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Supervisor’s Foreword

Light characterization is the basis for the development of numerous instruments and
techniques in science and technology. The analysis of the parameters defining light
spectral content, polarization, intensity distribution and statistics provides valuable
information about the light source, the medium where light propagates, and the
object from which light is scattered. The more light characteristics are available
the more detailed description of the process or object under study is obtained. While
the measurements of some characteristics are well established, the identification of
light statistical properties is still a challenging task. However, spatial and temporal
coherence are becoming prominent for data acquisition and transmission because
they provide additional degrees of freedom to be exploited. A famous historical
example illustrating the relevance of light statistics is found in astronomy where the
size of a star was estimated from the measurement of the degree of spatial coher-
ence of the light emitted by the star using a stellar Michelson interferometer.
Modern temporal and/or spatial coherence inspired techniques include optical
coherence tomography, where a low (temporal) coherence source is used for for-
mation of three-dimensional images, ghost imaging, coherence controlled micros-
copy, holography and lithography. Moreover, partially coherent light has been
found beneficial for free-space optical communications and inertial confinement
fusion.

Further exploration of the advantages of partially coherent light requires the
development of efficient techniques and optical systems for its characterization.
This problem is rather difficult because even in the scalar quasi-monochromatic
case and under hypothesis of Gaussian statistics, a two-dimensional beam is
described in paraxial approximation by a four-dimensional function called mutual
intensity (MI), which is also referred to as equal-time mutual coherence function.
The MI gauges the correlation of the field at two points. Alternatively, the Wigner
distribution (WD) or Ambiguity function can be used for beam description. Neither
of these functions can be measured directly and have to be reconstructed from the
interference or diffraction patterns. While interferometry is the original technique
used for coherence analysis, it proves inefficient for analysis of two-dimensional
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beams. Diffraction-based coherence characterization methods, which have been
developed during the past three decades, are less known and rarely explained in
optics books. However, I believe that at least one of these methods—phase-space
tomography—is worth the attention of the scientific community since it has great
potential for practical applications. It is my pleasure to write this foreword to
Alejandro Cámara’s thesis-book devoted to the development of different
phase-space tomographic methods supported by experimental set-ups. His work
serves as an excellent introduction to phase-space optics of classical light for
readers inexperienced in this topic. I believe the book is interesting for any scientist
working in this field thanks to Álex’s original contributions.

Phase-space tomography is based on two concepts: the rotation of beam WD
during beam propagation through ABCD systems and the fact that the WD pro-
jection corresponds to the intensity distribution at the output of such ABCD system.
Although phase-space tomography has been established more than 20 years ago, it
is not widely used for beam coherence analysis due to three principal reasons: the
lack of a robust and easily controlled optical setup for rapid acquisition of the
required WD projections, the computational complexities of processing the con-
siderable number of projections required, and the difficulties in the further analysis
of the resulting four-dimensional functions. Álex was able to find practical solutions
for all these theoretical and experimental problems. He has demonstrated that the
beam symmetry can significantly simplify the beam analysis process and therefore
the corresponding experimental set-up. Álex’s proposal for the characterization of a
general (asymmetric) beam is worth a special mention. Based on WD projection
diversity he was able to find the optimal projection set and order of projection
acquisition that allows measuring, processing and analyzing the experimental data
concurrently. Three experimental set-ups suitable for the measurement of WD
projections have been proposed and experimentally verified. Two of them use
spatial light modulators for the implementation of digital lenses. They can be
digitally aligned and adjusted to the desired kind and number of projection mea-
surements. The application of spatial light modulators also allows fast video-rate
acquisition of the WD projections of two-dimensional beams. The team’s contri-
bution to Álex’s work are acknowledged in the thesis but I would like to underline
the importance of previous work of Dr. Jose Rodrigo in designing, building and
testing phase-space rotator devices, which were adapted by Álex for the acquisition
of appropriate WD projections. I hope that the readers enjoy this thesis-book, which
I consider a guide to understanding and applying the phase-space tomography beam
characterization techniques. Finally, it is worth mentioning that the developed
software for processing experimental data is released under an open source license
in github.com/SoyYuma/gico-core.

Madrid Prof. Tatiana Alieva
April 2015
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Abstract

Partially coherent light enhances the results of many applications originally pro-
posed for coherent light. For example, it reduces the speckle caused by laser light in
microscopy, improving the quality of image. In optical communications, partially
coherent beams are more robust against channel noise and increase the information
throughput.

Despite all their advantages, partially coherent beams are still not widely used.
The major drawback preventing its full adoption is the lack of appropriate methods
for the complete characterization of partially coherent beams. Many techniques
have been proposed to address this problem. Some of them have succeeded for
particular cases, like beams satisfying certain symmetries, but none has been
demonstrated to be suitable for real-world applications involving 2D partially
coherent beams with arbitrary spatial structure.

This thesis establishes four techniques to efficiently characterize partially
coherent optical beams, providing meaningful information about the beam coher-
ence state in a timely manner. Three methods rely on exploiting beam symmetries
to simplify the characterization process. The fourth method addresses the general
case, where there are no beam symmetries to exploit. It provides incremental
information of the spatial structure of an a priori unknown beam. All techniques are
accompanied by suitable optical system for their experimental execution.
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Chapter 1
Introduction

Within the classical framework, light is an electromagnetic wave composed by the
superposition of wave contributions generated by random processes. As such, light
must be treated as a stochastic process itself. In the context of optical beams—quasi-
monochromatic highly-directional linearly-polarized light waves with visible mean
wavelength—the contributions from random processes are so numerous that they
follow Gaussian statistics. Therefore, the beam can be completely described by its
mutual intensity (MI), the function that establishes the correlation between the wave
field at two points, which in the paraxial approximation belong to the plane transverse
to the beam propagation [Goo00]. When there is a perfect correlation between the
wave field at any pair of points, light is spatially coherent; when there is no correlation
at all, light is spatially incoherent. These two situations are limit cases for spatially
partially coherent beams, for which the correlation is not perfect nor inexistant, but
partial.

Even though partially coherent light enhance the results of many applications
originally proposed for coherent light, like digital holography microscopy [Dub99]
and free-space optical communications [Ric03, Wan08], it is not widely used. The
major drawback preventing its full adoption is the lack of appropriate methods for
its complete characterization, i.e. determining its MI. Many interferometric and dif-
fractive techniques have been proposed to experimentally retrieve the MI. Some of
them have succeeded for particular cases, like beams satisfying certain symmetries,
or by making strong assumptions on the beam coherence model. Nevertheless, none
of them has been demonstrated to be suitable for real-world applications involving
2D partially coherent beams with arbitrary spatial structure.

Young double-slit interferometer [Zer38] was probably the first technique that
allowed the experimental determination of the MI of an optical beam. It consists
in spatially dividing the beam by means of an opaque mask with two apertures.
The beams emerging from the mask, corresponding in approximation to the light
perturbation at the aperture points, interfere forming a fringe pattern or interferogram.
The correlation between the field at the aperture positions is proportional to the
fringe visibility in the interferogram. Sadly, obtaining the MI by means of the Young
experiment presents three inconveniences:

© Springer International Publishing Switzerland 2015
A. Cámara, Optical Beam Characterization via Phase-Space Tomography,
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2 1 Introduction

1. it is cumbersome since the measurement has to be repeated for every pair of points
of the plane where the beam coherence is analyzed,

2. it is energetically inefficient since the light from each aperture spreads over the
entire measurement plane, and

3. the geometry and size of the mask apertures affect the results.

Modern interferometric techniques are more convenient, but still do not provide a
solution for a general case. Consider, for example, using a reversed-wavefront Young
interferometer [San06] or a non-redundant array of apertures as proposed in [Gon11].
Although the methods require a significantly smaller amount of measurements, the
problem of energy efficiency and interferogram alteration are still present. Other
methods, based on shearing interferometers [Ito86, Iac96, Men98, Mar99] look more
promising. Since they do not use a blocking mask with apertures, they conserve
beam energy and prevent interferogram alterations. Unfortunately, they are only
convenient for the analysis of one-dimensional (1D) profiles of beams. Their trivial
2D generalizations are as cumbersome as the original Young interferometer.

There are alternatives to interferometric techniques to recover the MI of optical
beams. For instance, it was recently proposed in [Cho12] a method which consists
in measuring the intensity distribution of a beam propagating in free space for two
situations: with and without a planar phase mask covering part of its path. The MI
between the beam at any pair of points centered at the phase mask edge can be
obtained from the difference between the two intensity measurements by a simple
Fourier transform. Despite its robustness and simplicity, it has not been yet proved
suitable for the characterization of 2D beams.

Instead of defining the beam by its MI, it is possible to rely on equivalent descrip-
tions like the Wigner distribution (WD) or the ambiguity function (AF). The advan-
tage of these alternative functions is that they can be experimentally recovered from
intensity measurements applying a technique called phase-space tomography (PST)
[Ray94]. Although the method requires a large amount of intensity measurements
and an intensive data processing, its suitability has been demonstrated for some sim-
plified situations. For instance, successful PST methods have been proposed for 1D
beams [Men96], rotationally invariant beams [Dra00, Aga00], and beams which are
almost incoherent [Wal12] or composed by a small number of incoherent modes
[Tia12]. Nevertheless, the experimental feasibility of PST is yet to be demonstrated
for 2D beams of arbitrary spatial structure.

Based on PST, this book proposes several original techniques for beam coher-
ence state characterization. This includes a novel procedure to recover the MI of
2D beams of arbitrary spatial structure that is demonstrated on several examples
involving partially coherent light. In addition, other original techniques for char-
acterizing optical beams satisfying certain symmetry conditions are proposed and
experimentally demonstrated. All methods are coherence-agnostic—they do not rely
on the beam having a particular coherence spatial structure—and include a verifi-
cation procedure of the symmetry hypothesis, if any. The proposed techniques are
experimentally demonstrated using custom optical systems designed or modified for
the thesis goal.
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The book is structured as follows. In the rest of this chapter we present the foun-
dations that support the methods proposed in the book. In particular, we introduce
fractional Fourier transform PST, a general method for reconstructing the beam WD.
It consists in measuring WD projections—beam intensity distributions measured at
the output of optical systems that perform the rotation the beam WD in phase space—
and applying a tomographic reconstruction algorithm like the filtered back-projection
algorithm. We also introduce the fractional Fourier transform (FRFT), a theoretical
and optical tool to perform a crucial type of rotation of the beam WD. All proposed
methods rely on an optical system that implements a FRFT processor to measure the
required WD projections, also called fractional power spectra due to its relation with
the FRFT.

Chapter 2 considers the Radon-Wigner display (RWD), an optical system that
allows characterizing 1D signals by registering in a single measurement all of the
needed beam fractional power spectra, also known as full-range Radon-Wigner trans-
form (RWT). We introduce our own implementation of a RWD setup that is based on
spatial light modulators (SLMs). Not only the recovered beam information resulting
from a conventional usage of our RWD is comparable to the results from analogi-
cal RWDs, but in addition, the versatility of SLMs allows the applications of other
characterization schemes.

On the one hand, we propose a scheme for which multiple measurements of
different parts of the beam fractional power spectra are assembled into a single
full-range RWT. This results in a recovered WD with increased resolution, as is
demonstrated in the experimental reconstruction of a test signal. On the other hand,
the RWD can be used to measure a narrow region of the beam fractional power
spectra. This increases the resolution of the region of interest with respect of a
regular measurement of the full fractional power spectra. This is specially useful for
the retrieval of beam characteristics that are localised in a certain region the beam
RWT, like the chirp parameters of a multi-chirp signal.

Chapter 3 presents a method that is suitable for the recovery of the coherence
picture of beams that are separable in Cartesian coordinates. We demonstrate that
in such case the antisymmetrical fractional power spectra of the beam are suffi-
cient for a complete coherence characterization. In addition, we show that a simple
system formed by assemblies of two cylindrical lenses is convenient for taking the
required measurements. We demonstrate the experimental feasibility of the technique
by characterizing a Hermite-Gaussian (HG) beam, which is a widely used example of
separable beam. Finally, we propose a experimental test to determine if an unknown
beam is separable in Cartesian coordinates.

Chapter 4 proposes a novel technique for characterization of beams that are rota-
tionally symmetric, i.e. beams whose MI is invariant respect to rotations of the
transverse plane. Completely and partially coherent optical vortices are the most
notorious examples of rotationally symmetric beams (RSBs). We prove that, as in
the case of beams separable in Cartesian coordinates, the antisymmetric fractional
power is spectra is sufficient for the characterization of the coherence state of RSBs.
Using the optical setup based on conventional cylindrical lenses that can be used
for the analysis of separable beams, we demonstrate the feasibility of the method

http://dx.doi.org/10.1007/978-3-319-19980-1_2
http://dx.doi.org/10.1007/978-3-319-19980-1_3
http://dx.doi.org/10.1007/978-3-319-19980-1_4
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in numerical simulations and an experiment. As in the case of separable beams, we
propose a simple test to determine if a beam is rotationally symmetric. This method
together with the optical system are the subject of an application patent.

Although the techniques for separable and RSBs are considerably different, we
show that both require the same reduced set of fractional power spectra associated
with the antisymmetrical FRFT. We demonstrate that this provides an enormous
advantage compared to the general PST method. In particular, the number of mea-
surements reduces from N 2 in the general case to N in the separable case and N/2
in the rotationally symmetric case.

The general method that we propose in Chap. 5 is called phase-space tomographic
coherenscopy (PSTC) because it recovers the coherence information of the beam.
We designed it with two ideas in mind. First, to take advantage of concurrency to
perform multiple processes at a time. Second, to provide the coherence information
incrementally, i.e. not all measured data has to be processed to obtain some coher-
ence information. The resulting technique utilises non-standard WD projections that
allows recovering the MI of 1D beam profiles contained in parallel lines of the trans-
verse plane. While we would need to gather N 2 intensity distributions to recover this
information using Young interferometer, only N measurements are required follow-
ing our technique. Moreover, we overcome the typical problems for interferometric
measurements such as the artefacts related to the pinhole aperture and the low signal
to noise ratio.

We show that the measurements required for the MI reconstruction of all parallel
beam profiles for a given angle are independent to the measurements required to
obtain the MI along parallel lines for another angle. As a result, the technique provides
part of the beam coherence picture earlier than conventional PST as it does not require
to process all projections to obtain it.

We demonstrate the experimental feasibility of the method in three experiments
involving coherent light and partially coherent light generated by illuminating a
computer-generated hologram (CGH) using a Gaussian Schell-model beam (GSMB)
and by incoherently summing orthogonal modes. In addition, we provide two optical
systems; one for the generation of the beams used in the experiments, and the other
to acquire the required WD projections. The proposed technique provides valuable
advantages respect to conventional PST, namely a speed boost for acquiring and
processing the input data into the beam coherence state, and an early analysis of
information since the part of the coherence state is recovered before all projections
are processed.

We close the dissertation with an algorithm that incorporates all four techniques
and determines which method is optimal for characterizing an unknown beam accord-
ing to its symmetries.

http://dx.doi.org/10.1007/978-3-319-19980-1_5
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1.1 Optical Beams

In this book we consider quasi-monochromatic scalar optical beams, i.e. linearly
polarised light waves that are highly directional and whose spectral width is negli-
gible compared to the beam mean frequency. Within this context, and without loss
of generality, we assume that the beam is propagating along the z axis of a Cartesian
coordinate system and omit the terms indicating temporal dependence. As a result,
the beam is described at a plane transverse to its propagation direction by a scalar
complex-valued function called complex amplitude, f (r), where r = (x, y) is a vec-
tor in the transverse plane. Since light is commonly generated by random processes
like the stimulated or spontaneous emission from excited atoms, optical beams have
to be statistically treated. The beam amplitude, f , becomes a particular realisation
of the statistical ensemble, { f (r)}. Since in most cases light is formed by a massive
amount of independent contributions, we consider that the random process describ-
ing light follows Gaussian statistics. This implies that the second-order statistics of
the beam are sufficient for a complete characterization. In particular, the MI defined
as the following two-point correlation function

� (r1, r2) = 〈
f (r1) f ∗ (r2)

〉
, (1.1)

where
〈 · 〉 stands for ensemble average and ∗ for complex conjugated, contains all the

information of the considered beams. In addition, our light model assumes ergodicity,
which means that the ensemble average is equivalent to a time average.

All the spatial information of an optical beam is included in its MI. For instance,
the intensity distribution is obtained as

I (r) = � (r, r) , (1.2)

and the relative phase between the beam at the pair of points r1 and r2 as arg � (r1, r2),
where arg is the argument of a complex number. In addition, the correlation between
the light field at two points, known as complex coherence factor [Goo00] or equal-
time complex degree of coherence, which for the sake of simplicity we further denote
as degree of coherence, is obtained from the MI as:

γ (r1, r2) = � (r1, r2)√
I (r1) I (r2)

. (1.3)

The degree of coherence is a measure of the spatial coherence of the beam. A value
of |γ (r1, r2) | = 1 indicates full coherence between the beam at points r1 and r2;
a value of |γ | = 0 indicates complete incoherence; the rest of cases, 0 < |γ | < 1,
indicate partial coherence. In the particular situation of completely coherent light, the
ensemble average is not required and the beam is perfectly described by its complex
amplitude, f (r). Spatial coherence is broadly regarded as the ability of the light
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field coming from two points to interfere, thus its characterization is important for
determining the outcome of experiments involving partially coherent light.

Partial coherent beams can be expressed as the incoherent sum of orthogonal
coherent beams, usually referred as modes. This result is known as modal expansion
[Man95]. The MI of any partially coherent beam can be expanded as

� (r1, r2) =
∑

n

an�n (r1)�∗
n (r2) , (1.4)

being an and �n the real coefficients and modes of the expansion, respectively, where
n is the set element identifier which may consist in more than one label. From now
on, sums without limits will span each summation label from 0 to ∞ unless otherwise
stated. The local coherence properties of this kind of beams can significantly change
between different pairs of points. Hence, the beam is often described by a global
coherence parameter known as level of coherence or purity of a field [Alo11], which
is defined as

μ =
(∑

n a2
n

)1/2

∑
n an

. (1.5)

Recurrent examples of orthogonal sets are the HG and Laguerre-Gaussian (LG)
beams because they are the natural modes emitted by lasers. In particular, HG beams
are the resonating modes of laser cavities with rectangular symmetry. Their complex
field amplitude is real and depends on two indices, m and n, via

Hm,n (r) = √
2

Hm

(√
2π x

w

)
Hn

(√
2π

y
w

)

w
√

2mm!√2nn! exp

(
−π

r2

w2

)
, (1.6)

where r2 = x2+y2, Hm is the Hermite polynomial of order m and w defines the beam
waist. The intensity and phase of the H3,2 beam with w = 0.73 mm is presented
in Fig. 1.1a. An interesting property of these modes is that they are separable in
Cartesian coordinates. In other words, there are two functions Hm (x) and Hn (y)

such that Hm,n (r) = Hm (x)Hn (y).
On the other hand, LG beams are the resonating modes of laser cavities with

cylindrical symmetry. Their complex field amplitude also depends on two indices,
the radial p and the azimuthal l, and is given by

L l
p (r) = w−1

√
p!

(|l| − p)!
{√

2π
[ x

w
+ isgn (l)

y

w

]}|l|

× L |l|
p

(
2π

r2

w2

)
exp

(
−π

r2

w2

)
, (1.7)

where i is the imaginary unit, sgn is the sign function, Ll
p is the general Laguerre

polynomial of indices p and l [Pou00], and, similarly to HG modes, w defines the
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Fig. 1.1 Intensity and phase
distribution of two example
beams: a Hermite-Gaussian
H3,2 and b Laguerre-
Gaussian L 1

2 . In both cases
w = 0.73 mm
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beam waist. The beam intensity distribution presents p + 1 rings. On the other side,
the azimuthal index determines the topological charge of the beam, i.e. the number
of 2π -jumps experienced by its vortex phase distribution. The intensity and phase
distributions of the L 1

2 beam with w = 0.73 mm is presented in Fig. 1.1b. While HG
beams are separable in Cartesian coordinates, LG beams are separable in cylindrical
coordinates and have rotationally symmetric intensity distribution.

Both sets of modes can be used for the expansion of the widely-used class of
partially coherent beams known as twisted Gaussian Schell-model beams (TGSMBs)
[Sim93, Bas00], whose MI is defined as

� (r1, r2) = exp

[

−π
r2

1 + r2
2

w2 − 2π
(r1 − r2)

2

σ 2
c

− i2πτ (r1 − r2) J (r1 + r2)

]

.

(1.8)

The first term in the exponential, the one associated with the product r2
1 + r2

2, defines
the beam intensity profile, being w its Gaussian width. The second term, associated
with (r1 − r2)

2, is related to the modulus of the degree of coherence, being σc its
Gaussian width. The final term defines its twisted phase, which is related to the orbital
angular momentum carried by the beam, being τ the twist factor and

J =
[

0 1
−1 0

]
. (1.9)

While in certain situations the LG modes are used for the expansion of TGSMBs
according to Eq. (1.4), GSMBs, which are obtained for the particular case τ = 0,
can always be expanded in HG modes [Sun95].

In addition, since both HG and LG beams form an orthonormal basis for 2D
square-integrable functions, they are suitable for the expansion of the beam complex
amplitudes:
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f (r) =
∑

m,n

bm,nHm,n (r)

=
∑

p,l

bl
pL

l
p (r) , (1.10)

where bm,n and bl
p can take complex values. Notice that the expansion coefficients are

random variables in the case of partially coherent beams since the complex amplitude
is stochastic. In such situation the beam is best described by its expanded MI:

� (r1, r2) =
∑

m,n

∑

m′,n′

〈
bm,nb∗

m′,n′
〉
Hm,n (r1)Hm′,n′ (r2)

=
∑

p,l

∑

p′,l ′

〈
bl

p

(
bl ′

p′
)∗ 〉

L l
p (r1)

[
L l ′

p′ (r2)
]∗

. (1.11)

As we will see in the experiments of the next Chapters, both types of beam modal
decomposition, see Eqs. (1.4) and (1.11), present a simple scheme for generating
coherent and partially coherent beams with complex spatial structure.

The characterization of an a priori unknown beam by the experimental retrieval
of its MI, either via direct reconstruction or by the determination of its expansion
coefficients, is a considerable challenge. In the last decades, significant effort has
been made to find alternative functions to describe an optical beam which are easier
to determine experimentally. In particular, the WD and the AF are the most promising
alternatives to the MI so far.

The WD was introduced in 1932 by E. Wigner as an auxiliary function to aid
in the estimation of the physical quantities of quantum systems in thermodynamic
equilibrium [Wig32]. The same concept was latter imported to optics to analyze
the statistical behaviour of optical beams and systems [Wal68, Bas78]. The WD is
defined as the Fourier transform (FT) of the MI via

W (r, p) = 1

σ 2

∫
dr′ �

(
r + r′

2
, r − r′

2

)
exp

(
− i2π

σ 2 p · r′
)

, (1.12)

where p = (u, v) = σ 2k⊥ is a vector proportional to the transverse projection of
the spatial frequency vector, k⊥, and σ is a convenient constant with units of length
that is commonly used in Fourier optics. The WD physically represents the quasi-
distribution of the beam power in the four-dimensional phase space defined by vectors
r and p. Although the WD cannot be treated as a formal distribution because it can
take negative values, posses many important properties useful for beam analysis. In
particular, the marginal distributions,

I (r) = 1

σ 2

∫
dp W (r, p) , (1.13)

Ĩ (p) = 1

σ 2

∫
dr W (r, p) , (1.14)
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represent the intensity and power spectra of the beam, respectively, which are formal
distributions of the beam power in space and spatial frequency. Furthermore, the
expected value for the quantity xm ynum′

vn′
using the WD as distribution function is

regarded as the WD moment, μm,n,m′,n′ of order m + n + m′ + n′ [Ser91, Bas91].
The WD moments provide a global characterization of the beam. For example, the
zero-order moment represents the beam total power in the transverse plane, while
the four first-order moments represent the beam centroid in phase space. There are
ten second-order moments which define the spatial width and angular spread of the
beam, among other less intuitive characteristics such as the beam curvature or its
quality parameters [Ana94, Epp98]. While twisted Gaussian Schell-model, HG, and
LG beams are completely defined by its zero-, first-, and second-order WD moments,
a general beam requires all its moments to be unequivocally defined.

Alternatively, the AF can be used for beam description. Originally, it was applied
for object detection using radar systems [Woo53]. In 1974 it was introduced in
Fourier optics to analyze the propagation of coherent beams in certain isotropic
systems [Pap74]. Its utility for characterizing partially coherent beams was soon
appreciated [Gui78]. Similarly to the WD, the AF is also defined as a FT of the MI:

A (r, p) = 1

σ 2

∫
dr′ �

(
r′ + 1

2
r, r′ − 1

2
r
)

exp

(
− i2π

σ 2 r′ · p
)

. (1.15)

The AF is also obtained from the WD by a double FT:

A (r, p) = 1

σ 4

∫
dr′dp′ W

(
r′, p′) exp

[
− i2π

σ 2

(
r · p′ − p · r′)

]
. (1.16)

Since the MI is invertible from both the AF and the WD,

� (r1, r2) = 1

σ 2

∫
dp W

[
1

2
(r1 + r2), p

]
exp

[
i2π

σ 2 p · (r1 − r2)

]
(1.17)

= 1

σ 2

∫
dp A (r1 − r2, p) exp

[
iπ

σ 2 p · (r1 + r2)

]
, (1.18)

the three functions are related by a FT as illustrated in Fig. 1.2. Similarly to the modal
expansion of the MI, see Eq. (1.4), the WD and AF can be represented as a linear
superposition of WDs, W�n and AFs, A�n of expansion modes:

W (r, p) =
∑

n

anW�n (r, p) , (1.19)

A (r, p) =
∑

n

an A�n (r, p) . (1.20)

Although equivalent descriptions of a beam, each one presents the information dif-
ferently. While the coherence information is readily available from the MI, the WD
and the AF are more convenient for analyzing the beam propagation through optical
systems.
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Fig. 1.2 Illustration of the relation between the MI, the WD, and the AF. All three beam descriptors
are related by a FT of their coordinates

The WD is also interesting for analyzing the degree of coherence of a beams.
For example consider four 1D lGSMBs [τ = 0 and y = 0 in Eq. (1.8)] with the
same intensity width, w, and different coherence widths, wc. In spite of having the
same intensity distribution, their coherent properties are distinct. This difference is
readily observable as a broadening in the WD along the p axes, as it is displayed in
Fig. 1.3, where the WD of 1D GSMBs with w = 0.71 mm and wc = 5.68, 2.84, 1.42,
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Fig. 1.3 WDs of 1D GSMBs with the same intensity width, w = 1.8 mm, and different coherence
widths, a wc = 5.68 mm, b wc = 2.84 mm, c wc = 1.42 mm, and d wc = 0.71 mm. Notice how
the WD broadens in the frequency axis as the width of the coherence degree decreases
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and 0.71 mm are presented. In this particular case, the AF coincides with the WD.
Nevertheless, in a general situation the AF is complex-valued which makes difficult
the coherence analysis.

An important advantage of using the WD and AF instead of the MI to describe an
optical beam is that both functions are more easily reconstructed from experimental
measurements. In particular, the phase-space tomography method for WD [Ray94]
and AF [Tu97] reconstruction, which will be introduced in Sect. 1.6, presents a con-
venient framework for beam characterization.

1.2 Beam Propagation

In order to characterize an optical beam, optical systems have to be used. If we are
only interested in the intensity distribution all the information can be obtained using a
camera. For a complete beam characterization, however, a more sophisticated optical
setup could be necessary. In the case of the non-interferometric methods considered in
this dissertation, the systems involve lenses and free-space propagations. In any case,
these systems transform the (stochastic) complex amplitude of beams and, hence, its
MI, WD, and AF. For a complete understanding of how the characterization methods
work, we must focus on the transformations performed by optical systems.

Since we are mainly interested in thin lenses and free-space propagations we
will introduce the lossless first-order optical systems. A lossless first-order optical
systems (LFOS) is described by a 4 × 4 symplectic matrix, T, referred to as ray-
transformation matrix or simply ABCD matrix [Bas78, Naz82]. In terms of ray
optics, T relates the initial position, ri, and direction, proportional to pi, of a light
ray with the corresponding vectors in the output plane of the optical system (ro, po)
via [

ro
po

]
= T

[
ri
pi

]
=

[
A B
C D

] [
ri
pi

]
, (1.21)

where A, B, C, and D are 2×2 dimensionless matrices. The symplectic condition is a
constrain in T that can be formulated in terms of the J matrix, see Eq. (1.9), as [Bas06]

T−1 = −JTT J =
[

DT −BT

−CT AT

]
, (1.22)

being 0 and I are the zero and identity 2 × 2 matrices and the superscript T the
transposition operation.

While the evolution of the beam can be modelled in terms of rays using the ABCD
matrix, the evolution of the beam amplitude when it propagates through a LFOS is
described by a linear canonical transform (LCT). The LCT relates the input complex
field amplitude, f (ri), with its output fT (ro), via the integral
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fT (ro) = 1

σ 2

∫
dri fi (ri) KT (ri, ro) , (1.23)

where KT is the transformation kernel corresponding to the LFOS. Except in the
case in which the LFOS is described by a singular non-zero B matrix, B �= 0 and
det B = 0 [Ali05], the kernel can be written in terms of T as,

KT =
⎧
⎨

⎩

1√
det iB

exp
[

iπ
σ 2

(
rT

i B−1Ari − 2rT
i B−1ro + rT

o DB−1ro
)]

[B �= 0] ,

σ 2√|det A| exp
(

iπ
σ 2 rT

o CA−1ro

)
δ
(
ri − A−1ro

)
[B = 0] .

(1.24)
Equivalently, the MI is transformed via

�T (r1o, r2o) = 1

σ 4

∫
dr1idr2i � (r1i, r2i) KT (r1i, r1o) K ∗

T (r2i, r2o) . (1.25)

It is complicated to numerically calculate this transformation due to the high dimen-
sionality of the integral, which demonstrates the difficulty of describing partially
coherent beams via their MIs.

On the contrary, the effect of the beam propagation through a LFOS is simply an
affine change of coordinates in the beam WD and AF. Actually, the affine transfor-
mation is the same for both functions, see [Alo11] and references therein:

W (r, p) = WT (Ar + Bp, Cr + Dp) , (1.26)

A (r, p) = AT (Ar + Bp, Cr + Dp) , (1.27)

or correspondingly,

WT (r, p) = W
(

DT r − BT p,−CT r + AT p
)

, (1.28)

AT (r, p) = A
(

DT r − BT p,−CT r + AT p
)

. (1.29)

The simple transformation law for WD and AF plays the key role in beam charac-
terization.

Examples of LFOS, where a beam with wavelength λ propagates through, include:

• The free-space propagation, associated with

Fz =
[

I z
λ

I
0 I

]
, (1.30)

and σ = λ, where z is the propagation distance.
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• The thin lens operation, associated with

Lf =
[

I 0
−λG I

]
, (1.31)

where G is the generalized lens-power matrix. In particular, a convergent spherical
lens of focal length f corresponds to G = (1/f)I with σ = λ.

• The FT, associated with

T =
[

0 I
−I 0

]
. (1.32)

In this case σ depends on the particular implementation of the Fourier transformer.
For instance, the Fourier system formed by two free-space propagation intervals
of distance f separated by a convergent spherical lens of focal f, is associated with
the parameter σ = √

λf.
• The rotation in the phase space, which corresponds to all ray transformation matri-

ces satisfying A = D = X and B = −C = Y, i.e.

TU =
[

X Y
−Y X

]
, (1.33)

where U = X + iY is often defined for simplified rotation matrix description.
This transformation includes the particular cases of Rotator, Gyrator, and FRFT
[Oza93, Sim00b, Ali08, Rod07b], which are summarized in the following Section.

The LFOSs provide a set of valuable tools for WD and AF manipulation. In
particular, they allow easily rotating the beam WD and AF in phase-space. By analogy
with conventional tomography, this inspired the phase-space tomography method.
In order to establish it we first focus on the mathematical formalism of phase-space
rotations.

1.3 Rotations in Phase Space

There are three basic rotations in phase space—rotator, gyrator, and FRFT [Sim00b,
Ali08]. Each one performs a different kind of rotation which is associated with
the LFOSs described by Tα

R , Tβ
G , and T

γx ,γy
F , respectively. For both the sake of

compactness and simplicity, instead of defining these LFOSs by its ray transformation
matrices, TR,G,F , we will recur to the unitary matrices UR,G,F where

TR,G,F =
[

XR,G,F YR,G,F

−YR,G,F XR,G,F

]
, UR,G,F = XR,G,F + iYR,G,F . (1.34)
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The concatenation of these rotations produce another system with unitary matrix
resulting from the product of the corresponding unitary matrices:

T = T2T1 ⇒ U = U2U1. (1.35)

Rotator is the rotation associated with the xy and uv planes. It depends on a single
parameter that corresponds to the rotation angle in both planes of phase space.
The corresponding unitary matrix is

Uα
R =

[
cos α sin α

− sin α cos α

]
. (1.36)
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Fig. 1.4 Evolution of the intensity of the H3,2 (r) mode with w = 0.73 mm when the beam
propagates through different phase-space rotation lfos. a Rotator for angles α = 0, π/8, π/4, and
π/2. b Symmetric FRFT for angles γx = γy = 0, π/8, π/4, and π/2. c Gyrator for angles β = 0,
π/8, π/4, and π/2
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The intensity after the propagation through a Rotator LFOS for angle α = 0, π/8,
π/4, and π/2 of the HG mode H3,2 with w = 0.73 mm is presented in Fig. 1.4a.
The same result for a rectangular signal is presented in Fig. 1.5a.

FRFT denotes the two independent rotations in the planes xu and yv described by
the unitary matrix

U
γx ,γy
F =

[
exp (iγx ) 0

0 exp
(
iγy

)
]

. (1.37)

As in the rotator case, the intensity evolution of theH3,2 mode and the rectangular
signal for angles γx = γy = 0, π/8, π/4, and π/2 is presented in Figs. 1.4b and
1.5b, respectively. Notice that the HG modes do not change its intensity when they
propagate through systems performing the FRFT because they are eigenfunctions
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of the transformation and its waists are equal to the FRFT scale parameter, w = σ .
Also, the case γx = γy = π/2 corresponds to the FT.

Gyrator depends on a single parameter, β, which is associated with the rotation
angle in the planes xv and yu and is described by the unitary matrix

Uβ
G =

[
cos β i sin β

i sin β cos β

]
. (1.38)

It is not an independent rotation from Rotator and FRFT since it can be written as

Uβ
G = U−π/4

R Uβ,−β
F Uπ/4

R . (1.39)

As in the previous rotations, the intensity evolution of the H3,2 mode and the
rectangular signal for angles β = 0, π/8, π/4, and π/2 is presented in Figs. 1.4c
and 1.5c. Notice that this transformation provides the mode conversion between
HG and LG beams [Rod07a].

While in a 2D space there is a single rotation angle, four independent parameters
are required to define an arbitrary rotation in phase space. The most general rotation
can be constructed as the following concatenation of transformations given by their
ray-transformation matrices

Tβ
RT

γx ,γy
F Tα

R . (1.40)

Equation (1.40) is fundamental for the definition the phase-space tomography method.
In particular, the FRFT is the core transformation behind all the phase-space tomog-
raphy techniques described in this dissertation. It is further discussed in the following
Section.

1.4 Fractional Fourier Transform

There are many ways to define the FRFT [Nam80, Oza93, Men93, Oza01]. We
have introduced it in the previous Section as the operation that rotates the functions,
WD and AF, presenting the beam in phase space and in its FT conjugated space,
correspondingly. Thus the FRFT rotates the WD for independent angles γx and γy

in the planes xu and yv, which is associated to the unitary matrix U
γx ,γy
F given by

Eq. (1.37). Conversely, the kernel of the LCT associated with the FRFT has to be
defined to study the evolution of the stochastic field amplitude of a beam propagating
through a FRFT optical system. The kernel is separable in Cartesian coordinates

K
γx ,γy
F (ri, ro) = K γx

F (xi, xo) K
γy
F (yi, yo) , (1.41)



1.4 Fractional Fourier Transform 17

and for γq = mπ with m ∈ Z it is proportional to a Dirac delta function,

K mπ
F (qi, qo) =

{
δ (qi − qo) , m is even,
δ (qi + qo) , m is odd,

(1.42)

being q a placeholder for x and y. On the other hand, for angles γq ∈ (0, π) it
corresponds to

K
γq
F (qi, qo) = exp

(
iγq/2

)

√
i sin γq

× exp

{
iπ

σ 2 sin γq

[(
q2

i + q2
o

)
cos γq − 2qiqo

]}
. (1.43)

Notice that for the special case γq = π/2 the FRFT is reduced to the conventional
Fourier transform. The stochastic complex amplitude and the MI are transformed
by the FRFT kernel according to Eqs. (1.23) and (1.25). In order to simplify the
notation, we introduce f γx ,γy and �γx ,γy to refer to the complex amplitude and MI
transformed by the FRFT for angles γx and γy .

The FRFT for the special case γx = γy is referred to as symmetric FRFT. It
corresponds to the propagation through isotropic and homogeneous media, except
for a scale and quadratic phase factor, which includes the free-space propagation
[Ali94, Oza01]. It also corresponds to the beam propagation through a quadratic
radial gradient index (GRIN) fibre [Oza93]. Analogously, the special case γx = −γy

is referred to as antisymmetric FRFT. For its physical realisation, astigmatic optical
elements, such as cylindrical lenses, are required. Notice that the scale parameter σ

depends on the concrete optical implementation of the FRFT.
To simplify the enumeration of its properties, the FRFT can be thought of as

an operator that transforms an input complex amplitude into the resulting output
complex amplitude,

Fγx ,γy [ f (ri)] (ro) ≡ Fγx ,γy f (ro) ≡ Fγx ,γy (ro) , (1.44)

where Fγx ,γy represents the FRFT operator for angles γx,y . The FRFT satisfies the
following properties [Oza01], some of which will be used further.

• Linearity:

Fγx ,γy (a1 f1 + a2 f2) (r) = a1F
γx ,γy f1 (r) + a2F

γx ,γy f2 (r) . (1.45)

• Inversion: (
Fγx ,γy

)−1 = F−γx ,−γy . (1.46)
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Fig. 1.6 Optical systems to perform the symmetric (γx = γy = γ ) FRFT proposed in [Loh93].
a Type I system formed by two free-space propagation intervals and a spherical lens. b Type II
system formed by two spherical lenses separated by a free-space propagation

• Index additivity:
Fγ ′

x ,γ ′
yFγx ,γy = Fγx +γ ′

x ,γy+γ ′
y . (1.47)

• Associativity:

Fγ ′′
x ,γ ′′

y

(
Fγ ′

x ,γ ′
yFγx ,γy

)
=

(
Fγ ′′

x ,γ ′′
y Fγ ′

x ,γ ′
y

)
Fγx ,γy . (1.48)

• Commutativity:
Fγ ′

x ,γ ′
yFγx ,γy = Fγx ,γyFγ ′

x ,γ ′
y . (1.49)

The FRFT can be implemented using a LFOS. In particular, A. Lohmann proposed
two independent systems containing thin spherical lenses to perform the symmetric,
γx = γy = γ , FRFT of a 2D beam [Loh93]. Their schemes are displayed in Fig. 1.6.
The system of type I consists in two free-space intervals of the same distance, z, with
a spherical lens of focal length f in between. The transformation angle γ depends on
the distance for the free-space propagation, z = f0 tan(γ /2), and the focal length of
the lens via: f = f0/ sin γ . The system of type II consists in two spherical lenses of
the same focal length, f ′, separated by a free-space propagation of distance z′. As in
the type I system, the lens and free-space propagation parameters are variable and
depend on the FRFT angle, f ′ = f0/ tan(γ /2) and z′ = f0 sin γ . In both systems f0
is a reference distance that determines the rest of parameters including the system
length parameter σ = √

λf0. Using the ABCD matrices for the lens and free-space
propagation introduced in Sect. 1.2, it is straightforward to check that both Lohmann
systems perform the FRFT:
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[
I z

f0
I

0 I

] [
I 0

− f0
f I I

] [
I z

f0
I

0 I

]

=
[

I 0
− f0

f ′ I I

] [
I z′

f0
I

0 I

] [
I 0

− f0
f ′ I I

]

=
[

cos γ I sin γ I
− sin γ I cos γ I

]
. (1.50)

In addition, the symmetric FRFT can also be performed by a GRIN media [Oza93].
Consider the GRIN fibre whose index of refraction is given in terms of the radial
distance, r = √

x2 + y2, by

n2 (r) = n2
1

[

1 −
(

n2

n1

)2

r2

]

, (1.51)

where n1 and n2 are the central value of the refraction index and its gradient along the
radial coordinate, respectively. Parallel rays entering the GRIN media are focused
periodically at distances L = jπn1/(2n2), where j is an integer. The propagation
of a beam through this fibre for a distance z is equivalent to the propagation through
a FRFT system of length parameter σ = [λ/(n1n2)]1/2 for angle γ = π z/L .

The evolution of the WD and AF of a beam that is propagating through a FRFT
optical system is given by Eq. (1.29). It consists in the expected phase-space coordi-
nate rotations:

WT
γx ,γy
F

(r, p) ≡ W γx ,γy (r, p)

= W

([
x cos γx − u sin γx

y cos γy − v sin γy

]
,

[
x sin γx + u cos γx

y sin γy + v cos γy

])
. (1.52)

AT
γx ,γy
F

(r, p) ≡ Aγx ,γy (r, p)

= A

([
x cos γx − u sin γx

y cos γy − v sin γy

]
,

[
x sin γx + u cos γx

y sin γy + v cos γy

])
. (1.53)

In the case of the WD, its projection along the p direction coincides with the intensity
of the fractional Fourier transformed beam, i.e. its fractional power spectra,

Sγx ,γy (r) ≡ �γx ,γy (r, r) = 1

σ 2

∫
dp W γx ,γy (r, p) . (1.54)

From Parseval theorem [Oza01], it is evident than all the fractional power spectra of
the same beam must have the equal power:

P =
∫

dr I (r) =
∫

dr Sγx ,γy (r) . (1.55)
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Fig. 1.7 RWT corresponding to the radial profile y = 0 of two fundamental Gaussian beams, H0,0,
of λ = 532 nm with the beams waists a w1 = σ and b w2 = 3σ/4 propagating in a GRIN fibre with
n1 = 1.45 and n2 = 7 × 10−4 mm−1. The length parameter of the optical system is σ = 0.73 mm

The equivalence of Eq. (1.54) is the starting point for the phase-space tomog-
raphy method, which is suitable for the reconstruction of the WD of an arbitrary
beam. The set of fractional power spectra for angles γx ∈ Ax and γy ∈ Ay is
called the beam RWT [Woo94, Dea99] for the angular intervals Ax and Ay , since
it represents the Radon transform of the WD. Usually, both angular intervals are the
same, Ax = Ay = A . When in addition it spans a π -range interval, for example
A = [π/2, 3π/2), we will refer to the RWT as the full-range RWT of the beam. As
we will see in the following sections, from the full-range RWT, which is a measurable
quantity, we can reconstruct the WD of the beam.

The full-range RWT of a beam contains all its relevant information. In particular,
the RWT associated with the symmetric FRFT of a beam represents the evolution
of its intensity at different propagation distances through a GRIN fibre [Oza93].
Additionally, the same RWT for the angular range A = [0, π/2] represents, except
for a scale, the propagation of the beam in free-space for distance z = σ 2/λ tan γ .
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Consider, for example, the radial profile for y = 0 of two fundamental Gaussian
beams, H0,0 (r), of different beam waists w1 = σ and w2 = 3σ/4. Their RWTs
are displayed in Fig. 1.7. Notice how the intensity of the Gaussian of waist w1,
associated with the fibre length parameter, is shape-invariant during its propagation
through the fibre. Conversely, the intensity of the Gaussian beam of waist w2, smaller
than the length parameter, is rescaled during propagation. These examples remark
the importance of the RWT as a tool for the analysis of beam propagation. In the
following Sections we will see that since the WD of the beam can be recovered
from a full-range RWT using a tomographic reconstruction algorithm, it provides a
complete description of the beam, not only its propagation evolution.

1.5 Tomographic Reconstruction

Tomographic reconstruction is an ample term that usually refers to the technique that
allows recovering a 2D object from its line integrals, or projections. It is based on
the Radon transform and its inverse [Dea99], which relates the original object to its
projections. Consider the object represented by the function W (x, u). Its projections
are the line integral of W along directions forming an angle θ with the u axis, i.e.

Sθ (x) = 1

σ

∫
du W (x cos θ + u sin θ,−x sin θ + u cos θ) . (1.56)

The relation between the object and its projections is illustrated in Fig. 1.8 for two
different angles, θ1 = 25◦ and θ2 = 65◦. According to the central slice theorem
[Kak88], each projection corresponds to a “slice” of the 2D FT of the object:

F [W ] (ρ cos θ, ρ sin θ) = W̃ (ρ cos θ, ρ sin θ) = Sθ (ρ) , (1.57)

where W̃ (x, y) represents the FT of the object. The original object can be recon-
structed measuring a set of projections for angles θ covering a π -range interval, which
is usually referred to as Radon map or Radon transform of the object. The function
W can be obtained by assembling each projection into W̃ and inverting the FT.

In practice, instead of assembling W̃ and then inverting the FT, slices of the
original object W are obtained directly from each projection. Consider the inverse
FT relation between W and W̃ in polar coordinates,

W (x, u) = 1

σ 2

∫ π

0

∫
dθdρ |ρ| W̃ (ρ cos θ, ρ sin θ)

× exp

[
− i2π

σ 2 ρ (x cos θ + u sin θ)

]
, (1.58)
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Fig. 1.8 Illustration of the
line integrals that correspond
to the projections for
θ1 = 25◦ and θ2 = 65◦ of
the object W (x, u)

2

1

u

S 2( )

S 1( )

x
W (x, u )

where the properties cos (θ + π) = − cos θ and sin (θ + π) = − sin θ have been
taken into account to reduce the angular integration interval from 2π to π . Identi-
fying the FT of the object in polar coordinates with a projection, see Eq. (1.57), the
following tomographic reconstruction formula is obtained:

W (x, u) = 1

σ 2

∫ π

0

∫
dθdρ |ρ| Sθ (ρ)

× exp

[
− i2π

σ 2 ρ (x cos θ + u sin θ)

]
. (1.59)

Equation (1.59) represents the filtered back-projection algorithm for tomographic
reconstruction. The filtered part of its name comes from the fact that each projection
is first filtered using a filter whose frequency response is |ρ| /σ :

1

σ 2

∫
dρ |ρ| Sθ (ρ) exp

[
− i2π

σ 2 ρ (x cos θ + u sin θ)

]
. (1.60)

Although the ramp filter is the original one, different filters can be used for min-
imising the effects of the reconstruction artifacts. The back-projection part refers to
the angular integral, which states that each filtered projection is then assembled, or
back-projected, into the resulting object. The filtered back-projection algorithm with
ramp filter will be extensively used throughout the dissertation due to its simplicity
and readiness in most numerical simulation software.

In order to illustrate the tomographic reconstruction process consider the object
represented in Fig. 1.9a. We can assemble its Radon transform measuring its projec-
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Fig. 1.9 Illustration of the tomographic reconstruction of an example object. a The original object
is reconstructed from the Radon transform corresponding to b 30 and d 90 projections. Notice that
the reconstructed object from c 30 projections has worst quality than the one reconstructed from
e 90 projections

tions; for instance, Radon transforms for 30 and 90 equidistant projections are dis-
played in Fig. 1.9b, d. The reconstructed objects presented in Fig. 1.9c, e are obtained
applying the filtered back-projection algorithm to their corresponding Radon trans-
forms.

The crucial step in tomographic reconstruction is obtaining the projections of
the object. In the case of soft X-ray tomographic reconstruction, these are obtained
illuminating a 2D section of a 3D body and measuring the intensity once the object
is traversed. The exponential absorption coefficient for different light paths produce
a modulation in the measured intensity, which constitutes the projection. In other
situations, as we will investigate next, the projections are obtained following more
sophisticated ways.

1.6 Phase-Space Tomography

Phase-space tomography is a tomographic reconstruction technique specialized in
reconstructing a 4D virtual object, the WD of a 2D beam. These two differences,
the object being 4D and virtual, produce consequences that complicate its practical
implementation.

On the first hand, while for 2D objects the most general rotation is unequivocally
associated with a single angle, for an object embedded in phase space there are
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four angles associated with the most general rotation, recall Eq. (1.40). This is not
necessarily an inconvenience since it provides a richer selection of projections to
choose from in order to recover the WD of the beam. The usual rotation scheme
is associated with the FRFT for independent angles, which is interesting because
it grants the most similar reconstruction algorithm to the conventional tomography
of 2D objects [Ray94]. Nevertheless, this is not the only rotation scheme valid for
phase-space tomography. In Chap. 5 we introduce a different set of projections that
is optimized for the reconstruction of the MI of the beam.

On the other hand, since the object is virtual, the projections cannot be mea-
sured performing a mechanical rotation of the object (or the detectors around the
object) as it is usually done in conventional tomography. Fortunately, there are
optical systems whose effect in the beam is a rotation of its WD, like the FRFT
[Loh93, Oza93, Men95, Rod09] and Gyrator [Rod07a] implementations. Measur-
ing the intensity of the beam after its propagation through these optical systems is
equivalent to measure the projections of the WD associated with the rotation imple-
mented by the optical system. This provides a simple scheme for the measurement
of the projections required for a tomographic reconstruction of the beam WD.

The original phase-space tomography method proposed in [Ray94] consists in
two steps:

1. Measure a set of the beam fractional power spectra for independent and equidistant
angles γx,y covering a π -range interval: the full-range RWT R

(
x, γx , y, γy

) ≡
Sγx ,γy (r). Notice that unlike for 2D objects, now each projection is 2D and hence
the RWT is a 4D object.

2. Reconstruct the WD via the double tomographic inversion of R
(
x, γx , y, γy

)
;

first of the pair of variables (y, γy), and then of (x , γx ). This is conceptually
equivalent to any other tomographic reconstruction algorithm, except that the
data processing is more time consuming.

Although this technique is very powerful—it allows characterizing a beam regardless
of its coherence degree—it has not been widely applied for several reasons.

The first problem is the lack of an automatized and accurate system for the acqui-
sition of the fractional power spectra of the beam. The original systems proposed in
[Loh93] require the displacement of optical elements, or the variation of the power
of spherical lenses, in order to measure the fractional power spectra for different
angles. This provided poor accuracy and relatively slow acquisition speed. In some
simplified situations only the antisymmetric fractional power spectra are required to
fully characterize the beam. In such cases, the projections can be measured using a
modification of the optical system to perform the gyrator transform [Rod07a], which
only requires an in-plane rotation of cylindrical lenses. This is not, unfortunately,
valid for any a priori unknown beam. For the most general case, the optical system
relaying on spatial light modulators proposed in [Rod09] is more suitable. This setup

http://dx.doi.org/10.1007/978-3-319-19980-1_5
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allows measuring the fractional power spectra for any pair of angles without displac-
ing any optical element. It relays in the implementation of digital lenses whose power
can be tuned by a computer.

The second problem is the excessive amount of information that needs to be
registered and processed in order to recover the WD of the beam. Consider the
reconstruction of the WD sampled in a grid of N × N × N × N points with double
precision (8 B per sampling point). In this situation, 32 GiB are required only to
store the resulting WD with N = 256, which does not include the processing of the
projection data into the WD. In addition, to obtain the correlation of the beam at two
points from the WD the information must be further processed to recover the MI.

This computation problem can be avoided following two different paths. One
possible solution is to check if the beam possesses certain symmetries that can be
exploited to simplify the reconstruction method. This is the core philosophy of the
methods proposed in Chaps. 2, 3 and 4 where the phase-space tomography is simpli-
fied for the case of 1D, separable, and rotationally symmetric beams, respectively.
The other possible path to avoid the computation problem consists in modifying the
original phase-space tomography method to better suit the characterization of the
beam. For instance, in Chap. 5 an optimized method to obtain the MI of a beam is
presented. The method is similar to the original phase-space tomography, but instead
of using the fractional power spectra, it uses other rotations in phase space to obtain
the projections required for the complete beam characterization.
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Chapter 2
Radon-Wigner Display

2.1 Introduction

In some situations it is not possible, or not desirable, to perform a full characterization
of the spatial structure of 2D beams since under certain hypothesis the analysis of
1D beam profiles is more convenient. This is the case of, for example, the spatial
coherence study of X-ray sources [She91, Dit96] and rotationally invariant 2D beams,
whose WD can be reconstructed from the WD of one of its radial profiles [Aga00].
Therefore, the characterization of 1D beams, which is significantly easier than the
characterization of 2D beams, is an important problem with relevant applications.

A 1D beam is described by its complex field amplitude, f (x). Therefore, its MI,
� (x1, x2), and WD, W (x, u), are 2D functions. This simplifies the acquisition, stor-
age, and processing of the WD projections, which can be performed using standard
computer technology. In fact, considering the information contained in a WD stored
in a multiarray of N = 256 sampling points per dimension of double precision (8 B),
the 32 GiB needed for the 2D case is reduced to 512 KiB in the 1D case. Further-
more, there exist several optical systems [Men96, Gra97, Zha98] suitable for the
acquisition in a single measurement of the full-range RWT of the 1D beam. These
systems are commonly referred to as RWD.

In this chapter we present a RWD that provides several advantages compared
with other RWDs proposed in the literature. Our setup relays in SLMs, which are
electronically addressable optical elements introduced in Sect. 2.2. The suggested
RWD is presented in Sect. 2.3. It allows measuring the beam RWT for tunable angular
range as the intensity distribution at the output plane of the system. In order to
experimentally demonstrate the feasibility of our RWD, the WD of several signals
are recovered from their measured RWTs in Sect. 2.4. In particular, the extraction
of the defining parameters of a windowed chirp signal are studied using different
methods. Finally, the WD of the 1D projection of a HG beam and a radial profile of
a coherent rotationally invariant 2D beam are reconstructed using the RWD.

© Springer International Publishing Switzerland 2015
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2.2 Spatial Light Modulators for Lens Implementation
and Beam Generation

A SLM is an optical device that modifies the beam intensity and phase distribu-
tions. The term was originally coined to describe static elements like phase retarders
or amplitude filters. These devices convert an input beam described by fi (r) into
[Goo05]

fo (r) = fi (r) t (r) , (2.1)

where

t (r) = tA (r) exp [i� (r)] (2.2)

is the transmission function, tA is the real function taking values in the range [0, 1]
referred to as amplitude transmission, and � is a real function defining the phase
modulation. Nowadays, the SLMs based on the liquid crystal on silicon technology
can be electronically addressed to dynamically control its modulation properties over
time. With the aid of a computer, the transmission function of modern SLMs can
be updated at rates around 60 Hz, which make them useful for many applications
including adaptive optics in astronomy [Bon90], data storage [Oht99], microscopy
[Nei00], or micro-object manipulation using optical tweezers [Wul06]. SLMs are of
special importance in this dissertation for the realisation of two tasks: implementing
digital lenses with controllable focal length and generating beams with arbitrary
spatial structure using computer-generated holograms. For the sake of simplicity,
and unless otherwise stated, we will refer with SLM to electronically addressable
SLMs using liquid crystal on silicon technology.

The display of a SLM is its optical sensitive element, i.e. the element that actually
modulates the beam. It is composed by a 2D array of independent cells or pixels. Each
pixel behaves like a neutral density filter or phase retarder—depending on whether
the SLM is working in amplitude or phase modulation—independently controllable
from a computer. In the case of an amplitude-only SLM the pixel can take values
in the range [0, 1], where the values 0 and 1 correspond to opaque and completely
transparent filters, respectively. Conversely, in the case of a phase-only SLM the
pixel can usually retard the beam in a full 2π -range interval, although in some
situations a smaller or larger range can be addressed. Every pixel may only take
concrete values contained in the SLM dynamic range, usually formed by 256 values.
Commonly, SLMs are specialized in modifying the amplitude or phase of the beam,
not both at the same time. In addition, depending on whether the modified beam is
transmitted through or reflected from the device, the SLMs are further classified into
transmission and reflection SLMs. Unless otherwise stated, we will assume reflection
SLMs operating in phase-only modulation regime for a full 2π -range interval when
referring to SLMs.
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An interesting application of SLMs is the implementation of thin lenses of variable
focal length. A thin lens can be considered a transmission phase mask with quadratic
phase modulation function. For example, a spherical lens of focal length f is described
in thin-lens and paraxial approximation by the phase mask [Goo05],

t (r) = exp

[
− iπ

λf

(
x2 + y2

)]
, (2.3)

where λ is the wavelength of the incident light. This kind of lenses can be digitally
implemented by phase-only SLMs. Notice that since the SLM is formed by pixels
with finite size that are separated by a certain distance, the phase transmission can
only be correctly implemented in the areas where the phase oscillations are not very
rapid in order to satisfy the Nyquist sampling theorem [Goo05]. Consider the phase
modulation function for a thin-lens defined by Eq. (2.3), which is displayed in Fig. 2.1
for λ = 532 nm and focal lengths of 0.75 and 0.25 m. The phase difference between
two consecutive horizontal pixels with positions k and k + 1 is given by

��k = � [(k + 1) �x] − � (k�x) = π (2k + 1)
(�x)2

λf
, (2.4)

where �x is the separation between pixels, also known as pixel pitch. If the phase
difference is bellow half a phase cycle, i.e. ��k < π , there are more than two
samples per phase cycle and the phase amplitude is well-sampled according to the
Nyquist theorem. On the contrary, if the phase difference is above half cycle then
the phase modulation is sampled with less than two samples per cycle and, therefore,
the phase is undersampled. In order to assure the quality of the lenses we impose a
more restrictive sampling condition. Instead of using two pixels per cycle, we require
six pixels per cycle to consider the phase mask well sampled. Since we discard the
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Fig. 2.1 Phase modulation corresponding to thin-lenses of focal lengths a 0.75 m and b 0.25 m.
When using a SLM with pixel pitch 18 µm, the shaded areas are sampled with a rate below 6 pixels
per cycle and are not used to avoid their associated optical aberrations. Notice that reducing the
focal length of the digital lens reduces its effective aperture
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light that falls into the areas where this condition is not satisfied, each digital lens
has a virtual circular aperture of size klim�x , where

��klim = π/3 ⇒ klim = 1

3

[
λf

2 (�x)2 − 1

]
. (2.5)

This apertures are present in Fig. 2.1 for a SLM of pixel pitch 18 µm. Notice that this
means that reducing the focal length of the digital lens reduces its virtual aperture.
In all the experiments of the dissertation where digital lenses are involved we have
checked that the generated signals fall into the sufficiently sampled zones.

Apart from the digital lenses, SLMs can implement phase-only CGHs for the
high-fidelity generation of coherent beams with on-demand amplitude and phase
distributions [Arr07]. The technique consists in illuminating a phase mask, the holo-
gram, with a reference beam, usually an approximation of a plane wave. In our case
the expanded, filtered, and collimated Gaussian beam of a laser source is used for
this goal, see Fig. 2.2. When the waist of the Gaussian is significantly wider than the
signal to be generated, its central region can be approximated to a plane wave. The
hologram converts the reference beam into a beam whose Fourier expansion with
respect to the phase distribution, φ (r), contains a term that is the desired beam. In
order to obtain in the first term of the Fourier expansion the signal described by

f (r) = a (r) exp [iφ (r)] , (2.6)

where a and φ are its amplitude and phase distributions, the phase modulation func-
tion, h (r) = exp [i� (r)], that satisfies the following relations has to be found
[Arr07]

� (r) = g [a (r)] φ (r) , (2.7)

sinc {1 − g [a (r)]} = a (r) , (2.8)
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Fig. 2.2 Scheme of the optical system used for the signal generation using phase-only computer
generated holography
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where sinc (r) = sin (πx) sin (πy) /
(
π2xy

)
and g is an arbitrary function that

depends on the amplitude distribution. The solution for g has no analytic expres-
sion; hence it has to be numerically inverted from Eq. (2.8).

The conditions given by Eqs. (2.7) and (2.8) define a special kind of CGH referred
to as CGH of type I in [Arr07]. There are alternative ways to construct the hologram,
see for instance the type II and III CGHs of [Arr07], that provide higher-fidelity on
the generated beam. We will use type I CGHs throughout the dissertation, however,
due to their greater energy efficiency and because they do not require additional
masks on the SLM for its implementation.

The generated signal contains all the Fourier series terms, including the desired
beam f (r),

h (r) =
∑

m

Cm [a (r)] exp [imφ (r)] , (2.9)

where Cm are the expansion coefficients which depend on the amplitude a (r). In
order to isolate the desired signal, corresponding to the first term, we include a carrier
in the phase distribution of f :

f (r) −→ f (r) exp (i2πr · kc) , (2.10)

where kc = (kx,c, ky,c) is the carrier frequency. The qth order Fourier term is affected
by a carrier of frequency qkc. Therefore, each expansion term is spatially separated
at the Fourier plane of a 4-f telescopic system [Goo05], where all the terms except the
q = 1 are filtered. In addition, due to the pixelated nature of the SLM, other diffraction
orders appear at the Fourier plane, complicating the filtering of the desired term. An
illustration of the different orders present at the Fourier plane is displayed in Fig. 2.3.
Also consider that the suppression of most of the terms present at the Fourier plane
makes CGH an energetically inefficient technique. Despite these inconveniences,
CGHs excel at the generation of beams with arbitrary and dynamically-changeable
phase and amplitude distributions. The scheme of this optical system is displayed in
Fig. 2.2.

Although the higher the carrier frequency the easier it is to filter the undesired
terms in the Fourier plane, it is not possible to choose carriers with arbitrary fre-
quencies; they are limited by the Nyquist sampling theorem just like the focal
length of digital lenses. For the case of a SLM with pixel pitch of 8 µm, the
limiting carrier frequency according to Nyquist theorem is two pixels per cycle,
kx,0 ∼ ky,0 ∼ 60 mm−1. In order to assure the quality of the carrier, how-
ever, we used in the experiments a lower frequency carrier of six pixels per cycle,
kx,0 ∼ ky,0 ∼ 20 mm−1.

These two applications – the phase-mask implementation and beam generation –
will be used throughout the dissertation. In particular, as we will see in the following
Sections, the RWD proposed by us uses SLMs to augment its versatility, producing
important advantages.
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Fig. 2.3 Illustration of the different contributions obtained in the Fourier plane of the 4-f telescope
for a typical CGH. Black circles represent the zero-order term of the Fourier expansion, while
coloured squares represent the different expansion orders. Squares have different size depending
on the order they represent, since higher orders carry fewer energy. An opaque mask, shaded in
grey, is used to filter the desired first order

2.3 Programmable Radon-Wigner Display

In 1994 Wood and Barry proposed to use the RWT instead of the WD to analyze a
multicomponent linear FM signal [Woo94]. While the signal components are entan-
gled in the WD representation, they are easily identified in the RWT as local intensity
maxima. This idea, originally developed for the analysis of the temporal behaviour
of electrical signals, was promptly imported to the analysis of spatial behaviour of
optical signals. The first optical RWD [Men96] consisted in two Fresnel zone plates,
Z1 and Z2, and a charge-coupled device (CCD) camera separated by a fixed dis-
tance z, see Fig. 2.4a. Each Fresnel zone plate is divided in channels as illustrated in
Fig. 2.4b, with each channel implementing a 1D lens of different power.

This RWD is based in the type II Lohmann FRFT optical system, recall Fig. 1.6b.
The main difference is that the variable free-space propagation of the FRFT system is
replaced in the RWD by an equivalent optical system whose elements do not require
to be displaced in order to achieve different FRFT angles. It is easy to demonstrate by
ABCD-matrix multiplication that the system formed by three lenses of focal length
z, f, and z, respectively, separated by a distance z presented in Fig. 2.5 is equivalent
to a free-space propagation for distance z′ = z (2 − λ/f) [Loh95, Men96]:

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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This equivalence allows replacing the variable propagation distance for different
FRFT angles into a fixed-distance system with variable focal lenses. Embedding
this system into two thin lenses of equal focal length, f = f0 cot(γ /2), and setting
z′ = f0 sin γ , the FRFT of type II for angle γ is obtained. Since we are only interested
in the intensity distribution at the output plane of the system, the third lens is not
required. Each channel of the RWD performs the FRFT for certain angle using the
same approach. If the angles are chosen to cover the range [π/2, 3π/2], the intensity
at the output of the optical system corresponds to the full-range RWT of the input
signal. Unfortunately, the lenses generated by Fresnel zone plates produce distortions
to the incident beam and multiple foci, which reduce the quality of the RWT.

Z1

CCD

Z2

z

z

Multichannel
scheme

cj

cN

c2

c1

(a) (b)

Fig. 2.4 a First optical RWD implementation consisting in two Fresnel zone plates, Z1,2 separated
by a fixed distance z. The beam full-range RWT can be measured at the output plane, which is
placed at a distance z from the second Fresnel zone plate. b Detail of the multichannel optical
system elements, where c j represents the j th channel

z' = z(2- /f)

L2 L3L1

zz

(a) (b)

f3 = zf2 = ff1 = z

Fig. 2.5 Equivalent optical systems. a Optical system composed by three spherical convergent
lenses, L1,2,3, with focal lengths z, f, and z, respectively, separated by the same distance z.
b Free-space propagation for distance z′ = z (2 − λ/f)
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An alternative RWD avoiding the use of Fresnel zone plates was proposed in
[Gra97]. It consists in a cylindrical and a varifocal lens and circumvents the zone
plate distortions. The RWTs measured with the system present, however, a significant
inconvenience: each WD projection has a different magnification. This means that
a pre-process of the RWT to compensate the magnifications is required prior to the
WD reconstruction. Moreover, the projections are measured with different resolution
by a digital camera, which affects the WD recovery. Another RWD proposal, based
on the use of varifocal lenses, prevented the different magnification [Zha98] but
required the measurement of the RWT in a curved surface, unsuitable for the use of
conventional cameras. Despite the successful analysis performed by these systems,
they have not been widely applied.

In order to avoid most of the previous inconveniences, we propose [Cám11a] a
RWD without significant projection distortions which provides RWTs with uniform
magnification. It is based on the original optical system proposed by Mendlovic
et al. [Men96] but with two important differences:

1. SLMs are used to implement the phase masks instead of Fresnel zone plates.
2. Additional cylindrical lenses are included to compensate the beam free-space

propagation in the y direction.

The proposed RWD is versatile because it uses SLMs which can be programmed.
This allows, for example, taking multiple RWTs for partial angular range and
assemble them into a full angular range RWT with increased number of projec-
tions. Moreover, as we will see in Chap. 5, the same configuration of SLMs, without
the cylindrical lenses, can be programmed to obtain the WD projections of 2D beams.

An illustration of the proposed system is displayed in Fig. 2.6a. It consists in
two SLMs separated a fixed distance z, and two cylindrical lenses of focal length
z/4 with phase modulation in the y direction also separated a fixed distance z. The
SLMs implement the multichannel phase masks that were originally implemented by
Fresnel zone plates in [Men96]. Each channel of the phase mask can be programmed
to perform the FRFT operation for an arbitrary angle in the range [π/2, 3π/2]. In
order to acquire the full-range RWT for N equidistant angles, the j th channel of the
i th SLM implements the transmission function ti (x, j) given by:

t1 (x, j) = exp [i�1 (r)] = exp

[
−iπ

x2

σ 2

(
2 − cot

γ j

2

)]
, (2.12)

t2 (x, j) = exp [i�2 (r)] = exp

[
−i4π

x2

σ 2

(
1 − sin γN− j+1

)]
, (2.13)

where j = 1, . . . , N , γ j = π/2 + ( j − 1)/Nπ is the FRFT angle associated with
the j th channel, and σ = √

2λz is the scale parameter of the system. Phase masks
corresponding to z = 1 m are displayed in Fig. 2.6b. The initial and final SLM rows
are filled with phase masks corresponding to the first and last FRFT angles, respec-
tively, in order to avoid edge effects, see Fig. 2.6b. Consequently, the meaningful
area of the intensity distribution at the RWD output plane, which corresponds to the

http://dx.doi.org/10.1007/978-3-319-19980-1_5
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Fig. 2.6 a Implementation of the RWD consisting in two SLMs, SLM1 and SLM2, and two cylin-
drical lenses, L1 and L2. b Phase masks implemented by the SLMs. The FRFT angle changes in
the vertical direction

RWT, has to be extracted. While the SLMs perform the FRFT in the x direction, the
cylindrical lenses compensate the beam propagation in the y direction by imaging
the first SLM into the second, and the second into the output plane. Notice since the
first cylindrical lens inverts the channel position, the j th channel of the second SLM
implements the angle labelled by N − j +1 in Eq. (2.13). At the output plane, placed
at a distance z/2 from the last cylindrical lens, a CCG camera registers the RWT of
the input signal.

The use of SLMs, which compared with Fresnel zone plates or varifocal lenses are
more expensive optical elements, is justified by the high versatility of the resulting
RWD. In particular, a key advantage of the system is that we can increase the number
of WD projections in the RWT by measuring multiple partial angular range RWTs.
For example, instead of registering the full-range RWT for N equidistant angles, it is
possible to measure two RWTs of N equidistant angles covering the ranges [π/2, π)

and [π, 3π/2), which result in a full-range RWT with 2N projections. As we have
seen before, c.f. Fig. 1.9, we will experimentally verify that increasing the number of
projections is beneficial for the WD reconstruction. The effects of single-shot, only
one RWT measurement, and double-shot, two measurements, are investigated in the
experimental results.

Each channel of the RWD expects at its input plane a copy of the 1D signal to
be analyzed. These multiple copies can be obtained from a 1D profile of a 2D beam
using the setup proposed in [Aga00], which is reproduced in Fig. 2.7. It relays in
a slit mask to filter the desired profile and its further expansion using cylindrical
lenses. An inconvenience of this system is that the slit diffraction alters the results
and drastically reduces the power carried by the signal that has to be processed by
the RWD.

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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L1

L2

slit

L3

z/ 4

z/ 2

z/ 4

Fig. 2.7 Optical system proposed in [Aga00] for converting a 1D profile of a 2D beam into the
signal expected by the RWD, which is a multiple copy of the profile along the y direction. It consists
in a slit and three cylindrical lenses. The slit is responsible for selecting a profile of the 2D beam.
Lenses L1 and L2 implement a 4-f telescope for the x direction. Lens L3 expands the profile in the
y direction. The cylindrical lenses L1 and L2 have the same focal length f1 = f2 = z/4 and are
separated a distance z/4 and 3z/4 from the slit plane. They have the phase modulation axis in the
x direction. The final cylindrical lens, L3, with focal length f3 = z, is placed at a distance z from
the slit and has the phase modulation axis in the y direction

2.4 Experimental Results

The proposed programmable RWD has been created using two Holoeye LC-R 2500
reflection SLMs with resolution 1024 × 768, pixel pitch 19 µm, and 8-bit dynamic
range; a Ophir-Spiricon SP620U CCG camera of resolution 1600×1200, pixel pitch
4.4 µm, and 12-bit dynamic range; and two cylindrical thin lenses of focal length
0.25 m. The collimated beam from a Nd:YAG laser of λ = 532 nm illuminates the
first SLM. A custom MATLAB package has been developed for the automatized
setup manipulation and processing of the acquired data.

In order to test our RWD implementation we experimentally measured the full-
range RWT of several 1D test signals: window, windowed chirp, 1D HG beam, and
the radial profile of a 2D rotationally invariant beam. The WD of these signals are
reconstructed from the full-range RWT for γ ∈ [π/2, 3π/2) applying the filtered
back-projection algorithm, see Sect. 1.5. For the experimental verification of the pro-
posed scheme we skip the step of 1D signal expansion that, as it has been explained,
can be performed using the additional setup displayed in Fig. 2.7. Instead, we gen-
erate the input signals in the first SLM of the RWD using a phase-only CGH as
explained in Sect. 2.2. Notice that the tasks of lens multiplication and beam genera-
tion are performed by implementing a hologram encoding the product of the desired
signal, f , and the RWD phase mask:

fSLM1 (x, y) = f (x) t1 (x, j) , (2.14)

where j is the channel associated with the value of the vertical coordinate y.

http://dx.doi.org/10.1007/978-3-319-19980-1_1


2.4 Experimental Results 39

The first test beam for the experimental demonstration of our RWD is a window
signal rect (x/w) with w = 2.47 mm, where rect is the rectangle function defined by

rect (x) =
⎧
⎨

⎩

1, if |x | < 1,

1/2, if |x | = 1,

0, otherwise.
(2.15)

Its full-range RWT is obtained from a single-shot intensity measurement consisting
in 293 WD projections for equidistant angles in the interval [π/2, 3π/2). Since
the pixel pitch of the SLM is larger than the pixel pitch of the CCG camera, four
intensity rows of the acquired RWT correspond to a single channel in the SLM.
Therefore, the rows are averaged to obtain the final RWT. To avoid a possible power
inequality for different fractional power spectra in the RWT, each WD projection is
normalised to unity power. This is justified by the Parseval theorem as introduced
in Eq. (1.55). Finally, the acquired data has been processed using the filtered back-
projection algorithm yielding the WD of the test beam.

The experimental RWT and WD are compared with the theoretical ones in Fig. 2.8.
The good agreement between the theoretically predicted and the experimental results
proves the feasibility of the RWD. In particular, several WD fringes are clearly
observed above and bellow the main lobe of the WD. Notice that the method allows
reconstructing the negative values of the WD observed as blue colours in Fig. 2.8b
which is required for performing a quantitative characterization of the beam. Con-
cretely, the beam MI can be obtained from the WD applying Eq. (1.17).

0

1

0.5

u
 (

m
m

)

x (mm)

(d)

−1 0 1

−1

0

1

/2 3 /2

−1

0

1

x 
(m

m
)

(c)

 (rad)

/2 3 /2

−1

0

1

u
 (

m
m

)

x (mm)

x  
(m

m
)

(b)(a)

 (rad)
−1 0 1

−1

0

1

−1

0

1

−1

0

1

0

1

0.5

Fig. 2.8 a Experimental single-shot full-range RWT consisting in N = 293 WD projections of a
window signal with w = 2.47 mm. b Experimental WD reconstructed from the RWT. c Simulated
RWT consisting in the same projections for the window signal. d Simulated WD for the window
signal. Notice that both WDs present the negative values characteristic of coherent beams

http://dx.doi.org/10.1007/978-3-319-19980-1_1
http://dx.doi.org/10.1007/978-3-319-19980-1_1
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(b)

rotation
compensation

(a)

RWT area
determination

3 /2/2

Fig. 2.9 Illustration of the RWD calibration process. The concrete area of the RWT is obtained
comparing the measured RWT with the theoretical expected one. The WD projections associated
with the angles π/2 and 3π/3 are determined by resizing the theoretical RWT until some charac-
teristic of both RWTs are aligned. Green lines going through the first and last projections of null
intensity in their centre are used in this example (Color figure online)

The extraction of the full-range RWT from the measured intensity distribution
requires a prior calibration of the RWD. In the case of the window signal it has been
performed comparing the theoretically expected RWT with the measured intensity
distribution as illustrated in Fig. 2.9. The WD projections associated with the angles
π/2 and 3π/3 are determined by resizing the angular axis of the theoretical RWT until
some characteristic of both RWTs are aligned. In our case we use as characteristics the
first and last projections with zero intensity in their centre, see green lines in Fig. 2.9.
This calibration process allows defining the region of interest corresponding to the
RWT for other signals. The procedure is also crucial for assembling full-range RWTs
in double- or multiple-shot experiments.

In order to explore the benefits associated with the versatility of SLMs, we char-
acterise a more complex beam: a windowed chirp. This signal is described by the
complex amplitude f (x) = rect (x/w) exp

[
iπx2/ (λfc)

]
. For the experiments we

set the window width and the chirp parameter as w = 2.47 mm and fc = 0.93 m,
respectively. In a first experiment we measure a full-range RWT with 293 projections
by a single shot, see Fig. 2.10a, from which the WD is reconstructed, see Fig. 2.10b.

In a second experiment we measure a full-range RWT by two shots. This means
that from two measurements of the RWT for ranges [π/2, π) and [π, 3π/2] with 293
WD projections each one, a full-range RWT with 586 WD projections is assembled,
see Fig. 2.10c. As in the previous experiment, we reconstruct the WD, which is dis-
played in Fig. 2.10d. The critical step in the double-shot experiment is the assemblage
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Fig. 2.10 a Experimental single-shot RWT consisting in 293 WD projections in the [π/2, 3π/2)

range of a windowed chirp signal with w = 2.47 mm and fc = 0.93 mm. b Experimental WD recon-
structed from the RWT. c Experimental RWT obtained by assembling two single-shot RWTs each
consisting in 293 WD projections in the [π/2, π) and [π, 3π/2) ranges, respectively. d Experimen-
tal WD reconstructed from the double-shot RWT. e Simulated RWT containing the same projections
as in the double-shot experiment. f Simulated WD for the windowed chirp signal. Notice that, as
expected, all the WDs present negative values

of the WD projections obtained in both measurements into the full-range RWT. This
is accomplished following the calibration process mentioned above.

In order to better compare the quality of the measured RWTs and reconstructed
WDs for single- and double-shot experiments, the theoretically expected RWT and
WD are presented in Fig. 2.10e, f, respectively. Since the double-shot RWT con-
tains more information of the beam than the single-shot RWT, its reconstructed WD
presents greater fidelity with the theory expectation. This can be appreciated com-
paring Fig. 2.10b, d, where the fine details around the main lobe are better resolved
for the double-shot case. This quality improvement is reflected in a better accuracy of
the beam characteristics extracted from the RWT and the WD, as we will see further.

Both the measured RWT and the reconstructed WD contain all the information
of the beam spatial structure. Indeed, as it has been mentioned in [Woo94], the chirp
parameter is easily obtained from the RWT by finding the FRFT angle associated
with the narrower WD projection, γk , see Fig. 2.11. The relation between the chirp
parameter and γk is given by
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fc (γk) = −σ 2

λ
tan γk. (2.16)

Neglecting all factors contributing to the measurement precision except the finite
separation between angles, �γk , the chirp parameter precision is calculated as:

�fc (γk) =
∣∣∣∣
dfc (γk)

dγk

∣∣∣∣�γk = σ 2�γk

λ cos2 (γk)
. (2.17)

Notice that when the FRFT angles are equidistant, �fc depends indirectly on the
total number of projections of the RWT, N , since �γk = π/N . Hence, increasing
the number of WD projections contained in the RWT, for example performing a
double-shot experiment, is a convenient way to make the chirp parameter estimation
more precise.

The chirp parameters obtained from the measured RWTs in single- and double-
shot experiments are summarized in Table 2.1. Notice that the precision of the double-
shot experiment is higher than the precision of the single-shot experiment. In both
cases, however, the precision is overestimated since the contributions related to the
calibration of the RWT and the errors associated with the chirp generation using a
CGH are being ignored. That explains why none of the chirp parameter estimations is
compatible with the expected value. Nevertheless, this analysis proves that increasing
the number of shots to measure the RWT, and thus effectively increasing the number
of WD projections in the RWT, beam characteristics with higher precision can be
recovered.

Fig. 2.11 Illustration of the
quantities required to
estimate the chirp parameter
from the measured RWT.
The green line is a visual aid
to estimate the γk angle
(Color figure online)

Table 2.1 Chirp parameter with its associated precision obtained from the single-shot and double-
shot experiments and expected by theory

Chirp parameter

fc (mm) �fc (mm)

Single-shot 1.09 0.03

Double-shot 0.905 0.014

Theory 0.93
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Fig. 2.12 Phase distributions of the chirp signal relative to the origin point, x0 = 0. (Triangle,
�) Experimental phase distribution for the single-shot RWT consisting in 293 WD projections.
(Circle, ◦) Experimental phase distribution for the double-shot RWT consisting in 586 WD projec-
tions. (Line) Theoretically expected phase distribution

In addition to beam characteristics, like the chirp parameter, local information
of the spatial structure of the beam can be extracted from the reconstructed WD.
In particular, from the MI obtained by applying Eq. (1.17), the beam phase distri-
bution is directly recovered. The phase distribution relative to the point x0 = 0,
i.e. arg� (x, x0), is compared between the single- and double-shot experiments with
theoretical expectation in Fig. 2.12. As opposed to the global information included
in the signal parameters, the phase distribution provides local information, which is
important for numerous applications for example in microscopy.

The proposed method and system is not only working in simple signals like the
window and windowed chirp examples. The same procedure can be applied to obtain
the WD of other signals. For instance, in Figs. 2.13 and 2.14 there are displayed,
respectively, the theoretical and experimental WDs of:

• the 1D HG mode H4(x) for w = σ = 0.72 mm, and
• the radial profile (y = 0) of the combination of LG modes fLG (r) = L 0

0 (r) +
2L 0

2 (r) with w = σ = 0.72 mm.

It is evident, when analyzing its RWT, that the HG beam is an eigenfunction of the
FRFT operator since all its WD projections present the same form. This is reflected in
the WD by its rotationally invariant structure. It also means that the beam preserves
its shape during free-space propagation. This is not the case for the radial profile
of the fLG beam because its projections are not identical. Notice that since fLG is
rotationally invariant we can obtain its 4D WD from the WD of its radial projection
following the procedure proposed in [Aga00].

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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Fig. 2.13 Analysis of the H4(x) beam with w = 0.72 mm. a Experimental single-shot full-
range RWT consisting in 293 WD projections. b Experimental WD reconstructed from the RWT.
c Simulated RWT. d Simulated WD
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Fig. 2.14 Analysis of the radial profile of the combination L0,0 + 2L2,2 with w = 0.72 mm.
a Experimental double-shot full-range RWT consisting in 586 WD projections. b Experimental
WD reconstructed from the RWT. c Simulated RWT. d Simulated WD

2.5 Conclusions

The good agreement between the experimental results and the theoretical expecta-
tions allows concluding that the proposed RWD is feasible for the analysis of 1D
signals. In particular, this includes the characterization of pure 1D signals and 1D
profiles of 2D beams. Furthermore, the WD of 2D rotationally invariant beams can
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be recovered from the WD of its radial profile via [Aga00]. Although the experimen-
tal results were obtained for completely coherent beams, the method is coherence
agnostic and should be equally feasible for partially coherent beams.

The exploration of double-shot experiments to determine the beam RWT has lead
us to important results. Indeed, performing multiple shots assembled into the full-
range RWT increases the number of its WD projections, which in turn improves the
quality of the WD reconstruction and precision of the quantitative beam characteri-
zation. The single- and double-shot experiments have been studied for the case of a
windowed chirp signal. Although it is reasonable to think that the WD quality will
improve for more than two shots, this improvement is limited by the errors introduced
in the calibration process. Moreover, since the information is not obtained from a
single measurement, it cannot be used for processes that rapidly change in time.

Another advantage of using the suggested RWD is its ability to centre the beam
analysis in certain RWT region of interest. For example, consider that we already
knew that the chirp parameter of an unknown signal is around certain FRFT angle,
γ . Then, instead of measuring a single-shot full-range RWT, we could measure the
single-shot RWT for range [γ −ε, γ +ε) where ε defines the region of interest. This
procedure is trivial to perform using the proposed RWD and leads to more precise
beam characterization.

Unfortunately, these advantages are only pertinent to the characterization of 1D
beams. For the more general case of 2D signals, different simplified methods are
proposed. For instance, in the following chapters, the method for the analysis of 2D
signals that are separable in Cartesian coordinates is explored. As we will demon-
strate, in a certain way 2D separable beams are similar to 1D beams.

Most of the results of this chapter are published in [Cám11b] and were presented
at the congresses [Cám11a, Cám11c].
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Chapter 3
Characterization of Beams Separable
in Cartesian Coordinates

3.1 Introduction

As we have discussed in Chap. 1, the characterization of 2D beams is a complex
problem requiring the acquisition and processing of huge volume of data. Any
hypothesis about the beam spatial structure, and specially those that can be experi-
mentally checked, has to be used in order to simplify this task. In this Chapter we
consider beams that are separable in Cartesian coordinates, referred as separable
beams, which are described by a MI that can be factorised into two functions, �x

and �y , that depend on the x and y variables, respectively:

� (r1, r2) = �x (x1, x2) �y (y1, y2) . (3.1)

Examples of separable beams are all the HG modes, which have been presented in
Sect. 1.1, and the partially coherent beams composed as incoherent superposition of
HG modes for fixed index, i.e.

� (r1, r2) =
∑

n

anHm,n (r1)Hm,n (r2) , (3.2)

� (r1, r2) =
∑

m

amHm,n (r1)Hm,n (r2) . (3.3)

Partially coherent separable beams are obtained from GSMBs by modulation with
a separable transmission function describing an aperture or a CGH, for example the
beam considered in [Qiu05]. The resulting MI is defined as

� (r1, r2) = h (r1) h∗ (r2) exp

[

−2π
(r1 − r2)

2

w2
c

]

exp

[

−π
r2

1 + r2
2

w2

]

, (3.4)

where h (r) = hx (x) hy (y) is the transmission function. Such beams can be gen-
erated employing an optical scheme similar to the one proposed in Chap. 5 or in
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Fig. 2.a of [Cám13a]. In this Chapter we exploit the symmetry of separable beams
to simplify their analysis. In particular, we propose and experimentally demonstrate
a custom phase-space tomography method that facilitate the characterization of sep-
arable beams. The technique is presented together with a verification procedure of
separability of an a priori unknown beam.

3.2 Characterization Method

In order to introduce the simplified phase-space tomography method let us consider
how the separability symmetry affects the WD and the fractional power spectra of
the beam. On the one hand, the MI and the WD are related by a FT. Since the FT
kernel is a separable function,

exp
(
−i2π

r · p
σ 2

)
= exp

(
−i2π

xu

σ 2

)
exp

(
−i2π

yv

σ 2

)
, (3.5)

the WD of a separable beam is also separable:

W (r, p) = 1

σ 2

∫
dr′ �

(
r + r′

2
, r − r′

2

)
exp

(
− i2π

σ 2 p · r′
)

= 1

σ

∫
dx ′ �x

(
x + x ′

2
, x − x ′

2

)
exp

(
−i2π

ux ′

σ 2

)

× 1

σ

∫
dy′ �y

(
y + y′

2
, y − y′

2

)
exp

(
−i2π

vy′

σ 2

)

= Wx (x, u) Wy (y, v) . (3.6)

Similarly, since the FRFT kernel is a function separable in Cartesian coordinates,
c.f. Eq. (1.41), the fractional power spectra of separable beams are also separable:

Sγx ,γy (r) =
∫

dr1dr2 � (r1, r2) K γx ,γy (r1, r)
[
K γx ,γy (r2, r)

]∗

=
∫

dx1dx2 �x (x1, x2) K γx
x (x1, x)

[
K γx

x (x2, x)
]∗

×
∫

dy1dy2 �y (y1, y2) K
γy
y (y1, y)

[
K

γy
y (y2, y)

]∗

= Sγx
x (x) S

γy
y (y) . (3.7)

Notice that, as a consequence of Eq. (3.7), integrating Sγx ,γy in the y or x direction
yields a function that is proportional to the 1D projections of Wx or Wy , respectively,

∫
dy Sγx ,γy (r) = Sγx

x (x)

∫
dy S

γy
y (y) = Ay

(
γy

)
Sγx

x (x) , (3.8)

http://dx.doi.org/10.1007/978-3-319-19980-1_1


3.2 Characterization Method 49

∫
dx Sγx ,γy (r) = S

γy
y (y)

∫
dx Sγx

x (x) = Ax (γx ) S
γy
y (y) . (3.9)

Furthermore, according to Parseval theorem, see Eq. (1.55), the Ax,y functions do
not depend on the FRFT angle, i.e. they are constants, and are equivalent to the power
associated with each factor of the complex amplitude:

Ax (γx ) = Ax =
∫

dx �x (x, x) , (3.10)

Ay
(
γy

) = Ay =
∫

dy �y (y, y) . (3.11)

Observe that the separability symmetry decouples the beam information in the x
and y coordinates. For example, while in a general case the coherence degree of the
beam at two horizontally separated points,γ [(x1, y), (x2, y)], depends on the vertical
variable y, for a separable beam it does not. Therefore, a complete characterization
of a separable beam can be achieved by reconstructing its WDs associated with each
Cartesian direction.

At this point we introduce a simplified phase-space tomography method, valid for
separable beams, which consists in the following steps:

1. Measure the antisymmetric fractional power spectra for FRFT angle, γx = −γy =
γ , varying in a π -range interval.

2. Integrate along the y and x direction to obtain the normalised WD projections for
the Wx and Wy functions, respectively:

Sγ
x (x) =

∫
dy Sγ,−γ (r) , (3.12)

S−γ
y (y) =

∫
dx Sγ,−γ (r) . (3.13)

3. Verification of beam separability hypothesis, see Sect. 3.3.
4. Assemble the WD projections associated with each coordinate into the full-range

RWTs corresponding to Wx and Wy .
5. Recover the WDs for each coordinate by applying a tomographic reconstruction

algorithm to the full-range RWTs obtained in the previous step.

We underline that the use of additional information about the beam separability allows
reducing drastically the number of required WD projection from N 2 to N . In addition,
the method is easily adaptable to other sets of fractional power spectra, as long as
both their FRFT angles, γx and γy , vary uniformly in a π -range interval, for example
the symmetric FRFT. We have selected the antisymmetric set of fractional power
spectra because there is a convenient optical system to register them. The method is
experimentally demonstrated in the following Section, where the optical systems for
test beam generation and fractional power spectra measurement are explained.

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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3.3 Separability Test

In most real-world situations we do not have access to the symmetries of the beam
phase or coherence degree prior to its characterization. Therefore, we cannot antic-
ipate whether an a priori unknown beam is suitable for this simplified phase-space
tomography method. In order to overcome this limitation, we propose a separability
test that checks if a beam is separable in Cartesian coordinates. Beams that pass
the test can be analyzed using the suggested characterization method. To the best
of our knowledge this is the first original treatment for a test of beams separable in
Cartesian coordinates.

The separability test consists in checking that all the 2D WD projections satisfy
the following relation:

[∫
dx Sγ,−γ (r)

] [∫
dy Sγ,−γ (r)

]
= Sγ,−γ (r)

∫
dr′ Sγ,−γ

(
r′) . (3.14)

The procedure is to obtain the antisymmetric fractional power spectra, Sγ,−γ , calcu-
late the 1D fractional power spectra, Sγ

x and S−γ
y , and apply Eq. (3.14). This relation

is only satisfied for all WD projections when the beam is separable in Cartesian
coordinates, as it is demonstrated in Sect. 3.7.

Since the separability test requires the beam antisymmetric fractional power spec-
tra, these measurements can be used for further characterization of the beam. In the
case that the beam pass the test, it can be fully characterized using the method
suggested in this Chapter. Otherwise, the WD projections associated with the anti-
symmetric fractional power spectra can be used in a general characterization method.
Either way, the measured data is profitable for the analysis of the beam.

3.4 Experimental Setups

In order to prove the feasibility of the proposed technique for the characterization of
beams that are separable in Cartesian coordinates, we analyze a test signal: a H4,3
mode multiplied by a spherical chirp. The beam is described by its complex field
amplitude,

f (r) = H4,3 (r) exp

(
−i

πr2

λfc

)
, (3.15)

where w = 0.75 mm is the beam waist, fc = 2 m is the chirp parameter, and
λ = 532 nm is the wavelength of the light emitted by a Nd:YAG laser source. The
intensity and phase distributions of the test beam are displayed in Fig. 3.1.

The test signal is generated following the same procedure of [Rod07b], whose
optical system is displayed in Fig. 3.2. An input plane wave, which is obtained by the
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Fig. 3.1 a Intensity and b phase distributions of the test signal: a H4,3 beam with waist w =
0.75 mm and λ = 532 nm multiplied by a spherical chirp of parameter fc = 2 mm
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Fig. 3.2 Optical system used for the generation of the test signal. Two SLMs, one working in
amplitude-only modulation and the other in phase-only modulation, implement the intensity and
phase distributions of the beam, respectively. Two 4f telescopes image the first SLM into the second,
and the second SLM into the output plane. A pinhole filters the spurious terms that appear in the
Fourier plane of both telescopes due to the pixelated nature of the SLMs

expanded, filtered, and collimated Gaussian beam of a laser cavity, gets its intensity
distribution modulated by the amplitude-only SLM, SLM1. The resulting beam is
then imaged into the second SLM, SLM2, by a 4f telescope. The spurious copies of
the beam that appear in the Fourier plane of the telescope due to the pixelated nature
of the SLM are filtered using a pinhole, PH. SLM2 works in phase-only regime
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and is responsible for the generation of the beam phase distribution. A second 4f
telescope filters the new spurious terms due to the second SLM and images the
resulting beam into the output plane of the system. Half-wave plates, WP, modify
the beam polarisation to make the SLMs work in amplitude-only and phase-only
regimes. In the end, the expected beam displayed in Fig. 3.2 is obtained using the
same SLMs as in Chap. 2.

On the other hand, an optical system that performs the antisymmetric FRFT
is required to measure the beam fractional power spectra. Since the antisymmet-
ric FRFT is related to the Gyrator transform by a 45◦ rotation, see Eq. 1.39, the
optical system suggested in [Rod07b] for Gyrator transform is easily modified for
the experimental realisation of the antisymmetric FRFT. The setup, illustrated in
Fig. 3.3a, consists in two generalized lenses, L1 and L2, separated by a fixed distance
z. Each generalized lens is composed by a pair of cylindrical thin-lenses of the same
focal length in contact. While the focal length of the cylindrical lenses of L1 is z, the
focal length of L2 lenses is z/2. At the output plane, separated a distance z from L2,
a CCD camera is placed to register the antisymmetric fractional power spectra. The
length parameter of the system is σ = √

λz.
In order to tune the FRFT angle γ the cylindrical lenses forming L1 and L2 have to

be rotated in the xy plane, refer to Fig. 3.3b for a scheme of a generalized lens, where
the phase modulation direction of the composing cylindrical lenses are represented.
The angle between the x axis and the phase modulation direction of the i th cylindrical
lens of the j th generalized lens is denoted by θ j,i . For the sake of simplicity, instead
of defining the FRFT angle, γ , in terms of θ j,i , we used the auxiliary angles, ϕ1
and ϕ2,

L
1

L
2

CCD
z

z

L
j

x

y

π/4

π/4

φ
j

φ
j

(b)(a)

Fig. 3.3 a Optical system used for the measurement of the antisymmetric fractional power spectra.
The system is composed by two generalized lenses, L1 and L2, each one consisting in a pair
of cylindrical lenses in contact, that are separated by a fixed distance z. The focal length of the
cylindrical lenses of L1 is z, while for L2 is z/2. The antisymmetrical fractional power spectra is
measured at a distance z from L2, where a CCD camera is placed. b Scheme illustrating the angle
convention for the generalized lenses

http://dx.doi.org/10.1007/978-3-319-19980-1_2
http://dx.doi.org/10.1007/978-3-319-19980-1_1
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θ j,1 = ϕ j + π/4, (3.16)

θ j,2 = −ϕ j − π/4. (3.17)

See Fig. 3.3b for an illustration of the relations between θ j,i and ϕ j angles. The FRFT
angle γ is achieved by imposing the following constrains in ϕ1 and ϕ2:

sin (2ϕ1) = 1

2
cot (γ /2) , (3.18)

sin (2ϕ2) = sin γ. (3.19)

These relations can be proved, similarly to the RWD case of Chap. 2, by multiply-
ing the ray transformation matrices describing the corresponding elements. In the
end, any antisymmetric fractional power spectra for FRFT angle γ contained in
[π/2, 3π/2] can be measured using the proposed optical system.

For the experiments we set z = 0.5 m and used light from a Nd:YAG laser
source (λ = 532 nm), which produces an optical system with length parameter
σ = 0.52 mm. At the output plane, a Imaging Source DMK-41BF02 CCD camera
of resolution 1280×960 and pixel pitch 4.65µm recorded the required antisymmetric
fractional power spectra.

3.5 Experimental Results

As explained in the Sect. 3.2, each antisymmetric fractional power spectra is inte-
grated in the x and y coordinates, obtaining two 1D WD projections associated,
respectively, with the y or x component of the original signal. Full-range RWTs
are assembled from 45 1D projections. The experimental and simulated RWTs are
compared in Fig. 3.4. Notice that simulated RWTs are obtained applying the recon-
struction process to numerically generated antisymmetric fractional power spectra.
Finally, the WD for the x and y components of the beam are reconstructed applying
the filtered back-projection algorithm to the RWT. The experimental and simulated
WDs are displayed in Fig. 3.5.

The experimental RWTs displayed in Fig. 3.4 show that the test signal is not an
eigenfunction of the optical system performing the antisymmetric FRFT. Despite
of the similar form of the 1D WD projections associated with each coordinate, the
distinct scale is a manifestation of the difference between the optical system length
parameter, σ , and the signal size, w, and the spherical phase modulation associated
with fc. Only in the case when w = σ and fc = 0 all the WD projections have the
same scale, since this HG mode is an eigenfunction of the optical system.

These two effects—the inequality between σ and w, and the spherical phase
modulation associated with fc—are also noticeable in the WDs reconstructed from
the RWTs. In particular, the eccentricity of the elliptical rings of Fig. 3.5 is related
to the different scales of the optical system and the signal, and the chirp parameter.

http://dx.doi.org/10.1007/978-3-319-19980-1_2
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Fig. 3.5 Experimental WDs for a x and c y components of the H4,3 beam obtained from the
full-range RWTs displayed in Fig. 3.4. Simulated WDs for b x and d y components of the signal
recovered from the simulated RWTs
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The WD negative values, represented by blue colours in Fig. 3.5, are associated with
the high coherence of the generated beam. Finally, recall that, according to Eq. (3.6),
from the WDs corresponding to each 1D component of the signal, the complete 4D
WD can be obtained. As well as in the case of 1D signals, increasing the number of
projections improves the quality of the WD reconstruction.

While the beam in the considered example is coherent, the method is equally
suited for the recovery of the WD of partially coherent beams separable in Cartesian
coordinates, as we have theoretically predicted in Sect. 3.2.

3.6 Conclusions

As it has been demonstrated in the experimental results of Sect. 3.5, the proposed
technique allows recovering the full-range RWT and WD of a 2D beam separable in
Cartesian coordinates. This method is convenient for several reasons:

1. The required measurements, the beam antisymmetric fractional power spectra,
can be registered using an optical system with conventional elements—cylindrical
lenses and a CCD camera. Moreover, as we will see in Chap. 4, the same projec-
tions, and therefore the same setup, can be used for the analysis of rotationally
symmetric beams.

2. The volume of data is considerably smaller than for the general case, which
increases the speed of the data processing step.

3. The separability of the WDs and the RWTs allow characterizing each signal
component independently, which ease the analysis of the recovered information.

The method major drawback is that it only works for separable beams. The procedure
proposed in Sect. 3.3 allows checking if an a priori unknown beam is separable in
Cartesian coordinates. Beams that pass the separability test can be characterized
using the method suggested in this Chapter.

Most of these results are published in the article of [Cám09a], and in the book
chapter of [Ali11]. In addition, they were presented at the congresses [Cám08, Ali09,
Cám09b, Cám10a, Ali12c].

Appendices

3.7 Demonstration of the Separability Test

The separability test affirms that a beam for which all its fractional power spectra
satisfy

[∫
dx Sγ,−γ (r)

] [∫
dy Sγ,−γ (r)

]
= Sγ,−γ (r)

∫
dr′ Sγ,−γ

(
r′) . (3.20)

http://dx.doi.org/10.1007/978-3-319-19980-1_4
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must be separable in Cartesian coordinates. Introducing the FRFT kernel in both left-
and right-hand sides of Eq. (3.20) we obtain that:

LHS (r) ≡
[∫

dx Sγ,−γ (r)
] [∫

dy Sγ,−γ (r)
]

= cγ

∫
dr1dr2 exp

{
iπ

σ 2 sin γ

[(
x2

1 − x2
2

)
cos γ − 2 (x1 − x2) x

]}

× exp

{
− iπ

σ 2 sin γ

[(
y2

1 − y2
2

)
cos γ − 2 (y1 − y2) y

]}

×
∫

dx ′�
(
x ′, y1, x ′, y2

) ∫
dy′ �

(
x1, y′, x2, y′) (3.21)

and

RHS (r) ≡ Sγ,−γ (r)
∫

dr′ Sγ,−γ
(
r′)

= cγ

∫
dr1dr2 exp

{
iπ

σ 2 sin γ

[(
x2

1 − x2
2

)
cos γ − 2 (x1 − x2) x

]}

× exp

{
− iπ

σ 2 sin γ

[(
y2

1 − y2
2

)
cos γ − 2 (y1 − y2) y

]}

× � (x1, y1, x2, y2)

∫
dr′ �

(
r′, r′) , (3.22)

where cγ is a transformation constant that depends on γ and the Parseval theorem
has been applied to relate

∫
dr′ Sγ,−γ (r) =

∫
dr′ S0,0 (

r′) =
∫

dr′ �
(
r′, r′) . (3.23)

As this condition must be held for all angles γ , it is equivalent to

∫
dx ′�

(
x ′, y1, x ′, y2

) ∫
dy′ �

(
x1, y′, x2, y′)

= � (x1, y1, x2, y2)

∫
dr′ �

(
r′, r′) . (3.24)

The essence of the demonstration is to deduce that any beam that satisfies Eq. (3.24)
must be separable.

Consider a beam described by the MI � (r1, r2) which is not separable, but sat-
isfies Eq. (3.24). Consider the following two functions obtained via

A (x1, x2) =
∫

dy′ �
(
x1, y′, x2, y′) , (3.25)
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B (y1, y2) =
∫

dx ′ �
(
x ′, y1, x ′, y2

)
. (3.26)

Thus, Eq. (3.24) can be rewritten as

A (x1, x2) B (y1, y2) = � (r1, r2)

∫
dx ′ A

(
x ′, x ′)

= � (r1, r2)

∫
dy′ B

(
y′, y′) . (3.27)

Notice that the power of the beam can be expressed as

P =
∫

dr′ �
(
r′, r′) =

∫
dx ′ A

(
x ′, x ′) =

∫
dy′ B

(
y′, y′)

=
√∫

dx ′ A (x ′, x ′)

√∫
dy′ B (y′, y′). (3.28)

Dividing both sides of Eq. (3.27) by the energy we obtain

A (x1, x2)√∫
dx ′ A (x ′, x ′)

B (y1, y2)√∫
dy′ B (y′, y′)

= � (r1, r2) . (3.29)

This is the separability condition of our starting beam, which was considered
not separable. Therefore, by reductio ad absurdum, a beam satisfying Eq. (3.24),
or Eq. (3.20) for every γ , has to be separable.
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Chapter 4
Rotationally Symmetric Beams

4.1 Introduction

A RSB is characterized by a MI that is invariant respect any rotation at the plane
transverse to the beam propagation. Its MI satisfies

� (r1, r2) = � [M (θ0) r1, M (θ0) r2] (4.1)

for any angle θ0 of the 2D rotation matrix

M (θ0) =
[

cos θ0 − sin θ0
sin θ0 cos θ0

]
. (4.2)

Although it is not a property exclusive to RSBs, all RSBs present an intensity dis-
tribution that is rotationally invariant, i.e. I (r) = I (r). Optical vortices—a subclass
of RSBs—additionally transfer orbital angular momentum (OAM) to the medium
where they propagate through. This characteristic is specially attractive for optical
trapping where it is used to exert torques to the micro-particles being manipulated
[Gri03]. In addition, optical vortices are used in free-space communication schemes
of improved stability [Ric03], security [Gib04], and transmission rate [Wan12].

Coherent optical vortices are arguably the widest class of RSB used in real-world
applications. They are constituted by a rotationally invariant intensity profile and
a phase distribution of the form exp(ilϕ) where ϕ is the azimuthal angle, ϕ =
arctan(y/x), and l is an integer defining the amount of OAM transferred to the
medium—usually known as topological charge.

Partially coherent RSBs, however, are less recurrent in the literature due to the
more complicated processes involved in its synthesis and analysis. A method to
generate them is the incoherent addition of LG beams as proposed in [Gor98, Pon01]:

�RSB (r1, r2) =
∑

p

apL
l
p (r1)

[
L l

p (r2)
]∗

. (4.3)
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This allows generating a large variety of partially coherent beams at the expense of
a complex experimental setup. An alternative approach is to modulate a GSMB with
a hologram encoding a phase vortex. The partially coherent beam can be generated
using a rotating ground glass diffuser and the hologram can be computer-generated
into a SLM [Ali13]. This reduces the setup complexity considerably since the inco-
herent sum operation is not required. However, the variety of beams that can be
generated is more limited. These procedures will be used to generate the experimen-
tal signals of Chap. 5 and are explained in detail in [Cám13a].

As in the case of the other symmetries studied in Chaps. 2 and 3, the coherence
analysis of a RSBs can be significantly simplified. In this chapter we present a phase-
space tomography method specially designed for RSBs. It allows reconstructing the
beam AF and thus its MI, see Eq. (1.15), which provides a complete coherence
picture of the beam. In order to validate the method we simulate its application to
two RSBs with different coherence states and compare the results with the theoretical
expectations. The chapter concludes proving the method feasibility by comparing
the AF recovered from an experimental beam with the theoretical expectation.

4.2 Phase-Space Tomography for RSB

We have already mentioned that the MI of a RSB is invariant respect to a coordinate
rotation, recall Eq. (4.1). This symmetry also affects the other representations of the
beam. For instance, taking the definitions of WD and AF, see Eqs. (1.12) and (1.15),
it is easy to find that:

W (r, p) = W (Mr, Mp) , (4.4)

A (r, p) = A (Mr, Mp) . (4.5)

Essentially, the symmetry is indicating a redundancy of information in the beam rep-
resentation: we no longer need to vary all four coordinates of the beam representation
to fully characterize it. This becomes more evident when we express the beam MI in
polar coordinates, where the symmetry is naturally expressed. The polar coordinates
are defined by (r1,2, θ1,2) associated with the change of variables

x1,2 = r1,2 cos θ1,2, (4.6)

y1,2 = r1,2 sin θ1,2. (4.7)

The beam MI is written respect to this coordinate system as:

�̃ (r1, θ1, r2, θ2) = �̃ (r1, θ1 + θ0, r2, θ2 + θ0) = �̃ (r1, θ1 − θ2, r2, 0) . (4.8)

From Eq. (4.8) it is evident that, instead of the conventional four variables associated
with the MI of a general beam, the MI of a RSB beam depends on only three variables:

http://dx.doi.org/10.1007/978-3-319-19980-1_5
http://dx.doi.org/10.1007/978-3-319-19980-1_2
http://dx.doi.org/10.1007/978-3-319-19980-1_3
http://dx.doi.org/10.1007/978-3-319-19980-1_1
http://dx.doi.org/10.1007/978-3-319-19980-1_1
http://dx.doi.org/10.1007/978-3-319-19980-1_1
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Fig. 4.1 Illustration of the different coordinate systems used for the AF characterization of RSBs.
a Cartesian, b tilde polar, and c hat polar coordinate systems

the two radial lengths, r1 and r2, and the angular difference θ1 − θ2. Therefore, the
data that needs to be acquired and processed to characterize the beam is also reduced
when comparing with a general beam.

Since the FRFT is the basis of the PST method, we have to understand how
the rotation symmetry affects this operation. Just as the rotation symmetry is better
expressed in polar than in Cartesian coordinates, the FRFT operation is best described
in another polar coordinate system associated with the variables (Rx,y , αx,y). While
Rx and αx represent polar coordinates in the plane xu, Ry and αy represent polar
coordinates in the plane yv. For the sake of future simplification we consider that
Rx,y can take negative values and, consequently, αx,y are contained in a π -range
interval.

The three coordinate systems introduced to better explain the method are illus-
trated in Fig. 4.1. The following equations allow relating one to each other:

x = r cos θr = Rx cos αx , y = r sin θr = Ry cos αy, (4.9)

u = p cos θp = Rx sin αx , v = p sin θp = Ry sin αy . (4.10)

In order to indicate which coordinate system each function is referred to, we introduce
a new notation.

1. The original Cartesian coordinate system is associated with the normal notation
of AF: A (r, p).

2. The polar coordinate system in the xy and uv planes is associated with the tilde
notation: Ã

(
r, θr , p, θp

)
.

3. The polar coordinate system in the xu and yv planes is associated with the hat
notation: Â

(
Rx , αx , Ry, αy

)
.

Each coordinate system will aid in a specific task. The Cartesian coordinates are
preferred to transform the beam MI into its AF and vice-versa, since both represen-
tations are related by a 2D FT. The tilde coordinates, Ã, are best used to express the
condition of rotationally symmetry in the MI, WD, and AF, see Eq. (4.8). The hat
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coordinates, Â, are optimal for expressing the phase-space rotation associated with
the FRFT:

Â
(
Rx , αx , Ry, αy

) �−→
Fγx ,γy

Â
(
Rx , αx − γx , Ry, αy − γy

)
, (4.11)

where the left- and right-hand side of Eq. (4.11) represent, respectively, the AF of
the original beam and the one transformed by the FRFT with parameters γx and γy .

Our PST method for RSBs is based in the reconstruction of the beam AF from
a reduced number of intensity measurements. First consider the following relation
between the beam intensity distribution with its AF [Ali00]:

Â
(
Rx , π/2, Ry, π/2

) = A (0, p)

= 1

σ 2

∫
dr′ �

(
r′, r′) exp

(
−i2π

x ′ Rx + y′ Ry

σ 2

)
. (4.12)

Equivalent relations can be found for the rest of fractional power spectra applying
Eq. (4.11). In fact, the fractional power spectrum for angles γx,y is associated with
the hat AF for fixed αx,y = π/2 − γx,y via

Â
(
Rx , αx , Ry, αy

) = 1

σ 2

∫
dr′ Sγx ,γy

(
r′) exp

(
−i2π

x ′ Rx + y′ Ry

σ 2

)
, (4.13)

It indicates that the FT of the beam intensity distribution is associated with the AF
radial section corresponding to fixing the angles αx and αy . Therefore, the beam AF
can be obtained from a set of its fractional power spectra where the angles γx,y vary
in a π -range interval.

This scheme is not fundamentally different from the original PST method: a
certain set of fractional power spectra is measured and processed to obtain a beam
representation, in this case the beam AF. Although the method is valid for any beam
in general, it still can be significantly simplified for the analysis of RSBs due to the
AF symmetry (it only depends on three variables). As a consequence:

1. We only need to measure the antisymmetrical fractional power spectra.
2. The antisymmetric angle, γ = γx = −γy , only needs to vary in a π/2-range

interval.

This allows reducing the number of required projections from N 2 for the general
case to N/2 projections for RSBs without affecting the sampling rate in the phase
space. The complete demonstration of this simplification is presented in Sect. 4.6.

As a matter of introduction to the demonstration consider obtaining the AF value
at the phase space point expressed in tilde polar coordinates as (r0, θr0, p0, θp0).
Leaving apart the discrete nature of any set of measurements, the AF value at that
point can always be extracted from a complete set of antisymmetrical fractional
power spectra. In particular, it is associated with the AF radial section extracted from
the antisymmetric fractional power spectra for angle γ0 such that |tan γ0| = r0/p0.
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The coordinates of the AF radial section are:

Rx =
(

r2
0 + p2

0

)1/2
cos

[
1

2

(
θp0 − θr0

)]
, (4.14)

Ry =
(

r2
0 + p2

0

)1/2
sin

[
1

2

(
θp0 − θr0

)]
. (4.15)

The calculation of the beam coherence relation via Eq. (1.18) through a FT, see
Eq. (4.13), requires the AF to be expressed in Cartesian coordinates, i.e. as plane
sections A (r0, p) with fixed r0. Hence, the radial sections of the AF have to be
further processed into the AF plane sections in order to recover the beam MI. The
relation between the radial and plane sections of the AF is given by

Ã
(
r0, θr0, p, θp

)

= Â

{√
r2

0 + p2 cos

[
1

2

(
θp − θr0

)]
, π/2 − arctan

r0

p
,

√
r2

0 + p2 sin

[
1

2

(
θp − θr0

)]
, π/2 + arctan

r0

p

}
, (4.16)

or inversely,

Â (R cos θR, π/2 − γ, R sin θR, π/2 + γ )

= Ã (r0, θr0, R |cos γ | , 2θR + θr0) . (4.17)

Equations (4.14) and (4.15) have been used to derive these results. Although the
analytical relation between the planar and radial sections is not evident, they have
a rather direct interpretation in geometric terms. In fact, Eq. (4.16) establishes an
equivalence relation between:

• the values at the circle of radius p associated with azimuth θp corresponding to
the plane section r0, and

• the values at the circle of radius
√

r2
0 + p2 associated with azimuth (θp − θr0)/2

corresponding to the radial section γ = arctan r0/p.

Analogously, Eq. (4.17) establishes a reciprocal relation between:

• the values at the circle of radius R =
√

R2
x + R2

y associated with azimuth θR

corresponding to the radial section γ , and
• the values at the circle of radius R| cos γ | associated with azimuth 2θR + θr0

corresponding to the plane section r0 = (r0, θr0) with r0 = R| sin γ | and θr0.

These circle relations are illustrated in Fig. 4.2 in terms of the plane section reference
point, r0, and the antisymmetrical fractional power spectra angle, γ .

From an analytical point of view, the transformation from radial to plane sections is
straightforward since there is a one-to-one relation between points. From a numerical

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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(a) (b)

Fig. 4.2 Illustration of the circle relations between the radial and the plane sections of the AF of
a RSB beam. They address the reconstruction of the plane section associated with the reference
point r0 = [x0, y0]T , which in polar coordinates is r0 = (x2

0 + y2
0 )1/2 and θr0 = arctan y0/x0.

a The point in the circle of radius r0/| sin γ | and azimuth θR corresponding to the radial section
associated with the FRFT angle γ is mapped into, b the point in the circle of radius r0| cot γ | and
azimuth 2θR − θr0 of the plane section

(a) (b)

Fig. 4.3 a Example of a Gaussian AF plane section obtained using a finite number of antisym-
metrical fractional power spectra. Black values are missing from the reconstruction. b Result after
linear interpolation of the missing values

point of view, however, the transformation presents a challenge. We only have access
to a finite number of antisymmetric power spectra and, hence, of AF radial sections.
In addition, in order to assemble a plane section of the AF we need to extract the
values in circles of the radial section. The radius of those circles do not change
linearly with the FRFT angle, but as | cos γ |. Following the procedure without paying
attention to these considerations ends up with plane sections with missing values.
This problem is illustrated in Fig. 4.3a where a plane section has been assembled
using 25 antisymmetric fractional power spectra for equidistant angles γ . The values
in black are missing from the reconstruction. As long as we are under the Nyquist
limit [Goo05] we can interpolate the missing values, see Fig. 4.3b.

The following is a summary of the proposed procedure to obtain the MI of a RSB
from the complete set of its antisymmetrical fractional power spectra:
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1. Measure the beam antisymmetrical fractional power spectra for γ varying in a
π/2-range interval, using for example the optical system described in Sect. 3.4.

2. Perform the FT to these antisymmetrical fractional power spectra to obtain the
radial sections of the AF.

3. For every value of the antisymmetrical angle γ :

(a) Extract the values associated the circle of radius R from the radial section.
(b) Rescale the circle radius from R to R| cos γ |.
(c) Transform the circle azimuth from θR to 2θR + θr0.
(d) Assemble the resulting circle into the AF plane section.

4. Perform the FT to the plane section to obtain the MI, see Eq. (1.18).

In the next section we validate the method by simulating the characterization of two
RSBs with different coherence states but the same intensity distribution.

4.3 Simulations

Consider the coherent LG mode L 2
2 and the partially coherent RSB constructed as

the incoherent sum of L 2
2 and L −2

2 . Their MIs are written as:

�L 2
2

(r1, r2) = L 2
2 (r1)

[
L 2

2 (r2)
]∗

=
∣∣∣L 2

2 (r1)L
2

2 (r2)

∣∣∣ exp [i2π (θ1 − θ2)] , (4.18)

�	 (r1, r2) = 1

2

{
L 2

2 (r1)
[
L 2

2 (r2)
]∗ + L −2

2 (r1)
[
L −2

2 (r2)
]∗}

=
∣∣∣L 2

2 (r1)L
2

2 (r2)

∣∣∣ cos [2 (θ1 − θ2)] , (4.19)

where θ1,2 are the polar angles corresponding to writing r1,2 in polar coordinates.
Although both beams present the same intensity distribution that does not change
apart from a scale during free-space propagation, see Fig. 4.4, their coherence states
are significantly different: �L 2

2
is completely coherent and �	 is partially coherent.

The proposed method distinguishes between both beams and quantize their coherence
state. In order to prove it we will simulate their characterization using the proposed
simplified PST method and check that the recovered AFs are consistent with the
theoretical expectations.

In order to apply the simplified PST we need as inputs the antisymmetric frac-
tional power spectra of each beam. In the case of �LG it can directly be numerically
calculated transforming the complex amplitude of the LG beam by the FRFT kernel.
For �	 , however, there is no complex amplitude defined since the beam is partially
coherent. Taking into account that the beam is composed as the incoherent sum of

http://dx.doi.org/10.1007/978-3-319-19980-1_3
http://dx.doi.org/10.1007/978-3-319-19980-1_1
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Fig. 4.4 Intensity
distribution of the RSBs
associated with the MIs �L 2

2
and �	
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two modes, its fractional power spectra is expressed as the sum of the fractional
power spectra of each mode:

Sγ,−γ
	 (r) = 1

2

[
Sγ,−γ

L 2
2

(r) + Sγ,−γ

L −2
2

(r)
]

, (4.20)

We have introduced Sγ,−γ

L l
p

to denote the fractional power spectra associated with the

LG beam with azimuthal index l and radial index p.
Plane sections of the AFs of each beam can be recovered from the numerically

simulated fractional power spectra. To verify the results, we calculate the theoretical
plane sections using the following expression for the AF of a LG mode:

AL l
p
(r, p) = 2Lm

{ π

2w2

[
x2 + u2 + y2 + v2 − 2 (xv − yu)

]}

× Ln

{ π

2w2

[
x2 + u2 + y2 + v2 + 2 (xv − yu)

]}

× exp
[
− π

2w2

(
r2 + p2

)]
. (4.21)

where (m, n) = (p + l, p) for positive l and (m, n) = (p, p − l) for negative l.
Equation (4.21) is easily obtained from the expression for the WD of the LG beams
derived in [Sim00a], see Sect. 4.7 for details. Notice that in this case the AF is
real since it is obtained from the WD by a coordinate transformation. This allows
displaying the plane sections in colormap figures with positive and negative colour
axis. The linearity of the AF with respect to the MI (see Eq. (1.15)) allows calculating
the AF of the beam associated with �	 as the sum of the AFs of the composing LG
modes:

A	 (r, p) = 1

2

[
AL 2

2
(r, p) + AL −2

2
(r, p)

]
. (4.22)

A total of 90 antisymmetrical fractional power spectra with angle γ covering
the range [π/2, π ] were numerically calculated. From them, AF plane sections
associated with a reference point r0 were obtained for each beam. The simulated
and theoretical AF plane sections associated with two different reference points,
r0 = (0.25, 0) mm and r0 = (0.55, 0) mm, are displayed in Fig. 4.5 for the case of

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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Fig. 4.5 a, b Simulated and
theoretical AF plane sections
of the beam �LG for the
reference point
r0 = (0.25, 0) mm.
c, d Simulated and
theoretical AF plane sections
of the beam �LG for the
reference point
r0 = (0.55, 0) mm
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Fig. 4.6 a, b Simulated and
theoretical AF plane sections
of the beam �	 for the
reference point
r0 = (0.25, 0) mm.
c, d Simulated and
theoretical AF plane sections
of the beam �	 for the
reference point
r0 = (0.55, 0) mm
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�L 2
2

. Analogous AF plane sections for A	 are presented in Fig. 4.6. The colormap of
both figures is chosen so that positive and negative values are represented by colours
in a linear scale of red and blue tones, respectively. The good agreement between
the simulated and theoretical results confirms that the proposed method is valid to
recover the beam AF plane sections. Notice that as a consequence of the distinct
coherence state of both beams, their AF plane sections are considerably different.

The AFs can be further processed into the beam MIs by inverting the FT using
Eq. (1.18). Figures 4.7 and 4.8 display the modulus and phase of the MIs, �(r +
1/2r0, r −1/2r0), with r0 = (0.55, 0) mm, for the simulated and theoretical beams.
In particular, the different patterns between �LG and �	 due to the their unequal
coherence pictures. Also notice that the phase of �	 only contains the values 0 and
π as expected according to Eq. (4.19).

Finally, Fig. 4.9 presents the simulated and theoretical modulus of the degree of
coherence for both beams. In order to avoid the areas where the degree of coherence

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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Fig. 4.7 a Simulated, and
b theoretical MI modulus of
the beam �LG associated
with �(r + 1/2r0, r − 1/2r0)

for the reference point
r0 = (0.55, 0) mm.
c Simulated, and
d theoretical MI modulus of
the beam �	 associated with
�(r + 1/2r0, r − 1/2r0) for
the reference point
r0 = (0.55, 0) mm
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Fig. 4.8 a Simulated, and
b theoretical MI phase of the
beam �LG associated with
�(r + 1/2r0, r − 1/2r0) for
the reference point
r0 = (0.55, 0) mm.
c Simulated, and
d theoretical MI phase of the
beam �LG associated with
�(r + 1/2r0, r − 1/2r0) for
the reference point
r0 = (0.55, 0) mm
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Fig. 4.9 a Simulated, and
b theoretical degree of
coherence modulus of the
beam �LG corresponding to
|γ (r + 1/2r0, r − 1/2r0)|
for the reference point
r0 = (0.55, 0) mm.
c Simulated, and
d theoretical degree of
coherence modulus of the
beam �	 corresponding to
|γ (r + 1/2r0, r − 1/2r0)|
for the reference point
r0 = (0.55, 0) mm
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is not defined, we mask out the points for which | f (r + 1/2r0) f ∗(r − 1/2r0)| is
smaller than 5 % of the maximum beam power. Observe that while �LG is completely
coherent, the degree of coherence associated with �	 is inhomogeneous. This is the
definitive proof that the beams posses a coherence state different to each other.

4.4 Experimental Results

To conclude this chapter we demonstrate that the method is experimentally feasible
by characterizing a beam generated in the laboratory. The beam antisymmetrical
fractional power spectra were measured using the optical system composed by con-
ventional cylindrical lenses presented in Sect. 3.4. The test beam is generated by the
diffraction of an spherical wavefront of wavelength λ = 632.8 nm by an aperture of
radius a = 1.3 mm. The analytical expression for the resulting complex amplitude
is a circular aperture multiplied by a spatial chirp of parameter f:

f (r) = circ
( r

a

)
exp

(
− iπ

λf
r2

)
, (4.23)

circ is the circle function defined as

circ
( r

a

)
=

{
1, if |r| < a
0, if |r| ≥ a

(4.24)

The chirp parameter of the beam was estimated as f = 0.71 m by minimising the
differences between a simulated set of antisymmetrical fractional power spectra and
the fractional power spectra measured in the experiment. It is important to mention
that the aperture was not perfectly circular but decagonal. However, simulation have
shown that the beam differences caused by the non-circular aperture are insignificant.
Therefore, for the purpose of verification of the method we assume the aperture is
circular. The measured intensity distribution of the beam and its estimated phase
distribution (corresponding to the chirp parameter) are presented in Fig. 4.10.
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Fig. 4.10 a Measured intensity distribution of the generated beam, and b its estimated phase
distribution, which corresponds to a chirp of parameter f = 0.71 mm
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The theoretical expression for the AF of the generated beam is required for the
comparison with the experimental results. Since we approximate the aperture by
a circular mask, the signal is rotationally invariant. Therefore, it is demonstrated in
Sect. 4.7 that its AF can be written in terms of its WD via the following transformation:

A (r, p) = 1

2
W

(
−1

2
r,−1

2
p
)

. (4.25)

A reasonable approximation of the WD of a circular aperture of radius a was derived
in [Bas96]. The expression for the WD plane section associated with r0 = [x0, 0]T is

Wcirc (r0, p) = C (x0)

J1

[
4π
σ 2

√
(a − x0)

2 u2 + (
a2 − x2

0

)
v2

]

√
(a − x0)

2 u2 + (
a2 − x2

0

)
v2

, (4.26)

where

C (x0) = 4πa2

[

1 − 2

π
arcsin

x0

a
− 2x0

πa

√

1 −
( x0

a

)2
]

(4.27)

is a constant that only depends on the ratio between |r0| and the radius of the circular
aperture, x0/a.

The WD has to be further transformed to account for the chirp multiplication.
The chirp multiplication corresponds to a change of coordinates of the WD given by
Eq. (1.29) with

T =
[

A B
C D

]
=

[
I 0

− 1
λf I 0

]
. (4.28)

In a nutshell, it consists in the change

r �−→ r, (4.29)

p �−→ p + 1

λf
r, (4.30)

which is simply a translation on the spatial frequency coordinate proportional to the
reference point. The resulting AF plane section associated with r0 = [x0, 0]T is
expressed as

A f (r0, p) = 4C
( x0

2

) J1

[
π
σ 2

√
(2a + x0)

2 (−u + x0
λf

)2 + (
4a2 − x2

0

)
v2

]

√
(2a + x0)

2 (−u + x0
λf

)2 + (
4a2 − x2

0

)
v2

= Wcirc

(
−1

2
r0,−1

2
p − 1

2λf
r0

)
. (4.31)
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Fig. 4.11 a, b Experimental
and theoretical AF plane
sections for the reference
point r0 = [0.25, 0]T mm of
the chirped circular aperture.
c, d Experimental and
theoretical AF plane sections
for the reference point
r0 = [0.55, 0]T mm of the
chirped circular aperture
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A total of 40 antisymmetrical fractional power spectra with angle covering the
range γ ∈ [π/2, 3π/2) were measured in the experiment. Although all of them were
used for the estimation of the chirp parameter, only the 20 of them associated with the
angles in the range [π/2, 0] were actually used for obtaining the AF plane sections.
The experimental and theoretical plane sections associated with two different refer-
ence points, r0 = [0.25, 0]T and r0 = [0.55, 0]T mm, are presented in Fig. 4.11.
Despite the reduced number of measured projections, the experimental AF plane
sections still agree considerably with the theoretical predictions. This demonstrates
the feasibility of the proposed method for characterizing experimentally-generated
beams. Notice that the AF plane sections are presented in Cartesian coordinates.
Hence, the beam MI can be recovered from the AF plane sections applying Eq. (1.18).

As the techniques proposed in previous sections, this method can be applied to an
a priori unknown beam if we prove it is rotationally symmetric. Therefore, before the
application of the method, the beam must pass a test that demonstrates it is rotationally
symmetric. The test consists in checking that its fractional power spectra associated
with both angles γ = π and γ = π/2 are invariant respect to rotation. In other
words, a beam � (r1, r2) that satisfies

Sπ,−π (r) = Sπ,−π (r) , (4.32)

Sπ/2,−π/2 (r) = Sπ/2,−π/2 (r) , (4.33)

is rotationally symmetric. The validity of this test is derived in detail in Sect. 4.8.

4.5 Conclusions

In summary, this chapter proposes a simplified phase-space tomography method
for the spatial characterization of monochromatic completely or partially coherent
RSBs. The method has been verified by simulations and its feasibility for real-world
applications has been demonstrated by an experimental example. Even though we

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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only measured 20 fractional power spectra, the good agreement between experi-
ment and theory proves that the technique can be used for fast characterization of
beams. The method can be applied to any a priori unknown beam that satisfies the
rotationally symmetry test presented as the conditions of Eqs. (4.32) and (4.33). We
underline that the method can be experimentally applied using the same setup as for
the characterization of separable beams, see Chap. 3.

Most of these results are published in [Cám14] and were presented at the con-
gresses [Ali12a, Cám12b, Ali12c]. In addition, the procedures to characterize RSBs
together with the optical system, have been the object of a patent application [Ali12b].

Appendices

4.6 Simplification of RSB Characterization

Imagine that we measure N 2 fractional power spectra of a beam where both γx and
γy equidistantly and independently range in a π -interval. Applying the conventional
phase-space tomography method proposed in [Ray94] we can recover the beam WD
with certain sampling rate in phase space. This section demonstrates that if the beam
is a RSB, then only N/2 of the measured antisymmetrical fractional power spectra
are required to obtain the same information.

First of all, the angles γx,y of the fractional power spectra do not need to range
independently: the antisymmetric set (γx = −γy = γ ) suffices to sample the entire
AF of the RSB. Let us prove this by considering the AF radial section in hat coor-
dinates obtained from an arbitrary antisymmetrical fractional power spectra and its
relation with the AF in tilde coordinates, c.f. Eqs. (4.9) and (4.10):

Â
(
Rx , π/2 − γ, Ry, π/2 + γ

) = Ã
(
r0, θr0, p0, θp0

)
. (4.34)

The first impression is that there must be some Ã values that cannot be reached by
Eq. (4.34) since there are four variables on the right-hand-side, (r0, θr0, p0, θp0), and
only three on the left-hand-side, (Rx ,Ry ,γ ). In other words, the equation system

r0 =
√

(Rx sin γ )2 + (−Ry sin γ
)2 = |sin γ |

√
R2

x + R2
y, (4.35)

θr0 = arctan

(−Ry sin γ

Rx sin γ

)
= − arctan

(
Ry

Rx

)
, (4.36)

p0 =
√

(Rx cos γ )2 + (
Ry cos γ

)2 = |cos γ |
√

R2
x + R2

y, (4.37)

θp0 = arctan

(
Ry cos γ

Rx cos γ

)
= arctan

(
Ry

Rx

)
. (4.38)

http://dx.doi.org/10.1007/978-3-319-19980-1_3
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is not solvable for all values of θr0, and θp0 because there is a dependence rela-
tion between Eqs. (4.36) and (4.38). However, taking into account that the beam is
rotationally symmetric, i.e. the AF is invariant to the change

θr0 �→ θr0 + θ0, (4.39)

θp0 �→ θp0 + θ0, (4.40)

we can break the dependence and make the equation system solvable:

r0 = |sin γ |
√

R2
x + R2

y, (4.41)

θr0 = θ0 − arctan

(
Ry

Rx

)
, (4.42)

p0 = |cos γ |
√

R2
x + R2

y, (4.43)

θp0 = θ0 + arctan

(
Ry

Rx

)
. (4.44)

The presence of the terms (R2
x + R2

y)
1/2 and arctan Ry/Rx in Eqs. (4.41)–(4.44)

hints for converting (Rx , Ry) in polar coordinates (R, θR) via the change of variables

R =
√

R2
x + R2

y, (4.45)

θR = arctan

(
Ry

Rx

)
. (4.46)

Recall that Rx and Ry may take negative values since αx and αy only range in a
π -range interval, and hence the change is valid. Doing so, the system of Eqs. (4.41)–
(4.44) becomes

r0 = R |sin γ | , (4.47)

θr0 = θ0 − θR, (4.48)

p0 = R |cos γ | , (4.49)

θp0 = θ0 + θR, (4.50)

or equivalently

R =
√

r2
0 + p2

0, (4.51)

θR = 1

2

(
θp0 − θr0

)
, (4.52)

θ0 = 1

2

(
θr0 + θp0

)
, (4.53)

|tan γ | = r0

p0
. (4.54)



74 4 Rotationally Symmetric Beams

Notice that Eq. (4.54) can be inverted since both r0 and p0 take only positive values:

γ = arctan

(
r0

p0

)
. (4.55)

This concludes the demonstration that using the antisymmetrical fractional power
spectra we can sample the entire AF of a RSB. This allows reducing from N 2 to N
the number of required projections.

Finally, to further reduce the number of projections from N to N/2 we now
show that only the angles contained in a π/2-range interval are required. This can
be concluded from Eq. (4.54) in which the angle γ is confined in the first quadrant,
γ ∈ [0, π/2). Remember that both r0 and p0 are positive definite. Notice that the
angles in the interval [π/2, π) and [−π/2, 0) are mapped to the first quadrant by
the absolute value of the left-hand-side of Eq. (4.54). Therefore, the antisymmetrical
fractional power spectra associated with γ outside the first quadrant are redundant.

These two facts allow reducing the number of projections needed for the AF
reconstruction from N 2 in the general case—N for each angle, γx and γy , covering
a π -range interval—to N/2 in the case of RSBs –N for the antisymmetric angle,
γ , covering a π/2-range interval– without affecting the sampling rate of the phase
space.

4.7 AF of a LG Mode

This section provides a detailed calculation of the AF of a LG mode from the WD
of a HG mode. The procedure is the following:

1. Relate the WD and the AF of a centre-symmetric beam, i.e. a beam for which its
(stochastic) complex field amplitude is an eigenfunction of the inversion operator.

2. Calculate the AF of a HG mode from its WD using the previous result, since the
HG mode is centre-symmetric.

3. Transform the AF using Gyrator (recall Sect. 1.3) to convert the resulting AF for
the HG mode into the AF for the LG mode.

WD and AF of Centre-Symmetric Beam
The WD and the AF of a beam are calculated in a similar way, so it is no surprise that
under certain conditions both functions are equal to each other apart from a scaling.
Firstly, consider the definition of the WD,

W (r, p) = 1

s2

∫
dr′ �

(
r + 1

2
r′, r − 1

2
r′

)
exp

(
− i2π

s2 pT r′
)

. (4.56)

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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Applying the change of variables r′ �→ 2
(
r − r′) the WD is rewritten as

W (r, p) = 2

s2 exp

(
− i4π

s2 rT p
) ∫

dr′ �
(
2r − r′, r′) exp

(
i4π

s2 pT r′
)

. (4.57)

Similarly, from the change of variables r′ �→ r′ + r/2 in the AF definition, see
Eq. (1.15), it is obtained that

A (r, p) = 1

s2

∫
dr′ �

(
r′ + 1

2
r, r′ − 1

2
r
)

exp

(
− i2π

s2 pT r′
)

= 1

s2 exp

(
iπ

s2 rT p
) ∫

dr′ �
(
r′ + r, r′) exp

(
− i2π

s2 pT r′
)

. (4.58)

Secondly, a centre-symmetric beam is described by a complex field amplitude
that is eigenfunction of the inversion operator:

f (r) = κ f (−r) , (4.59)

where κ is the eigenvalue. Therefore, its MI satisfies

� (r1, r2) = κ� (−r1, r2) . (4.60)

Inserting Eq. (4.60) in the expression for the WD of Eq. (4.57) we obtain

W (r, p) = 2κ

σ 2 exp

(
iπ

σ 2 rT p
) ∫

dr′ �
(
r′ − 2r, r′) exp

(
− i2π

σ 2 pT r′
)

. (4.61)

Comparing Eqs. (4.58) and (4.61) it is concluded that the following relation

A (r, p) = 1

2κ
W

(
−1

2
r,−1

2
p
)

, (4.62)

is satisfied for any centre-symmetric beam.

AF of a HG Mode
The expression for the WD of a HG mode Hm,n , see Eq. (1.6), is already present in
the literature [Sim00a]:

WHm,n (r, p) = (−1)m+n 4Lm

[
4π

w2

(
x2 + u2

)]
Ln

[
4π

w2

(
y2 + v2

)]

× exp

[
−2π

w2

(
r2 + p2

)]
, (4.63)

where Lm ≡ L0
m is the Laguerre polynomial of index m. Since the HG modes are

eigenfunctions of the inversion operator,

http://dx.doi.org/10.1007/978-3-319-19980-1_1
http://dx.doi.org/10.1007/978-3-319-19980-1_1
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Hm,n (r) = (−1)m+n Hm,n (−r) , (4.64)

its AF and WD are related via Eq. (4.62),

AHm,n (r, p) = (−1)m+n

2
WHm,n

(
−1

2
r,−1

2
p
)

= 2Lm

[ π

w2

(
x2 + u2

)]
Ln

[ π

w2

(
y2 + v2

)]

× exp
[
− π

2w2

(
r2 + p2

)]
. (4.65)

AF of a LG Mode
The relation between the AF of a HG mode and a LG mode is given by a rotation
in phase space. This is derived from the mode conversion performed by the Gyrator
transform, see Sect. 1.13 and [Rod07a]. The change of coordinates associated with
Gyrator is given by the phase-space rotation

⎡

⎢⎢
⎣

x
y
u
v

⎤

⎥⎥
⎦ �−→

⎡

⎢⎢
⎣

cos β 0 0 sin β

0 cos β sin β 0
0 − sin β cos β 0

− sin β 0 0 cos β

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
u
v

⎤

⎥⎥
⎦ , (4.66)

which produces the following change in these quantities

x2 + u2 �−→
(

x2 + u2
)

cos2 β +
(

y2 + v2
)

sin2 β

− 2 cos β sin β (xv − yu) , (4.67)

y2 + v2 �−→
(

x2 + u2
)

sin2 β +
(

y2 + v2
)

cos2 β

+ 2 cos β sin β (xv − yu) , (4.68)

x2 + y2 + u2 + v2 �−→ x2 + y2 + u2 + v2. (4.69)

In particular, the change for β = π/4 converts the HG beam Hm,n into the LG beam
L l

p with l = m − n and p = min(m, n). Applying the change of coordinates to the
expression of the AF for a HG mode, Eq. (4.65), allows obtaining the expression of
the AF for a LG mode:

AL l
p
(r, p) = 2Lm

{ π

2w2

[
x2 + u2 + y2 + v2 − 2 (xv − yu)

]}

× Ln

{ π

2w2

[
x2 + u2 + y2 + v2 + 2 (xv − yu)

]}

× exp
[
− π

2w2

(
r2 + p2

)]
. (4.70)

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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4.8 Demonstration of the Rotationally Symmetry Test

This section demonstrates the validity of the method that checks if an a priori
unknown beam is rotationally symmetric. The test states that if the two antisym-
metric fractional power spectra associated with γ = π and γ = π/2 of a beam
are rotationally invariant then the beam must be rotationally symmetric, i.e. it must
satisfy Eq. (4.8).

The antisymmetrical fractional power spectra associated with an abitrary angle γ

in the range [π/2, 0) is defined in terms of the MI as

Sγ,−γ (r) = 1

σ 2 |sin γ |
∫

dr1dr2 � (r1, r2)

× exp

{
− iπ

σ 2 sin γ

[(
x2

1 − x2
2 − y2

1 + y2
2

)
cos γ

− 2x (x1 − x2) + 2y (y1 − y2)

]}
. (4.71)

Introducing polar coordinates, (r) �→ (r , θ ), which allows writing the rotation sym-
metry in an explicit way, the following quantities can be written as

x2
1 − x2

2 − y2
1 + y2

2 = r2
1

(
cos2 θ1 − sin2 θ1

)
− r2

2

(
cos2 θ2 − sin2 θ2

)

= r2
1 cos (2θ1) − r2

2 cos (2θ2) , (4.72)

x (x1 − x2) = r cos θ (r1 cos θ1 − r2 cos θ2) , (4.73)

y (y1 − y2) = r sin θ (r1 sin θ1 − r2 sin θ2) , (4.74)

x (x1 − x2) − y (y1 − y2) = r [r1 (cos θ1 cos θ − sin θ1 sin θ)

−r2 (cos θ2 cos θ − sin θ2 sin θ)]

= r [r1 sin (θ1 + θ) − r2 sin (θ2 + θ)] . (4.75)

Substituting them into Eq. (4.71), the fractional power spectra in polar coordinates
is transformed into

Sγ,−γ (r, θ) = 1

σ 2 |sin γ |
∫

r1dr2dθ1 r2dr2dθ2 �̃ (r1, θ1, r2, θ2)

× exp

(
− iπ

σ 2 sin γ

{[
r2

1 cos (2θ1) − r2
2 cos (2θ2)

]
cos γ

− 2r [r1 sin (θ1 + θ) − r2 sin (θ2 + θ)]

})
. (4.76)

Notice that the only contribution of the output polar angle, θ , is present in the third
row of Eq. (4.76). Performing the following change of integration variables,
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θ1 �−→ θ1 − θ, (4.77)

θ2 �−→ θ2 − θ, (4.78)

and recalling that the angular integrals for θ1 and θ2 are along a full cycle, 2π ,
Eq. (4.76) is rewritten as

Sγ,−γ (r, θ) = 1

σ 2 |sin γ |
∫

r1dr2dθ1 r2dr2dθ2 �̃ (r1, θ1 − θ, r2, θ2 − θ)

× exp

(
− iπ

σ 2 sin γ

{[
r2

1 cos (2θ1 − 2θ) − r2
2 cos (2θ2 − 2θ)

]
cos γ

−2r (r1 sin θ1 − r2 sin θ2)}
)

. (4.79)

The only way that the fractional power spectra associated with γ = π/2,

Sπ/2,−π/2 (r, θ) = 1

σ 2

∫
r1dr2dθ1 r2dr2dθ2 �̃ (r1, θ1 − θ, r2, θ2 − θ)

× exp

[
i2π

σ 2 r (r1 sin θ1 − r2 sin θ2)

]
. (4.80)

is rotationally invariant is by the beam satisfying

�̃ (r1, θ1 − θ, r2, θ2 − θ) = �̃ (r1, θ1, r2, θ2) , (4.81)

which is the condition for a beam to be rotationally symmetric. In conclusion, a RSB
must satisfy that

Sπ,−π (r) = Sπ,−π (r) , (4.82)

Sπ/2,−π/2 (r) = Sπ/2,−π/2 (r) . (4.83)
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Chapter 5
General Beams

5.1 Introduction

All coherence characterization techniques studied until this chapter assume certain
symmetries of the beam to be analyzed. This allowed simplifying the process to a
point in which it was suitable in real-world situations. Many applications, however,
can benefit from obtaining coherence pictures of arbitrary beams, i.e. beams for
which we cannot assume a concrete coherence model. Consider for example the
characterization of atmospheric [Shi03] and plasma [Mic04] instabilities. Even if
the original beam is symmetric, after its propagation through these random media
it becomes asymmetric. In addition, coherence symmetries reduce the degrees of
freedom of the beam, thus reducing the transmission capacity in free-space commu-
nications [Wan12] and deteriorating information encoding [Zal00].

In order to characterize the coherence of an arbitrary beam we cannot use the tech-
niques presented in Chaps. 2–4. Instead, we have to fall back to a general method
like conventional PST proposed in [Ray94]. However, PST still presents poor per-
formance due to the problems introduced in Sect. 1.6:

1. Lack of a suitable optical system that allows acquiring the required measurements
in a reduced end to end time.

2. Excessive computation effort to process the measured data into the requested
result (beam WD, AF, or MI).

These inconveniences are unacceptable for any modern application. In order to over-
come them we propose an alternative approach that is referred to as PSTC due to its
focus on the recovery of beams coherence picture.

PSTC is a phase-space tomographic method that was developed with two goals
in mind that fundamentally differentiate it from PST. Firstly, while conventional
PST is optimized for the reconstruction of the beam WD, the aim of PSTC is the
MI recovery. Secondly, all the tasks involved in PSTC are prepared to be performed
concurrently. Data acquisition and processing can be executed in parallel, as well as

© Springer International Publishing Switzerland 2015
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the different steps in which the data processing task is divided into. These advantages
make PSTC a suitable technique for efficient coherence characterization of arbitrary
beams.

In Sect. 5.2 we describe the PSTC method and provide instructions of how to apply
it. The optical system used for its application is presented in Sect. 5.3. In Sect. 5.4 we
validate the technique for a experimentally-generated coherent beam by comparing
the phase distributions obtained by our method and an alternative well-established
phase retrieval algorithm. The experimental feasibility of PSTC for the characteri-
zation of partially coherent beams is demonstrated in two independent experiments
presented in Sect. 5.5. One experiment targets partially coherent beams originated
by illuminating a computer-generated hologram with a GSMB, while the other uses
partially coherent beams obtained via incoherent sum of orthogonal coherent LG
modes. Finally, in Sect. 5.6 we summarize the major advantages of PSTC.

5.2 Phase Space Tomographic Coherenscopy

A tomographic technique, as presented in Sect. 1.6, allows reconstructing an object
from a set of its projections. For a 2D object such set is unequivocally formed by
the projections obtained by relatively rotating the object in its plane with respect
to the detector. For N-dimensional objects, however, there is certain freedom to
choose the complete projection set. Not all of them are appropriate for the efficient
reconstruction of the desired object information.

In order to illustrate the importance of the choice of projection sets, let us consider
the reconstruction of a 3D object. We observe that the set of vertical projections
obtained by rotating the object round its vertical axis allows easily reconstructing
the 2D horizontal sections of the object. An illustration of the tomographic scheme
is displayed in Fig. 5.1. The set of projections is a function, Pφ (ξ, z), that depends
on the horizontal and vertical variables, ξ1 and z, and the rotation angle, φ. The
horizontal section for a fixed value of the vertical axis, z0, depends on the horizontal
variables: Sz0 (x, y). This is the ideal scheme to apply the Radon transform [Rad86]
since for the reconstruction of the horizontal section associated with z0 only the
projection set values with z = z0 are required. However, the whole projection set is
needed to obtain any vertical section of the object.

The reconstruction of a 4D object, like the WD, using a phase-space tomographic
technique is a procedure similar to the previous 3D example. There is a variety of
projection sets that can be chosen for the complete beam characterization. Remember
that any rotation in phase space can be expressed in terms of the FRFT and rotator
operators by Eq. (1.40):

Tβ
RT

γx ,γy
F Tα

R . (5.1)

1ξ corresponds to x or y for φ = 0 or φ = π/2, correspondingly.

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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Fig. 5.1 Example
illustrating a projection set
choice for 3D object
tomography appropriate for
the reconstruction of
horizontal 2D sections
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Since we measure 2D intensity distributions (WD projections), only two indepen-
dent angles need to be varied in order to obtain a complete projection set. Depending
on the beam information that we aim to recover and on the available optical setup,
different projection sets can be used. In particular, PST chooses the projections cor-
responding to the FRFT operation (α = β = 0), which is associated with a rotation
in the xu and yv planes in phase space. Although these projections are suitable
for the reconstruction of the beam WD, the required processing is computationally
expensive. In addition, the WD has to be further processed to extract the MI of the
beam.

In PSTC we propose a different choice of projection set. Instead of rotating in the
xu and yv phase-space planes, the rotations are performed in the xy and yv planes,
which corresponds to β = γx = 0 in Eq. (5.1). Note that the rotation in the xy plane
also affects to the uv plane. We denote the full set of projections as Pα,γ (r), where
α and γ stand for the xy and yv rotation angles, correspondingly. This selection has
important benefits that can be exploited to improve the characterization method.

In order to demonstrate the advantages of this choice let us consider initially the
subset of projections associated with α = 0. It is easy to show, refer to Sect. 5.7, that
a projection of such set satisfies

P0,γ (r) =
∫

dv Wx
(
y′, v′) , (5.2)

where Wx is a real function related to the beam MI via

Wx (y, v) =
∫

dy′ �

(
x, y + 1

2
y′, x, y − 1

2
y′

)
exp

(−i2πy′v
)
. (5.3)
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It corresponds to the WD of the 1D signal described by �(x, y1, x, y2) for fixed x .
Primed variables relate to non-primed variables by the following coordinate rotation:

[
y′
v′

]
=

[
cos γ sin γ

− sin γ cos γ

] [
y
v

]
. (5.4)

Notice that Eqs. (5.2) and (5.4) correspond to the Radon transform of a 2D object like
it was defined in Eq. (1.56). In this case the 2D object is Wx , which can be recovered
from the projection subset by applying a tomographic reconstruction algorithm. The
beam MI is related to Wx by a FT, see Eq. (5.3).

Evidently, not all the coherence information can be obtained from the projection
subset associated with α = 0. Only a portion of the complete MI is exposed through
Wx . In fact, inverting Eq. (5.3) and performing the change of variables y → (y1 +
y2)/2 and y′ → y1 − y2 we find that the MI that can be accessed is:

� (x, y1, x, y2) =
∫

dv Wx

(
y1 + y2

2
, v

)
exp [i2πv (y1 − y2)] . (5.5)

This means that the projection subset for α = 0 contains the coherence information
of any pair of points that are part of the same vertical line, i.e. they share the same
x coordinate. Since the x coordinate can be freely changed for a given projection
subset, the MI at any pair of points contained in a vertical line can be recovered with
a single subset. In order to recover the remaining coherence information, the MI at
two points that are not in the same vertical line, we need to acquire and process the
rest of subsets associated with α �= 0.

In Sect. 1.3 we mentioned that the rotation in the xy, and hence uv, planes at angle
α corresponds to the Rotator operation, which is associated with the ABCD matrix
defined by Eq. (1.36),

Rα ≡ TUα
R

=

⎡

⎢⎢
⎣

cos α sin α 0 0
− sin α cos α 0 0

0 0 cos α sin α

0 0 − sin α cos α

⎤

⎥⎥
⎦ . (5.6)

The beam MI is, therefore, transformed as:

�Rα (r1, r2) = �

([
cos α − sin α

sin α cos α

]
r1,

[
cos α − sin α

sin α cos α

]
r2

)
, (5.7)

i.e. it is rotated an angle α on the plane normal to its propagation direction. Then,
the MI obtained from the subset α = α0, �, is equivalent to the MI of the rotated
beam, �Rα . In other words, the MI between any two points contained in a line that
spans an angle α0 with the vertical direction can be obtained from the subset α0 as:

http://dx.doi.org/10.1007/978-3-319-19980-1_1
http://dx.doi.org/10.1007/978-3-319-19980-1_1
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�Rα0

([
x0
y1

]
,

[
x0
y2

])

= �

([−y1 sin α0 + x0 cos α0
y1 cos α0 + x0 sin α0

]
,

[−y2 sin α0 + x0 cos α0
y2 cos α0 + x0 sin α0

])
, (5.8)

It is better for visualising the results to express the MI between the light field
at a fixed reference point, r0 = (x0, y0), and the rest of points in the line. In this
alternative coordinate frame the MI is defined as:

�α0 (r0, s) ≡ �Rα0 (r0, r0 + sn) , (5.9)

where s is the proper parameter of the line defined by the unitary direction n =
(− sin α0, cos α0). Notice that for the special case α0 = 0 we recover the MI for
any two points contained in the same vertical line. Therefore, although processing
all subsets is required to obtain the entire coherence picture of the beam, every
individual projection subset provides valuable information of the beam coherence.
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Fig. 5.2 a Illustration of the independence of the acquisition and processing tasks in PSTC. The
processing of a projection subset is independent of the acquisition and processing of the rest of
subsets. b Illustration of a possible parallel processing scheme to efficiently recover Wx for multiple
values of x and the associated MI using a quad core computer system
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The processing of a projection subset Pα0,γ is independent of the acquisition and
processing of the subsets for different angle α. As a consequence, all subsets can
be treated in parallel, refer to Fig. 5.2a for an illustration of a possible computation
scheme. In addition, the processing of a projection subset into Wx can be split into
independent tasks, each one associated with a fixed value of x , see Fig. 5.2b. This
permits a more efficient usage of computation systems with multiple processing
units.

In the end, even though the calculation effort for the complete characterization of
an arbitrary beam is similar for both PSTC and PST, our method is more appropriated
to parallel processing schemes. This translates into a more efficient usage of the
processing resources and a shorter end-to-end calculation time. More importantly,
PSTC provides valuable information of the beam coherence after processing each
subset. For these reasons we consider PSTC a significant improvement with respect
to PST that paves the way to its practical application.

5.3 Experimental Setup for PSTC Realization

Both PST and PSTC can be implemented using an automatized opto-electronic setup
based on the optical system proposed in [Rod09]. This coherenscope system per-
mits video-rate acquisition of all the required projections for the characterization of
an optical beam. A photograph and a scheme of the optical system are displayed
in Figs. 5.3 and 5.4, respectively. The setup comprises two generalized lenses imple-
mented by a twin Holoeye LC-R2500 reflective LCOS SLM device (256 grey levels,
pixel pitch dp = 19µm, and screen resolution 1024 × 768) and an Imaging Source
DMK 41BF02 CCD camera (8-bit pixel depth, pixel pitch 4.65µm, and screen reso-
lution 1600 × 1200). The distance z between any two consecutive elements is fixed.
After SLM1, a half-wave plate ensures the beam polarisation is optimal for SLM2.

The projection subset P0,γ is acquired by implementing elliptical lenses in the
SLMs. At the output plane of the system, where the camera is placed, the beam
fractional power spectra associated with the FRFT for fixed γx = 0 and variable
γy = γ is measured. The transmission function implemented in the j-th SLM is
described by

L0,γ

j (r) = exp

(
− iπ

λg j
x2

)
exp

(
− iπ

λf j
y2

)
, (5.10)

where

g1 = z, f1 (γ ) = 2z

2 − cot (γ /2)
,

g2 = z

2
, f2 (γ ) = z

2 − 2 sin γ
. (5.11)
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Fig. 5.3 Photo of the optical system performing the phase-space rotation of the beam
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Fig. 5.4 Scheme of the optical system performing the phase-space rotation of the beam

This lens configuration is suitable for acquiring the PSTC projections for γ ∈
[π/2, 3π/2] and α = 0 or the input beam.

As we mentioned in the previous section, we need to rotate the input beam in
order to obtain the projections for α �= 0. Fortunately, as the rotation is relative to
the optical system, a rotation of the input beam for angle α is equivalent to a rotation
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for opposite angle, −α, of the SLMs and the CCD camera. Since both SLMs and
the CCD camera implement or gather digital information, the transmission masks
implemented in the SLM or the intensity distribution acquired by the camera, can
be digitally rotated. As a result, the actual transmission function of j-th SLM is
described by

Lα,γ

j (r) = exp

[
− iπ

λg j
(x cos α − y sin α)2

]

× exp

[
− iπ

λf j (γ )
(x sin α + y cos α)2

]
. (5.12)

In order to demonstrate the experimental feasibility of the proposed method we
need to generate beams with controlled state of coherence. Due to its versatility we
employ a technique similar to the CGH method explained in Sect. 2.2. The major
difference is that the reference beam is now a Schell-model beam (SMB) with uniform
intensity. The SMB is generated from a fundamental Gaussian beam emitted by a
laser source (λ = 532 nm, 50 mW power) using a rotating ground-glass (RGG)
diffuser.

The beam-generation optical system is presented in Fig. 5.5. A Gaussian beam tra-
verses a RGG diffuser placed near the front and back focal planes of the focusing (FL,
NBK-7 glass convergent lens of focal length 0.05 m) and collimating lenses (CL,

Beam generation optical system
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RLRLFL CL
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  input signal

1

0
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Fig. 5.5 Scheme of the optical system that transforms a Gaussian beam into a partially coherent
beam with Gaussian degree of coherence

http://dx.doi.org/10.1007/978-3-319-19980-1_2
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NBK-7 glass convergent lens of focal length 0.25 m), correspondingly. The RGG
is a diffuser (Thorlabs DG20-120-MD, 120 grit polished) embedded in a custom-
made mount that rotates at 60 rpm. The beam emerging from the diffuser maintains
its Gaussian intensity profile, but it is completely incoherent. According to the Van
Cittert-Zernike theorem [Goo00, Bor06], during its propagation from the RGG plane
to the SLM plane, the beam acquires a certain degree of coherence that is propor-
tional to the FT of its intensity distribution at the diffuser plane. The resulting beam
is described by the MI

�d (r1, r2) = I0 exp

[
− πw2

2 (λfc)
2 (r1 − r2)

2 + iπd

λf2
c

(
r2

1 − r2
2

)]
, (5.13)

where w and λ are the waist and wavelength of the Gaussian beam just after the
RGG diffuser, I0 a energy normalising constant, fc is the focal length of CL, and d
is the displacement of the diffuser with respect to the Fourier plane of FL. Refer to
Sect. 5.8 for a full derivation of Eq. (5.13). At the SLM plane the beam has uniform
intensity distribution:

I (r) = I0, (5.14)

and Gaussian degree of coherence modulus:

|γ (r1, r2)| = exp
[
− πw

2λ2f2 (r1 − r2)
2
]
. (5.15)

The beam waist w increases with the distance d between the diffuser and the back
focal plane of FL. Therefore, the beam coherence degree decreases as the distance
d increases.

Finally, the partially coherent beam incident to the Holoeye PLUTO SLM (255
gray-levels, pixel pitch 8µm, and screen resolution 1920 × 1080) is further trans-
formed by a CGH as it is explained in Sect. 2.2:

� (r1, r2) = �c (r1, r2) �d (r1, r2) , (5.16)

with �c(r1, r2) = f (r1) f ∗(r2), being f the complex amplitude encoded by the
CGH. The resulting beam is imaged into the input plane of the phase-space rotation
optical system of Fig. 5.4 by the relay lenses RL (NBK-7 glass convergent lenses of
focal length 0.25 m).

This optical system allows generating beams with Gaussian degree of coherence.
In addition, removing the RGG diffuser from the system results in a setup suitable
for coherent computer-generated holography, as explained in Sect. 2.2. It permits
generating:

• completely coherent beams with arbitrary spatial structure, or
• partially coherent beams with non-Gaussian degree of coherence composed as

incoherent superposition of orthogonal modes by time multiplexing, refer to
[Ali13] and Eq. (1.4).

http://dx.doi.org/10.1007/978-3-319-19980-1_2
http://dx.doi.org/10.1007/978-3-319-19980-1_2
http://dx.doi.org/10.1007/978-3-319-19980-1_1
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Coherent beams generated with this optical system are used in the following Sect. 5.4
to validate the results obtained with PSTC. The two kinds of partially coherent
beams—with Gaussian and non-Gaussian degree of coherence—are used in Sect. 5.5
to assert the experimental feasibility of PSTC as a coherence characterization tech-
nique.

5.4 Characterization of Coherent Beams

The aim of this section is to experimentally validate PSTC as a characterization
technique by comparing the results obtained by PSTC and by an alternative method.
Since the two experiments use the same input optical beam, we avoid discrepancies
caused by errors on the beam generation process. Additionally, for this initial valida-
tion we use completely coherent beams because it allows us selecting an alternative
characterization method that is well-established and trusted.

The alternative characterization method is an iterative phase retrieval (IPR)
approach based on the well-known Gerchberg-Saxton iterative algorithm [Ger72].
This IPR technique, proposed in [Rod11], allows recovering the phase distribution
of a coherent beam from several of its fractional power spectra, Sm ≡ Sγx,m ,γy,m with
m = 1, 2, . . . , M . The measured Sm plays the role of a constraint image. A diagram
of the algorithm is displayed in Fig. 5.6. There are two iteration loops indicated by
indices k and m (k = 1, . . . , K and m = 1, . . . , M) one inside of the other. The total
number of iterations is M × K . The complex field amplitude at iteration k and m is
denoted by fk,m .

k  = 1, 2, ..., K

f
k ,m

(r) = A
k,m

(r)exp[iφ
k ,m

(r)]

f
k ,m

(r)                       F
k ,m

(r)

F’
k ,m

(r)                       f ’
k ,m

(r)

F’
k ,m

(r) = [S
m

(r)]1/2 exp[i arg( F
k ,m

)]

m  = 1, 2, ..., M

Constraint
imposition

Backward
propagation

Forward
propagation

Fig. 5.6 Diagram of the IPR algorithm used as alternative method for coherent beam characteri-
zation
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The process starts with an initial guess of complex amplitude f1,1. During the k-th
iteration it converts an input complex amplitude, fk,1(r) = A0(r) exp[iφk(r)],2 into
an output amplitude, fk+1,1. To obtain the output amplitude it performs the following
steps on fk,m for each measured constrain Sm :

1. Transform the current amplitude, fk,m , using the FRFT kernel associated with
the matrix, TF,m ≡ T

γx,m ,γy,m
F :

fk,m (r)
TF,m−−→ Fk,m (r) = Ak,m (r) exp

[
iφm,k (r)

]
. (5.17)

For the first constraint use the iteration guess amplitude, fk,1 = fk .
2. Impose the measured intensity distribution to the result:

Fk,m (r) → F ′
k,m (r) = [Sm (r)]1/2 exp

[
iφm,k (r)

]
. (5.18)

3. Transform the result using the inverse FRFT transform associated with the con-
straint:

F ′
k,m (r)

(TF,m)
−1

−−−−−→ f ′
k,m (r) . (5.19)

4. Replace the resulting phase distribution in the amplitude for the next m iteration:

fk,m+1 (r) = A0 (r) exp
{
i arg

[
f ′
k,m (r)

]}
. (5.20)

The result from M iterations over m is used as guess for the next iteration over k:
fk+1,1 = fk,M . A complex amplitude formed by the beam intensity distribution
and a random phase distribution is usually chosen as initial guess, f1,1. If the con-
straints provide sufficient information of the beam, the resulting complex amplitude
from each passing iteration converges to the complex amplitude of the experimental
beam. Convergence is usually achieved by measuring several symmetrical and one
antisymmetrical fractional power spectra.

The generated coherent beam is described by a complex amplitude composed by
the superposition of two LG beams, refer to Eq. (1.7):

f (r) = 1√
2

[
L 3

0 (r) + L 1
4 (r)

]
, (5.21)

with waist w = 0.73 mm. It is generated using the optical system illustrated in Fig. 5.5
by removing the RGG diffuser and implementing the CGH displayed in Fig. 5.7.
Notice that the high-frequency oscillations in the CGH are due to the carrier that
separates the signal in the Fourier plane of the relay lenses. See Sect. 2.2, in particular
Eq. (2.10).

The theoretical intensity and phase distributions of the resulting beam are
presented in Fig. 5.8a, c, respectively. Correspondingly, the acquired intensity

2Notice that A0 is the amplitude of the beam, i.e. the squared root of its intensity distribution.

http://dx.doi.org/10.1007/978-3-319-19980-1_1
http://dx.doi.org/10.1007/978-3-319-19980-1_2
http://dx.doi.org/10.1007/978-3-319-19980-1_2
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distribution and experimentally retrieved phase distributions of the generated beam
are presented in Fig. 5.8b, d. Comparing the theoretical expectations with the exper-
imental results we can perceive significant differences in the intensity distribution,
specially at the outer region of the beam. This discrepancy is due to the non-uniformity
of the CGH reference beam, which translates in an uneven power distribution. Simi-
lar differences are also observed for the phase distribution. These differences are the
main reason for validating the experimental results of PSTC against an alternative
characterization technique: uncontrollable noise produced in the beam generation
process affects equally to both experimental methods, while theoretical predictions
do not have into account these factors.

In order to apply PSTC to the same test beam, we acquire two projection sub-
sets Pα0,γ associated with α0 = 0 and α0 = π/4, each one formed by 180
intensity distributions for equidistant γ in the range [π/2, 3π/2). The modulus
and phase of the MI �α0(r0, s) obtained from the subset α0 = 0 at the region
of interest s ∈ [−1.1, 1.1] mm for multiple reference points r0 = (x0, 0) with
x0 ∈ (0.4, 0.7) mm are presented in Fig. 5.9a, c, respectively. To compare these
results with IPR, we convert the recovered IPR complex amplitudes into their corre-
sponding MI via �(r1, r2) = f (r1) f ∗(r2). The modulus and phase of the resulting
MI are presented in Fig. 5.9b, d, respectively.
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b PSTC. Phase of the MI �α0 (r0, s) for α0 = 0 and r0 = (0.6, 0) mm obtained from a IPR and
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Figure 5.9 gives us a qualitative idea of how similar are the results obtained from
both independent experimental methods. Notice that the MI phase recovered from
PSTC agrees with the one recovered from IPR. That is especially true at the points
close to the central lobe, where most of the power is concentrated. In contrast, at
the regions with less power, for example around s ∼ ±0.85 mm, the discrepancies
are bigger. This is expected since the measurement and calculation errors are more
significant in the areas with low power.

To have a more precise notion of how similar are the MI recovered by both
methods, we compare in Fig. 5.10 the 1D MI �α0(r0, s) with fixed reference point
r0 = (0.6, 0) mm for α0 = 0 and α0 = π/4. These 1D profiles correspond to the MI
between the reference point marked with a black circle in Fig. 5.8a and the rest of
points of the white dashed lines. The modulus of both MI are considerably similar,
with some minor discrepancies around s = −1 mm on the α0 = 0 case. There are
more differences on the MI phase. For instance, we observe significant disagreement
in the region around |s| ∼ 1 mm for both α0 = 0 and α0 = π/4. Nevertheless, both
methods coincide for the regions with relatively large MI amplitude, around s = 0
for both α.

Although the MIs resulting from both methods diverge at certain points where
the signal to noise ratio is low, they generally coincide outside of these regions.
The comparison between both methods validates the results obtained with PSTC,
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demonstrating that the recovered MI corresponds to what is expected. These exper-
iments, however, do not justify the application of PSTC for characterization of
coherent beams, which have less degrees of freedom compared to partially coherent
beams, since the IPR method is faster and requires less experimental measurements.
The strength of PSTC becomes evident in the following section, where partially
coherent beams are successfully characterized.

5.5 Characterization of Partially Coherent Beams

PSTC is a coherence-agnostic technique: it can be applied to beams with arbitrary
degree of coherence. In this section we experimentally demonstrate that PSTC is an
efficient method to characterize the spatial structure of a partially coherent beam.
Partially coherent beams are generated using two different techniques: CGH with
partially coherent reference beam, and incoherent sum of orthogonal modes. Due to
the difficulty of experimentally obtaining the coherence picture of the beams with
an alternative method, we will compare the results with the theoretical predictions.
Notice that, as explained in the previous section, we expect some differences between
theoretical and experimental results produced by uncontrollable noise in the beam
generation optical system.

Partially Coherent Beams Generated with CGH

Partially coherent beams with Gaussian degree of coherence are generated using
the optical system displayed in Fig. 5.5. At the output plane of the beam-generating
system, on the forward focal plane of the second relay lens, we obtain the MI of the
beam encoded in the CGH, �c, multiplied by the MI of the GSMB, c.f. Eq. (5.16),

� (r1, r2) = �c (r1, r2) �d (r1, r2) . (5.22)

For these experiments we use the same CGH as for the experiments of the previous
section in order to analyze the differences appearing by the partially coherent beam
illumination. As a consequence, according to Eq. (5.21),

�c (r1, r2) = 1

2

[
L 3

0 (r1) + L 1
4 (r1)

] [
L 3

0 (r2) + L 1
4 (r2)

]∗
. (5.23)

The width of the Gaussian degree of coherence is controlled by the width of
the beam incident to the RGG diffuser, which in turn is controlled by the distance
d between the RGG diffuser and the back-focal plane of the collimating lens of
the optical system, refer to Fig. 5.5. Therefore, the parameter d defines the degree
of coherence of the generated beam. Several values of this parameter, d = 0, 14,
28, 52 mm, have been considered in the experiment. Fig. 5.11a shows the intensity
distributions measured at the diffuser plane in each case. The Gaussian widths are
estimated by fitting a Gaussian function to the x and y projections of the intensity
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Fig. 5.11 a Intensity distribution of the beam at different distances d from the back-focal plane
of the collimating lens CL of Fig. 5.5. b y and c x projection of (red line) the intensity distribution
and (blue line) the best fitting Gaussian function found by least squares method

Table 5.1 Summary of Gaussian widths—x /y profiles and mean—of the beam measured at dif-
ferent distances d from the back-focal plane of the collimating lens CL of Fig. 5.5

d (mm) wx (mm) wy (mm) w (mm)

0 0.09 0.16 0.125

14 0.42 0.41 0.415

28 0.70 0.66 0.68

52 1.21 1.15 1.18

using least squares method. The projections and their corresponding fitting function
are displayed in Fig. 5.11b, c. The final Gaussian widths, used for calculating the
theoretical predictions of the resulting degree of coherence, are calculated as the
mean width from x and y projections. They are summarized in Table 5.1.

The intensity distribution of the coherent beam used in the previous section and
the generated beams at the output plane of the beam-generation optical system for
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Fig. 5.12 a Intensity distribution of the beam measured at the output plane of the beam-generation
optical system for different degrees of coherence controlled by the distance d. b Wx0 (y, v) with
x0 = 0.6 mm for each one of the generated beams

each value of the distance d are presented in Fig. 5.12a. Notice that regarding its
intensity distribution, one can think that all of them correspond to the same beam.
Applying PSTC we can demonstrate that the beams are profoundly different as their
degrees of coherence diverge.

A total of 180 projections Sα0,γ for α0 = 0 and γ ranging in [π/2, 3π/2) were
measured using the setup discussed in Sect. 5.3 and the WD distributions Wx0 were
reconstructed following the PSTC method. Figure 5.12b shows the WD of the 1D
signal, Wx0(y, v) with x0 = 0.6 mm, reconstructed for each beam from their corre-
sponding projection subsets. The most coherent beams—the coherent case and the
partially coherent case for d = 0 mm—present a similar WD. This is expected since
the Gaussian function describing the modulus of the degree of coherence for d = 0
is quite broad. As the degree of coherence decreases, i.e. d increases, the WD struc-
ture, with clearly distinguishable blue regions where the WD is negative, is gradually
washed out. The Wx0 associated with the most incoherent case, d = 52 mm, is almost
independent of the frequency coordinate, v. This behaviour is typical for incoherent
beams as it has been illustrated in Fig. 1.3.

So far we can conclude that, although all beams posses the same intensity distrib-
ution, by reconstructing their WD Wx0 we have revealed that their coherence picture
is different. In order to quantize their state of coherence we further reconstruct the
MIs corresponding to the recovered Wx0 , i.e. the MI �α0(r0, s) for α0 = 0 between
the reference point r0 = (0.6, 0) mm and the rest of points in the same vertical line.
These results are displayed in Fig. 5.13.

We observe that, analogously to the WD details, the side lobes of the MI amplitude
profiles disappear when the coherence decreases, see Fig. 5.13a. The phase of the MI

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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for the generated partially coherent beams associated with distances d = 0, 14, 28, and 52 mm.
c Degree of coherence modulus of each (circle) experimental beam compared with their corre-
sponding (solid line) theoretical expectation

profiles are displayed in Fig. 5.13b. Notice that only the phase values corresponding
to points where the intensity is greater than 5 % of the total beam power are presented
to avoid confusion due to noise. All four phase curves overlap in the area around
s = 0 mm. We can also recover the modulus of the degree of coherence and compare it
to the theoretical expectation according to Eq. (5.15) and the experimentally defined
values of w (remember Fig. 5.11 and Table 5.1.) A good agreement between the
experimentally-obtained and theoretical degrees of coherence that are presented in
Fig. 5.13c is observed.

As a final control experiment we recover the degree of coherence modulus corre-
sponding to �α0(r0, s), that is |γα0(r0, s)|, for the same reference point but different
angles. Since all our generated beams posses a Gaussian degree of coherence modu-
lus that only depends on the distance between the reference point and the observation
point, |s|, we must observe that the degree of coherence is independent of the angle
α0. In Fig. 5.14a, b we show the MI profiles and modulus of the degrees of coher-
ence, respectively, for r0 = (0.6, 0) mm and angles α0 = 0 and π/4. While the
MI profiles are significantly different, the degrees of coherence share the common
Gaussian shape of the theoretical expectation, represented by a solid black line.
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There is a clear discrepancy in the degree of coherence around the point s =
−0.4 mm, where |γπ/4| reaches zero. This happens because the beam at that particular
point rs associated with s ∼ −0.4 mm has zero intensity, and, hence, the degree of
coherence is undefined. The fact that the beam has null intensity at that point can be
concluded from two different results. Firstly, in Fig. 5.14a we observe that the MI
profile is zero around the discrepancy point. That could potentially mean that there
is no correlation between the beam at the points r0 and rs . However, checking the
beam intensity distribution we find that there is no intensity at point rs , identified by
a green circle in Fig. 5.14c.

As a summary for this section we can conclude that PSTC allows revealing
the coherence picture of partially coherent beams with Gaussian modulus of the
degree of coherence. In particular, it distinguishes between the experimental beams
of Fig. 5.12 which have the same intensity distribution but different degrees of coher-
ence. Although there are discrepancies at the regions where the beam intensity is
comparable to the noise level, the general behaviour of the technique is satisfactory
and the results correspond to the theoretical expectations.
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Partially Coherent Beams Generated by Time Multiplexing of Modes

To close this section we apply PSTC to more general partially coherent beams. These
are generated by incoherent sum of orthogonal modes as explained in Sect. 1.1. These
beams are specially interesting for optical communications [Wan12] since each mode
can represent a independent channel to encode information.

We use LG beams as orthogonal modes. Hence, the MI of the beams that can be
generated is described by:

� (r1, r2) =
∑

p,l

ap,lL
l
p (r1)

[
L l

p (r2)
]∗

, (5.24)

being ap,l the sum coefficient of the LG mode associated with p and l, refer to
Eq. (1.4). Remember that the sum of all coefficients should equal one,

∑
p,l ap,l = 1,

so the generated beam is normalised.
Beams composed by incoherent sum of orthogonal modes posses useful properties

for its experimental characterization. For example, the fractional power spectra of
the generated beam, being intensity measurements, are equivalent to the sum of
fractional power spectra of the composing modes. Similarly, the PSTC projections
of the generated beam are equivalent to the incoherent sum of projections for the
composing LG modes:

Sα0,γ (r) =
∑

p,l

ap,l Sα0,γ

p,l (r) , (5.25)

where Sα0,γ

p,l is the PSTC projection for angles α0 and γ of the LG mode with indices p
and l. Therefore, we can experimentally obtain the PSTC projections of the generated
beam by:

1. Measuring the PSTC projections of completely coherent LG modes following the
instructions in Sect. 5.4

2. Summing the normalised PSTC projections for each composing LG mode accord-
ing to its corresponding coefficient ap,l .

According to these instructions, we measured 180 projections of the subset Sα0,γ

with α0 = 0 and γ ranging in [π/2, 3π/2) for two different beams described by
their MIs

�A (r1, r2) = 1

2

[
�3

0 (r1, r2) + �1
4 (r1, r2)

]
, (5.26)

�B (r1, r2) = 1

4

[
3�3

0 (r1, r2) + �1
4 (r1, r2)

]
, (5.27)

where �l
p stands for the MI of the coherent LG mode with indices p and l. In terms

of the level of coherence, which is defined in Sect. 1.1 and in this case it adopts the
form

http://dx.doi.org/10.1007/978-3-319-19980-1_1
http://dx.doi.org/10.1007/978-3-319-19980-1_1
http://dx.doi.org/10.1007/978-3-319-19980-1_1
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μ2 =
∑

p,l

a2
p,l , (5.28)

the beam A has a lower level of coherence, μA = √
8/4, than the beam B, μB =√

10/4. Their intensity distributions are displayed in Fig. 5.15. We recovered the
degree of coherence γα0(r1, s) with r1 = (x1, 0) = (0.12, 0) mm from the PSTC
projections. The experimentally obtained (dashed coloured lines) and theoretically
estimated (solid black lines) modulus of the degree of coherence for each beam are
compared in Fig. 5.16a, b.

Notice that the degree of coherence modulus for both beams has a central lobe
with value around unity, demonstrating that they are completely coherent around the
point (x0, 0). The field at the points corresponding to the sides lobes, however, is
less coherent respect to the field at the reference point (x0, 0). Moreover, the sides
lobes for �A are lower than for the �B. These observations fit well to the theoretical
expectations, except for some areas in which discrepancies are evident. We justify
these differences by the inhomogeneity of the intensity distributions of the modes
composing the generated beams, see Fig. 5.15.

The degree of coherence of a partially coherent beam generated by incoherent
sum of orthogonal modes is governed by the the intensity and phase distributions of
the composing modes. Let us illustrate this fact using the recovered degree of coher-
ence for beam A at two different reference points. Figure 5.17c displays the modulus
of the degree of coherence for beam A at the reference points: r1 = (0.12, 0) mm
represented in red, and r2 = (0.35, 0) mm represented in green. The vertical inten-
sity profiles of the composing modes for beam A centred at reference points r1 and
r2 are shown in Fig. 5.17b, d, respectively. That way, Fig. 5.17 allows easily inves-
tigating the degree of coherent of beam A and the corresponding contributions of
each composing mode.
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On the first hand, consider the degree of coherence modulus for reference point r1
that is represented by red colour in Fig. 5.17c. Since around s ∼ 0 the contribution
of beam L 3

0 is minimal, check solid line of Fig. 5.17b, the degree of coherence is
only governed by L 1

4 , which is a coherent beam. Contrarily, around |s| ∼ 0.4 mm
the contribution of L 1

4 is almost nonexistent. Since both composing modes are
incoherent respect to each other, in that region the degree of coherence vanishes.
That is, there are no correlations between the field at the reference point, where the
major contribution is due to L 1

4 , and at the point associated with |s| ∼ 0.4 mm,
where the major contribution is due to L 3

0 .
On the other hand, consider the degree of coherence modulus for reference point

r2 that is represented by green colour in Fig. 5.17c. In this case, both composing
modes contribute significantly. Therefore, the analysis is not so straightforward as in
the previous example. Nevertheless, a decrease of coherence degree can be observed
around |s| ∼ 0.3 mm. This is expected since the contribution by L 1

4 is minimal
and by L 1

4 maximal. There cannot be much more inferred from Fig. 5.17c, because
the phase distributions of the composing modes significantly affect the degree of
coherence for the rest of points.

In this final experiment, we have analyzed in depth the degree of coherence of a
partially coherent beam recovered using PSTC. The beam is generated by incoherent
sum of orthogonal LG modes. We have observed that the degree of coherence of
beams generated this way is more complex than for beams generated in the previous
section using CGH. From the coherence analysis we have concluded that in some
simple situations the degree of coherence depends on the intensity contributions of the
beam composing modes. In more convoluted situations, the intensity information of
the composing modes is not sufficient to predict the coherence behaviour of the beam.

5.6 Conclusions

The experiments considered in this chapter verify the suitability of PSTC for the
quantitative and comprehensive study of completely and partially coherent optical
fields. The technique offers diverse tools for the analysis of the beam spatial structure,
including its MI, degree of coherence, and WD. In contrast to other methods, PSTC
not only provides the modulus of the MI and the degree of coherence, but also their
phases. This paves the way for the application of partially coherent light in imaging of
weakly absorbing specimens [Dub99, Kol10]. In addition, the beam WD is invaluable
for the design and characterization of optical systems, structurally stable beams, and
spatially non-stationary fields [Alo11].

The optical system used for PSTC application is robust and allows the measure-
ment of a broad diversity of WD projections. As future improvements, the replace-
ment of the SLM devices by deformable mirrors [Nat11] or liquid lenses [Kui04] can
be investigated to check if faster projection measurement can be achieved. Moreover,
executing the algorithm in a general-purpose graphical compute unit (GPGPU) will
certainly speed up the beam MI reconstruction since the whole PSTC characterization
process is highly sensitive to concurrency.
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Most of these results are published in [Cám13a] and were presented at the con-
gresses [Cám10b, Cám10a, Cám11a, Cám12a, Cám13b].

Appendices

5.7 MI Reconstruction from Projection Subset for α = 0

This section demonstrates the relation between the PSTC projection subset associated
with α = 0 and the beam MI. Consider the relation between the fractional power
spectra and the beam WD projections established in Eqs. (1.52) and (1.54), i.e.3

Sγx ,γy (r) =
∫

dp W
(
r′, p′) , (5.29)

where the primed variables r′ are related to the non-primed ones via the FRFT phase-
space rotation:

[
x ′
u′

]
=

[
cos γx − sin γx

sin γx cos γx

] [
x
u

]
, (5.30)

[
y′
v′

]
=

[
cos γy − sin γy

sin γy cos γy

] [
y
v

]
. (5.31)

For the particular case of γx = 0 and γy = γ the rotation only affects to the variables
y and v,

S0,γ (x, y) =
∫

dudv W
(
x, y′, u, v′) . (5.32)

We can integrate Eq. (5.32) with respect to the u variable expressing the WD in terms
of the beam MI,

S0,γ (x, y) =
∫

dx1dy1dudv �

(
x + 1

2
x1, y′ + 1

2
y1, x − 1

2
x1, y′ − 1

2
y1

)

× exp
[−i2π

(
x1u + y1v′)]

=
∫

dx1dy1dv �

(
x + 1

2
x1, y′ + 1

2
y1, x − 1

2
x1, y′ − 1

2
y1

)

× exp
(−i2πy1v′)

∫
du exp

(−i2πx1u′)

=
∫

dy1dv �

(
x, y′ + 1

2
y1, x, y′ − 1

2
y1

)
exp

(−i2πy1v′) . (5.33)

3We have assumed σ = 1 m to simplify the equations.

http://dx.doi.org/10.1007/978-3-319-19980-1_1
http://dx.doi.org/10.1007/978-3-319-19980-1_1
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The integration over y1 yields the definition of the 2D WD of the 1D beam constructed
by fixing the x variable on our original beam. As a result we obtain the tomographic
projection relation for PSTC:

S0,γ (x, y) =
∫

dv Wx
(
y′, v′) . (5.34)

One final caveat is that Wx does not correspond to a section of the beam WD, but
rather to the WD projection in the u direction:

Wx
(
y′, v′) =

∫
du W

(
x, y′, u, v′) . (5.35)

5.8 Beam at the SLM Input Plane

In this section we calculate the MI of the beam incident to the SLM in the beam
generation optical system introduced in Sect. 5.4. A fundamental Gaussian mode
illuminates the input plane of the RGG diffuser. The diffuser rotates with sufficient
speed to destroy the spatial coherence of the beam. Therefore, at the diffuser out-
put plane we obtain a completely incoherent beam with Gaussian intensity profile
described by the MI:

�RGG (r1, r2) = I0 exp

(
−2π

w2 r2
1

)
δ (r1 − r2) , (5.36)

where I0 is a power normalising constant and w is the waist of the input Gaussian
beam. Notice that FL and CL form a telescope system that allows easily changing
the beam waist by displacing the RGG diffuser.

The incoherent beam emerging from the diffuser is then propagated through the
optical system between the RGG diffuser and the SLM. This propagation is described
by the ABCD matrix resulting from multiplying the ABCD matrices of the constituent
elemental systems, recall Sect. 1.2:

• a free-space propagation for distance fc − d,
• a quadratic phase associated with a convergent lens of focal length fc, and
• a free-space propagation for distance fc.

The resulting ABCD matrix is

T =
[

1 fc
λ

1
0 1

] [
1 0

− λ
fc

1 1

] [
1 fc−d

λ
1

0 1

]
=

[
0 fc

λ
1

− λ
fc

1 d
fc

1

]

, (5.37)

http://dx.doi.org/10.1007/978-3-319-19980-1_1
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with an associated length constant σ = λ. Using the generalized Van Cittert-Zernike
theorem [Goo00, Bor06], at the SLM input plane we observe a beam whose MI is
calculated as

�SLM,in (r1, r2) = 1

σ 2

∫
dr′

1dr′
2 �RGG

(
r′

1, r′
2

)
KT

(
r′

1, r1
)

K ∗
T

(
r′

2, r2
)
, (5.38)

where, c.f. Eq. (1.24),

KT (ri, ro) = −i

λfc
exp

(
− i2π

λfc
ri · ro + iπd

λf2
c

r2
o

)
, (5.39)

is the transformation kernel corresponding to T.
In order to obtain the explicit expression for �SLM,in we need to integrate

Eq. (5.38). With the aid of the expression [Pru86, Bas05]

∫
dr exp (−πr · Pr − i2πr · q) = 1√

det P−1
exp

(
−πq · P−1q

)
, (5.40)

valid as long as P−1 exists and has non-null determinant, we find the result corre-
sponding to Eq. (5.13):

�SLM,in = I0w
2

(λfc)
2 exp

[
− πw2

2 (λfc)
2 (r1 − r2)

2 + iπd

λf2
c

(
r2

1 − r2
2

)]
, (5.41)

except that for Eq. (5.13) the normalisation constant I0 includes the term w2/(λfc)
2.
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Chapter 6
Conclusions

This Thesis was devoted to the exploration of new non-interferometric techniques
for the characterization of the coherence properties of optical beams. As a result,
four different phase-space tomographic methods, some of which take advantage of
beam symmetries, were established. Contrary to some recently proposed methods
[Tia12, Wal12], all these techniques are coherence-agnostic, meaning that they make
no assumptions on the beam level of coherence. Additionally, three optical setups
were developed for their implementation. The Thesis provides valuable tools that
reduce the complexity of analyzing the coherence picture of beams, making partially
coherent beams more attractive for applications in science and technology.

Chapters 2, 3 and 4 presented characterization schemes for 1D, separable in Carte-
sian coordinates, and rotationally symmetric beams, respectively. Alternatively, a
method for general beams, i.e. beams with no apparent symmetry, was introduced in
Chap. 5. All proposed methods were theoretically, numerically, and experimentally
studied to demonstrate their feasibility in real-world applications.

If the beam to characterize is 1D, or we are only interested in characterizing a
1D profile of it, all required information can be measured simultaneously using a
RWD optical system. The beam WD, and therefore its MI, can be recovered from
the fractional power spectra measured by a novel RWD setup composed by SLMs.
Its experimental feasibility was demonstrated by recovering the WD of two example
signals: window and chirped window. In addition, due to the dynamic nature of
SLMs, our proposed RWD system allows improving the precision of the method at
the expense of increasing the time of data acquisition.

In a first scheme, it allows taking multiple measurements, or shots, of different
regions of the beam RWT. Assembling the shots into a complete multi-shot RWT
results in a WD reconstruction with increased resolution.

A second scheme consists in taking a single-shot measurement, but only of a
narrow region of the RWT instead of the whole angular range. This mode is specially
useful to accurately determine certain beam characteristics that are localised in the
RWT, like the chirp parameters of a multi-chirp signal.
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The rest of developed methods allow characterizing 2D beams. Assuming certain
beam symmetries, which can be verified using the data required for beam coherence
characterization, we established two simplified PST techniques for beams separable
in Cartesian coordinates and rotationally symmetric beams.

Characterizing a separable beam is similar to characterizing two 1D beams. Each
Cartesian coordinate uncouple into a 1D function that can be recovered indepen-
dently. In Chap. 3 we proposed a novel technique that efficiently retrieves each of
the composing 1D functions. It only requires measuring the beam antisymmetrical
fractional power spectra, which can be acquired using the optical system composed
of conventional elements that was proposed in Sect. 3.4. The method feasibility was
experimentally demonstrated by characterizing a HG mode.

The separability test that was introduced in Sect. 3.3 allows verifying that a beam
is separable in Cartesian coordinates. It requires the measurement of the beam anti-
symmetric fractional power spectra, so the same measurements can be used for the
test and the characterization process.

RSBs, in particular fully and partially coherent optical vortices, are nowadays
used for numerous applications, including but not limited to microparticle manipu-
lation, optics communications, and imaging. They can be described by a MI that is
invariant respect to rotations. In Chap. 4 we proposed a method specialized in charac-
terizing RSBs. It only requires the already measured antisymmetric fractional power
spectra. The feasibility of the technique was successfully proven in several simulated
examples and in an experiment. Since the method only requires the beam antisym-
metrical fractional power spectra, the same optical system based on conventional
optical elements as for the separable case can be used.

Similarly to separable beams, we can verify that a beam is rotationally symmetric
by applying the test introduced in Sect. 4.8. It also requires measuring the antisym-
metrical fractional power spectra, so the test and characterization process for both
separable and RSBs can be performed using the same data.

Applying a general characterization technique is the remaining option if the beam
is neither separable nor rotationally symmetric. While a general characterization
method can be used in this case, like the PST technique introduced in [Ray94], in
Chap. 5 we proposed an alternative method that possesses two strong key features.
First, the reconstruction algorithm has been specially designed for parallel comput-
ing. We showed that not only the acquisition and processing of projections can be
performed simultaneously, but the actual projection processing steps can be exe-
cuted concurrently. This provides a speed boost that places our technique closer to
the real-time world.

The second advantage is that the MI of a 1D beam profile can be obtained from
a subset of measurements. In the conventional PST method the beam MI is obtained
from the whole beam WD, which in turn requires all projections to be acquired and
processed. Conversely, we demonstrated that our method can process a subset of
projections into a part of the beam MI, providing direct coherence information of
the beam.

http://dx.doi.org/10.1007/978-3-319-19980-1_3
http://dx.doi.org/10.1007/978-3-319-19980-1_3
http://dx.doi.org/10.1007/978-3-319-19980-1_3
http://dx.doi.org/10.1007/978-3-319-19980-1_4
http://dx.doi.org/10.1007/978-3-319-19980-1_4
http://dx.doi.org/10.1007/978-3-319-19980-1_5
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This technique was experimentally proved in three different scenarios:

1. It was validated using coherent beams by comparing the results obtained with our
method with the results of an alternative well-established method: IPR.

2. Its feasibility was demonstrated using partially coherent beams generated by
illuminating a CGH with a GSMB. The obtained results were compared to the
expected results. In particular, the width of the Gaussian degree of coherence
modulus corresponded to the theoretical predictions.

3. Its feasibility was further demonstrated using partially coherent beams generated
by incoherent sum of optical LG modes.

The WD projections required for this method, as well as the ones required for
the rest of methods, can be obtained using the automatized programmable setup
composed by two SLMs that was introduced in Sect. 5.3.

All these techniques can be thought of as part of the bigger characterization
algorithm presented in Fig. 6.1. If we can safely assume certain beam symmetries,
we can directly follow a specialized characterization method and use the optical
system that best suits our requirements. For example, if we want to analyze 1D
profiles of an unknown beam we can use our RWD setup and the method described
in Chap. 2; if we want to analyze an optical vortex we can follow the instructions
for RSBs of Chap. 4 and use the optical system formed by conventional elements
described in Sect. 3.4. Otherwise, if we cannot make assumptions, we can use the
more versatile setup composed by SLMs described in Sect. 5.3 and check for beams
symmetries to discover the optimal characterization technique for the beam.

The proposed phase-space tomography techniques pave the way for a wider appli-
cation of partially coherent light in different areas of knowledge such as imaging,
optical communications, lithography, and atmosphere monitoring, to name a few.
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