ∗ ( j – 1), j = 1, . . . , 40. These data are on 40 resonance
curves, shown in Figure 8.6 as smooth curves, for clarity. It is apparent from the
appearance of the data that the resonance frequency shifts first to a lower frequency
and then to a higher frequency as the drive force is increased. The data are noisy
and without the guide to the eye in Figure 8.6 not always discernible as resonance
curves.

Suppose that we believe the elastic state of the sample is determined by the strain
field in it. As this strain field is proportional to U, this means that the elastic state
of the sample is the same at every point along the lines of constant U, for example
along the line at U = 0.432 on Figure 8.6. If we assume that when in a particular
elastic state the behavior of the sample can be described by a lumped element model,
Eq. (8.28), then two parameters, τ(0.432) and ω2

0(0.432), should describe all of the
data on the U = 0.432 line.

As background we need results from the solution to Eq. (8.28). For F (t) =
F 0 sin (2π f t) in Eq. (8.28) we have

u = [A sin (2π f t) + B cos (2π f t)]F 0 , (8.32)
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Fig. 8.5 Resonant bar data; Synthetic data Ia.
Synthetic resonance curves, constructed from
the self-consistent solution to Eq. (8.28), for
80 frequency values and 40 drive values. The
resonance frequency depends on the magni-
tude of U as f 0 = f 00 – γU + ΓU tanh 2U ,
Q–1 depends on the magnitude of U as

Q–1 = Q–1
0 + δU tanh 4U , and the data

points have uniform random noise. These
curves are to be used in demonstrating the
CFA procedure. The solution to Eq. (8.28)
yields the matrices A(i , j ), B (i , j ), and

U (i , j ) =
√

A(i , j )2 + B (i , j )2. The matrix
U (i , j ) is shown here.

A = [ f 2 – f 2
0(U )]

1
R2 , (8.33)

B = –
f

τ(U )
1

R2 , (8.34)

R2 = [ f 2 – f 2
0(U )]2 +

[
f

τ(U )

]2

=
1

A2 + B2 , (8.35)

U =
1
R

F 0 , (8.36)

where u = U sin (2π f t + φ), and in order to feature the frequency f we have moved
factors of 2π into a redefinition of F0. A useful rearrangement of these equations
yields

f 2
0(U ) – f 2 =

A
A2 + B2 = AR2 , (8.37)
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Fig. 8.6 Resonant bar data; Synthetic da-
ta Ib. The resonance curves from Figure 8.5
as smooth curves. The resonance frequency
found from the maximum of each constant
drive curve is shown with a star on the curve.
The resonant frequency from CFA are shown

as open circles. Since the constant field anal-
ysis is at constant U, the values of these res-
onant frequencies need not lie on a particular
drive value curve. The data on the trajecto-
ry T 10, horizontal line at U = 0.432, will be
discussed in detail.

1
τ(U )

= –
1
f

B
A2 + B2 = –

1
f

BR2 . (8.38)

Measurement of the amplitudes U (i , j ) entails measurement of the in-phase com-
ponent of the response to F0, A(i , j ), and the out-of-phase component of the re-
sponse to F0, B (i , j ). Thus from experimentation we have three data matrices U,
A, and B. We proceed as follows:

1. Find contours of constant U (strain) in U (i , j ) at values Um, m = 1. . .M .
The level line Um is a trajectory in ( f , F 0) space denoted Tm along which
there are ( f , F 0) pairs denoted F 0(T m (k)) and f (T m(k)), k = 1. . .K m . Here
Km, the number of points on a level line, varies, with Um being relatively
small for Um near the maximum, for example, 0.80.

2. Along each trajectory Tm find A(T m ) and B (T m ).
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3. Guided by Eq. (8.37), along each trajectory form

L1(U m ) =
A(T m )

A2(T m ) + B2(T m )
. (8.39)

Guided by Eq. (8.38), along each trajectory form

L2(U m ) = –
1

f (T m)
B (T m )

A2(T m ) + B2(T m)
. (8.40)

4. Fit L1(U m ) to L1(U m ) = a2(U m ) f 2(T m ) + a0(U m ); expect a2(U m ) = –1.0 and
set f 2

0(U m) = –a0(U m ) in accord with Eq. (8.37).
Fit L2(U m ) to L2(U m) = b2(U m ) f 2(T m) + b0(U m ); expect b2(U m) = 0 and set
1/τ(U m ) = b0(U m ) in accord with Eq. (8.38).

The steps in the procedure described here are illustrated in a sequence of fig-
ures. As we go through these steps we will follow a particular constant U level,
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Fig. 8.7 Force vs. frequency at constant strain. The drive level
(force) in Figure 8.5 necessary to maintain a constant value
U = 0.432 (strain) is shown as a smooth curve. There are
129 force/frequency pairs on this curve, which constitute the
trajectory T 10. See below, Eq. (8.38).
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Fig. 8.8 Forming f 0(U )2 – f 2 and 1/τ(U ). The fields A, B,
and U are arranged to yield f 0(U )2 – f 2 and Q–1 ∝ 1/τ(U )
as in Eqs. (8.37) and (8.38). For the trajectory T 10: (a) AR2

as a function of f 2 and (b) –BR2/ f as a function of f 2 . The
intercept at AR2 = 0 from (a) yields the resonant frequency at
the strain level U = 0.432. The horizontal line in (b) is 1/τ(U ),
essentially Q–1, at U = 0.432.

U 10 = 0.432, shown in Figure 8.6. The trajectory T 10 appropriate to U 10 is a se-
quence of ( f , F 0) pairs that are displayed in Figure 8.7, F 0(T 10(k)), as a function of
f (T 10(k)), k = 1. . .K 10 = 129. When the quantities on the RHS of Eqs. (8.37) and
(8.38) are formed, they are as shown in Figure 8.8, where the independent variable
is f 2(T 10(k)). It is apparent that to good approximation these quantities have the
functional form sought. A fit to the polynomials above yields (a0(U 10), a2(U 10)) =
(0.9333, –0.99999) and (b0(U 10), b2(U 10)) = (0.06434, –1.9314 ~ 10–5), f 0(U 10) =
0.9661 and 1/τ(U 10) = 0.06434. The results of this type of analysis, f 0(U m ) and
1/τ(U m ) for 20 values of Um that span most of the data, are plotted in Figure 8.9.
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Fig. 8.9 Frequency and Q–1. The results from CFA for the res-
onance frequency as a function of U (open circles and smooth
curve). The open circles are the resonance frequency from
the maximum of the constant drive curve, see Figure 8.6. The
smooth curve is from CFA. See also Figure 8.10.

The results shown here prompt several observations.
1. Forming the quantities on the RHS of Eqs. (8.37) and (8.38) is simply a data

manipulation with data cut at constant U instead of the conventional con-
stant F0.

2. The form of A/R2 and B/R2/ f in the figures confirms that U is the proper
choice for the field that determines the elastic state of the system. Should
it happen that some other field, for example, the velocity field or a combi-
nation of U and the velocity field, are the proper physical fields, it will be
necessary to cut the data differently to search for a similar collapse.
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Fig. 8.10 Frequency and Q–1. The result from CFA for Q–1

as a function of U (open circles and smooth curve). The open
circles are Q–1 from the maximum of the constant drive curves,
Fig. 8.6. The smooth curve is from CFA, see also Figure 8.9.

3. The simple form of the data on a resonance curve in these figures makes
it possible to use all of the data confidently to learn the intercept, Fig-
ure 8.8a and f 0(U ), or the constant, Figure 8.8b and 1/τ(U ).

4. The scheme here stands in contrast to the constant F0 scheme of analysis for
which the quantities on the RHS of Eqs. (8.37) and (8.38) behave, as illus-
trated in Figure 8.11. In the constant F0 scheme of analysis it is necessary to
construct models of f 0(U ) and 1/τ(U ) to explain the kinks in these curves.
In constant field analysis there are no kinks, Figure 8.8, and the functions
f 0(U ) and 1/τ(U ) are the output.

8.5.2.2 Template Analysis
We will process the data in Figure 8.12, from a hypothetical sample, using template
analysis [17]. The data in Figure 8.12 are the displacement, U (i , j ), for 80 values of
the frequency, f i = 0.90 + 0.00253 ∗ (i – 1), i = 1. . .N f , N f = 80, for 30 values of
the drive force, F j = 0.001 + 0.00341 ∗ ( j – 1), j = 1. . .N F , N F = 30. These data are
on 30 resonance curves, shown in Figure 8.13, in the form U/F 0 vs. f for clarity.
It is not apparent from the appearance of the data that the resonance frequency
shifts, but there is a marked change in the width of the curves as the driving force
increases. The data are noisy.

Template analysis makes use of the set of equations above. Equations (8.37)
and (8.38) allow one to arrange the experimental data to find f0 and τ–1 at every
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Fig. 8.11 AR2 and –BR2/ f at Constant Drive. When the ar-
rangement of the fields A, B, and U that produces the results in
Figure 8.8 is employed at constant drive, the results for three
values of the drive (low, medium, and high) are as here (a) AR2

and (b) –BR2/ f . Compare to Figure 8.8.

point (i , j ). We do this along the curves of constant force. For three values of F0,
(0.0215, 0.0488, 0.100), the curves f 0(F 0, f ) and τ–1(F 0, f ) are plotted as a function
of f, Figures 8.14 and 8.15. Although a frequency shift is not easily seen by simply
looking at the data, Figure 8.12, a ±2% shift in frequency occurs across the res-
onance for F 0 = 0.10. A much more dramatic change in the attenuation occurs;
τ–1 W 0.10 for F 0 = 0.10 is more than twice the small-amplitude value, 0.04. To
assess which physical fields might be responsible for what is seen, we form two
fields from the experimental data, the in-phase field |A〉 and the out-of-phase field
|B〉. This is done as follows.
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Fig. 8.12 Resonant bar data; Synthetic data
IIa. Synthetic resonance curves, constructed
from the self-consistent solution to Eq. (8.28),
for 80 frequency values and 30 drive values.
The resonance frequency depends on the
strength of the A field as f 0 = 1 – γA and Q–1

depends on the B field as Q–1 = Q–1
0 – ΓB .

These curves are to be used in demonstrat-

ing the RTMF procedure. The solution to
Eq. (8.28) yields the matrices A(i , j ), B (i , j ),

and U (i , j ) =
√

A(i , j )2 + B (i , j )2. The ma-
trix U (i , j ) is shown here. The curve for the
lowest (highest) drive level is shown as closed
(open) circles. Notice these curves on Fig-
ure 8.13

1. Along a curve of constant force, say Fj, we have A(i , j ) and B (i , j ) for i =
1. . .N f .

2. Form the vector |A j (i )〉 ∝ A(i , j ) that is orthogonal to a constant and
normed to 1:

〈A j |A j 〉 =

N f∑
i=1

〈A j (i )|A j (i )〉 = 1 , j = 1. . .N F , (8.41)

〈A j |1〉 =
N f∑
i=1

〈A j (i )| = 0 , j = 1. . .N F . (8.42)

3. Form the vector |B j (i )〉, approximately proportional to B (i , j ), that is orthog-
onal to a constant and to |A j (i )〉 and normed to 1:

〈B j |B j〉 =

N f∑
i=1

〈B j (i )|B j (i )〉 = 1 , j = 1. . .N F , (8.43)

〈B j |A j 〉 =
N f∑
i=1

〈B j (i )|A j (i )〉 = 0 , j = 1. . .N F , (8.44)
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Fig. 8.13 Resonant bar data; Synthetic data IIb. The reso-
nance curves from Figure 8.12, scaled by the drive, as smooth
curves. The curve for the lowest (highest) drive level is shown
as closed (open) circles. Notice these curves on Figure 8.12.
While it is hard to see evidence of frequency shift, the nonlin-
earity of Q is manifest.

〈B j |1〉 =
N f∑
i=1

〈B j (i )| = 0, j = 1. . .N F . (8.45)

4. Assume that f j (i ) (τ–1
j (i )), regarded as the vector | f j〉 (|τ–1

j 〉), can be written
in the form

| f j 〉 = γ j |1〉 + α j |A j〉 + 	 j |B j〉 , (8.46)

|τ–1
j 〉 = g j |1〉 + a j |A j 〉 + b j |B j 〉 . (8.47)
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The amplitudes α j , 	 j , and γ j are found from the inner products

α j = 〈A j | f j〉 , (8.48)

	 j = 〈B j | f j 〉 , (8.49)

γ j = 〈1| f j 〉 (8.50)

and an analogous set of equations for aj, bj, and gj.
5. A measure of the degree to which the combination of |1〉, |A j 〉, and |B j 〉 pro-

vides an adequate description of | f j〉 and τ–1
j is provided by the magnitude

of the residuals, for example, δ f 2
j = 〈R j |R j 〉,

|R j〉 = | f j 〉 – γ j |1〉 – α j |A j 〉 – 	 j |B j 〉 , (8.51)

for the case of | f j 〉.
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Fig. 8.14 Resonance frequency on curves
of constant force. The resonance frequency,
f0, found from manipulating the data as in
Eq. (8.37), as a function of f for three values of
the drive, 0.021483, 0.048793, 0.100000. There

is little shift in the resonance frequency (from
f 0 = 1) near f W 1, where the strain field is
large. The frequency shift is of opposite sign
on the two sides of the nominal resonance fre-
quency f 0 = 1. See the caption to Figure 8.12.
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If we choose to norm the vector | f j (i ) > to 1, we have

δ f 2
j = 〈R j |R j〉 = 1 – (α2

j + 	2
j + γ2

j ) . (8.52)

When this procedure is carried out, an intermediate step is the formation of the
templates |A j 〉 and |B j〉 along each curve of constant Fj. An example of the tem-
plates |A j 〉 and |B j 〉 is shown in Figure 8.16 for the case F j = 0.0488, cf. Fig-
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Fig. 8.15 Q–1 on curves of constant force. The val-
ue of Q–1, found from manipulating the data as in
Eq. (8.38), as a function of f for three values of the drive,
0.021483, 0.048793, 0.100000. Q–1 changes by almost a fac-
tor of 3 as the drive changes.
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Fig. 8.16 The templates |A〉 and |B〉. The in-phase and out-
of-phase templates |A〉 and |B〉, formed according to the
prescriptions Eqs. (8.42) and (8.45), for the 15th drive level,
F = 0.04879. Compare to Figures 8.14 and 8.15.

ures 8.14 and 8.15. The |A j 〉 template looks much like the difference between f0
and a constant and the |B j 〉 template looks much like the departure of τ–1 from
a constant. Indeed the solid curves in Figures 8.14 and 8.15 are from the fit using
Eqs. (8.47). Further, the coefficient 	 j is much less than α j , and similarly the co-
efficient aj is much less than bj. These results suggest that the frequency shift is
determined primarily by the in-phase strain, the |A〉 template, and the attenuation
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Fig. 8.17 Scaling of f0 and Q–1 with A and B. The value of f0
from Eq. (8.37) as a function of A(i , j )/F j for the 30 constant
drive curves. These data collapse as a function of A/F except
for A W 0, where they are very noisy. See Figure 8.18.

is determined primarily by the out-of-phase strain, the |B〉 template. To test this as
a hypothesis of how the physical system behaves, we plot f 0(i , j ) as a function of
A(i , j ) and τ–1(i , j ) as a function of B (i , j ) in Figure 8.16. While there is consider-
able noise at the low-strain field, where departure from linearity and the noise are
comparable, as the strain field increases a simple relationship between the frequen-
cy shift and the strength of the A field is apparent, f 0(i , j ) = 1.00 – 0.0299A(i , j ).
Also apparent is a simple relationship between the attenuation and the strength of
the B field, τ–1(i , j ) = 0.040 + 0.0750B (i , j ).

The success of the procedure illustrated here depended on being able to identify
the fields that are responsible for the observed behavior. In an experiment one
makes measurements of two fields, the in-phase and out-of-phase strain fields.
From these the magnitude of the strain can be formed. One expects that these
three fields, A, B, and U, will suffice to determine the behavior. When they do, the
procedure above or the CFA procedure can be implemented. When a more com-
plex set of internal fields is involved, if they can be formed from the measured
fields, it is in principle possible to search among possibilities and find the proper
field.
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Fig. 8.18 Scaling of f0 and Q–1 with A and B. The value of Q–1

from Eq. (8.38) as a function of B (i , j )/F j for the 30 constant
drive curves. These data collapse as a function of B/F except
for B W 0, where they are very noisy. See Figure 8.17.

There are two caveats that we leave to last (but one). They are by no means unim-
portant. Often a measurement system creates an electronic phase shift that adds
to the physical phase shift and misaligns the two measured fields. One needs the
means to detect that this is happening and remove it. Further, it is necessary to be
able to divide out the applied force, say, to form U/F in the constant field analysis
treatment of data. The information necessary to deal with these two difficulties can
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Fig. 8.19 Clipped data set. Constant field anal-
ysis was performed on the data shown here,
a clipped version of the data in Figure 8.5. To
the right of the data are the locations of the
amplitude maxima transferred from Figure 8.6

(open circles) as well as the amplitude max-
imum found from constant field analysis of
the data to the left. The values of f 0(U ) and
Q–1(U ) found in the constant field analysis
are shown in Figures 8.20 and 8.21.

be gleaned from measurements on well-understood linear systems and/or from
measurements on nonlinear systems at low drive amplitude.

Lastly, we show three figures, Figures 8.19, 8.20, and 8.21. In Figure 8.19 a res-
onant bar data set that has resonance curves found at constant F0, none of which
has a maximum, are shown. The data are a fraction of the data set in Figure 8.5.
When this data set is subjected to constant field analysis, the results are those il-
lustrated in Figures 8.20 and 8.21. To the right of the data in Figure 8.19 are the
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Fig. 8.20 f 0(U ) and Q–1(U ) for clipped data set, Figure 8.19.
(open circles) the resonance frequencies transferred from Fig-
ure 8.9 and (closed circles and line) f 0(U ) from analysis of the
clipped data set.

maximum of each resonance curve from Figure 8.5 (full circles) and the resonance
frequency found from constant field analysis of the data in the figure (solid circle
and line). On the companion figures, Figures 8.20 and 8.21, the frequency f 0(U )
and 1/Q (U ) are plotted as a function of U. On these curves as open circles are the
results from traditional analysis that are also shown in Figures 8.9 and 8.10. Com-
parison of the various determinations of f 0(U ) and 1/Q (U ) shows that constant
field analysis can provide accurate information about a set of resonance curves,
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Fig. 8.21 f 0(U ) and Q–1(U ) for clipped data set, Figure 8.19.
(Open circles) Q–1(U ) transferred from Figure 8.10 and
(closed circles and line) Q–1(U ) from analysis of the clipped
data set.

that is, about the elastic state of a system, where the traditional methods of analysis
have nothing to say.
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9
Elastic State Spectroscopies and Elastic State Tomographies

In this chapter we discuss spectroscopic and tomographic methods of probing non-
linear elastic systems. By spectrosopies we mean methods of making use of the
spectrum of normal modes to determine linear and nonlinear elastic constants.
Implicit in this discussion is that the elastic systems are uniform, that is, K, μ, A,
B, C, . . . , Eq. (2.67), are independent of x. By tomographies we will mean meth-
ods of discerning the spatial structure of the elastic state of a system, linear or
nonlinear, that is, K (x), μ(x), A(x), B (x), C (x), . . . (This language is prompted by
current practice, which uses tomography much more loosely than Merriam Web-
ster [1].) We will touch on spectroscopies only briefly. Most of what we say will
deal with tomographies. Linear and nonlinear methods will be discussed. The de-
tail we provide in our discussion of linear methods is largely intended to provide
a framework for a discussion of the nonlinear variant. In Section 9.1 we discuss
linear spectrosopy (described well in the monograph of Migliori and Sarro [2]),
Section 9.1.1, and nonlinear spectroscopy, Section 9.1.2. In Section 9.2 we discuss
linear tomographies. Three methods are described: time-of-flight tomography, Sec-
tion 9.2.1, normal-mode tomography, Section 9.2.2, and time-reversal tomography,
Section 9.2.4. Numerical examples of normal-mode tomography (linear) and time
reversal tomography (linear) are given in Section 9.2.3 and Section 9.2.5 respec-
tively. In Section 9.3 we discuss nonlinear tomographies. The three methods, time
of flight, normal mode, and time reversal, are discussed in Sections 9.3.1, 9.3.2,
and 9.3.3, respectively.

9.1
Spectroscopies

Consider homogeneous elastic systems, that is, systems of uniform structure or
composition throughout, K, μ, A, B, C, . . . are independent of x.

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
including Rocks and Soil. Robert A. Guyer and Paul A. Johnson
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40703-3
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9.1.1
Linear, Homogeneous

For a linear homogeneous elastic system the elastic tensor is the elastic state. The
normal modes of the system are a direct probe of the elastic tensor of the system.
Measurement of a set of normal modes provides the means to learn this tensor
with great accuracy. The monograph by Migliori and Sarro [2] describes all aspects
of this problem carefully.

Information about the linear elastic state of a homogeneous system can also
be learned from of a set of time of flight tone bursts having varying polarization,
direction, etc. [3].

9.1.2
Nonlinear, Homogeneous

All elastic systems are nonlinear (Chapter 3). Homogeneous nonlinearity can be
probed by doing normal-mode spectroscopy at varying probe amplitudes. (Any ex-
periment whose outcome depends on a nonlinear elastic constant is a potential
probe of that constant. See the discussion in Chapter 3, Eq. (3.30), etc.) We discuss
two schemes.

1. In the case which is directly analogous to linear spectroscopy (where you
only get out the frequency you put in) one drives the system in steady state
at (frequency/amplitude) = ( f i , A j ) and observes the steady state response
at the drive frequency, Ri j . Suppose the input and output signals, Ai j (t) =
A j sin (2π f i t + φi ) and Ri j (t) respectively, are digitized on time points tm,
m = 1 . . . N T . Form the two unit vectors, U i (t) ∝ sin 2π f i t and V i (t) ∝
cos 2π f i t, and calculate

Ai j
S = 〈U i |Ai j 〉 , (9.1)

Ai j
C = 〈V i |Ai j 〉 , (9.2)

Ri j
S = 〈U i |Ri j 〉 , (9.3)

Ri j
C = 〈V i |Ri j 〉 , (9.4)

where 〈A|B〉 =
∑

m A(tm )B (tm). Then the input amplitude at ( f i , A j ) is
|A| =

√
A2

S + A2
C , the output amplitude at ( f i , A j ) is |R| =

√
R2

S + R2
C , and

the phase of input and output is found from AS /AC and RS/RC . Generally
it is the amplitude ratio |R|/|A| (usually with the zero of time chosen so that
AS = 0) that is studied as a function of ( f i , A j ). In circumstances where the
number of time points per period is small, one should numerically construct
U and V with V orthogonal to U and both orthogonal to a constant.

2. Alternatively, one drives the system at (frequency/amplitude) = ( f i , A j ) and
observes the time train of the response Ri j (t). The Fourier transform of the
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Ri j (t) provides a spectrum Si j ( f ). The amplitude of Si j ( f ) at fi, a complex
number, has the same information as that in the pair (RS , RC ).

An experiment of style 1 asks the question “when the system is driven at fi, what
amplitude-dependent mechanisms are present that modify the response at fi?” An
experiment of style 2 asks the question “when the system is driven at fi, what
amplitude-dependent mechanisms are present that can create response at frequen-
cies different from fi?” The 4-phonon process described in Chapter 3 does both, that
is, the drive frequency is returned by a process like ωi + ωi – ωi → ωi and the third
harmonic is created by ωi + ωi + ωi → 3ωi .

1. ωi + ωi – ωi → ωi is seen in an experiment of type 1 as an Aj-dependent
frequency shift at fi (there is an associated small shift in the amplitude |R|),
Chapter 3.

2. ωi + ωi + ωi → 3ωi is seen in an experiment of type 2 as an Aj-dependent
Fourier component at ±3 f i , Chapter 3.

In classical nonlinear elasticity in which the stress is an analytic function of the
strain, an initial frequency can produce frequencies different from itself only in
multiples of itself, ωi → ±nωi , n = 0, 1, . . . If the system is driven in two normal
modes, ω1 and ω2, a complicated frequency spectrum will result with the ampli-
tudes at various frequencies proportional to the weighted overlap of the strain fields
associated with the normal modes. (See Chapter 3 and the discussion of the Lux-
emburg–Gorky effect.)

More complex frequency structures can arise in an experiment of style 2 if the
elastic system has within itself elastic features with nonclassical dynamics. This
is the case with an elastic system having elastic elements behaving like those of
the MG model. From the discussion in Chapter 6, this could be Hertzian contacts,
Masing material, etc.

Both the linear and nonlinear elastic state of homogeneous elastic systems can
also be learned from a suitable set of time-of-flight measurements. When an elastic
system is inhomogeneous, normal-mode spectroscopic methods detect an average
elastic state that is mode dependent. As an example, consider the uv problem in
Chapter 3. If the system were inhomogeneous, γ in Eq. (3.69) replaced by γ(x), the
result in Eq. (3.75) would be replaced by

v (2)(L, ω)
L

= δ(ω – ω1 – ω2)γεL(ω1)εS (ω2)F , (9.5)

γ =
∫ L

0
dxγ(x) , (9.6)

f γ(x) = γ(x)/γ , (9.7)

F =
1
L

∫ L

0
dx f γ(x)

sin (qω3 x)
sin (qω3 L)

sin (kω1 x) sin (qω2 x) , (9.8)

where ω3 = ω1 + ω2. A measurement of a side-band amplitude would provide
one particular integral over γ(x). Finding the spatial structure of γ(x) would be an
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inverse problem having a familiar difficulty (e.g., invert for Preisach space or later
on in this chapter). But then one is using mode amplitudes importantly (not just
mode frequencies) and doing tomography. That comes next.

9.2
Tomographies, Linear, Inhomogeneous

Here we deal with ci jkl (x), which we take to be of the form ci jkl (x) = c0
i jkl +δci jkl (x),

where δci jkl (x) can be regarded as a perturbation in the stress-strain relation. We
sketch most results as the details are found in what has gone before. For the case
of time reversal we will say more. See Figures 9.1 and 9.2.

9.2.1
Time of Flight

Consider the elastic system described by

δci jkl (x) = φ(x)δix δ jx δkx δlx , (9.9)

φ(x) =
N∑

i=1

Ri δ(x – xi ) , (9.10)

where Ri = bδc2
i /c2

0 and b is a length to replace the units lost to δ(x –xi ). For ux = u
we have

ü +
1
τ0

u̇ – c2
0u′′ = c2

0
∂

∂x

(
N∑

i=1

Ri δ(x – xi )
∂u
∂x

)
+ F (t)δ(x) , (9.11)

–∞ < x < +∞. It is convenient to define the amplitude Λ and the dimensionless
form factor f(x)

Λ =
1
b

N∑
i=1

Ri =
N∑

i=1

δc2
i

c2
0

, (9.12)

f (x) =
N∑

i=1

Ri δ(x – xi )/Λ , (9.13)

1
b

∫
dx f (x) = 1 . (9.14)

The average strength of the inhomogeneity is measured by Λ, whereas its shape is
described by f(x). Then

ü +
1
τ0

u̇ – c2
0u′′ = c2

0Λ
∂

∂x

(
f (x)

∂u
∂x

)
+ F (t)δ(x) . (9.15)

We are concerned with the effect of δc(x) on the time of flight of a wave, u(x , t) =
u0 exp i (kx – Ωt), that crosses over it. We examine this question using the pertur-
bative methods illustrated above. Write u = u(1) + Λu(2) + . . . Then F (t)δ(x) creates
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u(1) = u0 exp i (kx – Ωt), or in Fourier space

u(1)(x ; ω) = G(x |0; ω)F (ω) (9.16)

where F (ω) = F 0δ(ω – Ω) and

u(2)(x ; ω) = –c2
0

(∫
dx ′ ∂G(x |x ′; ω)

∂x ′ f (x ′)
∂G(x ′|0; ω)

∂x ′ F (ω)

)
. (9.17)

Using the equation for G we have

u(2)(x ; ω) =
b

4c2
0

eikωx (9.18)

u = u(1)(x ; ω) + Λu(2)(x ; ω) =
iF 0

2c2
0kω

(1 – ikωbΛ) eikωx δ(ω – Ω) , (9.19)

and on rearrangement

u(x , t) = u0 (1 – ikΩbΛ) ei(kΩx–Ωt) , (9.20)

u(x , t) = u0ei(kΩ(x–a)–Ωt) , (9.21)

where kΩbΛ << 1. An encounter with the perturbation δci jkl (x) appears as a phase
shift. At x = λ the phase is zero at T λ = k(λ – a)/Ω. At x = λ, for a = 0, the phase
is zero at T 0 = kλ/Ω = 1/ f . So T λ = T 0(1 – a/λ). For Λ > 0 the moment of zero
phase arrives sooner, T λ < T 0, and for Λ < 0 the moment of zero phase arrives
later, T λ > T 0. This is equivalent to an effective velocity shift that goes as (a << λ)

ceff

c0
= 1 +

a
λ

= 1 + Λ
b
λ

. (9.22)

Thus the phase shifts of a suitable set of “beams” can provide the means to find
f(x) and determine Λ.

9.2.2
Normal Mode

Consider a resonant bar, 0 u x u L, for which the displacement obeys the equation

ü +
1
τ0

u̇ – c2
0u′′ = c2

0Λ
∂

∂x

(
f (x)

∂u
∂x

)
+ F (t)δ(x) (9.23)

using the notation in Eq. (9.15) with u′(0) = u′(L) = 0. We seek the frequencies of
the normal modes of this system. To find these we employ the methods of conven-
tional time-independent perturbation theory [4] using the complete set of spatial
states associated with the unperturbed problem set by the leading terms on the
LHS of the equation,

c2
0u′′ = ü → c2

0φ′′
n = λnφn = –ω2

nφn . (9.24)
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Fig. 9.1 Nonlinear spectroscopy. For a homogeneous non-
linear elastic system the presence of nonlinearity can make
itself known in spectroscopy through (a) amplitude-dependent
modification of the response at a drive frequency or (b) the
generation of response frequencies that are different from the
drive frequency.

These states are |n〉 = φn(x) ∝ cos knx , kn = nπ/L, n = 1. . ., ω0
n = knc0, for which

we have the notation and algebra

ψn = |n̂〉 =
1
kn

|n′〉 , (9.25)

〈n|m〉 =
∫ L

0
dxφn (x)φm(x) = δnm , (9.26)

〈n̂|m̂〉 =
∫ L

0
dxψn (x)ψm (x) = δnm , (9.27)

〈n′|m′〉 =
∫ L

0
dxφ′

n (x)φ′
m(x) = k2

nδnm , (9.28)

where for convenience we have introduced the second set of functions ψn . Use the
complete set of functions φn to express u(x , t) in the form

u =
M∑

m=1

am(t)φm(x) , (9.29)

where M is a practical limit on m. Substitute into Eq. (9.23) and take the inner
product of the resulting equation with 〈n|. Use one integration by parts, Eq. (9.28),
and rearrange to bring the resulting equation to the form

än +
1
τ0

ȧn + c2
0k2

nan = –c2
0Λ

M∑
m=1

knkm〈n̂| f (x)|m̂〉am(t) + F (t)〈n|δ(x)〉 ,

(9.30)
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= –c2
0Λ

M∑
m=1

knkmGnmam (t) + F (t)〈n|δ(x)〉, (9.31)

where Gnm = 〈n̂| f (x)|m̂〉 carries the information about the geometry of the pertur-
bation. Use the usual Fourier representation of F(t) and an(t), F (ω) and an(ω), to
write (

–ω2 – i
ω
τ0

+ c2
0k2

n

)
an(ω) = –c2

0Λ
M∑

m=1

knkmGnmam (ω) + F (ω)〈n|δ(x)〉 .

(9.32)

Take F(t) to drive the system near a normal mode, that is, F (ω) ∝ δ(ω ± Ω),
Ω W c0kn . Then the amplitude an is relatively large and we can write

am(ω) = a0
n(ω)δmn + Λgm(ω) + Λ2hm (ω) + . . . (9.33)

Substitution of this form in Eq. (9.32) and arrangement according to powers of Λ
leads to (for m = n)

Dn(ω)a0
n(ω) = F (ω)〈n|δ(x)〉 = F (ω)X n , (9.34)

D n(ω)gn(ω) = –c2
0k2

nGnna0
n(ω) , (9.35)

... (9.36)

where

D n(ω) =

(
–ω2 – i

ω
τ0

+ c2
0k2

n

)
. (9.37)

Solve for a0
n and gn and write

an W a0
n + Λgn =

(
1 –

1
D n

Λc2
0k2

nGnn

)
a0

n , (9.38)

=
1

D n + Λc2
0k2

nGnn
F (ω)X n , (9.39)

=
1

–ω2 – i ω
τ0

+ c2
0k2

n(1 + ΛGnn)
F (ω)X n . (9.40)

From the denominator we read off the resonance frequency

ω2
n –

(
ω0

n

)2
W
(
ω0

n

)2
ΛGnn (9.41)

or

ωn – ω0
n

ω0
n

W
1
2

ΛGnn . (9.42)

The magnitude of the frequency shift is in Λ, and the geometry of the perturba-
tion causing this shift is in Gnn . We can learn the geometrical arrangement of the
inhomogeneity by studying a set of the Gnn , which are integrals of the unknown
function f(x) over the known functions k–1

n dφn (x)/dx ∝ sin knx . Again we have an
inverse problem of a familiar kind.



206 9 Elastic State Spectroscopies and Elastic State Tomographies

(a)

(b)

(c)

Fig. 9.2 Tomographies. The position of a lo-
calized elastic inhomogeneity, δci jkl (x), can
be learned using at least three methods. (a)
Time-of-flight tomography, in which the trav-
el time over a multiplicity of paths is used to
find the involvement of δci jkl (x). (b) Normal-

mode tomography, in which alteration of the
normal-mode spectrum due to δci jkl (x) is
used to locate it. (c) Time-reversal tomogra-
phy, in which a set of sources, mirrors, are
trained to have an amplitude/phase that fo-
cuses on a scatterer, that is, δci jkl (x).

9.2.3
Normal Mode, a Numerical Example

Let us look at an example of the principle enunciated above to see some of the
features that appear in a problem of the type set. For an inhomogeneity with f(x) as
shown in Figure 9.3 of strength Λ = –0.02 we find the frequencies {ωn} from an
exact solution to Eq. (9.31). These are shown as frequency shifts in Figure 9.4 using
c0 = L = 1 and ω0

n/π = n (ω0
n/π = n is the horizontal axis in Figure 9.4). Error

bars have been attached to the {ωn} (relatively larger as the frequency increases)
that transfer directly to the frequency shifts. We take the frequencies {ωn} (or the
frequency shifts) as the data.

1. To have data to display as in Figure 9.4 from an experiment one needs mea-
surements of the frequency of M normal modes for a homogeneous sample
as well as measurements of the frequency of the same M normal modes for
a sample identical in every regard except for the inhomogeneity. “Differing
unimportantly compared to the inhomogeneity” also works. But how would
you know? The need to compare measurements on two different samples is
troublesome.

2. The frequency shift, Δωn/π = (ωn – ω0
n)/π, scales approximately as the

frequency ω0
n . A fit of Δωn/π to a line yields

Δωn/π W –0.00337 – 0.00981n , (9.43)
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Fig. 9.3 Form Factor for δci jkl (x). The spa-
tial structure of an elastic inhomogeneity
is described by a form factor, for example,
Eq. (9.14). For the numerical example in
Section 9.2.2 f(x) is the light smooth curve
with approximately four oscillations between

0.4 < x < 0.75. The model form factor,
f M (x) = 1/W , –W /2 + d u x u d + W /2,
is the heavy line “box” with d = 0.565 and
W = 0.40 from the minimum of the energy E
in Eq. (9.44).

in qualitative accord with Eq. (9.42). If we assume that the integrals Gnn

are of order 1, then the coefficient of ω0
n/π = n provides an estimate of Λ,

Λ W –0.0196.
3. If f (x) = 1, 0 u x u L, then Gnn = 1, ∀n. The error bars in Figure 9.4 are

to be taken seriously. It is modes n = 1, 7. . .10 that locate f (x) =/ 1 and
contain the information that will pin it down. To see this, remove the trivial
n dependence from Δωn by dividing by ω0

n , see Figure 9.6 (circles).
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Fig. 9.4 Frequency Shift. The frequency shift
as a function of mode number for an inho-
mogeneity of strength Λ = –0.02 having the
form factor shown in Figure 9.3. For illustra-
tive purposes an error bar was assigned to
each experimental data point. The frequency
shift is proportional to the mode number as it

must be from simple scaling, Eq. (9.42) and
from Eq. (9.43). Since the Gnn are of order
1, the approximate amplitude of the inhomo-
geneity is found from the slope in Eq. (9.43).
The shape of the form factor comes from no-
table departures of the frequency shift from
f (x) = 1/L. See Figure 9.6.

4. To estimate f(x) in order to locate the inhomogeneity, we use a model with
2 degrees of freedom (W , d), f M (x) = 1/W , –W /2 + d u x u d + W /2. For
f M (x) we calculate the integrals GM

nn , n = 1. . .M , and form them into the
M component unit vector, eM (eM · eM = 1). We form the corresponding unit
vector, eX (eX · eX = 1), from the experimental data, Δωn/ω0

n . Forming the
unit vectors takes all of the issues of magnitude out of the comparison of
f(x) with f M (x). We seek eM W eX . Find this as the minimum in the energy,
E (d, W ), given by

E (d, W ) =
M∑

n=1

(eX (n) – eM (n))K (n)(eX (n) – eM (n)) , (9.44)

where K (n)–1 ∝ σ(n), the uncertainty in data point n, that is, the uncertainty
in Δωn/ω0

n .
5. In Figure 9.5 we show E (d, W ) as a function of (W , d). There is an absolute

minimum at (W , d) = (0.40, 0.565). On Figure 9.3 we show this f M (x) along
with f(x). It is apparent that the very crude f M (x) we have used captures the
gross properties of f(x) quite well, but it certainly cannot get the details. We
see this in Figure 9.6, where we show the M = 20 components of eX and eM
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Fig. 9.5 Energy Landscape. The energy in Eq. (9.44), due to
the difference between the data vector eX and the model vector
eM , as a function of d and W, the parameters of the model
form factor f M (x). The energy minimum is at d = 0.565 and
W = 0.40. See Figure 9.3. (Please find a color version of this
figure on the color plates)

(0.40,0.565). The long-wavelength amplitudes are in good agreement, say
out to n = 7. The amplitudes n = 8. . .11, which must pick up the short-
wavelength structure in f(x), do not do particularly well. On the other hand,
these observations point toward the direction one would go in to seek im-
provement.

9.2.4
Time Reversal

For this discussion we are more careful with details than we were above, where
they are relatively easily provided from what has gone before. So be prepared to
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Fig. 9.6 Frequency-Shift Vectors. The experi-
mental data points, in the form (ωn – ω0

n )/ω0
n ,

are formed into a unit vector, eX (open cir-
cles with error bars), as are the correspond-
ing points in the best model of the data, eM
(d = 0.565 and W = 0.40) (squares). These
vectors have no information about the ampli-
tude of the inhomogeneity, but they do carry
the information about the shape, that is, f(x).
Further, since the trivial factor ω0

n in Eq. (9.42)
has been divided out, the importance of the

error bars is apparent. If f (x) = 1/L, then
e(n) = 1/

√
M∀n (the line at 1/

√
20 on the fig-

ure). Departure of e(n) from 1/
√

20 for modes
n = 1, 7, 8, 9, 10 by more than the error bars
means that these modes are particularly sensi-
tive to f(x). The very simple model form factor,
f M (x), is adequate to get e(n) about right for
n = 1. . .7. A model form factor with more
structure is necessary to do a better job with
n = 8. . .11.

see lots of indices. We begin with the classical continuum equation for an isotropic
material:

ρüi =
∑

jkl

∂

∂x j
ci jkl (x)

∂uk

∂xl
, (9.45)

where

ci jkl (x) = λ(x)δi j δkl + μ(x)(δikδ j l + δi lδ jk) (9.46)
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and λ and μ are the Lamê constants. In detail, Eq. (9.45) is

ρüi =
∂

∂xi

(
λ(x)

∑
k

∂uk

∂xk

)
+
∑

k

∂

∂xk

(
μ(x)

∂ui

∂xk

)
+
∑

k

∂

∂xk

(
μ(x)

∂uk

∂xi

)
.

(9.47)

As above, we examine the case where the elastic system is uniformly isotropic ex-
cept for a spatially local perturbation. We write

ρüi + ρ
u̇
τ0

= [Bu]i +
∑

jkl

∂

∂x j

(
δci jkl (x)

∂uk

∂xl

)
+ ρ f i (x, t) , (9.48)

where

[Bu]i = λ0
∂

∂xi

(∑
k

∂uk

∂xk

)
+ μ0

∑
k

∂

∂xk

(
∂ui

∂xk

)
+ μ0

∑
k

∂

∂xk

(
∂uk

∂xi

)
.

(9.49)

In the usual way, write ui in the form ui = u(1)
i + u(2)

i + . . ., (u(n+1) of order (δc)n),
and find

ρü(1) = [Bu(1)]i + ρ f i (x, t) , (9.50)

ρü(2) = [Bu(2)]i +
∑

jkl

∂

∂x j

(
δci jkl (x)

∂u(1)
k

∂xl

)
, (9.51)

... (9.52)

Choose the geometry shown in Figure 9.7. Place m = 1. . .M mirrors (displacement
source/receivers) [5, 6] at xm = (0, y m , 0). These are the locations of f,

f i (x, t) =
M∑

m=1

f i (xm , t)δ(x – xm ) . (9.53)

Use the usual Fourier representation of u and f and find

u(1)
i = U (1)

i + U (2)
i + . . .U (M)

i , (9.54)

U (m)
i (x; ω) = Gi2(x, m; ω) f 2(m; ω) , (9.55)

u(2)
1 (x; ω) =

M∑
m=1

∑
i jkl

∫
dx′G1i (x, x′; ω)

∂

∂x ′
j

(
δci jkl (x′)

∂U (m)
k

∂x ′
l

)
, (9.56)

where m stands for xm and Gi j (x, m) is the Green function for the isotropic elastic
system. The component of f and displacement u(2) have been chosen to be 2 and 1,
respectively, for clarity.
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Fig. 9.7 Time-Reversal Geometry. A uniform elastic system has
M = 11 mirrors at xm = 0, –5 u ym u +5 and N = 19 scatterers
at xn W L = 10, –2 u ym u +2.

The first-order field is built up as a sum of the fields U (m)
i due to f i (m). The

superposition of the scattering of these fields from δc(x) gives u(2)
i . Using the equa-

tions for U (m)
i in the equation for u(2)

i and doing one integration by parts leads
to

u(2)
1 (x; ω) = –

M∑
m=1

∑
i jkl

∫
dx′ ∂G1i (x, x′; ω)

∂x ′
j

δci jkl (x′)
∂Gk2(x′, m; ω)

∂x ′
l

f 2(m; ω) .

(9.57)

For the scattered field at m′ we have

u(2)
1 (m′; ω) = –

M∑
m=1

∑
i jkl

∫
dx′ ∂G1i (m′, x′; ω)

∂x ′
j

δci jkl (x′)
∂Gk2(x′, m; ω)

∂x ′
l

f 2(m; ω) , (9.58)

= –
M∑

m=1

t12(m′, m; ω) f 2(m; ω) . (9.59)
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Matrix t is called the transfer matrix. Under certain conditions it obeys reciprocity.
To show this we use the sequence of steps

t12(m′, m; ω) =
∑
i jkl

∫
dx′ ∂G1i (m′, x′; ω)

∂x ′
j

δci jkl (x′)
∂Gk2(x′, m; ω)

∂x ′
l

, (9.60)

=
∑
i jkl

∫
dx′ ∂Gi1(x′, m′; ω)

∂x ′
j

δci jkl (x′)
∂G2k(m, x′; ω)

∂x ′
l

, (9.61)

t21(m, m′; ω) =
∑
i jkl

∫
dx′ ∂Gi2(x′, m; ω)

∂x ′
j

δci jkl (x′)
∂G1k(m′, x′; ω)

∂x ′
l

, (9.62)

=
∑
i jkl

∫
dx′ ∂Gk2(x′, m; ω)

∂x ′
l

δckli j (x′)
∂G1i (m′, x′; ω)

∂x ′
j

. (9.63)

1. The second line follows from the reciprocity of G [7], Gi j (1, 2; ω) =
G ji (2, 1; ω).

2. The third line follows from the second upon interchanging 1 ↔ 2 and m ↔
m′.

3. The fourth line follows from the third upon interchange of the dummy in-
dices i ↔ k and j ↔ l .

Then, if the perturbation is such that δckli j (x) = δci jkl (x),

t21(m, m′; ω) = t12(m′, m; ω) , (9.64)

the transfer matrix obeys reciprocity. For a linear elastic material with elastic energy
density that is pointwise an analytic function of the strain field one necessarily has
δci jkl (x) = δckli j (x) [8].

Now let us look at the iterative time reversal experimental procedure [5, 6].
1. The initial broadcast is a tone burst (time train) with central frequency Ω

from each of the mirrors m = 1. . .M .
2. The resulting time trains u1(m′; t) are detected at mirrors m′ = 1. . .M .
3. The time trains u1(m′; t) are time reversed and rebroadcast from mirrors

m′ = 1. . .M .
4. The resulting time trains u1(m′′; t) are detected at mirrors m′′ = 1. . .M .
5. The time trains u1(m′′; t) are time reversed and used as the input to step 1.

In the Fourier domain time reversal is equivalent to complex conjugation:

f (t) =
∫

dω
2π

G(ω)e–iωt , (9.65)

f (–t) =
∫

dω
2π

G(ω)eiωt =
∫

dω
2π

G(–ω)e–iωt , (9.66)

=
∫

dω
2π

G∗(ω)e–iωt , (9.67)

where the last line follows from G∗(–ω) = G(ω) for a real function. Thus in the
Fourier domain the description of the basic step in the time reversal experimental
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procedure (1 to 4 above) is

u1(m′′, ω) =
∑

k

∑
l

wkt1k(m′′, l; ω)t∗k2(l, m; ω) f ∗
2 (m, ω) , (9.68)

= K12(m′′, m; ω) f ∗
2 (m, ω) , (9.69)

where wk = 1 if the mirrors receive/broadcast the k component of the displace-
ment (wk = 0 otherwise) and K12(m′′, m; ω) is the time-reversal matrix. Employ the
notation ν = (i , m) to write K in the form

Kμν =
∑

η

tμηt∗ην , (9.70)

so that it is apparent that

Kμν = K∗
νμ , (9.71)

that is, K is a Hermitian (or self-adjoint) matrix. Iteration of the basic step in the
experimental procedure (add 5 above) corresponds to operating with K on what has
gone before. Schematically,

r0 = te0 , (9.72)

e1 = tr∗0 = tt∗e∗0 = K e∗0 , (9.73)

r1 = te∗1 = tt∗te0 , (9.74)

e2 = tr∗1 = tt∗tt∗e∗0 = K 2e∗0 , (9.75)

... . (9.76)

Thus en = K ne∗0 for n = 1, 2, . . . That is, the analytic description of repeated exper-
imental cycling through steps 1 to 5 is a repeated application of the time-reversal
matrix to the amplitudes of the initial broadcast. To see what this analytic descrip-
tion leads to, let us spend a few moments with Hermitian matrices [4]. For an
M ~ M Hermitian matrix there is an eigenvalue problem

M∑
m′=1

K (m, m′)φn(m′) = λnφn(m) , n = 1 . . . M , (9.77)

for which the eigenvalues λn are real and the eigenvectors are orthogonal

M∑
m=1

�n′ (m)φn(m) = δn,n′ , (9.78)

where �n = φ†
n . If we expand e0 in terms of the eigenvectors φn as here

e0 =
M∑

n=1

anφn , (9.79)
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then repeated application of K will pull out the eigenvector with the largest eigen-
value:

K N e0 =
M∑

n=1

anK N φn → λN
nmax

φnmax + . . . (9.80)

This eigenvector φnmax has M components each of which is a complex number or
a magnitude/phase, φn (m) ↔ (R(m), θ(m)). It can be shown that (R(m), θ(m)) are
the magnitude/phase that, when used in the broadcast of tone bursts, will focus
on the strongest scattering structure. Thus repeated use of steps 1 to 5 is a training
procedure that finds these amplitudes/phases. If one has a velocity model of the
homogeneous elastic system in which the inhomogeneity resides, then standard
seismiclike procedures will make it possible to find the location of the strongest
scattering structure in the inhomogeneity.

9.2.5
Time Reversal, a Numerical Example

Let us look at some features in a numerical example of time reversal. We consider
the geometry shown in Figure 9.7; M = 11 mirrors at x = 0, –5 u y u +5 and N = 19
scatterers near x = L = 10, –2 u y u +2. The scatterers have strength S(n) = exp(–r),
where r is a random number from a uniform distribution 0 < r < 1, Figure 9.8a.
We form K for the case ω = ck = 7.8540 (c = 1) from t and the scattering strengths

δc(x)i jkl →
N∑

n=1

S(n)δ(x – xn)δixδ jx δkx δlx (9.81)

using Eqs. (9.63) and (9.69) and the far-field approximation to the P-wave elastic
Green function. The result is an 11 ~ 11 Hermitian matrix.

1. The initial set of displacement amplitudes e0(m) at the mirrors, m = 1 . . . 11,
are 11 random numbers from a uniform distribution 0 < r < 1. These
produce an amplitude in the plane x = L

u0(L, y ; ω) =
M∑

m=1

G(L, y |m; ω)e0(m) (9.82)

whose magnitude (before scattering) is shown in Figure 9.8b, open circles.
2. The amplitudes u0(n, ω) are scattered back to the mirrors where they be-

come the amplitudes e1(m) =
∑

K (m, m′)e0(m′) for the first rebroadcast
from the mirrors. This rebroadcast produces an amplitude in the plane
x = L

u1(L, y ; ω) =
M∑

m=1

G(L, y |m; ω)e∗1(m) (9.83)

whose magnitude (before scattering) is shown in Figure 9.8b, solid line.
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Fig. 9.8 Scattering Strength and Initial Amplitudes. (a) Scat-
tering strength S(n) as a function of yn. (b) Amplitude of first
broadcast to the plane x = L = 10, u0(L, y ; ω), from Eq. (9.82)
(circles) and u1(L, y ; ω) from Eq. (9.83) (solid line).
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Fig. 9.9 Successive Amplitudes. (a) The amplitudes of broad-
casts n = 1. . .12, un (L, y ; ω), as a function of y. (b) The am-
plitude of the final broadcast, u12(L, y ; ω), as a function of y.
Compare u0(L, y ; ω) in Figure 9.8b to u12(L, y ; ω).
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Fig. 9.10 Phase Evolution. The amplitudes en(m) are complex
numbers that evolve with successive broadcasts. (a) The ampli-
tude en(1) starts on the real axis at (0.26, 0.0), takes a large step
into the third quadrant, and evolves slowly to a location in the
fourth quadrant, (0.24, –0.62). (b) The amplitude en(9) evolves
qualitatively differently, from (0.47, 0) to a location in the first
quadrant, (0.56, 0.62).

3. Repetition of the procedure produces a sequence of amplitudes in the x =
L plane, un(L, y ; ω) =

∑
G(L, y |m; ω)e∗n(m) [en(m) =

∑
K (m, m′)e∗n–1(m′)],

that are shown in Figure 9.9 a for n = 1. . .12, that is, for 12 rebroadcasts.
4. The broadcast amplitude sequence e0, e1, . . . approaches a limit, that is, is

trained by repetition of the time-reversal steps. This amplitude sequence
produces a limiting displacement in the x = L plane, shown in Figure 9.9b.
The amplitudes e(m) are complex numbers. In Figure 9.10 we show the
amplitudes en(1) and en(9) for the 12 broadcasts. Each amplitude is initially
a real number, see 1 above, that evolves to a location in the complex plane.
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To keep the magnitude of e(m) approximately constant, we norm the vector
e to 1 after each TR step. (So would an experimental procedure.)

5. The trained amplitudes focus the broadcast onto the strongest scatterer if
the scatterers are well separated and on the strongest scattering structure
when not.

The discussion here, primarily pedagogic, is complemented by an example of cur-
rent implementation, for example, [9].

9.3
Tomographies, Nonlinear, Inhomogeneous

9.3.1
Time of Flight

Consider the elastic system described by

ü +
1
τ0

u̇ – c2
0u′′ = c2

0
∂

∂x

(
N∑

i=1

Ri δ(x – xi )

(
∂u
∂x

)2
∂u
∂x

)
+ F (t)δ(x). (9.84)

The localized inhomogeneity is modeled after the quartic anharmonicity examined
in Chapter 3. This inhomogeneity differs from that in Eq. (9.11) in that strains
at x = xi appear squared as part of δc(x) and are time dependent. We use the
definitions in Eq. (9.14) and the usual Fourier analysis with F (x ; ω) and u(x ; ω) to
write

D (x ; ω)u(x ; ω) = c2
0Λ

∂

∂x

(
f (x)S(x ; ω)

)
+ F (ω)δ(x) , (9.85)

where

D (x ; ω) = –ω2 – i
ω
τ0

– c2
0

∂2

∂x2 (9.86)

and

S(x ; ω) =
∫

dω′
∫

dω′′ ∂u(x ; ω – ω′ – ω′′)
∂x

∂u(x ; ω′)
∂x

∂u(x ; ω′′)
∂x

. (9.87)

Represent u(x ; ω) in the form u(x ; ω) = u1(x ; ω) + Λu2(x ; ω) + . . . and find the
equations

D (x ; ω)u1(x ; ω) = F (ω)δ(x) , (9.88)

D (x ; ω)u2(x ; ω) = c2
0

∂

∂x

(
f (x)S1(x ; ω)

)
, (9.89)

... (9.90)
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where

S1(x ; ω) =
∫

dω′
∫

dω′′ ∂u1(x ; ω – ω′ – ω′′)
∂x

∂u1(x ; ω′)
∂x

∂u1(x ; ω′′)
∂x

. (9.91)

Solve these using the definition of the Green function D (x ; ω)G(x |x ′; ω) = δ(x –x ′)
with the result

u1(x ; ω) = G(x |0; ω)F (ω) , (9.92)

u2(x ; ω) = –c2
0

(∫
dx ′ ∂G(x |x ′; ω)

∂x ′ f (x)S1(x ′; ω)

)
= –c2

0T (x ; ω) . (9.93)

Use u1(x , ω) in S1 in the second line

S1(x ; ω) =
∫

dω′
∫

dω′′H(ω, ω′, ω′′)
∂G(x |0; ω – ω′ – ω′′)

∂x
∂G(x |0; ω′)

∂x

~
∂G(x |0; ω′′)

∂x
,

(9.94)

where

H(ω, ω′, ω′′) = F (ω – ω′ – ω′′)F (ω′)F (ω′′) . (9.95)

Then with the explicit form of the Green function G(x |x ′; ω) = (i/2c2
0kω) exp(–ikω|

x – x ′|) we have

T (x ; ω) = –

(
1

2c2
0

)4 ∫
dx ′eikω(x–x ′) f (x ′)

∫
dω′

∫
dω′′H(ω, ω′, ω′′)eikωx ′

(9.96)

= –

(
1

2c2
0

)4

beikωx
∫

dω′
∫

dω′′H(ω, ω′, ω′′) . (9.97)

For a monochromatic source F (ω) = F 0[δ(ω – Ω) + δ(ω + Ω)] there are two types of
terms, ∫

dω′
∫

dω′′H(ω, ω′, ω′′) = F 3
0

[
3δ(ω – Ω) + 3δ(ω + Ω) + δ(ω – 3Ω)

+ δ(ω + 3Ω)
]

, (9.98)

those that return the frequencies in F (ω) and those that shift the frequency, δ(ω –
3Ω) + δ(ω + 3Ω). For the terms in δ(ω – Ω) + δ(ω + Ω) we have

u2(x ; ω) =
3b
16

F 3
0

c6
0

[δ(ω – Ω) + δ(ω + Ω)] . (9.99)
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Combine this with u1

u(x ; ω) W u1(x ; ω) + Λu2(x ; ω) =
iF 0

2c2
0kω

(
1 – i

3
8

kωbΛ
F 2

0

c4
0

)
~ eikωx [δ(ω – Ω) + δ(ω + Ω)] . (9.100)

Then following the discussion below Eq. (9.19) and using F 0/c2
0 = –ikΩu0 and

ε0 = ikΩu0 we have

ceff

c0
= 1 +

3
8

b
λ

Λε2
0 . (9.101)

Thus there is a velocity shift that scales with strain squared.
For the terms that produce a frequency shift

Λu2(x ; ω) =
b
16

Λ
F 3

0

c6
0

[δ(ω – 3Ω) + δ(ω + 3Ω)] . (9.102)

If we follow one of these terms, say δ(ω – 3Ω), back to x and t, we have

u3Ω(x , t) =
b
16

Λ
F 3

0

c6
0

ei(k3Ω–3Ωt) (9.103)

= –
b
16

Λε3
0ei(k3Ω–3Ωt) . (9.104)

We can learn about a localized nonlinear scatterer in the path of a tone burst by
(1) noticing a shift in the velocity of the center frequency proportional to the strain
squared or by (2) noticing a Fourier component at 3 times the center frequency
in the tone burst. The generalization is to a velocity shift proportional to εn

0 and
a Fourier component at n + 1 times the center frequency in the tone burst, where
ε0 is the strain amplitude at the center frequency in the tone burst. As with linear
time-of-flight tomography, encounters with a localized nonlinear inhomogeneity
by a suitable number of broadcasts will allow determination of its size, location,
and nonlinear character.

9.3.2
Nonlinear Normal-Mode Tomography

Consider a resonant bar, 0 u x u L, for which the displacement obeys the equation

ü +
1
τ0

u̇ – c2
0u′′ = c2

0Λ
∂

∂x

(
f (x)

(
∂u
∂x

)2
∂u
∂x

)
+ F (t)δ(x) . (9.105)

Following the scheme used above for the linear resonant bar problem, see below
Eq. (9.24), we use the compete set of orthonormal states associated with ü–c2

0u′′ = 0
to write u(x , t) in the form

u =
M∑

m=1

am(t)φm(x) . (9.106)
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Substitute into Eq. (9.105) and take the inner product of the resulting equation with
< n|. Find using one integration by parts and rearrangement

än +
1
τ0

ȧn + c2
0k2

nan = –c2
0

M∑
m=1

M∑
m′=1

M∑
m′′=1

knkmkm′km′′ (9.107)

〈n̂| f (x)|m̂m̂′m̂′′〉am(t)am′ (t)am′′ (t) (9.108)

+ F (t)〈n|δ(x)〉 . (9.109)

Define

Gnmm′m′′ =
2L
3
〈n̂| f (x)|m̂m̂′m̂′′〉 , (9.110)

where the factor of 2L/3 in this definition makes G dimensionless and equal to 1
for f(x) constant, a balancing factor of 2/3 is absorbed in a redefinition of Λ and
X n = 〈n|δ(x)〉. Write

än +
1
τ0

ȧn + c2
0k2

nan = –c2
0ΛL–1

M∑
m=1

M∑
m′=1

M∑
m′′=1

knkmkm′km′′

~ Gnmm′m′′am(t)am′ (t)am′′ (t) + F (t)X n . (9.111)

Employ a Fourier description of a(t) and F(t) to find

D n(ω)an(ω) = –c2
0ΛL–1

M∑
m=1

M∑
m′=1

M∑
m′′=1

knkmkm′km′′Gnmm′m′′ J(ω) + F (ω)X n ,

(9.112)

where

J(ω) =
∫

dω′
∫

dω′′am (ω′)am′ (ω′′)am′′ (ω – ω′ – ω′′) . (9.113)

Up to this point we have just been arranging Eq. (9.105) in preparation for doing
perturbation theory. For F (ω) ∝ δ(ω ± Ω), Ω W c0kn , the amplitude an is relatively
large and we can write

am(ω) = a0
n(ω)δmn + Λgm(ω) + Λ2hm (ω) + . . . (9.114)

Substitution of this form into Eq. (9.111) and arrangement according to powers of
Λ lead to (m = n)

Dn(ω)a0
n(ω) = F (ω)X n , (9.115)

D n(ω)gn(ω) = –c2
0ΛL–1k4

nGnnnn J0(ω) , (9.116)

... (9.117)
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where

J0(ω) =
∫

dω′
∫

dω′′a0
n(ω′)a0

n(ω′′)a0
n(ω – ω′ – ω′′) . (9.118)

Solve for a0
n and use the result to find J0:

J0 = X 3
n

∫
dω′

∫
dω′′H(ω, ω′, ω′′)F (ω′)F (ω′′)F (ω – ω′ – ω′′) , (9.119)

where

H(ω, ω′, ω′′) =
1

D n(ω)
1

D n(ω′)
1

D n(ω′′)
. (9.120)

In order to work this out use F (ω) = F 0[δ(ω – Ω) + δ(ω + Ω)] and find the terms in
J0 proportional to δ(ω ± Ω). These are

J0 = 3F 3
0X 3

n

(
1

D n(Ω)2D n(–Ω)
δ(ω – Ω) +

1
D n(Ω)D n(–Ω)2 δ(ω + Ω)

)
.

(9.121)

For the terms in an W a0
n + Λgn proportional to δ(ω – Ω) we have (see Eq. (9.40))

an(Ω) =
F 0X n

D n(Ω)
δ(ω – Ω) – 3c2

0Λk4
nGnnnn

F 3
0X 3

n

LD n(Ω)3D n(–Ω)
δ(ω – Ω)

(9.122)

=
1

D n(Ω) + 3c2
0k2

nΛ k2
nF 2

0X 2
n

L|Dn (Ω)|2 Gnnnn

F 0X nδ(ω – Ω) , (9.123)

where D n(–Ω) = D n(Ω)∗. The denominator can be rearranged as

–ω2 – i
ω
τ0

+ c2
0k2

n

(
1 + 3Λ

k2
nF 2

0X 2
n

L|D n(Ω)|2 Gnnnn

)
, (9.124)

so that the frequency shift can be read off as

ω2
n W c2

0k2
n

(
1 + 3Λ

k2
nF 2

0X 2
n

L|D n(Ω)|2 Gnnnn

)
(9.125)

and

ωn – ω0
n

ω0
n

W
3
4

ΛGnnnn
(
εr

n

)2
, (9.126)

where εr
n = knF 0X n/(

√
L/2Dn(ωn)), and un (0) W (F 0X n/D (ωn).

1. The terms in δ(ω ± 3Ω) have an amplitude proportional to (εr
n)3 and have

the same information about the localized inhomogeneity as the frequency
shift, that is, are proportional to ΛGnnnn .
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2. One could launch two first-order strain fields of different frequency, F (ω) =
F 1δ(ω ±Ω1) + F 2δ(ω±Ω2), where Ω1 and Ω2 are near resonance frequen-
cies, and find frequency shifts in each resonance frequency proportional to
the amplitude of the strain field of the other. Sweeping frequency ω near Ω1

with Ω2 fixed would lead to

ω1 – ω0
1

ω0
1

W ΛG1221 (εr
2)2 ; (9.127)

sweeping frequency ω near Ω2 with Ω1 fixed would lead to

ω2 – ω0
2

ω0
1

W ΛG2112 (εr
1)2 , (9.128)

etc. In this way one could build up a set of integrals Gi jkl to use in tackling
the problem of finding f(x).

Nonlinear normal-mode tomography as a practical scheme is subject to many of the
considerations described in Section 9.2.3. It has one great advantage: two samples
are not required. The normal-mode frequency shifts that are the basic data are built
up in a sample by change in drive amplitude. One makes a study of the amplitude
dependence of M normal modes. Then the M coefficients of

ωn – ω0
n

ω0
n

= C n
(

εr
n

)2
, n = 1 . . . M , (9.129)

C 1. . .C M , are formed into the vector eX and treated as described above. From that
point forward the only detail that is different is the integrand of the integral that
determines eM , Gnnnn vs. Gnn .

9.3.3
Nonlinear Time-Reversal Tomography

To discuss nonlinear time reversal we adopt a somewhat general approach by con-
sidering a localized inhomogeneity that is time dependent, that is, δci jkl (x) →
δci jkl (x, t). Then in place of the last line in Eq. (9.56) find

u(2)
1 (x; ω) =

M∑
m=1

∑
i jkl

∫
dx′G1i (x, x′; ω)

∫
dω′ ∂

∂x ′
j

~

(
δci jkl (x′, ω′)

∂U (m)
k (x′, ω – ω′)

∂x ′
l

)
, (9.130)

and in place of Eq. (9.57) find

u(2)
1 (x; ω) = –

M∑
m=1

∑
i jkl

∫
dx′ ∂G1i (x, x′; ω)

∂x ′
j

~
∫

dω′δci jkl (x′, ω′)
∂Gk2(x′, m; ω – ω′)

∂x ′
l

f 2(m; ω – ω′) . (9.131)
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1. Take the time dependence of δci jkl (x′, t) to be such that

δci jkl (x′, ω) =
∑

α

δci jkl (x′, ω)
[
δ(ω – ωα) + δ(ω + ωα)

]
. (9.132)

2. Take the time dependence of f 2(m, t) to be such that

f 2(m, ω) = f 2(m)δ(ω – Ω). (9.133)

Then from Eq. (9.131) for the upper side band at Ω + ωα, ω′ = ωα, we have

u(2)
1 (x; ω) = –δ(ω – Ω – ωα)

M∑
m=1

∑
i jkl

∫
dx′δci jkl (x′, ωα)

~
∂G1i (x, x′; ω)

∂x ′
j

∂Gk2(x′, m; Ω)
∂x ′

l
f 2(m) , (9.134)

and analogously to Eq. (9.59)

u(2)
1 (m′; ω) = –δ(ω – Ω – ωα)

M∑
m=1

∑
i jkl

∫
dx′δci jkl (x′, ωα)

~
∂G1i (m′, x′; ω)

∂x ′
j

∂Gk2(x′, m; Ω)
∂x ′

l
f 2(m)

(9.135)

= –δ(ω – Ω – ωα)
M∑

m=1

t12(m′, m; Ω + ωα, Ω) f 2(m) , (9.136)

where t12(m′, m; Ω + ωα, Ω) is the transfer matrix, cf. Eq. (9.59). For δckli j (x′, ωα) =
δci jkl (x′, ωα), using the arguments below Eq.(9.63), we have

t12(m′, m; Ω + ωα, Ω) = t21(m, m′; Ω, Ω + ωα) , (9.137)

a form of reciprocity. The basic thing going on here that is different from linear
time reversal is that the broadcast, mirror to scatterer to mirror, involves a frequen-
cy shift, Ω → Ω ± ωα.
We introduce a frequency protocol into the time-reversal procedure:

1. The initial broadcast is a tone burst (time train) with central frequency Ω
from each of the mirrors m = 1. . .M .

2. The resulting time trains u1(m′; t) detected at mirrors m′ = 1 . . . M are
Fourier analyzed and the component of each time train with center frequen-
cy ω = Ω + ωα, u(+)

1 (m′; t), is constructed.
3. The time trains u(+)

1 (m′; t) are time reversed and rebroadcast from mirrors
m′ = 1 . . . M .

4. The resulting time trains u1(m′′; t) detected at mirrors m′′ = 1 . . . M are
Fourier analyzed and the Fourier component of each time train at Ω,
u(+–)

1 (m′′; Ω), is found.
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5. From u(+–)
1 (m′′; Ω) the component of the time train with central frequency

Ω, u(+–)
1 (m′′; t), is constructed, possibly to be used iteratively in steps 1 to 4.

Steps 1 to 4 are described by

u+–
1 (m′′; Ω) =

∑
m

K12(m′′, m, Ω, Ω; ωα) f ∗
2 (m; Ω) , (9.138)

where

K12(m′′, m, Ω, Ω; ωα) =
∑

k

∑
l

wkt1k(m′′, l, Ω, Ω + ωα)t∗k2(l, m, Ω + ωα, Ω) ,

(9.139)

where wk = 1 for each displacement component received/broadcast by the mirrors.
Using Eq. (9.137) it follows that the time-reversal operator K12(m′′, m, Ω, Ω; ωα) is
Hermitian.
Thus the experimental iteration of steps 1 to 5 or a DORT treatment [6] of the
matrix K12(m′′, m, Ω, Ω; ωα) will provide a set of time trains that, when broadcast
from the mirrors, will focus on the “largest” nonlinear scattering structure in the
system. Further manipulation will allow examination of a hierarchy of nonlinear
scattering structures ordered by strength.
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10
Quasistatic Measurements

This chapter is about quasistatic measurements. We examine a collection of qua-
sistatic measurements that establish the physical picture that underlies our un-
derstanding of mesoscopic elastic material and we examine the result of a further
series of measurements that flesh out that understanding. We begin in Section 10.1
with a discussion of numbers, epoxy, and neutrons that suggests/supports the
physical picture we advocate. In Section 10.2 we look at quasistatic stress-strain data
on a variety of systems, several sandstones, a ceramic (TBC), and a soil. We give par-
ticular attention to the notion of modulus. Section 10.3 is devoted to the description
of the influence of auxiliary fields on quasistatic behavior; Section 10.3.1 discusses
vycor glass, sandstone, saturation, and Section 10.3.2 sandstone and temperature.
The inverse problem associated with quasistatic data, that is, learning about the
characteristics of Preisach space, is discussed in Section 10.4; Section 10.4.1 con-
cerns simple stress protocols, and Section 10.4.2 discusses elaborate stress proto-
cols. In Section 10.4.3 a simple, approximate “solution” to the inverse problem is
introduced to allow comparison among quasistatic data sets and to illustrate the
quantitative connection between quasistatic behavior and nonlinear dynamics.

10.1
Some Basic Observations

The simplest measurement that points to an important quality of mesoscopic elas-
tic materials is the velocity of sound. A Berea sandstone is approximately a bonded
set of quartz grains. A lightly packed system of glass beads, for example, under
a pressure of order 10 atmospheres, is an aggregate of quartz grains that encounter
one another through a contact network. The nominal velocities of sound in quartz,
Berea sandstone, and a silica contact network are 6, 2, and 1 km/s [1–3]. These three
systems have about the same density, W 2–3 gm/cm3. Consequently the relevant
physical variables, the compressibilities, are approximately K Q W 8 · 1011 dyne/cm2

(80 GPa), K SS W 8 · 1010 dyne/cm2 (8 GPa), and K C N W 2 · 1010 dyne/cm2 (2 GPa).
The simplest meaning of K is that a pressure δP produces a macroscopic strain

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
including Rocks and Soil. Robert A. Guyer and Paul A. Johnson
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40703-3
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given by

ε W
1
K

δP . (10.1)

Thus for fixed δP , εC N W 4 ~ εSS W 40 ~ εQ . The silica component of all three of
these systems is essentially the same since ρQ W 2.7 gm/cm3, ρSS W 2.3 gm/cm3,
and ρC N W 2 gm/cm3. The extra strain beyond that which would be present if it
were taken up by the quartz grains resides in a small volume of the system, for
example, in the mortar of a bricks-and-mortar scenario or in the contact area of
a contact network picture of glass beads. As these volumes are small, the strains in
them are large. Let us make two estimates.

1. Bricks and mortar, Section 4.4.3 the bricks-and-mortar model of Figure 10.1
we assign elastic constants KQ to the bricks and Km to the mortar and con-
tact. Upon application of a uniform compressive stress, σ, we find strain
across the system (as the system is uniform, we need only study the unit
cell) given by

ε =
δ(a + b)

a + b
=

(
1

K Q + b
a K m

+
1

a
b K m + K c

)
σ ,

=

(
1

1 + b
a

K m
K Q

+
1(

1 + a
b

)
K m
K Q

)
εQ ,

= �εQ , (10.2)

where K c = K m is the elastic constant of the contact and εQ = σ/K Q ,
the strain appropriate to a system of uniform quartz. Suppose we choose
b/a W 0.1; the mortar is about 10% of the volume of the sample. To have
ε W 10 ~ εQ requires K m W 0.01K Q . Necessarily the strain in the mortar is
approximately a/b times the observed macroscopic strain ε. A bricks-and-
mortar picture of a Berea sandstone suggests that the mortar is two orders
of magnitude softer than the grains and that the strains in the mortar are an
order of magnitude greater than the observed macroscopic strain.

2. Hertzian contact, Section 4.2. Suppose a Hertzian contact is prestrained to
h0, where a2

0 W Rh0 [4]. A pressure increase on the system of δP will re-
quire each contact to support an additional force of order δF = δP R2. The
contact does this by crushing the additional volume a2

0δh into its interior,
the volume a3

0, and producing the internal pressure δP in = K Q δh/a0. This
internal pressure pushes on a2

0 with force δP ina2
0 that must balance δP R2.

Thus

ε W
δh
R

W

√
R
h0

δP
K Q

=

√
R
h0

εQ , (10.3)
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a

b

a

b

KQ Km

KcKm

Fig. 10.1 Bricks and mortar. To illustrate the effect of mortar
on a bricks-and-mortar system, the bricks are assigned elastic
constant KQ, the two slabs of mortar Km, and the contact K c =
K m . Then, under compression, KQ and Km act in parallel, as
do Km and Kc. The (K Q , K m ) unit is in series with the (K m , K c )
unit, giving the result in Eq. (10.2).

that is, the effective elastic constant is K C N W
√

(h0/R) ~ K Q . The strain in
the contact volume, a3

0, is

εa0 W δh/a0 W

√
R
h0

ε . (10.4)

For ε W 10 ~ εQ we need h0 W 0.01R. Then, the strain in the contact volume
is about 10 times the observed macroscopic strain.

The characteristic of these two models is that the grains are moderated in their
interaction with one another by a physically small system that is elastically soft.
This system carries strains much larger than those in the grains and much larg-
er than the apparent strain on the sample, the macroscopic strain. For the case of
a Berea sandstone the picture, deduced from numbers above, was confirmed in
an ingenious experiment by Gist [5, 6]. The P-wave velocity of a dry Berea sand-
stone was measured as a function of pressure, 0.1 MPa < P < 60 MPa, Figure 10.2.
The velocity (Young’s modulus) varied by a factor of 2 (4) over this pressure range
with a mild hysteresis in which the velocity (modulus) at a given pressure was
greater on achieving the pressure from above than from below. The pore space
was then filled with a low-viscosity epoxy the bulk of which was centrifuged out
to a saturation of 35%. The P-wave velocity was measured a second time as the
sample was again taken through the same pressure range. The velocity was found
to be independent of pressure with a value somewhat greater than that at the
highest pressure in the initial set of measurements. The pore space geometry per-
mits the epoxy to reach those places of soft elastic material where it stiffens that
material or shunts forces around that material. In the bricks-and-mortar picture
the epoxy either stiffens the mortar or makes the mortar irrelevant. For exam-
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Fig. 10.2 Epoxy in the Pore Space. Gist mea-
sured the velocity of sound as a function of
pressure to detect the elastic state of a sample
of dry Berea sandstone. On the first pres-
sure increase the velocity, triangles, was lower
than on all subsequent pressure loops, open

squares (↓) and open circles (↑), which show
very modest hysteresis in which the velocity
stays in. After coating the walls of the pore
space with epoxy, the velocity (read: elastic
state) is almost unchanged by pressure, filled
squares.

ple, if Kc in the first of Eqs. (10.2) is K epoxy v K Q , then the mortar is irrelevant.
For the case of sandstones the coup de grace was provided by the neutron scat-

tering measurements of Frischbutter et al. [7]. This work was followed up by Dar-
ling and TenCate [8], and we show results from these authors for a Fontainebleau
sandstone in Figure 10.3. The experimental situation is shown in Figure 10.4.
A sample in a uniaxial stress apparatus is placed in a neutron beam so that the
Bragg scattering from lattice planes can be monitored. The Bragg scattering yields
the spacing between lattice planes. Change in that spacing as the applied stress
is changed yields the internal strain as a function of applied stress. An external-
strain gauge attached to the sample measures the macroscopic strain. This type
of measurement is a two-strain gauge or an internal/external-strain gauge mea-
surement. As the grains constitute typically more than 80% of the sample vol-
ume, the internal-strain gauge sees the strain in the grains (bricks); the external-
strain gauge sees the sum of bricks and mortar. From Figure 10.3 we note the
following:

1. An applied stress of 20 MPa causes a strain of 0.3 millistrain in the quartz
grains (thus a Young’s modulus of order 60 GPa) and a strain of 1.5 millis-
train in the sample as a whole (thus a Young’s modulus of order 10 MPa),
about a factor of 5. See above.

2. The macroscopic strain is nonlinear and hysteretic; the internal strain is
linear and shows no evidence of hysteresis.
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Fig. 10.3 Neutron Measurement on
Fontainebleau Sandstone. The strain (mi-
crostrain) as a function of stress (MPa) for
a pressure protocol (↑, ↓, ↑, ↓). The strain in
the grains, measured by the neutron strain
gauge, is shown as five points and dashed
line. The macroscopic strain, measured with
a conventional strain gauge, solid line, has

an initial evolution due to the “first” visit to
a stress region followed by a strain stays in
hysteresis loop. An internal strain of about
300 microstrain in the grains is associated
with a macroscopic strain of 1500 microstrain
when W 20 MPa uniaxial stress is applied. See
Figure 10.4.

Based on a qualitative picture, with strong confirmation in a limited domain (sand-
stones?), there is the suggestion that mesoscopic elastic elements come to domi-
nate the behavior of a material when they reside in the material in such a way that
the strain cannot be shunted around them. These elastic elements carry the hys-
teresis and the extreme nonlinearity. This observation is not intended as dogma
but as a prod to thinking as we proceed.

10.2
Quasistatic Stress-Strain Data; Hysteresis

Consider the stress-strain data shown in Figures 10.3, 10.5, 10.6, 10.7, and 10.8.
They are data from Fontainebleau sandstone [8], Berea sandstone [9], Castlegate
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Fig. 10.4 Two-Strain Gauge Measurement.
A sample, subject to an applied uniaxial
stress, is outfitted with an external, macro-
scopic strain gauge, gX. A neutron beam is
incident on the sample so that Bragg scatter-
ing from suitably oriented planes of atoms

can be monitored, detectors D1 and D2. The
evolution of the spacing between planes of
atoms (with attending evolution of the Bragg
pattern) as the stress changes comprise an
internal strain gauge.

sandstone [10], a plasma-sprayed thermal barrier coating [11], and a soil [12] un-
der uniaxial stress. With the exception of the soil these stress-strain loops close
on the time sale of measurement and are repeated on subsequent repetition of
the stress protocol. As illustrated in Figure 10.3, a first visit to a stress range may
bring about a strain evolution that is not recovered when the stress is returned
to the initial value. This could be due to nontrivial strain evolution, for example,
rearrangement [13–15] (the Kaiser effect is a particular example of this [16]) or to
the limited range of the stress protocol, for example, possibly the strain will recov-
er under tension. We are particularly interested in repeated hysteresis loops over
a repeated stress range as it is these that exhibit the evidence of the working of
mesoscopic elastic elements.

1. The typical data set involves strain of order 1 millistrain (Castlegate, 2–
5 millistrain, and soil, 1–100 millistrain, are exceptions) and stress of order
10 MPa (soil under stress of order 0.2 MPa is an exception).

2. The typical data set is collected on a time scale of > 10+3 s. For example, the
pressure protocol in the two-strain-gauge experiment, Figure 10.3, involved
pressure changes at 3 MPa/minute with 15 minute stops at 5 values of the
applied load; this represents a time scale of order 3 hours. Unfortunately,
time is not consistently reported in experiments. Roughly speaking, qua-
sistatic measurements are on a time scale much longer than the 10–3 s that
characterizes dynamic measurements.
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Fig. 10.5 Berea Sandstone 1. The strain (millistrain) of a room-
dry Berea sandstone due to the uniaxial stress (MPa) from the
protocol shown in the inset. There is a single exterior hystere-
sis loop with seven interior hysteresis loops. The interior loops
have dσ/dε larger than the value of dσ/dε on the nearby exteri-
or hysteresis loop. See Figure 10.10 and Figures 10.26–10.28.

3. The elastic behavior is very nonlinear. For Berea sandstone, Figure 10.5,
a change in applied pressure of ΔP = 25 MPa brings about a change in
Young’s modulus from about E low = 2 GPa to E high = 25 GPa or 	E = (E high–
E low)/ΔP W 1000. In aluminum, a change in pressure of 15 GPa brings
about a change in bulk modulus of about 60 GPa, 	K W 4 [17].

4. In all experiments where it can be noted the data are described by the state-
ment the strain stays in. Other measurements on soils, ceramics, concrete,
bone, and biomechanical systems are in accord with this.

5. In all cases these systems have endpoint memory. Most researchers call at-
tention to the relevance of time scale to their results while not pursuing the
question quantitatively. In the case of Berea sandstone a very careful test of
endpoint memory, intended to distinguish it from slow relaxation, confirms
this [18, 20]. See the discussion of relaxation phenomena in Section 10.3.2.

6. Moduli. There are three possible moduli that can be associated with a sam-
ple: one-way moduli, interior loop moduli, and dynamic moduli. We will use
Berea sandstone as an example. See Figure 10.10.
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Fig. 10.6 Castlegate Sandstone. The strain (millistrain) of
a room-dry Castlegate sandstone due to uniaxial stress (MPa).
Note the strain axis; a strain due to a “first” visit to a stress re-
gion is not shown, cf. Figure 10.3. This sandstone has about
the same strain as the Berea sandstone in Figure 10.5, al-
though the maximum stress is only about 11 MPa. See Fig-
ures 10.26–10.28.

a. In Figure 10.5 there is a large stress-strain loop (exterior loop) with seven
interior loops. At each point along the exterior loop a slope dσ/dε can be
formed. This modulus is a one-way modulus in that the strain involved is
that from moving the stress in one direction only. The inner loops give
evidence for what happens when the stress is reversed – the strain enters
the interior of the exterior loop. The one-way moduli are hysteretic with
a discontinuity at stress reversal at the top/bottom of the exterior loop.

b. A two-way modulus is defined for the interior loops by drawing a line
from end to end (inset) and using the resulting slope. It is apparent from
Figures 10.5–10.8 that the inner loop, two-way, moduli are greater than
(or possibly equal to) the one-way moduli.

c. A dynamic modulus can be defined at any point on the exterior loop from
a measurement of the speed of sound and K = ρc2, Figure 10.2 [5, 10, 12,
21]. The dynamic modulus is a two-way modulus.
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Fig. 10.7 Thermal Barrier Coating, TBC. The
strain of a TBC sample, at T = 800o C, due
to uniaxial stress (MPa). These data are re-
ported without the rectified sign convention
that is used throughout this book. These are
compression tests. For a TBC, careful sample

preparation is called for as the elastic system
being tested starts out as a coating. There
are interesting effects from a “first” visit to
a stress region and stress-rate effects associ-
ated with these systems. See Figures 10.26–
10.28.

d. The difference between these three moduli is the quality of the stress
change, whether they are one-way or two-way, the size of the stress change
(a few MPa for the two-way loops, less than 0.1 MPa for a dynamic modu-
lus), and the time scale of the stress change (10–100 s for a two-way loop,
less than a millisecond for a dynamic modulus). In a recent measurement
TenCate [19] found that for some materials the quasistatic hysteresis loop
was senstive to the stress rate, Figure 10.9. For Berea sandstone the loop
closes as the stress rate approaches zero, whereas beyond a certain stress
rate it remains approximately constant. In the case of Meule sandstone
the loop size is approximately independent of stress rate.

e. While there has been a good deal of discussion in the literature about
the relationship of these various moduli, it is hard to see why they are
expected to be related. It is apparent that for the systems under discus-
sion stress can bring about displacements that are not recovered on stress
reversal [22]. Some of these displacements are in the one-way and two-
way moduli, so that there is no appropriate comparison of these moduli
with a dynamic modulus. This is too strong. Certainly the one-way mod-
uli need have no relationship to two-way and dynamic moduli. However,
if there are no issues of time scale [19], the limit of the modulus from a se-
quence of inner loops with smaller and smaller stress excursions should
approach the dynamic modulus. The belief is that the dynamic modu-
lus involves such small stress excursions that none of the displacements
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Fig. 10.8 Soil. The strain (percent) of a wet
soil due to uniaxial stress (MPa). The soil
sample is jacketed and a confining pressure is
maintained at 68.9 kPa as an axial compres-
sive stress is applied. The deviator stress is
the difference between applied axial stress and

confining pressure. Note the stress and strain
scales. Interior hysteresis loops with slope
very different from the slope of the “exteri-
or” loop are studied. See inset. These interior
loops show strain stays in behavior.

that give the hysteretic behavior, that is, displacements due to mesocopic
elastic elements, are able to participate. See the discussion in Chapter 11
where this issue is brought into sharper focus.

7. The soil, Figure 10.8, represents an extreme in that there is very little strain
recovery on stress reversal in the interior loops. The two-way and one-way
moduli differ by an order of magnitude. Although there is no closed exterior
loop in Figure 10.8 such loops are a common feature is studies of soils at
lower strain levels [23, 24].

8. The qualitative ideas discussed here have application to data similar to that
above on ceramics [25], concrete [26], bone [27], and biomechanical sys-
tems [28], etc.

10.3
Coupling to Auxiliary Fields

We discuss two auxiliary fields that can be applied to an elastic system, through ma-
nipulation of a known thermodynamic variable, to produce/modify the quasistat-
ic response. These two fields are the chemical potential of the vapor of a liquid,
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Fig. 10.9 Rate effects on hysteresis loops. The area of a stress-
strain loop vs. the stress sweep rate, MPa/min. As the rate
approaches zero, the area goes to zero. Beyond a sweep rate of
approximately 2 to 3 MPa/min, the area of the loop remains the
same [19].

which controls the saturation, and the temperature. These two fields can only be
applied slowly, in contrast to the stress field, which can be applied to a system on
the time scale for sound to cross it (L/c W 10–4 s for L a typical system size, 10 cm,
and c W 105 cm/s). The temperature propagates into a system difffusively, with
diffusion constant D T W 0.01 (cm)2/s for a sandstone. A vapor pressure excess
propagates into a system diffusively, with diffusion constant DP W 0.01 (cm)2/s for
a sandstone with gas permeability κ W 0.01 Darcy. Thus temperature and satura-
tion fields can be established on time scales L2/D greater than or of order 100 s,
L = 1 cm. Observation of the consequences of these fields usually involves time
scales much greater than 1 s and endows this subject with vestiges of slow dynam-
ics. Thus we will say something about slow dynamics here as well as in Chapter 11,
where that subject is featured. We begin with saturation.

10.3.1
Saturation

The saturation field is a euphemism for the fluid configurations in the pore space of
a sample. For a sample of volume V with pore volume Vp the porosity is φ = V p/V .
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Fig. 10.10 Three Moduli. There are three
possible moduli at each value of the stress.
Use Figure 10.5 as an example. There are
the up and down one-way moduli associat-
ed with the exterior hysteresis loop, two-way
moduli associated with the interior hystere-
sis loops, and dynamic moduli. A two-way
modulus (squares), from an interior hystere-
sis loop (inset), is necessarily greater than or
equal to the nearby one-way modulus. One

can conduct a sound velocity or resonant bar
measurement at any stress in a stress pro-
tocol and determine a dynamic modulus. In
principle, such a measurement is made at
vanishing stress amplitude so that the mini-
mum displacement accompanies the stress.
One might expect that the interpolation to
zero stress of a sequence of interior loops
would yield a modulus in agreement with the
dynamic modulus.

The saturation is the fraction of the pore volume that is filled with fluid,

SW = V F /V p . (10.5)

Our concern is with the strain consequences of the system of internal stresses these
fluid configurations create. The saturation is a coarse variable for this purpose. We
will not give a detailed discussion of fluid configurations in pore spaces as the
general idea is sketched in Chapter 5 and details are elsewhere [29–31]. Let us call
attention to the major points.

1. The fluid configurations in a pore space are a hysteretic function of the
chemical potential ↔ unsaturated vapor pressure ↔ relative humidity. The
chemical potential, μ, plays a role for fluid configurations analogous to that
of stress for hysteretic strain systems. In principle, one should create satura-



10.3 Coupling to Auxiliary Fields 239

tion states, the analog of strain states, with well-defined chemical potential
protocols.

2. The basic physical event that is responsible for the complexity of fluid con-
figurations is the capillary condensation process, the precipitous filling of
a pore structure at a value of the chemical potential set by local features in
the pore geometry, GF (x). The emptying of a pore structure, also a precipi-
tous event, is controlled by local features of the pore geometry, GE (x). The
hysteresis in filling-emptying arises in part from GF (x) =/ GE (x); different
local features of the pore geometry influence filling-emptying.

3. On pore space filling the fluid vapor has access to the pores in the interi-
or of the pore space and the filling process occurs more or less uniform-
ly throughout the interior; in addition the fluid configuraions are spatially
homogeneous. The pore space emptying process necessarily proceeds from
the surface into the interior and involves spatially inhomogeneous fluid con-
figurations. At a given SW there can be two very different fluid configura-
tions in the pore space, one on filling and one on emptying. The saturation
is not a good variable.

These facts, very well known to practitioners of adsorption/desorption methods for
characterizing pore spaces, are judged to be of little importance when discussing
the influence of fluid configurations on the elastic properties of porous materials.
It is not clear what evidence supports this judgement. To see what we are talking
about we look at two results, Figures 10.11 and 10.12, from the seminal paper by
Amberg and McIntosh on a rod of vycor glass (vycor 7930) [32]. In Figure 10.11,
an adsorption isotherm, we see that the mass of water (per unit mass of vycor
glass) in the pore space is a hysteretic function of the partial pressure of water va-
por, P (normed by the saturated vapor pressure, P0). Examples of complex internal
hysteresis loops are found in the experiments of Hallock and coworkers [33, 34].
A Preisach space bookkeeping scheme can be used to describe the saturation as
a function of a chemical potential protocol [31]. Consequently, fluid configurations
necessarily obey the statement the saturation state stays in. Modeling of the vapor in-
vasion process, as P/P 0 is lowered (below 0.68 in Figure 10.11) shows that in this
invasion percolation regime the fluid configurations are very inhomogeneous [35].
Accompanying the fluid configurations in Figure 10.11 is the linear expansion (in
percent) shown in Figure 10.12.

1. The linear expansion as a function of saturation is hysteretic with the basic
morphology of the adsorption isotherm.

2. A strain (expansion) of order 1 millistrain is brought about by change in the
saturation from a few percent to full saturation. As the Young’s modulus
of vycor 7930 is Y W 20 GPa this means that the fluid configurations exert
a tensile stress of order 20 MPa!

3. At the lowest saturations, a saturation SW causes a tensile stress given ap-
proximately by, Figure 10.12,

P
Y

W –
1

50
SW , (10.6)
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where we use pressure in place of stress to call attention to the sign. This
tensile stress will appear prominently in the discussion of the influence of
low saturation on the linear and nonlinear elastic properties of some meso-
scopic elastic materials.

The discussion here has been particularly simplistic. There are issues of “wetting”
the fluid. That is, forces of tension are brought about in part by a fluid that wets
the surface of a pore space and reduces the energy per unit surface area. Some
fluids wet easily (e.g. water), some only weakly (see for example, the experience of
Tittman and colleagues with the influence of fluid type on attenuation [36, 37]), and
some not at all (mercury). Not all pore spaces are sets of cylinders with well-defined
geometry; the simplicity of the adsorption isotherm of Amberg and McIntosh may
mislead [30, 38, 39]. We have made no mention of Biot theory in which the com-
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Fig. 10.11 Adsorption Isotherm for Vycor
7930. The mass of water in the pore space of
Vycor 7930, SM = mH2o/m7390 (gm/gm),
as a function of unsaturated vapor pressure
(normed by the saturated vapor pressure).
The chemical potential is related to the vapor
pressure by μ ∝ log(P/P 0). At P → 0 the
sample cell is empty. The pore space is filled
homogeneously on increase of P. The arrows
indicate the qualitative properties of the fluid
configurations. Where there are single-headed

arrows the fluid configurations do not reverse
on reversal of the pressure. They do in the
two-headed-arrow regions. Invasion perco-
lation occurs at the precipitous drop in SM
near P/P 0 W 0.68. The two arrows along the
invasion drop indicate what happens to SM
when the vapor pressure is reversed along the
drop. Inner loops not part of this data set are
present when stresslike chemical potential
protocols are used [33].
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Fig. 10.12 Fluid-Induced Strain on Vycor
7390. As a Vycor 7390 sample is carried
through the sequence of fluid configurations
in Figure 10.11 the sample elongates as here.
The hysteresis in the fluid configurations ap-
pears as a hysteresis in the strain. The stress-
es due to the fluid are tensile, causing the

sample to expand on average as SM increas-
es. The one- and two-headed arrows have
the same meaning as in Figure 10.11. Note
SM W 0.25 ↔ SW W 1 corresponds to about
a millistrain. From the known elastic constant
of Vycor 7390 this corresponds to a tensile
stress of order 20 MPa. See above Eq. (10.6).

pression of a pore fluid, at fixed pore fluid configuration, participates in the overall
elastic response of a material [40]. We have also made no mention of the case where
the forces exerted by the fluid configurations markedly distort the pore space so
that it is not passive to pore fluid influences [41]. These topics are well developed
in the literature and are mentioned to remind us of the simplicity of the leading
approximation we present.

We close this section with the result in Figure 10.13 from van den Abeele and
Carmeleit [42], the stress-strain relation of a Berea sandstone at five values of sat-
uration, SW = 0, 0.01, 0.02, 0.05, and 1.0. As the saturation increases, there is
more strain per unit of stress, particularly at low saturation. Compare Figure 10.13
to Figure 10.12. The effective tensile stress of small saturation brings about a re-
duction in the strength of the linear elastic constant, the system is softer, so more
strain accompanies an applied stress. This is qualitatively correct, but the results in
Figure 10.13 have provided a more quantitative explanation [42]. See Section 10.4
below.
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10.3.2
Temperature

The problem of the influence of temperature on the elastic properties of meso-
scopic elastic materials is very complicated. Let us take the result of Ide as an in-
troductory example [43]. In Figure 10.14 we see the sound velocity of a sandstone
as a function of temperature for the case in which the temperature was carried
through the protocol shown in Figure 10.15 at ambient pressure. It is believed that
the sound velocity depends on the elastic state of the sample and that changes
in the sound velocity follow changes in the elastic state. There are several things
of note. The temperatures involved are very large, 300 K u T u 1000 K. There
seems to be the analog of the Kaiser effect with the temperature taking the place
of stress [16]. That is, each visit to a new higher temperature produces a change
in velocity that is not recovered as the temperature is lowered. Indeed the explana-
tion Ide offered for his results accords well with that of the Kaiser effect. In Ide’s
case a system of elastic elements in the material have a spectrum of temperatures
at which they break, go from stiff to soft, and do not heal. The complex system
of internal strains due to thermal expansion, discussed in Chapter 5, Section 5.1,
provides a qualitative picture of the source of the stresses that cause these breaks.
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Fig. 10.13 Stress-Strain of Berea at Various
SW. The initially fully saturated pore space of
a Berea sandstone is dried by evaporation.
At each of several values of saturation, deter-
mined by weighting, 100%, 5%, 2%, 1%, and
room dry W 0%, the sample is taken through
a uniaxial stress loop and the strain moni-
tored. In the opposite order from that in which
the data were taken: as the amount of fluid on

the walls of the pore space increases, the sys-
tem becomes softer. The qualitative property
of hysteresis with strain stays in is unchanged.
Most of the change due to increase in satu-
ration occurs at the lowest saturations, say
< 10%. The inverse problem associated with
these data has been “solved” by Carmeliet and
van den Abeele [42]. See Section 10.4.1.
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Fig. 10.14 Temperature Protocol. The temperature as a func-
tion of data point number W time for the experiment of Ide on
quartzitic sandstone. See Figure 10.15.
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Fig. 10.15 Elastic state vs. Temperature.
The velocity of sound, c, a surrogate for the
elastic state, as a function of temperature
for the temperature protocol shown in Fig-
ure 10.14. Each first visit to a higher tem-
perature causes an evolution in c that is not

recovered on temperature reversal. The esti-
mate, γT = d ln(c)/d ln(T ) W –0.02, can be
made from the segments of the data in which
a temperature range is retraced, for example,
data points 7 . . . 12 in Figure 10.14.
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From the variation of sound speed with temperature upon revisiting a temperature
range, for example, time steps 7 . . . 9 . . . 12 in Figure 10.15, we have the estimate
γT = (T/c)(dc/dT ) W –0.02.

Ide’s experiment was carried out in a sample chamber that was open to the ear.
“The specimen is placed in a cylindrical furnace. . . The cover of this is removed
when the sample is set into vibration and the frequency of maximum acoustic
response is determined by ear . . . ” As a consequence, as the temperature varies,
the fluid configurations in the pore space vary. An initial increase in temperature
would drive off volatiles, some of which would resettle as the temperature is cycled.
Our concern is with the effects of temperature on the response of elastic elements.
We don’t want to either break them or entangle the effects of saturation with the
effects of temperature.

We look at an experiment in the thesis of Ulrich [44]. The measurements of
Ulrich were carried out on samples (again Berea sandstone was chosen) that have
a well-defined temperature-saturation history. Here are some details.

1. The sample, a rectangular parallelepiped of Berea sandstone, 1.0 ~ 1.2 ~
4.0 cm3, outfitted with a pair of transducers, is approximately free standing
in a closed sample volume surrounded by a heater and temperature con-
troller. The temperature controller responds to a thermometer in contact
with the surface of the sample. A second thermometer on the wall of the
sample volume tracks the primary thermometer reliably.

2. The sample is prepared for measurement by being maintained at a constant
temperature of 380 K in vacuum (10–6 Torr) for 12 hours. The sample vol-
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Fig. 10.16 Temperature Protocol, T-chirp. The temperature
(K) as a function of time (hours) for a temperature chirp, T-
chirp. There are three repeats of each of three temperature
loops of amplitude +1 K and durations 500, 1000, and 1500 s.
This is a positive T-chirp. A negative T-chirp starts at the same
ambient temperature, 320 K, and has amplitude –1 K.
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Fig. 10.17 Elastic state vs. Temperature for
a T-chirp. The frequency of a resonant mode
is measured every 30 s. The time average of
f over each temperature loop, denoted 〈 f 〉,
for the nine loops is determined. The values
of f are reported for each loop as the shift in f
from this average, f –〈 f 〉. As with the velocity
in Figure 10.15, this quantity stands as a sur-

rogate for the elastic state. The three frames
to the left are for a positive T-chirp protocol
with the 500-s, 1000-s, and 1500-s loops at the
top, middle, and bottom, respectively. On the
right the same quantities are displayed for the
negative T-chirp protocol, Figure 10.16. The
estimate γT = d ln( f )/d ln(T ) W –0.0312 can
be made from the data in the lower left panel.

ume is then filled to a slight overpressure with helium gas and sealed. All
temperature protocols were imposed during a 228-day period following this
preparation. An example of such a protocol, in Figure 10.16, is a tempera-
ture “chirp”.

3. The basic measurement that is made is the resonant frequency of a normal
mode of the sample (or a suite of normal modes) as a function of tempera-
ture and time. It is believed that the frequency of a normal mode depends on
the elastic state of the sample and that changes in resonance frequency fol-
low changes in the elastic state. In a typical example, a temperature protocol
lasts 24 hours and a particular normal mode, resonance frequency W 77 kHz
and Q W 50, is swept over at a rate of 500 Hz/s once every 30 s using strains
of order 10–8 that make a negligible contribution to the temperature of the
sample.

Temperature chirps of two signs with respect to the initial temperature, 320 K, were
used. There were nine temperature loops in each chirp, three each of three dura-
tions, W 500 s, W 1000 s, and W 1500 s. In Figure 10.17 the shift in the resonant
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frequency from the average resonant frequency (W 77 kHz) is plotted as a function
of the shift in temperature from the average temperature. The three loops for each
duration are plotted atop one another, the loops for each duration having a separate
panel, in (a) for chirp to temperatures above 320 K and (b) for chirp to temperatures
below 320 K. Several qualitative features are seen in Figure 10.17

1. The frequency (elastic state of the sample) is not able to follow the tem-
perature. There are frequency-temperature hysteresis loops. (For ∂T/∂T =
D T∇2T the slowest mode in the time evolution is associated with time scale
τ1 = L2/(π2D T ) W 10 s, L = 1 cm. This time is a factor of 50 faster than the
time scale of the fastest chirp temperature loop, W 500 s.)

2. The average slope of the loops, d f /dT , is negative (positive?) for tempera-
ture loops above (below) the initial temperature.

3. As the time to go through a hysteresis loop increases, the area of the loop
decreases, area → 0 as time → ∞.

4. The area of a hysteresis loop for temperatures below the initial temperature
is greater than the area of a hysteresis loop for temperatures above the initial
temperature. There is an asymmetry in the response of the elastic state of
the sample to the sign of a temperature change (Figure 10.18).

0 10 20 30 40 50
−0.05

0

0.05

0.1

0.15

0.2

ar
ea

<|dT/dt|> (K/hour)

Fig. 10.18 Hysteresis Loop Area vs. Time.
The area within each hysteresis loop in Fig-
ure 10.17 is plotted as a function of the mag-
nitude of the rate of temperature change,
|dT/dt |, for positive T-chirp protocols (stars)
and for negative T-chirp protocols (dia-

monds). Data from T-chirp protocols with
other loop time scales are included in the plot.
The data are consistent with area → 0 as
|dT/dt | → 0. An asymmetry between the evo-
lution of the elastic state for disturbances with
δT = +1 and δT = –1 is apparent.
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5. From the slowest positive chirp loops we have γT = (T/ f )(d f /dT ) W –0.1,
approximately the same as the similar quantity found by Ide for a different
sandstone.

The experiments of Ulrich include a number of other temperature protocols in-
tended to explore the features remarked on here, e.g. lower panel of Figure 10.16.
The essential result of an extensive set of experiments is that (1) a change in tem-
perature sends the elastic system toward a goal that it takes a very long time to
achieve (possibly logarithmically in time) and (2) there is a persistent asymmetry
in the way in which the elastic system responds to temperature changes from the
ambient temperature, say relatively easily for temperature increases and reluctant-
ly for temperature decreases. See the discussion in Section 7.3.2. The asymmetry
found was seen in earlier experiments by TenCate et al. [45], who were looking at
something else, and not followed up.

There have been few careful/extensive experiments that explore the response
of mesoscopic elastic systems to saturation and temperature. If this domain of
exploration has something useful to say, much of it has yet to be said.

10.4
Inversion

A characteristic of much of the effort associated with understanding the source of
quasistatic elastic behavior is the use of a bookeeping space, Preisach space, for
tracking the history of the state of elastic elements, Chapters 4 and 6. It is in this
context that one encounters the “inverse problem,” an attempt to learn something
about the contents of the bookkeeping space from the experimental data. This can-
not be done in a model-independent way. To the degree that a minimalist model
is employed, the results will be most useful. However, they may be few. One tack
for getting more out of analysis is to complement a minimalist model with an
elaborate stress protocol. We will discuss both of these cases. Finally, we sketch
a simple analysis of the inverse problem that provides an estimate of numbers
that are useful in evaluating the connection between quasistatic response and the
nonlinear dynamic response. We look at the uniaxial stress experiment of Hilbert
et al. [9], Figures 10.5, a similar experiment by Plona and Cook [10], Figure 10.6,
two experiments by Boitnott [21, 46] one of which involves an elaborate stress pro-
tocols, Figures 10.19 and 10.21, the saturation experiment of Carmeliet and van
den Abeele [42], Figure 10.13, and the experiment of Dillen [47], Figure 10.22.
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10.4.1
Simple σ – ε Protocol and Minimalist Model

The typical data set of interest is an exterior stress-strain loop, for example, Fig-
ures 10.5, 10.13, and 10.19. The inverse problem, i.e. finding ρ(X , Y ), is solved
using the model of McCall and Guyer [48]:

1. The macroscopic strain at a particular macrosopic stress is the sum of the
strains of identical, two-state hysteretic elastic elements. (This result, sum of
the strains, is the effective medium result for these elastic elements, Chap-
ter 4.)

2. Each elastic element supports a stress field equal to the macroscopic stress
field.

3. The elastic elements differ from one another only by the stress pair at which
they change state.
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Fig. 10.19 Stress-Strain for Berea Sandstone. The strain (mil-
listrain) as a function of stress (MPa) for a room-dry sample
in uniaxial compression. The stress protocol is shown in the
inset. Compare to Figure 10.5. Approximate treatment of the
inverse problem for the exterior loop is associated with Fig-
ures 10.26–10.28.
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Fig. 10.20 Filling of Preisach Space. The density ρ(X , Y ), where
X and Y are in MPa. The diagonal term, which is singular, has
been scaled to a finite value for display purposes [42].

The argument for the adequacy of the MG model was that with grain sizes of order
100 µm a typical sample 100 cm3 has of order 108 elastic elements within it. Can
the detailed motion of any of these be important? So within the domain of this very
simple model there is an inverse problem and a Preisach space density associated
with a given experiment.
This model allows one to go from an experimental data set to a filling of a Preisach
space with relative ease, Eqs. (6.17) and (6.18). There is a bit of a wrinkle as
Eqs. (6.17) and (6.18) are integral equations of a type that is ill-posed [49]. Some of
what is seen in the various treatments is a number of strategies for handling an ill-
posed problem. Details are found in [21, 42, 50]. The data sets in Figures 10.5 and
10.19 have inner loops that can be used to test a solution. Ultimately the solution
is presented as a density ρ(X , Y ). This density typically has a diagonal term that is
singular as here

ρ(X , Y ) = A(X )δ(X – Y ) + α(X , Y ) . (10.7)

An illustration of the behavior of ρ(X , Y ) is shown in Figure 10.20. The Y < X part
of the Preisach space, where α(X , Y ) v 0, is in the foreground. On the other side of
the diagonal, where the delta function part of the density, A(X )δ(X – Y ), is erected,
one sees α(Y > X ) = 0. The classical elastic constant increases with pressure so A
is seen to decrease as X increases along the diagonal. The off-diagonal density is
largest at the lowest pressures and decreases to be unimportant as X , Y increase
to beyond about 10 MPa. In this example the hysteretic component of the strain
is largest at low pressure. From the delta function part of the density one can find
the linear and nonlinear classical elastic constants [21, 48]. See Section 10.4.3. The
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Fig. 10.21 Elaborate Stress Protocol I, Boit-
nott. An extensive set of stress-strain curves,
measured by Boitnott, uses the mean stress,
shear stress protocol shown here. At three
values of the ambient mean stress, 5 MPa,
10 MPa, and 20 MPa, there is a series of stress
loops. In all cases there are two passes over
each loop. The combination of manipulations

of the two stresses yields mean stress, shear
stress, uniaxial stress, and uniaxial strain
loops. Some segments of the very complex
stress-strain curve are shown in the paper by
Boudjima et al. [51]. The horizontal axis pro-
vides evidence of the time scale over which
these measurements were made, W 6 hours.

results shown here are from the analysis of a Berea sandstone by Carmeliet and
van den Abeele [42] at SW = 0.

The data of Carmeliet and van den Abeele in Figure 10.13 [42], involving the
saturation, pose a further problem. These data are part of a study of quasistatic
stress-strain and dynamic modulus over the parameter space 0 u σ u 25 MPa,
0.001 < SW u 1. A possible model for the effect of saturation is that it produces
an effective pressure that simply shifts the origin of pressure, that is, when the
sample is carried through a stress protocol an effective stress σe = σ + P (SW ) is to
be used. From the discussion above, Section 10.3.1, we expect P (SW ) to be a ten-
sion. Carmeliet and van den Abeele use the minimalist model along with a practical
analytic form for ρ(X , Y ). They find that the notion of an effective pressure is too
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simplistic, although the qualitative idea of saturation ↔ tension is supported. Their
analysis is backed up by adsorption isotherm and mercury intrusion data so that
Carmeliet and van den Abeele are able to relate the saturation to models for the
important pore space features. Independent of details it is apparent that the major
influence of saturation is that as SW increases from SW = 0, tension due to thin flu-
id films markedly reduces the elastic constants (the dynamic modulus is reduced)
and increases the amount of hysteresis in σ – ε.

10.4.2
Elaborate σ – ε Protocol and Minimalist Model

Consider the experiments of Boitnott and Dillen. Figures 10.21 and 10.22 are of the
stress protocols associated with these experiments. Boitnott measured the com-
pressive strain and the shear strain as a Berea sandstone was carried through
a stress protocol having compressive stress, shear stress, uniaxial stress, and uni-
axial strain segments at three ambient pressures (values of the compressive stress).
A different view of this experiment is provided in Figure 10.23, a picture of the re-
gion of compressive stress-shear stress space covered by the experiment. Up to this
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Fig. 10.22 Elaborate Stress Protocol, Dillen.
Dillen employed an apparatus that allowed the
X, Y, and Z pressures to be set independently.
As the sample, a Colton sandstone, is taken
through this pressure protocol, a variety of
sound velocities were measured, for exam-

ple, the velocity of a shear wave propagating
in the X-direction with polarization in the Y-
direction. The data, say a sound speed over
a complex trajectory in (X , Y , Z ) space, re-
quires a two-component bookkeeping space.
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point we have been discussing uniaxial stress experiments and implicitly imagin-
ing the minimalist model to involve elastic elements that brought about compres-
sive strain in response to this stress. The model that connects these data to the
bookkeeping space must be enlarged. Boudjema et al. [51] successfully did the in-
verse problem posed by these data by adopting a two Preisach space model, a set
of elastic elements that give compressive strain in response to compressive stress
and a set of elastic elements that give shear strain in response to shear stress. Each
set of elastic elements has the properties of the MG elastic elements. Two Preisach
spaces are called for. The stress range covered by this experiment is similar to that
in earlier work. The numbers are much the same. Several important points:

1. Decomposition of a collection of elastic elements into two groups, compres-
sive and shear, allows only an approximate solution to the inverse problem.
See below.

2. The shear elastic elements appear to be more hysteretic than the compres-
sive elastic elements.

3. In agreement with earlier results, the amount of hysteretic displacement
decreases markedly with an increase in ambient stress.

To see the limitation of a simple two Preisach space description we look at a small
portion of the data in the experiment by Boitnott in some detail, Figures 10.24 and
10.25. In Figure 10.24 we show the early part of the stress protocol in Figure 10.23.
There is a point near (σ W 8, τ W 4.5) that is reached by two paths, one at constant
σ W 8 MPa and one at constant radial stress. We denote these stress values on the
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Fig. 10.23 Elaborate Stress Protocol II, Boitnott. The stress
protocol in Figure 10.21 as a set of trajectories in (σ, τ) space.
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upper panel of Figure 10.25 with open circles and the strain values at these stress
values in the lower panel with open circles. In all cases the strain stays in. Note that
a compressive stress loop at constant shear strain produces no shear stress. But
a shear stress loop at constant compressive stress produces both shear strain and
compressive strain. Shear stress and compressive stress are not always decoupled.
The proper venue for tackling this problem is that provided by Helbig and Rasolo-
foasaon [52]. These authors develop a description of the stress-strain relationship
in terms of the eigenstress vectors and the associated eigenstrain vectors. For a lin-
ear elastic system these are independent stress-strain relations. If one imposes an
eigenstress, the output is the corresponding eigenstrain. This description suggests
that quasistatic experiments should involve eigenstress protocols with the corre-
sponding strain measured. In place of the two Preisach spaces used by Boudjima
et al. one would use say six Preisach spaces, one for each of the six eigenstress-
es of the compliance tensor. This seems an ambitious program. It has the virtue
of being precisely formulated. (As an aside, the experiment/calculation of Boit-
nott/Boudjima et al. is in principle the recipe of Helbig and Rasolofoasaon for the
special case where the compliance tensor is appropriate to an isotropic system.)

The experiment of Dillen involves measurement of dynamic moduli of a Colton
sandstone as the stress is carried through a complex protocol [47]. While these data
are very interesting, it is not possible to unscramble them using current methods.
A characteristic of the data sets of Boitnott and others is that there are multiple
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Fig. 10.24 Elaborate Stress Protocol for the First 4000 s. The
first 4000 s of the stress protocol in Figure 10.21 as a set of
trajectories in (σ, τ) space. The circles near (σ W 8.0, τ W 4.50)
and (σ W 8.0, τ W 1) are also seen in stress time and strain time
in Figure 10.25.
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Fig. 10.25 Stress and Strain for the First
4000 s. (a) The compressive stress and the
shear stress as a function of data point W
time (seconds) for the early time part of the
protocol in Figure 10.21 (Figure 10.24). The
two stresses have been shifted so that the
(σ W 8.0, τ W 4.50) point is near the origin. This
point is visited at constant compressive stress

and at constant radial stress. The strain at this
point is shown in (b) (circles). The three seg-
ments of the stress protocol are (1) constant
shear stress, (2) constant radial stress, and
(3) constant compressive stress. (b) The com-
pressive and shear strain as a function of data
points. The points on the stress protocol are
noted on the strain curves (circles).

visits to the regions of stress space. As first visits can lead to strain, evolution that
is not recoverable, a second visit is necessary. The inverse analysis we have dis-
cussed uses data from second visits only. It would be of interest to undertake an
experiment like that of Dillen using stress protocols that employ multiple visits.

But there is another tack one can take. Imagine a model for hysteretic elastic
units, a van der Waals model, an asperity model, etc. With such a model one could
make a theory of a stress-strain relationship. As it is a model with hysteretic elas-
tic units, a bookkeeping space might be called for, or convenient, but it is not re-
quired [53, 54]. Perhaps Preisach space is a crutch for the unimaginative.

10.4.3
The Relationship of σ – ε Data to Dynamics

10.4.3.1 Approximate Treatment of σ – ε Data
Let us sketch an approximate scheme to extract the essential content in finding
a solution to the inverse problem. We assume that the solution is given approxi-
mately by

ρ(X , Y ) = A(X )δ(X – Y ) + α , (10.8)
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Fig. 10.26 Four Exterior Loops. The exterior stress-strain loops
from the data in Figures 10.5, 10.6, 10.7, and 10.19. The stars
on the loops are the stress-strain points at P 1/2, Eq. (10.11),
from which the estimate of the hysteretic contribution to the
strain (lower curve in each panel) is made.

that is, the diagonal density, corresponding to the classical elasticity, is possibly
nonlinear but the off-diagonal density is constant. It then follows that on stress
increase (decrease), Eqs. (6.13) and (6.14), we have

ε↑(P ) = ε0I (P ) + ε0α
P 2

2
, (10.9)

ε↓(P ) = ε0I (P ) + ε0α
2P mP – P 2

2
, (10.10)

where I (P ) =
∫ P

0 A(X )dX and 0 u P u P m . Then at P = P 1/2 = P m/2 we have

ε↓(P 1/2) – ε↑(P 1/2) = ε0α ~ P 2
1/2 ; (10.11)

the product ε0α can be estimated as

ε0α =
ε↓(P 1/2) – ε↑(P 1/2)

P 2
1/2

. (10.12)
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Fig. 10.27 Four Exterior Loops, Corrected.
The exterior stress-strain loops from the data
in Figures 10.5, 10.6, 10.7, and 10.19 with the
hysteretic contribution to the strain subtract-
ed. The arrows show the stress down curve.
In all cases the constant background density

approximation, Eq. (10.8), underestimates the
amount of hysteretic strain at low stress. It
very slightly overestimates the hysteretic strain
at high stress. The average of the two curves
here is used to form the approximate classical
stress-strain curve, Figure 10.28.

We can test α(X , Y ), a constant, by subtracting the estimates in Eqs. (10.10) from
the exterior loop data to form εc

↑ and εc
↓. For εc

↑ = εc
↓ the constant α approximation

is good. Departure from this result gives an indication of how α(X , Y ) behaves. If
the departure is not too great, the average εc = (εc

↑ + εc
↓)/2 is a good first estimate of

the classical elasticity.

10.4.3.2 Dynamics
From the discussion in Section 6.3.1.2, Eq. (6.30), we have the expectation of a lin-
ear frequency shift in the resonance frequency of a bar based on

σ = K 0
[
1 – ε0αK 2

0εm + O (s(ε̇))
]

, (10.13)

where εm is the amplitude of the strain. That is,

δ f (εm)
f 0

~ –
ε0αK 2

0

2
~ εm = –α f εm . (10.14)

If α is a reasonable estimate of α, then we can use quasistatic data to learn about
dynamics.
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10.4.3.3 Quasistatic Dynamics
In Figures 10.26, 10.27, and 10.28, we show the result of simple analysis of four
data sets, those in Figures 10.5, 10.6, 10.7, and 10.19. In the cases where there
are interior loops, these were removed from the data and the exterior loop alone
examined. In Figure 10.26 we show the exterior stress-strain loops, marked with the
strain pair involved in Eq. (10.11). When the hysteretic contribution to the strain is
subtracted from the exterior loop, the results shown in Figure 10.27 are obtained.
In Figure 10.28 we show εc , below Eq. (10.12), and a polynomial fit to these data.

1. The four sets of curves in Figure 10.26, three sandstones and a TBC, are
much the same. Perhaps the sandstone of Hilbert, a Berea, is least like the
other three. This sample is least hysteretic. It is also apparent that the hys-
teretic contribution to the strain is not uniform over stress.

2. The difference curves for the four samples show that the constant α approx-
imation typically finds too much hysteretic strain at large stress and too little
hysteretic strain at low stress. Note the arrows on the figures that follow the
ε↓ curves.

The numbers found from analysis of the four stress-strain curves are summarized
in Table 10.1. These estimates are approximate as they use data from the entire
stress-strain curve. Comparison of static to dynamic measurements is usually made
at low pressure for which the numbers here will be lower limits; in the α f column
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Fig. 10.28 Four Exterior Loops, Classical Stress-Strain Curve.
An approximation to the classical stress-strain curve is found
according to the prescription below Eq. (10.12). From a numer-
ical fit to strain as a function of stress one can find estimates of
the classical linear and nonlinear elastic constants.
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Table 10.1 Elastic parameters from Figures 10.26, 10.27 and 10.28.

Sample P1/2 ε0α K0 |�| αf

MPa m-strain/(MPa)2 GPa

Castlegate 4.1 0.017 1.7 244

Berea (B) 6.4 0.0037 5.9 218 130 (1000)

Berea (H) 11.8 0.0010 4.2 243
TBC 20.0 0.0042 1.5 25

we show the result from Eq. (10.14) using ε0α from (c) and the result from careful
treatment of the inverse problem in parenthesis [21, 50].
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11
Dynamic Measurements

This chapter is about dynamic measurements. We begin in Section 11.1 with a de-
scription of experiments on the interaction of dynamic elastic fields with quasistatic
elastic fields. A quasistatic elastic field may arise from the application of external
stress, Section 11.1.1, or from auxiliary fields, temperature, Section 11.1.2, and sat-
uration, Section 11.1.3. In Section 11.2 we discuss experiments that involve the
interaction of dynamic elastic fields with one another. Collinear and crossed-beam
experiments are described in Sections 11.2.1.1 and 11.2.1.2. In preparation for a de-
scription of resonant bar experiments we detour in Section 11.1.2 to discuss fast
dynamics and slow dynamics. The idea of a nonequilibrium steady state (NESS) is
introduced. Then, in Section 11.1.3 we describe the sequence of experiments that
provide our current understanding of the interaction of dynamic elastic fields. The
concepts of anomalous fast dynamics and slow dynamics appear prominently. In
Section 11.3 experiments on a variety of materials that exhibit anomalous fast dy-
namics and slow dynamics are described.

11.1
Quasistatic-Dynamic

Slowly varying changes in the elastic state of a system can be brought about by an
applied pressure, a change in temperature, or a change in saturation state. Dynamic
strain fields, a tone burst, the AC strain field in a resonant bar, . . . , are often used
as the detector of presence and consequences of applied quasistatic fields. We will
describe the case in which the quasistatic field is a stress (pressure) field in some
detail and make mention of the temperature and saturation cases to emphasize the
coherence of the underlying physical picture.

11.1.1
Pressure-Dynamic

The typical example of the consequence of the coupling of a dynamic strain field
to a quasistatic strain field is shown in Figure 11.1 [1], the compressional modulus
of granite (calculated as K = ρ(c2

L – 4c2
T /3) from the measurement of cL and cT)

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
including Rocks and Soil. Robert A. Guyer and Paul A. Johnson
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40703-3
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Fig. 11.1 Modulus of granite. Compressional modulus as
a function of confining pressure from measurements of the
sound velocities and density. Representing this modulus in the
form K = K (0)

(
1 + 	 p – δ p2

)
, p = P/K (0), where P is the

pressure, leads to 	 W 1000 and δ W 105.

as a function of confining pressure. A confining pressure of 20 MPa brings about
a change in modulus by a factor of 2, cf. Figure 10.2 in Section 10.1. A phenomeno-
logical description of the result of this measurement might use

K (P ) = ρ
(

c2
L –

4
3

c2
T

)
= K (0)(1 – ΛP U x ) = K (0)

(
1 – 	P

P
K (0)

)
, (11.1)

where on the right we define 	P using one of the conventional scalar representa-
tions of nonlinearity; 	P W –1000 from the data. A formal description of the mea-
surements required to form K would use the apparatus developed in Chapter 3,
Section 3.3, with

u =

⎛
⎝ U x + ux 0 0

0 U x 0
0 0 U x

⎞
⎠ , (11.2)

where Ux is a uniform quasistatic strain (caused by the applied pressure) and ux is
a dynamic strain. For the case that ux propagates in the x-direction we would have

ρü =
(

K +
4
3

μ
)

∂2u
∂x2 +

(
5K +

8
3

μ + 2A + 10B + 6C
)

U x
∂2u
∂x2 = c2

L(U x )
∂2u
∂x2 .

(11.3)

A similar treatment of a shear wave traveling in the x-direction yields

ρv̈ = μ
∂2v
∂x2 + (3K + 2μ + A + 3B ) U x

∂2v
∂x2 = c2

T (U x )
∂2v
∂x2 . (11.4)
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Table 11.1 Linear and nonlinear elastic constants.

K μ A B C �K (eV/μ)

GPa GPa GPa GPa GPa

Berea (B) 3.7 3.7 –6233 –2425 –1045 –2250 –1433

Limestone 1083 29.6 20.6 –9730 –6434 –1868 –634 –416

Westerly granite 29.9 23.6 14071 –20227 –1150 –1325 –960
Glass beads 8.0 5.5 46 –701 –15 –177 –125

Polystyrene 3.8 1.4 –10 –8 –11 –10.3 –6.71
Agar (P1) 8.25 9.0 (kPa) –68 (kPa) –12 67 13.7 7.72

Water 2.28 0 0 –2.28 –4.78 5.21∗

If we take the uniform strain to arise from a uniform compressional stress, we
have U x = –P/(3K ), Eq. (3.9), where σxx = σy y = σzz = P . Assembling K(P) and
comparing to Eq. (11.1)

	P =
K + 2A/3 + 6B + 6C

3K
. (11.5)

There are two points to note here. (1) Measurements like that in Figure 11.1 get
at the classical nonlinear elastic constants. (2) For granite, 	P is of order 103, so
|2A/3 + 6B + 6C | W 3 · 103 K, and it would seem that the classical nonlinear elastic
constants are several orders of magnitude greater than the linear elastic constants.

Of course, the compressional modulus is not enough. There are well-understood
recipes for learning the complete set of third-order elastic constants, A, B, and C,
from measurement of the velocity of dynamic strain fields in the presence of qua-
sistatic strain fields [2], Section 3.1.2 and Table 3.1. The relatively recent experiment
of Winkler and Liu [3] contains a nice description of the experimental procedure,
a description of the major steps in data analysis, and a comparison of many differ-
ent types of materials. (There are several sets of definitions of third-order elastic
constants [4–6], see [7]. Recent workers have typically used the A, B, and C of [4],
as will we.) In Table 11.1 we list the value of A, B, and C for several isotropic elas-
tic systems, Berea sandstone, limestone, Westerly granite, cemented glass beads,
polystyrene [3], Agar-gelatin-based phantom [8], and water. All of the consolidated
granular materials have large values of A, B, and C using polystyrene as standard.
The tissuelike material, Agar-gelatin-based phantom, has a very small A coefficient,
cf. water.

Let us check some numbers. If we use A, B, and C for granite from Table 11.1 in
Eq. (11.5), we would make the estimate 	P W –1325 (reported in column 7 of the
table). This is in reasonable agreement with the estimate below Eq. (11.1) from the
slope in Figure 11.1.

Quasistatic-dynamic coupling is described in Chapter 3, Section 3.3 and Fig-
ure 3.1, as the coupling of a k → 0, ω → 0, (quasistatic) strain field with a dy-
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namic strain field. The description of time-of-flight tomography in Section 9.2.1 is
of a localized quasistatic strain field coupling to a dynamic strain field. These two
situations are essentially the same, differing only in the details surrounding the
description of the quasistatic field.

The discussion to this point has been about third-order nonlinearity ↔ the 3-
phonon process ↔ 	 ↔ A, B , C . Let us say a few words about the fourth-order
nonlinearity, δP , defined by

K (P ) = K (0)

[
1 – 	P

P
K (0)

+ δP

(
P

K (0)

)2
]

= K (0)

[
1 – 	P (P )

P
K (0)

]
.

(11.6)

A simple estimate of the order of magnitude of δP comes from the general appear-
ance of the stress-strain curves. From Figure 11.1 the value of 	 at low pressure,
	 W –1000, goes over to 	 W 0 at a pressure of order 8 MPa. Thus

δP = –K (0)
d	 p

dP
W –2 ~ 106 . (11.7)

A second example, from the result of Gist, Chapter 10, leads to δP W 107. The
order of magnitude of these estimates is in accord with similar estimates on a wide
variety of rocklike materials. Generally from quasistatic data |δP | W 106–107, or very
approximately δP W –	2

P .

11.1.2
Temperature-Dynamic

The coupling of a dynamic strain to temperature is fundamental to the experiments
of Ide [9] and Ulrich [10] described in Section 10.3.2. In both experiments the fre-
quency of a resonance peak, examined with low-amplitude drive, is used as a mon-
itor of the elastic state. Ulrich reports the frequency directly, whereas Ide reports
a velocity deduced from the frequency. Analogously to the description above, the
logic is that δT produces a slowly varying strain field, U T

x , to which the dynamic
strain couples. We might write

u =

⎛
⎝ U T

x + ux 0 0
0 U T

x 0
0 0 U T

x

⎞
⎠ , (11.8)

where U T
x = αδT and α, the thermal expansion, is a constant for a homogeneous

isotropic material. See Section 5.1. Thus there will be equations for c2
L and c2

T sim-
ilar to those written out in detail above, Eqs. (11.3) and (11.4), and the analog of
Eq. (11.1):

K (T ) = K (0)
(
1 – ΛP U T

x

)
= K (0)

(
1 – ΛT

δT
T 0

)
, (11.9)
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where ΛT = αT 0ΛP . The discussion in Chapters 5 and 10 call attention to the pos-
sibly very complex nature of the internal forces that temperature can bring about in
a porous material. So the result here is intended to suggest the nature of the influ-
ence of temperature on a dynamic strain field and to call attention to the similarity
of that influence to the influence of pressure.

11.1.3
Saturation-Dynamic

From the discussion in Chapter 10 we know that fluid configurations deliver inter-
nal forces that result in a macroscopic strain. At low saturation we write U S

x = γSW ,
Chapter 10, Eq. (10.6), and

u =

⎛
⎝ U S

x + ux 0 0
0 U S

x 0
0 0 U S

x

⎞
⎠ . (11.10)

Then

K (SW ) = K (0)
(
1 – ΛP U S

x

)
, = K (0)(1 – ΛSSW ) , (11.11)

where ΛS = γΛP .
Equations (11.1), (11.9), and (11.11) describe the change in modulus due to pres-

sure, temperature, and saturation in terms of a dimensionless measure of the ap-
plied field, P/K 0, δT/T 0, and SW, respectively, and a dimensionless coupling con-
stant, 1, αT 0, and γ, respectively.

1. Using ΛP = –	 p W 1000 and α W 10–6 K–1 we have ΛT W 0.3. This leads to

T 0

δT
δK (T )
K (0)

W –0.3 , (11.12)

at T 0 = 300 K, a number in order-of-magnitude agreement with results from
Ide and Ulrich (Chapter 10).

2. From Amberg and McIntosh [11], Chapter 10, Eq. (10.6), we have U S
x W

0.02SW and

δK (SW )
K (0)

W –20SW , SW << 1 , (11.13)

using ΛP = 1000. This estimate is made combining a number from porous
glass, U S

x , and a number from Berea sandstone, ΛP = 1000. What is sug-
gested is that for a wetting fluid that induces substantial tension at low sat-
uration, there should be a large reduction in the elastic constant as the sat-
uration increases from SW = 0.

3. In Figure 11.2 we show a schematic diagram of K as a function of (SW , P ).
At low pressure and low saturation the elastic system is relatively stiff. It
becomes stiffer on an increase in pressure at SW = 0. It becomes softer
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K

P

SW 1

Fig. 11.2 Modulus as a function of P and SW. On increase in
pressure, the modulus increases. On increase in saturation,
a wetting fluid exerts tensions (negative pressure) causing the
modulus to decrease. The elastically softer system at SW = 1
is changed more by pressure than the elastically stiff system at
SW = 0.

Fig. 11.3 Velocity as a function of SW at P = 1 atmosphere,
Meule sandstone. On increase in saturation (by water) the
modulus decreases. The decrease is most rapid at the lowest
saturations as the initial layers of wetting fluid decrease the
surface energy and produce tensionlike forces.

on an increase in saturation at P = 0. Since it is softer at large saturation,
SW = 1, an increase in pressure at SW = 1 brings about a relatively larger
change in modulus than that at SW = 0. As Figure 11.2 suggests, the prop-
er venue for discussing the modulus of a porous elastic system is (P , SW )
space. This is rarely done. In general, there is little control of the saturation
state in experiment and little recognition of the burden elastic hysteresis
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Fig. 11.4 Velocity as a function of pressure at SW = 0 and
at SW = 1, Meule sandstone. In accord with the qualitative
picture in Figure 11.2 at SW = 1, the elastic constant is softer
and more easily changed by pressure than at SW = 0.

and fluid configuration hysteresis put on the choice and execution of exper-
imental protocols.

4. In Figures 11.3 and 11.4 we show two results on Meule sandstone that
agree with the general picture developed above [12, 13]. There are many data
sets [14] in qualitative accord with the expectation exhibted in Figure 11.2.

5. As was remarked on earlier, our concern here is with changes in elastic
state brought about by pressure or by the auxiliary fields, T and SW. These
changes can be learned through studies of the coupling of a dynamic strain
field to the quasistatic strain field. The subject of wave propagation in
porous media in which the fluid in a pore space contributes its elasticity to
the elasticity of the whole, the provenance of Biot theory [15], is outside the
range of this discussion.

11.2
Dynamic–Dynamic

There are two standard ways in which to have dynamic strain fields interact with
one another. You can broadcast strain fields so that they encounter one another
momentarily in some volume of space where there is a nonlinear coupling, or you
can put strain fields in a region of space where they continually encounter one
another through a nonlinear coupling. The first case is wave mixing as in Jones and
Kobett [16], Section 3.4.2, and the second case is the resonant bar, Section 3.4.3. We
look at wave mixing experiments first.



268 11 Dynamic Measurements

Fig. 11.5 Noncollinear wave mixing experi-
ment. (a) Schematic diagram of apparatus.
Details of the geometry of the 3-phonon pro-
cess L(ω1) + L(–ω2) = T (ω3) are in Figure 11.6.
(b) The amplitude of the detected transverse
wave as a function of x as in Eq. (11.15). The
input and output angles are fixed, the sound
velocities cL and cT are fixed, so the test of the

L(ω1) + L(–ω2) = T (ω3) selection rule is the
frequency of the detected transverse wave,
Eq. (11.15). (c) The amplitude of the detect-
ed transverse wave, A3, as a function of the
product of the amplitude of the two longitu-
dinal waves A1 and A2. The result of a second
experiment on a granite are also shown.

11.2.1
Dynamic–Dynamic: Wave Mixing

11.2.1.1 Noncollinear Wave Mixing
The prototypical wave mixing experiment using dynamic strain fields is that of
Rollins, Taylor, and Todd [16–18] and [19]. For isotropic materials, for example,
polycrystalline aluminum, these authors confirm the 3-phonon selection rules dis-
cussed earlier, 3.4.2. Let us look at a similar experiment on a sandstone sam-
ple [20, 21]. In Figure 11.5 we show an experimental system involving a sandstone,
cut with flat faces to facilitate contact with the transducers. Two longitudinal tone
bursts are launched from faces 1 and 2 at relative angle φ = 34°. A shear wave
detector is fixed on face 3 at γ = 34.5°, Figure 11.6. The physical process that
will launch a shear wave from the interaction volume toward the shear detector
is case II of Taylor and Rollins [17], L(ω1) → L(ω2) + T (ω1 – ω2), rearranged to read
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Q

k1

-k2

1

2 3

A1

A2
A3

Fig. 11.6 Geometry of wave mixing exper-
iment, L(ω1) + L(–ω2) = T (ω3). Since
k(–ω2) = –k(ω2) the two-input compressional
wave, amplitudes A1 and A2, yield a trans-
verse wave, amplitude A3, having wave vector

Q = k1 – k2, ωQ = ω3 = ω1 – ω2. The angles φ
and γ characterize the geometry of the scatter-
ing and dictate how the rock is to be cut (or if
cut they dictate the frequencies involved in the
scattering process, Eqs. (11.14) and (11.15)).

L(ω1) + L(–ω2) → T (ω1 – ω2). For the detected shear wave, (wavevector, frequen-
cy) = (Q, Ω)), momentum and energy conservation yield Q = k1 –k2 and Ω = ω1 –ω2

since k(–ω2) = –k(ω2). Using the acoustic approximation for all frequencies and
r = cT /cL the conservation laws lead to

(1 – r2)(1 + x2) = 2(1 – r2 cos φ)x , (11.14)

where x = |k2|/|k1| = ω2/ω1 u 1. Combining the conservation of momentum and
the law of sines, Figure 11.6, we have a relationship between the geometry of the
faces and the frequencies

tanγ =
x sin φ

1 – x cos φ
. (11.15)

For the angles φ = 34◦, γ = 34.5◦ , and r = 0.64 (for Berea sandstone) the solution
to these equations is x W 0.62. Thus the experiment to confirm the description of
wave mixing is conducted with (1) broadcast at amplitude A1 and fixed frequency
f 1 = 500 kHz from face 1, (2) broadcast at amplitude A2 and swept frequency f2,
50 kHz u f 2 u 450 kHz, from face 2, and (3) detection of the amplitude AQ at f 1 –
f 2 on face 3. The result, Figure 11.5b, confirms the prediction of Eqs. (11.14) and
(11.15), as do further tests, for example, the amplitude dependence of the signal on
face 3, AQ ∝ A1A2, the time of arrival of the signal on face 3, etc.

From the expression for the nonlinear elastic energy, Eq. (2.67), the known
strength of the three strain fields involved and the values of the linear and nonlin-
ear elastic constants in Table 11.1 for a Berea sandstone we have the estimate

eV

μ
= Rε1ε2εQ = –1433ε1ε2εQ , (11.16)

where ε1 = k1A1, ε2 = k2A2, and εQ = QAQ . To give an idea of the elastic energy
involved in a typical 3-phonon process, we report the strain energy amplitude, R,
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for the Q = k1 – k2 process, calculated from the values of the linear and nonlin-
ear elastic constants in columns 2–6 of Table 11.1, column 8. We note that Berea
sandstone, limestone, Sierra White granite, and glass beads are much more non-
linear than polystyrene, Agar-gelatin-based phantom, and water. For these highly
nonlinear materials the coefficient B makes a dominating contribution to 	P and
the strain amplitude R.

11.2.1.2 Collinear Wave Mixing
(a) In Figure 11.7 we show the experimental system employed by Meegan et al. [22]
to investigate collinear wave mixing, L(ω1) + L(ω2) → L(ω3). A Berea sandstone 2 m
long and 6 cm in diameter was driven from one end with tone bursts of various
(frequencies, durations), ( f 0, Δt). The time train at each of 11 detectors along the
sample was recorded. Fourier analysis of the time trains provides the amplitudes
A( f 0) = A1, A(2 f 0) = A2, A(3 f 0) = A3, etc. at each detector. The description of this
experiment, Section 3.4.2, Eq. (3.46), shows that a second harmonic is expected
with amplitude

A2 ~ 	(k0A1)2x , (11.17)

where x is the distance from the drive, k0 = 2π f 0/c, and 	/K W –4000 is giv-
en by Eq. (3.29) and Table 11.1. In preparation for testing the functional form in
Eq. (11.17), the displacement field at the sample surface was monitored with a fiber
optic probe that looked through a hole in the piezoelectric transducer. When the
source was driven at 13.7 kHz, the spectrum of the sample surface displacement,
for drive amplitudes spanning almost two decades, was as shown in Figure 11.8.
Most notable is the background at frequencies other than the drive frequency. As
the amplitude at the drive frequency increases, this background remains constant
at < 10–8. Meegan et al. confirmed the dependence of A2 on x, A2

1, and k2
o ∝ f 2

0 and
made the estimate |	|/K W 7000 in reasonable accord with 4000. As an illustration
of their results we show the amplitude A2 as a function of distance from the source
in Figure 11.9. The results of Meegan et al. establish the presence of a nonlinear
scatterer with coupling functionally equivalent to

+	
∂

∂x

(
∂u
∂x

)2

, (11.18)

optical displacement 
probe

piezoelectric pin detectors

source sandstone bar

Fig. 11.7 Collinear wave mixing in Berea sand-
stone, sample. Pulse mode tone bursts are
launched from the left using a piezoelectric
source with tantalum backload. A small hole
is drilled through the backload/transducer,

on center, and an optical probe that can look
directly at the rock surface is used to measure
input wave displacement. In order to measure
the development of the wave with distance,
a series of pin transducers is embedded along
the length of the sample with epoxy.
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Fig. 11.8 Amplitude as a function of frequency. (a) Source
spectrum for tone bursts at 13.7 kHz at progressively increas-
ing drive amplitude (different line types) from optical probe,
Figure 11.7. (b) Spectrum measured at 0.58 m from the source
at progressively increasing drive amplitude.

Fig. 11.9 Scaling of second harmonic. The amplitude of the
second harmonic, uΔ f (Figure 11.8b), measured at 0.58 m
from the source as a function of the square of the amplitude of
the source, U 2.

Eq. (3.28), throughout the sample. A followup experiment by TenCate et al. [23]
found interesting and somewhat different results for what was essentially the same
experiment. This calls attention to a most important point. In the experiment of
TenCate et al., the source spectrum was much less clean than that shown in Fig-
ure 11.8. Consequently there were higher harmonics in the sample that were not
created by its nonlinearity and that could not easily be separated out from those
that were.

In an experiment in which a strain field interacts with itself, f 1 = f 2, great
care must be taken to be sure that 2 f 1, 3 f 1, . . . did not come from the drive. In
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a wave mixing experiment in which two different frequencies are mixed, the result,
f 1 ± f 2, is unlikely to be a multiple of f1 or f2.

(b) A practical example of collinear two-wave mixing is provided by LeBas et
al. [25] who used a Berea sandstone in a parametric array experiment [24]. By suit-
ably phasing the two fundamentals, LeBas et al. were able to steer the array. The
transducer set is shown in Figure 11.10 and an illustration of the evidence for mix-
ing is shown in Figure 11.11.

(c) The recent very careful experiment of d’Angelo et al. [26, 27] sets the standard
for collinear wave mixing experiments.

1. The apparatus consisted of a 1 ~ 1 ~ 2 m3 water-filled volume containing
source and receiver transducers. Prior to placing samples in this volume
it was studied experimentally and modeled with the KZK equation [24].
Understanding of signal broadcasts in this volume entailed understand-

laser
vibrometer

scan
area

45 cm

120 cm

45 cm

f1

f2

array
12 cm diameter

Fig. 11.10 Parametric array apparatus (not
to scale). A large Berea sandstone sample
(0.45 m ~ 0.45 m ~ 1.2 m) has a 19-element
source array, diameter 12 cm, attached to one
side. The 19 tranducers are addressed inde-
pendently, 10 with frequency f1 and 9 with

frequency f2. The signal from the array is mea-
sured over the scan area (0.38 m ~ 0.45 m)
across from the transducer array with a laser
vibrometer that is stepped on a square grid
0.005 m ~ 0.005 m.
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f1 f2

ΔfΔf broadcast

Fig. 11.11 Parametric array results. (a) Ampli-
tude of direct arrival on the scan area of signal
f 1 = 65 kHz, broadcast from 10 transduc-
ers (open circles) in the array, Figure 11.10.
(b) Amplitude of direct arrival on the scan
area of signal f 1 = 60 kHz, broadcast from
9 transducers (shaded circles) in the array,
Figure 11.10. (c) Amplitude of direct arrival on
the scan area of signal Δ f = f 2 – f 1 = 5 kHz,
broadcast from all 19 transducers in the ar-

ray. (d) Amplitude of arrival on the scan area
of signal at Δ f = f 2 – f 1 = 5 kHz when
f 1 = 65 kHz is broadcast from 10 transducers
(open circles) in the array and f 2 = 60 kHz is
broadcast from 9 transducers (open circles) in
the array. The black circle on each panel is the
projection of the source array onto the scan
area. (Please find a color version of this figure
on the color plates)

ing transducer voltage-fluid pressure conversion, attenuations, and incipi-
ent nonlinearities. When all of this was satisfactory, the samples were placed
in the volume.

2. Seven samples – PMMA, Portland sandstone (dry and wet), Indiana lime-
stone (dry and wet), and Berea sandstone (dry and wet) – were examined.
Prior to being the subject of a collinear wave mixing experiment, each of
these samples was studied with a set of quasistatic-dynamic measurements,
Section 11.1.1, that allowed determination of the third-order elastic con-
stants, A, B, and C.

3. Each sample was placed between source and receivers and subjected to
overlapping 50 µs tone bursts at frequencies of f 1 = 1.05 MHz and f 2 =
0.95 MHz. The detected amplitudes at f1, f2, 2 f 1, 2 f 2, f 1 + f 2, and, most im-
portantly, f 1 – f 2 = 100 kHz were studied as a function of the incident wave
amplitude, distance from source to receivers, and lateral sample position in
order to provide a detailed understanding of wave propagation through the
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samples. Part of the refinement of this understanding employed feedback
between experimental observations and their description using the KZK
equation.

4. In general the results found are in reasonable accord with expectation;
there were signals detected at 2 f 1, 2 f 2, f 1 + f 2, and f 1 – f 2, their am-
plitudes scaled with the source amplitude in essentially the proper way,
and the wet samples (saturated) were more nonlinear than the dry sam-
ples. But all was not perfect. Of most importance is the observation that
the nonlinear coupling constant, 	, found from a wave mixing experi-
ment was considerably smaller than the value one would predict using
the measured values of the third-order elastic constants, A, B, and C.
As both experiments were done on each sample, this conclusion is very
strong.

5. A most intriguing possibility, suggested by d’Angelo et al. [27], is that the
nonlinear coupling of two dynamic strains (each at about 1 MHz) calls for
the elastic system (elastic elements?) to respond on a very different time
scale from that involved in a quasistatic-dynamic measurement, that is, the
measurement of A, B, and C. Thus, in a two-wave mixing experiment, the
frequency of the strain fields and duration of their encounter may be of
importance.

We turn now to a discussion of measurements involving dynamic strains that are
continuously in interaction with one another, resonant bar measurements.

11.2.2
Dynamic–Dynamic, Resonant Bar, Preliminaries: Fast Dynamics and Slow Dynamics

Slow dynamics is a central part of the discussion of the behavior of a resonant bar.
So we take a serious detour to give extra care to the meaning of the language that
we will use in this context. To model the physics of the resonant bar, we recall the
lumped element model (Chapter 6) and use a mass/nonlinear spring for which we
take the equation of motion

ü +
1
τ

u̇ = –
Γ0

m

[
(1 + γSD (t))u – δu3

]
+ F P (t) + F p (t) , (11.19)

where u is the displacement field, F P (t) the pump source, Fp the probe source, Γ0

the linear elastic constant (spring constant), δ the coefficient of quartic nonlinear-
ity, and γSD a slowly varying change in the linear elastic constant having a variety
of sources (see below). Equation (11.19) is supplemented by an equation of motion
that describes the time evolution of the slow dynamics field, γSD (t). We rewrite the
nonlinear term in the form δu3 = u3/u2

0 (δ = 1/u2
0), so that we have, as a simple

displacement measure of the importance of the nonlinearity,

ü +
1
τ

u̇ = –ω2
0

[
(1 + γSD (t))u – ε

u2

u2
0

u

]
+ F P (t) + F p (t) , (11.20)
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where ω2
0 = Γ0/m and ε = 1(0), depending on whether or not we want to consider

the quartic nonlinearity.
In order to be as clear as possible, we will talk through a series of examples.

11.2.2.1 Fast Dynamics: Linear
Consider a situation in which F P (t) = 0, ε = 0, and γSD (t) = 0. For the probe
F p (t) = A0 exp(–iωt) the response is taken to be the displacement amplitude at the
frequency of the probe. This response, called the fast dynamics response, is

u p (t) = A(ω) exp(–iωt) , A(ω) =
1

ω2
0 – ω2 – iω

τ

A0 . (11.21)

More precisely, this is the linear fast dynamics response since A(ω) ∝ A0. The fast
dynamics response is simply the displacement response at the probe frequency. It
is called fast because the probe frequency is fast by some measure.

(We need to have a quantitative understanding of the time scale necessary to
undertake the measurement that establishes a resonance frequency. Take ω0 =
2π f 0, f 0 = 1000 Hz, and τ = 0.016 s. Then Q0 = ω0τ W 100, and we could establish
steady state at a drive frequency of ω0 in, say, 3Q0 periods or 0.3 s. If we were
to use 100 frequency values to sweep over a resonance, it would take about 30 s
to establish a resonance frequency. We use this time, call it the sweep time τs , as
the time scale necessary to establish a resonance frequency. See the discussion in
Chapter 8.)

Near resonance, ω = ω0, |A(ω0)| = Ar = τA0/ω0. The importance of the neglect-
ed nonlinear term near resonance, where it is largest, depends on Ar /u0. Suppose
(Ar /u0)2 is large enough to be of interest. We have case 2.

11.2.2.2 Fast Dynamics: Nonlinear
Consider a situation in which F P (t) = 0, ε = 1, and γSD (t) = 0. The probe is
F p (t) = A0 exp(–iωt). To see the influence of the nonlinear term, we use the simple
approximation

uuu = 3uuu ,
u2

u2
0

u → 3
uu
u2

0
u , (11.22)

where uu is the average of u2 over one period of the probe. [In the phonon language
of Chapter 3 we take from the 4-phonon process the three terms in which three
phonons (±ω) coalesce to produce a fourth phonon at ω, for example, ω + ω – ω →
ω.] The equation of motion for the displacement is

ü +
1
τ

u̇ = –ω2
0

[
1 –

u2

u2
0

]
u + F p (t) ,

= –ω2
0

[
1 – 3

uu
u2

0

]
u + F p (t) . (11.23)

The displacement response at the frequency of the probe, the fast dynamics re-
sponse, is

u p (t) = A(ω) exp(–iωt) , (11.24)
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A(ω) =
1

ω2
0

[
1 – 3

u2
p

u2
0

]
– ω2 – iω

τ

A0 ,
(11.25)

u2
p =

|A|2
2

. (11.26)

For u2
p << u2

0 the resonance frequency is at ω W ω0 so that, evaluating u2
p at ω0, we

have resonance frequency

ω2 = ω(A0)2 W ω2
0

[
1 –

3
2

(
τA0

ω0u0

)2
]

==
Γ(A0)

m
. (11.27)

This is an example of fast nonlinear dynamics in which the response at the probe
frequency is influenced by the amplitude of the fast displacement that follows at
the probe frequency, A ∝ A0 + O (A3

0) + . . .

[As the resonance is swept over on time scale τs the resonance frequency shifts,
following ω(A)2 = ω2

0(1 – 3uu/u2
0), on the time scale associated with up reaching

steady state, approximately τ. The frequency shift is largest at resonance, where uu
is largest, and small well below (above) resonance, where uu is small, that is, the
resonance curve is a peak bending resonance curve.]

11.2.2.3 Slow Dynamics; External Source
Consider a situation in which F P (t) = 0, ε = 0, and γSD (t) =/ 0. The elastic constant
ΓSD varies slowly in time in response to the time evolution of an auxiliary field like
temperature or saturation. Then the equation of motion for the displacement is

ü +
1
τ

u̇ = –ω2
0

[
1 + γSD (t)

]
u + F p (t) , (11.28)

where the slow dynamics spring constant varies negligibly over the time, approx-
imately τ, required to establish a steady-state displacement response to the probe,
F p (t) = A0 exp(–iωt). Then the displacement response at the frequency of the
probe, the fast dynamic response, is

u p (t) = A(ω) exp(–iωt) , A(ω) =
1

ω2
0[1 + γSD (t)] – ω2 – iω

τ

A0 . (11.29)

[If, as a resonance is swept over, taking time τs , the slow dynamics spring con-
stant changes negligibly, then the time evolution of the frequency shift, ω2

0γSD (t),
governed entirely by the dynamics of the auxiliary field, can be used to monitor the
time evolution of that field [10, 28].]

11.2.2.4 Slow Dynamics; Internal Source
Consider a situation in which the probe source is zero, F p (t) = 0, ε = 0, F P (t) =/ 0,
and γSD (t) =/ 0. The pump source, F P (t) = A0 exp(–iωt), causes a change in the
elastic state of the system. The evidence of this is that after the pump is turned
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off, well after time on the order of 3Q0 periods, a probe source will see evidence of
the pump having been on. Now pump and probe are the same thing, just sources
with a time dependence of the form exp(–iωt). But the difference is in the strain
amplitude that the source causes. There is a strain amplitude threshold, εT . When
the source produces strain amplitudes below the threshold, it leaves the elastic
state of the system unchanged, and the source is a valid probe. When the source
produces strain amplitudes above the threshold, it changes the elastic state of the
system and the source cannot be regarded as a probe. We call it a pump. A probe
necessarily leaves the elastic state of the system unchanged. When two sources are
used at the same time, the larger is usually called the pump.

Let us refine this description. We adopt a particular model for γSD (t) and sharpen
the language of the discussion. [The displacement in the lumped element model
of Eq. (11.20) is a surrogate for the strain, εT ↔ AT .]

1. Suppose the system is in thermal equilibrium for t < 0. Turn F P (t) = A0

exp(–iωt) on at t = 0 and monitor the displacement at ω until a steady state
is reached. Then, for (ω, A0) such that the displacement amplitude exceeds
AT, we have

uP (t) = A(ω) exp(–iωt) , A(ω) =
1

ω2
0[1 – X SS (|A|)] – ω2 – iω

τ

A0 .

(11.30)

where X SS (|A|) is the steady-state value of γSD (t) when the amplitude of the
displacement response is A. The pump source (ω, A0) maintains the sys-
tem in a nonequilibrium steady state (NESS) that is set up on a time scale
τSD >> τ. (A possible model for this might be the ratchet model of Chapter 7,
although the discussion here does not depend on any particular model.) For
simplicity of discussion we adopt one feature of the ratchet model; in the
ratchet model for ωτSD >> 1 the steady-state value of X SS (|A|) is indepen-
dent of ω. We take this to be the case so that the NESS is characterized
simply by the displacement amplitude caused by the pump, for example,
X SS (|A|) depends only on |A|.

2. When the system is being maintained in a NESS, an elastic state different
from the equilibrium elastic state, the nature of this state can be determined
by two schemes that leave the NESS undisturbed.
a. Fixed pump and weak probe.

i. With F P (t) = 0 sweep over a resonance with F p (t) = a0 exp(–iωt), a0 <<
AT .

ii. Establish the system in a NESS with F P (t) for which γSD = X SS (|A|).
iii. Maintain the system in the NESS and employ F p (t) = a0 exp(–iωt) to

sweep over the resonance a second time. The equation of motion for
the displacement response to F p (t) is

ü +
1
τ

u̇ = –ω2
0(1 – X SS (|A|))u + F p (t) (11.31)
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Fig. 11.12 Resonant bar; amplitude as a func-
tion of frequency. (a) High-strain amplitudes
(back curve). Amplitude as a function of fre-
quency for constant large drive voltage (log
scale, the amplitude is scaled by the am-
plitude at resonance, |Ar |). The resonance,
at f r = 1 at low drive amplitude, is shift-
ed to f r = 0.935 at high drive amplitude.
The resonance curve has a bent tuning fork
shape (gray curve). Voltage as a function

of frequency for the constant strain state
(NESS) εr ↔ |A|r (log scale, the voltage
values are scaled by the voltage at resonance).
The resonance curve is symmetric around
f 2 = f 2

r (|Ar |)[1 + 1/(2Q2
r (|Ar |)], Eq. (11.33).

(b) Low-strain amplitudes. When the system
is in the NESS at |Ar |, a frequency sweep at
low drive voltage (probe) will have resonance
frequency shifted from f r = 1 (pump off) to
f r = 0.935.

and

u p (t) = a(ω) exp(–iωt) , a(ω) =
1

ω2
0(1 – X SS (|A|)) – ω2 – iω

τ

a0 .

(11.32)

The elastic state of the system in the NESS is determined from the reso-
nance frequency, the frequency at which the response at constant probe
amplitude (voltage) is a maximum. The difference in this resonance fre-
quency for pump-off and pump-on yields X SS (|A|).

b. Constant strain pumping. The pump source is swept over resonance at
constant |A| or strain. At each frequency ω the amplitude A in Eq. (11.30)
is kept fixed by adjusting the strength of the pump, A0 (typically a voltage
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domain

AT

A

f
constant voltage sweeps

constant (A) strain sweep 

Fig. 11.13 Nonequilibrium steady state.
Nonequilibrium steady states can be estab-
lished with drive amplitudes that produce
strains above AT ↔ εT . For a frequency
sweep at constant strain, drive voltage varies
with frequency (gray curve in Figure 11.12a).
For a frequency sweep at constant voltage the
strain amplitude varies with frequency along
a resonance curve. For relatively high constant

voltage the system enters the NESS domain
temporarily. A modification of the resonance
curve results that depends on the amount
of time spent in the NESS domain. A variety
of experimental protocols, drive voltage, and
frequency as a function of time have been
developed to unravel the consequences of
encounters with the NESS domain. See Fig-
ures 11.14 and 11.25.

in experiments). The elastic state of the system in the NESS is determined
from the resonance frequency, the frequency at which the pump voltage
is a minimum, Figure 11.13.

A0 =

[
ω2

0(1 – X SS (|A|)) – ω2 –
iω
τ

]
A . (11.33)

While an experiment of this type can probe the nature of the NESS, it
cannot establish that the elastic state examined at constant |A| is a NESS.
To learn that you have to see the elastic state move in time.

3. Observations.
a. To establish the large displacements for which A > AT one typically oper-

ates F P (t) at a resonance. As a matter of principle this is not required.
b. The resonance frequency of a resonance is generally taken as the mea-

sure of the elastic state. The change in elastic state associated with the
NESS will be detectable by a probe sweep at any resonance, not just the
resonance used to pump as in (a).

c. It is possible to carry out a constant A study of a resonance for A < AT .
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d. When the elastic system has traditional nonlinearity as well as a frequency
shift due to establishing a NESS, one might have

uP (t) = A(ω) exp(–iωt) , (11.34)

A(ω) =
1

ω2
0

[
1 – X SS (|A|) – 3

2
|A|2
u2

0

]
– ω2 – iω

τ

A0 (11.35)

in place of Eq. (11.30). A weak probe of this system as in 2(a) would be un-
changed, yielding the result in Eq. (11.32) as |A|2 is negligible for a weak
probe.

4. Sweeping over a resonance at constant a0, for which a(ω) < AT , ∀ω, leaves
the system unchanged. Sweeping over a resonance at constant a0, for which
a(ω) > AT for some (all?) ω, has the system changing as the sweep is con-
ducted (entering and then leaving the NESS domain) and produces results
that require care in their interpretation, Figure 11.13.

5. The slow dynamics of the NESS are typically studied by establishing the
NESS, turning the pump off abruptly, and following a resonance with a weak
probe over time.

11.2.3
Dynamic–Dynamic: Resonant Bar, Data

We look at a sequence of experiments, notable because of the attention given to
issues of strain amplitude, frequency protocols, and time scale, that helped to flesh
out the current picture.

11.2.3.1 Linear
In Figure 11.38, which has eight resonance curves, the curve for graphite is typical
of what is seen for a linear material. A series of amplitude-frequency curves that
appear the same for a sequence of drive voltages. The other seven panels in the
figure, to be discussed below, show qualitative evidence of nonlinearity. When at
a sequence of drive voltages the resonance curves look as they do for graphite, one
knows that the strain fields within the bar, largest at the bar center, do not activate
a noticeable amount of nonlinearity. Then, the resonance frequency is an effec-
tive measure of the elastic constants of the bar. Resonant ultrasound spectroscopy
(RUS) uses precise measurement of a set of linear resonance frequencies to infer
accurate values of the linear elastic constants of a material [29].

11.2.3.2 First Examination of Slow Dynamics (Figure 11.14)
The seminal work on slow dynamics is that of TenCate and Shankland [30]. In the
course of a set of resonant bar measurements on a cylindrical sample of Berea
sandstone, conducted with frequency sweeps at constant drive voltage, these au-
thors noticed slow dynamics and stopped to pay attention to it. The sample, 50 mm
in diameter and 0.3 m long, had a low-amplitude resonance at f r W 3920 Hz (strain
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Fig. 11.14 Experimental protocols; slow dy-
namics. In each of five panels an experimental
protocol designed to be aware of the NESS
domain and the slow dynamics associated
with entering this domain is shown schemat-
ically. These are the experimental protocols
used in the discussion in Sections 11.2.3.2–
11.2.3.6. The figures are of the amplitude
(strain) as a function of time. At constant
voltage a frequency sweep produces an ampli-
tude change indicated by the tooth of a saw.
The direction of a frequency sweep is indi-
cated by an arrow. A small black saw tooth
represents a probe frequency sweep. All times
not otherwise noted are in seconds and are
approximate, intended to give a rough idea of
the time scale.
I. The experimental protocol of TenCate and
Shankland, Figure 11.15.
II. The experimental protocol employed by
Guyer, TenCate, and Johnson to produce data
for constant strain analysis, Figure 11.17.

III. The experimental protocol employed by
TenCate, Smith, and Guyer in the study of the
recovery from a NESS. The NESS, established
at essentially constant pump voltage and
pump frequency, is watched for approximate-
ly an hour after the pump is turned off with
small-amplitude probe sweeps, Figure 11.19.
IV. The experimental protocol of Pasqualini et
al. for investigating the elastic state of a res-
onant bar at the lowest strain amplitudes.
Returning to a low-strain probe sweep after
each constant voltage sweep makes it possi-
ble to monitor for the influence of entry into
the NESS domain. An approximate location
of the boundary of the NESS domain can be
established, Figure 11.20.
V. The experimental protocol employed by
Haller and Hedberg. The frequency is swept at
constant strain by adjusting the drive voltage.
The constant strain values begin below the
NESS domain, Figure 11.24.
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at resonance of order 10–8). As the resonance was swept over [(down followed by
up) 4000 to 3800 Hz to 4000 Hz in 2-Hz steps (200 frequency points) at 300 ms per
step] with increasing drive voltage, the resonance frequency was seen to shift to
lower values, for example, f r W 3850 Hz when the strain at resonance was of order
10–5. Most importantly, it was noted that when the drive voltage produced a strain
amplitude greater than about 10–7 during a frequency sweep, the subsequent strain
behavior was modified as the frequency sweep continued. A frequency sweep of
4000 to 3800 Hz was different from a frequency sweep of 3800 to 4000 Hz, Fig-
ure 11.15. The modification was seen to be dependent on the amount of time the
sample spent at strains greater than about 10–7. The frequency sweep rate, 1/τs ,
was encountering a physical rate, associated with the elastic system comparable to
itself. An example of an experiment that confirmed the intuition that developed
from this set of experiments is shown in Figure 11.16.

1. At constant drive voltage the frequency was swept (on the time scale above)
from 4000 Hz (3800 Hz) over the resonance peak to a point about 20 Hz
below (above) the peak.

2. The drive voltage was set to zero, where it remained for 30 s.
3. The original drive voltage was reestablished, and the frequency sweep was

completed.
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Fig. 11.15 Resonant bar data; with slow dy-
namics. See protocol I in Figure 11.14. At fixed
voltage V1 the frequency is first swept down
over the resonance and then swept back up
over the resonance. The voltage is increased
to V2 and the down/up frequency sweeps re-
peated, etc. At a voltage producing strains
of order 5 ~ 10–7 it is very apparent that the

up and down sweeps give different reso-
nance curves. The total time for an up/down
sweep pair is about 60 s. So times on this
scale are involved in the elastic response to
AC strains of order 5 ~ 10–7 . The fast dynam-
ical response, f W 3900 Hz, sees the slow
dynamics of the elastic state.
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Fig. 11.16 Test of slow dynamics phe-
nomenology. (a) At constant drive voltage,
starting at 4000 Hz the frequency is swept
over the resonance down to 3830 Hz, where
the drive voltage is turned to zero for 30 s.
On passage through the NESS domain near
the resonance peak, the elastic constant is
softened. During the 30 s the drive is off the
elastic constant begins to return to its equilib-
rium value so that on reestablishing the drive
voltage and resuming the frequency sweep the
system appears to be on a resonance curve
of higher resonance frequency, hence a jump

down. (b) At constant drive voltage, starting at
3800 Hz the frequency is swept over the reso-
nance up to 3900 Hz, where the drive voltage
is turned to zero for 30 s. On passage through
the NESS domain near the resonance peak,
the elastic constant is softened. During the
30 s the drive is off the elastic constant begins
to return to its equilibrium value so that on
reestablishing the drive voltage and resuming
the frequency sweep the system appears to
be on a resonance curve of higher resonance
frequency, hence a jump up.

When the drive voltage was reestablished, the displacement amplitude was found
to be shifted downward (upward) by an amount that was taken to be due to re-
laxation of the elastic state created by the large amplitudes that preceded step 2.
The sign of the shift in displacement amplitude is determined by the sign of the
frequency shift caused by the large displacements. This experiment has a simple
explanation using the model from above. However, because of the way in which
it was conducted, sweeping frequency at constant voltage, the system was passed
through the NESS domain rather than being established in one NESS.

From this experiment two important conclusions follow.
1. In the conduct of a resonance measurement by conventional means, sweep

frequency at constant voltage, it is important to be aware of the possibility
of entering a strain domain in which slow time evolution of the elastic state
ensues.

2. An elastic system can be placed in an elastic state that is characterized by
a pump strain amplitude. To examine the system in this state, it would
be desirable to look with methods that do not disturb it. R. O’Connell [31]
suggested conducting resonant bar measurements at constant strain (Sec-
tion 11.2.3.6). An alternative, in the spirit of O’Connells’s suggestion but
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not equivalent to it, is constant strain analysis, described in Chapter 8 and
below.

11.2.3.3 Constant Strain Analysis (Figure 11.14)
The result reported by Guyer, TenCate, and Johnson [32] is of the analysis of an
experiment conducted with conscious awareness of the need to monitor for slow
dynamics. The experiment was on a Berea sandstone (nominally of the same size
as that in the TenCate–Shankland experiment) that was maintained in a controlled
environment (under vacuum of approximately 2 mTorr and temperature controlled
to 0.1 K). The experiment was conducted at constant voltage with frequency sweeps
of approximately 30 s. The drive voltage was taken through a sequence of 23 values,
V 1 → V 11, V 12, V 11, → V 1, in approximately 23 ~ 30 W 700 s. Each of 11 resonance
curves was visited twice in this sequence, and a data set (set of resonance curves)
was judged to be free of slow dynamics if for each constant voltage curve the reso-
nance frequency was the same on both visits to the voltage. An example of the data
so acquired is shown in Figure 11.17. If free of slow dynamics, the measured strain
(displacement) values can be taken to be equilibrium values and the data can be
examined on a trajectory of constant strain (displacement). This has been done for
a family of strain values that cross Figure 11.17 horizontally, ε1, . . . , εN . For each
resulting constant strain resonance curve both the frequency at resonance and the
value of Q–1 can be determined. Details of the analysis employed are described
in Chapter 8. To the degree that a constant strain resonance curve εn is described
adequately by two parameters, ( f r (εn), Q–1(εn), one can say that strain is a good
variable for describing the behavior of the elastic state and in particular the shift in
( f r (εn), Q–1(εn) away from ( f r , Q–1) at the lowest strains. The results of this type of
analysis for the data in Figure 11.17 is shown in Figure 11.18.

There are several points to make.
1. When one chooses to examine resonance data along a trajectory defined by

a physical variable (strain, strain rate, . . .), one immediate outcome is the
determination of whether or not the variable chosen is physically relevant to
the observed behavior. In the example above, all points on a constant strain
curve were described by the same resonance frequency and Q–1. Had this
not been the case, other possibilities could have been tested, see Chapter 8.
The RTMF [33] scheme, also discussed in chapter 8, offers a similar oppor-
tunity to examine the nature of the underlying physical process. See also
Section 11.2.3.6.

2. If a suitable field for describing the elastic behavior is found, it is straight-
forward to determine both f and Q–1. Conventional definitions of Q, related
to the width of a resonance curve, need to be helped along when a resonance
curve looks like the large strain curves in Figure 11.15.

3. When there is the possibility that some elastic elements are present, having
hysteretic response to dynamic strains, for example, Hertz–Mindlin con-
tacts, there is the expectation of a connection between frequency shift and
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Fig. 11.17 Resonant bar data: for constant
strain analysis. The 22 resonance curves used
in the constant strain analysis experimental
data appear as 11 curves. Open circles are
the resonance curves for the up voltage se-
quence, V 1, . . . , V 11, and the dots are the
resonance curves for the down voltage se-
quence, V 11, . . . , V 1, Figure 11.14 II. The
curve at maximum drive voltage, visited only

once, is not shown. The dots, generally within
the circles, are evidence for the absence of the
influence of slow dynamics on the data. As the
frequency sweep of each resonance curve took
approximately 30 s, the conclusion is slightly
weaker. There is no evidence in the data for
effects more long lived than 30 s having an
influence on the data.

nonlinear attenuation. So neither of these variables should be regarded as
a second-class.

4. The results shown in Figure 11.18 show the frequency shift to be a linear
function of the strain f (ε) = 2881.0 – 2.3ε and Q–1 to be a linear function of
the strain Q–1(ε) = Q–1(0) + 0.00030ε (Q (0) = 350), over the limited strain
range of the data, 0.3 µ strain < ε < 0.9 µ strain. Thus we have

–
f (0)

f (0) – f (ε)

(
1

Q (ε)
–

1
Q (0)

)
W 0.40 . (11.36)

The scaling of the frequency shift and Q–1 with ε accords with a simple
theoretical expectation. The same simple theory would have the ratio in
Eq. (11.36) almost equal to 1. The numerical value, 0.40, is similar to that
found for many other purported hysteretic elastic systems, Section 11.2.3.6
and Table 11.2.

5. The results above are conditional on the evidence from Figure 11.17 that
there is no slow dynamics in the data set, that is, on time scales on the
order of 30 s, the time between frequency sweeps at adjacent voltage values.
Either in the experiment, at constant voltage, the sample never crossed the
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Fig. 11.18 Resonant frequency and Q–1 as
a function of strain. The resonance frequency
and Q–1 that characterize a set of constant
strain curves constructed from the data in Fig-
ure 11.17 are shown as a function of strain.
Over a limited strain range fr and Q–1

r are well

described by polynomials in strain of order 1.
The success of the constant strain analysis on
these data established the strain as a good
variable for describing the nonlinear elasticity
involved.

threshold into the NESS domain or on the relevant time scale of 30 s the
evidence of this entrance was no longer present in the system.

11.2.3.4 Slow Dynamics and log(t) (Figure 11.14)
If the creation and decay of a NESS were characterized by a single (or a few) time
scale(s), you could get beyond them, shorter than the shortest, longer than the
longest. But early on it was recognized that over a substantial strain range the NESS
created by a pump would decay away slowly, essentially as the logarithm of time.
This means that there is a broad spectrum of time scales in the dynamics of the
NESS and that experimental time scales are more or less in the middle of these.
This was established in the experiment by TenCate, Smith, and Guyer [37] in which
a Berea sandstone that was maintained in a controlled environment (under vacuum
of W 2 mTorr and temperature controlled to 0.1 K) was subjected to the following
experimental protocol.
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Table 11.2 Ratio of 1/Q shift to frequency shift. Column 2 from
anomalous fast dynamics measurements and column 3 from
slow dynamics measurements.

AFD SD

Berea 0.40 –
Granite 0.20 –

Sandstone 0.22 –

Glass beads 0.6–3 –
Marble 0.42 0.43

Gray iron 0.35 0.25

Alumina 0.66 0.26
Quartzite 0.28 0.36

Pyrex 1.1 0.30
Sintered metal 0.31 0.25

Perovskite 0.66 0.23

1. The sample was maintained at thermal equilibrium at temperature T for at
least 24 h. Toward the end of this time a resonance peak was probed with
frequency sweeps at low voltage (maximum strain field less than 10–8) to
establish the elastic state of the sample.

2. A large voltage drive at fixed frequency (near resonance) was turned on for
15 min. This pump produced a NESS with strains of order 10–6.

3. At the end of 15 min the pump was turned off and the transducer employed
to probe a resonance of the sample at low voltage (maximum strain field less
than 10–8) to establish the elastic state of the sample.

4. Probe sweeps over the resonance continued for times out to about 4000 s (an
hour), at which point the resonance frequency differed undetectably from
that established in step 1.

The typical results are shown in Figure 11.19. The elastic state created/maintained
by the pump, NESS, is seen to return to the thermal equilibrium state after the
pump is turned off essentially as log(t) over the approximate time scale 10 s <
t < 1000 s. In the experiment, a number of additional important features were
established [37].

1. A NESS was observed in a variety of samples under a variety of conditions:
intact and damaged concrete, a Berea sandstone under room-dry conditions
and under vacuum, several sandstones, etc. In all cases the NESS decayed
on removal of the pump approximately at a rate of log(t).

2. In the one case studied extensively, Berea sandstone, the amplitude of the
decay of the NESS scaled with temperature being larger at high tempera-
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Fig. 11.19 Recovery from a NESS. The frequency shift is
plotted as a function of time measured from the moment of
turning off the drive voltage that established the NESS, Fig-
ure 11.14 III. The frequency shift is measured relative to the
resonance frequency in equilibrium, f0, and scaled by the strain
in the NESS, typically > 10–6 . The time scale is logarithmic
with t0 = 1 s; the closest time to the time of turn-off is about
10 s [44].

ture. That is, for [ f r (t) – f r (t0)] W B (T ) log(t/t0), t >> t0, B (T ) ~ T ν, and
ν > 0.

3. The amplitude of the decay of the NESS was seen to depend on the strain in
the NESS seeming to vanish at a strain of order a few times 10–7. That is, for
[ f r (t) – f r (t0)] W B (εP ) log(t/t0), B (εP ) ~ (εP – ε0) for εP > ε0 and B (εP ) = 0
for εP < ε0.

4. This experiment, carried out in accord with the sense, developed in case 4,
of what was going on, Section 11.2.2, leads to four important conclusions.
a. There is a strain threshold for nonequilibrium steady states.
b. Temperature plays an important role in the time evolution of the NESS.

This suggests the presence of creep, a thermally activated process that
drives a system toward equilibrium. While the evidence is not overwhelm-
ing, it is provocative.

c. The log(t) time dependence is usually associated with the operation of
phenomena that involve a broad range of time scales. When this is the
case, one comes to realize that careful attention to time is necessary. So
it seems unavoidable that this attention must be a part of any serious
experimental exploration.

d. Considerations such as these may be relevant to many materials.
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Fig. 11.20 Drive voltage protocol for low
strain. To examine of the influence of the
NESS domain on an investigation of low-
strain resonance data, the experimental pro-
tocol in Figure 11.14 IV was employed. The
open circles are the frequency shift found as
a function of strain at resonance (constant
voltage frequency sweeps). The resonance
frequency at the lowest strain is the test res-
onance frequency. When the probe frequency

sweep following a pump frequency sweep is
unchanged from its initial value, the pump fre-
quency sweep has not carried the system into
the NESS domain, and there is no slow dy-
namics contamination of the data. When this
is not the case, the probe frequency sweep has
a frequency shift, for example, a 5-Hz shift in
the resonance frequency of the probe sweep
is caused by entering the NESS domain up to
strain 10–6 (Fontainebleau sandstone).

11.2.3.5 Low-Strain Behavior (Figure 11.14)
Following the observation by Sutin [38], that the picture associated with the exper-
iment of Guyer, TenCate, and Johnson [32] broke down at low strain, Pasqualini
et al. [39] undertook a very careful experiment to establish the elastic state of a vari-
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Fig. 11.21 Resonant frequency as a func-
tion of strain; low strain. Frequency shift as
a function of strain at resonance for ε < εT :
(top) Fontainebleau sandstone and (bottom)
Berea sandstone. The two sets of data points

are from two runs conducted using the proto-
col described in Figure 11.20a. The threshhold
of the NESS domain is slightly different for
a Fontainebleau sandstone (εT W 2 ~ 10–7) and
Berea sandstone (εT W 5 ~ 10–7).

ety of samples at the lowest measureable strains. Further, aware of slow dynamics,
in this experiment great effort was placed on finding the strain domain (at low
strains) where there was no evidence of slow dynamics. The experiment was car-
ried out using conventional constant voltage frequency sweeps (here called pump
sweeps). After each frequency sweep at constant voltage the system was probed
with a frequency sweep at very low drive voltage (here called a probe sweep). See
panel IV of Figure 11.14. The behavior of the resonance curve (resonance frequen-
cy) found with the probe sweep was used to monitor for the influence of slow
dynamics produced by the pump sweep. If after a pump sweep the probe sweep
returned to its initial behavior (that found before any pump sweeps were used),
the pump sweep was taken to not have carried the system into the NESS domain.
Several points are worthy of note.
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1. Over the strain domain, which was clearly free of slow dynamics, the behav-
ior of the resonance frequency is sensibly an analytic function of the strain.
That is, the elastic state, defined as the modulus, is an analytic function of
the strain, in accord with conventional nonlinear elasticity.

2. In the low-strain regime the behavior of the resonance curves are taken to
be described by the lumped element model

ü = –Ω2u – γu3 – 2μu̇ + F sin ωt , (11.37)

and the parameter γ was found by fitting the data. For Berea (Fontainebleau)
sandstone γ = –8 ~ 1019 m–1 s–1 (–5 ~ 1019 m–1 s–1). The connection between
this γ and the δ parameter usually used for the 4-phonon process, Eq. (3.54)
(Chapter 3), is found from

ü = –c2 ∂

∂x

(
ε + δγε3

)
+ F sin ωt , (11.38)

ü = –c2 1
L

(
u
L

+ δγ

[u
L

]3
)

+ F sin ωt . (11.39)

Thus δγ W L4γ/c2, and using c W 1.5 · 103 m/s and L W 0.35 m we have
δγ W –1011. This value is of the same sign and about three to four orders
of magnitude greater than the δ found from examining quasistatic data,
Section 11.1.1. Remember that δγ involves dynamic strains less than 10–7,
whereas δ involves strains typically greater than 10–5.

3. From the sensitivity to “contamination” from entering the NESS domain
a fuzzy boundary on this domain is set at ε > 2(5) ~ 10–7 for Fontainebleau
(Berea). The boundary is fuzzy because of the finite time scale, approxi-
mately 30 s, associated with establishing the elastic state of the system with
measurements that change the elastic state.

4. A major point established by this experiment was that the approach to high
strain from below is critical. Many early experiments tended to infer low-
strain behavior from extrapolation to the low-strain of behavior seen at high
strain. As it is hard to make measurements at low strain (see the experimen-
tal discussion in this paper), who could blame you? But the slow dynamics
of high strain, the NESS domain, can contaminate the results and make
extrapolation from high to low very difficult.

So one conclusion might be that all nonclassical elastic behavior results from fail-
ure to properly account for slow dynamics. All results are described by classical
nonlinear elasticity + carelessness. Is there nonlinear elastic behavior, independent
of slow dynamics, that is not classical? This question might be answered by experi-
mental methods that set the elastic state of the system and interrogate it by means
that do not disturb it.

11.2.3.6 Constant Strain Measurement (Figure 11.14)
A major advance over most previous experiments is due to Haller and Hedberg [40],
here and in Section 11.2.3.7. Haller and Hedberg conducted frequency sweeps at
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Fig. 11.22 Resonant bar data: taken at constant strain. Drive
voltage as a function of frequency for frequency sweeps at con-
stant strain. The resonance frequency, at the voltage minimum,
shifts from f r W 5267 Hz (ε = 3 ~ 10–8) to f r W 5225 Hz
(ε = 8 ~ 10–7).

constant strain. The sample was a granite cylinder, 50 mm in diameter ~ 42 cm, that
was maintained at constant temperature and saturation. As remarked on above,
this style of measurement entails carrying the system through a sequence of fre-
quency values and with each step in frequency making the change in drive voltage
necessary to maintain the strain, Eq. (11.33). An example of the results is shown in
Figure 11.22, drive voltage as a function of frequency for 3 ~ 10–8 < εP < 8 ~ 10–7.
Unlike conventional resonance curves, the drive voltage as a function of frequency
is upside down. Off resonance it requires a relatively large drive voltage to maintain
a strain, whereas on resonance it requires a relatively small drive voltage.

1. It is possible that the strain is a good variable for describing all of the elastic
states examined in this experiment, those below the threshhold to the NESS
domain and those above the threshold. For example, the elastic state main-
tained at pump strain εP = 0.76 µ strain, is described by the simple function
of ω2 implied by Eq. (11.32). In Figure 11.23 the drive voltage squared is
plotted as a function of the frequency (measured from the resonance fre-
quency). The smooth curve through the data points (open circles) is given
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Fig. 11.23 Strain as a good variable. As
the frequency is swept over a resonance
at constant strain the voltage required to
maintain the strain varies as in Eq. (11.40).
Here V 2 is plotted as a function of f – f r
(open circles) for the constant strain curve at
ε = 0.76 µ strain. The gray curve is the fit to

these data with a polynomial quadratic in f 2 ,
Eq. (11.40). Each constant strain curve can be
fit to a polynomial of the form in Eq. (11.40)
and the resonance frequency and Q–1 appro-
priate to the curve found, Eq. (11.40). The
results of this kind of analysis of the data in
Figure 11.22 are in Figure 11.24.

by

V 2 = C
[
1 + a(εP )ω2 + b(εP )ω4

]
, (11.40)

where the constant C is the calibration constant, which relates drive voltage
to displacement output, and the two constants a(εP ) and b(εP ), one pair for
each constant strain curve, are related to the resonance frequency, f r (εP ),
and attenuation, Q–1(εP ), which describe that curve. Thus, since a pair of
numbers ( f r (εP ), Q–1(εP )) describes each resonance curve, εP is a good vari-
able and the data acquired in the experiment are acquired on trajectories of
constant value of this variable.

2. f and Q.
a. The resonance frequency, the frequency at which the drive voltage is

a minimum, is plotted as a function of εP , 3 ~ 10–8 < εP < 8 ~ 10–7, in
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Fig. 11.24 Resonant frequency and Q–1 as a function of strain;
constant strain. (a) The resonance frequency as a function of
strain. (b) The value of Q–1 as a function of strain. See Fig-
ures 11.22 and 11.23.
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Figure 11.24. Above εP W 2 ~ 10–7 the resonance frequency decreases
linearly with εP , f r (εP ) = 5273 – 58.9εP , cf. Figure 11.18.

b. The value of Q–1 associated with each constant strain curve is plotted
as a function of εP , 3 ~ 10–8 < εP < 8 ~ 10–7, in Figure 11.24. Above
εP W 2 ~ 10–7Q–1 increases linearly with εP , Q–1(εP ) = Q–1(0) + 0.0022εP ,
Q–1(0) = 185, cf. Figure 11.18.

c. From the behavior of the resonance frequency and Q–1 we have

–
f (0)

f r (εP ) – f (0)

(
1

Q (εP )
–

1
Q (0)

)
W 0.20 . (11.41)

This number is to be compared to that found above for Berea sandstone,
0.40, and the expectation from the Preisach space model of about 1, Ta-
ble 11.2.

3. There is no slow dynamics in this experiment to distinguish the behavior of
low values of εP from high values of εP . At constant strain you can’t learn
about slow dynamics and the location of the NESS domain.

11.2.3.7 Slow Dynamics and log(t) Again (Figure 11.25)
The second significant advance over previous work is associated with learning
about slow dynamics. To do this Haller and Hedberg [41] again placed the system
in a constant strain state. Then, one frequency at a time, they probed the system
for the low-strain response. The protocol is shown in Figure 11.25.

1. The system is brought to constant strain with a pump source of amplitude
A1 for τi = 30 min. It is to be probed with drive amplitude a0, which pro-
duces minimal strain.
a. Then the pump is turned off.

i. The probe is turned on with drive amplitude a0 at frequency f1 and the
displacement is measured. This takes minimum time τ(1)

p = 200 ms (to
ring down the pump and ring up the probe).

ii. Immediately upon measuring the displacement at (a0, f 1) the probe is
turned off and the pump is returned to drive amplitude A1, where it
remains for time τr = 5 s.

iii. Then the pump is turned off.
iv. The probe is turned on with drive amplitude a0 at frequency f2 and the

displacement is measured.
v. Immediately upon measuring the displacement at (a0, f 2) the probe is

turned off and the pump is returned to drive amplitude A1, where it
remains for time τr = 5 s.

vi. etc.
vii. This sequence of steps, (τ(1)

p , τr )(τ(1)
p , τr ). . . , is carried out for a set of

frequencies that sweep over the resonance at probe amplitude a0.
b. Then, still at pump amplitude A1, the probe frequency sequence is repeat-

ed with the displacement measured at time τ(2)
p after the pump is turned
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Fig. 11.25 Experimental protocol to probe
slow dynamics. In order to minimally dis-
turb slow dynamics, associated with probing
a NESS, a probe frequency sweep is conduct-
ed one frequency at a time. The NESS, strain
ε1 , is established for time τi W 30 min with
pump voltage V1. (i) V1 is turned to the probe
voltage, Vp, at frequency f1, and the displace-

ment amplitude measured at τ(1)
p W 200 ms.

(ii) The pump voltage is reestablished for time

τr = 5 s. (iii) V1 is turned to the probe volt-
age, Vp, at frequency f2, and the displacement

amplitude measured at τ(1)
p W 200 ms. (iv)

etc. In this way the NESS associated with V1

is probed at time τ(1)
p after the pump is turned

off. The procedure is repeated for the NESS
associated with V1 at time τ(2)

p . Then, the en-
tire procedure is repeated for NESSs of strain
ε2, ε3, . . .

off. This sequence of steps, (τ(2)
p , τr )(τ(2)

p , τr ). . . , is carried out for a set of
frequencies that sweep over the resonance at probe amplitude a0. The val-
ue of τ(∗)

p is shifted to a larger value and the entire procedure repeated,
τ(∗)

p = 0.2, 0.5, 1.0, 2.0, 5.0 s. The elastic state present at time τ(∗)
p , after the

pump is turned off, is taken to be determined by the resonance frequency
found from the probe frequency sweep at τ(∗)

p .
2. This entire procedure is carried out for a series of pump source amplitudes

A1, A2, . . . that maintain steady states with pump strain 6.7 ~ 10–10 < εP <
4.3 ~ 10–7.
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Fig. 11.26 Resonant frequency as a function of time as a NESS
decays. The resonant frequency as a function of τ(∗)

p for NESS
having strains 6.7 ~ 10–10 < ε < 4.3 ~ 10–7 . The time
scale is logarithmic. Strain evolves from the top of the figure
6.7 ~ 10–10 (fr approximately independently of τ(∗)

p ) to the bot-

tom 4.3 ~ 10–7, ( f r ∝ log10(τ(∗)
p ).

The results of this experiment are very provocative.
1. In Figure 11.26 the resonance frequency is plotted as a function of log10(τ p )

for values of the pump strain 6.7 ~ 10–10 < εP < 4.3 ~ 10–7. Large pump
strain values, at the bottom of the plot, suggest f r ∝ log10(τ p ), where-
as small pump values, at the top of the plot, suggest fr independent of τ p

and εP . The data in the strain range εP < 1 ~ 10–7 (upper 13 curves in Fig-
ure 11.26) were fit to

f r (εP , τ p ) = A(εP ) + B (εP )τ p , (11.42)

and those at strain εP > 1 ~ 10–7 (lower 10 curves in Figure 11.26) were fit
to

f r (εP , τ p ) = A(εP ) + B (εP ) log10(τ p ) . (11.43)

2. In Figure 11.27 the coefficient B is plotted as a function of εP (closed circles
are B from Eq. (11.42) and the open circles are B from Eq. (11.43)). From
this figure it is apparent that there is a sharp onset to slow dynamics behav-
ior near εP == εT W 0.3 (consistent with an observation made earlier on Berea
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Fig. 11.27 Decay of NESSs as a function of strain. The coeffi-
cient B as a function of the strain associated with a NESS. The
grey points are B from the linear fit, Eq. (11.42), and the open
circles are from the log(t) fit, Eq. (11.43).

sandstone [37], in an experiment in which τ p stood much further away from
τ p = 0). Quite possibly the onset is of the form

B (εP ) ~ |εP – εT |ν , ν < 1 . (11.44)

Whether or not this is the case awaits further detailed experimental investi-
gation.

3. In Figure 11.28 the coefficient A = f r (εP , 0) is plotted as a function of εP

(closed circles). Also on the figure as open circles is the value of f r (εP , 0.2)
from Eq. (11.43) since τ p → 0 doesn’t make sense for this equation. The
black line is a fit of the polynomial a + bεP + cε2

P to the low-strain data. The
open circles are above this line as they are expected to be. The approximately
quadratic frequency shift seen above εP = 3 ~ 10–8 is of the same order of
magnitude as the similar frequency shift observed in Fontainebleau sand-
stone and Berea sandstone. There is no striking difference in the elastic
state of the system as the pump carries it into the NESS domain.

11.2.3.8 Pump/Probe Study of the NESS (Figure 11.14)
Nazarov et al. [42] have studied the NESS in steady state. The experiment, con-
ducted on a sandstone from an oil and gas production site, used an apparatus that
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Fig. 11.28 Resonant frequency as a function of pump ampli-
tude. Resonance frequency as a function of the strain associ-
ated with a NESS. The closed points are A from the linear fit,
Eq. (11.42), and the open circles are the value of fr at τ(1)

p , the
closest measured time point to t = 0, Eq. (11.43).

allowed simultaneous study of two modes of a resonant bar. One of these modes
was driven at high amplitude and served as the pump. This mode, maintained at
constant strain, established the NESS. Then, the frequency was swept over the sec-
ond mode resonance at constant low voltage, the probe. To show that the NESS
is created by a large-amplitude AC strain more or less independent of frequency,
Nazarov et al. used the fundamental resonance as the pump and the fourth mode
as the probe and then reversed the role of pump and probe (pump at fourth mode
and probe at fundamental resonance). The basic result is in Figure 11.29; (upper
panel) the resonance curves of the fourth mode probe as a function of the strain of
the pump at the fundamental mode, (lower panel) the resonance curves of the fun-
damental mode probe as a function of the strain of the pump at the fourth mode.
In both cases the resonance frequency of the probe mode shifts to a lower frequen-
cy as the strain of the NESS is increased. The qualitative and quantitative behavior
of the probe resonance curves are of interest.
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Fig. 11.29 Resonance of first and fourth
modes. (a) Amplitude of the probe, fourth
mode, as a function of frequency for four val-
ues of the pump strain (the pump is driving
the first mode, 0 < εP u 2.5 ~ 10–6, and
εp u 10–8). (b) Amplitude of the probe, first
mode, as a function of frequency for six val-

ues of the pump strain (the pump is driving
the fourth mode 0 < εP u 2.7 ~ 10–6 , and
εp u 10–8). In both plots the amplitude is
scaled by the amplitude at the maximum.
Data like these yield the results shown in Fig-
ure 11.30.

1. Qualitative:
a. The resonance frequency of the probe resonances (both fundamental

and fourth mode) decrease approximately linearly with the strain of the
pumped mode. (NESS).

b. The shift in 1/Q of the probe mode is to larger values (smaller Q ) ap-
proximately linearly in the strain of the pumped mode (for strains beyond
1μ strain). (Nazarov et al. are able to fit the shift in 1/Q to a power slightly
greater than 1 over the larger strain range of the complete data set.)

2. Quantitative:
a. For the frequency shift of the probe mode

f r (0) – f r (εP )
f r (0)

~ 0.015εP . (11.45)
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Fig. 11.30 Frequency shift and 1/Q , data in
Figure 11.29. (a) The frequency shift of the
probe as a function of pump strain found
from data like those in Figure 11.29, 1(2) for
probe at the fourth (first) mode. (b) The value
of 1/Q for the probe found from the change
in amplitude at resonance due to pump strain,

that is, Q(0)/Q(εP ) = Ar (0)/Ar (εP ), with the
probe voltage the same for all values of the
pump strain. The frequency shift scales ap-
proximately linearly with εP , while the shift in
1/Q scales with εP to a power slightly larger
than 1.

b. For the shift of 1/Q of the probe mode (Q (0) W 150)

1
Q (εP )

–
1

Q (0)
~ 0.0033εP , εP > 1μ . (11.46)

3. For the relationship of frequency shift to 1/Q shift, Eq. (11.41),

–
f (0)

f r (εP ) – f (0)

(
1

Q (εP )
–

1
Q (0)

)
W 0.22 . (11.47)

Compare this number to that in Eq. (11.41), Table 11.2.

11.2.3.9 Case Study: Designer Elastic Media
In a series of papers, Jia and coworkers [34, 43] have studied the linear and nonlin-
ear behavior of a sequence of samples formed as monodisperse glass beads under
varying applied pressure. As such, the elastic properties of these samples are con-
trolled by the elasticity of the system of Hertz–Mindlin contacts within them.

Hertz–Mindilin Elasticity in Principle The essentials of the involvement of the con-
tacts between glass beads in the dynamics is suggested by writing a wave equation
that uses the contact stress-strain relations as the driving forces. For example, com-
pressive forces are brought to bear due to compressive strain ε, Chapter 4,

σ = σ(h0 + δh) = σ0

[
1 +

1
2ε0

ε +
3

8ε2
0

ε2 + . . .

]
, (11.48)
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Fig. 11.31 Frequency shift vs. dynamic strain, L. The shift in the
resonance frequency of the longitudinal resonance, as a func-
tion of the dynamic strain, for samples formed with applied
forces 5 N < F < 1500 N (0.007 MPa < P < 2 MPa) [35].

where h0 is the displacement brought about by the prestress, σ0, ε0 ~ (σ0/K 0)2/3, δh
is the dynamic displacement, and ε = δh/R, where R is the nominal bead radius.
Shear forces are brought to bear in a resonant bar due to shear strain, ε = δs/R,

τ = τ0

[
ε –

K 0

μσ0
εmaxε – S(ε̇)

K 0

μσ0

(
ε2

max – ε2
)]

, (11.49)

where τ is the shear stress and X = τmax/μσ0. See Eq. (6.59) in Chapter 6.

Observations
1. From Eq. (11.48) we expect to find the linear elastic constant scaling as σ1/3

0

and the speed of sound scaling as σ1/6
0 . This is borne out in experiment [43].

2. The nonlinear term in Eq. (11.48) yield 	 ~ ε–1
0 or 	 ~ σ–2/3

0 . This is borne
out by quasistatic measurements and in wave mixing experiments [43].

3. From Eq. (11.48) we expect a nonlinear contribution to the behavior of the
resonant bar like that described in Chapter 6 and above. Indeed this behav-
ior is seen both when the bar is put into compressional resonance and when
the bar is put into shear resonance [34]. The results for the behavior of the
frequency shift and the shift in 1/Q are shown in Figures 11.31–11.34.

1. Over the external stress range of approximately three orders of magnitude,
10–3 MPa u σ0 u 2 MPa, both the frequency shift and shift in 1/Q scale
approximately as εd , where εd is the dynamic strain [34].

2. The ratio of the frequencys shift to the shift in 1/Q , cf. Eq. (11.47), lies in
the range 0.5–3. See Table 11.2.

3. From Eq. (11.49) we expect the amplitude of the anomalous fast dynamics
to scale as 1/σ0. Indeed it does [34].
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Fig. 11.32 Shift in 1/Q vs. dynamic strain, L. The shift in 1/Q
of the longitudinal resonance, as a function of the dynamic
strain, for samples formed with applied forces 5 N < F <
1500 N (0.007 MPa < P < 2 MPa) [35].

Fig. 11.33 Frequency shift vs. dynamic strain, T. The shift in the
resonance frequency of the transverse resonance, as a function
of the dynamic strain, for samples formed with applied forces
50 N < F < 2000 N (0.07 MPa < P < 2.7 MPa). [36]

We have examined a sequence of eight experiments/results that exhibit the im-
portant behaviors that characterize materials that have their elasticity influenced
by nonlinear mesoscopic elastic features. There are two essential characteristics:
(1) anomalous fast dynamics captured by the scaling of the frequency shift and the
shift in 1/Q (Table 11.2) and slow dynamics associated with recovery from a NESS
that scales as log(t). The physical systems examined were few in number, typically
a bonded granular material possessing an accessible pore space, a Berea sandstone.
Let us look at behavior seen in a variety of systems.
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Fig. 11.34 Shift in 1/Q vs. dynamic strain, T. The shift in 1/Q
of the transverse resonance, as a function of the dynamic
strain, for samples formed with applied forces 50 N < F <
2000 N (0.07 MPa < P < 2.7 MPa). [36]

Fig. 11.35 Frequency shift vs. dynamic strain, rocklike. The
shift in the resonance frequency, as a function of the dynamic
strain, for a variety of rocklike materials: (a) dynamic strain
scale is log(εd ) and (b) dynamic strain scale is εd . On the linear
dynamic strain scale the shift is approximately linear at high
strain, εd W 10–5.
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Fig. 11.36 Frequency shift vs. dynamic strain, not rocklike. The
shift in the resonance frequency, as a function of the dynamic
strain, for a variety of non-rock-like materials. (top) The dynam-
ic strain scale is log(εd ). (bottom 6 panels) The dynamic strain
scale is linear in εd . The essential feature in all cases is that
the frequency shift decreases approximately linearly with εd .
Compare to (b) in Figure 11.35.
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Fig. 11.37 Shift of 1/Q vs. dynamic strain, not rocklike. The
shift of 1/Q , as a function of the dynamic strain, for a variety
of non-rock-like materials. (top) The dynamic strain scale is
log(εd ). (bottom 6 panels) The dynamic strain scale is linear
in εd . The essential feature in all cases is that the shift in 1/Q
increases approximately linearly with εd . (Note: pyrex glass
intact.)
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Fig. 11.38 Resonance curves. The panels
are the amplitude as a function of frequency,
each curve in a panel corresponding to a fixed
constant drive voltage, for eight materials.
In all cases the resonance curves were swept
over twice, from above to below and below
to above. The curves for graphite overlie one
another and show there is no slow dynami-

cal behavior on the time scale of a resonance
sweep, 30 s. The curves for graphite show
no evidence of peak bending, so there is no
nonlinearity explored at the strain amplitudes
involved. In the other seven curves there is ev-
idence of peak bending and/or slow dynamics.
Fontainebleau sandstone shows both behav-
iors very clearly.
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11.3
Examples of Systems

11.3.1
Anomalous Fast Dynamics

In four experiments described above [32, 34, 40, 42] the frequency shift and shift in
1/Q showed anomalous behavior. What we mean by this is that the frequency shift
and shift in 1/Q were approximately linear in the strain over a reasonable strain
range, Figures 11.18, 11.24, 11.28, and 11.30. In addition, the ratio of the frequency
shift and shift in 1/Q was a constant of order 1, Eqs. (11.36), (11.41), and (11.47)
and Table 11.2.

In Figure 11.35 we show the frequency shift and the shift in 1/Q for a vari-
ety of systems that are rocks or rocklike, for example, ceramic, concrete, synthetic
slate, etc. [44]. The four panels are linear and log plots for these quantities. In Fig-
ures 11.36 and 11.37 we show the behavior of the frequency shift, linear and log,
for a variety of systems which are very different from rock. The data in these fig-
ures are in qualitative accord with the anomalous fast dynamics results from above.
Notice that the strain range explored in these data are in some cases well beyond
those in the studies above. In many cases the data were acquired in an era before
the importance of slow dynamics was recognized. For that reason we take these
data to be consistent with our expectations but not definitive.

Fig. 11.39 Slow dynamics. Following establishment of a NESS
in a sample, the pump that maintains the NESS is turned to
zero and the resonance frequency, found with a low-amplitude
probe, is monitored over time. In the six panels the resonance
frequency found by the probe is plotted as a function of time,
see Figure 11.40. The time scale is log(t) so that it is apparent
that the resonance frequency increases (recovers) as log(t).
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11.3.2
Slow Dynamics

11.3.2.1 Slow Dynamics: Review
In Figures 11.15, 11.19, and 11.26 there are various qualitative and quantitative
evidences of slow dynamics, resonance curves that depend on sweep rate, log(t)
recovery from a NESS. In Figure 11.38 we show sweep-rate-dependent resonance
curves for eight different materials [45]. Except for graphite, a linear material, all
of the sets of resonance curves show evidence of slow dynamics and peak bending.
The poster child here is Fontainebleau sandstone. In Figure 11.39 we show log(t)
recovery from a NESS created in a variety of porous materials [46]. Slow dynamics
in non-rock-like materials is described below.

Fig. 11.40 Anomalous fast dynamics and
slow dynamics. (a) The amplitude as a func-
tion of frequency for constant voltage drives
that produce strain and frequency shift pro-
portional to strain. (b) The same curves as in
(a) with each scaled by the drive voltage. For
the largest voltage used in (a) a NESS state

is created by driving at a frequency near the
resonance maximum. Once the NESS is es-
tablished the pump is turned to zero. (c) The
sequence of resonance curves that is seen by
a low-amplitude probe as time passes appears
much like those in (b). See Figure 11.14.



310 11 Dynamic Measurements

11.3.2.2 Anomalous Fast Dynamics and Slow Dynamics
Johnson and Sutin[44] have studied both anomalous fast dynamics and slow dy-
namic on seven nonrock materials, gray iron, . . . , alumina. The anomalous fast
dynamics experiments were carried out as described in Section 11.2, Figure 11.14,
protocol I. The slow dynamic response employed protocol III in Figure 11.14. In
Figure 11.40 three sets of resonance curves are shown for experiments on quartzite.
Panels (a) and (b) show the resonance curves found in the anomalous fast dynam-
ics study, (a) the raw data and (b) the raw data scaled by the drive voltage. In (b)
a frequency shift and a shift in 1/Q are evident. The slow dynamics response
of the quartzite is shown in Figure 11.40, a sequence of probe resonance curves
found as time evolves from the moment of turn-off of the pump that established
a NESS. Panels (b) and (c) are qualitatively similar. The size of the frequency shift
and the amplitude change in the slow dynamics recovery (c) is approximately an
order of magnitude less than the similar shifts in anomalous fast dynamics (b). In
Figure 11.41 the shift in frequency and the shift in 1/Q are shown for data, similar
to that in panels (b) and (c) of Figure 11.40, for a variety of samples.

In the case of anomalous fast dynamics, we have the result in Eqs. (11.36),
(11.41), and (11.47) that the ratio of the frequency shift (approximately linear in
the drive strain) to the shift in 1/Q (approximately linear in the drive strain) is
a number of order 1. In the slow dynamics response the analog of the drive strain
is the time measured from the turn-off of the pump. It is apparent from Fig-
ure 11.41, panels (a) and (b), that the frequency shift is approximately linear in
log(t) and the shift in 1/Q is approximately linear in log(t). Thus forming the ra-
tio of the frequency shift to the shift in 1/Q we find the numbers in column 3 of
Table 11.2.

Fig. 11.41 Recovery from a NESS. From a set of resonance
curves like those in Figure 11.40(c) a resonance frequency
and a value of Q can be found as a function of time. These
quantities are seen to evolve linearly with time just as the cor-
responding quantities evolve linearly with dynamic strain in
Figures 11.36 and 11.37.



References 311

References

1 Zinszner, B., Rasolofosaon, P. and John-
son, P.A. (unpublished).

2 Hughes, D.S. and Kelley, J.L. (1953)
Second-order elastic deformation of
solids. Phys. Rev., 92, 1145–1149.

3 Winkler, K.W. and Liu, X. (1996) Measure-
ments of third-order elastic constants in
rocks. J. Acoust. Soc. Am., 100, 1392–1398.

4 Landau, L.D. and Lifshitz, E.M. (1987)
Fluid Mechanics, 2nd edn, Butterworth-
Heinemann, New York.

5 Murnaghan, F.D. (1951) Finite Deforma-
tion of an Elastic Solid, Chapman and Hall,
New York.

6 Thurston, R.N. and Brugger, K. (1964)
Third-order elastic constants and the ve-
locity of small amplitude elastic waves
in homogeneously stressed media. Phys.
Rev. A, 133, 1604–1610.

7 Kostek, S., Sinha, B.K., and Norris, A.N.
(1993) Third-order elastic constants for
an inviscid fluid. J. Acoust. Soc. Am., 94,
3014–3017.

8 Catheline, S., Gennisson, J.-L., and
Fink, M. (2003) Measurement of elastic
nonlinearity of soft solid with transient
elastography. J. Acoust. Soc. Am., 114,
3087 3091.

9 Ide, J.M. (1937) The velocity of sound
in rocks and glasses as a function of
temperature. J. Geol., 45, 689–716.

10 Ulrich, T.J. (2005) (thesis), University of
Nevada, Reno.

11 Amberg, C.H. and McIntosh, R. (1952)
A study of absorption hysteresis by means
of length changes of a rod of porous glass,
Can. J. Chem., 30, 1012–1032.

12 Johnson, P.A., Zinszner, B., Rasolofos-
aon, P., Cohen-Tenoudji, F., Van Den
Abeele, K. (2004) Dynamic measure-
ments of the nonlinear elastic parameter
A in rock under varying conditions,
J. Geophys. Res., 109, 10129–10139.

13 Zinszner, B., Johnson, P., and Rasolofa-
soan, P.N.J. (1997) Influence of change
in physical state on elastic nonlinear re-
sponse in rock: Significance of effective
pressure and water saturation, J. Geophys.
Res., 102, 8105–8120.

14 Bourbie, T., Coussy, O., and Zinszner, B.
(1987) Acoustics of Porous Media, Gulf
Publ., Houston.

15 Johnson, D.L., Plona, T.J., Scala, C.,
Pasierb, F., and Kojima, H. (1982) Tortu-
osity and acoustic slow waves, Phys. Rev.
Lett., 49, 1840–1844.

16 Jones, G.L. and Kobett, D.R. (1963) In-
teraction of elastic waves in an isotropic
solid, J. Acoust. Soc. Am., 35, 5–10.

17 Taylor, L.H. and Rollins, F.R. (1964) Ultra-
sonic study of three-phonon interactions,
I. Theory, Phys. Rev., 136, 591–596.

18 Rollins, F.R., Taylor, L.H., and Todd, P.H.
(1964) Ultrasonic study of three-phonon
interactions, II. Experimental Results,
Phys. Rev., 136, 597–601.

19 Dunham, R.W. and Huntington, H.B.
(1970) Ultrasonic beam mixing as a mea-
sure of the nonlinear parameters of fused
silica and single-crystal NaCl, Phys. Rev.
B, 2, 1098–1107.

20 Johnson, P.A., Shankland, T.J.,
O’Connell, R.J., and Albright, J.N. (1987)
Nonlinear generation of elastic waves
in crystalline rock, J. Geophys. Res., 92,
3597–3602.

21 Johnson, P.A. and Shankland, T.J. (1989)
Nonlinear generation of elastic waves in
granite and sandstone: continuous wave
and traveltime observations, J. Geophys.
Res., 94, 17729–17734.

22 Meegan, G.D., Johnson, P.A., Guyer, R.A.,
and McCall, K.R. (1993) Observations of
nonlinear elastic wave behavior in sand-
stone, J. Acoust. Soc. Am., 94, 3387–3391.

23 TenCate, J.A., Van den Abeele, K., Shank-
land, T.J., and Johnson, P.A. (1996) Lab-
oratory study of linear and nonlinear
elastic pulse propagation in sandstone,
J. Acoust. Soc. Am., 100, 1383–1391.

24 LeBas, P.-Y., Guyer, R., Johnson, P., and
Ten-Cate, J. (2009) The parametric array
in rock: definitive experiments, J. Acoust.
Soc. Am., in review.

25 Hamilton, M.F. and Blackstock, D.T.
(1998) Nonlinear Acoustics, Academic
Press, New York.

26 D’Angelo, R.M., Winkler, K.W.,
Plona, T.J., Landsberger, B.J., and John-
son, D.L. (2004) Test of hyperelasticity



312 References

in highly nonlinear solids: sedimenta-
ry rocks, Phys. Rev. Lett., 93, 214301-1–
214301-4.

27 D’Angelo, R.M., Winkler, K.W., and John-
son, D.L. (2008) Three wave mixing test of
hyperelasticity in highly nonlinear solids:
sedimentary rocks, J. Acoust. Soc. Am.,
123, 622–632.

28 Clark, V.A. (1980) (thesis) Effect of
volatiles on seismic attenuation and ve-
locity in sedimentary rocks, Texas AM
University.

29 Migliori, A. and Sarrao, J.L. (1997) Reso-
nant Ultrasound Spectroscopy, John Wiley
& Sons, Inc., New York.

30 TenCate, J.A. and Shankland, T.J. (1996)
Slow dynamics in the nonlinear elastic
response of Berea sandstone. Geophys.
Res. Lett., 23, 3019–3022.

31 Observation made at Nonlinear Meso-
scopic Elasticity Workshop II, (1997).

32 Guyer, R.A., TenCate, J.A., and John-
son, P.A. (1999) Hysteresis and the dy-
namic elasticity of consolidated granular
materials. Phys. Rev. Lett., 82, 3280–3283.

33 Smith, E. and TenCate, J.A. (2000) Sen-
sitive determination of nonlinear prop-
erties of Berea sandstone at low strains.
Geophys. Res. Lett., 27, 1985–1988.

34 Laurent, J. (2007) (thesis) Université
Paris-Est Marne-La-Vallee.

35 Johnson, P. and Jia, X. (2006) Nonlinear
dynamics, granular media and dynamic
earthquake triggering. Nature, 473, 871–
874

36 Laurent, J. and Jia, X., in preparation.
37 TenCate, J.A., Smith, D.E., and Guy-

er, R.A. (2000) Universal slow dynamics

in granular solids. Phys. Rev. Lett., 85,
1020–1023.

38 Sutin, S. (unpublished).
39 Pasqualini, D., Heitmann, K., Ten-

Cate, J.A., Habib, S., Higdon, D., and
Johnson, P.A. (2007) Nonequilibrium
and nonlinear dynamics in Berea and
Fontainebleau sandstones: Low-strain
regime. J. Geophys. Res., 112, B01204.1–
B01204.16.

40 Haller, K.C.E. and Hedberg, C.M. (2008)
Constant strain frequency sweep mea-
surements on granite rock. Phys. Rev.
Lett., 100, 068501.1–068501.4.

41 Haller, K.C.E. (2008) (thesis) Blekinge
Institute of Technology 371 79 Karlskro-
na, Sweden. Haller, K.C.E. (2008) (thesis)
Blekinge Institute of Technology 371 79
Karlskrona, Sweden.

42 Nazarov, V.E., Radostin, A.V., and Sousto-
va, I.A. (2002) Effect of an intense sound
wave on the acoustic properties of a sand-
stone bar resonator. Experiment. Acoust.
Phys., 48, 76–80.

43 Brunet, T. (2005) (thesis) Université Paris-
Est Marne-La-Vallee.

44 Johnson, P.A. and Sutin, A. (2005) Slow
dynamics and anomalous nonlinear fast
dynamics in diverse solids. J. Acoust. Soc.
Am., 117, 124–130.

45 Tencate, J.A. (unpublished).
46 TenCate, J.A., Smith, E., Byers, L., and

Shankland, T.J. (2000) Nonlinear Acous-
tics at the Turn of the Millennium, the
15th International Symposium on Nonlin-
ear Acoustics, Gottingen, Germany, (eds
Lauterborn, W. and Kurz, T.), AIP Conf.
Proc. 524, 303.



313

12
Field Observations

In this short chapter we describe field measurements that are akin to the laboratory
measurements above. In Section 12.1 we describe field measurements in which
the earth is the subject of investigation using deliberate man-made, active probes,
whereas in Section 12.2 we discuss passive probes of the earth, earthquakes. It is
not the earthquake that is passive but rather the observer of it.

12.1
Active Probes

12.1.1
Wave Mixing in the Earth

A wave mixing experiment was conducted in 1991 by an oilfield service compa-
ny in collaboration with Los Alamos National Laboratory and Lawrence Berkeley
Laboratory. In the experiment, thumper trucks were placed in a hexagonal pattern

1

1

1

2

2

2

Fig. 12.1 Experimental configuration for
a field experiment employing frequency mixing
using 20-t vibrator sources (Vibroseis) orient-
ed as asterisk-shaped arrays, each emitting ei-
ther angular frequency ω1 or ω2 as noted. The
detector array, oriented along a line emanat-
ing outward from the source array (triangles),

comprised 160 receivers with a maximum
offset of 536 m from the source array. The
vibrator sources are coupled to the soil by ap-
proximately 2 ~ 2 m2 plates located near the
center of each source (figures courtesy of Tom
Daley).

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
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with the front of the trucks pointing to the hexagon center (Figure 12.1). The vibra-
tors moved vertically and were phase locked. A 20-s step-sweep was employed with
three vibrators sweeping 50–90 Hz while the other three vibrators were sweeping
90–50 Hz. This procedure was intended to guard against difference frequencies
arising from the mechanical or electrical behavior of the driving system. Thus the
recorded signals at the difference frequencies, 40–0–40 Hz, are taken to arise from
nonlinear mixing in the earth. The data, received on a linear string of geophones
straddled by the thumper trucks (Figure 12.1), were processed in a standard re-
flection seismology manner, that is, averaged over detector subgroup and multiple
repetitions of the step-sweep. The resulting data were then correlated with a syn-
thetic difference frequency signal constructed from the step-sweeps of the vibra-
tors. The amplitude at the difference frequency is shown in Figure 12.2a as a func-
tion of position and time. Both direct compressional and surface waves as well as
compressional wave reflections are present (and noted in the figure). Figure 12.2b
shows the Fourier transform for one of the traces. While one might have expect-
ed increased amplitude at the difference frequency with distance from the source,
there is no evidence for this. Thus it is inferred that most of the frequency mixing
took place in the near-source region.

In a study employing one vibrator driven at a single frequency, Beresnev and
Nikolaev [1] found an increase in harmonic content, relative to the fundamental
driving frequency, as a function of distance from the vibrator. This increase sug-
gests additive nonlinear mixing in the earth as the fundamental propagates away
from the source. In a similar study conducted on surface waves in southern Cali-

Fig. 12.2 (a) Time vs. depth for signals at the
difference frequency. Noted are a compres-
sional waves, b surface waves and Rayleigh
waves, and c backscattered surface waves
probably off subsurface heterogeneity or to-
pography. (b) Time series signal (top) and

spectrum (bottom) for one trace of data are
shown at left. The primary energy is from 0 to
40 Hz [3] (data from experiments conducted
by Los Alamos and data analysis courtesy of
Tom Daley and Tom McEvilly, unpublished).
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fornia by Lawrence et al. [2], a dense accelerometer array was deployed within me-
ters of a shaker source. The wave field was dominated by Rayleigh surface waves
and ground motions were strong enough to produce observable nonlinear changes
in wave velocity. It was found that as the force load of the shaker increased, the
Rayleigh wave-phase velocity decreased by as much as 30% at the highest frequen-
cies used (up to 30 Hz). Phase velocity dispersion curves were inverted for S-wave
velocity as a function of depth using an isotropic elastic model to estimate the depth
dependence of changes to the velocity structure. The greatest change in velocity oc-
curred within the 4 m nearest the surface.

12.1.2
The Earth as Resonant Bar

Experiments described in reference [4] employing a large, active shaker source
show strong elastic nonlinear response in near-source sediments. The site of the
experiment, located near Austin, Texas, involved 11 m of young, unconsolidated
point bar sediments above bedrock (point bars are deposits formed along the in-
side of a river bend). A reconnaissance geophysical survey identified significant
elastic impedance contrasts (interfaces between layers) at depths of 2, 4.5, 7 and
11 m (bedrock) [5]. The 7 m depth interface was the water table. The fundamen-
tal resonance frequencies corresponding to sediment columns bounded by these
interfaces were estimated from numerical modeling.

Figure 12.3 shows a schematic of the in situ resonance experiment. The shaker
exerts a maximum vertical force output of approximately 267 kN (about 27 metric
tons). The source couples to the sediment via a 2 ~ 2 m2 plate and is capable of
shaking over a broad frequency band (15 to 180 Hz) with approximately constant
force. Three-component accelerometers designed for accelerations up to 2g were
deployed at the surface immediately adjacent to the source. The measured vertical
accelerations are used for the results presented here.

In these experiments, just as in laboratory experiments, one step-sweeps fre-
quency across a band that covers the fundamental resonance modes of the sedi-
ment layers. At each frequency step, steady-state conditions are obtained and the
acceleration amplitude is measured. Normed resonance curves at progressively in-
creasing drive amplitude, measured on the accelerometer located 3 m from the
source, are shown in Figure 12.4. These curves are essentially the sediment trans-
fer functions as they result from dividing the measured acceleration in the soil by
that recorded at the source.

The most striking aspects of the sediment transfer functions shown in Fig-
ure 12.4 are the modal peaks, caused by the layer structure, and the overall shift
of features in the transfer function to lower frequency as the source amplitude is
increased. An open-ended system of sediment layers is a very complicated reso-
nance system. Nonetheless, resonance peaks appear approximately where a simple
calculation shows them to be. A granular material, a possible model for the lay-
ers, has nonlinear response that decreases strongly with increasing effective static
stress (confining stress minus pore pressure). This dependence may explain in
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Fig. 12.3 Experimental configuration for in
situ nonlinear soil studies. (a) Vibrator source.
The large grey plate between the wheels is
the coupling plate. The results shown in Fig-
ure 12.4 were for the source operating in com-

pression. (b) Compressional wave velocity
structure at site. (c) Measured acceleration
on the source baseplate. (d) Measured accel-
eration just adjacent to the baseplate, from
a seismometer located in the soil [4].

part the smaller frequency shift seen at low frequency, that is, in the modes that
reach deeper into the layers. Additionally, the deeper layers, being farther from the
source, experience smaller dynamic loads. It is impossible to extract the individual
lower-layer behaviors without detailed modeling that accounts for the complex
distribution of the strain field in the presence of many layers. Further complexity
comes from the admixture of standing and propagating waves that are in the mea-
sured signals. Consequently the analogy to a resonant bar should be viewed with
caution.

The largest frequency shift in the data is seen at frequencies corresponding ap-
proximately to resonance of the 2 m layer (Figure 12.4b). The decrease in the am-
plitude of the transfer function with increased forcing is evidence of nonlinear dis-
sipation. The decrease in resonance frequency corresponding to the 2 m interface
is about 20% and the amplitude decrease is about 25%. The nonlinear parameters
describing the resonance frequency shift and the increased dissipation with drive
level are α f = 24 200 and αQ = 4100, respectively, Chapter 11, Section 11.3. For
comparison, laboratory data on granular media taken under similar loading condi-
tions yield α f = 7200 and αQ = 2900 [6].

Figure 12.4c shows the in situ transfer functions found in a slow dynamics ex-
periment focused on the 2 m interface. Slow dynamics were induced by a large-
amplitude frequency sweep. Immediately following this, a sequence of probe step-
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Fig. 12.4 Induced nonlinear response in lay-
ered media. (a) Resonance modal structure as
a function of the normalized acceleration “ma-
terial response” (receiver acceleration divided
by the source acceleration measured on the
source baseplate) for progressively increasing
source forcing. The expected layer resonance
frequencies are shown as vertical lines on the

x-axis. (b) Zoom of the shallowest layer re-
sponse (the 2 m layer). Note the significant
change in resonance frequency as well as the
decrease in amplitude. (c) The slow dynam-
ical recovery after strong forcing. The strain
range of the experiment was 8 ~ 10–5–3 ~ 10–4

(courtesy of F. Pearce).

sweeps all having the lowest source amplitude were applied to observe the recov-
ery, just as in laboratory studies. There is an immediate elastic recovery from 34
to 37 Hz (not shown) followed by a slow recovery during which the resonance fre-
quency returns to about 90% of its original value in 1 hour. Full recovery is estimat-
ed to take at least a full day.
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12.2
Passive Probes

Near-surface amplification of seismic waves from earthquakes is a well-established
phenomenon. Examples of this behavior include all of the most damaging earth-
quakes of the last two decades, including the 1985 Michoacan (Mexico), the 1989
Loma Prieta (California), the 1994 Northridge (California), and the 1995 Kobe
(Japan) earthquakes. Typical detected wave strains in these earthquakes are 10–4

in the near-source region to 10–9 at teleseismic distances with frequencies ranging
from 0.1 to 102 Hz. Strain amplitude near a free surface is amplified in the pres-
ence of low-velocity layers (at fixed energy ∝ K ε2 decrease in K means increase
in ε) or by resonances [7, 8]. Increased strain amplitude leads to the increased
importance of nonlinearity. In what follows we describe the first study published
illustrating nonlinear behavior in response to a large earthquake. The Northridge
Earthquake Study. Field et al. (1997) [9] described results showing that alluvium
in the Los Angeles Basin reacted nonlinearly in response to the 1994 Northridge
earthquake. In order to determine the material response, one must find a method
to isolate the alluvium response from the source and wave propagation effects dur-
ing an earthquake. The method applied in this study was the spectral ratio method,
widely applied in seismology to eliminate wave dissipation effects.

The essence of treating the seismic data is as follows. Following data collection
at a large number of seismometer recording sites that include hard rock and soft
sediment sites, the data were corrected for dissipation effects by deconvolving the
Green’s function. This was accomplished by assuming a reasonable inverse dissi-
pation (Q( f )) and multiplying the signals by this value. The earthquake source re-
sponse was then estimated from the rock sites, assumed to have no site response.
That is, it is assumed that the rock sites show the source response spectrum after
they have been corrected for linear dissipation. The response at the alluvium sites
was then estimated as the ratio between average alluvium and average rock sites.
For small earthquakes, the ratios should be larger than unity if the response of the
unconsolidated material is linear, due to the amplification effects in sediments. For
large earthquakes, hysteretic effects would be present in the alluvium. If hysteretic
damping is present in the alluvium, the spectral ratio should be less than unity.

Figure 12.5 is a map of southern California, showing the mainshock epicentral
location and the location of the seismometers on rock and alluvium sites. In the
Northridge earthquake study presented here, data were compiled from locations
where both mainshock and aftershock recordings were obtained. Based on surface
geology, 15 of these sites were categorized as alluvium and four as rock.

Figure 12.6 illustrates the general finding from the Northridge study. The weak
motion (solid lines) and strong motion (dashed lines) site-response estimates av-
eraged over the 15 alluvium sites and 4 rock sites are illustrated in the figure. The
weak-motion response implies an amplification factor of approximately 3.1 at 1 Hz,
decreasing to factors of approximately 2.5 and 1.4 at 3 and 10 Hz, respectively. The
strong-motion amplification factors are systematically less, being about 1.9 at 1 Hz,
about 1.3 at 3 Hz, and 0.8 (deamplification) at 10 Hz. This clear decrease in ampli-
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Fig. 12.5 Relief map of the study region in
southern California, showing the location of
1994 Northridge earthquake (star). The alluvi-
um recording sites are shown as red triangles
and the hard rock sites as blue triangles. After-
shock epicenters are shown with black crosses
and the mainshock rupture distribution is

outlined by the box. The fault plane dips to
the southwest, with the top edge at a depth
of 5 km and the bottom edge at a depth of
20.4 km. The location of maximum earthquake
slip is marked with the black star (from [9]).
(Please find a color version of this figure on
the color plates)

fication implies nonlinear dissipation. In fact, applying the standard t-distribution
test it was found that the difference is significant at the 95% confidence level be-
tween 0.8 and 5.7 Hz, implying that there is significant nonlinear response over
this frequency range (between 1.2 and 4.3 Hz, the difference is significant at the
99% level). At at least one seismic recording station, a significant resonance fre-
quency shift was observed, Figure 12.7. This frequency shift, a factor of 3, corre-
sponds to a shift in the elastic constant by a factor of about 10. The observation
led to a large number of studies exploring the elastic nonlinear behavior of in situ
materials during large earthquakes.

There are a number of other studies that show layer nonlinearity during large
earthquakes. One very nice example is that of Pavlenko and Irikura [10], in which
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Fig. 12.6 The mean and standard-deviation-of-the-mean con-
fidence limits for the 15 alluvium site-amplification estimates.
The solid lines represent the weak-motion results for the af-
tershocks, and the dashed lines represent the strong-motion
results for the mainshock. The lower-frequency cutoffs reflect
the lowest resolvable frequencies given seismometer and noise
limitations (from [9]).

Fig. 12.7 Seismic recording station LF6 spectral-ratio response
to the 1994 Northridge earthquake. The solid lines represent
the weak-motion results for the aftershocks, and the dashed
lines represent the strong-motion result for the mainshock. The
sharp peak for the aftershocks at about 2.8 Hz shifts to about
0.9 Hz for the mainshock (from [9]).
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hysteretic behavior as a function of depth is extracted from the measured accel-
eration signals in boreholes during the 1994 Kobe (Japan) earthquake. The great
value of this study is it shows how variable the response is with depth based on the
layered structure.

http://en.wikipedia.org/wiki/Seismic_source
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13
Nonlinear Elasticity and Nondestructive Evaluation and Imaging

Based on methods described in the previous chapters, we now turn to applications
to nondestructive evaluation. In Section 13.1 we provide a general overview and
perspective. Following this, Section 13.2 provides a historical overview of the devel-
opment of the domain in metals, long before rocks and other materials were dis-
covered to exhibit the same behaviors. In Section 13.3 a simple crack model based
on work by a number of individuals, but primarily Igor Solodov, is described. Fol-
lowing this, we describe methods that are part of what we call nonlinear elastic
wave spectroscopy (NEWS), Section 13.4. Contained in this group are modulation
methods (Section 13.4.1), resonance methods (Section 13.4.5), signal ringdown
methods (Section 13.4.6), and methods based on slow dynamics (Section 13.4.7).
We then describe a number of measurements of progressive damage employing
a number of NEWS methods in Section 13.5. Methods of localization and imaging
follow in Section 13.6 based on harmonics (Section 13.6.1) and wave modulation
(Section 13.6.2) and time reversal (Section 13.6.3). Before summarizing, two other
methods of isolating the nonlinear response are described as well (Sections 13.7.1
and 13.7.2, respectively).

13.1
Overview

Over the past decade or so in particular there have been many developments in the
area of nondestructive evaluation. The area is relatively well developed; however,
the quantitative relationship between elastic nonlinear response and mechanical
(or other) damage is still an open area that requires significant attention. That said,
discerning that damage is present and localizing it are well advanced. In what fol-
lows, we first provide a historical overview of nondestructive evaluation based on
nonlinear elastic means. We then describe the relatively large number of diagnostic
and imaging methods by example, linking the method to rigorous development in
previous chapters. Following this we describe imaging methods.

Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Granular Media
including Rocks and Soil. Robert A. Guyer and Paul A. Johnson
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40703-3
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13.2
Historical Context

Nonlinear nondestructive evaluation (NDE) is based on exploiting additional fre-
quencies produced by material nonlinear response in the form of resonance fre-
quency shift, harmonics, sum and difference frequency, and frequency halving.
Nonlinear dissipation is used as a diagnostic as well, as are the material slow dy-
namics.

Nonlinear NDE has its origins in studies of nonlinear dissipation applied to de-
termining the contribution of dislocations to (nonlinear) dissipation in materials
exhibiting high dislocation density. The studies described here were the first to
recognize that there were other sources of nonlinear response that tended to be
larger than the intrinsic anharmonicity and were due to a different physical origin
(the presence of dislocations). The first work we are aware of may be that of Read
(1941), who studied the internal friction of single crystals of copper and zinc [1].
A suite of papers were published by Zener in the mid to late 1940s in which he
defined anelasticity to be the property of solids where stress and strain are not
elastic (what we term here elastic-nonlinear) including one paper relating fracture
to stress relaxation in metals [2]. Observations of strain-amplitude-dependent at-
tenuation date back to the work of, among others, Read and Tyndall (1946) [3]
(who also observed hysteresis in the attenuation vs. strain amplitude response of
a zinc crystal doped with lead and tin that had been submerged in HCL), Nowick
(1950) [4], Koehler (1952) [5], and Weertman and Salkowitz (1955) [6], who worked
in lead and copper alloys. For example, Figure 13.1 shows an example of strain-
amplitude-dependent attenuation in lead alloy as a function of temperature, from
Weertman and Salkowitz. A well-known paper by Granato and Lücke (1956) [19]
described experimental studies and laid the groundwork for a theoretical descrip-
tion of nonlinear dissipation due to the presence of high dislocation density, as
well as logarithmic recovery after dynamic excitation. In that work, the authors
observed strong amplitude-dependent attenuation in aluminum before annealing,
which was subsequently eliminated by the annealing process.

Chambers and Smoluchowski [8] observed variations of internal friction with ex-
citation time and logarithmic relaxation (what is now termed slow dynamics) in
zone-refined, well-annealed aluminum single crystal, as predicted by the Granato–
Lücke model (zone-refining, also called zone melting, is a technique for the purifi-
cation of a crystalline material in which a molten region travels through the ma-
terial to be refined, picks up impurities at its advancing edge, and then allows the
purified part to recrystallize at its opposite edge). Their work shows hysteresis in
the decrement as a function of strain amplitude and a saturation effect during long
periods of excitation (much like that observed in rock). That is, for a given excitation
strain amplitude the dissipation was seen to increase gradually toward a saturation
level. Upon removal of the exciting wave, the decrement decayed logarithmically in
time back to the rest state. The authors also observed a strain-amplitude-dependent
resonance frequency that was excitation-duration dependent. It is interesting to
note that in these materials, these and other authors speak of a “breakaway ampli-
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Fig. 13.1 Example of strain-amplitude-dependent attenua-
tion in lead alloy (Pb Sn) obtained in resonance experiments
from Weertman and Salkovitz [6], at a number of temperatures.
Decrement is defined as equal to the energy lost per cycle di-
vided by twice the stored energy of the system.

tude” where hysteretic effects commence. The breakaway amplitude is analogous
to the transition from classical to nonclassical behaviors in rock as shown previ-
ously (e.g., in Fontainebleau and Berea sandstones). Further, they observed a slow-
dynamic-like recovery process. Figure 13.2 shows some of their observations.

Strumane, De Batist, and Amelinckx (1963) observed a strain-amplitude-dependent
resonance frequency shift and attenuation in NaCl crystals due to the presence of
dislocations [9].

Early work exploring harmonic generation in materials with dislocations was de-
scribed by Gedroitz and Krasilnokov (1963) [10], who detected a strong increase in
the second harmonic generation with wave amplitude in aluminum single crystal.
The mechanism of nonlinearity increase was assumed to be due to the generation
of dislocations. Similar results on dislocation-induced nonlinearity were published
simultaneously by Hikata, Chick, and Elbaum [11] the same year. Follow-on studies
were conducted by Hikata and Elbaum in the mid-1960s [12, 13], both theoretical
and experimental in nature, relating dislocation contributions to second and third
harmonic generation. Additional work in this area was conducted by others, in-
cluding Scorey [14] and Yermilan and colleagues [15]. A book by De Batist on the
topic of internal friction in crystalline solids presents a good review of work up to
the early 1970s [16]. Studies conducted at Rockwell International in the 1970s by
Buck, Richardson, and colleagues are some of the earliest that we are aware of in
regards to wave harmonics as applied to nonlinear NDE related to cracks and dis-
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Fig. 13.2 Nonlinear hysteretic and time-
dependent effects observed in aluminum
and magnesium single crystal from [8].
(a) Change in resonance frequency vs. strain
amplitude at 45 °C in aluminum single crystal
[–Δ f = f – f 0 , where f 0 is the low-amplitude
(linear elastic) resonance frequency]. The
solid triangles are for data taken before long-
duration excitation, and the open triangles
were taken after wave excitation for 20 min at
a strain amplitude of 2.5 ~ 10 – –6. (b) Hys-
teresis in strain amplitude vs. decrement in

aluminum single crystal. The dashed and sol-
id lines represent increasing and decreasing
amplitudes, respectively. The sample was
excited for 20 min at three different fixed am-
plitudes, as shown by the arrows. (c) Decay of
the decrement as a function of time, at 60 °C.
Excitation times in minutes as noted, and ex-
citation was at fixed strain amplitude. Decre-
ment is defined as equal to the energy lost per
cycle divided by twice the stored energy of the
system (modified from [8]).
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bonds. In particular, the work at Rockwell was aimed at characterizing dislocations
and progressive damage (e.g., [17]) and unbonded interfaces [18]. We note that the
dislocation string model developed by Granato and Lücke [19] can be thought of in
terms of the P-M space model. Wave modulation based on nonlinear interaction
of low- and high-frequency waves that yields the combination frequency dates back
to at least the mid-1960s. For instance, Zarembo and Krasil‘nikov with coauthors
observed frequency mixing of acoustic waves in an Al-rod resonator that was due
to the presence of dislocations [20].

13.3
Simple Conceptual Model of a Crack in an Otherwise Elastically Linear Solid

In what follows, we present a simple conceptual model of waves interacting with
a crack in a solid. This is followed by a description of nonlinear NDE methods, with
examples.

In its simplest form, the general methodology, termed here nonlinear elastic
wave spectroscopy (NEWS) [21], is based on the concept of two springs orient-
ed perpendicular to a crack, one soft but nonlinear, with spring constants k1 =
k0(1 + δε2 + . . .) (mechanical damage) and one stiff k2 (surrounding material), as-
suming mechanical damage is localized. Here δ is the third-order, normalized non-
linear coefficient. Following the ideas of Solodov [22] and others, for illustration we
consider longitudinal waves in one dimension, oriented perpendicular to the crack.
At low amplitudes, the system acts linearly, and a harmonic wave u1 cos(ω1t –φ) en-
countering the soft spring will maintain its shape, changing only in amplitude due
to energy conservation. Figure 13.3 shows the system with the addition of Poisson-
induced shearing described below.

If we transform from force–length, F = kx , to stress (σ)–strain (ε), σ = K ε, we
can construct the nonlinear Hooke’s law in one dimension, where K 1 = K 0(1+	ε2+
. . .) and K 1 is the modulus. As the amplitude of a harmonic wave ε1 cos(ω1t – φ)
increases, the soft modulus will produce harmonics due to the higher-order terms
in the above modulus expansion, for example, ε1 cos(ω1t – φ)∗ ε1 cos(ω1t – φ) leads
to terms corresponding to DC(ω – ω) and 2ω. As the amplitude increases further,
the crack, or asperities in the crack, begins to contact during the compressional
phase. If the amplitude of a wave exceeds the static stress of an originally closed
crack or interface, it produces cyclic, but asymmetrical, contact. The response of
a prestressed contact driven by a harmonic wave strain ε(t) = ε0 cos(ωt) is similar
to a mechanical diode and results in a pulselike modulation of its stiffness K (t) (see
also [23]). The waveform distortion differs from the classic sawtoothlike profile in
materials whose nonlinearity is due to anharmonicity. Hooke’s law becomes

σ(t) = ΔK (t)ε = 2ΔK [τ/T ]
(
ε0 cos(ω0t) – ε0

) ∞∑
n=1

sinc
[
nτ/T

]
cos(nω0t),

(13.1)
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Fig. 13.3 (a) Conceptual model of a crack in a solid. (b) The
corresponding mechanical system, where F N is an oscillatory
force, k1, k2 are the spring constants, m is the mass of a corre-
sponding slider that mimics the frictional behavior at the crack
tips, F s are the forces due to Poisson coupling, and g are the
spring constants associated with friction. Note lowercase k and
g represent spring constants, and uppercase values are moduli.

where ΔK is the modulus change due to the crack, T is a half-period, and τ = T/4.
Here we ignore K 1 = K 0(1 + 	ε2 + . . .) for the sake of illustration. The concept is
illustrated in Figure 13.4.

Because K (t) is a rectified pulse-shaped periodic function of the driving frequen-
cy ω/2π, the resulting spectrum of the stress induced at the crack σ = K (t)ε(t)
contains odd and even harmonics nω whose amplitudes are modulated by a sinc-
function envelope whose shape is determined by the pulse width (half of the driv-
ing frequency). If dynamic strains are large and the damage is under a small pre-
stress, ultraharmonic generation by clapping of the damaged region can be ob-
served [24]. At even larger driving strains, chaotic behavior can be and has been
observed (I. Solodov, pers. comm.).

Due to the Poisson effect as well as the potentially complex geometry of a damage
feature, the dynamics of the damaged area produces simultaneous shear traction
resulting in frictional effects presumed to be dominant at asperities and at crack
tips (Figure 13.3). The shear modulation in this case is due to stick-slip. Contact
stiffness due to static friction in the stick phase decreases abruptly as the contact
surfaces slide during oscillatory forcing. The transition from stick, to slip, to slip
takes place whenever the driving force is zero, meaning twice the period of wave
excitation. Therefore, the shear stress induced in the damaged area τ = G(t)ε(t) has
a contact modulation G(t) that is a 2ω, where ω is the forcing frequency, and the
modulus ΔG is

ΔG(t) = 4ΔG(T ′/T )
∞∑

n=1

sinc
[
2nT ′/T

]
cos 2nω0t (13.2)
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Fig. 13.4 Hooke’s law in one dimension for
a one-dimensional strain wave oriented per-
pendicular to the crack. (a) As the amplitude
increases and the crack begins to close, the
modulus K (K 1 = K 0(1 + 	ε2 + . . .)) becomes
bimodal, changing from ΔK to K during each
cycle. (a) the input wave, with average strain
ε0, is shunted (rectified) each cycle during

compression due to the closure of the crack,
as seen in the output strain wave. (b) The
shunted strain wave and the corresponding
modulus as a function of wave period (time).
The crossover strain for the bimodal modulus
occurs at ε0 (modified from Solodov ([24] and
pers. comm.)).

and Hooke’s law is

τ(t) = 2ΔGε0(T ′/T )
∞∑

n=1

sinc
[
2nT ′/T

]
[(cos(2n + 1)ω0t + cos(2n – 1)ω0t)] ,

(13.3)

and where T is a half-period and T ′ is the period at which the rectification takes
place.
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Thus, at large forcing when stick-slip takes place, the harmonics of 2ω form
(n2ω, where n is an integer), meaning that even the harmonics of the fundamen-
tal frequency are produced. These may multiply with the fundamental producing
odd harmonics (e.g., u1 cos[ω1t + φ]u2ωn cos[2ωnt + φ] = u1 cos[ω1t(2n – 1) + φ] +
un cos[ωt(2n – 1) + φ]. The above assumes a stepwise transition from stick to slip
and vice versa; however, one may imagine many different forms of the stick-slip
behavior that would shape the n2ω ∗ ω spectrum.

Moreover, if two harmonic waves ε1 cos(ω1t –kx) and ε2 cos(ω2t –kx) intersect the
soft modulus, the damaged region, the low frequency modulates the high frequen-
cy, and therefore the waves multiply with each other ε1 cos(ω1t –kx)ε2 cos(ω2t –kx),
producing frequencies at the sum and difference frequencies proportional to the
amplitudes of the two waves, for example, ε1ε1(ω1 ± ω2) (sidebands). Sidebands
appear for each frequency component produced when the low frequency encoun-
ters the crack. For instance, if the low frequency is a square wave due to the hard
spring/soft spring paradigm, the resulting frequency components shaped by a sinc
function in the frequency domain would exhibit sidebands.

One can also imagine that both the crack opening-closing and the stick-slip be-
havior could be hysteretic. This would lead to an equation like Eqs. (13.1) and (13.3),
which depend on the sign of the strain, ε̇, γ̇, respectively.

All of the above assumes the frequency is low enough for the material to respond;
above a certain frequency the material would presumably not be able to respond
quickly enough, and the material elastic nonlinearity may be locked. One could
imagine that the cutoff frequency could be different for the compressional and
sliding effects described above.

In actual observations the above, relatively simple-minded conceptual model
works to varying degrees; however, independent of the physics of the dynamic
wave/crack interaction, the nonlinear response can be applied to damage diagnos-
tics. Harmonics are employed, as well as frequency mixing where sum and dif-
ference frequencies are used to discern whether or not damage is present, as well
as for imaging the damage assuming it is localized. In the following sections, we
explore various applications of NEWS to NDE.

13.4
Nonlinear Elastic Wave Spectroscopy in Nondestructive Evaluation (NEWS)

13.4.1
Nonlinear Wave Modulation Spectroscopy (NWMS)

This method, described in previous chapters, employs one or more waves at fre-
quencies that are applied simultaneously to a sample, and the sum and difference
frequency waves are studied to discern whether or not a localized or volumetric
elastic nonlinearity is present. Here the pump waves are the fundamental frequen-
cies and the probe waves are the harmonics and or sidebands. The word “sideband”
is also applied to describe the sum and difference frequencies (the word has its
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Fig. 13.5 Spectrum for a cracked steel sample. Contin-
uous wave drive of frequencies f 1 = 5.020 kHz and
f 2 = 158 kHz were used, respectively. The odd harmonics at
3 f 1, 5 f 1, 7 f 1, 9 f 1 are visible, as are first-, second-, and third-
order sidebands, at f 1 ± f 2, f 2 ± 2 f 1, f 2 ± 3 f 2 as well as
additional sidebands.

origins in radio science, where it appeared as early as 1910–1915 to describe the
sum and difference frequency transmitted about a carrier frequency). In a system
with a single frequency, the sum frequency is the second harmonic. In Figure 13.5
we show an example of NWMS. Modulation and harmonic results are shown for
a steel-bearing cap containing a visible, surface-breaking crack. The sources and
detector were all piezoceramics, bonded with epoxy to the sample. Both first- and
second-order sidebands are seen, as well as a number of odd harmonics. Some sort
of shaping of the harmonics is taking place and it may be sinclike in nature. The
crack in this sample is able to freely flex, although it is quite stiff. Apparently, for
this experimental configuration shear slip may be dominating based on the above
paradigm. Like all nonlinear NDE methods, NWMS in its simplest form tells one
the sample is nonlinear, but not where the nonlinearity originates.

In the next figures we show results for samples of plexiglas and for an automo-
tive connecting rod, modified from [25]. In each case, observations for both intact
and damaged samples are shown. In the experiments, two continuous-wave, sep-
arate frequencies were input into the sample simultaneously using piezoelectric
transducers. The sources and detectors were bonded to the sample using epoxy.
The waves were detected by an accelerometer at a separate location on the sample.
The output waveform was recorded and Fourier analyzed. To illustrate the ampli-
tude dependencies of the sidebands to the drive amplitudes, one frequency was
held at a constant amplitude and the other was progressively increased.

In the plexiglas experiment a sample of dimension 110 ~ 110 ~ 6 mm3 was used,
as seen in Figure 13.6. A controlled crack was induced by confining the sample
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Crack

f1ε1

f2ε2

detector

waveform output
for Fourier analysis

input

input

Fig. 13.6 Experimental configuration for NWMS measure-
ments in plexiglas for measurements shown in Figure 13.7
(modified from Van Den Abeele et al. 2000 [25]).

center and applying tension to the region of the hole (hole diameter 13 mm). Iden-
tical experiments were conducted before and after cracking. The resultant crack
length was 50 mm (area � 250 mm2). The two frequencies applied were f 1 = 7
and f 2 = 70 kHz, respectively. Progressively increasing drive amplitudes for A f 1

were applied, while A f 2 was held at a fixed drive level. In the figure, the sidebands
and the second and third harmonic dependencies are shown as well. There is some
amount of harmonic and sideband energy in the intact sample. This is due pri-
marily to nonlinearities in the associated electronics, and some portion is due to
the inherant atomic nonlinearity of the material. In contrast, the damaged sample
shows large harmonics and sidebands. Interestingly, the odd and even harmonics
are represented in this sample, in contrast to the cracked steel sample shown in
Figure 13.5, where only the odd harmonics were observed, and the fifth harmonic
was larger than the third. It is difficult to know if the difference is more than anec-
dotal. That is, is the observed difference due merely to how the sample is excited,
to differences in the material, or to differences in the nature of the crack? The is-
sue of crack nonlinear wave interaction is still relatively unexplored. Some related
experiments will be described later where time reversal was applied to probe the
crack.

In order to quantify the scaling relationships between the drive frequencies
and the harmonic/modulation signals, their dependencies are plotted in Fig-
ure 13.7c–d. It is clear from the intact-plexiglas results that the system distortion
plus intrinsic nonlinearity are on the order of –40 dB. The scaling in the cracked
sample extracted from the measurements for the second harmonic is A2 f 1 ∝ A2

f 1
,

as it should be. Note that there are few 3 f 1 data points so the scaling is unclear,
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Fig. 13.7 Modulation and harmonic results in
intact and cracked plexiglas. (a,b) Frequency
spectra obtained in intact and cracked sam-
ples, at maximum drive levels. (c) Second and
third harmonic amplitude dependencies as
a function of the fundamental frequency am-

plitude A f 1 in the intact and damaged sam-
ples. (d) Sideband amplitudes (in dB) A f ± in
both samples as a function of the product of
the driving frequencies A f 1 ∗ A f 2 (modified
from Van Den Abeele et al. 2000 [25]).

but it appears to be less than 3 (it should be 2 as predicted by the P-M space
theory). The predicted scaling for the sidebands is a more robust result, giving
f – = 0.90; f + = 0.95 for the first- and second-order sidebands, respectively, close to
1, as they should be (recall A2 f ,3 f ∝ A f 1A f 2).

In the connecting rod experiments, one intact and one damaged sample were
used for comparison. An example is shown in Figure 13.8. The samples are com-
posed of a sintered steel, as shown in the sequence of photomicrographs at differ-
ent scales in Figure 13.10. The results of measurements are shown in Figure 13.9.
The scaling relations extracted from the measurements in the cracked connecting
rod, for the harmonics and sidebands, are 2 f = 1.4; 3 f = 2; f – = 1.1; f + = 1.2,
respectively. Note the measurement of the third harmonics is poor and that of the
second harmonic only fair. Further, there may be an approximate sinclike shaping
to the harmonics not present in the damaged plexiglas. The measured dependen-
cies show imperfect results in relation to the theory. This is due to imperfect data
and possibly a need for a modified theory. The results are interesting, because the
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f1ε1

input

 f2ε2

detector

Fig. 13.8 Approximate experimental configuration for NWMS
measurements in metal connecting rod for measurements
shown in Figure 13.9. Arrow shows approximate crack location
in damaged sample. Dimensions of crack were not measured.

Fig. 13.9 Modulation and harmonic results in
intact and cracked steel connecting rod from
an automobile. (a) Modulation in intact sam-
ple. (b) Modulation and harmonics in cracked
sample. (c) Sideband dependency with the

product of the two input waves. (d) Sideband
dependencies in damaged sample. (e) Sec-
ond and third harmonic amplitudes in intact
sample. (f) Second and third harmonic ampli-
tudes in cracked sample (modified from [25]).
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Fig. 13.10 Photomicrographs in reflected light
of connecting rod crack taken after experiment
described above. The extent of the the crack
is shown at left in two photos at the same
magnification (50 ~). At right the crack tip
region is shown in expanded view of the crack
tip. The photos were taken from a sample af-

ter cutting and polishing. These objects are
usually made of sintered and forged powder
metallurgy, but the actual composition and
provenance are proprietary. Note how little
actual contact there is along the crack in this
two-dimensional slice.

material is a sintered part and volumetrically nonlinear in its intact state much
like a rock sample, as can be seen in the “intact” results (Figure 13.9a,c). The har-
monic dependencies are very similar, as are the sidebands. When a crack is added,
the material becomes much more nonlinear, as can be observed in the spectrum.
Figure 13.10 shows what the crack (responsible for the above behaviors in the con-
necting rod) looks like a sequence of photomicrographs.
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13.4.2
Harmonics

In the following example we show the results of employing harmonics as a me-
chanical damage diagnostic, taken from [26]. In the experiment, the sample was
progressively fatigued. Before fatiguing and at predetermined intervals during the
fatiguing process, the second and third harmonic amplitudes were measured as
a function of drive amplitude (in a later section devoted to application of nonlinear
response to progressive damage we return to this sample). The samples were thin,
rectangular-shaped strips of artificial slate used in roofing construction, of dimen-
sion 200 ~ 20 ~ 4 mm3. The material is composed primarily of Portland cement.
Mineral additives and synthetic organic fibers were added for strength enhance-
ment.

The strips were excited at their lowest-order bending resonance mode by a low-
frequency, low-distortion speaker (Figure 13.11a). The speaker was positioned at
2 cm from the middle, parallel to the strip surface. The speaker was driven by
a function generator through a high-power amplifier. The coupling medium be-
tween specimen and speaker was air (noncontact excitation). An accelerometer at-
tached to one end of the strip measured the sample’s out-of-plane response. The
signal from the accelerometer was preamplified and recorded.

The results are shown in Figure 13.11b. As mechanical damage increases, the
material harmonic response traverses the space diagonally upward to the left, indi-
cating a progressively larger nonlinear response as manifest in both the second and
third harmonics. Note that the material, like many porous Earth materials, exhibits
a nonlinear response before the first damage sequence.

The addition of confining pressure to a sample can eliminate wave distortion
due to the crack or delamination (in fact all elastic nonlinearity) because the fea-
ture is locked by the pressure, as was shown previously in rock samples. Fluid
added to a crack or cracklike feature can dampen or eliminate the second harmon-
ic (and again, other dynamic nonlinear response). For example, in early work by
Buck, Morris, and Richardson [18] in which stacked aluminum cylinders were held
under uniaxial confining pressure, and bulk compressional and shear waves were
applied perpendicular to the interfaces, harmonic amplitudes were measured as
a function of applied stress, both increasing and decreasing. Tests were conduct-
ed with room-dry interfaces as well as with glycerin contained in the interfaces.
Figure 13.12 shows observations. There is a clear effect of pressure that diminish-
es the harmonic amplitudes, and the addition of the fluid eliminates the second
harmonic altogether.

13.4.3
Robust NWMS

Simple pass/fail tests to discern if mechanical damage is present, by applying mod-
ulation, are extremely effective in general; however, in various materials where the
nonlinear response may be small, where Q is large, or where a driving transducer
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is placed at or near a vibrational node of one of the applied waves, the response may
be difficult to observe. Another chronic problem is discerning whether or not the
observed nonlinearities originate in the sample or associated electronics. The most
effective and robust diagnostic technique relies on applying a pure tone probe in
combination with mechanical impact that was described as early as 1994 [27]. An
example is described next.

One experimental configuration is described in Figure 13.13. The signal gener-
ator creates a continuous wave cw output at one or more pure frequencies. In the
example described here the source was a piezoceramic bonded to the sample using
epoxy. While the continuous wave source is operating on the test object, a device
designed to provide a broad-frequency band time-impulse strikes the object. It is
attached to a baseplate with a hinge designed so that the mechanical strike was
repeatable. The larger amplitude tones excited by the mechanical impact are the
lowest modes logically, and they mix with the cw signal. Bonded to the hammer
is a piezoelectric transducer that is used as a trigger source into the oscilloscope

wire supports

speaker source

sample

accelerometer
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Fig. 13.11 Experiment and observations of
second harmonics. (a) Experimental setup for
the measurment. (b) Second (open circles)
and third harmonics (closed circles) mea-
sured on a sample of synthetic slate that was
progressively damaged. Note that the scal-

ing relations between the second and third
harmonics are approximately two through all
damage steps, as they should be. Note that
additional results will be described in a later
section that addresses progressive mechani-
cal damage in detail (modified from [26]).
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or other digitizing device. When the impact source strikes the test object, the sig-
nal detector feeds the output through a high pass filter to the oscilloscope or other
digitizer. The high pass filter is used to eliminate the low-frequency components
due to the impact source becuase they are large in amplitude. Once the impact de-
vice strikes the object, a high-pass-filtered time signal is captured on the digitizing
device. In the simplest case, a Fourier transform of the time signal is calculated,
and modulation sidebands are inspected at frequencies around the pure tone(s).
Figure 13.14 shows an example of this method for an experiment conducted in the
sample shown in Figure 13.9.

13.4.4
NWMS Summation

If the pump cw tone or impact source or detector is located at a node of one or
more of the primary vibrational modes, or if the pure tone frequency or the side-
band(s) are located on a node, there will be diminished sideband mixing. However,
if one changes the pure tone frequency(ies) stepwise and repeats the experiment,
eventually one will move away from the node and toward an antinode and cap-
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Fig. 13.12 Harmonic generation from three
interfaces stacked in series. (a) Experimental
configuration. Two cylinders are stacked and
loaded uniaxially. They are driven by a 5-MHz
piezoelectric (source). (b) Experimental result.
The amplitude of the second harmonic is nor-

malized to that of the fundamental (10 and
5 MHz, respectively). Dry interfaces show sig-
nificant harmonic generation, especially close
to zero pressure. Filling the interfaces with
glycerine essentially eliminates the harmonics
(from [18]).



13.4 Nonlinear Elastic Wave Spectroscopy in Nondestructive Evaluation (NEWS) 339

ture modulation if it exists. This procedure is repeated stepwise for a number of
different pure tone frequency pump waves. A Fourier transform is taken of each
time signal and, at the end of the step-sweep, a summation of the signal Fourier
spectra (power or magnitude) is then calculated by shifting all spectra such that the
pure tone cw is at zero frequency. The step-frequency sweep is used to make the
measurement more robust by making use of successive pure tone frequencies and
their sidebands. The summation is used to improve the signal-to-noise ratio and to
inspect the results of many experiments simultaneously. Because the averaging is
done in the frequency domain, the phase of each successive time signal collected
is unimportant.

Specifically, there are i time signals, composed of a pure tone cw plus the vi-
bration due to the impact source, t i (t), i = n. . .m. Here n, m are the first and last
pure tone frequencies, respectively, and the frequency step interval of the pure tone
signal is Δ f = [(m – n)/i . There is a corresponding spectrum obtained from the
Fourier transform of t i (t), termed F i ( f ). The spectrum F i ( f ) is frequency down-
shifted to zero frequency, then summed over the number of frequency steps i,
Si ( f ) =

∑m
n (F i ( f )– i ). The result is a summation of spectra that is more robust in

showing nonlinear mixing of the vibration spectrum and the cw signal than a single
impact plus pure tone experiment, as illustrated in the following.

signal generator

oscilloscope

high pass filter

amplifier

sample

trigger source impact source

trigger

side view 

cw source detector

detector

impact head

hinge

trigger source

cw Source

base plate

base plate

sample

computer

(a)

(b)

Fig. 13.13 Experimental configuration for NWMS impact plus
pure cw tone method. (a) The setup and the bottom show the
calibrated hammer. (b) Side view of hammer-sample configura-
tion (from A. Sutin and P. Johnson, unpublished).
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Fig. 13.14 NWMS impact plus pure cw tone
example for sample shown in Figure 13.9.
(a) A portion of the time series, showing the
cw tone, time of impact, and resulting vibra-
tion. (b) Power spectrum of time signal, show-
ing an undamaged sample (grey) and a dam-
aged sample (black). No filter was applied

in order to show the vibration spectrum in
the damaged part, as well as the modula-
tion about the pure tone. Note the vibrational
modes range from dc to 40 kHz. (c) Expanded
view around the cw tone, showing the increase
in overall sideband energy due to the crack
in the sample (from A. Sutin and P. Johnson,
unpublished).

For an example of the method, we describe results from two bearing cap spec-
imens, one undamaged and one cracked. An example is shown in Figure 13.15.
In the experiment, the transducer emitting the pure cw signal was bonded with
epoxy to the sample. Figure 13.16 shows examples of spectra obtained during an
experiment where the cw frequency was stepped over a band from n = 95 kHz to
m = 114.5 kHz at intervals of Δ f = 0.5 kHz for a total of i = 40 steps. Two exam-
ples of individual frequency steps are shown in Figures 13.16a,b (105, 105.5 kHz,
respectively). Note the difference in sideband and cw frequency amplitudes. Fig-
ure 13.16c shows the summation average Si ( f ) for the intact sample, and Fig-
ure 13.16d shows Si ( f ) for the cracked sample. It is interesting to note that the
effects on nonlinear mixing can be so pronounced over such relatively small fre-
quency changes and is a useful lesson in understanding how variable the nonlinear
mixing can be due to material geometry and resulting modal structure.
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Fig. 13.15 Bearing cap sample used in the NWMS summa-
tion observations whose results are shown in Figure 13.16.
Scale is in cm. Sample is excited simultaneously by a pure tone
cw source and impact from the calibrated hammer shown in
Figure 13.13. In one sample, a crack was located in the arch
(photo courtesy of T.J. Ulrich).

13.4.5
Nonlinear Resonance Ultrasound Spectroscopy (NRUS)

NRUS has been described multiple times in previous chapters, in particular, in the
chapter on fast and slow dynamics. In short, a frequency step-sweep is conducted
that encompasses one or more eigenmodes of a sample. At each step the rectified
amplitude is recorded. The driving level is increased, and the measurement is re-
peated, and so on. The next figure shows NRUS results obtained from the same
material as that illustrating harmonic generation shown in Figure 13.11b and us-
ing the same experimental setup shown in Figure 13.11a [26]. Results are shown
before and after damage was done by three point bending. As noted in previous
chapters, the dependence of the resonance frequency shift Δ f normalized to its
linear value, f 0, is predicted by the P-M space theory to be linear with the strain
amplitude of the driving frequency: f 1, Δ f / f 0 = ε f 1 . The scaling for acceleration
ü is shown in Figure 13.18c. Acceleration and strain are related by a constant ω2:
ü/ω2 = ε, and ε = du/dx , where ω is 2π f . As expected, as damage increases, the
space is traversed upward to the left, indicating a larger nonlinear coefficient, α,
meaning as damage increases, the nonlinear coefficient increases.

13.4.6
Nonlinear Ringdown Spectroscopy (NRS)

An elegant and quick way to conduct NRUS (and simultaneously obtain the param-
eter α) is to conduct a moving window analysis of a time signal during the signal
ringdown. The pump signal, which also is used as the probe signal, is a continuous-
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Fig. 13.16 Modulation applying an im-
pact source with pure tone, for multiple fre-
quencies over a band encompassing 95 to
115 kHz, in 500-Hz steps. (a). Spectral plot
at cw single frequency at 105 kHz with im-
pact where the pure tone is located at or near
a node (only frequency band around pure tone
is shown). (b) Spectral plot at a slightly higher
frequency (105.5 kHz), where strong mixing

takes place. (c) Summation average of spec-
tra transformed to zero frequency for intact
sample. (d) Summation average in otherwise
identical, cracked sample. Note that the dif-
ference in the amplitudes of the cw are due to
differences in coupling efficiency and linear Q
in the two samples, as well as energy leakage
to the sidebands in the cracked sample (from
A. Sutin and P. Johnson, unpublished).

wave or long tone burst or mechanical tap used to soften the sample. One can then
take advantage of the material ringdown when the probe signal is terminated in
order to extract the relation between the resonance frequency shift and its strain
amplitude in a single experiment. In order to accomplish this, one can conduct
a moving-window analysis of the ringdown signal (the probe), for progressively lat-
er increments of the time signal, to extract the resonance amplitude and frequen-
cy. Specifically, the detected time signal for a tone burst at fixed source frequen-
cy f s and at fixed distance r , u cos(ωt + kx) has a ringdown amplitude of u(t) ∝
u0e–ωr/(2Qc), where U 0, c are the source amplitude and wave speed, respectively.
The relation is not an equality due to nonlinear attenuation and apparent nonlinear
attenuation due to the generation of harmonics. The deviation from this equation
to elastic nonlinearity is used to advantage: for n time windows, and window length
m points, n successive fits applying the equation u(n, t) = u0 sin(ωt +kx)e–ω(u)t/(2Qc),
where a u(n, t) and ω(u) are extracted and plotted. Note that the procedure works
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Fig. 13.17 Experimental configuration for NRS. Top shows
cartoon of setup, showing speaker, sample (side view), and
laser vibrometer beam. The arrows show the location of each in
the photo below. Notch in sample is where the crack initiates
during tension cycling (courtesy of P.-Y. LeBas).
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Modified from [26].



344 13 Nonlinear Elasticity and Nondestructive Evaluation and Imaging

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0 10 20 30 40 50 60 70 80

ab
s(

Δω
/ω

0)

microstrain

damaged

-0.04

-0.02

0

0.02

0.04

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cracked
am

pl
itu

de
 (

vo
lts

)

time (s)

..................................
time

moving window

(a)

(b)

Fig. 13.19 Example of NRS. (a) Time signal measured from
a cracked sample. Above the figure the concept of the moving-
window analysis is illustrated. (b) NRS analysis in an intact (di-
amonds) and cracked (circles) sample (courtesy of P.-Y. LeBas).

despite the fact that the experiment is conducted at a single frequency because of
the finite width of the frequency peak. As the frequency decreases with amplitude,
energy will be transferred to the softening frequency from the exciting frequency
pump. It is the softened-state resonance frequency that dominates the ringdown.

The experiment that illustrates the technique is shown in Figure 13.17. A steel
sample is fatigued in tension and suspended in front of a speaker. An identical sam-
ple is left intact for comparison. A signal is sent to the loud speaker via an amplifier,
comprised of a tone burst of 2000 cycles at a resonance frequency. A laser vibrom-
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eter detects the response. The resonance frequency was selected by sweeping the
speaker through a low-frequency band beforehand and looking for a strong mode,
in this case the first flexural mode. The frequency was 1300 Hz for the cracked
sample and 1380 Hz for the intact sample. n = 40 nonoverlapping time windows
were used in the analysis.

Figure 13.19a shows a time signal obtained from the cracked part. Just above the
figure, the moving-window analysis is shown conceptually. Figure 13.17b shows
results from the identical cracked and intact samples. There is some frequency
shift in the intact sample, but clearly, that in the damaged sample is much larger.
α can be extracted from the slope of this curve.

13.4.7
Slow Dynamics Diagnostics (SDD)

Slow dynamics (SD), the recovery process back to equilibrium after large-amplitude
wave excitation described in the chapter regarding fast and slow dynamics, can be
used as a damage diagnostic as well. The approach is based on probing a sample
in order to see if slow dynamics exist at an early time after large-amplitude distur-
bance. An advantage is that the method can be applied relatively quickly. The exis-
tence of SD indicates that damage is present [28]. Specifically, the diagnostic em-
ploys a low-amplitude pure-tone signal near an eigenmode of a sample that probes
the eigenmode slope change. Upon applying an impulse or high-amplitude pump
tone burst, the presence of a lasting amplitude change in the probe, correspond-
ing to a modal shift and the onset of SD, is the diagnostic. Figure 13.20 describes
the concept. The eigenmode is normally determined by first sweeping the frequen-
cy in a band appropriate for the sample, based on the equipment used as well as
such issues as the sample Q, geometry, and size. In Figure 13.20a a mode is se-
lected arbitrarily or, if necessary, modeling studies are conducted so that the mode
can be identified. Figure 13.20b shows that a low-amplitude (linear) probe is input
at the frequency denoted by A – A′, with an amplitude proportional to A′. When
the sample is disturbed by a large-amplitude signal (point source for instance), the
eigenmode abruptly shifts due to nonlinear induced softening, if mechanical dam-
age is present. This has the effect of changing the probe amplitude from A to A′,
as seen in Figure 13.20c. Depending on the frequency of the probe in relation to
the frequency of the mode, the amplitude may shift upward or downward. For in-
stance, a probe with a frequency that corresponds to the line at B – B ′ will increase
in amplitude from B ′ to B upon large-amplitude excitation. The probe wave recov-
ers slowly back to its equilibrium amplitude (this can take tens of minutes to many
hours, depending on the material), as shown in Figure 13.20b; however, it is only
necessary to monitor the onset of the SD in the time signal for use as a diagnostic.
SDD can be extremely sensitive due to the fact that it measures the change in slope.

An example of SDD is shown in Figure 13.21, from an bearing cap identical to
that shown in Figure 13.15. The crack is located at the arch top as shown in Fig-
ure 13.21c. Here, a relatively high-amplitude impulse (strain ~ 5 ~ 10–5) is used
to produce nonlinear material softening and simultaneously inducing the material
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Fig. 13.20 The slope amplifier used for slow
dynamics diagnostics (SDD). (a) Arbitrary
portion of the spectrum from a sample, show-
ing eigenmodes. The spectrum was obtained
from a resonance sweep over the frequen-
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The circled mode is shown in (b) in expanded
view. (c) Cartoon of the rectified amplitude of
a pure-tone probe during the process (from A.
Sutin and P. Johnson, unpublished).
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(localized) softening/slow dynamics. The impulse is delivered by a mechanical ex-
citation in this case (equivalent in energy to a tap with a pencil). A low-amplitude
(strain~ 10–7), pure-tone probe is input into the sample to monitor material change
before, during, and after the impulse. Figure 13.21 a shows that at the time of the
tap (time 0 s in the figure), the probe amplitude changes. In an undamaged, but
otherwise identical, sample, no amplitude change is observed after the time of the
strike (again time 0).

What is observed in the experiment is dependent on the frequency of the probe
with respect to the eigenmode peak. By judicious choice of the fixed frequency
(e.g., near the mode inflections), one gains significantly, or not, in one’s ability to
observe the onset of SD. The drawback is that the modes must first be characterized
by conducting a modal analysis from the spectrum of an impact or by applying
a resonance sweep in order to select the probe frequency.

In a simplistic manner, the amplification is proportional to the specific dissipa-
tion Q : ΔA = abs(C QΔ f ), where C is a constant relating Q and Δ f , meaning
there is an amplification by C Q in sensitivity over the frequency shift. With in-
creasing Q the slope of the resonance curve steepens, making the slope amplifier
more effective. At low Q, the method works less well because ΔA becomes relatively
smaller.

13.5
Progressive Mechanical Damage Probed by NEWS Techniques

A number of experiments have shown empirically the relation between linear wave
speed, Q, and nonlinear response as a function of mechanical damage induced by
oscillating or bending (e.g., [18, 29–31]). To our knowledge, the first work on this
topic was conducted by Buck et al. [18, 29], where flexural fatigue damage was stud-
ied in aluminum [29] as a function of surface stress, employing surface acoustic
waves. In their experiment, a tapered flexural-fatigue sample geometry was used
in order to generate a uniform surface stress and therefore a homogeneous den-
sity of fatigue cracks (see Figure 13.22a for sample geometry). In the experiment,
a strain gauge was used to measure the bending moment of the sample, and sur-
face stress was calculated from this. The apparatus consists of a tuned quartz trans-
ducer (30 MHz) as probe source, and a capacity microphone and heterodyne re-
ceiver were used to detect harmonics. Measurements were made on an aluminum
single crystal of [100] orientation. Deformation was obtained in compression in an
MTS system between two parallel flat plates. Harmonic generation was determined
at several intervals of compression cycling, outside of the MTS [17].

Figure 13.22 shows the results, where the ratio of the harmonic displacements,
U 2/U 1, versus fatigue cycles are seen (recall that in one dimension, at fixed dis-
tance, U 2/U 1 is proportional to 	, by the classical relation U 2/U 1 � ω2

U 1	). The
sensitivity of U 2/U 1 to increased dislocation density is clear, by a factor of two
or so.
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Fig. 13.21 Application of the slope amplifi-
er in a bearing cap identical to that shown in
Figure 13.15. Results for a damaged (a) and
undamaged (b) sample are shown. The im-
pact time was at 0 s in both cases. A high pass
filter was used in the experiment in order to

damp the free vibrations of the sample. This
is why no signal is apparent in the undam-
aged sample shown in (b). (c) A photograph
of an expanded view of the sample showing
the surface-breaking crack located at the top
of the sample arch.
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Fig. 13.22 Progressive damage in a sample of aluminum.
(a) Sample setup showing flexural fatigue specimen with trans-
ducer locations. The shaded region is the high-amplitude re-
gion of second harmonic. (b) Normalized second harmonic
displacement as a function of fatigue in aluminum (modified
from [17]).

A follow-on measurement by the same group for the same type of sample ge-
ometry and experiment is shown in Figure 13.23. The figure shows the peak of the
second harmonic amplitude as a function of the percentage of the “expended life in
the initiation phase of fatigue.” This quantity is defined as that part of the total life
necessary to produce the first surface crack having a length of order 0.5 mm. The
results for three applied surface stresses are shown. Harmonic signals are detected
as early as 10 to 20% of the fatigue life, and change by up to a factor of 4 to 4.5.

Cantrell and Yost have conducted numerous studies of fatigue damage. In what
follows, results are described in aluminum alloy 2024 [32]. In the tests, ASTM
standard dogbone specimens were fatigued at a rate of 10 Hz under uniaxial,
stress-controlled load at 276 MPa. Bulk waves of frequency 5 MHz were applied
by a lithium-niobate transducer. After propagating through the solid, both the
fundamental and harmonic signals were detected by an air gap capacitance trans-
ducer at the opposite end, as indicated. Actual measurements of 	 are shown in
Figure 13.24 and were extracted from absolute amplitude measurements of the
fundamental and second harmonic signals. The 	 increases monotonically with
increasing fatigue cycles and is related to an increase in the volume fraction of
persistent slip bands throughout the fatigue life.
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Fig. 13.23 Progressive mechanical damage due to bending
in aluminum 7075-T6. The sample geometry is that shown in
Figure 13.22a. Relationship between harmonic amplitude and
fundamental amplitude U 2/U 1 for three values of surface
stress as noted. The stress values refer to the maximum cyclic
surface stress of the material’s yield strength. Higher surface
stress produces larger harmonics (from [29]).

Fig. 13.24 Progressive mechanical damage showing 	 as func-
tion of number of fatigue cycles for aluminum alloy 2024-T4
(from [32]).

A very nice study by Nagy [31], shown in Figure 13.25, relates the linear elastic
quantities of wave speed and attenuation to the nonlinear parameter in a sample
of polymer. In the study, a sample fixed at the bottom end and free at the other was
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Fig. 13.25 Progressive mechanical damage
due to bending on a polymer sample. (a) Ex-
perimental sample showing deformation. (b)
Comparison of linear and nonlinear param-
eters, semilog plot. (c) Zoom of (b) show-

ing the linear parameters (linear axes). The
nonlinear response is affected early on in the
damage process and becomes enormous very
quickly (data courtesy of P. Nagy; experimental
procedure described in [31]).
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Fig. 13.26 Progressive mechanical damage in concrete. α,
wave speed, and 1/Q were monitored at each damage step.
Data are normalized to their intact values (modified from [26]).

shaken in constant shear displacement (equivalent to a strain of 7 ~ 10–3), at a pe-
riod of about 10 s until failure (Figure 13.25a). A pulse-echo probe measured the
linear ultrasonic longitudinal velocity, and attenuation was measured during each
loading cycle, while the sample was in its central (undeformed) position, across the
base of the sample. In addition, a number of velocity measurements were made
through each cycle of excitation. During an oscillation, half of the sample was in
compression while the other half was in extension when not in the vertical position.
During each bending cycle, the observed velocity modulation was twice the loading
frequency. Thus the first-order nonlinear effect cancelled out and only the second-
order effect was observed, as a second-harmonic modulation of the instantaneous
velocity. The nonlinearity parameter plotted in Figure 13.25b is this quadratic coef-
ficient. The quasistatic Young’s modulus was calculated in each bending cycle from
the bending force required to produce a given end deflection. One can see that the
linear responses [1/Q (dashed line), wave speed (solid line), and modulus (dashed
line in Figure 13.25c) Figure 13.25b,c] are relatively insensitive to induced damage
until just before the sample fails. The nonlinear parameter shows a change early
on in the cycling and, just before failure, is about six times that of its initial value.

A similar procedure was applied to damage detection in thin, synthetic slate
strips, described previously, using the same experimental setup shown in Fig-
ure 13.11a [26], where samples were subjected to cyclic fatigue loading under
three-point bending. Before cycling, and after each loading session, the linear pa-
rameters (wave speed and wave dissipation) and nonlinear parameter (α obtained
from the modal frequency shift in resonance) were measured. Figure 13.26 sum-
marizes the evolution of the linear and nonlinear parameters relative to their initial
values as a function of fractional percent to failure.
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13.6
Mechanical Damage Location and Imaging

Isolating and/or imaging the source of elastic nonlinear response, and thereby me-
chanical damage, has been addressed in a few studies but is still in an early stage
except in limited cases.

13.6.1
Harmonic Imaging

Second harmonic imaging is a well-known and frequently applied method that
works well in a variety of circumstances provided one can separate system-related
harmonic generation from that of the test specimen, as is the case with all non-
linear methods. At present second harmonic imaging is widespread. For instance,
nearly every medical ultrasound imaging system offers second harmonic imaging.
The primary application of these systems is to boost frequency rather than im-
age nonlinearity, but they are used to create images from the generation of a sec-
ond harmonic either based on tissue nonlinearity or on injected bubble-dynamics-
induced nonlinearity.

There are many examples of second harmonic diagnostics and imaging for NDE
in the literature. In Figure 13.27 we describe one example of second and third har-

scan area

delamination scanning tool

laser interferometer

source

to computer

(a)

(b)

Fig. 13.27 Harmonic images. (a) Experimen-
tal configuration showing location of delami-
nation (arrow), as well as location of sources
and scanning laser. Large arrow points to scan
region and defect. (b) Fundamental and har-
monic images, 20 ~ 40 mm2 in dimension,
obtained in the region of an oval-shaped de-

lamination in a fiber-reinforced composite
plate. The 1 f image shows a standing wave
pattern, but in the 2 f and 3 f images, the
oval-shaped pattern is clear (used with per-
mission from I. Solodov). (Please find a color
version of this figure on the color plates.)
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monic imaging of a delamination. In the study, the source emits a very high strain
amplitude at a frequency of 50 kHz, and after detection, the signal is used to ex-
tract the second and third harmonics at 100 and 150 kHz, respectively. This is done
at each point in a two-dimensional rastor-type scan in order to create an image.
Note that the 1 f image shows no hint of the delamination, and the largest nonlin-
ear response in the 2 f and 3 f images is on the edges of the delamination. This
observation underscores the point that the nonlinear response here is showing
the edges rather than the center of the delamination. Later, we will describe sec-
ond harmonic imaging in the context of time reversal used with nonlinear waves
that also shows that the nonlinear response does not necessarily originate in all
of a crack/delamination (TR NEWS). This important point means that extracting
the damage volume from a nonlinear response may be ultimately possible only in
some instances.

An example of second harmonic imaging in a spot weld follows in Figure 13.28
from [33]. In the experiment, a C-scan acoustic microscope imaging system, was
modified to generate high-power tone bursts and to extract the second harmonics of
the reflected waves. The frequency of the C-scan was 30 MHz, with a 25-mm focal
point size. In the experiment, spot welds were created with artificial, small defects
of order 0.1 mm inside. The C-scan is an image of acoustic impedance contrast
(density times velocity) shown as dark regions. A cross section of the region is
shown as well. The second harmonic image is an image of where the nonlinear
response is highest (e.g., bright regions at border between black and gray regions).
Dark regions correspond to regions of high acoustic impedance.

13.6.2
Modulation Imaging

A vibration/modulation approach is described next [34–36]. The method is based
on application of ultrasonic tone bursts in the presence of low-frequency, contin-
uous-wave vibration. The presence of wave modulation in a tone burst sequence
provides the means to locate a crack and to distinguish cracks from other wave scat-
terers. Following Figure 13.29, the technique can be thought of as follows. A low-
frequency, continuous-wave excitation is applied to a thin, rectangular-shaped spec-
imen containing a crack and a hole, simultaneous with a group of high-frequency
tone bursts. A first pair of tone bursts is reflected at a point where the low-frequency
excitation stress reaches a maximum. At this time the crack is relatively compressed
and the reflected pulse has a reduced amplitude, due to a transient, reduced acous-
tic impedance. The second pair of tone bursts is shown when the low-frequency
wave stress is zero, meaning there is slightly larger amplitude in the reflected sig-
nal. The third pair is shown at the moment of wave extension, when the crack is
maximally opened and the reflection coefficient is maximized. Through all phases
of vibration the amplitude of the tone burst reflected from the hole remains con-
stant, essentally independent of the changing stress field. In this manner, the am-
plitude modulation of the ultrasonic tone burst due to the crack flexing as a result
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Fig. 13.28 Two-dimensional image of
a spot weld. Dark regions correspond to
high impedance contrast. (a) C-scan image.
(b) Second harmonic image of same region.
Bright regions correspond to highest nonlin-
ear response. The small rectangle shows one
of the small defects and the high associated

harmonic response. (c) Cross-section of slice
noted by dashed line in (a). Vertical dimension
is time (increasing downward vertically), hor-
izontal dimension is space, and the relative
impedance is shown as gray tones, where light
shade is higher impedance [33].

of the low-frequency excitation distinguishes cracklike defects from other inhomo-
geneities.

The procedure is as follows. The source located at x on the sample face launches
a tone burst of 3 MHz and duration 0.66 µs at a sequence of times, T 1. . .T N (x),
N = 512, where

T n(x) =
1

366
(n – 1)s , n = 1. . .N . (13.4)

The detected signals are composed of the tone bursts and low-frequency excitation
in the time intervals T n u t u T n +ΔT shown in step 1 in the figure. The tone burst
signals are rectified, the low-frequency excitation is eliminated by a high pass filter,
and this signal is recorded and digitized at 0.6 µs, that is, ΔT = 256 ~ 0.6 µs.

As a consequence, the output is an “amplitude” matrix

V nm(x) = V (T n , τm ) , (13.5)

where τm = mτo , 256τ0 = ΔT , m = 1. . .256, and n = 1. . .N , as illustrated in
step 2 in the figure. The basic procedure is to study the Fourier structure (step 3)
of V (T n , τm ) at fixed τm ,

A(τm , x) =
N∑

n=1

V (T n , τm ) sin ΩT n , (13.6)
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Fig. 13.29 Figure showing experiment for
modulation imaging. (a) Sample top and side
view showing location of crack and hole, as
well as fixed end and location of vibration
source. Pulses applied from fixed end. (b)
During compression the crack is closed and
therefore almost transparent, so there is very

little reflection; during dilation, there is an
impedance contrast, and thus the signal is re-
flected. The reflection from the hole is always
the same due to the fact that stresses have
no influence on it (the hole shunts the stress)
(modified from [36]).

where the low-frequency modulation signal, the 10-Hz signal, is sin Ωt . This proce-
dure will identify those τm at which the detected signal has evidence of the nonlin-
ear scatterer. The association of time T n with space Z n can be carried out indepen-
dently of the experimental procedure (if the wave speed is known), and therefore
the above steps do not depend on this identification. Thus if T ∝ Z in some known
way, the output can be used to identify the location of the nonlinear scatterer. This
procedure is carried out for 26 source locations across the sample face, x1. . .x26,
and in this manner the full wave profile is obtained by iterating the above steps at
each source position (x).

The processed data set is the amplitude of the 10-Hz signal at each xi , i =
1. . .N X , N X = 26 and at each τm = mτ0, m = 1. . .M , M = 256, that is, the
N X ~ M matrix:

A10(i , m) . (13.7)

The location of the damage is found by solving the inverse problem associated with
this matrix. Here the nonlinear scatterers are point sources to within the resolution
Δz = cτ0. The amplitude A10(i , m) comes from a source on the line (xi , z) at

z = mcτ0 == zm . (13.8)

The output data from the experimental and processing procedure are an A – T
grid of amplitude values V, much like using the absolute value of amplitude in
a seismic reflection profile. The difference with a seismic reflection profile is that
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we have no off-axis detection in this experiment. Detection is only done at each
source location – it is truly a pulse-echo-type experiment in that sense.

One of the plate ends was clamped to a support composed of a large mass. The
ultrasonic tone burst wave was radiated at the plate face, as shown in the figure.
The diameter of the piston radiator was 9 mm, and the resonance frequency of the
transducer was 3 MHz. The tone burst signal applied to the radiator had a dura-
tion of about 0.66 ms. The radiated signal was about three times longer due to the
transducer resonance properties. The repetition frequency of the tone burst sig-
nals was 366 Hz. The tone bursts were rectified and then digitized with a sampling
rate of 0.6 ms. Triggering was done using the electrical tone burst applied to the
transducer.

The far end of the plate was connected to a mechanical shaker. The shaker excited
flexural vibration of the plate at a frequency of 10 Hz. Vibration amplitudes were
detected and feedback-controlled for amplitude stability by use of an accelerometer
located on the plate.

The two-dimensional reflection profiles of the “linear” response and of the non-
linear response (modulation level) as a function of time are shown in Figure 13.30.
In Figure 13.30b, it is clear that the amplitude of the linear signal reflected from
the hole is higher than the amplitude of the signal reflected from the crack (Fig-
ure 13.30a). Both features are imaged, but the nature of the features is unknown
without a priori knowledge or some other means of testing. In the case of the
nonlinear reflection profile, the level of the modulation in the signal reflected from
a crack is large. The hole is a linear scatter and therefore should not produce modu-
lation of the reflected signal. This experiment clearly demonstrates that a crack can
be discriminated within the background of linear scattering from inhomogeneities
other than cracks, and including sidewall and backwall reflections.

13.6.3
Imaging Applying Time Reversal Nonlinear Elastic Wave Spectroscopy (TR NEWS)

Much of the seminal research in time reverse acoustics (TRA) has been carried out
by a group in Paris at the University of Paris VII (Laboratoire Ondes et Acoustique,
ESPCI) beginning in the late 1980s [37–41]. Time reversal offers tremendous spa-
tial and temporal focusing of sound regardless of the heterogeneity of the medium
in which the wave propagates. TRA systems have a range of applications in de-
velopment at this writing, including destruction of tumors and kidney stones and
long-distance communication in the ocean. The NDE applications of TRA in de-
velopment to date include detection of small, low-contrast defects within titanium
alloys [39, 40] and detection of cracks in a thin air-filled hollow cylinder [41]. A re-
view of TRA applications to NDE is given in [39].

The time reversal (TR)-induced focusing of wave energy at a point in space and
time is ideal from the perspective of inducing an elastic-wave, nonlinear response
because of the large amplitudes one can obtain. The first studies to do this apply-
ing broad-frequency band waves and a laser vibrometer detector in samples that
were not submerged were conducted in sandstone [42]. Follow-on studies showed
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that one could induce a localized nonlinear response at the focal volume in rock.
Based on this work, time reversal methods have been developed for investigating
the nature of a nonlinear scatterer, such as a crack on the surface of a solid [43].
In addition, methods are in development to isolate internal nonlinear scatterers
in an otherwise elastically linear solid. The general category of methods that com-
bines time reversal and elastic nonlinearity is termed time reversal nonlinear elas-
tic wave spectroscopy (TR NEWS), because nonlinear induced spectral components
are used in identification and localization [44].

In what follows, we describe a study aimed at imaging a surficial crack in a sol-
id taken from [45]. The experiments, shown in Figure 13.31a, were conducted in
a glass block, shown in Figure 13.31b. Two piezoelectric ceramics were used as
sources bonded to the face of the glass block opposite the crack location. Waves
were detected on the cracked face using a laser vibrometer. The two sources were
driven with separate frequencies ( f 1 = 170 kHz and f 2 = 255 kHz) in order to
observe nonlinear wave mixing (sidebands) at the crack, and to isolate it from the
surrounding, intact material.

The procedure for obtaining a one-dimensional line scan across the crack is as
follows [45]. A signal sn(t) is transmitted from a source n where f n is the frequency
transmitted from the nth transducer with a maximum amplitude U n and duration
τn . The signal is received rm,n (t) at a selected point (xm , i.e., focal point of the laser

tim
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distance

(a)

(b)

crack

hole

pulse-echo

nonlinear

Fig. 13.30 Results from modulation imaging method. (a) Re-
sults of method showing isolation of crack only. (b) Results
from standard pulse echo showing that the hole dominates the
image. (please find a color version of this figure on the color
plates)
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Fig. 13.31 Line scan of a surficial
crack applying TR NEWS. (a) Experi-
mental configuration for TR experiment.
(b) 101 ~ 89 ~ 89 mm3 glass block
on which the experiments were con-
ducted. The source transducers, bond-
ed with epoxy. The crack was located
on the opposite surface to the sources.

(c) Line scan across the crack show-
ing spectrogram. Primary frequen-
cies f 1, f 2 as well as sum f s and difference
f d are noted, as well as 3 f 1 + 2 f 2 . The region
of the crack is denoted by dotted lines (modi-
fied from [45]). (please find a color version of
this figure on the color plates)
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vibrometer) on the sample for each f n independently. The signal is time reversed
rm,n (t) → rm,n (–t). Simultaneously the time-reversed, amplified signals Sm,n are
transmitted from their original source locations. The signal is recorded at the TR
focused signal Rm at the mth focal point of the laser vibrometer (xm ). N is the
total number of source transducers, xn is the location of the nth transducer, and
G(xmt |xnt ′) is the Green’s function taking the signal transmitted from location xn

and time t ′ to point xm at a later time t. The laser is stepped to the next desired
location (xm+1) and the process is repeated for M total focal points.

The above steps are the generalized procedure followed for the scan. In this ex-
periment a scan (in one dimension) was conducted across the cracked area. At each
of the M = 22 points (xm) the same two f 1 and f 2 sources were used. Additionally,
the drive amplitudes and durations remained constant, as did the source locations
x1 and x2. In the step interval in and near the cracked region, the step size was
200 µm, while away from the crack the step size varied from 200 to 500 µm. The
focal-point resolution was ~ 10 µm. This experiment differs from standard time
reversal experiments in that the recorded (and time reversed) signals were then in-
put back at the original source locations. This method, known as reciprocal TR, is
based on the fact that reciprocity dictates that the resulting signal will focus at the
point of the original detector [42, 46].

The primary frequencies f 1, f 2 show amplification at the crack as manifested
by the high amplitudes in Figure 13.31c. This behavior is nearly always observed
in TR measurements with cracked solids. It is due to energy that is trapped in the
cracked region (it is a low-velocity zone), and therefore, due to energy conservation,
wave speed decreases, and amplitudes increase. The effect is enhanced by the soft-
ening induced by the high-intensity focused wave. Tangentially, the same effect is
observed in sandstone, where the high-intensity wave in the focal volume induces
nonlinear softening, and wave speed decreases (A. Sutin, pers. comm.). Note the
very different amplitude response of the sum and difference frequencies, related
to their different spatial wavelengths, and therefore their different spatial resolu-
tion as well as complex interaction with the crack. Note that the figure also shows
3 f 1 + 2 f 2.

In a follow-on experiment a scan in two dimensions n, m was conducted across
the cracked area [45]. The results are shown in Figure 13.32.

The difference in the drive amplitudes U1 and U2 shown in Figure 13.32a,b
arises due to the use of two different amplifiers with differing gains for the two
channels. As in the line scan, the sum and difference frequencies are not identi-
cal, that is, the difference frequency is relatively constant in the damaged region
while the sum frequency is only seen in one portion of the crack. The differences
between the different nonlinear frequencies may ultimatley provide the ability to
characterize the crack.
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Fig. 13.32 Time reversal nonlinear elastic
wave spectroscopy images in a glass block
with a surficial crack (Figure 13.31). (a) The
linear response showing only f 1 and (b) f 2
in the scan area. The high amplitudes in the
lower left-hand quadrant indicate the crack lo-
cation. (c) The nonlinear response (difference
frequency f 2 – f 1) and (d) sum frequency

( f 1 + f 2) in the scan area. The images are
constructed by first bandpass filtering the fo-
cused signals about the desired frequency and
then extracting the maximum amplitude of the
filtered signals at each scan point (from [45]).
(please find a color version of this figure on
the color plates)

13.7
Other Methods for Extracting the Elastic Nonlinearity

13.7.1
Time Reversal + Phase Inversion

This method was initially proposed for ultrasonic imaging of microbubbles (con-
trast agents) in medical ultrasound [50] and was first employed in TR NEWS ini-
tially by Sutin [47, 48]. The method is not restricted to time reversal applications;
however, we will describe it in this context.

If an isolated nonlinear scatterer located in a solid (or fluid) is excited simultane-
ously at two frequencies ω1 and ω2, then the backscattered signal will contain spec-
tral content at the sum and difference frequencies, as well as higher-order terms
as described previously. The idea behind the phase-inversion method is that the
linear portion of a signal is canceled, leaving nonlinear terms for analysis. In one
implementation described in [49], two time-reversed pulses that are sent out in se-
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quence, the first, rk (t), with a sign opposite that of the second, –rk (t – T ), where
T is the period of the signal. The response from each of these signals is record-
ed, producing signals p tot(t) and – p tot(t), respectively. The two linear responses at
the measurement point will have opposite signs, and shifting the second signal in
phase by T and summing will cancel the response. If a nonlinear component is
present, then the summed signal will contain energy. In the latter case, the sum of
the two received signals is

psum =
[

p tot + φ(ek(t))
]

+
[
– p tot + φ(–ek(t)

]
, (13.9)

where φ(ek(t)) is the nonlinear portion of the detected signal [49]. As usual, the
signal amplitude is proportional to the elastic nonlinearity of the medium, as well
as the source amplitudes and frequencies. The fact that the signal is phase inverted
means that even components of the elastic nonlinearity are canceled, however (or
the odd components, depending on the sign of the second wave). Thus the signal
amplitude ε psum ∝ φ(ek(t)), where φ(ek(t) ∝ (ω3δε3 + ω2αε2), and δ is the classic,
cubic parameter and α is the hysteretic parameter. An advantage of the method is
the inclusion of more of the spectrum than a single-frequency component, as is
frequently the case in modulation or harmonic analysis, for instance.

In [49] a robust, hybrid version of the method was developed for antiperson-
nel mine location, but has since been generally applied. The hybrid version of the
method is essentially a form of matched filtering where an approximation of a sys-
tem impulse response is broadcast through the real system. Following the devel-
opment in [49], first, a wide-frequency bandwidth signal obtained by sweeping the
source in frequency as a function of time is sent to each detector sequentially. The
measured signal can be represented as

νk(t) = e(t) � hk(t) , (13.10)

where νk (t) is the detected signal, hk(t) is the system impulse response, e(t) is the
source term, and � denotes the convolution operator. The electronic drive signal is
cross-correlated with the radiated signal resulting in a short pulse, sk(t),

sk(t) = νk (t) � e(–t) , (13.11)

which approximates the system impulse response hk(t) (it is a limited-frequency
band impulse response). This can be seen as follows:

Sk(ω) = E (ω)Hk(ω)E ∗(ω) (13.12)

where E (ω), Hk(ω), and Sk(ω) are the Fourier spectra of the initial signal e(t), the
transfer function hk(t), and the cross correlation of the received and radiated sig-
nals sk(t), respectively. For an initial signal with constant spectral density in the
frequency band of interest E (ω) = E 0 for ω1 u ω u ω2, the cross correlation of the
received signal is proportional to the system impulse response,

Sk(ω) = E 2
0Hk(ω) . (13.13)
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Thus the system impulse response in a limited frequency band can be approximat-
ed in the time domain as

ĥk(t) = Sk (ω)/E 2
0 . (13.14)

The partial-band system impulse response is time reversed and normalized for all
channels. The normalization maintains the same peak amplitude for all radiated
signals. The signals have the form

rk (t) = sk(tdelay – t)/ max(sk(t)) , (13.15)

where tdelay is an arbitrary delay chosen to ensure causality. A second measurement
records the time-reversed responses, pk(t), broadcast over all sources simultane-
ously. The measured signal associated with sources k can be expressed as

pk(t) = rk (t) � hk (t) . (13.16)

Because the time-reversed signals are applied simultaneously to all sources, the
response is the superposition of the individual responses:

p tot(t) =
∑

rk (t) � hk (t) (13.17)

over all sources.
In what follows we describe an application of the impulse response/phase inver-

sion technique applied to locating landmines. Mines are known to be more elas-
tically nonlinear in comparison with the nonlinear surrounding geomaterial, for
example, [49]. This is apparently due to the highly nonlinear interface between
the mine and the soil, rather than the landmine itself (A. Sutin, pers. comm.). In
the experiment shown in Figure 13.33, a multichannel source array composed of
loudspeakers was used to generate the signals and a laser vibrometer was used for
detection. The experiments were performed in sand and soil containing clay, sand,
small rocks, and fine organic matter. An antipersonnel mine was buried at a depth
of 2 cm and surface vibration measurements were taken in a line scan at positions
directly above as well as adjacent to the mine applying a laser vibrometer. A sum
and difference frequency were generated by the array of loudspeakers and the sig-
nal was coupled into the ground via the air. The signal was detected by the laser
vibrometer. In the simplest case, the signal was then time reversed and reemitted
by the loudspeakers and detected again by the laser vibrometer, for both the signal
and its phase inverse applying the concept of reciprical time reversal. This signal
was again detected by the vibrometer and the two signals subtracted, leaving only
the nonlinear response of the focal region.

In the hybrid version of this technique, the cross correlation of a swept sine wave
input signal with the detected signal is created, giving the approximate impulse re-
sponse of the material. The impulse response is time reversed and phase inverted,
and both signals are reemitted.
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speaker array laser vibrometer
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Fig. 13.33 Phase inversion method applied
to antipersonnel mines. (a) Experimental con-
figuration. An array of loudspeakers is sus-
pended over the surface. The signals they emit
are recorded with the laser vibrometer. The
vibrometer can scan a large surface area, as

indicated by the horizontal lines. (b) Step-scan
over landmine, showing the strong nonlinear
response (at 0 m) obtained from the phase in-
version method. The closed circles represent
the actual measurements (from A. Sutin, Pers.
comm.).

13.7.2
Scaling Subtraction/Variable Amplitude Method

A method, known as the variable amplitude method (A. Sutin, pers. comm.), and
alternatively the scaling subtraction method [51], is a highly effective approach in
isolating the elastic nonlinear behavior of a sample. The approach relies on record-
ing a low-amplitude, assumed linear elastic waveform. The signal could be a time-
reversed, focused signal; alternatively, it could be applied with any of the methods
described above. Following this, a high-amplitude, nonlinear signal is collected.
The low-amplitude signal is artificially scaled to match in amplitude the nonlinear
signal, and the two are subtracted, leaving only the nonlinear portion for analysis.
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13.8
Summary

In this section we began by describing the history of developing nonlinear diag-
nostics to applications. We followed this with a list of diagnostic methods showing
examples. This was followed by several examples of imaging. We have by no means
described all of the experimental methods, but we have touched on most of them.
In addition, we have attempted to sketch many of the signal-processing methods
in use, but again, not all of them, as new methods are appearing all the time. There
is no “best” diagnostic/imaging method or signal-processing method because it
is application dependent. It is also dependent on the order of type of elastic non-
linearity one wishes to probe. NRUS only gives the hysteretic elastic nonlinearity
parameter. The second harmonic gives only the second-order term proportional to
	. In many instances, it does not matter. For instance, a yes/no result for quick
diagnostics may be obtained from SDD, NWMS, or ringdown spectroscopy.
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Color Plates (courtesy of S. Levy)

Fig. 1.1 Porous aluminum powder. (This figure also appears on page 1)

Fig. 1.2 Thermal barrier coating. (This figure also appears on page 2)
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Fig. 1.3 Sandstone (typical grain size 100 µm). (This figure also appears on page 2)

Fig. 1.4 Cement. (This figure also appears on page 3)

Fig. 1.5 Ceramic. (This figure also appears on page 3)
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Fig. 1.6 Soil (sieved, typical grain size 1 mm). (This figure also appears on page 3)
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Fig. 5.3 Thermal configuration. An anisotropic
thermal expansion, λα = 1 + 0.5sign(rα), is
assigned to each elastic element (λ > 0 red
and λ < 0 white). This produces an average
expansion of the system, as well as compres-

sional and shear forces on individual elastic
elements. The spectrum of these internal
forces is shown in Figures 5.4 and 5.5. (This
figure also appears on page 100)
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Fig. 5.9 System configuration, Sw = 0.70,
filling. Displacement of the elastic elements
in a 20 cell by 20 cell realization of the elastic
system with Sw = 0.70. The bricks are red. The
space allocated to the mortar and contacts
is treated as the pore space and filled blue
(mortar) and green (contact) if there is fluid
in the associated pore and white otherwise.
All elastic elements are shown as if they are of
the same size, see the caption to Figure 5.6.

This configuration, formed on chemical poten-
tial increase, has homogeneous filling of the
pore space. Elastic elements adjacent to filled
vertical pores feel forces of tension tending
to elongate the elastic element. Elastic ele-
ments adjacent to filled horizontal pores feel
forces tending to pull the elastic element into
the pore space. This appears as the pulling of
bricks toward the pore. See Figure 5.12. (This
figure also appears on page 106)
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Fig. 5.10 System configuration, Sw = 0.90,
emptying. Displacement of the elastic ele-
ments in a 20 cell by 20 cell realization of the
elastic system with Sw = 0.90 as the chemical
potential is being lowered. This configuration
occurs near the onset of invasion percolation.

As the vapor invades the pore space from the
surface, well below the interface between full
and partially empty pores, the pore space is
uniformly filled. Shear forces occur only near
the outer edge of the system. See Figure 5.13.
(This figure also appears on page 107)
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Fig. 5.11 System configuration, Sw = 0.59, emptying. Displace-
ment of the elastic elements in a 20 cell by 20 cell realization
of the elastic system with Sw = 0.59 as the chemical potential
is being lowered. See Figure 5.14. (This figure also appears on
page 108)
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Fig. 6.9 Inversion in Preisach space; elabo-
rate stress protocols. The regions of Preisach
space, shown with color coding in (a), are
swept over by the stress protocol in (b) with
the same color coding. The elastic elements
in the red region (of Preisach space) are re-
sponsible for the strain as the stress evolves
2 → 1′ (1′ → 2′). The elastic elements in
the blue region are responsible for the strain
as the stress evolves 3 → 2′′ (2′′ → 3′).

The elastic elements in the blue, yellow, and
red regions are responsible for the strain as
the stress evolves 3′ → 2′′′ → 1′′. By ma-
nipulating the stress protocol the strain due
to elastic elements in a particular region of
Preisach space can be found. In more physical
terms, the strains due to elastic elements that
respond to particular stresses can be deter-
mined. (This figure also appears on page 124)
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Fig. 7.7 Energy landscape. The energy landscape for ( f c , f o ) =
(1.0, 0.0), see Eq. 7.20 and the discussion below, Eq. 7.22. (This
figure also appears on page 155)
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Fig. 9.5 Energy Landscape. The energy in Eq. 9.44, due to the
difference between the data vector eX and the model vector eM ,
as a function of d and W, the parameters of the model form
factor f M (x). The energy minimum is at d = 0.565 and W =
0.40. See Figure 9.3. (This figure also appears on page 209)
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Fig. 11.11 Parametric array results. (a) Ampli-
tude of direct arrival on the scan area of signal
f 1 = 65 kHz, broadcast from 10 transduc-
ers (open circles) in the array, Figure 11.10.
(b) Amplitude of direct arrival on the scan
area of signal f 1 = 60 kHz, broadcast from
9 transducers (shaded circles) in the array,
Figure 11.10. (c) Amplitude of direct arrival on
the scan area of signal Δ f = f 2 – f 1 = 5 kHz,

broadcast from all 19 transducers in the ar-
ray. (d) Amplitude of arrival on the scan area
of signal at Δ f = f 2 – f 1 = 5 kHz when
f 1 = 65 kHz is broadcast from 10 transducers
(open circles) in the array and f 2 = 60 kHz is
broadcast from 9 transducers (open circles) in
the array. The black circle on each panel is the
projection of the source array onto the scan
area. (This figure also appears on page 273)
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Fig. 12.5 Relief map of the study region in
southern California, showing the location of
1994 Northridge earthquake (star). The alluvi-
um recording sites are shown as red triangles
and the hard rock sites as blue triangles. After-
shock epicenters are shown with black crosses
and the mainshock rupture distribution is

outlined by the box. The fault plane dips to
the southwest, with the top edge at a depth
of 5 km and the bottom edge at a depth of
20.4 km. The location of maximum earthquake
slip is marked with the black star (from [8]).
(This figure also appears on page 319)
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Fig. 13.27 Harmonic images. (a) Experimen-
tal configuration showing location of delami-
nation (arrow), as well as location of sources
and scanning laser. Large arrow points to scan
region and defect. (b) Fundamental and har-
monic images, 20 ~ 40 mm2 in dimension,
obtained in the region of an oval-shaped de-

lamination in a fiber-reinforced composite
plate. The 1 f image shows a standing wave
pattern, but in the 2 f and 3 f images, the
oval-shaped pattern is clear (used with per-
mission from I. Solodov). (This figure also
appears on page 353)
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Fig. 13.30 Results from modulation imaging method. (a) Re-
sults of method showing isolation of crack only. (b) Results
from standard pulse echo showing that the hole dominates the
image. (This figure also appears on page 358)



Color Plates 381

Fig. 13.31 Line scan of a surficial
crack applying TR NEWS. (a) Experi-
mental configuration for TR experiment.
(b) 101 ~ 89 ~ 89 mm3 glass block
on which the experiments were con-
ducted. The source transducers, bond-
ed with epoxy. The crack was located
on the opposite surface to the sources.

(c) Line scan across the crack show-
ing spectrogram. Primary frequen-
cies f 1, f 2 as well as sum f s and difference
f d are noted, as well as 3 f 1 + 2 f 2 . The region
of the crack is denoted by dotted lines (mod-
ified from [45]). (This figure also appears on
page 359)
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Fig. 13.32 Time reversal nonlinear elastic
wave spectroscopy images in a glass block
with a surficial crack (Figure 13.31). (a) The
linear response showing only f 1 and (b) f 2
in the scan area. The high amplitudes in the
lower left-hand quadrant indicate the crack lo-
cation. (c) The nonlinear response (difference

frequency f 2 – f 1) and (d) sum frequency
( f 1 + f 2) in the scan area. The images are
constructed by first bandpass filtering the fo-
cused signals about the desired frequency and
then extracting the maximum amplitude of the
filtered signals at each scan point (from [45]).
(This figure also appears on page 361)
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Plate 1 Carrara marble, Tuscany, Italy. Plane-polarized light.
Long dimension is 0.94 mm. Note the distinct grain bound-
aries leading to the highly elastically nonlinear response of this
material.

Plate 2 Lavoux oölitic limestone, France.
Plane-polarized light. Long dimension is 2.35
mm. Some grain boundaries are apparent,
but the dominant features are the fossils, the
oöliths. Lavoux limestone is highly elastical-

ly nonlinear due to both grain boundaries
and perhaps differential compressibility be-
tween fossilized and nonfossilized regions.
The mechanical behavior of this rock is fea-
tured throughout this book.
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Plate 3 Berea sandstone, Ohio, USA. Forty-five-degree polariz-
ers with quartz plate. Long dimension is 2.35 mm. Note grain
contacts. Berea sandstone is also highly elastically nonlinear
due primarily to the grain boundaries. The mechanical behavior
of this rock is featured throughout this book.

Plate 4 Meule sandstone, Alsace, France.
Forty-five-degree polarizers with quartz plate.
Long dimension is 2.35 mm. Meule and Vos-
ges sandstones are very similar, and their
composition is also similar to Berea sand-

stone. The presence of the grain contacts
leads to highly elastic nonlinear behavior. The
mechanical behavior of this rock is featured
throughout this book.
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Plate 5 Granodiorite, Jemez Mountains, New Mexico, USA.
Parallel polarizers with quartz plate. Long dimension is 2.35
mm. Granodiorite is a crystalline rock whose elastic nonlinear
behavior is due to micro- and macrocracks. A large number of
microcracks are evident.
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Plate 6 Quartz-cemented Fontainebleu sandstone, France.
Forty-five-degree polarizers with quartz plate. Long dimension
is 2.35 mm. Fontainbleau sandstone is one of the most elasti-
cally nonlinear rocks we are aware of. Its behavior is due to very
soft contacts between grains. The mechanical behavior of this
rock is featured throughout this book.

Plate 7 Vosges sandstone, Alsace, France, showing microc-
racks in sand grains. Forty-five-degree polarizers with quartz
plate. Long dimension is 2.35 mm. Vosges* sandstone is sim-
ilar in composition to Meule sandstone and, as a result, has
similar mechanical behaviors. Its elastic nonlinear behavior is
due primarily to soft grain contacts.
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Plate 8 Madera limestone with marine fos-
sils, Valle Grande, New Mexico, USA. Plane-
polarized light. Long dimension is 2.35 mm.
Madera limestone is another fossiliferous
limestone (see the sample of Lavoux lime-

stone), e.g., fossil nautilus is clearly apparent.
The elastic nonlinear behavior may be due to
both grain boundaries and perhaps differen-
tial compressibility between fossilized and
nonfossilized regions.

Plate 9 Porphyritic basalt, Los Alamos, New Mexico, USA.
Plane-polarized light. Long dimension is 2.35 mm. Basalt is a
volcanic rock with, in this case, a large mix of grain sizes from
very small (dark regions) to very large. Its elastic nonlinearity is
likely due to micro- and macrocracks.
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Plate 10 Fractured and altered peridotite, Mashaba Igneous
Complex, Zimbabwe. Plane-polarized light. Long dimension is
2.35 mm. The elastic nonlinearity of this rock is due to the in-
tense network of fractures, clearly evident. The material would
be expected to have a highly anisotropic elastic nonlinear re-
sponse, strong perpendicular to the cracks.

Plate 11 Immature sandstone (highly angular grains, wide
range of grain sizes, abundant nonquartz grains), Pigeon Point,
California, USA. Plane-polarized light. Long dimension is 2.35
mm. The elastic nonlinearity is due to the grain contacts.
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Plate 12 Chlorite schist, Franciscan Formation, Oakland, Cali-
fornia, USA. Plane-polarized light. Long dimension is 2.35 mm.
Schist, a metamorphic rock, is strongly anisotropic and would
be expected to have strong nonlinear response across the grain
boundaries (dark regions).

Plate 13 Rhyolite pebble in Puye Conglomerate, Los Alamos,
New Mexico, USA. Plane-polarized light. Long dimension is
2.35 mm. Rhyolite is a volcanic rock containing much glass. We
have not tested its elastic nonlinear response but would expect
it to be small unless microfractured.
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Plate 14 Highly vesicular basalt, Lathrop Wells, Nevada, USA.
Plane-polarized light. Long dimension is 2.35 mm. Basalt is a
volcanic rock (compare to the other basalt sample). Its elastic
nonlinearity would be dominated by microcracks.

Plate 15 Novaculite, Oauchita Mountains, Arkansas, USA.
Crossed polarizers. Long dimension is 0.94 mm. Novaculite
is formed from low-grade metamorphism of chert. It is one
of the few rocks we are aware of that exhibits no mesoscopic
nonlinear response.
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