
Advanced Transaction Models and
Architectures

Advanced Transaction Models and
Architectures

Edited by

Sushil Jajodia and Larry Kerschberg
George Mason University
Fairfax, VA

~.

" Springer Science+Business Media, LLC

Library of Congress Cataloging-in-Publication Data

Jajoclia, Sushil and Kerschberg, Larry
Advanced transaction moclels and architectures I edited by Sushil
Jajodia and Larry Kerschberg.
P. Cm.-
Includes bibliographical references and index
ISBN 978-1-4613-7851-8 ISBN 978-1-4615-6217-7 (eBook)
DOI 10.1007/978-1-4615-6217-7
1. Reliability (Engineering) 2. Electronic digital computers
-Reliability. 3. Computer software-Reliability. 4. Fuzzy sets.
5. Fuzzy logic.

QA76~545.A38 1997
005'.74-dc21 96-16276

CIP

Copyright © 1997 Springer Scienee+Business Media New York
Origina11y published by Kluwer Academic Publishers, New York in 1997
Softcover reprint of the hardcover Ist edition 1997

AII rights reserved. No part ofthis publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo
copying, recording, or otherwise, without the prior written permission of the
publisher, Springer Science+Business Media, LLC.

Printed on acid-free paper.

Contents

Preface xiii

Part I Workflow Transactions

1
Transactions in Transactional Workflows 3
DevlJ8hish Womh and Amit Sheth

1.1 Introduction 3
1.2 Advanced Transaction Models 6

1.2.1 Nested Transactions 7
1.2.2 Open Nested Transactions 7
1.2.3 Sagas 7
1.2.4 Multi-Level Transactions 8
1.2.5 Flexible Transactions 8
1.2.6 ACTA and its derivatives 8

1.3 Transactional Workflows 9
1.3.1 Previous Research on using Transactions for Workflows 10

1.4 Workflow Recovery 13
1.4.1 Transaction Concepts in Modeling Workflow Recovery 14

1.5 Workflow Error Handling 17
1.6 Transactions, ATMs and Recovery in Large-Scale WFMSs 18

1.6.1 Error Handling and Recovery in the METEOR2 WFMS 20
1.6.1.1 Overview of METEOR2 Workflow Model 20
1.6.1.2 ORBWork: A Distributed Implementation ofthe METEOR2

WFMS 22
1.6.1.3 Modeling Errors in METEOR2 23
1.6.1.4 Recovery Framework in ORBWork 25

1.7 Types of Transactions in the Real World: Beyond Database Transactions 28
1.8 Conclusion 31
Appendix: A Normative Perspective 34

2
WFMS: The Next Generation of Distributed Processing Tools 35
Gustavo Alonso and C. Mohan

2.1 Introduction 35
2.2 Workflow Management Systems 37

2.2.1 Workflow Concepts 37
2.2.2 Process Representation 38
2.2.3 Architecture 42

vi ADVANCED TRANSACTION MODELS AND ARCHITECTURES

2.2.3.1 Functional Description
2.2.3.2 Runtime Architecture

2.2.4 Process Execution
2.3 Functionality and Limitations of Workflow Management Systems

2.3.1 Availability
2.3.2 Scalability
2.3.3 Industrial Strength

2.4 Evolution of Workflow Management Systems
2.4.1 Distributed Environments
2.4.2 Process Support Systems
2.4.3 Programming in Heterogeneous. Distributed Environments

2.5 Conclusions

Part II Tool-Kit Approaches

3
The Reflective Transaction Framework
Roger S. Barga and Calton Pu

4

3.1 Introduction
3.2 Extending a Conventional TP Monitor
3.3 The Reflective Transaction Framework

3.3.1 Extensions Through Transaction Events
3.3.2 Implementing Reflection and Causal Connection
3.3.3 A Separation of Programming Interfaces

3.4 Applications of the Reflective Transaction Framework
3.4.1 Implementing Advanced Transaction Models
3.4.2 Implementing Semantics-Based Concurrency Control

3.5 Conclusion

Flexible Commit Protocols for Advanced Transaction Processing
Luigi Mancini, Indrajit Ray, Sushil Jajodia and Elisa Bertino

4.1 Introduction
4.2 Overview of Our Approach

4.2.1 The System Architecture
4.2.2 Illustrative Example

4.3 An Example of Transaction Dependencies
4.4 Primitives for Flexible Commit

4.4.1 Basic Primitives
4.4.2 New Primitives
4.4.3 Discussion

4.5 Realizing Various Transaction Dependencies
4.5.1 ACTA Framework
4.5.2 Sagas
4.5.3 Workflows and Long Lived Activities

4.5.3.1 Semiatomicity
4.5.4 Secure Distributed Transactions
4.5.5 Contingent Transactions
4.5.6 Nested Transactions

4.6 Conclusions and Future Work

42
44
45
47
47
49
51
53
53
54
55
57

63

64
66
68
69
70
73
75
75
80

87

91

92
94
94
98
99

103
103
104
108
109
110
111
113
114
116
119
121
123

Part III Long Transactions and Semantics

5
Con Tracts Revisited
Andreas Reuter, Kerstin Schneider and Friedemann Schwenkreis

5.1 Introduction

6

5.1.1 The Motivation For ConTracts
5.1.2 A Brief Survey of the Model

5.2 Transactions in a Workflow Environment
5.2.1 Use of ACID-Transactions
5.2.2 Semi-Transactional Activities

5.3 Reconsidering Correctness
5.3.1 Transactional Properties and ConTracts

5.3.1.1 Recoverability
5.3.1.2 Permeability
5.3.1.3 Consistency
5.3.1.4 Durability

5.3.2 Recovery and Serializability
5.3.3 The"Conflict Relationship
5.3.4 Execution Histories and Correctness

5.4 Compensation in Detail
5.4.1 A Basic Definition of Compensation
5.4.2 Script-based Compensation
5.4.3 Comprehensive Compensation
5.4.4 Partial Compensation

5.5 Summary

Semantic-Based Decomposition of Transactions
Paul Ammann, Sushil Jajodia and Indrakshi Ray

6.1 Introduction
6.2 Related Work
6.3 The Hotel Database
6.4 The Model

6.4.1 A Naive Decomposition of the Reserve Transaction
6.4.2 Generalizing the Original Invariants
6.4.3 Compensating Steps
6.4.4 Semantic Histories

6.5 Properties of Valid Decomposition
6.5.1 Composition Property
6.5.2 Sensitive Transaction Isolation Property
6.5.3 Consistent Execution Property
6.5.4 Semantic Atomicity Property
6.5.5 Successful Execution Property

6.6 Examples of Decomposition
6.6.1 A Valid Decomposition

6.6.1.1 Composition Property
6.6.1.2 Sensitive Transaction Isolation Property
6.6.1.3 Consistent Execution Property
6.6.1.4 Semantic Atomicity Property

6.6.2 An Invalid Decomposition
6.7 Successor Sets
6.8 Concurrent Execution

6.8.1 Correct Stepwise Serializable Histories
6.8.2 Concurrency Control Mechanism

Contents vii

127

127
128
129
132
132
133
134
134
134
135
135
135
136
136
138
141
141
144
146
149
150

153

153
156
157
159
160
161
162
163
165
165
165
166
166
167
167
167
168
168
169
169
171
172
175
175
176

viii ADVANCED TRANSACTION MODELS AND ARCHITECTURES

6.8.2.1
6.8.2.2

6.9 Conclusion

Algorithms
Discussion

Part IV Concurreny Control and Recovery

7
Customizable Concurrency Control for Persistent Java
Laurent Daynes, M.P. Atkinson and Patrick Valduriez

8

7.1 Introduction
7.1.1 Overview of Persistent Java
7.1.2 Customizable Concurrency Control

7.2 Design Choices
7.2.1 Transactions as Java objects
7.2.2 Two-level interface
7.2.3 Implicit transaction semantics
7.2.4 Implementation choices
7.2.5 . Outline of the modified JVM

7.3 Programming model
7.4 Transaction Shell
7.5 locking Capabilities

7.5.1 Ignoring Conflicts
7.5.2 Delegation
7.5.3 Notification
7.5.4 Summary

7.6 Realizing Transaction Models
7.6.1 Flat Transactions
7.6.2 Nested Transactions

7.7 Related Work
7.8 Conclusion

Toward Formalizing Recovery of (Advanced) Transactions
Cris Pedrega/ Martin and Krithi Ramamritham

8.1 Introduction
8.2 The Formal Model

8.2.1 Modeling Recovery through Histories
8.2.2 Events, Histories. States

8.3 Requirements. Assurances & Rules
8.3.1 Durability
8.3.2 Failure Atomicity
8.3.3 Failure Atomicity and Delegation
8.3.4 Assurances for Failure Atomicity
8.3.5 Assurances for Durability
8.3.6 Recovery Mechanisms Rules
8.3.7 logging and Commit/Abort Protocols

8.4 A Specific Recovery Protocol
8.4.1 Overview of ARIES and ARIES/RH

8.4.1.1 Data Structures
8.4.1.2 Normal Processing
8.4.1.3 Crash Recovery

8.4.2 Formalizing some properties of ARIES and ARIES/RH
8.4.3 Proof Sketches

8.5 Further Work and Summary

177
179
179

183

183
184
186
186
187
187
190
190
191
191
195

197
198
201
201
202
202
203
204
208
210

213

213
215
217
219
221
221
222
222
224
224
225
226
226
226
227
228
229

230
232
232

Part V Transaction Optimization

9
Transaction Optimization Techniques
Abdelsalam Helal, Yoo-Sung Kim, Marian H. Nodine,
Ahmed K. Elmagarmid and Abdelsalam A. Heddaya

9.1 Introduction
9.1.1 What is Wrong with the Current Architecture?
9.1.2 How Should We Change the Architecture?
9.1.3 Chapter Organization
9.1.4 Related Work

9.2 Problem Definition
9.3 A Novel Transaction Optimization Strategy

9.3.1 Pre-Access Optimization
9.3.2 Post-Access Optimization

9.4 Query Optimization issues
9.4.1 Query Decomposition and Site Assignment
9.4.2 Interim Replication

9.5 Conclusions

Part VI ECA Approach

10
An Extensible Approach To Realizing Advanced Transaction Models
Eman Anwar, Sharma Chakravarthy and Marissa Viveros

10.1 Introduction
10.1.1 Goals
10.1.2 Related Work

10.2 Our Approach
10.2.1 Realizing Transaction Models using ECA rules

10.3 Implementation Details
10.3.1 Zeitgeist
10.3.2 Making Zeitgeist Active at the Systems level

10.4 Realizing Transaction Models
10.5 Extensibility
10.6 Conclusions

Part VII Ol TP jOLAP

11

Contents ix

237

238
239
241
242
243
243
245
246
249
253
253
254
254

259

259
261
262
263
265
268
268
270
272

274
275

Inter- and Intra-transaction Parallelism for Combined OlTP jOlAP Workloads 279
Christal Hasse and Gerhard Weikum

11.1 I ntrod uction 279
11.2 Background on Multi-level Transactions 282
11.3 The PLENTY Architecture 283
11.4 Granularity of Parallelism 284
11.5 Transaction Management Internals 288
11.6 Scheduling Strategies 291
11.7 An Application Study 294
11.8 Conclusion 297

x ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Part VIII Real-Time Data Management

12
Towards Distributed Real-Time Concurrency and Coordination Control
Paul Jensen, Nandit Soparkar and Malek Tayam

12.1 Introduction
12.2 Responsiveness and Consistency

12.2.1 Simple Concurrency Control
12.2.2 More Elaborate Coordination Control

12.3 Enabling Technologies
12.3.1 Centralized CC for RTR
12.3.2 Characterization Efforts
12.3.3 Performance Studies
12.3.4 Real-time and Distributed Systems
12.3.5 Application-specific Approaches

12.4 Logical System Architecture
12.4.1 Providing RTR at Local Sites
12.4.2 Distributed Real-time CC
12.4.3 Levels with Differing Requirements

12.4.3.1 Level A
12.4.3.2 Level B
12.4.3.3 Level U

12.5 Synchronization using Application Semantics
12.5.1 Relaxed Atomicity
12.5.2 Communication Level Approaches

12.6 Conclusions

Part IX Mobile Computing

13
Transaction Processing in Broadcast Disk Environments
Jayavel Shanmugasundamm, Arvind Nithmkashyap, Jitendra Padhye,
Rajendmn Sivasankamn, Ming Xiong and Krithi Ramamritham

13.1 Introduction
13.2 Motivation for Weakening Seria!izability
13.3 Formalization of Consistency Requirements

13.3.1 Requirements
13.3.2 Formalization of Requirements
13.3.3 Comparison with View Serializability

13.4 Weakened Requirements
13.4.1 Motivation for Weaker Requirements
13.4.2 Weakened Requirements
13.4.3 Formalizing Weakened Requirements

13.5 Mechanisms to Guarantee Correctness
13.5.1 Broadcast Disks
13.5.2 Protocol

13.5.2.1 Server Functionality
13.5.2.2 Client Functionality

13.5.3 Proof of Correctness
13.6 Conclusions and Future Work

303

303
306
306
307
308
308
309
310
310
311
311
313
313
313
314
314
314
315
316
317
317

321

321
324
326
326
327
329
330
331
332
332
333
334
334
334
335
337
337

Contents xi

References 339

Contributing Authors 365

Index 375

Preface

Motivation

Modem enterprises rely on database management systems (DBMS) to collect,
store and manage corporate data, which is considered a strategic corporate re
source. Recently, with the proliferation of personal computers and departmen
tal computing, the trend has been towards the decentralization and distribution
of the computing infrastructure, with autonomy and responsibility for data now
residing at the departmental and workgroup level of the organization.

Users want their data delivered to their desktops, allowing them to incor
porate data into their personal databases, spreadsheets, word processing doc
uments, and most importantly, into their daily tasks and activities. They want
to be able to share their information while retaining control over its access and
distribution.

There are also pressures from corporate leaders who wish to use information
technology as a strategic resource in offering specialized value-added services
to customers. Database technology is being used to manage the data associated
with corporate processes and activities. Increasingly, the data being managed
are not simply formatted tables in relational databases, but all types of ob
jects, including unstructured text, images, audio, and video. Thus, the database
management providers are being asked to extend the capabilities of DBMS to
include object-relational models as well as full object-oriented database man
agement systems. Corporations are also using the World Wide Web and the
Internet to distribute information, conduct electronic commerce, and form vir
tual corporations where services are provided by a collection of companies,
each specializing in a certain portion of the market. This implies that organi
zations will form federations in which they will share information for the good
of the virtual enterprise.

Rather than viewing a database as a passive repository of information, users,
managers, and database system providers want to endow databases with active
properties, so that corporate databases can become an active participants in

xiv ADVANCED TRANSACTION MODELS AND ARCHITECTURES

corporate processes, activities and workflows. Thus, there is a real need for ac
tive databases that can deliver timely infonnation to users based on their needs,
as expressed in profiles and subscriptions. Further, active databases must deal
with important events and critical conditions in real-time, that is, as they hap
pen, and take appropriate actions to ensure the correctness and quality of data.
Finally, organizations are extracting historical data from on-line transaction
processing databases, loading it into data warehouses for on-line analytical
processing, and mining it for important patterns and knowledge. These pat
terns drive decision-making processes to improve corporate workflow, enhance
customer satisfaction, and attain competitive advantage.

Clearly, the trends discussed above pose new requirements and challenges
for the design and implementation of next-generation database management
systems. For example, we cannot rely on traditional transaction processing
models with their stringenllocking protocols because many corporate activities
require support for long-running transactions. In federated systems one cannot
impose a processing protocol on a federation partner, rather one must rely on
negotiated contracts and commitments for specified levels of service.

New workflow models are required to define computer- and database-suppor
ted activities to cooperate in the integration and sharing of infonnation among
functional units in the organization. The reengineering of processes and acti
vities can benefit from these new workflow models. These concepts may find
their way into the new database management systems or into "middle-ware"
products that work in conjunction with the DBMS.

Advanced Transaction Models and Architectures

It is in the context of evolving requirements, uses and expectations for data
base management systems that we have assembled this important collection of
papers authored by world-renowned thinkers, designers and implementors of
database systems to address the issues associated with advanced transaction
models and architectures. The issues discussed in the book include: 1) work
flow models, 2) new transaction models, protocols and architectures, 3) se
mantic decomposition of transactions, 4) distributed processing, 5) real-time
transaction processing, 6) active databases, and 6) new concurrency models for
transactional workflows.

We have divided the book into sections and have grouped the papers into
topic areas. Part I deals with Workflow Transactions. D. Worah and A. Sheth
discuss the role of transactions in workflows, including such topics as recov
ery and error handling for long-running workflows. G. Alonso and C. Mohan
address architectures for workflow management systems, and discuss the chal
lenges facing designers of such systems.

Part II deals with tool-kit approaches to transaction processing. R. Barga
and C. Po present a Reflective Transaction Framework for implementing ad-

PREFACE xv

vanced transaction models as well as semantics-based concurrency control. L.
Mancini, I. Ray, S. Jajodia and E. Bertino address flexible commit protocols
and show how a general framework can address specific issues such as sagas,
workflows, long-lived activities and transactions, and transaction dependen
cies.

Part ill addresses semantic issues associated with transactions, specifically
within the context of the ConTracts Model, and also in the semantic decom
position of transactions. A. Reuter, K. Schneider and F. Schwenkreis provide
a survey of the ConTracts model, and show how it can be used for handling
workflows and properties dealing with the correctness of long-running transac
tions. P. Ammann, S. Jajodia. and I. Ray focus on the semantics-based decom
position of transactions, introduce concepts such as compensating steps and
semantic histories, and prove useful properties of valid decompositions and the
processing of such decomposed transactions.

Part IV deals with concurrency control and recovery of transactions. L.
Daynes, M. Atkinson, and P. Valduriez discuss how one can customize con
currency control for "persistent" Java. They present a programming model
and a transaction shell to support user trade-off analysis and design decisions.
C. Martin and K. Ramamritham provide a formal model for recovery of ad
vanced transactions. They couch their model in the form of requirements, as
surances and rules to ensure failure atomicity, transaction durability, and recov
ery. They discuss the model and framework within the context of the ARIES
and ARIESIRH recovery protocols.

Part V focuses on transaction optimization techniques. A. Helal, Y-S. Kim,
M. Nodine, A. Elmagarmid, and A. Heddaya discuss the failings of current
architectures, propose a novel approach based on pre- and post-optimization,
and discuss the role of query optimization as it relates to query decomposition,
site assignment and replication strategies.

Part VI discusses how the Event-Condition-Action (ECA) paradigm from
active databases can be used to implement transaction models. A. Anwar, S.
Chakravarthy, M. Viveros present this approach within the Zeitgeist object
oriented database management system.

Part vn discusses the role of inter- and intra-transaction parallelism in the
context of both on-line transaction processing (OLTP) and on-line analytical
processing (OLAP). C. Hasse and G. Weikum present these concepts within
the framework of the PLENTY system which supports both kinds of transaction
processing. This is quite different from the current approach in which OLAP
is done separately in a data warehouse which is constructed by extracting data
from corporate on-line transaction processing systems.

Part Vill is devoted to Real-Time Data Management and P. Jensen, N. Sopar
kar and M. Tayara discuss real-time concurrency and coordination control in
the context of distributed systems.

xvi ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Part IX completes our collection with a focus on Mobile Computing. J.
Shanmugasundaram, A. Nithrakashyap, J. Padhye, R. Sivasankaran, M. Xiong,
and K. Ramamritham discuss transaction models in the context of mobile sys
tems in which low bandwidth, low storage capacity and insufficient power im
pose new challenges for client-server communication and transactions.

We would like to extend our sincerest thanks to Mr. Indrajit Ray who assisted
with every aspect of preparing this book, from collection of manuscripts from
the authors to dealing with the Kluwer staff regarding ~TEX-related issues.
Thanks are also due to our publisher, Mr. Alex Greene, whose enthusiasm and
support for this project was most helpful.

SUSHIL JAJODIA AND LARRY KERSCHBERG

This book is dedicated to our
loving wives Kamal and Nicole

I Workflow Transactions

1 TRANSACTIONS IN
TRANSACTIONAL WORKFLOWS

Devashish Worah and Amit Sheth

Abstract: Workflow management systems (WFMSs) are finding wide applica
bility in small and large organizational settings. Advanced transaction models
(A1Ms) focus on maintaining data consistency and have provided solutions to
many problems such as correctness, consistency, and reliability in transaction
processing and database management environments. While such concepts have
yet to be solved in the domain of workflow systems, database researchers have
proposed to use, or attempted to use A1Ms to model workflows. In this paper
we survey the work done in the area of transactional workflow systems. We then
argue that workflow requirements in large-scale enterprise-wide applications in
volving heterogeneous and distributed environments either differ or exceed the
modeling and functionality support provided by AT Ms. We propose that an ATM
is unlikely to provide the primary basis/or modeling o/workflow applications,
and subsequently workflow management. We discuss a framework for error han
dling and recovery in the METEOR2 WFMS that borrows from relevant work in
A1Ms, distributed systems, software engineering, and organizational sciences.
We have also presented various connotations of transactions in real-world orga
nizational processes today. Finally, we point out the need for looking beyond
A1Ms and using a multi-disciplinary approach for modeling large-scale work
flow applications of the future.

1.1 INTRODUCTION

A workflow is an activity involving the coordinated execution of multiple tasks
performed by different processing entities [Krishnakumar and Sheth, 1995]. A
workflow process is an automated organizational process involving both hu
man and automated tasks. Workflow management is the automated coordina-

S. Jajodia et al. (eds.), Advanced Transaction Models and Architectures
© Springer Science+Business Media New York 1997

4 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

tion, control and communication of work as is required to satisfy workflow
processes [Sheth et al., 1996a]. There has been a growing acceptance of work
flow technology in numerous application domains such as telecommunications,
software engineering, manufacturing, production, finance and banking, health
care, shipping and office automation [Smith, 1993, Joosten et al., 1994, Geor
gakopoulos et al., 1995, Fischer, 1995, Tang and Veijalainen, 1995, Sheth
et al., 1996b, Palaniswami et al., 1996, Bonner et al., 1996, Perry et al., 1996].
Workflow Management Systems (WFMSs) are being used in inter- and intra
enterprise environments to re-engineer, streamline, automate, and track organi
zational processes involving humans and automated information systems.

In spite of the proliferation of commercial products for workflow manage
ment (including modeling and system supported enactment), workflow tech
nology is relatively immature to be able to address the myriad complexities as
sociated with real-world' applications. The current state-of-the-art is dictated by
the commercial market which is focused toward providing automation within
the office environment with emphasis on coordinating human activities, and
facilitating document routing, imaging, and reporting. However, the require
ments for workflows in large-scale multi-system applications executing in het
erogeneous, autonomous, distributed (HAD) environments involving multiple
communication paradigms, humans and legacy application systems far exceeds
the capabilities provided by products today [Sheth, 1995].

Some of the apparent weaknesses of workflow models that need to be ad
dressed by the workflow community include the lack of a clear theoretical
basis, undefined correctness criteria, limited support for synchronization of
concurrent workflows, lack of interoperability, scalability and availability, and
lack of support for reliability in the presence of failures and exceptions [Bre
itbart et al., 1993, Jin et al., 1993, Georgakopoulos et al., 1995, Mohan et al.,
1995, Alonso and Scbek, 1996b, Kamath and Ramamritham, 1996a, Leymann
et al., 1996, Alonso et al., 1996a]. In addition, a successful workflow-enabled
solution should address many of the growing user needs that have resulted
from:

• emerging and maturing infrastructure technologies and standards for dis
tributed computing such as the World Wide Web, Common Object Re
quest Broker Architecture [OMG, 1995b], Distributed Common Object
Model (DCOM), ActiveX, Lotus Notes, and Java.

• increasing need for electronic commerce using standard protocols such
as Electronic Data Interchange (ED!) (e.g., ANSI X.12 and HL7),

• additional organizational requirements in terms of security and authenti
cation,

• demands for integrated collaboration (not just coordination) support,

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 5

• increasing use of heterogeneous multimedia data, and

• requirements to support dynamic workflows to respond to the fast chang
ing environment (e.g., defense planning), or for supporting today's dy
namic and virtual enterprises.

Workflow technology has emerged as a multi-disciplinary field with sig
nificant contributions from the areas of software engineering, software pro
cess management, database management, and distributed systems [Sheth et al.,
1996a]. In spite of the standardization efforts of the Workflow Management
Coalition [Coalition, 1994], a consensus on many broader aspects have not yet
been achieved.

Work in the areas of transaction processing [Gray and Reuter, 1993] and
database systems, and many (but not all) efforts related to ATMs [Elmagarmid,
1992, Chrysanthis and Ramamritham, 1991, Georgakopoulos et aI., 1994], are
based on a strong theoretical basis. They have proposed or documented solu
tions (although many of which have yet to be implemented) to problems such
as correctness, consistency, and recovery when the constituent tasks are trans
actional, or the processing entities provide a transactional interface. There
exists a strong school of thought, primarily comprised of researchers from
the database community, which views a workflow model as an extension of
ATMs [Georgakopoulos and Hornick, 1994, Georgakopoulos et al., 1994, Chen
and Dayal, 1996, Biliris et al., 1994, Weikum, 1993, Waechter and Reuter,
1992]. However, it has also been observed [Breitbart et al., 1993, Alonso et al.,
1996b, Worah and Sheth, 1996] that ATMs have limited applicability in the
context of workflows due to their inability to model the rich requirements of
today's organizational processes adequately.

Traditional database transactions provide properties such as failure atomicity
and concurrency control. These are very useful concepts that could be appli
cable in workflows. For example, failure atomicity can be supported for a task
that interacts with a DBMS, or a group of tasks using the two-phase commit
protocol. There is a potential need for concurrency control and synchronization
of workflow processes for addressing correctness concerns during workflow
execution [Jin et al., 1993, Alonso et al., 1996a]. Based on our review of re
quirements of existing applications using workflows [Worah and Sheth, 1996],
we feel that transactional features form only a small part of a large-scale work
flow application. Workflow requirements either exceed, or significantly differ
from those of ATMs in terms of modeling, coordination and run-time require
ments. It would definitely be useful to incorporate transactional semantics such
as recovery, relaxed atomicity and isolation to ensure reliable workflow execu
tions. Nevertheless, to view a workflow as an ATM, or to use existing ATMs
to completely model workflows would be inappropriate. We do not think that
existing ATMs provide a comprehensive or sufficient framework for modeling
large-scale enterprise-wide workflows.

6 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Our observations in this chapter reflect our experience in modeling and
development efforts for a real-world workflow application for immunization
tracking [Sheth et al., 1996b, Palaniswami et al., 1996], experience in try
ing to use flexible transactions in multi-system telecommunication applica
tions [Ansari et aI., 1992], and our understanding of the current state of the
workflow technology and its real-world or realistic applications [Sheth et al.,
1996b, Medina-Mora and Cartron, 1996, Bonner et al., 1996, Ansari et al.,
1992, Vivier et al., 1996, Sheth and Joosten, 1996].

We emphasize the need for looking beyond the framework of ATMs for mod
eling and executing workflow applications. The term transaction as it is used
in business processes today has multiple connotations, database transactions
being only one of them. For example, EDI transactions are used for defining
interfaces and data formats for exchange of data between organizations and
Health Level 7· (HL 7) transactions are used to transfer patient data between
health care organizations. We discuss other uses of this term in section 1.7.
Workflow systems should evolve with the needs of the business and scientific
user communities, both in terms of modeling and run-time support. Of course,
it is possible that in some specific domains, ATM based workflow models may
be sufficient, however, we believe, such cases would be very few.

The organization of this chapter is as follows. Sections 2 through 5 are
tutorial in nature. In section 2 we review the research in the domain of ATMs.
The next section discusses the characteristics of transactional workflows and
significant research in this area. One of the primary focus of transactional
workflows is recovery. In section 4 we highlight the issues involved in recovery
for workflow systems. Section 5 discusses the types of errors that could occur
during workflow execution. In section 6 we discuss a practical implementation
of error handling and recovery in a large-scale WFMS. Section 6 provides a
perspective into the characteristics and interpretation of transactions as they
exist in workflow applications today. Finally, we conclude the paper with our
observations regarding the role of transactions in transactional workflows.

1.2 ADVANCED TRANSACTION MODELS

In this section we will briefly describe some of the ATMs discussed in the
literature [Gray and Reuter, 1993, Elmagarmid, 1992]. These models can be
classified according to various characteristics that include transaction struc
ture, intra-transaction concurrency, execution dependencies, visibility, durabil
ity, isolation requirements, and failure atomicity. ATMs permit grouping of
their operations into hierarchical structures, and in most cases relax (some of)
the ACID requirements of classical transactions. In this section, we discuss
some of the ATMs that we feel are relevant in the context of workflow systems.

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 7

1.2.1 Nested Transactions

An important step in the evolution of a basic transaction model was the ex
tension of the flat (single level) transaction structure to multi-level structures.
A Nested Transaction [Moss, 1982] is a set of subtransactions that may recur
sively contain other subtransactions, thus forming a transaction tree. A child
transaction may start after its parent has started and a parent transaction may
terminate only after all its children terminate. If a parent transaction is aborted,
all its children are aborted. However, when a child fails, the parent may choose
its own way of recovery, for example the parent may execute another sub
transaction that performs an alternative action (a contingency subtransaction).
Nested transactions provide full isolation at the global level, but they permit
increased modularity, finer granularity of failure handling, and a higher degree
of intra-transaction concurrency than the traditional transactions.

1.2.2 Open Nested Transactions

Open Nested Transactions [Weikum and Schek, 1992] relax the isolation re
quirements by making the results of committed subtransactions visible to other
concurrently executing nested transactions. This way, a higher degree of con
currency is achieved. To avoid inconsistent use of the results of committed
subtransactions, only those subtransactions that commute with the committed
ones are allowed to use their results. Two transactions (or, in general, two op
erations) are said to commute if their effects, i.e., their output and the final state
of the database, are the same regardless of the order in which they were exe
cuted. In conventional systems, only reati'operations commute. Based on their
semantics, however, one can also define update operations as commutative (for
example increment operations of a counter).

1.2.3 Sagas

A Saga [Garcia-Molina and Salem, 1987] can deal with long-lived transac
tions. A Saga consists of a set of ACID subtransactions TI, ... , Tn with a pre
defined order of execution, and a set of compensating subtransactions CT I, ... ,
CTn_}, corresponding to TI, ... , Tn-I. A saga completes successfully, if the
subtransactions T I, ... , Tn have committed. If one of the subtransactions, say
Tk, fails, then committed subtransactions T}, ... , Tk-l are undone by executing
compensating subtransactions CTk-l, ... , CTI. Sagas relax the full isolation
requirements and increase inter-transaction concurrency. An extension allows
the nesting of Sagas [Garcia-Molina et al., 1991]. Nested Sagas provide use
ful mechanisms to structure steps involved within a long running transaction
into hierarchical transaction structures. This model promotes a relaxed notion
of atomicity whereby forward recovery is used in the form of compensating
transactions to undo the effects of a failed transaction.

8 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

1.2.4 Multi-Level Transactions

Multi-Level Transactions are more generalized versions of nested transactions
[Weikum and Schek, 1992, Gray and Reuter, 1993]. Subtransactions of a multi
level transactions can commit and release their resources before the (global)
transaction successfully completes and commits. If a global transaction aborts,
its failure atomicity may require that the effects of already committed subtrans
actions be undone by executing compensating subtransactions. A compensat
ing subtransaction t- semantically undoes effects of a committed subtransac
tion t, so that the state of the database before and after executing a sequence
t t- is the same. However, an inconsistency may occur if other transaction
s observe the effects of subtransactions that will be compensated later [Gray
and Reuter, 1993, Garcia-Molina and Salem, 1987, Korth et al., 1990b]. Open
nested transactions use the commutativity to solve this problem. Since only
subtransactions that commute with the committed ones are allowed to access
the results, the execution sequence t s t- is equivalent to s t t- and, according to
definition of compensation, to s, and therefore is consistent. A somewhat more
general solution in the form of a horizon of compensation, has been proposed
in [Krychniak et al., 1996] in the context of multi-level activities.

1.2.5 Flexible Transactions

Flexible Transactions [Elmagarmid et al., 1990, Zhang et al., 1994a] have been
proposed as a transaction model suitable for a multidatabase environment. A
flexible transaction is a set of tasks, with a set of functionally equivalent sub
transactions for each and a set of execution dependencies on the subtransac
tions, including failure dependencies, success dependencies, or external de
pendencies. To relax the isolation requirements, flexible transactions use com
pensation and relax global atomicity requirements by allowing the transaction
designer to specify acceptable states for termination of the flexible transaction,
in which some subtransactions may be aborted. IPL [Chen et al., 1993] is
a language proposed for the specification of flexible transactions with user
defined atomicity and isolation. It includes features of traditional programming
languages, such as type specification to support specific data formats that are
accepted or produced by subtransactions executing on different software sys
tems, and preference descriptors with logical and algebraic formulae used for
controlling commitments of transactions. Because flexible transactions share
some more of the features of a workflow model, it was perhaps the first ATM
to have been tried to prototype workflow applications [Ansari et al., 1992].

1.2.6 ACTA and its derivatives

Reasoning about various transaction models can be simplified using the ACTA
metamodel [Chrysanthis and Ramamritham, 1992]. ACTA captures the impor-

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 9

tant characteristics of transaction models and can be used to decide whether
a particular transaction execution history obeys a given set of dependencies.
However, defining a transaction with a particular set of properties and assur
ing that an execution history will preserve these properties remains a difficult
problem.

In [Biliris et al., 1994], the authors propose a relaxed transaction .facility
called ASSET. It is based on transaction primitives derived from the ACTA
framework that can be used at a programming level to specify customized,
application specific transaction models that allow cooperation and interaction.
The transaction primitives include a basic and an extended set of constructs
that can be used in an application that needs to support custom transactional
semantics at the application level. These can be used to support very limited
forms of workflows that involve transaction-like components. In some sense,
this demonstrates the limitations one may face when trying to use an ATM as a
primary basis for workflow modeling.

1.3 TRANSACTIONAL WORKFLOWS

The term transactional workflows [Sheth and Rusinkiewicz, 1993] was intro
duced to clearly recognize the relevance of transactions to workflows. It has
been subsequently used by a number of researchers [Breitbart et al., 1993,
Rusinkiewicz and Sheth, 1995, Krishnakumar and Sheth, 1995, Georgakopou
los et al., 1995, Tang and Veijalainen, 1995, Leymann et al., 1996]. Trans
actional workflows involve the coordinated execution of multiple related tasks
that require access to HAD systems and support selective use of transactional
properties for individual tasks or entire workflows. They use ATMs to spec
ify workflow correctness, data-consistency and reliability. Transactional work
flows provide functionality required by each workflow process (e.g., allow task
collaboration and support the workflow structure) which is usually not avail
able in typical DBMS and TP-monitor transactions. Furthermore, they address
issues related to reliable execution of workflows (both single and multiple) in
the presence of concurrency and failures.

Transactional workflows do not imply that workflows are similar or equiv
alent to database transactions, or support all the ACID transaction properties.
They might not strictly support some of the important transaction features sup
ported by TP monitors (e.g., concurrency control, backward recovery, and con
sistency of data). Nevertheless, such workflows share the objectives of some of
the ATMs in terms of being able to enforce relaxed transaction semantics to a
set of activities.

In a somewhat conservative view, transactional workflows are workflows
supported by an ATM that defines workflow correctness and reliability crite
ria [Georgakopoulos et al., 1995]. In such a workflow, the tasks are mapped
to constituent transactions of an advanced transaction supported by an ATM

10 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Georgakopoulos et al., 1994], and control flow is defined as dependencies be
tween transactional steps. Similarly, in [Weikum, 1993] an extra control layer
in terms of dependencies is added to ATM to provide functionality to the trans
actions running in a large-scale distributed information systems environment.

A WFMS may provide transactional properties to support forward recovery,
and use system and application semantics to support semantic based correct
multi-system application execution [Sheth, 1995, Krishnakumar and Sheth,
1995]. These could include transaction management techniques such as log
ging, compensation, etc. to enable forward recovery and failure atomicity. In
addition, the workflow could exhibit transactional properties for parts of its exe
cution. It might use transaction management technology such as transactional
RPC between two components of a WFMS (e.g, scheduler and task manager),
an extended commit coordinator [Miller et al., 1996], or a transactional proto
col (XA) between a task manager and a processing entity,

In our view, the scope of transactional workflows extends beyond the purview
of database transactions and ATMs. Workflow executions include tasks that
might involve database transactions; however, large-scale workflow applica
tions typically extend beyond the data-centric domains of databases and in
frastructures that inherently support transaction semantics (e.g., TP-monitors),
to more heterogeneous, distributed and non-transactional execution environ
ments.

1.3.1 Previous Research on using Transactions for WorkHows

Two major approaches have been used to study and define transactional work
flows. The first one utilize a workflow model that is based on supporting or
ganizational processes (also called business process modeling) as its basis, and
complements it with transactional features to add reliability, consistency, and
other transaction semantics. In the second approach, ATMs are enhanced to in
corporate workflow related concepts to increase functionality and applicability
in real-world settings. The degree to which each of the models incorporates
transactional features varies, and depends largely on the requirements (such as
flexibility, atomicity and isolation of individual task executions and multiple
workflow instances, etc.) of the organizational processes it tries to model. In
the remainder of this section, we discuss some of the research that has been
done using ATMs and workflows.

ConTracts [Waechter and Reuter, 1992] were proposed as a mechanism for
grouping transactions into a multitransaction activity. A ConTract consists of a
set of predefined actions (with ACID properties) called steps, and an explicitly
specified execution plan called a script. An execution of a ConTract must be
forward-recoverable, that is, in the case of a failure the state of the ConTract
must be restored and its execution may continue. In addition to the relaxed

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 11

isolation, ConTracts provide relaxed atomicity so that a ConTract may be in
terrupted and re-instantiated.

Workflow applications are typically long-lived compared to database trans
actions. A workflow is seen as a Long-Running Activity in [Dayal et al., 1990,
Dayal et al., 1991]. A Long-Running Activity is modeled as a set of execution
units that may consist recursively of other activities, or top-level transactions
(i.e., transactions that may spawn nested transactions). Control flow and data
flow of an activity may be specified statically in the activity's script, or dy
namically by Event-Condition-Action (ECA) rules. This model includes com
pensation, communication between execution units, querying the status of an
activity, and exception handling.

Motivated by advanced application requirements, several ATMs have been
proposed (refer to [Chrysanthis and Ramamritham, 1991, Georgakopoulos and
Hornick, 1994] for frameworks for defining and comparing ATMs, [Elma
garmid, 1992] for several representative ATMs, for a representative model and
specification that support application specific transaction properties, and [Bre
itbart et al., 1993, Hsu, 1993, Rusinkiewicz and Sheth, 1995] for earlier views
on relationships between workflows and ATMs). ATMs extend the traditional
(ACID) transaction model typically supported by DBMSs to allow advanced
application functionality (e.g., permit task collaboration and coordination as it
is required by ad hoc workflows) and improve throughput (e.g., reduce tran
saction blocking and abortion caused by transaction synchronization). How
ever, many of these e~tensions have resulted in application-specific ATMs that
offer adequate correctness guarantees in a particular application, but not in oth
ers. Furthermore, an ATM may impose restrictions that are unacceptable in one
application, yet required by another. If no existing ATM satisfies the require
ments of an application, a new ATM is defined to do so.

In [Georgakopoulos et al., 1994], the authors define an extended (advanced)
transaction framework for execution of workflows called the Transaction Spec
ification and Management Environment (TSME). A workflow in this frame
work consists of constituent transactions corresponding to workflow tasks. In
addition, workftows have an execution structure that is defined by an ATM;
the ATM defines the correctness criteria for the workflow. The TSME claims
to support various ATMs (extended transaction models) to ensure correctness
and reliability of various types of workflow processes. Extended transactions
consist of a set of constituent transactions and a set of dependencies between
them. These transaction dependencies specify the transaction execution struc
tures or correctness criteria. A programmable transaction management mecha
nism based on the ECA rules [Dayal et al., 1990] is used to enforce transaction
state dependencies.

Semantic transaction models aim to improve performance and data consis
tency by executing a group of interacting steps within a single transaction and

12 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

relaxing the ACID properties of this transaction in a controlled manner. In
[Weikum, 1993], the author suggests that semantic transaction concepts be
merged with workflow concepts to promote workflow systems that are con
sistent and reliable. The author defines a transactional workflow to be a control
sphere that binds these transactions by using dependencies to enforce as much
behavioral consistency as possible thereby enforcing reasonable amount of data
consistency.

The METEOR! [Krishnakumar and Sheth, 1995] workflow model is an inte
gration of many of the approaches described above. A workflow in METEOR
is a collection of mUltiple tasks. Each of the tasks could be heterogeneous
in nature. The execution behavior of the tasks are captured using well-defined
task structures. This model supports tasks that have both transactional and non
transactional semantics. Groups of tasks along with their inter-task dependen
cies can be modeled as compound tasks. The compound tasks have their task
structures too. Transactional workflows can be modeled using transactional
tasks and transactional compound tasks as the basis of the workflow model.
The METEOR2 WFMS [Miller et al" 1996, Sheth et al" 1996b] is based on
the METEOR model. It extends the model in terms of providing better sup
port for failure recovery and error handling in heterogeneous and distributed
workflow environments (see section 1.6.1 for additional details).

The Exotica project [Alonso et al., 1995a, Alonso et al., 1996b] explores
the role of advanced transaction management concepts in the context of work
flows. A stated objective of this research is to develop workflow systems that
are capable enough (in terms of reliability, scalability, and availability) to deal
with very large, heterogeneous, distributed and legacy applications. One of the
directions of this project is to research the synergy between workflow systems
and advanced transaction models; the results that follow point in the direction
that workflow systems are a superset of advanced transaction models [Alonso
et al., 1996b] since workflow systems incorporate process and user oriented
concepts that are beyond the purview of most ATMs. Partial backward re
covery has been addressed in the context of the FlowMark WFMS [Leymann,
1995] by generalizing the transactional notions of compensation.

One of the projects in which transactional semantics have been applied to
a group of steps define a logical construct called a Consistency unit (C-unit)
[Tang and Veijalainen, 1995]. A C-unit is a collection of workflow steps and
enforced dependencies between them. C-units relax the isolation and atomicity
properties of transactional models. The authors also discuss how C-units can
be used to develop transactional workflows that guarantee correctness of data
in the view of integrity constraints that might exist across workflow processing
entities.

The INformation CArrier (INCA) [Barbara et al., 1996a] workflow model
was proposed as a basis for developing dynamic workflows in distributed en-

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 13

vironments where the processing entities are relatively autonomous in nature.
In this model, the INCA is an object that is associated with each workflow and
encapsulates workflow data, history and processing rules. The transactional
semantics of INCA procedures (or steps) are limited by the transaction sup
port guaranteed by the underlying processing entity. The INCA itself is neither
atomic nor isolated in the traditional sense of the terms. However, transac
tional and extended transactional concepts such as redo of steps, compensating
stepsand contingency steps have been included in the INCA rules to account
for failures and forward recovery.

In the Nested Process Management environment [Chen and Dayal, 1996]
a workflow process is defined using a hierarchical collection of transactions.
Failure handling is supported using a two-phase approach. During the first
phase of recovery, a bottom-up lookup along the task tree is performed to de
termine the oldest parent transaction that does not need to be compensated.
The next phase involves compensation of all the children of this parent. In this
model, failure atomicity of the workflow is relaxed in terms of compensating
only parts of the workflow hierarchy.

The Workflow Activity Model(WAMO) [Eder and Liebhart, 1995] defines a
workflow model that enables the workflow designer in modeling reliable work
flows [Eder and Liebhart, 1996]. It uses an underlying relaxed transaction
model that is characterized by relaxing i) failure atomicity of tasks, ii) serial
izability of concurrent and interleaved workflow instance executions, and iii)
relaxing isolation in terms of externalization of task results.

Thus we see that transaction concepts have been applied to various de
grees in the context of workflows. They have been used to define application
specific and user-defined correctness, reliability and functional requirements
within workflow executions. In the next section, we discuss features specific
to transactions and ATMs that would be useful for implementing recovery in a
WFMS.

1.4 WORKFLOW RECOVERY

Reliability is of critical importance to workflow systems [Georgakopoulos et al.,
1995, Georgakopoulos, 1994, Jin et al., 1993]. WFMS should not only be func
tionally correct, but should also be robust in the view of failures. Workflow
systems (both commercial and research prototypes) in their current state, lack
adequate support for handling errors and failures in large-scale, heterogeneous,
distributed computing environments [Georgakopoulos et al., 1995, Alonso and
Schek, 1996b, Kamath and Ramamritham, 1996a, Sheth et al., 1996a, Ley
mann et al., 1996]. Failures could occur at various points and stages within the
lifetime of the workflow enactment process. They could involve failures asso
ciated with the workflow tasks (such as unavailability of resources, incorrect
input formats, internal application failures, etc.), failures within the workflow

14 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

system components (such as schedulers, databases, etc.), and failures in the
underlying infrastructure (such as hardware and network failures). Reliabil
ity in the context of workftows requires that tasks, their associated data, and
the WMFS itself be recoverable in the event of failure, and that a well defined
method exists for recovery.

A workflow process is heavily dependent on the organizational structure,
and business policies within an organization. Workflows are activities that are
horizontal in nature and are spread across the organizational spectrum as com
pared to transaction processing activities (e.g., database transactions) that are
more vertical or hierarchical in nature and might form only part of the work
flow process. In other words, hierarchical decomposition used for complex ad
vanced transaction models is not sufficient for modeling workflows. A WFMS
needs to support recovery of its tasks, associated data and the workflow process
as a whole. The heterogeneous nature of workflow tasks and processing enti
ties might preclude any transactional semantics that are required for assuring
transactional behavior of the workflow or the constituent tasks themselves. A
viable recovery mechanism should be consistent with and should support the
overall goal of the business process concerned.

Valuable research addressing recovery has been done in transaction manage
ment and ATMs [Bernstein et al., 1987, Gray and Reuter, 1993, Korth et al.,
1990b, Moss, 1987, Waechter and Reuter, 1992, Chen and Dayal, 1996] (see
sections 1.2 and 1.3.1). A strictly data-centric approach has been used to ad
dress recovery issues in transaction processing. The problem domain of recov
ery in a WFMS is broader than that of transaction systems and ATMs due to
its process-oriented focus, and diverse multi-system execution requirements.
Although the ideas proposed in ATMs are limited in terms of the domains and
environments they apply to, they are valuable in terms of their semantics and
overall objectives. In the next section, we discuss the value and applicability of
transaction concepts in the context of workflow recovery.

1.4.1 Transaction Concepts in Modeling Workflow Recovery

Earlier, we have discussed some of the ATMs that have been proposed in the
literature. Recovery involves restoration of state - a concept which is voiced
by transactional systems also. Later, we also reviewed some of the work in
transactional workflows, and different approaches for incorporating transac
tional semantics into workflow models. We feel that transaction concepts are
necessary for a recovery mechanism to be in place; however, basing a work
flow recovery framework on a transactional (or advanced) transactional model
would be naive.

As discussed in section 1.2.1, the hierarchical model in nested transactions
[Moss, 1982] allows finer grained recovery, and provides more flexibility in
terms of transaction execution. In addition to database systems, nested transac-

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 15

tions can been used to model reliable distributed systems [Moss, 1987]. There
is a lot to learn from work done in nested transactions. It provides a model for
partitioning an application system into recoverable units; transaction failure is
often localized within such models using retries and alternative actions. Work
flow systems can borrow these ideas to a great extent, and tasks can be retried
in the case of certain failures (e.g., failures related to unavailability of input
data, or inadequacy of resources for executing a task at a processing entity),
or alternate tasks can be scheduled to handle other more serious errors (e.g.,
when a certain number of retries fail, or when a task cannot be activated due to
unavailability of a processing entity) that might cause a task to fail.

In the work on nested process management systems [Chen and Dayal, 1996]
(discussed in section 1.3.1), the authors present a formal model of recovery
that utilizes relaxed notions of isolation and atomicity within a nested tran

saction structure. Although, this model is more relaxed in terms of recovery
requirements as compared to nested transactions, it is strict for heterogeneous
workflow environments that involve tasks that are non-transactional in nature.
Moreover, the recovery model uses backward recovery of some of the child
transactions for undoing the effects of a failed global transaction. The back
ward recovery approach has limited applicability in workflow environments in
which it is either not possible to strictly reverse some actions, or is not feasi
ble (from the business perspective) to undo them since this might involve an
additional overhead or conflict with a business policy (e.g., in a banking appli
cation).

The notion of compensation is important in workflow systems. Undoing of
incomplete transactions (or backward recovery) is an accepted repair mecha
nism for aborted transactions. However, this concept is not directly applicable
to most real-world workflow tasks which are governed by actions that are in
general permanent (e.g, human actions and legacy system processing). One
can define a semantically inverse task (commonly referred to as compensat
ing tasks), or a chain of tasks that could effectively undo or repair the damage
incurred by a failed task within a workflow. In addition to Sagas, semantic tran
saction models have been proposed to address many such issues in which fail
ure atomicity requirements have been relaxed. Compensation has been applied
to tasks and groups of tasks (spheres) to support partial backward recovery in
the context of the FlowMark WFMS [Leymann, 1995].

Work on flexible transactions[Elmagarmid et al., 1990, Zhang et al., 1994a]
discusses the role of alternate transactions that can be executed without sac
rificing the atomicity of the overall global transaction. This provides a very
flexible and natural model for dealing with failures. These concepts are ap
plicable in workflow environments also. A prototype workflow system that
implments a flexible transaction model has been discussed in [Alonso et al.,
1996b].

16 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

In transactional models, the unit of recovery is a transaction. . Each tran
saction has a predefined set of semantics that are compliant with the transaction
processing system. The model for recovery in a workflow system is more in
volved since the recovery process should not only restore the state of the work
flow system, but should proceed forward in a manner that is compliant with the
overall organizational process.

Recovery of Workflow Tasks A task (activity or step) forms a basic unit
of execution within a workflow model. A task is a logical unit of work that is
used to satisfy the requirements of the business process that defines the work
flow concerned. In database systems, it is sufficient to maintain before and
after images of the data affected by a transaction to guarantee enough infor
mation needed to recover that transaction in case of its failure. Recovery of
tasks, therefore, should be addressed from a broader perspective; in addition to
focusing on data-centric issues, one must focus on the overall business model
associated with the actions within a task.

The tasks within a workflow could be arbitrarily complex and heterogeneous
(Le., transactional and non-transactional) in nature. A workflow model pro
posed in [Georgakopoulos et al., 1994] compares database transactions to tasks
within a workflow, thereby regarding a workflow task to be the unit of recovery.
This parallelism is valid when the tasks are relatively simple, obey transactional
semantics and are executing within an environment that can enforce the trans
actional behavior of a group of tasks. Most real-world workflow applications
and run-time environments are far more complex in nature and may be spread
across arbitrary autonomous systems. Hence, a uniform recovery model based
solely on transactional assumptions is inapplicable to commercial workflow
systems.

Many task models .have been defined for workflow systems [Attie et al.,
1993, Krishnakumar and Sheth, 1995, Rusinkiewicz and Sheth, 1995]. In spite
of this fact, it is difficult to determine the exact execution state of a task since
these task models do not model detailed task execution: One could implement
a workflow system involving special tasks that reveal their internal state to the
WFMS layer; however, this workflow solution is not general enough to handle
tasks that are diverse and arbitrarily complex in nature. Guaranteeing strict
failure atomicity akin to that in database transactions is therefore difficult for
workflow tasks. Hence, recovery of tasks should be addressed from a broader
perspective. One should focus on the overall business process model when
trying to decide the next action to be performed when resolving task failures.

In the case of non-transactional tasks, it is difficult to monitor the exact
state of the task once it has been submitted for execution. This lack of control
could leave the system in an undeterministic state in view of failures. In such a
scenario, automatic recovery of a failed task becomes impossible due to lack of
run-time feedback or transactional guarantees from the processing entities. The

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 17

role of the human (e.g., workflow administrator) is important for recovery in
such situations for determining the state of the failed task based on information
that is external to the workflow system. In the METEOR2 system [Worah,
1997], a special task is used to cleanup the remnants of such failures and to
restore the workflow system to a consistent state. It could involve the role of a
human or an application that is programmed to be able to reconfigure the data
and applications associated with a task to restore it to a consistent state.

Recovery of Workflow Data Data plays an important role in workflow
systems, as is in the case of a DBMS and a TP-system. Data recovery issues
have been studied extensively in the context of database systems. Logging
and shadow paging are common mechanisms used in transaction processing
to record state of critical data persistently. Several check pointing mechanisms
have been discussed in literature [Bernstein et al., 1987] to enhance the perfor
mance of the recovery process. These principles can be applied to workflow
systems in situations related to making the state of the workflow components
persistent and the recovery process more efficient. In the case of distributed
WFMSs, it is also important to replicate data across machines to enhance data
availability in the view of hardware and network failures. This problem, once
again, has been studied extensively in the area of distributed databases; its ap
plicability has also been studied in workflow systems [Alonso et al., 1995b] to
enhance their availability.

1.5 WORKFLOW ERROR HANDLING

Error handling is another critical area of workflow research that has not re
ceived adequate attention [Georgakopoulos et al., 1995, Alonso and Schek,
1996b]. The cause of errors in workflow systems could be multifarious. Errors
are logical in nature; they could be caused due to failures within the workflow
system, or failures occurring at the task level.

Error handling in database systems has typically been achieved by abort
ing transactions that result in an error [Gray and Reuter, 1993]. Aborting or
canceling a workflow task, would not always be appropriate or necessary in a
workflow environment. Tasks could encapsulate more operations than a data
base transaction, or the nature of the business process could be forgiving to
the error thereby not requiring an undo operation. Therefore, the error han
dling semantics of traditional transactional processing systems are too rigid for
workflow systems.

A mechanism for dealing with errors in an ATM for long running activities
was proposed in [Dayal et al., 1990, Dayal et al., 1991]. It supported forward
error recovery, so that errors occurring in non-fatal transactions could be over
come by executing alternative transactions. Although, this model provides well
defined constructs for defining alternative flow of execution in the event of er-

18 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

rors, it is restrictive in tenns of the types of activities (relaxed transactions)
and the operating environment (a database) that fonn the long running process
and therefore, it does not provide the error modeling capabilities of capturing
workflow errors.

We can characterize the types of errors arising in a WFMS into three broad
categories:

• Infrastructure errors: these errors result from the malfunctioning of the
underlying infrastructure that supports the WFMS. These include com
munication errors such as loss of infonnation, and hardware errors such
as computer system crashes and network partitioning.

• System errors: these errors result from faults within the WFMS software.
This could be caused due to faults in the hardware, or operating system.
An example is the crash of a workflow scheduler.

• Application and user errors: these errors are closely tied to each of the
tasks, or groups of tasks within the workflow. Due to its dependency on
application level semantics, these errors are also tenned as logical errors
[Krishnakumar and Sheth, 1995]. For example, one such error could
involve database login errors that might be returned to a workflow task
that tries to execute a transaction without having pennission to do so at a
particular DBMS. A failure in enforcing inter-task dependencies between
tasks is another example of an application error.

The above categorization is a descriptive model for categorizing errors within
WFMSs. Large-scale WFMSs typically span across heterogeneous operating
environments; each task could be arbitrarily complex in nature. To be able to
detect and handle errors in such a diverse environment, we need a well-defined
error model that would help us specify, detect and handle the errors in a sys
tematic fashion. In 1.6.1.3 we define a hierarchical error model that fonns the
basis for handling errors in the METEOR2 WFMS.

In the previous sections, we have discussed research done in the area of
ATMs, transactional workflows, and the problem of error handling and recov
ery in WFMSs. In the next section we outline issues that are important for
implementing a reliable WFMS. In doing so, we discuss a specific example of
a WFMS that exploits many of the concepts from transactional systems and
ATMs to include support for error handling and recovery.

1.6 TRANSACTIONS. ATMS AND RECOVERY IN LARGE-SCALE

WFMSS

Pervasive network connectivity, coupled with the explosive growth of the Inter
net has changed our computational landscape. Centralized, homogeneous, and
desktop-oriented technologies have given way to distributed, heterogeneous

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 19

and network-centric ones. Workflow systems are no exceptions. They would
typically be required to operate in such diverse environments in a reliable man
ner. Implementation of error handling and recovery in a WFMS is affected
by numerous factors ranging from the underlying infrastructure (e.g., DBMS,
TP-monitor, Lotus Notes, CORBA, Web), architecture of the supporting frame
work (e.g., centralized vs. distributed), nature of the processing entities (e.g.,
open vs. closed, transactional vs. non-transactional, human vs. computer sys
tem), type of tasks (user vs. system, transactional vs. non-transactional), and
the nature of the workflow application (e.g., ad-hoc vs. administrative vs. pro
duction). Most of these issues are beyond the purview of transaction-based
systems, and therefore have not been adequately tackled by them.

A single recovery mechanism cannot be applied to all workflow applica
tions due to the diversity of their business logic. Also, the variations in WFMS
run-time architectures and execution environments would dictate the choice of
suitable recovery mechanisms. A workflow is a collection of tasks; the tasks
could be arbitrary in nature. It is impossible to include task specific semantics
within a generalized recovery framework since task behavior is orthogonal to
that of the workflow process. Nevertheless, a WFMS should provide the nec
essary infrastructure to support error handling and recovery as needed by the
task. It should also provide tools to allow users to specify failure handling se
mantics that are conformant with the governing business process model. This is
an important characteristic that differentiates failure handling in workflow sys
tems from that in transaction processing where it suffices to satisfy the ACID
properties for transactions.

ATMs provide techniques for handling failures (see Section 1.2). However,
most of these ATMs do not discuss any aspects of implementation. Imple
mentation of processes in workflow systems require support for business level
details such as groups, roles, policies, etc. ATMs are weak in this aspect, since
they define models that are focused towards the tasks themselves (in this case
advanced transactions). Therefore, workflow systems are implemented at a
higher level of granularity than ATMs. In fact, in [Alonso et al., 1996b] sagas
and flexible transactions have been implemented using a WFMS.

WFMSs in distributed environments are dependent on inter-process commu
nication across possibly heterogeneous computing infrastructures. In such sys
tems, it is important that communication between processes is reliable. Trans
actional RPC mechanisms have been used in distributed transaction processing
to guarantee reliable messaging between distributed processes. They can also
be incorporated into workflow systems [Wodtke et al., 1996] to guarantee trans
actional messaging between the workflow components thereby increasing the
level of fault-tolerance of the WFMS infrastructure.

TP-monitors have been used extensively to guarantee transactional seman
tics across distributed process spaces. They are, therefore, a viable middleware

20 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

technology for implementing workflow systems. However, their use within a
workflow environment comes with a lot of cost: 1) it is not feasible to impose
infrastructural homogeneity (e.g., use of TP-monitors) across autonomous or
ganizations, and 2) it is very expensive to maintain and administer especially
when workflow process span multiple organizations. Emerging infrastructure
technologies such as Web, CORBA, and DCOM, on the other hand, provide
more open and cost effective solutions for implementing large-scale distributed
workflow applications [Sheth et al., 1996b, Palaniswami et al., 1996]. In partic
ular, the COllliA standard [OMG, 1995b] includes specifications for services
[OMG, 1995a] such as the Object Transaction Service (OTS), the Concurrency
Control Service, and the Persistence Service that can be combined to form
a framework for achieving TP-monitor-like functionality in a HAD environ
ments.

1.6.1 Error Handling and Recovery in the METEOR2 WFMS

The study of workflow systems is inter-disciplinary, and stems from areas such
as distributed systems, database management, software process management,
software engineering, and organizational sciences [Sheth et al., 1996a]. Error
handling and recovery are equally critical in these domains, and numerous so
lutions have been suggested to address these problems [Bhargava, 1987, Bern
stein et al., 1987, Cristian, 1991,Saastamoinen, 1995].

In this section, we present an error handling and recovery framework that
we have implemented for the distributed run-time of the METEOR2 WFMS.
This solution has been based on principles and implementation ideas that we
have borrowed from related research in databases, advanced transaction mod
els, software engineering and distributed systems. Due to lack of space, brevity
is key in our discussions (for additional details, see [Worah, 1997]).

1.6.1.1 Overview of METEOR2 Workflow Model. The METEOR2
workflow model is an extension of the METEOR [Krishnakumar and Sheth,
1995] model, and is focused towards supporting large-scale multi-system work
flow applications in heterogeneous and distributed operating environments. The
primary components of the workflow model include 1) processing entities and
their interfaces, 2) tasks, 3) task managers, and 4) the workflow scheduler.

• Processing Entity: A processing entity is any user, application system,
computing device, or a combination thereof that is responsible for com
pletion of a task during workflow execution. Examples of processing
entities include word processors, DBMSs, script interpreters, image pro
cessing systems, auto-dialers, or humans that could in turn be using ap
plication software for performing their tasks.

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 21

• Interface: The interface denotes the access mechanism that is used by ·the
WFMS to interact with the processing entity. For example, a task that
involves a database transaction could be submitted for execution using a
command line interface to the DBMS server, or by using an application
programming interface from within another application. In the case of a
user task that requires user-input for data processing, the interface could
be a Web browser containing an HTML form.

• Task: A task represents the basic unit of computation within an instance
of the workflow enactment process. It could be either transactional or
non-transactional in nature. Each of these categories can be further di
vided based 01) whether the task is an application, or a user-oriented task.
Application tasks are typically computer programs or scripts that could be
arbitrarily complex in nature. A user task involves a human performing
certain actions that might entail interaction with a GUI-capable termi
nal. The human interacts with the workflow process by providing the
necessary input for activating a user task. Tasks are modeled in the work
flow system using well-defined task structures [Attie et al., 1993, Rusin
kiewicz and Sheth, 1995, Krishnakumar and Sheth, 1995] that export the
execution semantics of the task to the workflow level. A task structure
is modeled as a set of states (e.g., initial, executing, fail, done), and the
permissible transitions between those states. Several task structures have
been defined - transactional, non-transactional, simple, compound, and
two-phase commit [Krishnakumar and Sheth, 1995, Wang, 1995].

• Task Manager: A task manager is associated with every task within the
workflow execution environment. The task manager acts as an interme
diary between the task and the workflow scheduler. It is responsible for
making the inputs to the task available in the desired format, for submit
ting the task for execution at the processing entity, and for collecting the
outputs (if any) from the task. In addition, the task manager communi
cates the status of the task to the workflow scheduler.

• Workflow Scheduler: The workflow scheduler is responsible for coordi
nating the execution of various tasks within a workflow instance by en
forcing inter-task dependencies defined by the underlying business pro
cess. Various scheduling mechanisms have been designed and imple
mented [Wang, 1995, Miller et al., 1996, Das, 1997, Palaniswami, 1997],
ranging from highly centralized ones in which the scheduler and task
managers reside within a single process, to a fully distributed one in
which scheduling components are distributed within each of the distributed
task manager processes.

We will focus our discussions on a run-time implementation of a distributed
architecture for the METEOR2 WFMS. A recovery framework has been de-

22 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

fined for this architecture. The basic distributed model has been enhanced
with additional functionality to 1) handle various forms of errors, 2) use tran
saction semantics at run-time, 3) monitor active workflow components, 4) re
cover failed components, and 5) log critical data that is necessary to restore the
state of a failed workflow.

1.6.1.2 ORBWork: A Distributed Implementation ofthe METEOR2
WFMS. ORB Work is a distributed run-time engine for METEOR2 WFMS.
It has been implemented using CORBA [OMG, 1995b] and Web infrastruc
ture technologies [Sheth et a1., I 996b, Das, 1997, Worah, 1997]. The for
mer provides the necessary distribution and communication capabilities for the
workflow components, and the latter makes it possible for humans to inter
act with the Object Request Broker (ORB)2 based workflow layer. The main
components of ORB Work are shown in Figure 1.1. In this implementation,
task managers, recovery units, data objects, monitors, and clean-up tasks are
implemented as CORBA objects.

H.., S ... , , .. :

[--01.·
O&obJIPc"~SIDft

a....,T ... -: ... ~ .. :
" ~

Object Reques1 Br<*n Host E

~~~·~· ······· · ···~·~s· r-~: ~ }·T~=·~~~· ···· ····Ei·t 

B:~a !··:'r ·· ! .. ~'-=M 
- / ................ ~ .. : 

' . ... . .. . . ~;~;;~'-.; .. \ . ....... :.:~: ..... . ..... ;"":.~.~ . . ~ .. ... ~ ........ ....... ~ ......... :i::: ...... bo .... ~ 
. .. ~. ""','~ ~ ......................... -..................... . 

:0= 13 : 
; t N __ ~~ 
: ... Tak M~: 

:"'Pf'i~ : 
1 T.1 ~ = 

~ .......... , ..... , .............................. . 
Host 0 

Figure 1.1 System Schematic for the Recovery Framework in ORBWork 

In METEOR2, the workflow process that defines the overall organizational 
process is captured in the form of a workflow map that is specified by a work
flow designer. This determines the data and control dependencies that need 
to be enforced as part of the workflow scheduling process. Due to the dis
tributed nature of the workflow engine, ORB Work does not have a centralized 



TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 23 

scheduling entity. The scheduling mechanism is embedded in each of the task 
managers. 

Each task managers performs four primary functions: 1) task activation, 2) 
error handling and recovery of task and its own errors, 3) logging of task inputs, 
outputs, and its internal state, and 4) scheduling of dependent task managers as 
defined by the workflow process. Task managers communicate with each via 
the ORB using object method invocations. Due to the location transparency 
offered by CORBA, they are able to communicate seamlessly irrespective of 
the host they execute on. 

Input and output data elements to the tasks are represented as CORBA ob
jects internal to ORB Work. These CORBA objects are wrappers around the ac
tual data elements. This allows workflow data objects to be distributed within 
the ORB environment. Task managers logically enforce workflow data depen
dencies and pass data by exchanging references to these data objects. 

User tasks have associated "to-do" worklists (not shown in the figure) that 
provide a list of pending tasks for the user. User inputs form one of the implicit 
dependencies for a user task manager. User (human) tasks communicate with 
the task managers using HTML forms and Common Gateway Interface (CGI) 
functionality provided by Web servers. In our current implementation, CGI 
scripts are implemented as CORBA clients to user task manager objects. Ref
erences to CORBA objects that encapsulate the user provided data are passed 
as inputs to the task manager. 

ORB Work is subject to numerous errors and failures. The architecture of 
ORB Work, as described above, does not provide support for error handling, 
other than what is already inherent to the components themselves. The dis
tributed nature of our workflow architecture alleviates problems associated with 
a single point of failure. This allows scope for incorporating fault-tolerant fea
tures into the framework. However, distribution adds to the complexity of the 
system in terms of management of the various components and detection of 
failures. This problem is compounded due to the asynchronous communication 
paradigm used in workflow communication models. Moreover, the communi
cation infrastructure is subject to failures, and could adversely affect workflow 
enactment. In the following two sections, we describe the error model that 
we have used to capture such errors, and the failure handling components that 
form our recovery framework. For a detailed discussion on ORBWork, see 
[Das, 1997]. 

1.6.1.3 Modeling Errors in METEOR2. The METEOR2 error model 
has been defined in a hierarchical manner. We have based it on the layered 
nature of the METEOR2 workflow model. It enables us to describe and clas
sify the various errors that occur during workflow execution. This, in effect, 
makes it possible to modularize our error handling algorithms during workflow 
execution. Errors are detected and masked as close to the point of occurrence 



24 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

as possible to prevent them from propagating to other, unrelated components 
of the WFMS. We use a three-tiered approach to classify errors within the 
METEOR2 workflow model: 

1. Task and Workflow Errors: this class forms the lowest level within our 
hierarchy and includes all errors that are specific to tasks, and their inter
task dependencies. Application and user errors (as discussed in Section 
1.5) are defined and modeled at this level. The workflow designer is 
responsible for defining these errors during the workflow definition pro
cess. The workflow system does not preclude a task from handling its 
errors on its own; in such cases, only unhandled errors would be cate
gorized as task errors within the WFMS. Some of these errors may have 
implications on the whole workflow process. A task error that cannot be 
resolved is eventually reported to its task manager; such an error falls into 
the category of task manager errors. 

2. Task Manager Errors: this class of errors involves all task errors that 
could not be resolved at the task level (as described earlier), and errors 
that are specific to the task manager itself. For example, the latter in
cludes errors such as 

• not being able to prepare the inputs for the task, 

• not being able to submit a task for execution, 

• not being able to recover the state of task during failure recovery, 
and 

• not being able to handle a task error that might have occurred. 

A task manager error that remains unhandled is reported as a workflow 
error to the scheduler. 

3. WFMS Errors: These are the highest level of errors within our model and 
include 

• system errors that affect the task scheduling mechanism, 

• communication errors between the scheduler and the task managers, 

• other failures in workflow components that are common to all in
stances of a workflow type (e.g., failure recovery units, log man
agers, etc.), and 

• errors that could not be handled at the level of the task manager. 

In our model, task and workflow errors are logical in nature. Error handling at 
this level is achieved by retries, aborts, cancellations, and by trying alternate 
tasks. Task manager and WFMS errors are system errors caused due to failures 
within the WFMS software. Task manager errors are either handled at the level 



TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 25 

of the task manager itself (e.g., retrying task submission for a task that cannot 
be submitted). WFMS errors are handled by the recovery components within 
the WFMS, or by a human that would be provided with information necessary 
to handle the error. 

Principles relating to classification of errors, and handling them in a modular 
fashion have been commonplace in computer architecture, programming lan
guages, and software engineering. We have mapped the ideas to our workflow 
model, and have defined the error-handling semantics so that they are in syn
chrony with the overall business process that defines the workflow. Although, 
this model has been applied within the METEOR2 WFMS, in principle, it is 
applicable to any workflow model that has a well-defined modular architecture. 
The error handling capabilities in ORBWork, are developed on the basis of this 
error model. 

1.6.1.4 Recovery Framework in ORBWork. In this section, we de
scribe the recovery framework for ORBWork (see Figure 1.1). In defining 
the recovery framework, we have extended the ORBWork workflow engine in 
terms of being able to handle failures ranging from the task level to the level of 
the workflow system components. The recovery model assumes a distributed, 
component-based architecture for the WFMS, and a communication mecha
nism (in this case CORBA) that makes it possible to interact with components 
across host boundaries. 

Persistence is an essential part of our recovery framework. We have used 
an object-oriented approach wherein the various workflow components are re
sponsible for logging their respective states to stable storage. This approach 
is very similar to the notion of recoverable objects in the distributed object
oriented framework of Arjuna[Shrivastava et al., 1991]. In our model, data 
objects inherit from a base interface that attributes it with capabilities to save 
and restore its state at runtime from stable storage. A Local Persistence Store 
(LPS) is used as the stable storage mechanism for logging local data critical for 
recovery purposes. We have used a DBMS as the basis for our LPS. A DBMS 
provides transactional capabilities to log data. A Global Persistence Store is 
used for logging at the level of the GRM. Logging is done at various stages 
within the workflow enactment process. For example, 1) task Managers log the 
state of their tasks (including error codes returned by the task, for future de
bugging and error recovery), inputs that they receive from other task managers, 
and outputs that they send out to dependant task managers; 2) data objects log 
the state of their data they encapsulate. 

Failures in distributed systems are hard to detect, unless there is a fault
tolerant detection mechanism in place. This problem is compounded espe
cially when most of the components communicate in an asynchronous mode. 
Distributed workflow systems fall into this category due to their asynchronous 
coordination model. In ORBWork, we have provided additional services for 



26 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

monitoring distributed components, to address the issue of failure detection. 
In this regard, we have borrowed ideas from other work done in reliable dis
tributed systems [Birman and Renesse, 1994, Maffeis, 1996]. 

Task Managers and data objects on each host are monitored by a Local Re
covery Manager (LRM) process executing on the same machine. On startup, 
the task managers and data objects, register with the LRM on their host. Once, 
these components are no longer required within the workflow process, they 
deregister from the LRM. The LRM maintains a watch-list of currently reg
istered components that are supposed to be executing as part of the workflow 
process instance on its host. When an object registers with the LRM, the LRM 
logs this message and appends it to the list. On deregistration, these objects 
are removed from the list. The LRM contains a watchdog that periodically, 
polls each of the components on the watch-list to ensure their liveliness. When 
a failed component is detected, the LRM reactivates the component, which in 
tum, restores its own state from local logs. The LRM checkpoints it logical 
view of the local system to the local log to enable its own recovery. In addition 
to the LRM, each host contains a daemon process called the Local Activation 
Daemon (LAD) (not shown in the figure) that is endowed with the ability to 
create processes (for the various CORBA objects) on the various hosts. 

A Global Recovery Manager (GRM) executing on a reliable host in the 
workflow execution environment monitors the liveliness of all the LRMs and 
is responsible for reactivating any failed LRMs. On recovery, the failed LRMs 
synchronize the state of their respective local systems based on their local logs 
and create any task managers that might have failed in the interim. Due to 
the infancy of the CORBA standard, and unavailability of many of its object 
services, we had to rely on programmatic efforts to implement many of the 
features that we would have otherwise liked to have been supplied by the ORB 
vendor. The implementation of error handling is achieved via the use of ex
ceptions and try-catch blocks that help to isolate the normal flow of execution 
from the abnormal case during run-time. 

Local configuration files (not shown in the figure) are used on each host by 
the LAD. These files are used for directory lookup for the various components 
(i.e., task manager, data object, LRM, GRM) during activation or recovery of 
the processes. 

During the definition of the workflow design, it might not be feasible to 
capture all errors and causes of failures that might occur during the enactment 
process. Also, especially in the case of non-transactional tasks, it is not always 
possible to undo the effects of a task that might have completed partially. We 
therefore feel that the role of a human is indispensable within the workflow re
covery framework. In our model, we have allocated a special human-performed 
task, called the cleanup task to serve the functionality of bringing the system 
to a consistent state after such irrecoverable failure. This mode of restoration is 



TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 27 

used only when the WFMS is unable to handle the recovery process automati
cally. 

Let us summarize the main characteristics of our recovery framework. 

• Workflow recovery is implemented in a distributed CORBA and Web 
based execution environment. 

• A notion of hierarchical monitoring of workflow components has been 
used to detect failures, and to initiate the recovery process (i.e., GRM 
monitors the LRMs; LRMs monitor task managers and data objects; task 
managers monitor tasks). This allows failures to be localized, and their 
effects to be masked as close to the point of occurrence as possible. 

• The recovery model ensures that there is no single point of failure. There
fore, the failure of a host does not significantly affect the performance of 
tasks within another (unless they are directly dependant on each other). 

• The performance of the workflow system would degrade progressively 
in the case of failures; however, once the failure has been restored, the 
WFMS would execute normally. 

• Each workflow component is responsible for logging its own state. The 
persistence mechanism used is also local to the component itself. 

• The workflow components are responsible for managing their own recov
ery actions once they have been recreated. 

• The recovery mechanism is semi-automated. The role of the human is 
crucial both during the workflow design process and the enactment. The 
workflow designer specifies the run-time behavior of the error handling 
and forward recovery mechanism. The workflow administrator is respon
sible for fixing drastic system failures (e.g., machine crash, network par
titioning), and for cleanup of failed tasks that cannot be handled by the 
WFMS. 

• The distribution and hierarchical nature of the recovery mechanism makes 
the system scaleable and manageable. 

In this section we have briefly described the design and implementation 
of error handling and recovery in the distributed run-time of the METEOR2 
WFMS (see [Worah, 1997] for more details). We have used this discussion 
to illustrate the applicability of concepts and basic mechanisms from tradi
tional and ATMs within a practical workflow execution environment. Also, 
our discussion is suggestive of the need to look for solutions beyond ATMs for 
addressing reliability issues in WFMSs. 



28 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

1.7 TYPES OF TRANSACTIONS IN THE REAL-WORLD: 
BEYOND DATABASE TRANSACTIONS 

As practicing researchers, the idea of using related transaction models for mod
eling workflows was appealing to us. We felt that such a model could provide 
a rigor or structure that was lacking in the work on workflow management 
[Ansari et al., 1992, Breitbart et al., 1993]. There are few, if any, examples of 
successes in developing systems that implement ATMs for significant commer
cial, large-scale multi-system applications. 

Requirements of such applications include: 

1. capability to explicitly define the functionality and organizational struc
ture of organizational process involved, 

2. support of coordination and execution of tasks in heterogeneous intra
and inter-enterprise environments, 

3. modeling and support for human involvement with the run-time system, 
and 

4. error handling and failure recovery. 

Workflow management is specifically defined to address these real-world 
challenges. It provides the tools to integrate humans, computer systems, infor
mation resources and organizational processes into a unified solution. Hence, 
the requirements of WFMSs are far more challenging than those faced by cur
rent database systems [Alonso and Schek, 1996b]. In workflow applications, 
database resources might comprise only a part of the entire solution. For a task 
that entirely interacts with a DBMS, executing it as a transaction is often a de
sirable choice. At the same time, workflows involve other user and application 
tasks (e.g., tasks that interact with legacy systems) that are non-transactional in 
nature. 

Due to the wide acceptance and applicability of workflows to application 
domains that extend beyond transaction based (primarily database related) en
vironments, the term transaction is being used in a more loose manner with 
various connotations. These interpretations are based on: 1) the type of tasks 
and processing entities that are part of the workflow process, 2) the applica
tion domain or semantics of the organizational process that is being modeled, 
3) the communication infrastructure that is used to develop the WFMS, and 4) 
transactional or advanced transactional semantics (such as relaxed isolation and 
atomicity) that can be attributed to the tasks, sub-workflow, or the workflow as 
a whole. It is important to understand each of these interpretations to be able to 
appreciate the similarities and differences between transactions from the world 
of database systems and those involved in the realm of multi-system workflow 



TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 29 

management systems. Let us consider some of the frequently encountered in
terpretations for the term transactions in the context of real-world workflow 
applications and WFMS that support workflow applications: 

1. Task specific interpretation in databases and distributed transaction 
processing. In general, a workflow task is considered to be a black box 
that is functional in nature, i.e., the functionality of the task is orthogonal 
to that of the workflow process [Alonso et al., 1995b]. The tasks them
selves could be transactional or non-transactional in nature [Rusinkiewicz 
and Sheth, 1995, Krishnakumar and Sheth, 1995]. Transactional tasks are 
those that minimally support the atomicity property and maximally sup
port all ACID properties of traditional transaction models [Miller et aI., 
1996, Krishnakumar and Sheth, 1995]. These tasks typically include 
those that interact with a DBMS by using BEGIN_ TRANSACTION -
END_TRANSACTION semantics, contracts (stored procedures), and two
phase commit (2PC) tasks [Wang, 1995, Miller et al., 1996] for synchro
nizing transactions across multi-DBMSs. In addition, tasks that use the 
XA-Protocol [Gray and Reuter, 1993] based RPC to communicate with 
transactional processing entities such as a TP-monitor in a distributed en
vironment [Wodtke et al., 1996] can also be included in this category. 
Non-transactional tasks are used to include applications that cannot en
sure isolation or atomicity as a part of the workflow process. Such task 
types are commonplace in the real-world and involve activities requiring 
interaction with humans, legacy systems, and others that interface with 
other processing entities that do not provide transactional support (e.g., 
HTTP servers, Lotus Notes, file systems, word processors, spreadsheets 
and decision support systems). 

2. Domain specific interpretation. The move from a paper-based society 
to a paper-less one, and the increasing popularity of electronic commerce 
have led to evolution of standards for electronic data exchange across 
organizations. Some of these include (EDI) standards such as ANSI 
Accredited Standards Committee (ASC) X12 that are used in numerous 
commercial settings (e.g., ANSI 270 and 271 transactions for healthcare 
eligibility inquiry and response used in [Sheth et al., 1996b]), and the 
ANSI HL 7 standard that is used specifically in the medical domain. The 
term transaction in this setting refers to the exchange of sufficient data 
in a standard electronic format necessary to complete a particular busi
ness action often using domain specific information. This view of a tran
saction tends to focus more on business requirements and contracts rather 
than on the need for maintaining data consistency within a database or to 
support atomicity or other transactional property between communicat
ing processes or for a RPC call. Workflow technology is being applied 
in various forms to application domains such as manufacturing, bank-



30 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

ing, healthcare and finance that use domain specific transaction formats 
extensively. One of the tasks within a workflow process could involve 
sending data from one information system to another using an EDI tran
saction. At the receiving end, another workflow task could write the data 
that it receives to a DBMS in a transactional (having ACID properties) 
manner. The semantics associated with each of these transactions are dif
ferent. Hence, the WFMS would have to be designed so that it can deal 
with different transaction forms in an appropriate manner. 

3. Business-process specific interpretation. Database transactions and tran
saction processing aim at preserving data consistency and ensuring reli
ability in case of faults and failures. These semantics cannot be applied 
directly to workflow systems since tasks within a workflow process are 
both transactional and non-transactional in nature. However, at the same 
time, workflow systems should be correct and reliable. Correctness and 
reliability in the case of workflow systems is more applicable from a 
broader perspective - that of the organizational process involved in ad
dition to the data that forms a part of the process. According to [Eder and 
Liebhart, 1995], a workflow transaction should ensure consistency from 
the business process point of view. The notion of a workflow transaction 
according to this view, is broader as compared to that of traditional trans
actions. Implementation support for such a concept would require an 
additional layer of control than that provided in transaction processing 
since workflows include features (e.g., roles, worklists, error handling) 
that are not available in (advanced) transaction models and transaction 
processing systems. 

4. Infrastructure specific interpretation. Workflow management systems 
are large-scale applications that can be implemented using various in
frastructure technologies such as Customized Transaction Management 
(CTM) [Georgakopoulos et aI., 1995], Distributed Object Management 
specifically using CORBA [Georgakopoulos et aI., 1994, Miller et aI., 
1996, Sheth et aI., 1996b, Wodtke et aI., 1996, Schuster et aI., 1994], 
World Wide Web [Palaniswami et al., 1996, Sheth et al., 1996b, Tech
nologies, 1995], TP-monitors [Wodtke et aI., 1996], Lotus Notes [Rein
wald and Mohan, 1996] and security services (as in secure transactions 
supported in the electronic commerce and Web-based services). The con
cept of transactions has been addressed in many of these technologies 
to some extent. For example CORBA provides an Object Transaction 
Service as a part of the Common Object Services Specification [OMG, 
1995a] that enables objects in distributed environments to take part in a 
transactional context; TP-monitors also provide transactional semantics 
in a distributed environment. The HTTP protocol used in the Web para
digm, on the other hand, does not provide any transactional semantics. 



TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 31 

Hence, we see that different interpretations of transactions are supported 
by each of these infrastructures. 

From the above discussion, it is important to observe that the notion of 
transactions in workflow management is more general compared to that in 
transaction processing and DBMSs.. Its interpretation could involve various 
variables associated with the factors mentioned above. Unlike advanced tran
saction systems, WFMS interact with database systems if required as part of 
the organizational process, however; this is not their primary focus. 

1.8 CONCLUSION 

We view workflow management as an attractive approach to programming in 
the large for enterprise applications. Tasks within a workflow are modeled at a 
higher degree of granularity than traditional database transactions (i.e., compo
nent transactions in a ATM or subtransactions in a distributed transaction). The 
tasks themselves could be either transactional (e.g., database transactions, and 
processes interacting with a TP-monitor) or non-transactional (e.g., human
oriented activities, and processes that do not observe one or more of the tran
saction properties). Also, most real-world workflow processes involve acti
vities that are long running in nature and execute in distributed and heteroge
neous environments. The processing entities that execute or carry out a task 
might not support the protocol for guaranteeing transaction behavior. At the 
same time, it is desirable that workflow systems be reliable and ensure correct 
execution of processes just as transactions guarantee such characteristics for 
ensuring data consistency. It has been accepted that strict ACID transactions 
do not have direct applicability in the workflow domain as workflow systems 
differ to a large degree from traditional database systems. 

In our perspective, the role of ATMs in workflow systems is of a supportive 
nature. Advanced transaction modeling concepts are quite restricted in terms 
of being directly applicable in process-oriented, large-scale workflow applica
tions that run in HAD computing environments. Workflow systems today are 
still weak in terms of characteristics such as fault-tolerance, consistency, and 
in their support for recovery in case of exceptions and failures. ATMs have ad
dressed most of these problems in the domain of database systems. Research 
in the areas of workflow systems can benefit from these approaches from a 
conceptual point of view. 

Transactional semantics such as atomicity and isolation in their strict sense 
are not practical in workflow systems since tasks in a workflow domain are gen
erally long-lived and could themselves be non-transactional in nature. Many of 
the solutions for recovery in transaction processing systems can be used to ad
dress recovery issues in workflow systems, for example, advanced transaction 
concepts such as compensation can be mapped to the workflow domain in terms 
of a compensating task that could be used to undo (often partially) what was 



32 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

done by an incomplete task; logs similar to those in transaction processing 
could be maintained for recording the history of the workflow process, thereby 
aiding in the recovery process [Krishnakumar and Sheth, 1995, Alonso et al., 
1995b, Eder and Liebhart, 1996]. 

To address many of these advanced issues, workflow systems should borrow 
ideas that have been used effectively in concurrent, large-scale distributed and 
database systems, but should not rely entirely on them as many of these systems 
have developed models for environments that are limited in scope as compared 
to that in workflow systems. 

In conclusion, we summarize the observations we have made in this chapter: 

• There are several interpretations for transactions in organizational pro
cesses today and all or most of them may need to be accommodated in a 
workflow technology that supports organizational processes. 

• Features offered by ATMs meet a very restricted subset of requirements 
of large-scale enterprise-wide workflow systems (see the appendix for a 
normative comparison of ATMs and workflow systems). 

• We do not see ATMs as being a primary basis for modeling and exe
cuting workflow systems that have real-world commercial applicability. 
However these models provide useful features (e.g., relaxed atomicity, 
relaxed isolation, concurrency control and recovery) which can be used 
in components (e.g., tasks) that form a part of a WFMS. Traditional tran
saction processing and ATMs provide valuable concepts that can be ap
plied towards partly solving the problem of error handling and recovery 
inWFMSs. 

• Implementing reliable large-scale WFMSs involve requirements that are 
beyond the capabilities of transaction systems and ATMs (e.g., distribu
tion of the workflow architecture, heterogeneity of the operating environ
ment, business process governing the workflow, organizational structure 
of the enterprise, nature of the tasks, etc.). A lot of valuable research has 
been done on error handling and recovery in the areas of distributed sys
tems, software engineering, and organizational sciences. Research and 
development in the domain of reliable WFMS should leverage these ef
forts to supplement the limitations of traditional transaction and ATM 
based systems. 

There is a need for multi-disciplinary research to address the challenging 
issues raised by emerging workflow technology. Humans are an essential part 
of any organizational process, and human work involves many diverse issues. 
Therefore, research involving expertise from multiple disciplines is most likely 
to bring the highest return. Information is another critical asset of any organiza
tion, as discussed in [Sheth et al., 1996a]; we believe that more human-centric 



TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 33 

approaches with integral support for information management are needed for 
a successful workflow technology. We need to look beyond the capabilities 
provided by transaction processing systems and ATMs in modeling the com
plexities of large-scale, mission-critical workflow applications of the future. 

Notes 

1. METEOR refers to the project carried out at Bellcore. METEOR2 is its follow on atthe 
LSDIS Lab of the University of Georgia. 

2. The Object Request Broker forms the core of the CORBA model; it is the middleware 
layer that makes it possible for distributed objects to communicate with each other. For details 
see [OMG, 1995b). 

Acknowledgments 

METEOR2 is a group project, and our discussion related to it reflects contributions of 
numerous past and current members of the project (http://lsdis.cs.uga.edulworkflow). 
Current active members include, S. Das, Prof. K. Kochut, Prof. J. Miller, D. Palani
swami, Prof. A. Sheth, D. Worah and K. Zheng. 

This research was partially done under a cooperative agreement between the Na
tional Institute of Standards and Technology Advanced Technology Program (under 
the HIlT contract, number 70NANB5HlOII) and the Healthcare Open Systems and 
Trials, Inc. consortium. See URL:http://www.scra.orglhiit.html. Additional partial 
support and donations are provided by Post Modern Computing, Illustra Information 
Technology, and Hewlett-Packard Labs. 



34 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Appendix: A Normative Perspective 

Theoretical 
Foundation 

Granularity 
Methodology 

Correctness Criteria 

Failure Atomicity 
Concurrency Control 
Recovery 

Error Handling 
Task! Activities 

Processing Entities 

Coordination Support 
Modeling Organiza
tional Structure 
Worklists 
Flexibility 
Implementation Status 

Applicability to Non
DBMS applications 

Advanced Transaction Workflow Systems 
Models 

Usually good theoretical 
basis. 

Transactions. 
Data-centric. Emphasis 
on data consistency. 
Serializability. 

Inherent. 
Inherent. 
Well-defined. Rollback 
and compensation. 

Limited. 
Supports transactions 
only. 
Usually DBMS. 

Limited. 
Usually absent. 

No support. 
Varied. 
Very few exist. 

Very limited. 

Weak dependency, ex
cept for scheduling com
ponents. Driven by prac
tical considerations. 
Tasks, activities, or steps 
Process-centric. Empha
sis on task coordination. 
Primitive, often limited 
to scheduling. 
Not part of most models. 
Limited support. 
Insufficient support. 
Forward recovery when 
supported. 
Very limited. 
Supports both human 
and application tasks. 
Heterogeneous systems 
(e.g., DBMSs, TP moni
tors, legacy applications, 
humans) 
Inherent. 
Varies significantly. 

Strong support. 
Good. 
Numerous commer
cial products and few 
research prototypes. 
Extensive. 



2 WORKFLOW MANAGEMENT: THE 
NEXT GENERATION OF DISTRIBUTED 

PROCESSING TOOLS 
Gustavo Alonso and C. Mohan 

Abstract: Workflow management systems have attracted a great deal of atten
tion due to their ability to integrate heterogeneous, distributed applications into 
coherent business processing environments. In spite of their limitations, existing 
products are enjoying a considerable success but it would be a mistake not to try 
to see beyond current systems and applications. In today's computer environ
ments, the trend towards using many small computers instead of a few big ones 
has revived the old dream of distributed computing. There is, however, a signifi
cant lack of tools for implementing, operating and maintaining such systems. In 
particular, there are no good programming paradigms for parallel architectures in 
which the basic building blocks are stand alone systems. Workflow management 
provides this key functionality, suggesting its potential as crucial component of 
any distributed environment. This chapter describes in detail such functionality 
and provides some insight on how it can be applied in environments other than 
business processing. 

2.1 INTRODUCTION 

One of the basic platforms in which to implement generic distributed systems is 
commodity hardware and software, usually in the form of clusters of worksta
tions connected via a network. The continuous increase in computing power, 
storage capacity, and communication speed has made these share nothing con
figurations viable and cost effective alternatives to more tightly integrated mul
tiprocessor architectures. There is also the added advantage of having most of 
the necessary infrastructure already in place, both in terms of hardware (clus-

S. Jajodia et al. (eds.), Advanced  Transaction  Models  and Architectures
© Springer Science+Business Media New York 1997



36 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

ters of personal computers connected by a Local Area Network) and software 
(the many existing applications). The only component missing in such environ
ments is the necessary glue to make a coherent whole out of many autonomous, 
heterogeneous, loosely coupled building blocks. This problem has been ad
dressed from many different perspectives, federated database systems [Schaad 
et al., 1995], TP-monitors [Gray and Reuter, 1993, Obermack, 1994], persis
tent queuing [Alonso et al., 1995a, Mohan and Dievendorff, 1994], CORBA 
[OMG, 1995b], process centered software engineering [Ben-Shaul and Kaiser, 
1995] and workflow management systems [Hsu, 1995] being among the best 
examples. 

From a practical point of view, these different approaches can be roughly di
vided in four categories: interface definition, communication, execution guar
antees, and development environment. These four categories also correspond 
to the functionality needed in a distributed environment. In spite of this, exist
ing products and research efforts tend to emphasize only one of the categories, 
e.g, TP-monitors for execution guarantees; CORBA as an interface definition; 
queuing systems as communication platforms; or workflow systems for devel
oping distributed applications. Such narrow focus is one of the major limita
tions of these approaches. Users or designers interested in getting two or more 
of the four categories of functionality have to resort to combine several heavy
weight solutions, which adversely affects performance and usability. Examples 
to prove this point abound, perhaps the most clear one being the transactional 
services described in the CORBA standard. These services can only be imple
mented using what today is known as a TP-monitor. In fact, current implemen
tations do exactly just that: bundle together a CORBA implementation and a 
commercial TP-monitor. Since both were designed as stand-alone systems and, 
in practice, must solve many similar problems, the resulting system incorpo
rates a great deal of redundancy and mismatches. As a result, performance and 
the overall functionality are adversely affected. A more reasonable approach 
would be to implement the CORBA standard with the transactional services in
cluded as part of the original design instead of as an orthogonal module. This 
would still not be enough, however, as the resulting system would lack, for in
stance, a development environment. To address this latter point, the OMG (Ob
ject Management Group) and the Workflow Management Coalition are joining 
efforts to define a CORBA Workflow Facility. But as with the transactional 
services, such facility will only be truly operational and useful when the de
sign incorporates and integrates all these different technologies from the very 
beginning and not as separate tools. 

This same example occurs in many other environments and products. The 
underlying problem is that no system incorporates the four categories of func
tionality in the design and, hence, it is not possible to rely on a truly integrated 
system. But building such system is only possible if the existing partial solu-



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 37 

tions are first generalized and their functionality becomes available in the form 
of open systems. It is possible to identify trends in industry that point clearly 
into this direction (the example of CORBA is one, the incorporation of transac
tional guarantees and queuing systems in workflow tools is another), but much 
remains to be done. The role workflow management systems will play in fu
ture computing environments is directly related to the idea of integrating the 
four categories of functionality. One of the factors that have made workflow 
management so successful is the support they provide for developing complex 
applications over distributed systems using already existing tools. This same 
concept can be generalized, turning workflow management into one of the ba
sic technologies for developing large scale distributed applications based on 
autonomous components. Thus, workflow management should evolve as part 
of larger, tightly integrated architectures. In order for this to happen, work
flow management needs to be reinterpreted from a perspective going beyond 
current products. This includes generalizing the notion of process, as has been 
suggested by several workflow designers [Emmrich, 1996, Leymann, 1995], 
instead of focusing solely on business processes reengineering. In this way, 
a workflow management system can become a very high level programming 
language linking, within a single control logic, heterogeneous applications re
siding over a wide geographic area. Additional technology such as CORBA, 
queuing systems or TP-monitors will then complete the integrated distributed 
system in which to exploit the coarse parallelism and distributed characteristics 
of workflow processes. 

2.2 WORKFLOW MANAGEMENT SYSTEMS 

2.2.1 Workflow Concepts 

Workflow management is a relatively new term. The ideas and concepts asso
ciated with it, however, have been around for quite some time. The notion of 
workflow management can be traced back to prototypes and research carried 
out many years ago. Some [Swenson et al., 1994] propose as the earliest an
cestors the SCOOP project [Zisman, 1978] and Office Talk [Ellis et al., 1991]. 
Others see the roots of workflow management in the work of imaging com
panies [Frye, 1994]. In the database community workflow ideas have been 
proposed under many disguises, mostly in the form of advanced transaction 
models [Elmagarmid, 1992, Waechter and Reuter, 1992, Garcia-Molina et al., 
1991, Kreifelts et al., 1991, Nodine and Zdonik, 1990]. The Workflow Manage
ment Coalition [Hollinsworth, 1996] suggests no less than six areas that have 
had a direct influence on the development of workflow management as it is to
day: image processing, document management, electronic mail and directories, 
groupware, transactional systems, project support applications, business pro
cess re-engineering, and structured system design tools. Even one of the most 
popular workflow modeling paradigms [ActionTechnologies, 1993, Medina-



38 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Process Model 

o.ta connector ~ 

Figure 2.1 Basic components of a workflow process 

Mora et al., 1993] can be traced back to early work on artificial intelligence 
and speech theory. In general, the need for workflow functionality was iden
tified long ago by different communities as they realized the potential offered 
by computers and communications. For instance, just in the last decade, sim
ilar ideas were discussed in areas such as paperless office [Tsichritzis, 1982], 
office automation [Bracchi and Pemici, 1985], groupware [Ellis et al., 1991], 
or computer supported cooperative work [Kreifelts et al., 1991]. 

In spite of this early interest, the technology to develop full functional sys
tems has become available only in the last few years. To certain extent, work
flow management has found its window of opportunity in this decade thanks 
to organizational management trends such as business process reengineering 
[Hammer and Champy, 1993]. As a result, it is uncommon to find a product 
that it is not directly associated with the reengineering world. But this is likely 
to change in the future as workflow systems diversify and incorporate ideas 
from other areas. 

2.2.2 Process Representation 

The notion of process is central to any workflow system. A process is a com
plex sequence of computer programs and data exchanges controlled by a meta
program. It is usually represented as an annotated directed graph in which 
nodes represent steps of execution, edges represent the flow of control and 
data among the different steps, and the annotations capture the execution logic. 
Other forms of representation are possible (for instance based on rules [Ben
Shaul and Kaiser, 1995]) but the underlying concepts are essentially the same 
regardless of the representation. These are shown in Figure 2.1 and can be 
described as follows: 

Execution unit is the basic instruction of the workflow language. It can be 
compared with a procedure call in a programming language. Similarly to pro-



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 39 

cedure calls, it can correspond to an internally defined procedure (a process), 
to a structured block of instructions (a block), or to a remote procedure call to 
an external application (an activity). Associated with each execution unit there 
is an input and an output data container used to store the inputs and outputs of 
the execution unit. A state is associated with each execution unit, as well as 
two conditions, one to determine when the execution unit can start and another 
to determine when it has been completed successfully. 

~¢ 8 

Exa:ution UnM 

StarlConditlon 
c:::::::::J 

~ 
End CondItIon 
c:::::::::J 

NIIIed 
PnIcess . State 

c:::::::::J 

Figure 2.2 The execution unit as the basic building block of a workflow model 

Process is the equivalent of a program. It specifies the execution logic by 
linking execution units via control and data connectors. To allow nesting, a 
process can be represented as an execution unit, in which case it becomes one 
more step within another process. The possible states of a process are shown 
in Figure 2.3. 

EVALUATION OF CONDITIONS SystIfm Events PROCESS STATES 

Figure 2.3 State diagram of a process 

Blocks allow the modular decomposition of a process very much like in 
structured programming. A block is equivalent to a series of execution units 
bracketed by a BEGIN ... END. It is essentially another process except that 
it has no name and can not be reused. Contrary to sub-processes, which are 
bound to the parent process at run time, blocks are instantiated at compilation 
time. It is possible to associate certain semantics with blocks to denote special
ized types of structures such as loops, case statements, and fork or parallel-do 
operations. 



40 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Activities correspond to the invocation of external applications. Processes 
and blocks are structuring constructs that have no effect outside the workflow 
system. Activities correspond instead to interactions with the external world. 
They can be manual if they require human intervention to be started, or auto
matic if they can be started without human intervention. In general, manual 
activities correspond to activities that also require user involvement to be com
pleted (filling a form, providing some information, making a decision). Au
tomatic activities, on the other hand, usually do not require user participation 
(transactions over a database, index calculations, statistical calculations, etc.). 
Associated with each activity there is an application and a set of eligible users 
indicating which application is to be invoked and the users allowed to execute 
it. Figure 2.4 shows the possible states of a manual activity (automatic activities 
have a similar but slightly simpler state graph). 

Flow of control will not 
reach ftlellCfMly 

EVALUATION OF CONDmONS SyaIem Ewn18 ACTIVITY STATES 

Figure 2.4 State diagram of an activity 

Data containers provide a persistent repository for the input and output pa
rameters of an execution unit. In the case of processes, the input data container 
collects input parameters for the entire process. When the process starts to 
be executed, these input parameters are distributed among the input containers 
of the execution units within the process. As these execution units terminate, 
their outputs are transferred from their own output data containers to the out
put container of the process. For activities, the input data container stores the 
parameters to use when invoking the application and the output data container 
stores the application's return values. 

Data connectors are used to specify data flow between execution units. For 
instance, the input data container of a process is mapped to the different input 
data containers of the execution units within the process by indicating via data 
connectors which variable in the process container corresponds to which vari
able in an execution unit container. The same mechanism is used to pass the 
results produced by an activity as inputs to another activity. Together, data con
tainers and data connectors eliminate the need for global variables and allow 
each execution unit to define its own parameters. The use of data connectors 



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 41 

forces the workflow programmer to explicitly state the data flow within the 
process and helps to optimize data migration in applications distributed over a 
wide geographic area. 

Control connectors indicate the flow of control among execution units. In 
general, control connectors can only be used between execution units at the 
same level of nesting, which strengthes the modularity of the language. That is, 
it is not possible to add a control connector between activities of two different 
blocks, or between an activity external to a process and an activity within the 
process. Each control connector has a condition attached to it, which is used to 
determine when the control connector is to be followed. 

Conditions are boolean expressions over data in the data containers. They 
indicate when certain actions should take place. In the case of execution units, 
there are two types of conditions to be considered: start and end conditions. 
The former specifies when an execution unit can start to execute (the exact 
meaning varies depending on whether the execution unit is a block, a process 
or an activity). The latter is used to determine when an execution unit has 
terminated successfully, usually by checking the return code provided in the 
corresponding output data container. In the case of control connectors, condi
tions indicate whether the connector should be followed or not. If the condition 
of a connector is evaluated to true, the execution unit at its end is taken out of 
the inactive state (the exact action depends on the nature of the execution unit). 
If the condition associated to a connector evaluates to false, it indicates that 
the connector will not be f'Ollowed. Marking a control connector as false trig
gers the procedure of dead path elimination which marks off all connectors 
and execution units that will never be executed. This helps to determine when 
a process has terminated its execution. 

Applications represent the external programs to be invoked as part of the 
execution of an activity. Applications are registered with the workflow system 
very much like applications being installed in an operating system. The regis
tration process allows the workflow system to establish in which network ad
dresses a given application can be found, access permissions associated with it, 
under which operating system it runs, associated paths, input parameters, and 
any other additional information necessary to invoke the application remotely. 
Once registered, applications are invoked by linking them to activities. 

Staff represents users and sets of users. Similarly to applications, users must 
be registered with the workflow system. Users must be registered. individually 
and later on they can be grouped into more meaningful sets, usually known 
as roles. Roles allow the system to refer to groups (programmers, managers, 
engineers, sales representatives) when allocating work, instead of having to 
deal with individual users. When an activity or a process is defined, part of the 
information specified is the users or group of users that are eligible to execute 
the activity or to start the process. 



42 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Buildtime Server 

BuiJdtime 

Persistent Storage 1'----1 1'----"""1 

Figure 2.5 Functional architecture of a workflow management system 

2.2.3 Architecture 

Architectural details vary from product to product and are evolving very quickly 
as products try to cope with more demanding environments. It is possible, how
ever, to distinguish a set of features common to most systems by looking at the 
functionality that needs to be provided. 

2.2.3.1 Functional Description. The basic functionality of a workflow 
system can be divided in three major areas: design and development, exe
cution environment, and interfaces. Usually, these three areas are also re
ferred to as Buildtime, Runtime control and Runtime interactions respectively 
[Hollinsworth, 1996, WFMC, 1994]. 

For design and development, workflow systems provide a language along the 
lines described above as well as several tools to register users and applications. 
Programming, i.e., designing, a workflow process is usually done through a 
graphical interface in which execution units are represented as a variety of se
lectable icons and connectors as directed links between these icons. This ap
proach is perhaps the most user friendly but it has several drawbacks, the main 
one being that it becomes rather cumbersome to visualize and manipulate large 
and complex processes. Current systems usually provide a more textual lan
guage in which to specify processes but, in most cases, these languages are not 
adequate for large scale programming. It is likely that, in the future, more so
phisticated languages will be supported. Additional tools are also provided for 
debugging and compiling the process description into object code that can be 
used for execution. Current systems provide only a primitive development en
vironment but, given the key role it plays, it is likely that the buildtime compo
nent of future systems will be significantly enhanced [Leymann, 1995, Silver, 
1995]. 

The execution environment can be divided in two parts: persistent storage 
and process navigation. Persistent storage provides a repository where all the 



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 43 

necessary information about the system can be kept and retrieved at any time. 
Persistent storage is managed via a storage server. Since the information in
volved is often complex and it is necessary to support complex queries over it, 
most systems use a database management system for this purpose. The advan
tage of relying on persistent storage is that it makes possible to recover from 
failures without losing data (forward recovery) and also provides the means to 
maintain a record of the execution of processes. These two features open up 
many interesting possibilities when programming distributed applications. For 
instance, the fact that the execution is persistent implies that failures will not 
require to repeat the entire process, execution can be resumed from the point 
where it was left when the failure occurred. It is possible to subdivide the per
sistent storage in several areas according to the data stored: audit trail, active 
instances , and environment information. The audit trail contains information 
about already executed processes. In business environments this provides the 
information necessary to evaluate the organization's performance, system evo
lution, potential bottlenecks as well as supporting data mining and analysis 
techniques. Active instances correspond to the persistent state of processes 
being executed, which can be queried through monitoring tools provided by 
the user interface. The environment information corresponds to the staff and 
applications. It is used to locate applications and to determine the invocation 
method as well as to locate users and to determine their access rights. Process 
navigation is performed by the navigation server or WFM Engine. It mainly 
involves evaluating the conditions specified for activities and control connec
tors, activating or deactivating control connectors and triggering status changes 
in execution units according to the events taking place in the system. Usually, 
all these operations are performed as transactions over the underlying storage 
server. 

Finally, a workflow system supports two types of interfaces: users and appli
cation interfaces. Users interact with the workflow ~ystem through a worklist 
which acts as a repository for all the activities assigned to the user. This in
terface can be as simple as a list of manual activities waiting to be selected by 
the user or as sophisticated as a dynamic interface to the audit trail for query
ing information regarding already executed processes. The worklist is created 
when the user logs-in and updated every time a new activity becomes ready for 
execution (updates are sent using the environment information, which is also 
kept up-to-date regarding which users are connected to the system at any given 
time and from which location). Applications are handled on a location basis. 
Users will usually connect to the system from a PC or workstation. These lo
cations will have an application interface so applications can be started when 
users decide to execute an activity. But it is also possible to have application 
interfaces in locations where no users are connected. This allows, for instance, 
to connect to mainframes, specialized workstations or execute automatic acti-



44 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

oss - ObjectStore .se ..... er 
FMS - FlowMark Server 
RTC - Runlime Oient 
PEe - Procram Execution Qienl 
APP - Appllcallon Program 

Figure 2.6 Runtime architecture of IBM FlowMark 

vities across wide area networks. Which type of connections are allowed and 
supported depends largely on the intended use of the product, i.e., whether it is 
a collaboration tool to be used in a LAN environment or a production tool to be 
used in conjunction with OLTP (On Line Transaction Processing) and OLAP 
(On Line Analytical Processing) systems. 

2.2.3.2 Runtime Architecture. Current workflow management systems 
serve as platforms for executing distributed applications designed according 
to business rules. The same functionality they provide for business processes 
can be used in generic distributed applications. Thus, very much like in the 
case of TP-monitors [Gray and Reuter, 1993], workflow systems are slowly 
evolving towards specialized, multi-platform distributed operating systems. As 
a generic example of existing architectures, Figure 2.6 shows the architecture 
of FlowMark [mM, 1995, Leymann, 1995]. 

Most workflow systems are built on top of a database management system. 
In the case of FlowMark, the database is Object Store (represented in Figure 
2.6 as OSS and DB which together act as the storage server). Most other sys
tems are based on relational databases, for instance: ActionWorkflow is based 
on Microsoft SQL Server, WorkFlo of FileNet uses Oracle, and InConcert of 
XSoft can use Informix, Oracle or Sybase engines [Silver, 1995, The, 1994]. 
The navigation server, represented in Figure 2.6 by the FMS component, is usu
ally implemented as a client of the database since most navigation steps involve 
getting information in and out of the database. 

The rest of the system components used during the execution of a process are 
connected to the navigation servers, which can also be connected among them
selves [Alonso et al., 1995b]. These connections do not need to be over a LAN, 
they can also take place through a WAN or even from mobile clients [Alonso 
et al., 1996c]. A common configuration is to have the application and user in
terface in the same location where the user accesses the system. This allows the 



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 45 

user both to access the corresponding worklist and to execute activities locally 
(which, of course, also requires to have the application locally installed). In 
Figure 2.6 this is represented by the Runtime Client (RTC), the Program Exe
cution Client (PEC), and the application (APP). These correspond to the user 
interface, application interface and application being invoked respectively. It 
is also possible to configure nodes to host only one application interface and 
specialized applications. Such configuration plays an important role when au
tomatic activities are involved, for instance, when a series of transactions are 
executed over a database server. 

2.2.4 Process Execution 

The way execution proceeds in a workflow system is best illustrated with an ex
ample (this example follows the architecture and runtime interactions of Flow
Mark) [Alonso et al., 1996c]. An execution unit becomes ready for execution 
as a result of a navigation step. In the case of processes, when they reach the 
"active" state all of their starting activities are set to ready and any necessary 
input data transferred to the corresponding input data containers. In the case 
of activities, when they reach the "ready" state, the navigator performs role 
and staff resolution to determine all the users who are eligible to execute the 
activity and updates the worklists of all these users by including the activity as 
a new workitem. If the activity is an automatic activity, then it immediately 
changes to the "active" state during which the navigator locates a node where 
the activity can be executed. When the corresponding application is invoked, 
the activity then switches to "executing". Manual activities, on the other hand, 
must wait until a user selects the activity for execution. In this case, the ex
change of messages between the different components is shown in Figure 2.7. 

Manual activities appear in the worklist of all users eligible to execute it. 
When a user selects the activity, the user interface sends a start activity mes
sage to the navigator. The navigator reacts to this message by taking several 
steps. First, the activity is deleted from the worklists of all other users by 
sending a message to these worklists indicating that the activity is no longer 
available. Second, a transaction is started over the storage server to retrieve the 
information related to the corresponding application. This information allows 
the navigator to determine which application interface will be responsible for 
executing the activity. It is possible for an application to reside in many loca
tions. If it requires interaction with the user, the application is usually invoked 
at the user's location, otherwise simple heuristics can be used to select the most 
appropriate location (load balancing, overhead, pre-established priorities, etc.). 
Once the application interface has been selected, a start program message is 
sent to it. As the third and final step, the navigator sends an activity running 
message to the user interface from where the activity was selected so the status 



46 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

1. Start Activity 
2. DB update 
3. Commit Transaction 
4. Start Program 
S. Start Application 
6. Activity Running 
7. API call 
8. Data Request 
9. DB query 
10. Query results 
11. Requested Data 
12. API call return 
13. Application terminates 
14. Program Terminated 
15. DB update 
16. Commit and Next Activities 
17. Activity Terminated 

SS= Storage Server 
NS= Navigation Server 
UI= User Interface 
AI= Application Interface 
APP= Application 

Figure 2.7 Steps involved in the execution of an activity 

of the activity can be updated and the progress of its execution monitored from 
the user interface. 

Any communication between the application and the workflow system takes 
place through API calls to the application interface. Application interfaces are 
multi-threaded so as to be able to cope with several applications being executed 
simultaneously at the same location. Thus, upon receiving a start program mes
sage, the application interface spawns a thread for the particular application and 
this thread will start the application. Any initial parameters to be passed to the 
application when it is invoked are sent to the application interface along with 
the start program message. The application may, however, request additional 
information from its input data container by issuing API calls to the applica
tion interface. These calls are received by the application interface which will 
forward a data request message to the navigator. The navigator, upon receiv
ing such request, executes a transaction over the storage server and forwards 
the requested data to the application interface. The application interface then 
completes the API call by returning the data to the application. When the ap
plication terminates, the application interface sends a program terminated mes
sage to the navigator, along with any values returned by the application. At the 
navigator, this message triggers the execution of a transaction that will store the 
values returned by the application in the appropriate output data container. The 
navigator then proceeds to perform the corresponding navigation steps: check 
the end condition of the activity, if it is false the status of the activity is set 
to "terminated", if it is true the activity status is set to "finished" and then the 
outgoing control connectors evaluated, and so forth. As a final step, the navi-



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 47 

gator sends an activity terminated message to the user interface indicating that 
the selected activity has completed its execution. This message results in the 
activity being deleted from the worklist. 

2.3 FUNCTIONALITY AND LIMITATIONS OF WORKFLOW 
MANAGEMENT SYSTEMS 

There are three key features in any successful workflow product: availability, 
scalability and industrial strength design [Alonso and Schek, 1996a, Mohan, 
1996, Georgakopoulos et al., 1995]. Without availability, workflow systems 
will not be used for mission critical processes. Without scalability, they will 
not be used to support large organizations. Without industrial strength, their 
applicability is greatly reduced. The problem with these obvious requirements 
is that they exceed those of current database and transaction processing tech
nology, which can be considered the state-of-the-art in corporate computing. 
As a consequence, the robustness and technological maturity reached in the 
transaction processing area is all but lacking in workflow systems [Gawlick, 
1994]. In spite of their initial success, current systems still need to be further 
developed along these three areas: 

2.3.1 Availability 

The goal of current systems is to become the central tool for the coordination of 
mission critical processes. The most likely candidates to use current workflow 
systems are large corporations in which the number of potential users can be 
in the tens of thousands, the number of concurrent process in the hundreds of 
thousands, and the number of sites connected to the WFMS in the thousands, 
distributed over a wide geographic area and based on heterogeneous systems 
[Kamath et al., 1996]. In such environments, availability is a key feature. For
tunately, most failures in a workflow system can be masked using the redun
dancy inherent to the architecture. For instance, it is common to have the same 
application installed in several nodes. If one of them is not available, it may be 
possible to invoke the application at a different node. The same applies to all 
other components except to the storage server. A workflow system acts as an 
execution engine driven by the storage server, currently implemented in most 
systems as a centralized database. This centralized database becomes, sooner 
or later, a bottleneck and a single point of failure. It is certainly possible to rely 
on the underlying database to provide the necessary degree of availability. This 
approach has significant disadvantages, however. In the first place, database 
techniques are usually product based, i.e., the primary and the backup are the 
same database. In practice, this would tie the workflow architecture to a partic
ular database and is in conflict with the distributed and heterogeneous nature of 
the system. It would also require either a backup for every individual system 
or a single remote backup for the entire system, which may be distributed over 



48 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

CJ) 

Process.A 
Process.B 

~:~(~ --::--:-,=---, 
Dalabll$c Backup.E 
SYSlem Backup.F 

.s. Workflow Server (WFS) 

c::J~ Workflow Clienls (WFC) 

Process.C 
Process.D 

Backup.A 

Process.E 
Process.F 

Figure 2.8 A flexible backup architecture for workflow systems 

Database 
Sy tem 

.... 
Rc:13tjonal 
Database 
System 

a wide area network. Such solution would be fairly expensive and it does not 
provide a good way to cope with the heterogeneity of the storage servers (it is 
not reasonable to expect that all "workflow clusters" will use the same data
base as storage server). In the second place, the granularity used in database 
solutions is very fine, mainly pages or log records [Mohan, 1993], and ignores 
the semantics of the application. The advantage of having a well defined ap
plication and a limited set of interactions would be lost. Finally, availability 
is always achieved at a price. When and how to pay this price should be an 
adjustable parameter so as to make the system as flexible as possible. 

One way to address these concerns is to provide a backup architecture that is 
database independent, uses knowledge of the semantics of workflow operations 
to optimize the exchange of information between the primary and the backup, 
and allows to adjust the degree of availability in the system [Kamath et aI., 
1996]. For this purpose, standard database techniques such as hot-standby, 
cold-standby, I-safe, and 2-safe, can be used [Gray and Reuter, 1993]. These 
approaches can be combined to provide a flexible mechanism for high avail
ability on workflow systems. Three process categories are defined: normal, 
important and critical. Critical processes use a 2-safe, hot standby policy, i.e., 
critical processes can resume execution almost immediately after a failure. Im
portant processes use a 2-safe, cold standby approach, i.e., execution can be re
sumed after failures but only after some delay necessary to update the backup. 
Normal processes do not use any backup strategy, i.e., execution can only be 
resumed after the failure has been repaired but, in exchange, normal processes 
do not create any extra overhead in the workflow system. 

Since the degree of availability is set at the process instance level, it is no 
longer possible to predetermine the primary and backup locations for a pro
cess. For this reason and to achieve database independence, there is no single 
backup for the system. Each storage server will act as both primary and backup 



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 49 

depending on the particular process instance, as shown in Figure 2.8. Thus, 
the backup mechanism can be implemented as part of the standard communi
cations between storage servers. The only difficulty being that the primary and 
the backup may have different schemas (for instance, between a relational data
base and an object-oriented database). This problem can be solved by relying 
on semantic information about the workflow language, which is used to define 
a canonical representation in which each component of a workflow process is 
uniquely identified. When passing information between primary and backup, 
this is done using the canonical representation. In practice, this means that the 
primary only reports state changes to the components of a process, opening up 
the opportunity to optimize storage and communication overhead. In addition, 
this backup architecture also allows to perform load balancing in the system 
by moving the execution of a process from one location to another. For this 
it is enough to upgrade the copy at the backup so it acts as the primary copy. 
The mechanism is the same as if a failure would have occurred except in that 
the change to the backup is triggered by the system according to performance 
considerations. This provides an effective way to migrate processes and sets 
the basis for scalable architectures. 

2.3.2 Scalability 

Due in part to the emphasis placed on cooperation by the first workflow prod
ucts, most of them were designed with small groups in mind. In many ways, 
workflow systems have been victims of their own success since once users re
alized the potential of workflows, these engines were applied in large scale en
vironments for which they were not designed [Alonso and Schek, 1996a, Mo
han, 1996, Georgakopoulos et al" 1995, Silver, 1995]. Other design issues 
aside, the main problem of current systems in terms of scalability is that they 
rely on a centralized database to implement the storage server, thereby intro
ducing a serious bottleneck in the architecture. There are, of course, several 
advantages to the centralized approach: lightweight clients, centralized mon
itoring and auditing, simpler synchronization mechanisms, and overall design 
simplicity. But, in general, a centralized database results not only in scalability 
problems but also in performance limitations. The latter are not usually a con
cern in business processes but they are if the workflow system executes many 
automatic activities. Such problems can be addressed in several ways: using 
distributed execution instead of centralized control, and providing a way to tie 
together several workflow systems, each with its own storage server, into a big
ger system. The former approach is still largely a research proposal, the latter 
a solution currently adopted by most products. 

The idea of distributed execution was pioneered by the INCAS prototype 
[Barbara et al., 1996a]. In INCAS, the execution of a process takes place 
through an Information Carrier. The information carrier is an object that mi-



50 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

grates from location to location as execution proceeds. It contains all the in
fonnation relevant to the execution of the process so as to allow navigation 
to take place by consulting the data in the infonnation carrier. A similar ap
proach is followed by EXOTICAlFMQM, AowMark on Message Queue Man
ager [Alonso et al., 1995a]. In ExoticaIFMQM, each node functions indepen
dently, the only interaction between nodes being through persistent messages 
used to trigger the next step in the execution. The basic idea is to partition 
the process definition into independent subsets that are distributed to the nodes 
were execution may take place. In contrast to the infonnation carrier of IN
CAS, where all the infonnation moves from node to node as navigation takes 
place, in ExoticaIFMQM each node stores locally all the infonnation it needs 
to perfonn navigation on a given process. Such an approach has also been 
followed by other prototype systems [Wodtke et al., 1996]. This greatly re
duces the communication overhead between nodes and solves some additional 
problems related to monitoring and state detection. Independently of the fonn 
in which navigation takes place, the advantage of the distributed approach is 
that the need for a centralized database is avoided, which eliminates the perfor
mance and scalability bottleneck. Moreover, the resulting architecture is more 
resilient to failures since the crash of a single node does not stop the execu
tion of other active processes. It is also possible to combine this distributed 
approach with a backup mechanism such as the one described above to provide 
both scalability and availability. 

An alternative to distributed execution is to use several identical, indepen
dent systems. One primitive fonn of this approach has been successfully used 
in environments that tolerate load partition. If all processes are entirely inde
pendent of each other and the shared resources (corporate databases, for in
stance) are capable of supporting the accumulated load, it is possible to use 
several identical systems, each one executing part of the total load. This ap
proach allows linear growth but it does not really address more fundamental 
problems as there is no way for the independent systems to communicate with 
each other. A more sophisticated solution is based on the same mechanisms 
described above for increasing the availability of the system. Both critical pro
cesses and important processes are replicated somewhere else in the system. 
Instead of using the copy for backup purposes, it is possible to use it to mi
grate the execution of processes from the primary to other locations as the load 
at the primary increases. In this way, the scalability problem becomes just a 
matter of providing enough locations in which processes can be run. All these 
locations will share the environment infonnation, which can be easily repli
cated at all sites since it does not change often. The links between the different 
locations (necessary for the backup architecture) can also be used for commu
nication between navigation servers so as to allow a navigation server to invoke 
a subprocess at a different location [Alonso et al., 1995b]. 



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 51 

The idea of process migration and remote invocation requires to have re
liable communications between the different locations. As with many other 
distributed applications, workflow systems should rely on persistent queuing to 
provide some basic guarantees in the exchange of information [Alonso et al., 
1995a]. These basic features, already in place in many distributed systems, are 
not present in current workflow products, limiting their ability to implement 
solutions to the existing problems. Thus, a first step in the evolution of any 
workflow system is, therefore, to provide the industrial strength of databases 
and TP-monitors. 

2.3.3 Industrial Strength 

Any new system needs some time to evolve and resolve the design inconsis
tencies, limitations and lack of flexibility of the initial versions. After this evo
lution period, products become more stable, their functionality well defined, 
reaching a degree of maturity that makes them reliable, understood and ac
cepted by users. Workflow systems have not yet reached such a state. The 
demands placed on existing workflow systems go well beyond their capabili
ties and, in many cases, the customer profile designers had in mind was quite 
different from that of the actual users [Silver, 1995]. The limitations on scal
ability and availability discussed above are obvious examples, but there are 
many other glaring limitations. Some of them are product specific and related 
to the history behind the product (whether it evolved from a document man
agement system, the tools available at the time it was designed, the position 
of the company in the market, etc.). Examples abound: inability to use sub
processes due to the way data is handled, scalability problems due to the un
derlying database, architectural limitations due to the communication system 
used, excessive emphasis on modeling philosophy, and so forth. These limita
tions are being quickly corrected as the products start to gain a wider customer 
base and experience with users provides the necessary feedback. There are, 
however, another set of limitations common to most systems that have no easy 
solution but need to be addressed before workflow systems can claim to have 
reached any reasonable degree of maturity. 

Among these open questions, the one most often mentioned is exception 
handling. In environments where the number of concurrent instances may be 
in the hundreds of thousands with every instance taking several weeks to com
plete, exceptions affecting single processes are likely to occur. Moreover, it 
is also likely that, occasionally, the behavior of all active instances needs to 
be modified to accommodate changes in the organization. These two types of 
changes are currently not satisfactorily supported. The difficulty they pose de
rives from the way process instances are stored. There are two ways of doing 
it: as a compiled program or, more often, as a collection of database entries. 
Once created, modifying this implicit or explicit "script" is not an easy matter. 



52 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Any possible exception that may appear during the execution must be coded in 
as part of the behavior of the process. Otherwise, exceptions to the expected 
behavior can only be solved by aborting the entire process (or by invoking a 
subprocesses that hopefully can solve the situation, but this creates a consid
erable overhead for the end user). Ideally, exceptions should be handled in a 
more uniform way, allowing the user to access the process definition, do the 
necessary changes and resume the execution of the process. This requires a 
very flexible handling of the process definition: rescheduling activities that 
have been modified, reusing results that have not been affected by the modifi
cation, and mapping the state of the old process to the state of the new process. 
Existing systems are still too rigid to provide such capabilities. 

Another important issue is the interaction with external applications. In cur
rent systems, it is usually not possible to suspend the execution of the external 
application when the corresponding activity is suspended or the entire process 
aborted. It is also not possible to control any side effects that the application 
may cause. As a result, failures and rollback of processes become a fairly 
complex issue for the user. Currently, these problems are solved via manual 
intervention (even detecting that there is a problem is left to the user in some 
systems). In the future, a tighter integration will be desirable. This may be 
achieved by using standard interfaces or by using persistent queues as a way of 
ensuring reliable asynchronous communication between autonomous systems 
[Alonso et al., 1995a]. 

A third issue related to industrial strength is the ability to express logical 
units within the workflow language. For this, transactional concepts could be 
used. There is an extensive literature on advanced transaction models [Elma
garmid, 1992] which has touched upon many areas related to workflow man
agement [Alonso et al., 1996b, Breitbart et al., 1993, Waechter and Reuter, 
1992, Garcia-Molina et aI., 1991, Nodine and Zdonik, 1990]. Transactions are 
an excellent abstraction to encapsulate behavior (atomicity and isolation, for 
the most part) and have proven extremely useful in developing a widely ac
cepted theory of transaction management. Current commercial workflow sys
tems, however, do not incorporate transactional notions but there are many in
dications that this will change in the future [Alonso et al., 1996a, Alonso et aI., 
1996b, Chen and Dayal, 1996, Eder and Liebhart, 1996, Mohan, 1996, Hagen, 
1996, Ben-Shaul and Kaiser, 1995, Leymann, 1995, Sheth and Rusinkiewicz, 
1993]. In a workflow environment, transactions can playa significant role as 
a system component. Persistence in workflow systems is achieved by using 
a database, a feature that it is unlikely to change. Interactions with databases 
require to use transactions (as shown in Figure 2.7). The very nature of the 
environment requires to use transactions if execution guarantees have to be 
provided. The same problems of distributed commitment and atomicity that 
arise in any distributed environment also arise in a workflow system. These 



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 53 

problems could be addressed using the concepts successfully implemented in 
TP-monitors [Gray and Reuter, 1993]. In addition, transactions may also play 
a significant role in the workflow language. As has already been pointed out 
[Alonso et al., 1996b], many of the ideas proposed in advanced transaction 
models can be used in workflow environments: compensation [Garcia-Molina 
et al., 1991], alternative execution [Nodine and Zdonik, 1990], spheres of con
trol and atomicity [Leymann, 1995], to mention a few. Thus, workflow sys
tem can be seen as a ubiquitous programming environment for implement
ing the applications targeted by advanced transaction models [Alonso et al., 
1996b, Georgakopoulos et al., 1996, Georgakopoulos and Hornick, 1994]. An 
example of how transaction may influence the workflow language is the use 
made of transactions in Encina, a TP-monitor that provides transactional C 
[Transarc, 1995]. Transactional C is an extension of C in which it is possible 
to bracket sets of instructions (usually service invocations) within a transaction 
and specify what t'o do in case the transaction commits or aborts. The same 
idea, as well as more sophisticated concepts, can be applied to the workflow 
language to allow the programmer of workflow processes to specify, for ex
ample, units of atomicity or compensation expanding several activities [Ley
mann, 1995] or alternative execution paths in case of exceptions [Alonso et al., 
1996b]. 

2.4 EVOLUTION OF WORKFLOW MANAGEMENT SYSTEMS 

2.4.1 Distributed Environments 

As mentioned throughout the chapter, the future of workflow management is 
strongly tied to the evolution of distributed computing. As such, distributed 
environments require the four categories of functionality discussed in the intro
duction: interface definition, communication, execution guarantees, and devel
opment environments. While existing products are far from providing the four 
categories, they are slowly converging towards systems that do provide such 
functionality in an integrated an efficient manner. In such systems, workflow 
concepts could be one of the basic tools for programming distributed systems. 

The characteristics of such distributed environment can be easily derived 
from the target architecture of existing systems. A quick look to the manuals 
of products such as implementations of the CORBA standard, TP-monitors, 
queuing systems, and workflow tools reveals striking similarities in their archi
tecture. In all cases, the system can be succinctly described as shown in Figure 
2.9. 

In general, the client represents the user program invoking the services pro
vided by the distributed system. The client usually resides outside the dis
tributed system but interacts with it through a well defined set of APIs. The 
service provider determines the nature of the system since it plays the role of 
scheduler, navigator, and system controller. It provides core functionality such 



54 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Figure 2.9 Generic architecture of a distributed system 

as name services, registration facilities, protocol translations, and request rout
ing. It also serves as the link between all other system components. The server 
is generally a simple proxy for the resource manager, acting as a common in
terface and implemented as a wrapper. Finally, the resource manager is the ap
plication that performs the operations requested by the client. In TP-monitors, 
for instance, the resource managers tend to be databases. 

The advantage of such architecture is that the services provided can be dis
tributed. Each server/resource manager pair can reside in a different location, 
with the service provider in charge of routing client requests to the appropriate 
node after locating a server adequate to the request submitted. Many issues 
are involved in this simple exchange: load balancing, replication, system con
figuration, name services, communication overhead, etc., all of which must be 
balanced in order to have a suitable system, regardless of the concrete appli
cation. The difference between CORBA implementations, TP-monitors, and 
workflow management systems lies on the assumptions made about the com
ponents shown in Figure 2.9. CORBA provides a standarized interface in order 
to have all servers looking alike. A TP-monitor provides similar normalization 
but with an emphasis on the transactional properties of the service provider. 
A workflow tool concentrates on the way the client concatenates service invo
cations and on facilitating the interaction with non-standarized resource man
agers (the server components being designed on an ad-hoc basis). Although 
these systems perform basically the same function, only workflow manage
ment pays sufficient attention to the concatenation of service invocations, i.e., 
to the programming aspects as seen from the client. CORBA relies on object 
oriented languages for this purpose, usually C++, TP-monitors have their own 
language, for instance, transactional C in Encina [Transarc, 1995], but none of 
them offers the flexibility and functionality provided by workflow management 
systems. 

2.4.2 Process Support Systems 

The most precise and simplest characterization of a process is as a complex 
sequence of computer programs and data exchanges controlled by a meta
program (the process itself). This characterization is useful in that it implic-



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 55 

itly incorporates the goals of any process support system. It also covers a 
wide range of process types including business processes, virtual enterprises, 
software processes, manufacturing processes, scientific experiments, and ge
ographic modeling. Such notion of process has proven to be very helpful in 
developing support tools for applications executing in a distributed fashion and 
over heterogeneous platforms, as it is the case in most process types. Existing 
workflow systems, however, target in most cases either business processes or 
imaging systems, with a few research prototypes addressing other areas [Mei
danis et al., 1996, Ben-Shaul and Kaiser, 1995]. Such narrow purpose design 
along with the limitations mentioned in the previous section significantly re
strict the applicability of current products. For instance, recent attempts to 
use commercial workflow products to support scientific applications have been 
rather disappointing [Meidanis et al., 1996, Bonner et al., 1996]. These re
sults are not surprising, since the problems faced by current workflow systems 
are pervasive and appear in many application areas. Thus, the two main chal
lenges of workflow management systems is to incorporate their functionality 
into a generic distributed system as the one described above, and generalizing 
the notion of process so as to provide support for any type of process based 
distributed computation, not just for business applications. 

2.4.3 Programming in Heterogeneous, Distributed Environments 

Regardless of whether the final system is seen as a distributed environment or 
as a process support system, the key aspect is the variety of computer tools 
available as basic building blocks. Workflow management provides the mech
anisms to integrate these tools into a more meaningful system by combining 
them as necessary on a per process basis. Individual applications act as re
source managers, while the workflow system acts as the language to specify 
the interactions between these service providers as well as serving as the exe
cution environment in which those interactions take place. 

Scientific data management offers a good example of the generalization of 
the concept of process and of the utilization of workflow tools in a distributed, 
heterogeneous environment. Scientific applications are known for the size and 
volume of the data involved [Hachem et al., 1993, Katz and et al., 1993]. More
over, scientific data has the added problem of the multiple formats in which the 
information is represented and the multiple transformation to which it is sub
jected. Most existing research in scientific data management often overlooks 
the fact that scientific data is seldom used raw. In most cases, the data under
goes complex and successive transformations as part of sophisticated models 
of physical phenomena. Such transformations are a source of derived data 
which cannot be interpreted correctly without knowledge about how it was 
created. To make matters worse, the transformations and models themselves 



56 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

DIgital Elevation 
Reconstruction 

~ 
Elevation Sample. 

~ ______ -, ______ ~r-L---~~ 
Soli Sample. 

~ 
Sat.llit.lmage. 

~-------' 
Vagetatlon Samples 

g 
Rainfall Records 

Spatial Interpolation 
Model 

Spatial 
Rainfall 

Data 

Figure 2.10 Scientific modeling as a workflow process 

may evolve as more precise knowledge is available. Support for tracking these 
data dependencies and evolution is all but lacking in current systems. 

Consider, for instance, the model shown in Figure 2.10 as a typical exam
ple of how scientific data is handled. The purpose of the model is to study 
the changes in the erosion patterns, vegetation and hydrographic characteris
tics of a given area. The model can be divided in three parts. The erosion 
model takes information about the slopes of the area, its soil characteristics, 
and vegetation cover to produce an estimate of the erosion of the terrain. Note 
that the soil information is obtained directly from available data. However, the 
slope information is not readily available and requires taking elevation samples 
and processing them to get the desired information. This is done by using two 
more models, the Digital Elevation Reconstruction and Slope Analysis. The 
data about vegetation changes is the result of a vegetation evolution model. 
This model takes several inputs, some of them primitive, i.e. raw data such 
as the soil map, and some of them derived (by applying other models). Fi
nally the discharge model involves interpolating rainfall records, calculating 
the storm coverage and applying a flow analysis algorithm to define an hydro
graph (showing the flow of water at a given point). 

Workflow systems provide the tools necessary to capture such modeling acti
vities. Figure 2.10 can be viewed as a workflow process in which the control 
flow follows the modeling logic and the data flow corresponds to the outputs 
of particular algorithms that are used as inputs to the next set of algorithms. 
Using a workflow system for such purpose helps to solve many of the prob
lems posed by scientific data. To start with, the execution is persistent and can 



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 57 

be distributed across many different nodes which, first, provides a considerable 
degree of reliability and, second, opens up the opportunity to parallelize and 
distribute expensive computations across a network of computers. Moreover, 
the auditing and monitoring tools of the workflow system keep track of every 
step of the execution and the data produced. Questions such as the lineage of 
a data set (how it was produced), data dependencies between data sets, and the 
algorithms involved in a given model can be easily answered by consulting the 
audit data of the workflow system. Moreover, complex tasks such as automatic 
change propagation (triggering the execution of a process when one of its inputs 
changes) and maintaining data consistency can be performed automatically by 
the system by using the information recorded about every process. 

These ideas can be applied in a variety of scientific environments, once 
the workflow engine has been modified to support generic processes. The 
necessary enhancements are no different from those discussed in this chapter 
(scalability, availability, industrial strength, generalization of the modeling lan
guage) and some work is currently being done in this direction [Bonner et aI., 
1996, Meidanis et al., 1996, Alonso and El Abbadi, 1994]. A workflow system 
is, however, not just a repository for process dependencies. It can also play 
an important role in the usability of parallel and distributed environments such 
as clusters of workstations and pes. Moreover, by not requiring to modify 
existing applications, workflow management systems may provide a straight 
forward solution to the problem of exploiting the parallelism inherent in such 
hardware clusters. A good example of this is the complex sequence of pro
gram invocations shown in Figure 2.10. Assuming the necessary hardware is 
available, each of the steps of the model depicted could be executed in a dif
ferent machine, with the workflow tool acting as the scheduler for the overall 
computation. In this way, in a first stage, the vegetation model, the orographic 
data extraction and the spatial interpolation programs could be invoked in par
allel at different sites. In a second stage, the storm discharge, and the erosion 
and precipitation models could be invoked in parallel, and so forth. In such 
scenarios, the workflow system takes on the role of distributed operating sys
tem facilitating the integration of independent systems into a single coherent 
whole. Ideally, workflow management systems should provide such function
ality independently of the type of application process. Thus, future workflow 
systems may be constructed as tools over which concrete distributed applica
tions (business oriented, scientific process support, virtual enterprises, etc.) are 
built. 

2.5 CONCLUSIONS 

Workflow management systems have had a considerable success as the first 
tools capable of both exploiting the coarse grained parallelism implicit in busi
ness processes and integrating heterogeneous systems into a coherent whole. 



58 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

The notion of process, understood as a complex sequence of program invo
cations and data exchanges, has been widely accepted and applied in many 
areas. Unfortunately, existing workflow systems suffer from significant lim
itations that restrict their applicability. Among these limitations, one of the 
most relevant is their inability to support generic processes. This has lead to 
disappointing results when current products have been used in areas other than 
business processes. Other limitations arise from problems not very different in 
nature from those encountered in tools such as TP-monitors or CORBA envi
ronments. These similarities, as shown in the previous sections, are not sur
prising when taking into consideration the fact that all of these systems have 
basically the same goals. Solving these limitations requires to develop a new 
understanding of workflow management. In particular, workflow management 
systems should be incorporated as key functionality in tools supporting dis
tributed applications, as well as be enhanced to support a more generic notion 
of process. From a functional point of view, the advances in communication 
and computing technology allow, and even require, to view workflow manage
ment systems as process support systems, i.e., meta-programming tools and 
execution environments for generic processes. The possibilities of such an 
approach have been clearly shown in the area of business process reengineer
ing, where workflow management systems have provided an efficient way of 
designing very complex distributed applications reusing existing components. 
The example discussed above regarding scientific computing shows how these 
same ideas can be successfully applied in many other areas, turning workflow 
management into a key ~omponent of future distributed systems. In this regard, 
it is important to point out that none of the issues discussed in this chapter are 
tied to business processes, although the initial motivation to work on them may 
have been business applications. These issues are common to many distributed 
applications. Efforts like TP-monitors, CORBA, or queuing systems are ad
dressing additional crucial aspects of distributed execution environments, and 
workflow management should be viewed as one more effort in this direction. 
The focus on business process has helped to create an initial market and al
lowed to gain important experience in the usage of workflow systems. The 
next step is to extrapolate these ideas to other areas and combine workflow 
technology with other ongoing efforts in distributed computing to arrive at the 
next generation of distributed processing tools. 

Acknowledgments 

Part of this work has been done in the context of the Exotica project ongoing at the 
IBM Almaden Research Center since 1994. We are grateful to all past and current 
members of the Exotica group, A. EI Abbadi, D. Agrawal, R. Giinthor, M. Kamath and 
B. Reinwald, for their contributions. In addition, many of the ideas discussed in this 
chapter have been developed as part of current research projects within the Database 



WFMS: THE NEXT GENERATION OF DISTRlBUTED PROCESSING TOOLS 59 

Research Group of ETH ZUrich. We are grateful to Claus Hagen and Hans-Jorg Schek 

for many helpful discussions about the future of workflow management systems. Even 
though we refer to specific IBM products in this chapter, no conclusions should be 
drawn about future IBM product plans based on the contents of this chapter. The 
opinions expressed here are our own. 



II Tool-Kit Approaches 



3 A REFLECTIVE FRAMEWORK FOR 
IMPLEMENTING EXTENDED 

TRANSACTIONS 
Roger S. Barga and Calton Pu 

Abstract: It is commonly accepted that the traditional transaction model used 
in database systems is not well-suited for advanced application domains, because 
it is lacking in functionality and performance. In recent years, numerous ex
tended transactions have been proposed to address the requirements of advanced 
database applications. Extended transaction proposals can largely be categorized 
into two areas: advanced transaction models and semantics-based concurrency 
control protocols. Few extended transactions have been ever implemented, not 
even as research prototypes, and today most remain mere theoretical constructs. 
Thus, while the research literature bulges with papers there is no practical way 
to readily leverage these results for the advanced applications for which they 
were designed. As a consequence, extended transactions have had little impact 
on industry. 

In this chapter we present the Reflective Transaction Framework, as a prac
tical method to systematically extend both functionality and interface of a con
ventional TP monitor to implement extended transactions. The framework pro
vides principled access to existing TP monitor functions and data structures, and 
carefully extends available transaction services to implement extended transac
tions. The design of the Reflective Transaction Framework is a synthesis of 
techniques: computational reflection for principled, effective access to TP mon
itor systems internals; meta object protocols to provide explicit descriptions of 
extended transaction behaviors; and, good software engineering practices for 
abstraction and modularity of the individual software modules that implement 
the framework. Using the framework, application developers can implement ad
vanced transaction models and semantics-based concurrency control protocols 
on production quality TP monitor software, where they can be applied to real-

S. Jajodia et al. (eds.), Advanced  Transaction  Models  and Architectures
© Springer Science+Business Media New York 1997



64 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

world applications. It is our hope that this work will help bring together research 
advances in transaction processing and commercial transaction processing sys
tems, an interaction from which both sides may benefit. 

3.1 INTRODUCTION 

A vast majority of the ideas that have been proposed in the context of advanced 
transaction models and semantics-based concurrency control have remained, at 
least thus far, just that - proposed. In many cases, these extended transac
tions have been shown to have the potential to improve both performance and 
functionality of traditional transactions for emerging database applications [EI
magarmid, 1992]. However, few of these extended transactions have been im
plemented, not even as research prototypes, and most remain mere theoretical 
constructs [Mohan, 1994]. Today, extended transactions are on the critical path 
for a variety of advanced database applications [Silberschatz et aI., 1996], and 
the time is ripe for their incorporation into commercial transaction processing 
(TP) systems where they can be applied to real-world applications. 

We have introduced the Reflective Transaction Framework [Barga, 1997, 
Barga and Pu, 1995] to support the implementation of extended transactions 
on production quality TP monitor software. The insight behind our work is the 
observation that in most cases, the base functionality provided by a conven
tional TP monitor is "almost right" to implement advanced transaction models 
and semantics-based concurrency control protocols. While certain functions 
and data structures are missing, existing functions and data structures of the 
TP monitor software are basically correct. We do not propose that transaction 
systems should simply include more features to implement selected extended 
transaction models. There is no consensus as to which extended transactions 
a transaction system should include for advanced applications; most likely, 
there never will be, since each advanced transaction model and semantics
based concurrency control protocol is optimized for a particular application. 
Furthermore, as application requirements continue to evolve, transaction pro
cessing requirements will change and new models will be introduced. Instead, 
we present a software framework that opens the existing functionality of a TP 
monitor in such a way that allows programmers access and control over the 
system, and to tailor the framework to the needs of a particular application. 
This is called an open implementation [Kiczales, 1992]. The open implemen
tation provided by the Reflective Transaction Framework gives the application 
programmer principled access to TP monitor functions and data structures, and 
carefully extends the TP monitor functionality with extended behaviors to im
plement extended transactions. 

The design of the Reflective Transaction Framework draws from a variety 
of techniques to achieve the open implementation of a conventional TP moni
tor. The framework uses computational reflection [Maes, 1987] for principled, 



THE REFLECTIVE TRANSACTION FRAMEWORK 65 

effective access to TP monitor systems internals. A meta level interface, or 
meta object protocol [Kiczales et al., 1991], is used to provide explicit descrip
tions of extended transaction behaviors. Good software engineering practices 
are followed for abstraction and modularity of the individual software modules 
that implement the framework. 

The implementation of the Reflective Transaction Framework introduces 
transaction adapters, reflective software modules built on top of TP monitor 
software. Transaction adapters leverage existing transaction services of the un
derlying TP monitor, to the extent possible, as building blocks for constructing 
extended transaction functionality. Transaction adapters contain a representa
tion, or meta-level description, of selected functional aspects of the underlying 
TP monitor, and maintain a causal connection [Maes, 1987] between this rep
resentation and the actual behavior of the system. The causal connection is two
way; not only are changes in the TP monitor reflected in equivalent changes to 
the representation, but changes in the representation will also cause changes 
in the behavior of the underlying TP monitor. Each extended transaction has 
meta-level representation, causally-connected with a transaction running on the 
TP monitor, that holds information about the transaction and how it is used; in 
essence this representation defines control and policy. The causal connection 
between the Reflective Transaction Framework and underlying TP monitor is 
built on the ability to intercept transaction events, together with the means to 
access TP monitor functions through an available application programming in
terface (API). The strengths of the Reflective Transaction Framework lie in: 

1. Incremental Design. The Reflective Transaction Framework does not 
expose the entire TP monitor functionality, but only selected aspects of 
it. Access to TP monitor functionality and extended transaction behav
iors is carefully organized through a well-documented interface, not ran
dom user hacking of internals. In addition, programmer access to ex
tended transaction behaviors can be graduated to match application re
quirements. This is very different from letting an application programmer 
randomly change the implementation, as happens when a large number 
of more or less random "hooks" or callbacks into the implementation are 
provided. The framework preserves the original TP monitor application 
interface and functionality, enabling extended transactions to be gradu
ally deployed without having to reimplement existing applications. 

2. Interoperability. The Reflective Transaction Framework insulates tran
saction extensions from each other, so that multiple extended transactions 
can exist in one address space and be used in a single program, along 
with traditional transactions. They are interoperable. This addresses two 
fundamental problems with tailorability: (i) the framework allows the ad
dition of transaction extensions to the TP monitor without requiring all 
programs to pay the additional cost, even if they do not make use of those 



66 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

extensions. And (ii) the framework allows programmers to use in one 
address space different transaction operations that are alike but have been 
extended differently. For example, an application can select a commi t op
eration designed for cooperative group transactions [Nodine and Zdonik, 
1990], or a commi t operation designed for nested transactions [Moss, 
1985], etc. Systems that are only globally tailorable typically can not 
support multiple applications, because interface customizations diverge. 
By allowing programmers to explicitly control the scope of extensions, 
at the level of individual transactions, it is possible to customize the TP 
monitor to suit any number of different applications. 

3. Extensibility. While the abstractions and extended functions provided 
by the Reflective Transaction Framework are sufficient to implement a 
wide range of existing transaction models and semantics-based concur
rency control protocols, we anticipate the continued introduction of new 
extended transactions. Transaction adapters are designed for quick and 
easy extension. Each adapter encapsulates a set of extensions specific to 
a selected aspect of TP monitor functionality. This limits the scope of 
what is effected by an adapter and makes it easy to incrementally extend 
this functionality. As a result, the framework itself can be extended to 
implement new extended transactions for emerging applications. 

4. Practical Approach. Transaction adapters do not duplicate existing tran
saction functionality, but instead implement extensions to the services 
provided by a TP monjtor. These extensions leverage existing function
ality and data structures, to the extent possible, for constructing extended 
transaction abstractions and services. This not only eliminates unnec
essary infrastructure development by building on existing services, but 
provides efficient, robust base processing for extended transactions. 

The contribution of the Reflective Transaction Framework, then, is a prac
tical method to systematically extend the functionality of a conventional TP 
monitor to implement advanced transaction models and semantics-based con
currency control protocols. Using the framework, application developers will 
be able to apply extended transactions in real, working environments. It is our 
hope that this work will help bring together research advances in transaction 
processing and commercial transaction processing systems, an interaction from 
which both sides may benefit. 

3.2 EXTENDING A CONVENTIONAL TP MONITOR 

Transaction processing (TP) monitors supporting atomic transactions are a 
well established technology that have been around for almost 20 years. TP 
monitors provide a general framework for transaction processing, supplying 
the "glue" to bind together the many functional components of a transaction 



THE REFLECTIVE TRANSACTION FRAMEWORK 67 

processing system through services like multithreaded processes,.. interprocess 
communication, queue management, and system management [Bernstein, 1990]. 

Early TP monitors, such as mM's CICS, were proprietary and constructed 
from single monolithic proprietary systems, but modem TP monitors, such as 
Transarc's Encina. DEC's ACMSxp, and mM's CICS/6000, are modular and 
constructed from open transaction processing middleware [Bernstein, 1996]. 

These middleware modules provide the basic functional building blocks re
quired of any TP monitor for transaction processing, such as a Transaction 
Manager, Lock Manager, Log Manager and Resource Manager. Each 
module exports its transaction services through a relatively simple and uniform 
"application programming interface" (API). The relationships between an ap
plication and the modular functional components in a TP monitor are depicted 
in Figure 3.1. 

Transactional 
Applicillion 

-----------------------------------------

Transaction Processing System 

Figure 3.1 Modular Functional, Components of a TP Monitor 

One seemingly straightforward way to implement extended transactions wo
uld be to directly use the available functionality found in the functional com
ponents of a TP monitor. Two major impediments complicate this proposition. 
First, conventional TP monitors have a fixed application-level interface and a 
fixed implementation of system services. Application developers traditionally 
access transaction services through the atomic transaction control operations, 
such as BegiILTransaction, Comrni LTransaction, and AborLTransaction~ 
Ideally, programmers would be able to define and then use similar transaction 
control operations for extended transactions, such as Spli LTransaction or 
JoiILTransaction for programming with the split/join transaction model [Pu 
et al., 1988]. However, the single, fixed interface of the TP monitor does not 
provide access to the underlying transaction services or permit extensions. The 
functional components of a TP monitor provide a rich set of transaction ser
vices, but require the application developer learn intricate details of the TP 
monitor and available API; the size and complexity of the API itself presents 
a formidable barrier to even the most accomplished programmers. Second, 
is the level of customization of the TP monitor. The transaction system-level 



68 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

code functions 'underneath' the code of an application program, is not subject 
to the same programming abstractions. This requires the TP monitor to be cus
tomized outside the application, rather than within it, making it impossible for 
an application to specify its requirements for extended transaction behaviors 
at runtime. At best, the TP system programmer could adjust the TP moni
tor functionality through the API to implement a selected extended transaction 
model a priori. Unfortunately, this approach is at the cost of reusability of the 
TP monitor by applications with other requirements. These issues, and oth
ers, combine to give users no convenient way to directly use a conventional TP 
monitor to define new application interfaces or leverage existing transaction 
services to implement extended transaction functionality. Efforts to provide 
implementation support for extended transactions have thus gravitated towards 
construction of entirely new transaction processing facilities. These efforts, 
though laudable, have limited practicality. 

Computational reflection offers a conceptual tool, the notion of a reflective 
module, to address the challenges of extending a conventional TP monitor to 
implement extended transactions. Intuitively, a reflective module allows ap
plications to observe and modify properties of their own behavior, especially 
properties that are typically observed from some external, meta-level point of 
view. Reflective modules contain a representation of selected aspects of the 
system, and maintain a causal connection between this representation and the 
actual behavior of the system. The causal connection is two-way; not only are 
changes in the system reflected in equivalent changes to the representation, but 
changes in the representation will also cause changes in the actual state and be
havior of the system. An application can use this representation to both reason 
about selected aspects of the system, and adjust the representation to influence 
system behavior. Following the open implementation approach [Kiczales et aI., 
1991, Kiczales. 1992], a reflective module can be designed to provide a meta 
interface that allows applications to extend and control the implementation of 
the module's primary interface. 

Thus, a reflective module with an open implementation enables an appli
cation to extend both interface and system services, and to participate in the 
modules implementation strategy in a principled way. 

3.3 THE REFLECTIVE TRANSACTION FRAMEWORK 

The Reflective Transaction Framework is a flexible software framework that 
supports the implementation of extended transactions on a conventional TP 
monitor. The framework is designed to be implemented as a thin software 
layer over an existing TP monitor. The implementation introduces transaction 
adapters, reflective software modules built on top of the individual functional 
components of the TP monitor. Each adapter provides a representation of se
lected aspects of the underlying functional component, and provides a primary 



THE REFLECTIVE TRANSACTION FRAMEWORK 69 

interface to a set of extended transaction services and a meta interface to adjust 
these extended services. The Reflective Transaction Framework ties together 
the individual transaction adapters and provides a single, integrated interface 
for applications to systematically extend both application interface and func
tionality of a conventional TP monitor to implement extended transactions. 

The extensions provided by transaction adapters leverage, to the extent pos
sible, transaction functionality already provided by the underlying TP moni
tor. The additional transaction functionality provided by transaction adapters 
supplies the necessary building blocks for constructing a wide range of ex
tended transactions; examples include structured relationships between indi
vidual transactions, transaction restructuring, recording and tracking inter-tran
saction dependencies, delegation of resources between transactions, specifica
tion of transaction management events and constraints on event occurrences, 
and relaxed notions of lock conflicts. The techniques used by the extensions 
in transaction adapters are not novel; for example, other systems using similar 
approaches are ASSET [Biliris et al., 1994], DOMS [Georgakopoulos et al., 
1994], and the ACTA meta model [Chrysanthis and Ramamritham, 1990]. 
However, the techniques are applied in a unique way to the problem of carefully 
extending the existing functionality of a conventional TP monitor. 

3.3.1 Extensions Through Transaction Events 

One key to the Reflective Transaction Framework's ability to extend the func
tionality of a TP monitor is a mechanism that integrates extensions with the un
derlying TP monitor. The Reflective Transaction Framework uses transaction 
events to provide such a binding mechanism. In an event-based system, com
ponents announce some system occurrence by explicitly raising an event of a 
particular name. Other parties, interested in learning of the occurrence, register 
event handlers which execute in response to a raised event. Events are gen
erally recognized as an effective technique for implementing loosely-coupled, 
flexible systems in which relationships between code components must be dy
namicallyestablished [Sullivan and Notkin, 1992]. 

In the Reflective Transaction Framework, every transaction control oper
ation represents a possible transaction event, such as BegiILTransaction, 
commi LTransaction, or JoiILTransaction a transaction changing state (to 
ACTIVE, ABORTED, COMMITIED, etc.), is a potential transaction event, or 
when a transaction requests a service (Le., lock request) from the TP monitor. 
Consequently, all relationships between a transaction and the TP monitor are 
subject to change simply by changing the set of handlers associated with any 
given transaction event. Since the Reflective Transaction Framework allows an 
application to associate handlers with each transaction event, it is possible for 
an application to specify its requirements for extended transaction behaviors at 
runtime at the granularity of each (extended) transaction. 



70 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

To see how this works, consider the processing of the Commi LTransacti -
on control operation for an extended transaction. This transaction control op
eration raises an event that can be intercepted by a transaction adapter in the 
Reflective Transaction Framework. If there are inter-transaction dependencies, 
such as a commit dependency or abort dependency, the transaction adapter can 
take appropriate actions, possibly delaying the actual commit of the transaction, 
terminating abort-dependent transactions, or performing commit preprocess
ing. The Reflective Transaction Framework's use of transaction events as a 
mechanism to integrate transaction extensions is only part of the solution. Ex
tended transaction processing often requires the ability to observe and reason 
about the state of active transactions, and to effect control over the underlying 
TP monitor. This is accomplished through reflection and causal connection. 

3.3.2 Implementing Reflection and Causal Connection 

In the Reflective Transaction Framework, reflection and causal-connection are 
implemented using transaction adapters. Each adapter corresponds to a par
ticular functional aspect of the TP monitor, such as transaction execution, lock 
management, transaction conflict detection, log management, and transaction 
recovery. The relationship between transaction adapters and TP monitor func
tional components is illustrated in Figure 3.2. To expose, or reify the internal 
state of the TP monitor, each adapter contains a number of meta objects that 
represent or model selected structures and behaviors of the underlying func
tional component. Each adapter provides a meta interface that allows the state 
and behavior of these meta objects to be locally and incrementally adjusted. 
Furthermore, when the user modifies a meta object in an adapter, the modifica
tion is reflected to the actual computational state of the functional component in 
the TP monitor. Figure 3.4 outlines select transaction adapters, along with meta 
objects and meta interface commands each provides. Thus, transaction adapters 
provide access to aspects of a legacy TP monitor that are often hidden, enabling 
users to "reach in" and adjust or extend the behavior of the legacy system using 
the meta interface. This relationship between adapters at the meta level and 
legacy TP monitor at the base level is termed causal-connection [Maes, 1987], 
and is satisfied by all reflective systems. 

Applications access transaction adapters using commands in the meta inter
face. Changes or modifications that an application makes to meta objects in 
an adapter, using the meta interface commands, affect the behavior of the TP 
monitor for only tluJt application. For example, if an application would like 
to relax isolation properties of a transaction in order to facilitate cooperation 
with other concurrently running applications, it issues the appropriate meta in
terface commands to change the conflict detection method for that transaction. 
Therefore, adapters enable an application to extend the underlying mechanisms 
of the legacy TP monitor incrementally, dynamically, and in a modular manner 



THE REFLECTIVE TRANSACTION FRAMEWORK 71 

at the granularity of each (extended) transaction execution. In the remainder of 
this section, we provide details on how reification, reflective computation, and 
reflective update are implemented in the Reflective Transaction Framework. 
Additional details on the design and implementation of transaction adapters 
can be found in companion articles [Barga and Pu, 1996, Barga and Pu, 1995]. 

Transactional Application 
Meta Intu!oct Meta llIleT/oce Meta illleTjoce Meta Interface 

Transaction Mgr. Lock Conflict Log 
Adapter Adapter Adapter Adapter 

Transaction Mgr.1 Lock Mgr'l Log Mgr. 

TPMonitor 
Low-levt:l System Programming Inlujace 

Transaction E'Vtlll Facility 

Metalevel 

Baselevel 

Figure 3.2 Transaction Adapters in the Reflective Transaction Framework. 

Reification. In the Reflective Transaction Framework, reification is the rep
resentation of structural and computational state of the underlying TP monitor 
component as an object within the corresponding transaction adapter. This ef
fectively provides a representation of the system at the meta level. Reification is 
implemented using callbacks, also commonly referred to as upcalls. Upcalls 
support efficient cross-layer communications and enable the functional com
ponents in the TP monitor to pass relevant state information to a transaction 
adapter in the meta level where it is reified, as illustrated in Figure 3.3. The 
most important decisions made in designing each transaction adapter were se
lecting those aspects of the underlying TP monitor component that should be 
reified. As an example, for the Lock Adapter depicted in Figure 3.3, such 
aspects include the locks being held by each extended transaction, pending 
lock requests, the procedure used to grant lock requests, and the structure of 
the lock table. Depending on the transaction model one wishes to implement, 
other aspects may also be reified. For example, the operations being performed 
on a locked data object, or the mode in which a lock has been granted to a 
transaction. For generality, each adapter was designed based on the structure, 
function, and commands of the well-documented TP monitor reference archi
tecture [Gray and Reuter, 1993]. The reference architecture was selected to 
allow observations on TP monitors in general, yet be concrete enough to re
veal implementation details on modem commercial TP monitors. To identify 
the transaction and TP monitor structures and state that would be reified by the 



72 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

adapters, we referred to ACTA [Chrysanthis and Ramamritham, 1992], a logic
based formalism for defining and cOillparing transaction models. ACTA pro
vides unifying abstractions for describing extended transaction functions and 
behaviors, and delineated dimensions of change for realizing extended transac
tions. A more detailed discussion of transaction adapter design can be found in 
a companion paper [Barga and Po, 1995]. The essential point is that the meta 
objects in the transaction adapters and commands presented in the meta inter
face are not ad-hoc, but were defined within the context of general TP monitor 
functionality and extended transaction behaviors. Further, to ensure the flexi
bility of transaction adapters they were designed to be incrementally extensible. 
Should the need arise, additional aspects of the underlying TP monitor func
tional component can be reified as meta objects in the adapter by using the ap
propriate TP monitor upcalls and adding reification methods to the transaction 
adapter. Reifying selected aspects of the underlying TP monitor component 
into metalevel objects that are dynamically accessible and modifiable enables 
reflective computation and reflective update. 

Lock Adapter Meta Interface 

[I] [I] [I] [I] I········ 
TnnMCdon Lock List Lock Infonnatloa 

[ TI'IIDSIIdion Event Handle. 1 
t=~~======~---------kfomHU~. 

causal-connection 
R~n __________________ ~::.....----, 

Lock Manager Application Programming Interface 

Lock Tobie Pendilll Lock Requ .... Lock Compatibility 

Figure 3.3 Reflective update and reification form causal-connection. 

Reflective Computation. The shift in computation from the TP monitor 
functional component to reflective computation in the transaction adapter oc
curs in an event-driven manner. A transaction significant event is raised when
ever a transaction attempts to change state, e.g. the transaction aborts or com
mits, or when a transaction requests a service from the TP monitor. For each 
transaction event there is an adapter assigned to process the event. When the 
event is raised execution control is passed to the assigned transaction adapter, 
along with all information relating to the event. For example, when the LOCK 

MANAGER detects a lock conflict between two transactions during a lock re
quest, control is passed to the Lock Adapter through an upcall, along with all 



THE REFLECTIVE TRANSACTION FRAMEWORK 73 

infonnation pertaining to the conflicting request. The Lock Adapter can then 
apply operation or application-specific semantic infonnation to detennine if 
the request should be granted according to the semantics of the transaction 
model. The Lock Adapter can then grant the lock request, or deny it by sim
ply returning control back to the LOCK MANAGER, effectively implementing 
semantics-based concurrency control. As this example illustrates, reflective 
computation not only allows transaction adapters to expose default behaviors 
of the underlying TP monitor, but also augment legacy functionality with new 
extended functionality. 

Reflective Update. If the reflective computation updates the reified data, 
then the modifications are reflected down to the actual computational state of 
the underlying TP monitor component in what is called a reflective update. 
Reflective update is implemented through calls to the API provided by each 
TP monitor functional component. Through the API the transaction adapter 
can update the structures and computational state of the underlying functional 
component. The most challenging issue when implementing an adapter is to 
identify the appropriate API calls in order to implement each reflective up
date. Ideally, this task is perfonned only once, by the designer of the Re
flective Transaction Framework, who is familiar with the inner workings of 
the monitor functional components. When an adapter needs to perfonn a re
flective update, it issues the appropriate sequence of API calls, as illustrated 
in Figure 3.3. Thus, each transaction adapter not only reifies aspects of the 
TP monitor functional component, enabling reflective computation, but also 
provides the means to affect the state and control the component's behavior 
through reflective update, fonning the causal-connection between the tran
saction adapters and legacy TP monitor. 

3.3.3 A Separation of Programming Interfaces 

Application programmers develop transactional applications using a set of tran
saction model-specific verbs, or transaction control operations. For exam
ple, atomic database transactions are initiated by the operation BegiILTrans
action, and tenninated by either a Commi LTransaction or AborLTransac· 
tion operation. Extended transactions, on the other hand, often introduce addi
tional operations to control their execution, such as the operation Spli LTrans
action introduced by the split/join transaction model, or the operation Join
Group introduced in the cooperative group model. Indeed, a transaction model 
defines not only defines the control operations available to a transaction, but 
also the semantics of these operations. For example, whereas the Commi LTran
saction operation of the atomic transaction model implies the transaction is 
tenninating successfully and that its effects on data objects should be made 
pennanent in the database, the Commi LTransaction operation of a member 



74 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Transaction Management Adapter - reifies state information for 
transactions executing extended behaviors, and provides meta 
interface commands to control these extended transactions and 
adjust the behavior of the underlying TRANSACTION MAN

AGER functional component. Commands in the Transaction 
Management Adapter meta interface include: Instantiate, 
Select, Delegat~Ops, FormLDependency, Creat~Group, 

Creat~Tran, Terrninat~Tran, and Wait. Primary meta ob
jects reified by the Transaction ManagementAdapter include a 
metatransaction descriptor for each extended transaction, a re
flective transaction table, and a transaction dependency graph. 

Conflict Adapter - reifies information on the conflicts that occur 
between transactions attempting to acquire shared resources, and 
provides a meta interface to control the definition of conflict and 
appropriately adjust the behavior of the underlying LOCK MAN

AGER. Commands in the Conflict Adapter meta interface include: 
Relax-Conflict, NO_Conflict, Allow, Wait and Revoke. Pri
mary meta objects reified by the Conflict Adapter include a a 
compatibility table defining conflict relationships between oper
ations, and a no-conflict table that records all conflicts explicitly 
relaxed between extended transactions. 

Lock Adapter - reifies information on locks held by transactions 
and on the state of the lock table, and provides meta interface 
commands that control the locks held by extended transactions 
and adjust the behavior of the underlying LOCK MANAGER func
tional component. Commands in the Lock Adapter meta inter
face include: Releas~Lock, Acquir~Lock, Delegat~Lock, 
Share, Wai t, Peak and UpgradELMode. Primary meta objects 
reified by the Lock Adapter include a transaction lock list, lock 
mode table, and an active locks list. 

Figure 3.4 Transaction Adapters in the Reflective Transaction Framework 



THE REFLECTIVE TRANSACTION FRAMEWORK 75 

transaction in a cooperative transaction group implies only that its effects on 
data objects be made persistent and visible to transactions that belong to the 
same group. 

To accommodate this diversity between different advanced transaction mod
els, we introduce a separation of programming interfaces to the TP monitor. 
This separation follows the open implementation approach [Kiczales, 1992], 
pioneered in the meta-object protocol [Kiczales et al., 1991], in which thejUnc
tional interface is separated from the meta interface. The purpose of the meta 
interface is to modify the behavior, or semantics, of the functional interface. 
In our separation of interfaces, presented in Figure 3.5, both the transaction 
demarcation interface and extended transaction interface are functional, subdi
vided for clarity only. 

The separation of programming interfaces to the legacy TP monitor pro
vides the means to talk about existing transaction models, and also introduce 
new extended transaction behaviors and interfaces. Default transaction behav
iors remain available through the standard transaction demarcation interface. 
New extended transaction behaviors can be defined using the meta interface, 
and made available to to application through the introduction of new extended 
transaction control operations in the extended transaction interface. The ex
tended transaction interface augments the default transaction demarcation in
terface with new extended control operations, so the TP system programmer 
can perform the meta-programming of the TP monitor in a clean, concise man
ner that does not deviate significantly from 'normal' programming. 

3.4 APPLICATIONS OF THE 
REflECTIVE TRANSACTION FRAMEWORK 

The Reflective Transaction Framework would not be of great value unless it 
supported the extended functionality required to rapidly implement a wide 
range of advanced transaction models and semantics-based concurrency con
trol protocols for advanced applications. Our experience in this regard has been 
very positive [Barga and Pu, 1996, Barga and Pu, 1995]. In this section, we il
lustrate the application of the Reflective Transaction Framework to implement 
advanced transaction models and semantics-based concurrency control proto
cols. In our discussion, we outline the process of using the framework from 
the perspective of both TP system programmer and application developer, and 
briefly describe operational aspects of adapters in supporting the extended tran
saction functionality. 

3.4.1 Implementing Advanced 1ransaction Models 

The split/join transaction model was proposed for open-ended activities such 
as computer-aided design and manufacturing (CAD/CAM) [Pu et al., 1988]. 
Open-ended activities are characterized by uncertain duration, uncertain devel-



76 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Base Interface: provides ACID Extended Transaction Interface: provides 
transaction functionality... an interface for extended transaction models. 

M ..... ' ""of,,,, _"" ."' ... , ... ,....... , ... , ....... , 
control over implementation. rl ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~II;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~ 

"", .. ~ Transaction Proce!sing Monitor 

Transaction demarcation interface - presents the default tran
saction interface offered by the legacy TP monitor. When 
used alone it provides default transaction behavior of atomic 
transaction semantics. Control operations in the tran
saction demarcation interface include: begin - transaction, 
cornmi t -transaction, and abort -transaction. 

Extended transaction interface - presents an extensible interface 
to new extended behaviors added to the TP monitor and is used 
when applications require extended transaction functionality and 
semantics. Operations in the extended transaction interface in
clude transaction control operations defined by specific extended 
transaction models, such as the operations Split, Join, Spawn, 
Creat~Group, etc. 

Meta interface - allows applications to view selected aspects of 
the underlying TP monitor functionality and to make modifica
tions. The meta interface provides commands for programmers 
to locally and incrementally adapt the functionality of the TP 
monitor to the requirements of an extended transaction. Some 
of the operations in the meta interface include: delegateOp, 
delegateLock, formDependency, noConflict,andselect. 

Figure 3.5 Separation of Interfaces to the Reflective Transaction Framework 



THE REFLECTIVE TRANSACTION FRAMEWORK 77 

opments and interaction with other concurrent activities. Due to these char
acteristics, sometimes it is desirable to release earlier modified data of a tran
saction to other transactions. The split/join transaction model provides two 
operations to dynamically restructure transactions, namely spli t and j cin. 
A transaction T may split into two transactions Ta and Th, providing applica
tions with a mechanism to release data objects that are no longer needed and, 
hence, release intermediate results to other transactions. Two transactions can 
also join together to become one transaction, or use combinations of split and 
join to allow transfer of resources from one transaction to another. 

Synthesizing the spli t function. When a transaction T 1 splits, by exe
cuting the transaction control operation spli t (T2), it must first create a new 
transaction (T 2) and then delegate responsibility for executing some of its oper
ations to this new transaction. To be more precise, Tl transfers to T2 responsi
bility for all uncommitted operations on a particular set of data objects, referred 
to as the DelegateSet. In practice, users define the DelegateSet by selecting the 
objects to split from the re-structured transaction. At the time of the split, a new 
transaction is created, instantiated, and then operations invoked on objects in 
the DelegateSet by Tl are delegated to T2. The transactions Tl and T2 can then 
commit or abort independently. The following code segment illustrates how 
the spli t transaction control operation is synthesized using commands in the 
meta interface: 

split (NewTran, DelegateSet) { 
II instantiate new transaction. 
instantiate(NewTran); 
II add splitljoin transaction interface to NewTran 
select (NewTran, SplitJoin); 
II delegate locks related to objects in delegate set. 
delegate_lock (NewTran, DelegateSet); 
II delegate ops related to objects in delegate set. 
delegate_op(NewTran, DelegateSet); 
II initiate execution of the newly created transaction. 
begin (NewTran) ; 
II return execution control to base·level transaction 
return; 

Figure 3.6 Spli t transaction control operation. 

Once the extended functionality of the split transaction control operation has 
been defined using the meta inteiface, it can then be added to the extended 
transaction inteiface where it will be available for applications programmers 
to use. 



78 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Application Programming Using the spli t Operation. In order to mo
tivate the need for the split and join operations, consider the requirements of 
CAD support for a team of engineers designing a computer chip. Since the de
sign process may take an arbitrarily long time and involve multiple engineers, 
the principal engineer might like to split off responsibility for the design of spe
cific subsystems to component engineers who can either join their results into 
the working chip design at a later time or choose to commit or abort their de
signs independently. Such requirements are not satisfied by traditional database 
transactions in an easy and straightforward manner but can be easily satisfied 
by the split/join transaction model. The code fragment below outlines how an 
application programmer might use the split and join operations to dynamically 
restructure a transaction to release subsystem data objects and operations to a 
separate transaction and, later, join with a separate transaction: 

BegilLTransaction PE..Tran 
begin 

instantiate(PE-Tran) 
seiect(pE-Tran, SplitJoin) 

... { data manipulation} 

split(CE-Tran, Subsystem) 

... { data manipulation } 

join(QA.-Tran,*) 
end 
CommiLTransaction {CAD-Ilesign} 

(1) 

(2) 
(3) 

(4) 

(5) 

(6) 

Line 1 declares the beginning of the principal engineer's transaction using 
the BegiILTransaction command found in the the primary interface. This is 
significant, because it notifies the transaction management system that the oper
ations between this point and the commi LTransaction command in line 6 are 
to be executed atomically, according to the traditional transaction model. Thus, 
lines 1 and 6 bracket the transaction. The purpose of the instantiate meta 
interface command in line 2 is to notify the Reflective Transaction Framework 
of the programmers intention to "renegotiate" the base transaction model. The 
select meta interface command in line 3 details the terms of the renegotiation, 
selecting the split/join model for the transaction. The importance of the select 
command is twofold. First, it determines the control operations and semantics 
that are available to the transaction. In this example, the split/join model adds 
two new transaction control operations, namely split and join, while the begin, 
commit and abort commands have the same semantics as the corresponding 
commands in the traditional database transaction model. Second, it informs the 
transaction adapters in the Reflective Transaction Framework how to process 



THE REFLECTIVE TRANSACTION FRAMEWORK 79 

transaction events on behalf of this transaction, such as lock request conflicts, 
transaction dependencies that might arise during execution, etc. In line 4, the 
application programmer uses the new extended transaction control operation 
spli t, where CE_Tran is the name of the new transaction created for the com
ponent engineer and Subsystem is the subcomponent that is to be delegated to 
the component engineer's transaction. Finally, in line 5, the application pro
grammer uses the new extended transaction control operation j ain to merge 
the results and resources held by the transaction PE_Tran with an existing qual
ity assurance program, QA_Tran. 

One can see from this example that there is no description of creating the 
new transaction for the component engineer, no explicit delegation of the locks 
held on data objects in Subsystem, and no explicit delegation of the data ma
nipulation operations pertaining to Subsystem when the application is written. 
With the exception of the instantiate and select operations, the programmer 
simply uses familiar transaction control operations to write the application. 

Transaction Adapters Behind the Scenes. Continuing with our exam
ple, we now examine how transaction adapters work behind the scenes to sup
port extended transaction behavior on a legacy TP monitor. We begin with the 
instantiate meta interface command in line 2. During execution, the in
stantiate command causes control to be passed to the Transaction Management 
Adapter, which reifies information for the transaction PE_Tran, including the 
transaction identifier (TRIO), current execution status of the transaction, and 
control operations available to the transaction. Next, the Transaction Manage
ment Adapter directs the other adapters to create initial entries for objects will 
be reified for this transaction during its execution, and then it returns control 
back to the base transaction for processing. The select command in line 3 also 
causes control to be passed to the Transaction Management Adapter, which up
dates the transaction meta object to contain the transaction control operations 
spli t and jain, specified by the split/join advanced transaction model. 

Processing resumes on the base TP monitor, until the transaction control 
operation spl i t (CE_ Tran I Subsys tern) is processed in line 4. Split is a tran
saction control operation defined the extended transaction interface for the 
transaction PE_Tran. When the transaction invokes a control operation, the 
actual code executed is determined by its metatransaction (see Figure 3.7). 
When the spli t operation is invoked by the transaction, processing involves 
first verifying this control operation is permitted for the transaction, and once 
it has been verified then the function is executed, as illustrated in Figure 3.7. 
For the execution of the split operation, as defined in Figure 3.6, the first meta 
interface command directs the Transaction Management Adapter to create a 
metatransaction descriptor for the new transaction CE_Tran. This change is re
flected down onto the TRANSACTION MANAGER, resulting in the creation of a 
new base level transaction. The commands instantiate and select are then pro-



80 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

cessed by the Transaction Management Adapter to initialize the meta objects 
for the transaction CE_Tran. Next, the Lock Adapter delegates locks on all data 
objects in the delegate set Subsystem from the transaction PKTran to the tran
saction CE_Tran. This change is first made first to the meta object lockTable, 
and through causal connection the change is reflected down to the LOCK MAN
AGER through the API commands releaseLock and acquireLock. Once 
the delegate_lock command is complete, the Transaction Management Adapter 
processes the delegate_op command. Finally, the begin command is processed 
by the Transaction Management Adapter, which sets the execution mode of 
the transaction CE_Tran to active and returns control to the TP monitor to be
gin base level processing. 

..U_~lftD 0.1 ___ " 

I -I 
l pnTtst III~' }-- o Rthll7l 

tmpkmmwklo·)c:\'C1 

Transaction MUlIt.mml Adaplu 0 --{ p<lJlTnt /IIwuUuil J 
M-ebltnJuac1lon Dec:rtptor -----= 

..... U ... .. U_1IIOeOb Metalevel 

I,· " . '. . .::.':!c . .-:c. 1 

Baselevel 
........ n-.... t-o CoD -.. u . ( h_......,..._l -
~ .. _"._.l_' 
Base·level TnosaaJon 

Figure 3.7 Transaction control operation redirection 

3.4.2 Implementing Semantics-Based Concurrency Control 

Concurrency control is based on a simple intuition: if the order in which two 
operations take place does not affect the results, then the transaction-processing 
system should allow different transactions to perform these compatible oper
ations concurrently. Fundamental to all concurrency control protocols is the 
notion of conflict - incompatibility between operations or transactions. Most 
commercial transaction processing systems define conflict in terms of read 
and wri te operations [Bernstein et al., 1987] - two operations conflict if both 
access the same data object and one is a write operation. This syntactic def
inition of conflict has been criticized as being too restrictive for advanced ap
plications where conflicts can be defined at a more abstract semantic level. 
The basis of semantics-based concurrency control (SBCC) is the introduc
tion of a relaxed notion of conflict, that is typically weaker than traditional 
read/wri te conflict and thus allows more concurrency [Badrinath and Ra
mamritham, 1991, Chrysanthis and Ramamritham, 1990, Ramamrithan and Pu, 
1995, Ramamritham and Chrysanthis, 1992]. 



THE REFLECTIVE TRANSACTION FRAMEWORK 81 

The Reflective Transaction Framework provides an extensible concurrency 
control facility that enables individual transactions to define semantic notions 
of conflict, with the only limitation that it be expressible in terms of an oper
ation compatibility table or an explicit relaxed conflict relationship between 
transactions. The compatibility table specifies actions the framework should 
take given certain conflicting operations, dynamic dependency relationships 
that are formed as a result of the conflict, and specifies conflicts between trans
actions that have been explicitly relaxed. An operation compatibility table has 
the advantage of being simple for application programmers to create, and can 
be loaded and efficiently tested at run-time. To illustrate the flexibility of this 
approach we describe how the Reflective Transaction Framework can be used 
to specify and implement three SBCC protocols. They are operation commu
tativity, operation recoverability, and transaction cooperation. The framework 
is not limited to this selection, rather, they were selected because they form 
the basis for a number of related SBCC protocols and illustrate key operational 
aspects of the framework. 

Specifying Operation Commutativity. The simplest operation compati
bility relationship used to determine if two operations can execute concurrently 
is commutativity. If two operations commute, then their effects on the state of a 
data object or their return values are the same, irrespective of their execution or
der (for example, two read operations commute). When a transaction invokes 
an operation, it can be executed if it commutes with every other uncommitted 
operation. Further, if the transaction processing system allows only commuting 
operations to execute concurrently, then it prevents cascading aborts. 

The commutativity of operations on a data object is specified in advance via 
the operation compatibility table. As a simple example, consider operations on 
a bank account data object for commercial banking applications. For this data 
type we define the operations Deposi t, wi thdraw, and Balance. The Deposi t 
operation adds a specified amount to the account balance, wi thdraw subtracts 
a specified amount from the account balance, and Balance returns the current 
value of the account. From the semantics of these operations the application 
developer or TP system programmer can construct an operation compatibility 
table, as illustrated in Table 3.1. Columns in the compatibility table represent 
operations currently holding a lock, while rows represent operations requesting 
a lock. Entries marked SOK indicate the requested operation is semantically 
compatible (commutes) with the concurrently executing operation, while an 
entry marked CON indicates the requested operation conflicts. There are no 
dynamic dependencies to be recorded, hence this field is left blank; a semicolon 
is used as the field delimiter. 

Specifying Operation Recoverability. Another semantic notion proposed 
to relax conflicts among operations, weaker than operation commutativity, is 



82 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Table 3.1 Operation commutativity for ACCOUNT data type. 

Account:COMM Balance Deposit Withdraw 
Balance SOK;; CON;; CON;; 
Deposit CON;; SOK;; CON;; 
Withdraw CON;; SOK;; CON;; 

recoverability [Badrinath and Ramamritham, 1991]. An operation OJ is re
coverable, relative to another operation OJ, if the value returned by OJ, and 
hence the observable semantics of OJ, is independent of whether OJ executed 
immediately before OJ. Thus, if transaction Tj precedes transaction 1j, and Tj 
aborts then 1j is immune from cascading aborts since the operation effects on 
1j remains the same. 

Unlike commutativity, recoverability does not require equivalence of states 
for operations to execute concurrently. Hence, operation commutativity implies 
operation recoverability, but operation recoverability does not directly imply 
operation commutativity. Whenever an operation is recoverable but not com
mutative, relative to another concurrent operation, both operations are allowed 
to perform concurrently. However, a dynamic commit-dependency relation is 
set between the transaction that attempts to perform the operation and transac
tions that have already performed recoverable operations with respect to that 
transaction. For our example above, 1j can not commit until Tj either commits 
or aborts. At the time of commit, then, a transaction will have to wait until all 
the other transactions on which it has a commit-dependency have completed in 
order to maintain database consistency. 

As with commutativity, operation recoverability is specified in advance us
ing a compatibility table designed for recoverability. This is illustrated in 
Table 3.2 for the ACCOUNT data object, in which the commit dependencies 
that arise due to recoverability are specified as CD. When the Reflective Tran
saction Framework is evaluating an operation conflict condition between two 
transactions and it relaxes the conflict using recoverability semantics, the com
mit dependency between the two transactions will be recorded in a dependency 
graph. Commit dependencies that arise from recoverable operations will be 
tracked through the execution of the transactions and used to sequence tran
saction completion. 

Application Programming Using SBCC Protocols. If an application 
developer identifies data objects that are hot spots hot spot or concurrency bot
tleneck concurrency bottlenecks in a system, they can construct operation com
patibility tables for these data objects. Applications using the Reflective Tran
saction Framework can then select these compatibility tables for semantics
based transaction synchronization. To illustrate, we will continue with the 



THE REFLECTIVE TRANSACTION FRAMEWORK 83 

Table 3.2 Operation recoverability for ACCOUNT data type. 

Account:RECV Balance Deposit Withdraw 
Balance SOK;CD SOK;CD SOK;CD 
Deposit CON; SOK;CD CON; 
Withdraw CON; SOK;CD CON; 

CAD example introduced previously, in which a team of engineers are working 
together to design a computer chip. During initial chip design, several com
ponent engineers would be inserting new components for the chip, perform
ing lookups on existing components, and modifying existing specifications and 
deleting outdated or unnecessary components. One possible concurrency bot
tleneck in this activity are data objects of type ComponenLLog - a container 
for specifications of the individual components in the chip, each identified by a 
component identifier (key). 

Table 3.3 File Log:comm. operation commutativity for COMPONENTLOG data type. 

Log:comm Insert Delete Lookup Sort Modify 
Insert SOK;; SOK;; SOK;; CON;; SOK;; 
Delete SOK;; SOK;; SOK;; CON;; SOK;; 
Lookup SOK;; SOK;; SOK;; SOK;; SOK;; 
Sort CON;; CON;; CON;; SOK;; CON;; 
Modify SOK;; SOK;; SOK;; CON;; SOK;; 

Table 3.4 File Log:recv. operation recoverability for COMPONENTLOG data type. 

Log:recv Insert Delete Lookup Sort Modify 
Insert SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD; 
Delete SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD; 
Lookup SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD; 
Sort SOK;CD; CON;; SOK;CD; SOK;CD; CON;; 
Modify SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD; 

The COMPONENTLoG has five operations defined: Insert, Delete, Lookup, 
Sort, and Modify. The operation Insert adds a new key (key, item) into 
the ComponenLLog. If the key is already in the table it will return failure; 
else it returns success. Delete removes the pair with the given key from the 
ComponenLLog. If the key is not present it will return failure; else it returns 
success. The Sort operation sorts the entries in ascending order. Lookup 
returns the value of the item associated with a given key if it exists in the 



84 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

ComponenLLog; else it returns failure. Modify will replace the current value 
of the item with the new value for the given key. Tables 3.3 and 3.4 illustrate 
the commutativity and recoverability properties of the operations performed on 
data objects of type COMPONENTLoG. For simplicity, it is assumed that trans
actions will operate concurrently on different parameters (keys) on the objects 
of type COMPONENTLOG. These operation compatibility tables would be en
tered into individual files, either using a simple text editor or a graphical utility 
provided for formatting compatibility tables. 

The code fragment below outlines how an application programmer might 
use these compatibility tables for semantics based concurrency control, and 
illustrates the use of the framework to permit explicit transaction cooperation. 

BegilLTransaction CELTran 
begin 

instantiate(CE.... Tran) 
select(CE....Tran, Conflict, Log:comm) 
select(CE....Tran, Conflict, Log:recv) 
Lookup(CIDJl7, compspec) 

· .. { data manipulation } 
Modify(CIDJl7, compspec) 
· .. { data manipulation } 
Insert(CID_I09, nullspec) 
· .. { data manipulation } 
NoConflict(QA-Tran,CID_l09) 
· .. { data manipulation } 

Modify(CID_I09, compspec) 
end 
CommiL Transaction {CEL Tran } 

(1) 

(2) 
(3) 

(4) 
(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

The BegirLTransaction command in line 1 declares the beginning of the 
component engineer's transaction, and together with the comrni LTransaction 
in line 10 brackets the transaction. The command instantiate in Line 2 reg
isters the transaction with the Reflective Transaction Framework. The select 
meta interface command in line 3 indicates the transactions intention to use 
semantic information to relax lock conflicts, and specifies the compatibility ta
ble LOG:COMM is to be used (a file pathname could also be supplied). The 
select meta interface command in line 4 specifies an additional compatibility 
table LOG:RECV is to be used to relax conflicts; the order in which compati
bility tables are selected using the select command will determine the order 
which they are applied to relax lock conflicts. 

If a syntactic conflict (R/W) is detected during transaction execution, the TP 
monitor will raise a lock conflict event and the conflict adapter will be invoked 
for semantic conflict testing. For example, if an uncommitted transaction has 



THE REFLECTIVE TRANSACTION FRAMEWORK 85 

perfonned a Lookup operation (a read-typed operation) on the COMPONENT

LOG data object and transaction CR..Tran requests to perfonn a Modify oper
ation (a write-typed operation) in line 6, the TP monitor would detect a syn
tactic conflict. Since the conflict adapter registered a handler for the event, and 
transaction CR..Tran has selected a commutativity table to relax lock conflicts 
(Table 3.3), the framework will perfonn a table lookup to detennine if the op
erations are semantically compatible and can be executed concurrently. If the 
operations are semantically compatible (SOK) the conflict adapter will grant 
the lock and increment the counter of lock holders, enabling both transactions 
to own the lock. 

In summary, if an application programmer wishes to use semantics-based 
concurrency control for transaction synchronization, they first create compati
bility tables for data objects that have been identified a hot spots or concurrency 
bottlenecks. To use available compatibility tables, an application will then reg
ister the transaction with Reflective Transaction Framework and then select 
from the available semantic compatibility tables. During execution, the Reflec
tive Transaction Framework will allow transactions to perfonn operations on 
data objects, without conflicting with other transactions that hold locks on the 
object, if the semantic specification relaxes the conflict. In certain cases where 
the order of the access to a data object implies dynamic dependencies between 
transactions, the framework will record and track the dependencies throughout 
transaction execution. 

Transaction Adapters Behind. the Scenes. Continuing with our exam
ple, we now examine how transaction adapters work behind the scenes to 
support semantics-based concurrency control. The meta interface command 
instantiate in line 2 perfonns the same initialization of the adapters as the 
previous advanced transaction model example. The select command in line 
3 and in line 4 perfonns two functions. First, it infonns the framework of 
the transactions intension to utilize semantic infonnation to relax lock con
flicts, and Transaction Management Adapter responds by registering the Con
flict Adapter as the handler for lock conflict events. Second, it instructs the 
Conflict Adapter to load the specified compatibility tables for the transaction; 
if the file can not be found" or an error occurs loading the file then the Conflict 
Adapter is unregistered and an error code is returned. During the execution of 
CR..Tran, all lock conflict events will be handled by the Conflict Adapter. 

During transaction execution, the Lock function of the underlying TP mon
itor perfonns usual Read / wri te conflict testing for all lock requests. If a 
lock conflict is detected, an event is raised. Infonnation passed to the con
flict adapter includes the identifier of the transaction requesting the lock, the 
operation being requested, and a list of the transactions currently holding a 
lock on the data object. The Conflict Adapter uses the function relaxCon
flict to implement semantic compatibility testing. Operationally, Lock and 



86 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

relaxConflict combine to form a two-step semantic conflict test. Step one, 
executed by Lock, performs a standard syntactic conflict test based on the up
date type of the operation (e.g. read orwri te). Step two, performed only when 
a conflict is detected, is executed by the relaxConflict function to perform 
semantic compatibility testing to determine if the two operations are seman
tically compatible. The function relaxConflict relaxes conflicts between 
transactions by two means: compatibility table(s) defining conflict relation
ships between operations, and a no_conflict table that records all conflicts ex
plicitly relaxed between transactions. Using these two sources of information, 
relaxConflict implements the following rule to determine whether there is a 
conflict between two transactions: 

A conflict detected by the TP monitor can be relaxed if either of the following 
conditions hold true: 

1. the semantics of the data object indicate that the operation for which the 
lock is being requested is compatible with all uncommitted operations 
holding a lock in an incompatible mode; 

2. the transaction holding the lock on the data object has explicitly indicated 
that the transaction requesting the lock has permission to perform the 
operation, regardless of the basic conflict; 

The relaxed conflict rule effectively states that a transaction may acquire 
a lock if all other transactions owning the lock in an incompatible mode are 
relaxed by either operation semantics or explicit agreement between the trans
actions. The generality of this relaxed conflict rule allows the conflict adapter 
to selectively present and change the definition of conflict for one or more un
derlying data objects or transactions. This is illustrated in Figure 3.8. 

When a inter-transaction dependency directive, such as a commit depen
dency CD, is found in an operation compatibility table, the conflict adapter 
records the dependency in the transaction dependency graph TRAND using the 
Transaction Adapter command form-dependency. Checks are performed to 
prevent dependency cycles from being formed. During transaction termination 
the Transaction Management Adapter procedures PreConuni t and PreAbort 
take the necessary actions to ensure that all requisite transactions have com
pleted (the transactions have either committed or aborted), and all pending 
transactions are notified that PE-Tran has completed. 

By utilizing these commands to adapt the definition of conflict offered by 
the underlying TP system, the conflict adapter is able to implement a vari
ety of semantics-based concurrency control protocols discussed in the liter
ature [Barga et al., 1994]. This semantics based concurrency control is all 
performed through extensions to the underlying conflict detection and locking 
performed by the TP monitor, demonstrating that the use of a conventional 



N. 

THE REFLECTIVE TRANSACTION FRAMEWORK 87 

rettd-typed Of' wrik-IJfMd 

DpetYlliflll 

Syntactk 
Operlilion 
ConDiet 

Semantic 
Operlltion 
Connid 

Ex o;'lJRelaxeJ Transaction 
Condict 

rlYllluu:tiOIlCOIIjlia 

Grant Lock Block Operation 

Figure 3.8 Transaction control operation redirection 

locking mechanism does not preclude the use of semantics-based concurrency 
control protocols. 

3.5 CONCLUSION 

We have introduced the Reflective Transaction Framework as a practical method 
to implement extended transactions on conventional TP monitors. We de
scribed how the framework achieves an open implementation of the TP mon
itor, so that applications have access to and control over the underlying func
tionality of the TP in a way that allows the programmer to tailor extended trans
actions to the needs of a particular application. Access to TP monitor system 
functionality and extended transaction behaviors is principled in the sense that 
the meta level interface and extended transaction interface allow access to this 
functionality without forcing the TP monitor to expose the internal data struc
tures and functions that are actually used. This independence from actual im
plementation allows intercession guards and runtime checks to be performed. 
The framework does not expose the entire TP monitor system functionality, but 
only selected aspects of it. The TP systems programmer only needs to go as far 
as application developers require. If only certain advanced transaction mod
els or semantics-based concurrency control protocols are required, only those 
extended transaction behaviors need be provided; other extended transaction 
behaviores can be incrementally added to the framework over time. 

The implementation of the Reflective Transaction Framework is based on 
transaction adapters, reflective software modules built on top of TP monitor 



88 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

functional components. Transaction adapters use events to reify extended tran
saction state and selected aspects of the TP monitor into distinct meta-level ob
jects, and use the existing application programming interface to reflect changes 
to the computational state of the TP monitor. Extensions provided by the 
transaction adapters build on the available functionality of the TP monitor, to 
the extent possible, and provide the programmer with a clean meta interface 
through which they can customize and extend the system functionality. This 
allows extensions and model improvements to be quickly incorporated, and as 
a result,the framework can remain up to date with application requirements. 

The Reflective Transaction Framework provides a flexible foundation for 
implementing application-specific extended transactions. We have applied the 
framework to implement a wide range of advanced transaction models [Barga 
and Pu, 1995], including split transactions [Pu et al., 1988], cooperative group 
transactions [Nodine and Zdonik, 1990], and Sagas [Chrysanthis and Ramam
ritham, 1992], and a number of semantics-based concurrency control proto
cols [Barga and Pu, 1996], including commutativity [Weihl, 1988a], recover
ability [Badrinath and Ramamritham, 1991], cooperative serializability [Ra
mamritham and Chrysanthis, 1992], and epsilon-serializability [Ramamrithan 
and Pu, 1995]. We have also used it to incrementally develop new advanced 
transaction models, building on models previously added to the framework, 
such as the cooperative-split model which combines cooperative group trans
actions with split transactions. 

It is our hope the Reflective Transaction Framework will provide a clear 
migration path to incorporate research advances in transaction processing into 
real, working environments where they can be applied. We have implemented 
a proof-of-concept prototype of the framework on production transaction pro
cessing software, namely the Encina Toolkit [Encina, 1993]. The Encina 
Toolkit has been used to construct several modem distributed TP monitors, in
cluding mM's CICS/6000, DEC's ACMS/xp, and the Encina TP monitor. As 
such, our Encina implementation of the Reflective Transaction Framework can 
be used with any ·of these commercial TP monitors for experimenting with ex
tended transactions. Our implementation on Encina was clearly facilitated by 
an available event callback mechanism and open API to the transaction services 
of the toolkit. A valid question is whether the additional work of exposing the 
API and adding an event mechanism to other transaction processing systems 
would be worthwhile. The answer to this is in part economical. There are only 
a handful of commercially significant TP monitors in circulation, most of which 
offer only conventional database transactions. This compares to thousands of 
applications written on top of them, and possibly thousands more that could 
be developed using extended transactions. It is our opinion that any additional 
work invested in transaction processing systems software to enable a system, 



THE REFLECTIVE TRANSACTION FRAMEWORK 89 

such as the Reflective Transaction Framework, to widen their application reach 
and make application development easier should yield a large payoff. 

Acknowledgments 

Support for this research is provided in part by an Intel Graduate Fellowship from the 
Intel Foundation. 



III Long Transactions and 
Semantics 



4 FLEXIBLE COMMIT PROTOCOLS 
FOR ADVANCED TRANSACTION 

PROCESSING 
Luigi Mancini, Indrajit Ray, 

Sushil Jajodia and Elisa Bertino 

Abstract: Although numerous extended models have been proposed to over
come the limitations of the standard transaction model, most of these models 
have been proposed with specific applications in mind and, therefore, they fail 
to support applications with slightly different requirements. In this paper, we 
propose the H-transaction framework along with a set of powerful transaction 
control primitives to support a wide range of transaction dependencies includ
ing flexible commit. Our set of transaction control primitives can be broadly 
classified into two types: basic primitives that are found in almost all conven
tional transaction processing systems and new primitives that lend expressive 
power and flexibility. These primitives can be used to separate the coding of the 
transactions from the application's control aspects needed for preserving coop
eration and dependencies among transactions. The reason behind this separation 
is to simplify the work of the programmer since transactions can be coded with
out worrying about managing concurrent computations, communications, etc. 
We show that our primitives have expressive power to support a number of ex
tended transaction models including nested transactions, sagas, workflows and 
contingent transactions. Moreover, our primitives allow the programmers to de
fine their own primitives - having well-defined interfaces - so that application 
specific transaction models such as the distributed multilevel secure transactions 
can also be supported. 

S. Jajodia et al. (eds.), Advanced  Transaction  Models  and Architectures
© Springer Science+Business Media New York 1997



92 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

4.1 INTRODUCTION 

The classical transaction model for managing database systems has been an 
immense success, both theoretically and commercially. Nonetheless, there has 
long been recognition (see for example [Gray, 1981, Elmagarmid, 1992, Ko
rth, 1995]) that the standard model is too restrictive for many advanced data
base applications. For example, in a cooperative environment, if long-duration 
activities are executed as atomic transactions, they may significantly delay the 
execution of shorter activities. In the case of multidatabase systems, the au
tonomy requirements of the component local databases are in direct conflict 
with the atomicity property of classical transactions. Consequently, in re
cent years, a number of works have attempted to extend the traditional atomic 
transaction model to support more flexible transaction processing. Examples 
of such models are nesteq transactions [Moss, 1985], Sagas [Garcia-Molina 
and Salem, 1987], CgnTract [Reuter, 1989], ACTA [Chrysanthis and Ramam
ritham, 1990], Flex [Bukhres et al., 1993], DOMS [Georgakopoulos et al., 
1994], and Asset [Biliris et al., 1994]. 

A crucial limitation of many of these extended transactions models (e.g., 
[Moss, 1985, Garcia-Molina and Salem, 1987, Reuter, 1989]) is that they have 
been proposed with specific applications in mind, which seriously limits the 
flexibility of these models. A specific model may be provided by the system 
but the user cannot specify which one. Moreover, if an application has needs 
with slightly different requirements, they lack the necessary expressive power 
to model these applications. For example, the nested transaction model is most 
suitable in applications that have a hierarchical structure with a good degree of 
internal parallelism. The Saga model is useful only when the subtransactions 
are relatively independent and each subtransaction can be successfully com
pensated. The ConTract model is also based on rigid compensation policies for 
transactions. 

ACTA, DOMS, and Flex provide formal frameworks to express the proper
ties of extended transactions and dependencies among them. ACTA [Chrysan
this and Ramamritham, 1990] classifies these dependencies into two broad cat
egories based on a transaction's effect on the commit and abort of other trans
actions and on the data items it accesses. Although ACTA is able to specify a 
wide variety of transaction models, it fails to capture transaction dependencies 
which arise due to events other than commit or abort of the transactions. Ex
amples of such events are various error conditions which do not influence the 
commit or abort of transactions but which nonetheless need to be addressed. 
The secure dependencies present among subtransactions of a multilevel secure 
distributed transaction [Jajodia and McCollum, 1993, Jajodia et al., 1994] is an
other example. The DOMS project's [Georgakopoulos et al., 1994] transaction 
model provides a specification language similar to ACTA and, therefore, suf
fers from similar shortcomings as ACTA. 



FLEXIBLE COMMIT PROTOCOLS 93 

Flex [Bukhres et al., 1993] is a transaction specification model that offers 
flexibility by providing primitives for specifying dependencies between trans
actions. The specifiable dependencies can be broadly categorized into two 
types, those that define the execution order on the subtransactions of a Flex 
transaction (i.e., commit/abort dependencies) and those that define the depen
dencies of subtransactions on events not belonging to the transaction. How
ever, Flex does not allow a programmer to specify the communication (Le., 
synchronization) between parallelly executing transactions. Also, a Flex tran
saction specification cannot include any information about how to compensate 
subtransactions. 

Asset [Biliris et al., 1994] is different from other works in that it provides 
ACTA based language primitives for specifying dependencies between a set of 
concurrent, cooperating transactions. These primitives allow the programmer 
to define custom transaction semantics to match the needs of the specific ap
plication and are general enough to be incorporated in any database system. 
However, even with these flexible primitives, Asset, like ACTA, cannot imple
ment transaction dependencies that arise due to events other than commit or 
abort of transactions or data sharing among them. It does not offer an experi
enced programmer the flexibility to alter the commit protocol so as to provide a 
more versatile commit facility, while at the same time retaining simple default 
interfaces for the naive user. Such a feature seems useful in many situations. 

A more recent work, that by Barga and Pu [Barga and Pu, 1995], proposes 
the reflective transaction framework as a practical and modular method to im
plement extended transaction models. This work provides the flexbility of lan
guage primitives to construct extended transactions. However it does not allow 
the programmer to specify synchronization between parallely executing trans
actions; hence the framework's suitability for designing extended transactions 
that execute in a distributed or multidatabase setting is limited. 

In this paper we propose the H-transaction model alongwith a set of lan
guage primitives that allow programmers to implement a large number of tran
saction dependencies including flexible commit. The dependencies that can be 
implemented in our model include the commit/abort dependencies that can be 
specified by the ACTA framework and those present in the multilevel secure 
transaction model. Our work focuses on transaction control at the program
ming language level, and proposes a linguistic construct that separates the cod
ing of the transaction from the definition of the application's control flow. All 
control aspects needed for transaction cooperation and dependencies are coded 
separately. Transactions can be thus coded without worrying about managing 
concurrent computations, communications, etc. This simplifies the work of the 
programmer and also increases code reusability. 

The programmer can use our primitives directly as part of a programming 
language to specify various commit and abort dependencies among transaction 



94 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

and to realize relaxed correctness criteria to satisfy their specific application 
needs. Alternatively, the programmer can use a higher level declarative lan
guage to specify the dependencies among transactions. In this case,a pre
compiler can automatically translate the higher level description of the depen
dencies into our primitives. Further our primitives allow the programmer to 
define their own custom primitives having well-defined interfaces. (An exam
ple of this is the noSignalServiced primitive shown later in section 4.5.4) This 
feature adds to the flexibility of our model by allowing application specific 
transaction models to be supported. 

The remainder of this paper is organized as follows. We describe the H
transaction model in section 4.2. Section 4.3 discusses how flexible transaction 
dependencies can be specified in our model followed by a description of our 
primitives in section 4.4. In section 4.5, we show that our primitives can sup
port not only various extended transaction models but models that are cus
tomized to meet the specific application needs as well. Section 4.6 concludes 
with a brief discussion of our future work. 

4.2 OVERVIEW OF OUR APPROACH 

4.2.1 The System Architecture 

A transaction Tj in our model is defined to be any sequence of operations on 
data items (both persistent and volatile) delimited by either the BegiILTrans(Tj) 
... EncLTrans(Tj) pair or the BegiILTrans(Tj) ... AbOrLTrans(Tj) pair. A tran
saction is written in a high level language supporting persistence and the new 
transaction processing primitives that we introduce. 

An H-transaction is composed of a set of such transactions and includes a 
definition of a set of dependencies among these transactions; this set of depen
dencies includes, but is not limited to, the commit or abort relationships among 
the component transactions. The programmer is able to specify different re
lationships among the component transactions by defining a coordinate block 
in the H-transaction that describes these relationships. The coordinate block 
can be either a program fragment in the high level language or it may be a 
declarative description of the transaction dependencies. In section 4.3 we show 
how coordinate blocks can be specified as a program fragment in the high level 
language. 

Basic transaction processing is achieved at every site by the cooperation of 
Transaction Manager, the Log Manager, the Lock Manager and the Resource 
Manager. These components together form what is known as the Transaction 
Processing (TP) subsystem at the particular site and ensures the atomicity, con
sistency, isolation, and durability (ACID) properties [Gray and Reuter, 1993] 
of the transactions executing at that site. The TP subsystem implements the 
basic transaction control operations like commit, abort, savework, rollback, 
begin-transaction, lock data items etc. 



FLEXIBLE COMMIT PROTOCOLS 95 

On top of the TP subsystem at every site, we assume that there is a Tran
saction Management Adapter (TMA) module that enhances the functionality 
of the underlying TP subsystem by implementing an extended interface of the 
TP system for our new transaction processing primitives. The notion of Tran
saction Management Adapter is borrowed from [Barga and Pu, 1995] where 
the authors propose also a lock adapter and a conflict adapter as add-on mod
ules on top of an existing TP system to enhance the TP system's functionality. 
A discussion on these other adapters is beyond the scope of this work (although 
we allow these adapters in our architecture), as we focus mostly on transaction 
termination dependencies. 

A transaction T j executing at some site interacts with the TMA-TP module 
at that site via a coordinator module (eM). This coordinator module acts as a 
transaction event handler and implements among other things the coordinate 
block of the H-transaction of which Tj is a part. Before transaction Tj gets exe
cuted its eM is started as a set of concurrently executing threads. Execution of 
a transaction primitive by a transaction Tj is the transaction event that causes 
the eM corresponding to Tj to react and handle the event.! If a thread with the 
same name as the event is defined within the eM then the thread gets activated 
otherwise the eM lets the underlying TMA-TP module handle the event as ap
propriate. The executing threads can in tum invoke other primitives that are part 
of the TMA-TP module in order to actually handle the event. The coordinator 
module can be viewed as an extended form of the notion of metatransaction of 
[Barga and Pu, 1995] to include executing codes and a mechanism to specify 
and handle inter-transaction communication and synchronization. 

Specifically a eM can be divided into [wo distinct parts: A required set 
of compiler-generated event interceptors and an optional set of programmer 
defined event handler. The latter is essentially the programmer defined coor
dinate block of the H-transaction. The set of event interceptors includes: (1) 
the mechanism to pass on relevant parameters from the run-time environment 
to the other system modules and vice versa, and (2) the information as to how 
a particular event is to be handled, i.e. whether by a programmer defined event 
handler or by the underlying TMA-TP module. In particular, the set of event 
interceptors contains mechanism to communicate with other eMs of the same 
H-transactions and to pass on parameters to these eMs. An event interceptor 
is awakened by the occurrence of an event and then either invokes one of the 
threads in the eM or invokes an action exported by the TMA-TP module. Fi
nally, the eM may contain a set of invariants for each component transaction. 
These invariants constitute the predicates that need to be satisfied before and 
after a transaction execution. 

In a distributed setup the eM at the originating (coordinating) site of an H
transaction is of the form just described. At remote sites where component 
transactions get executed, lightweight eMs are created. The lightweight eMs 



96 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

contain only the compiler generated event interceptors. Their function is to in
voke the relevant threads executing at the CM of the coordinating site or at the 
TMA-TP module at the local site. They act as the interface between the TMA
TP at the remote site and the CM at the coordinating site. If the programmer 
does not explicitly specify any coordinate block (i.e. the programmer has not 
defined any thread to handle transaction events) then such lightweight CMs get 
loaded at every site and act as forwarding agents for transaction events to the 
TMA-TP module at each site. The CM at the coordinating site executes the 
programmer defined code to perform the coordinating operations, as for exam
ple the decision to commit an H-transaction, commit some components of the 
H-transaction while aborting other components or taking some other action. If 
no component transaction of the H-transaction is executing at the coordinating 
site, the TMA-TP subsystem at this site is responsible only for the housekeep
ing funotions (e.g., writing log records etc.) for the H-transaction as a whole 
and for its components, while the TMA-TP subsystems at the remote sites exe
cute the component transactions as well as perform housekeeping (only for the 
component transaction executing at that site). 

An H-transaction submitted by the user to the transaction processing system 
at a particular site (the coordinating site) is executed as follows: 

1. If the programmer has specified a coordinate block with the H -transaction 
then 

(a) When the H-transaction gets initiated, create a coordinator module 
at the coordinating site. This CM has two parts - the event intercep
tor part and the event handler. 

(b) Create a table R in the event interceptor that maps events to the re
spective handlers located in either the local TMA-TP system or in 
the programmer defined primitives. 

(c) If the H-transaction consists of component transactions that are to 
be executed at remote sites then spawn a lightweight CM at each 
of these sites to contain only the mechanism to communicate with 
other CMs and a copy of the table R. 

2. If the programmer has not specified any coordinate block then 

(a) Create a lightweight CM at the coordinating site to pass on the event 
that has occurred to the underlying TMA-TP module. 

(b) If it is a distributed setup, spawn similar lightweight CMs at the 
remote sites too. 

3. When a transaction event occurs for some transaction T; (that is T; exe
cuted some transaction primitive), the event interceptor in the CM asso
ciated with T; is awakened. 



FLEXIBLE COMMIT PROTOCOLS 97 

(a) If the event has been the execution of some transaction primitive 
defined by the programmer then the event interceptor first checks the 
invariants, if any, that constitute the precondition for the primitive. 
If these invariants are satisfied then the eM invokes the thread with 
the same name executing within the eM at the coordinating site. 
Note that prior to or alongwith invoking a thread at the coordinating 
site's eM, the event interceptor may also invoke actions at the local 
TMA-TP subsystems. 

(b) The thread at the coordinating site's eM gets activated, performs 
the actions defined by its code and returns control to the to the event 
interceptor of the eM associated with Tj. 

(c) The initiating eM checks for postcondition satisfaction and depend
ing on the outcome of this test, returns the result of the thread ex
ecution to the transaction as if for a normal transaction primitive 
call. Note that before the result is returned, the eM may invoke any 
function at the local TMA-TP subsystem. 

(d) If the event has been the execution of some primitive not defined by 
the programmer, then the event interceptor allows the local TMA-TP 
subsystem to handle the event appropriately. 

4. The decision to end an executing H-transaction comes from the eM at 
the coordinating site. When this happens the different eMs at the various 
site all terminate and control gets returned to the TMA-TP subsystem at 
the coordinating site. 

Figure 4.1 gives a schematic diagram on how transaction events in a remote 
transaction are handled by the cooperation of the lightweight eM at the remote 
site, the eM at the coordinating site and the TMA-TP subsystems at both the 
sites. In the figure the begitLtrans event is handled as a local TP system call by 
the TMA-TP subsystem at the remote site; the end-trans event is intercepted 
by the lightweight eM at the remote site and forwarded to the eM at the coor
dinating site. The latter in tum invokes a TP system call at its local TMA-TP 
subsystem. We have specifically left out the semantics of the two different 
events here. 

Our model allows the programmer to define not only application specific 
transaction events (an example of which will be given later on in section 4.5.4), 
but also to redefine with ease the semantics of ordinary transaction events such 
as transaction completion or transaction begin, commit and abort. The pro
grammer defined behavior get precedence over the default behavior and can 
thus be imposed on the latter. 

In the following we give an example to illustrate the execution model for a 
programmer defined coordinator. 



98 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Transaction 
executin&at 
remoieslie 

eo<Uransm 

code for all local 
TP system calls 
for e.g. begin_lransO 

return 

Transaction Processing 
Subsystem 

atllle 
remote site 

Coordinator Module 
atoriginatingsile 

r--------------~ , , 

code for the 
TPsystemc::all 
return 

Transaction Processing 
Subsystem 

at the 
originating site 

, , 

Figure 4.1 Event Handling Sequence for Transaction Events 

4.2.2 Illustrative Example 

Figure 4.2, illustrates the execution of an H-transaction that involves multiple 
sites. A programmer wants to coordinate the two component transactions T 1 
and T2 such that either T1 commits or T2 commits, but not both. Note that T1 
and T 2 may both abort. We assume that for the purpose of commit or abort 
of transactions the TMA-TP at various sites rely on the commit protocol of 
the underlying TP system. In particular for the current discussion we assume 
that the commit protocol used at all sites is Early Prepare (EP) [Stamos and 
Cristian, 1993]. Figure 4.2 shows how the user's H-transaction, the TMAs and 
the CMs interface with the TP systems. Directed solid arrows represent the 
interaction between the different components of the systems. 

When the user submits an H-transaction at Siteu, the coordinating code spec
ified in the H-transaction is loaded as the coordinator module CMu. The TMAu 
submits each of the component transactions T 1 and T 2 to the TMAs at Site1 and 
Site2. These remote TMAs in turn loads the respective lightweight CMs (which 
have a much lesser functionality than CMu) and then request their underlying 
TP systems to execute the component transactions. 

When T 1 completes, it invokes an encLtrans operation that prompts the oc
currence of the event. This invocation awakens the event interceptor in CM1 
which asks TMA1 to prepare to commit T 1. The TP system at Site1 forces 
a prepare log record and sends an acknowledgement to CM1. At this point 



FLEXIBLE COMMIT PROTOCOLS 99 

CMl sends an end....trans message to CMu. Note that this message can be seen 
as the yes vote sent by participants when they are ready to commit in the EP 
commit protocol. CMu in turn decides to commit T 1 and abort T 2 and accord
ingly informs its TMA. TMAu asks the TP subsystem at the coordinating site 
to force a commit record for T l, an abort record for T 2 and a commit record 
for the H-transaction, and then acknowledges to CMu. After this CMu sends 
a commit(Tl} message to CMl at Sitel and an abort(T2} message to CM2 at 
Site2. CMl will cause TMAl to invoke commit(Tl} at its TP system while 
CM2 will cause TMA2 to invoke abort(T2}. The TP system at Sitel writes a 
commit record for T 1 and forgets about T l, while the TP system at Site2 writes 
an abort record for T 2 and forgets about it. 

T 

If 

i 
T 

___________________ \!!,e! !I:f!a!1!8f~,!n-,'J ~Lte.l' ______________________ _ 

eM 

Eldcnded TP System at 

Site! 

end.Jrans 

, 

Extended TP System at 

Site. 

Extcoded TP System at 

Site2 

Figure 4.2 Execution model for a programmer defined coordinator 

Note that the above scenario represents the execution sequence when T 1 

finishes before T2. IfT2 were to complete first, T2 would have committed and 
T 1 would have aborted. 

4.3 AN EXAMPLE OF TRANSACTION DEPENDENCIES 

We offer the programmer two methods for specifying transaction dependen
cies. With the first approach the programmer directly uses the high level lan
guage and our new transaction processing primitives to specify the dependen-



100 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

cies. With the second approach the programmer uses a declarative language in 
a notation we have proposed to specify the dependencies among transactions. 
A pre-compiler then translates this higher level description into a correspond
ing code in the high level language we use to specify transactions. The first 
approach gives more expressive power to the programmer than the second one 
and hence we will concentrate mostly on this approach; on the other hand the 
second approach is easier to use. In the following we show by an example, 
how the programmer can express these dependencies in our model to define 
coordinate blocks for a group of transactions using the high level language. 

We assume that the programmer wants to design an H-transaction consisting 
of four component transactions Tlo T2, T3 and T4 which will be executed at dif
ferent sites. The application requires that at most one of T 1 or T 2 commits with 
T 1 being preferred to T 2 and either both T 3 and T 4 commit or none of them. 
In short, one and only one of the following sets of transactions commits: {}, 
{Ttl, {T2}, {T3, T41, {Tl' T3, T4} or {T2' T3, T4}. By using our primitives 
the programmer will be developing the program fragment shown in figure 4.3 
for this application. Note that although we use some of our new language prim
itives before they have been presented in the paper, a detailed understanding of 
the primitives is not required at this stage. 

From the program fragment, we find that the H-transaction consists of two 
coordinate blocks specified by the two coordinate ... using delimiters. Each 
block contains code that implements the dependencies between those transac
tions that are defined within the blocks. In the figure, the coordinate block 
coordinate ... using ... end implements the dependency between transactions 
Tl and T2 (viz. only one ofTl orT2 can commit with Tl being preferred) while 
the block coordinate ... using default implements the dependency among T 3 
and T 4 (viz. either both commit or none do). Note that the latter commit depen
dency is the standard commit dependency implemented in the various commit 
protocols (like Early Prepare). We assume that each transaction processing 
system implements a default commit protocol. The second coordinate block 
in the example in figure 4.3 specifies "default" as the coordinator module for 
transactions T3 and T4. 

Of interest to this discussion is the coordinate block for transactions T 1 and 
T 2 specified by the programmer in the form of a program fragment within the 
sub-block using ... end. This program fragment implements the eM for T 1 

and T 2 and contains definitions of some of the primitives that the programmer 
invokes within the transactions. 

The transactions T 1 and T 2 are defined sequentially within the H-transaction 
(and not within a cobegin ... coend block which would have implied parallel 
execution) with Tl being defined before T2. The sequential definition of trans
actions naturally entails a precedence relation between these two transactions. 
Each transaction must be initiated by the initiate primitive before being able to 



void exampJeO 
{ 

} 

coordinate 
initiate(T 1 • T 2) ; 

begiJLtranS (T 1) 

emLtrans (T 1); 
begiJLtranS (T 2) 

end; 
coordinate 

initiate(T 3. T 4) ; 

cobegin 
begilLtranS (T 3) 

end-trans (T 3); 
begin..trans (T 4) 

end..trans (T d; 
coend 
using default 

FLEXIBLE COMMIT PROTOCOLS 101 

thread emLtrans (M) { 
ifM=Tl then 

} 

{ commit (Tl); abort (T2); exit; } 
ifM=T2 then 

{ commit (T 2); abort (T 1); exit; } 

thread abort..trans (M) { 
ifM=T2then 
{ abort (T 1. T 2) exit; } 

} 

Figure 4.3 Program in the high level language for an H-transaction consisting of four 

transactions 

start its execution. After a transaction is initiated, it is assigned a transaction 
identifier in the system and an environment is set up for its execution. 

After the H-transaction is submitted to the system, the TMA-TP module 
at the coordinating site assigns transaction identifiers to the H-transaction as 
well as its components and then loads the eM for the coordinating site. The 
TMA-TP module at the coordinating site then submits transaction Tl to the 
remote site's TMA-TP. The remote TMA-TP module establishes the remote 
lightweight coordinator to execute on top of itself and then begins to execute 
Tl. Note that the eMs as a unit represent the interface to the TMA-TP systems 
for an H-transaction. 

Suppose T 1 executes an encLtrans; the eM at T 1 's site sends a prepare
to-commit Tl message to its underlying TMA-TP module and then invokes 



102 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

encLtrans at the coordinating site's eM. (In figure 4.3 encLtrans has been de
fined by the programmer in the coordinate block.) The eM at the coordinating 
site asks the eM for T 1 to invokes commit(T 1) and asks the eM for T 2 to in
voke abort(T2) at the respective underlying TMA-TP. The respective TMA-TP 
module consequently force a commit log record for T 1 and an abort log record 
for T2 and acknowledges the respective eMs. Also the TMA-TP module at 
the coordinating site forces appropriate log records for T1 and T2. Note that 
the TMA-TP module can force an abort log record for T 2 although T 2 was 
never submitted to a remote site for execution. This is because when the H
transaction was submitted, the TMA established a local identifier for T2. This 
causes T 1 and T 2 to terminate. 

T 1 may alternatively execute an aborLtrans command during its execution. 
This aborLtrans command may have been invoked explicitly by T 1 or it may 
have been invoked by the TMA-TP because T1 could not successfully com
plete. If the TMA-TP module at the remote site aborts T 1, the eM at the remote 
site informs the eM at the coordinating site by sending an aborLtrans message 
to the eM at the coordinating site that T 1 has aborted. On the other hand if 
T 1 invokes aborLtrans, the eM at the remote site forwards the invocation of 
aborLtrans by T 1 to the eM of the coordinating site. The eM at the coordi
nating site executes aborLtrans according to the implementation specified by 
the programmer in the thread aborLtrans. The thread returns without execut
ing any explicit abort (or commit) command and the coordinating eM does not 
send any specific instructions back to the eM at the remote site (it merely re
turns). As a result T 1 stops its execution but remains alive in the system until an 
explicit abort comes from the coordinator module to terminate it.2 The TMA
TP module at the coordinating site now submits T 2 for execution at a remote 
site. As before a eM will be created at the remote site for T2. Subsequently 
invocation of encLtrans or aborLtrans by T 2 will be trapped by the eM at the 
remote site and forwarded to the eM at the coordinating site for execution. If 
T 2 executes encLtrans, the corresponding thread will commit T 2 and abort T 1. 
If, on the other hand, T 2 executes abOrLtrans, both T 1 and T 2 will be aborted. 
This will terminate the eMs for T1 and T2. Note that for the description of the 
implementation of the coordinator for T 1 and T 2 in figure 4.3 we have assumed 
that eMu in figure 4.2 submits T1 and T2 sequentially to each of the respective 
TMAs. Moreover eMu does not submit T 2 if T 1 commits. 

Once the eM for T 1 and T 2 terminates, the control is transferred to the next 
step in the program. The TMA-TP module at the coordinating invokes the 
default coordinator in the system (i.e. the default commit protocol) for T 3 and 
T4. T3 and T4 proceed concurrently in the system as they are within a cobegin 
... coendblock. When T3 and T4 commits the execution H-transaction is over. 

Note that in any coordinate block, we can refer to only those transaction 
identifiers that are in the scope of the block. In figure 4.3, transactions T 1 and 



FLEXIBLE COMMIT PROTOCOLS 103 

T 2 are scoped in the coordinate block defined by the programmer but not T 3 

and T4. Consequently we can define encLtrans and aborLtrans only for Tl and 
T 2 within this block. 

4.4 PRIMITIVES FOR FLEXIBLE COMMIT 

We now describe our transaction processing primitives. These primitives are 
broadly classified into two types: basic primitives and new primitives. The 
basic primitives are so named because their semantic counterparts are found 
in almost all conventional transaction processing systems. The new primitives 
are the ones we define and that lend expressive power and flexibility to our 
model. These primitives are essentially control primitives which modify the 
state of the transaction. There are six possible states. A transaction which 
has been submitted to the system, but has not yet started its execution is in 
the initial state. While executing its code, the transaction is in the running 
state. After it has executed all its code (either successfully or unsuccessfully), 
the transaction moves to the completed state. From the completed state the 
transaction terminates by moving either to the committed state or to the aborted 
state. From any of these five states a transaction can enter a sixth state - the 
error state. In this case the transaction can either execute an error handler 
(if provided by the system or by the programmer as part of the transaction) or 
return to its previous state and then continue execution from the next instruction 
in the transaction's code (possibly generating an error message in the process). 

4.4.1 Basic Primitives 

initiate(Th ... , Tn) This primitive initiates the transactions Th ... Tn. It re
turns new transaction identifiers in the variables T 1, ... Tn and sets up the 
environment necessary for the execution of the transactions. The transac
tions are started by calling the begiILtransO primitive. The scope of the 
variables Tj used in an initiate primitive is the program block containing 
this initiate primitive. The initiate(Tj) primitive must precede all use of 
the variable Tj within an H-transaction. 

begilLtrans(Tj) This primitive starts the execution of the transaction whose 
transaction identifier is Tj. This primitive can be redefined by the pro
grammer. 

sid = saveworkO The saveworkO primitive is used to establish a savepoint in 
the transaction execution. The invocation of this primitive causes the sys
tem to save the current state of processing. Each transaction manager 
writes a savepoint record on the local transaction log, while the current 
values of any local variables are saved on the volatile memory. The save
work call returns a handle which is assigned to the identifier sid (called 
a savepoint identifier). This identifier can be used subsequently to refer 



104 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

to that savepoint, and in particular to the state of the system when this 
savepoint was established. The scope of the binding between the save
point and the identifier sid is the block in which the "sid = saveworkO" is 
executed. Control can jump from inside of a block to a savepoint within 
an encompassing block, but not the other way round. 

rollback(sid) This primitive takes as a parameter the identifier of a previ
ously established savepoint and reestablishes (or returns to) the savepoint. 
More precisely, when the rollback(sid) function is invoked, it restores the 
state of the system to the state that existed when the savepoint denoted 
by the savepoint identifier sid, was established; the execution of the tran
saction then continues from the statements that follow the savepoint sid. 
The successful termination of the rollback primitive is indicated by the 
restoration of the savepoint denoted by sid. This primitive can only be 
invoked within a transaction code. 

restart(T j) This primitive is a part of the coordinator module and cannot be 
invoked by a transaction. When called, this primitive starts the execution 
of the transaction whose identifier is Tj. If the transaction Tj was pre
viously executed (partially or fully), then all changes effected by Tj are 
discarded before the transaction execution is restarted. 

commit(Tt, ... , Tn) This primitive is implemented in the TMA-TP module 
and is part of the commit protocol. It cannot be invoked directly by a 
component transaction. Rather, it has to be invoked by the coordinator 
module. This primitive commits the operations of the transactions which 
are its parameters, by first writing the log records and then communicat
ing the commit decision to the transaction managers of these transactions. 
In other words, this command forms the final phase of any commit pro
tocol between the coordinator and the transactions TI , ... , Tn. 

abort(TI' ... , Tn) This primitive aborts the transactions specified as parame
ters. If the primitive abort(Tj) is invoked before Tj has started its execu
tion, then Tj never starts its execution and is discarded from the system. 
Like the commit primitive, abort is a part of the TMA-TP module and 
can be invoked only by the coordinator module. 

cobegin ... coend These two primitives act as bracketing constructs for speci
fying concurrently executing transactions. Control flow does not proceed 
beyond the cobegin ... coend block until all of the transactions created 
by the block complete. Cobegin ... coend can be nested. 

4.4.2 New Primitives 

emLtrans(Tj)< support_code> The encLtrans is a system defined primitive 
which can be redefined by the programmer as a coordinator module thread. 



FLEXIBLE COMMIT PROTOCOLS 105 

Its execution signifies the successful completion of the transaction Tj, 
specified by a previous matching begiILtrans(Tj), and indicates a willing
ness to commit the work of Tj. The programmer's definition of encLtrans 
gets precedence over the default definition for the primitive. 

If the programmer has not redefined the encLtrans primitive, the default 
execution takes place. In this case the eM for Tj notes the completion 
of Tj; it asks the relevant TMA-TP module to force a prepare log record 
and sends vote messages relevant to the default commit protocol to the 
coordinator for the H-transaction. The control flow does not proceed 
beyond the encLtrans call, until the transaction manager for Tj receives 
either a commit or an abort decision. If the primitive is invoked without 
any parameter, then it commits the transaction within which it has been 
invoked. 

As mentioned earlier, it is possible to overload this primitive to have a 
more flexible programmer-defined commit protocol. From transaction 
Tj's point of view the execution of the programmer-defined encLtrans is 
the same as the default execution. That is the completion of the tran
saction Tj is recorded by a prepare log record and control is passed to 
the thread of the same name being executed at the coordinator. If the 
thread for encLtrans does not contain an explicit invocation of the commit 
or abort primitives, the control proceeds beyond the transaction Tj after 
the thread completes execution and returns. However, the transaction Tj 
remains unterminated until an explicit invocation of commit or abort is 
eventually performed by the coordinator module for Tj. 

Note that this primitive has two parts: encLtrans(Tj) and support_code. 
The second part is an optional piece of program code which can be in
cluded by the programmer. This program code is not executed when the 
encLtrans primitive is invoked. Rather, the coordinator module can direct 
the TMA-TP module for Tj to execute this program code by invoking the 
calLsupport primitive (explained next). 

calLsupport(Tj , ... , Tm} This primitive can be invoked only as part of the pro
grammer defined coordinator. With this primitive the coordinator module 
can direct the transaction managers of the transactions Tj, ... , Tm to ex
ecute the supporLcodes specified as part of the corresponding encLtrans 
primitives in these transactions. The program fragment for suppOrLcode 
of each Tk runs within the scope of Tk. If a SUpporLcode is invoked 
while the corresponding transaction is running, then the execution of the 
SupporLcode is deferred until the transaction completes. The calLsupport 
returns to the invoking thread, when all the executing suppOrLcodes fin
ish. This primitive along with the programmer specified suppOrLcode are 
useful in cases where the coordinator module wants to perform some task 



106 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

beyond merely committing/aborting after the transaction has executed an 
encLtrans primitive. 

aborLtrans(Tj) The aborLtrans is a system defined primitive which can also 
be redefined by the programmer as a coordinator module thread. In both 
cases, it signifies the unsuccessful completion of the transaction Tj, spec
ified by a previous begiILtrans(Tj), and indicates a decision to abort the 
work. However, the aborLtrans does not actually abort the transaction. 
Rather the actual abort is performed by the abort primitive which is in
voked by default and will always abort Tj. In case the aborLtrans prim
itive is redefined by the programmer, the new definition gets preference 
over the default definition. If the thread for aborLtrans does not contain 
an explicit invocation of the abort primitive, status of the transaction Tj 
remains unterminated until an explicit invocation of abort is eventually 
performed by the coordinator for Tj. The termination of the aborLtrans 
primitive itself is similar to the encLtrans primitive as explained above. 

Table 4.1 Partial Syntax for the Coordinate Block 

Keyword Syntax 

coordinate-block 

transaction 

trans-command 

protocol 

protocolcode 

protocol-command 

thread-command 

coordinate transaction using protocol 

begiJLtrans(trans-id) trans-command encLtrans(trans-id) 
I initiate(trans-id) 
I cobegin transaction coend 
I transaction; transaction 

aborLtrans(trans-id) 
I host-language-command 

default I protocolcode 

protocol-command 
I protocolcode ; protocol-command 

thread begiJLtrans 
I thread encLtrans(parameter) thread-command 
I thread aborLtrans(parameter) thread-command 
I thread identifier(formal-par-sequence) thread-command 

commit(trans-ids) I abort(trans-ids) I restart(trans-ids) 
! calLsupport(trans-ids)! exit 
I thread-command;thread-command 
! host-language-command 

coordinate < transaction> using < protocol> This primitive defines the co
ordinate block whose partial syntax is described in table 4.1. (Note that 



FLEXIBLE COMMIT PROTOCOLS 107 

only the enhancements required in a standard programming language to 
support such a syntax is shown in the table. Anything not been defined is 
assumed to follow the syntax of the host language.) The coordinate block 
consists of two components: the transaction component and the protocol 
component. The protocol component defines the coordinator module for 
the set of transactions specified in the transaction component. The pro
tocol component can be the keyword default, in which case one of the 
traditional commit protocols like two-phase commit or early prepare is 
used. Or it can be a programmer specified dependency among the trans
actions in the high level declarative language or it can be a programmer 
defined code in which case it contains the code for each of the primitives 
that the programmer wants to define or redefine, including begiILtranS(t), 
encLtrans(t) and aborLtrans(t). The scope of the redefined primitives is 
limited to the corresponding transaction component. 

Within the coordinate block the programmer can define persistent vari
ables which can live across the boundaries of transactions involved in 
the coordinate block. These persistent variables may be useful for flow 
control. 

The control flow does not proceed beyond the coordinate block until ei
ther the transaction component completes or the coordinator module is 
terminated in a manner explained below. 

thread identifier For efficiency and ease of implementation as daemons, the 
protocol component is programmed as a set of concurrently executing 
threads. The thread primitive allows the programmer to define a coor
dinator module thread which is activated by a transaction event. The 
identifier specifies the event which activates the thread. When a coor
dinate block is encountered, the coordinator module is created. It waits 
for any of the events named in its threads. When such an event occurs 
the corresponding thread is activated. If the thread encounters an exit 
command, the coordinator module terminates thereby causing the entire 
coordinate block to end. This is true even if there are transactions in the 
transaction component which are either yet to be executed or are cur
rently executing concurrently. These transactions have to be taken care 
of by a subsequent coordinate block otherwise may lead to the problem 
of orphan transactions.3 

On the other hand if an exit command is not encountered, the thread 
does not cause the coordinator module to terminate. Instead when the 
thread completes, it returns control to the transaction component. If an 
exit command is never encountered, the coordinator module terminates 
when all transactions have completed their execution and the coordinate 
block has terminated. 



108 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

exit Invocation of this command causes the termination of the coordinator 
module. 

Table 4.2 summarizes the transaction primitives in our model. The first 
column of table 4.2 lists the different primitives. The primitives have been 
grouped into three categories - (i) primitives that allow the structuring of the 
H-transaction (ii) primitives that can be invoked from within the transaction 
component of a coordinate block and (iii) primitives that can be invoked from 
only within the protocol component of a coordinate block. The second column 
specifies where the programmer can use each primitive from viz., inside or out
side a protocol component. The third column gives the system component that 
provides the interface to a particular primitive. When a primitive is invoked, 
this system component executes the primitive first. It in tum may invoke other 
system components in order to carry on the execution of the primitive. 

Table 4.2 Summary of Transaction Primitives 

Primitive Name Invocation Relative to Interface Exported Nested Redef-
Protocol Component By Definition inition 

coordinate ... using outside language support no no 
cobegin ... coend outside language support yes no 

initiate outside/inside TMA-TP no 
sid = savework outside TMA-TP no 
rollback outside TMA-TP no 
begilLtrans outside CMorTMA-TP yes yes 
end-trans outside CMorTMA-TP yes yes 
aborLtrans outside CMorTMA-TP yes 

thread inside CM no 
commit inside TMA-TP no 
abort inside TMA-TP no 
restart inside TMA-TP no 
caiLsupport inside TMA-TP no 
exit inside TMA-TP no 

The fourth column specifies which primitives provide a bracketing construct 
to specify nesting from the syntactic point of view. Finally the fifth column 
indicates whether a primitive can be redefined by the programmer in the coor
dinate block. Note that we allow only begiILtrans, end.trans and aborLtrans to 
be redefined in the current model of H-transactions. 

4.4.3 Discussion 

In the course of a transaction execution, a sid = saveworkO primitive may be 
executed more than once. In such cases it is preferable to assign each time a 
new handle which is generated by the system since otherwise the transaction 



FLEXIBLE COMMIT PROTOCOLS 109 

loses the ability to refer to the exact savepoint among those that were estab
lished previously.4 As an example, suppose the programmer wants to undo the 
effects of a loop based on certain conditions established during the execution 
of the loop. If a savepoint is established within the loop and the same savepoint 
identifier is employed, then the programmer can undo only the latest iteration 
of the loop. This is because the programmer loses reference to the other save
point handles. (Note, however, that if a programmer establishes a savepoint 
just before a loop, then the effects of all iterations of the loop can be fully un
done. This is possible because the scoping rules of the savepoint identifier is 
the block in which the sid = saveworkO primitive is executed.) 

Note that although the restart(Ti) command may seem semantically equiv
alent to a rollback to the beginning of the transaction, there is one important 
difference between the two. The restart primitive can be executed only by the 
coordinator; a transaction cannot restart itself. The rollback primitive, on the 
other hand, is invoked by the transaction itself. The coordinator does not have 
any idea about savepoints established by a transaction and hence is not allowed 
to execute a rollback primitive. 

Finally, note that a coordinator for a transaction Ti can multiply invoke com
mit or abort primitives for Ti. Usually this occurs if Ti is to be conditionally 
aborted or committed. In such cases, the first execution at runtime of either 
primitive takes effect while the others, if executed subsequently, performs only 
null operations and generates warning messages. Further, the initiate command 
can be invoked from both outside or inside a coordinate block. If it is invoked 
from oustide a coordinate block then the scope of the identifier Ti specified in 
the invocation of initiate is the entire program code for the H-transaction; else 
the scope is limited only to the particular coordinate block from which initiate 
is invoked. In the former case we can have a number of coordinate blocks for 
a single transaction Ti defined within the scope of the identifier Ti; however, at 
most two coordinators can actually be involved for terminating Ti. The scoping 
rules ensure that every time an encLtrans or an aborLtrans is invoked, it gets 
bound to only one thread, viz. to the thread which is defined at point closest 
to the invocation. Hence, the closest coordinator will execute encLtrans (or 
abOrLtrans) without committing or aborting Ti and a second will perform the 
actual commit or abort operation. 

4.5 REALIZING VARIOUS TRANSACTION DEPENDENCIES 

We now show how different transaction dependencies that are present in var
ious extended transaction models can be specified using our primitives. We 
would like to emphasize here that we are interested in only the termination de
pendencies among transactions. We do not attempt to capture dynamic depen
dencies that are not known a priori. Such dynamic dependencies arise mostly 
due to data sharing among the transactions. 



110 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

4.5.1 ACTA Framework 

The ACTA framework defines two major types of termination dependencies 
among pairs of transactions. (i.e. dependencies that arise between transactions 
due to commit or abort of one of them and not due to data sharing among them). 
These dependencies are the commit dependency and the abort dependency de
fined as follows: 

Commit Dependency If transaction T; develops a commit dependency on tran
saction Tj then T; cannot commit until Tj either commits or aborts. Note 
that this does not imply that if Tj aborts, then T; should abort as well. 

Abort Dependency If transaction T; develops an abort dependency on tran
saction Tj then if Tj aborts T; should also abort. Note that this does not 
imply that T; should commit if Tj commits, nor that Tj should abort if T; 
aborts. 

Note that an abort dependency implies a commit dependency. If T 1 develops 
an abort dependency on T 2, then T 1 must wait for the commit decision of T 2; 
hence T 1 cannot commit before T 2, i.e. there is a commit dependency between 
Tl and T2. In figures 4.4 and 4.5 we show how our primitives can be used to 
express the commit and abort dependencies of ACTA. 

In figure 4.4, suppose that T 1 wants to commit. It executes an emLtrans 
primitive which causes the emLtrans thread at the coordinator to be executed. 
Since T2 has not yet executed the emLtrans (or aborLtrans) primitive, the 
variable doneT2 is false. Consequently the emLtrans thread sets the vari
able completedTl to true and then returns. As no commit or abort decision 
has been taken for T 2 by the coordinator module, T 1 cannot terminate at this 
time by committing. On the other hand if T 1 had decided to abort, it would 
have executed the aborLtrans primitive, which in turn, would have caused the 
aborLtrans thread to be executed at the coordinator. This would abort T 1 irre
spective of whether T 2 commits or aborts. 

When T 2 decides to commit or abort, the variable doneT2 will be set to true 
by one of the threads encLtrans or aborLtrans. If T 2 executes an aborLtrans 
primitive, the corresponding thread aborts T2. The aborLtrans thread then finds 
that the variable completedTl is set to true (which indicates that Tl is waiting 
to commit) and hence commits Tl. If, on the other hand, T2 executes the 
encLtrans primitive (indicating that it wants to commit), the encLtrans thread 
commits T 2 first and then, noticing that completedTl is set to true, commits 
T 1. At this point the program terminates. 

From the above discussion it is clear that the program in figure 4.4 imple
ments the ACTA commit dependency between Tl and T2. Figure 4.5 imple
ments an abort dependency between T 1 and T 2. The reason is similar to the one 
above with the only difference being that if T 2 executes an aborLtrans primi
tive, the corresponding aborLtrans thread in the coordinator aborts both T 2 and 



void commiLdependency 0 
{ coordinate ; 

initiate (T 1. T 2) ; 
cobegin 

begilLtranS (T 1 ) 

end.trans (T 1) ; 
begilLtranS (T 2) 

end.trans (T 2) ; 
coend; 
using { 

FLEXIBLE COMMIT PROTOCOLS 111 

completedTl := false; doneT2 := false; 
thread end.trans (M) { 

} 
end 

} 

if doneT2 then {commit(T 1); exit ;} 
else ifM = T2 then { 

commit(T2); doneT2 = true; 
if completedTl then { commit(T 1); exit ;}} 

else completedTl = true ; } 
thread aborLtrans (M) { 

} 

ifM = T2 then {abort(T2); doneT2=true; 
if completedTl then {commit(Tl); exit;}} 

else abort(T d ; 

Figure 4.4 ACTA commit dependency 

T 1, even if T 1 has previously decided to commit. Moreover, if T 1 is yet to reach 
a decision when T 2 has decided to abort, T 1 gets aborted. 

4.5.2 Sagas 

Saga [Garcia-Molina and Salem, 1987] is a transaction model that provides 
system support for the execution of a long-lived transactions. In sagas, a long
lived transaction is executed as a number of shorter subtransactions without 
sacrificing the atomicity of the larger transaction, although other transactions 
may see the effects of a partial saga execution. 

A saga consists of a set of flat transactions Tl, T2, ... , Tn that execute se
quentially within the context of the saga, but can interleave arbitrarily with 
component transactions of other sagas. For each Tj (1~i< n) there is a com
pensating transaction CTj which, if executed, semantically undoes the effects 
of Tj. A compensating transaction CTj is executed iff the transaction Tj has 
committed and the saga of which Tj is a part, has aborted. A saga commits 
if all T/s successfully commit and aborts if any Tj aborts. If a saga aborts, 
it compensates for the effects of all committed components T/s by executing 
their corresponding compensating CT/s. The compensating transactions are 
executed in the reverse order of the commits of the corresponding Tj's. Note 
that there is no compensating transaction for the last component transaction Tn. 



112 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

void abOrLdependency 0 
{ coordinate ; 

initiate (Tl,T2) ; 
cobegin 

begilLtrans (T II 

end-trans (T II ; 
begilLtrans (T 2) 

end-trans (T 2) ; 
coend; 
using { 

completedTi := false; doneT2 := false; 
thread end-trans (M) { 

} 
end 

} 

} 

if doneT2 then {commit(Tl); exit;} 
else ifM = T2 then {commit(T2); doneT2 = true; 

if completedTi then { commit(Tll; exit ;}} 
else completedTi = true ; 

thread aborLtrans (M) { 

} 

ifM = T2 then {abort(T2,Tll; exit;} 
else abort(T II ; 

Figure 4.5 ACTA abort dependency 

This is because if Tn commits then the entire saga commits. The final outcome 
of a saga is either the sequence: 

1. T1. T2, ... , Tn-1. Tn if all Tj's commit, or 

2. T1. T2, ... , Tj , CTj-l,'''' CT2, CT1 if any Tj aborts . 
............. 
abort 

In figure 4.6 we show how the semantics of a saga can be achieved with our 
primitives. The saga program consists of one coordinate block which controls 
the execution flow of the transactions T1, ... , Tn and the corresponding com
pensating transactions CTn- 1, ... , CT1. In the transaction component of the 
coordinate block the Tj's and the CT/s (if so required) are executed sequen
tially. If Tn successfully completes, then the coordinator aborts CTn-1. ... , 

CTI (as no compensation is required) and the saga terminates successfully. On 
the other hand, if any Tj aborts, the thread abOrLtrans(Tj) in the coordinator is 
executed, which aborts the transaction Tj, ... , Tn as well as the compensating 
transactions CTn-l, ... , CTj. In this way the transactions remaining to be ex-
ecuted, viz., CTj-1. ... , CTI become exactly those required to compensate the 
effects ofthe already committed transactions T 1. ... , Tj- 1. If a CT k aborts, the 
thread abOrLtrans(CTk) in the coordinator gets executed, which in tum restarts 
the compensating transaction CTk. In this way the effects of all the committed 
transactions are compensated for and the saga aborts. 



FLEXIBLE COMMIT PROTOCOLS 113 

void saga 0 
{initiate (Tl.T2, ... ,Tn,CT1,CT2, ... ,CTn-d; 

coordinate 

} 

begirLtrans (Tl) 

en<Ltrans; 

begin..trans (Tn) 

en<Ltrans; 
begin..trans (CTn-l) 

en<Ltrans; 

en<Ltrans; 
using 

end; 

thread en<Ltrans (M) { 
commit(M) ; 
ifM = Tn then {abort(CTl. ... ,CTn-l); exit}; 

} 
thread aborLtrans (M) { 

case (M) do 

} 

Tl: {abort(Tl, ... ,Tn, CTl,CT2, ... ,CTn-l ); exit} ; 
T2: abort(T2, ... ,Tn,CT2, ... ,CTn-d; 
T3: abort (T3," .,Tn,CT3, ... ,CTn-d; 

Tn: abort(Tn) ; 
CT 1: restart(CT 1) ; 
CT 2: restart(CT 2) ; 

Figure 4.6 Implementation of a saga 

4.5.3 Workflows and Long Lived Activities 

ACID properties of transactions have the limitation that hide any internal struc
ture to be perceived and referred to from outside of the transaction. Conse
quently if there is an activity that consists of multiple steps of processing with 
an explicit flow of control among these steps, it is difficult to model it as a 
transaction. 



114 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Workflows have been suggested as a way of implementing long-lived acti
vities which have some kind of an internal .structure, in terms of shorter tran
saction like components [Dayal et al., 1990]. Workflows allow dependencies 
among transactions to be expressed and also allows correctness requirements 
among the component transactions that are less stringent than serializability 
and isolation. 

We show by an example how a workflow can be expressed by our primitives. 
The example workflow involves planning for a trip by John Doe. He plans to 
leave on the 3rd of June by either Delta, or United, or American in that order, 
stay at the hotel Ambassador from the 3rd until the 6th of June. and rent a car 
from either National or Avis with no preference. IT any of the reservations (i.e., 
flight, hotel or car) cannot be made, John Doe would like to cancel his trip. 

In the example in figure 4.7 the different components flightReservation, hotel
Reservation, carReservation, cancelFlightReservation and cancel Hotel Reser
vation perform the actual reservation or cancellation operations. The single 
coordinate block for the workflow contains the transactions Tl, ... , T6 and 
the compensating transactions CThCT2. CTI compensates for any committed 
flight reservation made by Th T2, or T3 in case either the hotel reservation or 
the car reservation cannot be made. CT 2 compensates for a committed hotel 
reservation if the car reservation is unsuccessful. 

Every time a transaction completes, it invokes the encLtrans thread at the 
coordinator which then enforces the control flow of the activity. The successful 
completion of the workflow is indicated by the commit of either T 5 or T 6. In 
this case the coordinator ensures that CT 1 or CT 2 are aborted. 

If any transaction decides to abort, it invokes the aborLtrans thread at the 
coordinator. The execution of the aborLtrans thread for a transaction Tj aborts 
all transactions Tj that follow Tj in the workflow and compensates for the com
mitted Tk'S preceding Tj in the workflow. In case any compensating transaction 
CTj gets aborted, it has to be reexecuted until it successfully completes. 

4.5.3.1 Semiatomicity. A formalization of the workflow model is pro
vided in [Zhang et al., 1994b]. In this paper a workflow is synonymous to a 
flexible transaction. The structure of a flexible transaction T is viewed as a 
set of the so called representative partial order of subtransactions. The sub
transactions within a representative partial order are related by the precedence 
relation. Each representative partial order gives an alternative for the execution 
of the flexible transaction. There is also a preference relation which defines the 
preferred order of the alternatives. Each subtransaction is categorized as either 
retriable, compensatable, or pivot. 

The execution of a flexible transaction T preserves the property of semi
atomicity if one of the following conditions is satisfied: 



FLEXIBLE COMMIT PROTOCOLS 115 

void workflow 0 
{ 

} 

initiate(Tl ,T2,T3,T 4,T5,T6,CTl,CT2) 
coordinate 
airline* air; % persistent variable 

begilLtrans(T 1 ) 

flightReservation(Delta, 613/96) ; 
air = Delta; 

end....trans(T t> ; 
begilLtrans(T 2) 

ftightReservation(United, 613/96) ; 
air = United ; 

end....trans(T 2) ; 
begilLtrans(T 3) 

flightReservation(American, 613/96) ; 
air = American ; 

end....trans(T3) ; 
begilLtrans(T 4) 

hoteIReservation(Ambassador, 613/96, 616/96) ; 
end....trans(T 4) ; 
cobegin 

begilLtrans(T 5) 
carReservation(National, 613/96, 616196) ; 

end....trans(T 5) 
begilLtrans(T 6) 

carReservation(Avis, 6/3/96, 616/96) ; 
end....trans(T 6) 

coend; 
begilLtrans( CT 1 ) 

canceIAightReservation(air, 613/96) ; 
end....trans(CT t>; 
begilLtrans( CT 2) 

canceIHoteIReservation(Ambassador, 613/96, 616196) ; 
end....trans(CT2); 

using 

end 

thread end....trans (M) do { 

}; 

case M of { 

}; 

Tl : { commit (Tl); abort (T2,T3);} ; 
T2: { commit (T2); abort (Tl,T3);} ; 
T3 : { commit (T3); abort (T 1 ,T2);} ; 
T5: {commit (T5); abort (T6,CTl,CT2); exit;} ; 
T6: {commit (T6); abort (T5,CTl,CT2); exit;} ; 
default: commit (M); % commit T 4 or CT lor CT 2 

thread aborLtrans (M) do { 
noSet = union (noSet,M) ; 

}; 

if subseteq({T 1 ,T2,T3},noSet) then 
{abort (Tl,T2,T3,T4,T5,T6,CTl,CT2); exit} 

if subseteq(T 4 ,noSet) then 
abort (T4,T5,T6,CT2); 

if subseteq( {T 5 ,T 6} ,noSet) then 
abort (T 5,T 6); 

if M==CT 1 or M==CT 2 then 
restart(M); 

Figure 4.7 Workflows: reservations 



116 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

1. All its subtransactions in one representative partial order commit and all 
attempted subtransactions not in the committed representative partial or
der are either aborted or have their effects undone. 

2. No partial effects of its subtransactions remain permanent in local data
base. 

In [Zhang et aI., 1994b] the authors provide a commit protocol which dy
namically commits subtransactions as soon as possible. An alternative repre
sentative partial order is executed if an attempted subtransaction aborts. In this 
case subtransactions which have already been committed in the failed repre
sentative partial order are compensated for. 

Given an instance of a flexible transaction we can implement a coordinator 
for this flexible transaction in a manner similar to implementing a workflow, 
shown previously. In fact a compiler can be made to generate the codes for 
such a coordinator, given an appropriate description of the flexible transaction 
with the different precedence and preference relations. 

4.5.4 Secure Distributed Transactions 

A major problem of all lock-based concurrency protocols in multilevel secure 
(MLS) database systems is that in order to avoid a covert channel any read lock 
acquired by a higher security level transaction on a lower security level data 
object must be released whenever a lower level transaction attempts to acquire 
a write lock on the same data object. Unfortunately, this requirement has grave 
implications for the corresponding commit protocol, specially the early prepare 
commit protocol (EP) [Mohan et al., 1986, Stamos and Cristian, 1993]. What 
it implies is that read locks may get released within a subtransaction's window 
of uncertainty (period after a participant has voted yes to commit a subtrans
action, but before it receives the commit or abort decision from the coordina
tor), possibly resulting in nonserializable executions [Jajodia and McCollum, 
1993, Jajodia et aI., 1994]. 

Consider the history in figure 4.8 showing two distributed transactions Low 
and High such that transaction Low is at a lower security level than transaction 
High. Each distributed transaction consists of two subtransactions Low I , Low2 
and Highl' High2 with LoWI and Highl executing at Site 1 and Low2 and High2 
executing at Site 2 respectively. Among the data objects accessed by Low and 
High are x and y with the security level of x being the same as that of y and 
equal to the security level of transaction Low. Data object x is at Site 1 while 
y is at Site 2. The order of execution of each subtransaction is shown in figure 
4.8. The event yes in the figure signifies that the subtransaction has completed 
execution and has sent an yes vote to the coordinator. Note that when w[x] is 
invoked by LoWI the operation cannot be delayed waiting for Highl to release 
the read lock on x. This is in order to avoid a covert channel between the the 



FLEXIBLE COMMIT PROTOCOLS 117 

security levels of transactions High and Low. Consequently, although Highl 
is in its window of uncertainty when LoWl requests write lock on x, the read 
lock on x by Highl has to be released. Basic EP protocol does not take into 
account that read locks may be released during a subtransaction's window of 
uncertainty. In this case EP will commit both distributed transactions High and 
Low thereby leading to the non-serializable history shown in figure 4.8. 

I. window ofuncenainty for subtransaction Highl 
Site 1 

Hight: begin ...•.. rlx) •...•. yes 

~ read lock on x by Hight 
: need 10 be released bere 

begin •...•. wlx) •..... yes commitLow 

·1 

If High commits alibis 
poinllb. history will be 
non·serializab,le. 

begin ... . , . r[y] ., .... yes coJmitHigh 

LoW2: begin ...•.. wlY) ..•.•. yes commilLow 

Hight -+ Lowt AND LoW2 -+ High2 ==> High -+ Low -+ High 

Figure 4.8 Example history illustrating problem with EP in MLS systems 

To overcome this problem, a secure EP commit protocol (SEP) has been 
proposed in [Atluri et al., 1994]. It implements the following secure commit 
dependency in addition to the conventional commit/abort dependencies for dis
tributed systems: 

Given any two participants Ti and Tj of a multilevel secure distributed 
transaction T, there is a secure commit dependency between Ti and Tj, 

denoted by Ti 4 Tj, defined as follows: 

If either Ti or Tj releases any of its low read locks within its window 
of uncertainty, before all participants complete, then both Ti and Tj are 
aborted. 

In other words, to prevent nonserializable executions, SEP aborts a dis
tributed transaction if any of its lower reading subtransactions is compelled 
to release a lower level read lock within the subtransaction's window of un
certainty, before the other subtransactions complete. As usual, SEP guarantees 
that either all participants abort or all of them commit. 

SEP for MLS systems can be implemented within our framework by in
corporating the GetSignal primitive introduced in [Bertino et al., 1997]. The 
basic idea is that the lock manager at a site notifies the transaction manager 
by sending the latter a signal (similar to raising an exception), that a higher 



118 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

level subtransaction at that site has released one of its lower level write locks 
because a lower level subtransaction at the same site has requested a write lock 
on the same data item 5. Each signal received by the transaction manager from 
the lock manager identifies a lower level data object x that has been read by 
the higher level subtransaction T; and indicates a new value for x. Before the 
higher level subtransaction can commit, the subtransaction has to handle these 
exceptions generated by the lock manager and the GetSignal primitive is used 
by the programmer to specify how signals from lower level subtransactions are 
to be handled by the higher level subtransaction. 

The GetSignal primitive has the syntax: GetSignal[[sll -+ handlerd, ... , 
[sIn -+ handlern]]. It has two exit points: A standard one which is the next 
instruction after the GetSignal and an exceptional continuation which is repre
sented by the expression 

[sit -+ handlerl] , ... , [sin -+ handlern] 

On receiving a signal from the lock manager, the transaction manager locates 
the savepoint sl; that immediately precedes the read of the data object identified 
by the signal and associates the savepoint identifier sl; with this signal. For 
example, if the signal indicates a new value for the data object x, then the 
signal label sl; established by the first step sl; = SaveWorkO preceeding the 
operation r;[x] in the subtransaction body, is chosen. Each of the sl;'s in the 
expression for the GetSignal primitive, represents one such savepoint identifier 
that has been associated to a signal; handler; represents a programmer specified 
piece of code to be executed in order to handle the associated signal. We say 
the savepoint sl; covers the data object in question. 

If multiple low read locks of T; had to be released, the transaction manager 
receives multiple signals, one for each broken lock. It buffers all such signals. 
Later on when T; invokes a GetSignal call, the transaction manager considers 
all the signals it has buffered for T;, and selects one signal to be serviced as 
follows: It selects that signal whose associated savepoint identifier covers all 
the low reads with released read locks. 

The default invocation for the getSignal primitive is: GetSignal[ -+ handler]. 
In this case, for any signal that needs to be serviced, the same code of handler 
is executed. 

We now show how it is possible to implement a commit protocol that en
forces the secure dependency among subtransactions of a multilevel secure 
distributed transaction T. The SEP protocol is achieved by adding a suitable 
GetSignal call as the supporLcode (refer to the discusion on the semantics of 
the primitive en<Ltrans(T;)< support_code> in section 4.4.2) for each sub
transaction T; and making the coordinator module invoke a calLsupport for 
each of the lower reading subtransactions to invoke in its tum, the GetSignal 
calls. 



FLEXIBLE COMMIT PROTOCOLS 119 

Figure 4.9 shows an H-transaction, T, that implements the SEP protocol for 
committing three concurrent subtransactions Tb T2 and T3. These three sub
transactions are related to each other by the secure dependency Tj 4 Tj (1 ~ i, 
j ~ 3, i :f j). In this example transactions T 1 and T 3 read data at lower security 
levels, but not T2. We assume that a secure two-phase locking protocol is used 
to provide local concurrency control at each site. 

As each subtransaction Tb T2, and T3 completes, it invokes the emLtrans 
thread in the coordinator module and enters its corresponding window ofuncer
tainty. When the last of the subtransactions has invoked the end-trans thread, 
the coordinator module executes the calLsupport primitive for transactions T 1 

and T3. Note that the calLsupport is not invoked for T2 as this subtransaction 
does not read down. The calLsupport primitive in tum causes the supporLcodes 
defined in T 1 and T 3 to be executed. 

Each supporLcode is of the form < GetSignal[ -t aborLtrans(Tj)]; noSignal
Serviced>. The GetSignal call has the format of the default invocation. Thus 
if there is any signal to be serviced the exceptional continuation of GetSignal 
denoted by aborLtrans(Tj) gets executed. On the otherhand if there is no sig
nal the statement following the GetSignal is executed - in this case the thread 
noSignalServiced defined in the coordinator module. 

If any of Tl or T3 invokes aborLtrans (indicating it had to release a lower 
level read lock within its window of uncertainty), the coordinator module thread 
aborLtrans aborts all the three subtransactions T 1, T 2 and T 3 and then exits. On 
the other hand if both T 1 and T 3 invokes noSignalServiced it implies that none 
of them had a signal to service, i.e. none of the subtransactions had to release a 
lower level read lock within its window of uncertainty. At this point it is assured 
that the H-transaction T comprising of the three subtransactions is two-phased 
and hence the noSignalServiced thread commits the three subtransactions and 
exits. 

Note that the GetSignal and calLsupport primitives can be used in tandem 
by the programmer to implement more complex secure commit protocols like 
the ones shown in [Ray et al., 1996]. All that the programmer has to do is 
write a suitable SupporLcode and coordinator module thread corresponding to 
the desired behavior of each subtransaction. The support code should define 
how signals are to be serviced and what needs to be done in the absence of any 
signal and may invoke programmer defined coordinator module threads. 

4.5.5 Contingent Transactions 

A contingent transaction [Elmagarmid, 1992] is a set of two or more compo
nent transactions Tl, T2,"" Tn with the property that at most one of the trans
actions, say Tj, commits. A contingent transaction T = {T1, T2, ... , Tn} is 
executed as follows: T 1 gets executed first. If it commits then the transaction T 



120 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

void secure...distributed.commit 0 
{ 

} 

initiate (Tl,T2,Ts) ; 
coordinate 
cobegin 

begilLtrans (T 1) 
r[x] ; 
sl2 = SaveWorkO ; 
w[z] ; 
r[y] ; 1* this is a low read *1 
sIs = SaveWorkO; 
r[ q] ; 1* another low read *1 

end...trans (T I) {GetSignal[ -+ aborLtrans(T 1) ]; 
noSignalServiced ; } ; 

begilLtrans (T 2) 
rIo] ; 
w[p] ; 

end...trans (T 2) ; 
begilLtrans (T s) 

r[s] ; 1* this is a low read *1 
sl2 = SaveWorkO ; 
r[y] ; 1* another low read *1 
w[q] ; 

end....trans (Ts) {GetSignal[-+ aborLtrans(Ts) ]; 
noSignalServiced ;}; 

coend; 
using 

end 

thread end...trans (M) { 

} 

completedSet := union(completedSet,M); 
if completedSet = {Tl,T2,Ts} 

then calLsupport(T 1, T s); 

thread noSignalServiced (M) { 
commitSet:= union(commitSet,M) ; 
if commitSet = {Tl,Ts} 

then {commit (Tl,T2,Ts); exit;} 
} 
thread aborLtrans (M) { 

abort (T},T2,Ts); exit; 
} 

Figure 4.9 A secure distributed commit protocol 

commits and ends. If T 1 aborts, T 2 gets executed and if it commits, T commits 
and ends, and so on. 

The program fragment in figure 4.10 shows how a contingent transaction 
can be implemented within our framework. In the example the contingent tran
saction consists of three component transactions Tlo T2 and T3. Note the se
quential definition of the three transactions in the body of the H-transaction 
(they are not within any cobegin ... coend block) ensures that first T 1 gets exe
cuted and invokes en<LtransO or abOrLtransO. Then depending on whether the 
H-transaction terminates or not T2 and/or T3 gets executed. 



void contingentO 
{ 

} 

initiate(Tl ,T2,T3) ; 
coordinate 

begiJLtrans (T 1) 

emLtrans (T}); 
begin...trans (T 2) 

end.trans (T2); 
begilLtrans (T 3) 

end-trans (T 3); 
using 

end 

FLEXIBLE COMMIT PROTOCOLS 121 

thread end-trans (M) { 
ifM=Tl tben 

} 

{ commit (T}); abort (T2,T3); exit; } 
ifM=T2 tben 

{commit (T2); abort (Tl,T3); exit;} 
ifM=T3 then 

{commit (T3); abort (Tl,T2); exit;} 

thread aborLtrans (M) { 

} 

abortSet = union(M,abortSet) ; 
if subseteq({Tl,T2,T3},abortSet) then 
{ abort (Tl,T2,T3) exit; } 

Figure 4.10 Example of a contingent transaction 

4.5.6 Nested Transactions 

A nested transaction is a transaction that is executed from inside the dynamic 
scope of another transaction. Nested transactions can further create nested 
transactions and the nesting can proceed to arbitrary depths. The transaction at 
the root of this tree of transactions is called the root transaction and the transac
tions at the interior nodes (called parents) or leaves of this tree are jointly called 
subtransactions. Subtransactions execute atomically with respect to their sib
lings. 

Each of the parent transactions is suspended until all its nested transactions 
terminates (Le., commits or aborts). However, the semantics of commit for 
the nested transactions are different from that for the root transaction. When 
a nested transaction (parent or leaf) commits, the changes that it made to the 
database are made accessible to its parent, but are not made permanent. The 
changes are made permanent only when the root transaction commits. Abort 
semantics for both root and subtransactions are similar to the abort semantics 
for the classical transaction. Furthermore, a subtransaction can access any data 



122 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

item that is currently accessed by one of its ancestors without forming a con
flict. 

We illustrate the implementation of the termination dependency of a nested 
transaction in our model by a simple example. The example involves a tran
saction nested to two levels, which makes travel arrangements for John Doe. 
If at any stage a reservation cannot be made, the trip is cancelled. At any 
stage thus, if the trip is to be cancelled, any previous reservation has to be can
celled. Note that unlike in the workflow model where previous reservations 
are cancelled by explicitly executing compensating transactions, in the nested 
transaction we do not require any compensating transaction. This is because 
of the fact that the effects of subtransactions are made permanent only at the 
commit of the root transaction. We assume that the code for the subtransac
tions are already there for the example in figure 4.11. Also note that the actual 
implementation of nested transactions requires proper implementation of the 
data-sharing dependencies among the subtransaction. We assume that such 
mechanism are already in place. 

void nested-transactions 0 
{ 

} 

initiate(Tl.T2.Ta.T4); 
coordinate 
begiILtrans(T 1) 

begiILtrans(T 2) 
ftightReservation(United. 6/3/96) 

eDlLtrans(T 2) ; 

begiILtrans(T a) 
hotelReservation(Ambassador. 6/3/96. 6/6196) 

eDlLtrans(T a) ; 

begin..trans(T 4) 
carReservation(Avis. 6/3/96. 6/6196) 

end..trans(T 4) ; 

eDlLtrans(T 1) ; 
using 

thread eDlLtrans (M) do { 
ifM = Tl then commit (TloT2.Ta.T4); exit; 

}; 
thread aborLtrans (M) do { 

abort (TloT2.Ta.T4); exit; 
}; 

end 

Figure 4.11 Nested transactions 



FLEXIBLE COMMIT PROTOCOLS 123 

4.6 CONCLUSIONS AND FUTURE WORK 

This paper presents a flexible commit facility that allows the programmer to 
achieve various transaction dependencies of different extended transaction mod
els. The transaction dependencies are implemented by a set of coordinator 
modules that interact with the system's default commit/abort mechanism. The 
programmer is provided with a small set of transaction primitives by which he 
can develop application specific coordinator modules. Moreover, the program
mer can redefine some of these primitives for additional flexibility by providing 
the code for the implementation of the new definitions. The compiler of a data
base programming language can also use these primitives to support higher 
level constructs for transactions. In this case, the compiler can automatically 
generate the appropriate codes needed for coordination of a set of transactions 
from a high level description of their dependencies. 

Not only can the programmer re-define some of the existing primitives, he 
can also define newer primitives with well-defined interfaces to satisfy his par
ticular requirements. In this case these new primitives are defined as new 
threads of a coordinator and are invoked from a transaction. An example of 
such a new application specific primitive has been the noSignalServiced prim
itive shown in section 4.5.4, where it was used to support the secure dependen
cies among transactions. Allowing custom primitives with well-defined inter
faces seems useful for supporting some other extended transaction models not 
discussed in this work, like the split-join transaction model. For example in 
the case of split-join transactions, the programmer can define two new threads 
split and join in the protocol component. The split thread starts a new tran
saction and delegates a set of data to the new transaction. The join thread is the 
complement of the split thread; it joins to transactions. 

Our commit facility seems to be a practical way to implement extended tran
saction models on top of existing TP systems following the same approach as 
that of [Barga and Pu, 1995]. In this work, the authors extend Transarc's Encina 
TP system [Encina, 1993, Gray and Reuter, 1993] by developing transaction 
management adapters on top of Encina. We choose to use a similar approach. 
Our transaction management adapters offer the same functionality as the tran
saction management adapter of [Barga and Pu, 1995] while our coordinator 
module can viewed as an extended version of the notion of metatransactions 
of [Barga and Pu, 1995] built on top of transaction management adapters. A 
coordinator module in an H-transaction lists the set of primitives that are in
voked by a component transaction alongwith an indication as to what type of 
primitive each is (for example if it is a system primitive or it is one of the new 
primitives that we have defined). It also contains the codes for these primitives. 
In this manner we can support extended transaction models on conventional TP 
system once the transaction adapter layer has been implemented. 



124 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

One advantage of our scheme over [Barga and Po, 1995] is our ability to sup
port application specific dependencies that do not fit into any general model. 
The secure dependency is one such example. We plan to implement the pro
posed primitives within the framework of an ongoing project on MLS tran
saction processing system. When these current set of primitives are combined 
with the flexible secure two-phase locking proposed in [Bertino et al., 1997], 
we should have a complete flexible MLS transaction processing system that 
supports both classes of dependencies, transaction as well as data dependen
cies between MLS transactions. 

Notes 

I. Note that a process can be made to react to an event in many different ways: The event 
can generate an interrupt to the process; the event can send a message to a port at which the 
process listens or the event can invoke a RPC at the process. We choose not to specify the exact 
mechanism so as to keep the model as much implementation independent as possible. 

2. In most commit protocols, if any subtransaction aborts, the coordinator always sends an 
abort decision to all participants. However, in our protocol the coordinator may not send an 
abort decision. Instead the coordinator can ask the transaction to restart its execution. This can 
be useful in many situations. For example suppose the subtransaction was aborted because of a 
site crash. Then when the site comes up, the subtransaction can be restarted. 

3. A transaction T; is an orphan if it is never explicitly terminated by any coordinator module 
within the H-transaction. When a transaction T; is orphan the locks acquired by T; are not 
released and the updates made by T; are not made permanent. This may cause a number of 
problems like deadlock or unsatisfiable dependencies. A complete discussion is outside the 
scope of this paper. 

4. We assume here that the programmer does not save the contents of an sid before reusing 
it. 

5. Such a facility of the lock manager notifying the transaction manager about early lock 
release by transactions is available in some secure transaction processing system like Informix 
Online/Secure [Informix, 1993] 

Acknowledgments 

This work was partially supported by an ARPA grant, administered by the Office of 

Naval Research under grant number NOOI4-92-J-4038, by National Science Founda

tion under grants IRI-9303416 and INT- 9412507, and by National Security Agency 
under grant MDA904-94-C-6118. The work of E. Bertino and L. Mancini was carried 

out while visiting George Mason University during summer 1995. 



5 CONTRACTS REVISITED 
Andreas Reuter, Kerstin Schneider 

and Friedemann Schwenkreis 

Abstract: To meet the correctness requirements of mission-critical processes 
workflow systems have to commit guarantees regarding their behavior in case 
of failures and concurrency. The ConTract model is a conceptual framework for 
the reliable execution oflong-lived computations in a distributed environment in
cluding workflows. This paper focuses on the aspect of maintaining consistency 
in ConTracts and containing consistency violations. It will give an overview of 
how consistent execution is formally treated in the ConTract model. We present 
a correctness criterion, which introduces a formal basis to verify execution histo
ries and to build up correctness ensuring mechanisms. It is a unified criterion for 
recoverability and permeability, named as invariant-based serializability, which 
is based on a conflict-relationship between invariants in the ConTract model. A 
formal definition of compensation is given and extensions of the compensation 
mechanism are introduced. These extensions are a first step to leverage the con
cept of compensation such that it can be used as a general-purpose mechanism 
as in real applications. In particular, the support of semi-transactional steps and 
the performance can be enhanced and advanced semantics of workflows can be 
supported. 

5.1 INTRODUCTION 

The ConTract model is a conceptual framework for the reliable execution of 
long-lived computations in a distributed environment. Properties like this are 
particularly important for applications which during the past ten years or so 
have come to be known as "workflow". This does not say ConTracts embody 
a workflow system; they do, however, provide a complete run-time system, 
including an execution model, a failure model, etc. for advanced workflow ap
plications. One might say that ConTracts are to workflow what the Java virtual 

S. Jajodia et al. (eds.), Advanced  Transaction  Models  and Architectures
© Springer Science+Business Media New York 1997



128 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

machine is to Java-based applications. Since it was first presented in 1988, 
the ConTract model has evolved in multiple ways: First, there has been a se
quence of prototype implementations, none of which encompasses the full set 
of concepts. Second, a number of ideas from the ConTract model have been in
corporated into commercial products, either indirectly, via the literature, or via 
osmosis, by members of the ConTract team joining the respective development 
teams. And finally, the original research group (at the type level, that is; the 
people have changed) has continued to work on some of the more fundamental 
issues of long-running computations, such as formal consistency constraints 
and their implications on the execution model, on recovery, and so on. 

This paper will focus on the aspect mentioned last, i.e. the problem of main
taining consistency in ConTracts and containing consistency violations. Ex
isting workflow systems basically ignore those problems. Their vendors put it 
more mildly by saying the system provides the application with all the inter
faces required to take care of consistency by itself. So, whereas many of the 
technical aspects related to distributed execution, naming, security etc. have 
been solved and made their ways into standards, consistency maintenance is 
still a hard problem, where research has to - and can - make a contribution. The 
paper will give an overview of how consistent execution is formally treated in 
the ConTract model. 

5.1.1 The Motivation For ConTracts 

First and foremost, ConTracts were designed to achieve reliable execution for 
long-running computations. In a sense, ConTracts were to provide a level of 
system support to such computations that is comparable to what transactions 
do for short interactive applications. Don't get this wrong: The level at which 
a distributed system supports both models is what is comparable; the actual 
concepts and techniques are quite different. 

The first question to come up is: What is a long-lived computation, as op
posed to a short (interactive) transaction? It certainly does not help to set a 
fixed elapsed time limit, such as: Whatever completes faster than within 10 
seconds is a short computation, everything else is a long-lived computation. 
Either there are counter-examples on both sides of the limit, or the limit is set 
so high (or so low) that it becomes irrelevant. So we better define long-lived 
computations by their properties, especially those properties that lack support 
in current (operating) systems. Here is a list of some important traits that can 
be found in long-running computations such as workflow, but which do not 
hold for transactional applications: 

• A long computation is one which cannot or should not be rolled back. 
The transactional style of aborting a failed computation implies the no
tion of retry: When a transaction has been aborted, just try again after 
system restart, or after having checked the input data, or whatever. Now, 



CONTRACTS REVISITED 129 

if restarting the computation is too expensive, or if it causes the applica
tion to miss a critical deadline, or if rollback is not feasible in the first 
place, we have a computation that must be continued rather than rolled 
back, even if something goes wrong: a long-lived computation. 

• A long-lived computation must be kept alive acr!lss system shutdowns, 
reorganizations and other regular interruptions of normal system oper
ation. In particular, a deactivation of all participating clients must not 
cause the computation to terminate. 

• A long-lived computation involves many clients, mostly in the sense that 
it moves through the distributed system, activating one client interaction 
after the other. It must be possible, though, for two or more clients to be 
attached to the same long-lived computation simultaneously. 

• A long-lived computation may not be specified completely at the moment 
it starts. Depending on its progress and some intermediate results its fur
ther plan will be developed as it progresses. In many cases, the decision 
about what to do next depends on the computation's own execution his
tory. 

Of course, some so-called long-lived computations do really go on for a very 
long time: If you consider everything related to the construction of, say, a 
power plant as processing one big order, the related computation that maps the 
order processing onto the distributed system will be active for a couple of years. 

Once you accept the goal of providing system services that will make such 
long-running computations persistent in that they will automatically be recov
ered and continued as long as the application has not declared completion, the 
question is, which particular mechanisms are required, and how they interact 
with existing system services. 

5.1.2 A Brief Survey of the Model 

On first approximation, a long-running computation is just the execution of a 
program - a long one, for that matter. So if we had a persistent programming 
language, i.e. one which allows the program to be restarted after a crash right 
where it was interrupted, wouldn't that solve the problem? 

It would indeed solve a portion of the problem, but leave out some important 
aspects. Of course, a persistent run-time environment is mandatory for achiev
ing reliable execution of long-lived computations. But there is another side 
to this observation: Which functions are needed in a programming language 
that is suited for writing long-running programs? Will anyone do, such as a 
persistent C? 

We claim the answer is "no", and we hope some of the more subtle reasons 
can be appreciated by the end of the paper. A simple quantitative argument is 



130 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

the following: Classical programming languages have been designed for imple
menting software modules, which get invoked, perform their function within, 
say, IOms and then return without leaving any context around. A workflow, on 
the other hand, can last for years, i.e. we look at elapsed times of 108 seconds. 
So the temporal horizon of programming a workflow is 10 to 11 orders of mag
nitude larger compared to implementing some module - it is quite obvious that 
the programming constructs adequate for the short range will not be completely 
sufficient for activities that are 100 million times longer. 

In the following, we will briefly outline the additional mechanisms that have 
been introduced in the ConTract model to support "programming in the long". 

First and most obviously, a long-running activity has explicit control flow, 
with all the constructs such as sequence, case, and loop. In addition, in long 
computations one typically finds many asynchronous (parallel) execution paths, 
so this must be part of the model. Fig. 5.1 shows a simple graphical represen
tation of this. 

Source 

/ o case 

~ 
~ooV 
o 

Figure 5.1 A ConTract script describes the control flow of a long-lived computation using 

all the basic constructs of a parallel programming language. 

The ConTract model assumes that the nodes of the control flow graph (called 
"steps") are not single statements of some programming language (or base 
blocks); they rather represent programs, methods, applications, etc. which can 
be invoked through a call interface. Each such program comes with its own 
n,m-time system, executes in single-user mode and eventually returns control 
to the run-time system of the long-running computation!. So there is a clear 
division of responsibilities - a contract, if you will: The application is respon
sible for what happens inside a step, the system is responsible for keeping the 
control flow hetween steps alive, according to the specification. The control 
flow description is often referred to as "script" in workflow systems. 



CONTRACTS REVISITED 131 

In order to support programming of truly long-lived computations, one needs 
more than persistent control flow, though. Fig. 5.2 shows the specifications that 
can be associated with a step in the ConTract model. 

ConTract program variables(context) 

~~~~ 

compensation step

Figure 5.2 Control features associated with each ConTract step

First, each step must be complemented by a compensation step, which per
forms the (semantically) inverse function of the step. This is required, because
in a long-running computation one cannot keep the updates locked until the
end, as is the case in transactional systems.

Second, each entry point into a step is protected by a so-called entry invari
ant. This is a predicate expression, typically based on shared data in a database,
that must evaluate to ''true'' in order to actually invoke the step procedure. So
even if the control flow has arrived at a certain step, its invocation will not
happen unless the entry invariant holds2 • While compensation takes care of
the fact that updates cannot be locked for a long time, entry invariants cope
with the fact that data read by a long-running computation cannot be protected
either.

Finally, there is a construct called exit invariant. It basically binds result
values of a step to the variables in a predicate expression, thereby establishing
the fact that a certain condition was fulfilled at that point in time. Steps that
will be executed in the future can then refer back to such an exit invariant as
part of their own entry invariant, checking whether something important has
changed since ''that step back there" executed.

Fig. 5.2 also shows an example of a local programming variable of a Con
Tract, i.e. a long-lived computation. Such variables are visible to all steps be
longing to the same computation, but they are not visible to either the outside
(other computations) or the inside (programs executing as a step). Since these
variables reflect the execution history of a computation, which must be made
accessible in an easy way, the ConTract model suggests a versioning scheme
for all variables. So each assignment operation leaves the most recent value

132 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

unchanged and creates a new version of the same variable. Since this is very
different from normal program variables, they are called "context variables" in
the ConTract model.

5.2 TRANSACTIONS IN A WORKFLOW ENVIRONMENT

This paper started out by saying that transactions are not adequate for mod
eling long-lived computations. On the other hand, they have the great virtue
of providing a model for execution, failure, recovery, and synchronization in
one simple formalism - an atomic state transition. There is no point in trying
to relax or modify the transactional properties, hoping that the result will be
a comparably simple model for long-lived executions. Each of the problems
referred to by the ACID-properties has to be addressed individually for such
environments, and the resulting architecture will not be as uniform and ele
gant as a transaction - but then, the problem to be solved is substantially more
complicated.

So modifying the transaction model will not do, and ConTracts are not an
extended transaction model. They will use transactions, though, in a variety of
ways, which will be explained in this section.

5.2.1 Use of ACID-Transactions

ACID transactions are used in a ConTract environment at two levels of abstrac
tion.

First, transactions appear at the control flow level. It is possible to let multi
ple steps execute as part of one (distributed) ACID transaction. This specifica
tion (which is not shown in Fig. 5.2) is part of the overall definition of steps and
control flow. The default, enforced by the system in case the application does
not explicitly specify transaction control, is the execution of each step as an
ACID transaction. Of course, this has an effect only if the resource managers
used by the step program do support transactions.

The second usage of transactions happens ''under the covers" of a ConTract
system, and it is totally unrelated to whether or not transactions are used at the
control flow level.

Fig. 5.3 illustrates the basic idea. For simplicity, assume a linear control
flow from step B to step C, which in general will be running on different nodes
of the network. Once B has completed, the fact that it has completed must be
reliably recorded - otherwise a system crash in that time window might cause
B to be activated again. In addition, control must be transferred to step C, and
the fact that all this has happened must be recorded at yet another node (called
CM for ConTract manager). This makes sure that somebody will be there to
initiate recovery in case the node executing C should crash before completion.
Since all three actions must happen together or none must take effect, the ad-

CONTRACTS REVISITED 133

System transaction A

transfer
control

receive
request

Figure 5.3 Distributed ACID transactions are the base mechanism for implementing reli

able transfer of control.

equate implementation mechanism is a distributed ACID transaction involving
the nodes of steps B and C, and the node running CM.

5.2.2 Semi-Transactional Activities

As mentioned in the previous section, there are and will be components which
are not aware of something like a distributed transaction or a two phase commit
protocol. However, many real world applications need these components to
fulfill their tasks. Hence, the question comes up how ConTracts can cope with
such non-conforming components and what the benefits will be.

The major benefit of using ConTracts even in case of non-conforming steps
is the guarantee that state changes of the process (script) are made atomic. That
means, that the effects of such steps regarding the process are protected by a
transaction. In contrast, their effects to the "outside world" may be unprotected.
That's the reason why we will call them semi-transactional in the following.

It is an obvious observation that without a transactional protection and with
out the control of the transaction by the system there will be intervals in time
when the system is unable to determine the state of a step automatically. Hence,
the system needs "help" from outside which results usually in a message to the
administrator. However, a reliable system should minimize the "window in
time" when human intervention is needed and provide as much information as
possible to support humans while solving the problem.

To achieve the two objectives in ConTracts, several extensions to the original
model are necessary. We will briefly introduce some of these extensions:

134 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

• The system must be aware of semi-transactional steps, i.e. the definition
of the script has to contain a classification of steps such that the run-time
system is enabled to determine necessary actions in case of problems.

• Recovery strategies are much more complex (but also flexible). The re
covery of a semi-transactional step may require the execution of several
other steps. This will be taken into account e.g. by the partial compensa
tion in section 5.4.4.

• The notion of dependencies has to be extended. Up to now, control flow
can be defined by using abort and commit dependencies.

• The usage of semi-transactional steps do impact the semantics of other
parts of a script, e.g. transactions and compensation. Proper constraints
have to be introduced to avoid indeterministic behavior.

The more we extend the features of ConTracts, the more information must be
provided by the script programmer to use these features. Or in other words, the
more you can use the transactional features of ConTracts, the less information
is needed on the script-level.

5.3 RECONSIDERING CORRECTNESS

The original model of ConTracts [Waechter and Reuter, 1992] introduced an
implicit notion of correctness by describing the properties of a ConTract in
an informal fashion. In particular, the definition of the invariant based con
currency control mechanism was very brief which lead to confusion. Since
workflow systems are more and more demanding transactional features, execu
tion models like ConTracts need to come up with a very precise definition of
their semantics.

5.3.1 'Iransactional Properties and Con'Iracts

The major benefit of classic database transactions was their simplicity, repre
sented by the ACID properties [Gray and Reuter, 1993]. Unfortunately, these
properties have major drawbacks in case of long-running executions like work
flows [Gray, 1981]. Anyway, programmers of applications have to be supported
by a proper abstraction like transactions to avoid the programming overhead for
failure handling, recovery and multi-user anomalies. The ConTract model was
introduced to provide such an abstraction with the following properties.

5.3.1.1 Recoverability. To avoid the shortcomings of the atomicity prop
erty, a two-layered recovery approach has been introduced:

1. Recovery at the step level
Steps which are protected by a transaction are recovered by recovering

CONTRACTS REVISITED 135

the surrounding transaction, i.e. active transactions are rolled back. For
non-transactional steps a message to the administrator is generated. The
administrator has to recover the step (either forward or backward) and
then has to inform the ConTract processing system about the result of the
recovery.

2. Recovery at the script level.
A ConTract 3 is forward recoverable, i.e. after a failure the state of the
script is recovered and then recovery is initiated for every step (and ev
ery transaction) which was active when the failure occured. After this
first phase of recovery, the ConTract will continue its execution (forward
recovery).

Recovery is handled by the run-time system of ConTracts except for non
transactional steps. Hence, a programmer of a ConTract does not need to pro
vide any code for failure recovery.

Forward recovery is performed after any type of failure, in order to keep the
ConTract going. It must be possible, though, for the application to terminate an
active ConTract and ask the system to revoke what has been done so far; this
type of recovery is called compensation [Gray, 1981].

Thus, a ConTract guarantees its compensability. The details of compensa
tion in ConTracts will be described in section 5.4.1.

5.3.1.2 Permeability. Work performed by a ConTract is isolated in a trans
actional sense only while a transaction is executed. If the transaction finishes,
all changes will become visible to the outside world if the application does not
define any further restrictions by using the so-called invariant concept.

5.3.1.3 Consistency. The consistency property of transactions is based on
the properties of atomicity and isolation. If a transaction runs isolated and
atomic, and it is started on a consistent state, it produces a consistent state after
it has finished its execution. During the execution a transaction may produce
inconsistent states which are not visible to the "outside world". A basic as
sumption of this approach is that transactions have to check themselves if they
violate any consistency constraints defined on the data (e.g. during the commit
phase). If they encounter the violation of a constraint, they have to roll-back.

This notion of consistency has been extended. A ConTract may define in
termediate states (during the execution) as consistent. So, intermediate results
will become visible to other executions.

5.3.1.4 Durability. The notion of durability has also been extended in the
ConTract model. The execution itself is durable, i.e. the state of the process
and all variables (context) are durable. Furthermore, intermediate results which
become visible during the execution do have the durability property.

136 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

5.3.2 Recovery and Serializability

The correctness criteria in the area of transaction processing systems [Bernstein
et al., 1987] are derived from the properties of transactions:

1. Serializability (SR)
Due to the isolation property, an execution history must be equivalent to
a history which contains only the serial (non-interleaved) execution of
transactions.

2. Strictness (ST)
Due to the atomicity property of transactions, it has to be guaranteed that
either the complete results of a transaction become visible to other trans
actions (commit case) or all effects are undone (rollback case). Since
cascading aborts must be avoided, simple recoverability (Re) is not suf
ficient.

Since both criteria have to be guaranteed during the execution of a transaction,
Alonso et al. [Alonso et al., 1994] came up with a unified criterion: the so
calledprejix reducibility (PRED).

In the following, we will define the correctness criterion used in ConTracts.
Similar to the approach in [Alonso et al., 1994] we will develop a unified cri
terion for both, recoverability and permeability. The difference between trans
actional correctness and our approach hinges on the special notion of what a
conflict is.

5.3.3 The Conflict Relationship

The core element of almost every correctness criterion is the definition of a
conflict relationship between the basic operations of executions. As described
in [Ramamritham and Chrysanthis, 1996] two classes of conflicts can be dis
tinguished:

1. Conflicts between operations of the same execution must be handled by
the structural dependencies of the operations (control flow) which are
defined at programming-time.

2. Conflicts between operations of different executions are due to a conflict
relation. The conflict relation can be used by a scheduler to generate only
correct schedules.

A basic assumption of all the criteria is that an execution will be correct if it is
the only execution in the system; this corresponds to the C of "ACID". Hence,
execution histories which are equivalent to a serial execution history will be
correct. In essence, this means that almost every correctness criterion is based
on some sort of serializability.

CONTRACTS REVISITED 137

Since ConTracts are not isolated the way transactions are, conflicts are due to
explicitly defined constraints - the invariants. To get this straight, some helpful
definitions are introduced to give a better understanding of what invariants are
and how they are used.

Definition 5.1 (Path) (a,b) says there exists a direct path from step a to step
b. This means step b must be executed directly after step a. If there is a path
(a,b) and a path (b,c) then we say that there is a path (a,c)+ (transitivity).
And ifeither (a,b) or (a,b)+, we will use (a,b)*

The concatenation of paths EB is defined as (a,b)* EB (b,c)* = (a,c)*.
We will use (b,c)* E (a,d)* to denote the fact that (a,d)* can be written as:

{(a,b)* EB (b,c)*) EB (c,d)*.

Paths define the structural dependencies of steps, i.e. the flow of control (see
also [Schwenkreis and Reuter, 1996]). By convention, it is allowed to use the
special notation (start,a)* to denote the path from the start of a ConTract to
the step a.

Definition 5.2 (Step execution) The successful execution of a step f trans
forms a state of data objects s (see [Bernstein et al., 1987]) to another state
I. We will use f{s) to denote the state s', i.e. the state produced by step f.

Definition 5.3 (Exit invariant) An exit invariant i~ of a step s is a conjunction
of predicates Pi

i~ = Pl/\P2/\ .. ·/\Pn

We will use Pk E i~ to denote the fact that Pk is one of the predicates of i~.

If a step is executed it checks whether its exit invariant holds and requests the
system to ensure that it will not be violated (called establishing an invariant).
If the exit invariant is not fulfilled at the end of a step, the step will be rolled
back.

Definition 5.4 (Predicate reference) A predicate reference r(i~,Pk) is a pred
icate with the following property:

Pk E i~ /\ r(i~,Pk) {::} Pk

Predicate references can be used in a ConTract definition to "point" to a predi
cate established by a previous step (see section 5.1.2).

Definition 5.5 (Entry invariant) An entry invariant i~ of a step s is a conjunc
tion of predicate references rj:

i~=rl/\r2/\ ... /\r3

/\

'Vrj: rj = r{i~,Pk) /\

3(a,s)* such that (s,a)* ¢ {(start,a)* EB (a,s)*)

138 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

We will use r E i~ to denote the fact that r is one of the predicate references of
·s 'n·
An entry invariant can be used to define a condition which is needed by a step
as a prerequisite for a successful execution.

Entry invariants can only be defined by using predicate references which
refer to predicates of exit invariants of previous steps, i.e. a constraint needed
by a step S2 must be established by a previous step SI.

In the following we will use i(s) to denote the result of the evaluation of the
predicate i at a current state s.

Given the definitions of invariants the special conflict relation of ConTracts
can be introduced:

Definition 5.6 (potential conflict) A step a is in a potential conflict with a step
b denoted by conf(a, b) if there exists a state s with:

i~(s) ::} -'i~(b(s)) V 1~(S) ::} -'i~(b(s))

A step a is in conflict with another step if its invariants may be violated by the
other step. Note that this notion of conflict is not symmetric.

5.3.4 Execution Histories and Correctness

Loops which are defined in the ConTract instance will be un-rolled at run-time.
Therefore, the system generates so-called step instances from steps to be able
to distinguish multiple executions of the same step.

Definition 5.7 (Step instance) A step instance"? is a run-time version of a step
s. "? has the semantics and effects of s and has the same invariants. The index
i denotes the i-th instantiation of step s. We will use scurrent to denote the most
recent instantiation of a step during the execution of a script (or zero if it is the
first time).

The following rules are used to execute a script and preserve the ordering de
fined in the script:

Definition S.S (Script-conform execution) An execution of a ConTract is script
conform if the following rules are used to interpret a script:

1. At the start of a ConTract the system generates instances for all steps Sj

which do not have a predecessor step (VSj: -,3(a,sj)).

2. If a step instance s has finished its execution, the system looks for all
successor steps aj which can be executed (Vaj: 3(s,aj)). A new instance
(aiurrent+ 1) is created and executed for each of these steps.

With the execution algorithm of ConTract the history of a ConTract processing
system can be defined.

CONTRACTS REVISITED 139

Definition 5.9 (Processing history) The history H of a ConTract processing
system is a set 8 of step instances S and a partial order ~ defined over the set
of step instances H = (8, ~). The set of step instances may also contain special
step instances EOC which indicate the end of a ConTract. EOC(s) will be used
to denote the End-of-ConTract step of the ConTract which has executed S. The
ordering relation (Sj ~ Sk) says that Sj was executed before Sk.
We will use He to denote the reduced history of a single ConTract C.

Similar to the approach in [Alonso et al., 1994] the history can be expanded to
include the compensational semantics of ConTracts.

Definition 5.10 (Expanded processing history) Let H = (8,~) be a history.
Its expansion iI is a tuple (S,~) where:

I. S is a set of step instances which is derived from 8 in the following way:

(a) For each ConTract Cj E H, ifsj E 8 then Sj E S.
(b) For all Sj E 8I\EOC(sj) ¢ 8, a compensating step instance sil must

appear in S.
2. The partial order, ~, is determined as follows:

(a) For every two step instances, Sj and Sk, ifsj ~ Sk then Sj ~ Sk.
(b) All non-compensating step instances of a ConTract must precede the

compensating step instances of this ConTract.
(c) For every two compensating step instances, sil and Sj-l, ifsj ~ Sj

he --1 ~ --1 t n Sj ~ Sj

The expanded history contains all step instances of the original history. Addi
tionally, for all running ConTracts, the history is expanded by all compensating
step instances of all non-compensating step instances. The order of the com
pensating step instances is the reverse order of their original steps.

Now that we have introduced the notion of histories, the conflict relation of
definition 5.6 can be refined

Definition 5.11 (Specific confticts) A step instance a is in a conflict with an
other step instance b of a different ConTract due to a predicate Pk of an exit
invariant, denoted by confx(a, b,Pk) if:

3Pk E i~ with -, pk(b(s» 1\ a ~ b 1\

3c E S with 3 rj E i~ 1\ rj = r(i~,Pk) where -,rj(b(s» 1\ -, C ~ b

A step instance a is in conflict with another step instance b of a different
ConTract due to a predicate Pk referenced by an entry invariant, denoted by
con/n(a,b,p) if:

3rj =E i~: with -, rj{b(s» 1\ b ~ a 1\

3c E S 1\ rj = r(i~,Pk) 1\ C ~ b

140 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Since the invariant mechanism is based on a paradigm similar to a producer I
consumer relationship, a real conflict may only arise if an invariant invalidating
step is executed in between a step which established a part of the (exit) invariant
and a step which needs the established constraint (a part of the entry invariant).

With this more specific definition of conflicts of steps (or step instances) the
binary conflict relation of ConTracts becomes obvious:

Definition 5.12 (Invariant-based ordering) A ConTract CA is in conflict with
another ConTract CB due to a predicate p, denoted by Cp(CA,CB) if there are
two step instances sA, sB of these ConTracts in S where:

confx(sA, sB ,p) V confn (sB, sA ,p)

An expanded history S implicates a partial order of ConTracts based on the
conflict relation of definition 5.11. As in every serializability based criterion
the last step is to define the correctness criterion of a history.

Definition 5.13 (Invariant-based serializability) A history S is correct if its
expanded history S fulfills the following constraints:

1. The history of every single ConTract was generated by a script conform
execution (see definition 5.8).

There are some implications of this correctness criterion which should be men
tioned.

• It can be shown that the correctness criterion is prefix closed, i.e. if a
history is correct, it implicates that every prefix of the history is correct.
Hence, it can be directly used for a scheduler; even though, it will never
be implemented using the classical scheduling approach.

• Basically, the criterion differentiates between two classes of invariants
- invariants for compensating steps and invariants for non-compensating
steps.

• Invariant-based serializability does not force serializability for ConTracts
as a whole. Only parts protected by an exit-/entry-invariant "bracket" do
have the serializability property.

• One of the interesting features of the invariant concept, the selection of
policies (cooperation of ConTracts), is currently not taken into account
and will be covered by future extensions. Since the criterion is mainly
intended to ensure the compensability of ConTracts, these extensions will
only result in minor changes.

CONTRACTS REVISITED 141

5.4 COMPENSATION IN DETAIL

Compensating activities as introduced in section 5.3.1.1 are a very common
approach to realize undo behavior for long-running executions [Elmagarmid,
1992, Garcia-Molina and Salem, 1987]. Although the mechanism is used in
almost every advanced transaction model, it is introduced in a very informal
way.

5.4.1 A Basic Definition of Compensation

The idea of compensation in the area of transactions came up when it was re
alized that atomicity/rollback is not applicable in case of long-running execu
tions [Gray, 1981]. The first attempt to formalize compensation was presented
in [Korth et al., 1990b] which tried to unify rollback and compensation. The
resulting notion of compensation was very restrictive in terms of what compen
sating (trans-)actions have to guarantee: Compensating activities as defined in
[Korth et al., 1990b] have to generate a state of the accessed data objects which
is identical to the state at the point in time the original activity started, i.e.
objects in the database(s) must have the same value.

Observations of the real world have shown that compensating actions usu
ally do not reestablish a previous state (of data). In particular, they do not
reestablish the state at the start of the original activity. Hence, compensation is
a very flexible means and almost similar to the forward running case. However,
a simple property of compensation motivates the need to distinguish compen
sating activities from usual ones:

Compensation must not (finally) fail
To be more specific, if a compensation is needed, there is no way to execute
an alternative like another compensation. Hence, if a run-time system can
not execute a compensating activity, the only thing it can do is to inform the
administrator.

Definition 5.14 (Acceptance function) There exists afunction gf (acceptance
function) for every step f which maps a state s to a boolean value:

gf: s --+ TRUE,FALSE

The acceptance function checks whether the state s satisfies the constraints of
f in order to be executed successfully.

With the introduced definitions of paths and of acceptance functions the se
mantics of compensation can be defined.

Definition 5.15 (Compensation) fe is a compensation step of step'/ if:

gf(s) = TRUE=* gf(fcof(s)) = TRUE A

if,/c}* Agfc(J(s)) = TRUE

142 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

In the general case comp(a, b) is used to indicate that step a is a compensation
of step b.

The acceptance function of fc returns true if applied to the state after the exe
cution off(s) (denoted by feof(s) in the above definition). The compensating
function fc generates a state which fulfills the requirements of the acceptance
function off.

Problem:
The execution of the compensating step!c after the execution of the original
step f can be intervened by other steps ai • Hence, precautions must be taken to
guarantee that the acceptance function of fe is not violated such that fc cannot
be executed in the future.

A criterion which does not make any assumptions about the usage of steps
inside of a ConTract is very restrictive. It does not allow the violation of the
acceptance function of the compensating steps during the execution of a Con
Tract. This is taken into account by definition 5.16.

Definition 5.16 (Indirect compensability) A step f executed by a ConTract is
indirectly compensable (denoted CI(J,a)) with regard to another step of the
same ConTract a E CSteps(J) if:

comp(a,j)

V

(J,a) A (ae,!c) A (gfc(s) = TRUE ~ gfc(aeoa(s)) = TRUE)

CI(J,ai) A CI(ai,d) ~ ct(J,d) (transitivity)

CI(J,ai) V Ct(J,ai) ~ Cj(J,ai)

The violation of the acceptance function of a compensating step!c can be al
lowed, if the step a, which causes the violation, belongs to the same Con
Tract. It must be executed after the original step f, and it must be guaranteed
that its compensation ae is executed before fe to reestablish a state which sat
isfies the acceptance function of !c. One implication of this property is that
gfc{ae{s)) = TRUE. The criterion holds also for a compensation step, if its
original step satisfies the criterion.

Definition 5.17 (Indirect compensation chain) The ordered set of all d' with
Cj(J,d') is called indirect compensation chain off (le(J)):

le(J) = {d' I Cj(J,d')} and ai < d if Cj{ai,d)

The reduced chain I~(J) containing only non-compensating steps can be di
rectly derived:

I~(J) = le(J) \ {at I comp{d',d),j < k,d E le(J)}

CONTRACTS REVISITED 143

The indirect compensation chain consists of all steps for which the indirect
compensation relation holds. The reduced chain omits all compensation steps
contained in Ie (f)

Definition S.18 (Absolute compensability) A step f executed by a ConTract
is absolutely compensable with regard to an arbitrary step a (denoted CA (f, a))
if:

-,C/(f,a) A

gfc{s) = TRUE => gfc{a{s)) = TRUE A

'tiff E I~(f): CA{ff,a)

A step f is absolute compensable with regard to another step a, if it is ensured
that the acceptance function of the compensation function fe is not violated
by the execution of a. Additionally, step a must not violate the acceptance
functions of the compensation steps belonging to the steps in the reduced in
direction chain in order to preserve the possibility to reestablish a proper state
forfe.

Based on our notion of compensability (definition 5.15) we can prove that
the introduced criteria are sufficient to guarantee the compensability of Con
Tracts.

Given an arbitrary point in time after the execution of a step f of a ConTract,
we will find a state s produced by the execution of an ordered set of steps
denoted by (a" 0 •.• 0 a l 0 f{s)). In the following we will use A = {al , ... ,an}
to denote the set of steps executed after f.

Theorem 1 (Execution dependent compensability) If all steps which have been
executed successfully after f either preserve absolute compensability or indi
rect compensability, it is guaranteed that the compensating step!c is executable
when it has to be executed.

Proof:
We will prove the theorem above by an induction over the setA.

1. Basic assumption:
If A is empty the current state is f(s), then gfc(j{s)) = TRUE (def. 5.15),
i.e. the compensating step off can be executed if directly applied to f(s).

2. Conclusion:
If A has n elements n E No and gfc{an 0 •.• oal of{s)) = TRUE we have to
prove that gfc(an+1 oa" 0 ••• oal of(s)) is true, when!c has to be executed.
If gfc(a" 0 ••• oal of(s)) = FALSE it must be ensured that gfc will become
TRUE whenfe has to be executed.

144 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

(a) an+1 fulfills CA (j,an+1) and gfc(an 0 ..• oal of(s)) = TRUE:
Since gfc(an 0 ... oal of(s)) = TRUE and CA(j,an+1), it is ensured
that gfc (an+l oano ... oal of(s)) = TRUE (see definition 5.18). Hence
fe can be executed successfully. 0

(b) an+l fulfills CA(j,an+l) and gfc(an 0 ••• oal of(s)) = FALSE:
There must be steps ak inA which satisfy Ct(j,ak). The executabil
ity of fe is guaranteed by guaranteeing the executability of the steps
belonging to I~ (j). Since an+ 1 preserves the executability (def. 5.18)
of all the compensation steps in I~ (j), the acceptance gfc will become
TRUE whenfe has to be executed. 0

(c) an+l fulfills Cj(j,an+l) /\gfc(an 0 ••• oal of(s)) = FALSE:
In this case, there must be a step b with CI(b,an+l) /\ b E I~(j) for
which gbc = TRUE (see def. 5.16). Since C1(b, an+ 1) guarantees that
gbc will become TRUE after the execution of a~+1, and a~+l must
be executed before be the executability of fe is guaranteed when it
can be executed (sometimes after the execution of be). 0

(d) an+l fulfills Cj(j,an+l) /\gfc(an 0 ••• oal of(s)) = TRUE:
This is the case where a step probably violates the acceptance func
tionfe. Two sub-cases can be distinguished:

• There exists a step b E A,b i- f with CI(b,an+l) /\ Cj(j,b).
This case can be treated similar to the previously dicussed case.
D

• C1(j,an+1):
Since the precedence relation of definition 5.16 guarantees that
a~+l will be executed before fe and reestablishs a state where
gfc = TRUE, the executability offe is guaranteed when needed. 0

5.4.2 Script-based Compensation

Compensating a step can be a complex task with several branches in the con
trol flow. Moreover, compensating activities can contain real actions and re
quire interactions. In some cases several machines and people are involved
in the execution of the compensation. This requires to allow (sub-)scripts as
compensations rather than simple steps only.

Script-based compensation has the following additional advantages com
pared to a simple step-based compensation.

• Script-based compensation allows the use of forward recovery in case of
failures during the execution of the compensations.

• In case of the final failure of compensation the usage of a script-based
compensation leaves more parts in an consistent state and requires less
manual intervention.

CONTRACTS REVISITED 145

• The parts of a compensating script which were finished successfully, be
come durable. Hence, results of the compensation become available as
early as possible.

Introducing script-based compensation leads to a slightly extended program
ming model. The implementation of a script-based compensation can contain
- as the name suggests - script level code. Still, the activity compensated by a
script is a single step and basically this step code has to be understood. In a
workflow environment, on the other side, there are many constraints to be met
by a compensation, for example constraints derived from informational, behav
ioral, administrational, technical or organizational aspects [Curtis et al., 1992].
One example is the selection of different counter-actions, that are needed for
the cancelation of a flight reservation, depending on the point in time and state
of the execution. This behavioral aspect is best expressed on script level.

Script-based compensations are expressed as a set of steps with a defined
control flow resembling a block.

Definition 5.19 (Block) Let A be a set of steps and 0 * the binary path relation
from definition 5.1. A tuple B = (A, 0*) is a Block if:

(3a EA: ((Vc EA\{a}: (a,c)*) t\ (Vc EA: -, (c,a))))

(We will use SB to denote the step of the block B with this property) t\

(3bEA: ((VCEA\{b}: (c,b)*)t\(VCEA: -, (b,c))))

(We will use eB to denote the step of the block B with this property) t\

(Va EA\{sB,eB}: (-, 3b ¢A: (a,b) V (b,a))) t\

((Va¢A: (-, (a,eB) V -,(sB,a))) V (sB=eB))

We are referring to all steps of a block B with the notation BSteps.

As mentioned above, the control flow in a ConTract is defined by paths.
For the moment, we make no further assumptions about the events, transitions,
context or final states that are defined in a process except the existence of paths.
In the following we take as a basis the flow of control in the case of no failures.

The structure of a block has to fulfill some requirements. Exactly one step
starts the block and a path exists from this step to any other step in the block.
There is exactly one step at the end of the block, and a path exists from any
other step in the block to this step. Only the first step and the last step are
allowed to have direct predecessors or direct successors outside of the block,
respectively. If the block contains only a single step, the first step is the last
step.

Definition 5.20 (Acceptance function of a block) The acceptance function of
the start step of a block B is also the acceptance function of B. We will use gB
to denote the acceptance function of a block B.

146 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Definition 5.21 (Script-based compensation) A block B = (A, ()*) is a script
based compensation of step f if:

if,SB)* /\

gBif(s» = TRUE /\

'Va,b E A with (a,b) : ga(Si) = TRUE =? gb(a(si» = TRUE /\

gf(s) = gf(Bof(s»

We will use comp(B,a) to indicate that block B is a compensation of step a.

Assuming the compensation definition contains only a single step it is equiv
alent to the standard step-based compensation. It has to be mentioned that a
compensation definition is not allowed to contain compensating steps for the
included activities.

A script-based compensation does not change the correctness criterion of the
execution of a ConTract (def. 5.13). It has to be ensured that the compensation
of every successfully finished step is executable. The state after the execu
tion of a step in the ConTract has to fulfill the requirements of the acceptance
function of the start step of its compensation. The state after the execution of
a step within the compensating block has to fulfill the acceptance function of
its direct successors. It may be useful to allow only certain structures for the
compensating block (e.g., only sequences of steps).

5.4.3 Comprehensive Compensation

So far the compensating activities relate only to single steps. But there are
situations, especially in workftows, where it is suitable to compensate a se
quence or a group of steps with a single compensating activity. We call this
comprehensive compensation. For example, if there are some activities, which
together create and work on a complex document, it is most efficient to com
pensate them all together by destroying the whole document. It is possible for
a comprehensive compensating activity to invalidate the associated compensat
ing activities of previous steps.

Furthermore observations of the real world have shown that the point in
time a compensation is initiated is very important. And not only the actual
time for compensation is important, but although the state of the execution
of the ConTract. Franking a letter can be compensated separately as long as
the letter is not dispatched. After that, the charges for the stamps are lost.
This means compensating activities associated to previous activities will not
be needed anymore. Depending on the actual state of the execution a dynamic
selection of the valid compensating activities is required.

These examples motivate the compensation of groups of steps as a whole
and the dynamic determination of compensating activities. Of course, it is not

CONTRACTS REVISITED 147

practical to allow compensating activities for any arbitrary group of steps. Only
blocks can be compensated by the corresponding compensating blocks.

Definition 5.22 (Comprehensive compensation) A block Be = (ABc! 0*) is a
comprehensive compensation of block B = (AB' 0*) if:

(eB,sBJ* A

gBc(B(s» = TRUE A

Va,b EABc with (a,b): ga(Si) = TRUE~ gb(a(si» = TRUE A

gB(S) = gB(BeoB(s»

We will use comp(A,B) to indicate that block A is a compensation of block B.

Definition 5.23 (Compensable block) A block in a ConTract which has an as
sociated compensating block is a compensable block. We will use CBlocks to
denote the set of compensable blocks of ConTract C.

The correctness criterion (def. 5.13) ensures that each set of successfully
completed steps can be compensated. We have to adapt the correctness criteria
for compensation [Waechter and Reuter, 1992] to the enhanced definition of
compensation. So far it was only necessary for each step in the script to have
exactly one valid compensating step. Now the requirement of a deterministic
and unambiguous compensation for each partial execution of the ConTract is
more difficult to fulfill. For every set of successfully completed steps we need
an unambiguous disjunctive partitioning into compensable blocks. If that is
guaranteed, the correctness criteria for the execution of a ConTract (def. 5.13)
can still be fulfilled. It is sufficient to ensure the existence of the compensations
for the definition of a script. The actual compensation depends on the set and
order of successfully executed step instances and must be determinable at run
time.

Definition 5.24 (Compensable ConTract) A ConTract C is compensable if:

V Bl E CBlocks: (V B2 E CBlocks\{Bl} : eB i: eB2) A

Va E CSteps: (3B E CBlocks: a = eB)

Every single step of the ConTract is the end step for exactly one single com
pensable block. This can be tested for the definition of a script.

Definition 5.25 (Block instance) A block instance ii is a run-time version of

Block B. ii denotes the i-th instantiation of block B. Ii contains the instantia
tion of every step in block B generated for the i-th successful execution of block

B. Not necessarily an instance for every step in B shows up in Ii, because
some steps might not have been executed. Instances for the start step and the

148 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

end step of B are always included in. Ii CBlocks denotes all block instances of
ConTract C in the history.

It has to be mentioned that a single step instance can belong to more then one
block instance.

Definition 5.26 (Partitioning) P is a partitioning of the set of step instances
of a ConTract C into block instances if:

P~ CBlocks A

V B1,B2 E P with B1 i= B2 : (B1 nB2 = {}) A

Vs E He: (3B E P: s E B)

A unique partitioning into compensable block instances is always possible for
a compensable ConTract. This partitioning can be efficiently computed using
the order of block instances in the history. Reversing this ordering the compen
sation can be derived directly from the partitioning.

Definition 5.27 (partial order of block instances) Let H = (S, --<) be a his
tory of a ConTract processing system. Let B be a set of block instances. A

H - - - - - H-
binary relation --< is defined on B with (V B1,B2 E B: (B1 --< B2 :# eEl --<
eE2))·

We will briefly describe how to determine the unique partitioning. The step
instances are sorted by their completion time in the history, which in tum is
determined by the flow of control. We take as the basis the reduced history of
the ConTract. A compensable block instance of the ConTract becomes valid
with the successful completion of its last step.

The following actions will be repeated until He is empty and all valid com
pensable block instances are determined.

1. We select the last completed step instance from the reduced history; that
is, a step without successor in the history. If there are several such steps,
we take one of them randomly. This step instance determines an instance
of a valid compensable block.

2. All step instances associated to this block instance are removed.

It can be easily shown, that the computed partitioning is the only possible par
titioning with He and CBlocks.

After the valid compensable block instances are determined, their associ
ated compensation can be executed according to the inverse order of block
instances.

The definitions of indirect compensability (def. 5.16), of absolute com
pensability (def. 5.18), and of the indirect compensation chain (def. 5.17)
are adapted accordingly. The theorem of execution dependent compensation
(theorem 1) can be applied to the modified definitions.

CONTRACTS REVISITED 149

5.4.4 Partial Compensation

The analysis of processes in workflow environments has shown that sometimes
it is necessary or suitable to go back to an earlier state of the execution and to
proceed with the process in a different way than before. For example, it is a
good idea to periodically confer with the customer during the planning phase
of a power plant. If the customer disagrees with the actual plans, all effects
which where introduced since the last agreement have to be compensated.

Supporting partial compensation of a ConTract will change the execution
model. Partial compensation can lead to a lot of complications. It is more
difficult to ensure the correctness of the execution of a ConTract. Therefore
partial compensation has to be applied with great care.

If we decide to reject only a part of a ConTract, we have to pay attention to
the relationships between the blocks to be compensated.

Definition 5.28 (Compensation dependency) A compensation dependency be
tween a compensable block A and a compensable block B exists if:

A and B finished successfully ::o?

it is allowed to compensate only both or none of them.

The compensation dependency relation is transitive. We will use A IX! B to
denote that a compensation dependency between block A and block B exists.

On account of the application, dependencies between the compensable blocks
may exist, such that the compensation of one block leads to the necessity of
compensating the other. Hence, certain groups of compensable blocks always
have to be compensated as a whole. These dependencies are modeled by the
programmer. Additionally, all steps which are grouped into the same tran
saction are compensation dependent of each other. Moreover, only a part of a
ConTract with a certain structure is allowed to be compensated separately to
preserve correctness. We call a set of steps with this property a compensable
section. Compensable sections are the subsets of the total set of steps of the
ConTract, which we allow to be compensated separately.

Definition 5.29 (Partial ordering of blocks) Let B be a set of blocks. A prece
dence relation --< is defined over B with VAI,A2 E B: (AI --<A2 :<=> ((eAl'eA2}*)'

Definition 5.30 (Compensable section) A set of steps CS is a compensable
section of ConTract C if:

CS c CSteps "
Va E CS: ((3B E CBlocks: a = eB) ::o? BSteps ~ CS) "

Va E CS: ((3B E CBlocks: a = eB) ::o?

(V BjSteps ~ C : (B IX! Bj ::o? BjSteps ~ A))) "
VB E CBlocks : ((3BjSteps ~ CS : Bj --< B) ::o? BSteps ~ CS)

150 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

The structure of a compensable section has to fulfill the following require
ments. Either all steps of a compensable block are included in the compensable
section or none at all. Inclusion of a compensable block leads to the inclusion
of all compensation dependent blocks. A compensable section has to contain
all successors of its included compensable blocks.

Due to limited space, we omit the definition for the compensable section
for block instances. However, this definition can be derived straight forward
from definition 5.30. To determine a compensable section at runtime the actual
disjunctive partition of a history He is taken as the basis. Either all steps of
a valid compensable block instance are included or none at all. Inclusion of
a valid compensable block instance leads to the inclusion of all compensation
dependent block instances as well as all of its successors in the current partition.

It is obvious that partial compensation does not compromise the correctness
notion of ConTracts. Hence, a formal proof is not presented in this article.

5.5 SUMMARY

The ConTract model is not intended to be just another "extended transaction
model". Instead, it has been developed (and maintained) to define a reliable
basis for long-running executions like workflows. In the last five years we have
spent a lot of effort to permanently evaluate our approach based on observations
of the "real world". In result, many features have been made more concrete and
others have been extended. For instance, the support of semi-transactional steps
is one of the recent extensions while the internal usage of transactions has been
revised several times already.

The presented correctness criterion introduces a formal basis to verify ex
ecution histories and to build up correctness ensuring mechanisms. We are
strongly convinced that in mission-critical processes correctness will become
more and more important. Hence, workflow systems have to commit guaran
tees regarding their behavior in case of failures and concurrency.

There is also a need to elaborate on compensation. The presented extensions
are a first step to leverage the concept of compensation such that it can be
used as a general-purpose mechanism as in real applications. In particular, the
support of semi-transactional steps can be enhanced by a flexible compensation
and advanced semantics of applications can be supported (e.g. durable parts).

In parallel to the evolution of the model itself the prototype implementation
(APRICOTS) is continued to illustrate two things: We do build real systems to
prove our concepts, and we still have a long way to go to prove the consistency
related concepts.

Notes

1. For ease of reference, this run-time environment will be referred to as the "ConTract
manager".

CONTRACTS REVISITED 151

2. Of course, something must happen in such a situation to keep the computation going. For
details of this mechanism called "conflict resolution" see [Waechter and Reuter, 1992].

3. In the following we will use the word ConTract to denote an executable instance of a
ConTract definition (a script or ConTract template).

6 SEMANTIC-BASED
DECOMPOSITION OF TRANSACTIONS

Paul Ammann, Sushi I Jajodia
and Indrakshi Ray

Abstract: Sometimes transactions must be decomposed into steps. The need
for decomposition arises in a variety of different domains. For example, long
duration transactions may be decomposed to improve performance, global trans
actions in multidatabases may be decomposed to preserve local database auton
omy, and multilevel secure transactions may be decomposed to avoid leaking
sensitive information. To achieve these various objectives, a decomposition sac
rifices those desirable properties, namely atomicity, consistency, and isolation,
that form the foundation of syntactically based correctness approaches such as
conflict serializability. We remedy this loss by defining a semantic view of cor
rectness organized around a new set of desirable properties that are specifically
designed for reasoning about decompositions. The exact details of the semantic
correctness properties depend on the domain being addressed; in this chapter, we
focus on the long duration transaction domain. Using our method an application
developer can show that a given decomposition indeed refines the original trans
actions in a satisfactory way. The semantic correctness properties are formulated
in terms of semantic histories. For efficiency reasons, allowable interleavings of
steps are described with syntactically specified successor sets. We discuss a two
phase locking based mechanism for realizing successor sets in a typical database
system.

6.1 INTRODUCTION

Decomposing transactions into steps is a common method of achieving diverse
goals in a variety of domains. To illustrate this point. we describe the decom
position of transactions in three domains, namely long-duration transactions,

S. Jajodia et al. (eds.), Advanced Transaction Models and Architectures
© Springer Science+Business Media New York 1997

154 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

multidatabases, and multilevel secure databases. In each case, the decompo
sition undermines one or more of the foundation properties of syntactically
based correctness approaches. The properties are atomicity, consistency, and
isolation, and they are used in correctness approaches such as conflict serial
izability. In this chapter we remedy the loss of these properties by developing
a semantic approach to correctness, which we illustrate in the long duration
transaction domain. We identify a set of replacement properties that are specif
ically designed to reason about decompositions and show how these properties
can be established for a given application.

In database applications where some transactions are of long duration, per
formance requirements may dictate that execution histories be accepted even
though operations of transactions interleave in ways that are not correct with
respect to serializability criteria. For example, locks may be released early, or
transactions may be split explicitly into steps. Consider the simple example
of making a hotel reservation. A reserve transaction might consist of ensur
ing that there are still rooms vacant, selecting a vacant room that matches the
customer's preferences, and recording billing information. Since the reserve
transaction might last a relatively long time - for example, when the customer
makes reservations by phone - it may be desirable to execute the three steps of
the reserve transaction separately, thereby allowing other transactions access
to key database objects. Some steps may be undesirable at sensitive points in
a given execution history. For example, a report transaction may be undesir
able if interleaved between certain steps in one or more reserve transactions.
As will be subsequently illustrated in this chapter, our semantic approach can
determine if a decomposition into steps js correct with respect to the original
collection of transactions.

A multidatabase is an integrated collection of heterogeneous databases [Bu
khres and Elmagarmid, 1996]. The constituent or local databases require both
design autonomy to accommodate their diverse legacy nature and execution
autonomy to ensure that local transactions are not unduly blocked by global
transactions. Control of global transactions, which are decomposed into steps
that execute at the local database, must be distributed to avoid bottlenecks and
tolerate failure in the global database. Integrity constraints must be maintained,
not only on each local database, but also on the global database. These goals
cannot be achieved simultaneously with syntactic correctness criteria such as
serializability, but a semantic based approach can determine if a given applica
tion does indeed have the desired properties.

In multilevel secure databases there is a need for multilevel transactions -
transactions that both read and write at a range of security levels. A major out
standing problem with standard methods of handling multilevel transactions is
the treatment of atomicity. Specifically, for a multilevel transaction decom
posed into single-level sections there is no assurance that either all or none of

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 155

the sections will be present in a given execution history. The chief difficulty is
that a high section of a transaction may be unable to complete due to violations
of the integrity constraints, and a rollback of sections at lower or incomparable
levels can be exploited to implement a covert channel. For details of how a
semantic approach to correctness can overcome this problem, see [Ammann
et al., 1996].

The traditional transaction model relies on the properties of atomicity, con
sistency, and isolation [Bernstein et al., 1987]. Atomicity ensures that either
all actions of a transaction complete successfully or all of the transaction's
effects are absent. Consistency ensures that a transaction when executed by it
self, without interference from other transactions, maps the database from one
consistent state to another. Isolation ensures that no transaction ever views the
partial effects of some other transaction even when transactions execute concur
rently. Decomposing transactions into steps generally forces one to relinquish
these three properties to some degree.

Decomposition of a transaction into steps sacrifices atomicity since the atom
icity of the single logical action is lost. Interleaving steps of transactions ex
poses each to the partial effects of the others. Hence, if a transaction aborts after
committing some of its steps, it may not be possible to remove all of its effects.
This difficulty arises because transactions that read from the aborted transaction
may have committed. In addition, the aborted transaction may have generated
outputs. Thus traditional undo [Bernstein et al., 1987] is not possible; the solu
tion is to semantically undo the actions of the aborted transactions. We achieve
semantic undo with compensating steps [Garcia-Molina, 1983, Garcia-Molina
and Salem, 1987].

Decomposition not only sacrifices atomicity, but also impacts consistency
and isolation. Execution of a step may leave the database in an inconsistent
state, which other transactions or steps may access, so it is necessary to reason
about the interleavings of the steps of different transactions. Although the step
by-step decomposition of a single transaction into steps may be understood
easily in isolation, reasoning about the interleaving of these steps with other
transactions, possibly also decomposed into steps, is more difficult.

To remedy the loss of atomicity, consistency, and isolation, we develop prop
erties suitable for reasoning about decompositions. These properties are enu
merated in section 6.5. The properties are formulated in terms of semantic
histories, which not only list the sequence of steps forming the history, but also
convey information regarding the state of the database before and after execu
tion of each step in the history. All possible semantic histories must satisfy
the given properties for a particular decomposition to be considered accept
able, both when considered by itself, and also with respect to the original set of
transactions.

156 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

We adopt the Object Z specification language [Duke and Duke, 1990] for
expressing model-based specifications. Object Z is an extension of the Z spec
ification language [Spivey, 1992] to include object oriented features. Object Z
is based on set theory, first order predicate logic, and a schema calculus to or
ganize large specifications. Knowledge of Object Z is helpful, but not required,
for reading this chapter, since we narrate the formal specifications in English.
Table 6.1 briefly explains the Object Z notation used in our examples. Other
specification and analysis conventions specific to Object Z are explained as the
need arises.

The rest of the chapter is organized as follows. Section 6.2 briefly describes
the work related to semantic based transaction processing. Section 6.3 specifies
an example application in Object Z. Section 6.4 describes our model. Section
6.5 describes the necessary and desirable properties of a correct decomposi
tion. Section 6.6 gives examples of decompositions. Section 6.7 describes the
notion of successor sets which is necessary for efficiently implementing our
model. In section 6.8 we develop our correctness criterion for concurrent ex
ecution of transactions and present a concurrency control mechanism. Section
6.9 concludes the chapter.

6.2 RELATED WORK

The work on semantic based concurrency control can be classified into two
major categories. In the first category [Herlihy, 1987, Herlihy and Weihl, 1991,
Weihl, 1984, Weihl, 1988b] the authors exploit the semantics of operations to
increase concurrency. Instead of using low level database operations like read
or write to access the database objects, the authors propose the use of high
level operations for this purpose. Commutativity of these operations, and not
the read/write operations, is used to determine conflicts between transactions,
resulting in more concurrency. In these works, the authors use serializability as
the correctness criterion.

Our work falls in the second category [Agrawal et aI., 1993, Farrag and
Ozsu, 1989, Garcia-Molina, 1983, Garcia-Molina and Salem, 1987] which is
based on exploiting semantics of transactions to increase concurrency. In these
works, the researchers decomposed transactions into steps and developed se
mantic based correctness criteria. Researchers have variously introduced the
notions of transaction steps, countersteps, allowed vs. prohibited interleavings
of steps, and implementations in locking environments. The focus is typically
on implementing a decomposition supplied by the database application devel
oper, with relatively little attention to what constitutes a desirable decomposi
tion and how the developer should obtain such a decomposition. We find the
decomposition process itself to be worthy of attention, so we give the devel
oper a model in which to decompose transactions, and we define properties to
assure the developer as to the soundness of a given decomposition. Only then

N
IPA
#A
\
A~B
xt-ty
A-ttB
A>++B
B~A

AI>B
domA
ranA
AEBB
x?
x!
x
X
t:u
o
o
o
op

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 157

Table 6.1 Relevant Object Z Notation

Set of Natural Numbers
Powerset of Set A
Cardinality of Set A
Set Difference (Also schema 'hiding')
Forward Composition of A with B
Ordered Pair (x, y)
Partial Function from A to B
Partial Injective Function from A to B
Relation A with Set B Removed from Domain
Relation A with Range Restricted to Set B
Domain of Relation A
Range of Relation A
Function A Overridden with Function B
Variable x? is an Input
Variable x! is an Output
State Variable x before an Operation
State Variable X after an Operation
Before and After State of Variable x
Temporal Operator Always
Temporal Operator Eventually
Temporal Operator Next
Operation

do we consider the problem of implementing our decomposition in a two-phase
locking environment.

6.3 THE HOTEL DATABASE

We present our ideas with a running example of a hotel database. We use the
class definition of Object Z to specify the hotel database. Syntactically, a class
definition is a named box, in which the constituents of the class are defined
and related. The constituents of a class include type and constant definitions,
state schema, initialization schema, operation schemas, and history invariants.
A schema is a two-dimensional notation used in Object Z to specify the state as
well as operations on the state. The state schema is nameless and consists of
two parts: the top part contains declarations of the state variables, and the bot
tom part specifies the constraints on these variables. The initialization schema,
named INIT, defines the possible initial states. An operation schema, which is
named after the operation, also consists of two parts: the bottom part specifies
the operation using preconditions and postconditions and the top part contains
declarations of the variables used in the bottom part. A history invariant is a

158 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

predicate defined over a sequence of operations which further constrains the
behavior of the objects.

An Object Z specification appears in figure 6.1. The specification assumes
two basic types, Guest and Room, which enumerate all possible guests and all
possible hotel rooms, respectively. The enumerated type Status lists the two
values, Available and Taken, which indicates the status of each room.

[Guest, Room]

Status ::=Available I Taken

otel

I total:N

res: N

ST : Room -++ Status

RM : Guest >++ Room

#RM=res

dom(ST I> {Taken}) = ranRM

eserve Cancel

6.(res,ST,RM); g? : Guest; r! : Room 6.(res,RM,ST)

res < total; g? rt. domRM
g? : Guest

ST(r!) = Available g? E domRM

res' = res + 1 res' = res-l

ST' = ST E!) {r! H Taken} RM' = {g?} <:l RM

RM' = RMU {g? H r!} ST' = ST E!) {RM(g?) H Available}

eport

currentST! : Room -++ Status

currentRM! : Guest >++ Room

currentST! = ST

currentRM! = RM

Figure 6.1 Initial Specification of the Hotel Database

The class Hotel models the hotel database. The database objects may be
constants or variables. The hotel database has a constant total which is the
number of rooms in the hotel. The hotel database has three variables, namely,

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 159

res, RM and ST which are declared in the state schema. The natural number
res counts current reservations, and the partial injection RM relates guests to
rooms. Our particular example does not allow guests to register multiple times,
which is reflected in the fact that RM is an injective function. The example
could be modified easily with different constraints. The partial function ST
records the status of each room. Additional integrity constraints on the objects
in hotel database appear in the bottom part of the state schema. There are two
such constraints:

1. #RM = res. The number of guests who have been assigned rooms (the
size of the RM function) equals the total number of reservations (res).

2. dom(ST ~ {Taken}) = ran RM. The set of rooms that are taken (dom(ST ~
{Taken}» is exactly the set of rooms reserved by guests (ranRM).

The three operation schemas Reserve, Cancel and Report describe the three
transactions in the hotel database. Reserve reserves a room for guest g1 and
produces as output a room assignment r!. Reserve has a precondition that there
must be fewer than total reserved rooms and g1 must be a new guest. Since
the domain of RM is the set of guests with reservations, the latter is captured
by checking that g1 ¢ domRM. Reserve has a postcondition that some room
r! with status Available is chosen, the number of reservations is incremented,
the status of r! is changed to Taken, and the ordered pair g1 f-7 r! is added
to the function RM. Cancel cancels a reservation for guest g1. Cancel has a
precondition that g1 is a guest and a postcondition that res is decremented, g1
is removed from the domain of the function RM, and the status of the room for
g1 is changed to Available. Report has no precondition, and merely produces
the state components ST and RM as outputs.

Since the role of initialization is peripheral to our analysis, we omit initial
ization schemas here. Instead, we assume that the database has been initialized
to a consistent state. As no history invariants are needed to restrict the execu
tion of operations, we do not specify any history invariant.

6.4 THE MODEL

In our model, a database is specified as a collection of objects, along with
some invariants or integrity constraints on these objects. At any given time,
the state is determined by the values of the objects in the database. A change in
the value of a database object changes the state. The invariants are predicates
defined over the objects. A database state is said to be consistent if the values
of the objects satisfy the given invariants.

A transaction is an operation that transforms one database state to another.
Associated with each transaction is a set of preconditions and a set of post
conditions. A precondition limits the database states to which a transaction
can be applied. A postcondition constrains the possible database states after a

160 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

transaction completes. For example, a Reserve transaction has a precondition
that the hotel have at least one room available and a postcondition that there
be some room available before the reservation that is taken after the reserva
tion. Postconditions also constrain outputs. For example, the room r! output by
Reserve must be available initially. Together, preconditions and postconditions
must ensure that if a transaction executes on a consistent state, the resulting
state is also consistent.

Instead of executing a transaction as an atomic unit, we wish to break a
transaction into steps and execute each of these steps as an atomic unit. A de
composition of a transaction is a sequence of steps. In place of the transaction,
the steps execute atomically in order. A transaction that has been decomposed
into two or more steps is referred to as a multistep transaction.

One possible approach to decomposition is to treat the steps as transac
tions. In particular, one could insist that the integrity constraints hold after each
step, which is the decision taken in the Saga model [Garcia-Molina and Salem,
1987]. As the naive decomposition below demonstrates, such a requirement is
too strong for some applications, and so we develop a more flexible approach.

6.4.1 A Naive Decomposition of the Reserve Transaction

Suppose we break up the Reserve transaction into the following three atomic
steps.

Step 1: Increment the number of reserved rooms.

Step 2: Pick a room with status Available and change it to Taken.

Step 3: Assign the room selected in Step 2 to the guest.

aiveRl __ _
D.(res)

res < total
res' = res + 1

aiveR2 __ _

D.(ST)
r! : Room

ST(r!) =Available
ST' =snJ)

{r! f-t Taken}

aiveR3 __ _

D.(RM)
r! : Room
g? : Guest

g? ft domRM
RM' = RMU {g? f-t r!}

Figure 6.2 A Naive Decomposition of Reserve

A naive specification of these steps is given in figure 6.2. From a formal per
spective, the naive decomposition has a fatal flaw, in that none of the proposed
steps, considered by itself, maintains the invariants in Hotel. For example,
NaiveRl does not maintain the invariant #RM = res since NaiveRl increments

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 161

the value of res, but does not alter RM. Fonnally, the computed preconditions
of all three steps simplify to false, indicating that none of the steps can be safely
executed in an implementation. Executing any of the proposed steps violates
the invariants, and other transactions are exposed to the inconsistent state. For
example, Report produces an inconsistent output if executed in a state in which
the second invariant does not hold.

6.4.2 Generalizing the Original Invariants

The example demonstrates that some decompositions are unacceptable. Specif
ically, a decomposition may yield steps that leave the database in a state in
which the invariants do not hold. The arrow labeled NaiveR] in figure 6.3(a)
illustrates this possibility. Once the invariants are violated, the fonnal basis for
assessing the correctness of subsequent behavior collapses.

Insisting on decompositions where each step maintains database consistency
does solve this problem. However, the infonnal description of the steps into
which Reserve is broken is perfectly satisfactory, and it is excessive to insist
that the invariants of Hotel hold at all intennediate steps. Later in figure 6.4
we show the correct fonnal specification of the three steps of the Reserve tran
saction which we denote by RI, R2 and R3; CancelD and ReportD denote the
single steps of Cancel and Reserve transaction respectively. But before show
ing the specifications we present a fonnal model that can accommodate the
notion that some - but not all - violations of the invariants are acceptable.

Figure 6.3(b) illustrates a model that allows inconsistent states - as defined
by the invariants - that are nonetheless acceptable. The temporary inconsis
tency introduced by RI is allowed, and steps of some other transactions, for
example CancelD, can tolerate the inconsistency introduced by RI, and so are
allowed to proceed. The chosen approach is to generalize the original set of in
variants and decompose transactions such that each step satisfies the new set of
invariants. The model in figure 6.3(b) has many advantages, including greater
concurrency among steps. We fonnalize the model as follows.

Let I denote the original invariants, and let ST denote the set consisting of
all consistent states; that is, ST = {ST : ST satisfies I}. In the standard model,
a transaction Tj always accesses a consistent ST E ST. If STj denotes the state
after the execution of Ti, then STi is also in ST. When Tj is broken up into
steps Sil, ... ,Sin, each step Sij executes atomically. If ST ij represents the state
resulting from the partial execution of Ti through step Sij, it is possible that
STij no longer satisfies the invariants I and so lies outside ST. Figure 6.3(a)
illustrates this possibility for the naive decomposition of the hotel example.

In our approach, we define a new set of invariants J by relaxing the original
invariants I. We decompose each transaction such that execution of any step
results in a state that satisfies J. Let ST = {ST : ST satisfies J}. The relationship
between ST and ST is shown in figure 6.3(b). The inner circle denotes ST

162 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

and the outer circle denotes ST (signifying that ST CST). The ring denotes
the set of all states that satisfy J but not I . The important part about figure
6.3(b) is that the set of inconsistent but acceptable states is formally identified
and distinguished from the states that are unacceptable. The advantage is that
formal analysis can be used to investigate activities in ST.

5<:1 of all database Sta""

Set of all consistent
d.l3base states

(a) Standard classification of
database states

Set of ioconsistenl
bUI acccplllblc staleS

(b) Database states as classified
in our model

Figure 6.3 Classification of the Database States

To reason about decomposing transactions into steps and to avoid the prob
lems of a naive decomposition, we use auxiliary variables to generalize the
invariants. Auxiliary variables are a standard method of reasoning about con
current executions [Owicki and Gries, 1976] and, in particular, have been ap
plied to the problem of semantic-based concurrency control [Garcia-Molina,
1983, Appendix C). Our work focuses more on the decomposition than does
[Garcia-Molina, 1983], and so we emphasize the role of auxiliary variables
more strongly. We stress that the auxiliary variables are introduced for purposes
of analysis; the goal is to eliminate such variables from an implementation.

6.4.3 Compensating Steps

When transactions are decomposed into steps, it may not complete successfully
if a precondition of a step is not satisfied, or if the user aborts the transaction,
or if the system crashes. Incomplete transactions pose special problems in
semantic oriented models because steps may commit before it is determined
whether the transaction can complete. For example, suppose a Reserve tran
saction aborts after its first step Rl commits. Some mechanism must undo the
effects of Rl. Nullifying the effects of Rl using the backwards recovery method
of traditional undo [Bernstein et al. , 1987], where the state that existed before
Rl is physically restored, is not possible because steps of other transactions

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 163

may have read the updates of Rl. Instead we adopt the forward recovery solu
tion of a compensating step [Garcia-Molina, 1983, Garcia-Molina and Salem,
1987]; such a step semantically undoes the effects of the committed step R1
but does not disturb transactions that may have read from R1.

Like other steps of a transaction, compensating steps execute atomically.
However, the role of a compensating step differs from that of other steps. A
compensating step is not considered part of the normal processing of a tran
saction; it is initiated only to semantically undo a transaction.

For a transaction Ti that has been decomposed into n steps Sil, ... , Sin we
specify n - 1 compensating steps denoted by Ci2, ... , Cin . The compensating
step Cij semantically undoes the cumulative effect of steps Sil, ... ,SiU-l). This
is in contrast to the approach used in [Garcia-Molina, 1983, Garcia-Molina and
Salem, 1987] where a compensating step Cij is used to semantically undo the
operations performed by a single step Sij. The difference between the appr
oaches is not significant; our choice simplifies the presentation.

6.4.4 Semantic Histories

We are interested in the relationship between the original specification and the
specification with the generalized invariants. In particular, we would like to
know if and when the database returns to a consistent state.

Before we proceed further, we make a distinction between a type of a step
and an instance of a step. The three steps R1, R2 and R3 of the Reserve tran
saction are examples of different types of steps in the hotel example.

Histories, defined subsequently, reflect actual transactions, and must refer
ence instances of steps and compensating steps. A history may contain many
instances of a step of a given type. In cases where it not necessary to distin
guish the role of steps from that of compensating steps, we use the term 'step'
generically and denote an instance of either a step or a compensating step of
transaction Ti as Tij. Where the roles differ, we use Sij to denote an instance
of a step and Cij to denote an instance of a compensating step. The type of an
instance of a step T ij is denoted by ty(T ij).

Definition 6.1 [Stepwise Serial History] A stepwise serial history H over a
set of transactions T = {TI, ... , Tm} is a sequence of steps and compensating
steps such that

1. a step T ij either appears exactly once in H or does not appear at all,

2. for any two steps Sij and T ik, Sij precedes Tik in H if Sij precedes Tik in Ti,

3. ifTik E H, then Sij E H for j = 1, ... , (k-1),

4. if a compensating step Cij E H, then Sij ¢ H and Tik ¢ H for k > j.

Condition (1) ensures that every step of a transaction occurs at most once.
Condition (2) ensures that the order of the steps in a transaction is preserved.

164 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Condition (3) ensures that for every step, preceding steps in the corresponding
transaction are present. Condition (4) ensures that a compensating step termi
nates a transaction.

Unlike typical definitions of histories, our notion of a history does not refer
ence the operations on data elements, such as read and write. Such operations
are introduced and integrated into the definition of histories as we further refine
our specifications.

Example 6.1 < Sll, Sll > is not a stepwise serial history since it violates con
dition 1. < S13,S12 > is not a stepwise serial history since it violates conditions
2 and 3. < Sll, C 12, S12 > is not a stepwise serial history since it violates con
dition 4. < Sll,S21,S12,S13 > and < Sll,S21,C12,S22 > are stepwise serial
histories.

Definition 6.2 [Complete Execution] Consider a transaction T; decomposed
into steps Sil, ... , Sin with compensating steps C;2, ... , C;n. The execution of
T; in a history H is a complete execution if either (i) all n steps of Ti appear
in H or (ii) some steps ofT;, namely, Sil, ... , Sij appear in H followed by the
corresponding compensating step C;(j+1)' where j < n.

The sequences Sil,'" ,Sin and Sil, ... ,Sij, C;(j+1) are examples of execution
sequences [Garcia-Molina, 1983] of transaction T;. The sequence Sil, ... ,Sin
is a successful execution sequence of T;, and the sequence Sil,'" ,S;j, C;(j+1) is
an unsuccessful execution sequence of T;.

Example 6.2 For the hotel database, an execution of a Reserve transaction T;
is complete in H if either (i) all three steps Sil, S,"2, and S;3 ofT; appear in H,
or (ii) Sil and C;2 appear in H, or (iii) Sil, S;2 and C;3 appear in H. Case(i) is
an example of successful complete execution. Cases(ii) and (iii) are examples
of unsuccessful complete executions.

To introduce state information, we define semantic history.

Definition 6.3 [Semantic History] A semantic history H is a stepwise serial
history bound to

1. an initial state, and

2. the states resulting from the execution of each step in H.

Informally, we use the term partial semantic history for cases in which the
execution of at least one transaction actually is incomplete, but from a formal
perspective, partial semantic histories are just semantic histories. Complete
semantic histories are a special case of a semantic histories:

Definition 6.4 [Complete Semantic History] A semantic history H over a set
of transactions T is a complete semantic history if the execution of each T; in
T is complete.

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 165

Next we define what it means for a semantic history to be correct.

Definition 6.5 [Correct Semantic History] A semantic history H is a correct
semantic history if

1. the initial state is in ST,

2. the states before and after each step in H are in ST, and

3. the precondition for each step is satisfied in the corresponding state.

Definition 6.6 [Correct Complete Semantic History] A complete semantic
history H is a correct complete semantic history if

1. H is a correct semantic history, and

2. the final state is in ST.

6.5 PROPERTIES OF VALID DECOMPOSITION

To ensure the correct behavior of an application in which transactions have
been decomposed into steps, we propose a set of necessary and desirable prop
erties.

6.5.1 Composition Property

When transactions have been decomposed into steps, we can state a property
relating steps in a decomposition to the original transaction. We call this re
quirement the composition property.

Composition Property Let Sil, ... ,Sin be the steps of transaction Ti and ST
be a state that satisfies the original integrity constraints I. Then executing the
sequence of steps Sil, ... ,Sin in isolation on ST is equivalent to executing Ti on
ST, except for constraints on auxiliary variables.

The composition property does not address what happens if the precondi
tion of some step is not satisfied and thus the execution cannot complete. From
an implementation perspective, the composition property is similar to requir
ing that the sequential execution of the steps be view equivalent to that of the
original transaction.

6.5.2 Sensitive Transaction Isolation Property

In our model, we allow transactions to access database states that do not sat
isfy the original invariants (that is, states in ST - ST). But we may wish to
keep some transactions from viewing any inconsistency with respect to the
original invariants. For example, some transactions may output data to users;
these transactions are called sensitive transactions [Garcia-Molina, 1983]. We
require sensitive transactions to appear to have generated outputs from a con
sistent state. This leads us to the next property.

166 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Sensitive Transaction Isolation Property All output data produced by a
sensitive transaction T; should have the appearance that it is based on a con
sistent state in ST, even though the decomposition of T; may access database
states in ST - ST.

In our model, we ensure the sensitive transaction isolation property by con
struction. There are two aspects to such a construction. First, for each sensitive
transaction, we compute the subset of the original integrity constraints, I, rel
evant to the calculation of any outputs. Second, as pointed out by Rastogi,
Korth, and Silberschatz [Rastogi et al., 1995], if outputs are generated by mul
tiple steps, interleavings between these steps must be controlled to ensure that
outputs from later steps are consistent with outputs from earlier steps.

6.5.3 Consistent Execution Property

Similar to the consistency property for traditional databases, we place the fol
lowing requirement on semantic histories:

Consistent Execution Property If we execute a correct complete semantic
history H on an initial state (i.e., the state prior to the execution of any step in
H) that satisfies the original invariants I, then the final state (i.e., the state after
the execution of the last step in H) also satisfies the original invariants I.

6.5.4 Semantic Atomicity Property

When transactions have been broken up into steps, it may not be always pos
sible to complete a transaction. This happens if the precondition of some later
step is not satisfied and the effects of the partially executed transactions cannot
be undone by executing compensating steps. The semantic atomicity property
ensures that such a situation is avoided; if a transaction has been partially exe
cuted, then it can complete.

Semantic Atomicity Property Every correct semantic history Hp defined
over a set of transactions T is a prefix of some correct complete semantic his
tory Hover T.

Like all the other properties stated so far, semantic atomicity is a necessary
property. The definition of semantic atomicity property is very general. Some
applications may require a stronger property, the successful execution property,
stated below.

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 167

6.5.5 Successful Execution Property

The interleaving of steps of different transactions may result in a state from
which it is not possible to successfully complete some transaction. The suc
cessful execution property ensures that such a situation is avoided; if a tran
saction has been partially executed, then it can complete without resorting to
compensation.

Successful Execution Property Every correct semantic history Hp defined
over a set of transactions T is a prefix of some correct complete semantic his
tory Hover T such that for each Tj E T that is incomplete in Hp, H contains a
successful execution sequence of Tj •

Unlike the other properties we have stated so far, successful execution is
an optional property. Successful execution property requires that all the pre
conditions of a transaction should appear in the first step. This in turn would
require a large number of updates to be performed in the first step. (Precon
dition checks are often associated with updates; in such cases we require to
perform the check and update atomically, that is, in the same step.) Thus in
sisting on successful execution property may force too many operations in the
first step of the transaction - which is undesirable from the performance point
of view. Hence we do not insist that applications have the successful execution
property.

6.6 EXAMPLES OF DECOMPOSITION

6.6.1 A Valid Decomposition

We now provide a valid decomposition of the hotel database which satisfies all
the necessary properties described in the previous section. The class HotelD
(short for Hotel Decomposition) in figure 6.4 specifies this valid decomposi
tion.

We generalize the invariants by adding the auxiliary variables underway and
acquired. underway is a natural number which denotes the reservations that
have been partially processed. The auxiliary variable acquired denotes the
set of rooms that have been taken but which have not yet been assigned to
guests. The declarations of these auxiliary variables appear in the top part of
the state schema. The two generalized invariants appear at the bottom of the
state schema. They are:

1. #RM + underway = res

2. dom(STI> {Taken}) = ranRMUacquired

Since the steps and compensating steps now comprise the operations of the
decomposed hotel database, we specify operation schemas corresponding to
each type of step and compensating step. Only the Reserve transaction is de
composed into three steps, namely RI, R2 and R3. RI has a precondition that

168 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

that there must be fewer than total rooms. The postcondition of Rl increments
res and underway. The precondition of R2 is that the room to be assigned to
the guest r! is Available. The postcondition of R2 changes the status of r! to
Taken and inserts r! in the set acquired. The precondition of R3 is that g? must
be a new guest. The postcondition of R3 inserts the ordered pair g? I-t r! to the
function RM, removes r! from the set acquired and decrements underway. The
compensating step CompR2 semantically undoes the effect of Rl. The precon
ditions of CompR2 are that the variables res and underway must be positive.
The postcondition of CompR2 decrements res and underway. The compen
sating step CompR3 semantically undoes the cumulative effects of Rl and R2.
The preconditions of CompR3 are that res and underway must be positive and
r! must be in the set acquired. The postconditions of CompR3 decrement res
and underway and remove r! from the set acquired and change the status of r!
to Available. CancelD and ReportD represent the single steps of the Cancel and
Report transaction respectively; the specifications of these steps are identical
to the corresponding transactions.

6.6.1.1 Composition Property. To implement a Reserve, its three steps
must execute in order. The composition property for the hotel example, for
mally stated in Object Z, is as follows.
Hotel A ((R13R23R3) \ (underway, acquired, underway' ,acquired')) <=> Reserve

The left hand side gives the composition of the steps where the initial state
is constrained to satisfy the original invariants and the auxiliary variables are
hidden or suppressed. The right hand side is the original transaction Reserve.
In Object Z a propositional relation between schemas - equivalence in this case
- translates into the same relation between the predicates defining the schemas.
The three steps satisfy the composition property; we omit the details of the
proof in this chapter.

6.6.1.2 Sensitive Transaction Isolation Property. Report is a sensi
tive transaction, and we establish the sensitive transaction isolation property
by construction. A formal treatment is given in [Ammann et al., 1997]. Infor
mally, Report transaction outputs values of ST and RM. ST and RM appear in
the following original invariant:

dom(STI> {Taken}) = ranRM
which can be derived from the generalized invariant

dom(STI> {Taken}) = ranRMUacquired
if the auxiliary variable acquired satisfies acquired = 0. Hence, to ensure that
ReportD does not output inconsistent data we specify the following restriction
as a history invariant.

o((acquired", 0) =? (Oop '" ReportD)).
The above notation means that it is always true when the auxiliary variable
acquired is not the empty set, the next opemtion must not be the step ReportD.

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 169

Although Reserve is a sensitive transaction, it turns out that no additional
preconditions are needed to ensure that the output r! reflects a consistent state.

6.6.1.3 Consistent Execution Property. Consider any correct complete
history H generated from the decomposition specified in figure 6.4. To prove
the consistent execution property we must show that if H is executed in a con
sistent state, the final state is also consistent.

When the database is in a consistent state, the auxiliary variables satisfy the
following condition: underway = 0 1\ acquired = 0.

Let rl, r2, r3, compr2, compr3 be the number of steps of type Rl, R2,
R3, CompR2, CompR3 respectively in H. The auxiliary variable underway is
incremented by steps of type Rl and decremented by steps of type R3, CompR2
and CompR3. Since the initial state of H is consistent, the value of underway
in the final state of H is given by the following expression

underway = rl - (r3 + compr2 + compr3) (6.1)

Similarly we have,

1 acquired 1= r2 - (r3 + compr3) (6.2)

Since H is complete, each step of type Rl has a corresponding step of type R2
or CompR2. Similarly, each step of type R2 has a corresponding step of type
R3 or CompR3. Thus we have

r1 = r2 + compr2 (6.3)

r2 = r3 + compr3 (6.4)

From (6.1 -6.4) we can derive that in the final state of H, underway = 0 1\
acquired = 0 which means that the final state is consistent.

6.6.1.4 Semantic Atomicity Property. Let Hp be any correct partial se
mantic history. Hp has one or more incomplete Reserve transactions. Con
sider an incomplete Reserve transaction. If this transaction has committed only
step Rl, then it can complete by executing CompR2. This is possible because
steps of no other transaction executing after Rl can violate the preconditions
of CompR2. Similarly it can be shown that if the Reserve transaction has com
mitted steps Rl and R2, it is possible to execute CompR3 and complete the
Reserve transaction. In this way all the incomplete Reserve transactions can be
completed and the partial history Hp extended to a correct complete semantic
history He. Hp is therefore a prefix of He.

170 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

oteLD

res,underway: N

ST : Room -+t Status

RM : Guest >++ Room

acquired: IP'Room

#RM + underway = res

dom(ST[> {Taken}) = ranRMUacquired

1 2

~ (res, underway) ~(ST,acquired)j r!: Room

res < total ST(r!) = Available

res' = res + 1 ST' = sr E9 {r! t-+ Taken}

underway' = underway + 1 acquired' = acquiredU {r!}

3 CanceLD

~(RM,acquired,underway) ~(ST,RM,res)

g? : Guestj r! : Room g?: Guest

g? if-domRM g? EdomRM

RM' = RMU {g? t-+ r!} res' = res-l

acquired' = acquired \ {r!} sr' = STE9 {RM(g?) t-+ Available}

underway' = underway - 1 RM' = {g?} ~ RM

eportD CompR3

currentST! : Room -+t Status ~(res,underway,acquired,ST)

currentRM! : Guest >++ Room r!: Room

currentST! = ST res> 0

currentRM! = RM underway> 0

CompR2
r! E acquired

res' = res-l
~(res, underway)

underway' = underway - 1

res> OJ underway> 0 acquired' = acquired \ {r!}

res' = res-l ST' = ST E9 {r! t-+ Available}

underway' = underway - 1

o (acquired i 0) => O(op i ReportD)

Figure 6.4 A Valid Decomposition for the Hotel Database

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 171

6.6.2 An Invalid Decomposition

In this section, we give an example of an invalid decomposition. Unlike the
naive decomposition, the decomposition given below generates correct seman
tic histories. The decomposition is invalid because it does not satisfy one of the
necessary properties, namely, the semantic atomicity property.

To illustrate the possibility, we modify the HotelD specification. The modi
fied specification, known as DeadlockHotel, is shown in fig. 6.5.

In the example specification, the cancel transaction is decomposed into steps
Cl and C2. We introduce the auxiliary variable underwayC which keeps count
of the cancel transactions that have completed step Cl but not step C2. The
invariant #RM = res - underway in the HotelD is changed to #RM = res
underway + underwayC in DeadlockHotel.

Also, we introduce a new structure clist which keeps track of the guests
whose cancelations are in progress. The guest whose reservation is being can
celed is added to the clist in step Cl and is removed from the clist in step
C2. To ensure that a guest whose cancelation is in progress is not canceled
by some other transaction, we include precondition g? ct clist in step Cl. Cl
has another precondition res> 0 which ensures that Cl executes when there is
at least one reservation. The postcondition of Cl decrements res, increments
underwayC and inserts g? in clist. The preconditions of C2 check that g? has
a valid reservation, g? is in clist and underwayC is positive. The postcondi
tion of C2 removes g? from the domain of RM, makes the room which was
assigned to g?, Available, removes g? from clist, and decrements underwayC.
Since the cancel transaction is decomposed into two steps, we must specify
CompC2, a type of compensating step, which semantically undoes the actions
of Cl. CompC2 has four preconditions: res must be less than total, underwayC
must be positive, g? must be in clist and g? must have a valid reservation. The
postcondition of CompC2 increments res, decrements underwayC and removes
g? from clist.

The reserve transaction is broken into steps Resl, Res2 and Res3, similar to
Rl, R2 and R3 of the HotelD specification. We impose an additional constraint
that a room cannot be reserved for a guest whose cancelation is in progress; the
precondition g? ct clist in step Res3 ensures this. We assume that this example
has no Report transaction.

Consider the partial history Hp =< S11 > where ty(S11) = Cl. Suppose in
the initial state of Hp , John ct domRM. The cancel transaction T1 attempts to
cancel the reservation for guest John. The execution of step S11 results in John
being inserted in the clist. Now step S12 cannot execute since the precondition
John ct domRM is not satisfied as John does not have any reservation. The
compensating step C12 of type CompC2 also checks for these preconditions;
since these preconditions are not satisfied, the compensating step cannot be

172 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

executed. The specification is therefore an invalid specification - it lacks the
semantic atomicity property.

The deadlock could be avoided by including the invariant dist ~ guest in
DeadlockHotel. Omission of this constraint allows the database to enter an
undesirable state where c? E dist 1\ c? ¢ guest, from which neither the next
step or the compensating step could be executed.

6.7 SUCCESSOR SETS

After presenting examples of decomposition, we now describe mechanisms to
efficiently implement our model. The decomposition process introduces addi
tional database objects (auxiliary variables) and imposes additional constraints
(history invariants) on the execution of steps. The additional objects are present
primarily to support analysis. For efficient implementation, we want to avoid
instantiating the objects. Checking the satisfaction of history invariants before
scheduling an operation is expensive and our goal is to avoid such checks in
the implementation. Successor sets are the mechanism we use to achieve these
objectives.

Definition 6.7 [Successor Set] The successor set of ty(T ij), denoted SS (ty(Tij)),
is a set of types of steps.

At this point, the notion of successor sets is purely syntactic. Subsequently,
we define the constraints under which a successor set description is correct with
respect to a particular decomposition. But first we wish to define the notion of
correct successor set histories.

To achieve this goal we introduce the notion of conflict into our model. Two
operations conflict if both operate on the same data item and at least one is a
Write. Two steps Tij and Tpq conflict if they contain conflicting operations. It is
easy to determine the set of conflicting steps once the code for the decomposed
transactions is given. At this stage we only have the specification, but we would
still like to define a notion of conflict. We define any state variable modified in
a postcondition of an operation as being written in the specification. Similarly,
we define any state variable referenced in a precondition or postcondition as
being read in the specification.

The read and write set of the steps of the decomposed hotel database, as
obtained from the specifications (figure 6.4) is given in Table 6.2. Table 6.3
gives the set of conflicting steps in the Hotel Database.

The definition of conflict allows us to define a notion of correctness with
respect to successor set descriptions that is not overly restrictive.

Definition 6.8 [Correct Successor Set History] H is a correct successor set
history if it satisfies the following conditions.

1. H is a correct semantic history.

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 173

eadlockHotel

res, underway, underwayC : !'II; dist : lI"Guest; acquired: 11" Room

RM : Guest >++ Room; SI' : Room -+t Status

#RM = res - underway + underwayC; dom(SI' [> {Taken}) = ranRM U acquired

esl es2

~(res,underway) ~(SI',acquired); r! : Room

res < total; res' = res + I SI'(r!) = Available; SI" = SI'fI) {r! >-+ ']j liken}

underway = underway + I acquired' = acquired U {r!}

es3 r CI

~(RM, underway, acquired) ~(res, dist, underwayC)

g? : Guest; r! : Room g?: Guest

underway> 0; r!!l ranRM res> 0

g? !l domRM; g? !l dist g? !l dist

RM' = RMu {g? >-+ r!} res' = res-I

underway = underway - I dist' = clistU {g?}

acquired' = acquired \ {r!} underwayC' = underwayC + I

rC2 r CompRes2

~(SI',RM,dist,underwayC) ~(res,underway)

g?: Guest
res> 0

g? E domRM; g? E dist . underway> 0

underwayC > 0 res' = res-I

SI" = SI'fI){RM(g?) >-+Available} underway = underway - I

RM' = {g?} ..a RM; dist' = dist \ {g?}

underwayC' = underwayC - I

CompRes3 CompC2

~(res, underway, acquired, SI') ~(res, dist, underwayC)

r! : Room g?: Guest

res> 0; underway> 0 res < total

r! E acquired; SI'(r!) = Taken g? E dist; g? E domRM

res' = res-I underwayC > 0

underway = underway-I res' = res + I
acquired' = acquired \ {r!} dist' = clist \ {g?}

SI" = SI'fI) {r! >-+ Available} underwayC' = underwayC - I

Figure 6.5 Example Specification lacking Semantic Atomicity Property

174 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Table 6.2 Read and Write Sets for Steps of Hotel Example

Type of Step Variables Read Variables Written
RI res, total, underway res, underway
R2 ST, acquired ST, acquired
R3 RM, underway, acquired RM, underway, acquired

ReportD ST,RM
CancelD res,ST,RM res,ST,RM
CompR2 res, underway res, underway
CompR3 res, ST, underway, acquired res, ST, underway, acquired

Table 6.3 Conflicting Steps for Hotel Example

Type of Step Types of Conflicting Steps
RI RI, R3, CancelD, CompR2, CompR3
R2 R2, R3, ReportD, CancelD, CompR3
R3 RI, R2, R3, ReportD, CancelD, CompR2, CompR3

ReportD R2, R3, CancelD, CompR3
CancelD RI, R2, R3, ReportD, CancelD, CompR2, CompR3
CompR2 RI, R3, CancelD, CompR2, CompR3
CompR3 RI, R2, R3, CancelD, ReportD, CompR2, CompR3

2. If Tj is incomplete in the prefix of H that ends at Tpq, and T ij is the last
step in Tj such that (i) Tjj conflicts with Tpq and (ii) Tjj precedes Tpq in H
then ty(Tpq) E SS(ty(Tij)).

In the hotel example, there is one history invariant corresponding to the sen
sitive transaction isolation property. This history invariant forbids the execution
of steps of type ReportD when the auxiliary variable acquired =1= 0. This his
tory invariant is satisfied as long as a step of type ReportD does not appear
between steps of type R2 and R3 of reserve transaction. To ensure this we
specify the successor sets as shown in Table 6.4. For the hotel example, the
history invariant involving auxiliary variable is captured by the successor set
description, and so neither the history invariant nor the auxiliary variables need
to be implemented.

With respect to the specifications given with history invariants, not all suc
cessor set descriptions are valid. Informally, a successor set is valid with re
spect to a specification containing history invariants if any correct successor set
history can also be generated by the specification containing history invariants.
Although desirable, the converse property does not hold in general since first
order logic history invariants have more expressive power than the successor

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 175

Table 6.4 Successor Sets for the Hotel Example

SS of Type of Step Types of Steps in Successor Set
SS(Rl) Rl, R2, R3, ReportD, CanceLD, CompR2, CompR3
SS(R2) Rl, R2, R3, CanceLD, CompR2, CompR3
SS(R3) Rl, R2, R3, ReportD, CanceLD, CompR2, CompR3

SS(ReportD) Rl, R2, R3, ReportD, CanceLD, CompR2, CompR3
SS(CanceLD) Rl, R2, R3, ReportD, CanceLD, CompR2,CompR3
SS(CompR2) Rl, R2, R3, ReportD, CanceLD, CompR2,CompR3
SS(CompR3) Rl, R2, R3, ReportD, CanceLD, CompR2,CompR3

set mechanism. Formally, we describe valid successor set descriptions with the
valid successor set property:

Definition 6.9 [Valid Successor Set Property] A specification S2 that em
ploys a successor set description is valid with respect to specification Sl with
history invariants if

1. any correct successor set history generated by S2 is also a correct seman
tic history generated by Sl.

2. S2 satisfies the semantic atomicity property.

The second condition can be easily satisfied by ensuring that all compensat
ing steps are contained in each successor set description. The hotel example
has the valid successor set property, where it turns out that the successor set
specification generates exactly the same set of histories as the specification
with history invariants.

Suppose an application requires the successful execution property. Since
successor set descriptions are less expressive than the first order predicates they
replace, the set of histories for S2 may be a proper subset of the set of histo
ries for Sl. Therefore, the successful execution property must be reverified
explicitly on histories generated by S2.

6.8 CONCURRENT EXECUTION

6.S.1 Correct Stepwise Serializable Histories

For every pair of steps in a correct successor set history, all operations of one
step appear before any operations of the other step. However if the steps of a
transaction execute atomically and without any interleaving, the database sys
tem uses resources poorly. To improve efficiency we introduce the notion of
correct stepwise serializable history. In a correct stepwise serializable history
the steps of transactions need not be executed serially, but nevertheless the ef
fect is the same as that of a correct successor set history.

176 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

We develop stepwise serializability by defining history and equivalence in a
manner similar to [Bernstein et al., 1987]. A history H defined over a set of
transactions T involves precisely the operations of steps in T, H preserves the
order of operations in each step in T and any pair of conflicting operations are
ordered in H. Two histories H and H' are said to be equivalent if they are de
fined over the same set of steps, they have the same operations, and they order
conflicting operations of steps in the same way. That is, for any pair of conflict
ing operations Pij and qkl belonging to Tij and Tkl (respectively), if Pij -<H qkl,
then P;j -<H' qk/. A correct stepwise serializable history is one which is equiv
alent to a correct successor set history. A graph-theoretic characterization of
correct stepwise serializable histories is given in [Ammann et al., 1997].

6.8.2 Concurrency Control Mechanism

We now propose a concurrency control mechanism for our model and identify
the issues relevant to an implementation.

We make the following assumptions:

1. Lock management is centralized.

2. The steps of a transaction are submitted in order. That is an operation in
step Tr(s+l) is submitted only after step Trs commits.

3. If a transaction reads and writes the same data entity x, the read operation
precedes the write operation.

4. A transaction reads or writes an entity x at most once.

5. The algorithms specified below execute atomically.

Our mechanism uses two phase locking on the steps of the transactions.
There are two modes in which a data item may be locked by a step - shared
mode or exclusive mode. A step acquires an appropriate lock as a prerequisite
for accessing a data item. A step is denied a lock if either another step holds
a conflicting lock or if the step fails a test based on· successor sets. Locks
acquired by a step are released when the step commits or aborts.

For the purposes of this section, we define a step as a sequence of read and
write operations followed by a commit or an abort operation,

Tij = Oij(Xt} , Oij(X2) , ... , Oij(xn),Eij,

where Oij(x) is either R;j(x) or W;j{x) and E;j is either Cij(x) or Aij(x) , and a
transaction is a sequence of steps followed by a termination operation,

T; =< Til,"" T;n, TR(T;) >

We require the following data structures in addition to those required by the
two phase locking protocol.

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 177

1. Active-Set - Set of Active Transactions

Active-Set(x) - The active set for x keeps the list of all active transactions
whose committed steps have accessed x. Whenever any step T ij that reads
or writes x commits, the transaction Tj is added to Active-set(x). After
the transaction Tj terminates, Tj is removed from Active-Set(x).

2. Int-Set - Interleaving Sets

Int-Set(Tj,x) - The interleaving set for x is associated with each active
transaction Tj that accesses x. The interleaving set gives the types of the
steps that can access the data item. If data item x has been accessed by
step Tjj of Tj and T ij or any step of Tj occurring after T ij commits, then Int
set(Tj,x) is replaced by the successor set of the corresponding committed
step.

6.8.2.1 Algorithms. Before a read operation Rij(x) can proceed, step Tij
needs a shared lock for x. There are two conditions for Tjj to acquire the shared
lock: (i) No other step has an exclusive lock on x and (ii) Tjj is in Int-Set(Tk,x)
for all active transactions Tk whose committed steps have accessed x. If either
condition is not satisfied, the lock is not granted and step T ij must try again
later. When Rjj(x) is retried, it must be re-executed from the first step of the
algorithm.

Algorithm for Read
Procedure Process-read (Rij(x»

begin
if a step Tim is holding an exclusive lock on x

exit; 1* Lock unavailable - Tij can retry later *1
for each Tk E Active-set(x)

if ty(Tij) f/. Int-set(Tt,x)
exit; 1* Lock unavailable - Tjj can retry later *1

lock x in shared mode;
accept(Rjj(x»;

end
Before a write operation Wjj(x) can proceed, step Tjj needs an exclusive lock

for x. There are two conditions for T ij to acquire the exclusive lock: (i) No other
step has any lock on x and (ii) Tij is in Int-Set(Tk,x) for all active transactions
Tk whose committed steps have accessed x. If either condition is not satisfied,
the lock is not granted and step Tij must try again later. When Wjj(x) is retried,
it must be re-executed from the first step of the algorithm.

Algorithm for Write
Procedure Process-write (Wij(x»

begin
if a step Tim is holding any lock on x

exit; 1* Lock unavailable - Tij can retry later *1

178 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

for each Tk E Active-set(x)
if ty(Tij) ¢ Int-set(Tk,X)

exit; 1* Lock unavailable - Tij can retry later *1
lock x in exclusive mode
accept(Wij(x»;

end

A step commits when all the operations of a step are complete. For each data
item x locked by the transaction in the current or previous steps, the interleaving
set associated with this transaction and data item x is replaced by the successor
set of the step. The transaction is included in the list of active transactions that
have accessed x. All locks acquired by this step are released.

Algorithm for Step Commit
Procedure Process-stepcommit(Cij)
begin

for each x locked by the transaction in this or previous step do
Int-set(Ti,x) = SS(ty(Tij}};

for each entity x locked by the transaction in this step do
begin

end

if Ti ¢ Active-set(x)
Active-set(x) = Active-set(x) UTi;

Release the lock on x which was acquired by T ij;
end

A step may not always complete successfully and may abort. The abort
causes all the locks held by the step to be released. The abort of step Tij does
not affect the data structures Active-set(x) or Int-set(Ti,x); these data structures
are adjusted with the transaction termination processing. Traditional recovery
for aborted transactions, such as undo, is required for the aborted step, but
details are omitted.

Algorithm for Step Abort
Procedure Process-stepabort(Aij)
begin

1* Restore values written by Tij *1
for each entity x locked by the transaction in this step do

Release the lock on x which was acquired by T ij;
end

Termination removes a transaction from the set of active transactions. Since
interleaving sets are associated only with active transactions, the interleaving
set Int(Ti,x) is deleted when the transaction terminates.

Algorithm for Transaction Terminate
Procedure Process-terminate(TR(Ti})
begin

SEMANTIC-BASED DECOMPOSITION OF TRANSACTIONS 179

for each entity x which was accessed by Tj do

end

begin
Active-set(x) = Active-set(x) - Tj;
delete the structure Int-set(Tj,x) ;

end

6.8.2.2 Discussion. As with other locking protocols, our mechanism has
potential for starvation of transactions and deadlock. Since these issues can be
addressed in standard ways, we do not describe detailed algorithms for solving
these problems. However, these issues must be dealt with if an implementation
of our model is to developed.

A variety of issues pertaining to supporting compensation must also be re
solved. One issue is reliably storing data items which may be needed by a
compensating step in case a multistep transaction does not complete. A sec
ond issue deals with initiating the compensating steps. Garcia-Molina suggests
[Garcia-Molina, 1983] that the initiation of the compensating step must be done
by the system. Such an approach has the advantage that all transaction aborts,
whether user-initiated or failure-related, can be treated in a uniform way. A
third issue is recovery from system crash. Transactions that are incomplete at
the time of the crash can either be compensated or continued.

6.9 CONCLUSION

In this work, we have provided the database application developer writing
the specification conceptual tools necessary to reason about systems in which
transactions that ideally should be treated as atomic - for reasons of analysis -
must instead be treated as a composition of steps - for reasons of performance.
The developer begins with a specification produced via standard formal meth
ods, transforms some transactions in the specification into steps, and assesses
the properties of the resulting system. The formal analysis at each step of
this process provides assurance that the resulting system possesses the desired
properties.

Currently we are investigating how to apply semantic-based transaction de
composition to other areas like multidatabase applications and multilevel se
cure database systems. These areas impose some additional requirements which
in tum pose new challenges to the decomposition process. We plan to investi
gate how typical applications in these areas can be processed using our model
and study the relative advantages/disadvantages of our approach over the exist
ing syntactic approach.

An important question is how well our model scales up to real-world appli
cations. The necessary properties must be demonstrated for applications which
must be implemented by our model. In this work, we have used the Object Z

180 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

specification language and all the analysis are done by hand. However for real
world applications this may not be feasible and it may be necessary to automate
to the maximum extent the discharge of proof obligations. Industrial-level tool
support for such an endeavor is essential, and the use of existing automated
theorem provers and model checkers needs to be investigated.

Acknowledgments

This work was partially supported by Defense Advanced Projects Research Agency

under grant number NOO60-96-D-3202. The work of S. Iajodia was also supported
by National Science Foundation under grant number IRI-963354I and by National Se

curity Agency under grants MDA904-96-1-0103 and MDA904-96-1-0104. The work

of I. Ray was also supported by a George Mason University Graduate Research Fel

lowship Award.

IV Concurrency Control and
Recovery

7 CUSTOMIZABLE CONCURRENCY
CONTROL FOR PERSISTENT JAVA

Laurent Daynes. M.P. Atkinson

and Patrick Valduriez

Abstract: We report on the issues raised when designing a customizable lock
ing mechanism for Persistent Java, a type-safe, object-oriented, orthogonally
persistent system based on the language Java. Customizable locking mecha
nisms are supported by locking capabilities. A locking capability is a book
keeper of locks that automatically acquires locks with a customizable conflict
detection mechanism. It implements the concepts of delegation of locks and
ignorable conflicts, automatically keeps track of the dependencies created be
cause of ignored conflicts, and supports the setting of user-defined notifications
for conflicts that can't be ignored. Locking capabilities are one of the primi
tive components of a more general framework that gives the ability to expert
application programmers to implement new transaction behaviors in Java. The
framework doesn't change the Java language specification, and allows the use of
any Java classes to implement the body of transactions without change to either
their source or compiled form.

7.1 INTRODUCTION

Persistent programming languages offer an attractive alternative to the increas
ing number of applications whose needs cannot be satisfied with traditional
database support. The requirement of these so called non-traditional applica
tions have prompted the development of numerous transaction models whose
semantics vary from the traditional transaction model as well as from each
other [Elmagarmid, 1992, Barghouti and Kaiser, 1991]. The ever growing pro
liferation of transaction models, all unable to satisfy all needs, has definitively
buried the hope of finding an universal model in the short term, if at all. In

S. Jajodia et al. (eds.), Advanced Transaction Models and Architectures
© Springer Science+Business Media New York 1997

184 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

the absence of a proper transaction model, most persistent application builders
end up investing a significant amount of time developing in-house transaction
models to circumvent the proposed transaction support in order to better ac
commodate the needs of their application.

In order to minimize the cost of realizing new transaction models, appli
cation builders must be offered a simple framework which they can use to
quickly define the transaction behavior they want and to incorporate it into the
persistent programming system. Ideally, these extensions should not require
the programmers to have an in-depth knowledge of how transaction processing
mechanisms are implemented. Furthermore, each addition of a new transaction
model should not require that the system be rebuilt. Instead, the system should
be able to dynamically adjust itself to incorporate these extensions. Lastly,
the user's extensions should be tightly integrated with $e system in order to
minimize the impact on the overall performance of the system.

This paper reports on our effort to augment Persistent Java (PJava), an al
ternative platform for the Java language [Atkinson et al., 1996], with such ex
tensible transaction management features. The paper specifically focuses on
the issues raised when designing the addition and the implementation of a cus
tomizable locking mechanism for Persistent Java.

7.1.1 Overview of Persistent Java

The main goal of the Persistent Java (PJava) project is to leverage Java to sup
port faster development and better maintenance of persistent and transactional
applications (e.g. [Jordan, 1996]) via provision of orthogonal properties. Pro
viding properties such as persistence and transaction semantics orthogonally
has two benefits.

1. Application programming is not polluted with considerations unrelated
to the application logic itself, such as persistence or enforcement of some
transactional properties. In particular, programmers do not have to ex
plicitly identify the data that may become persistent or may be used in a
transactional way. Similarly, the standard Java code that would operate
on transient data is used unchanged when it operates on persistent data
or in a transactional context. The addition of the desired property (e.g.,
persistence, persistence + transaction) is achieved by simply composing
the application code with some context-aware code that encapsulates the
particularities of the application requirement (e.g., management of roots
of persistence or monitoring of transaction execution).

2. Any Java classes can be used to build applications in a specific opera
tional context (non-persistent Java, persistent Java, persistent and trans
actional Java) without any change to either the sources or the compiled
form of these classes; no extra rewriting/pre-processing or code gener-

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 185

ation steps are necessary to execute standard Java classes in PJava and
obtain persistence or transaction semantics. Conversely, the source and
compiled form of any classes programmed with PJava can be re-used in
any standard Java development environment and executed by any stan
dard virtual machine, except for a minority of classes that encapsulate
the use of built-in classes specific to PJava (the "context-aware" classes).

The current PJava prototype realizes an alteI1lative platform for the Java lan
guage with provision of completely orthogonal persistence for data, meta data
(classes) and code (methods). Persistence is added to the Java language with no
perturbation to Java's semantics. Consequently, all Java classes can be re-used
in persistent applications without any alteration to either their source or their
compiled form. The reader is referred to [Atkinson and Morrison, 1995] for an
extensive definition of orthogonal persistence and to [Atkinson et al., 1996] for
its application to the language Java. From the application programmer's point
of view, persistence is simply obtained by composing normal Java classes with
a few other persistence-aware classes (in most cases one) that interact with an
object that implements the PJStore interface. The localized persistent-aware
code typically identifies the roots of persistence, binds these root objects to the
application's variables, and triggers the stabilization of all updates! onto the
persistent store.

Our design to add extensible transaction management to Java follows a sim
ilar philosophy. Transactions are introduced into Java without changing the
language definition and such that programmers don't have to explicitly iden
tify the data manipulated within transactions. The aim is to allow the use of
any pre-existing Java classes to program the body of transactions without any
alteration to the original source and compiled form of these classes. These tran
saction bodies can then be executed in the context of any defined transaction
models.

In order to achieve extensibility, we augment the PJava virtual machine with
a Customizable Transaction Processing Engine (or CTPE). The intention is
to give knowledgeable Java programmers the ability to define new transaction
models by programming customization of the CTPE in Java using predefined
primitive components. Primitive components are objects that abstract the key
mechanisms of individual CTPE's components such as the lock and recovery
managers. They give expert programmers control over the low-level mecha
nisms of the CTPE components without requiring any knowledge of the imple
mentation of these components. Primitive components allow the expert appli
cation programmers to define new transaction behaviors in a manner which we
believe is both simple and safe. Ordinary Java programmers can then use these
transaction models conveniently in their applications.

186 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

7.1.2 Customizable Concurrency Control

Programming of customized concurrency controls will be supported by lock
ing capabilities in PJava. Locking capabilities implement lock delegation and
ignorable conflicts [Biliris et al., 1994, Barga and Pu, 1995]. Theyautomati
cally keep track of access dependencies created because of ignored conflicts,
allow queries about details of these dependencies (who depends on whom and
for which· objects), and issue notifications on demand to support application
handling of conflicts that can't be ignored. Locking capabilities permit the
convenient implementation of a large set of locking protocols. The current
design assumes the granularity of locking is an object.

Locking capabilities also provide a comprehensive solution to deal transpar
ently with arbitrary composition of threads with transactions. This is essential
to give the ability to compose transactions with arbitrary existing Java code
since this code may spawn an arbitrary number of threads. The issue here is
to make sure that these threads remain confined within the boundary of the
transaction that spawned them and enforce the behavior of their enclosing tran
saction, except if explicitly programmed otherwise by the transaction model
implementer.

The rest of this paper is organized as follows. Section 7.1 gives an overview
of our design. Section 7.3 details the programming model offered to ordi
nary programmers. Section 7.4 describes the framework offered to define new
transaction models and how arbitrary Java code may be composed freely with
transactions of any model. The customizable locking mechanism of PJava is
discussed in section 7.5. Examples of how one can use the framework offered
to implement various concurrency control semantics are given in section 7.6.
Section 7.7 reviews related work. We conclude with a summary of the status
of our design and implementation plans.

7.2 DESIGN CHOICES

Our design choices for augmenting PJava with extensible transaction manage
ment capabilities are led by three strong requirements:

• The ability to extend PJava with user-defined transaction models should
not compromise the existing safety and security mechanisms of the lan
guage Java, and should not introduce new safety or security holes.

• No change may be made to the language definition.

• Data and code used within a transaction must not differ from data and
code used in a non-transactional context. We call this transaction inde
pendence.

The following sections outline the three main principles of our design.

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 187

7.2.1 Transactions as Java objects

A transaction defines a unit of work for which some properties must be en
forced. The basic interface common to all transaction models is made of op
erations for demarcating the boundaries of transactions, such as the classic
begin/end/abort bracketing.

Advanced transaction models extend this common interface with new opera
tions (e.g., operations for re-structuring the scope of transactions such as spli t
and join [Kaiser and Pu, 1992], or for declaring a transaction as a member of
a cooperative group [Fernandez and Zdonik, 1989]). Furthermore, the seman
tics of the same operation may vary from one transaction model to another.
For instance, the operation end that indicates the successful termination of a
transaction has different semantics depending on whether it is called in a flat
transaction, in a sub-transaction in a nested transaction model, or in a member
of a group transaction [Fernandez and Zdonik, 1989]. In the classic, flat tran
saction model, a successful termination requires that the updates made by the
transaction be atomically and durably propagated to the persistent store, and
made globally visible; in a nested transaction model, the successful termina
tion of a sub-transaction requires that the updates be atomically delegated to
its parent transaction, and made visible only to the descendants of its parent
transaction; in a group transaction model, the updates may be required to be
atomically and durably propagated to the store and made visible only to the
other transactions which are members of the same group. This shows the need
for a transaction management interface that is both extensible (introduction of
new operations) and polymorphic (operations may be redefined).

Defining transactions as first-class objects allows the transaction concept
to be introduced into Java without changing the Java language specification.
These transaction classes provide a convenient framework for defining an ex
tensible and polymorphic interface for transaction management. Transaction
models are implemented as classes and their instances execute transactions ac
cording to the semantics that their class defines.

The dynamic loading and binding properties of Java permit new transaction
models to be introduced as new transaction classes thatextend, or subclass,2
existing classes without rebuilding or relinking an operational system. Fur
thermore, existing applications does not need to be recompiled to use a new
transaction class as long as the class supports the operations required by the
applications (Figure 7.2 of section 7.3 illustrates how this may be done in Java).

7.2.2 Two-level interface

Our design provides Java programmers with two APIs corresponding to two
levels of understanding of transaction management. It presumes two categories
of programmers: specialist programmers, with skills in transaction model spec
ification, who implement new transaction classes; and ordinary programmers

188 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

who program transactional applications using the classes defined by the former
group.

The intention is to organize transactional applications in four distinct layers
of increasing re-usability and independence with respect to transaction man
agement issues. Figure 7.1 summarizes this layered approach (the size of each
layer is not indicative of the volume of classes).

Who programs what
r-------------,r-------,----------------------------

Classes implementing
Applications Logic

Transaction
body Classes

(Runnable Objects)

Typical Java
application programmers

~====~====:----------------------------

I
Java programmers who understand

Transaction-aware Classes the functional interface of the
'--______________ ---' transaction model(s) used

External Transaction API r--------------------,----------------------------
Transaction
Classes
(Transaction

Models)

public programming
interface

TransactionProcessor

Transaction Definition Interface

Primitives Lock Manager Recovery Manager
Components API API

Java programmers expert in
defining transaction models

abstract interface for specifying
reaction to transactional events

final, built-in classes
Classes (' / ' ~<' /

~ LockingCapability ~-"""""-' __ 1111111111~"1
'------------------'-----------------------------

Key I Class I ~ Abstract Class .., extends

(Interface ~ < Final Class ~ ----------- implements

Figure 7.1 Extensible transaction management in P Java.

Arbitrary Java
Classes

Transactional

interface

dependant

PJava-dependant
Classes

The external transactional API (ETAPI) provides a functional view of tran
saction management to ordinary application programmers. The ETAPI is for
programmers who understand the transactional needs of the application. They
know which transaction class is best suited for their application, and understand
how to use the interface of that transaction class in their application.

Programmers using the ETAPI are responsible for the implementation of
transaction-aware classes, which should account for a small portion of the ap
plication code. The transaction-aware classes isolate the rest of the application
code from classes that depend on classes specific to the ETAPI. Transaction
aware classes typically encapsulate the creation of transaction objects, the defi
nition of the boundaries of transactions, and the invocation of the methods spe-

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 189

cHic to the transaction objects. Hence, above the logical software layer made of
transaction-aware classes, there is no discernible difference from ordinary Java
programming, except that methods execute transactionally when invoked from
within a transaction. The classes implemented on top of the transaction-aware
layer can be exported "as is" for execution on virtual machines supporting stan
dard Java classes.

The programming model offered by the ETAPI requires each transaction
body to be organized into one or several Runnable objects, i.e., objects that
implement the Runnable interface3 . Runnable objects are the basis for com
posing arbitrary Java code with arbitrary transaction objects. Composition
via Runnable objects is similar to the approach taken for threads in Java and
compensates for the lack of support for methods as first-class objects. The Core
Reflection API promised with JDK 1.1 [JavaSoft, 1996] will help to limit the
proliferation of Runnable classes.

The ETAPI itself consists of a hierarchy of transaction classes, each class im
plementing a given transaction model. The root of the hierarchy is the abstract
class TransactionShell. It provides two sets of methods that correspond to
the two levels of understanding of transaction management mentioned above.
The first set of public methods provides a programming interface for defin
ing the boundary of a transaction irrespective of the model that the transaction
implements (see section 7.3). The methods of this set implement the interface
TransactionProcessor and are final, therefore they cannot be overridden.
The methods of the second set are all abstract and protected. They define
the reactions of the transaction model with respect to transaction management
events that may occur during the execution of transactions (see section 7.4).
These methods are part of the mandatory methods that a transaction model im
plementer must define for safety and completeness reasons. Typical application
programmers are not expected to define or explicitly use these methods.

Only subclasses of the class TransactionShell implement transaction mod
els. They may also augment the basic interface of transactions with new tran
saction management primitives specific to the model they implement.

The Transaction Definition Interface (TDI) provides an implementation view
of transaction management. The TDI is for use by the expert programmer who
wishes to augment the set of available transaction models in order to satisfy
new needs. The TDI consists of Primitive components which may be used to
implement a subclass of a TransactionShell. Primitive components are Java
classes and interfaces that expose the visible functions of individual compo
nents of the CTPE. For safety reasons, all of the classes that compose the TDI
are final. In the current design, the CTPE exposes an interface to only two
components: the lock and the recovery manager.

190 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

7.2.3 Implicit transaction semantics

Neither of the APIs contain functions to explicitly enforce transactional behav
ior. Such explicit functions would perform lock acquisition, data dependency
tracking and recovery information generation.

Our design uses automation to provide these functions implicitly for the
following reasons.

• Programmers are relieved of onerous and error prone tasks such as setting
locks and notifying updates explicitly. This improves safety and reduces
development-time.

• The majority of code then operates unchanged in a transactional context.
This we call transaction independence. It greatly increases code re-use as
the vast majority of classes do not need to call transaction classes directly.

This implicit mechanism should be contrasted with explicit mechanisms
used in some Java bindings to databases and object stores. In those systems,
code must be liberally sprinkled with calls explicitly claiming locks, notifying
updates, etc. This means that all class re-use depends on being able to import
the source form or automatically annotate the compiled form. It means that the
application logic may be obscured and that classes cannot be easily exported.
Perhaps most seriously, it means that it is easy to misinform the transactional
engine by making an erroneous explicit call.

7.2.4 Implementation choices

To achieve implicit transaction semantics, three mechanisms are possible: pre
processing source code, post-processing compiler output4) or modifying an
existing Java virtual machine (JVM). We have chosen the third approach for
the reasons given below.
Pre-processing Java Source

Pre-processing the source code has the apparent advantage that it retains the
ability for the code to run anywhere. This advantage is illusory as the code
will only run where there is a transactional engine that matches the inserted
calls. Such a transactional engine is not currently a standard property of Java.
Unfortunately, many useful libraries are available only in class-file format. It is
likely that the inserted method calls would have a significant overhead because
of the many extra JVM instruction executed. Either maintenance is made more
difficult because the application logic is obscured by the extra calls or the build
process is made more complex by the extra pass before compilation.
Post-processing Class files

Post-processing class files means that the bytecode sequences in each method
are analyzed and other bytecode sequences are inserted into them to perform
the transaction control. It has the advantage that it is no longer necessary to ob
tain source code and that it does not obscure the application logic. Otherwise

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 191

its merits and demerits are identical with pre-processing, except that a build
is now more complex because of an additional pass after compilation. This
approach must use only the standard bytecode instructions specified in the ar
chitecture neutral format of Java classes [Lindholm and Yellin, 1996] in order
to maintain the ubiquitous execution property of Java
Modifying an existing JVM

Our choice, of modifying an existing JVM, has the advantage that libraries
of classes can be imported unchanged and that the application logic is therefore
not obscured. Furthermore, changing a JVM allows optimizations that can not
be possible in the two previous approaches. On the other hand, this approach
has the disadvantage that we are locked in to the particular JVM implementa
tions we are able to change, and that there are therefore some classes that will
run only on our JVMs. As observed above, if you want transactional behavior,
then you limit your application to run only where there is a transactional en
gine. If the approach proves effective, as we believe it might, then it could be
implemented widely, but this has non-technical implications.

7.2.5 Outline of the modified JVM

The modified JVM identifies at runtime when transaction semantics need to be
enforced, and interacts directly with the CTPE's components. For instance, the
modified JVM identify instructions that access or modify objects, and replaces
them with new instructions that does the required implicit transaction activities
in addition to the original instruction semantics. This replacement takes place
when the instruction is first executed, in much the same way as quick instruc
tions avoid repeated dynamic binding in [Lindholm and Yellin, 1996]. This
techniques avoids increasing the number of JVM cycles.

The modified JVM also keeps track of which TransactionShell each Java
thread is running under and uses it for interacting with the CTPE. This transac
tional context specifies to the CTPE the (possibly customized) semantics that
must be enforced.

All code must run within the scope of a transaction in PJava and all data ma
nipulations from within a transaction are constrained to conform to that tran
saction's behavioral requirements. All data types (classes) are treated equally
with respect to transaction management. This eliminates the need to discrimi
nate the objects that enforce transaction properties from those that don't.

7.3 PROGRAMMING MODEL

The choice of an interface for defining the boundaries of transactions raises two
issues. First, the interface must be flexible enough to encompass the largest
range of programming styles. As an example, consider a simple GUI appli
cation with a single frame and several buttons to control the execution of a
transaction (e.g., start a new transaction, end it, abort it or execute the op-

192 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

public class ATMBackend {
private TransactionProcessor _tp;

}

II Configuring the Backend server with a transaction implementation
public ATMBackend(String model) {

Class transactionModel = Class.forName(model);
_tp = (TransactionProcessor) transactionModel.newInstanceO;

}
II ...
public void serverLoopO {

ATMRequest rq = null;

}

Object [] rq....args = new Object[1];
while ((rq = nextRequest()) ! = null) {

}

switch (rq.rqid) {
II fully specified request. Execute in one go

case ATMRequest.RQ-EXECUTE:
rq....args[O] = new Long(rq.amount);
_tp.start(new MethodInvocation(rq.op,rq.ba,rq...args»;
_tp.c1aimO;
break;
II Fragmented request

case ATMRequest.RQ...BEGIN:
_tp.startO;
break;

case ATMRequest.RQ_COMMIT:
_tp.c1aimO;
break;

case ATMRequest.RQ...ABORT:
_tp.killO;
break;

case ATMRequest.RQ_OP:

}

rq....args[O] = new Long(rq.amount);
_tp.enter(new MethodInvocation(rq.op,rq.ba,rq...args»;
break;

Figure 7.2 An Auto-Teller Machine backend server.

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 193

erations selected via the buttons on its behalf). The simple bracketing of an
arbitrary block of code with markers such as "begin" and "end" is not suf
ficient to describe the boundary of the transaction in that case, since the body
of the transaction may be composed of several actions spread over the various
event handling methods of the GU! application. Similarly, consider a back-end
server that dispatches incoming requests to threads available in a pool. A given
transaction may send more than one request, each being potentially dispatched
to a different thread of the pool each time. Here again, the requirement of the
application cannot be satisfied with a simple "begin"/"end" syntactic bracket
ing.

The second issue is related to the confinement of errors within the bound
aries of the transaction that made them. More specifically, any exceptions left
uncaught in the body of a transaction must remain confined within that tran
saction and must be propagated to the failure handling mechanism defined for
that transaction. Since the body of a transaction is made of arbitrary Java meth
ods, a transaction body can spawn an arbitrary number of threads. This makes
the detection and confinement of failure even more complex.

The class TransactionShell offers a uniform framework for defining the body
of a transaction. This framework enables both procedural and event-driven
programming styles and deals with arbitrary multi-threaded transactions. The
example given in Figure 7.2 illustrates these two styles (exception handling
code is omitted for conciseness).

In both cases, transactions are defined by creating an instance of a tran
saction class. An instance of a transaction class is really just a shell in which
to execute a transaction according to the model defined by that transaction's
class. A transaction is effectively created when the shell is invoked using its
s tart method. If there is no current invocation, a transaction object is nothing
but a empty shell. After an invocation completes, the transaction object can be
invoked again, starting another transaction.

In the procedural programming style, a transaction instance is directly as
sociated with an object that satisfies the Runnable interface. The body of the
transaction consists only of the run method of the associated Runnable object,
and the transaction terminates when the execution of this method completes
(either normally or because of a failure). The result of the transaction may be
obtained using the claim method of the transaction object. The start method
is provided with both synchronous and asynchronous variants, and the claim
method is provided with both blocking and non-blocking variants.

In the event-based programming style, the transaction object is not directly
associated with a Runnab 1 e object. Instead, the body of the transaction is made
of all the Runnable objects that enter in the transaction between the boundaries
explicitly defined by the programmer. When a thread calls the enter method
of a transaction object t with a Runnable object 0, it executes 0 on behalf of

194 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

t. When the enter method returns, the thread is said to leave the transaction,
i.e., it reverts the transaction it was before.

The example in figure 7.2 illustrates one possible usage of the method en ter.
For instance, the server may receive four consecutive requests: an RQ-BEGIN,
followed by two RQ_EXECUTE, and finally an RQ_COMMIT. Upon reception of the
first request, the server invokes the method start of the variable _tp, which
hosts an instance of a TransactionShell. This starts a new transaction. Upon
reception of each RQ_EXECUTE, the server invokes the method enter of the
variable _tp. This effectively makes the server's thread participate in the tran
saction executed by the transaction shell _tp, for the time necessary to exe
cute the run method of the Runnable object given as an argument to enter
(here, an instance of the Methodlnvocation class). In the case just described,
the server's thread would participate twice in the transaction, once for each
RQ_EXECUTE requests.

Threads launched from within the body of a transaction automatically par
ticipate in that transaction. Such threads are called inner threads. No limitation
is imposed on the number of threads that may participate in a transaction con
currently, except if programmed explicitly by a transaction class implementer.

A multi-threaded transaction terminates when the end method of its shell
is invoked and all its inner threads, as well as all the threads that entered the
transaction prior to the call to end, are completed. Entering a transaction in a
terminal state kills that transaction and raises an exception to the thread that
attempted to enter the transaction.

With the model just described, programmers are forced to specify the body
of their transactions, or part of them, as Runnable objects, and cannot just
bracket an arbitrary block of Java code with "begin" and "end" transaction
marks. The rationale for this approach is to confine exceptions that are un
caught by transaction bodies to the limit of the transaction. By forcing the
encapsulation of every piece of code that participates in the body of a tran
saction, a TransactionShell can catch all exceptions left uncaught by these
transaction bodies simply by invoking the Runnable object within a try I
catch Java block, and route the transaction execution to the code that deals
with failures.

Achieving the same confinement of exceptions with an approach based on
block delimitation makes it necessary to either force the programmer to explic
itly catch exceptions and trigger manually the appropriate action (e.g., abort
the faulting transaction), or to change the language definition to incorporate
transaction bracketing as suggested in [Garthwaite and Nettles, 1996]. Both
options are incompatible with our requirements.

The example in Figure 7.2 also illustrates how the dynamicity of the lan
guage Java makes it possible for the ATMBackend class to change transaction
model at runtime. For instance, the server loop can be augmented with an ad-

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 195

ditional case statement for dealing with a new kind of request for changing the
transaction model currently used. This additional request just needs a string
containing the name of the class implementing the new transaction model.
Then, using a mechanism similar to those already used in the constructor of
the ATMBackend class, the _tp variable can be assigned a new instance of the
new transaction class, providing this new class implements the Transaction
Processor interface.

The class Meth'Jdlnvocation uses the reflexive functionalities of JDK 1.1,
described in JavaSoft's draft of the Core Reflection API [JavaSoft, 1996] to
support arbitrary method invocation given an object, a string holding a method
name and an array of parameters needed for the method invocation.

7.4 TRANSACTION SHELL

New transaction models are introduced by defining subclasses of the abstract
class TransactionShell. The TransactionShell is intended to make the
definition of transaction classes simple and safe by:

• enforcing programmed transaction classes to conform to the uniform pro
gramming model defined by the public interface of the class Transaction
Shell. Any transaction, irrespective of the model it implements, can then
be composed with arbitrary Runnable objects.

• automating all of the monitoring of transaction executions. The class
TransactionShell relieves programmers from implementing the mon
itoring of all events that may occur during the execution of a transaction
and impact on its behavior.

• enforcing the definition of complete transaction behavior by requiring the
programmer to fill in mandatory methods that will react to transaction
execution events that may happen during the execution of a transaction.

• using default, system-defined concurrency or recovery behaviors if not
specified,

• using a default, system-defined recovery procedure if the user-defined
one fails (i.e., is either incomplete or erroneous).

The class TransactionShell provides two sets of methods that correspond
to the two levels of interface mentioned in section 7.1. The external interface
is made of concrete public methods that implement the programming model
described in the previous section. The internal interface is made of abstract
protected methods. Each method specifies a response to a transaction execution
event. Declaring these methods as abstract forces the programmer to specify
a response to these events and thus guarantees the completeness of the tran
saction class's implementation. The class TransactionShell transparently
detects these events and triggers the execution of the corresponding response.

196 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

These event handler methods return a boolean. They return true if the event
is handled and false if the transaction class leaves the handling of the event
to the class TransactionShell. The class TransactionShell provides a
default response to each kind of event, which makes use of the default transac
tional attributes specified by the class implementors (see below). For efficiency,
subclasses of TransactionShell can specify a set of events to ignore (using
the ignoreEvents of the TransactionShell), which means the default han
dling mechanism will be triggered instead. This avoids unnecessary calls to
empty event handlers.

Hence, the task of a transaction class programmer consists of just defining a
concrete implementation for each of the TransactionShell's abstract meth
ods, and implementing the transaction management functions specific to the
corresponding transaction model.

Table 7.1 List of the principal event handlers of a TransactionShell

Category

transaction's state
transitions

inner transaction
invocations

participant thread
activities

inner thread
activities

Events

Name

notifyBeqin,notifyEnd,
notifyAbort

notifylnvokee,notifyEndlnvokee,
notifyFailedlnvokee

notifyThreadEnter,notifyThreadLeave,
notifyFailedEnteredThread

notifyThreadStart,notifyThreadEnd,
notifyFailedlnnerThread

Table 7.1 lists the principal events sent to transaction objects5 . There are
two categories of events: events related to a transition of the transaction state
(e.g., initiation, normal termination or termination due to a failure), and events
related to a change of the transaction structure which results from having a
programming model that allows a transaction body to be composed of arbitrary
participating threads running arbitrary Java code.

Events related to the transition of transaction states are typically used to im
plement the semantics of the transaction model. Upon transaction initiation, the
transaction class must react by assigning default primitive components for con
currency control and recovery management to the notified transaction object. If
some components have been omitted during transaction initiation, the notified
transaction object is automatically provided with equivalent primitive compo
nents set to a system-defined behavior (e.g., strict isolation for concurrency
control). Upon transaction termination, the transaction class may define its se-

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 197

mantics for publicizing the results of its transaction (Le., make them visible to
all transactions or only some, or some of them to all, make them persistent, or
delegate them, etc.).

Events related to change of the transaction structure are further categorized
as per transaction events and per participating thread events.

Per transaction events concern the execution of inner transactions; they in
form of the attempt to start a transaction from within the notified transaction,
and of the termination of the inner transactions. Upon reception of a inner
transaction event, a transaction object may react by inhibiting the transaction
semantics of the inner transaction prior to executing its body. In this case,
the inner transaction just executes as a normal method call. This may be use
ful for preventing the composition of transactions of different classes (namely
if the interaction between the transaction model of the invoker and those of
the invokee is unknown) or for enforcing the "flatness" of a transaction. In
hibition of inner invocations is controlled via a protected method of the class
TransactionShell.

Per participating thread events concern individual threads that execute on be
half of a transaction. A thread participates in a transaction either because it has
explicitly entered the scope of that transaction (via either the enter or start
method of the public interface of a TransactionShell object), or because it
has been created within a transaction (see section 7.3). Events notifying the
participation of threads and the successful or abnormal end of their participa
tion are generated for each kind of thread.

Before a thread participates in a transaction, it must be assigned some trans
actional attributes. Locking capabilities (discussed in section 7.5) are one ex
ample of such transactional attributes. These attributes are primitive compo
nent objects that define how a thread enforces the concurrency control and
recovery behavior of the transaction it participates in. Assignment of transac
tional attributes must be done when the transaction object is notified of the par
ticipation of a thread. If no attributes are specified, the corresponding Trans
actionShell assigns default attributes to the thread. These default attributes
are defined at transaction initiation time.

When a thread leaves the scope of a transaction, the class Transaction
Shell arranges for the automatic re-installation of its previous transactional
attributes.

7.5 LOCKING CAPABILITIES

The class LockingCapabi li ty is the major component offered by the Tran
saction Definition Interface for customizing concurrency controls. The concur
rency control of a subclass of the TransactionShell class is specified using
instances of LockingCapabili ty.

198 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

A locking capability, or capability for short, is a book-keeper oflocks with a
customizable conflict detection mechanism. A TransactionShell object can
own several capabilities, but a capability belongs to a unique Transaction
Shell called the capability's owner. Every thread must be bound to a capa
bility, and several threads can be bound to the same capability (typically, all
threads enclosed in the same TransactionShell are bound to the same capa
bility). By default, a thread is bound to the default capability of its enclosing
TransactionShell. A thread may change the capability it is bound to during
its execution, typically when it leaves a transaction and enters another one.

When a thread runs, the capability it is bound to automatically acquires the
locks protecting the objects the thread operates on. Locks are acquired with
respect to the conflict detection mechanism encoded in the capability. Tran
saction model implementors customize the conflict detection mechanism of
each capability by specifying ignore-conflict relationships.

7.5.1 Ignoring Conflicts

Transactions access and manipulate objects of the persistent store by invok
ing operations on them. Two operations are said to be compatible when they
do not conflict. Two operations conflict if their effects on the state of an ob
ject or their return values (if any) are not independent of their execution order.
When an invoked operation 0Pi conflicts with an operation OPj in progress, a
dependency6 is formed if 0Pi is allowed to execute. Such dependencies reveal
possible inconsistent states which may induce either an abortion of the depen
dent transaction or a specific commit ordering [Chrysanthis and Ramamritham,
1994]. The traditional ACID transaction model usually prevents such depen
dencies from happening, while "extended" transaction models allow some of
these dependencies to happen temporarily.

A transaction management system must keep track of the ongoing opera
tions and of dependencies that have been induced by the conflict. Plava uses a
customizable lock manager for this purpose.

A lock manager detects conflicts as follows. Objects are associated with
locks7• To perform an operation 0Pi on an object 0, the lock protecting 0
must be acquired in a locking mode corresponding to 0Pi. The compatibility
of locking modes (and thus of operations) is defined by a two dimensional
compatibility table: one dimension corresponds to the current mode of lock,
the other corresponds to the mode requested. The entry of the compatibility
table corresponding to the current state of the lock and the mode of the lock
request determines whether there is a conflict. If the request does not conflict,
the requester is added to the set of owners of the lock.

Plava considers only read/write locking modes which are easy to detect
transparently at the level of the virtual machine: each lVM instruction that
operates on an object can be categorized as either read or write.

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 199

Plava's customizable lock manager allows a lock request to specify, in ad
dition to the locking mode requested, a set of ignore-conflict relationships. An
ignore-conflict relationship is a way to specify that one lock request can ig
nore an incompatible owner of the lock when diagnosing a conflict with the
requested lock. For instance, a lock request issued from a transaction T I, spec
ifying a ignore-relationship with T2 (we say that Tl is non-conflicting with T2)
will ignore any conflict with T2 when deciding whether the lock can be granted.

Ignore-conflict relationships are specified using a labeled directed graph
where vertices are locking capabilities and edges are ignore-conflict relation
ships. Edges are directed and labeled as either transitive or not. We use

t -,t

Cj succ Cj to denote a transitive edge directed from Cj to Cj and Cj succ Cj
a intransitive edge from Cj to Cj. By default, edges are transitive.

This labeling of edges restricts the set of predecessors a locking capability
can ignore conflicts with. We call this set, Pred{ C) for a capabilityC, the set of
effective predecessors of C. Thus, given a graph of locking capabilities, a lock
ing capability ignores conflicts with all its effective predecessors in that graph.
For instance, given the graph of locking capabilities illustrated on figure 7.3,
we have:

t -,t

Cp SUCC Cq SUCC Cr ~ Pred{Cr) = {Cq }
t t

Cp SUCC Cq succ Cs ~ Pred{Cs) = {Cp,Cq }

Hence, Cs can ignore conflicts with both Cp and Cq, while Cr can ignore con
flicts only with Cq.

More formally, the set of predecessors of a capabilityC is defined as:

Pred{C) = Pred-,t{C) U [U (7.1)
V CiEPred,(C)

where
-,t

Pred-,t{C) = { Cj I 3 Cj succ C} (7.2)

t
Predt{C) = { Cj I 3 Cj succ C} (7.3)

Pred-,t{ C) denotes the set of immediate predecessors that forbid transitivity;
Predt(C) denotes the set of immediate predecessors that allow transitivity.

We also define Owner(I, M) as the set of locking capabilities which own
lock I in mode M, and Iowner{l,M) as the set of owners of lock I in a mode
Incompatible with mode M. For instance, in the case of read/write locking
mode8, we have:

Iowner{l,Read) = Owner{l, Write) (7.4)

Iowner{l, Write) = Owner{l, Write) U Owner{/, Read) (7.5)

200 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Lastly, we define NCW(C} as the set of capabilities which are Non-Conflicting
With C:

NCW(C) = {C}UPred(C} (7.6)

With these definitions, a request for a lock I in mode M is granted to a locking
capability C if:

Iowner{l,M) ~ NCW(C) (7.7)

As already mentioned, ignored conflicts create dependencies. More specifi
cally, a dependency is created for each Cj such that Cj E {Iowner (l, M) n Pred(Cj)).
Plava keeps track of these dependencies and leaves to the TransactionShell
programmer the interpretation and the elimination of these dependencies. Lock
ing capabilities can be queried about their dependencies at any time. An ex
ception is raised when a TransactionShell tries to release the locks of (one
of) its locking capabilities that depend on at least one other capability.

There are three ways to eliminate dependencies: abort the transaction that
owns the dependent capability, wait for a specific commit order before releas
ing the lock, or transfer the responsibility for the locks, and thereby, the visi
bility of the state of the objects these locks protect, to one of the transactions
the dependency comes from. The latter is called delegation of locks.

Current Graph of
Locking Capabjfities

1t

Cr

lock I

Owner(l, R)={)
Owner(J, W) ={Cp)

Lock Request

Check
CompatibUity
ofloc1cing
modes

moileof
requested
lock

Requester
Mode Requested
lock o
mode requested

R W

Free grant grant

R grant deny

W deny deny

Locking modes
are compatible?

no

.f-
is

r'\. Lock
yesL,/ granted

Filter out the IOwner(loc1c, Mode Resquested) r'\. Lock
non-conflicting a subset of yes L,/ granted
incompatible NCW(Requestel/)
owners

no

.f-
Lock
denied

Figure 7.3 Example of graph of locking capabilities and how it customizes the lock man

ager's conflict detection mechanism.

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 201

7.5.2 Delegation

Delegation of locks allows one locking capability to atomically transfer the re
sponsibility for its locks to another capability. Transferring lock responsibility
means changing the ownership of the delegated locks, and thus transferring the
control over the visibility of the objects the delegated locks protect. It also
means transferring the dependencies that have been created for acquiring these
locks. For instance, if a locking capability C 1 delegates its exclusive lock on
an object 0 to a capability C2, Cl is no longer able to access 0 after the del
egation, until C2 releases O's lock or delegates it back to C1. Moreover, if Cl
acquired the lock on 0 by ignoring a conflict with a capability C3, C1's depen
dency on C3 for 0 is also transferred, such that, after delegation, C2 depends
on C3.

We speak of global delegation when a capability transfers the responsibility
for all its locks at once, and partial delegation when it transfers the responsi
bility for only a subset of its locks. The class LockingCapability provides
both forms of delegation. The method for global delegation takes just one
parameter: the delegatee LockingCapability. A partial delegation takes an
additional parameter to enumerate the objects whose locks must be delegated.

Global delegation is suitable for transaction models with well-defined devel
opment, that is, where the set of objects whose visibility will be delegated at
the end of the transaction is known in advance. This is the case for the nested
transaction model [Moss, 1981] and the colored action model [Shrivastava and
Wheater, 1990]. Partial delegation is required for supporting dynamic restruc
turing of transactions [Kaiser and Pu, 1992], necessary in open-ended activity
where developments are unpredictable and the set of objects that must be dele
gated is known only at the time when the need for restructuring the transaction
occurs.

7.5.3 Notification

A transaction model programmer can specify notifications to be sent when its
customized conflict detection mechanism diagnoses a conflict. Every locking
capability can specify one conflict notification handler. Any object that imple
ments the ConflictNotificationHandler interface can be used as a handler.
This interface is essentially made of a method that takes fives parameters: the
capability the handler is bound to, the mode in which it holds the lock, the
locking granule the lock protects (an object in the current design), the capabil
ity that requested a conflicting lock, and the mode of the requested lock.

A ConflictNotificationHandler is typically used to mediate with end
users as part of the conflict resolution algorithm. Used together with the Lock
ingCapabili ty's methods for restructuring the visibility of transactions, it
allows the support of powerful multi-user collaborative environments.

202 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

7.5.4 Summary

In summary, programmers customize PJava's lock manager to achieve a given
concurrency control using the following steps:

• Instance(s) of the LockingCapabili ty required for implementing the
desired concurrency control must be created for each instance of the
TransactionShell using that concurrency control.

• The position of the new LockingCapabili ty's instances in the current
graph of locking capabilities must be specified. This is done using the
class LockingCapability's methods for specifying immediate prede
cessors that allow or disallow the transitivity of the ignore-conflict (succ)
relationship. These specifications effectively customize the conflict de
tection algorithm of PJava's lock manager.

• A ConflictNotificationHandler must be bound to a LockingCapa
bility when its TransactionShell implements a model that requires
notification for this instance of LockingCapabili ty. The object imple
menting the ConflictNotificationHandler interface (typically, the
TransactionShell itself) can use an appropriate method of the Locking·
Capability to resolve the notified conflict (e.g., to delegate the conflict
ing lock).

• binding each thread that enters the transaction associated to the Trans
actionShell to one of the instances of LockingCapabi li ty owned by
that TransactionShell.

• querying all remaining dependencies, and determining the best way to
eliminate them in order to end the TransactionShell.

Most of the time, all the management of concurrency control for transactional
purposes is confined within TransactionShells. The neat effect of this mech
anism is that all classes that implement the transaction bodies are not concerned
at all with concurrency control issues. This allows PJava to use any existing
Java classes to implement the body of any kind of transaction without changing
a line of their code. Inversely, most of the code written in the context of PJava
can be exported to a normal Java client.

7.6 REALIZING TRANSACTION MODELS

This section illustrates with several examples how one may use the framework
we have described in this paper for realizing different transactional behaviors.
Our tutorial examples focus primarily on concurrency control aspects.

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 203

7.6.1 Flat Transactions

Our first example shows the realization of a simple flat transaction model that
has ACID properties. In the following, we call the resulting transaction class
FlatTransaction.

The class FlatTransaction must extend the class TransactionShell in
order for its instances to be known from the transaction processing engine
of PJava. The implementor of the class FlatTransaction must then deal
with two main issues: (i) the implementation of the semantics of its tran
saction model, namely the ACID semantics, and (ii), the definition of the re
sponses to all the events that may occur during the execution of an instance of
FlatTransaction; that is, how to implement the abstract event handler meth
ods inherited from the class TransactionShell.

As said in section 7.4, these events relate either to a transition of the tran
saction state, or to a change in the transaction structure (i.e., launching of inner
transactions or inner threads, etc.). The former directly concerns the imple
mentation of the transaction semantics, while the latter is related to how well
instances of FlatTransaction can compose with arbitrary Java code.

A first solution would consist of triggering the abort of the transaction upon
the occurrence of any events notifying an attempt to change the structure of the
transaction. This over-simplistic solution allows only single-threaded flat trans
actions and significantly reduces the usability of the class FlatTransaction.
A better design is to accept in the transaction any new threads that attempt to
participate, and to assign these threads the transactional attributes required for
enforcing the transaction's properties. Nested is prohibited just by transform
ing into simple method calls any inner invocations of transactions.

More sophisticated schemes may be implemented by checking the class of
the inner invoked transaction object, and selecting the appropriate action ac
cording to that class. For instance, some flat transaction models allow inner
invocation of nested top-level transactions when they realize benevolent side
effects such as splitting overflowed indexes [Gray and Reuter, 1993]. If an
instance of a class known to implement such benevolent side-effects is invoked
from within a flat transaction, then the inner invocation may be allowed.

From a concurrency control point of view, the ACID properties require strict
isolation between transactions. The conflict detection algorithm of an instance
of LockingCapabi 1 i ty created without inxxconflict, ignore-conflict relation
ships ignore-conflict relationships (i.e., without any predecessor in the graph
of locking capabilities) realizes strict isolation. Thus, implementing strict iso
lation of an instance of FlatTransaction just requires the creation of a single
LockingCapabi li ty without any predecessors nor successors in the graph of
locking capabilities, and the binding to this capability of all the threads partic
ipating in the transaction.

204 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

To summarize, the FlatTransaction implementation consists of filling the
inherited abstract methods as follows:

• Upon transaction initiation (i.e., method notifyBegin), an instance of
the class LockingCapabili ty is created and the current thread is bound
to that locking capability. From now on, the newly created locking capa
bility will acquire the lock of any object used by that thread.

• Upon notification of a transaction's successful termination (i.e., notify
End), all locks acquired by the transaction's locking capability are re
leased. Locks are also released upon notification of transaction failure
(i.e., notifyAbort). The difference in the implementation of the two
methods lies in the management of updates which is outside of the scope
of this paper.

• Upon any notification of a participating thread (i.e., methods notify
ThreadStart and notifyThreadEnter), the thread is bound to the no
tified transaction's LockingCapabili ty.

• Upon notification of a failed participating thread (i.e., methods notify
FailedEnteredThread and notifyFailedlnnerThread), kill method
inherited from TransactionShell is invoked on itself to kill the tran
saction. The ki 11 method arranges for rollback of each thread that was
participating in the transaction to the point where they were before they
entered the transactions. Inner threads are simply destroyed.

• Upon any notification of an inner transaction invocation, the inner tran
saction behavior is inhibited. This is done by calling the inhibi t method
inherited from TransactionShell.

• Ignore all other event notifications at instantiation time and provide the
corresponding methods with an empty implementation that just returns
true.

7.6.2 Nested Transactions

The previous example emphasizes the handling of dynamic changes to the
structure of transactions and only shows a very simple usage of locking ca
pabilities to implement concurrency control.

We now focus on the uses of the class LockingCapability for building
advanced concurrency control semantics by demonstrating the use of lock
ing capabilities to build an increasingly sophisticated closed nested transaction
model. We refer the reader to [Harder and Rothermel, 1993] for a comprehen
sive description. Our examples do not make any restrictions on which tran
saction within a hierarchy of nested transactions is able to execute some code.

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 205

Our initial example is a very simple nested transaction model without any
parallelism and restricted to single-threaded transactions. This model allows
only synchronous invocation of transactions. Thus a single thread supports
the execution of an entire hierarchy of nested transactions. This model may
be implemented using a single subclass of TransactionShell which we call
STNestedTransaction. Enforcing single-threading is done by aborting in
stances of STNestedTransaction upon any notification of new participating
threads to these instances.

The concurrency control of the class STNestedTransaction can be formu
lated using the following locking rules:

1. A transaction T may acquire a lock in mode M if all the transactions that
hold the lock in a mode incompatible with M are ancestors of T.

2. When a sub-transaction commits, it delegates all of its locks to its parent.

3. When a top-level transaction commits, it releases all of its locks.

4. When a transaction T aborts, it releases all of its locks (which includes the
locks T has acquired itself and the locks delegated to T by its committed
sub-transactions).

These rules state that a sub-transaction can see all the intermediate actions
of its ancestor transactions; when a sub-transaction commits, it incorporates
its effects (and those of its committed descendants) into its parent transaction,
and makes them visible to all of its parent's descendants. Sub-transactions
shield the surrounding world from the actions they perform (rule 4): if a sub
transaction aborts, it re-installs the visibility states of the objects it has manip
ulated as they were prior to its execution. Since a parent transaction never runs
concurrently with its sub-transactions, transactions can always share objects
with their ancestors without further concurrency control [Harder and Rother
mel,1993].

Given the above locking rules, the class STNestedTransaction may be
implemented as follows. Each instance of STNestedTransaction is given
an instance of LockingCapabili ty at initiation time (i.e., method notify
Begin). If an instance T of STNestedTransaction is a sub-transaction (i.e.,
it has been invoked from another STNestedTransaction) the capability of T
must take the capability of T's parent as a immediate transitive predecessor. If
T is not a sub-transaction, its capability must not have any predecessors. Once
the capability of a STNestedTransaction has been created, the current thread
is bound to it and started.

The graph of locking capabilities resulting from several nested invocations
of STNestedTransaction is illustrated in Figure 7.4. The example shows the
successive states of the graph after several nested invocations of transactions.
The last step includes the start of another top-level STNestedTransaction.

206 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

STNestedTransaction STNestedTransactio

® STI

time

STNestedTransaction STNestedTransaction

ST2

synchronous
invocation

ST3

ST4

..
Figure 7.4 Dynamic construction of the graph of locking capabilities implementing the

concurrency control of the class STNestedTransaction.

Each invocation re-arranges the graph of locking capabilities in order to cus
tomize the conflict detection algorithm of the capability of each sub-transaction
T such that conflicts with ancestors of T are ignored (rule 1). For instance, the
invocation of the ST3 object, instance of STNestedTransaction, results in the
installation of a transitive edge from C2 to C3. The set of capabilities that are
non-conflicting with C3 becomes then NCW(C3) = {CI, C2, C3}. This effec
tively makes the transaction ST3 ignoring any conflict with both transactions
STl and ST2.

Furthermore, each hierarchy of nested transactions is strictly isolated from
each other, since there is no edge between the capabilities of transactions from
different hierarchies. This is the case for the transaction ST4 in our example.

Upon notification of successful termination (notifyEnd), instances of ST
NestedTransaction either delegate all the locks of their capability to the ca
pability of their parent transaction if they are sub-transaction, or release the
locks of their capability

Generalizing the class STNestedTransaction to support only sibling par
allelism is straightforward from a concurrency control point of view since the
same locking rules hold. The complexity of the implementation lies in the man
agement of the transaction structure itself. Generalizing the class STNes ted
Transaction further to support both parent-child and sibling parallelism re
quire some changes to the locking rules previously defined since a transaction
can run concurrently with its sub-transactions.

The locking rules proposed for this kind of parallelism requires the manage
ment of two sets of locks per transaction T [Harder and Rothermel, 1993]: one
set for the locks T acquires during its execution (called held locks), and one for
the locks T's sub-transactions delegate to T (called retained locks).

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 207

The rationale for this distinction is that a parent transaction can not allow
its parallel sub-transactions to access its own objects without endangering the
correctness of its computation. On the other hand, the locks delegated to a
parent transaction T by its committed sub-transaction must be grantable to the
other running descendants of that transaction. The locking rules for this model
can then be formulated as follows:

1. A transaction T may acquire a lock in mode M if (1) no other transaction
holds that lock in a mode incompatible with M, (2) all transactions that
retain the lock in a mode incompatible with M are ancestors of T.

2. When a sub-transaction commits, it delegates all of its locks (held or
retained) to its parent which retains the delegated locks (i.e., keeps them
in its retained set).

3. When a top-level transaction commits, it releases all of its locks (held or
retained).

4. When a transaction aborts, it releases all of its locks (held and retained).

These locking rules may be implemented using two locking capabilities per
transaction T: one for T's retained locks (called the retainer capability), the
other for T's held locks (called the holder capability). Figure 7.5 exemplifies
via a small example how these capabilities are used.

Upon its initiation, a transaction creates two locking capabilities. The re
tainer capability is set as a transitive predecessor of the holder capability. Fur
thermore, the retainer capability of the parent transaction is made a transitive
predecessor of the retainer of the initiated transaction.

The graph of locking capabilities built for a two-level nested transaction is
depicted on the top-left part of Figure 7.5. Notice that the threads participating
in a transaction are bound to the holder capability of that transaction. This

graph customizes the conflict detection algorithm of the locking capability
Ch4 such that conflicts with Cr4 , Cr2 and Crl are ignored (e.g., NCW(Ch4) =
{Cr4 ,Cr2,Crl}); that is, only conflicts with locks retained by T4, T2 and Tl
are ignored by T4. Thus, a thread participating in T4 is not able to acquire
a lock acquired by any thread of its ancestor Tlo but can acquire any of the
locks retained by Tl (i.e., locks that were delegated to Tl by its committed
descendants).

Upon notification of a successful termination, a sub-transaction delegates
all of the locks of its holder capability to its retainer capability, which in tum
delegates all of its locks to the retainer capability of its parent transaction.

This example demonstrates that locking capabilities can be used "passively"
in order to act as a "database of locks". Such passive databases of locks are use
ful to implement domains of visibility such as group in engineering transaction
models, or color in the colored action model of [Shrivastava and Wheater,
1990].

208 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

(i) ij) ~ ®
Graph of Locking Capabilities

Tl

Asynch I
T2

Asynch~ ~synch

T3 T4

nested transaction
invocation graph

Completion Graph

Locking capability

Transaction/Capabilities mapping

Non-conflict with relationship edge

Thread I Capability binding

Release of locks

Global delegation

Figure 7.5 Graph of locking capabilities for a nested transaction model that allows both

parent-child and sibling parallelism.

7.7 RELATED WORK

Our work is closely related to the previous efforts for incorporating the tran
saction concept into a general-purpose object-oriented programming language.
Projects that have investigated these issues includes Argus [Liskov, 1988],
Avalon/C++ [Eppinger et al., 1991], and AIjuna [Shrivastava and Wheater,
1990].

Argus extends the programming language CLU. It allows computations to
run as atomic transactions. Transactions can be nested, though only sibling
parallelism is supported. Transactions are supported directly by the language
which incorporates control structures such as topaction or action for speci
fying (sub or top-level) transactions and coenter for allowing synchronous in
vocations of multiple transactions. Transaction properties apply only on atomic
objects. Atomic objects are like ordinary objects except that transaction prop
erties are automatically enforced for them.

The Avalon/C++ and AIjuna systems differ from Argus mainly in their us
age of the class inheritance mechanism to provide transactional capabilities.
Both systems are based on the C++ object-oriented language. In both systems,

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 209

user-defined objects must inherit from system provided classes9 in order to
benefit from the transactional capabilities of the system. Programmers must
then explicitly program the enforcement of the transactional properties, such
as setting locks, using the methods inherited from these classes. Avalon/C++
is implemented on top of Camelot and supports nested transaction models. Ar
juna has proposed the usage of the more powerful multi-colored action model
[Shrivastava and Wheater, 1990], though only nested transactions have been

implemented as far as we know.
All three systems make transactional properties dependent on the type of

objects, and therefore introduce a dichotomy that impedes re-usability. All
three systems also offer a way to customize concurrency properties of some
objects by allowing the programming of user-defined atomic types. However,
no framework is offered to define new transactional behaviors.

More recently, several approaches for introducing transactions into the lan
guage Java have been described [Atkinson and Jordan, 1996]. [Garthwaite and
Nettles, 1996] proposes an extension of the language Java with a new con
trol structure called transaction. A transaction statement defines a new
scope; control is transferred at the end of that scope if an explicit rollback
or comrni t statement is specified within the block. Uncontrolled leave of the
block results in a default action (usually rollback). Concurrency control must
be handled by the programmer via explicit setting of locks. The main draw
backs of this approach are its lack of flexibility and the necessity of changing
the definition of the Java language. The authors motivated the latter as being
better for integration with other similar control structures found in Java, though
our design demonstrates that the same effect can be achieved without changing
the language definition.

[dos Santos and Theroude, 1996] proposes a binding between Java and rela
tional databases on top of JDBC to supplement Java with persistence. Tran
saction services are provided via a class Transaction that implements a sim
ple flat transaction model with ACID properties. The class Transaction pro
vides begin and comrni t methods. The body of a transaction consists of the
code between these two method calls.

These two approaches to add transactions to Java share the following short
comings:

• there is no comprehensive solution for composing arbitrary Java code
with the proposed transaction constructs. In particular, the problem of
composing Java threads with transactions is not addressed despite the
fact that threads are an essential construct of Java.

• Only the ACID, flat transaction model is supported.

• The enforcement of the transaction properties relies on the programmers
who are required to explicitly request locks or note updates in their code.

210 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

This reliance on users breaks the safety of Java and platform-independence
of the application code.

Another approach that uses the Meta-Object protocols to introduce ''non
functional" properties, such as persistence and transactions, transparently to the
application programmers has been proposed by [Wu and Schwiderski, 1996].
The idea is to subclass each application class that requires the addition of non
functional properties with a reflection class. This reflection class overrides the
methods of the application class so that method calls are wrapped with calls to
a meta-object before and after the application class's code is executed. End
user classes deal with the reflection classes rather than the original application
classes. Reflection classes and bindings to meta-objects are generated via pre
processing techniques. The meta-objects are implemented in Java.

[Wu and Schwiderski, 1996] proposes to use this approach to transparently
supplement Java applications with user-defined concurrency control using meta
objects that implement locking. The drawbacks of this technique are (1) the
loss of efficiency because of the extra Java method calls to meta-objects, (2)
the loss of independence since a Java class cannot be re-used if access to its
sources is not provided, (3) the proliferation of Java classes because of the gen
eration of reflection classes. Furthermore, the meta-object protocol of [Wu and
Schwiderski, 1996] requires classes to be strictly encapsulated. Direct access
to instance variables must be precluded because meta-objects are not able to
intercept direct manipulation to the objects they are bound to.

7.8 CONCLUSION

A design for adding extensible transaction management features to Persistent
Java (PJava) has been presented. It augments PJava with an extensible pool of
transaction classes, and gives expert programmers the ability to extend this pool
to accommodate the needs of new applications using a Transaction Definition
Interface. This interface is made of primitive components intended to ease the
programming of new transaction classes. Ordinary application programmers
can then select the transaction class best suited to their needs. Selection of the
proper transaction class may be done at development time or at runtime using
Java's dynamic binding properties.

The primitive components for programming concurrency control of trans
actions have also been presented. The main component is the class Locking
Capabi 1 i ty. It provides a simple and safe interface to a customizable locking
mechanism which supports ignoring of conflicts, delegation of locks, auto
mated tracking of data dependencies created when ignoring of conflicts is ex
ploited, and user-defined notification of conflicts. These concepts are nicely
integrated with the Java language and do not require any change to the lan
guage.

CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 211

The main advantage of our approach is to offer transaction independence
irrespective of the transaction model used: any Java classes can be used to

implement the body of a transaction without any change to either the sources
or the compiled form of these classes. In particular, locking capabilities and
transaction shells provide a comprehensive solution to allow the arbitrary
composition of threads with transactions transparently to the application.
This is particularly valuable when implementing transaction bodies using lava
classes delivered from third parties that cannot export the source of their classes
for legal reasons. It also improves the productivity of the programmers who
don't need to explicitly identify the data that may be used in a transactional
way, or the code that may operate in a transactional context.

The design lacks flexibility with respect to granularity issues. At the mo
ment, it is assumed that the transaction properties are enforced at the object
granularity and for all data manipulations. However, the sizes of objects in Java
are too small to realize locking efficiently. We are currently investigating addi
tional primitive components that would enable programmers to express larger
granularities while maintaining transaction independence.

Our immediate concern is to devise a lock manager that will support locking
capabilities with minimal impact on the overall performance of Plava. Like
most persistent object systems, Plava is optimized for navigational accesses
and memory residence of active objects. Lock management implementation
techniques defined today for either traditional disk-oriented [Gray and Reuter,
1993, Eppinger et al., 1991] or main-memory database systems (e.g. [Garcia
Molina and Salem, 1992, Gottemukkala and Lehman, 1992]) do not meet our
needs. The former are too slow, and the latter require the database to reside
permanently in main memory. Recent proposals for implementing features
such as ignoring of conflicts or delegation also rely on these techniques [Biliris
et al., 1994, Barga and Pu, 1995] and, therefore, don't meet our needs either.

Our solution to circumvent these problems will capitalize on our previous
work on the design and implementation of efficient locking techniques for per
sistent object systems [Daynes et al., 1995, Daynes, 1995]. These techniques
have shown performance measures encouraging enough to cope with the per
formance of persistent object systems. Our plan is to adapt these mechanisms
to implement locking capabilities in our second prototype of Plava

Notes

1. Atomic propagation of updates onto the persistent stable store in PJava's parlance.

2. Class extension is the mechanism for obtaining subclass in Java [Arnold and Gosling,
1996].

3. An interface in Java specifies a collection of methods without implementing their bodies
[Arnold and Gosling, 1996]. When a class implements an interface, it must provide implemen
tation of all the methods described in that interface. Interfaces provide encapsulation of method
protocols without restricting the implementation to one inheritance tree.

212 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

4. Java compilers generate class files (one per class) which contain the methods in the form
of sequences of Java bytecoded instructions interpreted by Java Virtual Machines.

5. Events related to primitive components, such as conflict notification events, are sent to
the primitive components rather than to the transaction objects they are assigned to.

6. These dependencies are categorized as dependencies due to behavior in [Chrysanthis and
Ramarnritham, 1994].

7. Objects are chosen as the locking granule in our design.

8. PJava considers only read/write locking. However nothing precludes the use of arbitrary
locking modes defined according to some semantic criteria with the mechanism just described.

9. Arjuna provides a class StateManager for recovery and LockManager for both recov
ery and concurrency control. The equivalent Avalon/C++ classes are, respectively, the class
Recoverable and the class Atomic.

Acknowledgments

The work at Glasgow on the PJava project is supported by a grant from Sun MicroSys

terns Inc. and by grant GRlK87791 from the British Engineering and Physical Sci

ences Research Council. We are grateful to Mick Jordan and Susan Spence for their

comments and careful reading of ealier drafts of this document.

8 TOWARD FORMALIZING RECOVERY
OF (ADVANCED) TRANSACTIONS

Cris PedregaI Martin and Krithi Ramamritham

Department of Computer Science
University of Massachusetts. Amherst

Massachusetts. USA

Abstract: Current literature on database transaction recovery reveals a seman
tic gap between high-level requirements (such as the all-or-nothing property) and
the low-level descriptions of how these requirements are implemented (in terms
of buffers and their policies, volatile and persistent storage, shadows, etc.). At
the same time, fast growing demands for recovery in both traditional and ad
vanced transaction models require an increased understanding of the relation
ships between requirements and mechanisms, and the ability to craft recovery
more flexibly and modularly. In this chapter we address these challenges, intro
ducing a framework to unify the different components of recovery as well as pro
viding the concepts and notation needd to reason about recovery protocols. We
apply our framework to formalize the properties of ARIES, a production-quality
recovery protocol, and show how it can accommodate ARIESIRH, a variant of
ARIES that supports delegation.

8.1 INTRODUCTION

Recovery support in database transaction processing systems (TP) is provided
to ensure consistency and correctness under logical as well as physical fail
ures. Even when we confine ourselves to the Failure Atomicity (FA, the all
or-nothing) property of transactions, several considerations determine how re
covery is achieved. For instance, different versions of ARIES [Mohan et al.,
1992a], and especially the case study reported in [Cabrera et al., 1993] demon
strate the need for different policies and hence different recovery protocols and
mechanisms - depending on the size of the objects, frequency of access, and
the system architecture, among other considerations. Furthermore, when fail
ure atomicity is to be achieved in parallel and distributed platforms, traditional
recovery approaches do not perform well since they lead to unnecessary tran
saction aborts [Molesky and Ramamritham, 1995]. Finally, the growing impor-

S. Jajodia et al. (eds.), Advanced Transaction Models and Architectures
© Springer Science+Business Media New York 1997

214 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

tance of advanced applications and nontraditional transaction models as well as
relaxed correctness criteria places new semantics and performance demands on
recovery.

These important challenges show the need for new approaches to recovery;
in particular, it is necessary to develop systematic methods to craft recovery
both for the traditional FA correctness criterion, and for advanced transaction
models and applications, which demand even more flexibility from the re
covery subsystem. In the current state of the art in recovery, however, good
design and implementation is hampered by the gap between the abstract de
scription of the desired (high-level) recovery properties, and the very detailed
implementation-oriented knowledge of how to build systems that support those
properties. Specifically, there is a wide semantic gap between high-level re
quirements (such as the all-or-nothing property) and the low-level descriptions
of how these requirements are implemented (in terms of buffers and their poli
cies, volatile and persistent storage, shadows, etc.).

To address these problems, we introduce a framework to unify the different
components of recovery as well as provide the concepts and notation needed to
reason about recovery protocols.

The framework conceptualizes recovery in the context of transaction pro
cessing systems by identifying the essential ingredients of recovery and pre
cisely prescribing their relationships thus stating various recovery properties of
such systems.

By formalizing recovery properties at each abstraction level, we allow the
description of abstract properties (such as the Failure Atomicity requirement)
without reference to a particular implementation, and of concrete mechanisms
without reference to the abstract properties they support. This separation of the
what from the how allows the use of abstraction both to understand and explain
recovery schemes, and to precisely state and prove the properties with which
they must comply. The only related work we are aware of is [Kuo, 1996],
which formalizes an-ARIES based data manager in terms of input/output au
tomata but closer of abstraction of a particular implementation. In contrast,
our formalism is broader, as it encompasses advanced transaction models, and
it strives to define appropriate recovery abstractions and thus lead to a hierar
chical formalization of recovery and the concomitant separation of concerns
provided by different levels of abstraction.

In this chapter we apply our framework to ARIES, a production-quality,
practical recovery protocol which supports traditional failure atomicity. We
also broaden the scope by applying it to ARIES/RH, a variant of ARIES that
supports delegation. Delegation [Chrysanthis and Ramamritham, 1994] allows
a transaction to transfer responsibility over one or more of its operations to
another transaction. This broadens the visibility of the delegatee, and allows
control over the recovery properties of the transaction model. Thus, delegation

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 215

adds substantial semantic power to a conventional Transaction Management
System. Examples of Advanced Transaction Models that can be synthesized
using delegate are Joint Transactions, Nested Transactions, Split Transactions,
and Open Nested Transactions [Chrysanthis and Ramamritham, 1994]. See
section 8.3.3 for more details on delegation.

The remainder of this chapter is organized as follows. In section 8.2 first
we introduce the formal framework, presenting the ingredients of recovery and
their properties in terms of histories. Then we state our assumptions and the
necessary formal definitions.

In section 8.3 we use the elements of section 8.2 to formally specify vari
ous recovery properties. We begin with the requirements for Failure Atomicity
and Durability, which abstractly describe what one expects to hold in a sys
tem that offers recovery; we also extend these requirements to take Delegation
into account. Then we formalize the assurances, which make explicit certain
usual assumptions about the semantics of the basic mechanisms; for example,
no aborted operation will be later committed by the recovery mechanisms. Fi
nally we specify the recovery mechanisms, the lowest level of the abstraction
hierarchy. The mechanisms describe what recovery is built on; for example,
the semantics of the persistent log.

In section 8.4 we examine a concrete recovery protocol, ARIES, and show
the application of our framework to make its properties precise; we also formal
ize ARIESIRH, the variant of ARIES that supports delegation through rewrit
ing of history. Finally, in section 8.5 we discuss the work involved in relaxing
some of the assumptions of this chapter, and conclude with a summary.

8.2 THE FORMAL MODEL

We want to describe recovery in transaction processing systems in terms of
its properties at different levels of abstraction. Recovery properties are state
ments that characterize the expected behavior of the system as a whole or some
of its components. For example, at the topmost abstraction level, a recovery
property of interest is Failure Atomicity, which we express as conditions on
the occurrence of commits and aborts in an abstract history. At lower levels
we express more specialized recovery properties in terms of more specialized
entities, such as the persistent portion of the log. In this section we present
our framework in terms of the various recovery properties, grouped by level of
abstraction, and their relationships, both within a level, and across levels (when
certain properties "ensure" or "restrict" others).

Our framework consists of recovery ingredients grouped in four levels of ab
straction; for clarity, we use different names for the recovery properties at each
level. We state the properties as predicates over histories and their projections;
we introduce histories in the next section. Here we only give an overview (see
Figure 8.1); in subsequent sections we define them precisely. At the top level

216 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

I Recovery
Protocol & Mec.

Logging
Protocol

Figure 8.1 Recovery Ingredients

Commit/Abort
Protocol

we have the recovery requirements, such as Failure Atomicity and Durability.
Requirements are the properties that applications and users expect from a sys
tem that correctly supports recovery. Below the requirements lie three groups
of rules:

CTtAB: rules to commit/abort transactions and operations,

xops: rules to execute operations, l and

XREC: rules to effect recovery.

Failure atomicity is primarily the concern of CTtAB; durability is primarily
the concern of XREC. Thus the specifications of the abort and commit proto
cols are needed to demonstrate failure atomicity while the specifications of the
recovery protocol are needed to demonstrate durability.

These three rule groups correspond to an intuitive breakdown into compo
nents, but we must also account for the interaction between rules, which we do
with an intermediate level of properties which we term assurances. Specifically,
ensuring failure atomicity imposes certain restrictions on XOPS and XREC to
assure that they will also work toward achieving failure atomicity, while dura
bility requires certain assurances on CTt AB and XOPS so that they will also
work toward achieving durability. That these assurances hold must be demon
strated given the specifications of the corresponding rules; assuming the rules
and the assurances one proves that the requirements are met.

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 217

The ingredients comprising the next level are specific protocols and policies
(see Figure 8.1). They embody the semantics of basic mechanisms, such as the
log, and algorithms for recovery. In this chapter we concentrate on the integra
tion of a specific recovery protocol (ARIES, and its variant with delegation).

Specifically, we want to show that a given protocol meets certain require
ments. This can be done through a process of refinement. For instance, given
that recovery protocols operate in phases, we specify the properties of each
phase. We then show that these protocol properties satisfy the rules and along
with the assurances given by CT/ AB and XOPS satisfy the requirements associ
ated with the crash recovery protocol. The details of each phase (say, specified
via pseudo-code) can then be used to demonstrate that the properties associated
with each phase in fact hold.

The salient aspects of our framework include:

• It enables the formal specification of the correctness of transaction exe
cutions during normal run-time as well as during recovery after a crash.

• It provides a systematic delineation of the different components of recov
ery.

• It allows the formalization of the behavior of recovery - through a process
of refinement involving multiple levels of abstraction. This leads to a
demonstration of correctness.

8.2.1 Modeling Recovery through Histories

Our goal is to frame recovery in terms of how different views of the events -
the histories - in a transaction system are related to each other. Informally, one
can visualize a transaction system history as an execution trace - a chronolog
ical sequence - of transaction operations on data objects, such as updates, and
transaction management events, such as commit. (We define precisely histories
and their different events in the next section.)

We model recovery in a transaction processing system by examining the
properties of its different histories; each history applies to different entities in
a transaction processing system. These histories are arranged in a hierarchy
and are related to each other by projections, and it is the properties of these
projections that describe the particulars of a recovery scheme (see Figure 8.2).
The histories are as follows:

• The history 1£ records all the events that occur in the system - including
crashes. Clearly, this is an abstraction.

• £. denotes the history known to the system, one that is lost in the event of
a crash. £. is a projection of 1£; it contains the suffix of 1£ starting from
the most recent crash event. (£. can be visualized as the system log.)

218 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

H

I
/,/L

D··· D 0"I 0'w

I I
SD ... SD

0"I 0'w
SL

Figure 8.2 Histories in a Database Transaction System

• SC denotes the history known to the system in spite of crashes. This is a
projection of C. (SC can be visualized as the portion of the log that has
been moved to stable storage).

• Vob is a projection of C containing just the operations on ob. It denotes
the state of ob known to the system. (Vob can be visualized as the volatile
state of ob).

• SVob is the state of ob that survives crashes. It is a projection of Vob; it
contains the prefix OfVob. (SVob can be visualized as the stabilized state
of ob).

Assumptions. For ease of explanation, we focus first on database systems:

1. that use atomic transactions,

2. that perform in-place updates and logging for recovery, and whose oper
ations are atomic, and

3. that use serializability as the correctness criterion for concurrent tran
saction executions.

Then, in section 8.3.3 we relax the restrictions (1) and (3) by showing how to
add the delegation primitive to the framework. Delegation allows the synthesis
of advanced transaction models, whose correctness criteria relax and extend
conventional serializability and Failure Atomicity.

In this hierarchy of histories we ignore the presence of checkpoints. In Sec
tion 8.5, we discuss the extensions to the formal model that can deal with fur
ther relaxations of these restrictions.

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 219

8.2.2 Events, Histories, States

Consider a database as a set of data objects each of which has a state that can
be modified by operations executed on behalf of transactions. These objects
may be stored in persistent storage (e.g., magnetic disk) or in volatile storage;
we generally assume that all objects exist in persistent storage (some possibly
in an outdated version), but some may be "cached" in faster volatile memory.
Usually the system only manipulates objects in volatile memory, and this is
what raises the recovery issues.

Definition 8.1 [Object and Transaction Events]
Invocation of an operation on an object is termed an object event The type

of an object defines the object events that pertain to it. We use p,[ob] to denote
the object event corresponding to the invocation of the operation p on object ob
by transaction t. We write p, when ob is clear from context or irrelevant. (For
simplicity of exposition we assume that a transaction does not invoke multiple
instances ofp,[ob].)

Commit(t) and abort(t) denote the commit and abort of transaction t, re
spectively. Commitfp,[ob]] and abortfp,[ob]] denote the commit and abort of
operation p performed by transaction t on object ob, respectively. These are
all transaction (management) events. When a transaction event is not issued by
a transaction, we add a superscript; e.g., R when an operation is issued by the
recovery system.

Definition 8.2 [Crash, Recovery and Recovery-interval]
A crash event denotes the occurrence of a system failure; a rec event denotes

that the system has recovered from a failure. All events are totally ordered
with respect to both crash and rec events. Different crashes and recoveries in
a history are indicated by a subscript, as in reCk. Notice that during each (say,
the k,h) recovery phase there may be multiple crashes, that we indicate with a
superscript. Thus crash} is the first crash, and before reCk there may be several
crashes crash~, ... , crashZ.

We define the k'h recovery-interval to be the part of the history (see below)
bounded by crash} and reCk. To reduce clutter we usually write crashk for
crash} when it is clear from context.

Remark: We assume throughout this chapter that recovery is completed be
fore any normal processing is allowed to restart (but see Section 8.5). This
is reflected in this formalism by the existence of a single system-wide recov
ery event rec that represents the completion of a particular recovery phase. To
model recovery concurrent with normal processing it suffices to introduce a set
of per-object recovery events, each of which represents that its corresponding
object has been successfully recovered.

220 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Definition 8.3 [Histories]
A history 1l [Bernstein et al., 1987, Chrysanthis and Ramamritham, 1994]

is a partially ordered set of events invoked by transactions. Thus, object events
and transaction management events are both part of the history 1l. We write
c E 1l to indicate that the event c occurs in the history 1l. Notation -+11. denotes
precedence ordering in the history 1l (we usually omit the subscript 1l) and::::}
denotes logical implication.

We write a -+"1t /3, where events a,c,/3 E 1l, to indicate that event c does
not appear between a and /3 (other events may appear). Formally: a -+"1t
/3 {:} a -+11. /3 /\ Ve ((a -+11. e -+11. /3) ::::} e # c).

Definition 8.4 [Projections and States]
A projection 1lP of a history 1l by predicate P is a history that contains all

events in 1l that satisfy predicate P, preserving the order. For example, the
projection of the events invoked by a transaction t is a partial order denoting
the temporal order in which the related events occur in the history. We abuse
notation and write 1l-E to denote the projection that removes all events in set
E. For example, we are often interested in "projecting out" all uncommitted
operations.

1lc, is the projection of history 1l until (totally ordered) event c (it includes
c). 1lc- is 1lc excluding event c.2

Let 1l(ob) denote the projection of 1l with respect to the operations on a sin
gle object ob.3 Thus, a state s of an object is the state produced by applying the
history 1l(ob) to the object's initial state So (s = state(so, 1l(ob))). For brevity,
we will use 1l(ob) to denote the state of an object produced by 1l(ob) , implicitly
assuming initial state so.

Definition 8.5 [Uncommitted and Aborted Transaction Sets]
We denote by Utli the set of uncommitted transactions in history 1l: t E

Utli {:} commit(t) f/. 1l. The set of aborted transactions Atli in history 1l:
t E Atli {:} abort(t) E 1l. Similarly we define the set of pending (uncommitted
and unaborted) transaction operations PPli, the set of aborted operations Apli
and the set of recovery operations Rpli. We drop the subscript, t, when it is
clear from context.

Definition 8.6 [Physical and Logical States]
The physical state of an object ob after history 1l is the state of ob after

1l(ob) is applied to the initial state of ob. The physical database state after 1l is
the physical state of all the objects in the database after 1l is applied. This is
denoted by 1lp.

Consider the history 1l-RpUAp that results from removing from a history 1l
all object operations performed by the recovery system and all aborted oper
ations. The logical database state, denoted by 1lL, is the physical state that
results4 from 1l-RpUAP.

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 221

Definition 8.7 [Equivalence of Histories]
Two histories 1£',1£" are equivalent when the (logical or physical) state 0/

the database after the execution 0/1£' is the same as the state after the execu
tion 0/1£" on the same initial state. Different equivalence relations result when
the logical (L) or physical (P) state o/the database are considered/or each 0/
1£' and 1£". We define three: 1£'p == 1£~ 1£'p == 1££ 1£~ == 1££.

Two histories 1£',1£" are operation commit equivalent when they are equiv
alent and all operations committed in one are committed in the other and vice
versa. We denote them 1£'p ==c 1£~ 1£'p ==C 1££ 1£~ ==C 1££.

8.3 REQUIREMENTS, ASSURANCES &. RULES

In transaction processing systems that adopt the traditional transaction model,
transactions must be failure atomic, i.e., satisfy the all-or-nothing property.
Failure atomicity requires that (a) if a transaction commits, the changes done
by all its operations are committed5 and (b) if a transaction aborts unilaterally
(logical failure) or there is a system failure before a transaction commits, then
none of its changes remain in the system. Durability requires that changes
made by a transaction remain persistent even if failures occur after the commit
of the transaction.

Thus, the goals of recovery are to ensure that enough information about the
changes made by a transaction is stored in persistent memory to enable the
reconstruction of the changes made by a committed transaction in the case of
a system failure. It should also enable the rolling back of the changes made
by an aborted transaction by keeping appropriate information around. These
two goals must be accomplished while interfering as little as possible with the
normal ("forward") operation of the system.

In this section we use the formalism of section 8.2 to state the properties
that characterize recovery at different levels of abstraction, from abstract to
concrete (see Figure 8.1). We begin by specifying the requirements of Failure
Atomicity and Durability, and how they are affected by the introduction of
Delegation. We then discuss rules and assurances that enable the construction
of recovery, and the associated restrictions they place on the recovery system.
Finally, we discuss specific recovery mechanisms. This sets the stage for the
discussion of a specific protocol (ARIES) in Section 8.4.

8.3.1 Durability

Durability requires that committed operations should persist in spite of crashes.

1. When recovery is complete (after the recovery-interval (crashi, reCk»,
the logical state is equivalent to the state produced by committed opera
tions just before crashl:

222 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

2. After recovery, the physical state of .c mirrors the logical state of 1£ at
that point:

8.3.2 Failure Atomicity

Transaction t is failure atomic if the following two conditions hold:

All Operations invoked by a committed transaction are committed:

(commit(t) E 1£) => Vob Vp ((pt[ob] E 1£) => (commit[pt[oblJ E
1£)).

Nothing Operations invoked by an aborted transaction are aborted:

(abort(t) E 1£) => Vob Vp ({Pt[ob] E 1£) => (abort[pt[oblJ E 1£)).

8.3.3 Failure Atomicity and Delegation

Delegation allows a transaction to transfer responsibility for an operation to
another transaction. After the delegation, the fate of the operation, i.e., its visi
bility and conflicts with other operations, are dictated by the scope and fate of
the delegatee transaction. In this section we give just the essential definitions.

Traditionally, the transaction invoking an operation is also responsible for
committing or aborting that operation. With delegation the invoker of the oper
ation and the transaction that commits (or aborts) the operation may be differ
ent. Delegation is useful in synthesizing advanced transaction models because
it broadens the visibility of the delegatee, and because it controls the recovery
properties of the transaction model. The broadening of visibility is useful in
allowing a delegator to selectively make tentative and partial results, as well as
hints such as coordination information, accessible to other transactions. The
control of the recovery makes it possible to decouple the fate of an operation
from that of the transaction that made the operation; for instance, a transaction
may delegate some operations that will remain uncommitted but alive after the
delegator transaction aborted. Examples of Advanced Transaction Models that
can be synthesized using delegate are Joint Transactions, Nested Transactions,
Split Transactions, and Open Nested Transactions [Chrysanthis and Ramam
ritham, 1994]. For extensive treatments of delegation, see [Chrysanthis and
Ramamritham, 1994]; delegation in the context of recovery is examined in
[Pedregal Martin and Ramamritham, 1997].

Definition 8.8 [Invoking Transaction]
A transaction t that issues an operation p on object ob is called the invoking

transaction, and we denote it with a subscript: pt[ob). We drop the subscript
when it is obvious or irrelevant.

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 223

Definition 8.9 [Responsible Transaction] A transaction t responsible for an
operation p is in charge of committing or aborting p, unless it delegates it:
ResponsibleTr(p[ob]) = t holds from when t performs p[ob] or t is delegated
p[ob] until t either terminates or delegates p[ob].

Notice that without delegation, the transaction responsible for an operation
is always the invoking transaction.

Definition 8.10 [Delegation]
We write delegate(t1, t2,Pto lob]) to denote that t1 delegates operation p (orig

inally invoked by to) to transaction t2. For this delegation we have:
Precondition ResponsibleTr(p[ob]) = t1.
Postcondition: ResponsibleTr(p[ob]) = t2.

Adding Delegation. We now examine the consequences of adding the no
tion of delegation to the basic framework. This is an important extension as the
semantics of delegation allows the synthesis of advanced transaction models
whose correctness criteria relax serializability in various ways. In the presence
of delegation, we say that transaction t is failure atomic if the following two
modified conditions hold:

All' All operations a committed transaction is responsible for are committed:

(commit(1') E 1£) =}

'tIob 'tip 'tit ((Pt[ob] E 1£ 1\ ResponsibleTr(pt[ob]) = 1') =}

(commit[pt[ob]] E 1£)),

Nothing' All operations an aborted transaction is responsible for are aborted:

(abort(1') E 1£) =}

'tIob 'tip 'tit ((Pt[ob] E 1£ 1\ ResponsibleTr(pt[ob]) = 1') =}

(abort[pt[oblJ E 1£)),

Changes with the addition of delegation. In the absence of delegation,
the transaction that issued an operation remains responsible for it. Therefore,
the abort/commit of one dictates the abort/commit of the other, respectively.
When a transaction t delegates an operation p to another transaction l' it decou
pIes p's fate from its own (in the sense of committing or aborting). This causes
some changes; however, most of the recovery properties remain unchanged,
because they are formulated in terms of operations, not transactions.

We now focus on the next level of specification, which is concerned with
assurances. These are properties that the various components must preserve to
allow the more abstract requirements to be satisfied. The components corre
spond to well-understood mechanisms and protocols, properties of which are
rarely stated explicitly.

224 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

8.3.4 Assurances for Failure Atomicity

Here we describe the restrictions imposed on recovery mechanisms to pro
vide assurances for Failure Atomicity. They are described as restrictions as
they limit what can be done by the recovery mechanism to obtain the neces
sary assurances. Usually these restrictions are implicitly assumed by recovery
schemes; they reflect the broad notion that the recovery mechanism is "well
behaved," i.e., that it does not abort committed operations or vice-versa, and
that it only operates during the recovery phase.

1. No aborted operation should be committed by the recovery system:

VpVtVob(abortfpt[oblJ E 1i =? (commiffpt[oblJ f/.1i))

2. No committed operation should be aborted by the recovery system:

VpVtVob(commitfpt[oblJ E 1i =? (abonRfpt[oblJ f/.1i))

3. Outside of a recovery-interval, object, commit, and abort operations can
not be invoked by the recovery system:

VtVpVob(€ E W[ob],commiffpt[ob]],abonRfpt[ob]]}) =?

V k(reCk --t -'e crashl+1)
We define reco to precede all events in 1i so that k = 0 covers the interval
before the first crash.

4. If the recovery system aborts a transaction operation, then it will eventu
ally abort the transaction:

VtVpVob(abonRfpt[oblJ E 1i =? aborf[t] E 1i)

Delegation Assurances. The only restriction that needs reformulating is
(4).

4.' If the recovery system aborts an operation, then it will eventually abort
the operation's responsible transaction:

Vp,ob,t(aborffpt[ob]] E 1i =? abonR [ResponsibleTr(pt [ob])] E 1i)

8.3.5 Assurances for Durability

Here we describe the assurances provided to the recovery component so that
it can achieve durability. The first assurance is central to the semantics of
having a reliable logging mechanism. The rest can be seen as "technical" (i.e.,
for the completeness of the formalism): the next three make explicit the usual
assumptions of "good behavior," and the last one ensures the base case for
induction proofs (on the length of histories).

1. All operations between two consecutive crashes crash; and crashj (or be
tween the initial state and crash!) which appear in 1icrashr also appear
in cpashr, and they appear in the same order.

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 225

2. No operations are invoked by other systems during the recovery period
(the recovery system may invoke operations to effect recovery). For
mally:

VpVtVobV S(S.::p R 1\£0 E {pS[ob],eommirS[pt[ob]],abonS[pt[ob]]}) =?

V k, i(erash~ -+ "'c reed

3. No other part S of the transaction system commits an operation which
was previously aborted. Formally:

VSVpVtVob(S.::p Rl\abort[pt[obll E 1£ =?

...,(abort[pt[obll-+1l eommirS[pt[ob]]))

4. No other part of the system aborts an operation which was previously
committed.

V SVpVtVob(S.::p R 1\ eommit[pt[ob]] E 1£ =?

...,(eommit[pt[obll-+1l aborrS[pt[ob]]))

S refers to different components of the transaction processing system.

5. History and log are both empty at the beginning: 1£0 = ¢ = £".

8.3.6 Recovery Mechanisms Rules

Here we specify the mechanisms that support recovery in terms of rules. For
example, if an operation was uncommitted before a crash, it will not be com
mitted by the recovery system.

1. After recovery, history £, reflects the effects of all committed operations,
all aborted operations, all transaction management operations and all sys
tem operations (which includes undos of aborted operations). Those op
erations invoked by transactions, which have neither been committed nor
aborted, are given by Pp crashL which we denote Aetops. None of these

£ k

operations is reflected.

Vk(C;Ck =c (£c;ashf-)-ActoPS)

2. During recovery, an operation performed by a transaction which is neither
committed nor aborted before the crash is aborted by the recovery system.

VpVtVobVk(Pt[ob] E (Aetops) =?

(erash}-+1l aborrR[pt[obll-+1l reCk)))

3. An operation invoked by a transaction committed before a crash is not
aborted by the recovery system.

JV-;f(OO-VtVpVobVk(eommit[pt[obll E£,ll =?

...,(crashk -+1l aborrR[pt[obll-+1l reCk))

226 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

4. If an operation invoked by a transaction was uncommitted before a crash,
it is not committed by the recovery system.

V'tV' pV' obV' k(commitfp,[ob]] ¢ CJV'-i/(\f- =>
..,(crashk -t1l commi~fp,[ob]] -t1l reck))

5. The recovery system does not invoke any operations outside the recovery
interval.

V'p,ob,t(e E W[ob],commi~fp,[ob]],abor~fp,[ob]]}) =>
V' k(reck -t -'c CraShk+l)

6. If the recovery system aborts an operation invoked by a transaction in
a recovery interval, it also aborts the transaction before the end of that
recovery interval.

V'p,ob,t,k((crashk -t abor~fp,[ob]] -t reCk) =>
(crashk -t abor~[tj-t reCk))

8.3.7 Logging and Commit/Abort Protocols

The commit/abort and logging protocols guarantee the following:

AB-UNDO The undo of an operation is equated with the abort of the op
eration:

V'pV'obV't(p,[obj E C => (undaR(pt[ob]) E C ¢> abor~(pt[ob]) E C))

LOG-CT All the committed operations are in the stable log at the time of
a crash:

V'i'v'pV'tV'ob(commit(p,[ob]) E 1{crashf-) => (Pt[obj E S.cJV'-i/(r-)

8.4 A SPECIFIC RECOVERY PROTOCOL

In this section we indicate how to apply our framework to a specific recovery
protocol, ARIES, and how, when we extend ARIES with delegation (resulting
in ARIESIRH) our framework adapts and covers the new extensions. First,
we give an informal overview of ARIES and ARIESIRH. Second, we specify
the assurances that ARIES and ARIESIRH assume from other components of
recovery. Third, we specify the correctness properties satisfied by ARIES and
ARIESIRH. Then, we show that the second and the third together conform to
the rules that recovery protocols in general must satisfy. For brevity we present
just a sample of the proofs.

8.4.1 Overview of ARIES and ARIES/RH

We first review ARIES to establish context and terminology, and then we ex
plain the modifications necessary for ARIESIRH [Pedregal Martin and Ra
mamritham, 1997]. The ARIES recovery method follows the repeating history

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 227

II .. LOG
9

Checkpoint Failure

Analysis
Jo

Jo PASSES
KedoAH

------------------------------~
UndoLosen

~-------------------------------

Figure 8.3 ARIES passes over the log

P-- ... ,

104 lOS 106

time

Figure 8.4 Backward Chains in the log

paradigm and consists of three phases6 (see figure 8.3). Immediately after a
crash, ARIES invalidates the volatile database. Analysis identifies which trans
actions must be rolled back (losers) and which must be made persistent (win
ners). Redo repeats history, redoing all transaction operations that had taken
place up to the crash. Finally, using the analysis information, undo removes
the operations from loser transactions.

ARIES keeps, for each transaction, a Backward Chain (BC, see figure 8.4).
All the log records pertaining to one transaction form a linked list BC, ac
cessible through Tr -List, which points to the most recent one. ARIES inserts
compensation log records (CLRs) in the BC after undoing each log record's
action.7 Applying delegate(tl,t2,ob)8 is tantamount to removing the subchain
of records of operations on ob from BC(tl) and merging it with BC(t2)' Next
we discuss ARIESIRH, which supports delegation without modifying the log.
First we present the data structures, and we explain the normal processing. We
then examine recovery processing, first the forward (analysis & redo) pass and
then the backward (undo) pass.

8.4.1.1 Data Structures. We must know which operations on which ob
jects each transaction t is responsible for, i.e., its Op-List(t). For that we use
the Transaction List and expand each transaction's Object List found in con
ventional Database Systems; we also add a delegate type log record.

228 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

field name function
LSN position within the LOG
Tor transaction id of delegator

TorBC delegator's backward chain
Tee transaction id of delegatee

TeeBC delegatee's backward chain

Figure 8.5 Fields of the delegate log record

TrJist. The Transaction List [Bernstein et al., 1987, Gray and Reuter, 1993,
Mohan et al., 1992a] contains, for each Trans-ID, the LSN for the most recent
record written on behalf of that transaction, and, during recovery, whether a
transaction is a winner or a loser.9

ObJist. For each transaction t there is an Object List Ob.List(t). In tenns of
Op.List: Ob.List(t) = {ob I 3pro rob] E Op.List(t)}, i.e., the objects for which
there is an operation for which t is responsible. The operation Pro rob] may have
been invoked by to and the responsibility transferred to t via delegation.

When transactions are responsible for specific operations (not a whole ob
ject), a certain object may appear in more than one Ob.List (but the associated
operations will be different).l0 We identify the operations that a transaction is
responsible for by introducing the notion of scope.

For each object ob in Ob.List(tl) there is a set of scopes Scopes, that covers
the operations to ob for which tl is currently responsible. A scope is a tuple
(to, 11,12) where to is the transaction that actually did the operations (the invok
ing transaction), h is the first, and 12 the last LSN in the range of log records
that comprise the scope.
Delegate Log Records. We add a new log record type: delegate. Its type
specific fields (see figure 8.5) store the two transactions and the object involved
in the delegation.

8.4.1.2 Normal Processing. We sketch how ARIESIRH extends ARIES
by showing how to handle delegations and operations. Other transactional
events are modified as well; the reader is referred to [pedregal Martin and Ra
mamritham, 1997] for a complete account.

• pt[ob]

1. ADJUST SCOPES. If this is the first operation of t to ob since either t
started or last delegated ob we must open a new scope. Otherwise, there is
an active scope of t on ob that we must extend.
!f ob ¢ Ob-List(t) then Ob-List(t) ~ Ob-List(t) U {ob} ;
!f (t,_,_)l1 ¢ Ob-List(t)[oh]

then create new scope
else extend existing scope

• delegate(t17 t2,ob)

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 229

1. WELL-FORMED? Verify that ob E Ob-List(t1), which tests, for this case,
the precondition: pre(delegate(tbt2,op[ob])) ::} (ResponsibleTr(op[ob]) =
t1).

2. PREPARE LOG RECORD(S).

Record delegator, delegatee.

Rec.tor f- t1; Rec.tee f- t2;

Link this log record into t1 's and t2 's backward chains.

Rec.torBC f- BC(t1).PrevLSN; Rec.teeBC f- BC(t2).PrevLSN.

3. TRANSFER RESPONSIBILITY. Move operations on ob from Op-List(t1) to
Op-List(t2)'
Add ob to delegatee's Ob-List and record that ob was delegated by t1'

Ob-List(t2) f- Ob-List(t2) U {ob}; Ob-List(t2)[ob].deleg f- t1'

Pass delegator's Scopes for ob to the delegatee and remove ob from the
delegator's Ob-List.

4. WRITE DELEGATION LOG RECORD(S).

Write log record and mark it as the current head of the backward chains of
delegator and delegatee.

LOG[CurrLSN] f- Rec; BC(tt} f- CurrLSN; BC(t2) f- CurrLSN.

8.4.1.3 Crash Recovery. In the rest of this section, we present the recov
ery phase of ARIESIRH, which includes a forward pass and a backward pass.

Forward Pass. For brevity, we describe only the results of the forward pass
of recovery. Details can be found in [Pedregal Martin and Ramamritham,
1997]. Before the first pass of recovery starts, Winners = Losers = ¢. At
the end of the forward pass Winners, Losers, and Object Lists are up to date,
including the scopes of the operations. Specifically, after the Forward Pass the
state is:

• Ob-Lists are restored to their state before the crash, for all transactions.

• Winners has all the transactions whose operations must survive (Le., which had
committed before the crash). Losers has those whose operations must be oblit
erated.

• LoserObs includes all objects in the Ob-Lists of loser transactions. We compute

it after the forward pass ends, as LoserObs = U Ob-List(t).
tELosen

Backward Pass. To undo loser transactions, ARIES continually undoes the
operation with maximum Log Sequence Number (LSN), ensuring monotoni
cally decreasing (by LSN) accesses to the log, with the attendant efficiencies.

ARIES undoes all the operations invoked by a loser transaction. In the pres
ence of delegation, what we need instead is to undo all the operations that

230 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

were ultimately delegated to a loser transaction. Notice that by undoing the
loser operations instead of the operations invoked by loser transactions, we are
in fact applying the delegations, as we undo according to the fate of the final
delegatee of each operation.12

We show in [Pedregal Martin and Ramamritham, 1997] that it suffices to
keep information on operation scopes to efficiently undo loser operations. There
we also discuss how undo and delegation are integrated in the backward pass.
Operation and delegation are the only records that require special processing.
As with ARIES, ARIESIRH also visits each log record at most once and in a
monotonically decreasing way. This reduces the cost of bringing the log from
disk.

8.4.2 Formalizing some properties of ARIES and ARIESjRH

Policies. ARIES assumes the STEAL and NO-FORCE policy combination. That
is, the restrictions associated with NO-STEAL and FORCE, which we formalize
next, do not apply.

NO-STEAL requires that no uncommitted operations be propagated to the
stable database. If an operation is stable, its transaction must have committed.
Formally:

VD(ob) E prejix(C(ob») , VeE V(ob)
(Pt[obj-+V(ob) c) ~ (commit(t) -+£(ob) e)).

Notice that this specification of NO-STEAL does not impose an ordering or
logging strategy; nor does it say how to record that a transaction is considered
committed.

FORCE prescribes that updated objects must be in the persistent database for
a transaction to commit. Formally:

VV(ob) Eprejix(C(ob»), Ve E D(ob) (commit(t) -+£(ob) c)) ~
(Pt[obj-+V(ob) c).

Operation execution, Commit, and Abort.
WAL: No operation to the stable database can be installed before a corre

sponding record of the operation is stored in the persistent log. This is called
the Write-Ahead Log (WAL) rule. Formally:

VV(ob) E prejix(C(ob») VeE V(ob) (Pt[obj-+V(Ob) c) ~ (Pt[obj-+S£(ob) c))
Semantics of Transaction Abort: If a transaction s is aborted, no other

transaction t can operate on the same object until s's operations are aborted.
Formally:

VsVt (qs[obj-+£Pt[obj/\ abort(s) -+£Pt[ob]) ~ abort[qs[obll-+£Pt[obj
Commit: The system considers a transaction committed when it has per

sistently logged all the operations and the commit record for the transaction.
Formally:

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 231

V L E prefix(£) V £ E S£
(commit(t) -+L £) => (commit(t) -+sc £) /\ VPt E L(Pt -+sc £)

Winners, Losers, LoserObs.

• t E Winners {::::::? (Commit(t) -+ Crash)
t is a winner if it committed before the crash.

• t E Losers {::::::? (Begin(t) -+ Crash /\ ,lI Commit(t) E 1l)
t is a loser if it was active but did not commit before the crash.

Losers: an active transaction is by default a loser. If there is a commit
record before the crash, its transaction is moved to Winners. Note that
these sets are disjoint.

• LoserObs = U Ob..List(t)
tELosers

i.e., ob E LoserObs => 3t E Losers: ob E Ob..List(t)
LoserObs is the set of all objects for which there is a loser transaction
that is responsible for an operation to that object. This means that a loser
object has at least one operation that will be undone.

Specification of ARIES. In the following, post(P) refers to the postcondition that
a particular phase P (one of analysis, redo, undo) of ARIES satisfies.

1. After a crash, £ = <P

2. post(analysis) =>
VpVobVt(((Pt[ob] E S£ /\ commit(pt[ob]) fI. S£) ¢:} pt[ob] E Losers))

3. post(analysis) =>
VpVobVt{pf[ob] E S£ ¢:} ~[ob] E Losers)

4. post(analysis) =>
VpVobVt((Pt[ob] E S£/\commit(pt[ob]) E S£) ¢:} pt[ob] E Winners)

5. post(redo) => (£ = S£)

6. post(undo) =>
VpVob((P[ob] E Losers) =>

(undif(P[ob]) E £) /\ VqVob(q[ob]-+cp[ob] =>
undif(p[ob]) -+c undif(q[ob])))

Here p[ob] and q[ob] indicate operations that may be done by a transaction
or the system.

7. V pV tV ob(undif[Pt[oblJ ¢:} aborrR [Pt [ob]])

8. post(undo) => £V'HI E prefix(£)

9. ARIES is not active outside the recovery period.

232 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Formalizing ARIESIRH. Because our framework is operation-based and not
transaction-based, extending the formalization (preceding) and the proofs (fol
lowing) for ARIES to ARIESIRH only entails reasoning about chains of dele
gations, represented by scopes.

8.4.3 Proof Sketches

With the logging and commit/abort protocols and the recovery rules from Sec
tion 8.3, we show examples of proving that ARIES specifications conform to
the specification of recovery protocols.

• ARIES Specification 9 can be used to show that the recovery Specifica
tion 5 holds.

• As a more involved example, LOG-CT ensures that ata crash, all com
mitted operations are indeed in S£'. From ARIES Specifications 2, 3 and
6, we can infer that all uncommitted transaction operations and recovery
system operations are undone. Further, these are the only operations that
are undone. Recovery system operations include undos of aborted oper
ations. Hence, operations that are to be aborted are also undone. Further
these operations are undone in an order consistent with ARIES Specifi
cation 6. Hence, we can infer Recovery Rule 1.

Proving that an implementation of the ARIES protocol satisfies ARIES speci
fications involves:

1. modeling the dirty page table, the transaction table, checkpoints, and dif
ferent types of LSNs.

2. expressing the requirements stated above in terms of the properties of
these entities with respect to the transaction management events and ob
ject events (i.e., during normal transaction processing) as well as during
recovery steps.

3. given the pseudo-code that provides the details of transaction process
ing in terms of these concrete entities, demonstrating that the correctness
requirements on these entities in fact hold.

8.5 FURTHER WORK AND SUMMARY

We showed how our recovery framework can be used to deal with the basic
recovery methods for atomic transactions that work in conjunction with in
place updates, the Write-Ahead Logging (WAL) protocol and the no-force/steal
buffer management policies. Also, for ease of exposition, we assumed that re
covery processing was completed before new transactions were allowed. We
also showed how to add delegation, and how the specifications and implemen
tations were modified.

TOWARD FORMALIZING RECOVERY OF (ADVANCED) TRANSACTIONS 233

The building blocks developed in Section 2, namely, histories, their projec
tions, and the properties of the (resulting) histories are sufficient to deal with
situations where these and other assumptions are relaxed, suggesting further
work.

Beyond in-place updates. Some recovery protocols are based on the pres
ence of shadows in volatile storage. Updates are done only to shadows. If
a transaction commits, changes made to the shadow are installed in the stable
database. If it aborts, the shadow is discarded. To achieve this each object ob in
such an environment is annotated by its version number obI, ob2, .. ob" where
each version is associated with a particular transaction. When intention lists
are used, some protocols make use of intention lists whereby operations are
explicitly performed only when a transaction commits. The properties of these
protocols can be stated by defining projections of history 1£ for each active
transaction along with a projection with respect to committed transactions.

Considering object to page mapping issues. The model of Section 2
assumed that the object was both the unit of operation as well as the unit of disk
persistence. In general, multiple objects may lie in a page or multiple pages
may be needed to store an object. To model this, one more level of refinement
must be introduced: the operations on objects mapping to operations on pages.

Reducing delays due to crash recovery. Checkpointing is used in prac
tice to minimize the amount of redo during recovery. We can model check
points as a projection of the history S£ and, using that, redefine the require
ments of the redo part of the protocol. Some protocols allow new transactions
to begin before crash recovery is complete. After the transactions that need
to be aborted have been identified and the redo phase is completed, new tran
saction processing can begin. However, objects with operations whose abor
tions are still outstanding cannot be accessed until such abortions are done.
This can be modeled by unraveling the recovery process further to model the
recovery of individual objects and and by placing constraints on operation ex
ecutions.

A voiding unnecessary abortions. In a multiple node database system, the
recovery protocol must be designed to abort only the transactions running on
a failed node [Molesky and Ramamritham, 1995]. This implies that not all
transactions that have not yet committed need be aborted. To model this, the
crash of the system must be refined to model crash of individual nodes and the
recovery requirement as well as the protocols must be specified in a way that
only the transactions running on the crashed nodes are aborted.

234 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Summary

We have used histories, the mainstay of formal models underlying concurrent
systems, as the starting point of our framework to deal with recovery. The nov
elty of our work lies in the definition of different categories of histories, differ
ent with respect to the transaction processing entities that the events in a history
pertain to. The histories are related to each other via specific projections. Cor
rectness properties, properties of recovery policies, protocols, and mechanisms
were stated in terms of the properties of these histories. For instance, the prop
erties of the transaction management events and recovery events were specified
as constraints on the relevant histories. The result then is an axiomatic spec
ification of recovery. We also gave a sketch of how the correctness of these
properties can be shown relative to the properties satisfied by less abstract en
tities. Further, we showed how to extend the framework and prove correctness
when we include delegation, whose semantics allows the construction of ad
vanced transaction models. We concluded discussing the directions in which
to proceed to broaden the scope of our work.

Notes

1. This is affected by both concurrency control policies and recovery policies.

2. Fonnally,1£e1l.< = 1£e- oe where 0 is the usual composition operator.

3. 1£(oh) = PI lob) 0 P2 lob) 0 .•. 0 pn [ob) , indicates both the order of execution of the opera
tions, (Pi precedes Pi+ 1), as well as the functional composition of operations.

4. Notice that 1£(ob) = 1£p and 1£(ob)-RpUAp = 1£L.

5. This is one of the reasons we prefer to have ways by which the commitment of an oper
ation can be dealt with in addition to the commitment of transactions. Furthennore, we desire
a fonnalism that can uniformly deal with recovery in advanced transaction models (where a
transaction may be able to commit even if some of its operations do not).

6. Some variants of ARIES merge the two forward passes into one, thus we also use only
one forward pass.

7. To avoid undoing an operation repeatedly should crashes occur during recovery.

8. Notation delegate(tl, t2, ob) indicates delegation of all operation of tl on ob to t2.

9. For each transaction t, Tr..List(t) contains the head ofthe BC(t), e.g., in fig. 8.4, BC(t) is
Tr ..List(t).

10. For example, this can occur in the case of non-conflicting operations, such as increments
of a counter.

11. To reduce clutter, '_' denotes a field that we do not change or are not interested in.

I2.In ARIES, all loser operations are those invoked by loser transactions, so ARIESIRH
reduces to ARIES when there is no delegation.

V Transaction Optimization

9 TRANSACTION OPTIMIZATION
TECHNIQUES

Abdelsalam Helal, Yoo-Sung Kim, Marian H. Nodine,

Ahmed K. Elmagarmid and Abdelsalam A. Heddaya

Abstract: Replication introduces a tension between query optimization and re
mote access control in a distributed database system. If we view a transaction
as a partially-ordered set of queries and updates. then factors that affect quorum
selection for the fragments accessed by a transaction as a whole are currently
orthogonal to factors that affect the replica selection during the planning of in
dividual queries. Therefore. the two processes may act at cross-purposes to one
another. Query optimization considers an individual query and selects a set of
fragments that minimizes the computation and communication cost and allows
computation to be pushed into the local site. Transaction management, on the
other hand. selects quorums (sets of replicas to retrieve) based on replica avail
ability and on mutual consistency constraints such as quorum intersection among
write operations or between read and write operations. Thus. transaction opti
mization narrows the "optimal" solution space for the queries it contains. Hence.
transaction management should cooperate with query optimization to optimize
transaction processing.

In this book chapter. we discuss why and how to optimize transactions. We
present a novel transaction optimization strategy that integrates query optimiza
tion techniques with transaction management. The proposed strategy chooses
quorums of maximum intersection. while minimizing a communication and/or
computation cost function. It also attempts to maximize the number of up-to
date copies of read quorums. so as to maximize the optimization space of the
individual queries.

S. Jajodia et al. (eds.), Advanced Transaction Models and Architectures
© Springer Science+Business Media New York 1997

238 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

9.1 INTRODUCTION

Distributed query optimization and transaction management have typically been
separated into independent modules [Helal et al., 1996b]. A query, written in a
convenient non-procedural language such as the relational SQL or QUEL [Ko
rth and Silberschatz, 1991], refers to logical elements of the distributed data
base, be they relations or views. The query is submitted first to a query optimiz
ing compiler (QOC) that transforms it into a procedural program operating on
physical data that constitute fragments of the logical relations. This procedural
program is generated carefully so as to minimize the 110, communication, and
computation costs of executing the query. A traditional compiler then produces
the final executable form of the query. The task of managing query execution
falls on the shoulders of the transaction manager (TM), which constitutes part
of the runtime system, and whose functionality is invoked via procedure calls
inserted by the QOC. The TM ensures the ACID properties of the transaction
by performing concurrency control, recovery, and atomic commitment.

In a replicated distributed database [Helal et al., 1996a], fragments of data
are replicated across several databases to increase its availability in a failure
intolerant environment. Here, availability concerns dictate that many consistent
replicas be available at many sites. When a transaction accesses a set of frag
ments, efficiency concerns dictate that those accesses be clustered in as small
a set of sites as possible. This process is simplest when there are few replicas
to consider. Thus, the current goals of transaction management and replication
conflict.

Distributed transactions that access replicated data may suffer from variable
processing delays. Depending on the degree of replication and on the data
fragmentation strategy, a transaction may have to access a large number of
physical fragments. This leads to

1. an increased number of round-trip messages,

2. an increase in the total message CPU processing time (for send and re
ceive at the transaction initiation site), and

3. an increase in the number of execution threads used to spawn off multiple
concurrent communication.

We refer to each execution thread used to control a physical fragment as a
shred, and the processing overhead due to a transaction's shreds as the shred
ding effect. Physical fragments are also referred to as shreds in this pa
per. While facilitating higher degree of concurrency and availability, fine-grain
fragmentation and large-scale replication are responsible for the shredding ef
fect.

The challenge that we address in this book chapter is how to alleviate the
shredding effect while maintaining the same high levels of concurrency and

TRANSACTION OPTIMIZATION TECHNIQUES 239

availability. We view transactions as partially-ordered sets of queries and/or
updates. We argue that in a replicated, distributed database and with transac
tions of this form, the QOC and the TM must communicate to ensure efficient
transaction execution. We introduce a component of the QOC called the Tran
saction Optimizer (TO), that interacts with the TM to select the best set of
replicas to access during the processing of a specific transaction. This allows
the two modules to work together to ensure the transactional cognizant opti
mality of the query execution. That is, it chooses an execution that minimizes
the communication and/or computation overhead of a transaction based on its
overall collection of queries and updates (transactional) and a knowledge of
current site availability (cognizant).

9.1.1 Wha.t is Wrong with the Current Architecture?

Architecturally, the split between QOC and TM handicaps the QOC dramati
cally, in that the QOC cannot take advantage of the run-time information about
failure and performance that is readily available to the TM. This is especially
true in the presence of replication in the distributed system. For example,
since the QOC knows nothing about the availability of specific replicas, it may
choose to access replicas that are unavailable due to site or communication
failures. The QOC may also assume that the set of replicas are all up-to-date
while in fact a replica or two could be lagging behind. When the TM discovers
this information at runtime, it cannot invoke the QOC to revise the scope of its
optimization space.

Another example of this handicap arises from the ability of the transaction
program to execute independent queries and updates under a single transaction.
The precise choice of the queries to be so composed may not occur until run
time, for instance when the transaction program is allowed the power of con
ditional branching. Because the QOC optimizes each query separately, it may
very well choose for different queries to touch physical copies whose union
is strewn across much of the distributed system. We call each physical copy
touched by a transaction a shred. Each shred requires a separate thread of
control, thus a transaction with many shreds on different sites incurs a higher
communication and computation overhead.

This shredding effect in replicated distributed database systems introduces
another reason for transaction optimization. In a distributed system, transaction
management imposes a finer granularity on the transaction queries, resulting in
more constituent parts for the transaction. This leads to the shredding of the
transaction as a single control unit into multiple threads of costly controls. Our
goal in this book chapter is to show how this effect can be mitigated by selecting
quorums to cluster accesses to the same database and thus maximize our ability
to piggyback shred control messages together.

240 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Query 1

LFI

Transaction

Query 2

LF2

Quorum fonnation area

Query I

LFm

LF = Logical Fragment

PF = Physical Fragment

Figure 9.1 Transaction composition

Before discussing the implication of this effect, we give an example. Fig
ure 9.1 shows a transaction which has several queries. Each query accesses
several data items. A read set R and a write set W are imposed on each tran
saction. For example, a single query transaction, A ~ B creates R = {A,B},
and W = 0. Each element in R U W is called a logical fragment. For each
logical fragment, a data dictionary is accessed to obtain the corresponding set
of physical fragments. Physical fragments could be disjoint entities of a larger
data object, or identical replicas of the same data object. In this book chapter,
we only consider physical fragments as identical replicas of logical fragment.

Assume that a global transaction has I queries and each query accesses m
logical fragments, on the average. If each logical fragment access requires a
quorum of n physical fragments, the global transaction is actually transformed
into I x m x n parts. If all the physical fragments are stored at different sites, the
transaction manager may have to contact n sites up to m times for each query.

Now consider the issue of optimizing the individual queries. During the
query decomposition and optimization phase, each query will be considered
separately, and sites chosen for each quorum will be based on optimal place
ment with respect to efficient query execution and pushing subquery execution
down to the local sites. The query optimizer does not consider that a replica
it needs may be accessed from some other site because it was read by some
other query in the transaction, and consequently may select a different replica.
Alternatively, it may be desirable to retrieve a replica from a site that is already

TRANSACTION OPTIMIZATION TECHNIQUES 241

[

TO QOC ..-..

I
r-'----1
. TM ~

Distributed Physical Fragments

II II II
111111

Figure 9.2 Query optimizer - transaction manager interaction

being accessed by the transaction, but the query optimizer does not have the
information to do this.

For example, consider a transaction Tl that contains five queries, each of
which accesses four logical fragments, where each logical fragment requires
a read quorum of five physical replicas. If the replicas are distributed across
hundreds of sites, then this transaction has 100 shreds. With improper quorum
selection, the transaction manager may access up to 100 different sites during
processing of our example query. Each additional site accessed by a transaction
increases the processing overhead for ACID protocols such as two-phase com
mit. These protocols are communication-intensive in distributed database sys
tems. If we can cluster the shred accesses for each transaction, accessing phys
ical fragments that are available at the same site together, we can minimize the
effects of transaction shredding and optimize the total transaction processing
cost.

Optimizing the number of communications for shred control in a transaction
requires knowledge of transaction processing protocols. Minimizing the num
ber of shreds of a transaction is a constrained problem. In the transaction com
position of Figure 9.1, given that all physical fragments are replicas, a quorum
consisting of a known minimum number of fragments must be included [Ozsu
and Valduiez, 1991, Gifford, 1979, Thomas, 1979]. Improper quorum selection
by the transaction manager may limit the success of our optimization against
the shredding effect.

9.1.2 How Should We Change the Architecture?

In Figure 9.2, we propose a new architecture, in which the QOC and the TM
interact. This architecture introduces a new module to the QOC, called the
Transaction Optimizer (TO), that interacts with the TM to access site avail
ability information.

242 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Based on this architecture, we introduce a novel transaction optimization
strategy for minimizing communication and execution cost of the queries of
the same transaction, and for minimizing the shredding effect caused by tran
saction management in replicated distributed database systems. The proposed
transaction optimization strategy consists of two phases of interaction between
the QOC and the TM. The first phase, called the pre-access phase, is a static
phase where some decisions are made prior to any remote communication. In
this phase, the QOC indicates to the TM which logical fragments it needs for
each query in the transaction. The TM maps the logical fragments onto a set of
physical fragments, and selects the candidate sites for all queries of the tran
saction in a way that maximizes the transaction optimization space. The TM
then responds with availability and consistency information to the TO. The pre
access optimization applies ACID restrictions in the choice of the sites. This
for example could include ensuring that the quorums formed are sufficiently
large.

In the second phase, or post-access optimization phase, the TO uses the
availability and consistency information from the TM to rewrite the queries
and to design an efficient overall execution plan. This phase starts after ini
tial communication is attempted with the remote sites initially included by the
optimization process. All physical fragments that were selected during the pre
access phase and are currently available are locked, and at least one physical
fragment for each logical fragment is up-to-date. The transaction optimizer
generates the execution plan for each of its queries based on the optimization
space determined in the pre-access phase, including the discovered realities of
data availability, accessibility, and most importantly, up-to-dateness.

Using the proposed two-phase optimization technique, the fine-grain de
composition effect of transaction processing (the shredding effect) can be con
trolled by a subsequent reversal composition step that groups together shredded
elements belonging to different queries but destined to the same remote sites.
As a result of using our transaction optimization technique, the total process
ing cost of transaction processing in replicated, distributed database systems
can be minimized in the presence of concurrency control, replication control,
and recovery control constraints.

9.1.3 Chapter Organization

The chapter is organized as follows. The rest of the introduction is devoted to
a discussion of related work. Section 9.2 defines the problem and describes
examples that motivate the need of transaction optimization. We specialize our
discussion on the effects of transaction optimization in replicated distributed
database systems. In Section 9.3, we describe the basic ideas behind our tran
saction optimization strategy and give a detailed description of our two-phase
optimization algorithms. We also present examples that clarify the interac-

TRANSACTION OPTIMIZATION TECHNIQUES 243

tion between the transaction manager and the query optimizing compiler. Sec
tion 9.4 discusses the different ways the QOC can use information provided
by the TM to globally optimize individual queries. Finally, conclusion of this
work is given in Section 9.5.

9.1.4 Related Work

To our knowledge, the only work that relates to ours was proposed by Mohan
in [Mohan, 1992]. Like this work, Mohan argued for the importance of the
cooperation between transaction management and query optimization. Unlike
our work that focuses on distributed transaction management including repli
cation [Helal et al., 1996a], Mohan focused on concurrency control, where
locking information was made available to the query optimizer, so that the lat
ter makes intelligent decisions. For example, at some instances, locking was
avoided by taking advantage of the isolation level of the optimized query in
execution. A major difference between our optimization and Mohan's is that
his comes from sacrificing the isolation property of transactions. In our opti
mization, ACID properties [Gray, 1981, Gray and Reuter, 1993] of transactions
are maintained. In another less relevant work, Samar [Samaras et al., 1995]
proposed a two-phase commit optimization in commercial distributed environ
ments.

The classic survey paper for relational query optimization is [Jarke and
Koch, 1984]. Also, a condensed survey and a good bibliographical resource
on the query optimization problem is given in [loannidis, 1996].

9.2 PROBLEM DEFINITION

As evident in the example given in Figure 9.1, if the shredding effect of tran
saction management goes unoptimized, processing and communication reso
urces will be wasted due to the repeated overhead associated with every shred
ded element. In general, the transaction manager should optimize transactions
to choose quorums so as to cluster accesses to physical fragments that can be
made from the same site.

Quorum selection heuristics can be used in conjunction with a particular set
of optimization objectives. These objectives could be

1. to minimize the number of communication messages,

2. to balance the load and reduce any skewed access in the system, or

3. to minimize response time even at the expense of broadcast messages.

Each one of these objectives impacts how quorums are selected. However, quo
rum selection is constrained also by the operational definition of the quorums
themselves (the quorum intersection rules [Thomas, 1979, Gifford, 1979]).

244 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

The following example demonstrates an optimization that can be done dur
ing quorum selection. Assume that a distributed database system consists of
seven sites, where Sj stands for site i (1 ~ i ~ 7). Logical data items A, B,
C, have 5, 4, and 3 physical fragments, respectively. The physical fragments
(replicas) of A are stored at S2, S3, Ss, S6, and S7. Those of B are stored at
Slo S3, S4, and Ss, and those of C are stored at S4, Ss, and S6. Assume that
the majority-consensus protocol is used for replica control. Further, assume
that we have a transaction Tl, consisting of queries that access logical frag
ments A, B, and C. According to quorum parameters (weight of fragments
and read/write thresholds), Tl must access at least three-copies quorum for A,
two-copies quorum for B, and one-copy quorum for C. These assumptions are
summarized in Table 9.1.

Assume the replicas of A at S2, S6, and S7, and those of Bat Sl and S3,
and those of C at S4 are selected for Tl as the candidate sites for the formation
of the required quorums. The transaction manager of Tl then must contact a
total of six remote sites to form the required quorums. Using different replicas,
quorum formation of A could include copies at S3, Ss, and S6, and that of B
could include copies at S3 and Ss, and that of C could include copies at Ss.
Compared to six sites, this selection of quorums results in communication with
only three sites. The selection of quorums therefore affects the size of the set
of spanning sites. Because this optimization concerns all of the quorums that
must be chosen for all queries in Tl, we call this process of minimizing the
number of sites accessed transaction optimization.

Table 9.1 Allocation table of replicas and required quorums for T1.

Sites size of

\ required
DB items Sl S2 S3 S4 Ss S6 S7 quorum

A ..; ..; ..; ..; ..; 3
B ..; ..; ..; ..; 2
C ..; ..; ..; 1

1st Quorum B A B C A A 6 sites
2nd Quorum - - A,B - A,B,C A - 3 sites

The goal of the transaction optimization process is as follows: Each tran
saction accesses a set of logical fragments 8 j , 1 ~ i ~ m during the course of
executing its queries and updates. Let d(8j) be the set of sites which contain
physical replicas for logical fragment 8j. Then let the subset of these that are
available be represented by the function A(d(8j)). If the transaction requires
a quorum of I replicas, then let (Q(A(d(8 j)))) be the set of all sets of size I
containing fragments from sites A (d(8 j))). This is the set of all available quo
rums (by site). Then, for each logical fragment i, we want to select one of these

TRANSACTION OPTIMIZATION TECHNIQUES 245

quorums, qi = q(Q(A(d(8d))) in such a way that minimizes the size of

If several such options are available, we can arbitrate by choosing the quorums
that are best from the standpoint of optimizing the individual queries.

In the following section, we present our transaction optimization strategy
that aims at minimizing the transaction shredding effect, and that also mini
mizes the set of spanning sites . We show how the transaction manager coop
erates with the transaction optimizer to achieve this optimization while main
taining the consistency of the data.

9.3 A NOVEL TRANSACTION OPTIMIZATION STRATEGY

In this section, we describe a new transaction optimization strategy that is fol
lowed for every operation on logical fragments. For each logical fragment,
the pre-access phase attempts to lock a superset of its quorum (define this as a
quorum superset) that will best suit the set of queries and updates that access
it. This may involve giving less preference to copies with high communication
cost, choosing a subset of the available replicas, or preferring a superset that
has the highest affinity with other quorum supersets and extends the spanning
set of sites accessed by the transaction as little as possible. Once all quorum
supersets of the same transaction are decided, piggyback messages are sent to
the remote sites. These messages attempt to access the version information for
each copy, locking the fragment appropriately for use by the queries and up
dates in the transaction and returning its version information. Note that at least
one of the replicas of each logical fragment accessed will be current. Also, the
TM will detect if no message is returned in a reasonable time, and mark that
site as being unavailable.

Based on the replies, the post-access optimization proceeds. The replies
indicate the up-to-dateness (or the degree of mutual consistency) among the
copies. If all copies are up-to-date, better optimization will be possible. On the
other hand, if only one copy is up-to-date, optimization becomes limited, and
the cost of execution-time copying of the most up-to-date copy to other replicas
should be weighed against the loss of parallelism. The post-access phase first
weighs the relative merits of accessing the different fragments at each site,
factoring up-to-dateness, and retrieval cost for all available fragments into a
single cost metric that it uses for comparison. The result of this evaluation is
a prioritized list of sites to use when accessing the physical fragments in the
query.

Once the prioritized list is generated, the post-access phase sets up one or
more waves of piggyback messages (depending on the structure of the tran
saction). First, it processes the queries, then the updates. For each query, it iso
lates out the monodatabase subqueries, taking into account the cost information

246 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

from the pre-access phase and the prioritized list. It adds each monodatabase
subquery to the piggyback message to the site it must execute on. It then ana
lyzes the updates together. Given an update requiring a write quorum of q, it
piggybacks updates onto the messages for at least q sites, favoring sites that al
ready have messages being sent to them, and sites where multiple updates can
be executed. As with the pre-access phase, "extra" updates may be generated
if piggyback messages are being sent to more than q of the logical fragment's
sites, as these updates can be done easily and will increase the consistency of
the data.

In the following, we give the details of the pre-access and the post-access
optimization phases.

9.3.1 Pre-Access Optimization

The first phase (pre-access phase) of our transaction optimization attempts to
select a set of likely sites to fulfill the quorum requirements for each logical
fragment. It attempts to lock all physical fragments relevant to the transaction
for reading or writing as needed, and returns the version and size information
for each such physical fragment. The choice of sites to access is made with the
following objectives in mind:

1. Minimize the size of the spanning set (number of remote sites that must
be contacted on behalf of the transaction).

2. Minimize the cost of the spanning set (communication and computation
cost function) of the remote sites.

3. Minimize the total number of messages exchanged on behalf of the tran
saction.

4. Maximize (at minimal or no cost) the ability to attain mutual consistency
among the copies of the logical fragments accessed by the transaction
given the above constraints. This optimization supports the subsequent
post-access optimizations that will be discussed in Section 9.3.2.

The pre-access phase of the optimization is implemented by the Algorithm 1
whose details are shown in Figure 9.3. This algorithm takes as its input an
AllocationTable like the one shown in Table 9.2. In this table, for each LFi,
RemainingQuorum (shown in Algorithm 1 but not in Table 9.2) is the number
of copies yet to be selected for the read/write quorum. It is initialized to the re
quired number of copies for a quorum (possibly with one or more extra copies
if the network is failure-prone). For each Sk, EffectiveReplicas is the number of
physical fragments at the site whose quorums have yet to be filled. It is initial
ized to the number of logical fragments it has available, and RoundTripTime is
set to the last known round-trip-time to the site Sk.

During computation, Algorithm 1 computes the RemainingCost as follows:

TRANSACTION OPTIMIZATION TECHNIQUES 247

Algorithm 1
Pre-Access Optimization (AllocationTable) returns Piggy

backMsgSet.
Input:

1. Set of logical fragments {LFj, 1 ~ i ~ m}.
Output:

1. ResultSet, a minimum cost spanning set over all LFj.
Resultset is the union of all selected quorums for LFj.

2. A set of piggyback messages 1-to-l mapped to ResultSet.

ResultSet = 0.
WHll..E some RemainingQuorum(LFj) in (1 ~j ~ m) =F 0 DO

Select Sk with minimum RemainingCost.
If a tie, favor a Sk already in ReswtSet.

ResultSet = ResultSet U {Sk}
FOR EACH LFj that has a replica at Sk DO

Mark: the entry of Sk'S column of LF;'s row.
Remainin~Quorum (LFj) -= 1.
IF (RemamingQuorum (LFj) = 0) DO

FOR EACH column S, that has a replica of LFj
EffectiveReplicas (S,) -= 1.

END /I if sIze of RemainingQuorum becomes 0
END /I for each LFi at Sk

END /I while there is a ReminingQuorum somewhere to select
/I Piggyback requests to get one message per site

FOR EACH Sk in ResultSet DO
Piggyback all marked entries of Sk into one message.
FOR EACH unmarked entries of Sk for some LF m

Append LF m to Sk'S piggyback message.
END /I piggback loop
RETURN set of piggyback messages.

END

Figure 9.3 Pre-access optimization algorithm

248 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Table 9.2 Example of allocation table input to pre-access algorithm.

Sites size of

\ required
DB items Sl S2 S3 S4 S5 S6 S7 quorum

A ..j ..j* ..j* ..j* ..j 3
B ..j ..j* ..j ..j* 2
C ..j ..j* ..j** 1

Effective Replicas 1 1 2 2 3 2 1
Round Trip Time 30 30 30 30 30 30 30

. . RoundTripTime(Sk)
RemammgCost(Sk) = EffectiveReplicas(Sk).

This cost metric favors sites with a short round trip time (as remembered from
previous accesses to the site) and a large number of physical fragments relevant
to the transaction. When no relevant copies are left at a site, RemainingCost
increases to 00.

Note that with the input given by Table 9.2, the quorum supersets selected
by Algorithm 1 would be, for logical fragment A, sites S3, S5 and S6, for logical
fragment B, sites S3 and S5, and for logical fragment C, sites S5 and "extra" site
S6. Those marked in the table with a "*,, are selected during the execution of
the first while loop, while those marked with a "**,, are piggybacked onto the
message during the second step of the bottom for loop.

The output of Algorithm 1 is a set of physical fragment names, grouped
by site. At this point, piggybacked request messages are sent to each site to
lock each fragment according to the type of access, and return version and size
information for each locked fragment. Round trip time is also returned for
future pre-access optimizations.

To fulfill its first objective, Algorithm 1 chooses quorums by favoring the
ones that largely intersect with the union of all quorums of the same transaction.
Choosing quorums this way maximizes the affinity results in a minimal size
spanning set. To fulfill its second objective, Algorithm 1 attempts to build the
minimal spanning set under the additional constraint of minimizing the cost
function associated with accessing the data. The cost function could take into
account communication cost, processing cost, and other factors.

To fulfill its third objective, Algorithm 1 uses a piggybacking technique
where different quorum elements destined to the same remote site are grouped
together in a single piggyback message. The intuition behind this is to re
place multiple communication exchanges between two end points by exactly
one round trip of communication exchange. This optimization sets the up
per bound on the number of requests that can be induced by a single global
transaction to be linear in the number of database sites, regardless of the size

TRANSACTION OPTIMIZATION TECHNIQUES 249

or number of queries in the transaction. Piggybacking therefore counters the
communication effect of transaction shredding.

To fulfill its fourth objective, Algorithm 1 attempts to extend the set of repli
cas locked during pre-access to include extra copies at no additional communi
cation cost. This is because the additional replicas are co-located with physical
fragments that are already being accessed, and can be locked using the same
piggyback message. The entry marked "**,, in Table 9.2 is an example of such
a replica.

The locking during the pre-access phase of additional copies at the sites
where the piggyback messages are sent helps the optimization process during
the post-access phase both for queries and updates. For queries, which do only
reads, requesting more copies than needed provides higher availability. For
example, having more copies available gives the query optimizer more latitude
in selecting copies, giving it more opportunity to select copies from the same
site as inputs to the same operation and then pushing the operation down into
the site. It is also useful to have extra copies in case one of the sites fails
or becomes inaccessible, or to improve response time by using the first read
quorum that materializes. In the case of a write operation, piggybacking can
be used to bring more copies into sync. This leads to a higher likelihood that
more elements of subsequent read quorums are up-to-date. This, in tum, leads
to more parallelism that can be exploited by the QOC.

9.3.2 Post-Access Optimization

Once a transaction manager at a remote site receives a piggyback message,
the piggyback is unpacked and the quorum elements are decoded, and pro
cessed individually. We skip concurrency control details (see [Ozsu and Val
duiez, 1991, Bernstein and Goodman, 1984, Ceri and Pelagatti, 1984]), and
continue from the point where the home transaction manager (where the tran
saction originated) receives a reply from one of the piggyback messages. At
this point, access has already been made to physical data fragments and they
are locked. The reply message consists of the acknowledgment of the request
and a confirmation that the fragment is locked. In addition, a timestamp (or ver
sion numver) and size for each physical fragment is included (only the size of
the most up-to-date fragment is important). When the home transaction man
ager receives all the timestamps of a quorum, it decides on the up-to-dateness
and the size of the fragments. It constructs an AllocationTable similar to the
one shown in Table 9.3 before it begins the post-access optimization phase, in
which the actual execution of the queries of the transaction begins. The "*,,
marks essential replicas while the "**,, marks extra replicas as discussed in
Algorithm 1. The • marks up-to-date copies while the 0 marks copies that are
lagging behind. Algorithm 2 whose details are shown in Figure 9.4 gives the
details of the post-access optimization phase.

250 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Table 9.3 Example of allocation table input to post-access algorithm.

Sites up-to-date size of

\ fragment required
DB items S3 S5 S6 size quorum

A • ...;* 0"';* • ...;* 12K 3
B 0"';* • ...;* 8K 2
C • ...;* 0"';** 18K 1

Effective Replicas 2 3 2
Round Trip Time 30 30 30

The objectives of the post-access phase are as follows:

1. Ensure that accesses by different queries to the same logical fragment
by the same transaction also access the same physical fragment, except
when query operations are pushed down into the individual databases.

2. Reduce the number of sites accessed, under replication.

3. Reduce the communication cost.

4. Optimize and decompose each query.

In order to minimize the communication cost associated with executing a
query, the post-access phase specifies an effective retrieval cost for each site,
and selects quorums to minimize the total effective retrieval cost:

EffectiveRetCost(Si) = RoundTripTime+

(ByteTransferTime *
EffectiveReplicas (Sj)

ReplicaSize)

We perceive the actual queries and updates in a transaction to take place in
waves, where the queries and updates for each wave are piggybacked together
to the same site as much as possible, and the number of waves is minimized.
For each wave, the piggybacked messages to each site are generated as shown
in Algorithm 3 whose details are shown in Figure 9.5.

The post-access phase takes a heuristic approach towards accomplishing its
objectives. It works towards ensuring that accesses by different queries to the
same logical fragment by the same transaction also access the same physical
fragment as much as possible by always using the order SitePerm when assign
ing operations to sites. A prefix of SitePerm contains the sites in the actual
spanning set for the transaction. No site outside of the spanning set will be
selected for access unless some query has a very efficient plan that requires the
use of that site. In this case, updates may also be propagated to that site. Bar
ring this circumstance, all accesses will be focused on the sites in the spanning

in

TRANSACTION OPTIMIZATION TECHNIQUES 251

Algorithm 2
Post-Access Optimization (AllocationTable) returns SitePenn.
Input:

1. Minimum cost s,panning set from Algorithm 1.
2. Up-to-dateness mfonnation for all copies accessed

during the pre-access phase.
3. Cost parameters measured during the pre-access phase.

OutP1utS:' P A Pri "zed I' f' . th . . lte enn: ontI 1st 0 SiteS m e spannmg set.
2. AllocTable: AllocationTable with cost infonnation added.

1* Construct an Allocation Table *1
Make AllocTable [num replicas x spanning set size].
FOR EACH site DO

EffectiveReplicas = num physical fragments in the spanning set
accessed tiy the transaction.

RoundTripTime = value measured in the pre-access phase.
END
FOR EACH logical fragment, ReplicaSize = value retrieved

in the pre-access phase.
FOR EACH physical fuigment, Up-to-dateness = value retrieved

pre-access phase.
1* Make sure you nave available quorums for logical fragments *1
SitePenn = ().
WHILE some RemainingQuorum(LFj) in (1 ~j ~ m) =I 0 DO

Compute the EffectiveRetCost of each column.
Select Sk with minimum EffectiveRetCost.
SitePenn = (SitePenn, {Sk}).
FOR EACH LFj that has a replica at Sk DO

Mark the entry of Sk'S column of LFj's row.
Remainin8Quorum (LFj) -= 1.
IF (RemamingQuorum (LFj) = 0) DO

FOR EACH column SI that has a replica of LFj
EffectiveReplicas (S/) -= 1.

END /I if size of RemainingQuorum becomes 0
END /I for each LFj at Sk

END /I while there is a ReminingQuorum somewhere to select
RETURN SitePenn, AllocTable.

END

Figure 9.4 Post-access site prioritization algorithm

252 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Algorithm 3
Post-Access

Penn,AllocationTable)
Message Piggybacking (Site-

returns PiggybackMsgSet.
Input:

1. SitePenn from Algorithm 2.
2. Allocation table from Algorithm 2.

Output:
1. PiggybackMsgSet: One message per site.

PiggybackMsgSet = 0.
IlPiggybackMsgSet is a set of the ordered pairs {< Sk,msgs >},

where Sk is the site for which {msgs} are sent
FOR EACH query qi in the current wave DO

NewPiggy6ackMsgs = QueryOpt(% SitePenn, Alloca
tionTable);

site.

rum.

back

IlQueryOpt functionality is discussed in the next section.
PiggybackMsgSet = PiggybackMsgSet U NewPiggybackMsgs.
Coalesce messages in PiggybackMsgSet that go to the same

END II For each query

FOR EACH update Uj in the current wave DO
UpdateQuorumCount = num replicas needed for a write quo-

FOR EACH site Sk that already has a piggyback message DO
If Sk has a copy of the logical fragment Uj updates DO

Add an update message to Sk'S piggyback message.
E~ateQuorumCount -= 1.

END
IF UpdateQuorumCount ~ 0, move to next update.
ELSE FOR EACH site SI that does not already have a piggy-

messa~e, in SitePenn order, DO
Add an update message to the piggyback message for SI.
UpdateQUorumCount -= 1.
IF UpdateQuorumCount ~ 0, move to the next update.

END
END II For each update

RETURN PiggybackMsgSet.
END

Figure 9.5 Post-access message piggybacking

TRANSACTION OPTIMIZATION TECHNIQUES 253

set. Thus, it also accomplishes the objective of reducing the number of sites
accessed, under replication.

The post-access phase reduces the communication cost by minimizing the
number of sites accessed, and also by using the cost metric EffectiveRetCost in
selecting the physical fragments to access during a specific wave. Given a rea
sonable query optimizer, the processing cost for decomposing and optimizing
each query should also be reduced.

9.4 QUERY OPTIMIZATION ISSUES

9.4.1 Query Decomposition and Site Assignment

Query optimizers operate on individual queries, reordering their operations so
that they can be executed more efficiently. In a distributed database setting, a
query optimizer does the following:

1. The query optimizer pushes down select and project operations, and re
orders joins, so that the query is expressed as a query over a set of results
of monodatabase queries, with one monodatabase query per site;

2. It then reorders the query from the previous step such that all of the in
terdatabase joins are done in some optimal order; [Bodorik and Riordon,
1988] maintains that near optimal results are achieved by reordering the
joins to minimize the total size of the partial results; and

3. Finally, it assigns the interdatabaseoperations to specific sites.

Query optimization in a distributed database without replication is already
an NP-hard problem, due primarily to the complexity of reordering the inter
database join operations. In a replicated, distributed database, the first step of
collecting together operations on the same database into monodatabase sub
queries becomes far more complex, as replicated input logical fragments need
to be assigned sites to minimize the cost of processing the query. To do a com
plete job, the optimizer must consider all possible combinations of logical frag
ment/site assignments, optimizing the query for each assignment, and selecting
the optimal one based on minimizing the expected cost. Clearly, good heuris
tics need to be found for this phase of the query optimization as well. However,
as this book chapter focuses on transaction optimization, we will merely exam
ine the ways in which the QOC can exploit the information provided by the
TM.

Some heuristics that the QOC might use in assigning reads of logical frag
ments to sites include the following:

• Is there a copy in some site this query is already accessing?

254 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

• If there is not a copy in some site this query is already using, what is
the most desirable site (from SitePerm, output of Algorithm 2) that has a
copy of this logical fragment?

• For a copy selected according to one of the above criteria, is this copy up
to-date? If not, is it better to bring that copy up-to-date or use a different
copy that is already up-to-date?

Note that answering some of these questions requires the use of metrics defined
over the cost information gathered from the pre-access phase. The exact nature
and use of these metrics is specific to the query optimizer. However, fragment
size and round-trip-time are factors in determining how much it costs to bring a
fragment up-to-date. The first access to a site should be penalized by the whole
round-trip-time. Also, round-trip-time and fragment size are factors in the cost
of retrieving a relation from a site. We expect these and other metrics to be
useful during query optimization.

9.4.2 Interim Replication

Interim replication allows a query optimizer to identify where the up-to-date
replicas for some logical fragment reside, and make a temporary copy of that
fragment in a different site to expedite the processing of a query. For example,
if A ~ B is the original query, A and B are large relations, and the result is small,
it could be worth the overhead to temporarily replicate B at the site where A
resides, and perform the join operation locally at that site.

The idea of interim replication itself is a time optimization that belongs to
the classical query optimization domain. However, interim replication mayor
may not be advisable for a given query. Since our pre-access phase ensures that
at least one up-to-date copy of a logical fragment is locked, a query optimizer
can consider interim replication as a possibility when optimizing a specific
query, as the actual data is guaranteed to be available.

Additionally, though, we have shown how the process of updating "extra"
copies in the post-access phase increases the number of up-to-date copies in the
database. Therefore, under our optimization strategy, interim replication will
be minimized.

9.5 CONCLUSIONS

Query optimization and transaction processing usually work against each other.
In a replicated distributed database, performing query optimization of transac
tions consisting of sets of queries and updates requires cooperation between
the query optimizer and the transaction manager. This is because physical frag
ments (replicas) are stored in several sites, and a global transaction has a large
number of shredded elements, or threads of control for specific (groups of)
physical fragments at different sites. If the number of shredded elements is not

TRANSACTION OPTIMIZATION TECHNIQUES 255

optimized, the communication cost for transaction processing may be wasted
due to the duplication of processing in query optimization and communication,
and the repetition of transaction processing protocols for all shred elements of
the transaction.

In this book chapter, we introduced an architecture that allows the tran
saction manager and the query optimizer to cooperate to reduce the number
of shredded elements. Specifically, we introduced a two-phase transaction op
timization strategy that minimizes the number of remote sites (spanning set)
involved in a transaction, and consequently the total number of messages re
quired for transaction processing. We introduced quorum affinity and showed
how to chose a set of quorums with maximum intersection (Algorithm 1).
We also introduced piggybacking of requests concerning different quorum ele
ments residing in the same remote site. This way multiple requests by the same
transaction to different copies that reside in the same site are grouped into a sin
gle piggyback message, thus bounding the total number of messages that are
generated by a transaction to be linear in the number of sites (n). Piggybacking
is especially needed in replicated distributed database system to mitigate the
shredding effect.

We have shown how and where the proposed transaction optimization strat
egy uses classical query optimization (in the second phase), and how it coop
erates with transaction management (in the first phase) to achieve better opti
mization.

We also utilized piggybacking by inserting additional updates to additional
copies that are not part of the quorums. Such insertion (or piggyback expan
sion) increases the degree of mutual consistency among the copies and in the
same time incurs very little additional overhead. At any degree of mutual con
sistency, transaction execution is ACID, and one-copy serializability is guar
anteed. The higher the degree of mutual consistency, the more likely it is that
future transactions will be able to find a nearby, up-to-date read quorum, thus
aiding future optimization efforts.

VI ECA Approach

VII OlTP / OlAP

10 AN EXTENSIBLE APPROACH TO
REALIZING ADVANCED TRANSACTION

MODELS
Eman Anwar, Sharma Chakravarthy

and Marissa Viveros

Abstract: Use of databases for non-traditional applications has prompted the
development of an array of transaction models whose semantics vary from the
traditional model, as well as from each other. The implementation details of
most of the proposed models have been sketchy at best. Furthermore, current ar
chitectures of most DBMSs do not lend themselves to supporting more than one
built-in transaction model. As a result, despite the presence of rich transaction
models, applications cannot realize semantics other than that provided by the
traditional transaction model.

In this paper, we propose a framework for supporting various transaction
models in an extensible manner. We demonstrate how ECA (event-condition
action) rules, defined at the system level on significant operations of a tran
saction and/or data structures such as a lock table, allow the database implemen
tor/customizer to support: i) currently proposed extended transaction models,
and ii) newer transaction models as they become available. Most importantly,
this framework allows one to customize transaction (or application) semantics in
arbitrary ways using the same underlying mechanism. Sentinel, an active object
oriented database system developed at the University of Florida, has been used
for implementing several extended transaction models.

10.1 INTRODUCTION

The suitability of the traditional transaction model (with ACID properties) for
serving the requirements of business-oriented applications has been long estab-

S. Jajodia et al. (eds.), Advanced Transaction Models and Architectures
© Springer Science+Business Media New York 1997

260 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

lished. However, as the use of database management systems (DBMSs) encom
pass newer and non-traditional applications, it is necessary to re-examine the
appropriateness of the traditional transaction model. This reassessment reveals
that the ACID properties are too restrictive and in some cases inadequate for
serving the requirements of non-traditional applications. Transactions in tra
ditional DBMSs are implicitly assumed to be competing for resources instead
of cooperating for accomplishing a larger task. This fundamental assumption
imposes restrictions on the use of the traditional transaction model for applica
tions other than the one it was intended for. For example, a strong demand for
cooperation exists in CAD and software engineering environments. The tra
ditional transaction model prohibits any form of cooperation by requiring the.
isolation of uncommitted transaction results. As another example, in a work
flow application, some of the (sub)tasks that deal with invoices may have to
satisfy the ACID properties (on a small portion of the database) whereas other
tasks may work on their own copy of the data objects and only require synchro
nization.

The current solution for meeting the diverse requirements of novel applica
tions has been the proposal of advanced or extended transaction models such
as nested transactions, Sagas, ConTract model, and Flex transactions [Moss,
1981, Garcia-Molina and Salem, 1987, Reuter, 1989, Elmagarmid et al., 1990].
These transaction models relax the ACID properties in various ways to bet
ter model the parallelism, consistency, and serializability requirements of non
traditional applications. Unfortunately, there is no universal transaction model
that satisfies the requirements of all known classes of applications. Rather, each
transaction model tends to be application-specific, i.e., serve the requirements
of a particular class of applications. Consequently, since a DBMS typically
supports only one transaction model, a DBMS can only serve the requirements
of a particular class of applications. Therefore, it is critical that the solution to
this problem aims at a framework which readily supports multiple transaction
models, as well as support them on the same DBMS. Choice of a transaction
model is usually based on application needs and is best made at application
development time, not at database development/configuration time. This ap
proach, if successful, will obviate the need for developing DBMSs suited for
specific application classes. It is equally important to avoid hardwiring the se
mantics of all known transaction models (the kitchen-sink approach), as this
increases runtime checking as well as the footprint of the transaction manager.
In summary, there is a need for: i) a DBMS to be configured with different
transaction models as needed by the application at run time, ii) a DBMS to
support more than one transaction model at the same time, and iii) configur
ing/selecting a transaction model by the user. Below, we identify the goals of
our research.

EXTENsmLE APPROACH TO ADVANCED TRANSACTION MODELS 261

10.1.1 Goals

• Provide a unifonn framework which allows for the specification and en
forcement of various transaction models! (including the traditional model)
in the same underlying DBMS. More importantly, many scenarios require
the specification and enforcement of dependencies amongst transactions
where these dependencies do not necessarily confonn to any particular
transaction model. Consequently, we aim at a general-purpose frame
work where it is possible to express and enforce both existing transaction
models as well as arbitrary transaction semantics in the fonn of tran
saction dependencies. Transaction dependencies need to be supported to
accommodate workflow applications.

• Survey of the literature reveals a general tendency to propose advanced
transaction models at the conceptual level only without paying much at
tention to the actual implementation details in tenns of data structures
and primitive operations that are common to various transaction models.
One of the main objectives of our approach has been to implement various
transaction models to understand additional data structures/operations re
quired for each transaction model as well as to provide a platfonn for an
alyzing the behavior of applications adhering to various transaction mod
els. In essence, for various transaction models, the methodology pro
posed in this paper provides, at the implementation level, what ACTA
[Chrysanthis and Ramamritham, 1990] provides at the conceptual level.
In other words, our approach can be viewed as taking the conceptual for
malism of transaction models provided by ACTA [Chrysanthis and Ra
mamritham, 1990] and transfonning them to their operational fonn to
gain insights into the implementation issues.

• Currently, a large number of transaction models as well as variants of ex
isting models exist. This proliferation is partly due to the diverse require
ments needed by different applications as well as researchers extending
a transaction model to its conceptual limit. We aim at using the actual
implementation of transaction models as a platfonn for understanding
their similarities and differences. This in turn may identify relationships
amongst transaction models such as one transaction model subsuming
another. Consequently, it may be possible to reduce the number of tran
saction models which need to be considered.

• Understand the interactions of different transaction models. In other
words, what are the semantics of running multiple concurrent applica
tions each adhering to a different transaction model?

262 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

10.1.2 Related Work

Several alternative approaches to supporting various transaction models have
been proposed by the research community. Some of these approaches have
been incorporated into research prototypes although commercial DBMSs in
corporate very few of these research results [Mohan, 1994].

• Carnot [Attie et al., 1992] has taken the approach of providing a general
specification facility that enables the formalism of most of the proposed
transaction models that can be stated in terms of dependencies amongst
significant events in different subtransactions. CTL (Computational Tree
Logic) is used for the specification and an actor based implementation
has been used for implementing task dependencies.

• ASSET [Biliris et al., 1994] identifies a set of primitives using which a
number of extended transaction models can be realized. Implementation
of the primitives has been sketched.

• TSME [Georgakopoulos et al., 1994] provides a transaction processing
system toolkit which allows for the specification and enforcement of tran
saction dependencies. Rules are used as a mechanism for enforcing these
dependencies.

• [Barga and Pu, 1995] adopt a layered approach to realizing various tran
saction models. The notion of adapters are used to extend entities such as
the lock manager with operations and data structures to support different
transaction models.

• ACTA [Chrysanthis and Ramamritham, 1990] proposed a conceptual
level framework for specifying, analyzing, and synthesizing extended
transaction models using dependencies.

• CORD [Heineman and Kaiser, 1997] proposed a DBMS architecture with
a Concurrency Control Language (CCL) that allows a database applica
tion designer to specify concurrency control policies to tailor the behavior
of a transaction manager. They have designed a rule-based CCL, called
CORD, and have implemented a runtime engine that can be hooked up to
a conventional transaction manager to implement the sophisticated con
currency control required by advanced database applications.

• A proposal for supporting advanced transaction models by extending cur
rent transaction monitors' capability [Mohan, 1994].

In this paper, a pragmatic solution is proposed by adapting the active data
base paradigm for modifying the system behavior (as opposed to the applica
tion behavior) using sets of ECA rules. The basic idea is to allow the database
administrator (DBA) to build or equivalently emulate the desired transaction

EXTENSIBLE APPROACH TO ADVANCED TRANSACTION MODELS 263

behavior by using ECA (event-condition-action) rules to either: i) modify the
behavior of a transaction model supported by the system or ii) support differ
ent transaction models (including the traditional one) by providing rule sets on
primitive data structures. Our approach differs from current approaches in that
we use the active database paradigm as a mechanism for supporting extended
transaction models in a novel way2. Our approach also models and enforces
auxiliary semantics (other than those defining transaction semantics) useful for
a number of applications within the same framework. For example, to reduce
the possibility of rollbacks and unnecessary waits by transactions, it might be
necessary to define semantics which specify thresholds on the number of long
lived transactions in the system.

This paper is structured as follows. Section 2 outlines our approach based on
the active database paradigm as well as presenting details of several alternative
ways for supporting extended transaction models in an active database envi
ronment. Section 3 describes Zeitgeist's transaction manager (an OODBMS
developed at Texas Instruments) and how we incorporated active capability at
the systems level into Zeitgeist producing Sentinel. The implementation details
for realizing transaction models using this platform are given in Section 4. A
discussion of the extensibility of our approach is presented in Section 5 while
conclusions and future directions for research are given in Section 6.

10.2 OUR APPROACH

A transaction performs a number of operations during the course of its execu
tion - some specified by the user and some performed by the system to guaran
tee certain properties. The semantics of the operations performed by the system
differ from one transaction model to the other. For instance, the semantics of
the commit operation in the traditional transaction model entails updating the
log, making all updates permanent in the database, and releasing all locks held.
This is in contrast to the commit of a subtransaction (in the nested transaction
model) where all locks are inherited by the parent and the updates not made
permanent until all superior transactions commit. As another example, a tran
saction in the traditional transaction model can acquire an exclusive-lock on
an object if no other transaction holds any lock on that object. This is differ
ent from the nested transaction model where a subtransaction may acquire an
exclusive-lock on an object even if one of its ancestor transactions holds a lock
on that object. Moreover, some transactions perform operations which are very
specific to that transaction model (and not shared by other transaction models).
As an example, in the Split transaction model, a transaction may perform the
operation split which causes the instantiation of a new top-level transaction and
the delegation of some uncommitted operations to it.

It is apparent that in order to support different transaction models in the same
DBMS, one should not hardwire the semantics of operations such as commit,

264 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

abort, read and write.3 Instead, a flexible mechanism is needed for associating
computations with these system operations, as well as with some operations
performed by the system on behalf of users, where these computations define
the semantics of these operations depending on the transaction model chosen
for executing a specific application. Furthermore, for this mechanism to be
effective and extensible, it should be independent of the programming model
and the environment. And this is precisely what active capability supported at
the system level offers.

Briefly, active DBMSs couple database technology with rule-based pro
gramming to achieve the capability of reacting to database stimuli, commonly
referred to as events. Active DBMSs consist of passive databases and a set of
event-condition-action (ECA) rules. An ECA rule specifies an action to be ex
ecuted upon the occurrence of one or more events, provided a condition holds.
Therefore, by treating the significant operations performed by transactions as
events and executing particular computations (i.e., condition checking and ac
tion execution) when these events are detected, it is possible to realize various
transaction semantics. For example, consider the acquire-exclusive-lock oper
ation. By treating this operation as an event, it is possible to associate with it
one or more condition-action pairs ClAl, C2A2, ... , CnAn, where each CiAi de
fines the semantics of this operation in a particular transaction model. Hence,
to obtain the semantics of lock acquisition in the nested transaction model, the
CiAi defining its semantics should be activated. Consequently, obtaining the
transaction semantics of a particular transaction model entails activating the
correct CiAi pair for each operation defined in the desired transaction model.

There are many advantages to using active capability as a mechanism for
realizing various transaction models. First, the utility of active capability for
supporting application specific behavior has been well established, as can be
observed by the presence of this capability in almost all commercial models,
its introduction into SQL3, and the number of research prototypes being devel
oped. The availability of expressive event specification languages (e.g., Snoop,
Samos, Ode, Reach) that allow sequence, conjunction and time related events
can be beneficial for modeling some of the synchronization aspects of work
flow and other transaction models.

Currently, most of the DBMSs (commercial or otherwise) provide active ca
pability at the application level. This allows the user/application developer to
specify events and rules on application level data (objects) to add additional be
havior to applications asynchronously. None of these DBMSs support changes
to the DBMS behavior asynchronously, a feature necessary for supporting dif
ferent transaction models. Once this capability is available, it can be used for
other purposes, such as restricting the number of concurrent transactions, reor
ganization of B-trees, etc. However, the presence of active capability at the ap
plication level does not guarantee that it can be used at the system level as well.

EXTENsmLE APPROACH TO ADVANCED TRANSACTION MODELS 265

In fact, depending upon the approach taken it may not even be easy/possible to
port the design to the systems level without great difficulty.

We will illustrate later that our approach to the design of active capability
allowed us to port it to the systems level with relative ease. In fact, the imple
mentation discussed in this paper supports both application level and system
level active capability in a uniform manner. To the best of our knowledge,
most of the commercial systems as well as research prototypes do not support
active capability at the systems level.

10.2.1 Realizing Transaction Models using EGA rules

Active database paradigm can be used in a number of ways to support flexi
ble transaction models. Below, we examine these alternatives and discuss the
merits of each approach, ease of its implementation, and the extent to which it
can support extended transaction models. The alternatives for supporting dif
ferent transaction given a DBMS can be broadly classified into the following
approaches:

1. Provide a set of rules that can be used from within applications to get
the desired transaction semantics. This approach assumes that the un
derlying DBMS supports some transaction model. In this approach, the
desired transaction semantics is obtained by enabling the rule sets pro
vided. For example, we assume that there is a set of rules for sagas that
can be enabled by a command giving the user the semantics of the saga
transaction model. Without any loss of generality we shall assume that
rules are in the form of ECA rules, i.e., event, condition and action rules
(along with coupling modes, event contexts, priority etc.). This approach
certainly enhances the functionality of the system and is a concrete ap
proach towards supporting extended transaction models.

One advantage of this approach is that new rule sets can be defined (of
course by a DBA or a DBC) and added to the system. It may also be
possible to add additional rules to slightly tweak. the semantics of a tran
saction model. A limitation is that the set of rules defined are over the
events of the transaction model supported by the system, e.g., commit,
abort, etc. Consequently, only those transaction models which are very
similar to the underlying transaction model can be expressed using this
alternative. To elaborate, the Split transaction model cannot be expressed,
if the underlying transaction model is the classical ACID model, since the
split transaction primitive is not provided by the traditional transaction
model.

2. Identify a set of critical events on the underlying data structures used by
a DBMS (such as the operations on the lock table, the log, and deadlock
and conflict resolution primitives) and write rules on these events. This

266 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

approach does not assume any underlying transaction model. This ap
proach can be used to support different transaction models including the
traditional transaction model. In this approach, system level ECA rules
are defined on data structure interfaces to support flexible transactions.

A distinct advantage of this approach is that it will be possible to support
workflow and newer transaction models irrespective of whether they are
extensions of the traditional transaction model. To elaborate, the rules are
now defined on low-level events which act on the data structures directly
thereby providing finer control for defining transaction semantics. For
instance, a rule can be defined on lock table events such as acquire-lock
and release-lock. This is in contrast to defining rules on high-level events
such as commit, abort etc. Another advantage is that a DBMS can be con
figured using a subset of the transaction models available at the system
generation time. This approach may be able to offset the performance
disadvantage currently observed in active database systems. The system
designer will be in a better position (relatively) to support or extend tran
saction models.4

This approach is similar to the one taken in [Unland and Schlageter,
1992]. They introduce a flexible and adaptable tool kit approach for
transaction management. This tool kit enables a database implemen
tor or applications designer to assemble application-specific transaction
types. Such transaction types can be constructed by selecting a meaning
ful subset from a starter set of basic constituents. This starter set provides,
among other things, basic components for concurrency control, recovery,
and transaction processing control.

3. This is a generator approach using the second alternative. In this approach
a high-level specification of a transaction model (either by the user or
by the person who configures the system) is accepted and automatically
translated into a set of rules. The specification is assumed at the compile
time so that either rules or optimized versions of code corresponding to
the rules are generated. The advantage of this approach is that the burden
of writing rules is no longer on the DBA.

In this paper, we use the second approach which we believe is versatile and
meets most of our goals mentioned earlier. Our approach for supporting a given
transaction model Tx using active capability is essentially a three step process:

1. Identify the set of operations executed by transactions in the model un
der consideration. Both application visible and internal operations are
taken into account. For example, application visible operations such as
begin transaction and internal operations such as acquire lock are con
sidered. Some of these operations are treated as events, i.e., their execu
tion is trapped by the active DBMS. It should be emphasized that not all

EXTENSIBLE APPROACH TO ADVANCED TRANSACTION MODELS 267

events detected are associated with operations implemented in the sys
tem. Rather, these events can be abstract or external events.

2. The second step involves identifying the condition which needs to be
evaluated when an event occurs (e.g., checking for conflicts at lock re
quest time) and the action to be performed if the condition evaluates to
true (e.g., granting the lock to the requesting transaction). The events,
conditions and actions yield pools of events, conditions, and actions, re
spectively, which are stored in the DBMS. These pools, depicted in Fig
ure 10.1, form the building blocks from which rules are constructed.

3. The final step involves combining an event, a condition and an action to
compose an ECA rule. Each ECA rule defines the semantics of a smaller
unit of the transaction model under consideration. For instance, an ECA
rule may define the semantics of the acquire lock operation. This process
is repeated until a rule set defining the entire semantics of a transaction
model, is built. We allow for the cascading of rule execution. This occurs
when the action component of a rule raises event(s) which may trigger
other rule(s).

This approach allows sharing of the building blocks in several ways. Events,
conditions, and actions are shared across rules sets composed for different tran
saction models. In addition, intermediate rules can also be shared by other
rules. Although Figure 10.1 shows a single level for clarity, a hierarchy of
rules is constructed from the building blocks. The overlap of events, condi
tions and actions for different rule sets clearly indicates the modularity and
reusability aspect of our approach. This is further substantiated in the section
on implementation.

To summarize, our approach encapsulates the semantics of a transaction
model into a set of ECA rules. These rules are derived from the analysis of
each transaction model as well as examination of their similarities and differ
ences. This encapsulation is done at the level of significant operations (e.g.,
begin-transaction, commit) that can be treated as events and/or at the level of
internal operations on data structures (e.g., lock-table). Once the semantics of
a transaction model is composed in terms of these building blocks, rules are
written for each block. The availability of begin and end events are useful to
model the semantics without having to introduce additional events. Also, the
availability of coupling modes and composite events are used to avoid explicit
coding of control as much as possible.

The mechanism described above can also be applied for customizing auxil
iary behavior. By trapping the operations that are executed by applications, it
is possible to perform auxiliary actions as required by the user/system designer
(Le., other than those defining the transaction semantics). A good example of
this is in systems where optimal performance is achieved when the number

268 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Rule Set (or Nested
TIlIIISaCtions

Legend :

a An event 0 An action
Rule Set for Saps • A condilioo • Au ECA rule

Condition Set for Action Set for
Nested Transactions Nested Transactions

Figure 10.1 Rule Composition

of transactions in the system does not exceed a particular threshold (e.g., load
balancing and buffer sizes). Therefore, it is necessary to check the number of
transactions and not allow the threshold to be exceeded. This can be accom
plished by trapping the operation begin transaction and checking the number
of active transactions at that point. If the number is found to be less than the
threshold, then allow the transaction to continue execution, otherwise either
abort the transaction or make it wait. Similarly, in banking applications there
may be a limit on the number or amount of withdrawals in a day. By defining
a rule which is triggered upon detection of the begin operation, it is possible
to check the number or amount of withdrawals appropriately and either con
tinue or abort the transaction. To summarize, not only does the active database
paradigm allow for the specification of transaction semantics but arbitrary se
mantics as well in an extensible manner.

10.3 IMPLEMENTATION DETAILS

Sentinel, an active Object Oriented Data Base Management System (OODBMS)
developed at UF, was used as the platform for implementing the traditional
transaction model, nested transactions and Sagas using ECA rules. Sentinel
was developed by incorporating system level active capability into Zeitgeist, an
object-oriented DBMS developed at Texas Instruments. In the following sec
tions, we first begin by describing Zeitgeist with special emphasis given to its
transaction manager. We then proceed by explaining how active behavior was
incorporated at the systems level into Zeitgeist and then used to realize various
transaction models.

10.3.1 Zeitgeist

Zeitgeist is an OODBMS which uses the C++ language to define the 00 con
ceptual schema as well as to manipulate the internal object structure. Per-

EXTENSIBLE APPROACH TO ADVANCED TRANSACTION MODELS 269

sistence is achieved by translating C++ objects into record fonnat and storing
them in an underlying storage manager, Ingres 6.0.3 in this case. A background
process creates a shared memory segment (where the transaction manager's
data structures are maintained) as well as resolves any deadlocks. Concurrency
control is provided by maintaining lock infonnation in the shared memory seg
ment and regulating its access using semaphores. Recovery is provided by the
storage manager.

classZILtx (

public:

friend class zgUII:
friend class waiVor;

long lid; /Idle lransacdon identifier
int pid; lithe process identification Dumber of the ttaDSaCtion

loog sgo; II the storq:e group Dumber where the object on which the transactioo is blocked is stored

long obno; lithe object number of the object on whicb tbe transaction is blocked

char slaWS; /I the current SlaWS of the b3Dsacticm

daar lockmode; lithe lockmodc requested for the objetl on wbidl the II'aDSaCtion is blocked

int semno; /I the semapbore number on which the transaction is queued
zgLbJink • bead; /llIlis points 10 a linked list of die locks cum:ndy held by the transaction

zgCtx • nextr; /I tbis poinu to the next IraDsaction bashed to this same bucket

IImetbods

int remove_tx(zILshmem *);

long geLtidO (return tid;}

long 5eLUd(long l){tid = 1; return tid;}

cbar JeLstatusO {retlDD status;}

In' seo.Jock(long.long. -J;
int seUo<:k-no_wail(long,long. char);

int upgrade_lock.....no_wait(lon8. long. char):

int end.J"-O:
iot cleanup();

zlLtx(zgubmem *);

-z,UxO{}:

Figure 10.2 The Transaction Class.

Zeitgeist's transaction manager is implemented using three classes namely,
the zeitgeist class, the zgUX class, and the zgt..ht class. The zeitgeist class
implements transaction operations such as aborLtransaction, begiILtransaction
and commiLtransaction while the zgux class implements operations related
to locks such as lock-release and lock-acquisition. The zgLht implements
the lock hash table. Due to space considerations we only depict the zgux
class definition which is given in Figure 10.2. The transaction manager's data
structures (e.g., lock table, hash table) are maintained in shared memory. The
zgLinit process (in the background) is responsible for creating and attaching
the shared memory segment, for allocating and initializing a specific number
of semaphores, and for creating and initializing the data structures. This pro
cess must be executed before any application can begin execution. Access to

270 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

these data structures is regulated using exclusive semaphores. The relationship
between the above mentioned three classes is illustrated in Figure 10.3 .

...... M....,

b P QeJ\1p lie 1ocbIode.1IO 0

p Dc

Figure 10.3 Architecture of Zeitgeist's Transaction Manager.

10.3.2 Making Zeitgeist Active at the Systems Level

Sentinel [Anwar et al., 1993, Chakravarthy et al., 1994, Chakravarthy et al.,
1995] is an active object-oriented DBMS that seamlessly integrates ECA rules
into the object-oriented paradigm. The Sentinel architecture is an extension
of the passive Zeitgeist system architecture [Texas Instruments, 1993]. The
Zeitgeist class hierarchy was modified to include new class definitions which
are necessary for supporting active capability. Figure 10.4 depicts the class
hierarchy of Sentinel with respect to the Zeitgeist classes. Specifically, the
classes introduced are the Reactive, Notifiable, Event, Rule and Event Detector
classes. Note that the classes introduced for making Zeitgeist active (by making
it a subclass of the Reactive class as shown in Figure 10.4) is the same for
supporting both application- and system-level active capabilities. By making
the Zeitgeist class Reactive, all system-defined methods are potential events.
Similarly, by making any application object reactive (by making it a subclass
of the Reactive class), any method of that class are potential events.

In Sentinel, objects are classified into three categories: passive, reactive and
notifiable. Passive objects are conventional objects which receive messages,
perfonn some operations and then return results. They do not generate events.
An object that needs to be monitored (by infonning other objects of its state
changes) cannot be passive. Reactive objects, on the other hand, are objects
that need to be monitored (i.e., on which rules will be defined). A reactive

EXTENSIBLE APPROACH TO ADVANCED TRANSACTION MODELS 271

object can declare any, possibly all, of its methods as an event generator. All
methods declared as event generators constitute a reactive object's event in
terface. Once a method is declared as an event generator, its invocation will
generate a primitive event. The primitive event can be generated either be
fore or after the execution of the method depending on which event modifier
was specified by the user. The event will be generated before execution and
after execution if the user specifies the begin and end modifier, respectively.
In addition, if the user specifies both modifiers then two primitive events will
be generated, one before execution and one after execution of the respective
method. Lastly, Notifiable objects are those objects that are capable of being
informed of the events produced by reactive objects. Therefore, notifiable ob
jects become aware of a reactive object's state changes and take appropriate
measures (by evaluating conditions and executing actions) in response to those
state changes. Notifiable objects subscribe to the primitive events generated by
reactive objects. After subscription, the reactive objects propagate their gener
ated primitive events to the notifiable objects. Events and rules are examples
of notifiable objects. Rules receive events from reactive objects, send them to
their local event detector, and take appropriate actions. Event detectors receive
events from reactive objects, store them along with their parameters, and use
them to detect primitive and complex events. In the following paragraphs we
briefly outline the implementation of the Reactive, Notifiable, Event and Rule
classes. The reader is referred to [Anwar et al., 1993] for a detailed implemen
tation of these classes.

--- --- -- --- --- - ----- -- ----- ---- ----- ------ ---- -- -------- --, , ,

, , :. ~i~~~,- ___ _

Figure 10.4 System Level Active Functionality.

The Reactive Class: The public interface of the Reactive class consists of
methods by which objects acquire reactive capabilities. For an object to be

272 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

reactive, i.e., have the ability to generate primitive events when methods in its
event interface are invoked, it must be an instance of a class derived from the
Reactive class.5 Subclasses of the Reactive class will inherit several methods
the most important of which is the Subscribe method. This method allows No
tifiable objects to subscribe to the primitive events generated by instances of
subclasses of the Reactive class. Once this subscription takes place, the notifi
able object will be informed of the primitive events generated by the Reactive
object. For example, if X is a Reactive object and Y is a Notifiable object, then
Y will be informed of the primitive events generated by X after the statement
X.Subscribe(Y) is executed.
The Notifiable Class: Similarly, the public interface of the Notifiable class
consists of methods which allow objects to receive and record primitive events
generated by reactive objects. For an object to be notifiable it must be an in
stance of a class derived from the Notifiable class, i.e., an instance of a subclass
of the Notifiable class. The method Record defined in this class documents the
parameters computed when an event is raised, namely, the oid of the reactive
object generating the event, the event generated, the time-stamp of when the
event was generated, and the number and actual values of the parameters sent
to the reactive object.
The Event Class Hierarchy: The Event class is the superclass of an event
class hierarchy which defines the common structure and behavior shared by all
event types. Each event type is a subclass of the Event class. The event types
that are supported are primitive as well as complex. The Primitive subclass is
for modeling primitive events which are basically method invocations. Cre
ation of a primitive event object requires indicating the method which raises
the event and when the event should be raised, i.e., before or after execution of
the method.
The Rule Class: The primary structure defining a rule is the event which
triggers the rule, the condition which is evaluated when the rule is triggered,
and the action which is executed when the rule is triggered. Therefore, creation
of a rule object X is accomplished by executing the statement Rule X(eventid,
Condition, Action), where eventid is the oid of the event object representing
the event that triggers the rule X, Condition is a function that is to be executed
when the event is triggered and Action is a function to be executed if the Con
dition function returns true.

10.4 REALIZING TRANSACTION MODELS

In accordance with the second alternative for realizing various transaction mod
els using the active database paradigm, we performed the following steps :

• We first stripped the underlying DBMS of its built-in transaction model.
This was necessary since the semantics of operations such as lock acqui
sition, commit, and abort differ from one transaction model to the other,

EXTENSIBLE APPROACH TO ADVANCED TRANSACTION MODELS 273

and thus we did not want these operations to have particular semantics.
This was accomplished by removing all code from all the methods of
both the zeitgeist and zgt...1x classes, since methods of these classes imple
mented Zeitgeist's transaction management. Consequently, at this point,
if any of the methods of these classes were to be invoked, nothing would
happen.

• The second step involved treating the methods of the zeitgeist and zgt...1x
classes as events. Thus it was necessary to derive the zeitgeist and zgt...1X
classes from the Reactive class as previously illustrated in Figure 10.4.
Once these classes were derived from the Reactive class and methods of
the class declared as events, the semantics of methods in these two classes
became:

1. Signal the occurrence of an event when this method is invoked by
any transaction. The entity which is notified of the occurrence of the
event is the local event detector (LED) object.

2. Marshal the parameters of the event to the LED. For example, if the
event which is detected is lock-acquisition, marshal the transaction
identifier, the identifier of the object to be locked, and the lock mode
requested to the LED object.

3. Once the event along with its parameters are received by the LED,
the LED is responsible for determining which rule should be trig
gered by the occurrence of this event, and then evaluating the corre
sponding condition and executing the action if the condition holds.
Note that each application has its own local copy of the LED. This
allows the application to enable particular rule sets which the LED
is responsible for detecting. Consequently, each application can ad
here to different transaction semantics by maintaining its own LED
and enabling whichever rule sets it requires.

Using the approach sketched above, we have implemented: the traditional
transaction model, sagas, and the nested transaction model. There are 18 rules
used for the implementation of the traditional transaction model, 22 rules for
Sagas, and 36 rules for the nested transaction model. The reader is referred to
[Chakravarthy and Anwar, 1995, Anwar, 1996] for the actual ECA rules used
for these transaction models.

We learned several important aspects of the use of ECA rules while imple
menting the various transaction models. The availability and use of nested exe
cution of rules was beneficial for decomposing tasks to avoid replication. This
was useful for the nested transactions where the commit and abort operations
are extensions/modifications of the conventional commit and abort operations.
While implementing Sagas, it became apparent that the semantics of abort of a

274 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Sagas component transaction is different from the abort of a Sagas compensat
ing transaction. The abort of a Sagas component transaction starts executing
the compensating transactions in reverse order whereas the abort of a Sagas
compensating transaction needs only restart them. This necessitated that we
change the abort semantics dynamically (at runtime). We could easily accom
plish this in our approach as design of active capability in Sentinel supports
dynamic enabling and disabling of rules as well as subscription of events to
rules. Prototype implementation also indicated how composite events can be
beneficially used for synchronization purposes. For example, synchronizing
the commit of a superior with respect to all its children can be accomplished
by dynamically creating (which is possible in Sentinel) a Conjunction event,
where the commit of each child is a component of the Conjunction event. The
semantics of a Conjunction event expects all the component events to occur for
the Conjunction event itself to be signaled, disregarding the order of constituent
event occurrences. Consequently, once the Conjunction event is signaled, it im
plies that all the children have committed and thus the parent can continue its
execution.

10.5 EXTENSIBILITY

In this section we discuss the extensibility aspects of our approach. There are
two distinct aspects of extensibility that need to be addressed: i) extensibility
ofECA rules as compared to other approaches (object-oriented and tool-kit) to
extensibility and ii) extensibility in modeling newer transaction models. Below,
we address each of the above.

We believe that ECA rules at the systems level provide yet another, but more
powerful form of extensibility. In contrast to the other two approaches (object
oriented and tool-kit), this approach provides greater control at runtime (with
respect to the object-oriented approach) and allows one to redefine semantics
dynamically. In a sense, the binding of rules can be controlled by other rules
instead of overloading which provides a fixed form of dynamic association.

In contrast to the tool-kit approach, use of rules allows one to support both
application-level and system-level modification of behavior in a uniform man
ner. Further, our approach does not preclude the inline incorporation/compilation
of rules to avoid the performance overhead that is associated with rule process
ing. However, the use of rules allows one to modularize and prototype systems
relatively easily.

So far we have used ECA rules defined at the systems level to achieve the
semantics of various transaction models. The rule sets defined for the various
transaction models focus on the concurrency control aspect of transaction mod
els. Since Zeitgeist uses a lock based method for achieving concurrency con
trol, we also adopted this method in our rules. In particular, we defined events
for the operations such as lock-acquisition, lock-release and upgrade-lock. An-

EXTENSIBLE APPROACH TO ADVANCED TRANSACTION MODELS 275

other reason which prompted our use of a lock-based mechanism for concur
rency control, is that it is used in most commercial DBMSs, is well understood
and is perhaps the most popular of the concurrency control mechanisms. How
ever, it is important to realize that our approach to realizing transaction models
is not limited to a particular concurrency control method. Rather, our approach
is extensible enough to be applied to other concurrency control mechanisms,
e.g., optimistic concurrency control (DCC).

To show the extensibility of our approach let us assume that DCC using
timestamp ordering is preferred over a lock based method. The basic notion
behind DCC is to allow transactions to read, compute, and update local copies
freely without updating the actual database. Some information is maintained
with each data item to ensure serializability of committed transactions. Once
a transaction completes it enters a validation phase which consists of checking
if the updates maintain the consistency of the database (i.e., the commit of the
transaction is serializable). If the answer is affirmative, then the updates are
made persistent in the database, otherwise the transaction is aborted.

The three rules of the DCC algorithm [Kung and Robinson, 1981] using
read and write sets can be translated into ECA rules when the commit is issued
by a transaction. In Zeitgeist only the object-id is kept in the shared memory
data structures (along with some other information, but not the value). Local
copies of the objects are maintained in the application/client address space. By
modifying the tables in the shared memory to keep the timestamp information,
it is relatively easy to implement the DCC algorithm based on timestamp order
by writing rules on the commit and disabling rules on acquire lock etc. The list
of objects accessed by a transaction is already maintained (although there is no
distinction between read and write objects) in shared memory.

As previously mentioned, we have concentrated on using ECA rules for the
concurrency aspects of transaction models. This, however, does not prohibit
its utilization to other aspects of transaction management. Consequently, our
approach can also be used for the recovery aspects of transaction management
as well as other aspects such as deadlock detection and deadlock resolution.
Usage of this paradigm in these other areas of transaction management entails
identifying the data structures and operations that need to be detected or trapped
as well as defining the semantics of the operations using ECA rules. Therefore,
the exact same process used for supporting the concurrency control aspects is
utilized to other aspects of transaction management.

10.6 CONCLUSIONS

In this paper, we have taken an extensible approach to support extended tran
saction models. We have demonstrated a novel application ECA rules at the
systems level and concomitant functionality required to support various tran
saction models. We have shown the implementation details of making a DBMS,

276 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

such as Zeitgeist active at the systems level. We have analyzed several extended
transaction models and derived detailed ECA rules (using low-level data struc
tures) necessary for modeling traditional transactions, Sagas, and nested trans
actions (with sibling concurrency). We have shown that by not hardwiring the
semantics of operations such as commit, abort and acquire-lock, and detecting
events (primitive and abstract) at runtime, it is possible to realize different tran
saction models. Our approach is extensible and can with relative ease support
current transaction models as well as newer transaction models as they become
available (by reusing existing rules as much as possible). The DBC can add
or modify the class interface of the underlying data structures and define ad
ditional rules on its operations. In order to demonstrate the versatility of our
approach, we have used data structures (on which rules were defined) that are
similar to those found in most commercial transaction managers. In particular,
our approach assumes no specific underlying architecture or database model
and can be applied to any active DBMS.

In this paper, we focused on addressing the concurrency control and func
tionality issues related to supporting various transaction models. We are cur
rently investigating other related issues, primarily recovery, performance, and
optimization of system level ECA rules, and more importantly allowing the
concurrent execution of applications adhering to different transaction models.

Notes

1. This paper delimits itself to the discussion to concurrency control aspects of a transaction
model; recovery issues are currently being investigated and is not addressed in this paper.

2. Although TSME [Georgakopoulos et al., 1994] also use rules for enforcing transaction
dependencies, they have not specified implementation-level details of event detection, condition
evaluation, and action execution.

3. Although support for different transaction models, to some extent, can be accomplished
in an object-oriented environment by creating a transaction hierarchy and overloading the oper
ations or methods, this approach is specific to the model used rather than the system.

4. We would like to point out that the use of ECA rules by themselves will not make the
system completely flexible. However, we do believe that the process of identifying primitive
events, details of conditions/actions and writing these rules will make us reexamine the current
architecture and the data structures to progress towards a modular systems architecture.

5. Another way a class can become a reactive class is if it is a friend class of another reactive
class.

Acknowledgments

This work is partly supported by the Office of Naval Research and the Navy Com
mand, Control and Ocean Surveillance Center RDT &E Division, and by the Rome

Laboratory. This work is also supported, in part, by the NSF Grant IRI-9528390.

Part of this work was performed during the author's internship at T. J. Watson Research

Center, Hawthorne, NY.

11 INTER- AND
INTRA-TRANSACTION PARALLELISM

FOR COMBINED OLTPjOLAP
WORKLOADS

Christof Hasse and Gerhard Weikum

Abstract:
This paper presents the architecture and run-time mechanisms of an exper

imental prototype system, PLENTY, that is specifically geared for combined
OLTP/OLAP workloads with update transactions and complex queries concur
rently executing on the same database. The system is able to parallelize both
retrieval and update transactions at the level of precedence-graph scripts with
nodes corresponding to SQL-like statements or internal operator trees. Employ
ing this form of intra-transaction parallelism in a multi-user environment reduces
the lock duration and thus the potential for data contention, so that OLTP and
OLAP applications can be reconciled with good performance on the same shared
database. The implementation of the underlying concurrency control and recov
ery mechanisms is based on multi-level transactions. In addition to presenting
the overall architecture and internals of this approach, the paper also discusses
heuristic scheduling strategies for combined workloads within the given frame
work.

11.1 INTRODUCTION

Online transaction processing applications (OLTP applications) are character
ized by a potentially large number of concurrently executing, relatively short
update transactions with high throughput demands. A transaction typically
comprises a few primary-key-driven SQL commands in the simplest case (e.g.,
TPC-B Debit/Credit [Gray, 1993]) up to twenty or thirty SQL commands (e.g.,
TPC-C NewOrder [Gray, 1993]), and should have a response time in the order
of a few seconds at worst. Online analytical processing applications (OLAP ap
plications), on the other hand, are characterized by complex decision-support
queries with a moderate degree of concurrency. OLAP transactions typically
include one or more resource-demanding queries with joins and aggregations

S. Jajodia et al. (eds.), Advanced Transaction Models and Architectures
© Springer Science+Business Media New York 1997

280 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

on very large tables (see, e.g., TPC-D [Raab, 1995]). The TPC-C StockLevel
transaction may be viewed as a simple OLAP transaction; much more complex
examples arise in data mining applications, e.g., on customers and sales data,
or in portfolio management and financial trading applications within banks.

Traditionally, OLTP and OLAP applications cannot be easily reconciled on
the same database because of the resulting resource contention and, especially,
data contention caused by locking or whatever concurrency control protocol is
used. There are several approaches to overcome or work around this problem:

1. OLTP and OLAP applications are run on two different databases, where
the OLAP database is a read-only snapshot copy of the OLTP database
which is periodically (e.g., on a daily basis) brought up to date. This is
a widely used approach that forms the core of most data warehousing
architectures [Widom, 1995]. Its inherent disadvantage is that OLAP
transactions are run on potentially stale data.

2. To reduce the data contention between OLTP and OLAP transactions,
OLAP transactions are executed in a relaxed isolation mode, sacrifizing
serializability. This can be done by using, for example, the SQL isolation
level "Read Committed" [Berenson et al., 1995], or by transforming an
OLAP transaction into a chain of separate transactions with intermediate
commit points. The problem here is that OLAP transactions may see
inconsistent data (unless specific knowledge on the possible transaction
interleavings is available and can be exploited [Shasha et al., 1995]).

3. Since OLAP transactions are mostly read-only transactions, simple multi
version concurrency control protocols [Chan et ,al., 1982, Mohan et al.,
1992b, Brown and Carey, 1992] can eliminate the need for locking in
the OLAP transactions, while still guaranteeing a consistent view of the
data that reflects the most recent committed state. However, these pro
tocols are not applicable for OLAP transactions that contain a few up
dates; this case is not exactly typical, but does appear in some applica
tions. More general multi-version concurrency control protocols [Bern
stein et al., 1987] that uniformly deal with read-only and update transac
tions have not (yet) matured to industrial viability.

4. By exploiting semantic properties of the application's database opera
tions, most notabably, the commutativity of certain operations, the con
flict probability of transactions can be significantly reduced [O'Neil, 1986,
Lynch et al., 1994]. This approach is primarily applicable to OLTP trans
actions where increment and decrement operations on numerical data
(e.g., financial data) are frequent. Alleviating the data contention among
OLTP transactions is a significant benefit also for OLAP transactions, as
it reduces the probability of transitive waiting and thus the duration of
data-contention delays.

INTER- AND INTRA-TRANSACTION PARALLELISM 281

5. Finally, parallelizing long OLAP transactions reduces the duration for
which locks need to be held in proportion to the achievable speedup. This
again reduces the conflict probability and the delays upon conflicts.

Among these approaches, the first two are prevalent in practice. Unfortu
nately, whereas they are acceptable in many mining-style applications where
not quite recent or slightly inconsistent data is tolerable in statistical evalua
tions, applications such as financial trading require both up-to-date and con
sistent data and can, therefore, not be served by one of these approaches. The
methods 3 through 5, on the other hand, provide theoretically well-founded so
lutions that are generally applicable without such caveats. Among these three,
the multi-version concurrency control method (approach 3) has gained most
practical relevance and has been well investigated. However, its limitation to
read-only transactions may be a problem for some applications. Therefore, it is
important to study the approaches 4 and 5 in more depth, and investigate also
to what extent the methods 3, 4, and 5 can be combined. For example, a novel
approach to combining multi-version protocols with exploiting commutativity
properties of update operations has been recently proposed in [Jagadish et al.,
1997]. In this paper, we explore the alternative research avenue of combining
semantic concurrency control and intra-transaction parallelism (approaches 4
and 5) for alleviating the data contention among OLTP and OLAP transactions.

The paper presents an architecture for a combined OLTP/OLAP server that
has been fully implemented in an experimental prototype system for shared
memory multiprocessors, coined PLENTY (standing for "ParalleL Execution
of Nested Transactions on plentY of processors"). The architecture supports
intra-transaction parallelism for both read-only and update transactions and can
exploit semantic properties like the commutativity of specific operations. The
execution engine employs multi-level transactions as a rigorous basis for its
high-concurrency transaction manager. While this forms the core of the sys
tem's execution mechanisms (as far as the paper's subject is concerned), the
paper also presents execution strategies for the combination of inter- and intra
transaction parallelism in that it discusses heuristics for the CPU scheduling of
transactions and subtransactions.

The remainder of the paper is organized as follows. Section 11.2 briefly
introduces the necessary background on multi-level transactions. Section 11.3
gives an overview of the architecture of the PLENTY prototype. Sections 11.4
through 11.6 then constitute the paper's algorithmic core: Section 11.4 dis
cusses a precedence graph concept for driving parallelized transactions and its
relationships to multi-level transactions, Section 11.5 outlines the algorithms
for concurrency control and recovery, which are based on [Weikum and Hasse,
1993], and Section 11.6 introduces the CPU scheduling heuristics. Section 11.7
illustrates the applicability of our approach with a case study of a (simplified)

282 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

foreign-exchange banking application. We conclude with an outlook on open
issues.

11.2 BACKGROUND ON MULTI-LEVEL TRANSACTIONS

Multi-level transactions [Weikum, 1991, Weikum and Schek, 1992] are a vari
ant of nested transactions where the nodes in a transaction tree correspond to
executions of operations at particular levels of abstraction in a layered system.
The edges in a transactions tree represent the implementation of an operation
by a sequence of operations at the next lower level.

The point of multi-level transactions is that the semantics of high-level op
erations can be exploited in the conflict definition in order to increase concur
rency. For example, in the conflict relation shown in Figure 11.1, two Buy
and Sell operations on the same investment account are not in conflict, given
that they essentially decrement and increment counters, and can therefore be
admitted concurrently. However, executing such high-level operations in par
allel requires that a low-level synchronization mechanism takes care of possible
low-level conflicts, e.g., on indexes or data pages. Therefore low-level locks
are acquired only for the duration of the high-level operation and are released
at the end of the operation, that is, at the end of the subtransaction, thereby
reducing the low-level lock conflicts.

Retrieve Sell Buy
Retrieve + - -

Sell - + +
Buy - + +

Figure 11.1 Conflict definition for Retrieve, Sell, and Buy operations

Figure 11.2 shows the concurrent execution of two banking transactions T1
and T2. The execution of the read/write operations at the lower page level is not
acceptable with respect to T1 and TI. For example, Tl would still hold locks
for the write operation on p and q. Therefore, T2 would have to be delayed
until the end of T1, so that no parallelism would be feasible. However, at the
higher level, one can exploit the fact that the Sell and Buy operations do not
conflict. Therefore the execution of the Sell and Buy operations is correct,
namely, serializable with respect to T1 and TI. Furthermore, the execution of
the read/write operations at the lower level is serializable with respect to the
operations at the higher level, and therefore the high-level operations appear
as if they were isolated subtransactions. Thus, by exploiting the semantics of
the operations at the higher level and by early release of low-level locks, multi
level transactions provide the potential for more concurrency.

Intra-transaction parallelism can be turned into inter-subtransaction paral
lelism at the lower level [Weikum and Hasse, 1993]. Since the subtransaction

INTER- AND INTRA-TRANSACTION PARALLELISM 283

Buy(x) Sell(y) Sell(z)

TI ~I --4i-------------------+.! .. -----b.I .. ------------
....

Buy(x) ~
" .

'. ' .
Transaclioru

Tl 1-1 --+:-1·.-----,

T1~···I ~ _! i ... :J
. R/W(q) R/W(s) R/W(r)

Til 11---+----1-----1 TI;··i ... _ ~ L i ... _J
R/W(p) R/W(q) R0'(s) R/W(p) R/W(r) Subtransacrions

Tll i i ! J
R/W(p) R/W(r)

Timeline

Figure 11.2 Concurrent execution of two transactions

management at the lower level handles subtransactions independently of their
parent transaction, a transaction may execute multiple subtransactions concur
rently, as illustrated in Figure 11.2 by subtransactions T12 and T13 of T1. So,
provided that control flow dependencies at the higher level are observed, the
resulting subtransactions of the same transaction can be executed in parallel
without having to bother about possible violation of data consistency. How
ever, although the high-level operations of two parallel subtransactions do not
conflict, low-level conflicts may arise. For example, when T12 and T13 are
executed in parallel, low-level conflicts on s and q would arise so that subtrans
action T13 must be delayed until after T12 releases its (low-level) locks. Thus,
by simply exploiting the properties of multi-level transactions, intra-transaction
parallelism involving update operations of the same transaction can be easily
accomodated.

11.3 THE PLENTY ARCHITECTURE

This section gives an overview of the PLENTY prototype system for shared
memory multiprocessor architectures [Hasse, 1995]. Being designed as a per
formance experiment platform, PLENTY contains a simple relational database
engine. Relations can be stored as heap, hash, or B-tree files; the implementa
tion of this storage layer is based on the BSD 4.4 database library. The storage
layer has been extended by a page buffer that is managed under an LRU policy
and integrated with PLENTY's transaction manager.

Design of PLENTY'S tuple layer is similar to Volcano system [Graefe,
1994]. On top of the storage layer, PLENTY provides an operator-tree in
terface. Each operator consumes one or more tuple streams and produces one
or more result stream. The leaves of an operator tree are scans on stored rela
tions or indices, and the root of a tree delivers a result to the application. Tuple

284 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

streams can be synchronous such that the consuming operator is responsible for
the demand-driven evaluation of the corresponding subtree, or asynchronous
such that the producing operator eagerly delivers tuples in a data-driven man
ner, subject to dataflow control to avoid overflow of intermediate tuple buffers.
The operators themselves are expected to reside in an extensible operator li
brary. A few basic operators such as nested-loop join have been implemented;
more operators can be added relatively easily. Operators can have parameters
in addition to the tuple streams, and they can use a global variable space along
with stack-based computations.

Application clients submit a query or update operation by invoking an opera
tor tree, where the operator tree should be regarded as the code that is generated
for an SQL operation. In addition, clients can combine multiple operations of
this sort into a script, similar to a (very simple form of) stored procedure. This
is discussed in more detail in Section 11.4.

Clients can combine either an entire script or an arbitrary set of operator
tree invocations into a transaction by issueing the corresponding BOT (begin
of transaction) and EOT (end of transaction) or RBT (rollback transaction)
calls. The transaction manager internally implements each transaction as a
multi-level transaction where the invoked operators in an operator tree are the
higher-level operations and the reSUlting page accesses form the lower-level
operations.

The process model of PLENTY is that of a multi-threaded server. Each
invoked operator can spawn a separate thread within a shared address space.
This holds for operators in the same tree as well as operators in different trees of
the same transaction and also across different transactions. The implementation
is based on the POSIX thread library.

The complete PLENTY system contains about 30,000 lines of C code. It is
running on shared-memory multiprocessors under Sun Solaris 2.3 and compat
ible platforms. A particularity is that it can be recompiled to run in a simula
tion mode, where all thread-related calls are replaced by corresponding calls
of the simulation library CSIM [Mesquite, 1995] and all internal functions of
PLENTY issue additional calls to use virtual processors and virtual disks and
consume the corresponding virtual time. Note, however, that the same code is
executed in both simulation and real-execution mode. The main purpose of the
simulation mode is to be able to run performance experiments on configura
tions with resources that exceed those that are available to us.

11.4 GRANULARITY OF PARALLELISM

As discussed in Section 11.3, applications can interact with PLENTY by in
voking operator trees. Within these operator trees, disjoint subtrees can be ex
ecuted in parallel and pipelining may be exploited along a producer-consumer
path. In addition, the usual form of data parallelism is feasible in PLENTY,

INTER- AND INTRA-TRANSACTION PARALLELISM 285

too, by instantiating an operator multiple times and partitioning its incoming
tuple streams such that each operator instance processes one of the resulting
streams. In PLENTY the resulting "wide" tree is represented explicitly; that is,
subtree templates are replicated. Note that there may be more compact ways
of representing a data-parallel operator tree, and also note that some operators
require more sophisticated dataflow directives for the proper routing of parti
tioned tuple streams; but these issues are not in the focus of the current paper.

So far, the parallelization is in line with the standard architecture of parallel
database systems [DeWitt and Gray, 1992, Graefe, 1994]. Applications with
data-intensive individual operations such as join queries benefit largely from
this architecture. However, applications that rather consist of many simple
operations including primary-key-driven updates do not benefit at all, as none
of the simple operations justifies parallelizing an individual operator nor does
the simple form of operator trees warrant the use of function parallelism or
pipelining. Consider, for example, an application that updates a large number
of single tuples with each update based on a specified primary key. Without
rewriting the entire application, no parallelism could be exploited.

To this end, PLENTY offers to the application clients the option to combine
a set of application functions in a simple form of stored-procedure-like scripts
(similar in style to [Reuter and Schwenkreis, 1995] but much more limited). A
script in this sense is a precedence graph, i.e., an acyclic directed graph, whose
nodes correspond to the invocation of application functions. This captures, in
a very simple style, two types of control flow of the application: connected
nodes are processed sequentially whereas parallel branches in the graph de
note parallelism. Note that, although such a script bears some relationship to
workflow specifications [Rusinkiewicz and Sheth, 1995, Georgakopoulos et al.,
1995, Mohan, 1996, Jablonski and Bussler, 1996], this approach is, of course,
way too limited for real workflow applications. Recall that our goal here has
been to build an experimental platform for studying the mutual impact of inter
and intra-transaction parallelism; the simple script approach is sufficient for
this purpose.

The application functions that correspond to the nodes of a script's graph
can be arbitrary C functions. Typically, each such function would contain one
call to invoke an operator tree of the database engine. As an example of a script
consider the NewOrder transaction of the TPC-C benchmark [Gray, 1993] as
depicted in Figure 11.3. The precedence graph contains a BOT source and an
EOT sink as transaction brackets. Within these brackets, each SQL operation,
or actually its corresponding operator tree, along with the surrounding applica
tion code constitutes one node of the graph. Whenever there is a control flow or
data flow dependency between two nodes (e.g., output parameters of one func
tion are input parameters of the other), a total order is enforced by connecting
the two nodes with an edge. For example, the"Select District" and "Update

286 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

District" steps should be sequential as the latter may depend on the outcome of
the former (e.g., the district may not exist in the database), whereas the "Select
Warehouse" and "Select District" steps are independent of the district process
ing and thus form a parallel branch.

Figure 11.3 Precedence graph representation of a NewOrder transaction

Obviously, the main potential for intra-transaction parallelism in this case
stems from the processing of the set of ordered items; this is shown by the
parallel branches each starting with a "Select Item" operation. Note that within
each such branch, the control flow is sequential. Further note that the number of
these parallel branches would actually be variable; the benchmark specifies the
number of ordered items as a uniformly distributed random variable between
5 and 15. Scripts can be configured at run-time, after all input parameters of
a transaction are known; this is supported by means of a set of simple graph
constructing functions such as "AddNode(...)", "AddPrecedence(...)", and so
on.

So the granularity of intra-transaction parallelism in PLENTY can be an ap
plication function of a graph-type script, or an operator instance of an operator
tree invoked from an application function. In this paper, we will focus on the
coarser granularity, the script nodes, as this is the novel aspect of PLENTY. The
mapping of these granules to the process architecture of PLENTY is straight
forward: each node of the precedence graph spawns one thread. The mapping
to subtransactions of a multi-level transaction is less straightforward. The nat
ural default mapping would be to spawn a new subtransaction for each invoked
operator tree. Since typically an application function of a script would invoke
exactly one operator tree, this default mapping coincides with viewing each
node of the precedence graph as one subtransaction. However, in some appli
cations, the enhanced concurrency that is potentially obtained from multi-level
transactions may be less important than limiting the overhead of the transaction
management. Therefore, it is also allowed to combine a sequential path of

INTER- AND INTRA-TRANSACTION PARALLELISM 287

nodes into a single subtransaction by explicitly issueing BOS (begin of sub
transaction) and EOS (end of subtransaction) calls at the beginning and end
of the path. Such a specification is graphically illustrated in Figure 11.4, with
subtransactions shown as shaded boxes. The transactional semantics of such a
subtransaction is that it forms a unit of isolation and atomicity at the page level
of the system. This means that all page locks that are acquired in the course
of the execution are held until EOS. As usual, tuple level locks are acquired as
well and held until EOT, the completion of the entire transaction. Note that,
with the coarser granularity of multi-operation subtransactions, multiple high
level locks are acquired between the BOS and EOS of one subtransaction.

Figure 11.4 Subtransactions of a NewOrder transaction

The flexibility in the mapping of script nodes to subtransactions is limited to
nodes in the same sequential path. We disallow grouping nodes from parallel
branches (i.e., non-ordered nodes according to the partial order defined by the
precedence graph) into one subtransaction. The reason is that any pair of pos
sibly concurrently executing nodes may cause low-level conflicts at the page
level when one of them invokes a high-level update operation (e.g. , a conflict on
index data). Thus, unless the nodes are definitely executed sequentially (as en
forced by a precedence edge), we need a low-level concurrency control mecha
nism. But this is exactly why we use subtransactions. So potentially conflicting
concurrent execution units must belong to different subtransactions. Note that
the same argument would hold for whatever form of low-level execution units
is used, and not only for a multi-level transaction architecture. Further note that
similar considerations have recently been brought up in the context of denoting
transaction boundaries in workflow specifications [Leymann, 1995] without
going into implementation issues. The PLENTY architecture essentially offers
a (admittedly not very refined but working) solution to this workflow-related
problem as well.

288 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

11.5 TRANSACTION MANAGEMENT INTERNALS

This section discusses the implementation of PLENTY's transaction manager,
with particular consideration of how the parallelized execution of scripts (see
Section 11.4) interacts with the log and recovery management. The transaction
manager of PLENTY uses multi-level transactions internally: at the higher
level, each invoked operator tree is viewed as an operation of a transaction, and
at the lower level each of these operations corresponds to a subtransaction that
consists of a set of page reads and writes. The concurrency control for both lev
els is implemented by the same generic lock manager that is driven by conflict
predicates for the operations under consideration. For example, consider the
operations Retrieve, Buy, and Sell, shown in Figure 11.1, which have been im
plemented and included as operators in PLENTY's operator library. The lock
manager expects a conflict-testing function for each pair of operators, to decide
if there is a conflict or not (based only on the two operators and their actual pa
rameters). Typically, the test is based on the (state-independent) commutativity
of the operations; so it is reasonably straightforward for an application to pro
vide these functions. Special care is taken in the deadlock detection to consider
also the fact that transactions wait for the completion of subtransactions which
may lead to deadlocks that arise from the combination of lock waits at both
levels (and could not be recognized by the local view of one level only).

As discussed in prior publications [Weikum, 1991, Weikum and Schek,
1992], employing a multi-level concurrency control protocol requires also a
multi-level approach to recovery. The multi-level recovery method that has
been implemented in PLENTY is an improved version of the algorithm de
scribed in [Weikum and Hasse, 1993]. It is based on undo logging for the high
level operations (Le., the invoked operator trees) and page-level redo logging
for subtransactions, using the following principles:

1. Transaction atomicity: Transaction undo, both for rolling back a single
transaction and for undoing loser transactions after a crash, makes a back
ward pass over the high-level log file, following a backward chain for
each loser transaction. A log entry (apart from Bar and Ear or RBT
log records) describes an inverse or compensating operation for the cor
responding forward operation. A log record is generated in a log buffer
when the forward operation completes, and is forced to the disk-resident
log file when the subtransaction to which the forward operation belongs
is made persistent by the low-level log manager.

2. Subtransaction atomicity: Subtransactions are guaranteed to be atomic
by the low-level recovery, so that the high-level undo pass will always
"see" only the effects of complete subtransactions and is thus well-defined.
This guarantee is implemented by applying the DB Cache method [El
hardt and Bayer, 1984] to the sets of page writes that are enclosed within

INTER- AND INTRA-TRANSACTION PARALLELISM 289

subtransactions. This method keeps transient page before-images in the
buffer pool, ensuring that dirty buffer pages are not flushed to disk before
the end of a subtransaction, and writes the complete set of after-images to
a circular log file in a single, sequential and atomic disk liD. Upon restart
ing the system after a crash, the low-level recovery is initiated first; it
makes a forward pass over the low-level log file and redoes all completed
subtransactions found on the log by re-installing these subtransactions'
after-images into the database.

3. Transaction persistence: The liD efficiency of the logging method is im
proved by deferring the log disk liD of the low-level log manager until
the end of a transaction rather than force-writing after-images upon each
end-of-subtransaction. This ensures the persistence of completed trans
actions. However, since page-level locks are released upon the end of a
subtransaction, one has to be careful about possible incompatibilities be
tween the serialization order of subtransactions and the ordering of their
after-image-sets on the log file. Adding the proper bookkeeping of de
pendencies leads to the notion of "persistence spheres". A persistence
sphere is associated with a subtransaction or transaction T, and contains
all after-images of T itself and, in addition, the after-images of all sub
transactions that have a page-level write-write or write-read conflict with
T. Persistence spheres are formed dynamically as transactions are exe
cuted, log liDs take place, and dirty buffer pages are written back into
the disk-resident database. When a subtransaction needs to be made per
sistent, the entire persistence sphere is written to disk in a sequential and
atomic liD and then dropped from the bookkeeping. As newly produced
after-images supersede previous not yet forced after-images, this method
yields a batching effect for the log liDs and reduces the overall log liD
rate. Details of the method are given in [Weikum and Hasse, 1993).

During the high-level undo pass of a restart, both low-level redo logging and
high-level undo logging are again in effect to ensure restart idempotence. In
contrast to [Weikum and Hasse, 1993), PLENTY has adopted ARIES-like com
pensation log records (CLRs) [Mohan et al., 1992a) for tracking the progress
of undo steps: a CLR marks the successful completion of an undo step in the
high-level log and points to the predecessor of the undone forward operation
within the same transaction. Further techniques for reducing the overhead of a
multi-level recovery method, such as merging the high-level log and the page
level log into a single log file, are discussed in [Lomet, 1992, Weikum and
Hasse, 1993), but are not of specific interest in this paper.

Finally, consider how parallelized scripts are taken care of by this multi-level
logging and recovery method. Recall from Section 11.4 that a script corre
sponds to a precedence graph of application functions and that subtransaction
boundaries are constrained such that all operator tree invocations within a sub-

290 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

transaction must lie on a sequential path. Thus the precedence graph directly
induces a coarser precedence graph between the subtransactions. Then, undo
ing a transaction can exploit essentially the same intra-transaction parallelism
that is feasible in the transaction's forward execution, and this is achieved by
simply reversing the edges of the precedence graph. The reverse precedence
edges are included in the high-level log records. When the undo pass follows
the backward chain of a transaction, it takes notes on all encountered inverse
precedences. By default, undo steps are spawned asynchronously as separate
threads, so that the undo pass can proceed with the next (or, actually, chrono
logically preceding) log record before the undo step is completed. However,
when a log record is referenced by one or more inverse precedences, the corre
sponding undo step is initiated only after the undo steps for all the referencing
log records are completed. The reason for this special care is that the corre
sponding high-level operations on a sequential path within a transaction are
not necessarily commutative, whereas one can always assume commutativity
for the high-level operations that reside in different parallel branches (otherwise
the parallelization should be disallowed in the first place). Note that the multi
level transaction management also supports that such a parallelized transaction
rollback proceeds in parallel to the forward processing of other transactions.
The correctness of this approach is further investigated from a theoretical an
gle in [Hasse, 1996].

As an example, Figure 11.5 shows the log records written for the execution
of Figure 11.2. In the figure, a system failure is assumed to occur before T1
can finish. The figure also includes the log records that are written during the
restart to undo T1. It is assumed that T1 's subtransactions T12 and T13 have
no precedence constraints between them, but both must follow T11. Thus, the
undo log records for these two parallel subtransactions both contain a reverse
precedence pointer to the log record of T11.

Undo chain

Hip-level
undo log

Page-level
mIolog

I~:::::::;:::=;--------~
I, I I

" ,
:,....----~

S)'IIem Failure

Figure 11.5 Log records written by PLENTY

INTER- AND INTRA-TRANSACTION PARALLELISM 291

11.6 SCHEDULING STRATEGIES

So far, the focus of the paper has been on execution mechanisms for inter
and intra-transaction parallelism, and efficiency considerations are limited to
striving for the highest possible concurrency (by means of semantic multi-level
concurrency control) and low overhead (by means of efficient logging and re
covery algorithms as well as light-weight thread management). In this section,
we consider the major issue in the execution strategies, namely, the actual CPU
scheduling of transactions and subtransactions. We make the simplifying as
sumption that no parallelism is exploited within an invoked operator tree (al
though this would be more than appropriate in a real application), and rather fo
cus on intra-transaction parallelism at the script level, which is the major novel
issue of this paper. Thus, the units of the CPU scheduling are transactions and
subtransactions as specified at the script level (see Section 11.4).-Note that this
restricted setting poses already very challenging resource management prob
lems; combining this form of intra-transaction parallelism with intra-operator
parallelism and pipelining within operator trees would be an even greater chal
lenge that is beyond this paper's scope (nor has been tackled in the literature,
to our knowledge).

In terms of the scheduling theory [Graham et al., 1979, Lawler et al., 1993,
Pinedo, 1995], we are dealing with a precedence-constrained multiprocessor
scheduling problem, where all subtransactions of all transactions form the pool
of dispatchable tasks with precedences described by the union of the corre
sponding transactions' precedence graphs. This problem is known to be NP
hard; so there is virtually no hope for a scheduling strategy that is both efficient
and optimal in the quality of the produced schedules. In fact, however, the
problem that we are addressing here is even more complex than the precedence
constrained multiprocessor scheduling problem in a number of ways:

1. The scheduling problem considered here is a hierarchical one with two
levels: subtransactions are the actual dispatchable units that are assigned
to processors, but the overall performance metrics, throughput or mean
response time, are tied to the unit of transactions. Unfortunately, the
literature on scheduling contains only little work along these lines. Good
heuristic algorithms have been developed for the case when there are no
precedence constraints [Turek et al., 1992, Turek et al., 1994] and the
case with trees as precedence graphs [Wolf et al., 1995, Chekuri et al.,
1995, Garofalakis and Ioannidis, 1996] (motivated by operator trees for
database queries), but these cannot be applied to our problem.

2. We address an online scheduling problem where the tasks arrive at the
system over time and the scheduler needs to make dynamic decisions as
tasks arrive. This area is still largely unexplored (see, e.g., [Feldmann
et al., 1993] for recent theoretical results).

292 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

3. Even online scheduling usually makes the assumption that the task execu
tion time is exactly known at the arrival of the task. This assumption does
not hold in real applications. There, the best we can hope for is an esti
mation of the task's execution time (and other resource demands such as
memory requirements), based on task types and probability distributions
for the execution time of the various types.

4. The CPU scheduling of transactions and subtransactions interacts in a
complex way with the concurrency control. For example, transactions
that wait for a lock are not dispatchable at all, and assigning many pro
cessors to transactions that are likely to become blocked soon would be
an unwise scheduling decision. Unfortunately, the nature of transactional
locking is too complex to tie in locks as an additional resource type into
standard scheduling theory.

The additional complexity discussed above justifies using a set of pragmatic
heuristics for the scheduling of transactions and subtransactions, as elaborated
in the following. Problem 3 above, lack of exact information, is circumvented
by indeed relying on estimates. For each node in the script of a transaction
type, we expect statistical knowledge of the node's execution time so that we
can derive an expected execution time for each subtransaction. For the pur
pose of scheduling decisions, we treat these estimates as if they were exact,
given that we cannot make any intelligent decisions at all if no information is
available (in that case, a first-come-first-served strategy is the only reasonable
choice). However, we take into account dynamic corrections in two ways: first,
statistical expectations may change due to long-term workload evolution, and
second, derived information like the total execution time of an entire path in
the precedence graph is incrementally recomputed at run-time as we gain more
information about the actual execution time of running or already completed
subtransactions.

Problem 1 of the above list, the hierarchical nature of the scheduling units,
is addressed by using a two-tier scheduling strategy based on the following
considerations:

• Primary scheduling: We are primarily interested in the performance of
transactions (as subtransactions are transparent to the applications). Our
objective is to minimize the mean transaction response time for a given
throughput (Le., arrival rate) of different transaction types. If each tran
saction were a sequential program and preemption is disallowed, it is
well-known that the mean response time is minimized by a shortest-task
first (STF) strategy [Pinedo, 1995]. However, since a transaction can
use multiple processors in our setting, the STF rule needs to be mod
ified into a least-work-first (LWF) strategy [Sevcik, 1994], where the
work of a transaction is defined as the sum of the execution time of all

INTER- AND INTRA-TRANSACTION PARALLELISM 293

its subtransactions regardless of whether these are parallel or sequential.
An additional consideration finally is that the remaining work of a tran
saction changes as the transaction makes progress. This suggests actually
using the dynamic counterpart of LWF, namely a least-remaining-work
first (LRWF) strategy [Sevcik, 1994]. However, a major drawback of this
family of strategies is that it may treat different classes of transactions in
an unfair manner, so that long transactions would become susceptible to
starvation. Thus, in spite of the above considerations, we have actually
adopted the conservative first-come-first-served (FCFS) strategy at the
transaction level. Studies of the LRWF strategy, with possible enhance
ments to prevent starvation, are an interesting subject of future work.

• Secondary scheduling: The actual dispatchable units are the subtransac
tions of active transactions. We consider all subtransactions of the same
transaction as a task group and now address the scheduling of tasks within
a group. The simplest idea would be to apply the LWF rule to subtrans
actions, too. However, this heuristics would aim at a minimum mean
response time of the subtransactions, which is an inadequate metrics at
this scheduling level. As the transaction is completed only when its last
subtransaction terminates, there is no point in considering the mean re
sponse time within a task group. Rather what matters is the duration
of the entire "mini-schedule" that is constituted by the task group. This
metric is known as the makespan of a schedule; minimizing the makespan
amounts to maximizing the throughput. For a "vanilla" task system with
sequential tasks and dynamic arrivals but without precedence constraints,
a well-known, effective heuristics towards minimizing the makespan is
the longest-task-first (LTF) strategy [pinedo, 1995]. Note that each sub
transaction is indeed a sequential task, but the existence of precedence
constraints requires a more refined strategy. The most important schedul
ing heuristics for tasks with precedences is the critical-path method (CP),
which always gives top priority to the task that heads the longest path
in the precedence graph [Pinedo, 1995]. These two heuristics, LTF and
CP, can be combined and further generalized into another heuristics that
we refer to as the most-work-first (MWF) strategy, where the work of a
subtransaction is defined as the sum of its own execution time and the ex
ecution times of all subtransactions that follow it in the precedence graph.
We have adopted this method for the subtransaction scheduling.

PLENTY provides a library of different scheduling algorithms for these
two levels of CPU scheduling to support experimentation, but the FCFSIMWF
combination outlined above is the heuristics that we advocate for our problem
setting. In addition, PLENTY can enforce a specified bound on the maximum
number of processors that a transaction may use, to avoid that a single tran
saction monopolizes the system in that it uses many processors while attain-

294 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

ing only a moderate speedup. This bound will be referred to as the DIP limit
where DIP means degree of intra-transaction parallelism. Ideally the scheduler
would itself select optimal values for these DIP limits; however, this is beyond
the scope of this paper (and the state of the art in general, unless one considers
special cases). Rather we resort to turning the DIP limit into a tuning knob that
can be specified on a per transaction type basis. We disallow preemption, un
less a subtransaction becomes blocked due to locking (where a high-level lock
wait is attributed to the subtransaction that issued the lock request, although the
lock will eventually be held until EOT rather than EOS).

The final point in the above list of problems beyond standard scheduling is
the interrelationship of CPU scheduling with data locking (problem 4). Al
though the presented scheduling strategy does not explicitly consider locking,
it behaves favorably also in terms of lock-contention issues. In particular, the
MWF strategy for the subtransactions of running transactions contributes to
short lock durations by "pushing" transactions that would cause long lock waits
if they block other transactions. One may conceive further enhancements to the
scheduling strategy along these lines, by dynamically adjusting the priority of
transactions and their subtransactions depending on whether they block other
transactions or subtransactions. Exploring this research direction is left for fu
ture work, however.

The implementation of the described scheduling strategy is based on a trans
action-ready-list that contains all transactions that have at least one subtransac
tion that is ready to run, and a separate subtrans-ready-list for each transaction
that contains all its subtransactions that are ready to run (i.e., whose predeces
sors in the precedence graph are terminated) and are not blocked by a lock wait.
The transaction-ready-list is kept sorted in FCFS order (i.e., the transactions'
arrival time), whereas each subtrans-ready-list is kept sorted in descending or
der by the total execution time of the subtransactions' direct and transitive suc
cessors including themselves (i.e., in MWF order). The scheduling component
needs to make a decision upon different types of events, in particular, upon the
EOS of a subtransaction and the BOT and EOT of a transaction. The schedul
ing decisions at these points are summarized in pseudo-code form in Figure
11.6.

11.7 AN APPLICATION STUDY

This section illustrates the usefulness of the PLENTY architecture with a case
study of a real application. In a joint project with the Ubilab of the Union Bank
of Switzerland a combined OLTP/OLAP workload from the area of the for
eign exchange has been studied. The following discussion simplifies the actual
application but captures major characteristics of the workload. The OLTP tran
saction under consideration is the so-called currency swap which is a major
business type for foreign exchange. The OLAP transaction that we focus on

INTER- AND INTRA-TRANSACTION PARALLELISM 295

upon the arrival oC transaction Ti:
if number-of-idle-processors > 0
then assign an idle processor to the BOT processing of TI~;

upon the EOT oC transaction Ti:
inspect the high-level lock queues and wake up all subtransactions Tjk

that have become unblocked by the lock releases of TI
by placing Tjk in the subtrans-ready-list ofTj
and placing Tj in the transaction-ready-list;

while number-of-idle-processors > 0
and transaction-ready-list is not exhausted do

let Tj be the next transaction of the list;
while number of processors in use by subtransactions of Tj < DIP limit of Tj
and number-of-idle-processors > 0
and subtrans-ready-list ofTj is not exhausted do

let Tjk be the next subtransaction of the list;
assign one processor to Tjk and decrement number-of-idle-processors;

od
od

upon the EOS oC subtransaction Tim:
inspect the page-level lock queues and wake up all subtransactions Tjk

that have become unblocked by the lock releases of TIm
by placing Tjk in the subtrans-ready-list ofTj;

check the successors of Tjk as to whether all their predecessors are completed,
and if so, place those successors into the subtrans-ready-list of Tj;

while number-of-idle-processors > 0
and transaction-ready-list is not exhausted do

let Tj be the next transaction of the list;
while number of processors in use by subtransactions of Tj < DIP limit of Tj
and number-of-idle-processors > 0
and subtrans-ready-list ofTj is not exhausted do

let Tjk be the next subtransaction of the list;
assign one processor to Tjk and decrement number-of-idle-processors;

od
od

Figure 11.6 Pseudo code of the scheduling component

296 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

performs a profit analysis which assesses the amounts of different currencies
that the bank. is going to hold in the future.

A swap is a deal where two trading partners exchange equivalent amounts
of money in two currencies for a period of time. For example, one bank. buys 1
million US Dollars (USD) for 1.5 millions Swiss Franks (SFR). At some point
in the future, for example, half a year later, the second bank. takes back the
amount of 1 million USD for an amount of say 1.4 millions SFR where the
difference to the original 1.5 millions SFR corresponds to the different interest
rates of the two currencies. The first chart in Figure 11.7 shows several of these
cash flows. As the bank. performs many of these swap deals, the balance of the
currency accounts varies over time. The resulting balance of the USD account
is shown in the second chart of Figure 11.7.

Cash flow

Time

Time

I-~ - ~~------,---------
•

Time

? ?
•

Time

Figure 11.7 Effect of foreign-exchange transactions

Each swap corresponds to two cash flows on the same currency. Multi
level transactions are well suited for this type of application. By exploiting the
counter-incrementing and -decrementing semantics of Buy and Sell operations,
concurrent updates of the account balance are possible without blocking of
transactions. Thus, almost all lock conflicts between swap transactions can be
eliminated.

INTER- AND INTRA-TRANSACTION PARALLELISM 297

For decision support of the trading process, traders may want to assess the
amount of USD the bank will hold over time. The balance of a currency is
assessed by computing the profit according to the expected interest rate for
this currency. Since both the account balance and the expected interest rate
vary over time, this assessment is actually a computation over a time series. In
simplified tenns, for each day, the balance is multiplied by the interest rate to
compute the daily profit. Then the daily profits are summed up to compute the
total profit. This type of profit analysis is schematically depicted in the third
and fourth chart of Figure 11.7. Note that the interest rate curve is actually an
input parameter of the transaction; traders can assess their currency accounts
with different expectations about the future trends in interest rates. The com
putations over time series are well suited for parallelism since the overall time
interval can be split into smaller time intervals and the computations on these
smaller intervals can be perfonned in parallel.

Since the profit analysis accesses a large amount of data, its response time
may be criticial in that it serves to provide online trading support. Further
more, because the retrieve operations on the balance values of the various
currencies are even in semantic conflict with the Buy and Sell operations of
the swap transactions, the profit-analysis transactions may lead to unaccept
able lock contention. Thus, we have the typical problem of combining OLTP
(the swap transactions) and OLAP (the profit analyses). To reconcile the two
transaction types, we proceed in two steps. In the first step, intra-transaction
parallelism is exploited for the profit-analysis transactions by partitioning the
computation based on time intervals. This is of direct benefit for the OLAP
transactions' response time, and, in addition, it reduces the duration for which
retrieve locks are held. Under very high load, this step may not be sufficient to
avoid lock contention. Thus, as a second step, we consider also Parallelizing
the swap transactions, again based on time interval partitioning for its balance
updates, thus reducing the lock duration of Buy and Sell locks as well. The
scripts for the two parallelized transaction types are shown in Figures 11.8
and 11.9. Note that each node of the parallel branches is actually a sequence
of smaller operations each operating on one tuple of the Balance (and Inter
estRate) time series, and that subtransaction boundaries can be superimposed
flexibly on those operations by grouping say every ten successive operations
into one subtransaction.

11.8 CONCLUSION

This paper has presented a carefully designed combination of mechanisms and
strategies towards better support of mixed OLTP I OLAP workloads. From
an algorithmic point of view, the major contribution is the integration of multi
level transaction management with the parallelization of transaction scripts and
the two-tier scheduling algorithm. From a systems point of view, we have

298 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Figure 11.8 Precedence graph for the swap transactions

Figure 11.9 Precedence graph for the profit-analysis transactions

INTER- AND INTRA-TRANSACTION PARALLELISM 299

shown the feasibility of the approach by integrating all components in the fairly
comprehensive PLENTY prototype system.

PLENTY has been aiming particularly at workloads with high data con
tention. Obviously, it is not the only promising approach towards reducing the
adverse performance impact of locking, as we discussed in the introduction of
this paper. Combinations of other techniques, especially transient versioning,
with parallelized multi-level transactions are certainly worthwhile to explore.
An application class where the PLENTY approach appears to be particularly
beneficial is text index management, for example, for Web or intranet search
engines. Inserting a new document may require hundreds of index updates that
can be elegantly embedded into a multi-level transaction, thus guaranteeing a
consistent view of search terms to text queries with complex search predicates
[Weikum and Schek, 1992, Barbara et al., 1996b, Kamath and Ramamritham,
1996b, Kaufmann and Schek, 1996].

To some extent, PLENTY may also be a good candidate as a low-level plat
form to support transactional workflows [Rusinkiewicz and Sheth, 1995, Geor
gakopoulos et al., 1995, Mohan, 1996, Jablonski and Bussler, 1996]. Work
flow management requires, of course, a much richer specification and run
time environment, but the specific problem of embedding multiple activities
or invoked applications of a workflow into a transactional sphere [Leymann,
1995, Worab and Sheth, 1996] appears to be related to the mapping of the
nodes of a PLENTY script onto subtransactions. Further studies along these
lines are planned, within the context of the MENTOR project on enterprise
wide workflow management [Wodtke et al., 1996, Weissenfels et al., 1996]
(whereas otherwise MENTOR is completely unrelated to PLENTY).

Finally, a problem area that we have merely touched on in the PLENTY
project is that of tuning the resource management for complex multi-class
workloads [Weikum et al., 1994, Brown et al., 1994, Rabm and Marek, 1995].
For example, we have introduced a limit for a transaction's degree of intra
transaction parallelism as a tuning knob. Ideally, such knobs should be auto
matically set by the system itself and dynamically adjusted depending on the
current load characteristics. The COMFORT project [Weikum et al., 1994],
for example, has made some modest contributions towards this ambitious goal
of automatic performance tuning, and we plan to continue striving for a better
analytical foundation of and effective algorithms for self-tuning information
systems.

VIII Real-Time Data
Management

IX Mobile Computing

Abstract:

12 TOWARDS DISTRIBUTED
REAL-TIME CONCURRENCY AND

COORDINATION CONTROL
Paul Jensen, Nandit Soparkar

and Malek Tayara

Concurrency control is an important issue for environments in which shared data
and system resources must be managed in real-time (i.e., with implicit or ex
plicit time constraints). The real-time responsiveness and consistency require
ments, which often conflict with each other, suggest that traditional transaction
processing paradigms need to be modified for target applications. The time cog
nizant concurrency control techniques developed for centralized systems must
be extended and adapted to the distributed environment. We discuss techniques
developed for real-time transaction systems for partitioning data and concur
rency control to support diverse consistency and responsiveness requirements -
often within the same application. Furthermore, we suggest that some of the
application-specific requirements may be better met by lower level communica
tion and coordination protocols.

12.1 INTRODUCTION

Transaction processing systems have been highly successful for the concur
rent and fault-tolerant access of persistent data. In an effort to accrue similar
advantages for time-critical applications and emerging technologies, suitable
concurrency control (CC) techniques are being considered currently in the re
search community. There is an increasing need for real-time data management
for diverse distributed applications such as groupware, manufacturing automa
tion, air traffic control, telecommunications, etc. (e.g., see [Ellis and Gibbs,

S. Jajodia et al. (eds.), Advanced Transaction Models and Architectures
© Springer Science+Business Media New York 1997

304 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

1989, Clauer et al., 1993, Reddy et al., 1993, Lortz and Shin, 1993, Musa,
1995, Zhou et al., 1996]). These environments have shared data and common
system resources, and their needs are reflected as consistency requirements
(CR) and real-time responsiveness (RTR). In broad terms, RTR refers to the
performance of the system being such as to meet the application requirements
(e.g., meeting task deadlines or providing sufficient responsiveness for inter
active environments). Similarly, the CR issues are also application-specific,
and well-understood in the context of data management (e.g., consistency of
values among replicas). Several studies, largely for centralized environments,
suggest that the performance, functionality and applicability of data manage
ment middleware may be substantially enhanced if temporal considerations are
taken into account. In fact, convergent techniques from transaction processing,
distributed systems, and real-time computing (e.g., see [Soparkar et al., 1996]),
are indicated for managing CR and RTR in the target applications.

The motivation for distributed real-time CC is based on several factors. First,
an examination of real-life applications indicate a need for CR and RTR; sev
eral existing studies do not examine actual applications. Especially as systems
evolve and become more complex, ad hoc techniques alone fail to suffice. Sec
ond, the target domains exhibit widely varying CR and RTR needs among and
within applications. In practice, these needs are met often by a recourse to
solutions that are application-specific, and which incur a high cost to maintain
and prove inflexible in the long run. Third, concurrent distributed executions
indicate that to ensure CR, the atomic execution of semantically coherent se
quences of operations, which we refer to as transactions (see [Soparkar et al.,
1996]), must be supported. Sometimes such executions are effected implicitly
(e.g., to guarantee specific CR) without being referred to as transactions (e.g.,
see [Jensen et al., 1997]). Fourth, there is a need to provide a programming
paradigm that is uniform across different techniques (e.g., including process
group protocols; see [Birman, 1993]) to improve the ease of development and
performance. Such an environment would also help in the scale-up and evolu
tion of the applications.

Instances of transactions occur in almost all the distributed application do
mains. For example, in groupware editing of a document, a sequence of changes
made to a portion of the document by one user would need to be protected from
other users' actions in order to reflect the desired changes correctly. As another
example, consider a situation where one user creates a picture, and a different
user moves the picture to a specific location on the screen. These two activities
would need to be atomic with regard to each other to ensure that an incomplete
version of the picture is not moved. In some cases, even human protocols may
be used to coordinate the activities, although the provision of the requisite pro
tocols by the system would improve performance. Note that there are implicit
RTR needs associated with this interactive application.

REAL-TIME CONCURRENCY AND COORDINATION CONTROL 305

There may be situations where a distributed transaction is used to group to
gether the actions of several users. For instance, suppose that a telescope is to
be focused by several geographically dispersed users who are responsible for
different controls. One user may be responsible for the horizontal movement
of the device, the second may handle the vertical movement, and a third may
adjust the focal length to maintain a sharp image. To keep the view observed
through the device focused, the actions of the three users may be grouped to
gether as a single transaction. Again, there may be additional timing consider
ations that need to be observed among the users' actions to maintain the focus.
Managing distributed executions of this nature is a form of coordination con
trol, and may be stated suitably in the form of CR and RTR requirements on
the data (e.g., see [Soparkar et al., 1 995b)).

The CR in target distributed applications typically require that autonomous
executions from separate sites be coordinated with one another. For this pur
pose, the two widely used approaches are: the transaction model (e.g., see
[Bernstein et al., 1987)) and the process group model (e.g., see [Cheriton and
Zwaenepoel, 1985, Birman and Joseph, 1987b)). The transaction model has
techniques for ordering concurrent transactions and ensuring their atomicity.
Process groups are characterized by modeling the distributed system as a col
lection of processes that communicate by multicasting messages. Again, tech
niques are provided for ordering concurrent messages as well as ensuring the
atomicity of message delivery. These two different approaches share these
common aspects that simplify development of distributed applications. In fact,
at the level of protocol implementation, they appear similar (e.g., see [Guer
raoui and Schiper, 1994, Jensen et al., 1997)).

It has been observed that neither traditional transaction processing, nor tra
ditional distributed computing techniques, are suited to all applications uni
formly. Some applications are better suited to transactions, whereas others are
better coordinated by group multicast techniques. Generally, transactions are
better suited to cases where a high degree of CR is needed, whereas process
group approaches are better in terms of RTR. Most distributed applications
could benefit from a good meld of the performance and consistency criteria
(e.g., see [Birman, 1994, Cheriton and Skeen, 1993)). We argue that existing
techniques from several domains, complemented by new ones, will eventually
emerge as a set of appropriate approaches for distributed real-time data man
agement.

There is an inherent difficulty in meeting the RTR and CR simultaneously,
and this has been identified in transaction processing as well as distributed
real-time systems (e.g., see [Soparkar et al., 1994)). Therefore, there is need to
exploit application-specific semantics and to use alternative means to obtain CR
guarantees while achieving better RTR. We examine how techniques developed
for real-time CC may be applied effectively in distributed environments. We

306 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

discuss a logical design to segregate the data and CC into distinct levels such
that the RTR and CR issues within a level are addressed in a unifonn manner,
whereas the issues may differ from the other levels. Furthennore, we discuss
the use of distributed middleware protocols which may be more efficient, and
accrue similar advantages, when compared with transaction-oriented system.

12.2 RESPONSIVENESS AND CONSISTENCY

An examination of different applications illustrates the differing needs of RTR
and CR - sometimes within the same application. Simple working descrip
tions of the RTR and CR for the applications suffice for our discussions. For
instance, in groupware environments, RTR may mean a responsiveness which
closely approximates a shared workspace for physically co-located users. On
the other hand, for a manufacturing environment, RTR could reflect the close
temporal coupling of separate machines which need to be coordinated.

In the examples to follow (parts of which appear in [Jensen and Soparkar,
1995]), it is not difficult to state suitable RTR and CR needs associated with
the data (as in [Soparkar et aI., 1995b]). An example may be to require that
distributed replicas of a data item not be mutually inconsistent longer than some
period. In tum, this would impose RTR needs on the executions that affect the
values of the data items.

12.2.1 Simple Concurrency Control

There are several applications requiring basic real-time control to manage ac
cess to shared resources. For instance, in groupware, consider a shared doc
ument being edited by several users simultaneously. The RTR suggests that
changes being effected by a user should be made visible locally to the user im
mediately, and also, be propagated to the other users. However, if a remote user
simultaneously makes conflicting changes (local to the remote location), then
a CR problem may arise in tenns of the contents of the document. On the other
hand, if an attempt were made to ensure a consistent document across aliloca
tions (e.g., by using exclusive locks), then the CC itself may cause inadequate
RTR (e.g., due to the time-consuming acquisition of remote locks).

Groupware applications may also exhibit characteristics which pennit greater
RTR because their CR considerations are less crucial (e.g., as compared to a
database environment). Consider data that represents the "presentation" ser
vices in groupware (e.g., a shared pointer, or a shared view of a document).
The utility of such data lies in providing "instantaneous" interaction among
users. However, it may not matter much if, occasionally, a shared pointer or a
shared view is not synchronized for some users for a brief period. Clearly, such
situations reflect relaxed CR.

REAL-TIME CONCURRENCY AND COORDINATION CONTROL 307

12.2.2 More Elaborate Coordination Control

Distributed executions may involve more complicated control. For example,
consider automating the task of lifting and cutting a pipe in manufacturing.
Two robots may lift the pipe, and other robots may cut the pipe. Separate
autonomous controllers for each robot are often needed for reasons of modu
larity, and these controllers must be coordinated with one another. There may
be several constraints among the robots as regards their actions. For instance,
the lifting robots may need to act in close synchrony, and also, lifting must be
accomplished prior to the cutting (e.g .. see [Shin, 1991]). Such requirements,
translated into RTR and CR constraints, could be managed by the use of CC or
low-level communication primitives. The latter helps in achieving RTR more
easily, and may be able to meet time constraints better. For instance, the use of
totally ordered multicasts (e.g., see [Birman, 1993]) invoked from within the
application programs, could help in synchronizing the actions efficiently.

More elaborate coordination is exhibited in considering an observation sys
tem in scientific domains for mobile objects (adapted from [Soparkar et aI.,
1994]). The system consists of several tracking stations (i.e., sites), each of
which has its own computing and scheduling resources. That is, there are sev
eral processing sites that manage object-sensors, cameras, and locally store
data pertaining to the readings, positions, etc.

Periodically, the sensors update the data regarding the objects as tracked at
each local site, and this data is also sent to specific coordinator sites. The co
ordinator receives track data from several sites and correlates the data gathered
to create the global tracking information. It is necessary to do the correlation
since the data obtained at each site may be individually insufficient to iden
tify the objects accurately. The globally correlated data is also disseminated
among the sites, and this data affects local decisions at the sites. Finally, global
decisions may be taken sporadically for a variety of actions to be executed si
multaneously among several sites. For instance, cameras may be activated to
take photographs of a particular object from several angles at a particular time,
to be then provided to the users.

Assume that at each site, local transactions update the local track data. Also,
assume that the collection and correlation of the local track data from the dif
ferent sites, and the dissemination of the global track data, together constitute
one type of distributed transaction. The reading of the local track data and
subsequent writing of the global track data at each site constitute the local sub
transaction for the distributed transaction.

Suppose that an erroneous local track is recorded at one of the locations
- perhaps due to a malfunctioning sensor. This fault may be detected only
after the local track data is collected and correlated with (correct) track data
from other sites (but before the corresponding global track is committed). Con
sequently, erroneous global track data may be generated and disseminated to

308 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

several sites. Such a distributed transaction should be aborted as soon as pos
sible. In standard transaction processing, the execution of a commit protocol
ensures that all the subtransactions of the aborted distributed transaction do
indeed abort.

The price paid for employing a standard commit protocol may be high.
Blocking may cause a situation where none of the sites have recent global
track data, and awaiting the coordinator's final decision may unnecessarily
cause poor RTR. The fast local commit of a subtransaction would be much
more suitable - optimistically assuming that the distributed transactions usu
ally commit. However, uncoordinated local commitment may cause some sites
to commit the erroneous global track data they receive, and subsequently to
expose the data to other transactions. For instance, a transaction that positions
the camera at a site may base its computation on the prematurely committed,
and hence inaccurate, global track data. Therefore, there is a need to recover
from the effects of the incorrectly committed data by compensatory actions. In
our example, the compensatory actions may re-position the camera based on
the past history of the execution in an application-specific manner.

12.3 ENABLING TECHNOLOGIES

In the context of distributed real-time data management, a coherent picture is
not available, nor is there consensus regarding the accepted paradigms. The
primary reasons are the difficult issue of addressing simultaneously the often
conflicting demands of CR and RTR.

In contrast, centralized real-time CC, which is a special case of distributed
real-time data management, is well-studied. Due to the inherent architecture
of distributed systems, we advocate an approach that begins with centralized
real-time CC, and thereafter, addresses distributed control. That is, each site in
a distributed setting should largely function autonomously with its own local
CC, and coordination be effected among the multiple sites for managing the
distributed executions. Therefore, the local CC module must handle the local
CR as well as the RTR for the local executions, and coordinating agents should
manage the interaction among sites. Several studies have advocated this gen
eral approach (e.g., see [Son, 1988, Soparkar and Ramamritham, 1996, Son,
1996, Ozsoyoglu and Snodgrass, 1995, Kao and Garcia-Molina, 1992, Gra
ham, 1992]). In consequence, there is need to understand both the centralized
as well as the distributed scheduling issues.

12.3.1 Centralized CC for RTR

In an environment with RTR needs for transactions, all executions may not be
desirable even if they happen to meet the CR (e.g., by being serializable). In
fact, a schedule where all transactions meet their deadlines may be better than
another where some deadlines are not met - even if the latter schedule has a

REAL-TIME CONCURRENCY AND COORDINATION CONTROL 309

shorter overall execution time. It is in trying to meet the RTR that traditional
CC must be modified. The general approach adopted in centralized real-time
CC is to generate schedules that are optimized for RTR in various ways (e.g.,
see [Graham, 1992, Ramamritham, 1993, Ozsoyoglu and Snodgrass, 1995, Kao
and Garcia-Molina, 1992]). By suitably delaying or aborting input operations,
better RTR schedules may be effected, and most of the techniques are described
as such.

Re-examining traditional CC indicates that merely improving concurrency is
of limited utility (e.g., see [Soparkar et al., 1996]). The traditional approach has
the goal of certifying as large a number of schedules as possible that meet the
CR (e.g., see [Papadimitriou, 1986]). The expectation is that this would enable
the CC to adversely affect the performance minimally, and therefore, every
schedule meeting the CR is regarded as being equally desirable. Therefore,
the goal of traditional CC is to preserve the CR (i.e., generate logically correct
executions) while maintaining a high level of parallelism (i.e., the number of
allowable executions). Clearly, traditional CC schedulers do not attempt to
provide better RTR explicitly. That is, it is assumed implicitly that the order
of the input sequence of operations will provide good RTR, and to the extent
possible, the sequence is output unchanged. In fact, allowing a large number of
schedules implies that schedules exhibiting worse RTR may also be generated
- although, it also allows for a wider choice to find better performing schedules.

12.3.2 Characterization Efforts

Surveys (e.g., see [Ramamritham, 1993, Ozsoyoglu and Snodgrass, 1995, Kao
and Garcia-Molina, 1992]) indicate efforts have focused on applying real-time
scheduling to resolve conflicts that arise among transactions in order to meet
the RTR needs. Various combinations of real-time and CC techniques have
been considered, and "rules-of-thumb" have been identified and studied empir
ically.

In order for the CC to meet the RTR, some efforts attempt to relax the CR
(e.g., see [Korth et al., 1990a, Soparkar et al., 1995b, Kuo and Mok, 1992]).
These approaches rely on the performance benefits of increased concurrency
over traditional CR. For instance, [Lin et al., 1992] illustrates specific situa
tions in which non-traditional CR may help meet RTR needs, and where the
durability of transaction executions may not be essential. However, such an
approach is obviously limited in meeting CR in general settings: indeed, dis
cussions in [Graham, 1992] emphasize the importance of traditional CR even
in typical real-time computing environments.

The characterization efforts for distributed cases are few (e.g., see [Ramam
ritham, 1993, Soparkar et al., 1995a, Soparkar et al., 1994, Purimetla et al.,
1995, Ulusoy, 1992]); the difficulties lie in characterizing the CR and RTR
in distributed environments, and the lack of solutions for issues such as syn-

310 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

chronization and atomic commitment (e.g., see [Soparkar and Ramamritham,
1996]). While it may be argued that centralized real-time CC should be com
pletely understood first, it remains a fact that most of the target applications are
inherently distributed.

12.3.3 Performance Studies

Most of the existing research results in real-time CC have been in the context
of performance studies (e.g., see [Ramamritham, 1993, Lee and Son, 1995,
Ozsoyoglu and Snodgrass, 1995, Kao and Garcia-Molina, 1992]). 'JYpically,
different work sets, loads on the system, and fairly innovative techniques for
CC are examined by running extensive simulations, and conclusions are drawn
from the empirical results. Several locking or time-stamping CC protocols are
examined in conjunction with heuristic preemption policies. Often, optimistic
approaches to CC have been found to perform favorably in certain situations
(e.g., see [Haritsa et al., 1990, Huang et al., 1991]). In general, the data access
patterns are assumed unknown a priori, although some simulation experiments
do take into account the patterns - with the expected improvement in RTR. A
few studies have used analytic models, such as [Song and Liu, 1990], in which
an application to monitor certain real-time systems situations using lock-based
multi-version CC protocols is studied. Similarly, the inclusion of priorities in
the handling of different system resources such as the processors, and buffers,
for the transactions, is studied analytically in [Carey et al., 1989]. However,
real-life applications are often not considered for the workloads, platforms etc.,
and furthermore, usually only a single RTR factor is addressed.

A useful development for improved RTR is the availability of main-memory
resident database systems (e.g., see [Garcia-Molina and Salem, 1992]). These
have arisen due to increased memory sizes and smaller data requirements in
new application domains. Since the number of disk accesses is reduced, and
data may be made durable selectively, transactional accesses to the data become
more efficient. In real-time environments, this is particularly useful since the
validity of a significant part of the data is time-bound, and therefore, there is
little utility in making such data permanently durable.

12.3.4 Real-time and Distributed Systems

Scheduling theory (e.g., see [Lawler et al., 1992]) indicates that even for rela
tively simple situations, the issue of guaranteeing RTR is computationally ex
pensive. The issue of ensuring CR only exacerbates this problem (e.g., see
[Soparkar et al., 1995b]). Coupled with uncertain execution times, multi-tasked
environments with preemption, varying RTR needs, and unexpected delays
etc., these problems indicate that in pragmatic terms, relying on heuristics for
scheduling is unavoidable in all but very simple cases.

REAL-TIME CONCURRENCY AND COORDINATION CONTROL 311

In distributed environments, the problems in meeting RTR and CR needs
are more difficult. 1Ypically, distributed computing approaches let these is
sues be handled by the application designers or users, and provide them some
tools to do so. Of note are the use of multicast message ordering schemes
(e.g., see [Birman, 1993]) which forego transactional CR in many simple in
stances, and thereby achieve higher RTR. The approach efficiently implements
transaction-like primitives in a communication subsystem for common modes
of multicasts. However, as CR and RTR demands grow, obtaining less stringent
orderings become increasingly difficult, and transactional semantics appear to
be necessary (e.g., see [Jensen et aI., 1997]). In general, where it is possible
to circumvent the inefficiencies that affect RTR in transaction-oriented com
puting, group communication protocols should be supported for simpler dis
tributed interactions.

12.3.5 Application-specific Approaches

Approaches specific to particular applications are narrowly focused. As such,
they are similar to the implement-test-re-implement cycles prevalent in unstruc
tured real-time system development (e.g., see [Stankovic, 1988]). In the inter
ests of short-term costs, simple-minded approaches are used to develop work
ing systems which, unfortunately, often do not scale-up or evolve well. They
usually have a poor characterization of the CR needs, and RTR is often "han
dled" by upgrading to the next higher-speed processing environment. These
approaches do not work in more complex environments due to the CR needs.

Instances of application-specific approaches include meeting of RTR on
transactions that procure approximate information from a database (e.g., see
[Smith and Liu, 1989]). The idea explored has been to improve the required
estimates that are gathered depending on the remaining time available. Another
approach specific to a few real-time control environments is described in [Kuo
and Mok, 1992] which considers liberal CR. Similarly, for specific cases, the
need for CC may be entirely avoided as described in [Audsley et al., 1991].

12.4 LOGICAL SYSTEM ARCHITECTURE

We describe a generic distributed real-time CC architecture which could be
suitably modified to represent actual cases. Following [Soparkar et al., 1996],
a distributed real-time system architecture consists of n sites, Sl, S2, ... , Sn, in
terconnected by a communications network as shown in Figure 12.1. Each site
Sj has a largely autonomous local system which must meet the local CR and
RTR needs. The local CC, should not distinguish between transactions and sub
transactions. The data, which may be replicated, is stored in a local database.
The coordination effort is distributed among the sites in the form of n intercon
nected software agents which are independent with regard to one another. All

312 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

user programs

communications network

)
local transactions and
global subtransactions

Figure 12.1 Distributed real-time system architecture

interaction among the sites, including the synchronization, is managed by the
software agents.

We regard each database as a set of entities, and the data is persistent in that
it may have lifetimes greater than the processes that access it. The state of a
database is a mapping from entities to their corresponding values. A transaction
is a data accessing part of an application program, and may be regarded as a
sequence of operations performing a semantically coherent task. In fact, a
transaction is the unit for the consistent access of the database as well as the
unit for recovery in case of an abort. A consistent access is left unspecified
except that it should reflect the application semantics. Similarly, the CR of the
concurrent executions is regarded as being application-specific.

REAL-TIME CONCURRENCY AND COORDINATION CONTROL 313

12.4.1 Providing RTR at Local Sites

For providing RTR in centralized environments, the basic approaches incorpo
rate real-time scheduling techniques with CC. Such approaches work well for
specific RTR and workloads, but not necessarily for general cases. Often, they
are difficult to implement since the CC interacts with lower levels of the oper
ating system, and are relatively inflexible. There are several are several surveys
(e.g., see [Ramamritham, 1993, Kao and Garcia-Molina, 1992, Ozsoyoglu and
Snodgrass, 1995]) that describe the various available techniques and studies.

A simple alternative may be described as follows. First, note that one rea
son why the traditional CC does not work well for RTR is that it has only two
choices with regard to an input operation - either to schedule it, or to delay
it. That is because traditional CC schedules one operation at a time. Instead,
we suggest scheduling a set of input operations at a time - thereby providing
the potential to apply scheduling heuristics for RTR to the operations (e.g.,
[Soparkar et al., 1996]). Second, we propose addressing the RTR prior to en
suring the CR (by using CC after the real-time scheduling). This would imply
that a change in the CC per se is not needed, and yet would allow schedulers to
handle different RTR needs with the same CC. This flexibility in our approach
may outweigh potential disadvantages of not being able to provide RTR to the
same degree as that of a combined CR and RTR approach.

12.4.2 Distributed Real-time CC

Executions that access data at a particular site include local transactions as well
as subtransactions from distributed transactions. For the granularities of time
in the target applications, it is acceptable to assume that the local clocks across
the separate sites are well-synchronized. We suggest the use of synchroniza
tion protocols across the sites to manage distributed executions. Note that CR
(e.g., serializability) may be guaranteed using techniques available in federated
database systems (e.g., see [Soparkar et al., 1991, Mehrotra et al., 1992]).

It is also possible to use lower-level communication primitives (e.g., suitable
forms of multicast orderings) to synchronize the distributed executions (e.g.,
see [Birman, 1993, Birman and Joseph, 1987a, Garcia-Molina and Spauster,
1991]). Such approaches may require an effort by the users, or the application
program itself, to initiate the needed synchronization and coordination.

12.4.3 Levels with Differing Requirements

As discussed in the examples, there are varying RTR and CR needs - some
times within the same application. One approach to this problem is to find ways
to categorize and isolate the particular needs, and provide distinct mechanisms
to meet varying requirements and which may be used within one application,
(e.g., see categorized transactions of [Purimetla et al., 1995, Kim and Son,

314 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

1995]). Following along these lines, Figure 12.2 depicts a logical architecture
for the separation of data and CC into levels in a distributed environment. Sites
Sl,S2, .. ' ,Sn represent the separate locations, and at any given site Sj, the levels
Aj,Bj, and Uj, represent three disjoint data sets, with different RTR and CR re
quirements. The data within a given level across the sites (e.g., A1,A2, ... ,An)
may have various CR constraints among them (e.g., in terms of replication, the
constraint would be "equality"). It is certainly possible to have several more
levels as necessary for a given application environment.

12.4.3.1 Level A. This level corresponds to high RTR and low CR. For
example, data associated with presentation services in groupware may fall into
this level: it may be acceptable for users to occasionally see an action being
done - and then undone - due to conflicts with other actions.

As an example, in a situation where several scientists are together studying a
geophysical terrain pictured on their computers, a single pointer on the screen
may be used to draw the attention of the entire team to particular points of
interest. Since the team may be involved in discussions on what they observe,
the pointer manipulations would need to be effected in real-time. Furthermore,
conflicts arising due to the simultaneous access of the pointer may be resolved
in a simple manner (e.g., by restoring the pointer to its original position, by
giving one movement preference over others, etc.).

12.4.3.2 Level B. This level corresponds to high CR, even if RTR is rela
tively poor - such as in the case of standard, conservative CC techniques (e.g.,
from database management systems).

For example, in manufacturing automation, situations may demand that a
distributed set of actions be effected only if the set is guaranteed to be com
mitted. Consider the setting of parameter values for the operation of several
machine tool units. This may involve intricate and time-consuming changes
to be made. It would be costly to repeat that work in case conflicting changes
invoked by other tasks prevents the intended changes from being effected. In
such environments, it may be worthwhile for the CC to ensure first that any
changes reflected would indeed be effected (and not "aborted" due to other
concurrent activities). This implies that the required exclusive access to the
relevant data and resources must be ensured.

12.4.3.3 Level U. This level corresponds to user or application managed
CC with varying RTR and CR requirements. Application-specific semantics
may be incorporated within the application program code itself.

For example, group communication protocols, voice or video stream syn
chronization, and interactions among the levels described, may be effected
within level U. Also, advanced semantics-based CC, such as compensating
transactions (e.g., see [Elmagarmid, 1992, Levy, 1991, Soparkar et al., 1994]),

REAL-TIME CONCURRENCY AND COORDINATION CONTROL 315

r-------------,--------------------,------------- -"
Al I I A2 I I An I (CCA)
r-------------,--------------------,------------- -"

El I I E2 I I En I (CCB)
r-------------,--------------------,------------- -"

III I I U2 I I Un I (CCu)

Site SI Site Sn

Figure 12.2 Logical system structure with levels.

may be incorporated into this level. Therefore, Level U is expected to manage
shared data and resources in an environment that exhibits both RTR and CR
in varying degrees. The approaches to CC for this level are likely to be very
challenging.

The levels A and B correspond to simple concurrency control, whereas the
elaborate distributed coordination examples would belong to level U.

12.5 SYNCHRONIZATION USING APPLICATION SEMANTICS

While it is advisable to use the standard CR where possible in order to accrue
their obvious advantage (e.g., see [Gray and Reuter, 1993]), they pose prob
lems for RTR. Ensuring CR in a distributed execution may use synchronization
mechanisms such as distributed commitment (e.g., the two-phase commit pro
tocol - see [Bernstein et aI., 1987]). If for any reason a site does not obtain the
final message for the protocol, the execution in question may be blocked until
the necessary message is received - leading to poor RTR. A different problem
that may arise is that the local CC may dictate that a subtransaction be aborted
in favor of others with higher RTR priorities, and that may be impossible to
achieve for similar reasons. Therefore, some of the stringent CR must be re
laxed (e.g., see [Singhal, 1988, Stankovic, 1988]), and this may be achieved by
taking recourse to application semantics.

As example approaches which may be used in Level U, we describe the
concept of relaxed atomicity from [Soparkar et al., 1994], and discuss commu
nication level primitives. The provision of several such tools to the application
designers and users would allow their use as and when indicated by the appli
cations. This is similar to the concept of "unbundling" services to be used as
required in the context of real-time database technology (e.g., see [Soparkar
and Ramamritham, 1996]).

316 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

12.5.1 Relaxed Atomicity

A compensating transaction is a recovery transaction that is associated with
a specific forward transaction that is committed, and whose effects must be
undone. The purpose of compensation is to ''undo'' a forward transaction se
mantically without causing cascading aborts. Compensation guarantees that
CR is established based on application semantics. The state of the database af
ter compensation takes place may only approximate the state that would have
been reached, had the forward transaction never been executed (e.g., see [Korth
et al., 1990b, Levy, 1991]).

A distributed transaction may be regarded as a collection of local subtrans
actions, each of which performs a semantically coherent task at a single site.
The subtransactions are selected from a well-defined library of routines at
each site. For distributed transactions that can be compensated-for, each for
ward subtransaction is associated with a predefined compensating subtransac
tion. Compensating for a distributed transaction need not be coordinated as a
global activity (e.g., see [Levy et al., 1991b, Levy, 1991, Levy et al., 1991a]).
Consequently, the compensating subtransactions are assumed to have no inter
dependencies, share no global information, and to not need the use of a commit
protocol (i.e., local sites run the compensations autonomously).

An adaptive strategy may be described that assures "semantic" atomicity as
a contingency measure. The idea is that when blocking becomes imminent,
sites should decide locally to switch from a standard commit protocol to the
optimistic version. In the event that the global coordinator decides to abort the
entire transaction, compensating executions may be executed at each site where
the subtransactions in question were locally committed.

This strategy provides a means to deal with a fast approaching RTR deadline
for a subtransaction executing at a particular site. If the site in question has
not yet sent a message indicating preparedness to commit to the coordinator,
then it may be unilaterally aborted. On the other hand, if that message has
already been sent, then the subtransaction may be optimistically committed
- the expectation being that the final decision for a distributed transaction is
usually to commit.

A simple example of compensatory actions may be described in the con
text of groupware editing. A user may make certain changes to one part of
a document, and may optimistically commit the changes rather than to await
confirmation from other users that it is safe to do so. Occasionally, there may
occur an incorrectly committed change, and thereupon. a user-specified com
pensatory action may be taken to restore a state that meets application-specific
CR (e.g., see [Prakash and Knister, 1994]).

REAL-TIME CONCURRENCY AND COORDINATION CONTROL 317

12.5.2 Communication Level Approaches

Transactional techniques for providing CR in distributed environments have
proven useful for their simplicity from a usage perspective. However, relaxed
CR in applications suggest communication level approaches, such as use of
multicasts. In [Jensen et al., 1997], a framework is developed which applies
CC theory to to multicast techniques. The framework provides a better under
standing of the manner in which CR for distributed applications may be main
tained. This understanding also leads to more efficient multicast techniques
which incorporate application semantics. Since it is difficult to state CR for
different applications explicitly (as in database transaction systems), a sequen
tial message ordering is regarded as being correct by definition. Thereafter,
based on the manner in which events can commute in a distributed history, the
correctness of other concurrent, non-sequential histories is exhibited. The com
mutativity of events is derived from application semantics (in a similar manner
to non-conflicting operations in CC theory).

While researchers are analyzing real-time multicast techniques, effective
protocols are also being developed. In [Kopetz and Grunsteidl, 1993, Abdelza
her et al., 1996], protocols are described which provide bounded time message
transport make them suitable for applications with specific RTR needs. Fur
thermore, the ordering and atomicity provided for multicast messages make
them useful in effecting transaction-like CR.

12.6 CONCLUSIONS

We have considered several concurrency and coordination control issues for
distributed real-time data management. In discussing developments that may
serve as appropriate approaches, we have provided an architectural framework
for concurrency control mechanisms for use in such systems. Our approach
partitions the data and concurrency control logically into levels based on the
different real-time responsiveness and consistency requirements within appli
cations. Within this general framework, we have indicated how several existing
traditional and newly developed techniques may be used to satisfy the desired
application requirements. In particular, systems which provide a number of
user-managed alternatives to standard concurrency control are in a good po
sition to handle diverse needs. Experience from research with experimental
systems suggests that our approach may be profitably used in managing con
current executions in these environments.

13 TRANSACTION PROCESSING IN
BROADCAST DISK ENVIRONMENTS

Jayavel Shanmugasundaram, Arvind Nithrakashyap,

Jitendra Padhye, Rajendran Sivasankaran,

Ming Xiong and Krithi Ramamritham

Abstract: An important limitation in broadcast disk environments is the low
bandwidth available for clients to communicate with servers. Whereas advanced
applications in such environments do need transaction processing capabilities,
given the asymmetric communication bandwidth, we show that serializability
is too restrictive in such environments and hence propose a weaker alternative.
Specifically, this paper considers the execution of updates under transactional
semantics in broadcast disk environments, and develops a weaker correctness
criterion. While this is applicable to transaction processing in general, this paper
describes mechanisms to achieve this criterion in broadcast disk environments.
We show that read-only transactions need not contact the server and can just
read consistent data "off the air" without, for example, obtaining locks. Update
transactions, however, need to validate their updates at the server.

13.1 INTRODUCTION

Mobile computing systems [Imielinski and Badrinath, 1994] are becoming a re
ality. The limitations in bandwidth, storage capacity and power of these mobile
systems pose significant research challenges to the computer science commu
nity. As mobile computing systems continue to evolve, they will be used to run
sophisticated applications, which in the past, were used only on "stationary"
computing systems. Many of these applications will require transaction pro
cessing involving large databases. The performance of the transaction manager
is the key to the performance of any large database management system. A

S. Jajodia et al. (eds.), Advanced Transaction Models and Architectures
© Springer Science+Business Media New York 1997

322 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

large amount of research has gone into the development of efficient transaction
management schemes [Bernstein et al., 1987]. Given that mobile computing is
an emerging technology, it is not surprising that little research has been done
on supporting transaction processing in such environments. In this chapter, we
address transaction processing issues in mobile computing environments, par
ticularly those based on a data broadcasting approach exemplified in [Zdonik
et al., 1994].

A broadcast disk is an abstraction of a data-dissemination based system for
wireless communication environments. The server periodically broadcasts val
ues of certain data items deemed to be of interest to (a subset of) its clients.
Hence the clients can view the broadcast medium as a disk from which they
read the data they need. Also, the server can simulate multiple disks with dif
ferent speeds by broadcasting certain data items more frequently than others.
An important consideration in such an environment is the limited amount of
bandwidth available for clients to communicate with the server. This band
width limitation prevents the transactions at the clients from contacting the
server for locking data or validating its updates. Hence, providing support for
transactions in such an environment is a challenging research issue.

[Herman et al., 1987] discuss transactional support in an asymmetric band
width environment. However, they use serializability as the correctness crite
rion, which we show is very expensive to achieve in such environments. In
[Acharya et al., 1996], the authors discuss the tradeoffs between currency of
data and performance issues when some of the broadcast data items are up
dated by processes running on the server. However, no transactional support
is present either at the server or at the clients. The updates are made only by
processes running on the server, while the processes on clients are assumed to
be read-only. However, the following examples show that the clients may also
need to update the data:

• Next generation road traffic management systems will make significant
use of broadcast databases. These systems will store and broadcast infor
mation about traffic conditions, weather forecasts and driver advisories.
The information will be used by drivers and possibly even autonomous
vehicles to select the optimal route to their destinations. The data will
be updated by various sources - special vehicles traveling on various im
portant roads and gathering traffic data in "real time", by satellites and
computers monitoring weather conditions and by law enforcement agen
cies responding to accidents or other emergencies. Since it is essential
'that the driver (or any querying entity) be presented with a consistent pic
ture of the traffic conditions, transaction semantics will be useful for the
query and update operations.

• Broadcast databases may also be used to facilitate operations in large,
mostly "robotic" industrial plants. Data gathered from various sensors

TRANSACTION PROCESSING IN BROADCAST DISK ENVIRONMENTS 323

around the plant about conditions on the factory floor are broadcast to
various operators and robots. For example, service personnel, equipped
with mobile workstations, can access this data to carry out their work
more effectively. As in the traffic management example, note that the
service engineer must access sensor data values that are mutually con
sistent. This requires enforcement of transactional semantics on various
update and query operations.

• Consider a server that stores stock trading data for a large stock market.
The server continuously broadcasts information about current prices and
trading volumes of various financial instruments, current values of vari
ous market indexes, and similar data items. Some of the clients (brokers,
stock traders, market regulators) use mobile workstations to access this
data and perform a wide variety of financial transactions. Since it is im
portant to keep data (e.g. stock trades or liability of a broker) consistent at
both server and clients, operations performed by clients can benefit from
transactional semantics.

Motivated by these examples, in this chapter we propose a new correctness
criterion for transaction processing in broadcast disk environments where the
clients can also perform updates on the database. We also describe mecha
nisms and protocols to ensure correctness according to the new criterion. With
the proposed correctness criterion and the mechanisms for transaction process
ing, read-only transactions running on mobile clients are always able to read
consistent values without contacting the server (to acquire locks or to validate
their reads), i.e., they will be able to read data "off the air". Two protocols
are proposed for update transactions in clients. The first is a hybrid approach
where the transactions at mobile clients contact the server for write locks and
for validation of their reads, at the time of commit. This combines aspects from
optimistic and pessimistic concurrency control protocols. The other protocol
is similar to the conventional optimistic concurrency control [Bernstein et al.,
1987] protocol where the transactions contact the server for validation of their
data access at the time of commit.

The outline of this chapter is as follows. In Section 13.2, we motivate the
need for a new correctness criterion in broadcast disk environments with ex
amples. In Section 13.3 we propose some correctness and consistency require
ments from the perspective of a user and show their relationship to serializabil
ity. In Section 13.4 we discuss the weakening of these requirements. In Section
13.5 we outline the mechanisms and protocols that are required to ensure con
sistency according to the requirements in Section 13.4. We conclude with an
outline of future work in Section in 13.6.

324 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

13.2 MOTIVATION FOR WEAKENING SERIALIZABILITY

In this section, it is argued that using serializability as the correctness criterion
for transaction processing might be too restrictive in broadcast disk environ
ments. Two justifications are provided for the above claim. First, it is shown
that achieving serializability would be very expensive in broadcast disk envi
ronments. We then illustrate, using some examples, that traditional (conflict)
serializability is not always necessary and that users might be satisfied with
a weaker correctness criterion. The correctness criterion alluded to here is in
fact weaker than view serializability [Papadimitriou, 1988], as will be shown
in later sections.

The main problem in ensuring serializability in broadcast disk environments
is the fact that serializability is a global property, i.e., a property involving
all the transactions accessing shared data items. Because of this, transactions
running at a client either have to communicate local information to the server
and/or other clients or the transactions have to ensure that local operations per
formed do not lead to non-serializable schedules. The first alternative involves
expensive communication by the client while the second alternative may lead
to unnecessary aborts. An example which illustrates the basic problem is given
below.

Example 1. Assume that in broadcast disk environment, clients only know
the local transaction execution history and history of updates at the server. Con
sider two read transactions Tl and T3 at two different clients A and B respec
tively and two transactions T2 and T4 which run at the server. Now consider
the following execution history:

(13.1)

If transactions running on clients do not inform the server about the opera
tions performed by them, then the server would only be aware of the history,

Client A would be aware of the history,

and Client B would be aware of the history,

If both Tl and T3 commit, then the server and both the clients would see
serializable histories. However, the global history would not be serializable.
Thus, either Tl or T3 would have to be aborted. However, since the operations
performed by Tl and T3 are not communicated, and assuming that there exists

TRANSACTION PROCESSING IN BROADCAST DISK ENVIRONMENTS 325

Tl-T2-T3-T4 T2-T3 T4-Tl-T2

00 00 00

Figure 13.1 Serialization Graphs

no way to inform clients TI and T3 except by expensive message passing, both
TI and T3 would have to be aborted. This is wasteful by itself since the abortion
of either TI or T3 would have ensured a serializable history. Unnecessary aborts
would also occur if the execution history is:

(13.2)

This is because client A is aware of the above history and would not be able
to distinguish it from the previous case. Thus, in this case too, TI would have
to be aborted. A similar argument can be made for T3. Essentially, in the ab
sence of communication from read-only transactions to the server, to preserve
serializability, the read-only transactions will have to be aborted even in cases
like history 13.2 assuming the worst case scenario as in history 13.1 . The
above examples illustrate that serializability in broadcast disk environments is
either very expensive to achieve or would involve unnecessary aborts.

In the rest of the section, we illustrate via examples how serializability can
be weakened while still giving intuitively correct histories. Our correctness
notion, although weaker than the traditional serializability, still maintains con
sistency of the database and of the values read by transactions. Despite the fact
that such correct executions are possible even in non-mobile environments, it is
especially important to allow such executions in mobile environments because
of the high cost of acquiring locks or validating transactions.

Example 2. Consider the following history of transaction execution for
transactions TI, T2, T3 and T4, where TI and T3 are transactions which per
form only read operations in the history. Data items x and y are accessed by
these transactions. Note that this example is the same as Example 1 with the
exception of commit CI of T1•

This history is not serializable since there is a cycle in Figure 13.1(a). How
ever, the final state of the database after this execution is exactly the same as
that of the serial execution of T2 T4, the two transactions which perform updates
in the history. That is, the final state of the database is consistent.

If the history is considered up to time C3, the serialization graph for com
mitted transactions is depicted in Figure 13.1 (b). At this point, T3 can be com
mitted without any inconsistency, since T3 views a consistent database and the

326 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

database state at this point is also consistent. Further, at the point of Cl, a serial
ization graph can be formed as in Figure 13.1(c) with Tl and all the committed
update transactions interacting with T1. The operations of read transaction T3
are removed from the history when the serialization graph is constructed since
Tl can not see any of the effects ofT3. Therefore, in Figure 13.1(c), Tl views
a serializable history with the history formed by the operations from update
transactions and itself. Again, at this point, the state of the database is consis
tent.

In the above example, although the global history is not serializable, each
read transaction reads consistent values and views some serial order that is
consistent. Since update transactions are committed at the server, they can be
guaranteed to be serializable. On the other hand, read-only transactions are
executed at the client. They only view committed data values broadcast by the
server and since these data values are consistent, clients can commit without
producing any inconsistency in their outputs. The crux of this weakened cri
terion is that each read transaction can view a different serial execution order
of a subset of update transactions and itself. Through the concurrency control
of update transactions, all the transactions see their own consistent "view", and
the consistency of the database can also be maintained.

13.3 FORMALIZATION OF CONSISTENCY REQUIREMENTS

In the following sections, we come up with a correctness criterion that is appro
priate for broadcast disk environments. We do this by first viewing correctness
requirements from the perspective of the user in a traditional database system
and exploring the correctness criterion implied by these requirements. We then
weaken these requirements in the context of broadcast disks. This section ex
presses the requirements of users in a traditional database system and studies
how view serializability matches with them.

For the rest of the chapter, we make the following basic assumptions about
the database system.

1. The initial state of the database is consistent.

2. A transaction is the unit of consistency. Each transaction that modifies
the database transforms the database from one consistent state to another.
Further, the only way to get from one consistent state to another is by
executing a transaction as though it were executed in isolation on the
initial consistent state.

13.3.1 Requirements

We now informally specify the requirements from the perspective of a user
and justify these requirements. Consider a history 1£. 1£ is legal iff all of the
following hold:

TRANSACTION PROCESSING IN BROADCAST DISK ENVIRONMENTS 327

1. The final state of the database after the occurrence of all the operations
of committed transactions in 1£J (the committed projection of 1£), in the
same order as in 1£, is consistent.

2. The committed final state of the database is the same as the state pro
duced by the transformations of all and only the committed transactions
performed in some serial order on the initial state of the database. Fur
ther, all the transactions whose transformations "affect" the final state of
the database in this order of execution should read! the same values of
objects and perform the same transformations as they did in the history
1£.

3. The values of the objects read (if any) by a committed transaction in 1£
are consistent and are the same as the values of those objects in a data
base state produced by the transformations of some subset of committed
transactions in 1£.

4. Every prefix 1£' of 1£ satisfies the above criteria.

Intuitively, for a history to be legal, requirement 1 says that the user wants to
see the database in a consistent state after the completion (execution and com
mitment or abortion) of all transactions in the history. Requirement 2 states that
all and only the effects of committed transactions, as reflected in the history, are
visible in the database. Requirement 3 states that the values read by commit
ted transactions in the history are consistent committed values. Requirement 4
states that the above properties hold for all the prefixes of the history because
the state of the database should be consistent in the event of failures.

13.3.2 Formalization of Requirements

We now formalize the informally defined user requirements for a legal history
1£ as follows. A history 1£ is legal iff there exists a serial order S of all and
only the committed transactions in 1£ such that:

1. The final state of the database after the occurrence of all the operations
of committed transactions in 1£J (the committed projection of 1£) in the
same order as in 1£, is the same as the state of the database on running
each committed transaction in 1£ in the serial order S.

Justification. Since the final state of the database must be consistent (re
quirement 1), the final state of the database should be the state resulting
from running some number (~ 0) of transactions one after the other (as
sumption 1) in some serial order. Also, by requirement 2, we can infer
that the final state of the database must be the same as the state resulting
from running committed transactions in 1£ in some serial order on the
initial state of the database.

328 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

2. At least one of the following two statements hold:

• Each transaction in S reads the same values of objects and performs
the same transformations on the database as it does in the history 1£.

• There exists some suffix of transactions in S such that when these
transactions are run in the same order as in S on any consistent state
of the database, they read the same values of objects and perform
the same transformations on the database as they did in the history
1£. This suffix is the set of transactions which "affect" the final state
of the database.

Justification. By requirement 2, each transaction which affects the final
state of the database should read the same values of objects and perform
the same transformation on the database as in the history 1£. If all transac
tions affect the final state, then we have the first part of the above formal
requirement. On the other hand, not all transactions may affect the final
state of the database.

Example 3. Consider the following history :

Tl[a]j T2[a]j wl[a]j w2[a]j w3[a]j C3j C2j Cl

Assume that the above history runs in a database with just one object, a.
Since T3 writes onto a without performing any read operations on objects
in the database, the operations performed by the other transactions, Tl
and T2, do not affect the final state of the database. Irrespective of their
operations, the final state of the database is going to reflect only the final
write operation by T3. Thus, the final state of the database is the same
as the one produced by running the transactions in the order TIT2T3 on
the initial state of the database. Note, however, that if there are multiple
objects in the database, then, Tl and T2 may affect the final state of the
database. If they were executed in a state that is different from the state
in which they were executed in the history (for example, in the order
TIT2T3), they may write to an object other than a and hence affect the
final state of the database. In this case, the final state of the database will
not be the same as the state produced by running the transactions in some
serial order.

Since not all transactions may affect the final state of the database, this
means that there should exist a serial ordering of transactions S, which
satisfies requirement 1, such that a suffix of S consists of exactly the set of
transactions which affect the final state of the database ({ T3} in the above
example). Also, since no other transaction before this suffix affects the
final state of the database, the transactions in this suffix when executed
in the order specified by S on any consistent state (or equivalently, on

TRANSACTION PROCESSING IN BROADCAST DISK ENVIRONMENTS 329

any state got by some serial execution of transactions, by assumption 2)
should produce the same final state of the database (T3 would lead to the
same state, whatever be the database state it is run on, as long as that state
is consistent). This together with requirement 2 implies the second part
of the above formal requirement.

3. Each committed transaction in 1£ reads the same values of objects as in
the state after some serial execution of some set of committed transactions
in 1£.

Justification. Since each transaction reads consistent values of objects
(requirement 3), the values of objects read should be the same as the val
ues of objects after the execution of some number of transactions in some
serial order (assumption 1). Further, since only the transformations of
committed transactions in 1£ should be seen (requirement 3), the formal
requirement follows.

4. The above three requirements also hold for each prefix 1£' of 1£.

Justification. Follows from requirement 4.

13.3.3 Comparison with View SerializabiJity

In this subsection, we explore the relationship between the correctness crite
rion presented in the previous subsection and view serializability. In order to
formally capture the relationship, we first spell out the knowledge made avail
able to schedulers. Most traditional transaction processing systems assume that
schedulers have similar knowledge [Bernstein et aI., 1987], but they have been
listed here for completeness.

A scheduler which determines legal histories is assumed to know the follow
ing:

1. the history of read, write, commit and abort operations of transactions.

2. that a transaction is a deterministic program and its actions depend only
on the values it reads from the database.

3. that each transaction terminates when run in isolation on a consistent
state.

4. the identity of data objects in the database.

A scheduler does not have any information about the following:

1. the internals of a transaction except what is available in the knowledge of
schedulers.

330 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

2. correspondence between transaction execution traces and transaction pro
grams. In particular, a scheduler cannot determine whether two tran
saction execution traces in a history are due to the execution of the same
program.

3. the values read from and written to the database.

4. number of values an object in the database can take.

We now characterize the set of histories which satisfy the formal require
ments and which are acceptable by some scheduler. The proofs of the claims
made are long and hence only the sketches of the proofs are presented.

Theorem 1 If schedulers know the number of objects in the database and this
number is finite, then the set of histories which satisfy the formal requirements
and which can be accepted by some scheduler is a strict superset of the set of
view serializable histories.

Proof Sketch 13.1 It is easy to see that every view serializable history also
satisfies the formal requirements given in section 13.3.2. Thus the set of sched
uler acceptable histories which satisfy the formal requirements is a superset
of the set of view serializable histories. Further, Example 3 gives a history
which satisfies the formal requirements but which is not view serializable. The
theorem follows from the above statements.

Theorem 2 If there are infinite number of objects in the database or if the
schedulers do not know the number of objects in the database, then the set of
histories which satisfy the formal requirements and which can be accepted by
some scheduler is exactly the set of view serializable histories.

Proof Sketch 13.2 It is easy to see that the set of scheduler acceptable his
tories which satisfy the formal requirements is a superset of the set of view
serializable histories. Also, given the knowledge available to schedulers, the
only way that a scheduler can determine that the final state is consistent af
ter the ocurrence of a history 1£ is if all committed transactions in 1£ read the
same values of objects as they do in some serial execution. If this were not the
case, then the behavior of transactions is unknown and they could potentially
write arbitrary values to data objects and thus make the final state inconsis
tent. Also, the only way that schedulers can determine that transactions in 1£
read the same values of objects as they do in some serial history S is if each
transaction reads values of objects from the same transaction in both histories.
But this would mean that 1£ is view serializable.

13.4 WEAKENED REQUIREMENTS

In this section, we propose a weaker correctness criterion stemming from weak
ened user requirements. We first present the motivation for weakening user re-

TRANSACTION PROCESSING IN BROADCAST DISK ENVIRONMENTS 331

quirements and then state the requirements informally before expressing them
formally. The work presented here differs from that in [Garcia-Molina and
Wiederhold, 1982] in two respects. First, we do not assume that the scheduler
knows whether transactions are read-only in all possible executions. Also, in
our correctness criterion, it is sufficient that read-only transactions are serial
ized with respect to a subset of update transactions without being serialized
with respect to all the update transactions.

13.4.1 Motivation for Weaker Requirements

In earlier sections it was shown that ensuring serializability in broadcast disk
environments may lead to expensive communication or unnecessary aborts.
Communication is expensive because of the limited bandwidth available from
clients to the server and unnecessary aborts take place because the scheduler
has to be conservative in the absence of global information. In this light, it
would be worthwhile to come up with a correctness criterion that is weaker
than serializability and would avoid the above costs. The requirements stated
in the previous section could be weakened to achieve this goal. We illustrate
this with an example of a history that is accepted by the weakened requirements
but not by the original requirements.

Consider a variation of the history in Example 1:

rdx); W2[X); C2i r3[x); r3[y); W4[Y); C4; rl[Y); Cli C3

Only T2 and T4 perform write operations in this history. The transaction
TI sees these two transactions in the order T4T2 (since it reads the value of an
object, y, after T4 writes to it reads the value of another object, x, before T2
writes to it). Similarly T3 sees these two transactions in the order T2T4. Thus
in any serial order of the committed transactions TI, T2. T3• T4, at least one of
TI and T3 would be executed in a state of the database that is different from
the state in which it was executed in the history. Thus the scheduler would not
know what operations this transaction would perform. This transaction may
also write to an object (even though this transaction is read-only in the history,
it could perform an update in another history if it reads different values of
objects) that is untouched by other transactions, thus leading to a final state of
the database that is different from the final state produced by the above history.
Thus the requirements would not be satisfied by this history. However is this
history still "correct"?

In the above history, the final state of the database is the one produced by
running the two update transactions (the transactions that perform write op
erations in the history), T2 and T4. Hence, the final state of the database is
consistent. Further, each transaction reads consistent values of objects because:

• TI reads values of objects that are the same as those in a state produced
by running T4 on the initial state of the database

332 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

• T3 reads values of objects that are the same as those in a state produced
by running T2 on the initial state of the database

• T2 and T4 do not perfonn any read operations and hence, vacuously read
consistent values of objects

For schedulers to accept such histories, weaker requirements need to be
specified.

13.4.2 Weakened Requirements

The weakened requirements differ from the requirements outlined in section
13.3.1 in only the second part. Instead of requiring the final state of the database
to contain the effect of all transactions as in the original requirements, only the
effects of update transactions in the history are required to be present in the
final database state. More precisely, the second part of the requirements is
modified as follows in the weakened correctness requirements:

• The committed final state of the database is the same as the state produced
by the transfonnations of all and only committed update transactions per
fonned in some order on the initial state of the database. Further, all the
transactions whose transfonnations "affect" the final state of the database
in this order of execution should read the same values of objects and per
fonn the same transfonnations as they did in the history 11..

Transactions that perfonn only read operations in a history may perfonn up
dates when run in a database state that is different from the one in which it
is run in the history. An implication of the weakening of requirements is that
these transactions may see serialization orders that are different from the serial
order seen by the update transactions. Thus, update operations that may be
done by these transactions, when run in the global serial order of update trans
actions, are ignored. However, this may still be acceptable to users since the
transactions read consistent values of objects and the final state of the database
is consistent.

13.4.3 Formalizing Weakened Requirements

A history 11. satisfies the weakened requirements iff there exists a serial order
S of all and only the committed transactions in 11. such that:

1. The final state of the database after the occurrence of all the operations
in committed transactions in 1I.J (the committed projection of 11.), in the
same order as in 11. is the same as the state of the database on running
each committed update transaction in 11. in the order S.

2. At least one of the following two statements hold:

TRANSACTION PROCESSING IN BROADCAST DISK ENVIRONMENTS 333

• Each transaction in S reads the same values of objects and performs
the same transformation on the database as it does in the history 1-£.

• There exists some suffix of transactions in S such that when these
transactions are run in the same order as in S on any consistent state
of the database, they read the same values of objects and perform
the same transformation on the database as they did in the history
1-£. This suffix is the set of transactions which "affect" the final state
of the database.

3. Each committed transaction in 1-£ reads the same values of objects as in
the state after some serial execution of some set of committed transactions
in 1-£.

4. The above two requirements also hold for each prefix 1-£' of 1-£.

The final state of the database should be the same as that obtained by running
all the committed update transactions in some serial order. Thus all update
transactions are serialized with respect to each other. Transactions that do not
make updates may see serialization orders that are different from the order seen
by update transactions. Each of these transactions is serialized after a subset of
the update transactions, and hence, reads consistent values. This subset would
include all transactions that it "directly or indirectly reads from". The lack
of a global serialization order involving transactions which perform only read
operations in the history can be effectively used in broadcast disk environments,
as is shown in the next section.

13.5 MECHANISMS TO GUARANTEE CORRECTNESS

In this section, we propose mechanisms and protocols that are required to en
sure correctness according to the criteria described in the previous sections.
Specifically, we consider the weakened correctness criteria described in Section
13.4. The mechanisms and protocols to enforce this criterion are influenced
mainly by the assumption that contacting the server in a broadcast disk envi
ronment is not cost-effective as only limited bandwidth is available for client
to-server communication. A key feature of our protocol is that it eliminates
the need for client-to-server communication for read-only transactions, while
ensuring correctness according to requirements described in Section 13.4.

The rest of this section is organized as follows. We begin by describing the
concept of a broadcast disk from an implementation point of view. We then
describe the protocol followed by clients and the server to ensure correctness
even when read transactions do not contact the server at all. The protocol
involves steps to be taken by a client to read or write database items and extra
processing required at client and server while committing a transaction. We
then prove that adherence to this protocol results in transaction histories that
are acceptable according to the requirements described in Section 13.4.

334 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

13.5.1 Broadcast Disks

Broadcast disk is a form of data-dissemination based system appropriate for
wireless communication environments. The sever periodically broadcasts val
ues of all the data items in the database. The clients view the broadcast medium
as a disk and can read the value of various data items by listening to the broad
cast. For writing an item in the database, the clients contact the server with
appropriate information. The period of broadcast of different data items can
be different (i.e. "hot" data items may be broadcast more frequently). This
is analogous to having several disks with different rotation speeds. In this pa
per, however, we only consider a single disk - i.e., all the items are broadcast
with the same period. At the beginning of each broadcast cycle the server may
broadcast several items of control information such as indices. Indices help
clients save power by determining the exact times when the receiving units
need to be switched on. The format and techniques of actual broadcasts have
been described in detail in [Acharya et al., 1996]. Our protocol requires addi
tional control information to be broadcast in order to ensure correctness.

13.5.2 Protocol

To ensure correctness when read-only transactions do not contact the server,
both clients and server have to perform certain additional functions. We first
describe the functionality provided by the server.

13.5.2.1 Server Functionality. The server is responsible for three main
tasks:

• Broadcast the values of all data items in the database in a periodic manner.
We assume that all data items are broadcast with the same period. We
term this period as a broadcast cycle.

• Provide locking and validation services to update transactions. The write
operations in a broadcast disk database are mostly similar to write oper
ations in conventional client-server databases. The concurrency control
approach can either be hybrid or purely optimistic. Under the hybrid
approach, the server grants write locks on each item a client wishes to
write. Write locks granted by our broadcast database server only pre
vent other transaction from writing that data item. It does not prevent
the server from broadcasting the previously committed value of that data
item (thus allowing read operations on that data item to succeed). Under
the optimistic approach, the server validates each transaction at commit
time to ensure serializability. Thus, in both cases the server ensures that
write-write conflicts are avoided.

• The server broadcasts two items of control information at the beginning
of each broadcast cycle. One is an update list which is a list of all updates

TRANSACTION PROCESSING IN BROADCAST DISK ENVIRONMENTS 335

made to the database. The list consists of entries that are three-tuples of
the form < T,ob,c >, indicating that transaction T, updated the value of
data object ob and committed between the beginning of broadcast cycles
c - 1 and c. The other is the serialization graph, which is a dependency
graph of all the update transaction validated at the server. Note that to
construct a dependency graph, the update transactions have to inform the
server of not only the items they have written, but also about the items
they had read and the cycles in which they read the items.

In short, the server is responsible for the actual broadcast, maintaining se
rializability of the update transactions and providing sufficient information to
read-only transactions such that they can make decisions about the consistency
of the data items they have read.

13.5.2.2 Client Functionality. The clients can execute two types of trans
actions - read-only and update. We describe the protocol followed by clients
to read and write items in the database, and the extra steps required during the
commit of an update transaction.

• Read Operation: When a transaction needs to read a data item, it first
reads the update list and the serialization graph broadcast at the beginning
of the broadcast cycle. Using the update list, the transaction can add its
own dependency edges in the serialization graph, for the read/write oper
ations it has carried out so far and the read operation it intends to perform
next. If the resulting serialization graph is acyclic, the transaction reads
the value of the data item during the ongoing broadcast cycle. Otherwise,
the transaction aborts.

• Write Operation: When a transaction wishes to write a data item in the
database, it can take two different approaches, depending on whether the
optimistic or hybrid concurrency control mechanism is in use.

- Optimistic Concurrency Control: Under the optimistic approach, the
update transaction first makes a local copy of the data item and up
dates that copy. This copy is sent to the server at commit time.

- Hybrid Concurrency Control: If hybrid concurrency control is in
use, then the client sends a request for write lock to the server. The
server grants the request if the item is not already locked. The server
continues to broadcast the previously committed value of the data
item. The transaction then sends the new value of the data item to
the server. This value appears on the broadcast after the transaction
has committed.

• Commit Operation: The commit time processing is different for read
only and update transactions.

336 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

- Read-Only Transactions: If a transaction does not write any data
items during its execution, its commit operation is trivial: do noth
ing. This is because each read operation is validated before it is
performed, and if the transaction has not aborted during its course,
there is little it needs to do at commit time. There is no need to
contact the database server. Notice that this protocol has an interest
ing implication: the server does not need know anything about the
read-only transactions. This augers well for scalability.

- Update Transactions: If a transaction is an update transaction (Le.
it has written onto some data item in the database), it must convey
all the information necessary for the server to update the entries in
the update list and the serialization graph. Consequently, depending
upon whether optimistic or hybrid concurrency control scheme is in
use, following actions are taken at commit time:

* Hybrid Concurrency Control: As the hybrid approach requires
that the client acquire locks on every data item it wishes to write,
the server is always aware of all the data items updated by the
transaction that is about to commit. Hence, at commit time, the
client only needs to send to the database a list of all the data
items it has read and the broadcast cycle number in which each
item was read. The server checks its serialization graph to en
sure that the dependencies induced by the read operations, do
not result in a cycle in the graph. If a cycle is detected, then
the transaction is aborted. Otherwise, the serialization graph
and update list are updated to reflect the operations of this tran
saction.

* Optimistic Concurrency Control: Under optimistic concurrency
control, the client is not required to obtain locks on data items
they wish to write. Instead, all the updates are validated at the
server at commit time. At commit time, the transaction sends
to server a record of all the data items it has updated and their
values. In addition, it also sends a list of all the data items it
has read and the broadcast cycle number in which each item
was read. The server checks to see if these reads and writes in
troduce any cycles in the serialization graphs. If they do not,
the transaction is allowed to commit and the serialization graph
and update list are updated to reflect the operations of this tran
saction. Otherwise, the transaction is aborted.

TRANSACTION PROCESSING IN BROADCAST DISK ENvmONMENTS 337

13.5.3 Proof of Correctness

In this section we informally prove that if the protocol described in the previ
ous section is followed, it guarantees correctness according to the correctness
criteria described in Section 13.4.3.

• Proof of weakened formal requirement 1. This follows from the fact that
the server ensures the serializability of all update transactions.

• Proof of weakened formal requirement 2. The first statement of this re
quirement always holds since the server ensures that all update transac
tions are serialized in the traditional sense.

• Proof of weakened formal requirement 3. The server broadcasts updated
values of data items if and only if the updating transaction commits suc
cessfully. Thus, in any broadcast cycle, the values of the data items re
flect only the changes introduced by transactions that committed before
the beginning of this broadcast cycle. Before each read operation, the
client verifies it against the current update list and the serialization graph
to ensure that the read operation does not introduce any cycles in the se
rialization graph. Hence it follows that each transaction reads values of
objects that are the same as the values in a state produced by running
some of the committed transactions that committed before the beginning
of this broadcast cycle in some serial order.

• Proof of weakened formal requirement 4. This follows by noting that the
protocol is followed by each transaction.

13.6 CONCLUSIONS AND FUTURE WORK

In this chapter we have presented a new correctness criterion appropriate for
environments like broadcast disks where client-to-server communication band
width is limited and asymmetric. We have also presented mechanisms and pro
tocols by which this correctness criterion can be enforced in broadcast disk
environment. We plan to extend this work in the following directions:

• Study the implications of weakening scheduler restrictions on the set of
acceptable histories.

• Investigate extensions to the mechanisms which better exploit the poten
tial of the correctness criterion.

• Explore ways to minimize the control information exchanged between
the clients and the server.

• Evaluate and compare the performance of various mechanisms through
simulation.

338 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

• Examine the possibility of using multi-version concurrency control meth
ods.

Notes

1. This should not be confused with the reads-from relation between transactions in a history.

References

[Abdelzaher et al., 1996] Abdelzaher, T., Shaikh, A., Jahanian, E, and Shin,
K. (1996). RTCAST: Lightweight Multicast for Real-Time Process Groups.
In IEEE Real-Time Technology and Applications Symposium, Boston, MA,
USA.

[Acharya et al., 1996] Acharya, S., Franklin, M., and Zdonik, S. (1996). Dis
seminating Updates on Broadcast Disks. In Proceedings of the International
Conference on Very Large Data Bases.

[ActionTechnologies, 1993] ActionTechnologies (1993). What is ActionWork
flow?- A primer. ActionTechnologies, Inc., Alameda, California.

[Agrawal et al., 1993] Agrawal, D., Abbadi, A. E., and Singh, A. K. (1993).
Consistency and orderability: Semantics-based correctness criteria for data
bases. ACM Transactions on Database Systems, 18(3):460-486.

[Alonso et al., 1996a] Alonso, G., Agrawal, D., and EI Abbadi, A. (1996a).
Process Synchronization in Workflow Management Systems. In Proceed
ings of the IEEE Symposium on Parallel and Distributed Processing, New
Orleans, LA.

[Alonso et al., 1996b] Alonso, G., Agrawal, D., EI Abbadi, A., Kamath, M.,
Giinthor, R., and Mohan, C. (1996b). Advanced transaction models in work
flow contexts. In Proceedings of the 12th International Conference on Data
Engineering, Feb. 26 - March I, New Orleans, Louisiana, USA.

[Alonso et al., 1995a] Alonso, G., Agrawal, D., EI Abbadi, A., Mohan, c.,
Giinthor, R., and Kamath, M. (1995a). ExoticaIFMQM: A Persistent Message
Based Architecture for Distributed Workflow Management. In Proceedings
of the IFIP WG8.1 Working Conference on Information Systems Develop
ment for Decentralized Organizations, Trondheim, Norway.

[Alonso and EI Abbadi, 1994] Alonso, G. and EI Abbadi, A. (1994). Cooper
ative Modeling in Applied Geographic Research. International Journal of
Intelligent and Cooperative Information Systems, 3(1):83-102.

340 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Alonso et al., 1996c] Alonso, G., Giinthor, R., Kamath, M., Agrawal, D., EI
Abbadi, A., and Mohan, C. (1996c). ExoticaIFMDC: A workflow manage
ment system for mobile and disconnected clients. International Journal of
Distributed and Parallel Databases, 4(3):229-247.

[Alonso et al., 1995b] Alonso, G., Kamath, M., Agrawal, D., EI Abbadi, A.,
Giinthor, R., and Mohan, C. (1995b). Failure handling in large scale work
flow management systems. Technical Report RJ 9913, mM Almaden Re
search Center.

[Alonso and Schek, 1996a] Alonso, G. and Schek, H.-J. (1996a). Database tec
hnology in workflow environments. INFORMATIK-INFORMATIQUE(Jour
nal of the Swiss Computer Science Society).

[Alonso and Schek, 1996b] Alonso, G. and Schek, H. J. (1996b). Research Is
sues in Large Workflow Management Systems. In [Sheth, 1996]. Available
from http://LSDIS . cs. uga. edu/ acti vi ties/NSF -workflow.

[Alonso et al., 1994] Alonso, G., Vingralek, R., Agrawal, D., Breitbart, Y., Ab
badi, A. E., Schek, H., and Weikum, G. (1994). A Unified Approach to
Concurrency Conrol and Transaction Recovery. In Proceedings of the 4th
International Conference on Extending Database Technology.

[Ammann et al., 1996] Ammann, P., Jajodia, S., and Ray, I. (1996). Ensuring
atomicity of multilevel transactions. In Proceedings 1996 IEEE Computer
Society Symposium on Security and Privacy, pages 74-84, Oakland, CA.

[Ammann et aI., 1997] Ammann, P., Jajodia, S., and Ray, I. (1997). Applying
formal methods to semantic-based decomposition of transactions. To appear
in ACM Transactions on Database Systems.

[Ansari et al., 1992] Ansari, M., Ness, L., Rusinkiewicz, M., and Sheth, A.
(1992). Using Flexible Transactions to Support Multi-system Telecommu
nication Applications. In Proceedings of the International Conference on
Very Large Data Bases, pages 65-76, Vancouver, Canada.

[Anwar, 1996] Anwar, E. (1996). A New Perspective on Rule Support for Object
Oriented Databases. PhD thesis, CISE Department, University of Florida,
Gainesville, FL.

[Anwar et al., 1993] Anwar, E., Maugis, L., and Chakravarthy, S. (1993). A
New Perspective on Rule Support for Object-Oriented Databases. In Pro
ceedings of the International Conference on Management of Data, Wash
ington D.C.

[Arnold and Gosling, 1996] Arnold, K. and Gosling, J. (1996). The Java™
Programming Language. The Java™ Series. Addison-Wesley.

[Atkinson et al., 1996] Atkinson, M. P., Daynes, L., Jordan, M. J., Printezis,
T., and Spence, S. (1996). An Orthogonally Persistent Java™. SIGMOD
RECORD,25(4).

REFERENCES 341

[Atkinson and Jordan, 1996] Atkinson, M. P. and Jordan, M., editors (1996).
First International Workshop on Persistence and Java, Drymen, Scotland.
Sunlabs Technical Report.

[Atkinson and Morrison, 1995] Atkinson, M. P. and Morrison, R. (1995). Or
thogonal Persistent Object Systems. VLDB Journal, 4(3).

[Atluri et al., 1994] Atluri, V., Bertino, E., and Jajodia, S. (1994). Degrees of
isolation, concurrency control protocols and commit protocols. In Biskup, J.
et al., editors, Database Security, VlI/: Status and Prospects, pages 259-274.
North-Holland, Amsterdam.

[Attie et al., 1992] Attie, P., Singh, M., Rusinkiewicz, M., and Sheth, A. (1992).
Specifying and Enforcing Intertask Dependencies. Technical Report MCC
Report: Camot-245-92, Microelectronics and Computer Technology Corpo
ration.

[Attie et al., 1993] Attie, P., Singh, M., Sheth, A., and Rusinkiewicz, M. (1993).
Specifying and Enforcing Intertask Dependencies. In Proceedings of the In
ternational Conference on Very Large Data Bases, pages 134-145, Dublin,
Ireland.

[Audsley et al., 1991] Audsley, N., Bums, A., Richardson, M., and Wellings,
A. (1991). A Database Model for Hard Real-Time Systems. Technical re
port, University of York, Real-time Systems Group.

[Badrinath and Ramamritham, 1991] Badrinath, B. R. and Ramamritham, K.
(1991). Semantics-based concurrency control: Beyond commutativity. ACM
Transactions on Database Systems, 16.

[Barbara et al., 1996a] Barbara, D., Mehrotra, S., and Rusinkiewicz, M. (19-
96a). INCAs: Managing Dynamic Workftows in Distributed Environments.
Journal of Database Management, Special Issue on Multidatabases, 7(1):5-
15.

[Barbara et al., 1996b] Barbara, D., Mehrotra, S., and Vallabhaneni, T. (1996b).
The Gold Text Indexing Engine. In Proceedings of the IEEE International
Conference on Data Engineering, New Orleans.

[Barga and Pu, 1995] Barga, R. and Pu, C. (1995). A Practical and Modular
Method to Implement Extended Transaction Models. In Proceedings of the
International Conference on Very Large Data Bases, pages 206-217, Zurich,
Switzerland.

[Barga, 1997] Barga, R. S. (1997). A Reflective Framework for Implementing
Extended Transactions. PhD thesis, Oregon Graduate Institute of Science &
Technology.

[Barga and Pu, 1996] Barga, R. S. and Pu, C. (1996). Reflecting on a Legacy
Transaction Processing Monitor. In Proceedings of the ACM Reflections '96
Conference, Palo Alto, CA.

342 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Barga et al., 1994] Barga, R. S., Pu, C., and Hseush, W. W. (1994). A Practical
Method for Realizing Semantics-based Concurrency Control. Technical Re
port OGI-CSE-94-032, Oregon Graduate Institute of Science & Technology,
Department of Computer Science and Engineering.

[Barghouti and Kaiser, 1991] Barghouti, N. S. and Kaiser, G. E. (1991). Con
currency Control in Advanced Database Applications. ACM Computing Sur
veys, 23(3):269-317.

[Ben-Shaul and Kaiser, 1995] Ben-Shaul, I. and Kaiser, G. E. (1995). A Para
digm for Decentralized Process Modeling. Kluwer Academic Publishers,
Boston, USA.

[Berenson et al., 1995] Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil,
E., and O'Neil, P. (1995). A Critique of ANSI SQL Isolation Levels. In Pro
ceedings of the ACM SIGMOD International Conference on Management of
Data, San Jose.

[Bernstein and Goodman, 1984] Bernstein, P. and Goodman, N. (1984). An al
gorithm for Concurrency Control and Recovery in Replicated Distributed
Databases. ACM Transactions on Database Systems, 9(4):596--615.

[Bernstein,1990] Bernstein, P. A. (1990). Transaction Processing Monitors.
Communications of the ACM, 33(11):75-86.

[Bernstein, 1996] Bernstein, P. A. (1996). Middleware: A Model for Distributed
System Services. Communications of the ACM, 39(2):86-98.

[Bernstein et al., 1987] Bernstein, P. A., Hadzilacos, V., and Goodman, N. (19-
87). Concurrency Control and Recovery in Database Systems. Addison
Wesley, Reading, MA.

[Bertino et al., 1997] Bertino, E., Jajodia, S., Mancini, L., and Ray, I. (1997).
Advanced Transaction Processing in Multilevel Secure File Stores. IEEE
Transactions on Knowledge and Data Engineering. To appear.

[Bhargava, 1987] Bhargava, B. K., editor (1987). Concurrency Control and
Reliability in Distributed Systems. Van Nostrand Reinhold Company, New
York.

[Biliris et al., 1994] Biliris, A., Dar, S., Gehani, N., Jagadish, H., and Ramam
ritham, K. (1994). ASSET: A System for Supporting Extended Transactions.
In Proceedings of ACM SIGMOD Conference on Management of Data, pages
44-54, Minneapolis, MN.

[Birman,1993] Birman, K. (1993). The Process Group Approach to Reliable
Distributed Computing. Communications of the ACM, 36(12).

[Birman,I994] Birman, K. (1994). A Response to Cheriton and Skeen's Crit
icism of Causal and Totally Ordered Communication. ACM Operating Sys
tem Review, 28(1).

REFERENCES 343

[Birman and Joseph, 1987a] Birman, K. and Joseph, T. (1987a). Exploiting Vir
tuaI Synchrony in Distributed Systems. In Proceedings of the 11th ACM
Symposium on Operating Systems Principles, Austin, TX, USA.

[Birman and Joseph, 1987b] Birman, K. and Joseph, T. (1987b). Reliable Com
munication in the Presence of Failures. ACM Transactions on Computer Sys
tems, 5(1).

[Birman and Renesse, 1994] Birman, K. P. and Renesse, R. V. (1994). Reliable
Distributed Computing with the Isis Toolkit. IEEE Computer Society Press.

[Bodorik and Riordon, 1988] Bodorik, P. and Riordon, 1. (1988). Distributed
Query Processing Optimization Objectives. In Proceedings of the IEEE In
ternational Conference on Data Engineering, pages 320--329.

[Bonner et aI., 1996] Bonner, A., Shruf, A., and Rozen, S. (1996). LabFlow-
1: A Database Benchmark for High Throughput Workflow Management. In
Proceedings of the 5th. Intnl. Conference on Extending Database Technol
ogy, pages 25-29, Avignon, France.

[Bracchi and Pemici, 1985] Bracchi, G. and Pemici, B. (1985). The Design
Requirements of Office Systems. ACM Transactions on Office Information
Systems, 2(2):151-170.

[Breitbart et aI., 1993] Breitbart, Y., Deacon, A., Schek, H., Sheth, A., and Wei
kum, G. (1993). Merging Application-centric and Data-centric Approaches
to Support Transaction- oriented Multi-system Workflows. SIGMOD Record,
22(3):23-30.

[Brown and Carey, 1992] Brown, K. P. and Carey, M. 1. (1992). On Mixing
Queries and Transactions via Multiversion Locking. In Proceedings of the
IEEE International Conference on Data Engineering, Phoenix.

[Brown et aI., 1994] Brown, K. P., Mehta, M., Carey, M., and Livny, M. (1994).
Towards Automated Performance Tuning for Complex Workloads. In Pro
ceedings of the International Conference on Very Large Data Bases.

[Bukhres et aI., 1993] Bukhres, 0., Elmagarmid, A., and Kuhn, E. (1993). Im
plementation of the Flex Transaction Model. Bulletin of the IEEE Technical
Committee on Data Engineering, 12(2):28-32.

[Bukhres and Elmagarmid, 1996] Bukhres, O. A. and Elmagarmid, A. K., ed
itors (1996). Object-Oriented Multidatabase Systems. Prentice HaIl, Engle
wood Cliffs, New Jersey.

[Cabrera et aI., 1993] Cabrera, L.-F., McPherson, J. A., Schwarz, P. M., and
Wyllie, J. C. (1993). Implementing Atomicity in Two Systems: Techniques,
Tradeoffs and Experience. IEEE Trans. on Software Engineering, 19(10):950
-961.

344 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Carey et al., 1989] Carey, M., Jauhari, R, and Livny, M. (1989). Priority in
DBMS Resource Scheduling. In Proceedings of the International Confer
ence on Very Large Data Bases, Amsterdam, Netherlands.

[Ceri and Pelagatti, 1984] Ceri, S. and Pelagatti, G. (1984). Distributed Datab
ses: Principles and Systems. McGraw Hill.

[Chakravarthy and Anwar, 1995] Chakravarthy, S. and Anwar, E. (1995). Ex
ploiting Active Database Paradigm for Supporting Flexible Transaction Mod
els. Technical Report UF-CIS TR-95-026, CISE Department, University of
Florida, E470-CSE, Gainesville, FL.

[Chakravarthy et al., 1994] Chakravarthy, S., Krishnaprasad, v., Anwar, E., and
Kim, S. K. (1994). Composite Events for Active Databases: Semantics, Con
texts, and Detection. In Proceedings of the International Conference on Very
Large Data Bases.

[Chakravarthy et al., 1995] Chakravarthy, S., Krishnaprasad, V., Tamizuddin,
Z., and Badani, R (1995). ECA Rule Integration into an OODBMS: Ar
chitecture and Implementation. In Proceedings of the IEEE International
Conference on Data Engineering.

[Chan et al., 1982] Chan, A., Fox, S., Lin, w., Nori, A., and Ries, D. (1982).
The Implementation of an Integrated Concurrency Control and Recovery
Scheme. In Proceedings of the ACM SIGMOD International Conference on
Management of Data.

[Chekuri et al., 1995] Chekuri, C., Hasan, w., and Motwani, R (1995). Schedul
ing Problems in Parallel Query Optimization. In Proceedings of the ACM
Symposium on Principles of Database Systems, San Jose.

[Chen et al., 1993] Chen, J., Bukhres, O. A., and Elmagarmid, A. K. (1993).
IPL: A Multidatabase Transaction Specification Language. In Proceedings
of the 13th International Conference on Distributed Computing Systems,
Pittsburgh, PA.

[Chen and Dayal, 1996] Chen, Q. and Dayal, U. (1996). A Transactional Nested
Process Management System. In Proceedings of 12th. IEEE International
Conference on Data Engineering, pages 566-573, New Orleans, LA.

[Cheriton and Skeen, 1993] Cheriton, D. and Skeen, D. (1993). Understand
ing the Limitations of Causally and Totally Ordered Communication. In
Proceedings of the 14thACM Symposium on Operating Systems Principles,
Asheville, NC, USA.

[Cheriton and Zwaenepoel, 1985] Cheriton, D. and Zwaenepoel, W. (1985).
Distributed Process Groups in the V Kernel. ACM Transactions on Com
puter Systems, 3(2).

REFERENCES 345

[Chrysanthis and Ramamritham, 1991] Chrysanthis, P. and Ramamritham, K.
(1991). A formalism for extended transaction models. In Proceedings of the
International Conference on Very Large Data Bases.

[Chrysanthis and Ramamritham, 1990] Chrysanthis, P. K. and Ramamritham,
K. (1990). ACTA: A Framework for Specifying and Reasoning about Tran
saction Structure and Behavior. In Proceedings of the ACM SIGMOD Inter
national Conference on Management of Data, pages 194-203.

[Chrysanthis and Ramamritham, 1992] Chrysanthis, P. K. and Ramamritham,
K. (1992). ACTA: The SAGA continues. In Elmagannid, A., editor, Data
base Transaction Models for Advanced Applications. Morgan Kaufmann
Publishers.

[Chrysanthis and Ramamritham, 1994] Chrysanthis, P. K. and Ramamritham,
K. (1994). Synthesis of Extended Transaction Models using ACTA. ACM
Transactions on Database Systems, 19(3):450-491.

[Clauer et aI., 1993] Clauer, C. et al. (1993). UARC: A Prototype Upper Atmo
spheric Research Collaboratory. EOS Transactions, American Geophysical
Union.

[Coalition, 1994] Coalition, T. W. M. (1994). Glossary - A Workflow Manage
ment Coalition Specification. Technical report, The Workflow Management
Coalition, Brussels, Belgium. URL: http://www.aiai.ed.ac . uk/WfMC/.

[Cristian, 1991] Cristian, F. (1991). Understanding fault tolerant distributed
systems. Communications of the ACM, 34(2):57-78.

[Curtis et aI., 1992] Curtis, B., Kellner, M. I., and Over, 1. (1992). Process
Modelling. Communications of the ACM, 35(9).

[Das,1997] Das, S. (1997). ORBWORK: The CORBA-based Distributed En
gine for the METEOR2 Workflow Management System. Master's thesis,
University of Georgia, Athens, GA. In preparation. URL: http://LSDIS .
cs. uga. edu/.

[Dayal et al., 1990] Dayal, U., Hsu, M., and Ladin, R. (1990). Organizing Long
Running Activities with Triggers and Transactions. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages
204-214, Atlantic City.

[Dayal et aI., 1991] Dayal, u., Hsu, M., and Ladin, R. (1991). A Transactional
Model for Long-running Activities. In Proceedings of the International Con
ference on Very Large Data Bases, pages 113-122, Barcelona, Spain.

[Daynes, 1995] Daynes, L. (1995). Conception et realisation de mecanismes
flexibles de verrouillage adaptes aux SGBDO client-serveur. PhD thesis,
Universite Pierre et Marie Curie (Paris VI - Jussieu).

[Daynes et al., 1995] Daynes, L., Gruber, 0., and Valduriez, P. (1995). Locking
in OODBMS clients supporting Nested Transactions. In Proceedings of the

346 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

11th International Conference on Data Engineering, pages 316-323, Taipei,
Taiwan.

[DeWitt and Gray, 1992] DeWitt, D. J. and Gray, J. N. (1992). Parallel Data
base Systems: The Future of High Performance Database Systems. Commu
nications of the ACM, 35(6),85-98.

[dos Santos and Theroude, 1996] dos Santos, C. S. and Theroude, E. (1996).
Persistent Java. In [Atkinson and Jordan, 1996]. Sunlabs Technical Report.

[Duke and Duke, 1990] Duke, D. and Duke, R. (1990). Towards a semantics
for Object Z. In Bjomer, D., Hoare, C. A. R., and Langmaack, H., editors,
VDM'90: VDM and Z, volume 428 of Lecture Notes in Computer Science,
pages 242-262. Springer-Verlag.

[Eder and Liebhart, 1995] Eder, J. and Liebhart, W. (1995). The Workflow Ac
tivity Model WAMO. In Proceedings of the 3rd. Int. Conference on Coop
erative Information Systems, Vienna, Austria.

[Eder and Liebhart, 1996] Eder, J. and Liebhart, W. (1996). Workflow Recov
ery. In Proceedings of the 1st. IFCIS Conference on Cooperative Informa
tion Systems, Brussels, Belgium.

[Elhardt and Bayer, 1984] Elhardt, K. and Bayer, R. (1984). A Database Cache
for High Performance and Fast Restart in Database Systems. ACM Transac
tions on Database Systems, 9(4):503-525.

[Ellis and Gibbs, 1989] Ellis, C. and Gibbs, S. (1989). Concurrency Control
in Groupware Systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Portland, OR, USA.

[Ellis et aI., 1991] Ellis, C. A., Gibbs, S. J., and Rein, G. L. (1991). Groupware,
some issues and experiences. Communications of the ACM, 34(1):39-58.

[Elmagarmid, 1992] Elmagarmid, A. K., editor (1992). Database Transaction
Models for Advanced Applications. Morgan Kaufmann Publishers, Inc., San
Mateo, CA.

[Elmagarmid et al., 1990] Elmagarmid, A. K., Leu, Y., Litwin, w., and Rusin
kiewicz, M. (1990). A Multidatabase Transaction Model for InterBase. In
Proceedings of the International Conference on Very Large Data Bases,
pages 507-518, Brisbane, Australia.

[Emmrich, 1996] Emmrich, M. (1996). Object framework for business appli
cations. In Proceedings of the Fifth International Conference on Extending
Database Technology (EDBT96), March 25-29, Avignon, France.

[Encina, 1993] Encina (1993). Encina Toolkit Server Core Programmer's Ref
erence. Transarc Corporation, Pittsburgh, PA. 15219.

[Eppinger et al., 1991] Eppinger, J. L., Mummert, L. B., and Spector, A. Z.
(1991). Camelot and Avalon: A Distributed Transaction Facility. Morgan
Kaufmann, San Mateo, CA.

REFERENCES 347

[Farrag and Ozsu, 1989] Farrag, A. A. and Ozsu, M. T. (1989). Using semantic
knowledge of transactions to increase concurrency. ACM Transactions on
Database Systems, 14(4):503-525.

[Feldmann et al., 1993] Feldmann, A., Kao, M. Y., Sgall, J., and Teng, S. B.
(1993). Optimal Online Scheduling of Parallel Jobs with Dependencies. In
Proceedings of the ACM Symposium on Theory of Computing.

[Fernandez and Zdonik, 1989] Fernandez, M. F. and Zdonik, S. (1989). Tran
saction Groups: A Model for Controlling Cooperative Transactions. In Per
sistent Object Stores (Proceedings of the Third Int. Workshop on Persistent
Object Systems), Workshops in Computing, pages 341-350, Newcastle, New
South Wales, Australia. Springer-Verlag in collaboration with the British
Computer Society.

[Fischer, 1995] Fischer, L. (1995). The Workflow Paradigm - The Impact of
Information Technology on Business Process Reengineering, 2nd. Edition.
Future Strategies, Inc., Alameda, CA.

[Frye, 1994] Frye, C. (1994). Move to Workflow Provokes Business Process
Scrutiny. Software Magazine, pages 77-89.

[Garcia-Molina, 1983] Garcia-Molina, B. (1983). Using semantic knowledge
for transaction processing in a distributed database. ACM Transactions on
Database Systems, 8(2):186-213.

[Garcia-Molina et al., 1991] Garcia-Molina, B., Gawlick, D., Klein, J., Kleiss
ner, K., and Salem, K. (1991). Modeling Long-Running Activities as Nested
Sagas. Bulletin of the Technical Committe on Data Engineering, IEEE, 14(1):
18-22.

[Garcia-Molina and Salem, 1987] Garcia-Molina, H. and Salem, K. (1987). SA
GAS. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 249-259.

[Garcia-Molina and Salem, 1992] Garcia-Molina, B. and Salem, K. (1992). M
ain Memory Database Systems: An Overview. IEEE Transactions on Knowl
edge and Data Engineering, 4(6):509-516.

[Garcia-Molina and Spauster, 1991] Garcia-Molina, B. and Spauster, A. (1991).
Ordered and Reliable Multicast Communication. ACM Transactions on Com
puter Systems, 9(3).

[Garcia-Molina and Wiederhold, 1982] Garcia-Molina, B. and Wiederhold, G.
(1982). Read-Only Transactions in a Distributed Database. ACM Transac
tions on Database Systems, 7(1):209-234.

[Garofalakis and Ioannidis, 1996] Garofalakis, M. N. and Ioannidis, Y. E. (19-
96). Multi-dimensional Resource Scheduling for Parallel Queries. In Pro
ceedings of the ACM SIGMOD International Conference on Management of
Data, Montreal.

348 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Garthwaite and Nettles, 1996] Garthwaite, A. and Nettles, S. (1996). Tran
saction for Java. In [Atkinson and Jordan, 1996]. Sunlabs Technical Report.

[Gawlick, 1994] Gawlick, D. (1994). High Performance TP-Monitors -Do We
Still Need to Develop Them? Bulletin of the Technical Committee on Data
Engineering, IEEE, 17(1):16-21.

[Georgakopoulos, 1994] Georgakopoulos, D. (1994). Workflow Management
Concepts, Commercial Products, and Infrastructure for Supporting Reliable
Workflow Application Processing. Technical Report TR-0284-12-94-165,
GTE Laboratories Inc., Waltham, MA.

[Georgakopoulos et al., 1994] Georgakopoulos, D., Hornick, M., Krychniak,
P., and Manola, F. (1994). Specification and Management of Extended Trans
actions in a Programmable Transaction Environment. In Proceedings of the
10th. IEEE International. Conference on Data Engineering, pages 462-473,
Houston, TX.

[Georgakopoulos et al., 1996] Georgakopoulos, D., Hornick, M., and Manola,
F. (1996). Customizing Transaction Models and Mechanisms in a Program
mable Environment Supporting Reliable Workflow Automation. IEEE Trans
actions on Knowledge and Data Engineering. April.

[Georgakopoulos et al., 1995] Georgakopoulos, D., Hornick, M., and Sheth,
A. (1995). An Overview of Workflow Management: From Process Modeling
to Workflow Automation Infrastructure. Distributed and Parallel Databases,
3(2): 119-154.

[Georgakopoulos and Hornick, 1994] Georgakopoulos, D. and Hornick, M. F.
(1994). A Framework for Enforceable Specification of Extended Transaction
Models and Transactional Workflows. Intnl. Journal of Intelligent and Co
operative Information Systems, 3(3):599-617.

[Gifford, 1979] Gifford, D. (1979). Weighted Voting for Replicated Data. Pro
ceedings 7th Symposium on Operating System Principles, pages 150-162.

[Gottemukkala and Lehman, 1992] Gottemukkala, V. and Lehman, T. J. (1992).
Locking and Latching in a Memory-Resident Database System. In Proceed
ings of the International Conference on Very Large Data Bases, pages 533-
544.

[Graefe, 1994] Graefe, G. (1994). Volcano - An Extensible and Parallel Query
Evaluation System. IEEE Transactions on Knowledge and Data Engineer
ing,6:120-135.

[Graham, 1992] Graham, M. (1992). Issues in Real-Time Data Management.
Real-Time Systems Journal, 4(3). Special Issue on Real-Time Databases.

[Graham et al., 1979] Graham, R. L., Lawler, E. L., Lenstra, 1. K., and Kan,
A. H. G. R. (1979). Optimization and Approximation in Deterministic Se-

REFERENCES 349

quencing and Scheduling: A Survey. Annals of Discrete Mathematics, 5:287-
326.

[Gray, 1981] Gray, J. (1981). The Transaction Concept: Virtues and Limita
tions. In Proceedings of the International Conference on Very Large Data
Bases, Cannes, France.

[Gray, 1993] Gray, 1. (1993). The Benchmark Handbook for Database and
Transaction Processing Systems. Morgan Kaufmann.

[Gray and Reuter, 1993] Gray, J. and Reuter, A. (1993). Transaction Process
ing: Concepts and Techniques. Morgan Kaufmann Publishers, San Mateo,
CA.

[Guerraoui and Schiper, 1994] Guerraoui, R. and Schiper, A. (1994). The Tran
saction Model vs The Virtual Synchrony Model: Bridging the gap. In Theory
and Practice in Distributed Systems, Lecture Notes in Computer Science,
volume 938, New York, NY, USA. Springer Verlag.

[Hachem et al., 1993] Hachem, N.I., Qiu, K., Gennert, M., and Ward, M. (1993).
Managing Derived Data in the Gaea Scientific DBMS. In Proceedings of the
International Conference on Very Large Data Bases, Dublin, Ireland.

[Hagen, 1996] Hagen, C. (1996). Kombination von aktiven Mechanismen und
Transaktionen im TRAMs-Projekt. In 8th Workshop "Grundlagen von Daten
banken ", Friedrichsbrunn, Deutschland.

[Hammer and Champy, 1993] Hammer, M. and Champy, 1. (1993). Reengi
nee ring the Corporation: A Manifesto for Business Revolution. HarperBusi
ness, New York.

[Harder and Rothermel, 1993] Harder, T. and Rothermel, K. (1993). Concur
rency Control Issues in Nested Transactions. VLDB Journal, 2(1):39-74.

[Haritsa et al., 1990] Haritsa, J., Carey, M., and Livny, M. (1990). Dynamic
Real-time Optimistic Concurrency Control. In Proceedings of the Real-Time
Systems Symposium, Lake Buena Vista, FL, USA.

[Hasse, 1995] Hasse, C. (1995). Inter- and Intra-transaction Parallelism in
Database Systems. PhD thesis, Department of Computer Science, ETH Zu
rich. (In German).

[Hasse, 1996] Hasse, H. (1996). A Unified Theory for the Correctness of Paral
lel and Failure-Resilient Executions of Database Transactions. PhD thesis,
Department of Computer Science, ETH Zurich. (In German).

[Heineman and Kaiser, 1997] Heineman, G. T. and Kaiser, G. E. (1997). The
CORD Approach to Extensible Concurrency Control. In Proceedings of the
IEEE International Conference on Data Engineering.

[Helal et al., 1996a] Helal, A., Heddaya, A., and Bhargava, B. (1996a). Repli
cation Techniques in Distributed Systems. Kluwer Academic Publishers.

350 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Helal et al., 1996b] Helal, A., Kim, Y., Elmagarmid, A., and Heddaya, A. (19-
96b). Transaction Optimization. In Bertino, E. et al., editors, Proceedings
of the Workshop on Advanced Transaction Models and Architectures, Goa,
India.

[Herlihy, 1987] Herlihy, M. (1987). Extending multiversion time-stamping pro
tocols to exploit type information. IEEE Transactions on Computers, 36(4):
443-448.

[Herlihy and Weihl, 1991] Herlihy, M. P. and Weihl, W. E. (1991). Hybrid con
currency control for abstract data types. Journal of Computer and System
Sciences, 43(1):25--61.

[Herman et al., 1987] Herman, G., Gopal, G., Lee, K. C., and Weinrib, A. (19-
87). The Datacycle Architecture for Very High Throughput Database Sys
tems. In Proceedings of the ACM SIGMOD Conference on Management of
Data, New York.

[Hollinsworth, 1996] Hollinsworth, D. (1996). The workflow reference model.
Technical Report TCOO-l003, Workflow Management Coalition. Accessible
via: http://www.aiai.ed.ac. uk/WfMC/.

[Hsu,1993] Hsu, M., editor (1993). Special Issue on Workflow and Extended
Transaction Systems, volume 16. IEEE Computer Society, Washington, DC.

[Hsu,1995] Hsu, M., editor (1995). Special Issue on Workflow Systems, vol
ume 18. IEEE Computer Society, Washington, DC.

[Huang et al., 1991] Huang, J., Stankovic, J., Ramamritham, K., and Towsley,
D. (1991). Experimental Evaluation of Real-Time Optimistic Concurrency
Control Schemes. In Proceedings of the International Conference on Very
Large Data Bases, Barcelona, Spain.

[ffiM, 1995] ffiM (1995). Flowmark - managing your workflow, version 2.1.
Document No. SHI9-8243-00.

[Imielinski and Badrinath, 1994] Imielinski, T. and Badrinath, B. R. (1994).
Mobile Wireless Computing: Challenges in Data Management. Communi
cations of the ACM, 37(10):18-28.

[Informix,1993] Informix (1993). Informix-OnlineiSecure Security Features
User's Guide. Informix Software Inc., Menlo Park, CA.

[Joannidis, 1996] Ioannidis, Y. (1996). Query optimization. ACM Computing
Surveys, 28(1).

[Jablonski and Bussler, 1996] Jablonski, S. and Bussler, C. (1996). Workflow
Management - Modeling Concepts, Architecture, and Implementation. Thom
son Computer Press.

[Jagadish et al., 1997] Jagadish, H. V., Mumick, I. S., and Rabinovich, M. (19-
97). Scalable Versioning in Distributed Databases with Commuting Updates.
In Proceedings of the IEEE Conference on Data Engineering.

REFERENCES 351

[Jajodia and McCollum, 1993] Jajodia, S. and McCollum, C. (1993). Using
two-phase commit for crash recovery in federated multilevel secure database
management systems. In Landwehr, C. E. et al., editors, Dependable Com
puting and Fault Tolerant Systems, Vol. 8, pages 365-381. Springer-Verlag,
New York.

[Jajodia et al., 1994] Jajodia, S., McCollum, C. D., and Blaustein, B. T. (1994).
Integrating concurrency control and commit algorithms in distributed mul
tilevel secure databases. In Keefe, T. F. and Landwehr, C. E., editors, Data
base Security, VII: Status and Prospects, pages 109-121. North-Holland,
Amsterdam.

[Jarke and Koch, 1984] Jarke, M. and Koch, J. (1984). Query optimization in
database systems. ACM Computing Surveys, 16(2):111-152.

[JavaSoft, 1996] JavaSoft (1996). Java™ Core Reflection - API and Specifi
cation.

[Jensen and Soparkar, 1995] Jensen, P. and Soparkar, N. (1995). Real-Time
Concurrency Control in Groupware. Technical Report CSE-TR-265-95, EE
CS department, The University of Michigan, Ann Arbor. Invited for ESDA'96
conference publication.

[Jensen et al., 1997] Jensen, P., Soparkar, N., and Mathur, A. (1997). Charac
terizing Multicast Orderings using Concurrency Control Theory. In Proceed
ings of the 17th International Conference on Distributed Computing Sys
tems, Baltimore, MD, USA.

[Jin et al., 1993] Jin, W., Ness, L., Rusinkiewicz, M., and Sheth, A. (1993).
Concurrency Control and Recovery of Multidatabase Work Flows in Teleco
mmunication Applications. In Proceedings of ACM SIGMOD Conference.

[Joosten et al., 1994] Joosten, S., Aussems, G., Duitshof, M., Huffmeijer, R.,
and Mulder, E. (1994). WA-I2: An Empirical Study about the Practice of
Workflow Management. University of Twente, Enschede, The Netherlands.
Research Monograph.

[Jordan, 1996] Jordan, M. J. (1996). Early Experiences with PJava. In Atkin
son, M. P. and Jordan, M., editors, First International Workshop on Persis
tence and Java, Drymen, Scotland. Sunlabs Technical Report.

[Kaiser and Pu, 1992] Kaiser, G. E. and Pu, C. (1992). Dynamic Restructuring
of Transactions. In [Elmagarmid, 1992], chapter 8, pages 266-295.

[Kamath et al., 1996] Kamath, M., Alonso, G., Giinthor, R., and Mohan, C.
(1996). Providing High Availability in Very Large Workflow Management
Systems. In Proceedings of the Fifth International Conference on Extending
Database Technology (EDBT'96), Avignon, France. Also available as mM
Research Report RJ9967, mM Almaden Research Center, July 1995.

352 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Kamath and Ramamritham, 1996a] Kamath, M. and Ramamritham, K. (1996a).
Bridging the gap between Transaction Management and Workflow Man
agement. In [Sheth, 1996]. Available from http://LSDIS.cs.uga.edu/
activities/NSF-workflow.

[Kamath and Ramamritham, 1996b] Kamath, M. and Ramamritham, K. (1996b).
Efficient Transaction Support for Dynamic Information Retrieval System. In
Proceedings of the ACM SIGIR International Conference on Research and
Development in Information Retrieval, Zurich.

[Kao and Garcia-Molina, 1992] Kao, B. and Garcia-Molina, H. (1992). An Ov
erview of Real-Time Database Systems. In Proceedings of NATO Advanced
Study Institute on Real-Time Computing, St. Maarten, Netherlands Antilles.

[Katz and et al., 1993] Katz, R. H. and et al. (1993). Design of a Large Object
Server Supporting Earth System Science Researchers. In AAAS Workshop
on Adavances in Data Management for the Scientist and Engineer, Boston,
Massachussetts, USA, pages 77-83.

[Kaufmann and Schek, 1996] Kaufmann, H. and Schek, H. J. (1996). Extend
ing TP-Monitors for Intra-Transaction Parallelism. In Proceedings of the
International Conference on Parallel and Distributed Information Systems,
Miami Beach.

[Kiczales,1992] Kiczales, G. (1992). Towards A new model of abstraction
in software engineering. In Proceedings of the IMSA '92 Workshop on Re
flection and Meta-level Architectures. See http://www.xerox.com/PARe/
spl/eca/oi .html for updates.

[Kiczales et al., 1991] Kiczales, G., des Rivieres, J., and Bobrow, D. G. (1991).
The Art of the Metaobject Protocol. MIT Press.

[Kim and Son, 1995] Kim, Y.-K. and Son, S. (1995). Predictability and Con
sistency in Real-Time Database Systems. In Advances in Real-time Systems.
Prentice Hall.

[Kopetz and Grunsteidl, 1993] Kopetz, H. and Grunsteidl, G. (1993). A Pro
tocol for Fault-tolerant Real-time Systems. IEEE Computer, 27(1).

[Korth and Silberschatz, 1991] Korth, H. and Silberschatz, A. (1991). Data
base System Concepts. McGraw Hill.

[Korth et al., 1990a] Korth, H., Soparkar, N., and Silberschatz, A. (1990a). Trig
gered Real-Time Databases with Consistency Constraints. In Proceedings
of the International Conference on Very Large Data Bases, Brisbane, Aus
tralia. Also included in Readings in Advances in Real-Time Systems, IEEE
Computer Society Press, 1993.

[Korth,1995] Korth, H. F. (1995). The Double Life of the Transaction Ab
straction: Fundamental Principle and Evolving System Concept. In Proceed-

REFERENCES 353

ings of the International Conference on Very Large Data Bases, pages 2-6,
Zurich, Switzerland.

[Korth et aI., 1990b] Korth, H. F., Levy, E., and Silberschatz, A (1990b). A
Fonnal Approach to Recovery by Compensating Transactions. In Proceed
ings of the International Conference on Very Large Data Bases, Brisbane,
Australia.

[Kreifelts et aI., 1991] Kreifelts, T., Hinrichs, E., Klein, K. H., Seuffert, P., and
Woetzel, G. (1991). Experiences with the DOMINO Office Procedure Sys
tem. In Proceedings ECSCW '91, pages 117-130. Amsterdam.

[Krishnakumar and Sheth, 1995] Krishnakumar, N. and Sheth, A (1995). Man
aging Heterogeneous Multi-system Tasks to Support Enterprise-wide Oper
ations. Distributed and Parallel Databases, 3(2):155-186.

[Krychniak et aI., 1996] Krychniak, P., Rusinkiewicz, M., Chichocki, A, Sheth,
A, and Thomas, G. (1996). Bounding the Effects of Compensation under
Relaxed Multi-Level Serializability. Distributed and Parallel Database Sys
tems, 4(4):355-374.

[Kumar,1996] Kumar, V., editor (1996). Performance of Concurrency Control
Mechanism in Centralized Database Systems. Prentice Hall Inc.

[Kung and Robinson, 1981] Kung, H. T. and Robinson, J. T. (1981). On Opti
mistic Methods for Concurrency Control. ACM Transactions on Database
Systems, 6(2):213-226.

[Kuo, 1996] Kuo, D. (1996). Model and Verification of a Data Manager Based
on ARIES. ACM Trans. on Database Systems, pages 427-479.

[Kuo and Mok, 1992] Kuo, T.-W. and Mok, A. (1992). Concurrency Control
for Real-Time Database Management. In Proceedings of the Real-Time Sys
tems Symposium, Phoenix, AZ, USA.

[Lawler et aI., 1992] Lawler, E., Lenstra, 1., Kan, A, and Shmoys, D. (1992).
Sequencing and Scheduling: Algorithms and Complexity. In Handbooks in
Operations Research and Management Science, volume 4. North Holland
Publishing Company.

[Lawler et aI., 1993] Lawler, E. L., Lenstra, 1. K., Kan, A H. G. R., and Shmoys,
D. (1993). Sequencing and Scheduling: Algorithms and Complexity. In Hand"
books in Operations Research and Management Science, Vol 4: Logistics of
Production and Inventory. North-Holland.

[Lee and Son, 1995] Lee, J. and Son, S. (1995). Perfonnance of Concurrency
Control Algorithms for Real-Time Database Systems. In Kumar, V., editor,
Performance of Concurrency Control Mechanisms in Centralized Database
Systems. Prentice Hall.

354 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Levy, 1991] Levy, E. (1991). Semantics-Based Recovery in Transaction Man
agement Systems. Ph.D. dissertation. Department of Computer Sciences,
University of Texas at Austin.

[Levy et aI., 1991a] Levy, E., Korth, H., and Silberschatz, A. (1991a). A The
ory of Relaxed Atomicity. In Proceedings of the ACM Symposium on Prin
ciples of Distributed Computing.

[Levy et aI., 1991b] Levy, E., Korth, H., and Silberschatz, A. (1991b). An Op
timistic Commit Protocol for Distributed Transaction Management. In Pro
ceedings of the ACM SIGMOD International Conference on Management of
Data, Denver, CO, USA.

[Leymann, 1995] Leymann, E (1995). Supporting business transactions via
partial backward recovery in workflow management systems. In GI-Fachta
gung Datenbanken in BUro Technik und Wissenschaft - BTW'95, Dresden,
Germany. Springer Verlag.

[Leymann et aI., 1996] Leymann, E, Schek, H. J., and Vossen, G. (1996). Trans
actional workflows. Dagstuhl Seminar 9629.

[Lin et aI., 1992] Lin, K.-J., Jahanian, E, Jhingran, A., and Locke, C. (1992).
A Model of Hard Real-Time Transaction Systems. Technical Report RC No.
17515, mM TJ. Watson Research Center.

[Lindholm and Yellin, 1996] Lindholm, T. and Yellin, E (1996). The Java™
Virtual Machine Specification. The Java™ Series. Addison-Wesley.

[Liskov, 1988] Liskov, B. (1988). Distributed Programming in Argus. Commu
nications of the ACM, 31(3):300-312.

[Lomet,1992] Lomet, D. (1992). MLR: A Recovery Method for Multi-level
Systems. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, San Diego.

[Lortz and Shin, 1993] Lortz, V. and Shin, K. (1993). MDARTS: A mUltipro
cessor database architecture for real-time systems. Technical Report CSE
TR-155-93, EECS Department, The University of Michigan, Ann Arbor.

[Lynch et aI., 1994] Lynch, N., Merritt, M., Weihl, W., and Fekete, A. (1994).
Atomic Transactions. Morgan Kaufmann.

[Maes, 1987] Maes, P. (1987). Concepts and experiments in computational re
flection. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA).

[Maffeis, 1996] Maffeis, S. (1996). PIRANHA: A Hunter of Crashed CORBA
Objects. Technical report, Olsend & Associates, Zurich.

[Medina-Mora and Cartron, 1996] Medina-Mora, R. and Cartron, K. W. (1996).
ActionWorkflow in Use: Clark County Department of Business License. In

REFERENCES 355

Proceedings of the 12th. Intnl. Conference on Data Engineering, New Or
leans, LA.

[Medina-Mora et al., 1993] Medina-Mora, R, Wong, H. K., and Flores, P. (19-
93). ActionWorkflow as the Enterprise Integration Technology. Bulletin of
the Technical Commiuee on Data Engineering, IEEE, 16(2).

[Mehrotra et al., 1992] Mehrotra, S., Rastogi, R, Breitbart, Y., Korth, H., and
Silberschatz, A. (1992). The Concurrency Control Problem in Multidatabases:
Characteristics and Solutions. In Proceedings of the ACM SIGMOD Inter
national Conference on Management of Data, San Diego, CA, USA.

[Meidanis et al., 1996] Meidanis, J., Vossen, G., and Weske, M. (1996). Us
ing Workflow Management in DNA Sequencing. In Proceedings of the 1st
International Conference on Cooperative Information Systems (CoopIS96),
Brussels, Belgium.

[Mesquite, 1995] Mesquite (1995). CSIM 17 User's Guide. Mesquite Software
Inc., Austin, Texas.

[Miller et al., 1996] Miller, J. A., Sheth, A. P., Kochut, K. J., and Wang, X.
(1996). CORBA-based Run-Time Architectures for Workflow Management
Systems. Journal of Database Management, Special Issue on Multidatases,
7(1):16-27.

[Mohan,1992] Mohan, C. (1992). Interaction between query optimization and
concurrency control. 2nd International Workshop on Research Issues on
Data Engineering: Transaction and Query Processing, pages 26-35.

[Mohan, 1993] Mohan, C. (1993). A Survey of DBMS Research Issues in Sup
porting Very Large Tables. In Proceedings of Data Organization and Algo
rithms, pages 279-300, Chicago, II.

[Mohan,1994] Mohan, C. (1994). A Survey and Critique of Advanced Tran
saction Models. In ACM SIGMOD International Conference on Manage
ment of Data, Minneapolis. Tutorial Notes.

[Mohan, 1996] Mohan, C. (1996). Thtorial: State of the art in workflow man
agement system research and products. 5th International Conference on Ex
tending Database Technology, Avignon, March 1996 and at ACM SIGMOD
International Conference on Management of Data, Montreal, June.

[Mohan et al., 1995] Mohan, c., Alonso, G., Giinthor, R, and Kamath, M.
(1995). Exotica: A Research Perspective on Workflow Management Sys
tems. In [Hsu, 1995J, 18(1):19-26.

[Mohan and Dievendorff, 1994] Mohan, C. and Dievendorff, R (1994). Re
cent Work on Distributed Commit Protocols, and Recoverable Messaging
and Queuing. Bulletin of the Technical Committee on Data Engineering,
IEEE,17(1):22-28.

356 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Mohan et al., 1992a] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and
Schwarz, P. (1992a). ARIES: A transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead logging. ACM
Transactions on Database Systems, 17(1):94-162.

[Mohan et al., 1986] Mohan, C., Lindsay, B., and Obermarck, R. (1986). Tran
saction Management in R * Distributed Database Management System. ACM
Transaction on Database Systems, 11(4):378-396.

[Mohan et al., 1992b] Mohan, C., Pirahesh, H., and Lorie, R. (1992b). Effi
cient and Flexible Methods for Transient Versioning of Records to Avoid
Locking by Read-only Transactions. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, San Diego.

[Molesky and Ramamritham, 1995] Molesky, L. D. and Ramamritham, K. (19-
95). Recovery protocols for shared memory database systems. In Proceed
ings of ACM SIGMOD International Conference on Management of Data,
San Jose, Calif.

[Moss,1982] Moss, J. (1982). Nested Transactions and Reliable Distributed
Computing. In Proceedings of the 2nd. Symposium on Reliability in Dis
tributed Software and Database Systems, pages 33-39, Pittsburgh, PA. IEEE
CS Press.

[Moss,1987] Moss, J. (1987). Nested transactions: An introduction. In [Bhar
gava, 1987].

[Moss,1981] Moss, J. E. B. (1981). Nested Transactions: An Approach to Re
liable Distributed Computing. PhD thesis, EECS Department, M.lT.

[Moss, 1985] Moss, J. E. B. (1985). Nested Transactions. An Approach to Re
liable Distributed Computing. Information Systems Series. The MIT Press,
Cambridge, Massachussetts.

[Musa,1995] Musa, S. (1995). Display Technology & Manufacturing, Annual
Report, July 1994-June 1995. Technical report, Center for DT&M, College
of Engineering, University of Michigan, Ann Arbor.

[Nodine and Zdonik, 1990] Nodine, M. and Zdonik, S. (1990). Cooperative
transaction hierarchies: a transaction model to support design applications.
In Proceedings of the International Conference on Very Large Data Bases,
pages 83-94.

[Obermack,1994] Obermack, R. (1994). Special Issue on TP Monitors and
Distributed Transaction Management. Bulletin of the Technical Committee
on Data Engineering, IEEE,17(1).

[OMG, 1995a] OMG (1995a). CORBAservices: Common Object Services Spe
cification. Technical report, Object Management Group.

REFERENCES 357

[OMG,1995b] OMG (1995b). The Common Object Request Broker: Archi
tecture and Specification, revision 2.0. Technical report, Object Management
Group.

[O'Neil, 1986] O'Neil, P. (1986). The Escrow Transactional Method. ACM
Transaction on Database Systems, 11 (4):405-430.

[Owicki and Gries, 1976] Owicki, S. and Gries, D. (1976). Verifying proper
ties of parallel programs: An axiomatic approach. Communications of the
ACM,19(5):279-285.

[Ozsoyoglu and Snodgrass, 1995] Ozsoyoglu, G. and Snodgrass, R. (1995). Te
mporal and Real-Time Databases: A Survey. IEEE Transactions on Knowl
edge and Data Engineering, 7(4).

[Ozsu and Valduiez, 1991] Ozsu, T. and Valduiez, P. (1991). Prinicples of Dis
tributed Database Systems. Prentice-Hall.

[Palaniswami, 1997] Palaniswami, D. (1997). WebWork: The Web-based Dis
tributed Engine for the METEOR2 Workflow Management System. Master's
thesis, University of Georgia, Athens, GA In preparation.

[Palaniswami et al., 1996] Palaniswami, D., Lynch, J., Shevchenko, I., Mattie,
A, and Reed-Fourquet, L. (1996). Web-based Multi-Paradigm Workflow
Automation for Efficient Healthcare Delivery. In [Sheth, 1996]. Available
fromhttp://LSDIS.cs.uga.edu/activities/NSF·workflow.

[Papadimitriou, 1986] Papadimitriou, C. (1986). The Theory of Database Con
currency Control. Computer Science Press.

[Papadimitriou, 1988] Papadimitriou, C. H. (1988). The Theory of Database
Concurrency Control. Computer Science Press.

[Pedregal Martin and Ramamritham, 1997] Pedregal Martin, C. and Ramam
ritham, K. (1997). Delegation: Efficiently Rewriting History. In Proceedings
of IEEE 13th International Conference on Data Engineering, Birmingham,
UK.

[Perry et al., 1996] Perry, D., Porter, A., Votta, L., and Wade, M. (1996). Eval
uating Workflow and Process Automation in Wide-Area Software Develop
ment. In [Sheth, 1996]. Available from http://LSDIS . cs. uga. edu/acti v
ities/NSF-workflow.

[Pinedo, 1995] Pinedo, M. (1995). Scheduling - Theory, Algorithms, and Sys
tems. Prentice Hall.

[Prakash and Knister, 1994] Prakash, A and Knister, M. (1994). A Framework
for Undoing Actions in Collaborative Systems. ACM Transactions on Comp
uter-Human Interactions, 1(4).

[Pu et al., 1988] Pu, C., Kaiser, G. E., and Hutchinson, N. (1988). Split-Transac
tions for Open-Ended Activities. In Proceedings of the International Con
ference on Very Large Data Bases, pages 27-36, Los Angeles.

358 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Purimetla et al., 1995] Purimetla, B., Sivasankaran, R, Ramamritham, K., and
Stankovic, J. (1995). Real-Time Databases: Issues and Applications. In Son,
S., editor, Advances in Real-time Systems. Prentice Hall.

[Raab, 1995] Raab, F. (1995). TPC Benchmark D. Transaction Processing Per
formance Council.

[Rahm and Marek, 1995] Rahm, E. and Marek, R (1995). Dynamic Multi
Resource Load Balancing in Parallel Database Systems. In Proceedings of
the International Conference on Very Large Data Bases, Zurich, Switzer
land.

[Ramamritham,1993] Ramamritham, K. (1993). Real-Time Databases. Inter
national Journal on Parallel and Distributed Databases, 1(2).

[Ramamritham and Chrysanthis, 1992] Ramamritham, K. and Chrysanthis, P. K.
(1992). In Search of Acceptability Criteria: Database Consistency Require
ments and Transaction Correctness Properties. In Gupta, A., editor, Dis
tributed Object Management, pages 212-230. Morgan Kaufmann Publish
ers.

[Ramamritham and Chrysanthis, 1996] Ramamritham, K. and Chrysanthis, P. K.
(1996). A Taxonomy of Correctness Criteria in Database Applications. The
VLDB Journal, 5:85-97.

[Ramamrithan and Pu, 1995] Ramamrithan, K. and Pu, C. (1995). A formal
characterization of epsilon serializability. IEEE Transactions on Knowledge
and Data Engineering, 7(6).

[Rastogi et al., 1995] Rastogi, R, Korth, H. F., and Silberschatz, A. (1995).
Exploiting transaction semantics in multidatabase systems. In Proceedings
of the International Conference on Distributed Computing Systems, pages
101-109, Vancouver, Canada.

[Ray et al., 1996] Ray, I., Bertino, E., Jajodia, S., and Mancini, L. V. (1996).
An Advanced Commit Protocol for MLS Distributed Database Systems. In
Proceedings of the 3rd ACM Conference on Computer and Communications
Security, pages 119-128.

[Reddy et al., 1993] Reddy, E. et al. (1993). Computer Support for Concurrent
Engineering. IEEE Computer, 26(1).

[Reinwald and Mohan, 1996] Reinwald, B. and Mohan, C. (1996). Structured
Workflow Management with Lotus Notes Release 4. In Proceedings of 41st.
IEEE Computer Society Intnl. Conference, pages 451-457, Santa Clara, CA.

[Reuter, 1989] Reuter, A. (1989). ConTracts: A Means for Extending Control
Beyond Transaction Boundaries. In Proceedings of the 3rd. International
Workshop on High Performance Transaction Systems, Asilomar.

REFERENCES 359

[Reuter and Schwenkreis, 1995] Reuter, A. and Schwenkreis, E (1995). Con
Tracts - A Low-Level Mechanism for Building General-Purpose Workflow
Management Systems. IEEE Data Engineering Bulletin, 18(1).

[Rusinkiewicz and Sheth, 1995] Rusinkiewicz, M. and Sheth, A. (1995). Spec
ification and Execution of Transactional Workflows. In Kim, W., editor,
Modern Database Systems: The Object Model, Interoperability and Beyond.
ACM Press, New York, NY.

[Saastamoinen, 1995] Saastamoinen, H. (1995). On the Handling of Excep
tions in Information Systems. PhD thesis, University of Jyvaskyla.

[Samaras et aI., 1995] Samaras, G., Britton, K., Citron, A., and Mohan, C. (19-
95). Two-phase optimizations in a commercial distributed environment. In
ternational Journal of Distributed and Parallel Databases, 3(4):325-360.

[Schaad et aI., 1995] Schaad, w., Schek, H.-J., and Weikum, G. (1995). Im
plementation and Performance of Multi-level Transaction Management in a
Multidatabase Environment. In Proceedings of the 5. Int. Workshop on Re
search Issues on Data Engineering, Distributed Object Management, Taipei,
Taiwan.

[Schuster et al., 1994] Schuster, H., Jablonski, S., Kirsche, T., and Bussler, C.
(1994). A Client/Server Architecture for Distributed Workflow Management
Systems. In Proceedings of the 3rd. International. Conference on Parallel
and Distributed Information Systems, pages 253-256, Austin, TX. IEEE CS
Press.

[Schwenkreis and Reuter, 1996] Schwenkreis, E and Reuter, A. (1996). Syn
chronizing Long-Lived Computations. In [Kumar, 1996], chapter 12.

[Sevcik, 1994] Sevcik, K. C. (1994). Application Scheduling and Processor
Allocation in Multiprogrammed Parallel Processing Systems. Performance
Evaluation, 19:107-140.

[Shasha et aI., 1995] Shasha, D., Llirbat, E, Simon, E., and Valduriez, P. (1995).
Transaction Chopping: Algorithms and Performance Studies. ACM Transac
tions on Database Systems, 20(3):325-363.

[Sheth, 1995] Sheth, A. (1995). Tutorial Notes on Workflow Automation: Ap
plication, Technology and Research. Technical report, University of Geor
gia. presented at ACM SIGMOD, San Jose, CA, URL: http://L8DI8 . cs.
uga.edu/publications.

[Sheth,1996] Sheth, A., editor (1996). Proceedings of the NSF Workshop on
Workflow and Process Automation in Information Systems, Athens, GA.
University of Georgia. Available from http://L8DI8 . cs. uga. edul acti
vities/N8F-workflow.

[Sheth et al., 1996a] Sheth, A., Georgakopoulos, D., Joosten, S., Rusinkiewicz,
M., Scacchi, w., Wileden, J., and Wolf, A. (1996a). Report from the NSF

360 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Workshop on Workflow and Process Automation in Information Systems.
Technical report, University of Georgia, UGA-CS-TR-96-003. URL: http:
//LSDIS.cs.uga.edu/activities/NSF-workflow.

[Sheth and Joosten, 1996] Sheth, A. and Joosten, S. (1996). Workshop on Work
flow Management: Research, Technology, Products, Applications and Expe
riences.

[Sheth et al., 1996b] Sheth, A., Kochut, K. J., Miller, J., Worah, D., Das, S.,
Lin, C., Palaniswami, D., Lynch, J., and Shevchenko, I. (1996b). Supporting
State-Wide Immunization Tracking using Multi-Paradigm Workflow Tech
nology. In Proceedings of the International Conference on Very Large Data
Bases, Bombay, India.

[Sheth and Rusinkiewicz, 1993] Sheth, A. and Rusinkiewicz, M. (1993). On
Transactional Workflows.In [Hsu, 1993].

[Shin, 1991] Shin, K. (1991). HARTS: A distributed real-time architecture.
IEEE Computer, 24(5).

[Shrivastava et al., 1991] Shrivastava, S. K., Dixon, G. N., and Parrington, G. D.
(1991). An overview of Arjuna: A programming system for reliable dis
tributed computing. IEEE Software, 8(1):66-73.

[Shrivastava and Wheater, 1990] Shrivastava, S. K. and Wheater, S. M. (1990).
Implementing Fault-Tolerant Distributed Applications Using Objects and
Multi-coloured Actions. In Proceedings of the International Conference on
Distributed Computing Systems, pages 203-210, Paris, France.

[Silberschatz et al., 1996] Silberschatz, A., Stonebraker, M., and Ullman, J.
(1996). Database Research: Achievements and opportunities into the 21st
century. Report of the NSF Workshop on the Future of Database Systems
Research. ACM SIGMOD Record, 25(1):52-63.

[Silver,1995] Silver, B. R. (1995). The Guide to Workflow Software: A Visual
Comparison ofToday's Leading Products. BIS Strategic Decisions.

[Singhal, 1988] Singhal, M. (1988). Issues and Approaches to Design of Real
time Database Systems. ACM SIGMOD Record, 17(1).

[Smith and Liu, 1989] Smith, K. and Liu, J. (1989). Monotonically Improv
ing Approximate Answers to Relational Algebra Queries. In Proceedings
of the International Computer Software Applications Conference, Orlando,
FL, USA.

[Smith, 1993] Smith, T. (1993). The Future of Workflow Software. INFORM,
pages 50-51.

[Son,1988] Son, S., editor (1988). ACM SIGMOD Record: Special Issue on
Real-Time Databases. ACM Press.

REFERENCES 361

[Son, 1996] Son, S. H. (1996). Proceedings of the 1st International Workshop
on Real-Time Databases.

[Song and Liu, 1990] Song, X. and Liu, J. (1990). Performance of Multiver
sion Concurrency Control Algorithms in Maintaining Temporal Consistency.
Technical report, University of Illinois at Urbana-Champaign.

[Soparkar et al., 1991] Soparkar, N., Korth, H., and Silberschatz, A. (1991).
Failure-resilient Transaction Management in Multidatabases. IEEE Com
puter, 24(12).

[Soparkar et al., 1995a] Soparkar, N., Korth, H., and Silberschatz, A. (1995a).
Autonomous Transaction Managers in Responsive Computing. In Respon
sive Computer Systems: Toward Integration of Fault-Tolerance and Real
Time. Kluwer Academic Publishers.

[Soparkar et al., 1995b] Soparkar, N., Korth, H., and Silberschatz, A. (1995b).
Databases with Deadline and Contingency Constraints. IEEE Transactions
on Knowledge and Data Engineering, 7(4).

[Soparkar et al., 1996] Soparkar, N., Korth, H., and Silberschatz, A. (1996).
Time-Constrained Transaction Management: Real Time Constraints in Data
base Transaction Systems. Kluwer Academic Publishers.

[Soparkar et al., 1994] Soparkar, N., Levy, E., Korth, H., and Silberschatz, A.
(1994). Adaptive Commitment for Real-Time Distributed Transactions. In
Proceedings of the 3rd International Conference on Information and Knowl
edge Management.

[Soparkar and Ramamritham, 1996] Soparkar, N. and Ramamritham, K. (1996).
DART'96. In Proceedings of the International Workshop on Databases: Ac
tive and Real-Time (Concepts meet Practice).

[Spivey, 1992] Spivey, J. M. (1992). The ZNotation: A Reference Manual, Sec
ond Edition. Prentice-Hall, Englewood Cliffs, NJ.

[Stamos and Cristian, 1993] Stamos, J. W. and Cristian, F. (1993). Coordinator
Log Transaction Execution Protocol. Distributed and Parallel Databases,
1:383-408.

[Stankovic, 1988] Stankovic, J. (1988). Misconceptions About Real-Time Com
puting. IEEE Computer, 21(10).

[Sullivan and Notkin, 1992] Sullivan, K. and Notkin, D. (1992). Reconciling
environment integration and software evolution. ACM Transactions on Soft
ware Engineering and Methodology, 1(3):229-268.

[Swenson et al., 1994] Swenson, K. D., Maxwell, R. J., Matsumoto, T., Saghari,
B., and Irwin, K. (1994). A business process environment supporting collab
orative planning. Journal of Collaborative Computing, 1(1).

362 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Tang and Veijalainen, 1995] Tang, J. and Veijalainen, J. (1995). Transaction
oriented Work-flow Concepts in Inter-organizational Environments. In Pro
ceedings of the 4th. International. Conference on Information and Knowl
edge Management, Baltimore, MD.

[Technologies, 1995] Technologies, A. (1995). Metro Tour. Technical report,
Action Technologies, Inc. URL: http://www.actiontech.com/.

[Texas Instruments, 1993] Texas Instruments (1993). Open OODB Toolkit Re
lease 0.2 (Alpha) Document. Texas Instruments, Dallas.

[The,1994] The, L. (1994). Getting Into the Workflow. Datamation, October.

[Thomas, 1979] Thomas, R. (1979). A majority consensus approach to concur
rency control for multiple copy databases. ACM Transactions on Database
Systems, 4(2):180-209.

[Transarc, 1995] Transarc (1995). Writing encina applications. Transarc Cor
poration, ENC-D5012-00.

[Tsichritzis, 1982] Tsichritzis, D. (1982). Form Management. Communications
of the ACM, 25(7):453-478.

[Turek et al., 1994] Threk, J., Ludwig, W., Wolf, J. L., Fleischer, L., Tiwari,
P., Glasgow, J., Schwiegelshohn, U., and Yu, P. S. (1994). Scheduling Par
allelizable Tasks to Minimize Average Response Time. In Proceedings of
the Symposium on Parallel Algorithms and Architectures, Cape May, New
Jersey.

[Turek et al., 1992] Threk, J., Wolf, J. L., Pattipati, K. R., and Yu, P. S. (1992).
Scheduling Parallelizable Tasks: Putting it All on the Shelf. In Proceedings
of the ACM SIGMETRICS Conference.

[Ulusoy, 1992] Ulusoy, O. (1992). Scheduling Real-Time Database Transac
tions. PhD Thesis. Department of Computer Science, University of Illinois
at Urbana-Champaign.

[Unland and Schlageter, 1992] Unland, R. and Schlageter, G. (1992). A Tran
saction Manager Development Facility for Non Standard Database Systems.
In Elmagarmid, A. K., editor, Database Transaction Models for Advanced
Applications, chapter 11. Morgan Kaufmann.

[Vivier et al., 1996] Vivier, B., Haimowitz, I., and Luciano, J. (1996). Work
flow Requirements for Electronic Commerce in a Distributed Health Care
Enterprise. In [Sheth, 1996]. Available from http://LSD1S . cs. uga. edu/
activities/NSF-workflow.

[Waechter and Reuter, 1992] Waechter, H. and Reuter, A. (1992). The Con
Tract Model. In Elmagarmid, A. K., editor, Database Transaction Models
for Advanced Applications, chapter 7, pages 219-263. Morgan Kaufmann
Publishers, San Mateo.

REFERENCES 363

[Wang, 1995] Wang, X. (1995). Implementation and Performance Evaluation
of CORBA-Based Centralized Workflow Schedulers. Master's thesis, Uni
versity of Georgia.

[Weibl, 1984] Weihl, W. E. (1984). Specification and Implementation of Atomic
Data Types. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA.

[Weihl, 1988a] Weihl, W. E. (1988a). Commutativity-based Concurrency Con
trol for Abstract Data Types. In 21st Annual Hawaii International Confer
ence on System Sciences, volume II Software Track, pages 205-214, Kona,
HI. IEEE Computer Society.

[Weihl, 1988b] Weihl, W. E. (1988b). Commutativity-based Concurrency Con
trol for Abstract Data Types. IEEE Transactions on Computers, 37(12): 1488-
1505.

[Weikum,1991] Weikum, G. (1991). Principles and Realization Strategies of
Multi-Level Transaction Management. ACM Transactions on Database Sys
tems, 16(1):132-180.

[Weikum,1993] Weikum, G. (1993). Extending Transaction Management to
Capture More Consistency With Better Performance. In Proceedings of the
9th. French Database Conference, pages 27-30, Toulouse.

[Weikum and Hasse, 1993] Weikum, G. and Hasse, C. (1993). Multi-Level Tran
saction Management for Complex Objects: Implementation, Performance,
Parallelism. The VWB Journal, 2(4):407-453.

[Weikum et al., 1994] Weikum, G., Hasse, c., Moenkeberg, A, and Zabback,
P. (1994). The COMFORT Automatic Thning Project. Information Systems,
19(5).

[Weikum and Schek, 1992] Weikum, G. and Schek, H. (1992). Concepts and
applications of multilevel transactions and open-nested transactions. In [EI
magarmid, 1992], chapter 13.

[Weissenfels et al., 1996] Weissenfels, J., Wodtke, D., Weikum, G., and Kotz
Dittrich, A (1996). The Mentor Architecture for Enterprise-wide Workflow
Management. In Proceedings of the NSF International Workshop on Work
flow and Process Automation in Information Systems, Athens, Georgia.

[WFMC,1994] WFMC (1994). Glossary, A Workflow Management Coalition
Specification. Technical report, The Workflow Management Coalition. Work
flow Management Coalition accessible via: http://www.aiai.ed.ac . uk/
WfMC/.

[Widom, 1995] Widom, J. (1995). Special Issue on Materialized Views and
Data Warehousing. IEEE Data Engineering Bulletin, 18(2).

[Wodtke et al., 1996] Wodtke, D., Weissenfels, J., Weikum, G., and Kotz-Dittrich,
A (1996). The Mentor Project: Steps Towards Enterprise-Wide Workflow

364 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Management. In Proceedings of 12th. IEEE International Conference on
Data Engineering, pages 556-565, New Orleans, LA.

[Wolf et ai., 1995] Wolf, 1. L., Turek, J., Chen, M. S., and Yu, P. S. (1995).
A Hierarchical Approach to Parallel Multiquery Scheduling. IEEE Transac
tions on Parallel and Distributed Systems, 6(6):578-590.

[Worah, 1997] Worah, D. (1997). Error Handling and Recovery in the METE
OR2 Workflow Management System. Master's thesis, University of Georgia,
Athens, GA. In preparation. URL: http://LSDIS . cs. uga. edu/.

[Worah and Sheth, 1996] Worah, D. and Sheth, A. (1996). What Do Advanced
Transaction Models Have to Offer for Workflows? In Proceedings of the In
ternational Workshop on Advanced Transaction Models and Architectures,
Goa, India.

[Wu and Schwiderski, 1996] Wu, Z. and Schwiderski, S. (1996). Design ofRe
flective Java. Technical Report APM.1818.00.05, APM Limited, Poseidon
house, Castle Park, Cambridge, CB3 ORD, U.K. ANSA Work Programme.

[Zdonik et ai., 1994] Zdonik, S., Alonso, R., Franklin, M., and Acharya, S.
(1994). Are Disks in the Air Just Pie in the Sky. In Proceedings of the Work
shop on Mobile Computing Systems and Applications, Santa Cruz, CA.

[Zhang et ai., 1994a] Zhang, A., Nodine, M., Bhargava, B., and Bukhres, O.
(1994a). Ensuring Relaxed Atomicity for Flexible Transactions in Multi
database Systems. In Proceedings 1994 SIGMOD International Conference
on Management of Data, pages 67-78.

[Zhang et al., 1994b] Zhang, A., Nodine, M., Bhargava, B., and Bukhres, O.
(1994b). Ensuring Relaxed Atomicity for Flexible Transactions in Multi
database Systems. In Proceedings of the ACM SIGMOD International Con
ference on Management of Data, pages 67-78.

[Zhou et al., 1996] Zhou, L., Shin, K., Rundensteiner, E., and Soparkar, N.
(1996). Probabilistic Real-Time Data Access with Interval Constraints. In
Proceedings of the 1st International Workshop on Real-Time Databases: Is
sues and Applications. Book chapter in Real-Time Databases Systems: Is
sues and Applications. To appear in 1997.

[Zisman, 1978] Zisman, M. (1978). Office automation: Evolution or revolu
tion. Sloan Management Review, 19(3):1-16.

Contributing Authors

Dr. Gustavo Alonso is a senior research associate at the Swiss Federal Institute
of Technology in Zurich (ETH). He received his M.S. (1992) and Ph.D. (1994)
degrees in computer science from University of California at Santa Barbara and
an engineering degree in telecommunications (1989) from Madrid Technical
University (UPM). Current address: Institute of Information Systems, ETH
Zentrum, CH-8092, Zurich, Switzerland. Dr. Alonso can be reached bye-mail
atalonso@inf.ethz.ch.

Dr. Paul Ammann is an Associate Professor of Information and Software Sys
tems Engineering at George Mason University in Fairfax, Virginia. He re
ceived the AB in Computer Science summa cum laude from Dartmouth Col
lege, and the MS and PhD in Computer Science from the University of Vir
ginia. He has published over 35 refereed technical papers. His research inter
ests center around why computing systems fail and what can be done about
it. Current areas of interest are formal methods, software for critical sys
tems, software testing, and computer security. The URL for his web page
is http://www.isse.gmu.edu/faculty/parnrnann and his e-mail address is
parnrnann@gmu. edu.

Dr. Eman Anwar received a BSc. degree in computer science from Kuwait
University, Kuwait in 1989. She received both a M.E. and Ph.D degree from the
University of Florida in 1992 and 1996, respectively. Her current research in
terests include active databases, distributed object-oriented databases and tran
saction processing. Eman Anwar joined Transarc Corporation as a Member of
Technical Staff in August 1996. She is currently working on improving the
performance of recoverable multi-threaded applications on shared and shared
nothing mUlti-processor machines. She has published several papers in refer
eed journals and conferences proceedings in the area of active databases and

366 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

transaction processing. Eman Anwar can be contacted bye-mail at eman@
trans arc . com.

Dr. Malcolm Atkinson is currently a professor at the University of Glasgow
and leader of the PJava team. He proposed the concept of orthogonal persis
tence in 1978, was jointly responsible for the first orthogonally persistent lan
guage, PS-algol, and was the initiator of the international workshop series on
Persistent Object Systems. He has worked with 02 Technology and is working
at Sun Labs in the summer of 1997. Professor Atkinson can be reached at De
partment of Computing Science, University of Glasgow, Glasgow G12 8QQ,
Scotland.

Roger Barga is currently a Ph.D. candidate at the Oregon Graduate Insti
tute. His research interests include transaction processing, concurrency control
mechanisms, storage and management of scientific data, and new techniques
to construct extensible and flexible systems software. His current address is
Department of Computer Science and Engineering, Oregon Graduate Institute,
Portland, OR 97291, USA. He can be reached bye-mail at barga@cse. ogi .
edu.

Elisa Bertino is professor of computer science in the Department of Com
puter Science of the University of Milan where she heads the Database Sys
tems Group. She has also been professor in the Department of Computer
and Information Science of the University of Genova, Italy. Her main re
search interests include object-oriented databases, deductive databases, multi
media databases, interoperability of heterogeneous systems, database security.
She is on the editorial board of the following scientific journals: IEEE Tran
saction on Knowledge and Data Engineering, International Journal of Theory
and Practice of Object Systems, Journal of Computer Security, VLDB Jour
nal, and International Journal of Parallel and Distributed Databases. Professor
Bertino's current address is Dipartimento di Scienze dell'Informazione, Uni
versita di Milano, Via Comelico 39/41, 20135 Milano, Italy. Her e-mail address
is bertino@dsi . unimi . it.

Dr. Sharma Chakravarthy received the B.E. degree in Electrical Engineering
from the Indian Institute of Science, Bangalore, India in 1973. He received
M.S. and Ph.D degrees from the University of Maryland in College park in
1981 and 1985, respectively. Currently, he is Associate Professor in the Com
puter and Information Science and Engineering department at the University
of Florida, Gainesville. His current research interests are: active and real-time
databases, data mining, and workflow management. He is listed in Who's Who

CONTRIBUTING AUTHORS 367

Among South Asian Americans and Who's Who Among America's Teach
ers. Professor Chakravarthy can be reached at: CISE Department, E470 CSE
Building, University of Florida, Gainesville, FL 32611-6125, and bye-mail at
sharma@cise.ufl.edu.

Dr. Laurent Daynes received his Ph.D. degree in Computer Science from the
University of Paris 6 in 1995. From 1991 to 1995, he has worked at INRIA
in Patrick Valduriez's research group. There, he participated in the group's
research on transaction management for persistent programming languages. He
is a research fellow at the University of Glasgow since January 1996, where he
is the main designer and implementor of the Persistent Java system.

Dr. Ahmed Elmagarmid is a professor of Computer Science at Purdue Univer
sity. He founded the workshop series on Research Issues in Data Engineering,
was a founding member of the International Endowment on Cooperative Infor
mation Systems. He is the editor-in-chief of Distributed and Parallel Databases.
He has published close to 100 papers and 4 books. Dr. Elmagarmid has been
an IEEE Distinguished Lecturer, an NSF Presidential Young Investigator and
he has been named a Distinguished Alumni by the college of Engineering at
Ohio State University College. He is the principal investigator of the InterBase
Project and was responsible for its transfer to many research labs. InterBase
has influenced the Camot project at MCC and has been extensively used by
BNR and GTE. He was a Chief Architect of the XAl21 DBMS produced for
SES by Harris Corporation.

Christof Hasse received the M.Sc. degree (Dipl.-Inform.) from the Univer
sity of Darmstadt, Germany, in 1989 and the Ph.D. degree (Dr.-Ing.) from the
Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, in 1995.
Dr. Hasse is a database specialist in the Business Information Technology de
partment of the Union Bank of Switzerland where he is working on the world
wide real-time trading and risk management system. He is responsible for the
logical and physical database design, database performance analysis, database
tuning, and application design.

Dr. Abdelsalam Heddaya obtained his B.Sc. degree in Computer Engineering
and Automatic Control from Alexandria University, Egypt in 1980 and his S.M.
and Ph.D. degrees in Computer Science from Harvard University in 1983 and
1988, respectively. Since then, he has been on the Computer Science faculty
at Boston University. Dr. Heddaya's research in distributed systems focuses
on highly available and reliable systems, and on realizing parallel speedups
for computations running on distributed systems. He has led project Mermera,

368 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

which produced a model and system for specifying, reasoning about, and pro
gramming mixed-coherence distributed shared memory. Among his current
research projects is WebWave, a model and protocol for large scale caching of
published documents on the Internet. He has worked on congestion control,
bulk-synchronous parallelism, and software cache coherence for multiproces
sors.

Dr. Abdelsalam (Sumi) Belal received the B.Sc. and M.Sc. degrees in Com
puter Science and Automatic Control from Alexandria University, Alexandria,
Egypt, and the M.S. and Ph.D. degrees in Computer Sciences from Purdue
University, West Lafayette, Indiana. Before joining MCC to work on the Col
laboration Management Infrastructure project (CMI), he was an Assistant Pro
fessor at the University of Texas at Arlington, and later, a Visiting Professor of
Computer Sciences at Purdue University. His research interests include large
scale systems, fault-tolerance, OLTP, mobile data management, heterogeneous
processing, standards and interoperability, and performance modeling. His cur
rent research deals with developing scalable data and transaction management
protocols for large-scale distributed system, and for wireless and nomadic en
vironments. Dr. Helal is a member of the Executive Committee of the IEEE
Computer Society Technical Committee on Operating Systems and Applica
tion Environments (TCOS). He is also the Editor-in-Chief of the TCOS quar
terly Bulletin. Dr. Helal can be reached at helal@rncc. com.

Dr. Sushil Jajodia is Director of Center for Secure Information Systems and
Professor of Information and Software Systems Engineering at the George Ma
son University, Fairfax, Virginia. His research interests include information
security, temporal databases, and replicated databases. He received the 1996
Kristian Beckman award from IFIP TC 11 for his contributions to the disci
pline of Information Security. Dr. Jajodia has served in different capacities
for various journals and conferences. He is the founding co-editor-in-chief of
the Journal of Computer Security. He is on the editorial boards of IEEE Con
currency and International Journal of Cooperative Information Systems and a
contributing editor of the Computer & Communication Security Reviews. He
has been named a Golden Core member for his service to the IEEE Computer
Society. He is a past chairman of the IEEE Computer Society Technical Com
mittee on Data Engineering and the Magazine Advisory Committee. He is a
senior member of the IEEE and a member of IEEE Computer Society and As
sociation for Computing Machinery. Dr. Jajodia's home page on the web is
http://www. isse.gmu.edurcsis/faculty/jajodia.html and he can be
reached bye-mail at j aj odia@gmu. edu.

CONTRIBUTING AUTHORS 369

Paul Jensen is a PhD candidate at the University of Michigan, Ann Arbor. His
research interests include transaction management and process group commu
nications. Paul Jensen holds an mM Graduate Fellowship, and has worked at
Chrysler Technology Center and mM Toronto Laboratory. He can be reached
bye-mail atpjensen@eecs.umich. edu.

Yoo-Sung Kim is an assistant professor at INHA University, Korea. He is a
member of ACM and IEEE. He received his Ph.D. in computer science from
Korea Advanced Institute of Science and Technology(KAIST) in 1992. His
current research interests include multi-database, mobile database and work
flows. Dr. Kim can be reached by regular mail at Department of Computer
Science & Engineering INHA University INCHON 402-751, Korea, and by
e-mail to yskim@dragon. inha. ac. kr.

Dr. Luigi Mancini received the Laurea degree in Computer Science from the
University of Pisa, Italy, in 1983, and the Ph.D. degree in Computer Sci
ence from the University of Newcastle upon Tyne, Great Britain, in 1989.
Since 1996 he has been an Associate Professor of the Dipartimento di Scienze
dell'Informazione of the University "La Sapienza" of Rome. His research
interests include distributed algorithms and systems, transaction processing
systems, and computer and information security. Professor Mancini can be
reached bye-mail at mancini@dsi . uniromal. it and by regular mail at Di
partimento di Scienze dell'Informazione, Universita La Sapienza di Roma, Via
Salaria, 113,00198 Roma - Italy.

Cris Pedregal Martin is a doctoral candidate at the University of Massachusetts,
Amherst, USA. He obtained his Master's degree from the University of Mas
sachusetts, Amherst in 1993 and his Licenciado en Informatica degree from
ESLAI, Argentina. His current interests include recovery of database tran
saction systems.

Dr. C. Mohan recipient of the 1996 ACM SIGMOD Innovations Award, is the
founder and leader of the Exotica workflow project at mM Almaden. He is
the primary inventor of the ARIES family of locking and recovery algorithms,
and the Presumed Abort commit protocol. Dr. Mohan is an editor of the VLDB
Journal and Distributed and Parallel Databases - An International Journal. He
has received one mM Corporate Award and seven mM Outstanding Innovation
Awards. He is an inventor on twenty eight issued and two pending patents. Dr.
Mohan received his Ph.D. from the University of Texas at Austin. His current
address is K551B1, mM Almaden Research Center, 650 Harry Road, San Jose,
CA 95120, USA and can be reached bye-mail atmohan@almaden.ibm.com.

370 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Arvind H Nithrakashyap is a graduate student at the University of Mas
sachusetts, Amherst. He obtained his B.Tech degree in Computer Science and
Engineering from the Indian Institute of Technology, Madras, India in 1995.
His research interests include transaction processing and active databases and
he can be reached bye-mail at ni thraka@cs . umas s . edu.

Dr. Marian Nodine is the project coordinator for the Infosleuth project at
MCC. She received her Ph.D. from Brown University in 1993, and her S.B.
and S.M. from MIT in 1981. Prior to joining MCC, Marian worked as a post
doctoral research associate and an adjunct assistant professor at Brown Univer
sity. Her primary areas of interest include object-oriented query optimization
and advanced database transaction models. She also worked at BBN in data
communication and internet monitoring and management. Dr. Nodine has pub
lished over 15 papers in journals, conferences and books and is a member of
ACM.

Jitendra Padhye received his B.E. degree from Victoria Jubilee Technical In
stitute, Bombay, India, and his M.S. degree from Vanderbilt University, Nash
ville, Tennessee. He is currently a PhD candidate in the department of com
puter science at the University of Massachusetts, Amherst. His research in
terests include multimedia systems, database systems, performance evaluation
and computer networks. He can be reached at j itu@cs.umass.edu.

Dr. Calton Po was born in Taiwan, but grew up in Brazil. He is currently Pro
fessor at the Oregon Graduate Institute. His research interests are in operating
systems (Synthesis and Synthetix projects), extended transactions (Split/Join
and Epsilon Serializability), and large distributed system interoperability (DIOM
and Continual Queries). His current address is Department of Computer Sci
ence and Engineering, Oregon Graduate Institute, Portland, OR 97291, USA.
Professor Pu can be reached bye-mail at cal ton@cse.ogi. edu.

Dr. Krithi Ramamritham is a professor at the University of Massachusetts,
Amherst, USA. Professor Ramamritham's interests span the areas of real-time
systems, transaction processing in databases and real-time databases. He is an
editor of the IEEE Transactions on Distributed and Parallel Systems, Real-Time
Systems Journal, International Journal of Applied Software Technology, and
the Distributed Systems Engineering Journal. He has co-authored two tutorial
texts on hard real-time systems and a text on advances in database transaction
processing.

CONTRIBUTING AUTHORS 371

Indrajit Ray received his B.E. degree from Bengal Engineering College, Uni
versity of Calcutta, India in 1988 and his M.E. from Jadavpur University, Cal
cutta, India in 1991, both in Computer Science. At present he is a doctoral
candidate at George Mason University, Fairfax, VA. He expects to receive
his Ph.D. in Summer 1997. Indrajit's research interests include transaction
processing, concurrency control, information systems security and data and
knowledge based systems. He can be reached bye-mail at iray®isse.gmu.
edu.

Indrakshi Ray graduated from Bengal Engineering College, University of
Calcutta, India with a B.R degree in Computer Science in 1988 and from Ja
davpur University, Calcutta, India in 1991 with an M~E. degree also in Com
puter Science. Currently she is a doctoral candidate at George Mason Uni
versity, Fairfax, VA, with an expected graduation datae of Summer 1997. Her
research interests include database management systems, transaction process
ing, software requirement specification and verification and formal methods.
She can be reached bye-mail at indrakshi@isse.gmu. edu.

Dr. Andreas Reuter is a professor for computer science at the University
of Stuttgart. In 1988 he established the Institute of Parallel and Distributed
High-Performance Systems. His research interests are: Transaction process
ing, database technology, parallel programming, and performmance analysis.
His address is Institute of Parallel and Distributed High-Performance Systems
(IPVR), University of Stuttgart, Breitwiesenstr. 20-22, D-70565 Stuttgart, Ger
many. Professor Reuter can be reached bye-mail at reuter@informatik.
uni-stuttgart.de.

Kerstin Schneider received her M.Sc. degree (Dipl.-Inform.) in computer
science from the University of Kaiserslautem in 1994. Since then she is work
ing as a research assistant at the IPVR at Stuttgart University. Her research
interests are reliable workflow systems. Her address is Institute of Parallel and
Distributed High-Performance Systems (IPVR), University of Stuttgart, Bre
itwiesenstr. 20-22, D-70565 Stuttgart, Germany. She can be reached bye-mail
atkerstin.schneider@informatik.uni-stuttgart.de.

Friedemann Schwenkreis received a diploma in computer science from the
University of Stuttgart. He was a scientific staff member of the IPVR, Uni
versity of Stuttgart. Since 1997 he is working for mM Deutschland Entwick
lung GmbH as a scientific consultant. His address is Institute of Parallel and
Distributed High-Performance Systems (IPVR), University of Stuttgart, Bre-

372 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

itwiesenstr. 20-22, D-70565 Stuttgart, Germany. She can be reached bye-mail
atschwenkreis@informatik.uni-stuttgart.de.

Jayavel Shanmugasundaram received his B.E. degree in Computer Science
and Engineering from the Regional Engineering College, Tiruchirappalli, In
dia in 1995. He is currently a graduate student in the Department of Computer
Science at the University of Massachusetts, Amherst. His research interests in
clude transaction processing, data mining and object management for advanced
database applications. He can be reached at shan@cs. umass. edu.

Dr. Amit Sheth directs the Large Scale Distributed Information Systems Lab
(LSDIS, http://lsdis .cs. uga. edu) and is an Associate Professor of Com
puter Science at the University of Georgia, Athens, GA. His research interests
include multiparadigm transactional workflow (project METEOR), manage
ment of heterogeneous digital data and semantic issues in global information
systems (projects lnfoHamess & InfoQuilt), and interoperable information sys
tems involving intelligent integration of collaboration, collaboration and infor
mation management technologies. Professor Sheth has approximately 100 pub
lications to his credit, given over 50 invited and colloquia talks and 15 tutorials
and professional courses, and lead four international conferences and a work
shop as a GenerallProgram (Co-)Chair in the area of information system co
operationlinteroperability, workflow management, and parallel and distributed
information systems, has served on over thirty five program and organization
committees, is on the editorial board of five journals, and has served twice as
an ACM Lecturer.

Rajendran M Sivasankaran is a Ph.D. student in the Department of Com
puter Science at the University of Massachusetts, Amherst. He received his
bachelors degree from the Birla Institute of Technology and Science, India.
His research interest include real-time databases, active databases, query pro
cessing and high performance databases and he can be reached at sivasank@
cs. umass . edu.

Dr. Nandit Soparkar is in the faculty at the University of Michigan, Ann Ar
bor. He obtained a Ph.D. from the University of Texas at Austin, and has
worked at the AT&T Bell Laboratories at Murray Hill. Nandit Soparkar has
authored several research papers and books, and has organized research acti
vities in his areas of research interest which include time-constrained tran
saction management, data-mining technology, and logic-enhanced hardware
memory. He can be reached bye-mail atsoparkar®eecs.umich. edu.

CONTRIBUTING AUTHORS 373

Malek Tayara is a Ph.D. student at the University of Michigan, Ann Arbor. He
has research interests in distributed databases and real-time communications.
His current work is on distributed coordination for reconfigurable automated
manufacturing systems. Malek Tayara has work experience at Intel and I-Cube.

Dr. Patrick Valduriez received his Ph.D. degree and Doctorat d'Etat in Com
puter Science from the University of Paris in 1981 and 1985, respectively. He
is currently a Director of Research at INRIA, the national research center for
computer science in France. There he heads a group of 20 researchers work
ing on advanced database technology including distributed, parallel, active, and
object-oriented database systems. Since 1995, he is also heading the R&D joint
venture Dyade between Bull and Inria to foster technology transfer in the ar
eas of Internetllntranet. He is an associate editor of several journals including
ACM Transactions on Database Systems, the VLDB Journal and Distributed
and Parallel Databases. In 1994, he was elected a trustee of the VLDB endow
ment. He can be reached bye-mail atPatrick.Valduriez@inria.fr.

Marisa Viveros is an advisory software engineer at ffiM TJ. Watson Research
Center in Hawthorne, New York. She received her M.S. in Computer Sci
ence from California State University, and her B.S. in Electrical Engineering
from the University of Concepcion, Chile. Her research areas include parallel
databases, decision support, data mining and transaction processing. Prior to
ffiM, Ms. Viveros worked as an independent consultant, and at AT &Trreradata.

Dr. Gerhard Weikum received the M.Sc. degree (Dipl.-Inform.) and the Ph.D.
degree (Dr.-Ing.) both in computer science from the University of Darmstadt,
Germany, in 1982 and 1986, respectively. Dr. Weikum is a Full Professor in
the Department of Computer Science of the University of the Saarland at Saar
bruecken, Germany, where he is leading a research group on database systems.
Dr. Weikum's research interests include parallel and distributed information
systems, transaction processing and workflow management, and database op
timization and performance evaluation. Dr. Weikum serves on the editorial
boards of ACM Transactions on Database Systems, The VLDB Journal, and the
Distributed and Parallel Databases Journal. Professor Weikum can be reached
bye-mail atweikum@cs.uni-sb.de

Devashish Worah is a senior component-software engineer in the Professional
Services group at I-Kinetics, Inc., Burlington, MA. He is involved with the
analysis, design, and implementation oflarge-scale, CORBA and WWW-based
distributed information systems, and in defining a methodology for transition
ing legacy systems to objec t-based distributed environments. He completed

374 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

his B.S. in Computer Science and Mathematics at Georgia College and State
University, Milledgeville, GA and is working towards completing his Master's
dissertation at the University of Georgia. His current research interests include
workflow technology, distributed object computing, reliability in distributed
systems, and legacy integration.

Ming Xiong is a Ph.D. candidate in the Department of Computer Science at the
University of Massachusetts, Amherst. He received his B.S. degree in Com
puter Science and Engineering from Xi'an Jiaotong University, Xi'an, China
in 1990 and his M.S. degree in Computer Science from the University of Mas
sachusetts at Amherst in 1996. His research interests include databases and
real-time systems. He is a student member of ACM and IEEE. Ming Xiong
can be reached at xiong@cs . umass . edu.

Index

Abstraction level, 214
Acceptance function, 141
A~A,8,92, 110,262

abort dependency, 110
commit dependency, 110

Active database, 262
ActiveX,4
Advanced transaction models, 3, 5-6, II, 215

ACfA,8
ASSET,8
Flexible, 8
Multi-Level, 8
Nested,7
Open Nested, 7
Saga, 7
Workflow Systems, a normative

perspective, 34
All-or-nothing, 213
Alternate tasks, 15
Application semantics, 305, 308, 311,314,

317
ARIES, 214, 226

backward chain, 227
ARIESIRH, 214, 227
ASSET, 9, 92-93, 262
Atomicity, 304, 317

semantic, 316
Autonomy, 305
Auxiliary variables, 162
Available quorums, 244
Blocking, 308
B~oadcast disk, 322, 333
Callbacks, 71
Capability

graph oflocking, 199,202,205,207
locking, 211
locking, 186

Carnot, 262

Causal connection, 65,68,72-73
CGI,23
Checkpoints, 218, 233
Class

abstract, 189
ATMBackend, 194
compiled form, 184, 190, 211
extend, 187,203
extension, 211
file format, 190,212
FlatTransaction, 203
java, 184-185,211
LockingCapability, 197,201-204
MethodInvocation, 194-195
persistence-aware, 185
STNestedTransaction, 205
transaction-aware, 188
TransactionShell, 189, 193, 195,202-203,

205,298
Code reusability, 93
Cold-standby, 48
Commit protocol, 307, 315-316

flexible, 93
Common Object Request Broker

Architecture, 4
Communication primitive, 305, 307, 311, 317
Commutativity, 81, 280
Compatibility table, 81
Compensation, 11, 13, 15, 131, 141

compensating steps, 131, 162
compensating subtransaction, 7-8
compensating task, 15
compensating transaction, 7
comprehensive, 146
horizon of, 8
partial backward recovery, 15
script-based, 144

376 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

workflow recovery, 15
Complete execution, 164
Composition of

java code with transaction, 189,209
software, 184
thread with transaction, 209, 211

Composition property, 165, 168
Composition

via runnable object, 189
Computation, 128

long-running, 128
Computational reflection, 64, 68
Concurrency control, 156, 303, 306, 323, 334

performance of, 309-310
real-time, 304-305, 308-309, 311,

313-314,317
semantic based, 156

Conflict
conflict adapter, 74
detection, 198, 203
ignore-conflict relationships, 199,202
ignoring, 186, 198,210
notification, 186
resolution, 201

Consistency requirements (CR), 304
Consistency unit (C-unit), 12
Consistent execution, 166
Contingency steps, 13
Contingency subtransaction, 7
Contingent Transaction, 119
ConTract, 10,92, 127,260

compensable, 147
correctness

conflict relationship, 136
forward recovery, 10

Control-flow, 130
graph,130

Coordination control, 305, 308
CORBA,4, 19-20,22,35,53

Object Request Broker (ORB), 22
Object Transaction Service (UfS), 20

CORD,262
Correctness, 94

relaxed,94
serializability, 218, 322, 324, 331

Crash recovery, 288, 304, 306, 313-314
relaxed, 306, 309, 311, 315-316

CSCW,38
Customizable

concurrency control, 186
lock manager, 198, 202
locking mechanism, 210

transaction processing engine, 185, 189,
191

Customized
conflict detection, 198,202,206-207

Data structure
delegate log record, 228
object list, 228
transaction list, 228

Database management systems, 19
Database transactions, 28
DCOM,4
DelegateSet, 77
Delegation, 204, 214

global,201
locks, 201, 205, 210
partial, 201

Distributed Common Object Model, 4
Distributed synchronization, 306-307,310,

312-313,315
DOMS, 92
Durability, 135,221
Effective retrieval cost, 250
Electronic data interchange, 4, 29

ANSIX.12,4
HL7,4

Encina Toolkit, 88
Error

handling
advanced transaction models, 17
DBMS, 17
in METEOR2, 20
WFMS,17-18
workflow, 17

inWFMS,18
application and user, 18
infrastructure, 18
logical, 18
system, 18

Event
crash,219
handler, 69, 196,203
inner transaction, 197, 203
notification, 204
object, 225
operation on data objects, 217
pre-thread, 197, 203
pre-transaction, 197, 203
rec,219
transaction execution, 195,203
transaction management, 217, 219

Event-condition-action, II
rules, 259, 262

Exception handling, 11

Exotica, 12
Extended transaction interface, 75-76
Extensibility, 66
Failure atomicity, 213, 221
Fixed interface, 67
Flex, 92-93, 260
Flexible transactions, 8, 19,53
FlowMark, 12,44
Force policy, 230
Fonnalizing recovery properties, 214
Groupware, 38, 304, 306, 316
H-transaction, 93-94

coordinate-block,94
coordinator module, 95

lightweight coordinator module, 95
HAD,4
Hierarchical scheduling, 291
Hierarchy

class, 189
nested transaction, 205

Histories, 163
equivalence of, 221
hierarchy, 217
projection, 217

History
projection, 220

Hot-standby, 48
In-place updates, 233
INCA,12
Incremental design, 65
Information Carrier (INCA), 12
Interactive application, 304
Interface

ConflictNotificationHandler, 201-202
demarcating, 187, 191
external, 188, 195
java, 189,211
runnable, 189, 193, 195
transaction definition, 189,210
transaction processor, 189, 195

Interim replication, 254
Interoperability, 35, 65
Intra-transaction parallelism, 281
Invariant

entry, 131
exit, 131
generalizing, 161

IPL,8
Java, 4

bindings, 190, 209
compilers, 212
core reflection, 189, 195
exception, 194

JDBC,209
language, 184,209
method,193
persistence, 209
transaction, 209
virtual machine, 190,212

Join operation, 77
Level of customization, 67
Lock

adapter, 74

INDEX 377

delegation, 186,200-201,206
granularity, 186,201,211-212
holder, 206
manager, 67, 94, 189, 211
owner, 199
ownership, 206
retainer, 206

Locking, 306
capability, 197-198
mode, 198,205,212
rules, 199,205-207

Log,217
manager, 67, 94
stable, 218

Logical fragment, 240, 242
Main-memory database, 310
Manufacturing automation, 306-307
Message queues, 35, 49, 52-53
Meta level interface, 65,68,75-76
Meta object protocol, 65
Meta objects, 70
METEOR,12
METEOR2, 3, 22, 33

CORBA Objects, 22
error handling and recovery, 20
error handling, 20
hierarchical error model, 23

task and workflow errors, 24
task manager errors, 24
WFMS errors, 24

interface, 21
ORBWork, Reliable Distributed Engine, 22
processing entity, 20
recovery framework in ORBWork, 25
recovery framework, 21
recovery, 20
task manager, 21
task,21

compound,21
simple, 21
transactional, 21
two-phase commit, 21

378 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

workflow map, 22
workflow model, 20
workflow scheduler, 21

architectures, 21
Middleware, 35, 53, 304, 306
Mobile Computing, 321
Multi-level transaction, 8
Multi-level transaction, 282

compensation, 8
Multicast, 305, 307, 317
Multidatabase, 154
Nested process management environment, 13,

15
workflow recovery, 15

Nested transaction, 7
contingency subtransaction, 7

Nested transactions, 92, 121
No-steal policy, 230
Non-Transactional, 12
Notes, 4,19
Notification

of conflicts, 201, 210
Object Z, 156

notation, 156
ObjectStore, 44
Office automation, 38
Online analytical processing, 44, 279
Online transaction processing, 44, 279

monitor, 66
Open implementation, 64
Open nested transaction, 7
Operation conflict, 80
Operation undo logging, 288
Optimization, 308
ORB,22
ORBWork,22

distributed scheduling, 23
error handling

exceptions, 26
error model, 23
failure model, 23
input and output data, 23
recovery framework, 25

cleanup task, 26
configuration Files, 26
CORBA,25
distributed, 27
global recovery manager (GRM), 26
hierarchical monitoring, 27
hierarchical, 27
local recovery manager (LRM), 26
logging, 25, 27
monitoring, 26

persistence stores, 25
persistence, 25
semi-automated, 27
watchdog, 26

recovery
compensation, 26
forward,27

task manager, 23
user tasks, 23

worklist, 23
Page,233
Paperless office, 38
Parallelism

parent -child, 206
sibling only, 208
sibling, 206

Parallelization, 281
Permeability, 135
Persistence, 303

orthogonal, 184-185
root of, 184-185

Persistent storage, 219
Persistent

Java, 184
Physical fragment, 240, 242
Post-access optimization, 242, 249
Pre-access optimization, 242, 246
Primitive

component, 189,210,297
Process group, 305, 311
Process management, 35
Process support system, 54
Query optimizing compiler (QOC), 238-239
Quorum piggybacking, 248-249
Quorum selection heuristic, 243
Re-usability, 188
Re-use, 190
Real-time application, 303-304
Real-time responsiveness, 304, 306, 309,

313-314,316
Recoverability, 81; 134
Recoverable Objects, 25

AIjuna,25
Recovery

advanced transaction models, 14
assurances, 221
checkpointing, 17
forward, 135
implementation, 18
in METEOR2, 20
ingredients, 215
interval, 219

large-scale WFMS, 18
logging, 17
mechanisms, 221
partial backward, 12
policies, 217
properties, 215
protocols, 217
requirements, 216, 221
rules, 216, 221
shadow paging, 17
transaction management, 14
workflow data, 17

replication, 17
workflow task, 16
workflow, 13

Redo, 13
Reflective computation, 72
Reflective module, 68
Reflective transaction framework, 64, 68, 93
Reflective update, 73
Reification, 70-71
Relax conflict, 85
Reliability, 13

large-scale WFMS, 18
Resource manager, 67, 94
Root

hierarchy, 189
Sagas, 7, 19,53,92, 111, 160,260

compensating subtransaction, 7
nested,7

Scheduling, 307-308, 310
heuristics, 292

Secure transactions, 116
Semantic atomicity, 166
Semantic concurrency control, 280
Semantic conflict, 80
Semantic gap, 214
Semantic history, 163-164

complete, 164
correct complete, 165
correct, 165

Semantic transaction model, 11
Semantics-based concurrency control, 80
Sentinel, 259, 268
Separation of interfaces, 73
Shredding effect, 238
Spanning sites, 245
Specification language, 156
Spheres of atomicity, 53
Spheres of control, 53
Split operation, 77
Split transaction, 263
State

logical
of database, 220

physical
of an object, 220
of database, 220

Steps, 130
Stepwise serial history, 163
Successful execution, 167
System architecture, 311, 313
Task precedence graph, 285
Tasks

transactional, 12
Thread,95

INDEX 379

composition with transaction, 186
inner, 194
locking capability, 198
participant, 197,202-204,207
transaction, 193,211

TP middleware, 67
TP Monitor, 9, 19,35,53
Transaction, 6, 92, 303, 305, 311

abort, 92, 194, 203
ACID properties, 94
adapters, 65, 68
atomicity, 94, 154
begin, 193
body, 193
Business-process Specific, 30
class, 187-189, 193,210
classical, 92
colored, 201, 207, 209
commit, 92

flexible, 103
compensating, 307, 316
composition, 241
connotations, 6
consistency, 94, 154
correctness, 134, 154

serializability, 136, 154
database, 6
decomposition, 153, 155, 165

valid,165
reasoning about, 155

demarcation interface, 76
dependencies, 92-93, 109
dependency, 186, 198,200,202,212
distributed, 307, 316
Domain Specific, 29
durability, 94
end, 193
event, 69, 95

handler, 95

