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Preface

The computation of unsteady free surface flows has an important place in disci-
plines such as civil, environmental, and coastal engineering, given the need to solve
real-life problems associated with this fascinating type of hydraulic motion. During
the past decades, their three-dimensional (3D) computation using RANS and LES
models gained impulse, permitting an accurate numerical solution of complex
hydraulic flows. These numerical solutions are usually coupled in a hybrid way
with physical laboratory experimentation. Given that 3D numerical solutions are
still time-consuming and computationally costly, the common mathematical tool for
simulating unsteady free surface flows still relies on the use of depth-averaged 2D
models. This approach is popular among water scientists and hydraulic engineers,
given that the 2D depth-averaged mathematical formulation and numerical imple-
mentation are simpler. The standard 2D approach is based on the Saint—Venant
hydrostatic theory for flows in a horizontal plane, which is by now powerfully
solved using modern shock-capturing methods like the finite volume method or the
discontinuous method of Galerkin. However, there are a number of important
real-life hydraulic flows that are not suitable for modelling based on the hydrostatic
pressure approach, including flows over control structures, such as a dam crest, the
bed-form evolution in alluvial rivers, the drainage of recharge in aquifers, or the
avalanche mass flows down a steep mountain.

Furthermore, the teaching of free surface flows all over the world strongly relies
on the seminal books of Ven Te Chow (published in 1959) and Francis M.
Henderson (published in 1966), in which the Saint—Venant theory is lucidly
explained and applied. Most of the (few) open-channel books written since
expanded and presented in detail the theory of Saint-Venant. However,
non-hydrostatic flow problems are often only mentioned without details on the
procedures available. They are in most cases referred to papers or explained based
on dimensional analysis and experimentation. Advanced depth-averaged modeling
approximations, and the power of their possibilities in engineering, are hardly
available in open-channel flow books.
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viii Preface

Despite the interest of the non-hydrostatic theory for teaching, research, and
practice, the only book so far written on that topic is Boussinesq’s “Essai sur la
théorie des eaux courantes,” published in 1877. This is indeed the original book in
which Boussinesq masterly presented his depth-averaged theory. Today, almost 140
years since, the purpose of this new book is to fill in the gap by presenting the
higher mathematical level of approximation over the Saint—Venant hydrostatic
theory, also referred to as the Boussinesq theory, and the advances since
Boussinesq’s book. The theory and computation of non-hydrostatic free surface
flow problems using depth-averaged models are developed, including problems in
open channels (inviscid and viscous), groundwater with a phreatic surface, and
granular material. The application of the theory to coastal engineering problems is
beyond the scope of the book. However, the main advances on the use of
Boussinesq-type models in this discipline are considered at adequate places by
using the theoretical developments presented here.

The book topic coverage originates from the collaborative work of the authors,
working toward the solution of these problems during the past ten years. The book
was designed to be as complete as possible, with a detailed source of literature
references and adequate technical information, so that any interested reader will be
ready to deepen into the problems. Worked problems are not presented. Rather,
detailed solutions are produced and compared with experimental data to show the
performance of the theory. A comparison with other theories is presented when
considered adequate and illustrative. Short biographies of pioneers in
non-hydrostatic free surface hydraulics are further presented to keep the interest on
what others did in the past. A special feature of the book is that mathematical
developments are presented step-by-step in great detail. The development of
Boussinesq-type equations is sometimes tedious, and algebraic manipulations are
difficult to reproduce. This level of detail is usually lacking in papers, and it is fully
covered in this work to help young researchers. In addition to the detailed devel-
opments included within the text, ten appendices were prepared to further help
readers. We envision this book to be of use for Ph.D. students and researchers
conducting work on this fascinating field. The material is also adequate for teaching
purposes in courses on advanced open-channel flow for master students in civil and
environmental engineering.

Cordoba, Spain Oscar Castro-Orgaz
Ziirich, Switzerland Willi H. Hager
April 2017
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Chapter 1
Introduction

Roman Symbols

S LML IRTIT R IR TED

ngcht

Still water depth (m)

Specific energy head (m)

Flux vector (m2/s, mS/SZ)

Gravity acceleration (m/s?)

Flow depth measured vertically (m)

Energy head (m)

Parameter in curvature law (-)

Flow depth measured on normal to channel bottom (m)
Pressure (N/mz)

Bottom pressure (N/m?)

Unit discharge (mz/s)

Radius of bottom curvature (m)

Radius of streamline curvature at elevation z (m)
Radius of free surface curvature (m)

Momentum function (m?/s)

Bottom slope (-)

Friction slope (-)

Source term vector (m/s, mz/sz)

Time (s) also flow depth measured as vertical projection of equipotential curve
(m)

Velocity in x-direction (m/s)

Mean flow velocity (m/s) = g/h

Vector of conserved variables (m, m2/s)
Velocity in z-direction (m/s)

Streamwise coordinate (m)

Vertical elevation (m)

Elevation of channel bottom (m)

© Springer International Publishing AG 2017 1
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2 1 Introduction

Greek Symbols

[ Boussinesq velocity correction coefficient ()
7 Specific weight (N/m>)

1.1 Aim and Scope

Water resources’ engineering requires a solid knowledge of free surface flows for
both the mathematical and physical simulations of real flows. The non-hydrostatic
pressure distribution is a typical feature of such flows, thereby invalidating the
application of the standard (hydrostatic) Saint-Venant equations, including weir and
gate flows, undular bores, groundwater flows with a phreatic surface,
water-sediment flows and dispersive water waves. Following Liggett (1994), the
errors made in open-channel flow computations stem mainly from the lack of
knowledge of friction and from the hydrostatic pressure assumption. While the
gradually varied flow theory is routinely presented in the open-channel flow books,
the issue of non-hydrostatic pressure is not commonly addressed. The aim of this
book is to fill this gap by presenting the higher mathematical level of approximation
over the gradually varied flow theory, also referred to as the Boussinesq theory,
leading to the so-called Boussinesq-type models. Essentially, this theory relates to
the inclusion of non-hydrostatic pressure in depth-averaged free surface flow
modeling. The higher order Boussinesq-type flow equations and their solutions are
presented in this book for its beneficial use in a wide range of pertinent engineering
and environmental problems, including open-channel, groundwater, and granular
material flows. There is a plethora of “Boussinesq-type” models in the literature.
Rather than focus on exploiting a specific model, the main purpose of this book was
to highlight how the Boussinesq theory applies to produce models suitable for a
particular given problem. Coastal engineering applications are beyond the scope of
the book, but the use of Boussinesq-type models in this area is considered at several
places. For a detailed account of Boussinesq-type equations in coastal engineering,
consult Dingemans (1994) and Brocchini (2013). Gradually varied flow problems
are not considered in the book, given the vast amount of books already dealing with
the topic, but reference is then made for comparative purposes with higher order
equations. In this chapter, non-hydrostatic free surface flows are defined and a
historical note on the works is presented from which the current knowledge and
theory of this book originates.
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1.2 Hydrostatic and Non-hydrostatic Free Surface Flows

Consider free surface flow over a side weir (Castro-Orgaz and Hager 2011a)
(Fig. 1.1a) involving the longitudinal free surface profile k(x) along the streamwise
x-axis (Fig. 1.1b), where the velocity components in the (x, z) directions are (u, w).
If the vertical velocity is nonzero, then the pressure distribution p is non-hydrostatic
(Fig. 1.1b), as can be inferred from a vertical momentum balance (Liggett 1994;
Montes 1998). Modeling non-hydrostatic free surface flows thus requires consid-
eration of w, or better its variation with x. These flows have been traditionally
classified as gradually varied flows and rapidly varied flows (Bakhmeteff 1912,
1932; Chow 1959; Henderson 1966; Montes 1998; Jain 2001; Sturm 2001;
Chanson 2004; Chaudhry 2008; Hager 2010). The first group refers to flow
problems of which the local changes in flow depth are small, including backwater
curves upstream of a dam extending for kilometers, so that w is close to zero
everywhere. In turn, flow problems in which the flow depth varies abruptly over a

(a) Free surface \

(b)

g

Hydrostatic pressure line

Fig. 1.1 a Scheme of a free surface flow over a side weir (adapted from Castro-Orgaz and Hager
2011a), b definition of flow variables

(b)

Fig. 1.2 Classical hydraulic jump a looking in flow direction, b side view (photograph VAW,
ETH Zurich)
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Fig. 1.3 Flow over spillway a general view, b detail of curved flow near the weir crest. Note the
presence of air bubbles by which approximate streamline geometry is highlighted (photograph
VAW, ETH Zurich)

short distance belong to the second group, including hydraulic jumps (Fig. 1.2) or
flows over spillways (Fig. 1.3).

It is usually argued that the vertical (convective) acceleration terms (related to
Ow/0Ox) are negligibly small in gradually varied flows so that the pressure distri-
bution is close to hydrostatic, whereas they are kept for rapidly varied flows. It is
also generally accepted that in gradually varied flows the pressure is hydrostatic;
however, not all rapidly varied flows involve a non-hydrostatic pressure.
A prominent example is the hydraulic jump (Fig. 1.2). Detailed pressure mea-
surements within it reveal a non-hydrostatic pressure induced by entrainment of air
(Castro-Orgaz and Hager 2009). However, this air—water flow effect on the
streamwise momentum balance is so small that the pressure distribution is nearly
hydrostatic so that no effects of non-hydrostatic pressure originating from air—water
flows must be accounted for. In a classical hydraulic jump, the streamlines in the jet
flow are only weakly curved and sloped so that vertical accelerations remain
equally small. This flow thus allows for hydrostatic modeling if the effect of the
recirculating fluid in the roller is properly accounted for. By contrast, for flows over
spillways (Fig. 1.3), streamlines are highly curvilinear so that vertical accelerations
induce a markedly non-hydrostatic pressure (Castro-Orgaz 2008). If
non-hydrostatic pressure is accounted for in the model equations, such flow
problems are adequately approximated as potential flows.

Therefore, the classification of free surface flows includes rather hydrostatic and
non-hydrostatic flows, which is a better typification than the terminology “gradually
varied” versus “rapidly varied” flows. In what follows, this first classification is
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generally adopted, allowing for an improved description of the physical background
and the mathematical concept underlying this procedure.

1.3 Historical Background

The teaching and practice of free surface flows strongly rely on the seminal, still
widely used books of Chow (1959) and Henderson (1966). These presented, among
others, the theory of hydrostatic flows founded by the Frenchmen Bresse, Saint
Venant, Dupuit, and Boussinesq, including the computation of backwater profiles
(Bélanger 1828). However, few books include the next degree of sophistication in
free surface flows, namely the so-called Boussinesq theory, developed by J.V.
Boussinesq, C. Fawer, F. Serre, and D.H. Peregrine (Fig. 1.4).

Fig. 1.4 Fathers of non-hydrostatic channel flow modeling a Joseph V. Boussinesq (adapted from
Castro-Orgaz and Hager 2011b), b Carlos Fawer (adapted from Castro-Orgaz 2010a), ¢ Francois
Serre (adapted from Castro-Orgaz and Hager 2011c), d D. Howell Peregrine (photograph by Liz
Green at http://www.bristol.ac.uk)
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This approach deals with cases in which the standard backwater equations fail
due to the non-inclusion of the non-hydrostatic pressure originating from streamline
curvature, or from other sources, such as spatially varied water discharge in the
channel or the existence of bed-load sediment motion. Consequently, this improved
approach was hardly transmitted to the engineering profession despite it is a
common tool in disciplines as coastal engineering. Joseph Valentin Boussinesq
(1842-1929) (Fig. 1.4a) is known in open-channel hydraulics for his outstanding
theory bearing his name to deal with non-hydrostatic flows.

John Scott Russell was born on May 8, 1808,
" at Parkhead, east of Glasgow, UK, and passed
; away on June 8, 1882, at Ventnor on the Isle of
Wight, UK. He made studies at the Universities
of St. Andrews and Glasgow graduating in 1824.
He was then appointed lecturer in natural sci-
ences in 1832 at the University of Edinburgh,
starting his famous wave observations in 1833.
He investigated the practicability of steam nav-
igation in canals based on a request by the
Scottish Canal Company. This led him to study
the resistance of floating bodies due to wave
presence. After 10 years of research, he was awarded the Large Gold Medal
by the Royal Society of Edinburgh. Russell moved in 1844 to London to take
over important positions in the shipbuilding industry, of which the Great
Eastern was the largest design of his era, which was successfully launched by
Isambard K. Brunel (1806-1859). William Froude (1810-1879) was also
involved in various early designs of Russell. The Great Eastern was a triumph
for the future naval development although it was a commercial failure. Russell
was thus an outstanding naval engineer and experimenter, changing ship-
building from an art to a science.

Russell was the first who observed and described in 1837 the solitary
wave, corresponding to a local bell-shaped free surface elevation, whose
celerity is equal to the square root of gravity acceleration times the still water
depth. The solitary wave is thus made up by only one single wave hump
whose body is above the undisturbed water elevation, without any wave
trough presence. This peculiar feature puzzled scientists, and it was only
Joseph V. Boussinesq (1842—-1929) who was able to explain it by accounting
for streamline curvature effects in 1872. Note that Adhémar Barré de
Saint-Venant (1797-1886) one year before introduced the shallow water
equations, by which the solitary wave may not be explained, essentially
because Saint-Venant theory relies on the hydrostatic pressure assumption.
Currently, solitary waves are explored because of their relevance in tsunami
generation and propagation.
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Boussinesq (1877), motivated by the fascinating experimental findings of
Russell (1845) on water waves (Fig. 1.5), investigated the non-hydrostatic pressure
modeling in free surface flows, dealing with both water wave motions and steady
free surface flow problems. He assumed a linear velocity distribution normal to the
channel bottom and used this approach to include streamline curvature effects in a
steady version of the momentum equation. Integration of the equation of motion in
the transverse direction resulted in an extended third order differential equation for
open-channel flows in the streamwise x-direction of the form (Boussinesq 1877;
Castro-Orgaz and Hager 2011b)

UR? (1d3h  1d°S, dh
. (5@_&1)@) (—ﬂ >dx h(S, — Sy). (1.1)

Here, U is the depth-averaged velocity, i the Boussinesq velocity correction
coefficient, i the flow depth, S, the bottom slope, and S, the friction slope.

Based on Eq. (1.1), Boussinesq proposed a systematic classification of
non-hydrostatic free surface profiles. While he was the first suggesting the mo-
mentum approach, his work was followed by Carlos Fawer (1910-1996)
(Fig. 1.4b), who proposed an extended energy equation, which includes streamline
curvature effects (Fawer 1937; Castro-Orgaz 2010b) to study irrotational steady
flow in hydraulic structures. The work of Boussinesq was further expanded by
Francois Serre (1923-2009) (Fig. 1.4c) (Serre 1953; Castro-Orgaz and Hager
2011c), who developed a turbulent Boussinesq model that was theoretically dis-
cussed for steady and unsteady flows, and by D. Howell Peregrine (1938-2007)
(Fig. 1.4d), who contributed numerically to the undular bore propagation in coastal
engineering problems (Peregrine 1966).

Fawer (1937) considered flows over curved bottom surfaces combining the
Bernoulli equation with a law of variation of the streamline curvature radius R, with
the vertical distance z from the channel bottom to the free surface as (Fig. 1.6a)

WAVES . Order II_ Standing Waves itk Afrociction. e 1599
Piate

Figld.

Fig. 1.5 Standing waves (including wave breaking) after Russell (1845), a fascinating example of
non-hydrostatic open-channel flow (flow from right to left)
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Here, R is the radius of curvature at the free surface and r is the radius of curvature
at the channel bottom, whereas K is a parameter. Moreover, z is the distance
measured from the bottom (curved or flat) (Fig. 1.6a, b). Using Eq. (1.2), Fawer
obtained, with z;, denoting the channel bottom elevation, H the total energy head,
hy = d?h/dx* and z,, = d’z,/dx* the extended Bernoulli equation for flows over
curved beds (Fig. 1.6b)



1.3 Historical Background 9

U? 2hhy,
H:Zb+h+£(l+K—+2+thxx>' (1-3>
The specific energy E in Fawer’s theory is H — z;,. In his model, the energy loss is
accounted for by the balance dH/dx = —S,. Fawer is sometimes cited, using Jaeger
(1949) as cross-reference, and it is erroneously believed that his work relates
exclusively to horizontal channel bottoms (Castro-Orgaz 2010a). Chow (1959)
correctly noted that Fawer’s theory is different from Boussinesq’s. Curvilinear
streamline flows including the undular hydraulic jump or critical flow over
round-crested weirs were first considered by Fawer (1937), who further classified
curved flows over horizontal bottoms (Fig. 1.6¢).

To compare Eq. (1.3) with Boussinesq’s Eq. (1.1), the latter is written as two
equations, namely

ds

a:h(so—sf), (1.4a)
dS_ U (1d'h _1d%S,\ () U%\dh
dr g \3d¥® 2dx? g ) dx
s [d <1d2h> 1d <dSO>] Lo ﬁUzdh
=L~ (35 ) —5— — _p=—=
g [dr\3dx?) 2dr\dx v " g dx (1.4b)

(1) —pEL(Y)

gdx\n
d (¢*[1d*h 1 /dS, 1 h?
= <= 273 5 4+ ﬂ _ + —
de | g [3dx* 2\ dx h 2
in which g = Uh = const has been used. Integration of this last equation is now
trivial; setting f = 1, and identifying S, with —dz,/dx, one obtains

R Uh By hzpe
S=—+—|1 o 1.5
>t <+ 3 v ) (1.5)

in which the subscript notation has now been used and the constant of integration
has been set to zero.

Fawer first noted that the momentum and energy approaches generally yield
different solutions for the free surface profile. He further considered the case
S, =8,=0 and obtained momentum conservation results using the Boussinesq
approach, as is evident from Egq. (1.5), in contrast to his energy conservation
solution. He also noted that zones of rapidly varied flows of high-energy dissipa-
tion, as, e.g., in the classical hydraulic jump, require a momentum conservation
approach rather than his potential flow procedure. However, potential flows are
correctly treated with the extended energy approach, in which the slope of the
energy line is not accounted for. Equation (1.3) corresponds to the first extended
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energy equation for free surface flows over curved bottoms. Matthew (1963) and
Hager and Hutter (1984), in turn, obtained with a similar approach

U? 2hh,, — h?
H:Zb+h+g<1+fx+hszx_behx_le,x)~ (1.6)

Comparing Egs. (1.6) and (1.3) reveals that Matthew’s approach implies a linear
variation of the streamline curvature (K = 1) but a nonzero variation of streamline
inclination (accounted for by &, and z,,), which were not considered by Fawer.
Equation (1.6) permits to study a variety of open-channel flows involving
non-hydrostatic pressure, including solitary and cnoidal waves (Fig. 1.7), of which
the existence is not explained based on the hydrostatic flow theory.

Consideration of the asymptotic behavior of a free surface flow to the normal
depth requires inclusion of turbulent friction. Potential flow methods for the anal-
ysis of near-critical flows are limited to short reaches (Fawer 1937; Castro-Orgaz
2010b) in order for the horizontal energy-grade line assumption not to falsify the
results unduly; yet in some cases, including the undular hydraulic jump, a potential
flow solution is not adequate. The backwater approach of hydrostatic flows is well
known to break down at the critical depth of a prismatic channel, where the singular
point method does not apply (Montes 1998). Thus, a non-hydrostatic model
allowing for turbulent friction simultaneously includes the computation of the
transition of the field variables across the critical section and the asymptotic con-
ditions at uniform flow. The original model developed by Serre (1953;
Castro-Orgaz and Hager 2011b) following Boussinesq (1877) satisfies these
requirements. Serre considered curvilinear, turbulent flows over constant bottom
slope channels. He obtained for S and E, with E as the specific energy, the
expressions

Fig. 1.7 a Solitary wave, b cnoidal wave, in a rectangular laboratory channel (photograph VAW,
ETH Zurich)
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W U*h hhy — h?
S=— 4+ —(14+ == 1.7
7T P (+ 3 ) (1.7)

U? Zhhm—h2
E=h+—(1+ —=). 1.8
+k(+ 3 ) (18)

The streamwise balances complement these by the statements

S n(s - 9), (19)
] (1.10)

Comparing Egs. (1.8) and (1.3) for the horizontal channel bottom (z;, = 0), Serre’s
approach implies a linear variation of streamline curvature (K = 1), whereas the
effect of streamline inclination (not accounted for by Fawer) was included by a
linear relation. The same applies for S by comparing Eq. (1.7) with Eq. (1.5). Thus,
Boussinesq (1877), Fawer (1937), and Serre (1953) set up energy and momentum
approaches for steady curved flows. A special feature of Serre’s work is his study of
unsteady flow problems. His 1D unsteady equations for inviscid flows in horizontal
channels are written in conservative form as (e.g., Serre 1953; Castro-Orgaz and
Hager 2014)

oU  OF

a5 T =0 (1.11)

Here, ¢ is the time, U the vector of conserved variables, and F the flux vector, given

by
U_(h’;]>, F_<ZISJ,> (1.12)

The momentum function for unsteady curvilinear flows (Serre 1953; Castro-Orgaz
and Hager 2014) then takes the form

h3
@.

h Uh
S:—+%hH@—M@—W)

5 (1.13)

A special feature of Serre’s equations is their full nonlinearity. Peregrine (1966)
obtained their simplified version for weak nonlinearity, written in non-conservative
form, or primitive variables, as
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o d
o T . (") =0, (1.14)

U yoU | oh _D* &U
or ox  Sox 3 odor

(1.15)
in which D is the still water depth. He was the first to integrate numerically
Egs. (1.14)—(1.15) using a finite-difference method for the undular bore, thereby
producing a pioneering numerical solution of unsteady Boussinesg-type equations.

1.4 Non-hydrostatic Flows and Environmental Mechanics

The question may well be asked, why a non-hydrostatic flow theory is needed in
environmental fluid flow problems, given the routinely used hydrostatic flow the-
ory. Curvilinear streamlines frequently occur in geophysical flow processes, and
these flows are fundamental at water control structures (Castro-Orgaz 2008)
(Fig. 1.8). They are also relevant in weather forecasts, including atmospheric
gravity waves resulting from density currents over mountains and valleys
(Fig. 1.8b) (Zhu and Lawrence 1998). They further describe groundwater flows
over curved bedrocks in hill slope hydrological problems (Chapman and Dressler
1984) (Fig. 1.8c), the development of sand waves (Bose and Dey 2009) (Fig. 1.8d),
and solitary wave run-ups (Brocchini 2013) (Fig. 1.8e).

Therefore, the non-hydrostatic free surface flow theory is of wide applicability in
geophysical fluid mechanics, and its consideration is of general interest. For all
these applications, the non-hydrostatic velocity components (u#, w) apply
(Castro-Orgaz and Hager 2015). The changes from one application to another are
the specific boundary conditions at the free surface and the bottom level. For
example, the pressure at the free surface in a channel structure is set to zero, and the
bottom is assumed to be rigid, whereas for an atmospheric current the density
interface has a prescribed pressure forced by the air above, which is in geostrophic
balance or is stagnant air. In bed-form evolution, the bed is erodible and should be
coupled with Exner’s sediment continuity equation. In groundwater flows, the bed
is generally treated as impervious and the water table pressure is prescribed to be
zero, but the velocity components are forced to obey Darcy’s law as substitutives of
the s- and n-momentum equations. For solitary wave run-up, the flow is unsteady so
that both local and convective accelerations have to be accounted for.
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Fig. 1.8 Applications of curvilinear flow theory to a flood control structures, b atmospheric
density currents, ¢ groundwater flows over impermeable bedrock, d supercritical bed form in
alluvial streams, e solitary wave run-up (adapted from Castro-Orgaz and Hager 2015)

1.5 Methodology

The purpose of this work is to present the theory and computation of
non-hydrostatic free surface flows, including recent developments on irrotational
flows, turbulent channel flows, boundary layers, seepage flows, and granular mass
flows. The methodology of this book follows a hybrid approach combining
experimental-numerical—analytical studies, so that all, or part of these components,
are used to elucidate a particular phenomenon. For example, for flows over a



14 1 Introduction

Fig. 1.9 Hybrid approach: a physical test of weir flow (photograph VAW, ETH Zurich),
b numerical solution of weir flow, showing flow depth & and bottom pressure head p,/y profiles

round-crested weir, velocity and pressure fields are determined using physical
experiments (Fig. 1.9a) (Hager 2010) or by a full numerical solution of the Laplace
equation (Fig. 1.9b) (Montes 1998). The use of both approaches permits to set
limits to 2D potential flow methods and allows for the investigation of the ranges of
application of approximate analytical theories, including the approximate
Boussinesq-type energy equation for potential flows given by Eq. (1.6) (Matthew
1963).

Further, it is necessary to define the flow depth in each open-channel flow
problem. In this introductory chapter, no attempts have been made to accurately
define the flow depth. However, in the forthcoming mathematical chapters three
different definitions of flow depth arise, usually each associated with the selection of
a different coordinate system to formulate the fluid flow equations. The first is the
flow depth measured vertically, denoted as & (Fig. 1.10a); the second is the flow
depth measured normally to the channel bottom, denoted as N (Fig. 1.10b); the
third is the flow depth defined as the vertical projection of an equipotential curve,

Fig. 1.10 Definition of flow depth in non-hydrostatic flows over curved and sloped bottoms
a vertical, b normal to channel bottom, ¢ as vertical projection of equipotential line. Dashed are
equipotential curves of irrotational motion
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t (Fig. 1.10c). This is important for the correct use and understanding of the cor-
responding theories.
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Chapter 2
Vertically Integrated Non-hydrostatic Free
Surface Flow Equations

Roman Symbols

a Shallow water wave celerity based on enhanced gravity (m/s)

A Finite volume area (mz)

CFL  Courant-Friedrichs—Lewy number (-)

D Representative particle diameter (m)

f Weighting function (m)

F Vector of fluxes in x-direction (m?/s, m>/s?)

Fi.1» Numerical flux in x-direction at cell interface (m2/s, m3/s2)

g Gravity acceleration (m/s?)

g Enhanced gravity acceleration (m/s)

G Vector of fluxes in y-direction (m*/s, m*/s?)

h Vertical flow depth (m)

h* Flow depth at star region in HLL Riemann solver (m)

H Vertical length scale (m)

i x-index for finite volume cell (-)

1 Auxiliary variable (m?/s)

k Time index (-)

K Fawer exponent (—)

L Horizontal length scale (m)

M Momentum function (m?)

n Curvilinear coordinate normal to channel bottom (m) also bed porosity (-)

N Flow depth normal to channel bottom (m)

p Fluid pressure (N/m?)

D1 Bottom pressure in excess of hydrostatic pressure (N/m?)

)23 Midpressure in excess of pressure average at bottom and surface elevation
(N/m?)

q Unit discharge (m%/s)

qp Unit bed load (m2/s)

qx Unit discharge in x-direction (m2/s)

qy Unit discharge in y-direction (m%/s)

qx Signal speed factor in HLL solver (-)

R Submerged specific gravity (-)

R.,,  Particle Reynolds number (-)
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2 Vertically Integrated Non-hydrostatic Free Surface Flow Equations

Curvilinear coordinate along channel bed (m)
Bottom slope (-)

Friction slope (-)

Speed of left signal in HLL Riemann solver (m/s)
Speed of right signal in HLL Riemann solver (m/s)
Vector of source terms (m/s, m>/s)

Time (s)

Depth-averaged Reynolds stress (N/mz) with (7, j) = (x, y)
Stress tensor (N/mz)

Velocity in x-direction (m/s)

Depth-averaged velocity vector (m/s, m/s)

Velocity at surface in excess of mean (m/s)
Depth-averaged flow velocity in x-direction (m/s)
Vector of conserved variables (m, m2/s)

Velocity in y-direction (m/s)

Depth-averaged flow velocity in y-direction also modulus of velocity (m/s)
Velocity in z-direction (m/s)

Depth-averaged flow velocity in z-direction (m/s)
Middepth vertical velocity in excess of average (m/s)
Horizontal coordinate (m)

Horizontal coordinate normal to x (m)

Vertical coordinate (m)

Bed elevation (m)

Greek Symbols

v
Vs

Specific weight of water (N/m®)

Specific weight of solids (N/m?)

Shallowness parameter (—)

Vertical distance above channel bottom (m)

Angle of bottom with horizontal (rad)

Streamline curvature (m ')

Depth-averaged streamline curvature (m ')

Dispersive factor (-)

Kinematic viscosity (mz/s)

Density (kg/m”)

Turbulent Reynolds stress, with (i, j) = (x, y, z) (N/m?)
Boundary shear stress along bed in s-direction (N/m?)
Stress in continuum medium, with (i, j) = (x, y, 2) (N/mz)
Weighting parameter (-)

Control volume (m3 )
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Subscripts

Relative to free surface

Relative to bottom

Relative to left state in Riemann problem
Relative to right state in Riemann problem

EESRER

Superscripts

* Relative to dimensionless quantity

2.1 Introduction

Practically, all gravity-driven flow models constitute the lowest order approxima-
tions of shallow flows, in which the horizontal length scales [L] are substantially
larger than the vertical length scales [H] (Steffler and Jin 1993). The
non-dimensional mass and momentum balance equations based on this anisotropic
scaling indicate for basically horizontal flow that the vertical acceleration terms are
small, with the aspect ratio ¢ = [H]/[L] — 0, so that the vertical force balance is
usually expressed as a hydrostatic pressure balance (Saint-Venant 1871; Friedrichs
1948; Liggett 1994). For a value of ¢ different from zero, the analogous scale
analysis shows that the vertical acceleration term is important (Liggett 1994). In this
case, the full vertical momentum equation must be preserved. This type of model is
referred to as Boussinesg-type model, representing a vertically integrated system of
conservation equations based on a finite ¢ value. It accounts for cases for which
non-hydrostatic pressure distributions are relevant, including flows in hydraulic
structures, sand waves in water—sediment flows, water wave motions and seepage
flows, among others.

The production of a vertically integrated system of non-hydrostatic flow equa-
tions can be set up either in Cartesian or curvilinear coordinates following terrain.
In a general curvilinear coordinate setting of gravity-driven flows, three types of
accelerations may arise affecting the internal stress distribution of free surface flows.
The first is the acceleration due to the real forces acting on the flow. The
bed-normal component of this acceleration is what makes the key effect of the
Boussinesqg-type model. The second, actually not a real acceleration, manifests itself
as an enhanced pressure due to the Christoffel symbols of the curvilinear coordinate
setting and is often simply (but not correctly) referred to as centripetal acceleration.
This contribution is accounted for in the well-known Dressler (1978) equations for
open-channel flow. The third are the Coriolis, centripetal, and Euler accelerations
because the earth-fixed frame is not inertial, routinely neglected in local shallow
flow computations, but accounted for in many meteorological applications. The use
of curvilinear coordinates increases the mathematical complexities of equations, so
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that vertically integrated equations in a Cartesian system are used here to produce a
non-hydrostatic system of conservation laws.

In the pioneering works of Boussinesq (1872, 1877) the non-hydrostatic effect
was accounted for in a depth-averaged model formulated in a curvilinear setting,
but Christoffel symbols were neglected (Castro-Orgaz and Hager 2011a). Serre
(1953) and Castro-Orgaz and Hager (2011b) proposed a rigorous depth-averaged
turbulent Boussinesq-type model for practical applications to both steady and
unsteady water flows on sloping, straight-bottomed channels. Benjamin and
Lighthill (1954) proposed a different theoretical treatment based on a third-order
expansion of the stream function in a potential flow. The Application of the
Boussinesg-type theory to hydraulic engineering' was successful in the description
of flows over weirs, undular jumps, sand waves, Favre waves, dam breaks, over-
falls, and slope breaks.

Castro-Orgaz et al. (2012, 2013) demonstrated that Boussinesq-type equations
also describe free surface groundwater flows. The application of the Boussinesq
theory to water wave motion was pursued by Peregrine (1966, 1967, 1972), who
obtained depth-integrated inviscid Boussinesq equations in two horizontal dimen-
sions presenting thereby the first numerical solution for undular bore propagation.
He initiated the use of Boussinesq-type equations in coastal engineering. This work
was followed by further improvements of the analysis of the dispersive wave
characteristics of the Boussinesq system, developing accurate and robust numerical
schemes and including real flow features such as wave breaking, vorticity effects,
and turbulence.” Nowadays, the governing equations and numerical techniques are
in a stage of development involving a large variety of water wave phenomena (Kim
et al. 2009; Kim and Lynett 2011; Brocchini 2013). The application of the
Boussinesq-theory to granular mass flows and geophysical problems is relatively
new and was developed by Denlinger and Iverson (2004), Castro-Orgaz et al.
(2015), and Hutter and Castro-Orgaz (2016).

In this chapter, the vertically integrated equations of the continuum mechanical
balance laws of mass and momentum are presented as evolution equations for the
velocity field and stress tensor following Castro-Orgaz et al. (2015).
Boussinesqg-type equations are obtained from the vertically integrated equations
using Serre’s (1953) theory. After suitable approximate representations for the

'Fawer (1937), Iwasa (1955, 1956), Iwasa and Kennedy (1968), Mandrup-Andersen (1975, 1978),
Marchi (1963, 1992, 1993), Matthew (1963, 1991), Engelund and Hansen (1966), Basco (1983),
Hager (1983), Hager and Hutter (1984a, b), Montes (1986), Berger and Carey (1998a, b),
Soares-Frazao and Zech (2002), Mohapatra and Chaudhry (2004), Dewals et al. (2006), Bose and
Dey (2007, 2009), Chaudhry (2008), Castro-Orgaz and Hager (2009), Denlinger and O’Connel
(2008).

2Mei (1983), Antunes do Carmo et al. (1993), Nwogu (1993), Chen and Liu (1995), Wei et al.
(1995), Wei and Kirby (1995), Madsen et al. (1997), Madsen and Schéffer (1998), Stansby and
Zhou (1998), Chen et al. (1999, 2003), Kennedy et al. (2000), Lynett et al. (2002), Stansby (2003),
Erduran et al. (2005), Musumeci et al. (2005), Lynett (2006), Chen (2006), Soares-Frazdo and
Guinot (2008), Mignot and Cienfuegos (2008), Kim et al. (2009), Kim and Lynett (2011),
Brocchini (2013).
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stress tensor, the emerging equations are applied to turbulent water flows in rivers,
flows over steep slopes, water wave propagations, and flows over uneven topog-
raphy. Movable beds and sediment transport are included, and suitable numerical
techniques to solve unsteady and steady flow problems are discussed. Techniques to
produce higher-order models are then further presented.

2.2 Vertically Integrated Equations in Continuum
Mechanical Description

2.2.1 Basic Conservation Laws

Consider the flow of a continuum material of constant density p moving across a
3D terrain (Fig. 2.1), such as a fluidized granular mass. In a horizontal-vertical
Cartesian system of reference (x, y, z), the terrain elevation is described by the
function z = z,(x, y), and the velocity components in the (x, y, z) directions are,
respectively (u, v, w). The motion is described within the framework of continuum
mechanics with mass and momentum conservation equations (Savage and Hutter
1989; Iverson 1997; Andreotti et al. 2013). The mass conservation equation states

Ou Ov Ow

— 4+ —+—=0. 2.1
8x+8y+82 0 21)

A vector field whose divergence vanishes is called solenoidal. Equation (2.1) is
the mass balance for a density-preserving medium. This simplification is adopted

(a) Debris flow mass

ZFJ(X‘J.“{)

3D terrain z,(x,y.f)

Shock front

X

Fig. 2.1 Definition sketch for debris flow over 3D terrain a 3D view, b profile, ¢ plan
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here following Castro-Orgaz et al. (2015). The dynamic statement is Newton’s
second law, according to which the time rate of change of momentum equals the
sum of the applied forces, given here by the stress divergence plus the gravity force.
In horizontal-vertical Cartesian coordinates, the statement is with g as the accel-
eration due to gravity

@—I—u@—i—v@—i—w@——l —87:”—k—af’cy—kafxZ (2.2)
o “ox 9y 0z p\ox 9y  0z) '
ov Ov  Ov ov 1 [0ty Oty Oty
_ — J— —_—= —— = = 2
6’t+u8x+vay+wﬁz p(@x Oy az )’ (23)
ow ow ow ow 1 (Ot Oty Oty
— — — — === — 2.4
8t+u8x+v8y+waz p(8x+8y+8z (24)

At this point, it should be noted that the stress tensor is symmetric, i.e., 7; = Tj;
ij = 1,2, 3, or (x, y, ). Moreover, t; is here introduced with the notation used in the
environmental contexts (e.g., Iverson 1997, 2005; Andreotti et al. 2013), i.e., it is
the negative of the common stress tensor definition used in engineering.
Equations (2.1)—(2.4) define mass and momentum conservations for single con-
stituent bodies such as water; they also apply for a dry or fluidized granular mass
(Fig. 2.2), under the restricted simplification of density preserving flow.

Equations (2.2)—(2.4) relate the kinematic fields (u, v, w) to an arbitrary stress
tensor T. If solids are neglected and a time-averaging is performed, then T would
describe the stress tensor of the Reynolds-Averaged Navier-Stokes (RANS) equa-
tions (Rodi 1980), used to model turbulent water flows (Hervouet 2007; Steffler and
Jin 1993; Hutter and J6hnk 2004). Furthermore, if the fluid is absent and the stress
tensor is defined based on the Mohr—Coulomb model, the equations describe the
motion of a dry granular flow (e.g., Savage and Hutter 1989; Iverson 1997, 2005;
Pudasaini and Hutter 2007; Andreotti et al. 2013).

The unsteady three-dimensional (3D) non-hydrostatic numerical solutions of the
RANS equations for free surface flows are not a routine matter (Hervouet 2007; Ma
et al. 2012). Most of the 3D numerical solutions of non-hydrostatic flows solve a
pressure Poisson equation for the dynamic pressure in finite element (Hervouet
2007) or finite volume (Ma et al. 2012) models. A simplified approach to reduce
computational work as compared with 3D solutions is to vertically integrate
Egs. (2.1)—(2.4) to obtain vertically averaged variables as functions of only (x, y, 7),
thereby resulting in a spatially 2D computational scheme. In most practical cases, a
depth-averaged computation gives enough information.” Thus, Eqgs. (2.1)~(2.4)

Examples in hydraulic engineering were studied by Boussinesq (1877), Yen (1973), Steffler and
Jin (1993), Liggett (1994), Vreugdenhil (1994), Khan and Steffler (1996a, b), Jain (2001), whereas
in rapid gravity-driven mass flows the scene has been set by Hutter and Savage (1988), Savage and
Hutter (1989, 1991), Iverson (1997, 2005), Denlinger and Iverson (2004). For a review, see e.g.,
Pudasaini and Hutter (2007).
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Fig. 2.2 Glacier moraines in
Tuyk Valley, Alaarcha basin
North Tien Shan, Kirgizstan
(from unpublished lecture
material on granular media by
Prof. K. Hutter, Photograph
by Prof. Aizen)

provide a general starting point to produce a family of vertically integrated models
within the context of continuum mechanics, valid either for water, solid particles, or
(solenoidal) mixture flows.

2.2.2 Depth-Integrated Continuity Equation

Let the Cartesian coordinates be horizontal (x, y) and vertical (z), against gravity
(Fig. 2.1). Then, the mathematical procedure consists in vertically integrating the
governing equations at an arbitrary (x, y)-position from gz, to z,, where subscripts
b and s, respectively, refer to the bed and the free surface. After vertical integration,
Eq. (2.1) becomes

s

ou Ov Ow
/ (a“ra—y"ra—Z)dZ—O. (2.5)

b
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Using Leibniz’s rule (Yen 1973; Hutter and J6hnk 2004), Eq. (2.5) is converted
to

) )
o /udz ot bﬁ+a /vdz + b§+ws wp = 0. (2.6)

Joseph Valentin Boussinesq was born on
March 15, 1842, at St. André-de-Sangonis,
France, and passed away on February 19, 1929,
in Paris. He was self-taught, starting his scientific
writing in 1865. He thereby took into considera-
tion during his long career all branches of math-
ematical physics except for electromagnetism.
After having served as teacher at various colleges
of France, he was appointed in 1873 lecturer at
the University of Lille. In 1886, Boussinesq was
appointed to the chair of mechanics at the famous
Sorbonne University, Paris, taking over in 1896
as professor of mathematical physics at Collége de France.

Boussinesq’s life work in hydraulics is outstanding but extremely hard to
follow, given his complicated writing style. His colleagues Alfred A. Flamant
(1839-1915) and Auguste Boulanger (1866—1923) were able to present in
their books a more popular approach of Boussinesq’s ideas. His 1872 paper
explains the observations of solitary waves of John Scott Russell (1808—1882)
from a physical perspective thereby overcoming the many attempts offered in
the past decades. It was noted that many hydraulic phenomena could only be
explained by inclusion of the streamline curvature effects. This paper par-
ticularly attracted the interest of Adhémar Barré de Saint-Venant (1797-
1886), who in 1871 had published his famous paper on the shallow water
equations, yet by assuming hydrostatic pressure and uniform velocity distri-
butions. The monumental 1877 Essay of Boussinesq made his name definitely
known to the hydraulics community given the large number of relevant
problems discussed. In the 1880s, he started in addition a close collaboration
with Henry Bazin (1829-1917) on weir flow features, for which streamline
curvature effects again are significant. In hydraulics, this collaboration
between the then best experimenter and scientist marked the start of engi-
neering hydraulics, leading to the close relationship between scientists in
mathematical physics and hydraulics in the twentieth century. The outstand-
ing merits of Boussinesq were awarded by his nomination to the mechanics
chair at Sorbonne, taking over the chair of his intimate colleague de
Saint-Venant.
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As to the kinematic boundary conditions, the movement of the material free
surface is described by

8ZY aZv 8ZY
e N - 27
o Wy Ty =0 (2.7)

Similarly, the kinematic equation at the movable material bed surface takes the form

0% Oz 0z
<b = =0 2.8
" + uy » + v ¥ Wp , (2.8)

where a slip velocity at the bed is allowed in depth-averaged modelling. Inserting

Egs. (2.7) and (2.8) into Eq. (2.6) produces with the vertical flow depth given by
h=hx, y, 1) = zx, y, ) = zp(x, y, 1) (Fig. 2.1)
Oh  0Oqy Oqy

o " ox T oy

=0. (2.9)

Equation (2.9) states the general depth-integrated mass (or here volume) conser-
vation subjected to a density preserving body and material free and basal surfaces.
The integrals in Eq. (2.9) are the fluxes g, and g, in the (x, y) directions given by

s s

qxz/udz, qy = /vdz. (2.10)

b b

2.2.3 Depth-Integrated Momentum Equations in Horizontal
Plane

Integrating Eq. (2.2) over the depth yields

s

s
u Ou ou ou 1 (Ot Oty Oy
Ay I = [ (D dz. (211
/<8t+u8x+v8y+waz)z / p<8x+8z+8y>z (2.11)

b 2b
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The acceleration term on the left-hand side of Eq. (2.11) is rewritten as

D e O ou 10E D) D) (0w
ot Ox Oy 0z Ot 2 0x Oy 0z 9z  Oy)’
(2.12)
or with the aid of Eq. (2.1),
2
ou Ou ou, Ou_du 0w Ow) Ow) (2.13)

or ox Vay "o o Tax T oy oz

Inserting Eq. (2.13) into Eq. (2.11), applying the Leibniz rule, and using Egs. (2.7)
and (2.8), the vertically integrated momentum equation in the x-direction takes the
form

s

P o f, o . 1lof o | 2 92
&/uder a/u dz + gy,/quZ__; |:8x/r'“dz+ i)}}/rxdewL(rM)bax+(rxy)b8y—(n,){|.

2 b Zb

(2.14)

Here, all stresses at the free surface have been assumed to vanish, that is, atmo-
spheric pressure and wind shear stress are ignored. Likewise, the depth-integrated
momentum equation in the y-direction is written as

of o f, of 1o} o f 92 02
PR / vdz + d—y/ vdz + a/ uvdz = > {dy / Tydz+ a/ Tndz+ (T)‘Y)be + (Txy)baf (T)’Z)b:|'

b b b Zb

(2.15)

The set of Egs. (2.14) and (2.15) describes flows with reference to the (x, y) plane.
The particular case of 1D turbulent water motion in the x-direction was presented
by Steffler and Jin (1993). An approximation to the kinematic field (u, v, w) and
parameterizations of the stress tensor T are required to produce a mathematically
closed model.

2.2.4 Non-hydrostatic Stresses in z-Direction and Vertical
Velocity Profile

The integration of the vertical momentum equation is similar to the deduction of the
system (2.14) and (2.15). To be able to account for the non-hydrostatic stress
distribution, start with the integral relation between an arbitrary elevation and the
free surface; from Eq. (2.4),
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s
ow ows  Owu) Owv)\ , [ 1[0tz Ot Oty ,
/<8t+8z+8x +78y dZ—/ ) 8z+8x+8y+pg dz.

Z Z

(2.16)

Using the Leibniz rule on the left-hand side (LHS) of Eq. (2.16) yields, after adding
the free surface kinematic boundary condition given by Eq. (2.7),

s
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(2.17)
Integrating the right-hand side (RHS) of Eq. (2.16) yields
zg
/_% (88122 + 88% + aaf;y +pg) d7 = % [t22(2) — Tae(2s)] — g(z5 — 2)
z (2.18)

0ty | 01y .,
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Z

Using the identities given by Eqs. (2.17) and (2.18) generates the general equation
for the non-hydrostatic stresses as follows

s s s
0 B o
T22(2) = Ta2(zs) + pglzs — 2) — pw’ +p5/ wdz/ +pa/ wud?/ +pa—y/ wvdz’
z z
s
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Z

(2.19)

As usual, a vanishing traction on the material surface implies 7..(z;) = 0. This
equation describes the general distribution of 7, in the z-direction as a function of
the vertical velocity w, the horizontal velocities # and v, and the indicated stresses
(last term on the RHS). The equation is general allowing for a systematic devel-
opment of the depth-averaged equations. By contrast, if Eq. (2.16) is integrated
from z = 7z, to z = z,, then an equation for the bed vertical normal stress is obtained
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s s s s
0] 0 0 0
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(2.20)

s

in which vanishing surface traction, implying (,,)s = (t,,); = 0, has been imple-
mented. Note that the bed stress differs in general from the gravity force term (pgh).
Deviations of (t,,), from the static weight (pgh) stem from streamline curvature,
e.g., convective vertical acceleration terms related to Ow/Ox and Ow/0y, local ver-
tical acceleration Ow/0t, and stress contributions. Therefore, the Saint-Venant
theory does not apply for steep and curved terrain.

Knowledge of the vertical velocity profile w(z) is necessary in Eq. (2.20). To this
end, integrating Eq. (2.1) between z,, and an arbitrary elevation z yields

4
ou Ov Ow\ _,
/(a+a—y+8—z)d =0, (2.21)
b

or

w(z) —w(z) = —j (gz + g;) d7'. (2.22)

b

Using again the Leibniz rule transforms this into

Zz
0 0
w(z) — w(zp) = — ax/udz + ay/vdz +uba— + v OZ; . (2.23)

b b

With the kinematic boundary condition at z = z,, stated by Eq. (2.8), gives

Z Z
ST K / /
w(z) = o 8X/udz + B vdZ'|. (2.24)

b b

The result for a rigid basal surface (9z,/0t = 0) is, therefore,

W)=~ / udz +7/ (2.25)
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It reveals that once any functional representations for u and v are introduced, w is
determined by a simple mass (volume) conservation balance. This avoids the use of
an independent function of w, given that it is linked to u# and v. Equation (2.25)
inserted into Eq. (2.19) mathematically eliminates the dependence of 7., on w.

2.3 Shallow Flow Approximation and Depth-Averaged
Equations

If the vertical thickness A(x, y, f) of a nearly horizontal flow is smaller than the
characteristic length in the (x, y) plane, a scaling analysis reveals that, with the
exception of the near-bed boundary layer, the velocity components u and v can be
assumed to be constant across the depth £, equal to their depth-averaged values
U and V (Liggett 1994). Therefore,

Zs

1
u(x,y, 2, t) ~ U(X7y7 l) = E/MdL (226)

b

s

1
v(x,y,2,0) = V(x,y,1) = Z/vdZ- (2.27)

b

This approach permits to obtain the non-hydrostatic equations, first derived by Serre
(1953). At the limit, as the aspect ratio ¢ — 0, the Saint-Venant hydrostatic theory
is regained (Friedrichs 1948). The depth-independent horizontal velocity compo-
nents imply a slip velocity at the bed, thereby neglecting the high velocity gradient
confined to the thin bed boundary layer (Steffler and Jin 1993). This approximation
for u and v will also be adopted for flows on steep terrain, given the small con-
tribution of the differential advection originating from the non-uniformity of » and
v with depth. Therefore, the Boussinesq velocity correction coefficients in the x- and
y-directions are close to unity, so that their impact on the momentum balance
projected in the corresponding axis is negligible.
Inserting Eqgs. (2.26) and (2.27) into Egs. (2.14) and (2.15) yields
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0 9, o\ 0
5(Vh) + 2 (Vh) + a(vvh)
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The assumption of depth-independent horizontal velocity components automati-
cally yields for the linear vertical velocity profile, from Eq. (2.25),

0

w(x,y,z) = — {5 [U(z — z)] + (,% V(z— zb)}] . (2.30)

With =z — z, and h = z; — z,, the vertical stress (pressure) in Eq. (2.19) is then
given by
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Here, the vertical velocity field w is expressed as w = w(U, V), according to
Eq. (2.30).

With the definitions (2.26), (2.27), the depth-integrated mass conservation
equation (2.9) takes the form

oh _d(Uh)  A(Vh)
5t ey O (2.32)

Nothing specific is yet assumed on the stress tensor T, so that the system of
equations applies to solids, fluids, and any other material behavior of a continuous
body.

Equations (2.28), (2.29), and (2.32) can be expressed in general conservative
form as

ou oOF 0G
— 4+ —+—=38, 2.33
o Tax T oy (2.33)
in which the vector of dependent variables is U, the vector of fluxes in the x-
direction is F, that in the y-direction is G, and S is the source term vector, defined
by
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(2.34)

Equations (2.30) and (2.31) can also be transformed to a 2D vector notation
(Peregrine 1967; Kim et al. 2009). To this end, let I be the auxiliary variable

s

1= /W(x,y, z)d7,

Z

and let the depth-averaged velocity vector U be defined by

- (4)

The vertical velocity, as stated in Eq. (2.30), may then be rewritten as

w=-V-[u(z—2z),

in which V is the 2D Nabla operator defined by

o 0
V‘(M—y)

Inserting Eq. (2.37) into Eq. (2.35) leads, after integration, to
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With this, Eq. (2.31) is rewritten as
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Equations (2.39) and (2.40) constitute the fundamental relations for modeling
non-hydrostatic effects in depth-averaged models.

A scaling analysis reveals the importance of retaining w in vertically integrated
models over steep terrain. Let [x], [y] = L and [z] = H be horizontal and vertical
scales in the Cartesian system of reference (x, y, z). Similarly, also introducing the
velocity scales [u], [v], [w] for the horizontal ([u«], [v]) and vertical ([w]) velocity
components, the space and velocity scale ratios are defined as

=
=

W, B_E_#_
W T W T T T

(2.41)

Requesting the perseverance of the solenoidicity of the velocity field [div(V) = 0]
by scaling then implies

H
% = % =7= &, OF  Egparial = Evel = & (2.42)
With the velocity scaling [u] = (gL)"* and the time scaling [1] = (L/g)""*, one also
readily deduces
d
99 192 /1) 2= s, (2.43)

[d7]

For ¢ <« 1, this result suggests that the vertical acceleration is asymptotically small
as compared with g. Else, the hydrostatic pressure assumption is invalid and vertical
accelerations must be accounted for. The above expressions for [¢] and [¢] auto-
matically imply that gravity is important in the dimensionless mathematical
description of the processes to be studied. Incidentally, the expressions for [1] and
[¢] differ from those of the shallow water equations (Friedrichs 1948); [«] and
[] would in those equations be scaled with H and not with L.

If the Cartesian coordinate system is now (s, n), inclined by angle 6, then [dw,/
df] = gecosb, and with isotropic scaling (¢ = 1) the bed normal acceleration w,, may
be ignored for rapid gravity-driven flows on steep mountain slopes (as cosf is small).
As an illustrative example, consider the simplest case of uniform flow down a steep
slope (Fig. 2.3). In the curvilinear coordinates (s, n) following the terrain, the
velocity is Uy = g/N, whereas the velocity in the n-direction is zero, with g as the
discharge and N the flow thickness measured normal to the bed. Consider now the
horizontal-vertical Cartesian coordinates (x, z). The depth-averaged velocity in the
x-direction reads U = g/h, with h as the vertical flow depth. From the bed kinematic
boundary condition, the vertical velocity in the z-direction is w = UQdz,/Ox.
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Fig. 2.3 Uniform flow on a A
steep slope, highlighting -
differences between free

surface flow depth

h (gauge-measured, solid

line), N (perpendicular to

bottom), and (dashed lines)

bottom pressure head p,/y

(x) where y = pg

The absolute velocity is then V = (u2 + wz)”2 =U( + tan@z)m. From Fig. 2.3,
N = hcosf, leading to V = g/N, which is identical to U,. While in (s, n) coordinates,
only U, is non zero, u and w are of similar order of magnitude in horizontal-vertical
Cartesian coordinates (x, z). For example, on a steep slope of 0 = 45°, u = w = g/h.

2.4 Simplified Forms of Non-hydrostatic Extended Flow
Equations

2.4.1 RANS Model for River Flow

River flows are usually modeled using a depth-averaged model based on the
Reynolds-Averaged Navier—Stokes (RANS) equations. Stresses are then made up
of viscous and turbulent contributions. If the vertical velocity is neglected, then the
flux vectors reduce to (Rodi 1980; Molls and Chaudhry 1995)

Uh Vh
12
1
UVh+ L hT,, V2h+ 85 4+ 10T,

In these expressions, the hydrostatic pressure term has been substituted and the
laminar viscous stress contributions are generally ignored. In that case, T, Ty, and
T,, are the depth-averaged turbulent stresses. These are determined by coupling an
auxiliary turbulence system, e.g., the depth-averaged k-¢ model, or simply by using
a constant eddy viscosity (Molls and Chaudhry 1995). If turbulent stresses are
neglected, the system reduces to the classical 2D Saint-Venant equations (Liggett
1994; Vreugdenhil 1994).
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2.4.2 One-Dimensional Water Waves Over Horizontal
Topography

Consider the inviscid unsteady water wave propagation in a horizontal channel
(zp = 0) (Peregrine 1967, 1972), for which 1,, = 1,, = p is the water pressure.
Ignoring the last stress term on the RHS, Eq. (2.19) becomes

s s s
p(z) = pg(h —n) — pw? +p§/wdz’ +p%/ wudz’ —&-pa%/ wvdZ. (2.45)

This is the general equation as developed by Nwogu (1993) for 2D water waves.
Consider the depth-averaged approach for 1D flows, for which Egs. (2.37) and
(2.39) reduce to

ou oU (h* —n?)

= —py—" = T/ 2.46
v Tox ox 2 (2.46)
Inserting these expressions into Eq. (2.45) yields a parabolic pressure distribution
p consisting of a hydrostatic term plus a quadratic dynamic correction including

derivatives U,,, U2, and U,, as

p

h2_ 2
;=g<h—n>+(U3—Ux,—UUU)M.

5 (2.47)

Subscripts indicate, as above, partial differentiations with respect to the indicated
variables. Equation (2.33) then simplifies to

s
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b

In the free surface hydraulics literature (Montes 1998; Jain 2001), M is referred to
as the momentum function, namely

3

h2 h
M = g; + Uh + (U)% — Uy — UU_XX)? (249)

Saint—Venant term non—hydrostatic term
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Dennis Howell Peregrine was born on
December 30, 1938, at Birkenhead, UK, and
passed away at age 69 on March 29, 2007, at
Bristol, UK. He joined the Mathematics
Department of Bristol University in 1964, fol-
lowing his undergraduate and postgraduate train-
ing at Oxford and Cambridge Universities. He
became member of a small but strong group of
applied mathematicians in fluid dynamics then
headed by Leslie Howarth (1911-2001). Up to his
death, Peregrine played a key role in maintaining
and promoting the study of fluids thereby ensur-
ing that Bristol University remained one of the British centers of excellence in
this discipline.

Peregrine’s knowledge in the subject of water waves was encyclopedic. He
concerned himself with their generation, propagation, and run-up, including
their impact on coastal structures. His contributions are reflected in numerous
publications among which his 1966 paper in the Journal of Fluid Mechanics
(JFM) on the shallow water wave theory is particularly notable. More results
that are recent include extremely high wave impact forces, including tsunami
waves. The breaking of water waves is still under intense research, particu-
larly as regards the energy dissipation process, the entrainment of air and
sediment, and the generation of turbulence. Peregrine had a well-developed
physical insight and skill in mathematical modeling. In addition, he served as
associate editor of the JFM, where he processed an average of 50 research
papers annually since 1981. He reached the retirement age in 2004 with little
apparent change in his work-life balance. A successful event was held in 2005
in Bristol attracting colleagues from around the world to a lecture series in
recognition of his contributions.

Thus, M gives rise to higher-order flow equations. The momentum function is
composed of the leading order Saint-Venant (hydrostatic) term plus a Boussinesq
(non-hydrostatic) correction. Equation (2.49) was originally derived by Serre
(1953) and is extensively used in civil and environmental engineering applications
(Basco 1983; Soares-Frazao and Zech 2002; Mohapatra and Chaudhry 2004;
Chaudhry 2008). Equation (2.49) describes, e.g., the propagation of undular bores
(Fig. 2.4), originally investigated by Peregrine (1966) using a finite difference
model. Equations (2.48)—(2.49) are the so-called Serre (1953) equations for weakly
dispersive, non-linear 1D water waves. The equations were later derived by Su and
Gardner (1969) and Green and Naghdi (1976) using alternative theoretical methods.
In coastal engineering, the equations are often named the Serre-Green-Naghdi
equations. Using the irrotational flow theory, it can be demonstrated that the Serre-
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Fig. 2.4 Undular bore
propagating with breaking
front (photograph by late
Prof. D.H. Peregrine)

Green-Naghdi equations are regained if the variation of u with depth is accounted
for (Su and Gardner 1969) (Chap. 3). Cienfuegos et al. (2006) presented finite
volume numerical solutions of the extension of this system for variable bathymetry,
whereas a detailed analytical investigation of the kinematic velocity field and the
stability of solitary and cnoidal wave solutions of Eqgs. (2.48)—(2.49) were given by
Carter and Cienfuegos (2011). The first investigation of solitary and cnoidal wave
solutions of the Serre equations was presented by Iwasa (1955, 1956), who inde-
pendently derived the system of equations using the same depth-integrated
approach of Serre (1953). For reviews of the Serre-Green-Naghdi equations and
applications to coastal engineering, see Barthelemy (2004), Lannes and Bonneton
(2009), Dias and Milewski (2010), and Bonneton et al. (2011).

2.4.3 Turbulent Uniform Flow on Steep Terrain

Consider turbulent water flow in the vertical plane (x, z). Neglecting viscous
contributions, the stress tensor is then 7, = p — 0y, T, =p — 0, and 1, = =0,
where o denotes the turbulent Reynolds stress due to time averaging of the Navier—
Stokes equations for fluid flow. The 2D vertically integrated x-momentum equation
for turbulent water flows is, from Eq. (2.28),

g(Uh) 86 (U2 —— —/(p dZ +(P axx) 8827 +(O-xz>b y

%,_/

(2.50)

and from Eq. (2.20), the equation describing the bottom pressure is found to be
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s
0 ,_ 0 _ 1 0 0z
&(Wh) + a(WUh) =5 (p—02),+ a/ 0xdz + (sz)ba —gh. (2.51)
b
Here, the depth-averaged vertical velocity is defined as
1]
w(x,y,t) :Z/wdz. (2.52)

<b

Uniform flow is typically defined in hydraulic engineering prescribing a constant
flow depth for which the bed shear is in equilibrium with the gravity term of the
momentum balance (Chow 1959). However, this definition is not rigorous; here,
uniform flow on a slope is defined from a fluid mechanics perspective as an ideal
state where the depth is constant and the distributions of velocity, pressure, and
Reynolds stresses remain unchanged for any vertical section. Therefore, for uniform
flow on a steep slope (Fig. 2.3) the underbraced terms in Egs. (2.50) and (2.51) are
zero by definition, and Eq. (2.50) reduces to the x-force (momentum) balance

0z
(0 = o)y +(0:),=0, (2.53)

whilst the z-momentum balance, Eq. (2.51), collapses to the force balance

%
b ox

(- O'zz)b + (O'xz) = pgh. (2.54)

Consider an infinitesimal element at a basal point, subjected to plane strain, once
referred to the (x, z)-axes and once inclined by the slope angle 6 as shown in
Fig. 2.5. The stress states in the (x, z)-coordinates and (s, n)-coordinates are then
related to one another based on the equilibrium conditions of triangular elements by
the equation (Fig. 2.5)

Onn cos?0 sin’0 2 cosf sinf Oxx
o5 | = sin’0 cos’0  —2cos0 sinf oz |- (2.55)
Ton —sinf cos0 sind cosd cos?0 — sin*0 Trs

Simple shear along the bed slope is described by vanishing normal stresses
O = 04 = 0 and 7, = 7, For this choice, the above system of equations is easily
inverted with the solution given by
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Fig. 2.5 Infinitesimal element subjected to plane stress referred to (x, z)- and (s, n)-coordinates
rotated by angle 0

(02), = 21, cosO sin0,
(0x), = =215 cosl sinf, (2.56)

(042),, = 1t (cos*0 — sin®0).

Here, 7, is the shear stress in the s-direction, measured along the sloping plane
(Fig. 2.3), and 6 is given by 0z,/0x = tanf. Inserting Eq. (2.56) into Egs. (2.53)
and (2.54) yields, respectively,

T, = —pp tanb, (2.57)
P = pgh+ 15 tan0. (2.58)

Combining Egs. (2.57) and (2.58) results in the non-hydrostatic bottom pressure on
a steep slope as

Pb h 2
I —— 0. 2.5
pg 1+ tan20 o8 (2:59)

Equation (2.59) indicates that the bottom pressure on a steep slope is
non-hydrostatic, which becomes important already for 6 = 45°, as in this case a
reduction in the bottom pressure of 50 % over the vertical water weight ensues.
Equation (2.59) is a classical result obtained in the channel flow literature using
gradually varied flow computations in the (s, n) system as shown in Fig. 2.3. Noting
that N = hcosf, Eq. (2.59) may be written as (e.g., Chow 1959; Henderson 1966)

Po _ N coso. (2.60)
pg

Equation (2.60) is a particular non-hydrostatic result of the general formulation
given by Eq. (2.51), where conditions of gradually varied flows are not assumed.
This development demonstrates that non-hydrostatic pressures originate from the
turbulent Reynolds stresses and not from the vertical velocity w, given the fact that
the gradient Ow/Ox is zero.
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Fig. 2.6 Flow over undular A
bed z;,(x) with (thin lines) free z
surface profile /(x) and

(dashed lines) bottom

pressure head profile p,/y(x)

2.4.4 Flows Over Curved Beds

Flows over variable topography imply that the source term in Eq. (2.34) is not zero,
i.e., resistive forces and bed geometrical source terms must be accounted for. In the
geophysical environment, the effect of variable topography on the flow solution of
dynamical models by stating conservation of mass and momentum is important.
Such problems include atmospheric air currents over variable terrain (Sivakumaran
and Dressler 1989) or water flows over fluvial bed forms, such as dunes and
anti-dunes (Engelund and Hansen 1966; Dey 2014). Models for 1D flows over
curved beds were proposed by Dressler (1978), Hager and Hutter (1984a, b), and
Khan and Steffler (1996a, b). For steady 1D flows over a curved bed in the vertical
plane given by z, = z,(x) (Fig. 2.6), Eq. (2.28) reduces to

s
0 n 1 0 0zp
5 (00%) == |2 [ ezt (s = (20, @.61)

b

For frictionless fluids, the stress tensor is the pressure tensor for inviscid flow with
T = p and 1,, = 0. Therefore, Eq. (2.61) can be further simplified to the ODE

dmM Py 02
0T 2.62
dx p Ox’ (2:62)
where
s
M =hU + /%dz. (2.63)

b

Here, p,, is the basal pressure, and the free surface pressure has been set to zero. The
vertical velocity for steady 1D flows over curved terrain is obtained from
Eq. (2.37), using g = const = U(x)h(x),
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L | B

0zy  Oh(z—2zp)
= U —_— _— .
O0x + Ox h
(2.64)
Similarly, an expression for the pressure results from Eq. (2.40) as
a0 (o
T
=1, = pg(z — — +p=—(IU) — pw? —2d7
P =1z =p8z—2)+py +pa (IU) —pw'+ [ - =dz
Z
8 Zs a s Zsa
= pglzs — = d7 U d’_2/&d/
0g(z z)+p8t /wz +pax /wz pow” + oy 92
Z Z Z
=0 (steady—state) neglected
(2.65)
or
a s
p@) = psla—2) =+ p | U e | (2.66)

4

In the above derivation, Eq. (2.40) has been employed in the spatially 1D version
and under steady-state conditions. Moreover, the integrated shear stress flux term
has been neglected as is common in the pertinent hydraulic literature. Inserting
Eq. (2.64) into Eq. (2.66) and performing the relevant integration and differentia-
tions yields

rle) _, U n 2 U n

(2.67)

Upon substitution into Eq. (2.63) and performing an additional integration, one
obtains

(2.68)

1> hhw — B2 hzpee hazp
Mg2+hU2<1+ x g Kb Z”).

3 2 2

The analysis to obtain these results is somewhat cumbersome, even though it is not
difficult; it is, therefore, deferred to Appendix A.
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The bottom pressure, from Eq. (2.67), is of the form

Pb U 2
== h+ = [2hzpey + by — B — 2h,25] . (2.69)
P8 2g

Equation (2.69) was first derived by Castro-Orgaz and Hager (2009) and solved
using a Picard iteration solution of the irrotational flow equations, as described in
Chap. 3; it highlights a key ingredient of the Boussinesq theory: Differences
between the flow depth & and the bottom pressure head p,/y are adequately
accounted for. In general, at locations with positive flow curvature (concave bed),
one has p,/y > h, whereas p,/y < h at locations with negative flow curvature
(convex bed), see Fig. 2.6. If the same flow is computed using a pure Saint-Venant
theory, the free surface is not accurately predicted, because the vertical acceleration
is not accounted for, while the bottom pressure can simply not be predicted, given
that p,/y = h is assumed ab initio. This is a strong reason to adopt the Boussinesq
theory in geophysical, environmental, civil, and coastal research, given that the
increase in computational effort is moderate, but the gain in physical appropriate-
ness is high.

2.4.5 Enhanced Gravity

Denlinger and Iverson (2004) and Denlinger and O’Connel (2008) presented a
simplified vertically integrated, unsteady non-hydrostatic model in which a key
physical element was introduced. They defined a corrected (or “enhanced”) gravity
acceleration, in which the effect of vertical acceleration is accounted for. Their
equation of vertical pressure at the bed level in a turbulent water flow is

o(wh)  O(wUh) 3(th)) — pd'h (2.70)

pb:pghﬂ)( o o By

In Eq. (2.70), g' is the enhanced gravity, including a mean vertical acceleration
Dw/Dr as

Dw  ow ow 0w

' = — = —+U—+V_—. 2.71
8 g+Dt g+at+ (%cjL Oy (271)
As to the depth-averaged velocity, these authors used the mean value
1
w=s (W +wp), (2.72)
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in which wy; and w, are determined from Egs. (2.7) and (2.8), respectively.
Equation (2.72) permits the evaluation of p, from Eq. (2.70). Denlinger and
Iverson (2004) further assumed that p(z) is linearly distributed in z as

p(z) = pg'(h —n). (2.73)

Steffler and Jin (1993), who also used Eq. (2.73) to produce Boussinesq-type
behavior in hydraulic structures, further considered relations that are more complex.
Using g', the inclusion of non-hydrostatic effects on vertically integrated models
becomes conceptually simple, allowing for their straightforward inclusion into
Riemann solvers (Sect. 2.6).

Let us now compare the physical simplifications underlying the enhanced
gravity concept with the general mathematical theory presented above. For this
purpose, from the general Eq. (2.20) at the bed level, and by neglecting the stress
integral, one deduces the equation

s s s
0 0 0
Dy = pgh—|—pa/wdz+pa/wudz+p5y/wvdz. (2.74)
b b b

Using Eq. (2.72) for w, Eq. (2.74) becomes identical to Eq. (2.70). Therefore,
the bottom pressure p, used by Denlinger and Iverson (2004) is an exact
depth-averaged value. However, p(z) as given by Eq. (2.73) is assumed to be
linearly distributed, whereas a parabolic distribution results from Eq. (2.40) (see
Appendix A). Denlinger and Iverson’s (2004) approximation to the vertical pres-
sure distribution introduces some error in the momentum computation, despite the
exact bed value. The physical significance of the enhanced gravity correction is
elucidated using steady 1D flow over curved terrain as a test case. In this case,
Eq. (2.71) reduces under steady state to

Dw oW
gt Y=g+ U—. 2.75
§=gt+p =8tUg (2.75)

From steady, spatially 1D versions of Egs. (2.7), (2.8) and with Eq. (2.72), as
well as for uniform velocity u(z) = U, one obtains

(s +wp) = = [U(hy + 2x) + Uzpa, (2.76)

w =

N —
N =

and after differentiation

oW h By
a - Ux (? +be> + U(? +bex> . (277)
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Inserting Eq. (2.77) into Eq. (2.75), using the expression U, = — (q/hz)hx and
inserting the resulting g’ into Eq. (2.70), yields the bed pressure of the Denlinger
and Iverson (2004) theory for this flow problem as

2

U
py = pgh+ P> (hhy — B — 2h,2py + 2hzpy ). (2.78)

This agrees with Eq. (2.69) for the generalized Boussinesq theory. It also corre-
sponds to the bed pressure of Khan and Steffler’s (1996a, b) Boussinesq model for
1D steady flow over a curved bed, if turbulent stresses and bed friction forces are
neglected. Inserting the linear pressure of Eq. (2.73) into the expression for the flow
momentum M, Eq. (2.63), results in

2 hhy — 2 hzpe  huZp
M:g?+hU2<1+ — Zzb - ;b) (2.79)

Comparing Egs. (2.68) and (2.79), it is noted that the enhanced gravity approach
introduces a factor (1/4) in the water-depth derivative-correction term as compared
with (1/3) in the exact vertically integrated equations. Therefore, the corrected
enhanced gravity in Serre’s theory (1953) in a horizontal channel is given by

4 Dw 4 ow
!
— Ay SRR § futit 2.
£=¢& 3 Dt g 3 Ox (2.:80)

In turn, the flow momentum in the x-direction is, therefore, given by

R R hhy — 2
MU2h+g’2g2+hU2<l+3x>, (2.81)

as shown by Serre (1953) and Benjamin and Lighthill (1954).

2.4.6 Non-hydrostatic Model Including Friction Effects

Steffler and Jin (1993) and Khan and Steffler (1996a, b) developed a
Boussinesq-type momentum model, in which both acceleration and frictional
effects were accounted for in generating non-hydrostatic pressure distributions over
steep and curved beds. This model can be deduced from the generalized equations
presented in this text. Neglecting depth-averaged turbulent stresses, the full
Egs. (2.50) and (2.51) take the forms

s
0 0 ) p 1 0zp
gon+ g (v [Pa) =20 S i) @)

b
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0, g ,_ 1
50+ 2L (500 =9~ 02, + (o)

0z
ba—; — gh. (2.83)

Inserting Eq. (2.56) for a pure bed shear into Egs. (2.82) and (2.83) gives

s
0 0 ) p _ ,
E(Uh)—f— a—x U h+ /;dZ = - — 5 (284)

b
as well as

Py = pgh+p%(fvh)+p%(vah)+1b%. (2.85)
In Eq. (2.85) the depth-averaged vertical velocity w is given by Eq. (2.72), with w;
and w,, computed from the kinematic boundary conditions, i.e., Eqs (2.7) and (2.8)
(Steffler and Jin 1993). A distribution p = p(z) must be introduced into Eq. (2.84)
for model closure. A linear distribution was assumed, corresponding to the
approximation of Denlinger and Iverson (2004). Equation (2.84) then reduces, after

integration, to

) ) h
o (Um)+ < (Uzh + —@> = Db T . (2.86)

This equation is the Boussinesq-type x-momentum equation developed by Khan
and Steffler (1996a, b). For steady flow, and after using Eq. (2.72) to eliminate w
from Eq. (2.85), Egs. (2.84), and (2.85) reduce to

d hpy POz Ty
- U2h )y - _£f77 2 2.87
u ( i1 p) e % (2.87)
U? o)
Py = pgh-l-/)? (hh)a - hz - thbe + 2th,wc) + Tb%' (288>

From these equations, the flow momentum is

hhxx_hz h XX hx 24 h X
x 4 2 Z”) S lh (2.89)

n? 5 Y

M—g2+hU(1+ 1 + > 2 2 5

A typical non-hydrostatic flow, in which friction effects need to be accounted
for, is the undular hydraulic jump (Fawer 1937; Serre 1953; Montes 1986) as
shown in Fig. 2.7. Note that upon comparing Eq. (2.89) with Egs. (2.68) and
(2.79), both the theories of Denlinger and Iverson (2004) and of Castro-Orgaz and
Hager (2009) do not account for the bed-shear resistance. This is also noted upon
comparing Eq. (2.88) with Egs. (2.69) and (2.78) for the bottom pressure p,,.
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Fig. 2.7 Undular hydraulic jump. Note the highly 3D free surface flow pattern (photograph
VAW, ETH Zurich)

The present development, however, allows for inclusion of basal (but not interior)
frictional effects in Boussinesq-type computations if large computational domains
are considered.

2.5 Sediment Transport and Movable Beds

2.5.1 Introduction

Most of the dynamic models for bed-form evolution are based on the sediment mass
conservation equation, also referred to as the Exner equation. It reads (Chaudhry
2008)

8Zb 8qb
1—-n)2=-2 2.90
( n) 8t ax I’ ( )
with n as the bed porosity, z, bed elevation (interface of bed-load layer with
clear-water flow), ¢ time, and x longitudinal coordinate. The Saint-Venant equations
stating the depth-integrated mass and momentum balances of the water flow are,

with the water discharge g and the friction slope S,

d0q , Oh _ 10g 0 (¢*  h*\ 0zp
54_5_0’ §E+a(g_h+7 =h —E—Sf . (2.91)

In this system, the dominant mode of sediment transport is assumed to be bed load,
neglecting, e.g., the suspended (so-called wash) load transport. According to Yalin
(1977), the unit bed-load transport rate g, is written in dimensionless form as

qp* :f<f*7R7 Repﬂ&)a%)- (292)
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For the derivation of such formulas, see Hutter and Wang (2016). In Eq. (2.92),
qp* = q,,/(RgD3)1/ 2 and t* = 7,/(yRD) are dimensionless discharge and basal shear
stress variables, g is the gravity acceleration, 7, the bottom shear stress, R = (y,/y) — 1
the submerged specific gravity, or ratio between the fluid, y, and sediment-specific
weights y,; D is a representative particle diameter, R,, = (RgD)"*Div the particle
Reynolds number, that depends on the kinematic viscosity v, S, the bed slope, and
h the water depth.

Equation (2.92) was principally developed at two institutions to obtain a sim-
plified practical form allowing for a mechanistic interpretation. The first school
followed the work of Einstein (1950), who considered a bed-load layer discon-
nected from the upper layer where finer sediment particles were entrained by fluid
turbulence. The movement of the solid particles in jumps, or by saltations, was
based on its stochastic formulation. The final expression contained coefficients that
were fitted to the available experimental data. Einstein considered the saltation of
particles as a mode of suspended sediment transport.

The second school followed the work of Bagnold (1973), who proposed an
alternative method where the bed-load rate is related to the motive power of the
moving fluid, i.e., the product of shear stress and fluid velocity, weighted with an
efficiency coefficient. Both Einstein and Bagnold’s expressions have a theoretical
foundation, yet empirical coefficients are used to fit the experimental data. As
Garcia (2008) indicated in his review, the current scientific community tends away
from Einstein’s formulation toward Bagnold’s description of bed-load transport.
Following the empirical proposals of the early formulas, his model includes a
critical or threshold value of the shear stress, 7., normalized as r:, for the inception
of the sediment motion, based on the formulation of Shields (Buffington and
Montgomery 1997). Using this concept, and assuming uniform flow over gentle
slope (S, in Eq. 2.92 is neglected), Eq. (2.92) simplifies in this case to

q; = f (7", 7., fitting parameters). (2.93)

The main physical insight extracted from this framework is that sediment is
entrained by a fluid flow once a critical value of the shear stress is reached. This
implies that the moving grains extract momentum from the fluid within the bed-load
layer to keep the shear stress at the critical value for motion. This type of bed-load
formulation has been widely used to obtain fits in both laboratory and field con-
ditions (Schmocker 2011), and constitutes the basis of open-channel flow models,
incorporating sediment transport and movable bed features (Chaudhry 2008). One
empirical relation based on Eq. (2.93) of wide acceptance is the expression of
Meyer-Peter and Miiller (1948). Other mechanistic treatments added more insight to
the process of bed-load transport including the saltation model of Wiberg and Smith
(1989) or the stochastic model of sediment dynamics of Ancey (2010) and Furbish
et al. (2012). However, Eq. (2.93) predominates in open-channel flow models.
Table 2.1 shows common expressions of Eq. (2.93).

The Saint-Venant model is based on hydrostatic pressure distributions, so that it
is limited to gradually varied flows with almost parallel streamlines. A corollary is
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Table 2.1 Dimensionless bed-load transport equations for g,*, with variables of Egs. (2.92) and
(2.93), f as fitting coefficient and U* as dimensionless average particle horizontal velocity

Author(s) a*

Meyer-Peter and Miiller (1948) 8(1* _ TZ)3/2

Einstein (1950) l2f(‘5* - T:).%/z

Bagnold (1973) U (v — 1)

Engelund and Fredsoe (1976) 18.74 (" — ) (V©* — 0.7,/7F)
Parker (1979) 11.2(1* _ 1:)4'51*’3

that the application of Egs. (2.91) and (2.93) requires planar beds, lower-regime
flow conditions, i.e., bed forms due to the erosion and deposition processes are not
accounted for. However, despite these limitations, the equations listed in Table 2.1
are commonly coupled with Eqgs. (2.91)-(2.93) in morphodynamic open-channel
flow models (Garcia 2008) with the purpose of predicting the temporal and spatial
evolutions of the four variables g(x, 1), h(x, 1), g(x, 1), and z,(x, 7). These appli-
cations should therefore be restricted to weakly erodible beds under uniform or
gradually varied water flows. The models are therefore defined as gradually varied
geomorphodynamic models. Despite efforts over the past half century, the predic-
tion of flows and sediment transports over bed forms still presents a major challenge
for the solution of sedimentation problems (ASCE 2002). The basic question still
needed to be addressed for sediment transport is: “What are the expected flow
depths and sediment transport rates for given sediment and fluid characteristics,
channel geometry, and discharge?”” The answer remains highly uncertain, and much
of the uncertainty can be traced to the development of bed forms (ASCE 2002).
This source explains that several hydraulic laboratories are currently devoting
appreciable experimental efforts to explore, at very small scale, the details of
bed-load transport (Ancey 2010; Lajeunesse et al. 2010). Given the limitations
stated for the gradually varied geomorphodynamic model, the complex cases of the
evolution of bed forms for streams, where both the streamline curvature and bottom
slope may affect the bed load, need advanced theoretical approaches.

Figure 2.8 shows some typical bed forms in natural streams, adapted from
Engelund and Fredsoe (1982). The undular flow over the bed form may be entirely
subcritical (Fig. 2.8a), supercritical (Fig. 2.8b), or involve transcritical flow
changing from sub- to supercritical conditions, and vice versa (Fig. 2.8c), forming
an undular hydraulic jump (Chanson 2000; Castro-Orgaz and Hager 2011c). Dunes
correspond to asymmetrical sand waves appearing beneath subcritical water flows,
roughly out of phase with the bed shape. Antidunes are wave-like bed forms
appearing beneath a supercritical stream and practically in-phase with the bed
geometry. Undular hydraulic jumps are an intermediate configuration where both
flow features occur. The sediment motion is induced by the water wave action at
wave troughs and crests of the undular flow, respectively, revealing distinctive 3D
flow features where friction and inertial forces are predominant.
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Fig. 2.8 Bed forms a dune, b antidune, ¢ transcritical profile from super- to subcritical flows with
undular hydraulic jump and wave breaking (adapted from Engelund and Fredsoe 1982)

The flow over curved bed forms, such as dunes or antidunes, plays a major role
in the establishment of flow resistance (Kennedy 1963; Engelund and Hansen 1966;
Graf and Altinakar 1996). The curvature on water flows, provoked by the bed
forms, causes vertical accelerations of water particles, inducing a non-hydrostatic
pressure distribution (Engelund and Hansen 1966; Bose and Dey 2009). Therefore,
the gradually varied morphodynamic model described above is inappropriate to
study flow over curved bed forms. Figure 2.9 shows water flow over a dune. The
streamlines adjust to the shape of the sand wave, and undulations develop at the
water surface. Turbulent drag over the sand wave provokes intense erosion at the
downstream dune side, and a free streamline separates from the bed sediment
surface, trapping a vortex flow zone below. The water surface profile 4 = h(x) over
the curved bed is a function of the local values of dh/dx, d*ha/dx?, dz,/dx, and d*z/
dx* (Engelund and Hansen 1966; Hager and Hutter 1984a, Bose and Dey 2009;
Castro-Orgaz et al. 2015), where z;, = z,(x) is the longitudinal profile of the bed
form. The extended momentum conservation equation for water flow above a sand
wave is approximated by a steady-state equation of the form (Engelund and Hansen
1966; Onda and Hosoda 2004)

Water Flow [:>

Curved streamlines

Fig. 2.9 Water flow across a dune with streamline pattern including recirculating flow
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1 d*h 1 (dh 21 dy 1dhdz, (2.94)
2" A2 2dx dx

W 5

M= 5 —FUh(l—i-?)hdx2 3 lar
Here, M is the specific momentum and p,, the actual (non-hydrostatic) pressure at the
curved sediment bed surface. The solution of the system, given by Eq. (2.94) for a
given water discharge, bed-form profile, and appropriate boundary conditions pro-
duces the local free surface profile & = h(x). The bed profile is updated based on
Exner’s Eq. (2.90) for the next time cycle. Onda and Hosoda (2004) also para-
metrized the bed-shear stress using the near-bed velocity and corrected the local skin
friction coefficient with a free surface and sediment-bed slope factor. The bed-form
profile z,(x)-configuration will affect the profile & = h(x) of the free surface that, in
turn, affects the bed-shear stress and then the bed-load transport rate under
non-uniform flow conditions, involving curvilinear streamlines and non-hydrostatic
pressures. Therefore, non-hydrostatic models are more suitable to account for
bed-form processes. At the downstream dune face, erosion results in a vortex-flow
zone with recirculation, for which non-hydrostatic 1D models do not account for,
unless the momentum of the recirculating bubble is accounted for by a simplified
flow model, or an empirical estimator, into the streamwise momentum balance.

2.5.2 Non-hydrostatic Unsteady Free Surface Flow
with Bed-Load Sediment Transport

Sediment transport problems, such as bed-form migration, involve a vertical length
scale of the order of the horizontal length scale, leading to non-hydrostatic flow
conditions as pointed out previously. In this section, the non-hydrostatic unsteady
sediment transport model over erodible beds is developed by accounting for
bed-load motion. The development is shown to be a generalization of the theory by
Engelund and Hansen (1966) for flow in alluvial streams. Neglecting
depth-averaged turbulent stresses, Eq. (2.50) reduces to

Zs
0 0 2N 110 0z
E(Uh)Jr a(U h) = p 8x/pdz+(p axx),,ax + (o) | - (2.95)

b

Using Eq. (2.56) for a pure bed-shear state one finds

0z,
*(Uxx)bajf +(0)p= —T- (2.96)
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Assuming a linear pressure distribution
_ m _ n
P *Ph(l - z) = (m +pgh)<l - g)v (2.97)

where p is the difference between the actual p, and the hydrostatic bottom pressure
(pgh), the pressure force is

s

h
h h
/pdz = /pdr/ =P85 + % (2.98)

2 0

Inserting Eqgs. (2.96) and (2.98) into Eq. (2.95) results in

2
%(Uh)Jr h hPl) _ PrOZ  Tp

9 (
a((] h-l-g?"‘z ————— . (299)

The relation describing bottom pressure is Eq. (2.51); neglecting turbulent stresses,
it is simplified to

D=y, (Wh) + — (WUh), (2.100)

with the depth-averaged vertical velocity given by

Ws + wp
—

w =

(2.101)

Moreover, the free surface and bed kinematic boundary conditions are,
respectively,

0 0
_ 0% 0z
wp = e U_ax . (2.103)

Here, the bed level z,, is the interface of the bed-load layer with the clear-water flow.
With the mean vertical acceleration given by

Dw oW 0w

E—E‘F a; (2.104)
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Equations (2.99) and (2.100) are rewritten as

0 0 K2 Dw K2 pbaZb Tp
—(UN+ = Uh4+g—+——)=-2=2_2 2.105
Bt( )+8x< A 2) pox p’ ( )
Di
%:thr%:ththV:. (2.106)

Note from Eq. (2.106) that the Boussinesq-type theories of Khan and Steffler
(1996a) and Denlinger and Iverson (2004) are structurally identical. To find a
closed form model, the boundary conditions, Egs. (2.102) and (2.103), are inserted
into Eq. (2.101), so that

w=s + o U (2.107)

1 /0h oh 0z O0zp
(8t v 8x>

Using the depth-averaged continuity equation

oh 0 oh__0h_, 0U

- Vs o (2.108)

With w,, as the bed contribution, accounting for the spatial and temporal variations
of the sediment bed profile z;, = z,(x, #), Eq. (2.107) reduces to

- hoU _321; 07p
W__EE + Wp, Wb_E_‘_UE. (2109)

Using Egs. (2.109), Eq. (2.104) is rewritten as

%:(Uf—UX,—UUH)gJF%, (2.110)
in which the material derivative of wj, is defined as
%Z%—FU%. (2.111)
The flow momentum M, defined by
%
M = U*h+ /’%dz, (2.112)

b

is evaluated by using the linear pressure profile
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P:Ph(l—%)- (2.113)

It satisfies the vanishing free surface pressure condition and the basal pressure
assignment p(z,) = p,,. Substituting Eq. (2.106) yields

p= (pg+p?;:>(h—n)~ (2.114)

The integral of this pressure distribution is

/pdz/pdnp(ngD)hz (2.115)

which leads to

s

p(z) > Dw i*
M = Uh 247 = U?h — ) —. 2.116
+ / & + <g+ or) 3 ( )
b
When substituting Eq. (2.110), this yields
s
p(2) ) h? ) 1 h:Dw,
M = U?h 247 = UPh+ g— + (U — U, — UU,, —=
+/pz +g2+(x ' )4+2Dt

b

(2.117)

The total time derivative Dw,/Dt is determined by using Egs. (2.109), and
(2.111), namely

owy, _ Pz OU 0zp Pz

b _Z M ZE b —_Z 2.11
Ot or? + Ot Ox + Ox0Ot’ ( 8)
8wb N 82Zb oUu 8zb 62217
ox oot oxox o (2.119)
so that
Dw,, _ 8z, oU 9z, &z &z, oU Oz, 8Pz
B o Taet UaatVaa) T e V)|
<~
B(-r2e) 205220 (— L)

(2.120)
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Here, the Exner equation has been used as indicated in the sub-braced terms. For
time and space independent porosity, this reduces to

Dw, 1 82qb_ 2U  0%qp 6_U%+U8_U%+U2@
Dt (1—n)dxdt (1—n)oxr = Ot Ox Ox Ox ox?’
(2.121)

An alternative expression for M is, thus, given by

M= Uh+ h—2+(U2—U - uu )h—3
- g2 X xt xx 4
2 2 2 2
L0 a2 P e 00 |
(1—n)ox0t (1 —n) Ox> Ot Ox Ox Ox Ox?

? .
(2.122)
The corresponding bed pressure, Eq. (2.106), is then determined by
Db Dw
o oh+ h—
p gh+ Dt
h 1 82qb 2U aqu
=gh+h|(U; — Uy — UUx) 5 — - .
gh+h (U; ' )2 (1—n)oxdr (1 —n) Ox? (2.123)

Tarax Vavar TV o

oU 0z, oU 0z, 2 52Zb]
This equation holds only for n = const. Moreover, for vanishing bed transport
(g» = 0), the bed is not eroded and, thus, does not evolve in time [z; = 7;,(x)]. The
resulting flow momentum is then obtained as

n? n (0U 0z oU 9z, %2\ H?
M=Uh+g—+ (U —Uy—UUy)— + | e + U ———2 + U =) =
tegy + (U Un )4+(8t8x+ dx Ox 8x2>2
(2.124)
If unsteady flow terms are neglected,
n? " oU 9z, 0*z\ W2
M=Uh+g—+ (U —UU,)—+ (U= 40222 ) — 2.125
+g2+(" )4+< ox ox 8x2>2’ ( )

or

"2 hd®h 1 (dn\* 1, d% 1dhdg
M=ge +Uh|1+2520 () 4 opS 2052 (506
83 F <+4dx2 4(dx> W T2 e (2.126)
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Retaining only curvature terms, one finally arrives at the basic equation used by
Engelund and Hansen (1966)

h? hd®h  hd’z

M=g—+Uh(1+-—+-—5]. 2.127

s +U <+4dx2 2dx2) (2.127)

Equation (2.127) is based on a linear pressure distribution with depth. If the

parabolic pressure distribution due to Serre (1953) is used instead, the factor (1/4) in

the water curvature term must be replaced by (1/3), leading to the theoretical

equation used by Engelund and Hansen (1966)

(2.128)

hd®h  hd’z
3d2 ' 24d )

oo
M=g— +Uh(1+ 3

Note that the more general Eq. (2.122) for the momentum flux M is accounting
for both unsteadiness and bed-load transport. Although coastal engineering appli-
cations are not within the scope of this book, the equations presented are of
applicability in this branch of hydraulics too. The propagation of solitary waves
over submerged obstacles, e.g., an island, is an application in the realm of coastal
engineering; it was so developed by Seabra-Santos et al. (1987). Consider the more
general theory by Serre (1953). The 1D unsteady x-momentum equation, in which
the stress terms are neglected (potential flow), is, from Eq. (2.28),

0 oM - Db 8Zb
U+ 5o =D (2.129)
where
M = hU? + /%dz. (2.130)

b

The vertical velocity for unsteady 1D flowing over curved terrain is obtained
from Eq. (2.37),

0 0 [oU 0z
W—__[U(Z_Zb)]—__{—(Z_Zb)_U—}
g)(c] , Ox | Ox Ox (2.131)
__ov. 9%
= 8x(z Zb)+Uax.

Similarly, the expression for the pressure is, from Eq. (2.40),
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s

s
0 0
= pglzs — — [ wdZ +p=— |U [ wdd| — pw?*.
p =8z Z)+pal/wz+pax /wz pw
Z

4

Computing the integral
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(2.132)

(2.133)

and inserting Eqgs. (2.131) and (2.133) into Eq. (2.132), the pressure distribution is

obtained with similar steps to those used to obtain Eq. (2.67).

For illustrative purposes, an alternative procedure is presented here to obtain the
flow momentum M without computing the distribution p(z). The vertical equation

of motion for an inviscid fluid is

Dy 0w ow ow  ow_ 1op_
Dr Ot Ox Oy 0z poz &

Multiplying Eq. (2.134) by n = z — z,, gives

Dw_ 1 0p_
ﬂDt— p’?az 8n,
or
Dw_ 1 g( )—p| -
vl RGO R

Integrating Eq. (2.136) over the flow depth yields

Zs Zs s s
Dw 1 0 1
dz=—= | Z(pp)dz+— [ pdz— [ gnd
/”th p/az(p")HP/IDZ /gnz’
Zp b Zp

b

or after the evaluation of the integrals

Zs

s
1 h? Dw
S pdz=g™ Yz,
p/pz g2+/’1DtZ

b b

(2.134)

(2.135)

(2.136)

(2.137)

(2.138)

Equation (2.138) is an exact depth-integrated identity, useful for the exact definition
of the momentum flux if one does not wish to compute the pressure distribution
from Eq. (2.132). Equation (2.130) is rewritten with the aid of Eq. (2.138) as



56 2 Vertically Integrated Non-hydrostatic Free Surface Flow Equations

s

W D
M= hU’+g= + /nfv:dz. (2.139)

b
Now, Dw/Dt is for flow in a vertical plane

Dw Oow ow ow
o= Tu o +w P (2.140)

Using Eq. (2.131) one gets

w_ U, 0%
o~ oxor YT or ox
ow_ U (2.141)
0z Ox
ow o*U oU 0z, %z
o e G TUG
from which Eq. (2.140) takes the form
Dw U\’ U PU|  0Ud 0Udy |,
D (a—) s Use |1 G UG e U e (214

Inserting Eq. (2.142) into Eq. (2.139) results in the momentum flow function

2 h2 2 h3
M=Uh+g5 + (U = Uy = UUn) 5 +

X

ou 62;, ou 8zb ) 82zb h2
aox Varar Vae) 2
(2.143)

The bottom pressure is computed by integrating Eq. (2.134) and inserting
Eq. (2.142) as

s
Pb Dw
D —oht+ [ =
p 8 +/Dt ¢
2

h2
_ 2 _ _ i
=gh+ (U — Uy UUM) + < o Vo U g

(2.144)

U 9z, oU 9z, 5 82@) .

Seabra-Santos et al. (1987) numerically solved Egs. (2.129), (2.143), and (2.144)
coupled with the continuity equation, finding an accurate description of solitary
wave propagation over submerged obstacles. This simplified model is, therefore, a
particular case of the general theory developed here.
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2.6 Numerical Methods for Boussinesq-Type Models

2.6.1 Unsteady Flow Simulations

Simulation of unsteady flows using depth-averaged models generally requires
numerical solutions. The numerical technique used to solve the mathematical
equations describing the physical system must be robust and stable. Water flows
over irregular topography experiences changes in the flow regimes due to moving
shocks (Vreudgenhil 1994; Toro 1997, 2001; Chaudhry 2008; Kim et al. 2009).
A key issue for numerical modeling is that the system of equations must be written
in conservative form, as done in Eq. (2.33), because shocks are otherwise not
captured. The unsteady non-hydrostatic flow equations were solved using finite
difference methods for applications involving water wave propagation, in particular
by Peregrine (1966, 1967), Seabra-Santos et al. (1987), Antunes do Carmo et al.
(1993), Wei et al. (1995), and Mohapatra and Chaudhry (2004), among others. The
unsteady non-hydrostatic flow equations were solved using a finite element method
by Khan and Steffler (1996a, b) for applications in hydraulic structures. However,
the finite volume method appears to be the technique of most frequent use in free
surface flow modeling (Le Veque 2002; Toro 2001; Kim et al. 2009; Denlinger and
O’Connell 2008), even though it is sometimes coupled in a hybrid way, either with
finite difference (Kim et al. 2009), or finite element methods, i.e., the discontinuous
method of Galerkin (Khan and Lai 2014). In this section, a practical introduction to
finite volume methods for shallow water flows is presented. For fundamental issues
or advanced topics, the books of Toro (1997, 2001) or Le Veque (2002) are
recommended.

Consider 1D unsteady water flows over a curved and rigid bottom as described
for instance by Denlinger and O’Connell (2008). The conservation laws has the
form

oU  OF

ou  OF o 2.14
ar TS (2.145)

Here, U is the vector of the conserved variables, F is the flux vector, and S the
source term vector, given by

h hU 0

Furthermore, the enhanced gravity for 1D flows is given by

Dw ow  Ow
(Tt T § i 2.147
§=gt+p =8t 5 TUG ( )
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in which the depth-averaged vertical velocity for flows over a rigid bed is given by

é

_ oh oh 6zb ou 821,
U— U—=w,—h— =U— 2.148

(31 + 8x) ox ox’ Ox ( )

The differential Eq. (2.145) is valid in the zones of the computational domain
with smooth or continuous solutions, but it does not apply at discontinuous portions

like moving shocks. Therefore, Eq. (2.145) is integrated over a control volume in

the x-f plane as
I ) [ s 21

The integral Eq. (2.149) permits the computation of both continuous and discon-
tinuous solutions as shocks. It is the base of the finite volume method. For a
rectangular control volume in the x- plane (Fig. 2.10), one can write

t+Ar Yit1)2 BU aF t+ At Xit1/2 OF
dxdr = / / —dt+ / dt / —dx= / / Sdxdz
at Ox Ox .
t Xi-1/2 t Xi—1/2

(2.150)

Here, i is the cell index in the x-direction, and i + 1/2 the interface between cells
iand i + 1. The integral of Eq. (2.150) is then exactly given by (Toro 1997, 2001)

Xit1/2 t+ At

[U(z+ Ar) — U(r)]dx + / [F(xH,/z)—F(x,-_l/z)}dt:/ Sdxdr.
Xi—1/2 t

(2.151)

Note that despite the notation is made with reference to the cell index i, and
corresponding interfaces, no numerical approximations are invoked in Eq. (2.151).
Let temporal and spatial average values be

Fig. 2.10 Control volume in 1
x-t plane
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t+ At
1
FH—I/ZZKI/ F(x;11/2,1)dt,

t
| t+ At
Fi—l/ZZKt/ F(x;_12,1)ds,
t

x,‘,l/2+Ax

U;'“:Aix / Ulx, 1+ Ar)d, (2.152)
X1+ Ax
U;l:Aix / Ulx, 1)dx,

Xi-1/2

1
Si = M//dedt.

For the quadrilateral control volume in the x-t plane as shown in Fig. 2.10, the
conservative Eq. (2.151) reads exactly, using Eq. (2.152) for time and space
averages,

At
U;?Jrl = U? — A_x (Fi+1/2 — Fi71/2) +AtSi. (2153)

In the finite volume method, the computational domain is divided into a number of
control volumes in the x-¢ plane (Fig. 2.11), where Eq. (2.153) is applied. Here,
F;,1,» is the numerical flux across the interface between cells i and i + 1. Again, no
numerical approximations are introduced in Eq. (2.153), but its formulation is
presented in the usual form suitable for developing numerical schemes.

In practice, the source terms S; and the fluxes F;,, are evaluated at a suitable
time level that depends on the specific method applied (Toro 1997, 2001), thereby
introducing numerical approximations. Usually, explicit schemes are employed.
Shock-capturing finite volume solutions using the Godunov upwind method
assisted by robust Riemann solvers (approximate or exact) are well established
today as accurate solvers of shallow water flows (Toro 2001; LeVeque 2002;

Fig. 2.11 Intercell fluxes t

i+1f2

interface interface

i-1f2 i+1/2
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Fig. 2.12 Piecewise U(x)
approximation using
cell-averaged values

Fig. 2.13 Riemann problem
solution structure for
left-going rarefaction wave
and right going shock front

Denlinger and O’Connell 2008 among others). In the Godunov upwind method, the
actual solution U(x) at time ¢ is approximated by the cell-averaged values within
each cell (Fig. 2.12).

Between two adjacent cells, there is a discontinuity in U, giving rise to a number
of local Riemann problems at each cell interface. Consider two states U; and Ug
separated at the initial time, at a generic interface between two cells. This is by
definition a local Riemann problem, and a number of wave patterns may evolve
after a time At. In Fig. 2.13, the typical case with a left-going rarefaction wave and
right-going shock front is presented (note the local system of reference with x-origin
at the cell interface). The shock front and rarefaction wave propagate with signal
speeds Sg and S;, respectively.

The constant state region just behind the shock front (star region) is denoted as
U.. The numerical flux crossing the original discontinuity at x = 0 is F, which is
needed to apply Eq. (2.153). Note that the start region in the Riemann problem is
essentially a steady-state zone where the conserved variables are U, which is a part
of the total (local) Riemann solution U(x) after time At. Therefore, the numerical
flux crossing the f-axis (x = 0) in the Riemann problem is also a constant, so that
the intercell flux is exactly evaluated based on the Riemann solution at x = 0 as



2.6 Numerical Methods for Boussinesq-Type Models 61

t+ At At

1 1
Frop=g [ Floopdd=g [ FO.0d0 = FU=0)] = FU.)
t 0

global system of reference local system of reference

(2.154)

Therefore, the numerical flux at each interface is computed based on the solution of
the local Riemann problem U(x) at this interface, evaluated at x = 0.

The solution of the Riemann problem may be conducted exactly, but resort to a
numerical method to solve the resulting implicit, nonlinear equation is required.
Thus, approximate (explicit) Riemann solvers use a simplified representation of the
wave structure as shown in Fig. 2.13. Here, the Harten-Lax-van Leer
(HLL) approximate Riemann solver is presented, suitable for 1D depth-averaged
water flow equations. It approximates the intercell numerical flux as (Toro 2001)

Fy it S.>0
SrFL—S Fr + SrSL(Ur—UL :
Fiiip= L Suite G g ngo<g Sk, (2.155)
FR 1 SR S 0.

Here, F; and Fy are the fluxes computed at states L and R. Basically, the method
assumes that the left and right waves are discontinuities, and between them there is
a constant-state solution denoted as Uy, ;. Figure 2.14 illustrates wave propagation
cases for the HLL Riemann solver. For a detailed theoretical derivation of the HLL
equations, see Toro (1997, 2001). Robust wave speed estimates S; and Sy are given
by (Toro 2001)

SL = UL —arqr; SR == UR +aRqR. (2156)

Here a = (g’h)l/z, and gx (K =L, R) is
1/2
1 [ he(he +hg)
g =L BCE)]T neo (2.157)
1 h, <hg.

Note the use of the enhanced gravity in the Riemann problem (Denlinger and
Iverson 2004; Denlinger and O’Connell 2008), and, thus, the inclusion of the

non-hydrostatic pressure in the computation of numerical fluxes. The flow depth at
the star region of the Riemann problem at each interface 4., is

1/1 1 g
]’l* = § (E (GL+CIR) + Z(UL — UR)> . (2158)

For a channel reach, discretized into a number of finite volumes, the computation of
the intercell numerical flux F;, ;,, amounts to solve several local Riemann problems,
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Fig. 2.14 Wave propagation cases of HLL approximate Riemann solver. Cases a—c represent
Eq. (2.155)

Fig. 2.15 Wave propagation U(x)
at cell interfaces with (thick A
lines) as instantaneous U(x)
profile and (dashed lines) ‘—‘ {
x-t rarefaction wave and

shock front paths at . —
interface i — 1/2 MK /

one between each adjacent cells. As a result, the evolution of U in the computa-
tional domain accounts for the wave propagation conditions at interfaces
(Fig. 2.15). Therefore, the method is of upwind type, i.e., the wave propagation
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information is used to update the conserved variables in time. This method,
first-order accurate in both space and time, is essentially the Godunov first-order
upwind method. However, high-order accuracy is sometimes advisable. To obtain
second-order accuracy in space, a polynomial reconstruction is made within each
cell, sometimes linear. Linear slopes resulting from the reconstructed solution must
be limited to avoid spurious oscillations near discontinuities.

For stability in time of the explicit scheme, the Courant-Friedrichs—Lewy
number CFL must be less than unity. The time step Af is then determined at time
level n using the equation

At = Ax CFL. (2.159)

max (|U7] + (eh)'/?)

Here, At and Ax are the step sizes in the x- and #-directions, respectively. Details
are found in Toro (1997, 2001).

The computation of shallow water flows over variable topography must be
conducted using a well-balanced scheme (Toro 2001). It implies that once a dis-
cretization is applied to the source terms S;, the time evolution of the conserved
variables must reach a stable steady state U?*' = U? if afforded by the boundary
conditions. The asymptotic steady-state version of Eq. (2.153) then takes the form

(Firip —Fi10) +AxS; = 0. (2.160)

It may be regarded as an identity that is verified only if the discretization of S is
correctly implemented. Consider as example static water over variable topography
(Fig. 2.16). The imbalance of intercell fluxes at cell i is then given by the hydro-
static forces as

Fig. 2.16 Static water over \V Cell i
variable topography

2112 Zpiv1f2
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2 2
(hi+l/2 B hifl/Z) (hi+ 12 — hi—l/2) (hi+ 1/2 +hi_1/2)
Fiiip—Fip=¢ 2 =8 2 .

(2.161)

The compatible discretization of the bed slope source term to verify Eq. (2.160) due
to the condition & + z;, = const. is

Ozp (his 12+ hic1)2) (Zpie1/2 — 2bi-172)
i =ghi| — | = . 2.162
s = () =2 - 2162

Other discretizations of the bed slope source term will generate unphysical
numerical flux.

In general, numerical difficulties are introduced by dispersion terms in
non-hydrostatic depth-averaged models. As an illustrative example, consider
Egs. (2.48)—(2.49). Assume that they are discretized using finite difference dis-
cretization (Chaudhry 2008). Finite differencing to second-order accuracy of the
first-order derivative OQU/Ox = (U —U;_)/(2Ax) + O(Ax?) produces in the
Saint-Venant terms truncation errors proportional to U,,,. These errors will have
mathematically the same form as physical dispersive terms (Abbott 1979; Wei and
Kirby 1995), just as those originating from expanding the gradient d(h*UU ./3)/0x. If
no counter measures are taken to reduce truncation errors, physical dispersive effects
are masked by numerical oscillations. Thus, higher-order differencing of leading
order hydrostatic (Saint-Venant) terms is required to guarantee that physical dis-
persion effects are not masked by spurious numerical oscillations associated with
truncation errors (Wei and Kirby 1995). Ideally, these problems disappear with a
computational mesh, if Ax — 0 and Ay — 0. However, this is not practical, so that
the control of truncation errors is necessary for usual meshes. Kim et al. (2009)
provide a useful reference, given the account of all these issues in a finite volume
model. Their modified finite volume method for dispersive systems consists in
substituting the Euler time stepping by a fourth-order accurate time stepping method,
composed of a predictor step using a third-order Adams—Bashforth formula and an
iterative corrector using a fourth-order Adam—Moulton formula. The treatment of the
leading order hydrostatic terms was done using a fourth-order accurate MUSCL TVD
procedure for reconstruction of interface values and a HLLC Riemann solver to
compute fluxes. Prior to the application of the finite volume solution, the vector U is
mathematically replaced by an auxiliary vector that includes terms with spatial
derivatives, to eliminate time derivatives (contained in mixed terms such as U,,) from
the vectors F and G. The solution is then performed for auxiliary variables, and the
vector U is determined by discretizing the spatial derivatives to second-order accu-
racy, leading to tridiagonal systems for determining U. For high-resolution finite
volume solutions of non-hydrostatic water wave problems, see Cienfuegos et al.
(2006), Kim et al. (2009), and Cantero-Chinchilla et al. (2016a, b).
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2.6.2 Steady Flow Simulations

A great variety of non-hydrostatic problems can be considered under steady flow
conditions. According to Roache (1976), a steady flow condition may be regained
as limiting asymptotic state after a transient flow computation. Khan and Steffler
(19964, b) pursued this approach and computed steady flows in curved bed struc-
tures using unsteady flow computations. Another option is to directly solve the
steady-state version of the governing equations. Generally, this leads to a system of
ordinary differential equations (ODEs), typically reduced to a single third-order
ODE, as shown in the next example. Consider based on Egs. (2.62), (2.68), and
(2.69), the flow over a curved bed as given by the ODE

d h2 q2 hhxx - h2 hszx hxsz
— =+ (1 - —
dx {2 * gh( A 2 ﬂ

2
= — {h + % (QthM- + hhy, — hi — thsz):| Zbx- (2.163)
8

Neglecting second-order products of derivatives of /& and z,, Eq. (2.163) is sim-
plified to

2 3 2 2
g (1d°h  1d°z q° \ dh dz,
E(§_3Jr§_2 (-t ) = (2.164)

This closely resembles the original Boussinesq momentum equation for curved
beds (Boussinesq 1877). The solution of a steady Boussinesq equation is a
boundary-value problem. Equation (2.164) is a third-order ODE, so that three
boundary conditions are needed. It can be solved using shooting methods (e.g., by
resort to Runge—Kutta solvers), but this approach requires high precision in setting
the conditions at the upstream boundary section (Hager and Hager 1985; Fenton
1996). Typically, h, dh/dx, and d*h/dx* are prescribed at the shooting boundary
section. There, in most cases, d*#/dx? = 0, but dh/dx must be iteratively determined
with the shooting method until the downstream boundary condition at the end
section of the computational domain is satisfied. This method is simple despite the
high accuracy needed in the computation of dh/dx at the shooting section. An
alternative is to solve the problem using a finite difference approximation of the
derivatives in Eq. (2.164). In this case, the values of the flow depth prescribed at the
two boundary sections of the computational domain, plus di/dx at one of these
sections, are directly incorporated into the mathematical model. The numerical
method in this case is more complicated than in the shooting approach, given that a
system of nonlinear implicit equations results to be solved iteratively to compute
the water depths at the nodes of the finite difference mesh, by any numerical
technique, as the Newton—Raphson or Secant methods. This approach was adopted
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by Hosoda and Tada (1994), Zerihun and Fenton (2006, 2007), and Castro-Orgaz
and Hager (2009). Zhu and Lawrence (1998) solved alternatively the
boundary-value problem using a collocation method.

2.7 Higher-Order Equations

2.7.1 Fawer-Type Equations

The theory based on Serre’s work (1953) may be regarded as accurate for most
open-channel flow problems. However, higher-order models may be needed in
some instances. These are obtained by taking higher-order approximations for the
velocity and pressure distributions to be used in the general depth-averaged
equations. While this may be done using mathematical techniques used in fluid
mechanics, such as the expansion of the flow variables using Taylor series (Mei
1983) or a perturbation procedure (Peregrine 1967), the costs involved in the
integration of a higher-order model will be payed by an increase in the order of
differentiation in the system of PDEs (Madsen and Schiffer 1998). Fawer (1937)
produced an interesting approach to increase the resolution details of
Boussinesqg-type equations in the vertical direction without further increasing the
order of differentiation (usually the higher-order spatial derivative is limited to third
order). He proposed to use an interpolation equation for the streamline curvature x
in the vertical direction of the form

K= Kp+ (K — Kb)(%)K. (2.165)

Here, k, is the radius of curvature at the free surface, r; the radius of curvature at
the channel bottom, and K is a free parameter to be determined. This theory will
extensively be described in Chap. 3; here, only the main aspects are discussed as a
means of comparison with Serre’s approach (1953).

Su and Gardner (1969) made an interesting development to be used for this
purpose. They formulated the momentum function M for unsteady flows as

2 Dz

h

n? D

Mz/uzdz+g—+ /—Wzdz7 (2.166)
0 0

where w(x, z, t) is the vertical velocity and

Dw ow ow ow
—(x,z,t) = — + —|—w8—z.

Ds o T4y (2.167)
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Using an irrotational solution of the velocity and pressure fields, they found that the
correction for the non-uniformity of u# over the depth in Eq. (2.166) is proportional
to [82 U/8x2]2 and thus of higher order. Therefore, the momentum flux is U?h. Then,
they essentially arrived at Serre’s equation for 1D flows based on the irrotational
flow theory

M = hU? + 1 U? - U, — UU a 2.168
= g2+(x xt )cx)3- ( )

If a mean acceleration term over the depth is taken using the depth-averaged vertical
velocity w, then Eq. (2.166) yields

h

h h h
h? Dw h? Dw h?
M= [ u*d — —zdz= [ U — —zdz=Uh+g¢
/u z+g2+/D[zz / z+g2+/D[zz +g
0 0 0

Ea
0
(2.169)
where
Dw Ow ow
—_—=— —_—. 2.17
Dt 8t+ ox ( 0)

This approach was pursued by Denlinger and Iverson (2004) and may be
regarded as a depth-averaged approximation to the integral result of Su and Gardner
(1969). Intuitively, Eq. (2.166) reveals that a method to produce higher-order flow
equations relies on improving the estimation of the vertical acceleration term of the
momentum function. The linear vertical velocity profile of Serre (1953),

w=——z, (2.171)

is closely related to a linear variation in the streamline curvature, i.e., Eq. (2.165)
with K =1,

= 1+ (16, — K5) (%) (2.172)

which is similar to the theory of Matthew (1963). Therefore, improving the esti-
mation of Dw/D¢ amounts to use a value of K different from unity. Fenton (1996) and

Fenton and Zerihun (2007) produced such an illustrative Fawer-type theory. For 1D
steady flow over a curved bed, they expressed the vertical pressure gradient as

10p Dw
- =g - —. 2.173
p 0z LAY ( )
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Moreover, they estimated Dw/Dt in a vertical section using an average value,
producing an approximation, with k as depth-averaged streamline curvature and g’
as the corresponding enhanced gravity in the section, as

SR k=g (2.174)

Therefore, the non-hydrostatic correction in Eq. (2.174) is interpreted as a
depth-averaged centrifugal acceleration contribution (Fenton 1996), which essen-
tially corresponds to the use of an enhanced gravity (Denlinger and Iverson 2004).
The parameter k¥ may be interpolated between the curvature values at the free
surface, z,, and at the channel bed, z;, as

&Pz &*h

Here, w is a weighting factor to distribute the contributions of the bed and free
surface curvatures on the depth-averaged centrifugal acceleration; slope contribu-
tions are neglected. The corresponding momentum function is then

h
h? U? W ich
M:/ B+ 2=t g (14 =) =g + U1+ 5
p 2 g 2 2
0

h? hhy  hZp
=g—+U2h<l+w +Z—b>.

2 2 2
(2.176)

In Chap. 3, it will be demonstrated that using Fawer’s Eq. (2.165), the
momentum function reads, if slope effects are neglected,

n? hhye  hzpyy
M=g—+U(1 =), 2.177
$5 Y ( k22 > (2.177)
Comparing Eqgs. (2.176) and (2.177) gives the identity
2
=—. 2.178
“Tk+2 (2.178)

For w = 2/3 (Fenton and Zerihun 2007), Eq. (2.176) gives the basic result of the
original Boussinesq (1877) theory, namely

h? hhy | hzpy
M—g2+U2h(1+3+Z2b>. (2.179)
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The compatibility value of Fawer’s theory is then K = 1 from Eq. (2.178), as used by
Matthew (1963). Inserting Eq. (2.179) into the streamwise momentum balance,
dm

o gh(S. —Sy), (2.180)

produces the ODE (note that the momentum velocity correction coefficient is unity)

UK (1d°h  1d%S, U2\ dh
- h—— | —=n(S,—5). 2.181
< <3dx3 2dx2>+( g>dx (S, =$7) (2.181)

This was originally developed by Boussinesq (1877) and rederived by Fenton and
Zerihun (2007), with S, as the bottom slope and Sy as the friction slope.

Once the main ingredient of Fawer’s theory is elucidated, an enhanced 1D
unsteady flow model is produced to illustrate how higher-order equations may be
formulated. Serre’s (1953) theory is based on a parabolic pressure distribution
(Castro-Orgaz et al. 2015), whereas Khan and Steffler (1996a, b) and Denlinger and
Iverson (2004) prescribed a linear pressure profile to the flow equations. A general
interpolation function for the pressure profile follows Fawer (1937) as

p:pgh(l —%) +pi {1 — (%)K} (2.182)

Here, the free surface pressure vanishes at z/h = 1, and the bed pressure in excess of
the hydrostatic pressure is p; (Khan and Steffler 1996a, b), namely

0

p o (WUR). (2.183)

0, _
Plfpa(Wh)‘F

Using Eq. (2.182), the momentum function is then

h
2
)4 ) h K pih
M= 2+ 8z =Uh+g— + ———. 2.184
/(u+p>z +g2+K+1p ( )
0

For K = 1, this expression gives the momentum function of Khan and Steffler’s
Boussinesqg-type model, whereas K = 2 results in Serre’s theory. For flows over a
horizontal bed, Egs. (2.183)—(2.184) may be combined, using Eq. (2.144), to yield

n? K ph n? K n?
M=Uh4+g—+—"—=Uh+g—+ —— | (U? = Uy — UUy) = |h
et R, Ty Ty (Ui U )5
2 h2 2 h3
- h ~ — Uxt — xx) 590
U +g2+(Ux U UU)M

(2.185)
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where the auxiliary variable /, affecting the non-hydrostatic term, is (Castro-Orgaz
et al. 2015)

2K+1
A=c—. 2.186

3K (2.186)
The specific value of K for a given flow problem may be found by fitting the
depth-averaged model results to experimental data, or to a 2D solution in a certain
range of applications (Fawer 1937).

2.7.2 Moment Equations

Steffler and Jin (1993) devised an important method to better recover vertical
resolution details in depth-averaged models. Essentially, they produced general 1D
depth-averaged momentum equations in the horizontal and vertical directions, in
addition to the well-known continuity equation. If arbitrary distributions of (u, w,
p) are set into the depth-averaged equations, a number of free parameters remain
undetermined. While for specific cases it may be possible to find approximate
predictors based on experimental observations, the idea of the method is to produce
an additional set of PDEs, one more for each undetermined free parameter, given
that the number of PDEs in the system must be compatible with the number of
unknown functions. The standard depth-averaged process described in this chapter
may be regarded as a weighted residual method with unit weighting functions
(Steffler and Jin 1993). Additional independent depth-averaged equations are
determined using weighting functions including collocation, Galerkin, and moment
methods. Steffler and Jin (1993) used the weighting function

~
I
\S]
Il
I
IS}
S
+
NS

(2.187)

The continuity, horizontal, and vertical momentum equations are then multiplied by
fand depth-integrated, producing three moment equations. As to the distributions of
(u, w, p), Steffler and Jin (1993) used a linear profile for u,

u:U+u1(2%—l), (2.188)
and quadratic profiles for w and p,
_ 7]) n ( '7) n
= I——)+4w,— (1 —— — 2.1
w Wb( o) Hawa (1= ) +wer, (2.189)

p:(pgh+p1)(1*%)+4pz%(l—%). (2.190)
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(a) &

—u,

(b)y W,

1'1-'.1._J .I"i':r .

pgh Py

Fig. 2.17 Shape functions used for weighted residual method a linear approximation of
longitudinal velocity from Eq. (2.188), b quadratic distribution of vertical velocity from
Eq. (2.189), ¢ vertical distribution of pressure from Eq. (2.190)

Here, # is the elevation above the channel bottom, U the vertically averaged hor-
izontal velocity (= g/h), u, the linearly distributed surface velocity in excess of the
mean, w, the middepth vertical velocity in excess of the average, p; the bed
pressure in excess of hydrostatic, and p, the midpressure in excess of the pressure
average at the bed and surface (Fig. 2.17).

The kinematic boundary conditions are then

wp = (——ul)— (2.191)
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@
or

Wy =

+ (%-i—ul)%(zb—i—h). (2.192)

The governing system of equations based on these particular functions is given by
the continuity equation (Steffler and Jin 1993; Khan and Steffler 1996a, b)

0q Oh

ta =0 (2.193)

The x-momentum equation, in which 1, is the bed-shear stress and depth-averaged
turbulence stresses are neglected, becomes

dqg 0 (¢ ®”o1 o, 1 2 Oz p10zp T
—+ = —+h —h —h =—gh——————
8t+8x(h+g2+3ul+2ppl+3pp2 ox pox p
(2.194)
and the z-momentum equation is obtained as
8 _ 8 1 )41 ’L'b@Zh
—(h ——(h =———— 2.195
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Based on Eq. (2.189), the depth-averaged vertical velocity w is

wp+ws 2
bz + 3w (2.196)

w =
Khan and Steffler (19964, b) further derived the moment equations

1 Oh? oz 0 ,, _
1o 99t o (h*u,) = hw, (2.197)
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in which, based on Eq. (2.189),

2
— WL W WeWp 1, 5
(2 — wpy — w2 2.200
D1 g TagW W) (2.200)

Equations (2.191)—(2.195) and (2.197)—(2.199) form a system of eight equations
for the eight unknowns (h, g, u;, wy, w,, W, p1, and p,). This system was suc-
cessfully modeled by Khan and Steffler (1996a, b) using the characteristic dissi-
pative Galerkin finite element scheme for flow in hydraulic structures. It may be
regarded as a higher-order Boussinesq-type model with increased order of vertical
resolution. If u; = w, =p, =0, then the standard Boussinesq equations are
recovered.
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Chapter 3
Inviscid Channel Flows

Roman Symbols

Gate opening (m); also wave amplitude (m/s)

Angular momentum function (m*); wave amplitude (m)

Auxiliary variables

Boussinesq’s mixed term (m4/s2)

Wave celerity (m/s); also constant of integration (m)

Celerity of small gravity wave (m/s)

Celerity of shock front (m/s)

Weir discharge coefficient ()

Spillway discharge coefficient at design head (-)

Contraction coefficient (-)

Courant-Friedrichs—Lewy number (-)

Still water depth (m)

Constant of integration (—)

Specific energy head (m)

Function (m)

Vector of fluxes in the x-direction (m2/s, m3/sz)

Froude number (-)

Froude number of hydrostatic flow (-); also Froude number of

undisturbed flow (-)

Froude number of translating wave over still water (—)

Force ()

Gravity acceleration (m/sz); also function (m/s)

Recursion index (-)

Flow depth measured vertically (m)

Critical depth for parallel-streamlined flow (m) = (¢*/g)"”

hy, Brink depth (m)

h, Uniform flow depth (m); also still water depth (m); also terminal jet
thickness (m)

h, Effective pressure head (m)

hy Maximum flow depth of cnoidal wave (m)

hy Minimum flow depth of cnoidal wave (m)
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ql(ghihz) (m)

Maximum flow depth of solitary wave (m)

Total energy head (m)

Design energy head of spillway profile (m)

Relative inclination (-); also node index in the x-direction (-)

Node index in the y-direction (-)

Recursion index (-); also wave number (mfl)

Modulus of incomplete elliptical integral of first kind (-)

Curvature distribution parameters in Fawer’s theory (-)

Inclination distribution parameter (—); pressure parameter (-); also
parameter of the original Jaeger’s theory (-)

Radius of curvature distribution parameter in Jaeger’s theory (-)
Power-law exponent at inflow section (-)

Vertical momentum (m3); also maximum value of j-index (-), also
momentum function (m*/s?)

Curvilinear coordinate along equipotential (m)

Flow depth measured normal to bottom profile (m); also maximum
value of j-index (-); also power-law exponent (—)

Length of equipotential curve (m)

Pressure (N/mz); also auxiliary variable (-)

Bottom pressure (N/m2)

Interface pressure (N/m?)

Pressure excess over hydrostatic pressure at channel bottom (N/m?)
Bottom pressure at brink section of free overfall (N/mz)

Unit discharge (m2/s)

Normalized unit discharge in slope break with rounded transition (-)
Progressive unit discharge (m?/s)

Relative curvature (-); ratio of down- to upstream water depths in dam
break problem (—); also roller thickness (m)

Radius of streamline curvature (m)

Radius of circular-shaped equipotential line (m)

Radius of free surface (m)

Radius of channel bottom (m); also radius of circular arc transition (m)
Curvilinear coordinate along streamline (m); also main stream profile
of submerged jet (m)

Specific momentum (m2)

Bottom slope (-)

Vertical flow depth (m); also time (s)

Velocity in the x-direction (m/s); also normalized variable (-); also
incomplete elliptical integral of first kind (-)

Velocity in the ¢-direction (m/s)

Velocity at elevation z,, (m/s)

Mean flow velocity (m/s) = g/h

Amplitude of perturbation of flow velocity (m/s)
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Vector of conserved variables (m, m/s)

Mean critical flow velocity (m/s) = g/h.

Local velocity (m/s)

Velocity in the z-direction (m/s)

Velocity in the z-direction at gate edge (m/s)

Velocity in the {-direction (m/s)

Horizontal coordinate (m)

X/h. (-); also longitudinal coordinate in moving system of reference
(m); also x/Hp (-)

Modified X-coordinate of sharp-crested weir flow (-)

H/hpax (-); also coordinate in the horizontal plane, normal to x (m)
Hih, (-); also (y = D/(Fp = 1) ()

Vertical elevation (m)

Free surface elevation (m)

Elevation of channel bottom (m)

Reference elevation (m)

Recursion index (-); also normalized variable (-); also z,/Hp ()
Modified Z-coordinate of sharp-crested weir flow (—)

Greek Symbols

o
Ol

Dispersion coefficient (-)
Nwogu-type dispersion coefficient (—)

oy, 0, a3, 04 Coefficients
B1> B2, B3, P4 Coefficients
r

s
A
€
&1, &2

MAAE A DS

Incomplete gamma function (-)

Specific weight of water (N/m>)

Step in the x-direction (m); also factor in cnoidal wave theory (—)
Lower nappe maximum elevation (m)

Curvilinear coefficients (-)

Coordinate normal to channel bottom profile, normal to ¢ (m); also
water depth variation around static level (m); also normalized x-
coordinate in solitary wave profile (-)

Vertical coordinate above channel bottom (m)

Angle of streamline inclination with horizontal (rad)

Curvature of streamline (m™'); also denoted as

Curvature of bottom profile (m™ )

Curvature of equipotential curve (m™")

Vorticity factor (—)

Non-hydrostatic correction coefficient in critical flow condition (-);
also wavelength (m)

Dimensionless vertical coordinate ()

Dimensionless curvilinear coordinate along equipotential line (-);
also kinematic viscosity (mz/s)
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4 Curvilinear coordinate measured along bottom profile (m); also
normalized x-coordinate in solitary wave profile ()

11 Function (m)

0 Density of water (kg/m’)

T R/R; (-)

¢ Potential function (m*/s)

0, ©, Functions of water surface profile equation (-)

® Non-hydrostatic correction coefficient (-)

b E/Hp (-); also curvature parameter (—); also normalized x-
coordinate in free jet profile (—); also parameter of cnoidal wave (—)

v Stream function (m*/s)

Q Effective angular momentum function (m3); also curvilinear
function (-); also vorticity (sfl); also normalized variable (-)

0] Constant in solitary wave profile (—); also recursion index (-); also
normalized variable (-); also frequency s™H

Subscripts

b Relative to channel bottom

c Critical flow

crest Relative to crest section

d Relative to downstream boundary condition

0 Relative to approach flow conditions

s Relative to free surface

u Relative to upstream boundary condition

*

Relative to dimensionless value; also relative to star region in Riemann
problem

3.1 Introduction

Open-channel flows in hydraulic structures typically involve large pressure gradients
and accelerations with relatively small frictional effects, e.g., as in a free overfall or
at a weir crest. In these flow problems, the viscous stresses are not important terms in
the Navier—Stokes equations so that the problem can be mathematically solved using
the equations of an inviscid fluid, i.e., the Euler’s equations. Viscosity effects are
typically isolated to thin boundary layers close to solid walls. In this chapter,
therefore, the mathematical theory of inviscid fluids is applied to non-hydrostatic
conditions within short-channel structures in the vertical plane (x, z). In most cases,
the flow may also be assumed to be irrotational so that the potential flow theory
applies by defining the corresponding velocity potential and stream functions.
Further, a large variety of the fluid processes are steady so that as detailed in the next
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section, the energy head is a constant, and changes in the velocity head are linked
only to changes in the piezometric pressure. Typical open-channel problems
encompassing non-hydrostatic potential conditions were experimentally investi-
gated by Rouse (1932); they include free overfalls (Fig. 3.1a), transitions from mild
to steep slopes (Fig. 3.1b, ¢) and rounded drops (Fig. 3.1d).

(a)

Energy Gradient

A ‘
5 By - ~
i | P il
/ [+ e
1 1 » 41  Vam S 95 P
F 1 L4 ° :‘.‘: +e SR
i yak :
: 4 1A + | 0 B r® J.‘-\\\
T o = ": 44 - w
T Z T | L ol G - M - \\\
+30 2 +40 £ 10 b
< Fac \'\\ : :
e L 4
g i
. .

Fig. 14, Profile of ventilated fall - z
under 123 liters per secend per .
meter discharge. Diogrom shows -10 10
location of piezemeters in wall A
and fleor, and measured presouss » \

o

SOake

(b)

1 -——
: . . . =
= S .
3} A
: -~ 4 >

! 1z

T ¥ Ll .I_\

Fig 6. Profile of horizanal, broad-
crested wair with 1%:1 downslream
foce under discharge of 125l5/m
Diagram shows location of wall

and floor piezometers, measured
pressures, and magnitude of roller

Fig. 3.1 Curvilinear flows at a free overfall, b transition from mild to steep slopes with small
separation bubble (Rouse 1932), ¢ transitions from mild to steep slopes with noticeable bottom
separation of flow, d flow over circular arc drop (Rouse 1932)
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In all these situations, the energy headline is essentially horizontal, implying
plane potential conditions. In Fig. 3.1, vertical pressure distributions are plotted;
note that as the corresponding transition zone is reached, these diverge from the
hydrostatic pressure distribution. This is also highlighted when looking at bottom
pressure profiles, which are different from the flow depth profile. Whenever these
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two characteristic profiles do not overlap in a channel, curvilinear streamlines
occur; the diagnosis is that the standard Saint-Venant’s theory does not apply. In
turn, the potential theory is able to generate in these regions velocity and pressure
distributions close to reality. However, care must be taken in analyzing each
problem with proper engineering judgment before applying a mathematical theory.
For example, the abrupt bottom kink without rounding the slope break of Fig. 3.1b
forces a separated streamline to emerge from the kink point, below which a bottom
bubble with recirculating fluid is trapped. The flow within this region is rotational,
associated with energy losses. In this case, however, the slope break is generally
moderate, and the bottom bubble remains small. In contrast, note the extreme
separated flow zone in the transition problem of Fig. 3.1c, in which the momentum
of the recirculating fluid and associated energy losses have to be accounted for.

As a main lesson, curvilinear potential channel flows need boundary stream-
lining to avoid flow separation. This technique is well known among dam engi-
neers, who apply this principle to design spillway crests for decades (Hager 1991;
Montes 1998). Thus, a streamlined design of a channel structure is iterative; a
certain boundary geometry is assumed, and the flow is then visualized to detect
whether flow separation occurs. Therefore, boundaries ought to be redefined fol-
lowing the profile of a separation streamline. A fundamental step in the design of
efficient short-channel structures (with negligible energy losses) is to visualize the
flow in experiments. It is made visible in a model structure by adding particles at
the inlet, thereby filming the flow structure with adequate illumination. A typical
test of a circular-crested weir is shown in Fig. 3.2, where curvilinear streamlines are
noted as the flow passes above the weir crest. The particles are illuminated and the
shape of the streamlines is made visible as long as particles are moving in the
observation window. These images can be processed to extract the mean steady
streamlines.

The two-dimensional (2D) streamline flow pattern of the water along
hydraulically short structures, like round-crested weirs or the transition from a mild
to a steep slope, encompasses notable spatial changes, where the vertical acceler-
ation is significant and the pressure distribution deviates from the hydrostatic line
(Vallentine 1969). Adjustments of streamline slope and curvature occur in response
to variations of the boundary shape. Under these conditions, the flow features are
described by the equations of inviscid, incompressible, and irrotational flows
(Cassidy 1965; Vallentine 1969; Ramamurthy et al. 1994; Montes 1998). The
velocity field is, therefore, determined by the existence of potential and stream
functions, ¢ and y, respectively. The complete 2D potential flow solution provides
the velocity field (u, w) at any point of the domain (x, z), with u and w as the
velocity components in the x- and z-directions, respectively. Finite-difference
solutions for 2D potential flows with a free surface in the gravity field were pro-
posed by Cassidy (1965) and Montes (1992a, b, 1994a), among others. Alternative
methods, such as the boundary element method of Cheng et al. (1981), are applied
to compute both the free surface and bottom pressure profiles.

A relevant question is: Which conditions of fluid configurations are close to
potential flows, in contrast to the conditions under which they are fraught with
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Fig. 3.2 Curvilinear flow over circular-crested weir. Streamlines are made visible by adding
particles at the channel inlet. Numbers indicate the sequence of photographs during the experiment
(Castro-Orgaz 2010a)

rotation? This problem is essential, because potential flows are approximated with
the constant energy concept, whereas rotational flows need to be considered using
the momentum equation or higher forms of it. As described above, typical potential
flows are those over rounded weirs or below gates as the boundary geometry is such
that no large flow separation occurs. In contrast, typical rotational flow effects are
exhibited in hydraulic jumps, Borda—Carnot expansions in piping systems, or
moving bores in the maritime environment. Deciding whether a flow belongs to the
first or the second category is essential because their mathematical treatments are
different. A simple indication, whether a flow is of potential or of rotational
character, is the 2D streamline pattern for smooth variations of the bottom geom-
etry: If the streamlines in 2D converge in the direction of the dominant velocity, the
flow has potential character, while flows with diverging streamlines are certainly of
the rotational type. This indication may be considered a guide to decide which of
the two fundamental categories applies in a specific problem. Note that this
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principle is subject to variation for spatially varied flows, as, e.g., flows over side
weirs or in side channels.

Numerical solution procedures to determine the complete 2D velocity field are
the basis of the development of approximate solutions. The determination of
the potential velocity field by successive approximations is achieved using two
different methods: perturbation techniques or iteration upon a basic approximate
solution (Van Dyke 1975). In both methods, the vertical variation of the velocity
components (u, w) is approximated by a 1D approach (Montes 1998), namely
Boussinesq’s approximation. This model was intensively considered in the 1980s
and beyond, given its importance both in theory and in practice. Hager and Hutter
(1984a, b) and Hager (1985a) presented one of the first rigorous derivations of a
second-order accurate Boussinesq-type potential flow model using intrinsic coor-
dinates, following Matthew (1963). Matthew (1991) and Marchi (1992, 1993)
developed identical second-order Boussinesq-type models based on Cartesian
coordinates, but using different techniques. Whereas Matthew (1991) used Picard
iteration, Marchi (1992, 1993) employed an expansion of the stream function fol-
lowing the work of Benjamin and Lighthill (1954). Matthew’s work is unique
because he also presented third-order accurate solutions for potential velocity fields.
Steady-state, curved open-channel flows were described still with other potential
flow approximations, leading essentially to second-order models of a comparable
degree of accuracy (Matthew 1963; Hager and Hutter 1984a; Naghdi and
Vongsarnpigoon 1986; Ramamurthy et al. 1994), although other alternatives exist,
as the moment of momentum method (Steffler and Jin 1993; Khan and Steffler
1995, 19964, b). However, a generalization of second-order steady-state potential
equations to unsteady flows, or to steady-state spatially varied flows, is more fea-
sible by using Picard iteration, originally proposed by Matthew (1991, 1995).
Successful applications of Matthew’s iterative equations relate to steady flows over
curved-bottomed channels, including the round-crested weir (Matthew 1991) and
the slope break problem (Castro-Orgaz and Hager 2009). The equations also apply
for free jets (Marchi 1992, 1993; Matthew 1995). Despite the success of
Boussinesq-type models (Hager 1985a; Matthew 1991; Marchi 1993), this
approach was questioned by Montes (1992a, 1994a, b). He argued that as the
vertical velocity profile from the Boussinesq’s theory is linear, it cannot be used to
handle highly curved flows. In contrast, Matthew (1991, 1995) and Marchi (1992,
1993) advocated that the theories apply to highly curved flows, whereas Khan and
Steffler (1995) demonstrated that a vertical velocity profile is no reason for the
failure of the solution. It is certainly true that the particular assumption of Matthew
(1963) or Hager and Hutter (1984a) is that the flow must be weakly curved. In
mathematical terms, this assumption requires that £, z; , |t £, and |¢ zpy| < 1, with
(x) as the flow depth, z,(x) as the bottom profile, and x as subscript indicating
differentiation with respect to x. However, these limitations are not explicitly
included in the Picard iteration technique, as proposed by Matthew (1991).
Castro-Orgaz and Hager (2013, 2014a) demonstrate that the second-order
Boussinesq-type model also applies to highly curved flows.
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In this chapter, approximate methods to obtain higher order Boussinesq-type
equations are presented, including the theories of Dressler (1978), Hager and Hutter
(1984a), and Matthew (1991). The resulting solutions for typical flow problems as
the free overfall, the slope break, the round-crested weir, and the vertical gate are
then compared with physical and 2D numerical data. Vorticity effects are presented
for the free overfall as test case, and the mathematical theory of irrotational,
unsteady water waves is introduced.

3.2 Potential Flow Theory

3.2.1 Fundamentals

Consider steady inviscid channel flows over a curved bottom (Fig. 3.3). The
problem is governed by the steady Euler equations of an inviscid and incom-
pressible fluid as (Rouse 1938; Vallentine 1969; Hutter and Wang 2016)

Ju B_W_

B + oz 0, (3.1)
Ou Ou  10p
ow ow 19
=P g (3.3)

“ox TV T p Oz

Here, u is the velocity component in the x-direction, w that in the vertical
z-direction, p the pressure, g the gravity acceleration and p the fluid density.

¢ = const

H

W = const

=10

¥

Fig. 3.3 Definition sketch for steady plane potential flow over curved bed
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Equation (3.1) is the continuity equation of an incompressible fluid, whereas
Egs. (3.2) and (3.3) state conservation of momentum in the x- and z-directions,
respectively. Further, if the fluid particles are free of rotation, the curl of the velocity
field in the (x, z) plane is zero, so that

ou Ow
=T 34
0z Ox (34)
An irrotational and inviscid velocity field (#, w) can be defined using the
potential function ¢ such that (Thom and Apelt 1961; Vallentine 1969)"

3} 3}
—a—(f, w:—a—f. (3.3)

This irrotational flow field automatically satisfies Eq. (3.4). Using Egs. (3.5) in
(3.1), the flow field obeys the Laplace equation for ¢

Po P
— + —=0. 3.6
Ox2 + 072 (36)

For an incompressible fluid, a stream function  is defined as (Thom and Apelt
1961; Vallentine 1969) (see Footnote 1)

0 0
fa—f, w:Jra—:/z. (3.7)

Using this in Eq. (3.1) shows that the continuity equation is automatically satisfied.
Furthermore, if Eq. (3.7) is used in Eq. (3.4), it is seen that also the stream function
satisfies the Laplace equation

Py Py

e T o = 0. (3.8)
The lines = const are called streamlines, and the velocity vector, of modulus
V=@?+wH)" s tangent to them. The equipotential lines ¢ = const are normal
to the streamlines at intersection points, forming the so-called flow net of a potential
flow. Thus, a potential flow obeys the Laplacians for both ¢ and /, as well as the
so-called Cauchy—Riemann equations, derived by equaling the velocity components
in Egs. (3.5) and (3.7) as

09 W __ 0 _ W
ax oz T Tz Tox

(3.9)

'In most books on fluid mechanics, ¢ and  are defined with the opposite signs.
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An additional equation satisfied by potential flows is gained by substituting the
irrotational flow condition into the Euler’s momentum equations (3.2) and (3.3).
These reduce to

_Lop

9 h oy _

Ea(u +w?) = Py (3.10)
10,5, 5, 10p
26Z(u +w?) = Py (3.11)

For density-preserving fluids (p = const., i.e., the assumption of incompressibility
of water), Egs. (3.10) and (3.11) are rewritten as

o (WB>+w? p

— — =0 3.12
3X( 2g +pg+z> ’ (312)
o (W+w p >

— 4+ —+z)=0. 3.13
51( 28 pg - 3.13)

Let the total energy head H be defined as

+= +2z. (3.14)

Equations (3.12) and (3.13) then state that H is a constant within the flow

oH  0OH
H=— —dz=0. 1
dH =5 dv+ 5-de =0 (3.15)

Equation (3.15) leads to H = const; coupled with Eq. (3.9) for the velocity com-
ponents, it allows for solving potential channel flows in the vertical plane. In the

next few sections, mathematical techniques (analytical or numerical) are presented
to solve these equations.

3.2.2 Conservation Laws

The velocity (1, w) and pressure p of a potential flow can be used in the control
volume method for 1D depth-averaged computations. Derivations of the conser-
vation laws of a control volume for steady, plane curvilinear flows are presented.
Integration of Eq. (3.2) from the channel bottom to the free surface yields
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2 +h 2 +h +h 2 +h +h
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My M= [ 24 IWar=—= | Pyg
“ox Tt / Vo ¢ ox T / 5z & p/ ox °

b b b b b

(3.16)

Using Leibniz’s rule to exchange the order of integration and differentiation where
necessary leads to

d | 0z, 0z
a / uZdZ _ |:MS a_); — W{l Uy =+ |:Mba—;} — Wb:l up
2

-0 —
1{d [ 0zp 0z
e el d y—2 — py 2 3.17
pdx/pzﬂmax P o (3.17)
b =0
+h

d/ (”2 P) Pb

= — —+ = )dz=—"2z,

dx g 7 y
b

in which y = pg is the specific weight and where the underbraced terms vanish
owing to the kinematic and stress boundary conditions, expressing the tangency of
the velocity at the basal and free surfaces and stress-free conditions at the free
surface. This is a simplified form of the general Eq. (2.30). The quantity

2 +h

S = / <”£+’y—’)dz (3.18)

b

is defined in the hydraulic literature as specific momentum (Jaeger 1956; Matthew
1991; Montes 1998). Conservation of the horizontal momentum, from Eq. (3.17),
then gives

— =2z (3.19)

Moreover, conservation of energy results in

dH

2
=0 (3.20)

as implied by Eq. (3.15). The total energy head H is defined in terms of the free
surface streamline as
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ul +w?

H=h u 3.21
+ 25+ 2 ( )

Integrating the vertical momentum equation (3.3) in the vertical direction yields

+h P +h P 1Zb+h 5

w w p

—d —dz=—-— — +7]d 3.22
/ e z+/ W@z z p/ (8Z+/) zZ, (3.22)
b b b

resulting in the z-momentum balance

+h

d / uw Db

— —dz=—-h. 3.23

el . (3.23)
b

Defining the vertical momentum flow per unit mass, M, as

+h
M= / Yz, (3.24)
8
2
its conservation requires
dM _ py
—=——h 3.25

Consider now what is called the moment of an equation for a control volume,
here the momentum balance in the x (and later the z)-direction. Adding the term

ou Ow

to the left-hand side of the horizontal momentum equation (3.2) yields the con-
servative form of Eq. (3.2), namely

o> O(uw) 1op
Ox 0z p Ox (327)

Multiplying this equation on both sides by a weighting function, here simply z,
yields

ouw? O(uw) z0p
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Integrating subsequently the resulting equation over the water depth generates

+h P +h P 3 +h | +h P

—(u?z)d /— d—/ d:——/—d 2
/ 8x(u z)dz+ aZ(uwz) z uwdz 5 ax(pz) z,  (3.29)
b b p Zp

by using the relation

zp+h +h 2 +h

/ za(g;)z / a%(uwz)dz— / uwdz. (3.30)

b b b

Equation (3.29) is the depth-integrated z-moment of the x-momentum equation.
It will be transformed into a more convenient form by interchanging differentiation
and integration using the Leibniz rule; with z; = z;, + h, the integrals in Eq. (3.29)
are transformed to

Zs s
O(u?z) 0 0z 0z
/ dz = a/ u?zdz — ulz, ™ +ulzp
b

Ox Ox’
b
Z

%) uwz
/ ( )dz = UsWZs — UpWpZp,

0z
b
1o 1o f 1 oz, 18
- a_ dz=——= d —<s s . .
p/ax(pz) z pax/pz z+pz \p/ax prPb o
2 2 =0
(3.31)

in which the vanishing free surface pressure p, = 0 has been implemented. Inserting
Eq. (3.31) in Eq. (3.29) leads to

P p+h P P Zs
b / MzzderMsZs <WS — Uy ai;) —UpZp (wh — up (‘;)f) — / uwdz
b b
=0 =0 (3.32)
+h
__1o / gy _ L, 0%
= p Ox pz prPb o

b

in which the underbraced kinematic quantities vanish, since they express the tan-
gency of the basal and free surface velocities to the bed and free surface, respec-
tively. The last equation directly implies
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+h 2 +h

dx/ < )zdz—/ ldd P ;anfh_O. (3.33)

b

Proceeding analogously with the vertical momentum balance equation, Eq. (3.3), it
is written as

0 ow? 10p
< b 34
ax(uw)—i— 0z p 07 & (3:34)

Multiplying this equation on both sides with x and, subsequently, integrating the
emerging equation over the flow depth from z = z;, to z = z;, + & leads to

+h w+h w+h w+h

0 0 1 0
9 (uw)d 9 (wx)dz — dz= —— < d
ax(xuw) 7+ / % (w?x)dz / uwdz 5 / xaz(p+pgz) z
b b b b

(3.35)
This is transformed into a more convenient form again by using the Leibniz rule

when interchanging differentiations and integrations as above. In this way, one
obtains

d p+h P P 2+

uw 7o\ Wy 25\ Wp uw
— —d s—Us—— | —— —Up—o— | —— —d
dx/ “e ZH(W' “ 3X)g x(wb ub@X)g / g

b b——\f_—'/ \'——\f——-/ b
=0 =0
S O xh,
4 s
~—
=0
(3.36)
or
m+h +h

uw Db
x—d —/ —dz—x(——h):O, 3.37
dx / 8 Y (3:37)

in which again p; =0 and the tangency conditions of the streamlines at the
bounding surfaces have been applied.

Equations (3.33) and (3.37) are the relevant equations by which a
depth-integrated balance of angular momentum is motivated. To this end, let m, = 0
and m, = 0 be the local momentum balances in the above 2D formulation. Then,
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zm, — xm, = 0 is the moment of the x- and z-moments of the momenta with respect
to the origin of the coordinates (x, z). Next, let us form

Zs

/ (me - xmz) =0. (338)

b

The value of this integral vanishes as an identity if m, = 0 and m, = O are satisfied
as local identities. However, if the momentum equations are only globally satisfied,
e.g., as

Zs s

/mxdz =0 and /mzdz =0, (3.39)

b b

then Eq. (3.38) is a genuine statement. Further, it may be stated that Eq. (3.38) is
weaker than any one of the two statements

s s

/zmxdz =0 and /xmzdz =0, (3.40)

b b

and even though from a viewpoint of the principle of weighted residuals, each of
them or both are possible candidates of higher order approximation.
Equation (3.38) is obtained by subtracting Eq. (3.37) from (3.33); the result is

2+

+h h
d / (’42 P) (Pb > d / uw 26D
— —+=)zdz+x|{——-h) —— x—dz = —zp—. 341
dx g 7 Y dx g Y (341)
b

b

Khan and Steffler (1996a, b) and Steffler and Jin (1993) presented moment of
momentum equations, where the momentum equations are multiplied by a
weighting function, typically related to the vertical coordinate z, e.g., in the first of
Eq. (3.40). However, these relations are not conservation equations for angular
momentum, but rather additional legitimate depth-averaged mathematical state-
ments based on the residual weighting method, as explained above. Let the angular
momentum A due to horizontal forces be

2 +h

A= / (’;2 + i) zdz. (342)

b
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Conservation of angular momentum then requires from Eq. (3.41)

+h

d
=L- th%, inwhich L= —x<@ — > + = / x . (3.43)
Y y dx 8

b

& &

Equations (3.19), (3.20), (3.25), and (3.43) are the conservation laws of horizontal
momentum, energy, vertical momentum, and angular momentum, respectively, for
an elementary control volume of curvilinear streamlines and vertical sections. For
specific applications, the velocity components u(z) and w(z), as well as the pressure
distribution p(z) along a vertical section, are needed. If these are computed using a
potential flow method, the estimations for velocity and pressure fields should satisfy
the conservation equations derived here with a prescribed truncation error. For
depth-averaged open-channel flow modeling, it is rather more suitable to use
Eq. (3.33), rewritten as

dA Z
:M_beﬂ~

o . (3.44)

3.2.3 Flow Net

The family of curves ¢ = const (equipotential lines) and = const (streamlines)
forms a flow net, of which the streamline inclination with respect to the x-axis is 0
and whose streamline curvature is k = 1/R, with R as radius of streamline curvature
(Fig. 3.4). For applications to steady curvilinear flows, consider the steady Euler’s
equations formulated in a curvilinear orthogonal coordinate system with axes along
the streamlines (s) and orthogonal to them (n). These are (e.g., Rouse 1938;
Milne-Thomson 1962; Montes 1998; Hager and Schleiss 2009)

Fig. 3.4 Definition sketch z
for the flow net in plane
open-channel flows (adapted n w = const

¢ = const /

from Rouse 1932)

v
=
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V2 19p 0z

= —. 3.46
R pon & on (3.46)
Here, V = (u* + w*)"? is the modulus of the velocity vector and gravity points to
the negative z-direction.

For steady irrotational motions, the total energy head is a constant given by

V2
H=z+2+ 2 = const. (3.47)
728

It permits the computation of H/0n = 0. Inserting the resulting expression into
Eq. (3.46) gives

ov Vv
R (3.48)
Equations (3.47) and (3.48) replace the original Euler equations. Note that
Eq. (3.48) applies along a curved line n(x, z) characterized by the mathematical
condition ¢(x, z) = const. Computing V(n) by the use of ¢(x, z) = const. yields
V(x,z),u = Vcost and w = V sinfl. However, these Cartesian components, (i, w),
are determined along the coordinates (x, z) following n measured along the math-
ematical curve ¢(x, z) = const. In the (s, n) system, the velocity V is related to the
stream function by

o
=—. 4
V== (3.49)
Substituting this result into Eq. (3.48) yields
A,
_ — =0 3.50
a2 g, =V V=0, (3.50)
in which
1 00
"TR os (3:31)

relates the streamline curvature and the change of the inclination angle 6 along the
streamlines. Note that the left-hand side of Eq. (3.50) can be reinterpreted as
Laplace’s equation along an equipotential line.
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3.3 Picard Iteration

3.3.1 General Aspects of Iterative Solutions

Van Dyke (1975) discussed two methods to solve the systems of partial differential
equations in fluid flow problems by approximations. For 2D potential flows, the
existence of stream iy and potential ¢ functions results in the system of governing
equations VZ¢ = 0 and V) = 0 obtained from the continuity equation and irro-
tational flow condition, respectively (Vallentine 1969). These elliptic equations can
also be viewed as consequences of the Cauchy—Riemann equations. A first method
to find a solution is assuming a given power series for i, as done by Benjamin and
Lighthill (1954) in their study of cnoidal waves and bores. The coefficients of the
power series are determined by using the governing equation V%) = 0 and the
boundary conditions on . This treatment lies in the first class of solutions dis-
cussed by Van Dyke (1975).

The second kind of approximate solutions of potential flows is to iterate the
solution of the equations V?¢ = 0 and V*) = 0 starting with an initial solution,
without any assumption of the recursion series. Matthew (1991) pursued this idea
and iterated the Cauchy—Riemann equations, a process which is equivalent to
iteratively finding ¢ and by satisfying V2¢ = 0 and V*) = 0. This technique is
described below.

3.3.2 Second-Order Velocity Field

Van Dyke (1975) indicated that iterations or perturbations could be used to solve
systems of partial differential equations in fluid flow problems, subjected to
appropriate initial and boundary conditions. Matthew (1991) pursued this idea in
steady open-channel flows and solved the Cauchy—Riemann equations by iteration.
This technique permits the reduction of 2D flows in a vertical plane to approximate
1D problems. The resulting 1D equation is solved by suitable numerical techniques.
An applied example is, e.g., flow over a weir crest. The application of Picard
iteration amounts to applying iterative cycles in a recursive way. Performing an
infinite number of iterations would make the method very heavy to produce an
algebraically tractable 1D differential equation, given the fact that the development
of the third iteration cycle is already tedious (Matthew 1991; Castro-Orgaz and
Hager 2013, 2014a).

Consider the free surface flows over an arbitrary bottom geometry z;(x) (Fig. 3.3).
The flow depth A(x, ) and discharge g(x, f) depend in general on the streamwise
coordinate x and on time ¢. The Cartesian velocity components u(x, z, ) and w(x, z, )
of potential flows obey the Cauchy—Riemann equations given by Eq. (3.9) in un-
steady potential flows. Equation (3.9) involves only spatial differentiations with
respect to the x- and z-coordinates of ¢ and i that are also functions of time. Matthew
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(1991) used Picard iteration technique to provide the successive approximations of
u and w to an arbitrary order of accuracy for steady flows (¢ = const). The procedure
applies, however, also for unsteady flows; one only needs to consider that g is not a
constant (Castro-Orgaz and Hager 2014a). For the sake of generality, the velocity field
is considered as unsteady; steadiness will be imposed at the end.

The first of Eq. (3.9) is

oy
0z’

(3.52)

Integrating it in the vertical direction, introducing thereby the variable #(x,
7) = 7 — zp(x) as the vertical distance above the channel bottom yields

Y= —/udn =—Un. (3.53)

Note that for vertical integration, the variable z is replaced by # by using a change
of variable. The depth-averaged velocity U = g/h has been selected as a starting
function in Eq. (3.53). The velocity U is retained as a dependent variable in the
mathematical developments rather than expanding it as a function of both ¢ and #,
thereby simplifying the algebra. Using the Cauchy—Riemann equations (3.9), and
(3.53), gives

w= +%: —Um — Up,. (3.54)
Ox

Here and henceforth, subscript notation for differentiation is employed as above.
Again from Eq. (3.9),
__09

— (3.55)

which delivers ¢ by depth integration, when w is known from Eq. (3.54). This
yields with f as an arbitrary function of x and ¢

2
p= / wan +() = 0T Unn, +f(x,0). (3.56)

With the aid of Eq. (3.56), and the function f, not yet determined, the first identity
in Eq. (3.9) is

% _ _u " _ oy +u Un? 357
o mg—( My + Un)n — Ung +fr (3.57)



102 3 Inviscid Channel Flows

Inserting Eq. (3.57) into Eq. (3.52) and then integrating the emerging equation with
respect to # lead to

3 2
b= [wn= U QU U OB —fn (358)

Note that the depth-averaged velocity U(x, f) and its spatial derivatives are not
functions of z and, thus, neither of #. Furthermore, #, = —0z,/0x and 3, =
—82zb/8x2 are also independent of z. Equation (3.58) is now used to obtain f,
subject to the boundary condition of the stream function at the free surface, namely

Wl = hx,)] = —q(x,1). (3.59)
Inserting Eq. (3.59) into Eq. (3.58) results in

2

h h
fo= Ut U + QUL Uny) 5 + U (3.60)

This result together with Eq. (3.57) yields

h h2 172

Equation (3.61) is the generalized second-order velocity profile for unsteady
potential flow. Note that it accounts for full nonlinearity during the iteration pro-
cess. The bottom profile contribution in curvilinear flows is given implicitly by the
terms #, and 7,,, whereas the free surface profile effects, 4, and 4,,, are contained in
the terms U, and U,,. For steady flows over a curved bottom surface, the spatial
derivatives of U and 7 take the form

qh, qhe | qh?
= —— = —— 22X
Us o Us R (3.62)
17)( = —Zbx, n,\'x = —Zbxx-

Inserting Eq. (3.62) into Egs. (3.54) and (3.61) results in

q 2hyzpe\ (20— h heo  h%\ (37 — K?
=9 - R (T ) (2T .
! h[ +(Zb’”‘ I )( > )\ 3 , (3:63)

w=1 2o+ %h} . (3.64)

The pressure distribution follows from the energy conservation law of steady
potential flow. From Eqgs. (3.14) to (3.15), the total energy head H is a constant in
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the entire computational domain for any potential flow; this is so because it is
assumed that the flow is free of vorticity at the boundaries. Thus,

12 (x,2) + W (x,2)

p
H=H(x,z) =z+ = (x,2) + = const. 3.65
() =2+ 2 > (365)
The pressure head follows from this as
p w>+w
—=H- (3.66)
Y 2g

In steady potential flow, the energy head is a constant for all streamlines; thus,
Eq. (3.65) can also be evaluated on the free surface streamline where p; = 0 to
obtain

V2
H=z+ ﬁ = const. (3.67)

Moreover, z, =z, + h and V is the modulus of the velocity vector at the free
surface streamline. Using Eqs. (3.63) and (3.64), the velocity at an arbitrary ele-
vation 7 above the channel bed V is estimated as (Matthew 1995)

2 2 2 2
2_ 2, 2 49 ~ 2hyzpx _ he R\ (6% —2h
VisutwiR s [1 + (bex . >(271 h) + <2h e\

U
h

+2 420+ L ﬂ

n
(3.68)

To account for the terms of similar order of magnitude in Eq. (3.68), u® was
computed squaring Eq. (3.63) and retaining only the first-order terms, whereas w’
was determined exactly (Matthew 1995). By evaluating Eq. (3.68) at # = h, one
obtains

2 2 2 2
2 q - 2thbx . h—)gx . h_x 6h” —2h
Vs h2 |:1 + (bex h ) (Zh ]’l) + (2]1 h2 3

h h?
T L hi} (3.69)

2

q
= ﬁ [1 + (hZh)ax - thth) + (

2hh, 4h2
3 3)+be+22bxh +h]

Inserting Eq. (3.69) in Eq. (3.67), the energy equation at the free surface streamline
takes the form (Matthew 1991; Castro-Orgaz and Hager 2014a)
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V2 P Dhh,, — h? )
H=zy+h+t > =z+h 1 5 4z (370
w+h+ 2 n+h+ 2gi + 3 + hzpe + 25, ( )

This is similar to the equations of Fawer (1937), Matthew (1963), Hager and Hutter
(1984a), Montes and Chanson (1998), and Montes (1998). Equation (3.70) differs
from those of Hager and Hutter (1984a) and Hager (1985a) in the definition of the
flow depth, given that intrinsic curvilinear coordinates were used, as explicitly
discussed below. However, both results are correct to the same order of accuracy.
Equation (3.70) was also obtained by Naghdi and Vongsarnpigoon (1986) using the
theory of directed fluid sheets; by Marchi (1992, 1993), by expanding the stream
function in power series; and by Zhu and Lawrence (1998), by using a perturbation
method. It is a second-order differential equation, from which the free surface
profile & = h(x) emerges. For given H = const., and prescribed flow depths at two
boundary channel sections, Eq. (3.70) is solved numerically as a two-point
boundary-value problem (Castro-Orgaz and Hager 2009).

Equations (3.63) and (3.64) are the steady-state equations of Matthew (1991) for
u® and w", where superscripts indicate the order of the Picard iteration. Marchi
(1992, 1993) also independently obtained these results by expanding the steady
stream function into a power series, thereby generalizing the results of Benjamin
and Lighthill (1954). The pressure distribution results from Eq. (3.66) by inserting
Eq. (3.67), given that H is a constant, generating the equation

2 2 2 2
p u +w \% \%
“=H-—z,—n— =h—n+=——. 3.71
Y 2g 2¢  2g ( )

Subtracting Eq. (3.68) from (3.69), and inserting the result into Eq. (3.71) gives
after some elementary manipulations,

2

2
p q n 2 n
—=h—n+—|(2h —2h 1—=)+(hhy—h) 1 ——= |- 72
y n 28h2 |:( Thxx bex)( ]’l) ( xx A) < hz):| (3 )

Equations (3.63), (3.64), and (3.72) describe a number of ideal fluid flows, such as
the cnoidal wave already dealt with by Benjamin and Lighthill (1954). Figure 3.5a
sketches the velocity and pressure distributions of a potential, steady cnoidal wave
(2 = Zpx = Zpxx = 0). At a wave crest (h, = 0), the u velocity profile decreases with
Z (hy, < 0), implying a pressure distribution less than hydrostatic. At wave troughs,
the trend is reversed; the u velocity profile increases with z (h,, > 0), and the
pressure is larger than its hydrostatic counterpart.

Another typical non-hydrostatic motion is the flow over a round-crested weir
(Fig. 3.5b). Along the weir, streamlines are curved and sloped, and the pressure
distribution is non-hydrostatic. Therefore, the flow net is highly curved, leading to
significant spatial variations of velocity and pressure. The Picard iteration theory
applies to solve this flow problem (Matthew 1991), but the use of natural coordi-
nates based on the equipotential and streamlines is also attractive (Matthew 1963).



3.3 Picard Iteration 105

(a) Total head line
z crest
trough

H

w=0 w = const

Fig. 3.5 a Velocity and pressure distributions at extremes of potential cnoidal wave with (- - -)
hydrostatic pressure line, b flow net over round-crested weir; bottom pressure head diverges from
free surface. Also shown are velocity and pressure distributions at crest section and equipotential

T3}

line forming the critical point “p

[73R 1)

The equipotential line at the weir crest is important, given that a critical point “p” on
the free surface determines the discharge features.

The momentum equation, given by the conservation law, Eq. (3.19), applies also
to compute the free surface profile if closures for p, and § are assigned. Eliminating
the pressure with the aid of Eq. (3.65) in the definition of S given by Eq. (3.18)
provides the relation

h+zp

S:(H—Zb—g)h—i—/ (ﬁ%ng)dz. (3.73)

b

Equation (3.73) was introduced by Matthew (1991) and used by Castro-Orgaz and
Hager (2009). It is called the general S—H relation, because it connects S with
H. Therefore, to the same order of accuracy, one obtains

S=—+ZL
+ 3 2 2

B hhg — B2 hzpee  hyZpy
1 x . 3.74
2 gh( * - ) (3.74)
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The bottom pressure profile, p, = p(y = 0), is obtained from Eq. (3.72) as

2
Pb q 2

— =h+ —— (2hzpy + My — b5 — 225,01, ) . 3.75
. 2gh2( Zb T — 225chy) (3.75)

Note that if 7, = zpx = hy = b = 0, the bottom pressure head p,/y is hydrostatic
and equal to the vertical flow depth h. Equation (3.75) was introduced by
Castro-Orgaz and Hager (2009).

3.3.3 Third-Order Velocity Field

The second iterative cycle parallels the previous steps enclosed in the sequence
from Eqs. (3.52) to (3.61), but starts with «‘® [given by Eq. (3.63)] inserted into
Eq. (3.53). The algebraic efforts of this new cycle become enormous (Matthew
1991; Castro-Orgaz and Hager 2014a). Appendix B gives the reader an impression
of the complexity of the procedure.

In the next iteration, the expression for w?, a precursor of w®, was stated by
Castro-Orgaz and Hager (2013), resulting in the third-order polynomial
representation

w® —

=R

(01 + 0 + 030* + cuan?), (3.76)
with the analytical coefficients

2
bexszh hxxszh beh X

= <bx — hy ; ¢ )
M= e T A, g 3
hx thxxx beh2
= - L xhxx - )ochx
o0 h + 5 h b b
hhew  2hhey B 2h.z}
XXX _ XTEXX x _ X&hx 377
6 3 + 3h + ZbxZbxx A ) ( )
o Zbxxx 3bexhx 3beh,% 3beh,wc
BETT T RN
S X
YT 6k R W

Using Eq. (3.76), the third-order result for u is

2 3 4
[Hﬁl(n—g) +ﬁ2(n2—h§> +ﬁ3(n3—%) +B4(n4—hg)},

W =

=R
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in which the analytical coefficients of the velocity profile are

2h, 2y 212z, hz
ﬁl = pxx — h B ZbxZbanch — )}cl bx éaxx + 2hxxzix + 3R ZbxZbrx
_ thh)cxxh _ Zhisz 2 + 2hle3,x 4hxszhm h)z(szx _ hxxszxh
3 3 Ty 3 3 6
/), _ h_xx _ h_% NZprxx _ beh?( bexhi n 3zpuhchyy _ PxxZix
2T 2h M2 4 h? h 2h 2
thb)«:xx hhxm 5 hjzc hxx h)2nx hx hx;oc hi 4thbebxx
2 12 6h 3 3 3h2 h
levcx Sh)zczix Shngx
+ 7 + ZbxZoxax + n2 - o
o Zhxxxx zzbmhx Zh)%szx 4hisz bexhxx 4behxhxx 2behxxx
b= 5 2T h 2

e B4R 3Why  ghe

X

o= =Zan T e T T e

(3.79)

These coefficients for the fourth-order polynomial approximation of u, given by u®,
were first obtained by Matthew (1991). Note that obtaining w® is a necessary step to
find «, although w® was not given by Matthew (1991). He tested u‘® and u®
considering free vortex flow as a hypothetical exact 2D potential flow, while the
accuracy of u® and u® against the full 2D numerical solution of potential flow prob-
lems in the gravity field was presented by Castro-Orgaz and Hager (2013). Khan and
Steffler (1995) observed that a depth-averaged flow model, based on the momentum and
moment of momentum equations (Steffler and Jin 1993), accurately describes the flow
over curved beds if the reasonable vertical variations of u and w are considered. They
accounted for a linear velocity profile of u and a second-order polynomial for w. Thus,
the pairs [u®, wV] and [u®, w®] describe the specific polynomial approximations for
(u, w) originating from an iterative solution of the potential flow model. The third-order
extended energy equation then reads (Matthew 1991)

q 2hhy, — h?

H—Zb+h+2gh2 <1+ 3

5 00

4 1 1
T h2 - 7hhx x<bxx ~ hzh}c}c XX 7h2 x<bxxx
+ 17 Zoxe 3 ZbxZbxx + 3 Zpxx T 3 ZbxZby

1 1 1
3 bt T3 2o+ T = 2hiZpie (3.80)

2 2 1
— B’z — —hho 22+ Sh3z + —
b, 3 Zpy T 3 " Tbx T 5

16

4 4 2
2 ) BT T S X
T3+ Wt ol ooh hmx)

+ hzpee + 22,

h*h?,
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Detailed computations are given in Appendix B, from which the increase in algebra
as compared with the second cycle predictor for H becomes evident.

3.4 Approximate Treatment of Flow Net Geometry
3.4.1 Velocity Profile

Consider the steady plane flow over a curved bed (Figs. 3.5b and 3.6a) and the
Euler’s equations formulated in orthogonal curvilinear coordinates as Eqs. (3.45)
and (3.46). At a particular position x, the equipotential line connecting the bottom
and free surface has a length N,, with a projected flow depth 7 on the vertical line.
Integration of Eq. (3.48) along this equipotential curve yields the velocity profile V
(n) as (Rouse 1938; Jaeger 1956; Matthew 1963; Hager and Hutter 1984a)

N,
d
V(n) = Vyexp f/fn . (3.81)

n

Here, V; is the modulus of the velocity at the free surface and V(n) is the velocity at
the generic coordinate n of the equipotential line (Fig. 3.6a).

Fig. 3.6 a Velocity profile (a)™?
along an equipotential curve

in steady flow over curved

bottom profile (R is negative H
in the weir-flow case shown),

b approximate treatment of

flow geometry (slope angles

are negative)

¢ = const
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The integration in Eq. (3.81) is approximately performed upon an assumption
for the variation of R = R(n) (Hager 1985a). An assumption similar to that of Fawer
(1937) is used here, relating the curvature radius and the inclination of the
streamlines to their corresponding values at the channel bottom (subscript ) and at
the free surface (subscript s) as

Ll (D (382

R R, \R, Ry

Here, v = n/N, is the dimensionless curvilinear coordinate along an equipotential line,
and K is an empirical exponent, taken by Matthew (1963) as K = 1. However, Fawer
(1937) and Castro-Orgaz (2010a, b, c¢) found for K highly different values using flow
net computations. Inserting Eq. (3.82) into Eq. (3.81) yields with » = R/R,, as the
relative curvature of the boundary streamlines

V = Viexp {% (r(v )4+ (1—r) (VKI;TI)H (3.83)

Equation (3.83) was originally obtained by Fawer (1937) by neglecting the slope
effects, i.e., assuming N, = t =~ h. The discharge g across the curved equipotential
line between the bottom and free surface lines is, using Eq. (3.49),

q:/%dn:/Vdn. (3.84)
0 0

Limitations of this analysis include:

(i) Knowledge of the exponent K, which is routinely assumed as K = 1 (Matthew
1963; Hager and Hutter 1984a; Hager 1985a). This restricts the analysis to
shallow-water flows, with weakly curved streamlines, as demonstrated by
Fawer (1937) and

(i) Analytical simplifications when integrating Eq. (3.83). No general primitive
function is available, so that the exponential function in Eq. (3.83) is devel-
oped into a Taylor series, resulting at order one in (Castro-Orgaz et al. 2008a,
b, ¢; Castro-Orgaz 2010b)

N,
N, (r 1—r
q—/Vdn NNOVS(I_E(§+K+2)>' (3.85)
0
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Matthew (1963) and Hager and Hutter (1984a) proposed this same representation

for K = 1, from which
N, (r+2
=N,Vs| 1 —— . 3.86

Hager (1985a) suggested an empirical approach to improve Eq. (3.86) by assuming
that it represents the first-order term of the series development of the more general

relation
N, (r+2
=N,V, - . 3.87
a=mven (-3 (752)) (387)

However, Eq. (3.87) is equally limited to K = 1. Castro-Orgaz et al. (2008c),
therefore, implemented this idea in Eq. (3.85) by accounting for K # 1, namely

N, (r 1—r
“ N Vexp( —e (L 220, 3.88
1 eXp( R, <2+K+2>) (3.88)

Equation (3.88) is a valid approximation for highly curved open-channel flows, as
was demonstrated by Castro-Orgaz (2010b). However, for computations, an
empirical function for K is still required, so that the determination of a predictor is
detailed in the next sections.

3.4.2 Extended Equations

Extended Boussinesq-type equations for H and S are now developed. At the free
surface, Eq. (3.47) states

V2
H =z,+1t+ == = const. (3.89)
2g

To find a mathematically closed extended energy equation from Egq. (3.89),
Eq. (3.85) is used as the basic g—V relation. Note that the connection between ¢ and
N, is given by
N,
t= / cosddn. (3.90)
0
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Next, the variation of the streamline inclination 0 relative to the horizontal is
prescribed along the equipotential curve as the general power law

0=0,+ (03 - Hb)v”‘. (391)

Experience shows that errors made by assuming m = 1 are small (Castro-Orgaz
2010a). Using Eq. (3.91) in Eq. (3.90) and expanding the cosine function in a
power series, truncated to order 2, give the flow depth ¢ as

N,

! 2 2 2
tz/cos@dnzNo/ (1—%)@:%(1—%). (3.92)
0 0

Since the streamline inclination angle is assumed small, one may employ the
approximations

eb = Zbx; Qs = Zpx + I, (393)
so that Eq. (3.92) becomes
! 322, + 3zpty + 1
— =1 3.94
N, 6 (3.94)

Substituting Eq. (3.94) into Eq. (3.86) to eliminate N,, and only retaining the
first-order terms of a Taylor series expansion of the emerging relation, yields

322 43zt +12  t [(r 1—r
=1V, 1 Doy TEON x4 ) ). 3.95
9 “(Jr 6 R\ K12 (3.95)

Further assuming that

1 1
— & (I xx)s 7~ Zhxxy 3.96
3 (ter + Zowr) R (3.96)
one finds
RS XX
poto e (3.97)

Rb Lo + Zbxx

Equation (3.95) then simplifies to

322 437t 12 [ty Mty
— (1 bx X . )
q tVA( + c 5 +K+2 (3.98)
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As wusual in the mathematical developments of Boussinesq’s equations,
second-order terms are neglected. Equation (3.98) defines V versus ¢, expanded in
a Taylor series in the form”

Vx:t +

q 320+ 3zputy + 12 fte 1Zp v
1 1 _ DX X 3
( 6 K12 2 (3.99)

Inserting Eq. (3.99) into Eq. (3.89), and retaining the first-order terms, yields the
extended energy equation in the form

2 2
21t t
H=z+t+ 1 <1+ = thzbmsztlez,x). (3.100)

2872 K+2 3

A drawback of the second-order Picard iteration equations is that the results are not
accurate for high-curvature flow problems in certain cases, including the compu-
tation of the discharge coefficient of spillways (Castro-Orgaz et al. 2008a, b, c). To
obtain more accurate predictions, third-order results must be considered such as
Eq. (3.80) due to Matthew (1991). As noted, the increase of algebraic effort is
enormous as compared with the second-order iteration cycle. To overcome these
complexities, Boussinesq-type equations in curvilinear natural coordinates as pre-
sented in this section are advantageous. In general, m = 1 applies, but K =1 is
unrealistic for highly curved flows. Equation (3.100) offers a simple tool to model
the discharge coefficient of spillway flows by accounting for K # 1 (Castro-Orgaz
et al. 2008a, b, ¢).
For K = 1, Eq. (3.100) reduces to

2 2
o q 2”)0( —[x 2
H—zb+t+2g—[2<l+f+tzbm—sztx—sz>. (3.101)

This is the original Boussinesq-type energy equation developed by Matthew (1963).
If m in Eq. (3.91) is retained as a general parameter, the result is (Castro-Orgaz
2010a)

2 2
q 2ttxx t 2betx 2

H= t+— (1 x — — . 3.102
&t +2gﬂ< K+2 2m+1 m+ 1 Zb)‘> (3.102)

This Boussinesq-type equation is mathematically valid for weak streamline cur-
vature and small slopes, e.g., |ttu|, [©Zonl, 25, [20tx], @and £2 < 0.5, as stated by
Hager and Hutter (1984a). However, consideration of the actual curvature law with

%In the processes of the above computations, expressions of the form (1 + )" arise, which are
approximated as (1 + na) on the basis that |a| < 1. Another approximation typically used is
exp(a) = 1 + a. This is used frequently without explicitly mentioning it.
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K # 1, following Fawer (1937), significantly expands the validity of the model as
shown by Castro-Orgaz (2010a).
The specific momentum S, expressed in curvilinear streamline-based coordinates
by Hager and Hutter (1984a), is given by
N,

N,

V2

S:/gcosﬂdn—k/—cos(?dn. (3.103)
8

Using Eq. (3.47) to eliminate the pressure, this is written as

0

S:/ (H—zh—n—) cos@dn+/—cos@dn
0

' Mo V2 2 " y2
= / (H—2zp—n)dn+ / Z—gcosedn = (H —z)t — 5+ / gcosﬂdn.
0 0 0
(3.104)

To construct the higher order equation of S, the velocity profile V(n) must be
inserted into Eq. (3.104). Expanding the exponential function in Eq. (1.83) into
power series yields to first order”

VVY{IJr]IZ;)(r(v—l)Jr(l—r)(\}I(I;I_'__ll))}. (3.105)

This formula allows for the evaluation of the discharge per unit width g as

:VSN(,/{H&(r(V_1)+(1_F)W<I;T—ll)}dv (3.106)

In natural coordinates (s, n) (Fig. 3.4), the vertical water depth &, the vertical
distance between the bottom and free surface streamlines #, and the arc length N,
(Fig. 3.6b) are, respectively, given by (Hager and Hutter 1984a)


http://dx.doi.org/10.1007/978-3-319-47971-2_1
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h = —a(tanf, — tanf;), = —R*(sinf — sinb;), N, = —R*(6, — 0,),
(3.107)
assuming that the equipotential lines are circular arcs of radius R*, with
a = R'cosb,. Therefore, when using second-order approximations (Hager and

Hutter 1984a)

t sin0, —sin0, (0, —10;) — (6, — 167)

N 60 -0 9
2
=1- W +0(3), (3.108)
h  cosby(tanf, — tand;) 20,0, + 03) —0;
2 — 1+ +003). (3.109)
N, 0, — 0, 6

Note that from Eq. (3.101) and prescribed boundary conditions at two channel
sections, this is a second-order two-point boundary-value problem from which the
profile ¢ = #(x) is determined. Physically, this numerical solution is aimed at com-
puting at the x-coordinate of the bottom point of an equipotential line (point “a” in
Fig. 3.6a) the vertical distance between this point and the point of this equipotential
line at the free surface (point “b” in Fig. 3.6a), . To plot a free surface profile,
therefore, the vertical water depth h(x) at point “a” is needed on the basis of
t. Another option is to compute the coordinates of every point “b” on the free
surface. Note that the computation of & based on the LHS of Eq. (3.109) is

approximate; so is also its expansion on the RHS. Obviously, Egs. (3.107)—(3.108)
imply
t 1—140;+0,0,+07)

1
7 ~1—=(0,0,+07). 3.110
PR wT T R A (3.110)

Note that Eq. (3.108) agrees with Eq. (3.92) to the order of expansion used. With
the approximations

Op =z,  Os = Zpx+1x (3.111)
Egs. (3.108) and (3.110) imply, again accurate to second order,

B 322, + 3zpty + 12

t

— =1 03

N, o %

h 322, + Oyt + 282

R B L OV ) (3.112)
N, 6

t 272+ 3zpt, + 1

o1 STl th o),
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Solving Eq. (3.95) for V; yields

—1
q 32 43zt +12 t (r 1—7
V=2 (14 T T - (2
t( + 6 R, 2+

() B3ttty (r L1or
t 6 R, \2 K+2))’

as deduced by Hager and Hutter (1984a) and Montes and Chanson (1998). Inserting
this result into Eq. (3.105) permits the elimination of the surface velocity. Retaining
first-order terms only, the velocity profile V(v) is found to be after elimination of N,
with Eq. (3.94)

322 43zt +12 ¢ 1— t K+l _ 1
V:z{l,w+ (1+ f)+ﬁ(,(v,1)+(1,r)u)}

(3.113)

t 6 R \2 " K+2 K+1
(3.114)

Upon using Eq. (3.97) to eliminate r, this relation transforms to

372 4 3zpty + 12 Zbax e e
V:g{1,M+<Z” + “>+th”(\1*1)+ : (VK+171>:|.

t 6 2 K+2 K+1
(3.115)
Grouping terms gives
q 322, + 32pty + 12 1 e (ki1 1
V==|l—-—2—F 4| v—2 — -——.
t[ 6 e\ Vo )t e U K12
(3.116)

This velocity profile V(v) applies, with Eq. (3.91) for 0(v) (m = 1) and Eq. (3.100)
for H, to find S from Eq. (3.104). Therefore, the integral of the product VZcosf is to
be computed. The function 6(v) is from Egs. (3.91) and (3.93), using m = 1,

0 = zZpx + 1,0, (3.117)
The function cosf is approximated using Eq. (3.117) as

) 2 2
0 0 by
0050:(1—sin20)l/2%1—&%1——:1—M.

> 5 5 (3.118)
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From Eq. (3.116), one produces also the approximate function

q\2 322+ 3zputy + 12 1 e [ ki1 1
V2~(_) A L S P N B L B L |
‘ 3 e\ Vg e g Y K+2

(3.119)
Thus, the product VZcos0 is approximated as
2 322 4 3zt + 12 1
V2 cosf) = (ﬂ) 1-— e by 1y 4+ 2tzpe |V — =
t 3 2
(3.120)
R T (2x + 1,0)°
K+1 K+2 2 ’
The integral to be determined is then
[ 1
1% N,
/—cos@dn = —/ V2 cosfdv. (3.121)
2g 28
0 0
Integrating Eq. (3.120) from the bottom to the free surface yields
| 3 2 3 2 2 2
q\?2 i VY A o Y e N 3 2
V2 cosOdy = <_) ] —ZSbx DO P Ty x| Shx | SDYX
/ oS =G [ 3 6 2 2
0
1 1 - 1 1 (3.122)
27 | = — = 2 —
o (2 2) TR <K+2 K+2>
—— —_—
-0 =0
_ (g) 2 322 + 3zputy + 1
t 2 '
Using Eq. (3.94), inverted as
N, 322 + 375t + 12
Tml—&-w, (3.123)

and inserting Eq. (3.122) into Eq. (3.121), one finds



3.4 Approximate Treatment of Flow Net Geometry 117

N,

2 N, /q\2 322 4+ 3zt + 2

/V_msgdm_@) | = e T3t ly
2g 2g \t 2

0

1 <q2> ( - 32, + 3zl + 12 N 3zﬁx+3sztx+tf.> (3.124)

AT 2 6

(TN (1 3z, 3wt
\gt/\2 6 '

Inserting Eqgs. (3.124) and (3.100) into Eq. (3.104) leads to the approximate
expression

tz q2 ltxx tz thxx 2
S=—4+—11 - — Zpxly — . 3.125
2+gt<+K+2 3T Tk T (3.125)

For a Fawer exponent K = 1, this reduces to (Hager and Hutter 1984a)

g o — 2 1Zpex
SZE—F%(I"‘ 3 X"‘%_betx_zlzg)()- (3126)

If the exponent is m # 1, the effects of both K and m are included. Castro-Orgaz
(2010a) obtained for this case

f 2 it 2 t 22Zpit
+q_<1+ ~ X _1_@_ bex—zi)(), (3127)

2
S:—
2 gt K+2 2m+1 2 m+1

The pressure distribution along the equipotential lines is determined from the
conservation of energy in potential flow as

2

v
H=L iyt . (3.128)
Y 2g

By using Eqs. (3.100) and (3.119) for H and V?, respectively, one obtains from
Eq. (3.128)

V2 2 21t £
I;ZH—Zb—’?——:f—W‘f‘q—(l‘f' m_i""thﬂ_betx_Zix)

2g 2g1? K+2 3
2 2 2

q 32y, + 32t + 15 1

e |l = 4+ 2 |V — 3

247 { 3 +22pxr | V >

1 1
I Y SR
TR (V K+2

2

q 1 — yK+1
==+ - 2t ———— ) + 2tz (1 — V).
”+2th[ ( K+1 >+ i V)}

(3.129)



118 3 Inviscid Channel Flows

To the order of expansion considered, the vertical and curvilinear coordinates
along an equipotential line are related by

n

n—/cosf)dn~Na/< (%)]jdv, (3.130)

0

or using Eq. (3.117) (Hager and Hutter 1984a),

2
l

(1 )} (3.131)

'/I Zbxlx
= 1 1—
n=- {Jr 5 (I=v)+

and when being inverted (Hager and Hutter 1984a)

2
_u[l _Z”;t*’(l —,u)—%(l —,ﬂ)]. (3.132)

Using Eq. (3.132), the pressure distribution stated in Eq. (3.129) is then expressible
as

2 K+1
p q — K
—=t—n+ 2t | —————— | + 2t2p(1 — , 3.133
y n 22[ <K+1> b M)} ( )

where the higher order products have been assumed to be negligible

(tto) - (£2) = 0, (tta) - (2mats) = 0, (tzpw) - (£2) = 0, (1Zowr) - (Taty) — 0.

(3.134)
For K = 1, the result of Hager and Hutter (1984a) is obtained
p T
e R [t (1 = 12) 4 28250 (1 — p)]. (3.135)

3.5 Curvilinear Coordinates: Dressler’s Theory

3.5.1 Governing Equations for Potential Flow

Dressler (1978) formulated the Euler equations in a Riemann curvilinear system of
coordinates, with ¢ as the bottom-fitted coordinate and ( as the coordinate
orthogonal to &. The continuity equation reads in this case
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Fig. 3.7 Potential flow over
curved bottom profile in
curvilinear coordinates
following topography

augv 0 o
8_5 + a—g[(l — Kpe)we] =0, (3.136)

where u; is the physical velocity component in the ¢-direction, x;, = x,(&) the
curvature of the bottom profile, and w; the physical velocity component in the
{-direction (Fig. 3.7).

The irrotational flow condition is then expressed as

ow. 0
o0& 0c

[(1 = Kpc)ue] =0, (3.137)

and the momentum equations in the ¢- and {-directions are, respectively, (Dressler
1978)

ue U Oug Kp . 1 op
e B, T T = —gsindy - ————— £ (3.138
(T rp0) DE "0 (T—wpe) " = 8 701 =) 08 (3.138)
us o owe ow. Kp 5 10p
S S w. 4+ ————u; = —gcosl, — ——, 3.139
(=00 "o T (T—mpe) e 8T 0, ( )

in which 0, is the local inclination angle of the bottom profile z;(£) with the
horizontal plane.

3.5.2 Picard Iteration in Curvilinear Coordinates

Dressler (1978) noted that the use of the Saint-Venant’s equations (Saint-Venant
1871) in curved terrain violates kinematic boundary conditions at the free surface
and at the terrain surface. Therefore, he emphasized that these equations are valid
only for horizontal topography and devised a method to produce improved
Saint-Venant-type equations for curved terrain. Dressler then applied the asymp-
totic stretching method originally developed by Friedrichs (1948) for inviscid and
irrotational free surface flows. Asymptotic expansions to the velocity and pressure
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Concentrical flow Horizontal flow

Fig. 3.8 Initial flows of Picard iteration in a curvilinear, b Cartesian coordinates (adapted from
Castro-Orgaz and Hager 2015)

fields were inserted in both the continuity and momentum equations, and the
boundary conditions, rendering a system of equations producing a solution to an
arbitrary order of expansion in terms of the shallowness parameter. Here, the
alternative derivation of Ishiara et al. (1960), Sivakumaran (1981), and
Sivakumaran et al. (1981, 1983) is considered, corresponding essentially to a Picard
iteration in curvilinear coordinates. First, the irrotational flow condition gives, upon
assuming Ow;/9¢ = 0,

[(1 = rpc)ue] = 0. (3.140)

Xl

After integration, and with u¢,, as the tangential velocity at the bottom level ({ = 0,
Fig. 3.8a), the potential vortex velocity profile is obtained as

Uep
< (1 _Kbg) ( )

It is illustrative to compare this step with the germane step of the Picard iteration
in Cartesian coordinates. The irrotational flow condition in that system is

ow Ou
S 3.142
ox 0Oz ( )
Neglecting |Ow/0x| in comparison with |Ou/0z| results in the solution
oy _4
u= U = const. = W (3.143)

This was used as starting velocity profile in Sect. 3.3.1. From a mathematical point
of view, this equation expresses uniform flow conditions in a Cartesian system with
zero vertical velocity (Fig. 3.8b). This situation is physically possible only over a
horizontal bottom. In contrast, the curvilinear counterpart given by Eq. (3.141)
indicates “concentric” streamlines to the bottom topography (Fig. 3.8a). Thus,
curvilinear coordinates are physically better adjusted to curved bottom problems,
given the inclusion of centripetal effects at the lowest order of the Picard iteration.
Therefore, to the same order of the Picard iteration, the curvilinear coordinate
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formulation is expected to yield improved results from a physical viewpoint than
the Cartesian formulation.
In the second step of the iteration cycle, the continuity equation is integrated as

/%’2 dc + /{%[(l — Kpg)wlde +g(&) = 0. (3.144)

Using Eq. (3.141) to evaluate Jug/0&, the first approximation to the velocity profile
is, after integration of Eq. (3.144) with g(&) = 0 to satisfy the bottom kinematic
boundary condition, w.(¢ = 0) = 0 (Castro-Orgaz and Hager 2016)

In(1 — xp5) O 10 In(1 —
W — n( KpG) Oue Kp [“( Kp<) Ko Uz. (3.145)

(1= Kpe) OE w2 OE | (1 —rp0) (1 —rp0)°

The same result is obtained in the first cycle of a Picard iteration (Appendix C). For
a constant curvature (circular) surface, one obtains

In(1 — xpg) Ouep
=N PR 7T 3.146
e kp(1 —1wpc) O ( )

The discharge across a section, owing to Eq. (3.141), is

Kp

g= (/ ugdg> = %1001 — K,N). (3.147)
=N

The distance from the channel bottom to the free surface is N, measured
orthogonally outward from the bottom curve. Using Eq. (3.147) to compute
Oug /OE, Eq. (3.146) is rewritten as

In(1 — xpc) 1 8_N
(1 —xpg) [In(1 — kpN)] O™

(3.148)

We = U¢

Note that the velocity profile is not linear at this iteration step, as in Cartesian
coordinates. This equation gives the correct boundary conditions at ¢ = 0, w. = 0,
and atc =N

1 ON

we(c=N) =uc =N)ma—é~

S

(3.149)

The iteration sequence is now clearly established and can be performed to any
order. This is essentially a Picard iteration, in which the Cauchy—Riemann equa-
tions are formulated as (Castro-Orgaz and Hager 2016)
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1 99 oy ¢ 1 oy
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A second cycle of Picard iteration applies for u, obtained by integrating

Eg. (3.136) ’

(1)
NI (N AL (3.151)

< (I —kpg) (1 —Kpo) o0&

where fis an integration function. The result is

1 (In(1 = x0))°
3 (In(1 — KbN))2H ’ (152

with

_ NgIn(l—N) N[22+ In(1 —x,N)]

kp (1 —xpN) (1 —wpN)? (3.153)

The use of the Cauchy—Riemann equations (3.150) to obtain Eq. (3.152) is detailed
in Appendix C, given that the procedure is tedious.

3.5.3 Dressler’s Theory

The energy equation of the free surface streamline is

%—i—wg
H =z, + N cos0p, + 5 > = const. (3.154)
8

Neglecting the velocity normal to the channel bottom gives
u?
H = z,+ N cosl, + Z—g (3.155)
8

Using Eq. (3.141), which is the first-order approximation for ug), and Eq. (3.147),
one finds its value at ¢ = N

o —qx
us(s = N) = e T (3.156)
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If it is inserted into Eq. (3.155), one obtains with E as the specific energy head
(Sivakumaran et al. 1981, 1983)

2

7
N
i =z, +E = const. (3.157)

= 2, + N cosO
=@t Neoshht o, N2 (1 — .sN)In(1 — K,N)

This was originally proposed by Bakhmeteff (1932) using the free vortex velocity
profile without any justification. Hager (2010) compared Eq. (3.157) with
Eq. (3.101) for weakly curved open-channel flows. Equation (3.157) is numerically
solved at every position ¢ to compute the free surface profile N(&) for the prescribed
value of the total head H, as did Sivakumaran et al. (1983). However, this technique
does not permit to locate control sections within the flow field. Thus, Eq. (3.157) is
differentiated with respect to & to produce

dH _ dz” 0, —
& df cos b
+ 5 (1 - sN)in(1 - szvn”z;«b‘;—“g + w[ 2(1 — iN)ln(1 — K,N)) >
dxy AN - 1 ok, dN
. |:ll’1(lthN)(*N dé — Kp dé)+(1 K}’N)i(I,KhN)( Ndf hdf)] 0.
(3.158)
Using in Eq. (3.158) the differential definitions
d do
dig:sineb, Ky :d_éb’ (3.159)

permits to write an ordinary differential equation (ODE) for flow over curved beds
(Sivakumaran and Yevjevich 1987; Fenton 1996; Castro-Orgaz and Hager 2016)
after rearrangement as

2, de In(1 — x,N) + 1N
—sinf,(1 — kpN) — L&
W sin0p (1 — 1,N) b [(1 — 1,N)In(1 — k,N)]*  @1(N, &)
dé cosl, + < K;3, 111(1 — KbN) ! 3 (DZ(N, é)
¢ 71 = kpN)In(1 — xpN)]

(3.160)

To solve Eq. (3.160), one boundary condition N.(¢.) is needed, corresponding to
the flow depth N. at a prescribed position &.. For transcritical flows passing from
sub- to supercritical conditions, the control section is that of minimum specific
energy. This is an internal boundary condition, mathematically determined by using
the ODE Eq. (3.160). Once N, and its coordinate of occurrence &, are determined,
the flow profile is computed in the up- and downstream directions using Eq. (3.160)
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for sub- and supercritical conditions, respectively, by any suitable numerical
method to solve ODEs. The bottom Cartesian coordinate x, is related to ¢ by
dx;, = cosO,dé, and the coordinates of the free surface are then given by
Zs = 7 + Ncosty, and x, = x;, — Nsin6,. Computing 0z;,/Ox from the bottom profile

-1/2
function, one finds by elementary geometry cos, = [1 +(8zb/8x)2} and

_3
sinf, = (9z,/0x) cosly. Further, x;, = 0%z;,/0x* [1 + (0zp /6x)2} from which

dk,/d¢ follows after differentiation with respect to &.
Next, N. and &. are computed. Critical flow is defined by setting to zero the
denominator of Eq. (3.160) (Dressler 1978)

’ In(1 — 1
(D2(N,é) = C050b+ q—;ci ﬂ( KbN)+ .
& " [(1 —xpN)In(1 — x,N)]

= 0= N, = N.(&). (3.161)

This mathematical statement is equivalent to the minimum specific energy condi-
tion, obtained by setting JE/ON = 0 in Eq. (3.157). Equation (3.161) defines the
critical depth N, at a given position &, where 0,(&) and x;(¢) are determined.
However, Eq. (3.161) does not provide a condition to fix the value N, in a pre-
scribed coordinate. Rather, for every position &, Eq. (3.161) produces a different
value of N, so that this relation actually defines a critical depth profile.
Consequently, an additional condition is necessary to locate the real position of the
control section for the actual flow conditions. This is given by the pseudo-normal
flow condition, mathematically defined in the theory of singular points as dN/
d¢ =0 (Iwasa 1958; Montes 1998). Thus, setting to zero the numerator of
Eq. (3.160), one finds the pseudo-normal depth Ny as (Iwasa 1958; Anh and
Hosoda 2007)

_qu diy  In(1 — xN) + KN
g " dE [(1— kpN)In(1 — 1)’

@ (N, &) = —sinbdy(1 — k,N)

= Ny(&).

=0= Ny

(3.162)

Likewise, Eq. (3.162) defines the pseudo-normal depth profile. Solving simulta-
neously the system of equations (3.161) and (3.162) results in the flow depth and
position of the control section, corresponding mathematically to a singular point
where critical and pseudo-normal depth profiles intersect. At the control section,
Eq. (3.160) then yields the indeterminate form

d_N_ (DI(N7 5) _9
dZ ®(N,8) 0 (3:169
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This indeterminateness is generally removed by differentiating Eq. (3.163),

&N dD,dN  dd,

FEREr i (3.164)

2

Using the critical flow condition @, = 0, Eq. (3.164) yields the free surface slope at
the critical point from

4o,
dN _ de
4t = do (3.165)
dé
or
o0, 0% dN
AV _ o0& ON & (3.166)

dE T 9%, | 9%;dN’
0¢ ON d¢

For the simple but fundamental case of symmetrical bottom form at its extreme
(drp/dE = 0), Eq. (3.160) reduces at the crest (critical; subscript ¢) section to

(ﬂ) _ — Singb(l - KbNC) _ (Dl (Na é)c (3 167)
d - .3 In(1—x,N,) + 1 T ®,(N . :
/e cosly+ ¢ b [(lflchL.)l;(lflchc)]} 2V, €):

Additionally, sinf, = 0 and cosf, = 1 at the crest, corresponding to a control
section. Thus, using Eq. (3.161) yields the critical depth N, from

7’r, (1= KpNe)ln(1 — KN
2 In(1 — ~pN,) + 1

(3.168)

From Eq. (3.167), the following derivatives are obtained for @, at the critical
point

0D, [0 .
(8_£>C = _a—é{— sm@b(l — KbN)}:|
a0, . 7] ON
— {cos@bafb(l - K],N)} — sinf), {faL;N 85;@,}] = —xp(1 — xpN,),

=1 =0 ¢

(%)C _ :%{fsineh(l - th)}}

c

. 0
= —sin0, {%(l - KbN):| =0,

c c

(3.169)
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and for @,

3(1)2 _ 2 cost, + CI_ 3 In(1 — xpNe) +1 — — sinf, %
o¢ g "[(1 = kpN)In(1 — N, o¢

q In(1 — k,N,) + 1 2 Okp
g [(1 —oNIn(L — kNP ! 85
:0

q_2K3£ In(1 — x,N,) + 1 o
g PO [(1 - kpNoIn(1 — kNP [

. I
=0, given that2=0

d 2 —
(2) = 9 {cos@b +L K In(1 = KpNe) +1 }
c §

_|_

ON ON [(1 = 1N)In(1 — 1N,
et in(1 — 1N,) — 1 — [In(1 — 1,N.)]*—2In(1 — K,N,)

g [(1 — kN )In(1 — 1,N,)]*
_ 4 Il — kN + +(5/6))* + (11/36)
g [(1 — 1N)In(1 — i,NH
(3.170)
subject to the crest conditions
d
sinf) = 0, d%” = 0. (3.171)

Equation (3.166) then yields for the surface gradient at the critical point with the
negative sign as the physically correct option for weir flow (Castro-Orgaz and
Hager 2016)

oD, OO AN 0D, (@)‘/2
N = (d—N>:_L (3.172)
¢ 0%, 00N 0Dy dN d¢ o0\ 2 '

98 " ON df 0N dé (8—N)

The value of H for prescribed discharge g is computed by evaluating the minimum
specific energy E. at the bottom profile extreme by resorting to Eq. (3.157);
incorporating it into Eq. (3.168) and noting that the equation is valid for N = N,
one finds
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EC _ NC 1 _1(1 — Kch)ln(l — KbNC)
2 KkpNe[In(1 — kpN,) + 1]

(3.173)

3.5.4 Second-Order Dressler-Type Model

The exact energy equation at the free surface couples Eqgs. (3.149) and (3.154) to
produce

H=z,+NcosOp+ =14+ ———— . 3.174
b b 2g< (1 —KyN)? (3.174)

No approximations are invoked in Eq. (3.174). Therefore, the model accuracy is
dictated by the order of expansion of u:. The second-order predictor of u; at the free
surface is according to Eq. (3.152) given by

Q
) =ulV (1 + 5)' (3.175)

Inserting this result into Eq. (3.174), with Q given by Eq. (3.153), yields upon the
use of Eq. (3.156)

q2

KbN 2 N?
2gN? |:(1 — KkpN)In(1 — KbN):| (l - (1- KbN)2)

_ NeeIn(1 — #N) _N§[2+ln(1 — KpN)] :
3k, (1 —KpN) 3(1 — k,N)?

H = z,+ N cosf, +

(3.176)

This is an extended energy equation for non-hydrostatic flows over curved bottoms
in curvilinear coordinates, called here an extended Dressler-type equation. It
accounts for bottom curvature effects by the term ;N as well as for flow depth
variations given by NZ and N Neither the Saint-Venant equations nor their
generalization by Dressler admits wavelike solutions under steady flow. By com-
paring Egs. (3.176) and (3.157), note the generalization of the latter as compared to
the former, given the inclusion of the terms NZ and N¢:. These are responsible for
the existence of cnoidal type waves (Benjamin and Lighthill 1954; Hager and
Hutter 1984b). Given that w is accounted for in Eq. (3.176), streamlines are no
longer concentric as in Dressler’s (1978) theory. Note that Boussinesq (1877)
developed an approximate momentum model in (£, ¢) coordinates where w was
accounted for as well. However, Christoffel symbols were not added to express the
Euler equations in the curvilinear orthogonal coordinates. In contrast, Eq. (3.176)
originates from a rigorous consideration of the Riemannian metric.
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Equation (3.176) is complicated, and the role of the different terms N, N%, and
Ngg is not clearly stated. Thus, Taylor series expansions are used to simplify the
model; ﬁrst,3 the bottom curvature term is expanded as

2

1
~ (1 +2K],N)(l — K;,N)

KbN -
(1 —1,N) (1 + )

2
(I = xpN)In(1 — KbN):| -

~ (1 + KbN>.
(3.177)

Second, the free surface streamline inclination effect, originating from the kinematic
surface boundary condition, is expanded as

N?
1+ ———— ~1+N:(1+2K,N) ~ 1 +NZ, (3.178)
(l—KbN) ) )

where the condition that second-order Boussinesq-type products are negligible,
that is,

NZ - (1N) = 0, (3.179)
has been implemented. This condition is important and sets a mathematical limit for

the validity of the Boussinesq-type approximation used.
Next, the contribution originating from Q is expanded as

< NeeIn(1 = 1,N) N§[2+ln(1—be)]>2

3k, (1—1pN) 3(1 — kN)*
2
o[ Nee N (145 N2 - N (1Y) (3.180)
3k, (1 —K,N) 3(17K},N)2

2\ 2 2
3 3 3 3

thereby ignoring the second-order Boussinesq-type products such as

N2 - (KkpN) =0, NNg - (k5N) = 0. (3.181)

3The expansion In(1 — a) = —a — a*2 — a*/3 — ... =~ — a(l + a/2) is used on the basis that
la] < 1.
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Inserting Eqs. (3.177), (3.178), and (3.180) into Eq. (3.176) produces,

2NN::

) 4Nz
H= (1+K;,N)(1+N£> o) (38

7
2gN?

or by ignoring higher order terms

q 2NNg: — N?
H = zj, + N coslj + 2aN? 1+ 3 + 1N |- (3.183)

This is a cnoidal type extended energy equation generalizing the Benjamin and
Lighthill (1954) equation to uneven beds. This equation describes cnoidal waves
and bores in horizontal channels. Their theory is embedded in Eq. (3.183) and
regained for the flat (x;, = 0) and horizontal (6, = 0) topography as

7 2NNg: — N
H=N+ s (15— (3.184)

Hager (2010) expanded Eq. (3.157) into a Taylor series as

e
H=2z,+Ncost, + —— 2N (1+KbN) (3.185)

This is a particular case for concentric streamlines (NZ = N;: = 0) of the general
Eq. (3.184), regarded as the cnoidal wavelike second-order equation of the Dressler
theory.

3.6 Critical Flow Conditions in Curved Streamline Flows

3.6.1 Critical Irrotational Flows

The problem of critical irrotational flows in open-channel hydraulics is funda-
mental, given its outstanding role resulting in a unique head-discharge relation used
for water discharge measurement structures and allowing for the computation of
free surface profiles up- and downstream from the critical point. At the critical
point, the streamline curvature and slope are generally significant, so that the
velocity distribution is non-uniform and the pressure distribution non-hydrostatic
(Hager 1985b; Chanson 2006). These effects must be taken into account to obtain
an accurate prediction of critical flow conditions. Consider open-channel flows with
a critical point, e.g., spillway flows (Fig. 3.9); note the equipotential curve at the
weir crest and the vertical (k) and projected () flow depths there. The specific
energy head at the weir crest is denoted by E. At the spillway crest, dz,/dx = 0 and
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Fig. 3.9 Critical point of Total head line
irrotational flows over N
spillways
Critical point
E 3
y
dz, /dx =0 1
dJ:h/d_\‘J <0J

dzz,,/dx2 < 0. In potential channel flows, the total energy head H is constant; thus,
for all points of the free surface profile (including the weir crest), the energy
equation reduces to

H =z, + E = const. (3.186)

Differentiation of Eq. (3.186) with respect to x yields

dH dE dgz dE dr dz,
dx dx+ dx <dt><dx>+ dx 0 (3.187)

From Eq. (3.187), the free surface slope at the spillway crest is

%
dr dx

dx [(dE\"
(3)

At the weir crest, dz,/dx = 0, and the flow is passing from sub- to supercritical flow
with a finite (negative) free surface slope dt#/dx. Therefore, the only physical
solution allowing for a transitional flow profile at the weir crest requires the min-
imum specific energy head condition dE/dt = O for the actual discharge g. On the
basis of this result, the necessary condition for critical flow is a channel bottom
extreme given by dz,/dx = 0 (Hager 1985a; Castro-Orgaz et al. 2008a, b, c). This
condition fixes the position of the critical flow section at a weir crest. In curved
streamline flow, the cross-sectional area is an equipotential curve, which is normal
to all streamlines. Thus, the critical flow section is the equipotential, or normal
curve, passing through the highest point of the bottom profile (Hager 1985b). The
intersection of the equipotential curve with the free surface profile fixes the critical
point, with the vertical projection of the normal as the critical flow depth
t (Fig. 3.9). In addition to the necessary condition for critical flow, given by the

extreme in the channel bottom geometry, a sufficient condition has to be imposed to
secure, for a given discharge, a unique relation between the critical depth and the

(3.188)



3.6 Critical Flow Conditions in Curved Streamline Flows 131

specific energy. This condition avoids multiple-valued solutions for the specific
energy at the weir crest. The sufficient condition for critical flow is dE/df = 0. At
the weir crest, there is a singular point of the free surface equation for potential

channel flows as
(&)
dr 0
= dx (3.189)

& (dE\ 0
()
This renders the free surface slope finite but indeterminate. Therefore, the critical
irrotational flow condition (minimum specific energy) at a spillway crest is
equivalent to seek a physical solution where the free surface slope is negative at the
critical point.

Critical flow is sometimes defined by using the momentum balance principle
(Jaeger 1956). Consider the weir case of Fig. 3.10a involving non-uniform velocity
and non-hydrostatic pressure distributions at the crest. At the weir crest, the
streamlines are curved and sloped, and the velocity distribution increases from the
free surface to the channel bottom. According to the Bernoulli theorem for a
streamline, an increase in the velocity head causes a drop in the pressure, which is
no longer hydrostatic across the depth. The increase in the velocity causes an

increase in discharge for a given head. The figure shows that under critical flow
conditions, only a particular streamline has a velocity equal to the water wave

Fig. 3.10 Water wave (a) Total head line

celerity and minimum specific TTTTTTTTTTTT T T T T  Velocity
energy in weir flows: a crest disll'ihlftion
velocity and pressure E 12
distributions, b free surface (g‘f 1 )
and bottom pressure head
profiles

Pressure
distribution

(b) Total head line
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celerity (gh)"?. As a result, the flow region above the section of minimum specific
energy (weir crest) is not isolated from shallow-water waves (Castro-Orgaz and
Chanson 2009), highlighting that minimum specific energy considerations are not
necessarily in agreement with momentum considerations when defining critical
flow conditions. As a result of curved streamlines, the free surface h(x) and the
bottom pressure head p,/y(x) profiles differ (Rouse 1932, 1933) (Fig. 3.10b).
A specific advantage of potential flows is the constancy of H; it renders the energy
principle advantageous to compute critical flow with curved streamlines. Therefore,
this approach is used in the next sections.

Hunter Rouse was born on March 29, 1906,
at Toledo, OH, and he passed away on October
16, 1996, at Sun City, AZ. Educated at the
Massachusetts Institute of Technology (MIT),
he was a traveling hydraulics fellow receiving
in 1933 the Dr.-Ing. title from the Technische
Universitdt Karlsruhe, Germany. He was the
instructor then at Columbia University, New
York, until 1936, and assistant professor of
fluid mechanics at California Institute of
Technology, Pasadena, CA, until 1939, when
taking over as professor of fluid mechanics at
State University of Iowa, Iowa City, IA. From 1944 until his retirement in
1966, he also was the director of the Iowa Institute of Hydraulic Research
(ITHR). Rouse was in the 1950s visiting professor to the University of
Grenoble, France, among many other similar positions.

Rouse was a man whose name is synonymous with excellence in fluids
engineering education, research, and application. His influence on fluids
engineering was remarkable, and it continues through his many milestones,
still relevant publications, films, and the score of engineers who received
advanced degrees under his supervision. He authored a number of successful
books in hydraulic engineering and fluid mechanics, notably his fluid
mechanics for hydraulic engineers (1938). The book on the history of
hydraulics in collaboration with Simon Ince is the far most cited of Rouse’s
books. Rouse was awarded IAHR honorary membership in 1985. The ASCE
Hunter Rouse Annual Lecture was installed in 1979 as an award for distin-
guished hydraulic engineers. Rouse pursued the application of basic fluid
mechanics principles to curvilinear (non-hydrostatic) open-channel flows in
his master thesis (1932). He continued with the study of curvilinear free
surface flows in his PhD thesis (1933), where he detailed for the first time
both theoretically and experimentally the characteristics of the rectangular
free overfall under critical approach flow.
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3.6.2 Minimum Specific Energy

Consider Eq. (3.70) repeated here for convenience as

H=z+h+

2 2
ZZhZ (1 + Zhth i + hzpxx —i—zix) = const. (3.190)
Based on Eq. (3.186), the computation of dH/dx = 0, after imposing dz,/dx = 0 and
accepting a physical solution with finite free surface slope, is equivalent to pro-
ducing the physical statement of the minimum specific energy condition. To regain
physical insight into the critical flow condition for irrotational motion with curved
streamlines, differentiation of Eq. (3.190) yields

dH 2 2hhy — h?
— = Zpe + hy 7617]’1 <1 4+ — +thm+Z§x>

dx e 3
& (3.191)
@ (e 12 ~0
2gh2 3 Zbxxx xZhxx Zbxlbxx | = V.
Imposing dz,/dx = 0 in Eq. (3.191) yields, after rearrangement,
2 ) 2 g2 2
q | hhy hx - h= R NZpy . h” Zpxxx -1 (3192)
gh’ 3 3h, 2 2h,

This relation is the critical flow condition for curvilinear flows originating from the
second-order Picard iteration solution to the potential flow problem; it serves as the
mathematical equation to compute the critical depth. Note that in this model, the
flow depth is defined vertically, so that the critical flow depth is the vertical flow
depth at the crest. Equation (3.192) reveals that for curvilinear flows, the critical
flow condition does not depend on the section conditions alone, e.g., the actual
value of &, but in addition on the configuration of the flow profile & = h(x) in the
vicinity of the critical point and on the local bottom geometry variation z; = z;(x).
Rouse (1932, 1938) studied curvilinear flows in open channels by using flow nets,
thereby highlighting the aspects of the motion including curvilinear streamlines
(Fig. 3.11). Note the significant streamline curvature and slope near the spillway
crest in Fig. 3.11, as revealed by the added colored tracer. It is elucidating to quote
the words by Rouse (1938) on page 326 of his book:

...Since the ratio of depth to specific energy at the true critical section is so definitely a
function of the curvature imposed by the fixed boundaries, it is almost futile to expect that a
simple relationship may be found expressing this ratio in terms of boundary geometry. It is
to be hoped, nevertheless, that a broader understanding of true critical discharge may soon
lead to definite progress in this essential field.

Equation (3.192) reveals this fact; the flow curvature effects imposed by the
boundary conditions are included in the critical flow condition. Equation (3.192) is
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Fig. 3.11 Curvilinear flow
over spillway, after Rouse
(ITHR movie Fluid motion in
a gravitational field)

an approximate solution at the weir crest to the elliptic problem posed by Laplace’s
equation for irrotational flows. The domain of dependence of an elliptic equation is
the entire computational reach, so that the flow condition at a section, like the crest,
is determined by the complete solution of the problem. Therefore, it is logical that
an approximation to this elliptic problem depends not only on sectional conditions,
e.g., the flow depth A, but also on the flow solution in its vicinity, given by the
spatial derivatives h,, h.,, and h,,,. For that reason, consideration of critical flow in
2D motion as given by Laplace’s equation results in a mathematical statement for
the minimum specific energy that depends not on the sectional conditions, but
rather on the flow conditions near the critical point.

It is instructive to study the kind of critical (non-hydrostatic) solutions to be
expected from Eq. (3.192). Therefore, the critical depth, the crest bottom pressure
head, and the discharge coefficient of spillway flow (Figs. 3.9 and 3.11) are
approximated based on this model. At the spillway crest, Eq. (3.190) gives

2

q 2hh,, — h? 7
E=h 1 4 W | = b4 —— (1 3.193
+2th< + g Ftham +2gh2( +e1), (3.193)

where the definition of the small parameter ¢; is implicitly given in Eq. (3.193).
Furthermore, Eq. (3.192) is written as a function of a small parameter ¢, as

2

;?(1 te)=1. (3.194)

The discharge coefficient C; of spillway flow is defined by Poleni’s equation as
(Rouse 1938; Montes 1998)

1/2

q=Cy(gE) (3.195)
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Elementary manipulation of Eqgs. (3.193)—(3.195) produces

1 (1+81):| _3/2' (3196)

Co = (1+2) 2 {1+ CTOE

Considering that ¢; and ¢, are small quantities, an approximation for C, is devel-
oped as follows. The Taylor expansions

(1+e) 2~ (1 —52),

2

1 1 3
z1+—(1+31)(1—32)z1+§(1+81—82)25[14—

2(e1 — &)
2(1+2) 2 302 ]

3
(3.197)

inserted into Eq. (3.196), produce the approximation

a=(3) 0-9[-3=0) -2 e

Equations (3.194) and (3.198) give the critical depth & and discharge coefficient
C, once approximations to ¢; and &, are available. Therefore, approximations to the
flow depth derivatives h,, h,,, and h,,, at the crest (critical) section are needed.
Following Matthew (1963) and Hager (1985a), these are determined on the basis of
the lower order energy equation for hydrostatic flows

2
H=z+h+ -2 = const. (3.199)

2gh?
Differentiation of Eq. (3.199) gives
e
X hx - hx =0. 3.200
Zbx o ( )

Setting dz,/dx = 0, the critical flow condition for hydrostatic flows requires

q
—=1. 3.201
i (3:201)
Differentiation of Eq. (3.200) produces
q’ 7 2
o+ o ——=ho+3—=h: =0, 3.202
Zpxx + PEle + e ( )
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from which, using Eq. (3.201),

hZpsx
2= (3.203)
3

Note that for a physical solution at the spillway crest (saddle-type singular
point), the constraint d’z,/dx* < 0 is required in Eq. (3.203). Otherwise, imaginary
free surface slopes are obtained, forming a nodal type singular point (see, e.g.,
Montes 1998). Now, Eq. (3.202) is differentiated to obtain a predictor for 4., at the

spillway crest, resulting in
il

-bxxx hxxx -
Zbxor T P

q* P 5 7
heo+3L nh, — 129 316 nn, —o. 3.204
P el (3.204)

Using Eqgs. (3.201)—(3.203), and assuming zj,., = 0, thereby approximating the
weir crest geometry by a parabolic shape, reduces Eq. (3.204) to

AZpxx
By = —ZT”. (3.205)

The parameter ¢; is now determined with Egs. (3.203) and (3.205) as

&L =——F—— - - §

2 22
3 + hzpey = 3 9 - T) + hZpe = ﬁthxr

(3.206)

With R, = —1/z;,, as the crest radius of curvature (z;,, = 0), and using the hydro-
static identity for critical flow h = 2FE/3, the discharge coefficient is, from
Eq. (3.198) using Eq. (3.206), obtained as

2\ 2 N E
—(z 1+ 222 3.207
G <3) ( +81Rb> (3.207)

Equation (3.207) is due to Matthew (1963) using Eq. (3.101), the extended
Boussinesq equation using natural, curvilinear coordinates. Here, it was rederived
using the Picard iteration, Eq. (3.70). Note that for negligible streamline curvature,
Eq. (3.207) yields

E 3/2
0= Ci— <§> . (3.208)

This is the well-known discharge coefficient of a broad-crested weir under ideal
fluid flow conditions (Montes 1998, Chanson 2006). Therefore, streamline curva-
ture effects as given by E/R;, increase the discharge capacity.
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To compute the curvilinear critical depth using Eq. (3.194), a predictor of &, is
needed. To this end, Eq. (3.204) is further differentiated, resulting, after imposing
Eq. (3.201),

2

o+ s — T B 43 4hh +3

oI o yhyes + B2

h4<

2 q 2 4 q* 2
12$hxh — 36 hshxhxx+12><5ﬁhx+6 P (hxx—khth)

, (3.209)
24$hxh
e =1,z =0
T N N hzh i
1225 492 = 72208 +605 = 0.

)

Inserting Egs. (3.203) and (3.205) into Eq. (3.209) results in the desired identity

Wh,.. 9 W2h2,  T2hhy 60 , 4 8 5 5
= TA — TA =—h xx__h XX =h xx:__h XX -
122 12 h 12 T gl T gt 30 g1

(3.210)

Inserting Eqgs. (3.203), (3.205), and (3.210) into Eq. (3.192), assuming z.,. = O,
and using i = 2E/3, yields the ratio of the critical (crest) curvilinear depth /4, and the
critical depth of hydrostatic flow A, = (¢*/g)"",

2 1/3

q E h E E

4 (12 V=1 = 2o (1-=2) ~(1=-=1). 3.211
gh3 ( 3Rb) ]’lc ( 3R},) ( 9Rh ( )

Equation (3.211) reveals analytically the well-known experimental result that the
depth at a spillway crest is less than the hydrostatic critical depth A. (Hager 1991;
Montes 1998; Chanson 2006). The bottom pressure head p,/(yh.) at the crest is
computed from Eq. (3.75) for z;,, = 0 (weir crest), using Egs. (3.203) and (3.205) as

+h*2h hhxx—hgthrh*z ho L(4h _1h
n) et T ) R, 2\9R, 3R,

h

" he

(o) (o) (5am) =
9R, 9R, 54R, 27R,

Equations (3.207), (3.211), and (3.212) are compared in Tables 3.1, 3.2, and 3.3,
respectively, with the experimental data of Blau (1963) on a parabolic weir of
R, =0.919 m at the crest. Note that the predictions are close to observations,
demonstrating that the weir crest is a non-hydrostatic critical flow section with

Db
Vhe

(3.212)
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Table 3.1 Discharge coefficient of a parabolic weir of R, = 0.917 m (Blau 1963)

q (mzls) measured E (m) measured C, measured Cq Eq. (3.207)
0.17 0.205 0.5847 0.577

0.51 0414 0.6112 0.6107

0.574 0.445 0.6173 0.6157

0.96 0.61 0.643 0.6422

0.975 0.61 0.653 0.6422

Table 3.2 Curvilinear flow depth at crest of a parabolic weir of R, = 0.917 m (Blau 1963)

q (m2/s) measured h (m) measured h/h. measured hi/h. Eq. (3.211)
0.17 0.146 1.016 0.975

0.51 0.291 0.975 0.95

0.574 0.314 0.972 0.946

0.96 0.433 0.956 0.926

0.975 0.446 0.97 0.926

Table 3.3 Bottom pressure head at the crest of a parabolic weir of R, = 0.917 (Blau 1963)

q (mz/s) measured

pply (m) measured

pul(yh.) measured

py/(yh.) Eq. (3.212)

0.17

0.121

0.846

0.834

0.51 0.204 0.684 0.665
0.574 0.212 0.658 0.64

0.96 0.25 0.55 0.507
0.975 0.253 0.551 0.507

curved streamlines. The specific energy at the weir crest to this order of approxi-

mation is

E=h+

2gh? 27

2 22 2
-ﬂ—(1+—4mm>=h+ii—0

2gh?

44 E
81R,)

(3.213)

Owing to Egs. (3.193), (3.206), and using h = 2E/3, the ratio E/h is

E 1
—:1 —_ 1 —hxx :1 =~
h +2< +27a’> T3

~1

1
=1
+5(

22

44 E

“E | E
81R, 3R,

~4E) |
&zH_(

2
1—%9

A4 E
-2\ (1
81Rb)< "

£
3R,

(3.214)

Equation (3.214) reveals that the ratio E/h in critical curvilinear flow (Bakhmeteff
1932; Montes 1998) is less than 1.5.
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A limitation of the above development is that it applies only for low heads,
typically for E/R;, < 0.5, if a minimum crest radius R,, (typically larger than 5 cm) is
used to avoid scale effects (Matthew 1963; Castro-Orgaz and Hager 2014b).
In Blau’s experiments reported in Tables 3.1, 3.2 and 3.3, R, is thus sufficiently
large to avoid scale effects. The maximum normalized head for these experiments is
E/R;, = 0.665, roughly in the validity limit of the theory, which implies a linear
variation of streamline curvature (K = 1). For illustrative purposes on how to obtain
higher order models, the non-hydrostatic critical flow model by Castro-Orgaz et al.
(2008c) will be presented, but other approximations for the potential velocity profile
also apply. Consider steady, plane potential channel flow over a curved bottom.
Then, the velocity distribution along an equipotential curve, or normal, is from
Eq. (3.81) when performing the integration using the vertical coordinate z (Hager
and Hutter 1984a)

t+z
V = V,exp _/‘éie' (3.215)
z
The discharge is then given by
t+z
g = / % dz. (3.216)

Z

To integrate Eq. (3.216), an assumption, similar to that of Fawer (1937), is used,
relating the vertical projection of the radius of curvature, and the inclination of the
streamlines to their corresponding values at the channel bottom (subscript ) and at
the free surface (subscript s)

1 1 1 1
+< )uﬁ (3.217)

RcosO Ry, cosO, R, cost, B Ry, cosO,

tan0 = tan0;, + (tan0, — tan0;) uX, (3.218)

in which p = (z — z,,)/t is the dimensionless vertical coordinate (of points on the
equipotential) and K is a curvature parameter. Castro-Orgaz et al. (2008c) employed
the relations

1

B el =~ (t,
R], COSGh ( o+ bex)7

R}, cosOp (3.219)
tan0, = zpy, tanl; = (£, + 2py).

= Zbxx,
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Carlos Fawer was born on October 10, 1910,
at Neuenegg, BE, and passed away at age 86
on December 23, 1996, at Vevey, VD. He
entered in 1928 the Lausanne engineering
school—today EPFL—graduating in 1932 as a
civil engineer. He then made a journey to
England, working in the economic crisis during
the early 1930s for the Swiss Railways in
Berne. Toward 1934, he was a collaborator of
Alfred Stucky (1892-1969) at his private
engineering company, eventually starting his
PhD thesis at the Hydraulic Laboratory of the
Engineering School, submitting the work in 1937. Fawer was unable to
continue as a hydraulic engineer, his passion, because of the difficult times
even in Switzerland shortly before World War II. He thus moved to Nestlé
and stayed there during his entire further professional career, with trips to the
USA and Argentina as a specialist for constructions in the dairy industry.
Fawer’s name is sometimes confused with that of Henry Favre (1901-1966),
having nothing in common, however. Fawer submitted an outstanding thesis
relating to the effect of streamline curvature, as was earlier developed by
Joseph Boussinesq (1842-1929), yet with a direct application to civil engi-
neering structures. The basis of Fawer’s approach was a nonlinear assumption
of the streamline curvature variation from the channel bottom to the free
surface, which was found to be a significant advance over the linear approach
by Boussinesq, who adopted the momentum principle. By assuming constant
energy for each streamline (potential flow), Fawer formulated the first
Boussinesq-type energy equation. He applied this equation to various flows,
including undular hydraulic jumps, gate flow, and flow over round-crested
weirs. Fawer was the first who investigated the free surface profile, and
velocity and pressure distributions of the undular hydraulic jump. He further
deduced a classification of non-hydrostatic free surface profiles over flat
channels. For round-crested weirs, Fawer was the first who demonstrated that
the critical flow theory can be extended to the computation of non-hydrostatic
open-channel flows.

Using Eq. (3.217) for the variation of the vertical projection of the radius of
curvature, the velocity distribution along an equipotential is

1_,uK+1
-V, 1z (1 — 1) — ttyy —————|. 22
V = Vyexp|—tzpu (1 — u) — 12 Kol (3.220)



3.6 Critical Flow Conditions in Curved Streamline Flows 141

With the streamline inclination given by Eq. (3.218), the inverse of the cosine of
the angle 0 is

1 1/2
i (1+ tan’0) "= (142, +pu

K210 gt ) (3.221)

Using Egs. (3.220) and (3.221) permits the computation of V, from Eq. (3.216);
similar steps to those used to find Eq. (3.101) then yield (Castro-Orgaz et al. 2008c)

V2
H=z+t+ ﬁ
, , (3.222)
q thxx tx Zhxlx 2
—Zb+[+2 t2 <1+K—|—2_2K—|—1 +thxx_2K+1_be>-

The term in parentheses may be regarded as the first-order term of a Taylor series
expansion of an “exp” function, as proposed by Hager (1985a). Therefore, it is
tempting to suggest a more general extended energy equation as

2
q
szb+t+@exp< + Zpyy — 2

2ty 2 by
X — 3.223
K+2 2K+1 K+1 (3.223)

If the exponential is expanded in a power series and K = 1 for the slope terms,
Eq. (3.101) by Hager and Hutter (1984a) is regained. The extended energy
Eq. (3.223) is an improvement of the Fawer (1937), Matthew (1963), and Hager
(1985a) approaches. The exponential form of Eq. (3.223) applies to flows with a
large streamline curvature that is not accounted for by the Matthew (1963)
approach. The model is also applicable in regions where streamline curvature and
inclination are far from exhibiting a linear variation. Keeping the discharge ¢ con-
stant, and computing dH/dx = 0 from Eq. (3.223), leads to

dH d 2 2ty 2 Zbxly
|:Zb+l+2q P( - + Zpe — 2 b _Z2x>:| =0.

drx  dx K+2 2K+1 K+1
(3.224)

Developing Eq. (3.224), and setting dz,/dx = 0 in the resulting expression, the
minimum specific energy condition of the extended energy equation takes the form
(Castro-Orgaz et al. 2008c)

i{l— 2ty _( K—-1 )tt _t2me_(K—1>tsz]
gr (K+2)t, \(K+2)2K+1)) ™ 2t K+1) 2
2ty 2
K+2 2K+1

X exp[ —l—tszx] =1.

(3.225)
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This is a higher order critical flow condition for curved channel flows. For the
transition from sub- to supercritical flow, establishment of critical flow requires dz,/
dx = 0 and d#/dx # 0; thus, dE/dr = 0. Equation (3.225) is rewritten as

2
F2 = zq—ﬁ =P =1 (3.226)
.

Here, F,, is the Froude number of the parallel streamline flows and A is a correction
coefficient accounting for the effects of streamline curvature and inclination in
gravity flow problems, given by

1= 2 Lyxx K—-1 1 tzszxx K — T\ t2py
o (K+2)t, \(K+2)2K+1))™ 2t K+1) 2
2t £

K+2 2K+1

X exp { + thxx:| .

(3.227)

Therefore, the minimum specific energy condition written as a function of the
Froude number F for curvilinear flow is

E
i—t =1-F*=0. (3.228)

For hydrostatic flows, 2 =1, ¢ = h, and the classical critical flow condition is
regained from Eq. (3.225). If a linear variation of streamline curvature and slope is
assumed (K = 1), Eq. (3.225) reduces to

2 2 2 2
q 17 Loxx 1" Zhxxx 2ttxx —r
a (- _ TN e ) = 1 3.229
gt3 ( 3 tx 21‘)L ) exp( 3 + b ) ( )

Further, if z;,,., = 0 (as for parabolic and circular-crested weirs), and the expo-
nential function is expanded in a power series, Eq. (3.229) reduces, by retaining the
first-order terms, to

2 2 2 2 2 2

q 17 Ty 2”)0( —1 q 1" o ZIIXX —t
— | 1= < Zpx | = 1-— 1 — % 1Zpxx
gt3( 3tx)exp< 3 + 12, ) gt3( 3lx>< + 3 +12p

2 2 2
q 2ty — 1° Lo
~— 14+ —/—= 4+t — =1.
g13< + 3 +Zbu 31‘)()

(3.230)

Equation (3.230) was previously developed by Hager (1985b). Note that
Eq. (3.192) is similar but not identical to Eq. (3.230), given the different definitions
of the flow depth.
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3.6.3 Maximum Discharge

According to the Belanger—Bdss theorem [see Jaeger (1956) for the mathematical
proof], the minimum specific energy E condition for constant discharge ¢ is
mathematically equivalent to the relation that is obtained by the maximization of the
discharge keeping the specific energy constant. The maximum discharge condition
originates from the seminal work of Fawer (1937), who used a velocity distribution
similar to Eq. (3.83) for spillway flows (Fig. 3.12a) and imposed the maximum
discharge condition for E fixed to find the critical depth at the spillway crest
(Fig. 3.12b).

For a given flow depth, the velocity profile was determined by Fawer using
Eq. (3.83), neglecting slope effects, and obtaining curvatures from a flow net sketch
(Fig. 3.12a); then, the discharge g was computed by graphical integration of the
velocity profile. In this method, the flow depth & (Fig. 3.12b) was progressively
increased until reaching the maximum discharge. This approach is presented here
but following Jaeger (1956), based on an alternative approximation for the flow net
geometry at the weir crest and therefore of the velocity distribution. Assume that the

i Vo 9 max

Distribution des vitesses. Débit en fonetion du tirant k.
Fig. 40,

Fig. 3.12 Critical flow at spillway crest after Fawer (1937): a flow net, b maximum discharge
condition with velocity distribution (left) and discharge distribution (right)
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radius of streamline curvature along the equipotential crest curve (Fig. 3.9) can be
expanded using a Taylor series development about the bed (n = 0; subscript b) as

OR &R\ n?
R(n) =R, + (a)bl’l-F <W>b7+ (3231)

Truncation of the series after the linear term gives the approximation to the function
R = R(n)

OR

R(n) ~ Ry + <%>bn. (3.232)

This kind of approximation was pursued by Jaeger (1939, 1956), Montes (1970,
1998), and Castro-Orgaz (2008). A linear variation of R at a weir crest is reasonable
based on 2D results by Ramamurthy et al. (1994) and Castro-Orgaz (2010a, 2013a).
Generally, Eq. (3.232) diverges from 2D results near the free surface, but it is an
excellent approximation otherwise. Thus, the approximation,

m, = (@) ~ M7 (3.233)
on/, N,

is adopted, where the R values at the channel bottom (b) and at the free surface
(s) are used. Inserting Eq. (3.233) into Eq. (3.232) produces

R=Rp,+myn=Ry,+ (RS — R;,)v, (3234)

which is similar, but not identical, to Jaeger’s expression (1956). Inserting
Eq. (3.234) into Eq. (3.48) gives

ov Vv

—_—=—, 3.235
on Ry+myn ( )

Integrating between an arbitrary point and the free surface, one finds with V; as the
free surface velocity at the critical point (Fig. 3.9)

1
InV; —InV =—[In(R, +m, N,) — In(R, + m, n)]. (3.236)

0

From Eq. (3.236), the velocity profile along a normal is (Jaeger 1956; Castro-Orgaz
2008)

v R ) 1/m, 1 1 1/m,
Y Betmen 1 L Y (3.237)
Vs Rb+m0No r r
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Here, r = RJ/R;, is the relative curvature of the boundary streamlines and
R; = R, + m,N,. The velocity profile given by Eq. (3.237) is integrated along a
normal to obtain unit discharge g as

N, N,

1 1 1/m,
q= / Vdn= VSNO/ {— + <l - —> v} dv. (3.238)
r r
0

0

Evaluating the integral gives

O T (A O

r nm,

(r—=1) (mo+1)

0

St~z

(3.239)

N\t !
1 - (—) . (3.240)
r

The parameter m,, in Eq. (3.234) is rewritten as

Thus, Eq. (3.238) takes the form

r m,

DI

Ry—R, Ry
= =2t (1), 3.241
N, N, (r—1) ( )

My

Inserting Eq. (3.241) into Eq. (3.240) yields

1- G)ﬂ (3.242)

With the discharge coefficient C, of a spillway, defined in Eq. (3.195), that is,

r

= VR —
q b(mo+1)

g="Ci(eE)"”, (3.243)

and the free streamline velocity at the critical point, given by (Fig. 3.5b)

V, = [2¢(E —1)]'/?, (3.244)
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coupling of Egs. (3.242), (3.243), and (3.244) yields

21/2 E -1 172 1 1+1/m,
- =) (=L 1- (= . 24
=, <Rb) ( E) ' l (r) (3.243)

Here, ¢ is the critical flow depth defined as the vertical projection of the normal at
the critical point (Fig. 3.9). For a constant value of the specific energy, the critical
depth is obtained by the maximum discharge condition dg/0t = 0 (Montes 1998).
Given that both E and R, have constant values, the critical flow condition is
equivalent to the maximum discharge condition (Jaeger 1939)

s
ST = 0. (3.246)

Consequently, C, as given by Eq. (3.245) reaches a maximum for a given value of
the specific energy E/R;, corresponding to the critical depth #R,,. This method is
applied in Sects. 3.10 and 3.11 to determine the discharge characteristics of
sharp-crested weirs and spillway profiles, respectively. In the parameter m,, the
relative crest curvature r (z;, = 0) is given by

Zhen
P (14.2)2 (3.247)
ttxx+tszx

3.7 2D Solution of Irrotational Flows: The x-jy Method

3.7.1 Semi-inverse Mapping

Weirs are structures widely used for water discharge measurements in open
channels, in which minimum specific energy or critical flow conditions prevail, as
discussed above (Montes 1998; Chanson 2006). Open-channel flows passing from
sub- to supercritical flow across a critical point, where the Froude number F = 1
and the specific energy is a minimum, are generally described by inviscid,
incompressible, and irrotational flow equations (Rouse 1932, 1938; Jaeger 1956;
Vallentine 1969; Hager 1985b; Ramamurthy et al. 1994; Ramamurthy and Vo
1993a, b; Montes 1998; Chanson 2006). The potential flow solutions encompass
the determination of the stream and potential functions in any point of the flow
domain from which velocity and pressure fields are derived (Rouse 1938;
Vallentine 1969). Problem solutions for open-channel flows are especially complex
because of the existence of a free surface, which is unspecified in advance (Montes
1998). Flows over round-crested weirs are an important case of open-channel flows
with minimum specific energy conditions and curvilinear streamlines (Matthew
1963; Hager 1985b; Montes 1998; Chanson 2006). In the approximate methods



3.7 2D Solution of Irrotational Flows: The x-iy Method 147

explained above, critical flow conditions were used after assuming the flow
geometry in the crest vicinity. The main outcomes are analytical, (approximate) 1D
potential flow equations. Limitations of these methods of analysis include specific
assumptions about the geometry of the flow, e.g., the variation of the streamline
radius of curvature along the crest equipotential curve, and, more importantly, the
impossibility to compute the field variables in sections different from the crest.
A more general method relies on the full 2D solutions of the potential flow
equations. Specific advantages of this method are the lack of assumptions on the
potential flow variables and that the solution is determined in the full computational
domain. A disadvantage is that 2D numerical computations are needed, given that
highlighting analytical solutions is rarely possible.

Early potential open-channel flow models considered problem solutions in the
physical plane of Cartesian coordinates (x, z) using the relaxation technique
(Southwell and Vaisey 1946; Ganguli and Roy 1952). However, the discretization
of Laplace’s equation near a curved boundary and the choice of an efficient
relaxation pattern are tedious tasks (Thom and Apelt 1961). The solution of
Laplace’s equation in the physical plane is also considered in the application of both
the finite-element method (Dao-Yang and Man-Ling 1979) and the boundary ele-
ment method (Cheng et al. 1981). An alternative method was discussed by Thom
and Apelt (1961), who proposed to transform the role of dependent and indepen-
dent variables and then solve for the variables (x, z) as functions of ({, ¢), where ¥/
is the stream function and ¢ is the potential function. This approach was adopted by
Cassidy (1965) and Markland (1965) for standard spillway and free overfall
problems, respectively. These authors used a finite-difference discretization of
Laplace’s equation. A pertinent modification of this method was proposed by
Boadway (1976) and applied by Montes (1992a, b, 1994a), where the z variable is
expressed versus (i, x), and only a semi-inverse mapping is used. A characteristic
of previous 2D potential flow solutions for weir flows is their focus on free surface
and bottom pressure simulations (Cassidy 1965; Cheng et al. 1981; Guo et al.
1998). However, these solutions were not used to analyze the internal flow features
of interest, such as vertical velocity, streamline curvature, and streamline inclina-
tion. These aspects were analyzed by Castro-Orgaz (2013a, b) given that the ver-
tical variation of these parameters in the crest domain is of engineering interest and
forms the basis of approximate 1D potential flow models (Hager and Hutter 1984a,
Montes 1998). Boadway’s method is appropriate for open-channel flows, given its
simplicity as compared to other proposals. The purpose of this section is to apply
the model proposed by Boadway (1976) to open-channel flows and weir crest
overflows under minimum specific energy. The model applies to the relevant cases
of critical flows over a weir, the transitions from mild to steep slopes, and the free
overfall (Fawer 1937; Hager 1985b; Ramamurthy et al. 1994; Chanson 2006;
Castro-Orgaz 2013a, b; Castro-Orgaz and Hager 2013) as occurring in water dis-
charge measurement structures.

Consider transcritical flow over a round-crested weir (Fig. 3.13a). Laplace’s
equation in the physical plane states
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Ww=gq

I:].\a,or

. \x w =0 d "

Fig. 3.13 2D potential flow solution in a physical plane, b x-{y plane (adapted from Castro-Orgaz
2013a)

Py Py

2 = _
V‘”‘aﬁ +822

=0. (3.248)
To solve Eq. (3.248) in the (x, z) plane, irregular computational elements near a
curved boundary streamline are needed (Thom and Apelt 1961; Vallentine 1969).
The alternative method of Thom and Apelt (1961) solves the problem in the plane
(¥, @), where the Laplacians are expressed as

2 2 2 2
szza—zz+8—12:0, szza—);—i—a—);:& (3.249)
N 09 2l

In this plane, the computational domain is a rectangular band requiring no irregular
mesh. This mapping was used by Cassidy (1965) and Markland (1965). However,
contour integrals are required to iterate for both x and z in their corresponding
planes. Boadway (1976) proposed a challenging alternative, especially suitable for
open-channel flow. He proposed to solve the Laplacian for z as a function of the
pair of variables (i, x). The Laplacian of this semi-inverse transformation z = z(x,

Y) is (Boadway 1976)
97\’
1+ (a)

V2 = a_ZZ (%) ’ + 8_2Z
ox> \ oy o?
The derivation of Eq. (3.250) is presented in Appendix D.
Equation (3.250) must be solved subject to suitable boundary conditions. The
computation directly yields the equation for each streamline z = z(x, Y = const),
from which velocity and pressure fields of the potential flow ensue. One advantage

5 Pz 020z
XY Ox oY

0. (3.250)
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of the method is that the flow domain maps into a rectangular strip (Fig. 3.13b) and
also that computational efforts are divided into half by considering only /. Note
that only the function V is sought, whereas the function ¢ is no longer considered.
In other words, Boadway’s mapping achieves to avoid consideration of the entire
flow net, because the potential function can be ignored. Note that with the
streamline flow pattern, the problem is solved from a hydraulic point of view
because the velocity and pressure fields are obtained (Boadway 1976). The problem
statement is thus to find the function z = z(x, ) instead of both for x = x(i, ¢) and

2=z, ¢).

3.7.2 Boundary Conditions at Up- and Downstream
Sections

The boundary sections far up- (subscript «) and far downstream (subscript d) are
selected where streamlines are parallel to the channel bottom. Under these condi-
tions, the flow depth & for a given energy head H is given, with S, as the bottom
slope, by Montes (1994a)

2

q 2
H=z+h+ 1 (1+5%). 3.251
w+ +2gh2( +52) ( )

If the section lies at a horizontal channel bottom, there is no slope contribution and
Eq. (3.251) reducesto H = h + q*/(2gh®). The relation between the stream function
Y and the elevation z in these sections is

=2+ (2 — Zb)g, (3.252)

provided s is normalized with = 0 at z = z;,. Equation (3.252) expresses physi-
cally that the velocity profile is uniform in the z-direction at the boundary sections.

3.7.3 Free Surface Profile and Energy Head

To start the solution of the Laplace equation (Eq. 3.250), a free surface profile
Z, = Z4(x) and energy head H must be prescribed (Fig. 3.13a) for the selected dis-
charge g. Therefore, it is necessary to generate good estimations of the profile /(x) and
the energy head H. A simple option is to use Eq. (3.70) obtained using Picard
iteration. This equation was presented by Naghdi and Vongsarnpigoon (1986) based
on the theory of a Cosserat surface (Green and Naghdi 1976a, b; Naghdi 1979).
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3.7.4 Solution of Laplacian Field

The problem statement is the solution of Eq. (3.250) for coordinate z as a function
of both x and ¥, once the boundary streamlines z,(x) and z,(x), and the relations
Zu = Zu(xy, ) and z; = z4(x4, ) at boundary sections are prescribed. In the (x, 1)
plane, the computational domain is a rectangular strip where the value of z is known
along the entire contour a—b—c—d—a (Fig. 3.13b). Thus, it is not necessary to use an
irregular mesh for the flow solution near the curved boundaries, as was done when a
solution was directly sought in the physical plane (x, z) (Thom and Apelt 1961;
Vallentine 1969). Let i be the node index of the mesh in the x-direction and j that
corresponding to the y/-direction; second-order accurate central discretization of
derivatives leads to (Boadway 1976; Montes 1992a, b, 1994a)

9 zi+1.j) —2(i— 1))

o e , (3.253)
Oz  z(i,j+1)—=z(i,j—1)
5% 280 , (3.254)
0z 2(i+1,j) —22(i,j) +2(i — 1))
o (Ax)2 , (3.255)
oy’ (Ay)? ’ '
Pz i+ Lj+1) —zi=1j+1) —z(+1,j—1)+zi—1,j-1)
oxOy 4AxAY '
(3.257)
Let the auxiliary variables be
_z(i+ 1) +z(i — L)) (ﬁ)z
A= (Ax)2 o) (3.258)
ozl )+, — 1) (@)2
= (Ax//)z 1+ o) | (3.259)
1 92\ 1 z\*
%z 07 0z (3.261)

= oxoy 0x oy
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Substitution of Egs. (3.253)—(3.261) into Eq. (3.250) leads to an equation for z(i, j) at
a generic node inside the mesh as

z(i,j) = (f%). (3.262)

Equation (3.262) reveals that z(7, j) is a function of z(i — 1, ), z(i + 1, ), z(i,j — 1),
and z(i, j + 1), i.e., the four surrounding mesh points.

It is of interest to recall now the well-known finite-difference approximation to
Eq. (3.248), for comparative purposes. Denoting by (i, j) the mesh indexes in the x-
and z-directions, the second-order accurate finite differences are defined as

%y _Y(i+1,)) —29(i.j) +¥(i—1,))

= e , (3.263)
- i . (3.264)

Inserting Eqs. (3.263)—(3.264) into Eq. (3.248), one obtains, for a rectangular mesh
in the (x, z) plane [Ax = Az] (Thom and Apelt 1961; Vallentine 1969),

J(ij) = PO LD U+ 1) : Vi~ D+y- L) (3.265)

This is the well-known result expressing that the stream function at a node is an
average of the values of this function at the four surrounding points. The solution is
known to be iterative, starting with an assumed value of the stream function at all
nodes of the computational domain and following with a successive application of
Eq. (3.265). Compare now with Eq. (3.262), which indicates that the value of the
dependent variable, in this case z, is an average of the values of this function at the
four surrounding points. In this case, however, the “average” is defined by a more
complex mathematical expression linking the function at a node with the values in
its vicinity, given the semi-inverse mapping used to form the field equation.

The process to obtain z at each node is therefore a process of iteration. Thom and
Apelt (1961) proposed what they called the “squaring method.” Applied to the
present equations, this consists of defining inside the mesh initial starting values for
z(i, j) and then applying Eq. (3.262) iteratively with G as recursion index as

G-1
2(i, )= (f%c_l)) . (3.266)

For all (7, j) in the computational domain, accordingly, a fresh value of z at any node
is obtained from the previous values at the four surrounding points. The solution
method is convergent, eliminating the need for a preassumed pattern to reduce



152 3 Inviscid Channel Flows

residuals in the Laplace equation. This alternative method is called relaxation
technique, and its success depends on the ability of the modeler to reduce the
residuals efficiently. To start the iteration using squaring, the values of z inside the
mesh are assumed to follow the linear law

i) = 2(,0) + [ (i:N) — 24(i,0)] ‘”‘;’” W) =jAy. (3267)

This is equivalent to assuming that the horizontal velocity profile is uniform in the
vertical direction within the entire computational domain, of value U = g/h.
Repeated application of Eq. (3.266) collocates the streamlines z = z(x, Y/ = const.)
and, therefore, produces the correct velocity profile at all vertical sections of the
mathematical model. The number of streamlines required varies from 10 to 30,
depending on the application. The vertical discretization must be successively
reduced until no variations in the results occur. The longitudinal discretization is
typically of the order of 0.01h,, with h. = (¢*/g)". This mathematical model is
applied in forthcoming sections to compute flow over free overfalls, transitions
from mild to steep slopes, and round-crested weirs.

3.7.5 Determination of Velocity and Pressure Distributions

The Cartesian velocity components (#, w) in the directions (x, z) are (Vallentine
1969, Montes 1998)

_ W
=" (3.268)
w= u% (3.269)

Once the solution for the Laplacian field converges, the values of z(i, j) are known
in the entire computational domain. Second-order accurate discretizations of
Egs. (3.268)—(3.269) result in (Boadway 1976; Montes 1994a)

o 20y
u(i,j) = G -1 (3.270)
(i j) = (i) LD 2L, (3.271)

from which the velocity fields are easily obtained. Let N be the maximum value of j;
at the free surface, the velocity u at boundary streamlines is discretized as (Montes
1994a)
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2AY
3z(i,N) — 4z(i, N — 1)+ z(i, N — 2)’

u; =u(i,N) = (3.272)

2AY
—3z(3,0) +4z(i, 1) — z(i,2) "

up = u(i,0) = (3.273)

Using the condition of energy conservation in potential flow, and once the com-
ponents (u, w) are computed, the pressure head is given by

2 2
P ww (3.274)
y

=H —7—
< 2g

3.8 Free Overfall

3.8.1 Picard Iteration

Consider potential flow in a horizontal free overfall with critical flow conditions
and hydrostatic pressure distribution upstream of the brink section (Fig. 3.14). The
free overfall represents a basic hydraulic structure having attracted numerous
experimental and numerical studies in the past 80 years (Mandrup Andersen 1967;
Hager 1983; Montes 1992a; Marchi 1993; Khan and Steffler 1996b; Bose and Dey
2007), but it is fair to state that the first rigorous hydraulic analysis of the problem
was conducted by Hunter Rouse. Dey (2002) presented a detailed state-of-the-art
review. The free overfall results from a sill of zero height, which, under certain
conditions, constitutes a flow-measuring device (Rouse 1932, 1933, 1938; Jaeger
1948, 1956; Montes 1992a, 1998; Dey 2002). It is divided into two portions with
reference to the brink (subscript b) section: the upstream approach flow and the
ventilated free jet (Fig. 3.14).

Matthew (1995) obtained a complete analytical solution for the free overfall
problem based on second-order Picard iteration equations by forcing continuity of
the free surface slope and the bottom surface slope across the brink section. His
development is presented here in detail. The momentum function S is given by

Eq. (3.73) as
h u? — w?
=|H-—2z,—= . 2
S ( 2 2)h+/ ( 22 >dz (3.275)
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Fig. 3.14 Free overfall with
upstream critical flow:

a laboratory experiment
(Rouse 1932), b definition
sketch for the Picard iteration
solution, (c) equipotential line
and velocity profile at brink
section

h,

s Continuity in f1,(=< 0)

z,(x)+h(x)

Continuity in z, (= 0)
h,=2h/3
2x)
«—t >
Channel flow portion  x=10  Free jet portion

= const

The S function is related to the bottom pressure by Eq. (3.19) as

ds Db
— = == Zp- 3.276
o = ( )

Along the upstream channel flow portion, z;, = 0, and thus, S = const. In the jet
flow portion, p, = 0 so that S is equally a constant. As the flow is assumed to be
irrotational and thus H = const., this implies that the free overfall is governed by the
three invariants already stated by Benjamin and Lighthill (1954) to study cnoidal
waves

S =const., H =const, g = const. (3.277)
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Inserting Eqs. (3.63) and (3.64) for u and w into Eq. (3.275) gives

h+z
h u* —w? h
S=(H—-—z—=<)h dz=(H—z—=<)h
(a-sghe [ ()= (-a-3)

b

h+z

1 q 2 Zh(vsz 27] —h hxx h2 3172 — h2
— DN 42 gy — Zxx o 2o _ d
2% (h)[+ (Z” I )( 2 )P\ )\ T3 :
2p
1h+Zb ) 5
] @ sty
28 (h Gx ) G2

(3.278)

For critical approach flow (F = 1), the (S, H, g) invariants are (Rouse 1933;
Jaeger 1956; Montes 1998)

3
S =h H =, q = gh. (3.279)

Inserting Eqgs. (3.279) into Eq. (3.278) yields

n\? h n\? 2Kz, h?
3(—) 3——(—) =2 4+1-22 —hz—2=0. 3.280
(l’lc) h. <hc> h3 “bx by 3 ( )

¢

momentum equation for F=1

Equation (3.280) is a form of the momentum equation valid both in the up- and in
the downstream portions of the free overfall. Consider first the upstream channel
flow portion, where z;, = zp, = Zpxe = 0. Equation (3.280) then simplifies to

2 h N> /h\° n\’
o) -G) =) e

momentum equation of upstream channel flow for F=1

This equation was previously obtained by Hager (1983) and Marchi (1993) using
alternative developments.
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Consider now the free jet portion, particularly the energy head at the lower

nappe” (or lower jet surface) of the jet portion. Using Eq. (3.68), evaluated at 7 = 0,
yields

2 2 2
q 2hxzb,x hxx h 61’] —2h

2h2
+ Zb\’ +2- vach + 2 X:| q_z < hszx + zhxsz + Zb\f)

(3.282)

The energy equation of the lower nappe is, therefore,

Db Vf 7 hhyy — 2k 2
H= — + == 1- — Mz + 20y 2px .
2+ g + 29 2+ 200 3 Zbxx T 2MxZpx + Ty

=0
(3.283)

The energy equation of the free surface streamline (upper nappe) of both the
channel and the jet portions is given by Eq. (3.70), e.g.,

ps V2 7 2hhy, — W2

= h+ = + S =z+h 1+ 2 hzg,

Zb++pg+2g ++2h2(+ 3 + hzp —&-z,,)C
N~

: (3.284)

Adding Eqgs. (3.283) and (3.284) and dividing the resulting expression by 2 pro-
vides an alternative form of the energy equation of the free jet without the presence
of the z;,, term as

g hhy +
H—zb+2+2 = <1+ <

+ thbx + be> (3285)
Imposing the upstream critical flow conditions on Eq. (3.285), as given by
Eq. (3.279), results in the energy equation for the free jet portion under critical
approach flow

4Nappe is a French word used by hydraulic engineers to define the free surface of a jet. Therefore,
the free jet is defined by the upper and lower nappe profiles [z, = z,(x) and z;, = z,(x), respectively].
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h 2 h 3 2h2Zb hhy h% 2
_3<h_c> +<h_c> + i I = S Gtz =0 (3.286)

energy equation downstream

free jet flow for F = 1.

Adding the free jet momentum and energy equations, Egs. (3.280) and (3.286),
eliminates the terms containing z;, z,, and z,,,, producing

h
hhy — b = 6(3h— - 2) : (3.287)

c

momentum -+ energy equations of

downstream free jet flow for F = 1

An obvious solution of Eq. (3.287) is h, = 2h./3, implying h,, = h, = 0. This is the
well-known asymptotic jet thickness in a rectangular and ventilated free overfall
(Montes 1998). This value is easily regained by formulating a momentum balance
between the critical section and the jet section as (Rouse 1932) (Fig. 3.14b)

= le =1 (3.288)

Consider the differential identity

2}’;% <Z—i) = hhy — h2, (3.289)
or

%3% (Z_z) = hhy — 2. (3.290)
Inserting it into Eq. (3.287) yields

h;% C‘;) :6(32—2). (3.291)

Integration of Eq. (3.291) with respect to & gives with C as an integration constant

) h n\*
i =12-36.-+C(.-) . (3.292)
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Imposing the boundary condition A, — 0 as h — h,, in Eq. (3.292), and h, = 2Ah./3;
then, C = 27, and thus,

2 2
h§=12—36hﬁ+27(hﬁ) :3(2—3}?) . (3.293)

Matthew (1995) assumed that there is no discontinuity in slopes at the brink
section, neither at the free surface nor at the bottom. Therefore, continuity of the
free surface slopes is forced by equating /2 from Egs. (3.281) and (3.293)

A n\?
h = 3(1—h—> 53<2—3h—) . (3.294)

channel flow portion free jet portion

Of the two roots of Eq. (3.294), h/h,. = 0.7169 agrees with the physically observed
value of 0.715 (Rouse 1932) and the predicted value 0.714 from 2D potential flow
computations (Montes 1992a; Castro-Orgaz 2013b). The continuous slopes at the
brink section are, thus,

3 1/2
-

c

Return now to the upstream flow portion to compute the free surface profile.
Equation (3.281) is rewritten as

%: _ [3(1 _hﬁc>3l 1/2, (3.296)

or by separation of variables as

dh l3 (1 - hﬁ) 3] . —dx. (3.297)

The general solution & = h(x) at a generic position x, with A, as the brink flow depth
at the coordinate origin x = 0 (Fig. 3.14b) is (Hager 1983; Marchi 1993)

2 o\ 12 B\ 12
;:3[<1_h”> —<1—h> . (3.298)
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Elementary manipulation of Eq. (3.298) gives the explicit result

h (a®—1)+2ab(x/h:)+b*(x/h.)*

he a® + 2ab(x/h.) + b*(x/h.)?

)

(x (3.299)
— (1 hw ™ / b= v3
a= h. ) - 2
Thus,
h 25323 = 3.2553(x/h.) +0.75(x/h.)’ (3.300)

he  3.5323 —3.2553(x/h.) +0.75(x/h.)*’

reaching the critical flow condition & = A, for x — —00 (Matthew 1995).
The ODE for the free surface profile of the free jet portion is given by
Eq. (3.294) as

hy = \/5(2—3hﬁ>. (3.301)

c

Separation of variables gives

dh
S = V/3dx, (3.302)
with a general primitive

h 2 X
=3 +Cexp(3\/§hc>. (3.303)
Using the boundary condition h(x = 0) = h;, = 0.7169A, results in the integration
constant C = 0.7169 — (2/3) ~ 0.05024.

George Douglas Matthew was born on April
23, 1931, at Aberdeen, UK, and he passed
away there on December 26, 1996. He was
educated at Aberdeen University, Aberdeen,
UK, obtaining in 1952 the B.Sc. degree in civil
engineering. He started his engineering career
with Sir Halcrow Consultants, first in London,
UK, and then for hydropower developments in
Scotland. He returned in 1957 to his Alma
Mater, becoming a lecturer below Jack Allen
(1905-1984), then professor of hydraulic
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engineering. Matthew presented his PhD thesis in 1961 on weir flow,
including a fresh mathematical development based on the theory of Joseph V.
Boussinesq (1842-1929), and on detailed hydraulic model data. In 1970,
Matthew was promoted to Reader at the University of Aberdeen, where he
was respected by the students for his excellent teaching activities and his
personal relation. He was in addition consulting hydraulic engineer taking
both a practical and an aesthetic approach including a fine personal and
professional perspective in engineering. Matthew was retired in 1995, but
shortly later passed away.

Students loved it when the derivations or proofs would go wrong during a
lecture. It meant that he had to depart from the prepared script and “go live.”
You could see him working and thinking in front of you and just watching
this process proved to be entertaining and inspirational. He was remembered
for his final lecture during a course in the 1980s, during which he was writing
DLTBGYD on the blackboard. Eventually, someone asked him what this
meant. He said that this was the most important thing to remember for the
examinations. Yes, but what does it mean, was asked, and he replied that it
means Don’t Let The Buggers Get You Down. He was a member of the
Institution of Civil Engineers ICE. His leisure time activities included
swimming, badminton, oil painting, aviation history, and dancing. Matthew
has written comparably few papers, but many of these contain original and
noteworthy ideas. His PhD thesis published in 1963 generalizes the treatment
of round-crested weir flow by including the effects of streamline curvature
and slope, and the effects of fluid viscosity and surface tension. His approach
remained for a long time unnoticed, but from the mid-1970s influenced the
further treatment of this classical hydraulic problem. He was the developer of
a new technique to produce irrotational, Boussinesq-type equations based on
Picard iteration, resulting in an accurate prediction of flow over round-crested
weirs and free overfalls. He must be credited for being the first who produced
a complete, exact, analytical solution for the free overfall problem based on
Boussinesq’s equations.

To compute the lower free jet profile, the use is made of the bottom pressure
profile function, Eq. (3.75), by imposing p, = p(y = 0) = 0, that is,

2

q 2
0=h+ — (2hzpxe + Ml — B — 22,0y ), 3.304
2gh2 ( Zh/ x Zb ) ( )

or

h 3
2 <h> —+ Zhth =+ hhxx — h% — ZZIthx =0. (3305)
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Inserting Eq. (3.287) for (hh,, — h,%) and Eq. (3.301) for A, yields

3
2(%) + 2hzp + 6<3hﬁ - 2> —22p [\/5(2 - 3}?)} =0. (3.306)

:hhxx —h? :hx

X

The following substitutions are introduced, with p as an auxiliary variable,

P =2bv, T =DPx= j—th = \/’3(2 - 3]%)19,,. (3.307)
This permits to reduce Eq. (3.306) to
3
hpy —p =3+ 3[3(h/h\/§)—2] <:> : (3.308)
Based on the differential identity,
hpn—p =2 ( ) (3.309)
dh \h

Equation (3.308) is rewritten as

J3 J3
) =% + sema—a ) (3.310)

Equation (3.310) integrated with respect to & yields

p V3 V3 (h/he)
= 3 B A/ (3311)

The reader can easily deduce that a primitive function of the integral in Eq. (3.311)

(S RO

Equation (3.311) thus takes with D/h. = C the form

SR R

Manipulation of Eq. (3.313) yields



162 3 Inviscid Channel Flows

2v3\ 33 [h V3 h h
x=—V3 Df— — 4+ — 2In{3——-21].
o f+< )h MY <h> T { ( e )]
(3.314)
Imposing continuity of the bottom free surface slope at x = 0, that is, z;, = 0 in

Eq. (3.314) for h/h. = 0.7169, yields a simple algebraic equation, from which
D = 2.6492. Inserting this value into Eq. (3.314) yields the final z,,(h/h.) relation

2o = —V/3+2.5209 (hﬁ) - ? (E>2 + 22‘{ <h> (3h—c — 2) (3.315)

The lower nappe profile z,(x) is computed from this equation by noting the
identity

d h
Ty = ﬁh = f(z - 3h—)zbh7 (3.316)

which allows for the integration of Eq. (3.315) with respect to A, resulting in
(Matthew 1995)

2
% _ 0.372 — 0.481 ﬁ —0.0185 ﬁ +[0.0099 — 0.0247 ﬁ —0.0082
he he he he
h h

Equation (3.317) is expressed in terms of (x/h.) by resorting to Eq. (3.303),
resulting in (Matthew 1995)

(3.317)

;—b = 0.0232 — 0.1271(x/h.) — 0.2214(x/h.)*—0.0232 exp | —3(3x/h.) "/

+0.0064(x/h.) exp [—3(3x/hc)1/ 2} .
(3.318)

The upper free surface profile z,(x) is determined by adding Eqgs. (3.303)—(3.318),
resulting in

% — 0.6899 — 0.1271(x/h.) — 0.2214(x/h.)* +0.027 exp [73(3x/hc)1/2}

+0.0064(x/h.) exp 73(3x/hc)1/2]
(3.319)
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] -

x/h,

Fig. 3.15 Comparison of Picard iteration solution for free overfall with data of (*) Rouse (1932)
(adapted from Castro-Orgaz 2013b)

Equations (3.300), (3.318), and (3.319) are plotted in Fig. 3.15 and compared
with the experimental data of Rouse (1932, 1933). The upstream free surface profile
is accurately predicted, whereas slight deviations in the jet portion are noted below
z/h. = —0.5. The accuracy of the free surface prediction near the brink section is,
therefore, excellent. Note that the only assumption of Matthew (1995) to predict the
complete analytical solution was to admit discontinuities in the surface and bottom
curvatures at the brink section (but not in the slopes). The curvature terms at the
brink section are now easily determined to highlight these discontinuities. First,
looking to the jet flow portion, from Egs. (3.287) and (3.293)

h n\? h
hhxx:hf+6<3h——2> :3<2—3h—) +6<3h——2> = 40972, (3.320)

c c

with hy/h. = 0.7169, and from Eq. (3.305), the bottom curvature term at x = 0 is

h\> hh, — K2

hzpe = — | — | — 2 T  h, = —0.820. 3.321

= (1) -2 4 (3.321)
=0

The relative curvature of the free surface is, therefore,

Obviously, this positive curvature does physically not agree with the convex free
surface profile. This is a limitation linked to the degree of expansion used in the
analysis.

Consider now the channel flow portion. There, hz,, = 0, from which the bottom
curvature term discontinuity is evident. The corresponding free surface curvature
term is evaluated by resorting to the energy equation for the upstream free surface
profile as [Eq. (3.284) for z;, = zpx = Zpxx = O]
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2 2hiy, — h2
H=h+ 2 <1+ ) (3.323)

2gh2 3

The curvature term hh,, at the brink section results from Eq. (3.323) as
3 N\ (3 h?
Xx — A~ 2 — ~ 7 —1 =
ik 2 { [ (hc) (2 hc)] } + 2
3 m\2 (3 hy 3 o
_5{ [Z(h—c) (E—h—c)] — 1}+ 3 (1 “n) " —0.258.

In Eq. (3.324), the critical flow condition at the upstream section is set equal
to H/h. = 3/2. Further, Eq. (3.281) was used to evaluate the slope term as
12 = 3[(1 = (hy/h.)]’; then, Eq. (3.324) is evaluated for hi,/h, = 0.7169 (brink depth
ratio). The negative sign of this curvature agrees with what is physically expected.
However, having admitted curvature discontinuities, velocity and pressure distri-
butions at the brink section depend on which side the second derivative is com-
puted. Marchi (1993) and Matthew (1995) advocated that the correct velocity and
pressure distributions are determined based on the equations of the free jet portion
and not by the upstream channel flow equations. Thus, they consider the free jet
equations, allowing for terms z;,, = dz,/dx and z,,, = dzzh/dx2 in the pressure dis-
tribution, from which the pressure at the lower nappe was set to zero, including the
brink section. Montes (1994b) reported the failure of the upstream channel flow
equations at the brink section. The failure reason was examined by Castro-Orgaz
and Hager (2010) as follows: The free overfall has peculiar free surface and bottom
profile features, where both curves separate from each other as the brink section is
approached (Fig. 3.14b). Consider Eq. (3.323) originating from Picard iteration for
the upstream free surface profile of the free overfall. Note, roughly, that Eq. (3.323)
at the brink section assumes a linear variation of streamline curvature in the vertical
direction from the channel bottom to the free surface, whereas both Jaeger (1948)
and Castro-Orgaz (2010a) obtained K < 0 using different arguments from Rouse’s
(1933) data. Equation (3.323) was integrated numerically using a fourth-order
Runge—Kutta method from x/h. = —3 to x/h. = 0 (Serre 1953; Montes 1986) sub-
jected to the boundary condition h/h.(x/h, = —3) =1 corresponding to the
parallel-streamlined critical approach flow with F = 1. The boundary free surface
slope was determined iteratively using a Newton—Raphson algorithm until the
downstream boundary condition at the brink section h/h.(x/h. = 0) = 0.715 was
reached. A variation of the shooting section coordinate x/h. = —3 had negligible
impact on the results.

As shown in Fig. 3.16, the computational results for 4 = h(x) are in excellent
agreement with the experimental data (Bose and Dey 2007). Note that this potential
flow computation is different from the results of Hager (1983), Marchi (1993), and
Matthew (1995) because no assumptions regarding the flow conditions at the brink
section are invoked. Here, the free surface profile of the upstream flow portion was

(3.324)
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Fig. 3.16 Free surface 1.29
profile h/h.(x/h.) from (—)
Eq. (3.323), bottom pressure
profile p,/(yh.)(x/h.) from

(- - -) Eq. (3.325), data of (*)
Bose and Dey (2007)
(adapted from Castro-Orgaz
and Hager 2010). Brink
section is located at x/h. = 0

i
2 =
0

'
[

x/h

determined as a two-point boundary-value problem involving the experimental flow
depths at the two boundary sections. The present computation is representative of
an impartial determination to flow conditions at the brink section. Once the profile
h = h(x) is given, the bottom pressure profile results from Eq. (3.75) as

2
Pb q

Pb_py 4
p + 2gh?

(hhy — h2). (3.325)
The bottom pressure at the brink section is p,/(yh.) ~ 0.34 > 0. Thus, the Picard
iteration model results in excellent free surface profile predictions for the channel
portion, but the bottom pressure is poorly simulated. This gap is removed by
considering a general K value and adding the moment of momentum closure
equation for K, as highlighted by Castro-Orgaz and Hager (2010). This is explored
in the next section. Despite the limitations of the Boussinesq’s equations with K = 1
at the brink (discontinuity) section, these equations provide otherwise an excellent
solution.

Before developing a more general solution at the brink section using the
equations of the upstream channel flow portion, the angular momentum balance is
examined from Picard iteration results. The Picard approximations for u, w, and p/y
are from Eqs. (3.63), (3.64), and (3.72) (Matthew 1991; Marchi 1992)

he R (377 — I
REHED, e
W= % (ghx), (3.327)
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7 2 "’
7_h N+ =— 20l [(hhxx—hx)(l —ﬁ)} (3.328)

The vertical momentum flux M is then, from Eq. (3.24) using Eqgs. (3.326)—(3.327),

+h 1h h h2 32 h2
uw q XX n-— q M
M= | o= [Ty (2 T (T f(fhx>d
[ e g/h[+<2h h2>< 3 ﬂxhh !
2 0
h

(3.329)
7
9.4 (VI ) _
R— | =X |7h)dp =—h.
/ B\ ) 2gh
0
The moment of momentum Eq. (3.44) yields the independent equation
dA
— =M. 3.330
= (3.330)
Using Eqgs. (3.329) and (3.330) yields
e
dA = —h,dx. 3.331
Integrating, this yields, with subscript 1 referring to a reference section,
e h
A=A+ —1 3.332
' 2 n<h1> (3332

Consider the definition of A in Eq. (3.42)

2 +h

h
2 2

A= / (u_ + B)zdz = / (u_ + IZ) ndn. (3.333)
8 Y s 8 Y

2

Using Eqgs. (3.326) and (3.328), the solutions of the integrals are

h
he B2\ (307 — R
[ ] () (5 =208) (2
0
2 2\ 7.4
(LN (el L
gh?) |2 h Thz) 12

(3.334)
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h
fron- [l om0 o
::?;<+-§gzz(hh hz)ff

Inserting Eqgs. (3.334)—(3.335) into Eq. (3.333) yields

h
w p q*\ [? h ¥\ n n ¢ n?
A= [ (—+5)pdn=(Z5) %= +[=-2=2 — hhy — b}
[ (55 (ghz)[2+<h hz)uhuw ok
0
q_ _Xx_h_z +h_3_|__2( )
2g 6 6 2g 4
13
€+

(), % IRAY
2g 12 12
Equation (3.332) is rewritten as

2
q h hy

A——Inl— A ——1 337
2g“(h1) ' T2 (hl) (3.337)

Inserting Eq. (3.336) into Eq. (3.332) leads to the moment of momentum equation
for the curvilinear flow upstream of the free overfall as (Castro-Orgaz and Hager
2010)

(3.336)

Q="+~

/S ] Shhy, — Th?
6 2g 12

- ln> = const. (3.338)

Here, Q is defined as the effective angular momentum function. Thus, A is not
conserved in curvilinear flow due to the vertical momentum flux contribution,
thereby resulting in the effective or conserved angular momentum Q (Eq. 3.338).

To further investigate the reason of failure of the Picard solution to predict
bottom pressure features, as stated in Fig. 3.16, the Q function and the conservation
of angular momentum were investigated. From the computed free surface profile
h = h(x), the profile Q = Q(x) was determined using Eq. (3.338). The results are
plotted in Fig. 3.17, showing that the Picard iteration solution of the free surface
profile does not satisfy conservation of angular momentum. The higher streamline
curvature occurs at the brink section, resulting in the largest deviation of Q from its
upstream value at the critical flow section.
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Fig. 3.17 Conservation of 0.7
angular momentum upstream

of free overfall for Picard

second-order solution

(adapted from Castro-Orgaz

and Hager 2010) ) ﬁ

0.65-

Q/h

0.6
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3.8.2 Curvilinear Flow at the Brink Section

Recall that the quality of the Picard iteration solution is related to the curvature
exponent K introduced in Eq. (3.86). The velocity profile along an equipotential
curve is given by Eq. (3.116) as

372 3Zpxty 2 1 My 1
v=4 1_be+Zb+x+thm<v_2>+ : (VKH_ )]

1 6 K+1 K+2
(3.339)

To compute the velocity components (u#, w) along the equipotential curve, the
terms sinf and cosf are, respectively, approximately given by [truncation errors are
003)]

sinf = 0 = zpe + 1V, (3.340)
-2 2
0 t
cosf = (1 — sin29)1/2z 1 —% ~ 11— w (3.341)
Thus, the velocity components are
q 327, + 3ty + 12 1
Voot (U)o Fht B (L
u cos ; [ G + | V 5
3.342
Lot (e L) (zpx +1,v)° (3.342)
K+1 K+2 2 ’
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6 2

o (g1 (3.343)
+K+1<V K+2>}(Z1”‘+’xv)

~ (4) (e + 1)

322 4 3zputy + 12 1
w = Vsinf ~ (%) |:1 _M +thxX(V——>

To this order of expansion, normalized curvilinear and vertical coordinates are
replaced, thus obtaining from Eqs. (3.342) to (3.343)

N g _3ng+3betx+tz _l Ty K+1 _ 1 _(th"‘tx,u)z
”N(t)[l 6 T\ BT )) TR \M Tk 2
_ g 2 _belx _é 2 [Zpxx _ Ilxx K+1 _ 1
7(){1 e = B (L 2) = (1432) + 2= 2n 1)+K+1(“ )|
(3.344)
q
wa (1) (bt ). (3.345)

The u velocity component for K =1 is from Eq. (3.344) (Hager and Hutter
1984a)

_ (4 2 Zpxlx _ _)% thx _ My 2
u-@)b = (14+20) = (14+30%) + 2% 2u 1y%6 (3u Q}
(3.346)

For a horizontal bottom, Eq. (3.344) simplifies to (Montes and Chanson 1998)

u:<€> gt (e L ——5(1+3u) (3.347)
t K+1 K+2) 6 '
For K = 1, Eq. (3.347) reduces to
q) e [ 5, 1 -
=(=) |1+ —=— —= =(1 .34
u (r[+2<“ : 6(+3“) (3.348)
The u velocity component corresponding to the Picard iteration from Eq. (3.63)
reads
q hhxx 2 2 1 q ]’l/’lm > 1
=1 — —h —= | ==14—= —= ——=(6p" —
h{+<2 ><“ 3)| Tl T2 B3 6(“ 2)|:

(3.349)
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Note that the u velocity component given by Eq. (3.348) is given along the coor-
dinates of a equipotential line, whereas Eq. (3.349) refers to points on a vertical.
Note, therefore, the difference in the slope term containing ¢, and k., respectively.
To further compare both models, assume, following Fawer (1937), that the slope
effects are small as compared with the curvature effects. Fawer (1937) and Montes
(1970) demonstrated that this simplification leads to small errors. This amounts to
assuming that the equipotential line is a vertical, so that N, =~ h =~ ¢, for which
Eq. (3.347) reduces to

q ey Kl 1 q hh, K4l 1
r (D) |14 e SRNLE| PUNCAN PR L
u (;){+K+1<“ K+2>} (h){+K+l o Tk 2
(3.350)

Note that for K = 1, Eq. (3.350) yields Eq. (3.349) without slope effects. Thus,
Eq. (3.350) suggests that the failure in the bottom pressure prediction stems from an
unsatisfied angular momentum balance, which, in turn, relies on the assumption
K =1 implicit in the Picard iteration results for the order of expansion used.

Jaeger (1948) presented a detailed analysis of the brink flow conditions without
assuming K = 1. His treatment is presented here to elucidate a physically correct
value of K. Jaeger (1948) started with the energy-momentum Eq. (3.104) in
streamline coordinates,

N,

t2 V?
S=(H-—z)t— ) + / gcosf)dn, (3.351)
and with the mass conservation Eq. (3.216),
t+2zp
= — dz. 3.352
a4 cost) ¢ ( )

Z

Consider the equipotential line immediately to the right of the brink section con-
necting points “a” and “b” in Fig. 3.14c. Jaeger (1948) used the potential velocity
distribution along this curve as given by Eq. (3.220) with u = z/t,

—Tttex
V = V,exp [K_H (1—p*t ')]. (3.353)
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The energy equation written at points “a” and “b” provides
V2 py V2 V2
H=t,+—=, H=2 4 t="0b, (3.354)
2g v 28 28
~—~

=0

Owing to Eq. (3.353), the free surface and bottom velocities are related by

— Il
Vi = Vsex = Vsexpy. 3.355
p Kl P

Using Eq. (3.354), and in view of Fig. 3.14c,

—tt, % H \'?
7= =In(2) =1 . (3.356)
" KA1 v H—1

The parameter y is, therefore, determined once H and ¢, are given. Further, Jaeger
(1948) assumed that the equipotential line at the brink section is a vertical, so that
hy, = t, and cosf — 1. With these identifications, Egs. (3.351)—(3.352) reduce to

S =Hh, — =2 + /—dz, (3.357)
hy
g = / Vdz . (3.358)
0
Obviously, to this order of approximation,
—hhyy H \Y?
~ — = . .
% X+l n(H—h;,) (3.359)

The velocity distribution, Eq. (3.353), then takes the form
V= Vsexp[;((l —,LLKH)}, (3.360)

and when inserted into Eq. (3.358) produces the integral equation

hyp
q = Vyexpy /exp( pEtdz | (3.361)
0
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Using the change of variable

K+1
Z
o==)

Equation (3.361) is rewritten as

—X

V h 1 ( )7KK1d
TK+1 p— +
XL g 1) - /eXPw ® ©

0 (3.363)
hb 1 K
= Vexpy AL ——— 1.
Vs gy £ ( K+1 X)
The integral term is given by the incomplete gamma function defined as
— «
/ expo (—o) Fido = —r<1 - K—H,() (3.364)
0
Inserting Eq. (3.360) into Eq. (3.357) yields
hy,
hy VP K+
S = Hh, — > + 2—‘exp(2x) exp(—2yp* 1) dz. (3.365)
8 0
Using the change of variables
K+1
K+1
- —2y<z> , du= —2X(K7fl)z’<dz, (3.366)
hyp hy,
the integral in Eq. (3.365) is rewritten as
hy h -2y
exp(—27p Kt dz = —2 (2, ﬁ/ expu (—u) Fidu 3.367
[ (20 e = s ) pu(-u) (3.367)

0 0
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and the gamma function is used with the new arguments as

K __K
N — P — K+1
F(l 1 ,21) / expu (—u) ®1du . (3.368)

0

Therefore, Eq. (3.365) is rewritten as

h;  V? hy : K
Hh, — 2 2 2) (1 ——,2% ). .
$= iy =0+ Do) s o (1o K 2) G3e)

Equations (3.363) and (3.369) are now expressed as

hb 1 K
— [2g(H — hy)]'/? b (- — ). 3.370
9= Dg(H ) ﬂmm+UAK1< K+r0 (3370

h2
S = Hhy, — ?’7 + (H — hy) exp(2y)

K

(K + 1)
The parameter y is computed from Eq. (3.359). In Egs. (3.370)—(3.371), the
quantities ¢, S, and H are treated as described. However, h;, and K still remain to be
determined. Jaeger (1948) proposed the solution

hy =0.48H, K=—1/2. (3.372)

Note that i, = 0.48H is close to the mean experimental value deduced by Rouse
(1933) as hy, = 0.715h, = 0.715+(2/3)H =~ 0.4767H. Now, as worked-out exercise,
the experimental verification done by Jaeger (1948) is repeated here in detail step
by step, to demonstrate that predictions are extremely accurate. Therefore, given the
experimental quantities measured by Rouse (1933), including the three invariants
momentum, energy, and mass conservation in the free overfall

§=0.02046m*, H=0.1738m, ¢=0.125m’/s, (3.373)

demonstrate that Eq. (3.372) permit the verification of Egs. (3.370)—(3.371) as
identities.
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First, compute

hp =0.48 x 0.1738 = 0.0842 m,

H 1/2 17 1/2
x:ln( ) :1n<&> ~ In(0.52)"~ 0.327,

H—hy 0.1738 — 0.0842 (3.374)
[2g(H — hy)]"*= [2g(0.1738 — 0.0842)]"/> ~ 1.33m/s,
expy = exp(0.327) = 1.385.
The gamma function of K = —1/2 is, after numerical evaluation,
I'(1 K =1(2,0.327) =0.04312 (3.375)
& 1] = ,0. =0. . .

Inserting the above values of Eqgs. (3.374)—(3.375) into Eq. (3.370), the computed
discharge is

0.0842
0.5

g =133x 1385 0.32772 x 0.04312 ~ 0.1249 m* /s. (3.376)

This is extremely close to the measured value (0.125 m2/s) (Rouse 1933). To
highlight the importance of a correct K value, consider the gamma function for
K=1,

K
r't———,x) =1(0.5,0327) =1. 377
< K+1”() (0.5,0.327) 0303, (3.377)
which gives the discharge estimation
0.0842

g =133 x 1.385W0.327‘2 x 1.0303 ~ 2.9869m” /s. (3.378)

Obviously, this poor discharge estimation relies on the unrealistic assumption
K=1.

Consider next the energy-momentum function. The gamma function needed for
K=-12is

K
I'i1———-.,2x) =1(2,0.654) =0.1399 3.379
(17 22) = T.0654) , (3379

and the integral in Eq. (3.365) then takes the value
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hy

h i K
o/exp(zxuml)dz (Kjl) ) K”F(l K+12/> (3.380)
= 0'((;.85420.654’2 % 0.1399 =~ 0.05507.
The following computations are now conducted:
H — h, =0.1738 — 0.0842 = 0.0896 m,
exp(2y) = 1.385% ~ 1.9182, (3381)

Hhy, = 0.1738 x 0.0842 = 0.01463 m?,
h;/2 = 0.5 x 0.0842% = 0.00354 m*,

and using the results of Egs. (3.380)—(3.381) in Eq. (3.371) gives
S = 0.01463 — 0.00354 + 0.0896 x 1.9182 x 0.05507 ~ 0.0205 m?, (3.382)

which is again extremely close to the experimental value 0.02046 m* (Rouse 1933).

Jaeger (1948) found that for the value K = —1/2, the equations of mass, energy,
and momentum are satisfied with great accuracy. Thus, in the potential velocity
distribution, K cannot take unity at the brink section. Khafagi and Hammad (1954a,
b) found K = —0.56 for flow over broad-crested weirs, a value in close agreement
with Jaeger (1948).

It is of interest to compare these results with those originating from Dressler
(1978). For illustrative purposes, consider the general equation for the velocity
distribution along an equipotential line, Eq. (3.81),

N,
dn

V(n) = Viexp| — R

(3.383)

n

Dressler’s theory (1978) is derived from Eq. (3.383) and applied to the free overfall
section, considering the jet flow portion. Dressler (1978) assumed concentric
streamlines (Fig. 3.8a). Therefore, the center of curvature is common to all
streamlines intersecting a given equipotential line; noting that the positive n is
directed opposite to the curvature center in Eq. (3.383), one has for the free overfall
section dn = —dR. Thus, from Eq. (3.383),

R

dR R, R,
V(R) = Vyexp| + /? = Viexp [ln(;)} =V, R (3.384)
R
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This corresponds to the free vortex velocity distribution, as expected. From
Eq. (3.147) and with a negative curvature for the convex free surface at the brink

section, the bottom velocity V;, and the discharge g are related by

q

Vb :4]17
Rbln(l—i-R—’;)

and from the free vortex profile, the surface velocity is

Vp
-5

Conservation of energy at points “c” and “b” of Fig. 3.14c requires

Vs =

V2 V2
H=h+ %, H=22.
b+2g’ 2g

Combining Eqs. (3.386) and (3.387) gives
Vs hy H \'?
Vs Ry H—hy

2
q _
> = 2gH.

The critical approach flow condition states

2 3
q =gh} = g(gH) :

Inserting Eq. (3.390) into Eq. (3.389) gives

From Eq. (3.385),

Vi=

33 \H) (m/Ry)

From Eq. (3.388),

hb_ H 1/2 |
R, \H-—h ’

(3.385)

(3.386)

(3.387)

(3.388)

(3.389)

(3.390)

(3.391)

(3.392)
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which, when inserted into Eq. (3.391), produces (Ali and Sykes 1972)

H

2 _ (hb> W (3.393)
H—hy,

3V3
Solving numerically Egq. (3.393) produces h,/H = 0.448, corresponding to
hplhe = 0.672. This value is physically reasonable in the sense that a drop of
h below h, at the brink section due to curvilinear streamlines is correctly accounted
for. However, the value of the predicted flow depth is inaccurate. This points at the
importance of using a general velocity distribution and a correct K value as did
Jaeger (1948).

3.8.3 Moment of Momentum Method

Based on Jaeger (1948), improved predictions for the channel flow portion of a free
overfall require consideration of general K values. However, the theory and
development by Jaeger (1948) does not render a theoretical method to compute K,
given the resort to Rouse’s (1933) experimental work. A more general treatment is
based on Hager and Hutter (1984a) with a general K as given by the Fawer (1937)
theory. The distributions u(z), w(z), and p(z) are given along the equipotential lines
by Hager and Hutter (1984a), enabling the evaluation of S and H. The unknown
parameter K in u(z) and p(z) is determined by imposing conservation of angular
momentum. For flat bottoms, conservation of energy and horizontal momentum
yields, respectively, from Egs. (3.100) and (3.125) (Montes and Chanson 1998;
Castro-Orgaz 2010a)

2 2

q 2ttt
H=t+-1 (1 — ) = const. 3.394
+2gz2( T K2 3) const- (3:394)

2 g e 1
S=—+—11 -2 = t. 3.395
2+gt<+K+2 3 cons ( )

Equating the slope term 72/3 in Eqs. (3.394) and (3.395) results in

2 [2gf Dty gt 2 Ity
S e L0 ¢ ) =& (s-2)] -1- 3.396
3 {qz ( )} q? 2 K+2’ ( )

or
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N [2%2 (H - t)] - E—j (S - g)] (3.397)

Assuming, following Jaeger (1948), that t ~ h, Eq. (3.397) gives the general ODE
for the upstream channel flow portion of a free overfall’

Eoe Bl B0 om

Closure for K is, however, needed.
In streamline coordinates, S is defined as (Hager and Hutter 1984a)

+t

S = / (ZV—i—%cosQ)dn. (3.399)
g

b
Therefore, the vertical momentum M along the equipotential curve follows from

p+t
M= / <W vV l;sinO) dn, (3.400)
g o
b

and the angular momentum function is

2+t

A:/ (ZV—F%COSG))zdn. (3.401)
g

b

Here, it is again assumed that the equipotential lines are vertical, so that cosf — 1
and sinf — 0, simplifying Egs. (3.400) and (3.401) to

+h
M= / e, (3.402)
g
b
2 +h ’
A= / (" + p) 2dz. (3.403)
g v

b

SFrom Appendix E and for flat channels, the approximate integration of the Euler equations along
the equipotential lines (Hager and Hutter 1984a) agrees with the first Picard iteration cycle
(Matthew 1991).
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These are identical with Egs. (3.24) and (3.42), respectively. Therefore,

q
M="Tp,. 3.404
2gh (3.404)

However, A will be affected by K, which is the interaction sought between the
angular momentum balance and the curvature distribution exponent. The velocity
and pressure distributions are, from Egs. (3.350) and (3.133)

q Al 1 K+1
=211 - I 3.405
! h[ K+1<K+2 # ’ (3.405)
-
Py 1 — pkt! 3.406
; n+ hZ(K+1>( ), (3.406)

respectively. Evaluating the integrals gives

1

h
/uzd / 2hhy (1 q
g1 =h [ e Kril\gs K1) |mdu
0

0 (3.407)
(N[l hhy 12
S \g/|2 K+1\K+2 K+3)[
1 ¢ ([ hh
Jron=r [l (oo
0 (3.408)

W (1
6 g \K+1)\2 K+3)°
The angular momentum function is obtained by summing Eqgs. (3.407) and (3.408)
by
hhxx 2 + E + q_z hh_xx 1_ ;
K+1 K—|—2 K+3 6 g\K+1/\2 K+3
B h n 2 q2 1 n 2 hhyy
6 g g/ 12 K+3 K42 K+3/K+1
h_ q
6

g( (K (K+Ij)+2)hh”>'

Q l\.)lb—l

SIS

(3.409)
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Inserting Eq. (3.409) in Eq. (3.332) permits rewriting the moment of momentum
balance as

P (K +4)
(1 <

Q:— _— R . A—
6 "2 K+3)(K+2)

h
hhy — In h—> = const., (3.410)
1
where h; is the flow depth at a reference section. Equation (3.410) is a closure law
that may be imposed to compute K. Note that Eq. (3.410) reduces to Eq. (3.338) by
letting K = 1, if the squared free surface slope 4 term is neglected in the latter.
Equation (3.398) is normalized as

[21/2(11* -Y) - Y(S* - f)] (3.411)

K+2
YXX:( 7 )

Here, Y = h/h., X = xlh., h.=(¢*/g)""” is the critical (subscript ¢) depth for
parallel-streamlined flow, H* = H/h, = 1.5 and §* = S/h? = 1.5 for critical flow
F = 1 with parallel streamlines upstream of the brink section. This equation satisfies

conservation of energy and horizontal momentum. The bottom pressure head is
from Eq. (3.406)

(3.412)

The zero pressure boundary condition is given, setting p, = 0 in Eq. (3.412), by
(Castro-Orgaz 2010a)

YYxx = —(1+K)Y°. (3.413)

Inserting this boundary condition into Eq. (3.411), the generalized brink depth ratio
Y, = hy/h. is given by a cubic equation for Y}, once K is determined

Y2\ (K+1)
2YHH* —Y) =Y, S* — =2 Y? =0. 414
b ( b) b<S 2>+(K+2) 5 =0 (3.414)

To obtain the closure condition, Eq. (3.413) is combined with Eq. (3.410) to yield

;o1 (1 _(K+4)(K+1)

A Y InY, | —Qf = 41
+ K+3)(K+2)» " ”) 0, (3:415)

6 2

in which Q* = Q/h} = 2/3. Equation (3.415) approximately represents the conser-
vation of angular momentum balance between the critical point and the brink
section. Equations (3.414) and (3.415) are plotted in Fig. 3.18. The solution of the
system yields Y, ~ 0.71 for K ~ — 0.665, indicating a significant deviation from
K = 1. The theoretical value of K is close to K = —0.5 as proposed by Jaeger (1948)
and K =-04 by Castro-Orgaz (2010a). Further, Y, = 0.71 is in excellent
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Fig. 3.18 Brink depth ratio 0.8
hy/h(K) from (—)
Eq. (3.414), (- - -) Eq. (3.415)
(adapted from Castro-Orgaz
and Hager 2010) 0.7+
=
0.6
|
+ —=0.665
| /
0.5 — T T T
1 0.5 0 0.5 1
K

agreement with the experimental value 0.715 (Rouse 1932, 1933) and with po-
tential flow methods based on the Laplace equation (Montes 1992a; Castro-Orgaz
2013Db). This result is thus a theoretical solution for the brink depth ratio based on
the simultaneous conservation of energy, horizontal momentum, vertical momen-
tum, and angular momentum (Castro-Orgaz and Hager 2010). It further demon-
strates that the Picard second-order Boussinesq-type solution for the upstream
channel portion does not satisfy the angular momentum balance, given the inac-
curate value of K = 1 at the brink section. The value of the free surface slope at the
brink section deduced from Eq. (3.394) or (3.395) for ¥, = 0.71 and K = —0.665 is
h, = —0.268, e.g., close to the experimental value of —0.25 (Rouse 1933; Jaeger
1948; Montes 1992a).

Taking as starting point the brink section, where Y, = 0.71, K = —0.665, and
h, = —0.268, Eq. (3.411) was numerically solved using the fourth-order Runge—
Kutta method. At each computational node, Eq. (3.410) was used to apply K-
closure by its evaluation in the previous node, to keep the numerical scheme as
simple as possible. The computational step was progressively reduced until no
variation in the results was detected. From % = h(x) and K = K(x), the bottom
pressure was computed from Eq. (3.412). The computational results are plotted in
Fig. 3.19. The computed free surface profile h/h.(x/h.) of Fig. 3.19a agrees with the
experimental data, yet the degree of improvement over Fig. 3.16 is small. However,
the predicted bottom pressure head p,/(yh.)(x/h.) is physically realistic, with zero
value at the brink section and a hydrostatic pressure recovery roughly at x/h, = —2.
In contrast, the computed bottom pressure head p,/(yh.)(x/h.) in Fig. 3.16 is
unrealistic. This is clearly an improvement achieved by considering generalized
K values using the moment of momentum conservation equation. Further, note the
good comparison of the relative pressure p,/(yh) from the present method with the
results of the Laplace equation and experimental data (Montes 1992a) in Fig. 3.19b.
Thus, a complete approach for curvilinear flow involves K as well as angular
momentum conservation, thereby relaxing previous failures attributed to the
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Fig. 3.19 a Free surface profile h/h(x/h.) from (—) Egs. (3.410) and (3.411), bottom pressure
profile p,/(yh.)(x/h.) (- - -) from Eq. (3.412), b relative bottom pressure p,/(yh)(x/h.) from (—)
Eq. (3.412), (- - -) Laplace’s equation (Montes 1992a), (¢) experimental data (Montes 1992a),
¢ curvature parameter K(x/h.) from Eq. (3.410), d streamline curvature distribution 1/z(y, K)
(adapted from Castro-Orgaz and Hager 2010)

Boussinesq’s approach (Montes 1994b). The theoretical results for K = K(x) are
plotted in Fig. 3.19c, which increases fast from —0.665 at the brink section up to
large values shortly upstream of the brink. The particular value K = 1 is reached at
x/h. = —0.4 (inset of Fig. 3.19c¢).

In the energy equation H = h + ¢q°/(2gh?), the streamline curvature and slope
effects are accounted for by the parameter

2hh,, K2

eI (3.416)

p=1+
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K may therefore be interpreted as a weighting factor in Eq. (3.416). If K is small, a
large effect of hh,, results on the free surface profile. This is shown in Fig. 3.19a, b
for the domain —0.4 < x/h. <0, where streamline curvature is large and
pu/(yh) < 1. For this zone of high curvilinear effects, 1 < K < —0.668. However, for
x/h. < —0.4, the experimental data in Fig. 3.19b indicate that p, — vh, thereby
stating that streamline curvature effects are extremely small. In concordance with
this experimental evidence, the moment of momentum closure equation results in
large theoretical K values, e.g., as for x/h, < —1. Note that the maximum K = 37
occurs at x/h, = —2.8, e.g., where streamlines are almost parallel. A large K value in
Eq. (3.416) points at a reduction factor, e.g., the effect of streamline curvature hh,
is reduced in the computational results. The curvature law distribution 1/7 = (Zh)*
is plotted in Fig. 3.19d for several K values, with t = R/R,. For K = —0.5, the
curvature distribution is similar to that of round-crested weir flow, indicating a large
effect of streamline curvature, as compared to the standard value K = 1. Further, a
positive value K = 2 indicates that streamlines become parallel in a larger portion of
the flow depth. The higher the K, the larger the portion of flow depth where the
streamlines are straight, i.e., 1/t = 0. Thus, the theoretical results obtained for
K using the angular momentum balance are in close agreement with physical
reasoning based on the curvature law and its modification depending on the degree
of streamline curvature. An important consequence is that K and hh,, are related by
angular momentum conservation.

The potential velocity distribution at the brink section follows from Eq. (3.339)
by inserting Eq. (3.413), and setting ¢ ~ h and v = u; the result is

V= (%) {1 -y (u’f“ U%z) —%. (3.417)

The free surface slope is computed from any of the two identities of Eq. (3.396)
after inserting Eq. (3.413), e.g., from the energy equation, one obtains

h§:3{1—2(§<;+12);§— {21/,3(%—1@)”. (3.418)

With the previous results for the brink depth conditions Y, ~ 0.71 and

~ —0.665, Eq. (3.417) is plotted in Fig. 3.20a. The results are in excellent
agreement with those from the numerical solution of Laplace’s equation (Montes
1992a; Castro-Orgaz 2013b). Further, the computed velocity distribution for K = 1
yields an unrealistic velocity profile. Additionally, a value of K = —0.5 from Jaeger
(1948) is plotted, yet without a significant effect on the velocity profile. From the
computed velocity distribution, the pressure distribution was deduced assuming
potential flow, with the results plotted in Fig. 3.20b. The shape of the computed
curve for K ~ —0.665 is qualitatively correct, yet its maximum value is too large as
compared to the solution of the Laplace equation and experimental data (Montes
1992a; Castro-Orgaz 2013b). The computed curve for K = —0.5 is also included,
showing excellent agreement with the solution of the Laplace equation and
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;;r/ rh.)

Fig. 3.20 (a) Velocity distribution V/U/(z/h.) from Eq. (3.417) for (—) K = —0.665, (- - -)
K=-05, (-+-) K =1, () Laplace’s equation (Montes 1992a, Castro-Orgaz 2013b), b pressure
distribution p/(yh.)(z/h.) for (—) K = —0.665, (- - -) K = —0.5, (*) Laplace’s equation (Montes
1992a, Castro-Orgaz 2013b), (o) Experimental data (Montes 1992a) (adapted from Castro-Orgaz
and Hager 2010)

experiments. This comparative result indicates that the velocity distribution is not
very sensitive to the small variations of K from —0.665 to —0.5, but such small
variations, if squared for energy conservation, result in a larger effect on the
pressure distribution. Further refinements are required in the angular momentum
balance, if the degree of vertical model definition should be improved. However,
the K values computed according to the angular momentum balance reproduce the
main features of the free overfall.

3.8.4 Two-Dimensional Solution

The x-iy method proposed by Boadway (1976) and applied by Montes (1992a) and
Castro-Orgaz (2013b) consists in expressing the z variable versus the pair of
variables (i, x). Boadway’s method is suitable for open-channel flows given its
simplicity as compared with other proposals. An advantage of the ideal fluid flow
theory is that the mathematical jet modeling is simple, and a more advanced tur-
bulent computation (Tayadon and Ramamurthy 2009) may be used at a later stage.
Montes (1992a) verified that Boadway’s method is accurate for the free overfall. He
detailed the velocity and pressure distributions at and upstream of the brink section.
Free surface and bottom pressure profiles were also investigated. The jet portion
was described by Castro-Orgaz (2013b). The purpose of this section is to detail the
model of Boadway (1976) for free overfalls. For this task, a convergent, iterative
method is used (Castro-Orgaz 2013b). The proposed potential flow solver deter-
mines the shape of the free surfaces using an analytical solution of the Boussinesq
equations to initiate the algorithm.
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Fig. 3.21 Free overfall with upstream critical flow: a coordinate system and boundary conditions,
b physical plane, ¢ x-jy plane (adapted from Castro-Orgaz 2013b)

At the upstream boundary section (subscript u), the critical flow conditions with
parallel streamlines prevail (Rouse 1938), from which k. = (qz/g)l/ 3 (Fig. 3.21a)
and H = 3h./2, with H as the total energy head. The downstream section of the flow
domain (subscript d) was selected at the terminal jet portion, where the internal
pressure is negligible. Therefore, a basic application of the continuity and
momentum equations led to ¢, = (2/3)h. for upstream critical flow conditions
(Rouse 1938; Montes 1992a). The relation between the stream function 1/ and the
elevation z at these sections is z = z;, + (z; — 2,)W/q, physically expressing that the
velocity profile is uniform in the z-direction at boundary sections. The boundary
flow sections are selected at x,/h. = —3 and x,/h, = +3.

To start the 2D solution, an initial estimate of the free surface profiles (upstream
portion of the free overfall as well as upper and lower jet nappes) is necessary
(Markland 1965; Montes 1992a). Equations (3.300), (3.318), and (3.319) are an
approximate solution of Laplace’s equation to be adopted below as initial free
surface profiles to find the accurate 2D solution for the free streamlines. The
problem statement is the solution of Eq. (3.250) for coordinate z as a function of
both x and W, once the boundary streamlines zy(x) and z,(x) and the relations
Zu = Zu(xy, W) and z; = z74(x4, ) at boundary sections are prescribed (Fig. 3.21b). In
the plane (x, i), the computational domain is a rectangular strip, where the value of
z is known along the entire contour 1-2-3-4-5-6-1 (Fig. 3.21c). Thus, it is
unnecessary to use a non-uniform mesh size for the flow solution near the curved
boundaries, as is done if a solution is directly sought in the physical plane (x, z)
(Thom and Apelt 1961; Vallentine 1969).

Let i be the node index of the mesh in the x-direction and j corresponding to the
Y-direction; second-order central discretization of derivatives Jz/0x, 0z/0Y,

D%7/0x%, %z/OY* and 9?z/OxOy (Boadway 1976; Montes 1992a) as given by
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Egs. (3.253)—(3.257) inserted into Eq. (3.250) permits to obtain an equation for
z(i, j) at a generic node inside the mesh as

(i+ 1)) +z(i—1y) { o; (ij+1)+z(ij—1) 97\ 2 Pz 97 O
MR (55 SN 1+ ()] 28558

9z\2 dz 2
% {H () } + &y (fﬁ)

Note that 9z/0x, Oz/O and §?z/Oxdy are not discretized in Eq. (3.419), to pro-
duce a simplified expression for illustrative purposes. However, the complete dis-
cretization for the numerical solution was conducted using Eqgs. (3.253)—(3.257).
Equation (3.419) states that z(7, j) is a function of z(i — 1, j), z(i + 1, j), z(i,j — 1),
and z(i,j + 1), i.e., the four surrounding mesh points. The process for obtaining z at
each node is therefore iterative (Thom and Apelt 1961). It consists of defining initial
starting values for z(i, j) inside the mesh and then applying Eq. (3.419) iteratively.
Accordingly, a fresh value of z at any node is obtained from the previous values
at the four surrounding points. The iteration is applied until the differences in the
z(i, j) values between two successive iterations are below a limiting tolerance,
typically 107, This numerical method is different from the relaxation technique
of Southwell and Vaisey (1946) and Montes (1992a), in which a preassumed
relaxation pattern to limit the residuals in the finite-difference form of the
Laplace equations is necessary. To start the iteration process using the squaring
technique, the values of z inside the mesh are assumed to follow the linear law
7=7,+ (2, — 2p)¥/q. This is equivalent to assuming that the initial horizontal
velocity profile is uniform in the vertical direction within the entire computational
domain. A repeated application of Eq. (3.419) will collocate the streamlines
z = z(x, ¥ = const.) and, therefore, produce the correct velocity profile at each
vertical section of the mathematical model. Once the iteration of the positions of the
free streamlines is initiated as described below, the initial values for z(i, ) inside the
mesh are taken from the final values in the previous position of the free surfaces.
This technique accelerates convergence in the solution of the Laplacian field.

In the present application, 10 streamlines and 60 vertical sections were used to
construct the finite-difference mesh. A duplication of the number of streamlines and
vertical sections to increase mesh resolution did not alter the results. The Cartesian
velocity components (u, w) in the directions (x, z) are determined by resorting to
Egs. (3.270)—(3.273).

The energy head at a section at distance x is obtained for the actual free

streamlines zy(x) and z,(x) as follows

0z:\ > uy 92\’
1 — H = =11 — . 3.420
+<8x>1’ 5(x) o+ 9 +(8x (3.420)

Let H be the total energy head of a potential flow. This is a constant value, which
must be conserved in any point of the computational domain. However, the free
streamlines are generally unknown in advance such that the positions z; = z,(x) and

2(i,j) = . (3.419)

u2

H; =z+ o
s(x) =z +2g
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Zp = Zp(x) must be assumed and then corrected iteratively. In general, if a free
surface is not in the correct position, energy residuals [H — Hy(x)] and [H — H,(x)]
appear at every position x, so that the pressure head at each free surface is not zero.
The free streamline position must therefore be displaced iteratively until the zero
pressure condition is satisfied with a prescribed tolerance along the entire free
surface. Each time a free surface is moved, internal streamlines must also be
relocated, requiring a new solution of Eq. (3.250), as described above. Using the
Newton—Raphson technique, a better estimate for the position of each free surface
node is

k—1

_ H — H,(x) _ _
_ k1 s _ k=1 1
=2, + aH,(x) =2 AL
L dz
) o (3.421)
_ H — Hp(x)
_ k-1 = Hp{A) _ 1
=2 -+ i, (x) 7 +Az
L dz

with k as the recursion index (Montes 1994a).

The z- and z,-coordinates at the boundary nodes (i = 0 and i = M) are fixed
during the relocation process of the free surfaces. The derivatives of Hy(x) and
H,,(x) for both the upper and lower streamlines are, with u, and u,, as the x-velocity
components at each free streamline, from differentiation of equations (3.420)

dz:\* Ozs Pzsu?
1+<8x> 1—’— ox 0x2 g’

dH;  dz L Uy dug
dv  dx dx

; (3.422)
iy _doy wdwy | (O] On D
dx dx g dx Ox Ox Ox2 g’
or
dH, ug dug 3& Oz u?
— 4 B s
dz, g dz, 8x2
(3.423)

de up dub aZb 8 Zb Mb
— =1 1
de Ty 8 de [ + (8 T o 8)(2 ’

which are the derivatives needed in Eq. (3.421). Estimates of duy/dz,; and du,/dz,
were found using the one-sided second-order differences equations (3.272)—
(3.273), rewritten here as
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2AY

s = , 3.424
" 3z, —4z(i, N — 1) +z(i, N = 2) ( )
2Ay
= , 3.425
G =3z, +4z(i, 1) — z(i,2) ( )
from which
duy, 3 ui . dug 3 uf .
~ [z = z(i,0)], ~ [zs = z(i,N)]. (3.426)

dz, ' 2AY dz, ~ 2AY

The corrections for the position of each node at both the upper and lower
streamlines are, respectively,

H — H(x)
R , 3.427
T -4 [gg— (1 + (0z5/0x) ) - h82zx/6x2} —
Az = H — Hy(x) (3.428)

- [-%AL (1 + (D25 0x) ) - ha2zb/ax2] '

Therefore, Az was used to correct the ordinates of line 1-2-3 (Fig. 3.21b), whereas
Az, was employed to correct the ordinates of line 5—4. The use of Egs. (3.427) and
(3.428) in the numerical model was efficient and stable.

During the process of solving Eq. (3.250) by squaring and successive adjustment
of the free streamlines by Egs. (3.427) and (3.428), the boundary nodes of coor-
dinates (=3, 1), [+3, (zp)4] and [+3, h, + (z5)4] were fixed. In the first run of the
algorithm, the initial value of (z;,); was obtained from Eq. (3.318) (Note that
subindex d in (z,), refers to the value of z;, at the downstream node of the com-
putational domain, Fig. 3.21a.). After the numerical solution converges to the zero
pressure condition with a prescribed tolerance along both free streamlines, the
pressure head at the bottom of the brink section may not be zero, indicating that the
position of the boundary jet section is incorrect. Therefore, an iteration method for
the boundary section elevation (z;,), (Fig. 3.21a) was formulated using the Newton—
Raphson technique with @ as the recursion index and p;, the pressure at the brink
section bottom as

-1

("= [+ | o @) = [+ ) 09

d(z),

Note that p,,, = 0 for the correct physical solution. Moreover, note that z,; = t, + 24
for any iteration. Once the displacement A(z;), to be applied to the boundary node
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[+3, (zp)4] is determined, a new solution as described above must be initiated using
squaring for the Laplacian field and the iterative computation of the free streamlines.
For this task, it is necessary to define the new initial jet profiles. A linear correction
was used to find the jet profiles as

=y xﬁd [A@),]" ", =2+ xid [AG),]" " (3.430)

These statements close the numerical model for the iterative computation of the 2D
problem.

Figure 3.22a compares the final free streamlines obtained by the numerical
model and the initial streamlines used from the analytical solution of the
Boussinesq equation (Egs. 3.300, 3.318, 3.319). The Boussinesq equations and
the 2D solution agree if x/h. < 0. The brink depth ratio from the 2D results is 0.714
as compared to 0.7169 from the Boussinesq equations. However, deviations

Fig. 3.22 Free overfall with (a) — Bottom profile
upstream critical flow: —— 2D potential flow results
a comparison of computed === Initial sol (Boussinesyg eq i

streamlines from 2D solution
with initial solution using
Boussinesq equations, b detail
of bottom pressure head
(adapted from Castro-Orgaz
2013b)

0
X / J’:r{_

(b} ®  Botom pressure head from initial solution (Boussinesq equations)
=== Bottom pressure head from 2D solution

x/h,
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between both solutions in the jet portion are noticeable, rendering the Boussinesq
equations questionable in this zone. The computed 2D bottom pressure from the
Boussinesq equations as initial free streamlines, without any iteration of the jet
terminal section, yields at x/h. = O the result p,./(yh.) = 0.337, which is unrealistic
(Fig. 3.22b). This was previously discussed with pure 1D computations in
Fig. 3.16. Therefore, the numerical model iteratively moved the jet until reaching
the correct physical brink condition, namely p,./(yh.) = 0.

The computed free streamlines and bottom pressure distribution are shown in
Fig. 3.23a. Comparison of the numerical results with the test data of Rouse (1932)
indicates excellent agreement. Figure 3.23b contains the computed streamline flow
pattern, which is the direct computation regained from the numerical model and
used to derive the velocity and pressure fields.

Montes (1992a) and Matthew (1995) detailed the velocity and pressure distri-
butions for x/h. < 0, whereas the pressure reduction inside the jet was computed by

Fig. 3.23 Free overfall with (a) P———

upstream critical flow: —— Free surfaces potential flow

a Comparison of computed 2D === Bottom pressure potential flow

solution with the experimental : :;l:l“[m:"‘“ o b
data (Rouse 1932), pressure measurements (Rouse, 1932)

b computed streamline flow 11

pattern (adapted from
Castro-Orgaz 2013b) 0.5
L 01
=
t
-0.5
-1
-1.54 .
-4 4
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Fig. 3.24 Free overfall with upstream critical flow: a sketch of free overfall (Da Vinci re-edited

1828), b computed velocity and pressure distributions using irrotational flow model by
Castro-Orgaz (2013b)
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Castro-Orgaz (2013b). The free overfall is a fascinating hydraulic problem having
attracted a number of hydraulic studies, among which the work of Hunter Rouse
(1932, 1933) deserves particular credit for the first research based on fluid
mechanics. He detailed the main aspects of this problem, and his 1933 flow net may
be compared with the beautiful hand drawing of Leonardo da Vinci (1828; year of
re-edition) (Fig. 3.24a) in his “Del moto e misura dell’ acqua,” possibly the first
documented “hydraulic” drawing of a free overfall (Rouse and Ince 1957) including
motion features by resorting to streamlines. The computed velocity and pressure
distributions in the vicinity of the brink section using the 2D irrotational numerical
model of Castro-Orgaz (2013b) are displayed in Fig. 3.24b.

Figure 3.25 shows the computed pressure distributions at x/a. = 0, 0.26, and 1.
The experimental data in the same three sections obtained by Rouse (1932) are also
plotted, indicating good agreement with the potential flow model. For jet flow
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Fig. 3.25 Pressure
distribution within jet portion
(adapted from Castro-Orgaz
2013b)

Fig. 3.26 Comparison of
computed 2D lower nappe
profile solution with the
experimental data (D’Alpaos
1986) (adapted from
Castro-Orgaz 2013b)
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computations, it is desirable to check how accurate an ideal 2D flow model is for
larger values of x,; (Rouse’s jet data are limited to 0 < x/h. < 2). D’Alpaos (1986)
made detailed measurements of the lower nappe profile within 0 < x/h. < 6 for a jet
originating from a free overfall with upstream critical flow conditions. The
numerical model was applied using x,h. = +6, with the resulting lower free
streamline plotted in Fig. 3.26. The potential flow result is compared in this figure
with the experimental data by D’Alpaos (1986), showing excellent agreement.

Figure 3.27 shows the computed ratios u/U and u,/U throughout the compu-
tational domain of the mathematical model, indicating large deviations from unity.
Thus, the velocity can not be assured to be uniform in the free overfall.
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3.8.5 Flow Net

Equations (3.82) and (3.91) based on Fawer’s theory (Fawer 1937) are rewritten
with r = R/R;, and i = 0,/0, as

=r+(1—rpk, (3.431)

— i+ (1 =i (3.432)

Sl ®|Z

The classical flow net for the free overfall developed by Rouse (1933) is replotted in
Fig. 3.28a. It was analyzed graphically to obtain the approximate 2D distributions
of R/R and 6/6,. These computations intended to test whether the approximation
K =m =1 (Matthew 1961, 1963, 1967; Hager 1983) is accurate at the brink sec-
tion. The results of Jaeger (1948) indicate a dramatic departure from these condi-
tions at the brink section.

The distributions of RJ/R(v) and 0/04v) were determined for the flow net of
Rouse (1933), using 8 equipotentials and 8 streamlines (Fig. 3.28a). The results
obtained for 3 of these are plotted in Fig. 3.28b—d. The exponents K and m were
adjusted to fit Egs. (3.431) and (3.432) to the 2D distributions obtained from the
flow net. The values obtained are indicated in the figure, as well as the resulting
distributions. The distributions for K = m = 1 (Matthew 1963) are further consid-
ered there. The flow net may be divided into two zones, namely the flow zones up-
and downstream of the brink section. An analysis of the upstream portion reveals
that as N/R;, — 0, away from the brink section, both K and m — 1. As the brink
section is approached, N/R, increases, streamline curvature and slope effects
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Fig. 3.28 Flow net
parameters for free overfall
flow: a flow net, with 8
equipotential lines labeled
(Rouse 1933), (—) R/R(v)
and 0/0,(v) from Fawer’s
theory, Egs. (3.431) and
(3.432), using actual values of
K and m fitting flow net data,
(= *-) RJ/R(v) and 0/0,(v)
from Matthew’s theory,

Eqgs. (3.431) and (3.432),
using K=m=1, (- - -) R/R
(v) from Jaeger’s theory,

Eq. (3.433), (+) flow net data
for equipotential number

(b) 3, (c) 5, (d) 6 (adapted
from Castro-Orgaz 2010a)
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become important, and K and m < 1, resulting in nonlinear relations for R/R(v) and
0/0(v). The typical curvature distribution in horizontal channels implies RJ/R(v)
increasing from the bottom to the free surface. The free jet flow downstream of the
brink section may be considered as flow over a curved bottom with the particularity
that the bottom pressure is atmospheric. Faraway from the brink, R; — R, and
K — 1, corresponding to the concentric streamline flow. In contrast, the typical
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curvature distribution over curved channel bottoms implies that R/R(v) decreases
from the bottom to the free surface. The curvature distribution is therefore inverse
as compared to the horizontal and “curved” bottom portions of the free overfall,
indicating that the brink section is a hydraulic transition between these two zones.
The approximations K = m = 1 close to the brink section are generally not accurate.

The equipotential curve at the brink section is considered in Fig. 3.28c. The
curvature distribution is seen to be similar to that of a curved bottom, with R/R(v)
increasing from the free surface to the bottom. At v = 0 there is, however, a dis-
continuity imposed by the horizontal bottom, implying R/R(v) — 0. Fitting the
flow net results with the distribution law R/R(v) = v& yields K = —0.38
(Castro-Orgaz 2010a), thereby implying a dramatic drop below the standard value
K = 1. Jaeger (1948) proposed K = —0.5. These results are in agreement with the
findings of Fig. 3.19 using the moment of momentum method. Note from
Fig. 3.28b for equipotential number 3 that is just upstream of the brink section, the
flow net is transitional from the standard curvature distribution of a horizontal
channel to the actual distribution of the free overfall. The first section downstream
of the brink section (Fig. 3.28d) gives K < 1, resulting from r > 1. The distribution
0/0(v) also drops from m = 1 as the brink section is approached, yet with a linear
distribution 0/0,(v) recovery in the jet zone.

The linear approach for R according to Jaeger (1956) is, from Eq. (3.234),

R, 1
Ry )

This distribution is considered for the jet flow portion in Fig. 3.28d, resulting in
good agreement with 2D data.

3.9 Transition from Mild to Steep Slopes

3.9.1 Picard Iteration

Transitional flows from mild to steep bottom slopes, where the flow changes from
sub- to supercritical conditions, are smooth and curved, involving a continuous free
surface profile and a significant departure from the bottom piezometric pressure
profile from the free surface (Fig. 3.29). The transitional flow profile & = h(x) from
mild to steep slopes was analyzed by Massé (1938) using the singular point method
applied to the gradually varied open-channel flow equation. Assuming a hydrostatic
pressure distribution, this approach does not predict the detailed 2D flow features in
a vertical plane associated with curvilinear streamlines, so that it is only considered
an estimate for h(x). The singular point analysis relates to a finite free surface slope
at the location of the critical depth, contrary to the unrealistic vertical flow profile of
standard gradually varied flows (Chow 1959; Henderson 1966). Although the
singular point method approximates weakly curved flows from mild to steep slopes,
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Fig. 3.29 Transitional flow
from mild to steep bottom
slopes: a photograph of
experimental test (Rouse
1932), b definition sketch
(adapted from Castro-Orgaz
and Hager 2009)

it does not predict the detailed flow features like the non-hydrostatic bottom
pressure (Castro-Orgaz and Hager 2009). At an abrupt slope break (Fig. 3.29a), the
flow separates at the bottom kink (Rouse 1932; Weyermuller and Mostafa 1976), a
feature beyond the scope of the Boussinesq equations.

The inclusion of streamline curvature effects in the open-channel flow equation
due to Boussinesq (1877) assumes a linear velocity distribution normal to the
channel bottom, resulting in a pseudo-2D approach. Similar closure hypotheses
were advanced, e.g., by Fawer (1937), Matthew (1963, 1991), Mandrup Andersen
(1975), or Hager and Hutter (1984a). Mandrup Andersen (1975) used a
Boussinesq-type energy equation for slope breaks of less than 5° obtaining fair
agreement with his own test data. However, his approximation was not compared
with severe slope breaks of, say, larger than 30°, involving strong curvilinear
effects, as are typical in hydraulic engineering. The mathematical development of
Boussinesq-type equations is commonly subjected to small streamline curvature
(Hager and Hutter 1984a). Interestingly, as discussed by Matthew (1995) and
Castro-Orgaz and Hager (2009, 2013), their range of application may be much
larger than expected from the limited mathematical constraints. In this section,
transitions from a horizontal to a steeply sloping rectangular channel reach are
studied to analyze the application range of the Boussinesq-type equation, following
Castro-Orgaz and Hager (2009). Slope breaks with a rounded transition from the
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brink section to the tailwater channel slope are considered and compared with the
potential flow solution based on the Laplace equation (Montes 1992a, 1994a). The
Boussinesq-type equation is further compared with the test data of Hasumi (1931)
and Westernacher (1965) for transitions with a large downstream slope to inves-
tigate the strong curvilinear gravity effect.

The Picard iteration technique results in the ODE for the water surface profile
(Eq. 3.70)

2 2
q 2hhy — h
H=z+h+ 2gi? <1 + 3 + MZpx 4—12)C = const. (3.434)

As previously, Eq. (3.434) differs from the earlier results of Hager and Hutter
(1984a) and Hager (1985a) in the definition of the flow depth. However, both results
are correct to the same order of accuracy (Appendix E). Equation (3.434) is a
second-order differential equation from which the free surface profile & = h(x) en-
sues. For given H and prescribed boundary conditions at the two extreme channel
sections, Eq. (3.434) may be solved numerically. The velocity distributions u(#) and
w(n) are then computed from Egs. (3.63) and (3.64) and the pressure distribution p
(17) deduced from the Bernoulli equation given by Eq. (3.66). The bottom (subscript
b in Fig. 3.29b) pressure profile p, = p(n = 0) is obtained from Eq. (3.72) as

2
Pb q 2
— = h+ —— (2hzpee + Bl — B — 220, 3.435
y +2gh2( Zbxx + 11, N b, ) ( )

Test data of Hasumi (1931) and Westernacher (1965) indicate that the critical depth
h, = (qz/g)”3 for parallel-streamlined flows is established on the horizontal slope
portion, at a distance of around 3/, upstream of the brink section or more, located at
the start of the circular arc transition. At the critical section, a hydrostatic pressure
distribution prevails (Westernacher 1965). A Cartesian coordinate system (x, z) is
placed at the brink section, with a circular-shaped transition of radius R, connecting
the horizontal and the tailwater reaches (Fig. 3.29b). Thus, the upstream (subscript
u) boundary condition &, = h(x, = —3h.) = h, is used for computational purposes.
This critical flow condition at the upstream boundary section fixes the energy line
on the horizontal bottom (z;, =0) to H = 3hJ/2. The downstream (subscript
d) boundary condition is set where the streamlines are assumed to be nearly parallel
to the channel bottom. The resulting condition is given by Eq. (3.251) (Montes
1994a; Hager 1999a). The downstream flow depth &, thus must satisfy Eq. (3.251).
Based on the test data of Hasumi (1931) and Westernacher (1965), x,; = +3h,.

The computational domain —3 < x/h. < +3 was divided into 120-180 com-
putational nodes, depending on whether the final selection for x, was +3h, or larger,
as discussed below. The terms £, and &, in Eq. (3.434) were estimated with 5-point
central finite differences as (Abramowitz and Stegun 1972)
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to reduce truncation errors, with i as the computational node index in the x-direction
and A as the step length, which was successively reduced until the numerical
solution converged. The terms %, and h,, for the computational nodes near the
extreme boundary section were estimated with 3-point central finite differences, to
avoid imaginary nodes outside the computational domain. Equations (3.436) and
(3.437) were substituted in Eq. (3.434), resulting in a system of nonlinear implicit
equations for flow depth h; at each computational node. The system of equations
was solved iteratively as an optimization problem (Castro-Orgaz and Hager 2009).

Equation (3.434) is based on the assumption that the boundary streamlines,
given by the free surface and the bottom profiles, are continuous at least up to
second-order derivatives. The problem treated consists of a horizontal channel
followed by a steep chute, connected by a circular arc transition. This bottom
geometry is continuous in the bottom slope, but the bottom curvature has dis-
continuities at both the start and the end of the transition. The bottom profile thus
violates the assumptions of Eq. (3.434) at two computational nodes. A first
solution of the numerical model of Eq. (3.434) was made, and the discontinuities
were removed with a numerical estimation of bottom curvature from a 5-point
central finite-difference representation. Once i = h(x) was found, p, = p,(x) was
computed from Eq. (3.435) using the numerical results. The curvature term at the
downstream end of the circular arc generated an abrupt peak with this method.
However, this resulted in excellent computed free surface profiles & = h(x). Thus,
a smoothed curve for the bottom profile in the circular arc transition was added to
provide a continuous transition of bottom curvature and to improve p; = p(x).
A fifth-degree polynomial was employed to approximate the circular arc profile
/Ry =—1 +[1 — (x/Rb)z]. The free surface profile & = h(x) was numerically
determined using the smoothed transitional curve, resulting in almost the same
result as computed previously, but significantly improving p, = p,(x) (Castro-Orgaz
and Hager 2009).

The numerical results of Eq. (3.434) are compared in Fig. 3.30 with the
experimental data of Hasumi (1931) for S, = 1 and 1.732, and R,/h. = 1.59, 1, and
0.76. These compare favorably with observations, even for R,/h. = 0.76 and
S, = 1.732 (60°) corresponding to highly curvilinear flows. The model results are
further compared in Fig. 3.31 with the free surface profiles of Westernacher (1965)
from potential flow nets for S, = 1.5 and R/h, = 1.6 and 2.57, resulting again in
excellent agreement. As mentioned, the downstream boundary condition
Eq. (3.251) was generally set at x; = +3h.. However, computational results indi-
cated that the boundary section had to be moved to x; = +3.5h, in certain simu-
lations. If the downstream boundary section was located too close to the brink
section, an abrupt drawdown of the flow profile & = h(x) near x; resulted in an
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Fig. 3.30 Comparison of computed (h + z;,)/h,. from Eq. (3.434) (—) and (p,/(y) + z)/h. from
Eq. (3.435) (- - -) with measured free surface (¢) and bottom pressure head of (4) Hasumi (1931)
for [Ry/h.;S,] = a [1.59;1], b [1;1], ¢ [0.76;1], d [1.59;1.732], e [1;1.732], £ [0.76;1.732] (adapted
from Castro-Orgaz and Hager 2009)
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Fig. 3.31 Comparison of (a)!
(—) computed (h + z)/h,

from Eq. (3.434) with (*)

measured free surface profiles

of Westernacher (1965) for 0
[Ry/h3S,] = a [1.651.5], -

b [2.57;1.5] (adapted from
Castro-Orgaz and Hager
2009)
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unrealistic, subatmospheric pressure peak p;, = p,(x) close to this section x,;, due to
the significant effect of the Boussinesq terms %, and h,. in Eq. (3.435). This
mathematical effect was removed simply by increasing x, until the entire profile
P» = pp(x) on the steep slope was nearly parallel to the channel bottom. If x, is
located too close to the brink section, the profile 4 = h(x) of necessity generates an
abrupt drawdown to satisfy the parallel flow boundary condition imposed at x,. This
drawdown implies both k. and &, < 0, so that p;, close to x,; reduces above its
correct value for nearly parallel-streamlined flow. The position of the downstream
boundary condition has to satisfy the original hypothesis of nearly
parallel-streamlined flow, allowing to determine x, by iteration, until the stable
solution is obtained.

There have been few attempts to model curved flow at slope breaks using the
Boussinesq equations, among which are Khan and Steffler (1995, 1996a). They
obtained vertically averaged momentum and moment of momentum equations
starting with RANS 2D equations, solving the resulting system of equations using a
finite-element technique. The starting equations and numerical technique are dif-
ferent from Castro-Orgaz and Hager (2009). Therefore, it is of interest to study this
alternative technique for steep slope flows. Khan and Steffler (1995) solved their
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system of equations by adopting a Boussinesq-type approximation, involving the
following specifications:

(i) Velocity profile in the x-direction is uniform and equal to its depth-averaged
value U,
(i) Pressure distribution is non-hydrostatic and linear, with p, as difference
between the bottom pressure head p,/y and the flow depth A,
(iii) Turbulent stresses, including the bed-shear stress, are neglected. Their
equation for the vertical momentum is [see Chap. 2, Eq. (2.83) for steady
flow and zero bed-shear stress)]

0 [hU D1 -
where
wy= 02 = ydath) (3.439)

Ox Ox

Khan and Steffler (1995) made no assumptions regarding the bottom slope S,,
which therefore can also be steep. They solved their system of equations by the
finite-element technique and found good agreement for both free surface and bot-
tom pressure predictions on steep slopes. Khan and Steffler (1996a) expanded their
simulations to cover more test cases, with generally good agreement of their
Boussinesq model with the data. They found that the inclusion of the moment of
momentum equations improved the solutions even though the Boussinesq system
had already generated physically satisfactory results. Montes (1995) suggested
combining Eqgs. (3.438)—(3.439) to produce a single equation for p; as

D1 q2 d |2zp, + h,
p_2dx{ ; ] (3.440)
Thus, by performing the differentiations, it is simple to obtain the bottom pressure
equation modeled by Khan and Steffler (1995, 1996a), which is identical to
Eq. (3.435).

The computed brink depth &;, = h(x = 0) as a function of S, for R,/h. = 1 using
Eq. (3.434) is compared in Fig. 3.32a with the solution of the Laplace equation
(Montes 1994a), given by Eq. (3.250). The Laplace equation predicts a nearly
constant value %, ~ 0.70 for S, > 1, whereas the extended Boussinesq equation
yields &, ~ 0.68. Given the high numerical accuracy obtained with the present
discretization scheme, this difference appears to be a consequence of the order of
expansion in Eq. (3.434). Test data of Mandrup Andersen (1975) and Weyermuller
and Mostafa (1976) for small downstream slopes also corroborate the results of the
Boussinesq model, with imperceptible differences from the Laplace equation.
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Fig. 3.32 Brink depth results: a /,/h.(S,) for R,/h. = 1 from (—) Eq. (3.434), (- - -) Eq. (3.250),
test data of (*) Weyermuller and Mostafa (1976), (4) Mandrup Andersen (1975), b h,/h.(g,) from
(—) Eq. (3.434) for S, = 1.5, Westernacher (1965) (4) 2D potential flow, () test data, ¢ dh,/dx(S,)
from (—) Eq. (3.434) for Ry/h. =1, (- - -) Eq. (3.250), (- — -) Eq. (3.441), test data of (q)
Weyermuller and Mostafa (1976), () Mandrup Andersen (1975), (+) Hasumi (1931) (adapted from
Castro-Orgaz and Hager 2009)

The model results for 4, are compared in Fig. 3.32b with the test data of
Westernacher (1965) for S, = 1.5 versus the dimensionless discharge g, = q/(gR3)”2.
The computed curve from Eq. (3.434) is slightly below the test data because of a small
viscous effect. The brink depth results based on potential flow nets by Westernacher
(1965) are also included, resulting in fair agreement with Eq. (3.434).

Based on Fig. 3.32b, the transition from mild to steep slopes is proposed as a
simple and accurate flow-measuring device, similar to a free overfall. As shown in
Fig. 3.32b, the brink depth ratio h,/h, varies only with Ry/h,, or g, = (Ry/h.) > if
S, > 1. Figure 3.32b indicates the general relation h,/h.(q,) (S, = 1.5) without any
chute slope effect. Measuring /,, g is assumed, and A, = (¢*/g)"” is determined,
resulting in g, = (Ry/h,)>"*. Estimating h,/h,, g, is obtained with Fig. 3.32b, to be
compared with the value previously assumed. This iterative sequence is repeated
until sufficient convergence is achieved. For practical purposes, the curve of
Fig. 3.32b is approximated by the empirical equation hy/h, = 0.70q,°" for
0.01 < g, < 0.60 so that gy is directly obtained for a given h,.
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The free surface slope (dh/dx), at the brink section is successfully compared with
the Laplace equation in Fig. 3.32c, predicting a limiting value of (dh/dx), =
—0.27 (15.1°), whereas the Boussinesq energy equation yields (dh/dx), = —0.31
(17.22°). Test data of Mandrup Andersen (1975), Weyermuller and Mostafa (1976),
and Hasumi (1931) also agree with the results from Eq. (3.434). The equation for
the free surface slope at a free overfall (Matthew 1995) (Eq. 3.281),

2 hy\’
m=3(1-2"), (3.441)

was also inserted in Fig. 3.32c, using the computed values for A, based on
Eq. (3.434), resulting in excellent agreement with the numerical results.
Accordingly, there is a strong analogy between the flows over a free overfall and
the transition from mild to steep slopes.

The potential flow equations are based on a constant energy head along the entire
computational domain. Obviously, this is true near the slope break, but solutions
cannot be expected to be valid far downstream on the steep slope portion up to
infinity. A potential flow model cannot reach asymptotic uniform flow conditions
on a steep slope. Thus, the bottom pressure computation for steep slopes using
potential Boussinesq equations, as done here, is limited to a finite portion of the
crest—slope domain. The crest is a zone of engineering interest, given the minimum
bottom pressure there and the risk of cavitation. Streamline curvature is important at
the crest (Fig. 3.30). Further downstream on the chute, the pressure is
non-hydrostatic due to slope effects (Fig. 3.30). Consider for illustrative purposes
flows away from the crest, on the chute slope. The flow there is gradually varied, so
that the variation of & with x is small; this hypothesis is confirmed by the experi-
mental data of Hasumi (1931) plotted in Fig. 3.30. For these flows, it can be
assumed that hjzc ~ h,, =~ 0. Further, on the slope, the bottom is flat, resulting in
Zpor = 0, whereas the term z;, is finite. Thus, retaining only slope effects,
Eq. (3.434) reduces, with S, = —z,, to

2 2

I (142) =z +h+ =1 (1+52) —const.  (3.442)

H= h
2+ +2gh2 200

Its differential produces the 1D gradually varied flow equation for potential flow in

a sloping channel as

dn _ So
- [m sy

(3.443)

Uniform flow dA/dx = O cannot be reached at any point of the slope, as seen from
Eq. (3.443). This highlights that the potential flow Eq. (3.443) cannot reach the
uniform flow depth at the downstream slope, and therefore, its validity is confined
to the slope break domain, as applied by Castro-Orgaz and Hager (2009), to predict



204 3 Inviscid Channel Flows

the flow features near the slope break. The computations are in agreement with the
ideal 2D solution (Montes 1994a), that is also valid in the slope break domain
where transitional flow conditions develop. To set the boundary conditions as
uniform flow at x —+00, friction should be included as presented in Chap. 2,
Sect. 2.4.6, Egs. (2.82)—(2.85). Close to the crest in the chute slope portion, a
hypercritical flow approach as given by the condition F = g/(gh’®)'* >3
(Castro-Orgaz 2009; Castro-Orgaz and Hager 2009) simplifies Eq. (3.443) to

dh a N So
Lo s, L1482 = Lan=-
dx L'h3( * 0)} gh’ 14 §2

dx. (3.444)

Using the boundary condition i(x = 0) = A, its general solution is

h 25, x\ 2
h_:(1+1+szﬁ) . (3.445)

As previously noted, x —+00 implies # — 0, thereby requiring the consideration of
real fluid flow features. This is achieved by using a turbulent flow model based on
the RANS equations as presented in Chap. 2 or employing a boundary layer
approximation (Chap. 5) (Castro-Orgaz 2009). Figure 3.33 shows that Eq. (3.445)
yields almost the same result as Eq. (3.434) for x/h. > 1, resulting in an accurate
approximation for the chute flow portion. The hypercritical approach derived from
the gradually varied flow theory, therefore, applies to the slope reach, along which
the term gz, is finite. Therefore, although #, as given by Eq. (3.444) is small, the
product (4, z;,) remains finite. Assuming that W =~ h, ~ 0, and inserting Eq. (3.
444), the bottom pressure head is from Eq. (3.435)

(@),

[®

xth x/h,

Fig. 3.33 Comparison of computed profiles (h + z,)/h.[x/h.] from ( - - -) Eq. (3.434) and (—)
Eq. (3.445) for Ry/h. =1 and S, =a 0.5, b 1
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2 2
Po q Zpx h
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Equation (3.446) is the 1D, potential, gradually varied flow approximation for the
bottom pressure head in a finite slope.
For potential flows over a curved bottom, the momentum equation applies in the

form
ds n h+z 2 2
Pb u-—w
— = —Zpw—, S=(H—-z—=)h dz, 3.447
Zb; ) < 2 2> + / < 22 ) z ( )

b

as used by Naghdi and Vongsarnpigoon (1986) and Matthew (1995). This equation
indicates that a model based on the momentum principle depends on the particular
function used to model the vertical velocity profile w = w(z). Following Khan and
Steffler (1995), a linear vertical velocity profile is no reason for solution failure of
the Boussinesq equations; the resulting S function is then (Matthew 1995)

h q’ 2 h)zc
S—<H—zb—§>h+@<1—sz—szhx—g . (3.448)

However, a higher order approximation is desirable for accurate results (Khan and
Steffler 1996a; Matthew 1991). For potential flow, both the energy and momentum
equations are applied to model such flows (Hager and Hutter 1984a). However, as
the energy head H remains constant within the entire computational domain, the use
of the energy equation is advantageous. By contrast, S is not a conserved quantity,
and the corresponding streamwise variation must be determined by resorting to
Eq. (3.447). These complications, combined with the necessity of using an accurate
predictor of w for higher order modeling, render the use of the energy head equation
for potential channel flows advisable and, fortunately, also simple. For potential
free surface flows over a curved bottom, the exact equation at the free surface with
(uy, wy) as the velocity components at the free surface is (Eq. 3.67)

V2 u? +w? u? 2
H=z+ =g+ 2 by 22 (14 (h ] 3.449
z.+2g zs+ 2% 7+ +2g + (hy + ) ( )

This equation indicates that the extended energy head model depends only on the
value of u at the water surface (z; = z, + h). This result is independent of the
vertical velocity profile, as it correctly accounts for the kinematic boundary con-
dition at the free surface. Thus, the accuracy of the 1D potential flow model [i.e.,
Eq. (3.449)] is directly constrained by the accuracy of u, but is independent of
w. Extended energy-type Boussinesq’s models for potential flows are, therefore,
independent of the vertical velocity profile.
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3.9.2 Two-Dimensional Solution

In this section, the functions u® and u® of the Picard iteration (Egs. 3.63, 3.78) are
scrutinized as predictors of u# along the entire computational domain of a slope break.
They are investigated by comparison with a detailed 2D flow solution using
semi-inverse mapping or the x-i method described in Sect. 3.7 (Montes 1992a, b,
1994a). Derivatives of h, h,, hyy, h., and k., were determined numerically using
accurate 5-point central finite differences based on the 2D results. To start the solution
of Laplace’s equation (Eq. 3.250), an initial free surface profile & = h(x) and the
energy head H must be prescribed for the selected discharge g. As initial free surface
profile, the numerical solution of Eq. (3.434), previously described, was used. Once
the initial free surface profile is set, the free surface position is iteratively corrected
with a Newton—Raphson algorithm until reaching the desired tolerance in the zero
pressure boundary condition at the free surface. The correction is based on
Eq. (3.427), previously applied to the upper free surface of a free overfall (Montes
1994a; Castro-Orgaz 2013b). Figure 3.34 considers one of the test cases of Hasumi
(1931) for a slope transition composed by a horizontal reach followed by a
circular-shaped transition profile of R, = 0.1 m that finishes in a steep slope reach of
45° inclination. The discharge is 0.987 m?/s (h. = 0.10 m). The up- and downstream
boundary sections were located at x/h. = 3. Twenty streamlines were used to model
this flow. The initial free surface profile was determined for H/h,. = 1.5 by solving
Eq. (3.434). The free surface position was moved iteratively until the mean pressure
along the free surface was reduced to 0.25 mm, taking some 50 iterations. The initial
[solution of Boussinesq’s Eq. (3.434)] and final free surface profiles are plotted in
Fig. 3.34a, showing only minor deviations.

The computed water surface and bottom pressure profiles are successfully
compared in Fig. 3.34b with the experimental data of Hasumi (1931). The
streamline flow pattern obtained from the 2D solution is given in Fig. 3.34c. The
computed free surface and piezometric bottom pressure head profiles obtained from
the 2D model are compared in Fig. 3.34d with the 1D gradually varied flow
approximations for a finite slope, namely Eqgs. (3.445) and (3.446). These are
plotted for x/h. > 1, as suggested by Castro-Orgaz and Hager (2009). Note the
excellent agreement, thereby confirming the leading role of S, on the
non-hydrostatic effects there.

The 2D potential flow data are plotted in Fig. 3.35 at 7 vertical sections repre-
sentative of the flow domain. The variations of # and w along the computational
domain are extreme, given the high operational head of E/R, = 1.5. Note that u‘®
agrees well with u at all sections. For this test case, u® yields better predictions for
x/h. > 0 in the curved bottom portion, whereas this is less evident for the straight
bottom portion. Note that w'" is not a good approximation of w, whereas w®
improves predictions, especially for x/h, < 0. However, even though w® is a better
prediction of w than w'", its accuracy is limited for x/h. > 0, given the strong flow
curvature. The pressure distribution computed from the 2D flow model reveals a
great departure from hydrostatic conditions (Fig. 3.36).
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Fig. 3.34 Flow features in slope transition for Ry/h. =1 and S, = 0.5: a initial and final free
surfaces, b comparison with experiments, ¢ potential streamline flow pattern (adapted from

Castro-Orgaz and Hager 2013), d gradually varied flow solution for x/h, > 1
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Fig. 3.35 Comparison of (u/U,, w/U,) from the 2D solution along the slope transition, with U,. as
critical velocity, with predictions from second- and third-order results based on Picard iteration
(adapted from Castro-Orgaz and Hager 2013)

The 2D results for u at the brink section of the slope transition are plotted in
Fig. 3.37. The Dressler free vortex velocity profile given by Eq. (3.141) may be
rewritten as
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Fig. 3.36 Pressure distributions p/(yh.)[n/h] from the 2D solution along the slope transition for
Ry/h. =1 and S, = 0.5

—4q%
(1 — Kbg) ln(l — KbN) ' (3450)

Uz =

Equation (3.450) is plotted in Fig. 3.37 using the computed value of N, comparing
excellently with 2D results. Note that at the weir crest, ¢ = #/h and N = h. This
indicates that the first Picard iteration in curvilinear coordinates gives results
comparable to the second iteration in Cartesian coordinates (Castro-Orgaz and

Hager 2013).
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Fig. 3.37 Comparison of 1=
results obtained for
Dressler’s Eq. (3.450) (—)
with 2D simulation (*) 0.8
(adapted from Castro-Orgaz
and Hager 2013) 0.6
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3.9.3 Flow Net

The distributions of R/R(v) and 0/04(v) were determined for the flow net of
Westernacher (1965) for a chute slope of 3:2 (H:V) with a circular arc transition of
R, = 0.30 m, considering 10 equipotentials and 7 streamlines (Fig. 3.38a). The
results obtained for three of these are plotted in Fig. 3.38b—d similar to the free
overfall, this flow net may be divided into two portions, namely up- and down-
stream from the brink section at the start of the circular arc transition to the
downstream chute. Again, the analysis of the upstream portion reveals that as
N/R; — 0 away from the brink section, both K — 1 and m — 1. In the downstream
curved portion, Ry — R, and K — 1, corresponding to the almost concentric-
streamlined flow. Two distribution laws apply for R/R(v), relating to the straight
and curved bottom portions. The brink section involves, therefore, also a transi-
tional behavior between these distribution types, as shown from Fig. 3.38c, where
the streamline curvature distribution changes its shape from the typical law of the
horizontal channel (Fig. 3.38b) to that for a curved bottom (Fig. 3.38d). Note the
drop to K = 0.12 at the brink section. However, this drop is smaller than that for
free overfalls because of pressure readjustment as the flow transition is reached. For
the free overfall, the bottom pressure vanishes abruptly, whereas for the transition
from mild to steep slopes, the pressure remains positive throughout, yet below
hydrostatic. Moreover, the distribution of 6/0,(v) also drops from m = 1 as the brink
section is approached, with a linear recovery as the tailwater is reached, as for free
overfall flow.
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3.10 Flow Over Round-Crested Weirs

3.10.1 Picard Iteration

Open-channel flows passing from sub- to supercritical flow across a critical point
F =1 occur at round-crested weirs if the tailwater level is not drowning the
structure (Fig. 3.39). This is an important case of open-channel flow, given its role
in discharge measurements structures.

Equation (3.434) also applies to this flow problem. Figure 3.40 displays the
experimental data of Sivakumaran et al. (1983) for a symmetrical hump of shape
Zp = ZOCXp[—O.S(x/24)2] (cm). The unit discharge is 0.11197 m?/s (h, = 0.1085 m).
The up- and downstream boundary sections were located at x/h. = %10.
Equation (3.434) was numerically integrated using the method of Naghdi and
Vongsarnpigoon (1986) for flows over an obstacle, using the fourth-order Runge—
Kutta method (Press et al. 2007). Equation (3.434) is a second-order differential
equation for A(x), so that two boundary conditions, in addition to the total head H,
are required for its solution. Following Naghdi and Vongsarnpigoon (1986), a
boundary section was taken far upstream of the obstacle, where the bottom is
almost horizontal and pressure is essentially hydrostatic. There, the free surface
slope was set to 1, = 0 and the total head H for an initially assigned value of #,
estimated to H ~ h, + qz/(2gh§). With these conditions at the boundary section,
Eq. (3.434) was numerically integrated across the weir, transforming it into a
system of two first-order ODEs. If the initially assigned value of 4, is too low, the
value of H is incorrect, so that the corresponding value of the minimum specific
energy at the hump crest is too low and the flow is not able to pass the hump. The
computed flow profile thus intersects the bottom profile elsewhere (Naghdi and
Vongsarnpigoon 1986; Fenton 1996) (Fig. 3.40a). This indicates that no steady
flow solutions are possible. If the initially assigned value of A, is too high, an

Fig. 3.39 Flow over (a)
round-crested weir: |
(a) experimental image
(Sivakumaran 1981),
(b) definition sketch
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Fig. 3.40 Flow over round-crested weir: a (—) computed (2 + z;,)/h. from Eq. (3.434) for a low
value of h,, b (—) computed (h + z,)/h. from Eq. (3.434) for a high value of h,, ¢ computations
using an accurate value of #,; comparison of (—) computed (i + z;)/h. from Eq. (3.434)
(Boussinesq’s theory) and (- - -) (p,/(y) + zp)/h. from Eq. (3.435), with (¢) measured free surface
and (a) bottom pressure head (Sivakumaran et al. 1983), d simulation using Eq. (3.451)
(Saint-Venant’s theory)

undular jump is formed at the tailwater face of the weir (Fig. 3.40b). Thus, A, was
iteratively adjusted as described by Naghdi and Vongsarnpigoon (1986) until a
continuous flow profile passing from sub- to supercritical flow resulted. Once the
free surface profile was determined, the bottom pressure head was computed using
Eq. (3.435). The computed water surface and bottom pressure profiles are com-
pared in Fig. 3.40c with the corresponding test data (Sivakumaran et al. 1983),
resulting in excellent agreement.

Shallow-water flows are commonly simulated using the theory of Saint-Venant
(1871). For steady flow over a hump, these equations reduce to the ODE (Montes
1998; Hager 1999a)

dh  —tan0,
S (3.451)
I =

The weir crest flow depth from Eq. (3.451) is the standard critical depth &, = (G*19)"".
The water surface slope at the weir crest is given by (Chen and Dracos 1998; Hager
1999a) (Eq. 3.203)
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dh he 22,\ '
(dx> = —(—38)(2”> . (3.452)

Equation (3.451) was integrated using the fourth-order Runge—Kutta method in the
up- and downstream directions. At the weir crest, Eq. (3.452) was used to remove
the indetermination. The results are given in Fig. 3.40d. Note that the free surface
prediction of Saint-Venant’s theory is inaccurate, especially in the upstream sub-
critical branch, whereas the bottom pressure is only poorly accounted for, given that
the water depth is identical to the bottom pressure in this approach.

3.10.2 Dressler’s Theory

This theory for flows over curved bottoms is applied here by integrating
Eq. (3.167). The boundary condition is given by the critical depth N, at the hump
crest (¢ =0), and N, was computed by solving Eq. (3.168) using the Newton—
Raphson method. Then, Eq. (3.167) was numerically integrated using the
fourth-order Runge—Kutta method, employing Eq. (3.172) to remove the singu-
larity of Eq. (3.167) at £ = 0. Computations of sub- and supercritical portions were
performed by integrating in the up- and downstream directions, respectively. Once
N(¢) was determined, the bottom pressure profile p,(£) was computed from
(Dressler 1978)

q2;c§ 1
= pgNcosb, + —1]. 3.453
b= PEREOS n (1 — 1NV [ (1 = 1yN)? (3.453)

The computed profiles N(&) and p,(&) are plotted in Fig. 3.41a, showing good
agreement with observations for both the free surface and bottom pressure profiles.
The first aspect deserving attention is that Dressler’s equations produce a stable and
continuous transcritical flow profile over this topography. The previous failure of
Sivakumaran et al. (1983) and Fenton (1996) to produce transcritical flow solutions
is due to the fact that Eq. (3.167) was solved taking the value of H as given by
experiments, whereas H should rather be determined based on the theory itself,
respecting the critical flow conditions at the crest of the hump. The minimum
specific energy thus fixes the total head H and the flow conditions over the weir. As
demonstrated, the free surface and bottom pressure profiles under minimum specific
energy at the hump crest are continuous and physically in agreement with obser-
vations. Figure 3.41a indicates that the supercritical branch is accurately predicted
by Eq. (3.167), given that the flow is essentially concentric. However, the free
surface profile computed for the subcritical flow portion is below the experimental
data. In this zone of the computational domain, the free surface is roughly hori-
zontal as inferred from the experimental data, but the bottom profile is sloped and
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Fig. 3.41 Flow over
round-crested weir:

a comparison of (—)
computed (h + z;)/h. from
Eq. (3.167) and (- - -)

(Pb/(“/) + Zb)/hc from

Eq. (3.453) with measured (*)
free surface and (a) bottom
pressure head (Sivakumaran
et al. 1983) (adapted from
Castro-Orgaz and Hager
2016), b simulation using (—)
Eq. (3.167) (Dressler’s
theory) and (- - -) Eq. (3.451)
(Saint-Venant’s theory)
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curved, so that streamlines are not concentric. It appears that the concentric
streamline approximation provokes an excessive drop of the upstream water level
as it is fixed by the minimum specific energy over the weir crest based on
Eq. (3.167). Saint-Venant’s theory is compared with that of Dressler in Fig. 3.41b,
indicating relatively large deviations, as previously found in a different experi-
mental setup involving only supercritical flows (Sivakumaran and Yevjevich 1987).

A limitation of this application of Dressler’s theory is the potential flow
assumption. Specific resistance terms are further available for his theory (Dressler
and Yevjevich 1984; Sivakumaran and Dressler 1986).

Robert Franklin Dressler was born on June

04, 1920, in Philadelphia, USA, and passed
away at age 79 on August 27, 1999 at
Perkiomenville PA/USA. He graduated in 1940
with the BS degree as a mathematician from
the University of Pennsylvania. From 1954 to
1958, he was chief of mathematics, the Physics
Division, National Bureau of Standards (NBS),
Washington DC. Until 1962, he acted as an
assistant director of research, Philco Corp.,
Philadelphia PA, moving then until 1966 as a
chief of mathematics analysis to the US Federal

Aviation Administration, Washington DC. From then until 1968, Dressler
was first the chief scientist of the Swedish Government Aerospace Agency,
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Stockholm, when joining as a professor of mechanical and civil engineering
the City University, New York. From 1976 to 1983, he was the manager of
the NASA science program, Washington DC, and from then until 1989, he
was the director of engineering research, International Water Resources
Institute, George Washington University, Washington DC.

Dressler worked in the 1960s on the sonic boom effect in aerodynamics, after
having published excellent theoretical and experimental papers on dam break
waves. His 1952 paper is a first account on the effect of bottom friction,
which is large at the wave front but reduces toward the upstream direction.
Using a perturbation approach, Dressler obtained the leading wave features,
thereby generalizing the classical results of Adhémar Barré de Saint-Venant
(1797-1886). The theoretical results were compared in the 1954 paper with
laboratory tests, in a channel whose size was small, however. The 1959 paper
deals with the effect of bottom slope on the dam break wave. The introduction
of the bottom slope source term in the Saint-Venant’s equations complicates
the application of the method of characteristics. Dressler mathematically
solved the complex problem by the inclusion of slope effects. Around 1980,
Dressler attempted to generalize Saint-Venant’s equations for flows over a
curved bottom. However, his equations are a partial solution to Boussinesq’s
problem relating to the inclusion of streamline curvature effects into the 1D
open-channel flow equations. Dressler’s equations account for the bottom
curvature effects, but Boussinesq-type terms relating to the free surface slope
and curvature are absent.

3.10.3 Two-Dimensional Solution

To find 2D solutions to flows over round-crested weirs, the x-iy method was applied
(Montes 1992a; Castro-Orgaz 2013a). Twenty streamlines were used to model the
flow. The initial free surface profile and energy head H were determined using
Eq. (3.434) following the procedure of Naghdi and Vongsarnpigoon (1986), as
previously described. For the initial free surface profile, the mean pressure along the
free surface was 0.71 mm, so the position of the water surface was considered
acceptable. The computed water surface and bottom pressure profiles are compared
in Fig. 3.42a with the corresponding test data (Sivakumaran et al. 1983). Note the
excellent agreement of the 2D potential flow solution with the experimental data.
The streamline flow pattern from the 2D solution is shown in Fig. 3.42b.

Once the stream function was determined from Eq. (3.250) at each point
(x, z) using the computed position of the free surface, the velocity components
(u, w) were determined in a mesh formed by 20 streamlines at 180 vertical sections
in the mathematical model. The number of streamlines and vertical sections was
also doubled to check mesh independence of the results. The 2D potential flow
results are plotted in Fig. 3.43 at seven representative vertical sections. Note that
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Fig. 3.42 Flow over (a) —— Computed free surface
round-crested weir: === Computed bottom pressure
a comparison of computed = Bottom profile

[ ] \ ASUTE '\\.- -.\\
(h + 2,)/he and (/) + ). 4 > Misrel okl Tevis
from the 2D model with data - —

of Sivakumaran et al. (1983),
b streamline flow pattern
(adapted from Castro-Orgaz
2013a)

the shapes of u and w rapidly change within the transitional flow over the weir crest.
Using the computed free surface profile, the derivatives of A, hy, hyy, Ay, and Ay
were determined numerically using accurate 5-point central finite differences. The
bottom values were computed analytically from the bottom profile equation. The
predictions u(z), w(l), w(z), and u® were then determined in all vertical sections
using Egs. (3.63), (3.64), (3.76), and (3.78), respectively. Note that no linear ver-
tical velocity profile results, so that w'" is no accurate approximation. In contrast,
the prediction w'® fits remarkably well with the 2D data along the entire compu-
tational domain (e.g., Figure 3.43d for the overflow crest). The prediction of u® is
in excellent agreement with the 2D results for all sections, whereas u® predictions
reveal an improved accuracy, providing a precise estimation for u.

The Boussinesq approximation includes not only a refinement of 2D velocity
distributions based on irrotational flow but also on the pressure distribution by
considering the acceleration term in the vertical direction. The pressure distribution
is a quantity of interest in flows over a curved surface (Iwasa and Kennedy 1968).
Based on the 2D velocity field (u, w), the vertical pressure distribution for potential
flow is p/y = H — z — (u? + w?)/(2g). The effects of streamline curvature on the
vertical pressure distribution are shown in Fig. 3.44. The data corresponding to the
second- and third-order Boussinesg-type approximations are included as well. At
sections x/h. = —4 and —2, the pressure distribution is hydrostatic (Fig. 3.44a, b),
indicating that free surface and bottom pressure profiles coincide (Fig. 3.42). As the
flow accelerates toward the weir crest, the vertical centrifugal forces provoke
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Fig. 3.43 Comparison of (u/U,, w/U,) from the 2D solution along a round-crested weir domain,
with U, as critical velocity, with predictions given by second- and third-order results originating
from Picard iteration (adapted from Castro-Orgaz and Hager 2013)

vertical pressures below the hydrostatic pressure (convex free surface curvature)
(Fig. 3.44c—e). At x/h. = +2, an increase of the pressures associated with super-
critical flow approaching the tailwater weir portion is observed. Vertical pressures
are then above the hydrostatic pressure at x/h. = +4 (concave free surface curva-
ture), as observed by comparing the free surface with the bottom pressure profile in
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Fig. 3.44 Comparison of p/(yh) from 2D solution along round-crested weir domain of Fig. 3.42,
with predictions given by second- and third-order results originating from Picard iteration
(symbols as in Fig. 3.43) (adapted from Castro-Orgaz and Hager 2013)

Fig. 3.45 Comparison of
Dressler’s first- and
second-order velocity profiles
with 2D simulation at
overflow crest (adapted from
Castro-Orgaz and Hager
2013)

— First order result
————— Second order result
®  Two-dimensional data

Fig. 3.42. The second-order Boussinesq approximation agrees excellently with the
2D results, with small differences between the second- and the third-order
Boussinesq predictions. These computations account for the effect of the vertical
acceleration on the pressure distribution, which, therefore, is no longer hydrostatic.
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— Jaeger's linear approximation = linear approximation (line 1:1)

¢ Streamline curvature radius from 2D solution € Streamline inclination angle from 2D solution
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Fig. 3.46 Vertical distributions of a R/h., b 0/0; and w/w, at overflow crest versus (z—z)/herest
adapted from Castro-Orgaz (2013a)

The 2D results for u at the weir crest are plotted in Fig. 3.45, including the prediction
M

of u:
S

given by Eq. (3.450) as an excellent approximation of u. The second-order
@)

&

prediction from Dressler’s theory, using Eq. (3.152) for u
g
-

In the potential flow equations at the weir crest, the Euler equations depend on
the distribution of the radius of streamline curvature along an equipotential curve.
Jaeger (1956) and Montes (1970) rather used the R(z) distribution in the vertical
direction at the weir crest. The function R(z) is expanded using a Taylor series at the
weir crest, retaining only the first term as (Montes 1970)

OR PR\ (z—12)* OR
R=Ry+ (=) (z— IRV ETD) AR+ (L) -2
b*(@z)f Z’””(é‘ﬁ)b r b*(@z)f )

(3.454)

is also plotted in

Fig. 3.45, indicating improved predictions over u

Jaeger (1956) and Montes (1970) suggested6 m = (OR/Oz7), =~ —2. The 2D
distribution of R(z) at the hump crest was investigated for the weir shown in
Fig. 3.41 with the result plotted in Fig. 3.46a, with h..s as the flow at the weir
crest. The fitting value obtained from Eq. (3.454) against the 2D data is m = —3.1,
i.e., different from Jaeger’s m = —2. Note that the linear approximation for R is
excellent except for a small region below the free surface, in agreement with LDV

SIn weir flow, R, is negative (convex bottom profile), resulting in m < 0. In the original devel-
opments presented by Jaeger (1939) and Montes (1970), R, is to be used in absolute value, given
that a negative sign was introduced into the governing equations. Therefore, m = +2 is the value
used in these works.
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measurements (Ramamurthy et al. 1994). The vertical velocity distribution obtained
from the detailed 2D solution is plotted in Fig. 3.46b. The classical Boussinesq
theory (Montes 1998) assumes that this law is linear, a fact not verified in
Fig. 3.46b, thus questionable. The streamline inclination 0 = arctan(dz/0x) at the
weir crest obtained from the 2D solution is plotted in Fig. 3.46b. Matthew (1963),
Hager and Hutter (1984a), and Montes and Chanson (1998) assumed it linear for
the inviscid Boussinesq equations. The results of Fig. 3.46b corroborate that this
approximation is reasonable at the weir crest, although not exact. In contrast, the
vertical velocity profile approximation is only a rough hypothesis.

3.10.4 Flow Nets

To investigate the flow net geometry for circular-crested weir flows without a
downstream chute slope, tests were conducted at VAW, ETH Ziirich (Castro-Orgaz
2010a). The channel was 0.50 m wide and 0.7 m deep, in which a circular weir of
radius R, = 0.30 m was inserted. The channel was covered with a tap in which a
longitudinal slot allowed for light passage along the weir to visualize the axial
streamline pattern. Particles were added at the channel inflow section to track
streamlines over the weir body with high-exposure photographs (Fig. 3.47).

Image distortion was removed using a calibration panel, and the flow nets were
digitized from the calibrated plots (Fig. 3.48a). The distributions R/R(v) and 0/0,(v)
were determined for 5 equipotentials and 10 streamlines. The results for three
equipotentials are plotted in Fig. 3.48b—d. The results for K for equipotential 3 at
the weir crest give K = 0.58. However, as the downstream weir side is approached,
K increases to K — 1 because of the downstream chute slope effect. Note that R, is
constant, but there is no limitation to R; — 0. As a result, the streamlines are
almost concentric downstream of the weir crest with R; — R, resulting in K — 1,
i.e., as for shallow flows with weakly curved and sloped streamlines.

The flow net of Fawer (1937) for a circular-crested weir of R, = 0.0325 m and a
downstream chute slope of 3:2 (H:V) is considered in Fig. 3.49. The distributions
RJ/R(v) and 0/0,(v) were determined for 8 equipotential lines and 9 streamlines
(Fig. 3.49a). The results for 3 of these are plotted in Fig. 3.49b—d. The caption
includes the values obtained for K and m, as well as those of r and i for the

Fig. 3.47 Detail of
streamlines at overflow crest
from high-exposure
photographs (VAW
photograph)
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Fig. 3.48 Potential flow over
circular-crested weir: a flow
pattern (Castro-Orgaz 2010a),
b flow net parameters with
(—) Fawer’s approach, (- *-)
Matthew’s approach, (- - -)
Jaeger’s approach, () flow net
data, for equipotential line 1,
¢ 3, d 5 (adapted from
Castro-Orgaz 2010a)
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Fig. 3.49 Potential flow over (a) 107
circular-crested weir: a flow
pattern (Castro-Orgaz 2010a),
b flow net parameters with
(—) Fawer’s approach, (- *-)
Matthew’s approach, (- - -)
Jaeger’s approach, () flow net
data, for equipotential line 1,
c4,d 7 (adapted from
Castro-Orgaz 2010a)
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equipotential lines considered. The actual values of K and m are compared with
K =m = 1. The distribution of R/R(v) is highly nonlinear, with K < 1. The
parameter K is small at equipotential line 1 increasing toward the weir crest up to
K — 0.5. Beyond the weir crest, K reduces again. The nonlinear distribution of
RJ/R(v) closely agrees with Jaeger’s approach. Note that R, is constant for a
circular-crested weir and the value of r, that is correlated with K, depends mainly on
R;. Close to equipotential line 1, Ry is large, and the high ratio RJ/R,, at a given
equipotential leads to a small K value. In contrast, at the crest vicinity, R; is still
larger than Ry, but the ratio is smaller, resulting in larger K values. Approaching the
downstream weir slope, R, — ©0, with K reducing again. In contrast, the distri-
bution of 0/6,(v) is weakly nonlinear, even at equipotential line 1, where it has its
maximum, as shown in Fig. 3.49b.

The flow over a standard spillway crest is a basic flow problem involving
variable bottom curvature, to improve the weir-flow performance (Cassidy 1970;
Hager 1987, 1991; Chanson 2006). The flow net of Escande (1933) under the weir
design condition is analyzed in Fig. 3.50. The distributions of R/R(v) and 60/6,(v)
were determined for eight equipotential lines and ten streamlines (Fig. 3.50a). The
results obtained for three equipotential lines are plotted in Fig. 3.50b—d. Similar to
circular-crested weir flow, the analysis of equipotential line 1 results in a small
K value, corresponding to R, — 0. As previously, as the flow approaches the crest
zone, 1/R; and K increase. Escande’s standard spillway had a downstream angle of
53° It could be expected that then R; — ©0, with a corresponding drop in
K. However, 1/R, decreases, but concurrently, the bottom profile 1/R, decreases
toward the chute point of tangency, resulting in Ry — R, and K — 1. The mini-
mum K value is attained at equipotential line 1, and K continuously increases to
K =1, where the flow is weakly curved and streamline curvature effects are small.
The results for m are similar, with a minimum value at equipotential 1, and
increasing to m = 1 along the chute zone.

The results for K = K(r) are plotted in Fig. 3.51. Note the strong correlation
between K and r, because for a given equipotential in free surface flow both R, and
R, are fixed, as is then K. According to Fig. 3.51, flows with r > 1 are characterized
by a strong drop in K as r increases. For r — 1, the limit K — 1 is attained, i.e., the
basis of Matthew’s theory (1963) as an asymptotic value, because K(r) is generally
nonlinear. The results from the flow net analysis follow, for 1 <7 < 18 and K < 1,
the best-fit equation (R2 = 0.915) (Castro-Orgaz 2010a)

K =r %, (3.455)

In contrast, flows with r < 1 are approximated by K = 1. A singularity in the
channel bottom geometry with a possible discontinuity in bottom slope or curvature
violates the basic derivation of the governing Eq. (3.86), where continuity in the
bottom profile is assumed, implying jumps in the flow net parameters. The effect of
m is small as compared to the effect of K, so that m = 1 is assumed (Castro-Orgaz
2010a).
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Fig. 3.50 Potential flow over
standard spillway: a flow
pattern (Castro-Orgaz 2010a),
b flow net parameters with
(—) Fawer’s approach, (- -)
Matthew’s approach, (- - -)
Jaeger’s approach, (¢) flow net
data, for equipotential line 1,
¢ 3, d 6 (adapted from
Castro-Orgaz 2010a)

(a) 10+

(cm)

=104

225

-10 0 10
x(cm)
N i=-332
m=0465
Vv 0.5
. 0 . |
10 -4 0 2
6?/6{“
1 17
(© i=-0.05
m=0.85 o,
Vo054 v 0.54
0 0 e
0 -0.4 0 04 08 1.2
g/gi
(d) 17 17
v 0.54 1 0.5
0 1]} T |
0.8 0.6 0.8 1

0/6,



226 3 Inviscid Channel Flows

Fig. 3.51 Flow net
parameter K = K(r) from (—)
Eq. (3.455), (©) Castro-Orgaz
(2010a), (*) Fawer (1937), (0)
Westernacher (1965), (a)

Escande (1933) (adapted from 0.8
Castro-Orgaz 2010a)
K 0.6
0.4

3.11 Sharp-Crested Weir

3.11.1 Critical Flow

A sharp-crested weir is formed by inserting into a subcritical open-channel flow a
thin, standard-crested plate (Fig. 3.52a). If sidewall contractions are absent, the flow
is (2D) in the vertical plane and may be mathematically tackled using the equations
of inviscid and irrotational flow (Rouse 1932, 1938). A free jet spills from the
vertical thin plate, with the upper and lower free surfaces describing the curves
depicted by Rouse (1932) in Fig. 3.52a. The flow over a sharp-crested weir was
investigated experimentally by Bazin (1888), Creager (1917), Scimemi (1930), and
Rouse (1932), among many others. The application of 2D potential flow compu-
tations was pursued by Hay and Markland (1958) and Strelkoff (1964), resulting in
accurate predictions of the jet surfaces and the velocity and pressure distributions.
From a 1D point of view, this flow involves a transition from upstream subcritical
channel to downstream free jet flow. Therefore, a critical flow section is formed
within the jet. The purpose of this section is to analyze flow over a sharp-crested
weir using 1D critical flow computations based on the potential flow model. The
theory developed by Jaeger (1956) will be adopted following the presentation by
Montes (1998).

The differential equation describing the potential velocity profile V along an
equipotential curve is (Eq. 3.48)

ov 14
P = Roosd (3.456)
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(a)

¥ Scale

Fig.13. Profile of sharp-
crested weir discharging

1251 /5m, showing pressure
dia&&hon ov:? weir face

and throughout falling sheet
2 T

(b)

h

Fig. 3.52 Sharp-crested weir flow: a experimental test (Rouse 1932), b definition sketch

Here, V is the algebraic velocity tangential to the streamline, R is the radius of the
streamline curvature (absolute value) at coordinate z of a point of the equipotential
curve, and 0 is the streamline inclination. The origin of the z-coordinate, positive
upward, is taken at the point of maximum elevation of the lower jet profile. In
Eq. (3.456), a Taylor series development truncated at the linear term (Montes 1998)
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2

d d 2
R =R — (R — (R 4.
cosl(z) = Ry + [dz( cos@)} bz—i— LZ2( cosé))L2 +

d (3.457)
~ Ry, + [— (Rcos@)} z=Ry,+mz,
dz b
is inserted, producing
dv Vv
A . 3.458
dz Ry +mz ( )

Integration of Eq. (3.458) yields the potential velocity distribution (Jaeger 1956;
Montes 1998)

3.45
7 (3.459)

14 Fh+m1”m

Ry +mz

The steps to obtain Eq. (3.458) from Eq. (3.459) are identical to those described
in detail using Egs. (3.235)—(3.237). It implies separation of variables in
Eq. (3.458), e.g., dV/V = dz/(R;, + mz), and integration of the resulting differential
equation between the free surface and an arbitrary point. Here, 7 is the crest flow
depth defined as the vertical projection of the crest equipotential curve (Fig. 3.52b),
and V; is the free surface velocity. The discharge per unit width g is computed by
integrating Eq. (3.459) across the jet thickness ¢ (Jaeger 1956). Neglecting the effect
of cosf), so done by Fawer (1937) and Montes (1970), leads, after some interme-

diate steps, approximately to
mt mt m
I+—=]—(1+—] |- 3.460
< " Rb) ( TR ) ] (3.460)

This implies that the flow depth ¢ approximates the vertical flow depth at the crest.
The free surface velocity is, with E as the specific energy (Fig. 3.52b),

t
ViR
qg= / VcosOdz = b
m—1
0

V, = [2¢(E — 1)]'/* (3.461)

In the ensuing developments, a sharp-crested weir of infinite height is consid-
ered, for which the effect of the approach flow velocity head is neglected (Rouse
1938; Montes 1998). Inserting Eq. (3.461) into Eq. (3.460) produces

1

R mt me\ "
222 4 —) = (1+= 3.462
<+Rh) (+Rb)]’ (3.462)

q=[28(E -]
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which is a mathematical statement linking the unit discharge g, the crest water depth
t, and the specific energy E. Critical flow appears at the point of maximum elevation
of the lower jet profile, where the specific energy E is a minimum. This section is
referred to as the contracted section, but it is in fact a critical flow section with a
non-hydrostatic pressure distribution. Following Montes (1998), critical flow is
determined by maximizing the value of g with respect to 7, keeping E constant. The
parameters m and R, are taken as constant in this computation. Therefore, the partial
differentiation of Eq. (3.462) with respect to ¢ (note that E is kept constant), and
equating the result to zero, produces

1
86] 1 _1/2 Rb mt mt m
— = ——[2¢(E — ¢ 20— |1+ — ) — |14+ —
o~ B0l 2 (T TR
1y (3.463)
R m 1 mi\" " m
28(E—0)]'P = | ——=(1+=) —|=o0.
+[g( )] m—1 R}, m +R}, R;,
After rearrangement, this simplifies to
mt mt l/m
mE _ mt 1(1+R_”)_(1+R_”) : (3.464)

1/m—1
Ry R 2 1—%(1+%)

Equation (3.464) is a critical flow condition invoking that R, is a constant.
Furthermore, the characteristic sharp-crested weir feature, namely atmospheric
pressure along the lower jet profile, is so far not included. Therefore, Eq. (3.464) is
formally valid for flow over a round-crested weir with a solid bottom profile, where
the bottom pressure head does not necessarily vanish. Based on Eq. (3.464),
Montes (1970) computed critical flow over circular-crested weirs. The pressure
distribution along the crest equipotential curve is determined from (Eq. 3.66)
2
P_p_ .-V (3.465)
i 28

Inserting Eqgs. (3.459) and (3.461) into Eq. (3.465) produces

R 2/m
b +"”> : (3.466)

P
P E—z—(E—1t
Y 2= )<Rb+mz

or

z 1+ 5 2
p—l——(l—)( R”) - (3.467)

AVET™
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This is an equation valid for the round-crested, solid bottom weir. For the particular
case of the sharp-crested weir, the lower streamline is a free jet surface, for which
the bottom pressure head vanishes. Therefore, Eq. (3.467) at z = 0 yields

0—1—0—5)1+T5ym (3.468)
h E R, ’ '
or

mt £\ —m/2

E;::(l——g) 1 (3.469)

The discharge coefficient C, of the sharp-crested weir is defined by Poleni’s
equation in the form (Jaeger 1956; Montes 1998)

2
quQM%mm- (3.470)

Here, & is the approach flow depth, measured from the weir crest (Fig. 3.52b). The
detail of the reference level is subtle, but non-trivial, given that E is measured from
the point of maximum elevation of the lower jet profile. Therefore, h = E + ¢
(Fig. 3.52b). Equating Eqgs. (3.462) and (3.470) to one another produces the
identity

2 1/2 1/2 Rb mt mt %
=Cysh(2gh) "= |2g(E — — (1 4+ =) - (1+ = 471
S Cah(gn' = g — ) B (12— (1 ) an)

or, after elementary manipulation,

3/E\ ! 12 ENY? 1 mt mi\
a=3(&) (-8 G) wme|0+R)-(+R) |

The critical flow problem over a sharp-crested weir is, therefore, mathematically
determined once the ratio E/h is computed. Based on the experimental results of
Scimemi (1930), the maximum lower jet elevation is ¢ ~ 0.112A, resulting in
E =h — ¢~ 0.888h. The critical flow theory is now compared with the experi-
mental data of Scimemi (1930) as follows. A value of m = 2 is adopted based on
the former results of Jaeger (1939) and Montes (1970) for flow over circular-crested
weirs. Equations (3.464) and (3.469) represent a pair of two nonlinear algebraic
equations for the two unknowns #R,, and #/E. The numerical solution of this system
is summarized in Table 3.4, allowing for the prediction of C, with these numerical
values using Eq. (3.472).

(3.472)

| S
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Table 3.4 Critical flow over sharp-crested weir assuming R, = const. and m = 2 (Montes 1998)

mt/Rb tE E/Rb Cd
Computed 2.2469 0.692 1.6235 0.62
Measured - 0.7422 - 0.6338

On inspecting Table 3.4, a fair agreement between the predicted and computed
values of C, is noted; however, the computed critical depth ratio #/E unexpectedly
deviates from the test value. The conducted computations are constrained by the
assumption R, = const. adopted in the development of Eq. (3.464). This limitation
is easily understood from Eq. (3.469), stating essentially that R, = R,(f). Therefore,
this functional relation must be considered to produce the differential identity
0q/0t = 0. Furthermore, the value m = 2, adopted for the data in Table 3.4, stems
from physical experiments on flows over circular-crested weirs (Montes 1970). This
is a questionable choice for sharp-crested weir flows, given that m = 2 originates
from tests on a circular-crested weir where R;, = const., for which the bottom
pressure head is not necessarily atmospheric. Therefore, m for sharp-crested weir
flows remains undetermined.

Computations were reconsidered keeping m as an undermined parameter and
treating R;, as a function of ¢ in Eq. (3.462). Let the normalized variables Z = mt/R,,
and Q = #/E be defined, so that Eq. (3.472) can be rewritten as

ci=> <§>3/2%§(1 —Q)\”? [(1 +7)-(1 +z)'/'”] (3.473)

Critical flow is determined by computing 0C,;/0Q =0, given that E = const.
Performing the differentiations, Eq. (3.473) yields

w3 (5) o oen -0 (-5 )

+ {—%(1 —Q)'”? [(1 +2)—(1 +z)‘/”'] +(1-Q)' ((% - %(1 +z)$*%) H =0,
3

o)

or,

[(1 +7)- (1 +Z)1/'"} (% . %%)

s7{-sa-aarn-as s G (1-Lavzr) | =0

(3.475)
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’[I:lable 3.5 gritic.al flow over mt/R, HE EIR, c,
sharp-crested. weir Computed m=2 |3 0.75 2 0.627
Computed m = 1.6 2.1428 0.761 1.76 0.6376
Measured - 0.7422 - 0.6338
Rewriting Eq. (3.469) as
Z=(1-Q) "1, (3.476)
its differentiation yields
dz m _m_]
(1= " 3.477
o =a(1-9) (3477)

It is evident, by formally substituting Egs. (3.476) and (3.477) into Eq. (3.475), that
a functional relation emerges from Eq. (3.475), which can be written as a nonlinear
implicit equation f(€, m) = 0. For a selected value of m, this leads to the value of
Q = t/E, and, via Eq. (3.476), for Z = mt/R,,, and, consequently, via Eq. (3.473), to
the value of C,. This problem has been numerically solved. Consider Table 3.5,
where numerical computations conducted using values m = 2 and 1.6 are presented.
Note that the two computations produce good estimations of C,, as well as of the
critical depth ratio #E. A comparison of these results with those in Table 3.4
indicates that the effect of the derivative OR,/0¢ on #/E is important, given the
improved accuracy in Table 3.5.

Therefore, the value of m cannot be arbitrarily selected. To determine m, the
predicted velocity and pressure distributions using Eqgs. (3.459) and (3.467) were
compared with the experimental data of Scimemi (1930). Firstly, the velocity and
pressure distributions, based on the results of Table 3.4, are plotted in Fig. 3.53a
and b, respectively. The relation E/h = 0.888 was used to scale the plots. Neither
the velocity nor the pressure distributions are accurately predicted, however.
Computations based on Table 3.5 for m = 2 are plotted in Fig. 3.53c, d. The pre-
dicted velocity and pressure distributions are in fair agreement with observations.
However, the computed pressures are somewhat overpredicted (Fig. 3.53d), sug-
gesting that the value of m should be lower than 2. Computations based on
Table 3.5 for m = 1.6 are shown in Fig. 3.53e, f. The effect of m on the computed
velocity profile is noted to be small, but noticeable on the pressures, however. This
particular value of m produces good estimates of C,; and #E (Table 3.5) and
velocity and pressure distributions that are in good agreement with observations.
These results, thus, reveal that a sharp-crested weir is a critical flow device oper-
ating with a non-hydrostatic pressure distribution and that the free jet spilling from
the vertical plate is a peculiar case of flow over a round-crested weir, for which the
bottom pressure head vanishes along the lower streamline.
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Fig. 3.53 Comparison of sharp-crested weir velocity V/(2gh)"*(z/f) and pressure p/(pgh)(z/t)

distributions (—) at the contracted section based on a, b critical flow computation (Table 3.4), c,
dcritical flow computation (Table 3.5)form = 2,e,fcritical flow computation (Table 3.5)form = 1.6,
with (¢) experimental data by Scimemi (1930)
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3.11.2 Profile of High Dams

The spillway crest of a high dam is usually shaped based on the lower trajectory of
the sharp-crested weir z;, = z;(x) for design flow conditions (Fig. 3.54a). Its
upstream head is E, which is a minimum specific energy E,;, corresponding to the
critical flow conditions, as demonstrated in the above section. A spillway designed
based on this sharp-crested weir (Fig. 3.54b) is characterized by the design head
Hp. Ideally, if the spillway bottom profile is shaped based on the lower nappe
trajectory z; = z,(x) of the sharp-crested weir of Fig. 3.54a, the bottom pressure
head must vanish. This concept is widely used by dam engineers, namely that the
absolute bottom pressures over a spillway crest are atmospheric at design condi-
tions (actual head E equal to the design head Hp). In practice, however, these
bottom pressures are not exactly zero, given the boundary layer development along
the weir face (Montes 1998). A spillway profile based on the lower jet trajectory of
a sharp-crested weir is referred to as the “ogee” spillway profile. An “ogee-shaped”
spillway profile guarantees that the bottom pressure remains close to atmospheric
pressure at design conditions. If the bottom pressure head along the spillway crest
profile falls below the vapor pressure, cavitation occurs, leading to severe potential
damage on the hydraulic structure. In addition to cavitation-related damage, if the
spillway profile is not ogee-shaped, the flow may separate from the bottom, leading
to additional operational problems. Specific advantages of ogee spillway profiles
are the increase of the discharge coefficient for heads larger than Hp. For E > Hp,
bottom pressures are below the atmospheric pressure and the actual discharge
coefficient is larger than the design discharge coefficient. For E < Hp, bottom
pressures are above the atmospheric pressure and the discharge coefficient is
smaller than the design discharge coefficient. For a high dam, E = Hp ~ 0.8884,
based on Fig. 3.52.

Consider for illustrative purposes a spillway profile designed based on the data
of Scimemi (1930), previously described in Tables 3.4 and 3.5 and in Fig. 3.53.

(a) Total head line (b) Total head line

=z, (x)

Fig. 3.54 Profile of high dams: a sharp-crested weir used to define design conditions, b equivalent
spillway profile operating at design head, with ideally vanishing pressures along the weir face
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The design (subscript D) discharge coefficient Cp of the spillway profile is defined
as (Montes 1998)

q=Cp(eE®)"”. (3.478)

Equating Eqgs. (3.478) to (3.470) yields

2
Cp(gE?) = = Cah(2gh)'", (3.479)
and thus,
2V2 (W 2v2 3/2
Co="Y2C,(2) =2Y2%06338x () ~0714- 3.480
P=T3 d(E) 3 X<0.888> (3.480)

This corresponds to the discharge coefficient at design conditions based on Scimemi
(1930). It is, however, widely accepted to adopt the mean value C,; = 0.612, leading
to Cp =~ 0.689. For shallow free surface flow approaching the limiting operating
condition E — 0, the overflow is hydrostatic, with the crest flow depth equal to the
hydrostatic critical flow depth hgeq = he = (¢*/g)"°. The minimum discharge
coefficient of the spillway profile, in the absence of scale effects, originating from
fluid surface tension and viscosity, is, thus, Cp = (2/3)*? ~ 0.544.

In practice, several attempts were made to mathematically define the lower
nappe trajectory of the sharp-crested weir, to determine analytically a spillway
profile for design purposes. The data of the lower jet profile of sharp-crested weirs
conducted by Scimemi (1930) are fitted for X > 0, with X = x/Hp and Z = z/Hp, by
the WES (Waterways Experiment Station) profile in dam hydraulics

1
Z= —§X1'85~ (3.481)

The Creager (1917) profile is similar to Eq. (3.481), given by
Z=-047X"%X > 0. (3.482)

It corresponds to an empirical fit to the data of Bazin (1888). Knapp (1960) pro-
posed the empirical curve

X X
S =414 = 3.483
R, Rb+n( +Rb), ( )

corresponding to a continuous crest profile, with R, = 0.688% as the crest radius of
curvature. Therefore, with Hp = 0.888/, an alternative form of Eq. (3.483) is
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Z = —X+0.7747 - 1n(1 + (3.484)

0.7747) ’

in which X = x/Hp and Z = z/Hp. Hager (1987, 1991) proposed a continuous
profile for the standard spillway defined by the mathematical curve

Z=-X-InX, (3.485)
where

2.705(Z +0.136),

(3.486)
1.3055(X +0.2818).

7=
X =
The experimental data of Scimemi (1930), numerically smoothed by Montes
(1998), are shown in Fig. 3.55a, including also curves based on Egs. (3.484) and
(3.485). Overall, the accuracy of the Knapp (1960) profile is limited, roughly to
—0.1 < X < 0.4. In contrast, Eq. (3.485) precisely describes the crest shape for
-0.3 <X < 0.8 (Fig. 3.55a-c). Hager’s profile (1987) also agrees with the
numerically generated continuous weir crest profile of Montes (1992c¢), assuming a
gradual transition of bottom curvature along the crest. The profile given by
Eq. (3.485) was experimentally verified using model tests and the performance
compared to other designs used in dam engineering (Hager 1991). Therefore, the
practical design of a spillway profile is adequately addressed with the current state
of knowledge. However, from a theoretical point of view, attempts to explain the
shape of a spillway profile using hydraulic computations are rare.
The purpose of the following computation is to present a simplified theory
explaining approximately the spillway crest shape. The bottom pressure head for
flow over a curved bottom profile is given by (Eq. 3.75)

2

q 2
— =h+ ——= (2hzpye + hhy — B — 2250, ) - 3.487
. + 20 ( Zbxx T . b, ) ( )

For a free jet, the bottom pressure head is p,/y = 0, so that

2

q 2
0=h+ ——= (2hzpxx + hhyy — b — 22,0, ) - 3.488
+2gh2( Zbxx T N Zp ) ( )

Following Hager (1983) and Marchi (1992, 1993), assume that the water depth
derivatives in a free jet can be neglected, namely 4,, =~ h, =~ 0 as compared with

the significant nappe curvature, approximated in Eq. (3.488) by d*z,/dx*. Therefore,
Eq. (3.488) simplifies to (Hager 1983)
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Fig. 3.55 Spillway crest
profiles Z,(X): a comparison
of approximations,

b comparison of critical flow
profile with Hager’s (1987)
empirical profile and
experimental data (Scimemi
1930), ¢ idem as b, but for
larger X
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q
0=1 o 3.489
+ P —>572b ( )
or
d’z, gh?
2 = — ? (3.490)

Equation (3.478) at design conditions is

12

q = Cp(gH;) (3.491)

Inserting Eq. (3.491) into Eq. (3.490), taking / as the crest flow depth h¢.eq, and
defining X = x/Hp and Z = z/Hp, yields the ODE describing the spillway crest
profile as

dzZ hcresl/HD :
i . 3.492
= - (" (3.492)

Integrating Eq. (3.492) twice subject to the boundary conditions Z(X = 0) =
Zx(X = 0) = 0 produces the solution

1 hcrest/HD . 2
Z=—- (=) 2 3.493
5 (Pl) (3.493)

Based on the results of Table 3.5, flow over a sharp-crested weir is critical, with
minimum specific energy conditions at the point of maximum elevation of the lower
jet profile. Using the critical flow results for m = 1.6, Cp is computed from

22 372 2[ 1\
- X 0.6376 x (—— | ~0.7184 3.494
o ="3" d<E> x (0.888) (3499

and with the crest critical depth ratio he.s/Hp = 0.761, Eq. (3.493) produces the
parabolic profile

1 hcrest/HD : 2 1 0.761 2 ) 5
I=—|—7—) X" =—= X* ~ —0.561X". 3.495
2 ( Co ) 2\07184 (3.495)

The weir crest shape based on critical flow is, therefore, given by Eq. (3.495).
Figure 3.55b shows good agreement with the Scimemi data (1930) (Eq. 3.481) is
an accurate fit to these data] in the interval —0.1 < X < 0.7. Comparison of the
Creager (1917) profile given by Eq. (3.482) with Eq. (3.495) indicates good
agreement up to X = 0.7. Therefore, the weir crest shape in the vicinity of
the contracted section can be explained based on the critical flow theory.
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The assumption h,, =~ h, = 0 used to construct Eq. (3.495) is not accurate for
X < 0, given the significant drawdown curve, but it provides a good approximation
for X > 0. The theoretical coefficient 0.561 in Eq. (3.495) is close to 0.5 as used by
Scimemi (1930) to produce Eq. (3.481). The exponent 1.85 differs, though, from
the theoretical value 2; differences are attributed to the best data-fitting strategy to
produce Eq. (3.481). The widely used Eq. (3.481) is, therefore, interpreted as an
empirically corrected curve to the theoretical result originating from the critical flow
theory with non-hydrostatic pressure.

3.12 Critical Flow Over Weir Profiles
3.12.1 Jaeger’s Theory

In the previous sections, 1D and 2D methods to produce the complete solution for
flows over a round-crested weir are presented. However, if the main interest focuses
on crest conditions, the problem is solved by the computation of the flow depth
hewest and the discharge coefficient C;. These variables are determined by resorting
to critical flow computations with curvilinear streamlines as presented in Sect. 3.6.
Consider the case of standard spillway flow (Hager 1991; Castro-Orgaz 2008)
(Fig. 3.56).

The generalized Jaeger theory presented in Sect. 3.6.3 is well suited for this
problem (Jaeger 1956; Montes 1970; Castro-Orgaz 2008). The computation of the
head-discharge relation C; = C4(E/Hp) is as follows. For a given dimensionless
head E/R;, an arbitrary value of 7..s/R}; is selected. The terms ¢, and ¢,, are com-
puted as (Castro-Orgaz 2008)

1/2
b= — <2E/Rb2> , (3.496)
9+7(E/Ry)

Fig. 3.56 Standard spillway (a) (b) Total head line

flow: a experiment in physical NN + TS
model (Hager 1991),

b definition sketch for critical
flow

Critical point
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b = 4 14—7 E v
T 9R, 15 \R,

Equations (3.496) and (3.497) were developed by Castro-Orgaz (2008) making
empirical corrections to the basic theoretical results 2 = 2E/(9R,) and 1., = 4/(9R),),
formally derived using Picard iteration method [see Eqs. (3.203) and (3.205)]. The
curvature parameter r is approximated by

(3.497)

thxx

r=— (3.498)
My + 1Zpxx
and m, computed using Eq. (3.241),
b
o =— (r—1), 3.499
m=5p (= 1) (3.499)

with N, determined on the basis of 7., using Eq. (3.112); at the spillway crest as

tcresl _ 1 _ i (3 500)
N, 6 ’

The value of C, is then, from Eq. (3.245),

91/2 E -1 ferest 1/2 1 1+1/m,
Cy= — 1-— 1—1- . 3.501
1= 1tm, (R,,) ( E ) " (r) (3:501)

This sequence is repeated for several .../R;, values, until obtaining the maximum
discharge coefficient C, for the prescribed value of E/R;. The corresponding critical
depth for curved flows is, therefore, the value ... for which C, reaches a maxi-
mum. Figure 3.57a shows the function given by Eq. (3.501) for E/R, =1 and
several values of 7...s/R,. At the point of maximum C,, the flow is critical and the
depth corresponds to the critical flow depth.

The dimensionless parameter governing the flow features at the spillway crest is
E/R;, (Matthew 1963, Hager 1991, Castro-Orgaz 2008). However, it is common
practice in dam hydraulics to relate spillway flow features to the dimensionless head
i = E/Hp, in which E is the actual head and Hp, the design head of the spillway
profile. Hence, the relevant critical flow variables at the spillway crest, Cy, Acrest,
and p..esc Were determined as functions of y using Hp = 1.7R,, as scaling (Hager
1987). The discharge coefficient is plotted in Fig. 3.57b together with the experi-
mental data of Hager (1991). Note that the computed C, curve reasonably agrees
with the test data up to y = 2, an operational head with a markedly high degree of
curvature effects. Normal operating conditions of an overflow structure comprise
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Fig. 3.57 Ciritical flow over a standard spillway profile: a determination of critical flow conditions
for E/R;, = 1, b comparison of (—) computed C,(y) with data of (*) (Hager 1991), ¢ comparison of
(—) computed heres/ Hp(y) and peres/(YE)() with data of (,m) (Hager 1991), d comparison of (—)
computed m,(y) and (- - -) Jaeger’s theory (adapted from Castro-Orgaz 2008)

usually y < 1.33. Test data concerning the vertical flow depth A at the crest
presented by Hager (1991) are plotted in Fig. 3.57c. The vertical critical depth A s
is estimated using its equivalent vertical projection of a normal 7. (Fig. 3.56b) as
(Hager and Hutter 1984a) (Eq. 3.112);

2\ 7!
hcresl = Icrest (1 - Ex) : (3502)

The prediction given by Eq. (3.502) is plotted in Fig. 3.57c. The curve computed
theoretically predicts higher values of A /Hp than computed with the hydro-
static pressure approach (hees/Hp = 2y/3), in agreement with Hager’s data
(1991). The dimensionless bottom pressure at the spillway crest is obtained from



242 3 Inviscid Channel Flows

conservation of energy of a potential flow as (Castro-Orgaz 2008) [see
Eq. (3.467) for z = 0]

Pcrest —1_ (1 _ @) r*2/m0. (3503)
VE E

Charles Jaeger was born on March 26, 1901,
in Zurich, Switzerland, and passed away on
December 05, 1989, at Pully, VD. He obtained
the ETH civil engineering diploma in 1924 and
went to an engineering office at Genéve for two
years to become then private assistant to Eugen
Meyer-Peter (1883-1969). He submitted his
PhD thesis in 1933 on water hammer analysis
Y. and was at a sanatorium because of tubercu-
\ losis, returning to the Versuchsanstalt in 1938.
e A In 1944, he was appointed ETH Lecturer yet
retired because of differences with the director.
In 1947, he moved to the UK as an engineer with the English Electric
Company at Rugby, became Reader at Imperial College in 1958, and led
International Courses until his retirement in 1965. He was awarded the
position of special lecturer at Imperial College and received the
Gotthilf-Hagen Medal in 1965 and the ETH honorary doctorate in 1983 for
outstanding works in hydraulics.
Jaeger contributed significantly to hydraulics and was one of the founders of
rock mechanics. His researches are in theoretical hydraulics, mainly in water
hammer and surge tanks during his early Zurich period, in the critical flow
theory during his second Zurich period and then in hydraulic engineering
during his London period. He has written excellent books, including
Technische Hydraulik later translated into various languages, a book on rock
mechanics, and the Hydraulic transients book, which was not so successful
though because the methods presented to solve equations were outdated. Yet,
Jaeger was a key expert in questions relating to unsteady flows, and he
designed these details for various hydropower plants mainly in Scotland. He
presented an outstanding theory for curvilinear flow over weirs generalizing
previous findings of Boussinesq. He was also the first requiring hydraulic
similarity for scour phenomena, with Willy Eggenberger (1916-1994) pre-
senting the corresponding results in his PhD thesis at ETH Zurich.

Equation (3.503) is plotted in Fig. 3.57c with the test data of Hager (1991). The
computed curve agrees with these also up to y =2. The model predicts
Peres!(VE) = 0 for design conditions of the spillway crest, namely, y = 1, as



3.12 Critical Flow Over Weir Profiles 243

expected. The crest bottom pressure is of design relevance due to the risk of
cavitation damage. It is related to the minimum bottom pressure of the spillway
profile by a factor nearly equal to 3/2 (Hager 1991). The parameter —m, of this
theory is plotted in Fig. 3.57d for comparison purposes with the hypothesis of
Jaeger, who adopted a constant coefficient of 2.2. Note that —m,, varies considerably
with the curvature of the flow, represented by y. The parameter —m,, is only close to
22if1 < y < 2.For y — 0, m, approaches —00, so that the velocity distribution
of Jaeger theory, given by Eq. (3.237), becomes uniform. From energy conserva-
tion in potential flow, the pressure distribution then follows the hydrostatic law, and
C, tends to (2/3)*? for shallow flows.

The extension of Jaeger (1939) theory by Castro-Orgaz (2008) relies on the use
of the parameter m,,(r), which, therefore, depends on the actual flow curvature. As
previously discussed, the theory is limited to y = 2, given the empirical approxi-
mations used to compute 7., and t,zc (Egs. 3.496-3.497). Furthermore, the parameter
m, is obtained by definition from the slope of the curve R = R(n) at the bottom level
(v=0) as

m, = PI;EZ”)} = (3.504)

However, it is approximated here as slope of a linear function across the whole
equipotential line by

m, = (@) ~ M. (3.505)
on/, N,

At high heads, the curve R = R(n) is nonlinear near the free surface. Therefore, the
bottom-level slope will differ from the mean slope across the equipotential line.
Based on the results of Fig. 3.57, Eq. (3.505) is, thus, limited to y < 2. To simulate
standard spillway flow at higher heads, the original theory of Jaeger (1939) was
applied, adopting the value —m, = m = 2.2 based on the experimental data of flow
over circular-crested weirs (Jaeger 1939, Montes 1970). Given that m is a constant,
a simple relation exists between E and the critical flow depth. In the classical Jaeger
theory, the critical depth is approximated by the crest flow depth A
Equations (3.456)—(3.467) form the mathematical basis; the critical flow condition
for standard spillway flow is, thus, from Eq. (3.464), with m = —m, = 2.2

1/
I Ulcrest i crest
( b ) ( 1 b )

1/m—1
1 )lhcresl

MmE _ mhcres:
Ry, Ry,

1
= 3.506
+3 : (3.506)

The computation of the head-discharge relation C, = C,(E/Hp) is as follows. For
a given dimensionless head E/R;, an arbitrary value of hg. /R, is selected. The
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value of E/R;, is then determined from Eq. (3.506), and the discharge coefficient for
critical flow is from Eq. (3.462)

1
R h h m
ColeB*)"= 2(E ]2 2| (14 ) = (14 7] ]
(3.507)
or,
Rerest 1/2 E - 1 Mhgrest MhAcrest \ ™
=211 —— — 1 — (1
G {( Eﬂ Ry) m—1 " Ry * Ry
(3.508)

The crest bottom pressure is, from Eq. (3.467) at z = 0,

Derest _ 1 — (1 B hcrest) (1 n mhcrest> 2/m. (3.509)

E E Ry

Predictions based on Egs. (3.506)—(3.509) are shown in Fig. 3.58, showing good
agreement with observations of Hager (1991) up to y = 4, despite the constant
value m = 2.2 that was adopted. Jaeger’s theory was limited to critical flow com-
putations at a weir crest. However, his theory can also be extended to water surface
profile computations with equally good results (Appendix F).

Consider now flow over a circular-crested weir (Fig. 3.59). Velocity and pres-
sure distributions based on Jaeger’s theory will be compared with the experimental
measurements by Fawer (1937). Applying the generalized Jaeger theory
(Castro-Orgaz 2008) to a circular weir test by Fawer (1937), corresponding to a
normalized operational head E/R;, = 2.363, the results are summarized in Table 3.6.
These are based on the computed value m, = —1.8318, resulting in an accurate
prediction of C,. A deviation on the predicted ratio A /E from measurements is
noted, however.

The velocity distribution given by Eq. (3.237) is compared with Fawer’s (1937)
data in Fig. 3.60a, resulting in a fair agreement. The pressure distribution was
computed based on energy conservation of the potential flow, using the computed
velocity profile displayed on Fig. 3.60a. The results are again in fair agreement with
observations, yet deviations are noted. Overall, the model results correctly predict
the shapes of velocity and pressure distributions, including the negative pressures.
For comparative purposes, the classical Jaeger theory previously described was
applied to the same test case, using two different values of m, namely m = 2.2 and
m = 1.6. The computed results are stated in Table 3.7. Note that neither C,, nor
hewes/E, are accurately predicted based on m = 2.2. In contrast, the computation
based on m = 1.6 produces excellent agreement between computations and
experiments. Computed velocity and pressure distributions using Egs. (3.459) and
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Fig. 3.58 Critical flow over standard spillway profile using Jaeger’s (1939) theory (—m, = 2.2).
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Table 3.6 Critical flow over circular-crested weir using extended Jaeger’s theory (Castro-Orgaz

2008)
hcrcst/ Rb hcrcsl/ E E/ Rb Cd
Computed —m, = 1.8318 1.731 0.7326 2363 0.7545
Measured 1.652 0.6992 2363 0.755
@ 17 ) 17
0.8 0.8 i
1
0.6 0.6+ i
"nu.\[ 04 — ht"t‘ﬂ 04 - i
0.2 0.2- i
0 T i 0 T .I i T
0 04 08 12 08 04 0 0.4
v/(2gE)" p/(pgE)

Fig. 3.60 Comparison of velocity V/(ZgE)llz(z/hcrest) and pressure p/(pgE)(z/heres) distributions
(—) at circular weir crest based on critical flow computations in Table 3.6, with (*) experimental
data of Fawer (1937)

Table 3.7 Critical flow over circular-crested weir using Jaeger’s theory (1939)

Mhcresd Ry Neres! E EIR, Cy
Computed m = 2.2 3.585 0.689 2.363 0.718
Computed m = 1.6 2.6432 0.6991 2.363 0.7658
Measured - 0.6992 2.363 0.755

(3.460), respectively, are plotted in Fig. 3.61a,b for m = 2.2. The predictions are
similar to those depicted previously in Fig. 3.60. The results for m = 1.6 are dis-
played in Fig. 3.61c,d, respectively. Note the improved agreement of both velocity
and pressure computations with data. This comparative analysis highlights that the
choice of m is important and should not be arbitrary. For y < 2, the generalized
Jaeger theory (Castro-Orgaz 2008) produces good results, and the theory auto-
matically generates an approximate value of m. For y > 2, resorting to the classical
Jaeger theory (1939) is required. However, there is not yet a rational method to
compute m for y > 2, although the present results indicate that a reasonable value
must lie in the interval 1.5 < m < 2.
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Fig. 3.61 Comparison of velocity V/(2gE)"*(z/heres)) and pressure p/(pgE)(z/hees) distributions

(—) at circular weir crest based on critical flow computations of Table 3.7 for m = 2 (a, b), 1.6 (c,
d), with (¢) experimental data of Fawer (1937)

3.12.2 Fawer’s Theory

An alternative approach to compute critical flow over a weir is based on Fawer’s
theory (Fawer 1937; Khafagi and Hammad 1956; Castro-Orgaz 2010a). Based on
an interpolation function for the radius of the streamline curvature (Eq. 3.82),
Fawer’s velocity distribution at the spillway crest (Fig. 3.56b) is (Eq. 3.83)

“//s:expﬁgj (r(v— 1)+ (1 —r)(vl{;r_ll)ﬂ- (3.510)
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A dimensionless discharge g/(N, V), with g = unit discharge, is expressed as

q_ _
NV 7/(V/Vs)dv. (3.511)
0

Inserting Eq. (3.510) into Eq. (3.511), the integral can only be determined
numerically, unless simplifications are introduced. Equation (3.510) was developed
into a Taylor series by Hager and Hutter (1984a) assuming K = 1, resulting in
(Matthew 1963; Hager 1985a, b)

N -1
V—V{l—i—R(r(v—l)—k(l—r)(V : )>] (3.512)
Inserting Eq. (3.512) into Eq. (3.511) yields after integration (Eq. 3.86),
q N (r+42
=1—-— . Sl
N,V R, ( 6 ) (3:513)

This relation is limited to weakly curved flows, e.g., for r — 1, resulting either
from the approximation K = 1, or from the Taylor series development of the
velocity profile. Hager (1985a) proposed an empirical correction to improve
Eq. (3.513), assuming that this is the first-order term of the series expansion of the

function (Eq. 3.87)
q N (r+2
= - . 514
NV, exp{ Rs< 6 )] 331

However, Eq. (3.514) is still limited to K = 1. Equation (3.514) was improved by
accounting for K # 1 as (Castro-Orgaz et al. 2008a, b, ¢, Castro-Orgaz 2010b)

q N (r 1—r
= —— (= . 51
AR exp{ R (2+K+2)} (3.515)

Equation (3.515) is valid for highly curved open-channel flows. It was applied
using K = 0.5 to circular weir flows (Castro-Orgaz et al. 2008a, b, ¢). This K value
is, however, not general. In weir flows, the discrete relation K = K(r) obtained from
the flow net analysis is fitted by the empirical function (Eq. 3.455), (Castro-Orgaz
2010a, b, ¢)

K = r%%. (3.516)

The dimensionless discharge g/(N,V;) for given values of r and N,/R; is obtained by
inserting Eq. (3.516) into Eq. (3.510) and then integrating Eq. (3.511) numerically
using this velocity profile. Results for r = 2, 4, 6, and 8 are plotted in Fig. 3.62 for
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Fig. 3.62 Dimensionless weir-flow discharge g/(N,V,)(N,/Ry) as function of r = 2 (a), 4 (b), 6 (¢),
8 (d)

the weir-flow case (N,/R, < 0). The results from Eqs. (3.514) and Eq. (3.515) using
Eq. (3.516) for K(r) closure are also displayed for comparative purposes. As shown
in Fig. 3.62a, Eq. (3.514) is in excellent agreement with the full numerical solution
for r =2. The performance is better than that obtained from Eq. (3.515), yet
deviations are small. For r > 2, Eq. (3.515) matches the numerical results well,

indicating that the inclusion of the function K = K(r) is important as the flow
curvature increases.
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The computation of the head-discharge curve C,;= C,(E/R,) based on
Fawer’s Eq. (3.510) is accomplished by the following steps:

(1) For a value of E/R,, t. and t,, are determined from the semi-empirical
Eqgs. (3.496) and (3.497), respectively. The value of R, is taken as positive,
implying that E/R;, > 0, requiring that a negative sign be introduced in com-
putations to account for the weir-flow case.

(2) An arbitrary value for 7...s/R}, is selected. Based on hydrostatic critical flow, a
reasonable starting value is given by (f..es/Ry) = 2(E/R})/3.

(3) The relative curvature r is determined from Eq. (3.247) using the available
values for t,,, t,, and fcresiZpre = ~(feres/Rp). Using this value of r, K is esti-
mated from Eq. (3.516).

(4) The value of N,/R,, is determined from Eq. (3.500), using the available values
for ¢, and 7.es/ Ry

(5) Compute N,/R; = —(N,/Rp)/r based on available values.

(6) Integrate Eq. (3.511) numerically, using Eq. (3.510), for the parametric values
(r, K, N,/R;) available.

(7) Compute t e/ E = (teres! RO/I(EIRy) and N/t rese = (No/Rp)/ (teres/ Rp), using the
available values.

(8) The discharge coefficient is then given, based on Eq. (3.511), by the identity

1

1/2
Cafer?) = | [ Vv |NpeE -t G517)
0
or
1
c, 21/2<N ) (1 _tcre%t tcrest / V/V . (3518)
tCl'CSt o

The sequence of steps (2)—(8) is repeated until the condition OC#O(teres/Rp) = 0 is
reached, corresponding to the critical flow at the weir crest (Fawer 1937; Chanson
2006; Castro-Orgaz et al. 2008c; Castro-Orgaz 2010a). Then, a new value of E/R,, is
selected, and the entire sequence is repeated. The resulting head-discharge curve
C, = CAEIR,) is plotted in Fig. 3.63a, showing good agreement with the experi-
mental data (Hager 1991) of a standard spillway flow up to E/R, = 2.5 (y = 1.5).
The accuracy of this approach is, therefore, slightly smaller as compared with
Jaeger’s generalized theory. To highlight the effect of the nonlinearity of K = K(r),
the identical numerical computation was performed by assuming K = 1, i.e., the
treatment of Hager (1985a). As shown in Fig. 3.63a, the results of the analysis using
Eq. (3.514), based on K = 1, agree excellently with the data of Hager (1991) up to
E/R, =1 (x = 0.58), i.e.,, weakly curved flows. The results based on Eq. (3.515)
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Fig. 3.63 Ceritical flow computation of standard spillway flow using Fawer’s theory a C4«E/R),),
b r(E/Ry), ¢ N,/R(EIRy)

match the experimental data up to E/R;, = 3, i.e., highly curved flows. The computed
function r(E/R;) is displayed in Fig. 3.63b, showing that the maximum value
obtained for E/R, =4 is r ~ 8. Further, the computed curve N,/Ry(E/R;) in
Fig. 3.63c shows that N,/R, is below —0.5 for this range of operational heads
involving highly curved flows. Values previously generated in Fig. 3.62 correspond,
therefore, to these practical limits for both r and N,/R;.

Fawer’s critical flow theory for curvilinear flow (Castro-Orgaz et al. 2008c)
applies to study flow over circular-crested weirs (Fig. 3.55), as investigated by
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Fawer (1937), Matthew (1963, 1991), Lenau (1967), Montes (1970, 1998), Hager
(1985b, 1993), Ramamurthy and Vo (1993a, b), Ramamurthy et al. (1992),
Chanson and Montes (1998), Heidarpour and Chamani (2006), Schmocker et al.
(2011), and Castro-Orgaz and Chanson (2014). For a given unit discharge g, the
minimum specific energy head defines the critical flow depth ... as predicted by
Eq. (3.225). By using Eq. (3.223) at the weir crest (z;,, = 0), the specific energy and
hence the weir discharge coefficient C, are determined. The first and second
derivatives are approximated as (Matthew 1991; Castro-Orgaz et al. 2008c)

212 1 EN'/? 236 E
= £ |02 3.519
‘ 3 (Rb) ( 729R;,> ( )
4 4783 E
= — (1 2222 52
L 9R,,< + 16038R,,) (3.520)

Equations (3.519) and (3.520) were determined by Matthew (1991) by an iteration
procedure using the third-order extended energy equation (Eq. 3.80). The parallel
flow relation ¢ = 2E/3 was used as an approximation in Eqs. (3.519) and (3.520).
The term #¢,./t, in Eq. (3.225) follows from the lower order critical flow condition
given by Eq. (3.230); there, the required value qz/gtz’rest was estimated from
qz/(gtgmm)exp(—tcmst/R;,) = 1, the first-order expansion of which is the weakly
curved critical flow condition of Hager (1985b). Once the critical depth ?# s i
computed, its corresponding vertical flow depth /. as the variable measured by
Chanson and Montes (1998) is given by Eq. (3.502). The mean value of K = 0.5
was adopted to compute curved streamline flow over a circular weir, which rea-
sonably reproduces the flow features in the range of practical applications for the
circular-crested weir (Castro-Orgaz et al. 2008c¢).

The results for the critical depth at the weir crest are shown in Fig. 3.64a. The
model prediction for the critical depth at the weir crest was tested with the data from
a careful set of experiments reported by Chanson and Montes (1998). The predicted
critical depth agrees with the data up to E/R, = 2, except for very low heads
(i.e., E/R;, < 0.2), for which both viscosity and surface tension play a major role
(Matthew 1963). For E/R,, = 0, the potential curved model yields k. = (¢*/g)"">. If
the boundary layer effect is included in the analysis, the critical depth increases
above its value h. (Montes 1998) due to the boundary layer displacement thickness.
This theoretically explains the values hg../h. > 1 obtained experimentally for low
heads. As shown in Fig. 3.64b, the computed discharge coefficient based on the
present higher order critical flow theory agrees well with the experimental data
(Blau 1963; Heidarpour and Chamani 2006; Castro-Orgaz 2010a) again up to
E/R;, = 2. For low heads, the differences with the experimental data of Heidarpour
and Chamani (2006) are again due to viscous and surface tension effects (Matthew
1963). For low heads, the effect of streamline curvature plays a minor role, whereas
scale effects have a notable impact on the discharge characteristics. The inclusion of
the boundary layer in the analysis causes a reduction of the discharge coefficient, as
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Fig. 3.64 Critical flow over (21) +  Experiments (Chanson and Montes 1998)
circular-crested weir: Experiments (Blau 1963)
comparison of a (—) | 4 Experiments (Castro-Orgaz 2010a)
computed hresi/h(E/Ry), ’ Computec
b CAE/R,) with
-
measurements (adapted from 1.2
Castro-Orgaz et al. 2008c) +
-
-
-
h..'rr:l | _"a.." -t
50. A
-
h * 3 " . ow
0.8 e ae i
0.6 T T T 1
0 0.5 1 1.5 2
E/R,
(h] ®  Experiments (Heidarpour and Chamani 200
Experiments (Blau 1963)
Experiments (Castro-Orgaz 2010a)
Computed
0.8

0.7 :
. .

s
C, U.(:-/; ;‘.\

=
h
o
o -~

found analytically by Matthew (1963), Montes (1970), and Castro-Orgaz and Hager
(2014b).

The computation of C,(E/R,) shown in Fig. 3.64b based on the higher order
critical flow conditions given by Eq. (3.225) is compared in Fig. 3.65 with the
theories of Dressler (1978) and Matthew (1991). The third-order extended energy
equation from a Picard iteration (Eq. 3.80) gives upon imposing critical flow at the
weir crest (Matthew 1991)

7\ 3/2
ci=(3)

The results of Eq. (3.521) in Fig. 3.64 are extremely close to those of Eq. (3.225).
Therefore, by resorting to K # 1 in Eq. (3.100), it is possible to find similar results

2 E E\?
1+———0.045<R—) : (3.521)

81 R, b
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to those originating from Eq. (3.80). The prediction of C4E/R;) from Dressler’s
theory using Eq. (3.161) is, however, far from the experimental data for E/R;, > 1.
Therefore, the concentric streamline approximation needs to be relaxed for higher
heads.

3.13 Standard Sluice Gate
3.13.1 Free Jet Flow

Gates constitute an important hydraulic structure used in irrigation schemes, inland
navigation, and dam structures. The standard sluice gate relates to a planar vertical
“wall” inserted in a smooth and prismatic, horizontal rectangular channel
(Fig. 3.66). Its crest is formed as a sharp-crested weir, made up by a 2-mm hori-
zontal sharp crest bevelled at its tailwater side by 45°. This structure is employed to
measure discharge or to set a backwater level. Its basic flow features were inves-
tigated by model researches so that detailed results are available (Rajaratnam and
Humphries 1982; Othsu and Yasuda 1994; Roth and Hager 1999).

Gate flow is divided into the approach flow portion up to the gate section made
up of an internal jet along the channel bottom with a vortex flow zone above it, and
the free jet portion in the tailwater (Fig. 3.66b). Detailed computational simulations
based on the ideal fluid flow theory are available (Fangmeier and Strelkoff 1968;
Montes 1997). Free gate flow is often treated using 1D conservation of energy
between the approach flow and the tailwater jet assuming parallel-streamlined flow
(Rouse 1950; Montes 1998). Flow features of engineering interest including the
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Fig. 3.66 Standard sluice
gate flow: a typical internal
flow structure of upstream
flow, b definition sketch with
(- - -) bottom pressure head
distribution (adapted from
Castro-Orgaz and Hager
2014c)

free surface profile and the bottom pressure distribution (Montes 1997) are over-
looked by this approach.

Standard  sluice gate flow exhibits features incompatible with
parallel-streamlined flow considerations, originating from the non-hydrostatic
pressure distribution (Fangmeier and Strelkoff 1968; Montes 1997). The
Boussinesqg-type approximation introduces the vertical acceleration effect in the 1D
flow equations (Boussinesq 1877; Matthew 1991; Bose and Dey 2007, 2009;
Castro-Orgaz and Hager 2009), thereby overcoming the standard 1D hydrostatic
pressure limitation. Boussinesq’s theory was considered by Serre (1953) for the free
jet flow portion of free gate flow, without checking the theoretical results with the
experimental data or 2D ideal fluid flow computations. Benjamin (1956) fitted the
2D free surface jet profile to a standard solitary wave profile, without satisfactory
results. Both Serre and Benjamin overlooked the effects of the upstream free surface
profile and the bottom pressure features. The gate pressure distribution was not
considered in these applications of Boussinesq’s theory. No notable 1D computa-
tions of standard sluice gate flow using the Boussinesq equations were presented
since these works, as noted, e.g., in the detailed review of Montes (1997).
Therefore, Castro-Orgaz and Hager (2014c¢) studied the free surface and the bottom
pressure features using the 1D Boussinesq’s approach, including the pressure dis-
tributions both on the gate and on the channel bottom. This approximate treatment
is described herein. The computation of the free jet portion in the tailwater of a
standard sluice gate has been extensively considered using the full 2D potential
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flow model. A solution of the Laplace equation is sought using suitable numerical
techniques (Fangmeier and Strelkoff 1968; Montes 1997). Montes (1997) reviewed
the relevant 2D solutions from 1860, so that reference to his paper is made for
detailed information. On the other hand, the computation of free jets using a 1D
model received almost no attention. The first attempt was due to Fawer (1937), who
used an extended Boussinesq-type energy equation. His model was, however, only
valid for inclined gates and was employed to estimate the contraction coefficient,
yet without furnishing jet profile computations. He then proceeded with a 2D
hydrodynamic solution without gravity effects for planar sluice gates. The next
attempt was made by Serre (1953), who proposed a theoretical model for the free jet
surface profile, again without verifying the results with the experimental data or 2D
computations. Using a 1D model, Benjamin (1956) tried to fit a standard solitary
wave to the 2D free surface profile computed by Southwell and Vaisey (1946).
However, the fit was stated to be valid only far from the gate lip. A hybrid method
was then proposed using a 2D solution in the vicinity of the gate section. The 1D
modeling of free jets is therefore reconsidered starting with the (E, S, g) invariants
of Boussinesq-type equations for steady potential flow in a horizontal channel as
(Serre 1953; Benjamin and Lighthill 1954; Hager and Hutter 1984b)

2 2
q 2hhy — ke
E=h+ 2 (1 + 3 = const.,

3.522

S h2+q2 1+hhﬂ—h)2( . . ( )

= — _— ——— | = const. = const.
2 T eh 3 1

Here, h is the vertical flow depth, E the specific energy head, S the specific
momentum, and ¢ the unit discharge; subscripts indicate ordinary differentiation
with respect to the horizontal coordinate x. The jet invariants E and S are evaluated,
taking the conditions at the downstream jet section, as E = h; + qz/(2gh§) and
S = hfI/Z + qz/(ghd), with h, as the tailwater flow depth (Fig. 3.66b). The first of
Eq. (3.522) is expressed in the alternative form

2 2 2
qg-d (h q
I (ZE)=E-—h—--—"—. 3.523
6gdh(h) 2gh? ( )

This equation straightforwardly integrates to (Serre 1953)

q2 5 h3 q2
Ch=1h —— W —— 4+ —+Ch 3.524
i (“w@) y Tt 352

2 3 2
T —ppr - 4 4
6g * 2 2g
where use of the jet invariant E = h, + q*/(2gh3%) was made. Setting the boundary
condition &, — O, for h — h,, on Eq. (3.524), the integration constant C is given

by C = —[h3/2 + ¢*/(ghs)] = —S. Thus, Eq. (3.524) is rewritten as
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or in the alternative form,
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Here, F, = g/(gh})""* is the tailwater Froude number. The general integral of
Eq. (3.526) is with w as a constant (Serre 1953)

h wexpy
— = 144(FP—1) — 3.527
hd ( d )(1—|—a)eXpX)2 ( )
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Fa hq

F, is related to E by imposing conservation of energy between the approach and the
tailwater sections as E = h; + qz/(Zgh,zj) = hy(1 + F2/2), resulting in

E
F2 2(Ca— 1), (0<C.<1) (3.529)

with h; = C.a, a as the gate opening and C, as the contraction coefficient. The value
of w is determined by imposing the boundary condition A(x = 0) = a at the gate
section, from which Eq. (3.527) produces the quadratic equation

w 1

For w =1, the general Eq. (3.527) degenerates into the standard solitary wave
profile deduced by Benjamin (1956)

h 2 expy 2 2(X
o= 1H4(F 1)7(1 el b (F3 — 1)sech?(5). (3.531)

Results of Eq. (3.527) are compared in Fig. 3.67a with the 2D computations of
Montes (1997) using C. = 0.61. This mean constant value is supported by 2D
potential flow computations, indicating only a slight variation down to a/E = 0.60
(Montes 1997). The agreement of Eq. (3.527) with 2D results is in general good for
this range of E/a, yet with slight deviations near x = 0 for the low values of E/a = 2
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Fig. 3.67 Free jet surface profiles h/E(x/E) for various values of E/a: a comparison of (—)
Boussinesq-type solution with (¢) 2D potential flow computations (Montes 1997), b idem
including (- - -) standard solitary wave (Benjamin 1956) (adapted from Castro-Orgaz and Hager
2014c)

and 3. A limitation of 1D models as compared with the full 2D solution relates to
the exact boundary conditions at x = 0. From Eq. (3.527), h,(0) = —1 was obtained
for most of the simulations, whereas the surface profile is vertical at the gate lip
based on the 2D computations. This effect is local, so that its importance is small for
larger values of x.

Equation (3.531) is compared in Fig. 3.67b for selected tests with Eq. (3.527)
and the 2D results. Note that the agreement is generally not very good and limited
to the tailwater solitary wave portion for large E/a. The solitary wave does not
account for correct boundary conditions at x = 0, whereas Eq. (3.527) describes a
generalized solitary wavelike profile that accounts for correct boundary conditions
(Castro-Orgaz and Hager 2014c).

3.13.2 Approach Flow

All previous 1D computations assumed a horizontal upstream free surface.
Benjamin and Lighthill (1954) and Hager and Hutter (1984b) demonstrated that the
only possible steady-state water wave in a subcritical flow (F < 1) conserving E, S,
and ¢ is the cnoidal wave. Thus, the approach flow in the vicinity of the gate is
physically better represented by a cnoidal wave train than by a horizontal surface.
This is exploited in Fig. 3.68, in which 2D surface profiles of Montes (1997) are
compared with the cnoidal wave solution of Eq. (3.522). A numerical solution was
determined using the first of Eq. (3.522) imposing the flow depth £, as boundary
condition at x = —5a and h, = —0.05 as arbitrary value there to deviate the flow
from uniformity. Results indicate that the upstream approach flow follows indeed
the cnoidal wave solution of small wave amplitude and large wavelength. An aspect
of 2D potential flow solutions deserving attention relates to the method used to find
iteratively the upstream surface profile. In the numerical methods of Cheng et al.
(1981) or Montes (1997), the iteration of the free surface involves the specific
energy head of parallel-streamlined flows E = h + ¢*/(2gh®), to relocate the nodes
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Fig. 3.68 Approach flow
profile h/a(x/a) with (—) 1D
computation, (¢) 2D
computation (Montes 1997)
(adapted from Castro-Orgaz
and Hager 2014c)
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at the free surface. It is known that this equation does not allow for water surface
undulations as in cnoidal wave trains (Benjamin and Lighthill 1954). Thus, it
remains unexplored to which degree the current numerical searching algorithms for
the free surface, based on this equation, artificially smooth the physical oscillations,
in the computed free surface position. Therefore, it appears reasonable to assume
that a gate inserted in a subcritical stream provokes a slightly non-horizontal free
surface exhibiting cnoidal wavelike features.

The existence of irrotational water wave patterns is not trivial and has impli-
cations related to the physical features of transitional potential open-channel flows
in horizontal, straight channels. The transition from super- (F > 1) to subcritical
(F < 1) flows close to the critical depth appears in the form of an undular hydraulic
jump. This transition is characterized as a solitary wave connected with a cnoidal
wave (Iwasa 1955; Hager and Hutter 1984b). The solitary wave provides a tran-
sitional flow from a supercritical approach flow to a wave emerging in a subcritical
flow. A local loss of energy permits to connect this solitary wave portion with a
cnoidal wave train in the subcritical reach. Standard sluice gate flow provokes a
transition from sub- (F < 1) to supercritical (F > 1) flows, involving a cnoidal wave
in the upstream portion. A drop in momentum S provoked by the gate reaction
permits a generalized solitary wavelike flow to emerge below the gate that
asymptotes to the tailwater conditions. Thus, the transitional flow at a standard
sluice gate follows Benjamin and Lighthill’s (1954) theory, providing with the
undular jump a complete image of flow transitions in straight-bottomed channels.

3.13.3 Gate Pressure Distribution

At the gate section, the pressure is markedly non-hydrostatic (Montes 1997;
Castro-Orgaz and Hager 2014c). From the ideal fluid flow theory, the horizontal
velocity is zero at the vertical gate plane, so that the vertical velocity is large.
A standard Boussinesq-type development using the Cartesian system of reference,
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taking streamline curvatures and slopes with respect to the x-coordinate into
account, is inadequate, because i, — ©0 at the gate, so that a special solution must
be developed along the gate plane. At the gate lip, the exact 2D boundary condition
is, with w, as the vertical velocity at the gate lip,
2
Ye_Ep_a (3.532)
2g

Following the standard Boussinesq equations, the vertical velocity may be assumed
to vary linearly along the gate plane as

7—a
—w(1-2=2). 3.533
w=w ( 7_a ( )
The strong vertical acceleration does not render this law accurate. For strongly
vertical flows, Fawer’s (1937) theory applies, thereby generalizing Eq. (3.533) with
K¢ as Fawer-type exponent and y = (z — a)/(E — a) to

w=w,(1—p). (3.534)

The pressure distribution on the gate is then given by the Bernoulli equation
E=ply+z+ wz/(Zg). Inserting in it Eq. (3.534) for w and Eq. (3.532) for w,
yields

E—a:{z—i—z—a—i—(E—a)(l — pfe)
S (3.535)

Y(E —a)

=2ufe — ke —p.

A simple check of this equation with 2D data by Montes (1997) indicates that
K = 11is not accurate, so that a theoretical method is required to compute Ks. The
pressure force F at the gate section is given upon integrating Eq. (3.535) by

1
F p 2 1 1
B R S R
(E_a) , y(E—a) Ks+1 2Kg+1 2

(3.536)

This constitutes the first relation F(Ks). A second identity to be satisfied by
F originates from the momentum balance applied between the boundary sections as

% q2 C%q? q2
F=(=2 — [ = . 3.537
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Fig. 3.69 Pressure distribution on gate: a E/a = 3.33 (Kg = 0.25), with (—) Eq. (3.263), (¢) 2D
computation (Montes 1997), (0) 2D data (Cheng et al. 1981), b Ks = Kg(E/a) (adapted from
Castro-Orgaz and Hager 2014c)

This equation ignores the shear stress at the bottom boundary. In addition, for given
E, the discharge g follows from conservation of energy as

q = C.al2g(E — Cca)]l/z. (3.538)

The discharge g was computed for the given values of E and a by using
Eq. (3.538) and C. = 0.61. The upstream flow depth &, was computed using the
values of E and g and the force F from Eq. (3.537). With this value of F, the
parameter K results from Eq. (3.536), and the pressure distribution follows from
Eq. (3.535). A test case for E/a = 3.33 is considered in Fig. 3.69a, where the 1D
results agree well with 2D data of Montes (1997) and Cheng et al. (1981). The
system of Eqs. (3.536)—(3.538) was numerically solved using a Newton—Raphson
algorithm, and the variation of K5 with E/a is depicted in Fig. 3.69b.

3.13.4 Bottom Pressure Distribution

The transitional behavior of & = h(x) is discussed and explained in the context of
steady water waves. The gate essentially provokes a drop in § permitting the
approaching cnoidal wave to pass below the gate, thereby being transformed into a
solitary wave, with E kept constant. The flow depth at the gate is discontinuous,
therefore, whereas the bottom pressure profile p,(x) is continuous, approaching
asymptotically the up- and downstream flow depths (Fig. 3.66b). This important
transitional flow feature was explored by Castro-Orgaz and Hager (2014c). The
bottom pressure associated with Eq. (3.522) is (Matthew 1991; Castro-Orgaz and
Hager 2009, 2014a)
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Fig. 3.70 Normalized free jet (a) 19
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The flow depth derivatives h, and h,, and, thus, p, for the free jet portion are
determined by Eq. (3.527). The results are shown in Fig. 3.70a for E/fa = 5 and
compared with 2D results. Note the perfect agreement for x/a > 1 that reduces as
the gate section is approached. Deviations are attributed to the weakly curved flow
validity of Eq. (3.539). Although the predictions of /(x) are good, the disagreement
in p,(x) indicates that streamline curvature exhibits a nonlinear behavior. Let K;, be
a curvature distribution parameter (Fawer 1937), so that Eq. (3.539) is based on
K, = 1. Fawer (1937) indicated that for gate flow, K, > 1. Both the specific energy
E and the bottom pressure p;, can be expressed by K, to account for a nonlinear
curvature distribution as (Fawer 1937; Castro-Orgaz and Hager 2014c) (Appendix
E)

2 2 2 2
E=h 1 —x —=h+ — — 2. 3.540
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Equation (3.540), for h = h(x) was solved using the fourth-order Runge—Kutta
method, subject to the boundary conditions 4(0) = a and i (x — + ©0) — 0. The
Runge—Kutta method was used to transform Eq. (3.540); into a system of two
ODE:s from which the solutions [A(x), h,(x)] ensue. As the boundary condition of 4,
is prescribed at infinity, the solution is iterative. Using a shooting method, e.g., as
the Runge—Kutta algorithm, a value of h,(0) is first assumed. The system of
equations is then solved numerically, and the conditions at the tailwater section are
revised. The tailwater section for this computation was fixed at x/a = +6. If h,(6) is
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not close to zero within a prescribed tolerance, then computations restarted with a
new value of %,(0). Once h(x) was determined, the computation of p,(x) from the
numerical results is straightforward. Results are presented in Fig. 3.70b for
K, = 1.4, indicating an excellent reproduction of the bottom pressure distribution.
The numerical free surface profile agrees practically perfectly when compared with
the results of Eq. (3.527).

The cnoidal wave profile of the approach flow produces a slight deviation of the
bottom pressure from the free surface profile, indicating that the quadratic and linear
profiles for the horizontal and vertical velocities (u, w) of potential flow [see
Egs. (3.63) and (3.64) for a horizontal bottom] (Matthew 1991) do not reproduce
the internal jetlike features. Keutner (1935) stated that the non-hydrostatic bottom
pressure of the upstream flow is associated with an internal jet originating at the
upstream approach flow section transforming at the gate section into a free jet. To
explain the bottom pressure features of the approach flow, Keutner’s method will be
developed. The flow is assumed to be divided in two layers, an internal jet layer of
thickness s transporting the discharge ¢ and a recirculating fluid layer above it. The
equations of a classical hydraulic jump with a surface roller of thickness r are given
under hydrostatic pressure by (Valiani 1997)

2 2
S:(SJ;’) LT szrﬂ_ (3.541)
8s Y

With p; as the pressure at the jet surface and s as the jet thickness, Eq. (3.541) can
be empirically enhanced to account for a non-hydrostatic pressure as

2 2 2 2 2
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Equation (3.542) is a generalization of the development of Valiani (1997) for
hydrostatic submerged jets. In the sluice gate problem, experiments indicate that the
vertical velocity component is significant (Roth and Hager 1999), so that this effect
needs to be retained. The equations are further enhanced to account for a nonlinear
curvature distribution, resulting in

S:M_‘_qu 1+ $8xx _ﬁ pl:&+g+i2 SSxx _ﬁ
2 gs Ky+2 3) v 9y 7 g2\Kpy+1 2)°

(3.543)

The sum py/y + s = h, is the effective piezometric pressure head at the interface of
the jet and the recirculating fluid layer. The function p,(x) is unknown and difficult
to approximate. Note that pyx =0) =0 despite the local water column
(E — a) there. Further, it is not reliable to assume that p; is equal to the local flow
depth, given the significant vertical velocities close to the gate and the
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Fig. 3.71 Approach flow (a) 14

portion: a bottom pressure j )

[(poya=C(Ela—Co)(x/a) O s 000 FM\\
with (—) 1D computation, =
(0) 2D computation (Montes
1997), b internal jet features =l 0,254
with (—) s/a(x/a), (- - -) pplya
(x/a), (0) 2D bottom pressure 0 T T |
computation (Montes 1997),
(*) 2D free surface x/a
computation (Montes 1997) (b)

(adapted from Castro-Orgaz -

and Hager 2014c) Ela = 2.5

ya—C

P

corresponding non-hydrostatic pressure. Due to the complex flow pattern as the
flow approaches the gate, the simplest approximation is to assume /,, = constant for
the internal jet. Its value will be determined using as boundary condition the bottom
pressure at x = 0. Computations with Eq. (3.543); used the fourth-order Runge—
Kutta method with s(0) = a and K, = 1.4, as previously for the free jet portion. The
value of S is taken as an invariant, determined from known values of 4, and g. The
value s5,(0) was thereby iteratively adjusted until reaching the asymptotic condition
puly(x — —1.5a) — h,. Results for E/a = 2.5 are shown in Fig. 3.71a. Note that
the agreement of the 2D bottom pressure and the two-layer approximation of
Keutner (1935) is excellent, thereby justifying that the internal flow features close
to the gate are provoked by an internal jet and not by the free surface cnoidal
wavelike configuration. The theoretical shape of the internal jet is shown in
Fig. 3.71b; note its similarity with the Benjamin-Cola cavity bubble (Hager 1999b).

3.14 Vorticity Effects

3.14.1 Vorticity Equation for Streamline

Fluid flow in hydraulic structures, including flow-measuring devices, is dealt with
using approximate potential flow methods (Rouse 1950; Bos 1976). These involve
a flow net where energy is conserved in the entire flow domain. Velocity and
pressure fields at control sections are determined without considering vorticity or
viscous effects near solid boundaries. This approach is often accurate, especially if
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accelerations over short-channel reaches are significant, as for spillway and weir
flows (Rouse 1932, 1933). However, vorticity and viscous effects result in
non-uniformity of the energy distribution and, thus, in the distortion of the velocity
and pressure patterns obtained based on the irrotational flow theory. A typical
example is the free overfall, studied by Hunter Rouse, who introduced potential
flow computations using flow nets (Rouse 1932, 1933, 1938), including the use of
intrinsic coordinates for the Euler equations. He measured velocity and pressure
distributions and found that the energy head varied within a flow section.
Considering inviscid flow, and using intrinsic coordinates, Rouse obtained
Bernoulli’s equation along a streamline (Fig. 3.72a).

Rouse indicated that the “constant head” for a streamline varies from one
streamline to another due to vorticity. He defined an “averaged” cross-sectional
energy head and proceeded to its computation using experimental data. This 1D
method was discussed by Jaeger (1956), Castro-Orgaz and Chanson (2009), and
Castro-Orgaz and Hager (2011). Montes (1992a) presented a detailed irrotational 2D
flow solution for the free overfall problem, demonstrating that the free surface and the
bottom pressure profiles predicted by this approach excellently agree with the
experimental data, including those of Rouse (1933). The inflow velocity profile was
assumed uniform, as usual for parallel-streamlined potential flows. Montes further
analyzed the internal flow features of the free overfall, namely the streamline

Turbulent velocity profile

at critical point \V4
e Velocity and pressure distributions
at brink section

e o e -

Fo R - —meenl NQo----- L
1 -—~a
]
1
Section | [I_f'drfmlu_lic pressure
distribution

Fig. 3.72 a Stream tube in coordinates (s, ) and Bernoulli’s relation, b free overfall with typical
velocity and pressure distributions (Bos 1976) (adapted from Castro-Orgaz and Hager 2011)
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inclination, pressure distribution, and velocity profiles. Of all the flow features tested,
the velocity profiles predicted by the irrotational flow theory were found to disagree
with observations at the brink section. Montes (1992a) attributed this failure to the
neglect of the non-uniformity of the inflow velocity profile. This finding is equivalent
to state that the inflow velocity profile must account for its non-uniformity or that the
inflow vorticity affects the brink velocity distribution. Jaeger (1948) predicted the
brink depth ratio and the depth-averaged velocity and pressure coefficients at the free
overfall using an irrotational Boussinesq-type equation based on Fawer (1937).
Deviations of the velocity profiles at the brink section were later attributed to the
inflow velocity profile (Jaeger 1966; Biggiero 1964). Nakagawa (1969) found that
the effect of a non-uniform velocity profile due to vorticity was significant at the
brink section. In this section, a higher order solution for the velocity profile of
inviscid flows is presented using the free overfall as a test case.

Consider the momentum equations in the s- and n-directions of the natural
coordinate system (Fig. 3.72a) (Rouse 1959; Milne-Thomson 1962)

ov 1op 0z [0°V O*V ov ov 5
V—=——F—8g+ a5 a5,  Ks 3 n__V ) )
Os p s & Bs +v_8s2 + o2 " an e Os (s 1)
(3.544)
10p Oz A% ov Ok, Ok
2 ___Tr ind i - A n
K V- = o on 8o +v_2;cs s + 2K, o +V<8s + 8n)] (3.545)

Here, V is the velocity in the s-direction, z the elevation above the datum, p the
pressure, g the gravity acceleration, «; the streamline curvature, x,, the curvature of
the normal curve, v the kinematic viscosity, and p the fluid density. Defining the
total head H as

p Vv
H=z+=4+ —, 3.546
y 28 ( )
then Eq. (3.544) reads

trp—— V(i +K) | (3.547)

o _v[pv oV v ov
Os? on? > on Os

ds g
Differentiation of Eq. (3.546) in the n-direction gives, after substituting
A(ply + 2)/0n from Eq. (3.544),

oSy 2

_V@l K_YV2+V[ ov ov (81@ 816,,)}

OH 8[2 p VT

2Ky — + 2K, — +V 3.548
K +eK * Os + on ( )

_Qan g Os on
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Coupling Egs. (3.548) with (3.547) provides closure for the variation of H(s, n). For
a 2D flow, the vorticity vector Q has only the component (Milne-Thomson 1962;
White 1991, 2003)

v

Q-2 _
on

K V. (3.549)

Integrating Eq. (3.549) along a normal curve with N, as the total length of the curve
and 7 its arc length yields the general equation for the velocity profile as

N, N,
1
V = Viexp —/ Kydn | exp —/Van . (3.550)

For irrotational flows (e.g., potential flow), Eq. (3.550) simplifies to Eq. (3.81)
used to deal with curvilinear-streamlined flow (Rouse 1933; Fawer 1937; Jaeger
1956; Matthew 1963; Hager and Hutter 1984a; Montes 1998; Montes and Chanson
1998; Castro-Orgaz 2010a). Note that Eq. (3.550) involves a potential flow term
affected by the vorticity factor. From Egs. (3.548) and (3.549) results

_8(OH Ve 0 OV (O O
Q_V<8n g{zmasuxnafrv > o . (3.551)

Together with Eq. (3.547), this states that vorticity is affected by variations of H(s, n).
Consider inviscid flow so that 9H/Js = 0 from Eq. (3.547), that is, the total head
H is conserved along a streamline, with its magnitude changing from one streamline
to another (Rouse 1970; Castro-Orgaz and Chanson 2009; Castro-Orgaz and Hager
2011). This standard form of Bernoulli’s equation was misapplied in open-channel
hydraulics for decades, given its confusion with the integral energy equation from a
control volume derived from the first law of thermodynamics. Liggett (1993, 1994)
states that Bernoulli’s equation arises from the momentum analysis of a streamline
and not from the energy balance equation for a control volume. The vorticity along
a streamline is conserved for inviscid flow (Nakagawa 1969; White 1991;
Castro-Orgaz and Hager 2011). This result implies that for modeling inviscid
curvilinear flow, vorticity appears as a part of the approach flow conditions. The
Euler equations include no vorticity change, so that the approach flow vorticity is
transmitted from the inflow section to the curvilinear flow portion. The free overfall
with critical approach flow is a typical example (Fig. 3.72b). At the critical point
F = 1, a hydrostatic pressure distribution prevails, but the turbulent velocity profile
is governed by the bottom boundary layer. At the brink section, this feature is still
present (Biggiero 1964; Jaeger 1966; Nakagawa 1969).
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3.14.2 Velocity Profile

Consider the upstream section “1” of a free overfall (Fig. 3.72b) and the brink
section with curvilinear streamlines. Applying Bernoulli’s theorem

V2 VZ
H=h+L=z+2 411 — const, (3.552)
2g y 28

gOH g oOH 0V,
Q = = — = . .
Von Vi0z 0z const (3.353)

Substituting Eq. (3.553) into Eq. (3.550) yields for the velocity profile at the brink
section

N, N,
10V,
V=V — dn’ — [ ——dn'|. 3.554
exp /K n' |exp /V 5, I ( )

So far, only Bernoulli’s theorem is used. The distribution of x(n) at the brink
section is approximated by the interpolation function using the streamline curvature
at the free surface (subscript s) as (Fawer 1937; Montes and Chanson 1998;
Castro-Orgaz 2010a)

Ky = 1y (n = N,) (i>K. (3.555)

N()

If the normals are circular arcs, then (Hager and Hutter 1984a, b; Montes and
Chanson 1998)

N,

exp| — / Kdn' | ~ exp —hhml_iw p==. (3.556)
K+1 |’ h

n

Consider a power-law model for the upstream turbulent velocity profile with
my = power-law exponent at Sect. | and U = g/h as the mean flow velocity
(Montes 1986; Bose and Dey 2007). Thus,

Vl = U1<1 —&—ml),um‘. (3557)

Inserting Eq. (3.557) into Eq. (3.554), and noting that Q = 9V,/0z = mV,/z,
generates
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N, N,
%:exp —/stn’ exp /lmlvl ! :/1exp{—hhx,(1_Ki'f(:l}7
Eq.(3.556) A
(3.558)
with
T imv hfoVodd
A =exp _/lez’ Ldn' | =exp mlh]/VC;SQ# . (3.559)

n

Here, A is a vorticity factor and 6 the streamline inclination with the horizontal.
Equation (3.558) describes the velocity profile at the brink section, including a
correction for the inflow vorticity. Assuming that cosf ~ 1, V = g/h, and V| ~ g/h,,
Eq. (3.559) simplifies to the power-law vorticity factor

u 2
r\2 [ did m(—) n\>
A = -— e = 1 " = N N = — .
exp | my (hl) / v exp | Inu u, m I
1~~~

d(Iny)
(3.560)

With C.(x) = [h(x)/h;)? as contraction-expansion factor, the exponent N differs
from m,, because

h 2
N = ni (h—> = mICC. (3561)
1

For accelerating flows C,. < 1, the effect of m, originating from the inflow section is
reduced. By contrast, for decelerating flows C,. > 1, the effect of m; is amplified.
This does not imply that vorticity varies along a streamline, but that any flow
non-uniformity interacts with the power-law exponent of the inflow velocity profile.
Therefore, Eq. (3.558) finally reads using Eq. (3.560)

V = VyuNexp|—hh 1=t (3.562)
= Vsl p XX K+1 . .

Equation (3.562) was obtained analytically by Castro-Orgaz and Hager (2011).
Previously, it was proposed as semi-empirical law by Montes and Chanson (1998).
The present development demonstrates that Eq. (3.562) is physically justified based
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on Bernoulli’s equation. Equation (3.550) is general, and solutions depend on the
inflow profile, i.e., the log-law or the wall-wake law. Note that the no-slip condition
V(u = 0) = 01s a typical feature of turbulent, and wall-bounded flows (White 1991)
correctly accounted for by Eq. (3.562).

If the normals are circular arcs, then (Hager and Hutter 1984a; Montes and
Chanson 1998)

e (3.563)

2
0 l=14+=
COS =+ B

Therefore, [Appendix G, Eq. (G.19); here, the curvature and slope Boussinesq-type
parameters are approximated as ¢, ~ hh,, and & = 2]

1

_h/ Vogu MV [ e (0 NHLN R (N
=] o0 " N+1| T K+1 24N+K) T2 \N¥3) |
0

(3.564)
so that the relation between V; and U is
hhyy N+1 h? (N+1
Vi=(N+1)U|1 1- -2 (—|. 3.565
wenulie g (- mree) <5 (vis)) 65

Using Eq. (3.565) in Eq. (3.562) gives for the velocity components (u#, w) in the x-
and z-directions (Montes and Chanson 1998) [Appendix G, Egs. (G22) and (G24)]

hh N+1 W (N+1 ]
=(N+DUPN |14 = (T - — ) -2 [ —— +

u=N+DUk [ +1<+1<“ 2 NTK) 2 \Wa3 )]
(3.566)

hh N+1 W (N+1\]

=N+ DU e |14 2 (pf o ) (D),

w=N+1Uk Tr M 2+N+K) 2 \W+3)
(3.567)

Integrating the momentum equation in the n-direction yields for the pressure dis-
tribution (Montes and Chanson 1998) [Appendix G, Eq. (G30)]

p hhm(l+N)2 U? 1+2N+K
—=1- _— |1 - . 3.568
o 1+ K+2N+1gh[ u ] (3.568)
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3.14.3 Free Overfall

Rouse (1932, 1933) studied the free overfall in a horizontal, rectangular and smooth
channel for F = 1, which is the most difficult case given the large non-hydrostatic
effects. At the critical point, the hydrostatic pressure condition prevails with a
turbulent velocity profile (Fig. 3.72b). As the brink section is approached, the
bottom pressure profile deviates from the free surface profile (Fig. 3.73a), until
reaching the atmospheric pressure at the edge. Using p = 0 in Eq. (3.568) gives for
the relative curvature at the brink section

K+2N+1 _,

hhy = — TR Y;. (3.569)

Here, Y, = hy/h, is the brink depth ratio, &, the brink flow depth, and A, = (qzlg)l/ 3
the critical depth. Inserting Eq. (3.569) into Eq. (3.568) yields for the brink pres-
sure distribution

p 142N +K

£ = , 3.570
K Iz ( )

whereas the brink velocity distribution is, from Eq. (3.562),

K+2N+1 N+1 h2 (N+1
= (N+1)u" 1_+—+2y2 #K+1_; _mn(NFL
(K+1)(1+N) 2+N+K 2 \N+3

(3.571)

<

Equations (3.570) and (3.571) allow for the prediction of the brink flow features.
A value of K =—0.665 resulted for irrotational flow based on conservation of
momentum, energy, and angular momentum (Castro-Orgaz and Hager 2010),
whereas K = —0.5 was obtained by Jaeger (1948). The velocity profile is not greatly
affected by K, but the pressure distribution is sensitive to it (Castro-Orgaz and
Hager 2010). A mean value of K =~ —0.6 is considered here. Figure 3.73b shows
the inflow velocity profiles for m; = 0 (potential flow), m; = 1/5, and m; = 1/10.
Rouse (1933) found experimentally Y;, = 0.715, resulting in C. = 0.511. The cor-
responding brink velocity and pressure distributions are plotted in Fig. 3.73c, d.
Note that the effect of m, is noticeable for the brink velocity profiles, provoking
a reduction of V as compared with potential flow if z/A < 0.3 and vice versa in the
upper flow portion. Overall, the velocity profiles with vorticity tend to be more
uniform than predicted by the potential flow computation. The effect of m; on the
pressure distribution is significant (Fig. 3.73d), so that an inexact selection of m;
may produce a poor pressure profile prediction, in contrast to the velocity distri-
bution, which is not very sensitive to these variations. This result agrees with
previous irrotational flow analyses, indicating that the pressure distribution is more
sensitive to K than the velocity profile (Castro-Orgaz and Hager 2010). Biggiero
(1964), Jaeger (1966), and Nakagawa (1969) also stated that the inflow velocity
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(b) 1+

Fig. 3.73 Free overfall features for F = 1: a definition sketch, b inflow velocity profiles V/U(z/h)
form, = (—) 1/5, (- --) 1/10, (= » =) O (irrotational flow), ¢ corresponding brink velocity profiles V/U
(z/h), d brink pressure distributions (adapted from Castro-Orgaz and Hager 2011)

profile of the free overfall affects significantly the internal brink flow features. Free
surface profiles and bottom pressures are well predicted by the irrotational flow
theory (Montes 1992a), but the corresponding experimental brink velocity profiles
deviate from the irrotational flow theory.

Equations (3.570) and (3.571) are functions applied to the flow discontinuity at
the brink section bottom. To the left of the brink, at distance x = 0 — dx, the bottom
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pressure p;, # 0 and Vj, = 0, as dictated by the bottom boundary layer. This is
satisfied by Eqgs. (3.570) and (3.571). However, to the right of the brink, at distance
x = 0 + dx, the bottom pressure is p;, = 0 and V,, # 0, as dictated by free jet flows.
There is a discontinuity in x, as well (Jaeger 1948). Note that exactly at x = 0,
Egs. (3.570) and (3.571) involve p, = 0 and V}, = 0, i.e., the bottom energy head at
that section is H; = 0. At the critical point, however, H;, = h., indicating that the
approach bottom streamline does not satisfy conservation of energy, given the
no-slip velocity condition satisfied by Eq. (3.571). This is a limitation of the
approximate model presented.

Results of the model composed of Egs. (3.570) and (3.571) are compared in
Fig. 3.74 with data of Rouse (1933) for F = 1. His inflow velocity profiles agree
well with Eq. (3.557) using m; = 1/12 (Fig. 3.74a). Note that the commonly
assumed value m; = 1/7 poorly fits the inflow velocity profile, because the ap-
proach flow turbulence given by the Reynolds number dictates a lower value. The
brink velocity profile for N =mC, = (1/12)+(0.715)* ~ (1/23.47), K = —0.60,
Y, =0.715, and h, = —0.25 is plotted in Fig. 3.74b. Note that the acceleration
toward the free overfall generates a power-law exponent at the brink section of
(1/23.47), i.e., the acceleration tends to produce vertical velocity profiles with less
non-uniformity. The agreement between the prediction and test data is remarkable,
resulting in a significant improvement over the irrotational flow theory. The pres-
sure distribution given by Eq. (3.570) is plotted in Fig. 3.74c for N = (1/23.47),
Y, = 0.715, and h, = —0.25, using the values K = —0.665 and K = —0.50 consid-
ered above. Using these K values, the predictions are not good. The velocity profile
is insensitive to the K value if —0.665 < K < —0.5, whereas its effect on the
pressure distribution is noticeable. For K = —0.60, Eq. (3.570) fits the test data
reasonably well (Fig. 3.74d). The computed curve is close to the potential flow
solution (Montes 1992a), yet the scatter of the test data is so large that a refined
value of K can hardly be determined.

Replogle (1962) repeated Rouse’s experiments (Fig. 3.75). His inflow velocity
profile (Fig. 3.75a) was identical to that of Rouse (m; = 1/12). The brink velocity
profile is plotted in Fig. 3.75b for N =m,C, = (1/12)-(0.716)* ~ (1/23.38),

= —0.60, Y, = 0.716, and h, = —0.25. The velocity prediction again agrees well
with observations, except at its lowest portion. The pressure distribution is shown in
Fig. 3.75¢c, from which Replogle’s data indicate lower pressure values than those
measured by Rouse. The theoretical curve has the correct shape, yet the test data
suggest a higher K value. With K = —0.55, the computations improve as compared
with K = —0.60, indicating again that within —0.665 < K < —0.50, V/U is hardly
affected, whereas the pressure distribution is sensitive to these variations in
K. Therefore, K = 1 (Matthew 1963, 1991, 1995; Marchi 1992, 1993) is a poor
selection.

Consider a comparative analysis to highlight the implications of K and
N. Figure 3.76a, b shows computations based on Egs. (3.570) and (3.571) for
N =0and K = 1, i.e., irrotational flow with a linear streamline curvature variation.
This approach yields excellent free surface predictions (Hager 1983; Matthew 1991,
1995; Marchi 1992, 1993). However, the velocity profile deviates from the test
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Fig. 3.74 Free overfall for F = 1: a Eq. (3.557) with m; =(—) 1/12, (- - -) /7, b (—)
Eq. (3.571) with m; = 1/12 and K = —0.6, (- - -) 2D potential flow (Montes 1992a), (¢) test data of
Rouse (1933), ¢ (—) Eq. (3.570) with m; = 1/12 and K = —0.665, (- - -) m; = 1/12 and
K =—0.50, () test data of Montes (1992a), d (—) Eq. (3.570) with m; = 1/12 and K = —0.60,
(- - -) 2D potential flow (Montes 1992a), (¢) test data of Montes (1992a) (adapted from
Castro-Orgaz and Hager 2011)

data, and the pressure distribution incorrectly reaches negative values over the
entire profile. Consider then the irrotational flow but K = —0.60 (Jaeger 1948;
Castro-Orgaz and Hager 2010, Fig. 3.76c, d), resulting in a significant improve-
ment. This model still deviates from the test data, but agrees well with the 2D
potential flow model (Castro-Orgaz and Hager 2010), thereby demonstrating that
the irrotational Boussinesq equations at the brink section imply K < 0. Bose and
Dey (2007) found that for turbulent curvilinear flow, the free surface profiles are
well predicted using N = 1/7. Consider Fig. 3.76e, f, where Egs. (3.570) and
(3.571) are plotted for N = 1/7 and K = —0.60. Note that the velocity reduction for
z/h < 0.5 is too large, and computed pressures are too low, indicating that not only
values for K, but also N, are relevant, because both parameters interact.
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Fig. 3.75 Free overfall for F = 1: a (—) Eq. (3.557) with m; = 1/12, b (—) Eq. (3.571), ¢ (—)
Eq. (3.570), (¢) data of Replogle (1962) (adapted from Castro-Orgaz and Hager 2011)

3.15 Water Waves

3.15.1 Irrotational Water Waves

In this section, an introduction to the governing equations of irrotational water
waves is given, see, e.g., Liggett (1994). The solution of the problem of surface
waves consists in solving inside the fluid domain Laplace’s equation for the
velocity potential ¢(x, y, z, ), originating from the continuity equation

¢ ¢ ¢
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Fig. 3.76 Free overfall for F = 1, (—) Egs. (3.570) and (3.571) fora, b N=0 and K=1, ¢,
dN=0and K = -0.60, e, f N = 1/7 and K = —0.60, (¢) test data (adapted from Castro-Orgaz and
Hager 2011)
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The velocity components (u, v, w) are given by using the positive sign in the
potential function

99 a9 9

=— =— = . 57
o By’ W= (3.573)

Two boundary conditions are then set on the unsteady free surface, the first cor-
responding to the kinematic boundary condition stating that a particle on the free
surface z; = z4(x, y, f) remains there during the motion

00 o5 0005 090
dz Ot OxOx Oy dy’

(3.574)
the second is the Bernoulli equation for unsteady flow

aPp\>  (9p\ [0\’

— — — =0. 575
<<9X> " (t?y "\ (3:573)

Assuming a rigid surface, the kinematic boundary condition at the bottom
zp = 2p(x, y) 18

d¢ 1
E +ng+ 5

0 0¢p0z, 0PIz
— =+ —=—. 3.576
9z Ox Ox | ay oy (3.576)
Equations (3.572)—(3.576) form the basis to produce unsteady Boussinesq-type
water wave models. The potential function is expanded in power series as

¢=> b, (3.577)

Using Eq. (3.577), the velocity components (#, v, w) follow from Eq. (3.573) as
functions of the undetermined series coefficients. Inserting these into Eq. (3.572), a
recursive formula emerges to compute the coefficients. Using the resulting power
series in the kinematic and dynamic boundary conditions, a system of Boussinesq’s
equations results (see, e.g., Mei (1983) or Liggett (1994) for a detailed derivation).

3.15.2 Serre-Green—Naghdi Equations

This section is limited to unsteady irrotational water waves in the vertical plane.
Instead of using the kinematic and dynamic boundary conditions as given by
Egs. (3.574)—(3.576) to produce the Boussinesq equations, an alternative is to resort
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to the vertically integrated mass and momentum equations (e.g., Nwogu 1993) as
(see Chap. 2)

s
oh 0
o5 T a/ udz =0, (3.578)
b

s

O [ 9 [(a. P\ POz
8t/udz+ 8x/ (u + p)dz ) x (3.579)
2p 2

b

Picard iteration technique is applied to find the potential velocity field (u, w) and
pressure p, and then, these distributions are used in Egs. (3.578)—(3.579) to produce
the Boussinesq-type equations. With s as the stream function, the propagation of
1D water waves in unsteady potential flow obeys the Cauchy—Riemann conditions
(e.g., Liggett 1994; Montes 1998)

op oy a9 oy

=G =g we=—g =t (3.580)

Based on Picard iteration, the unsteady irrotational velocity components (u, w) in
the vertical plane are, from Eq. (3.54) (Castro-Orgaz and Hager 2014a),

w= —Uwn — Un,, (3.581)

where n = z — z;, is the elevation above the bottom, and from Eq. (3.61),

h h2 1,,2

Equation (3.582) is the fully nonlinear second-order velocity profile for unsteady
potential flow. The bottom profile contribution is given by the terms #, = —0z,/0x and
Nex = —9%2,/0x%, and the free surface inclination and curvature terms /, and h,, are
contained in U, and U,,. The pressure distribution p is determined using the vertical
Euler equation as

h

Py L (o
yih 17+g/<at Jruax+waZ dy'. (3.583)

n
Equation (3.581) yields

ow

i U — Um,, (3.584)
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ow

= Uy —2Um, — Un,,, 3.585
B ] n n ( )
m_ . (3.586)

0z

When neglecting second-order products of # and its derivatives, the corre-
sponding terms of the convective acceleration are

P
ua—;v ~ —UUgy — 20U, — U, (3.587)

0
wafw ~ U+ UU,. (3.588)
Z

Inserting Eqs. (3.584), (3.587), and (3.588) into Eq. (3.583) yields after integration
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(3.589)
Consider the basic case of undular bores propagating over a straight horizontal

channel, for which z;, = zj = zpr = 0 (Fig. 3.77). Thus, Eqgs. (3.581), (3.582), and
(3.589) read
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Fig. 3.77 Undular bore:

a definition sketch, b Severn
bore (photograph courtesy of
Mark Humpage)

w= U, (3.590)
h2 ;12
— U+ Un|=—-"1), 3.591
u + (6 2> ( )
h2 2
%’:h—m(Uﬁ— UUy — Ux,)< 2g'7 ) (3.592)

This result is also obtained by using the perturbation technique (Peregrine 1967,
1972; Cienfuegos et al. 2006; Carter and Cienfuegos 2011), or the expansion of ¢
in power series of z (Mei 1983; Dingemans 1994).

Inserting Egs. (3.591)—(3.592) into Eq. (3.579) with Jz,/0x = 0 yields, after
integration, the x-momentum equation

a(Uun) 0 3

R 5 h
(9t +a g7+U h+(Ux _UUxx_Uxt)? =0. (3593)
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The mass balance is given by Eq. (3.578), with U = g/h as depth-averaged velocity,
as

Oh N A(Uh)
ot ox

=0. (3.594)

Equations (3.593)—(3.594) are the Serre (1953) equations for weakly dispersive,
fully nonlinear 1D water waves, written in conservative form. The non-conservative
form of Eqs. (3.593)-(3.594) is

Ot Ox ox

ou ou oh 107, , n
o TU% T8 T e (Ux—UUM—Ux,)? =0.

(3.595)

Equations (3.593)—(3.594) were obtained by Shu and Gardner (1969) and Green
and Naghdi (1976b) by applying the irrotational flow theory. The Serre—Green—
Naghdi equations for water wave propagation are discussed in depth by Barthelemy
(2004), Dias and Milewski (2010), Carter and Cienfuegos (2011), and Bonneton
et al. (2011). Based on Eq. (3.593), the momentum function M of the 1D Serre
theory is M = gh*/2 + U?h + (U2 — UU,, — U,)l’/3 (Serre 1953; Mohapatra and
Chaudhry 2004; Chaudhry 2008; Castro-Orgaz and Hager 2014a) [see Eq. (2.49)].
This M function was derived in Chap. 2 using the Serre theory, for which the
u velocity component in the x-direction is approximated by its depth-averaged value
U. This obviously implies that the vorticity is nonzero in the classical Serre theory.
However, Su and Gardner (1969) demonstrated that the Serre equations can also be
derived based on the irrotational flow theory, as done here as well. To the order of
expansion used to find the irrotational velocity field, the non-uniformity of u with
depth contributes to the advection of momentum with a term proportional to (U..)?,
which, therefore, is of a higher order small. This is easily demonstrated evaluating
the momentum flux by resorting to Eq. (3.591), e.g.,

h h h2 B P
2 v_n
/I/l dZ /_U+Uxx<6 2):| di’]
0 0
h

(3.596)

S O —
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The main conclusion to be drawn is that Serre’s equations mathematically result
from the irrotational flow theory and are, thus, based on a non-uniform velocity
profile with depth. This detail may appear subtle, but it is of paramount importance
to improve the frequency dispersion features of the Serre equations, as will be
discussed in the next section. The application of the irrotational flow theory to
translation waves was initiated by Boussinesq (1872) to mathematically prove the
existence of solitary waves, a translation wave of permanent form, and significant
free surface curvature that remains unexplained based on the Saint-Venant theory.
Later, Favre (1935) undertook a significant experimental study where he observed
stable undular translation waves. These undular surges are now referred to as Favre
waves (Soares-Frazdo and Zech 2002; Soares-Frazdo and Guinot 2008). Both
solitary waves and undular surges were considered by Keulegan and Patterson
(1940), who made a detailed analysis of both wave-type motions following the
Boussinesq (1872) theory.

3.15.3 Small-Amplitude Waves

A special feature of the Serre equations is that they show frequency dispersion, i.e.,
waves of different lengths propagating at different celerities. Consider a
small-amplitude sinusoidal wave propagating with wave number k = (2m)/4,
wavelength A, and frequency o over still water of constant depth d (Fig. 3.78a)

U = Uyexplilkx — wt)], ¢ = Aexp[i(kx — wt)]. (3.597)

Here, ¢ = h — d is the depth around the static level, and i* = —1 is the imaginary
unit. As the wave amplitude A is small relative to d, the non-conservative Serre
equations (3.595) are linearized to investigate wave propagation. Given that the
ratio A/d is small, the term Oh/Ox = 0g/Ox is neglected in Eq. (3.595); compared
with QU/Ox. For this small-amplitude wave, the local acceleration term QU/0t will
be more important than the convective acceleration term U 0U/Ox; thus, the latter is
neglected in Eq. (3.595),. Further, in the vertical momentum equation, the local
acceleration term, represented in Eq. (3.595), by the non-hydrostatic term, pro-
portional to U, is assumed to be more important than the non-hydrostatic con-
vective term, proportional to (U2 — UU,,). The resulting linearized system from
Egs. (3.595) is (Mei 1983; Dingemans 1994)

oc ou
5 td5-=0. (3.598)

ou ~ d; d* >PU
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Fig. 3.78 Small-amplitude (a) c=dx/dr
sinusoidal wave: a definition
sketch, b dispersion relation
of Serre’s theory, with

Cc, = (gd)'/2 as the
propagation speed of
hydrostatic waves
(Saint-Venant’s theory)

= | ) Serre equations

-== 2D Fuler eq s

= = 1D Saim-Venant equations

Inserting Eq. (3.597) into Eqgs. (3.598)—(3.599) leads to a homogeneous system of
linear equations, implying a non-trivial solution, provided that

—iw ikd
igh —io(1+££) | =0 (3.600)

from which the linear dispersion’ relation with ¢ as phase speed is

2 1 -1
2= = gd{l + g(kd)z} . (3.601)

[z
The exact dispersion relation from the 2D Euler equations is (see, e.g., Mei
1983; Dingemans 1994)

) tanh (kd)
=gd——=. 3.602
¢ =gd— (3.602)
Comparing Egs. (3.601) and (3.602) in Fig. 3.78b shows that the Serre equations
have weak dispersion characteristics, e.g., they are invalid at deep- and

"If the phase speed ¢ depends on the wave number &, the corresponding wave is called dispersive.
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intermediate-water depths. However, they are a good model for kd < 1 (shallow
flows), e.g., for waves of wavelength of about 6 times the water depth. For shorter
waves, the dispersion relation must be enhanced, to propagate the perturbations at
the correct celerity (Nwogu 1993; Wei et al. 1995). Frequency dispersion may be
improved enhancing the linear dispersion relation by using Nwogu’s (1993)
approach, selecting the velocity u, at a prescribed elevation z, as a dependent
variable in the continuity and momentum equations, instead of U. This method was
applied by Kim and Lynett (2011), and it is of wide use in coastal engineering,
where applications from shallow- to intermediate-water depths are common. The
Serre equations (3.593)—(3.594) are derived by assuming that the flow is shallow,
i.e., that a typical vertical length scale (water depth) is smaller than a typical
horizontal length scale, e.g., the wave amplitude. This leads to a weakly dispersive
(long wave) model, shown in Fig. 3.78b. Note that the shallowness parameter must
be small, but not asymptotically small, given that otherwise non-hydrostatic con-
tributions are not preserved and the model becomes non-dispersive, as shown in
Fig. 3.78b for the Serre equations, using kd = 0. In this case, the Saint-Venant
(non-dispersive) model is regained.

In civil and environmental engineering, the flows are typically shallow, so the
main concern is to retain the full nonlinearity of the model rather than improving
the frequency dispersion features. Serre’s equations are derived without assuming
that the model nonlinearity is small, i.e., the ratio of wave amplitude to water depth
is arbitrary. As the flow tends to become shallow, the wave amplitude usually
increases, leading to waves for which the ratio of amplitude to depth is not small
and nonlinear effects become important. Waves close to breaking imply large wave
amplitudes, e.g., A/d may be as high as 0.4, so that nonlinear terms shall be
accounted for in the Boussinesq-type model. Frequency dispersion is important to
predict the correct celerity of propagation at intermediate- and deep-water depths,
given that short waves propagate slower than long waves. However, the accurate
prediction of the wave amplitude is important as well, for example, to avoid
overtopping in open channels. The classical Boussinesq system for weakly dis-
persive and weakly nonlinear waves is regained if the terms U; and U, are
neglected in M, as demonstrated by Peregrine (1966, 1967, 1972)

oh  o(Uh)
5 =0 (3.603)

oun)y o ( K )\ _ d&PU
5 +8x(g2+Uh =3 (3.604)

This model is, however, unsuited for shallow flows, so that the Serre equations are
generally recommended. Note further that steady-state flows with non-hydrostatic
pressure conditions are not preserved by transient simulations based on Eq. (3.604),
given that convective acceleration terms are dropped.

To improve the frequency dispersion in Boussinesq-type models, the approach
of Nwogu (1993) is recommended. It is based on the fact that the dispersion
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features of Boussinesq-type equations are highly sensitive to the choice of the
dependent variables. Thus, consider the u component of the irrotational velocity
field evaluated at an arbitrary elevation z, = = ah/3"?. From Eq. (3.591) follows
with o as a parameter

h2 Z2 h2 0621’[2 5 h2
y=U4+Ux|——2)=U4+Ux|————)=U+(1- — Uy
wy— U+ (6 2) ; (6 6) Fa-)h

(3.605)

Inserting Eq. (3.605) into Egs. (3.593)-(3.594) to obtain Serre’s equations
expressed as a function of u, instead of U, neglecting higher order terms by
assuming U, ~ u,,,, leads to

Oh  O(uyh) 5 O (K _
T o (loc)ax<6um =0, (3.606)
9(ush) 2 h_2+ 2 +2 (2 _ _ )h_3
o ox\82 " O | Vo Mt = o) 3

A R |

Equations (3.606)—(3.607) are the generalized Serre equations with improved
frequency dispersion developed by Dias and Milewski (2010), obtained here based
on a Picard iteration method. The linear system, obtainable from Egs. (3.606)—
(3.607), is

C Ouy o d* Pu,
% —(1-2)% .
B +d ™ (1—0o?) R (3.608)
Ouy 0c o d* Pu,
oL . 3.60
o T8a= B %) 5 any (3.609)

Inserting Eq. (3.597) into Egs. (3.608)—-(3.609) yields the homogeneous linear
system of equations

o —kd[1+L1-2)kd)] 1147 o
—gk w[l+%23—o¢2)(kd)2] [Uo]:{o]' (3.610)

It possesses a non-trivial solution provided its determinant vanishes, resulting in the
linear dispersion relation (Dias and Milewski 2010)
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P
G (1486 -2)(k)’]

2 (3.611)

For comparative purposes, consider the weakly nonlinear 1D Boussinesq
equations of Nwogu (1993)

dc  O(huy) 1\ ;0%u, _
Ouy, oc Ouy, 2 Pu,

— — =0. 3.613
o 8ax T o TV G (3613)

The arbitrary elevation z,, and coefficient o in Nwogu’s theory are related by

oy = % (%“)2 + (%) (3.614)

The dispersion relation for Egs. (3.612)-(3.613) is

2 [1 — (v + 1) (kd)z}
A= —gd AN (3.615)
k 1-— OCN(kd)
Comparing Eqs. (3.611) and (3.615) yields the compatibility condition
o? = 6oy + 3. (3.616)

Therefore, the equations of Nwogu (1993) are equivalent to the enhanced Serre
equations by Dias and Milewski (2010) in terms of linear frequency dispersion. The
errors predicting the frequency dispersion with Eq. (3.601) as compared with the
exact Eq. (3.602) are considered in Fig. 3.79a for reference. Note that these are
acceptable up to kd = 1, as previously stated. The errors using Eq. (3.615) are
inserted in the same figure for the optimized value oy = —0.39 (Nwogu 1993),
equivalent to «* = 0.66 as used by Dias and Milewski (2010), indicating good
model performance up to kd = 3. This technique leads, thus, to a significant
improvement of the prediction of the linear frequency dispersion for
intermediate-water depths.

If a more accurate prediction of frequency dispersion is sought, an alternative
method is to resort to the moment equations by Steffler and Jin (1993), as presented
in Chap. 2. The linear dispersion relation for the momentum and moment of
momentum system (Eqgs. 2.191-2.200) according to Steffler and Jin (1993) is
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Serre equations m=3 (Serre 1953)

{a) : 5 . — Serre equations m=4 (Khan and Steffler 1996a)
=== Enhanced Boussinesq equations {Nwogu 1993)

s X 2 === Enhanced Boussinesq equations (Nwogu 1993)
= = Moment equations (Steffler and Jin 1993) — - Moment equations (Steffler and Jin 1993)

error (%)

6

i —
(=2

Serre equations m=3.5
( === Enhanced Boussinesq equations (Nwogu 1993)
(-) =+ Moment equations (Steffler and Jin 1993)

Fig. 3.79 Errors in the frequency dispersion relation for a Serre’s (1953) theory, b Khan and
Steffler’s Boussinesq-type model (1996a), ¢ enhanced Serre’s equations with m = 3.5. Comparison
with Nwogu (1993) and moment method (Steffler and Jin 1993)

(3.617)

This is also considered in Fig. 3.79a. A comparison reveals that the moment
equations are accurate up to kd = 5. Obviously, the cost for numerical modeling of
water waves is to solve a larger system of PDEs, but the effort appears to be worthy
if an accurate dispersion prediction is sought from shallow to deep waters. The
Boussinesq equations by Khan and Steffler (1996a) are a simplified momentum and
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moment of momentum model, given by the system [see Egs. (2.105) and (2.110)
for a horizontal bed without friction]

oh  O(Uh)
o o Y (3.618)
awn o, ) w1
o “ra[gg-f—[] h+<UX _UUxx_Uxt)Z =0. (3.619)

Construction of the linear system in the same spirit as done above for Egs. (3.611)
and (3.615) leads to the linear dispersion relation given by (Fig. 3.79b)

2

-1
= % - gd{l + i(kd)z} . (3.620)

An aspect of interest is that the dispersion features of this approximation (based on
a linear vertical pressure profile) are not satisfactory as compared with Serre’s
theory (parabolic pressure profile) in the interval 0 < kd < 1.

The generalized Serre equations for an arbitrary pressure distribution exponent
are given by [see Eq. (2.185) for the M function]

o owm _
Ot ox

(3.621)

aUn) oM _dUh) [ K, ) B
3 - o o g3+Uh+(UX—UUXX—UX,)Z =0.

(3.622)

The non-hydrostatic term in Eq. (3.622) was obtained using a vertical pressure
distribution with an arbitrary exponent [see Eq. (2.182)]. In Eq. (3.622), m is thus a
pressure coefficient dependent on the vertical pressure distribution law (=3 for
parabolic pressure profile; =4 for linear pressure profile). The corresponding dis-
persion relation for the Serre equations with a generic pressure profile is

2

1 -1
= % - gd[l + Z(kd)z} . (3.623)

The error disclosed by Eq. (3.623) is plotted in Fig. 3.79¢ for m = 3.5; errors keep
roughly in the band &2 % below kd = 2. Therefore, this is an alternative to
enhance the prediction of frequency dispersion at a low increase of mathematical
complexities as compared with the standard Serre equations. This assessment of
the Serre-type equations as function of m reveals that the linear dispersion features
are sensitive to the value of m, e.g., for m = 3, the behavior is good for shallow
water, whereas the accuracy diminishes for m = 4. This fact is used to improve the
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linear dispersion features using m = 3.5. However, the accuracy increase is not as
high as that when using the Nwogu-type approach.

Consider the coupling of both techniques, by using u, instead of U as dependent
variable and prescribing a generic vertical pressure profile, resulting in a momen-
tum pressure coefficient m. From Steffler and Jin (1993), arbitrary functions for
velocity and pressure distributions can be prescribed in the depth-averaged flow
equations, so that the irrotational flow assumption is not used. The mathematical
limitation is that undetermined parameters should not remain in the system of the
PDEs. The use of the following set of predictors for (u, w, p) is investigated

hZ ’,’2 Zi _ 172
W= —Udm, (3.625)
p= pgh(l . 5) Tl - (E)K (3.626)
h n |

with K as a Fawer-type interpolating exponent and the bed pressure in excess of the
hydrostatic pressure given by

2
p1=p(U; = UUy — U, )%. (3.627)

The generalized Serre Egs. (3.621)—(3.622) were obtained using Eq. (3.626)—
(3.627) [see chapter 2, Egs. (2.182)-(2.186)] for the pressure distribution. These are
now expressed in terms of u, instead of U, using Eq. (3.624), producing the
enhanced Serre equations

oh  O(uyh) NN B
5 T "oy (1—o )8x (6 Uper | =0, (3.628)
O(uzh) 2 h_2+ 2y, +ﬁ (2 _ _ )h_3
ot ax\&2 T B | o ™ Hllowoe = Mot 2

e o E

For m = 3, Egs. (3.628)—(3.629) reduce to Egs. (3.606)—(3.607). The linear system
obtained from Egs. (3.628)-(3.629) is

oc Ou, 5

d® Pu,

6 55 (3.630)
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ou, Jg wd? Pu, d* Fu,
= =(1- — — 3.631
o 8o~ 1m0 G oan t waaar (3.631)
with the linear dispersion relation
2
o? 1+ (1 — o?)(kd)
&= 7= &d [ } (3.632)

[1+ {41 = o)+ Lhkay’]

For m = 3, Eq. (3.632) reduces to Eq. (3.611). The parameters m and o> must be
determined within the physical limits: 3 (parabolic) < m < 4 (linear pressure pro-
file) and O (bottom) < o < 3172 (free surface level). Selection of the bottom or free
surface elevations to compute o> was found to be a poor choice, as was also the
consideration of a value m close to 4.

The frequency dispersion errors using Eq. (3.632) are plotted in Fig. 3.80 for the
values m = 3.2 and o = 0.75 (labeled as enhanced Serre’s equations, meaning that
both m and o* must be determined to improve the dispersion relation). These
particular values were found to keep the errors in the band £2 %. Standard Serre
equations and the Nwogu-type equations are plotted in the same figure for com-
parative purposes. The standard Serre equations apply up to kd = 1.1 for this error
band, whereas the Nwogu equations are valid up to kd = 3.3. The enhanced Serre
equations with variable m are valid up to kd = 4.7, a considerable increase of their
application range. The moment equation remains valid up to kd = 4.9, e.g., close to
the enhanced Serre equations.

Fig. 3.80 Errors in the
frequency dlspersmn relation === Nwogu-type Serre equations m=3, a*=0.66
for th.e enhanced Serre — - Standard Serre equations m=3, a’=1

equations (error band 2 %) ® Moment equations (Steffler and Jin 1993)

2 IRIEN,

— Enhanced Serre equations m=3.2, a*=0.75

error (%)
=) -

| |
N
: ,/
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(a) — Enhanced Serre equations m=3.1, «*=0.7 (b} — Enhanced Serre equations m=3, a’=(0.7
=== Nwogu-type Serre equations m=3, a*=0.66

=== Nwogu-type Serre equations m=3, «*=0.66
® Moment equations (Steffler and Jin 1993)

® Moment equations (Steffler and Jin 1993)
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Fig. 3.81 Errors in frequency dispersion for the enhanced Serre equations (error band +0.5 %)

For the more restrictive error band £0.5 %, Eq. (3.632) is plotted in Fig. 3.81a
for the values m = 3.1 and «* = 0.7. The approach remains valid up to kd = 3,
whereas the moment method is valid up to kd = 2.2, and the Nwogu equations lie
outside the error band in a portion of the kd interval. To highlight the model
sensitivity in relation to combinations of m and o Eq. (3.632) is plotted in
Fig. 3.81b for the values m = 3 and o = 0.7, showing a limited improvement as
compared with the standard Serre equations.

3.15.4 Cnoidal and Solitary Waves

An important nonlinear dispersive long water wave of permanent form is the
cnoidal wave. It is a periodic irrotational wave solution of the Euler equations,
originally due to Korteweg and de Vries (1895), and masterly reconsidered in the
pioneering work of Benjamin and Lighthill (1954). The solutions are given in terms
of Jacobi’s elliptical function cn, from which the name cnoidal wave originates.
This wave type is periodic, characterized by sharp wave crests and flat wave
troughs (Fig. 3.82).

For the limiting case of infinite wavelength, the solitary wave is regained from
the cnoidal wave theory (Keulegan and Patterson 1940; Iwasa 1956). Here, the
cnoidal wave theory is considered following Iwasa (1956). Steady irrotational water
waves over a horizontal bottom (or unsteady translation waves of permanent form)
are described by the 3 invariants (E, S, and ¢) as (Benjamin and Lighthill 1954)
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Fig. 3.82 Cnoidal waves:

a definition sketch, b US
Army bombers flying over
cnoidal waves close to the
Panama coast (1933)
(photograph of public domain

by US Army, taken from
https://en.wikipedia.org/) (b)

2 2hhy — h?
E=h+ q (1+ ") = const.,

2gh? 3
h? 2 hh,, — h?
S:?—i—q—h(l—i—%) = const.,
8
g = Uh = const.

Consider the momentum invariant, Eq. (3.634), rewritten as

2 2 2
L) og b
3g 2 gh

The left-hand side of Eq. (3.636) is transformed to

q_2 h _lh2 :q_2 2h _2_}’)2: :i i(;ﬂ)_z_h)zc
3g\" R 6g\" " h 6g |dh ™ h |’

based on

d d 5 dh d
& (h2) = 2hshy = T (3) I~ b= o (h2) = 2hy,.

(3.633)

(3.634)

(3.635)

(3.636)

(3.637)

(3.638)
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Moreover, with
d (W 1d 2
— (2 ) ==5—(h) -5k 3.639
dh <h2> h? dh( ") h3 ( )
Eq. (3.636) is finally rewritten in the alternative form

272 2 2 2
qgh-d (h h~ gq
(ﬁ) =5——=—-=. (3.640)

6g dh

Integration of Eq. (3.640) with ¢ as a constant of integration yields

qzd(hi)S 1 ¢ _¢h S o2 lh g h—3t1

6gdh \i2) "W 2 gt 6gh?  —2+1 PP

2 3 2

L N N s

:>6ghx— 2 +ch Sh+2g
h3 q2
= —— L EW¥ —Sh+ —.
>+ +2g

(3.641)

In Eq. (3.641), the constant c is equal to the specific energy E. This can be easily
obtained by the integration of Eq. (3.633) [see development from Eqs. (3.522)—
(3.524)]. Let hy > hy, > h3 be the 3 real-valued roots of the cubic on the right-hand
side of Eq. (3.641); it can be rewritten as (Keulegan and Patterson 1940; Benjamin
and Lighthill 1954)
2
;’—ghﬁ = (hy — h)(h — ho)(h — ). (3.642)

Expanding Eq. (3.642) and comparing the resulting cubic in & with Eq. (3.641), it
follows that E = (hy + hy + h3)/2, S = hihy, + hihs + hohs and hihohs = qz/g. Here,
hy and h, are the water depths at the wave crest (maximum depth) and trough
(minimum depth), respectively (Fig. 3.82a), where i, = 0 (Keulegan and Patterson
1940; Benjamin and Lighthill 1954). Note that in a cnoidal wave, the fluid is
disturbed at infinity, i.e., &, and h,, do not vanish (Fig. 3.82a). The flow depth
h must be comprised between h; and h,, given that h,% must be positive for a
real-valued solution of & = h(x) [see Eq. (3.642)]. Thus, using the change of
variable satisfying these conditions

h = hy cos®y + hy sin’y, (3.643)
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the following transformations are obtained

dh dhd d
F d_,(ay = (—2h cosy siny + 2h, siny cosy) EX

d d
= —2cosy siny(h — h2)£ = —2sin2y(h; — hz)aX,
hi —h =hy — hy cos’y — hp sin®y = hy (1 — cos®y) — hysin®y = sin®y(hy — hy),
h—hy = hy cos’y + hysin’y — hy = hy coszx—i—hz(sinzx — 1) = cosz}((hl — ),
h — hy = hy cos’y + hy sin*y — hy = hy (1 — sin®y) + hp sin®y — b3

= (1 — h3) = sin’y(hy — o).

(3.644)
Inserting Eq. (3.644) into Eq. (3.642) yields the modified ODE
4q° (dz\? .
3% \dx = (h — h3) — (h — hy) sin“y, (3.645)

which is rewritten as (Keulegan and Patterson 1940; Benjamin and Lighthill 1954)

-1
%::I: 1 2:iq_2 ! :ilq_z(hl_ q2 )
dy (1-#& sinz}g)l/z’ 3ghi—hy 3¢ ghihy
-1
h —hy 7
K = = (hy — ) hy — <1.
hy —h3 ( 2)< ' ghihy -

(3.646)

Integration of Eq. (3.646), taking the origin of the x-coordinate at the wave crest,
where y = 0 and thus & = hicos®y + hosin’y = hy, gives (Keulegan and Patterson
1940; Benjamin and Lighthill 1954)

7
x= H/ (1-#& sinzx’)_l/zdx’ =TI u(y,k*). (3.647)
0

Here, u(y, k%) is the incomplete elliptical integral of the first kind and modulus &
(Montes 1998). Equations (3.643) and (3.647) are a parametric representation
[h = h(y), x = x(x)] of the free surface profile 1 = h(x), in terms of the new variable
7 (see Abramowitz and Stegun 1972). Since sn(, kz) = siny, cn(u, kz) = cosy, it
follows that snz(u, kz) + cnz(u, kz) = 1. Thus, Eq. (3.643) is rewritten as h =
hlcoszx + hzsinzx = hlcnz(u, kz) + hy[1 — cnz(u, kz)]. The free surface profile is
finally given by



3.15 Water Waves 295

Fig. 3.83 Translation waves
in laboratory channel:

a solitary wave (k2 =1),

b cnoidal wave (k% < 1)
(photograph VAW)

h=hy+ (hy — hy)en® (u, k). (3.648)

The “cnoidal” surname of this irrotational motion thus becomes evident, given the
Jacobi elliptical function cn as the solution. If = 0, a sinusoidal wave is regained,
whereas the value k* = 1 produces the solitary wave (Fig. 3.83), given that
cn(u, 1) = sech(u) (Iwasa 1956; Montes 1998). Thus, the solitary wave theory is a
particular case of the cnoidal wave theory. The solitary wave was first observed by
Russell (1837), and it is clearly described with his own words as follows:

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a
pair of horses, when the boat suddenly stopped - not so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of form or diminution of
speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot
and a half in height. Its height gradually diminished, and after a chase of one or two miles I
lost it in the windings of the channel. Such, in the month of August 1834, was my first
chance interview with that singular and beautiful phenomenon which I have called the
Wave of Translation.

In a cnoidal wave, the fluid is disturbed at infinity. If the fluid is undisturbed
there, h, and h,, vanish and the flow depth remains constant. Setting conditions at
x — +00, namely h,, and h, — O for h — h,, with h, as the uniform flow depth
(Fig. 3.84a), yields S = h§/2 + qz/(gh,,). Using this in Eq. (3.641), the constant of
integration is found to be ¢ = h, + ¢*/(2gh?) = E. Thus, Eq. (3.641) can be
rewritten in this case as
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Fig. 3.84 Solitary wave:

a definition sketch, b steady
streamline flow pattern for
F2 = 1.4, with h, as critical
depth = (¢°/g)"”

5
% s
0| | | | | | |
-6 4 2 0 2 4 6
x/h,
2 3 2 3 2 2
q .2 h 2 q h q 2 q
Ty ERR_sh+ L= ho+ —= |h* — Sh+ —, (3.649
6g * 2 + +2g 2 +< +2gh§> +2g ( )

and, inserting also the invariant S, gives the ODE describing solitary waves

2 2 2 2
qa .2 3 q 2 2, 2q q
—h° = —h 2h, — |h"—(h — |h+ —. 3.650
3g +< ”+gh%> <”+gho> T (3:650)

Equation (3.650) is further manipulated, factorizing the cubic on the right-hand side
as (Serre 1953, Iwasa 1956)

2

a - 2 &
—hi=(h—-h)|——h). 3.651

The general integral of Eq. (3.651), with the boundary condition A4, — O for h
h,, is with F, = g/(gh2)"*(Serre 1953; Iwasa 1956)

1/2
ho ) L|(BF2=3)7" x
E— 1+ (F() l)SeCh [E}Zho .

(3.652)

Equation (3.652) was originally obtained by Rayleigh (1876) expanding the
potential velocity components (u#, w) in power series of the elevation z. Bernoulli’s
equation and the kinematic boundary condition at the free surface were applied to
find a differential equation describing the free surface profile. Here, Eq. (3.652) is
presented as a solution of the Serre—-Green—Naghdi equations, based on a Picard
iteration of the stream and potential functions. The solution obtained by Boussinesq
(1872), expanding the potential function in power series of z, is
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h 2 2 2 12X
= 1+ (F, — 1)sech [(3F0 3) Zh} (3.653)

It is different from Eq. (3.652) by a factor 1/F, in the argument of the sech’
function. This result is based on a weakly nonlinearity (Keulegan and Paterson
1940). Equation (3.652) is more general than Eq. (3.653), given that the former
originates from the fully nonlinear Serre equations (Carter and Cienfuegos 2011).

Consider Eq. (3.652) regarded as the second-order Picard iteration solution to
the solitary wave profile. The steady irrotational velocity field associated with this
wave profile is (Matthew 1991, 1995) [see Eqs. (3.63)—(3.64) for a horizontal

bottom]
q he B2\ (32 — W
u= Y [l + (2}1 h2> ( 3 , (3.654)
z
w= qﬁhx. (3.655)

To test their accuracies, the full 2D solution of the irrotational velocity field
(u, w) of a steady solitary wave (Fig. 3.84a) was determined using the x-jy method
(Montes 1994a). The free surface streamline was prescribed on the basis of
Eq. (3.652), and the flow field was numerically determined by solving the Laplace
equation of the x-iy method [see Eq. (3.250)]

2 2 2 2 v}
v’z 8Z(8Z) +ﬁ[1+(%) 1 0 02 0203 656)

“o\ay) T oy ox) |~ “oxopoxoy

The up- and downstream boundary sections were located at x/h. = 5. The energy
head of the potential flow is H = h (1 + F2/2), and the flow depth h; as the
boundary sections is given by Eq. (3.652) evaluated at the selected boundary
coordinates x/h. = £5. The numerical method of solution for Eq. (3.656) is
extensively described in Sect. 3.7. A simulation for F2 =14 is shown in
Fig. 3.84b, where the flow was modeled using 11 streamlines.

The computed 2D velocity field (u, w) at selected locations is plotted in Fig. 3.85
and compared with Egs. (3.654)—(3.655), indicating excellent agreement. At the
section x/h, = =2, the free surface is concave, implying a u-velocity profile
increasing with the elevation. At section x/h. = —1, and at the solitary wave crest
(x/h. = 0), the free surface is convex, implying that the streamline of maximum
velocity is at the bottom. The steady irrotational wave solutions of the Euler
equations, namely the solitary and cnoidal waves, are important in steady channel
flow problems. An example is the undular hydraulic jump, where the surface profile
is characterized by connecting a solitary wave to a cnoidal wave (Iwasa 1955;
Hager and Hutter 1984b).



298 3 Inviscid Channel Flows

—— 1D solution
e 2D solution
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Fig. 3.85 Steady solitary wave velocity field (u/U., w/U,) for F2 = 1.4, with U, as the critical
velocity
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Consider now an unsteady solitary wave propagating over still water with
celerity c. Using the Galilei transformation X = x — ¢t for a wave translating in the
positive x-direction, the Serre~Green—Naghdi equations, Egs. (3.593)—(3.594), take
the form

Oh  OUh
=+ == .657
C8X+8X 0, (3.657)
o, 0 h—2+u2h+(U2—UU +cU )h—3 =0 (3.658)
ox " ox |52 ) e '
Integration of Eq. (3.657) yields, with g, as the progressive discharge,
gp = (U — ¢)h = const., (3.659)
or
_ 4p
U=c+ e (3.660)
Using Eq. (3.657), Eq. (3.658) is rewritten as
—2@+i h—2+U2h+(U2—(U— YU )h—3 =0 (3.661)
“ox Tox |52 X Y Bhe '
or,
o[ n s 2 ) n
X g7+(U —c )th(UX*(U*C)UXX)? =0. (3.662)

In the moving frame, Eq. (3.662) implies the conservation of the expression
n? n?
g5+ (U* = *)h+ (Uy — (U — ¢)Uxx) 3 = €1 = const. (3.663)
Using the identities

qp

~Thy, U= 29 g2 (3.664)

Ux = h? Bx

the non-hydrostatic term in Eq. (3.663) is

2
U)z( — (U— C)UXX = (%hx) —@ (_Z_ZhXX+2q_ph§()

h # (3.665)
2 2 2 2 2 .
fthZJrq_Ph ,qu;ﬂfq_Ph ,q_l’h2
T oAt T o paUX T 3 XX T e B
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Thus, Eq. (3.663) is reduced to

2
W g <1+ hhxy — 2

2 " gh 3

> e > = ¢, = const. (3.666)

The solitary wave solution of Eq. (3.666) is with A, as still water depth and
Fp = 4,/(gh3)"

(3%-3)" -
F, 2h, |

h(x,1)
hy

1+ (F§ - 1)sech2 (3.667)

The steps in the development of Eq. (3.667) are identical to those presented in
Egs. (3.649)—(3.652). The maximum flow depth at the solitary wave crest is
obtained from Eq. (3.667) at x —ct=0 as hyu,x = hoFf,; this then yields
c= (ghmax)l/z. Equation (3.667) is mathematically identical to Eq. (3.652), as
expected.

A difference between the steady solitary wave used to characterize the first wave
of the undular hydraulic jump (Hager and Hutter 1984b) and the solitary wave
propagating over still water (Sander and Hutter 1991) relates to the velocity pro-
files. Consider a solitary wave propagating over still water. Using the conditions
h =h, and U = 0 at 200, the progressive discharge verifies the identity

qp = [U(X) — cJh(X) = —ch,, (3.668)

from which the depth-averaged velocity, now interpreted as a function of x and ¢,
follows as

Ux,f) =c {1 - h(il”)] (3.669)

Using Eq. (3.591), the unsteady velocity profile in the fixed frame is given by®

]’12 Z2 h«n ho 2
M:U+ Uxx<€—5>, UXXc<ﬁhxx—zﬁhX). (3670)

Consider the solitary wave crest, where hy = 0, so that the velocity profile for

u simplifies to
hohxx (h* —3z°
w=U+c XX( Z). (3.671)

2h? 3

8Note, on comparing Eq. (3.664), with (3.670),, the negative sign on the right-hand side of
Eq. (3.668).
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The steady velocity profile from Eq. (3.654) is rewritten as

he (h* — 372
== - T~ . . 2
u=U-U 2 ( 3 ) (3.672)

At the wave crest h,, < 0, implying that the maximum of the steady velocity profile
occurs at the bottom, as shown in Fig. 3.85c. In contrast, the maximum of the
velocity profile of the unsteady translating solitary wave is at the free surface from
Eq. (3.671) (Carter and Cienfuegos 2011). Obviously, in the moving frame,
velocities are computed as u(x, z, f) — ¢, and the velocity profile becomes steady.
For a detailed study of the irrotational velocity field of an unsteady solitary wave,
see Carter and Cienfuegos (2011).

The Serre Egs. (3.593)—(3.594) were used to describe translation waves of
permanent form based on Egs. (3.657)—(3.658). This system was reduced to a
second-order differential equation (Eq. 3.666), with Eq. (3.667) as the particular
solution for the solitary wave profile. If the same development is repeated starting
with the generalized Serre Eqs. (3.621)-(3.622), the ODE describing translation
waves is

R q hhxx — h}
5 + ;]_Z <1 + %) = const. (3.673)

Its first integral follows identical steps to those used to produce Eq. (3.651),
resulting in

1q12) 2 2 qf,
——hy = (h—h, — = . 3.674
mg X ( ) 3 ( )

The solitary wave solution of Eq. (3.674) is given by

hﬁz 1+ (F; — l)sech2 [(m/3)l/2;(}, (3.675)

o

where

1/2
(3F§ - 3) X ¢
F,  2n F,

Again, the steps in the development of Eq. (3.675) are identical to those presented
in Egs. (3.649)—(3.652). For m = 3, Eq. (3.675) yields the solitary wave of the
Serre equations (Eq. 3.667). The Boussinesq (1872, 1877) solution is [see
Eq. (3.653)]
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hﬁ = 14 (F} — 1)sech? [(3F§ -3) I/Z%} =14 (F2 = 1)sech®. (3.677)

Equation (3.675) for m =3 and Eq. (3.677) are compared in Fig. 3.86a, with
Y=(@ - l)/(Flz, — 1) and y = h/hy,y, for a test case with F;% = 1.65 of Carter and
Cienfuegos (2011). For reference, the exact 2D potential flow solution obtained by
the method of Tanaka (1986), based on the simultaneous solution of Bernoulli’s
equation along the free surface and a boundary integral equation obtained from
Cauchy’s theorem, is also included. Note that although the Serre (1953) equations
accounting for the full nonlinearity are theoretically more general than the
Boussinesq (1872) equation, the latter is in better agreement with the Tanaka (1986)
2D solution, as discussed by Carter and Cienfuegos (2011). However, the Serre
(1953) equations provide better prediction of other wave features, namely the
particle kinematics and celerity of translation, so that they are recommended even
though the predicted free surface profile is less accurate than that obtained with the
Boussinesq solution. Tursunov (1969) presented a solution for the solitary wave
profile based on the expansion in power series of the velocity modulus at the free

(a) —== Serre (1953) (b) —-= Serre (1953)
1.2 ® Tanaka (1986) 1.24 ® Tanaka (1986)
—— Boussinesq (1872) — Tursunov ( 1969)

Y Y
(“} === Serre (1953) {d) === Serre (1953)
1.2 ® Tanaka (1986) 1.2 ® Tanaka (1986)
—— Khan and Steffler {( 1996) — Variable pressure coefficient
Y Y

Fig. 3.86 Comparison of solitary wave theories with solitary wave solution of the Serre (1953)
equations and the Tanaka (1986) exact 2D numerical profile, for F,z, = 1.65 a Boussinesq theory
(1872), b Tursunov (1969) theory, ¢ Khan and Steffler (1996a) Boussinesq-type theory, d variable
pressure coefficient depth-averaged computation
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surface and the free surface inclination, in terms of a small parameter depending
on F,,. His formula for 4/h,, is

F2
hﬁ =1+ 7”{1 — exp [—(4ln F,,)sech25<1 + %ln F, [3sech®¢ — 2])] },
(3.678)
where
< /3 1/2

The computed wave profile using Eq. (3.678) is plotted in Fig. 3.86b, showing a
slight improvement over the Serre (1953) profile. However, Eq. (3.677) is better
than Eq. (3.678). The reasons are unclear, given that for small F,, Eq. (3.678)
reduces exactly to Eq. (3.677). Equation (3.675) for m =4, that is, the
Boussinesq-type model by Khan and Steffler (1996a) based on a linear
non-hydrostatic pressure distribution, is plotted in Fig. 3.86c, showing improve-
ment over the Serre profile based on m = 3. Thus, the selection of the pressure
coefficient is significant to improve the wave profile prediction. Using a value
m = 6, the wave profile in the vicinity of the wave crest was accurately predicted,
whereas a lower value m = 4 produced a good prediction of the descending wave
branch. Thus, to investigate the impact of the pressure distribution coefficient, the
smooth interpolation function

m=2[F+exp| (1-F2) 7], (3.680)

was used in Eq. (3.675), with the results plotted in Fig. 3.86d. Note that the
agreement with the Tanaka (1986) profile is generally good, showing, in turn, that
the pressure coefficient m is important not only for the improvement of the fre-
quency dispersion, but also for the nonlinear effects.

3.15.5 Dam Break Wave

The computation of dam break flood waves is an important problem in civil and
environmental engineering, given the risk associated with this dangerous phe-
nomenon. Dam break waves are usually computed using Saint-Venant’s theory
(Chaudhry 2008). Despite the non-hydrostatic modeling yields essentially similar
arrival times of the flood wave (Mohapatra and Chaudhry 2004), deviations
between the Saint-Venant and the Boussinesq modeling approaches are consider-
able (Kim and Lynett 2011). For example, the water depth at the leading wave of an
undular shock front may be significantly larger than the corresponding shock wave
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Fig. 3.87 Non-hydrostatic Rarefaction Dam axis

dam break wave including wave ' Undular
rarefaction wave and undular shock front
shock front
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height predicted by Saint-Venant’s theory, thereby increasing inundation risk.
Further, obstacles submerged in the natural watercourse may experience different
loads given by the non-hydrostatic flood wave. If the non-hydrostatic effect is weak
in a given flow problem, this fact should be automatically detected by the
non-hydrostatic computational scheme, rather than by artificially patching hydro-
s