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Preface

Motivation

Modem enterprises rely on database management systems (DBMS) to collect,
store and manage corporate data, which is considered a strategic corporate re-
source. Recently, with the proliferation of personal computers and departmen-
tal computing, the trend has been towards the decentralization and distribution
of the computing infrastructure, with autonomy and responsibility for data now
residing at the departmental and workgroup level of the organization.

Users want their data delivered to their desktops, allowing them to incor-
porate data into their personal databases, spreadsheets, word processing doc-
uments, and most importantly, into their daily tasks and activities. They want
to be able to share their information while retaining control over its access and
distribution.

There are also pressures from corporate leaders who wish to use information
technology as a strategic resource in offering specialized value-added services
to customers. Database technology is being used to manage the data associated
with corporate processes and activities. Increasingly, the data being managed
are not simply formatted tables in relational databases, but all types of ob-
jects, including unstructured text, images, audio, and video. Thus, the database
management providers are being asked to extend the capabilities of DBMS to
include object-relational models as well as full object-oriented database man-
agement systems. Corporations are also using the World Wide Web and the
Internet to distribute information, conduct electronic commerce, and form vir-
tual corporations where services are provided by a collection of companies,
each specializing in a certain portion of the market. This implies that organi-
zations will form federations in which they will share information for the good
of the virtual enterprise.

Rather than viewing a database as a passive repository of information, users,
managers, and database system providers want to endow databases with active
properties, so that corporate databases can become an active participants in
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corporate processes, activities and workflows. Thus, there is a real need for ac-
tive databases that can deliver timely information to users based on their needs,
as expressed in profiles and subscriptions. Further, active databases must deal
with important events and critical conditions in real-time, that is, as they hap-
pen, and take appropriate actions to ensure the correctness and quality of data.
Finally, organizations are extracting historical data from on-line transaction
processing databases, loading it into data warehouses for on-line analytical
processing, and mining it for important patterns and knowledge. These pat-
terns drive decision-making processes to improve corporate workflow, enhance
customer satisfaction, and attain competitive advantage.

Clearly, the trends discussed above pose new requirements and challenges
for the design and implementation of next-generation database management
systems. For example, we cannot rely on traditional transaction processing
models with their stringent locking protocols because many corporate activities
require support for long-running transactions. In federated systems one cannot
impose a processing protocol on a federation partner, rather one must rely on
negotiated contracts and commitments for specified levels of service.

New workflow models are required to define computer- and database-suppor-
ted activities to cooperate in the integration and sharing of information among
functional units in the organization. The reengineering of processes and acti-
vities can benefit from these new workflow models. These concepts may find
their way into the new database management systems or into “middle-ware”
products that work in conjunction with the DBMS.

Advanced Transaction Models and Architectures

It is in the context of evolving requirements, uses and expectations for data-
base management systems that we have assembled this important collection of
papers authored by world-renowned thinkers, designers and implementors of
database systems to address the issues associated with advanced transaction
models and architectures. The issues discussed in the book include: 1) work-
flow models, 2) new transaction models, protocols and architectures, 3) se-
mantic decomposition of transactions, 4) distributed processing, 5) real-time
transaction processing, 6) active databases, and 6) new concurrency models for
transactional workflows.

We have divided the book into sections and have grouped the papers into
topic areas. Part I deals with Workflow Transactions. D. Worah and A. Sheth
discuss the role of transactions in workflows, including such topics as recov-
ery and error handling for long-running workflows. G. Alonso and C. Mohan
address architectures for workflow management systems, and discuss the chal-
lenges facing designers of such systems.

Part I deals with tool-kit approaches to transaction processing. R. Barga
and C. Pu present a Reflective Transaction Framework for implementing ad-
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vanced transaction models as well as semantics-based concurrency control. L.
Mancini, I. Ray, S. Jajodia and E. Bertino address flexible commit protocols
and show how a general framework can address specific issues such as sagas,
workflows, long-lived activities and transactions, and transaction dependen-
cies.

Part III addresses semantic issues associated with transactions, specifically
within the context of the ConTracts Model, and also in the semantic decom-
position of transactions. A. Reuter, K. Schneider and F. Schwenkreis provide
a survey of the ConTracts model, and show how it can be used for handling
workflows and properties dealing with the correctness of long-running transac-
tions. P. Ammann, S. Jajodia, and I. Ray focus on the semantics-based decom-
position of transactions, introduce concepts such as compensating steps and
semantic histories, and prove useful properties of valid decompositions and the
processing of such decomposed transactions.

Part IV deals with concurrency control and recovery of transactions. L.
Daynes, M. Atkinson, and P. Valduriez discuss how one can customize con-
currency control for “persistent” Java. They present a programming model
and a transaction shell to support user trade-off analysis and design decisions.
C. Martin and K. Ramamritham provide a formal model for recovery of ad-
vanced transactions. They couch their model in the form of requirements, as-
surances and rules to ensure failure atomicity, transaction durability, and recov-
ery. They discuss the model and framework within the context of the ARIES
and ARIES/RH recovery protocols.

Part V focuses on transaction optimization techniques. A. Helal, Y-S. Kim,
M. Nodine, A. Elmagarmid, and A. Heddaya discuss the failings of current
architectures, propose a novel approach based on pre- and post-optimization,
and discuss the role of query optimization as it relates to query decomposition,
site assignment and replication strategies.

Part VI discusses how the Event-Condition-Action (ECA) paradigm from
active databases can be used to implement transaction models. A. Anwar, S.
Chakravarthy, M. Viveros present this approach within the Zeitgeist object-
oriented database management system.

Part VII discusses the role of inter- and intra-transaction parallelism in the
context of both on-line transaction processing (OLTP) and on-line analytical
processing (OLAP). C. Hasse and G. Weikum present these concepts within
the framework of the PLENTY system which supports both kinds of transaction
processing. This is quite different from the current approach in which OLAP
is done separately in a data warehouse which is constructed by extracting data
from corporate on-line transaction processing systems.

Part VIII is devoted to Real-Time Data Management and P. Jensen, N. Sopar-
kar and M. Tayara discuss real-time concurrency and coordination control in
the context of distributed systems.
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Part IX completes our collection with a focus on Mobile Computing. J.
Shanmugasundaram, A. Nithrakashyap, J. Padhye, R. Sivasankaran, M. Xiong,
and K. Ramamritham discuss transaction models in the context of mobile sys-
tems in which low bandwidth, low storage capacity and insufficient power im-
pose new challenges for client-server communication and transactions.

We would like to extend our sincerest thanks to Mr. Indrajit Ray who assisted
with every aspect of preparing this book, from collection of manuscripts from
the authors to dealing with the Kluwer staff regarding IATigX-related issues.
Thanks are also due to our publisher, Mr. Alex Greene, whose enthusiasm and
support for this project was most helpful.

SUSHIL JAJODIA AND LARRY KERSCHBERG
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]. TRANSACTIONS IN
TRANSACTIONAL WORKFLOWS

Devashish Worah and Amit Sheth

Abstract: Workflow management systems (WFMSs) are finding wide applica-
bility in small and large organizational settings. Advanced transaction models
(ATMs) focus on maintaining data consistency and have provided solutions to
many problems such as correctness, consistency, and reliability in transaction
processing and database management environments. While such concepts have
yet to be solved in the domain of workflow systems, database researchers have
proposed to use, or attempted to use ATMs to model workflows. In this paper
we survey the work done in the area of transactional workflow systems. We then
argue that workflow requirements in large-scale enterprise-wide applications in-
volving heterogeneous and distributed environments either differ or exceed the
modeling and functionality support provided by ATMs. We propose that an ATM
is unlikely to provide the primary basis for modeling of workflow applications,
and subsequently workflow management. We discuss a framework for error han-
dling and recovery in the METEOR; WEMS that borrows from relevant work in
ATMs, distributed systems, software engineering, and organizational sciences.
We have also presented various connotations of transactions in real-world orga-
nizational processes today. Finally, we point out the need for looking beyond
ATMs and using a multi-disciplinary approach for modeling large-scale work-
flow applications of the future.

1.1 INTRODUCTION

A workflow is an activity involving the coordinated execution of multiple fasks
performed by different processing entities [Krishnakumar and Sheth, 1995]. A
workflow process is an automated organizational process involving both hu-
man and automated tasks. Workflow management is the automated coordina-

S. Jajodia et al. (eds.), Advanced Transaction Models and Architectures
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tion, control and communication of work as is required to satisfy workflow
processes [Sheth et al., 1996a]. There has been a growing acceptance of work-
flow technology in numerous application domains such as telecommunications,
software engineering, manufacturing, production, finance and banking, health
care, shipping and office automation [Smith, 1993, Joosten et al., 1994, Geor-
gakopoulos et al., 1995, Fischer, 1995, Tang and Veijalainen, 1995, Sheth
et al., 1996b, Palaniswami et al., 1996, Bonner et al., 1996, Perry et al., 1996].
Workflow Management Systems (WFMSs) are being used in inter- and intra-
enterprise environments to re-engineer, streamline, automate, and track organi-
zational processes involving humans and automated information systems.

In spite of the proliferation of commercial products for workflow manage-
ment (including modeling and system supported enactment), workflow tech-
nology is relatively immature to be able to address the myriad complexities as-
sociated with real-world applications. The current state-of-the-art is dictated by
the commercial market which is focused toward providing automation within
the office environment with emphasis on coordinating human activities, and
facilitating document routing, imaging, and reporting. However, the require-
ments for workflows in large-scale multi-system applications executing in het-
erogeneous, autonomous, distributed (HAD) environments involving multiple
communication paradigms, humans and legacy application systems far exceeds
the capabilities provided by products today [Sheth, 1995].

Some of the apparent weaknesses of workflow models that need to be ad-
dressed by the workflow community include the lack of a clear theoretical
basis, undefined correctness criteria, limited support for synchronization of
concurrent workflows, lack of interoperability, scalability and availability, and
lack of support for reliability in the presence of failures and exceptions [Bre-
itbart et al., 1993, Jin et al., 1993, Georgakopoulos et al., 1995, Mohan et al.,
1995, Alonso and Schek, 1996b, Kamath and Ramamritham, 1996a, Leymann
et al., 1996, Alonso et al., 1996a]. In addition, a successful workflow-enabled
solution should address many of the growing user needs that have resulted
from:

= emerging and maturing infrastructure technologies and standards for dis-
tributed computing such as the World Wide Web, Common Object Re-
quest Broker Architecture [OMG, 1995b], Distributed Common Object
Model (DCOM), ActiveX, Lotus Notes, and Java.

®  increasing need for electronic commerce using standard protocols such
as Electronic Data Interchange (EDI) (e.g., ANSI X.12 and HL7),

»  additional organizational requirements in terms of security and authenti-
cation,

»  demands for integrated collaboration (not just coordination) support,
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s increasing use of heterogeneous multimedia data, and

= requirements to support dynamic workflows to respond to the fast chang-
ing environment (e.g., defense planning), or for supporting today’s dy-
namic and virtual enterprises.

Workflow technology has emerged as a multi-disciplinary field with sig-
nificant contributions from the areas of software engineering, software pro-
cess management, database management, and distributed systems [Sheth et al.,
1996a]. In spite of the standardization efforts of the Workflow Management
Coalition [Coalition, 1994], a consensus on many broader aspects have not yet
been achieved.

Work in the areas of transaction processing [Gray and Reuter, 1993] and
database systems, and many (but not all) efforts related to ATMs [Elmagarmid,
1992, Chrysanthis and Ramamritham, 1991, Georgakopoulos et al., 1994], are
based on a strong theoretical basis. They have proposed or documented solu-
tions (although many of which have yet to be implemented) to problems such
as correctness, consistency, and recovery when the constituent tasks are trans-
actional, or the processing entities provide a transactional interface. There
exists a strong school of thought, primarily comprised of researchers from
the database community, which views a workflow model as an extension of
ATMs [Georgakopoulos and Hornick, 1994, Georgakopoulos et al., 1994, Chen
and Dayal, 1996, Biliris et al., 1994, Weikum, 1993, Waechter and Reuter,
1992]. However, it has also been observed [Breitbart et al., 1993, Alonso et al.,
1996b, Worah and Sheth, 1996] that ATMs have limited applicability in the
context of workflows due to their inability to model the rich requirements of
today’s organizational processes adequately.

Traditional database transactions provide properties such as failure atomicity
and concurrency control. These are very useful concepts that could be appli-
cable in workflows. For example, failure atomicity can be supported for a task
that interacts with a DBMS, or a group of tasks using the two-phase commit
protocol. There is a potential need for concurrency control and synchronization
of workflow processes for addressing correctness concerns during workflow
execution [Jin et al., 1993, Alonso et al., 1996a]. Based on our review of re-
quirements of existing applications using workflows [Worah and Sheth, 1996},
we feel that transactional features form only a small part of a large-scale work-
flow application. Workflow requirements either exceed, or significantly differ
from those of ATMs in terms of modeling, coordination and run-time require-
ments. It would definitely be useful to incorporate transactional semantics such
as recovery, relaxed atomicity and isolation to ensure reliable workflow execu-
tions. Nevertheless, to view a workflow as an ATM, or to use existing ATMs
to completely model workflows would be inappropriate. We do not think that
existing ATMs provide a comprehensive or sufficient framework for modeling
large-scale enterprise-wide workflows.
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Our observations in this chapter reflect our experience in modeling and
development efforts for a real-world workflow application for immunization
tracking [Sheth et al., 1996b, Palaniswami et al., 1996], experience in try-
ing to use flexible transactions in multi-system telecommunication applica-
tions [Ansari et al., 1992], and our understanding of the current state of the
workflow technology and its real-world or realistic applications [Sheth et al.,
1996b, Medina-Mora and Cartron, 1996, Bonner et al., 1996, Ansari et al.,
1992, Vivier et al., 1996, Sheth and Joosten, 1996].

We emphasize the need for looking beyond the framework of ATMs for mod-
eling and executing workflow applications. The term transaction as it is used
in business processes today has multiple connotations, database transactions
being only one of them. For example, EDI transactions are used for defining
interfaces and data formats for exchange of data between organizations and
Health Level 7 (HL7) transactions are used to transfer patient data between
health care organizations. We discuss other uses of this term in section 1.7.
Workflow systems should evolve with the needs of the business and scientific
user communities, both in terms of modeling and run-time support. Of course,
it is possible that in some specific domains, ATM based workflow models may
be sufficient, however, we believe, such cases would be very few.

The organization of this chapter is as follows. Sections 2 through 5 are
tutorial in nature. In section 2 we review the research in the domain of ATMs.
The next section discusses the characteristics of transactional workflows and
significant research in this area. One of the primary focus of transactional
workflows is recovery. In section 4 we highlight the issues involved in recovery
for workflow systems. Section 5 discusses the types of errors that could occur
during workflow execution. In section 6 we discuss a practical implementation
of error handling and recovery in a large-scale WFMS. Section 6 provides a
perspective into the characteristics and interpretation of transactions as they
exist in workflow applications today. Finally, we conclude the paper with our
observations regarding the role of transactions in transactional workflows.

1.2 ADVANCED TRANSACTION MODELS

In this section we will briefly describe some of the ATMs discussed in the
literature [Gray and Reuter, 1993, Elmagarmid, 1992]. These models can be
classified according to various characteristics that include transaction struc-
ture, intra-transaction concurrency, execution dependencies, visibility, durabil-
ity, isolation requirements, and failure atomicity. ATMs permit grouping of
their operations into hierarchical structures, and in most cases relax (some of)
the ACID requirements of classical transactions. In this section, we discuss
some of the ATMs that we feel are relevant in the context of workflow systems.
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1.2.1 Nested Transactions

An important step in the evolution of a basic transaction model was the ex-
tension of the flat (single level) transaction structure to multi-level structures.
A Nested Transaction [Moss, 1982] is a set of subtransactions that may recur-
sively contain other subtransactions, thus forming a transaction tree. A child
transaction may start after its parent has started and a parent transaction may
terminate only after all its children terminate. If a parent transaction is aborted,
all its children are aborted. However, when a child fails, the parent may choose
its own way of recovery, for example the parent may execute another sub-
transaction that performs an alternative action (a contingency subtransaction).
Nested transactions provide full isolation at the global level, but they permit
increased modularity, finer granularity of failure handling, and a higher degree
of intra-transaction concurrency than the traditional transactions.

1.2.2 Open Nested Transactions

Open Nested Transactions [Weikum and Schek, 1992] relax the isolation re-
quirements by making the results of committed subtransactions visible to other
concurrently executing nested transactions. This way, a higher degree of con-
currency is achieved. To avoid inconsistent use of the results of committed
subtransactions, only those subtransactions that commute with the committed
ones are allowed to use their results. Two transactions (or, in general, two op-
erations) are said to commute if their effects, i.e., their output and the final state
of the database, are the same regardless of the order in which they were exe-
cuted. In conventional systems, only read operations commute. Based on their
semantics, however, one can also define update operations as commutative (for
example increment operations of a counter).

1.2.3 Sagas

A Saga [Garcia-Molina and Salem, 1987] can deal with long-lived transac-
tions. A Saga consists of a set of ACID subtransactions Ty, ..., T, with a pre-
defined order of execution, and a set of compensating subtransactions CTy, ...,
CT,—1, corresponding to Ty, ..., Tp—1. A saga completes successfully, if the
subtransactions T, ..., T,, have committed. If one of the subtransactions, say
Ti, fails, then committed subtransactions Ty, ..., Ty_; are undone by executing
compensating subtransactions CTy_j, ..., CT;. Sagas relax the full isolation
requirements and increase inter-transaction concurrency. An extension allows
the nesting of Sagas [Garcia-Molina et al., 1991]. Nested Sagas provide use-
ful mechanisms to structure steps involved within a long running transaction
into hierarchical transaction structures. This model promotes a relaxed notion
of atomicity whereby forward recovery is used in the form of compensating
transactions to undo the effects of a failed transaction.
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1.2.4 Multi-Level Transactions

Multi-Level Transactions are more generalized versions of nested transactions
[Weikum and Schek, 1992, Gray and Reuter, 1993]. Subtransactions of a multi-
level transactions can commit and release their resources before the (global)
transaction successfully completes and commits. If a global transaction aborts,
its failure atomicity may require that the effects of already committed subtrans-
actions be undone by executing compensating subtransactions. A compensat-
ing subtransaction ¢~ semantically undoes effects of a committed subtransac-
tion ¢, so that the state of the database before and after executing a sequence
t t~ is the same. However, an inconsistency may occur if other transaction
s observe the effects of subtransactions that will be compensated later [Gray
and Reuter, 1993, Garcia-Molina and Salem, 1987, Korth et al., 1990b]. Open
nested transactions use the commutativity to solve this problem. Since only
subtransactions that commute with the committed ones are allowed to access
the results, the execution sequence ¢ s ¢~ is equivalent to s ¢ 1~ and, according to
definition of compensation, to s, and therefore is consistent. A somewhat more
general solution in the form of a horizon of compensation, has been proposed
in [Krychniak et al., 1996] in the context of multi-level activities.

1.2.5 Flexible Transactions

Flexible Transactions [Elmagarmid et al., 1990, Zhang et al., 1994a] have been
proposed as a transaction model suitable for a multidatabase environment. A
flexible transaction is a set of tasks, with a set of functionally equivalent sub-
transactions for each and a set of execution dependencies on the subtransac-
tions, including failure dependencies, success dependencies, or external de-
pendencies. To relax the isolation requirements, flexible transactions use com-
pensation and relax global atomicity requirements by allowing the transaction
designer to specify acceptable states for termination of the flexible transaction,
in which some subtransactions may be aborted. IPL [Chen et al., 1993] is
a language proposed for the specification of flexible transactions with user-
defined atomicity and isolation. It includes features of traditional programming
languages, such as type specification to support specific data formats that are
accepted or produced by subtransactions executing on different software sys-
tems, and preference descriptors with logical and algebraic formulae used for
controlling commitments of transactions. Because flexible transactions share
some more of the features of a workflow model, it was perhaps the first ATM
to have been tried to prototype workflow applications [Ansari et al., 1992].

1.2.6 ACTA and its derivatives

Reasoning about various transaction models can be simplified using the ACTA
metamodel [Chrysanthis and Ramamritham, 1992]. ACTA captures the impor-
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tant characteristics of transaction models and can be used to decide whether
a particular transaction execution history obeys a given set of dependencies.
However, defining a transaction with a particular set of properties and assur-
ing that an execution history will preserve these properties remains a difficult
problem.

In [Biliris et al., 1994], the authors propose a relaxed transaction .facility
called ASSET. 1t is based on transaction primitives derived from the ACTA
framework that can be used at a programming level to specify customized,
application specific transaction models that allow cooperation and interaction.
The transaction primitives include a basic and an extended set of constructs
that can be used in an application that needs to support custom transactional
semantics at the application level. These can be used to support very limited
forms of workflows that involve transaction-like components. In some sense,
this demonstrates the limitations one may face when trying to use an ATM as a
primary basis for workflow modeling.

1.3 TRANSACTIONAL WORKFLOWS

The term transactional workflows [Sheth and Rusinkiewicz, 1993] was intro-
duced to clearly recognize the relevance of transactions to workflows. It has
been subsequently used by a number of researchers [Breitbart et al., 1993,
Rusinkiewicz and Sheth, 1995, Krishnakumar and Sheth, 1995, Georgakopou-
los et al., 1995, Tang and Veijalainen, 1995, Leymann et al., 1996]. Trans-
actional workflows involve the coordinated execution of multiple related tasks
that require access to HAD systems and support selective use of transactional
properties for individual tasks or entire workflows. They use ATMs to spec-
ify workflow correctness, data-consistency and reliability. Transactional work-
flows provide functionality required by each workflow process (e.g., allow task
collaboration and support the workflow structure) which is usually not avail-
able in typical DBMS and TP-monitor transactions. Furthermore, they address
issues related to reliable execution of workflows (both single and multiple) in
the presence of concurrency and failures.

Transactional workflows do not imply that workflows are similar or equiv-
alent to database transactions, or support all the ACID transaction properties.
They might not strictly support some of the important transaction features sup-
ported by TP monitors (e.g., concurrency control, backward recovery, and con-
sistency of data). Nevertheless, such workflows share the objectives of some of
the ATMs in terms of being able to enforce relaxed transaction semantics to a
set of activities.

In a somewhat conservative view, transactional workflows are workflows
supported by an ATM that defines workflow correctness and reliability crite-
ria [Georgakopoulos et al., 1995]. In such a workflow, the tasks are mapped
to constituent transactions of an advanced transaction supported by an ATM
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[Georgakopoulos et al., 1994], and control flow is defined as dependencies be-
tween transactional steps. Similarly, in [Weikum, 1993] an extra control layer
in terms of dependencies is added to ATM to provide functionality to the trans-
actions running in a large-scale distributed information systems environment.

A WFMS may provide transactional properties to support forward recovery,
and use system and application semantics to support semantic based correct
multi-system application execution [Sheth, 1995, Krishnakumar and Sheth,
1995]. These could include transaction management techniques such as log-
ging, compensation, etc. to enable forward recovery and failure atomicity. In
addition, the workflow could exhibit transactional properties for parts of its exe-
cution. It might use transaction management technology such as transactional-
RPC between two components of a WEMS (e.g, scheduler and task manager),
an extended commit coordinator [Miller et al., 1996], or a transactional proto-
col (XA) between a task manager and a processing entity.

In our view, the scope of transactional workflows extends beyond the purview
of database transactions and ATMs. Workflow executions include tasks that
might involve database transactions; however, large-scale workflow applica-
tions typically extend beyond the data-centric domains of databases and in-
frastructures that inherently support transaction semantics (e.g., TP-monitors),
to more heterogeneous, distributed and non-transactional execution environ-
ments.

1.3.1 Previous Research on using Transactions for Workflows

Two major approaches have been used to study and define transactional work-
flows. The first one utilize a workflow model that is based on supporting or-
ganizational processes (also called business process modeling) as its basis, and
complements it with transactional features to add reliability, consistency, and
other transaction semantics. In the second approach, ATMs are enhanced to in-
corporate workflow related concepts to increase functionality and applicability
in real-world settings. The degree to which each of the models incorporates
transactional features varies, and depends largely on the requirements (such as
flexibility, atomicity and isolation of individual task executions and multiple
workflow instances, etc.) of the organizational processes it tries to model. In
the remainder of this section, we discuss some of the research that has been
done using ATMs and workflows.

ConTracts [Waechter and Reuter, 1992] were proposed as a mechanism for
grouping transactions into a multitransaction activity. A ConTract consists of a
set of predefined actions (with ACID properties) called steps, and an explicitly
specified execution plan called a script. An execution of a ConTract must be
forward-recoverable, that is, in the case of a failure the state of the ConTract
must be restored and its execution may continue. In addition to the relaxed
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isolation, ConTracts provide relaxed atomicity so that a ConTract may be in-
terrupted and re-instantiated.

Workflow applications are typically long-lived compared to database trans-
actions. A workflow is seen as a Long-Running Activity in [Dayal et al., 1990,
Dayal et al., 1991]. A Long-Running Activity is modeled as a set of execution
units that may consist recursively of other activities, or top-level transactions
(i.e., transactions that may spawn nested transactions). Control flow and data
flow of an activity may be specified statically in the activity’s script, or dy-
namically by Event-Condition-Action (ECA) rules. This model includes com-
pensation, communication between execution units, querying the status of an
activity, and exception handling.

Motivated by advanced application requirements, several ATMs have been
proposed (refer to [Chrysanthis and Ramamritham, 1991, Georgakopoulos and
Homnick, 1994] for frameworks for defining and comparing ATMs, [Elma-
garmid, 1992] for several representative ATMs, for a representative model and
specification that support application specific transaction properties, and [Bre-
itbart et al., 1993, Hsu, 1993, Rusinkiewicz and Sheth, 1995] for earlier views
on relationships between workflows and ATMs). ATMs extend the traditional
(ACID) transaction model typically supported by DBMSs to allow advanced
application functionality (e.g., permit task collaboration and coordination as it
is required by ad hoc workflows) and improve throughput (e.g., reduce tran-
saction blocking and abortion caused by transaction synchronization). How-
ever, many of these extensions have resulted in application-specific ATMs that
offer adequate correctness guarantees in a particular application, but not in oth-
ers. Furthermore, an ATM may impose restrictions that are unacceptable in one
application, yet required by another. If no existing ATM satisfies the require-
ments of an application, a new ATM is defined to do so.

In {Georgakopoulos et al., 1994], the authors define an extended (advanced)
transaction framework for execution of workflows called the Transaction Spec-
ification and Management Environment (TSME). A workflow in this frame-
work consists of constituent transactions corresponding to workflow tasks. In
addition, workflows have an execution structure that is defined by an ATM;
the ATM defines the correctness criteria for the workflow. The TSME claims
to support various ATMs (extended transaction models) to ensure correctness
and reliability of various types of workflow processes. Extended transactions
consist of a set of constituent transactions and a set of dependencies between
them. These transaction dependencies specify the transaction execution struc-
tures or correctness criteria. A programmable transaction management mecha-
nism based on the ECA rules [Dayal et al., 1990] is used to enforce transaction
state dependencies.

Semantic transaction models aim to improve performance and data consis-
tency by executing a group of interacting steps within a single transaction and
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relaxing the ACID properties of this transaction in a controlled manner. In
[Weikum, 1993], the author suggests that semantic transaction concepts be
merged with workflow concepts to promote workflow systems that are con-
sistent and reliable. The author defines a transactional workflow to be a control
sphere that binds these transactions by using dependencies to enforce as much
behavioral consistency as possible thereby enforcing reasonable amount of data
consistency.

The METEOR? [Krishnakumar and Sheth, 1995] workflow model is an inte-
gration of many of the approaches described above. A workflow in METEOR
is a collection of multiple tasks. Each of the tasks could be heterogeneous
in nature. The execution behavior of the tasks are captured using well-defined
task structures. This model supports tasks that have both transactional and non-
transactional semantics. Groups of tasks along with their inter-task dependen-
cies can be modeled as compound tasks. The compound tasks have their task
structures too. Transactional workflows can be modeled using transactional
tasks and transactional compound tasks as the basis of the workflow model.
The METEOR,; WFMS [Miller et al., 1996, Sheth et al., 1996b] is based on
the METEOR model. It extends the model in terms of providing better sup-
port for failure recovery and error handling in heterogeneous and distributed
workflow environments (see section 1.6.1 for additional details).

The Exotica project [Alonso et al., 1995a, Alonso et al., 1996b] explores
the role of advanced transaction management concepts in the context of work-
flows. A stated objective of this research is to develop workflow systems that
are capable enough (in terms of reliability, scalability, and availability) to deal
with very large, heterogeneous, distributed and legacy applications. One of the
directions of this project is to research the synergy between workflow systems
and advanced transaction models; the results that follow point in the direction
that workflow systems are a superset of advanced transaction models [Alonso
et al., 1996b] -since workflow systems incorporate process and user oriented
concepts that are beyond the purview of most ATMs. Partial backward re-
covery has been addressed in the context of the FlowMark WFMS [Leymann,
1995] by generalizing the transactional notions of compensation.

One of the projects in which transactional semantics have been applied to
a group of steps define a logical construct called a Consistency unit (C-unit)
[Tang and Veijalainen, 1995]. A C-unit is a collection of workflow steps and
enforced dependencies between them. C-units relax the isolation and atomicity
properties of transactional models. The authors also discuss how C-units can
be used to develop transactional workflows that guarantee correctness of data
in the view of integrity constraints that might exist across workflow processing
entities.

The INformation CArrier (INCA) [Barbara et al., 1996a] workflow model
was proposed as a basis for developing dynamic workflows in distributed en-
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vironments where the processing entities are relatively autonomous in nature.
In this model, the INCA is an object that is associated with each workflow and
encapsulates workflow data, history and processing rules. The transactional
semantics of INCA procedures (or steps) are limited by the transaction sup-
port guaranteed by the underlying processing entity. The INCA itself is neither
atomic nor isolated in the traditional sense of the terms. However, transac-
tional and extended transactional concepts such as redo of steps, compensating
stepsand contingency steps have been included in the INCA rules to account
for failures and forward recovery.

In the Nested Process Management environment [Chen and Dayal, 1996]
a workflow process is defined using a hierarchical collection of transactions.
Failure handling is supported using a two-phase approach. During the first
phase of recovery, a bottom-up lookup along the task tree is performed to de-
termine the oldest parent transaction that does not need to be compensated.
The next phase involves compensation of all the children of this parent. In this
model, failure atomicity of the workflow is relaxed in terms of compensating
only parts of the workflow hierarchy.

The Workflow Activity Model(WAMO) [Eder and Liebhart, 1995] defines a
workflow model that enables the workflow designer in modeling reliable work-
flows [Eder and Liebhart, 1996]. It uses an underlying relaxed transaction
model that is characterized by relaxing i) failure atomicity of tasks, ii) serial-
izability of concurrent and interleaved workflow instance executions, and iii)
relaxing isolation in terms of externalization of task results.

Thus we see that transaction concepts have been applied to various de-
grees in the context of workflows. They have been used to define application
specific and user-defined correctness, reliability and functional requirements
within workflow executions. In the next section, we discuss features specific
to transactions and ATMs that would be useful for implementing recovery in a
WEMS.

1.4 WORKFLOW RECOVERY

Reliability is of critical importance to workflow systems [Georgakopoulos et al.,
1995, Georgakopoulos, 1994, Jin et al., 1993]. WFMS should not only be func-
tionally correct, but should also be robust in the view of failures. Workflow
systems (both commercial and research prototypes) in their current state, lack
adequate support for handling errors and failures in large-scale, heterogeneous,
distributed computing environments [Georgakopoulos et al., 1995, Alonso and
Schek, 1996b, Kamath and Ramamritham, 1996a, Sheth et al., 1996a, Ley-
mann et al., 1996]. Failures could occur at various points and stages within the
lifetime of the workflow enactment process. They could involve failures asso-
ciated with the workflow tasks (such as unavailability of resources, incorrect
input formats, internal application failures, etc.), failures within the workflow
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system components (such as schedulers, databases, etc.), and failures in the
underlying infrastructure (such as hardware and network failures). Reliabil-
ity in the context of workflows requires that tasks, their associated data, and
the WMES itself be recoverable in the event of failure, and that a well defined
method exists for recovery.

A workflow process is heavily dependent on the organizational structure,
and business policies within an organization. Workflows are activities that are
horizontal in nature and are spread across the organizational spectrum as com-
pared to transaction processing activities (e.g., database transactions) that are
more vertical or hierarchical in nature and might form only part of the work-
flow process. In other words, hierarchical decomposition used for complex ad-
vanced transaction models is not sufficient for modeling workflows. A WFMS
needs to support recovery of its tasks, associated data and the workflow process
as a whole. The heterogeneous nature of workflow tasks and processing enti-
ties might preclude any transactional semantics that are required for assuring
transactional behavior of the workflow or the constituent tasks themselves. A
viable recovery mechanism should be consistent with and should support the
overall goal of the business process concerned.

Valuable research addressing recovery has been done in transaction manage-
ment and ATMs [Bernstein et al., 1987, Gray and Reuter, 1993, Korth et al.,
1990b, Moss, 1987, Waechter and Reuter, 1992, Chen and Dayal, 1996] (see
sections 1.2 and 1.3.1). A strictly data-centric approach has been used to ad-
dress recovery issues in transaction processing. The problem domain of recov-
ery in a WFMS is broader than that of transaction systems and ATMs due to
its process-oriented focus, and diverse multi-system execution requirements.
Although the ideas proposed in ATMs are limited in terms of the domains and
environments they apply to, they are valuable in terms of their semantics and
overall objectives. In the next section, we discuss the value and applicability of
transaction concepts in the context of workflow recovery.

1.4.1 Transaction Concepts in Modeling Workflow Recovery

Earlier, we have discussed some of the ATMs that have been proposed in the
literature. Recovery involves restoration of state - a concept which is voiced
by transactional systems also. Later, we also reviewed some of the work in
transactional workflows, and different approaches for incorporating transac-
tional semantics into workflow models. We feel that transaction concepts are
necessary for a recovery mechanism to be in place; however, basing a work-
flow recovery framework on a transactional (or advanced) transactional model
would be naive.

As discussed in section 1.2.1, the hierarchical model in nested transactions
[Moss, 1982] allows finer grained recovery, and provides more flexibility in
terms of transaction execution. In addition to database systems, nested transac-
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tions can been used to model reliable distributed systems [Moss, 1987]. There
is a lot to learn from work done in nested transactions. It provides a model for
partitioning an application system into recoverable units; transaction failure is
often localized within such models using retries and alternative actions. Work-
flow systems can borrow these ideas to a great extent, and tasks can be retried
in the case of certain failures (e.g., failures related to unavailability of input
data, or inadequacy of resources for executing a task at a processing entity),
or alternate tasks can be scheduled to handle other more serious errors (e.g.,
when a certain number of retries fail, or when a task cannot be activated due to
unavailability of a processing entity) that might cause a task to fail.

In the work on nested process management systems [Chen and Dayal, 1996]

(discussed in section 1.3.1), the authors present a formal model of recovery
that utilizes relaxed notions of isolation and atomicity within a nested tran-
saction structure. Although, this model is more relaxed in terms of recovery
requirements as compared to nested transactions, it is strict for heterogeneous
workflow environments that involve tasks that are non-transactional in nature.
Moreover, the recovery model uses backward recovery of some of the child
transactions for undoing the effects of a failed global transaction. The back-
ward recovery approach has limited applicability in workflow environments in
which it is either not possible to strictly reverse some actions, or is not feasi-
ble (from the business perspective) to undo them since this might involve an
additional overhead or conflict with a business policy (e.g., in a banking appli-
cation).

The notion of compensation is important in workflow systems. Undoing of
incomplete transactions (or backward recovery) is an accepted repair mecha-
nism for aborted transactions. However, this concept is not directly applicable
to most real-world workflow tasks which are governed by actions that are in
general permanent (e.g, human actions and legacy system processing). One
can define a semantically inverse task (commonly referred to as compensat-
ing tasks), or a chain of tasks that could effectively undo or repair the damage
incurred by a failed task within a workflow. In addition to Sagas, semantic tran-
saction models have been proposed to address many such issues in which fail-
ure atomicity requirements have been relaxed. Compensation has been applied
to tasks and groups of tasks (spheres) to support partial backward recovery in
the context of the FlowMark WFMS [Leymann, 1995].

Work on flexible transactions[Elmagarmid et al., 1990, Zhang et al., 1994a]
discusses the role of alternate transactions that can be executed without sac-
rificing the atomicity of the overall global transaction. This provides a very
flexible and natural model for dealing with failures. These concepts are ap-
plicable in workflow environments also. A prototype workflow system that
implments a flexible transaction model has been discussed in [Alonso et al.,
1996b].
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In transactional models, the unit of recovery is a transaction. Each tran-
saction has a predefined set of semantics that are compliant with the transaction
processing system. The model for recovery in a workflow system is more in-
volved since the recovery process should not only restore the state of the work-
flow system, but should proceed forward in a manner that is compliant with the
overall organizational process.

Recovery of Workflow Tasks A task (activity or step) forms a basic unit
of execution within a workflow model. A task is a logical unit of work that is
used to satisfy the requirements of the business process that defines the work-
flow concerned. In database systems, it is sufficient to maintain before and
after images of the data affected by a transaction to guarantee enough infor-
mation needed to recover that transaction in case of its failure. Recovery of
tasks, therefore, should be addressed from a broader perspective; in addition to
focusing on data-centric issues, one must focus on the overall business model
associated with the actions within a task.

The tasks within a workflow could be arbitrarily complex and heterogeneous
(i.e., transactional and non-transactional) in nature. A workflow model pro-
posed in [Georgakopoulos et al., 1994] compares database transactions to tasks
within a workflow, thereby regarding a workflow task to be the unit of recovery.
This parallelism is valid when the tasks are relatively simple, obey transactional
semantics and are executing within an environment that can enforce the trans-
actional behavior of a group of tasks. Most real-world workflow applications
and run-time environments are far more complex in nature and may be spread
across arbitrary autonomous systems. Hence, a uniform recovery model based
solely on transactional assumptions is inapplicable to commercial workflow
systems.

Many task models have been defined for workflow systems [Attie et al.,
1993, Krishnakumar and Sheth, 1995, Rusinkiewicz and Sheth, 1995]. In spite
of this fact, it is difficult to determine the exact execution state of a task since
these task models do not model detailed task execution: One could implement
a workflow system involving special tasks that reveal their internal state to the
WEFMS layer; however, this workflow solution is not general enough to handle
tasks that are diverse and arbitrarily complex in nature. Guaranteeing strict
failure atomicity akin to that in database transactions is therefore difficult for
workflow tasks. Hence, recovery of tasks should be addressed from a broader
perspective. One should focus on the overall business process model when
trying to decide the next action to be performed when resolving task failures.

In the case of non-transactional tasks, it is difficult to monitor the exact
state of the task once it has been submitted for execution. This lack of control
could leave the system in an undeterministic state in view of failures. In such a
scenario, automatic recovery of a failed task becomes impossible due to lack of
run-time feedback or transactional guarantees from the processing entities. The
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role of the human (e.g., workflow administrator) is important for recovery in
such situations for determining the state of the failed task based on information
that is external to the workflow system. In the METEOR; system [Worah,
19971, a special task is used to cleanup the remnants of such failures and to
restore the workflow system to a consistent state. It could involve the role of a
human or an application that is programmed to be able to reconfigure the data
and applications associated with a task to restore it to a consistent state.

Recovery of Workflow Data Data plays an important role in workflow
systems, as is in the case of a DBMS and a TP-system. Data recovery issues
have been studied extensively in the context of database systems. Logging
and shadow paging are common mechanisms used in transaction processing
to record state of critical data persistently. Several checkpointing mechanisms
have been discussed in literature [Bernstein et al., 1987] to enhance the perfor-
mance of the recovery process. These principles can be applied to workflow
systems in situations related to making the state of the workflow components
persistent and the recovery process more efficient. In the case of distributed
WEMSs, it is also important to replicate data across machines to enhance data
availability in the view of hardware and network failures. This problem, once
again, has been studied extensively in the area of distributed databases; its ap-
plicability has also been studied in workflow systems [Alonso et al., 1995b] to
enhance their availability.

1.5 WORKFLOW ERROR HANDLING

Error handling is another critical area of workflow research that has not re-
ceived adequate attention [Georgakopoulos et al., 1995, Alonso and Schek,
1996b]. The cause of errors in workflow systems could be multifarious. Errors
are logical in nature; they could be caused due to failures within the workflow
system, or failures occurring at the task level.

Error handling in database systems has typically been achieved by abort-
ing transactions that result in an error [Gray and Reuter, 1993]. Aborting or
canceling a workflow task, would not always be appropriate or necessary in a
workflow environment. Tasks could encapsulate more operations than a data-
base transaction, or the nature of the business process could be forgiving to
the error thereby not requiring an undo operation. Therefore, the error han-
dling semantics of traditional transactional processing systems are too rigid for
workflow systems.

A mechanism for dealing with errors in an ATM for long running activities
was proposed in [Dayal et al., 1990, Dayal et al., 1991]. It supported forward
error recovery, so that errors occurring in non-fatal transactions could be over-
come by executing alternative transactions. Although, this model provides well
defined constructs for defining alternative flow of execution in the event of er-
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rors, it is restrictive in terms of the types of activities (relaxed transactions)
and the operating environment (a database) that form the long running process
and therefore, it does not provide the error modeling capabilities of capturing
workflow errors.

We can characterize the types of errors arising in a WFMS into three broad
categories:

s Infrastructure errors: these errors result from the malfunctioning of the
underlying infrastructure that supports the WFMS. These include com-
munication errors such as loss of information, and hardware errors such
as computer system crashes and network partitioning.

m  System errors: these errors result from faults within the WEMS software.
This could be caused due to faults in the hardware, or operating system.
An example is the crash of a workflow scheduler.

»  Application and user errors: these errors are closely tied to each of the
tasks, or groups of tasks within the workflow. Due to its dependency on
application level semantics, these errors are also termed as logical errors
[Krishnakumar and Sheth, 1995]. For example, one such error could
involve database login errors that might be returned to a workflow task
that tries to execute a transaction without having permission to do so at a
particular DBMS. A failure in enforcing inter-task dependencies between
tasks is another example of an application error.

The above categorization is a descriptive model for categorizing errors within
WEFMSs. Large-scale WFMSs typically span across heterogeneous operating
environments; each task could be arbitrarily complex in nature. To be able to
detect and handle errors in such a diverse environment, we need a well-defined
error model that-would help us specify, detect and handle the errors in a sys-
tematic fashion. In 1.6.1.3 we define a hierarchical error model that forms the
basis for handling errors in the METEOR, WFMS.

In the previous sections, we have discussed research done in the area of
ATMs, transactional workflows, and the problem of error handling and recov-
ery in WFMSs. In the next section we outline issues that are important for
implementing a reliable WFMS. In doing so, we discuss a specific example of
a WFMS that exploits many of the concepts from transactional systems and
ATMs to include support for error handling and recovery.

1.6 TRANSACTIONS, ATMS AND RECOVERY IN LARGE-SCALE
WFMSS

Pervasive network connectivity, coupled with the explosive growth of the Inter-
net has changed our computational landscape. Centralized, homogeneous, and
desktop-oriented technologies have given way to distributed, heterogeneous
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and network-centric ones. Workflow systems are no exceptions. They would
typically be required to operate in such diverse environments in a reliable man-
ner. Implementation of error handling and recovery in a WEMS is affected
by numerous factors ranging from the underlying infrastructure (e.g., DBMS,
TP-monitor, Lotus Notes, CORBA, Web), architecture of the supporting frame-
work (e.g., centralized vs. distributed), nature of the processing entities (e.g.,
open vs. closed, transactional vs. non-transactional, human vs. computer sys-
tem), type of tasks (user vs. system, transactional vs. non-transactional), and
the nature of the workflow application (e.g., ad-hoc vs. administrative vs. pro-
duction). Most of these issues are beyond the purview of transaction-based
systems, and therefore have not been adequately tackled by them.

A single recovery mechanism cannot be applied to all workflow applica-
tions due to the diversity of their business logic. Also, the variations in WFMS
run-time architectures and execution environments would dictate the choice of
suitable recovery mechanisms. A workflow is a collection of tasks; the tasks
could be arbitrary in nature. It is impossible to include task specific semantics
within a generalized recovery framework since task behavior is orthogonal to
that of the workflow process. Nevertheless, a WFMS should provide the nec-
essary infrastructure to support error handling and recovery as needed by the
task. It should also provide tools to allow users to specify failure handling se-
mantics that are conformant with the governing business process model. This is
an important characteristic that differentiates failure handling in workflow sys-
tems from that in transaction processing where it suffices to satisfy the ACID
properties for transactions.

ATMs provide techniques for handling failures (see Section 1.2). However,
most of these ATMs do not discuss any aspects of implementation. Imple-
mentation of processes in workflow systems require support for business level
details such as groups, roles, policies, etc. ATMs are weak in this aspect, since
they define models that are focused towards the tasks themselves (in this case
advanced transactions). Therefore, workflow systems are implemented at a
higher level of granularity than ATMs. In fact, in [Alonso et al., 1996b] sagas
and flexible transactions have been implemented using a WFMS.

WEFMSs in distributed environments are dependent on inter-process commu-
nication across possibly heterogeneous computing infrastructures. In such sys-
tems, it is important that communication between processes is reliable. Trans-
actional RPC mechanisms have been used in distributed transaction processing
to guarantee reliable messaging between distributed processes. They can also
be incorporated into workflow systems [Wodtke et al., 1996] to guarantee trans-
actional messaging between the workflow components thereby increasing the
level of fault-tolerance of the WFMS infrastructure.

TP-monitors have been used extensively to guarantee transactional seman-
tics across distributed process spaces. They are, therefore, a viable middleware
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technology for implementing workflow systems. However, their use within a
workflow environment comes with a lot of cost: 1) it is not feasible to impose
infrastructural homogeneity (e.g., use of TP-monitors) across autonomous or-
ganizations, and 2) it is very expensive to maintain and administer especially
when workflow process span multiple organizations. Emerging infrastructure
technologies such as Web, CORBA, and DCOM, on the other hand, provide
more open and cost effective solutions for implementing large-scale distributed
workflow applications [Sheth et al., 1996b, Palaniswami et al., 1996]. In partic-
ular, the CORBA standard [OMG, 1995b] includes specifications for services
[OMG, 1995a] such as the Object Transaction Service (OTS), the Concurrency
Control Service, and the Persistence Service that can be combined to form
a framework for achieving TP-monitor-like functionality in a HAD environ-
ments.

1.6.1 Error Handling and Recovery in the METEORy WFMS

The study of workflow systems is inter-disciplinary, and stems from areas such
as distributed systems, database management, software process management,
software engineering, and organizational sciences [Sheth et al., 1996a)]. Error
handling and recovery are equally critical in these domains, and numerous so-
lutions have been suggested to address these problems [Bhargava, 1987, Bern-
stein et al., 1987, Cristian, 1991, Saastamoinen, 1995].

In this section, we present an error handling and recovery framework that
we have implemented for the distributed run-time of the METEOR, WFMS.
This solution has been based on principles and implementation ideas that we
have borrowed from related research in databases, advanced transaction mod-
els, software engineering and distributed systems. Due to lack of space, brevity
is key in our discussions (for additional details, see [Worah, 1997]).

1.6.1.1 Overview of METEOR,; Workflow Model. The METEOR,
workflow model is an extension of the METEOR [Krishnakumar and Sheth,
1995] model, and is focused towards supporting large-scale multi-system work-
flow applications in heterogeneous and distributed operating environments. The
primary components of the workflow model include 1) processing entities and
their interfaces, 2) tasks, 3) task managers, and 4) the workflow scheduler.

®  Processing Entity: A processing entity is any user, application system,
computing device, or a combination thereof that is responsible for com-
pletion of a task during workflow execution. Examples of processing
entities include word processors, DBMSs, script interpreters, image pro-
cessing systems, auto-dialers, or humans that could in turn be using ap-
plication software for performing their tasks.
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s Interface: The interface denotes the access mechanism that is used by the
WEMS to interact with the processing entity. For example, a task that
involves a database transaction could be submitted for execution using a
command line interface to the DBMS server, or by using an application
programming interface from within another application. In the case of a
user task that requires user-input for data processing, the interface could
be a Web browser containing an HTML form.

m  Task: A task represents the basic unit of computation within an instance
of the workflow enactment process. It could be either transactional or
non-transactional in nature. Each of these categories can be further di-
vided based on whether the task is an application, or a user-oriented task.
Application tasks are typically computer programs or scripts that could be
arbitrarily complex in nature. A user task involves a human performing
certain actions that might entail interaction with a GUI-capable termi-
nal. The human interacts with the workflow process by providing the
necessary input for activating a user task. Tasks are modeled in the work-
flow system using well-defined task structures [Attie et al., 1993, Rusin-
kiewicz and Sheth, 1995, Krishnakumar and Sheth, 1995] that export the
execution semantics of the task to the workflow level. A task structure
is modeled as a set of states (e.g., initial, executing, fail, done), and the
permissible transitions between those states. Several task structures have
been defined - transactional, non-transactional, simple, compound, and
two-phase commit [Krishnakumar and Sheth, 1995, Wang, 1995].

s Task Manager: A task manager is associated with every task within the
workflow execution environment. The task manager acts as an interme-
diary between the task and the workflow scheduler. It is responsible for
making the inputs to the task available in the desired format, for submit-
ting the task for execution at the processing entity, and for collecting the
outputs (if any) from the task. In addition, the task manager communi-
cates the status of the task to the workflow scheduler.

»  Workflow Scheduler: The workflow scheduler is responsible for coordi-
nating the execution of various tasks within a workflow instance by en-
forcing inter-task dependencies defined by the underlying business pro-
cess. Various scheduling mechanisms have been designed and imple-
mented [Wang, 1995, Miller et al., 1996, Das, 1997, Palaniswami, 1997],
ranging from highly centralized ones in which the scheduler and task
managers reside within a single process, to a fully distributed one in
which scheduling components are distributed within each of the distributed
task manager processes.

We will focus our discussions on a run-time implementation of a distributed
architecture for the METEORy WFMS. A recovery framework has been de-
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fined for this architecture. The basic distributed model has been enhanced
with additional functionality to 1) handle various forms of errors, 2) use tran-
saction semantics at run-time, 3) monitor active workflow components, 4) re-
cover failed components, and 5) log critical data that is necessary to restore the
state of a failed workflow.

1.6.1.2 ORBWork: A Distributed Implementation of the METEOR;
WFMS. ORBWOork is a distributed run-time engine for METEOR; WFMS.
It has been implemented using CORBA [OMG, 1995b] and Web infrastruc-
ture technologies [Sheth et al., 1996b, Das, 1997, Worah, 1997]. The for-
mer provides the necessary distribution and communication capabilities for the
workflow components, and the latter makes it possible for humans to inter-
act with the Object Request Broker (ORB)? based workflow layer. The main
components of ORBWork are shown in Figure 1.1. In this implementation,
task managers, recovery units, data objects, monitors, and clean-up tasks are
implemented as CORBA objects.

Figure 1.1 System Schematic for the Recovery Framework in ORBWork

In METEORjy, the workflow process that defines the overall organizational
process is captured in the form of a workflow map that is specified by a work-
flow designer. This determines the data and control dependencies that need
to be enforced as part of the workflow scheduling process. Due to the dis-
tributed nature of the workflow engine, ORBWork does not have a centralized
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scheduling entity. The scheduling mechanism is embedded in each of the task
managers.

Each task managers performs four primary functions: 1) task activation, 2)
error handling and recovery of task and its own errors, 3) logging of task inputs,
outputs, and its internal state, and 4) scheduling of dependent task managers as
defined by the workflow process. Task managers communicate with each via
the ORB using object method invocations. Due to the location transparency
offered by CORBA, they are able to communicate seamlessly irrespective of
the host they execute on.

Input and output data elements to the tasks are represented as CORBA ob-
jects internal to ORBWork. These CORBA objects are wrappers around the ac-
tual data elements. This allows workflow data objects to be distributed within
the ORB environment. Task managers logically enforce workflow data depen-
dencies and pass data by exchanging references to these data objects.

User tasks have associated “to-do” worklists (not shown in the figure) that
provide a list of pending tasks for the user. User inputs form one of the implicit
dependencies for a user task manager. User (human) tasks communicate with
the task managers using HTML forms and Common Gateway Interface (CGI)
functionality provided by Web servers. In our current implementation, CGI
scripts are implemented as CORBA clients to user task manager objects. Ref-
erences to CORBA objects that encapsulate the user provided data are passed
as inputs to the task manager.

ORBWoik is subject to numerous errors and failures. The architecture of
ORBWork, as described above, does not provide support for error handling,
other than what is already inherent to the components themselves. The dis-
tributed nature of our workflow architecture alleviates problems associated with
a single point of failure. This allows scope for incorporating fault-tolerant fea-
tures into the framework. However, distribution adds to the complexity of the
system in terms of management of the various components and detection of
failures. This problem is compounded due to the asynchronous communication
paradigm used in workflow communication models. Moreover, the communi-
cation infrastrueture is subject to failures, and could adversely affect workflow
enactment. In the following two sections, we describe the error model that
we have used to capture such errors, and the failure handling components that
form our recovery framework. For a detailed discussion on ORBWork, see
[Das, 1997].

1.6.1.3 Modeling Errors in METEOR;. The METEOR; error model
has been defined in a hierarchical manner. We have based it on the layered
nature of the METEOR, workflow model. It enables us to describe and clas-
sify the various errors that occur during workflow execution. This, in effect,
makes it possible to modularize our error handling algorithms during workflow
execution. Errors are detected and masked as close to the point of occurrence
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as possible to prevent them from propagating to other, unrelated components
of the WFMS. We use a three-tiered approach to classify errors within the
METEOR; workflow model:

1. Task and Workflow Errors: this class forms the lowest level within our
hierarchy and includes all errors that are specific to tasks, and their inter-
task dependencies. Application and user errors (as discussed in Section
1.5) are defined and modeled at this level. The workflow designer is
responsible for defining these errors during the workflow definition pro-
cess. The workflow system does not preclude a task from handling its
errors on its own; in such cases, only unhandled errors would be cate-
gorized as task errors within the WFMS. Some of these errors may have
implications on the whole workflow process. A task error that cannot be
resolved is eventually reported to its task manager; such an error falls into
the category of task manager errors.

2. Task Manager Errors: this class of errors involves all task errors that
could not be resolved at the task level (as described earlier), and errors
that are specific to the task manager itself. For example, the latter in-
cludes errors such as
= not being able to prepare the inputs for the task,
= not being able to submit a task for execution,

= not being able to recover the state of task during failure recovery,
and

®=  not being able to handle a task error that might have occurred.

A task manager error that remains unhandled is reported as a workflow
error to the scheduler.

3. WFMS Errors: These are the highest level of errors within our model and
include

m  system errors that affect the task scheduling mechanism,

=  communication errors between the scheduler and the task managers,

»  other failures in workflow components that are common to all in-
stances of a workflow type (e.g., failure recovery units, log man-
agers, etc.), and

m  errors that could not be handled at the level of the task manager.

In our model, task and workflow errors are logical in nature. Error handling at
this level is achieved by retries, aborts, cancellations, and by trying alternate
tasks. Task manager and WFMS errors are system errors caused due to failures
within the WFMS software. Task manager errors are either handled at the level
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of the task manager itself (e.g., retrying task submission for a task that cannot
be submitted). WFMS errors are handled by the recovery components within
the WEMS, or by a human that would be provided with information necessary
to handle the error.

Principles relating to classification of errors, and handling them in a modular
fashion have been commonplace in computer architecture, programming lan-
guages, and software engineering. We have mapped the ideas to our workflow
model, and have defined the error-handling semantics so that they are in syn-
chrony with the overall business process that defines the workflow. Although,
this model has been applied within the METEOR, WFMS, in principle, it is
applicable to any workflow model that has a well-defined modular architecture.
The error handling capabilities in ORBWork, are developed on the basis of this
error model.

1.6.1.4 Recovery Framework in ORBWork. In this section, we de-
scribe the recovery framework for ORBWork (see Figure 1.1). In defining
the recovery framework, we have extended the ORBWork workflow engine in
terms of being able to handle failures ranging from the task level to the level of
the workflow system components. The recovery model assumes a distributed,
component-based architecture for the WFMS, and a communication mecha-
nism (in this case CORBA) that makes it possible to interact with components
across host boundaries.

Persistence is an essential part of our recovery framework. We have used
an object-oriented approach wherein the various workflow components are re-
sponsible for logging their respective states to stable storage. This approach
is very similar to the notion of recoverable objects in the distributed object-
oriented framework of Arjuna[Shrivastava et al., 1991]. In our model, data
objects inherit from a base interface that attributes it with capabilities to save
and restore its state at runtime from stable storage. A Local Persistence Store
(LPS) is used as the stable storage mechanism for logging local data critical for
recovery purposes. We have used a DBMS as the basis for our LPS. A DBMS
provides transactional capabilities to log data. A Global Persistence Store is
used for logging at the level of the GRM. Logging is done at various stages
within the workflow enactment process. For example, 1) task Managers log the
state of their tasks (including error codes returned by the task, for future de-
bugging and error recovery), inputs that they receive from other task managers,
and outputs that they send out to dependant task managers; 2) data objects log
the state of their data they encapsulate.

Failures in distributed systems are hard to detect, unless there is a fault-
tolerant detection mechanism in place. This problem is compounded espe-
cially when most of the components communicate in an asynchronous mode.
Distributed workflow systems fall into this category due to their asynchronous
coordination model. In ORBWork, we have provided additional services for
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monitoring distributed components, to address the issue of failure detection.
In this regard, we have borrowed ideas from other work done in reliable dis-
tributed systems [Birman and Renesse, 1994, Maffeis, 1996].

Task Managers and data objects on each host are monitored by a Local Re-
covery Manager (LRM) process executing on the same machine. On startup,
the task managers and data objects, register with the LRM on their host. Once,
these components are no longer required within the workflow process, they
deregister from the LRM. The LRM maintains a watch-list of currently reg-
istered components that are supposed to be executing as part of the workflow
process instance on its host. When an object registers with the LRM, the LRM
logs this message and appends it to the list. On deregistration, these objects
are removed from the list. The LRM contains a watchdog that periodically,
polls each of the components on the watch-list to ensure their liveliness. When
a failed component is detected, the LRM reactivates the component, which in
turn, restores its own state from local logs. The LRM checkpoints it logical
view of the local system to the local log to enable its own recovery. In addition
to the LRM, each host contains a daemon process called the Local Activation
Daemon (LAD) (not shown in the figure) that is endowed with the ability to
create processes (for the varions CORBA objects) on the various hosts.

A Global Recovery Manager (GRM) executing on a reliable host in the
workflow execution environment monitors the liveliness of all the LRMs and
is responsible for reactivating any failed LRMs. On recovery, the failed LRMs
synchronize the state of their respective local systems based on their local logs
and create any task managers that might have failed in the interim. Due to
the infancy of the CORBA standard, and unavailability of many of its object
services, we had to rely on programmatic efforts to implement many of the
features that we would have otherwise liked to have been supplied by the ORB
vendor. The implementation of error handling is achieved via the use of ex-
ceptions and try-catch blocks that help to isolate the normal flow of execution
from the abnormal case during run-time.

Local configuration files (not shown in the figure) are used on each host by
the LAD. These files are used for directory lookup for the various components
(i.e., task manager, data object, LRM, GRM) during activation or recovery of
the processes.

During the definition of the workflow design, it might not be feasible to
capture all errors and causes of failures that might occur during the enactment
process. Also, especially in the case of non-transactional tasks, it is not always
possible to undo the effects of a task that might have completed partially. We
therefore feel that the role of a human is indispensable within the workflow re-
covery framework. In our model, we have allocated a special human-performed
task, called the cleanup task to serve the functionality of bringing the system
to a consistent state after such irrecoverable failure. This mode of restoration is
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used only when the WFMS is unable to handle the recovery process automati-
cally.
Let us summarize the main characteristics of our recovery framework.

»  Workflow recovery is implemented in a distributed CORBA and Web
based execution environment.

s A notion of hierarchical monitoring of workflow components has been
used to detect failures, and to initiate the recovery process (i.e., GRM
monitors the LRMs; LRMs monitor task managers and data objects; task
managers monitor tasks). This allows failures to be localized, and their
effects to be masked as close to the point of occurrence as possible.

®  The recovery model ensures that there is no single point of failure. There-
fore, the failure of a host does not significantly affect the performance of
tasks within another (unless they are directly dependant on each other).

m  The performance of the workflow system would degrade progressively
in the case of failures; however, once the failure has been restored, the
WEMS would execute normally.

s Each workflow component is responsible for logging its own state. The
persistence mechanism used is also local to the component itself.

s The workflow components are responsible for managing their own recov-
ery actions once they have been recreated.

s The recovery mechanism is semi-automated. The role of the human is
crucial both during the workflow design process and the enactment. The
workflow designer specifies the run-time behavior of the error handling
and forward recovery mechanism. The workflow administrator is respon-
sible for fixing drastic system failures (e.g., machine crash, network par-
titioning), and for cleanup of failed tasks that cannot be handled by the
WEMS.

s The distribution and hierarchical nature of the recovery mechanism makes
the system scaleable and manageable.

In this section we have briefly described the design and implementation
of error handling and recovery in the distributed run-time of the METEOR,
WEFMS (see [Worah, 1997] for more details). We have used this discussion
to illustrate the applicability of concepts and basic mechanisms from tradi-
tional and ATMs within a practical workflow execution environment. Also,
our discussion is suggestive of the need to look for solutions beyond ATMs for
addressing reliability issues in WFMSs.



28 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

1.7 TYPES OF TRANSACTIONS IN THE REAL-WORLD:
BEYOND DATABASE TRANSACTIONS

As practicing researchers, the idea of using related transaction models for mod-
eling workflows was appealing to us. We felt that such a model could provide
a rigor or structure that was lacking in the work on workflow management
[Ansari et al., 1992, Breitbart et al., 1993]. There are few, if any, examples of
successes in developing systems that implement ATMs for significant commer-
cial, large-scale multi-system applications.

Requirements of such applications include:

1. capability to explicitly define the functionality and organizational struc-
ture of organizational process involved,

2. support of coordination and execution of tasks in heterogeneous intra-
and inter-enterprise environments,

3. modeling and support for human involvement with the run-time system,
and

4. error handling and failure recovery.

Workflow management is specifically defined to address these real-world
challenges. It provides the tools to integrate humans, computer systems, infor-
mation resources and organizational processes into a unified solution. Hence,
the requirements of WFMSs are far more challenging than those faced by cur-
rent database systems [Alonso and Schek, 1996b]. In workflow applications,
database resources might comprise only a part of the entire solution. For a task
that entirely interacts with a DBMS, executing it as a transaction is often a de-
sirable choice. At the same time, workflows involve other user and application
tasks (e.g., tasks that interact with legacy systems) that are non-transactional in
nature.

Due to the wide acceptance and applicability of workflows to application
domains that extend beyond transaction based (primarily database related) en-
vironments, the term transaction is being used in a more loose manner with
various connotations. These interpretations are based on: 1) the type of tasks
and processing entities that are part of the workflow process, 2) the applica-
tion domain or semantics of the organizational process that is being modeled,
3) the communication infrastructure that is used to develop the WFMS, and 4)
transactional or advanced transactional semantics (such as relaxed isolation and
atomicity) that can be attributed to the tasks, sub-workflow, or the workflow as
a whole. It is important to understand each of these interpretations to be able to
appreciate the similarities and differences between transactions from the world
of database systems and those involved in the realm of multi-system workflow
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management systems. Let us consider some of the frequently encountered in-
terpretations for the term transactions in the context of real-world workflow
applications and WFMS that support workflow applications:

1. Task specific interpretation in databases and distributed transaction
processing. In general, a workflow task is considered to be a black box
that is functional in nature, i.e., the functionality of the task is orthogonal
to that of the workflow process [Alonso et al., 1995b]. The tasks them-
selves could be transactional or non-transactional in nature [Rusinkiewicz
and Sheth, 1995, Krishnakumar and Sheth, 1995]. Transactional tasks are
those that minimally support the atomicity property and maximally sup-
port all ACID properties of traditional transaction models [Miller et al.,
1996, Krishnakumar and Sheth, 1995]. These tasks typically include
those that interact with a DBMS by using BEGIN_ TRANSACTION -
END_TRANSACTION semantics, contracts (stored procedures), and two-
phase commit (2PC) tasks [Wang, 1995, Miller et al., 1996] for synchro-
nizing transactions across multi-DBMSs. In addition, tasks that use the
XA-Protocol [Gray and Reuter, 1993] based RPC to communicate with
transactional processing entities such as a TP-monitor in a distributed en-
vironment [Wodtke et al., 1996] can also be included in this category.
Non-transactional tasks are used to include applications that cannot en-
sure isolation or atomicity as a part of the workflow process. Such task
types are commonplace in the real-world and involve activities requiring
interaction with humans, legacy systems, and others that interface with
other processing entities that do not provide transactional support (e.g.,
HTTP servers, Lotus Notes, file systems, word processors, spreadsheets
and decision support systems).

2. Domain specific interpretation. The move from a paper-based society
to a paper-less one, and the increasing popularity of electronic commerce
have led to evolution of standards for electronic data exchange across
organizations. Some of these include (EDI) standards such as ANSI
Accredited Standards Committee (ASC) X12 that are used in numerous
commercial settings (e.g., ANSI 270 and 271 transactions for healthcare
eligibility inquiry and response used in [Sheth et al., 1996b]), and the
ANSI HL7 standard that is used specifically in the medical domain. The
term transaction in this setting refers to the exchange of sufficient data
in a standard electronic format necessary to complete a particular busi-
ness action often using domain specific information. This view of a tran-
saction tends to focus more on business requirements and contracts rather
than on the need for maintaining data consistency within a database or to
support atomicity or other transactional property between communicat-
ing processes or for a RPC call. Workflow technology is being applied
in various forms to application domains such as manufacturing, bank-



30 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

ing, healthcare and finance that use domain specific transaction formats
extensively. One of the tasks within a workflow process could involve
sending data from one information system to another using an EDI tran-
saction. At the receiving end, another workflow task could write the data
that it receives to a DBMS in a transactional (having ACID propetties)
manner. The semantics associated with each of these transactions are dif-
ferent. Hence, the WFMS would have to be designed so that it can deal
with different transaction forms in an appropriate manner.

3. Business-process specific interpretation. Database transactions and tran-
saction processing aim at preserving data consistency and ensuring reli-
ability in case of faults and failures. These semantics cannot be applied
directly to workflow systems since tasks within a workflow process are
both transactional and non-transactional in nature. However, at the same
time, workflow systems should be correct and reliable. Correctness and
reliability in the case of workflow systems is more applicable from a
broader perspective - that of the organizational process involved in ad-
dition to the data that forms a part of the process. According to [Eder and
Liebhart, 1995], a workflow transaction should ensure consistency from
the business process point of view. The notion of a workflow transaction
according to this view, is broader as compared to that of traditional trans-
actions. Implementation support for such a concept would require an
additional layer of control than that provided in transaction processing
since workflows include features (e.g., roles, worklists, error handling)
that are not available in (advanced) transaction models and transaction
processing systems.

4. Infrastructure specific interpretation. Workflow management systems
are large-scale applications that can be implemented using various in-
frastructure technologies such as Customized Transaction Management
(CTM) [Georgakopoulos et al., 1995], Distributed Object Management
specifically using CORBA [Georgakopoulos et al., 1994, Miller et al.,
1996, Sheth et al., 1996b, Wodtke et al., 1996, Schuster et al., 1994},
World Wide Web [Palaniswami et al., 1996, Sheth et al., 1996b, Tech-
nologies, 1995], TP-monitors [Wodtke et al., 1996], Lotus Notes [Rein-
wald and Mohan, 1996] and security services (as in secure transactions
supported in the electronic commerce and Web-based services). The con-
cept of transactions has been addressed in many of these technologies
to some extent. For example CORBA provides an Object Transaction
Service as a part of the Common Object Services Specification [OMG,
1995a] that enables objects in distributed environments to take part in a
transactional context, TP-monitors also provide transactional semantics
in a distributed environment. The HTTP protocol used in the Web para-
digm, on the other hand, does not provide any transactional semantics.
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Hence, we see that different interpretations of transactions are supported
by each of these infrastructures.

From the above discussion, it is important to observe that the notion of
transactions in workflow management is more general compared to that in
transaction processing and DBMSs.. Its interpretation could involve various
variables associated with the factors mentioned above. Unlike advanced tran-
saction systems, WFMS interact with database systems if required as part of
the organizational process, however, this is not their primary focus.

1.8 CONCLUSION

We view workflow management as an attractive approach to programming in
the large for enterprise applications. Tasks within a workflow are modeled at a
higher degree of granularity than traditional database transactions (i.e., compo-
nent transactions in a ATM or subtransactions in a distributed transaction). The
tasks themselves could be either transactional (e.g., database transactions, and
processes interacting with a TP-monitor) or non-transactional (e.g., human-
oriented activities, and processes that do not observe one or more of the tran-
saction properties). Also, most real-world workflow processes involve acti-
vities that are long running in nature and execute in distributed and heteroge-
neous environments. The processing entities that execute or carry out a task
might not support the protocol for guaranteeing transaction behavior. At the
same time, it is desirable that workflow systems be reliable and ensure correct
execution of processes just as transactions guarantee such characteristics for
ensuring data consistency. It has been accepted that strict ACID transactions
do not have direct applicability in the workflow domain as workflow systems
differ to a large degree from traditional database systems.

In our perspective, the role of ATMs in workflow systems is of a supportive
nature. Advanced transaction modeling concepts are quite restricted in terms
of being directly applicable in process-oriented, large-scale workflow applica-
tions that run in HAD computing environments. Workflow systems today are
still weak in terms of characteristics such as fault-tolerance, consistency, and
in their support for recovery in case of exceptions and failures. ATMs have ad-
dressed most of these problems in the domain of database systems. Research
in the areas of workflow systems can benefit from these approaches from a
conceptual point of view.

Transactional semantics such as atomicity and isolation in their strict sense
are not practical in workflow systems since tasks in a workflow domain are gen-
erally long-lived and could themselves be non-transactional in nature. Many of
the solutions for recovery in transaction processing systems can be used to ad-
dress recovery issues in workflow systems, for example, advanced transaction
concepts such as compensation can be mapped to the workflow domain in terms
of a compensating task that could be used to undo (often partially) what was
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done by an incomplete task; logs similar to those in transaction processing
could be maintained for recording the history of the workflow process, thereby
aiding in the recovery process [Krishnakumar and Sheth, 1995, Alonso et al.,
1995b, Eder and Liebhart, 1996].

To address many of these advanced issues, workflow systems should borrow
ideas that have been used effectively in concurrent, large-scale distributed and
database systems, but should not rely entirely on them as many of these systems
have developed models for environments that are limited in scope as compared
to that in workflow systems.

In conclusion, we summarize the observations we have made in this chapter:

m  There are several interpretations for transactions in organizational pro-
cesses today and all or most of them may need to be accommodated in a
workflow technology that supports organizational processes.

»  Features offered by ATMs meet a very restricted subset of requirements
of large-scale enterprise-wide workflow systems (see the appendix for a
normative comparison of ATMs and workflow systems).

®  We do not see ATMs as being a primary basis for modeling and exe-
cuting workflow systems that have real-world commercial applicability.
However these models provide useful features (e.g., relaxed atomicity,
relaxed isolation, concurrency control and recovery) which can be used
in components (e.g., tasks) that form a part of a WFMS. Traditional tran-
saction processing and ATMs provide valuable concepts that can be ap-
plied towards partly solving the problem of error handling and recovery
in WFMSs.

s Implementing reliable large-scale WFMSs involve requirements that are
beyond the capabilities of transaction systems and ATMs (e.g., distribu-
tion of the workflow architecture, heterogeneity of the operating environ-
ment, business process governing the workflow, organizational structure
of the enterprise, nature of the tasks, etc.). A lot of valuable research has
been done on error handling and recovery in the areas of distributed sys-
tems, software engineering, and organizational sciences. Research and
development in the domain of reliable WFMS should leverage these ef-
forts to supplement the limitations of traditional transaction and ATM
based systems.

There is a need for multi-disciplinary research to address the challenging
issues raised by emerging workflow technology. Humans are an essential part
of any organizational process, and human work involves many diverse issues.
Therefore, research involving expertise from multiple disciplines is most likely
to bring the highest return. Information is another critical asset of any organiza-
tion, as discussed in [Sheth et al., 1996a); we believe that more human-centric
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approaches with integral support for information management are needed for
a successful workflow technology. We need to look beyond the capabilities
provided by transaction processing systems and ATMs in modeling the com-
plexities of large-scale, mission-critical workflow applications of the future.

Notes

1. METEOR refers to the project carried out at Bellcore. METEOR; is its follow on atthe
LSDIS Lab of the University of Georgia.

2. The Object Request Broker forms the core of the CORBA model; it is the middleware
layer that makes it possible for distributed objects to communicate with each other. For details
see [OMG, 1995b].
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Appendix: A Normative Perspective

Advanced Transaction
Models

Workflow Systems

Theoretical
Foundation

Granularity
Methodology

Correctness Criteria

Failure Atomicity
Concurrency Control
Recovery

Error Handling
Task/Activities

Processing Entities

Coordination Support
Modeling Organiza-
tional Structure
Worklists

Flexibility
Implementation Status

Applicability to Non-
DBMS applications

Usually good theoretical
basis.

Transactions.
Data-centric. Emphasis
on data consistency.
Serializability.

Inherent.

Inherent.

Well-defined. Rollback
and compensation.

Limited.
Supports
only.

Usually DBMS.

transactions

Limited.
Usually absent.

No support.

Varied.
Very few exist.

Very limited.

Weak dependency, ex-
cept for scheduling com-
ponents. Driven by prac-
tical considerations.
Tasks, activities, or steps
Process-centric. Empha-
sis on task coordination.
Primitive, often limited
to scheduling.

Not part of most models.
Limited support.
Insufficient support.
Forward recovery when
supported.

Very limited.

Supports both human
and application tasks.
Heterogeneous systems
(e.g., DBMSs, TP moni-
tors, legacy applications,
humans)

Inherent.

Varies significantly.

Strong support.

Good.

Numerous commer-
cial products and few
research prototypes.
Extensive.




2 WORKFLOW MANAGEMENT: THE
NEXT GENERATION OF DISTRIBUTED
PROCESSING TOOLS

Gustavo Alonso and C. Mohan

Abstract: Workflow management systems have attracted a great deal of atten-
tion due to their ability to integrate heterogeneous, distributed applications into
coherent business processing environments. In spite of their limitations, existing
products are enjoying a considerable success but it would be a mistake not to try
to see beyond current systems and applications. In today’s computer environ-
ments, the trend towards using many small computers instead of a few big ones
has revived the old dream of distributed computing. There is, however, a signifi-
cant lack of tools for implementing, operating and maintaining such systems. In
particular, there are no good programming paradigms for parallel architectures in
which the basic building blocks are stand alone systems. Workflow management
provides this key functionality, suggesting its potential as crucial component of
any distributed environment. This chapter describes in detail such functionality
and provides some insight on how it can be applied in environments other than
business processing.

2.1 INTRODUCTION

One of the basic platforms in which to implement generic distributed systems is
commodity hardware and software, usually in the form of clusters of worksta-
tions connected via a network. The continuous increase in computing power,
storage capacity, and communication speed has made these share nothing con-
figurations viable and cost effective alternatives to more tightly integrated mul-
tiprocessor architectures. There is also the added advantage of having most of
the necessary infrastructure already in place, both in terms of hardware (clus-
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ters of personal computers connected by a Local Area Network) and software
(the many existing applications). The only component missing in such environ-
ments is the necessary glue to make a coherent whole out of many autonomous,
heterogeneous, loosely coupled building blocks. This problem has been ad-
dressed from many different perspectives, federated database systems [Schaad
et al., 1995], TP-monitors [Gray and Reuter, 1993, Obermack, 1994], persis-
tent queuing [Alonso et al., 1995a, Mohan and Dievendorff, 1994], CORBA
[OMG, 1995b], process centered software engineering [Ben-Shaul and Kaiser,
1995] and workflow management systems [Hsu, 1995] being among the best
examples.

From a practical point of view, these different approaches can be roughly di-
vided in four categories: interface definition, communication, execution guar-
antees, and development environment. These four categories also correspond
to the functionality needed in a distributed environment. In spite of this, exist-
ing products and research efforts tend to emphasize only one of the categories,
e.g, TP-monitors for execution guarantees; CORBA as an interface definition;
queuing systems as communication platforms; or workflow systems for devel-
oping distributed applications. Such narrow focus is one of the major limita-
tions of these approaches. Users or designers interested in getting two or more
of the four categories of functionality have to resort to combine several heavy-
weight solutions, which adversely affects performance and usability. Examples
to prove this point abound, perhaps the most clear one being the transactional
services described in the CORBA standard. These services can only be imple-
mented using what today is known as a TP-monitor. In fact, current implemen-
tations do exactly just that: bundle together a CORBA implementation and a
commercial TP-monitor. Since both were designed as stand-alone systems and,
in practice, must solve many similar problems, the resulting system incorpo-
rates a great deal of redundancy and mismatches. As a result, performance and
the overall functionality are adversely affected. A more reasonable approach
would be to implement the CORBA standard with the transactional services in-
cluded as part of the original design instead of as an orthogonal module. This
would still not be enough, however, as the resulting system would lack, for in-
stance, a development environment. To address this latter point, the OMG (Ob-
ject Management Group) and the Workflow Management Coalition are joining
efforts to define a CORBA Workflow Facility. But as with the transactional
services, such facility will only be truly operational and useful when the de-
sign incorporates and integrates all these different technologies from the very
beginning and not as separate tools.

This same example occurs in many other environments and products. The
underlying problem is that no system incorporates the four categories of func-
tionality in the design and, hence, it is not possible to rely on a truly integrated
system. But building such system is only possible if the existing partial solu-
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tions are first generalized and their functionality becomes available in the form
of open systems. It is possible to identify trends in industry that point clearly
into this direction (the example of CORBA is one, the incorporation of transac-
tional guarantees and queuing systems in workflow tools is another), but much
remains to be done. The role workflow management systems will play in fu-
ture computing environments is directly related to the idea of integrating the
four categories of functionality. One of the factors that have made workflow
management so successful is the support they provide for developing complex
applications over distributed systems using already existing tools. This same
concept can be generalized, turning workflow management into one of the ba-
sic technologies for developing large scale distributed applications based on
autonomous components. Thus, workflow management should evolve as part
of larger, tightly integrated architectures. In order for this to happen, work-
flow management needs to be reinterpreted from a perspective going beyond
current products. This includes generalizing the notion of process, as has been
suggested by several workflow designers [Emmrich, 1996, Leymann, 1995],
instead of focusing solely on business processes reengineering. In this way,
a workflow management system can become a very high level programming
language linking, within a single control logic, heterogeneous applications re-
siding over a wide geographic area. Additional technology such as CORBA,
queuing systems or TP-monitors will then complete the integrated distributed
system in which to exploit the coarse parallelism and distributed characteristics
of workflow processes.

2.2 WORKFLOW MANAGEMENT SYSTEMS
2.2.1 Workflow Concepts

Workflow management is a relatively new term. The ideas and concepts asso-
ciated with it, however, have been around for quite some time. The notion of
workflow management can be traced back to prototypes and research carried
out many years ago. Some [Swenson et al., 1994] propose as the earliest an-
cestors the SCOOP project [Zisman, 1978] and Office Talk [Ellis et al., 1991].
Others see the roots of workflow management in the work of imaging com-
panies [Frye, 1994]. In the database community workflow ideas have been
proposed under many disguises, mostly in the form of advanced transaction
models [Elmagarmid, 1992, Waechter and Reuter, 1992, Garcia-Molina et al.,
1991, Kreifelts et al., 1991, Nodine and Zdonik, 1990]. The Workflow Manage-
ment Coalition [Hollinsworth, 1996] suggests no less than six areas that have
had a direct influence on the development of workflow management as it is to-
day: image processing, document management, electronic mail and directories,
groupware, transactional systems, project support applications, business pro-
cess re-engineering, and structured system design tools. Even one of the most
popular workflow modeling paradigms [ActionTechnologies, 1993, Medina-
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Figure 2.1 Basic components of a workflow process

Mora et al., 1993] can be traced back to early work on artificial intelligence
and speech theory. In general, the need for workflow functionality was iden-
tified long ago by different communities as they realized the potential offered
by computers and communications. For instance, just in the last decade, sim-
ilar ideas were discussed in areas such as paperless office [Tsichritzis, 1982],
office automation [Bracchi and Pernici, 1985], groupware [Ellis et al., 1991],
or computer supported cooperative work [Kreifelts et al., 1991].

In spite of this early interest, the technology to develop full functional sys-
tems has become available only in the last few years. To certain extent, work-
flow management has found its window of opportunity in this decade thanks
to organizational management trends such as business process reengineering
[Hammer and Champy, 1993]. As a result, it is uncommon to find a product
that it is not directly associated with the reengineering world. But this is likely
to change in the future as workflow systems diversify and incorporate ideas
from other areas.

2.2.2 Process Representation

The notion of process is central to any workflow system. A process is a com-
plex sequence of computer programs and data exchanges controlled by a meta-
program. It is usually represented as an annotated directed graph in which
nodes represent steps of execution, edges represent the flow of control and
data among the different steps, and the annotations capture the execution logic.
Other forms of representation are possible (for instance based on rules [Ben-
Shaul and Kaiser, 1995]) but the underlying concepts are essentially the same
regardless of the representation. These are shown in Figure 2.1 and can be
described as follows:

Execution unit is the basic instruction of the workflow language. It can be
compared with a procedure call in a programming language. Similarly to pro-
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cedure calls, it can correspond to an internally defined procedure (a process),
to a structured block of instructions (a block), or to a remote procedure call to
an external application (an activity). Associated with each execution unit there
is an input and an output data container used to store the inputs and outputs of
the execution unit. A state is associated with each execution unit, as well as
two conditions, one to determine when the execution unit can start and another
to determine when it has been completed successfully.

Execution Unit

—
Dl
E— Containe

input

Figure 2.2 The execution unit as the basic building block of a workflow model

Process is the equivalent of a program. It specifies the execution logic by
linking execution units via control and data connectors. To allow nesting, a
process can be represented as an execution unit, in which case it becomes one
more step within another process. The possible states of a process are shown
in Figure 2.3,

Forced Termination
INACTIVE SUSPENDED

FALSE

EXECUTED

Start Suspend Resume ©
i3
[— EXECUTIN(J* d
FALSE
Forced Termination, TRUE
Restart
Restart
EVALUATION OF CONDITIONS System Events PROCESS STATES

Figure 2.3 State diagram of a process

Blocks allow the modular decomposition of a process very much like in
structured programming. A block is equivalent to a series of execution units
bracketed by a BEGIN ... END. 1t is essentially another process except that
it has no name and can not be reused. Contrary to sub-processes, which are
bound to the parent process at run time, blocks are instantiated at compilation
time. It is possible to associate certain semantics with blocks to denote special-
ized types of structures such as loops, case statements, and fork or parallel-do
operations.
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Activities correspond to the invocation of external applications. Processes
and blocks are structuring constructs that have no effect outside the workflow
system. Activities correspond instead to interactions with the external world.
They can be manual if they require human intervention to be started, or auto-
matic if they can be started without human intervention. In general, manual
activities correspond to activities that also require user involvement to be com-
pleted (filling a form, providing some information, making a decision). Au-
tomatic activities, on the other hand, usually do not require user participation
(transactions over a database, index calculations, statistical calculations, etc.).
Associated with each activity there is an application and a set of eligible users
indicating which application is to be invoked and the users allowed to execute
it. Figure 2.4 shows the possible states of a manual activity (automatic activities
have a similar but slightly simpler state graph).

Activity
EXECUTING
Start Forced
execution Termination TRUE
READY
TERMINATED FINISHED
Restart
Flow of control will not
reach the activity
Restart
EVALUATION OF CONDITIONS System Events ACTIVITY STATES

Figure 2.4 State diagram of an activity

Data containers provide a persistent repository for the input and output pa-
rameters of an execution unit. In the case of processes, the input data container
collects input parameters for the entire process. When the process starts to
be executed, these input parameters are distributed among the input containers
of the execution units within the process. As these execution units terminate,
their outputs are transferred from their own output data containers to the out-
put container of the process. For activities, the input data container stores the
parameters to use when invoking the application and the output data container
stores the application’s return values.

Data connectors are used to specify data flow between execution units. For
instance, the input data container of a process is mapped to the different input
data containers of the execution units within the process by indicating via data
connectors which variable in the process container corresponds to which vari-
able in an execution unit container. The same mechanism is used to pass the
results produced by an activity as inputs to another activity. Together, data con-
tainers and data connectors eliminate the need for global variables and allow
each execution unit to define its own parameters. The use of data connectors
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forces the workflow programmer to explicitly state the data flow within the
process and helps to optimize data migration in applications distributed over a
wide geographic area.

Control connectors indicate the flow of control among execution units. In
general, control connectors can only be used between execution units at the
same level of nesting, which strengthes the modularity of the language. That is,
it is not possible to add a control connector between activities of two different
blocks, or between an activity external to a process and an activity within the
process. Each control connector has a condition attached to it, which is used to
determine when the control connector is to be followed.

Conditions are boolean expressions over data in the data containers. They
indicate when certain actions should take place. In the case of execution units,
there are two types of conditions to be considered: start and end conditions.
The former specifies when an execution unit can start to execute (the exact
meaning varies depending on whether the execution unit is a block, a process
or an activity). The latter is used to determine when an execution unit has
terminated successfully, usually by checking the return code provided in the
corresponding output data container. In the case of control connectors, condi-
tions indicate whether the connector should be followed or not. If the condition
of a connector is evaluated to true, the execution unit at its end is taken out of
the inactive state (the exact action depends on the nature of the execution unit).
If the condition associated to a connector evaluates to false, it indicates that
the connector will not be followed. Marking a control connector as false trig-
gers the procedure of dead path elimination which marks off all connectors
and execution units that will never be executed. This helps to determine when
a process has terminated its execution.

Applications represent the external programs to be invoked as part of the
execution of an activity. Applications are registered with the workflow system
very much like applications being installed in an operating system. The regis-
tration process allows the workflow system to establish in which network ad-
dresses a given application can be found, access permissions associated with it,
under which operating system it runs, associated paths, input parameters, and
any other additional information necessary to invoke the application remotely.
Once registered, applications are invoked by linking them to activities.

Staff represents users and sets of users. Similarly to applications, users must
be registered with the workflow system. Users must be registered. individually
and later on they can be grouped into more meaningful sets, usually known
as roles. Roles allow the system to refer to groups (programmers, managers,
engineers, sales representatives) when allocating work, instead of having to
deal with individual users. When an activity or a process is defined, part of the
information specified is the users or group of users that are eligible to execute
the activity or to start the process.
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Figure 2.5 Functional architecture of a workflow management system

2.2.3 Architecture

Architectural details vary from product to product and are evolving very quickly
as products try to cope with more demanding environments. It is possible, how-
ever, to distinguish a set of features common to most systems by looking at the
functionality that needs to be provided.

2.2.3.1 Functional Description. The basic functionality of a workflow
system can be divided in three major areas: design and development, exe-
cution environment, and interfaces. Usually, these three areas are also re-
ferred to as Buildtime, Runtime control and Runtime interactions respectively
[Hollinsworth, 1996, WFMC, 1994].

For design and development, workflow systems provide a language along the
lines described above as well as several tools to register users and applications.
Programming, i.e., designing, a workflow process is usually done through a
graphical interface in which execution units are represented as a variety of se-
lectable icons and connectors as directed links between these icons. This ap-
proach is perhaps the most user friendly but it has several drawbacks, the main
one being that it becomes rather cumbersome to visualize and manipulate large
and complex processes. Current systems usually provide a more textual lan-
guage in which to specify processes but, in most cases, these languages are not
adequate for large scale programming. It is likely that, in the future, more so-
phisticated languages will be supported. Additional tools are also provided for
debugging and compiling the process description into object code that can be
used for execution. Current systems provide only a primitive development en-
vironment but, given the key role it plays, it is likely that the buildtime compo-
nent of future systems will be significantly enhanced {Leymann, 1995, Silver,
1995].

The execution environment can be divided in two parts: persistent storage
and process navigation. Persistent storage provides a repository where all the
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necessary information about the system can be kept and retrieved at any time.
Persistent storage is managed via a storage server. Since the information in-
volved is often complex and it is necessary to support complex queries over it,
most systems use a database management system for this purpose. The advan-
tage of relying on persistent storage is that it makes possible to recover from
failures without losing data (forward recovery) and also provides the means to
maintain a record of the execution of processes. These two features open up
many interesting possibilities when programming distributed applications. For
instance, the fact that the execution is persistent implies that failures will not
require to repeat the entire process, execution can be resumed from the point
where it was left when the failure occurred. It is possible to subdivide the per-
sistent storage in several areas according to the data stored: audit trail, active
instances , and environment information. The audit trail contains information
about already executed processes. In business environments this provides the
information necessary to evaluate the organization’s performance, system evo-
lution, potential bottlenecks as well as supporting data mining and analysis
techniques. Active instances correspond to the persistent state of processes
being executed, which can be queried through monitoring tools provided by
the user interface. The environment information corresponds to the staff and
applications. It is used to locate applications and to determine the invocation
method as well as to locate users and to determine their access rights. Process
navigation is performed by the navigation server or WFM Engine. It mainly
involves evaluating the conditions specified for activities and control connec-
tors, activating or deactivating control connectors and triggering status changes
in execution units according to the events taking place in the system. Usually,
all these operations are performed as transactions over the underlying storage
server.

Finally, a workflow system supports two types of interfaces: users and appli-
cation interfaces. Users interact with the workflow system through a worklist
which acts as a repository for all the activities assigned to the user. This in-
terface can be as simple as a list of manual activities waiting to be selected by
the user or as sophisticated as a dynamic interface to the audit trail for query-
ing information regarding already executed processes. The worklist is created
when the user logs-in and updated every time a new activity becomes ready for
execution (updates are sent using the environment information, which is also
kept up-to-date regarding which users are connected to the system at any given
time and from which location). Applications are handled on a location basis.
Users will usually connect to the system from a PC or workstation. These lo-
cations will have an application interface so applications can be started when
users decide to execute an activity. But it is also possible to have application
interfaces in locations where no users are connected. This allows, for instance,
to connect to mainframes, specialized workstations or execute automatic acti-
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Figure 2.6 Runtime architecture of IBM FlowMark

vities across wide area networks. Which type of connections are allowed and
supported depends largely on the intended use of the product, i.e., whether it is
a collaboration tool to be used in a LAN environment or a production tool to be
used in conjunction with OLTP (On Line Transaction Processing) and OLAP
(On Line Analytical Processing) systems.

2.2.3.2 Runtime Architecture. Current workflow management systems
serve as platforms for executing distributed applications designed according
to business rules. The same functionality they provide for business processes
can be used in generic distributed applications. Thus, very much like in the
case of TP-monitors [Gray and Reuter, 1993], workflow systems are slowly
evolving towards specialized, multi-platform distributed operating systems. As
a generic example of existing architectures, Figure 2.6 shows the architecture
of FlowMark [IBM, 1995, Leymann, 1995].

Most workflow systems are built on top of a database management system.
In the case of FlowMark, the database is Object Store (represented in Figure
2.6 as OSS and DB which together act as the storage server). Most other sys-
tems are based on relational databases, for instance: ActionWorkflow is based
on Microsoft SQL Server, WorkFlo of FileNet uses Oracle, and InConcert of
XSoft can use Informix, Oracle or Sybase engines [Silver, 1995, Thé, 1994].
The navigation server, represented in Figure 2.6 by the FMS component, is usu-
ally implemented as a client of the database since most navigation steps involve
getting information in and out of the database.

The rest of the system components used during the execution of a process are
connected to the navigation servers, which can also be connected among them-
selves [Alonso et al., 1995b]. These connections do not need to be over a LAN,
they can also take place through a WAN or even from mobile clients [Alonso
et al., 1996¢c]. A common configuration is to have the application and user in-
terface in the same location where the user accesses the system. This allows the



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 45

user both to access the corresponding worklist and to execute activities locally
(which, of course, also requires to have the application locally installed). In
Figure 2.6 this is represented by the Runtime Client (RTC), the Program Exe-
cution Client (PEC), and the application (APP). These correspond to the user
interface, application interface and application being invoked respectively. It
is also possible to configure nodes to host only one application interface and
specialized applications. Such configuration plays an important role when au-
tomatic activities are involved, for instance, when a series of transactions are
executed over a database server.

2.2.4 Process Execution

The way execution proceeds in a workflow system is best illustrated with an ex-
ample (this example follows the architecture and runtime interactions of Flow-
Mark) [Alonso et al., 1996¢]. An execution unit becomes ready for execution
as a result of a navigation step. In the case of processes, when they reach the
“active” state all of their starting activities are set to ready and any necessary
input data transferred to the corresponding input data containers. In the case
of activities, when they reach the “ready” state, the navigator performs role
and staff resolution to determine all the users who are eligible to execute the
activity and updates the worklists of all these users by including the activity as
a new workitem. If the activity is an automatic activity, then it immediately
changes to the “active” state during which the navigator locates a node where
the activity can be executed. When the corresponding application is invoked,
the activity then switches to “executing”. Manual activities, on the other hand,
must wait until a user selects the activity for execution. In this case, the ex-
change of messages between the different components is shown in Figure 2.7.

Manual activities appear in the worklist of all users eligible to execute it.
When a user selects the activity, the user interface sends a start activity mes-
sage to the navigator. The navigator reacts to this message by taking several
steps. First, the activity is deleted from the worklists of all other users by
sending a message to these worklists indicating that the activity is no longer
available. Second, a transaction is started over the storage server to retrieve the
information related to the corresponding application. This information allows
the navigator to determine which application interface will be responsible for
executing the activity. It is possible for an application to reside in many loca-
tions. If it requires interaction with the user, the application is usually invoked
at the user’s location, otherwise simple heuristics can be used to select the most
appropriate location (load balancing, overhead, pre-established priorities, etc.).
Once the application interface has been selected, a start program message is
sent to it. As the third and final step, the navigator sends an activity running
message to the user interface from where the activity was selected so the status
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Figure 2.7 Steps involved in the execution of an activity

of the activity can be updated and the progress of its execution monitored from
the user interface.

Any communication between the application and the workflow system takes
place through API calls to the application interface. Application interfaces are
multi-threaded so as to be able to cope with several applications being executed
simultaneously at the same location. Thus, upon receiving a start program mes-
sage, the application interface spawns a thread for the particular application and
this thread will start the application. Any initial parameters to be passed to the
application when it is invoked are sent to the application interface along with
the start program message. The application may, however, request additional
information from its input data container by issuing API calls to the applica-
tion interface. These calls are received by the application interface which will
forward a data request message to the navigator. The navigator, upon receiv-
ing such request, executes a transaction over the storage server and forwards
the requested data to the application interface. The application interface then
completes the API call by returning the data to the application. When the ap-
plication terminates, the application interface sends a program terminated mes-
sage to the navigator, along with any values returned by the application. At the
navigator, this message triggers the execution of a transaction that will store the
values returned by the application in the appropriate output data container. The
navigator then proceeds to perform the corresponding navigation steps: check
the end condition of the activity, if it is false the status of the activity is set
to “terminated”, if it is true the activity status is set to “finished” and then the
outgoing control connectors evaluated, and so forth. As a final step, the navi-



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 47

gator sends an activity terminated message to the user interface indicating that
the selected activity has completed its execution. This message results in the
activity being deleted from the worklist.

2.3 FUNCTIONALITY AND LIMITATIONS OF WORKFLOW
MANAGEMENT SYSTEMS

There are three key features in any successful workflow product: availability,
scalability and industrial strength design [Alonso and Schek, 1996a, Mohan,
1996, Georgakopoulos et al., 1995]. Without availability, workflow systems
will not be used for mission critical processes. Without scalability, they will
not be used to support large organizations. Without industrial strength, their
applicability is greatly reduced. The problem with these obvious requirements
is that they exceed those of current database and transaction processing tech-
nology, which can be considered the state-of-the-art in corporate computing.
As a consequence, the robustness and technological maturity reached in the
transaction processing area is all but lacking in workflow systems [Gawlick,
1994]. In spite of their initial success, current systems still need to be further
developed along these three areas:

2.3.1 Availability

The goal of current systems is to become the central tool for the coordination of
mission critical processes. The most likely candidates to use current workflow
systems are large corporations in which the number of potential users can be
in the tens of thousands, the number of concurrent process in the hundreds of
thousands, and the number of sites connected to the WFMS in the thousands,
distributed over a wide geographic area and based on heterogeneous systems
[Kamath et al., 1996]. In such environments, availability is a key feature. For-
tunately, most failures in a workflow system can be masked using the redun-
dancy inherent to the architecture. For instance, it is common to have the same
application installed in several nodes. If one of them is not available, it may be
possible to invoke the application at a different node. The same applies to all
other components except to the storage server. A workflow system acts as an
execution engine driven by the storage server, currently implemented in most
systems as a centralized database. This centralized database becomes, sooner
or later, a bottleneck and a single point of failure. It is certainly possible to rely
on the underlying database to provide the necessary degree of availability. This
approach has significant disadvantages, however. In the first place, database
techniques are usually product based, i.e., the primary and the backup are the
same database. In practice, this would tie the workflow architecture to a partic-
ular database and is in conflict with the distributed and heterogeneous nature of
the system. It would also require either a backup for every individual system
or a single remote backup for the entire system, which may be distributed over
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Figure 2.8 A flexible backup architecture for workflow systems

a wide area network. Such solution would be fairly expensive and it does not
provide a good way to cope with the heterogeneity of the storage servers (it is
not reasonable to expect that all “workflow clusters” will use the same data-
base as storage server). In the second place, the granularity used in database
solutions is very fine, mainly pages or log records [Mohan, 1993], and ignores
the semantics of the application. The advantage of having a well defined ap-
plication and a limited set of interactions would be lost. Finally, availability
is always achieved at a price. When and how to pay this price should be an
adjustable parameter so as to make the system as flexible as possible.

One way to address these concerns is to provide a backup architecture that is
database independent, uses knowledge of the semantics of workflow operations
to optimize the exchange of information between the primary and the backup,
and allows to adjust the degree of availability in the system [Kamath et al.,
1996]. For this purpose, standard database techniques such as hot-standby,
cold-standby, 1-safe, and 2-safe, can be used [Gray and Reuter, 1993]. These
approaches can be combined to provide a flexible mechanism for high avail-
ability on workflow systems. Three process categories are defined: normal,
important and critical. Critical processes use a 2-safe, hot standby policy, i.e.,
critical processes can resume execution almost immediately after a failure. Im-
portant processes use a 2-safe, cold standby approach, i.e., execution can be re-
sumed after failures but only after some delay necessary to update the backup.
Normal processes do not use any backup strategy, i.e., execution can only be
resumed after the failure has been repaired but, in exchange, normal processes
do not create any extra overhead in the workflow system.

Since the degree of availability is set at the process instance level, it is no
longer possible to predetermine the primary and backup locations for a pro-
cess. For this reason and to achieve database independence, there is no single
backup for the system. Each storage server will act as both primary and backup
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depending on the particular process instance, as shown in Figure 2.8. Thus,
the backup mechanism can be implemented as part of the standard communi-
cations between storage servers. The only difficulty being that the primary and
the backup may have different schemas (for instance, between a relational data-
base and an object-oriented database). This problem can be solved by relying
on semantic information about the workflow language, which is used to define
a canonical representation in which each component of a workflow process is
uniquely identified. When passing information between primary and backup,
this is done using the canonical representation. In practice, this means that the
primary only reports state changes to the components of a process, opening up
the opportunity to optimize storage and communication overhead. In addition,
this backup architecture also allows to perform load balancing in the system
by moving the execution of a process from one location to another. For this
it is enough to upgrade the copy at the backup so it acts as the primary copy.
The mechanism is the same as if a failure would have occurred except in that
the change to the backup is triggered by the system according to performance
considerations. This provides an effective way to migrate processes and sets
the basis for scalable architectures.

2.3.2 Scalability

Due in part to the emphasis placed on cooperation by the first workflow prod-
ucts, most of them were designed with small groups in mind. In many ways,
workflow systems have been victims of their own success since once users re-
alized the potential of workflows, these engines were applied in large scale en-
vironments for which they were not designed {Alonso and Schek, 1996a, Mo-
han, 1996, Georgakopoulos et al., 1995, Silver, 1995]. Other design issues
aside, the main problem of current systems in terms of scalability is that they
rely on a centralized database to implement the storage server, thereby intro-
ducing a serious bottleneck in the architecture. There are, of course, several
advantages to the centralized approach: lightweight clients, centralized mon-
itoring and auditing, simpler synchronization mechanisms, and overall design
simplicity. But, in general, a centralized database results not only in scalability
problems but also in performance limitations. The latter are not usually a con-
cern in business processes but they are if the workflow system executes many
automatic activities. Such problems can be addressed in several ways: using
distributed execution instead of centralized control, and providing a way to tie
together several workflow systems, each with its own storage server, into a big-
ger system. The former approach is still largely a research proposal, the latter
a solution currently adopted by most products.

The idea of distributed execution was pioneered by the INCAS prototype
[Barbara et al., 1996a]. In INCAS, the execution of a process takes place
through an Information Carrier. The information carrier is an object that mi-
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grates from location to location as execution proceeds. It contains all the in-
formation relevant to the execution of the process so as to allow navigation
to take place by consulting the data in the information carrier. A similar ap-
proach is followed by EXOTICA/FMQM, FlowMark on Message Queue Man-
ager [Alonso et al., 1995a]. In Exotica/FMQM, each node functions indepen-
dently, the only interaction between nodes being through persistent messages
used to trigger the next step in the execution. The basic idea is to partition
the process definition into independent subsets that are distributed to the nodes
were execution may take place. In contrast to the information carrier of IN-
CAS, where all the information moves from node to node as navigation takes
place, in Exotica/FMQM each node stores locally all the information it needs
to perform navigation on a given process. Such an approach has also been
followed by other prototype systems [Wodtke et al., 1996]. This greatly re-
duces the communication overhead between nodes and solves some additional
problems related to monitoring and state detection. Independently of the form
in which navigation takes place, the advantage of the distributed approach is
that the need for a centralized database is avoided, which eliminates the perfor-
mance and scalability bottleneck. Moreover, the resulting architecture is more
resilient to failures since the crash of a single node does not stop the execu-
tion of other active processes. It is also possible to combine this distributed
approach with a backup mechanism such as the one described above to provide
both scalability and availability.

An alternative to distributed execution is to use several identical, indepen-
dent systems. One primitive form of this approach has been successfully used
in environments that tolerate load partition. If all processes are entirely inde-
pendent of each other and the shared resources (corporate databases, for in-
stance) are capable of supporting the accumulated load, it is possible to use
several identical systems, each one executing part of the total load. This ap-
proach allows linear growth but it does not really address more fundamental
problems as there is no way for the independent systems to communicate with
each other. A more sophisticated solution is based on the same mechanisms
described above for increasing the availability of the system. Both critical pro-
cesses and important processes are replicated somewhere else in the system.
Instead of using the copy for backup purposes, it is possible to use it to mi-
grate the execution of processes from the primary to other locations as the load
at the primary increases. In this way, the scalability problem becomes just a
matter of providing enough locations in which processes can be run. All these
locations will share the environment information, which can be easily repli-
cated at all sites since it does not change often. The links between the different
locations (necessary for the backup architecture) can also be used for commu-
nication between navigation servers so as to allow a navigation server to invoke
a subprocess at a different location [Alonso et al., 1995b].
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The idea of process migration and remote invocation requires to have re-
liable communications between the different locations. As with many other
distributed applications, workflow systems should rely on persistent queuing to
provide some basic guarantees in the exchange of information [Alonso et al.,
1995a]. These basic features, already in place in many distributed systems, are
not present in current workflow products, limiting their ability to implement
solutions to the existing problems. Thus, a first step in the evolution of any
workflow system is, therefore, to provide the industrial strength of databases
and TP-monitors.

2.3.3 Industrial Strength

Any new system needs some time to evolve and resolve the design inconsis-
tencies, limitations and lack of flexibility of the initial versions. After this evo-
lution period, products become more stable, their functionality well defined,
reaching a degree of maturity that makes them reliable, understood and ac-
cepted by users. Workflow systems have not yet reached such a state. The
demands placed on existing workflow systems go well beyond their capabili-
ties and, in many cases, the customer profile designers had in mind was quite
different from that of the actual users [Silver, 1995]. The limitations on scal-
ability and availability discussed above are obvious examples, but there are
many other glaring limitations. Some of them are product specific and related
to the history behind the product (whether it evolved from a document man-
agement system, the tools available at the time it was designed, the position
of the company in the market, etc.). Examples abound: inability to use sub-
processes due to the way data is handled, scalability problems due to the un-
derlying database, architectural limitations due to the communication system
used, excessive emphasis on modeling philosophy, and so forth. These limita-
tions are being quickly corrected as the products start to gain a wider customer
base and experience with users provides the necessary feedback. There are,
however, another set of limitations common to most systems that have no easy
solution but need to be addressed before workflow systems can claim to have
reached any reasonable degree of maturity.

Among these open questions, the one most often mentioned is exception
handling. In environments where the number of concurrent instances may be
in the hundreds of thousands with every instance taking several weeks to com-
plete, exceptions affecting single processes are likely to occur. Moreover, it
is also likely that, occasionally, the behavior of all active instances needs to
be modified to accommodate changes in the organization. These two types of
changes are currently not satisfactorily supported. The difficulty they pose de-
rives from the way process instances are stored. There are two ways of doing
it: as a compiled program or, more often, as a collection of database entries.
Once created, modifying this implicit or explicit “script” is not an easy matter.
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Any possible exception that may appear during the execution must be coded in
as part of the behavior of the process. Otherwise, exceptions to the expected
behavior can only be solved by aborting the entire process (or by invoking a
subprocesses that hopefully can solve the situation, but this creates a consid-
erable overhead for the end user). Ideally, exceptions should be handled in a
more uniform way, allowing the user to access the process definition, do the
necessary changes and resume the execution of the process. This requires a
very flexible handling of the process definition: rescheduling activities that
have been modified, reusing results that have not been affected by the modifi-
cation, and mapping the state of the old process to the state of the new process.
Existing systems are still too rigid to provide such capabilities.

Another important issue is the interaction with external applications. In cur-
rent systems, it is usually not possible to suspend the execution of the external
application when the corresponding activity is suspended or the entire process
aborted. It is also not possible to control any side effects that the application
may cause. As a result, failures and rollback of processes become a fairly
complex issue for the user. Currently, these problems are solved via manual
intervention (even detecting that there is a problem is left to the user in some
systems). In the future, a tighter integration will be desirable. This may be
achieved by using standard interfaces or by using persistent queues as a way of
ensuring reliable asynchronous communication between autonomous systems
[Alonso et al., 1995a].

A third issue related to industrial strength is the ability to express logical
units within the workflow language. For this, transactional concepts could be
used. There is an extensive literature on advanced transaction models [Elma-
garmid, 1992] which has touched upon many areas related to workflow man-
agement [Alonso et al., 1996b, Breitbart et al., 1993, Waechter and Reuter,
1992, Garcia-Molina et al., 1991, Nodine and Zdonik, 1990]. Transactions are
an excellent abstraction to encapsulate behavior (atomicity and isolation, for
the most part) and have proven extremely useful in developing a widely ac-
cepted theory of transaction management. Current commercial workflow sys-
tems, however, do not incorporate transactional notions but there are many in-
dications that this will change in the future [Alonso et al., 1996a, Alonso et al.,
1996b, Chen and Dayal, 1996, Eder and Liebhart, 1996, Mohan, 1996, Hagen,
1996, Ben-Shaul and Kaiser, 1995, Leymann, 1995, Sheth and Rusinkiewicz,
1993]. In a workflow environment, transactions can play a significant role as
a system component. Persistence in workflow systems is achieved by using
a database, a feature that it is unlikely to change. Interactions with databases
require to use transactions (as shown in Figure 2.7). The very nature of the
environment requires to use transactions if execution guarantees have to be
provided. The same problems of distributed commitment and atomicity that
arise in any distributed environment also arise in a workflow system. These
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problems could be addressed using the concepts successfully implemented in
TP-monitors [Gray and Reuter, 1993]. In addition, transactions may also play
a significant role in the workflow language. As has already been pointed out
[Alonso et al., 1996b], many of the ideas proposed in advanced transaction
models can be used in workflow environments: compensation {Garcia-Molina
et al., 1991}, alternative execution [Nodine and Zdonik, 1990], spheres of con-
trol and atomicity [Leymann, 1995], to mention a few. Thus, workflow sys-
tem can be seen as a ubiquitous programming environment for implement-
ing the applications targeted by advanced transaction models [Alonso et al.,
1996b, Georgakopoulos et al., 1996, Georgakopoulos and Hornick, 1994]. An
example of how transaction may influence the workflow language is the use
made of transactions in Encina, a TP-monitor that provides transactional C
[Transarc, 1995]. Transactional C is an extension of C in which it is possible
to bracket sets of instructions (usually service invocations) within a transaction
and specify what to do in case the transaction commits or aborts. The same
idea, as well as more sophisticated concepts, can be applied to the workflow
language to allow the programmer of workflow processes to specify, for ex-
ample, units of atomicity or compensation expanding several activities [Ley-
mann, 1995] or alternative execution paths in case of exceptions [Alonso et al.,
1996b].

2.4 EVOLUTION OF WORKFLOW MANAGEMENT SYSTEMS
2.4.1 Distributed Environments

As mentioned throughout the chapter, the future of workflow management is
strongly tied to the evolution of distributed computing. As such, distributed
environments require the four categories of functionality discussed in the intro-
duction: interface definition, communication, execution guarantees, and devel-
opment environments. While existing products are far from providing the four
categories, they are slowly converging towards systems that do provide such
functionality in an integrated an efficient manner. In such systems, workflow
concepts could be one of the basic tools for programming distributed systems.

The characteristics of such distributed environment can be easily derived
from the target architecture of existing systems. A quick look to the manuals
of products such as implementations of the CORBA standard, TP-monitors,
queuing systems, and workflow tools reveals striking similarities in their archi-
tecture. In all cases, the system can be succinctly described as shown in Figure
2.9.

In general, the client represents the user program invoking the services pro-
vided by the distributed system. The client usually resides outside the dis-
tributed system but interacts with it through a well defined set of APIs. The
service provider determines the nature of the system since it plays the role of
scheduler, navigator, and system controller. It provides core functionality such
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Figure 2.9 Generic architecture of a distributed system

as name services, registration facilities, protocol translations, and request rout-
ing. It also serves as the link between all other system components. The server
is generally a simple proxy for the resource manager, acting as a common in-
terface and implemented as a wrapper. Finally, the resource manager is the ap-
plication that performs the operations requested by the client. In TP-monitors,
for instance, the resource managers tend to be databases.

The advantage of such architecture is that the services provided can be dis-
tributed. Each server/resource manager pair can reside in a different location,
with the service provider in charge of routing client requests to the appropriate
node after locating a server adequate to the request submitted. Many issues
are involved in this simple exchange: load balancing, replication, system con-
figuration, name services, communication overhead, etc., all of which must be
balanced in order to have a suitable system, regardless of the concrete appli-
cation. The difference between CORBA implementations, TP-monitors, and
workflow management systems lies on the assumptions made about the com-
ponents shown in Figure 2.9. CORBA provides a standarized interface in order
to have all servers looking alike. A TP-monitor provides similar normalization
but with an emphasis on the transactional properties of the service provider.
A workflow tool concentrates on the way the client concatenates service invo-
cations and on facilitating the interaction with non-standarized resource man-
agers (the server components being designed on an ad-hoc basis). Although
these systems perform basically the same function, only workflow manage-
ment pays sufficient attention to the concatenation of service invocations, i.e.,
to the programming aspects as seen from the client. CORBA relies on object
oriented languages for this purpose, usually C++, TP-monitors have their own
language, for instance, transactional C in Encina [Transarc, 1995], but none of
them offers the flexibility and functionality provided by workflow management
systems.

2.4.2 Process Support Systems

The most precise and simplest characterization of a process is as a complex
sequence of computer programs and data exchanges controlled by a meta-
program (the process itself). This characterization is useful in that it implic-
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itly incorporates the goals of any process support system. It also covers a
wide range of process types including business processes, virtual enterprises,
software processes, manufacturing processes, scientific experiments, and ge-
ographic modeling. Such notion of process has proven to be very helpful in
developing support tools for applications executing in a distributed fashion and
over heterogeneous platforms, as it is the case in most process types. Existing
workflow systems, however, target in most cases either business processes or
imaging systems, with a few research prototypes addressing other areas [Mei-
danis et al., 1996, Ben-Shaul and Kaiser, 1995]. Such narrow purpose design
along with the limitations mentioned in the previous section significantly re-
strict the applicability of current products. For instance, recent attempts to
use commercial workflow products to support scientific applications have been
rather disappointing [Meidanis et al., 1996, Bonner et al., 1996]. These re-
sults are not surprising, since the problems faced by current workflow systems
are pervasive and appear in many application areas. Thus, the two main chal-
lenges of workflow management systems is to incorporate their functionality
into a generic distributed system as the one described above, and generalizing
the notion of process so as to provide support for any type of process based
distributed computation, not just for business applications.

2.4.3 Programming in Heterogeneous, Distributed Environments

Regardless of whether the final system is seen as a distributed environment or
as a process support system, the key aspect is the variety of computer tools
available as basic building blocks. Workflow management provides the mech-
anisms to integrate these tools into a more meaningful system by combining
them as necessary on a per process basis. Individual applications act as re-
source managers, while the workflow system acts as the language to specify
the interactions between these service providers as well as serving as the exe-
cution environment in which those interactions take place.

Scientific data management offers a good example of the generalization of
the concept of process and of the utilization of workflow tools in a distributed,
heterogeneous environment. Scientific applications are known for the size and
volume of the data involved [Hachem et al., 1993, Katz and et al., 1993]. More-
over, scientific data has the added problem of the multiple formats in which the
information is represented and the multiple transformation to which it is sub-
jected. Most existing research in scientific data management often overlooks
the fact that scientific data is seldom used raw. In most cases, the data under-
goes complex and successive transformations as part of sophisticated models
of physical phenomena. Such transformations are a source of derived data
which cannot be interpreted correctly without knowledge about how it was
created. To make matters worse, the transformations and models themselves
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Figure 2.10 Scientific modeling as a workflow process

may evolve as more precise knowledge is available. Support for tracking these
data dependencies and evolution is all but lacking in current systems.

Consider, for instance, the model shown in Figure 2.10 as a typical exam-
ple of how scientific data is handled. The purpose of the model is to study
the changes in the erosion patterns, vegetation and hydrographic characteris-
tics of a given area. The model can be divided in three parts. The erosion
model] takes information about the slopes of the area, its soil characteristics,
and vegetation cover to produce an estimate of the erosion of the terrain. Note
that the soil information is obtained directly from available data. However, the
slope information is not readily available and requires taking elevation samples
and processing them to get the desired information. This is done by using two
more models, the Digital Elevation Reconstruction and Slope Analysis. The
data about vegetation changes is the result of a vegetation evolution model.
This model takes several inputs, some of them primitive, i.e. raw data such
as the soil map, and some of them derived (by applying other models). Fi-
nally the discharge model involves interpolating rainfall records, calculating
the storm coverage and applying a flow analysis algorithm to define an hydro-
graph (showing the flow of water at a given point).

Workflow systems provide the tools necessary to capture such modeling acti-
vities. Figure 2.10 can be viewed as a workflow process in which the control
flow follows the modeling logic and the data flow corresponds to the outputs
of particular algorithms that are used as inputs to the next set of algorithms.
Using a workflow system for such purpose helps to solve many of the prob-
lems posed by scientific data. To start with, the execution is persistent and can
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be distributed across many different nodes which, first, provides a considerable
degree of reliability and, second, opens up the opportunity to parallelize and
distribute expensive computations across a network of computers. Moreover,
the auditing and monitoring tools of the workflow system keep track of every
step of the execution and the data produced. Questions such as the lineage of
a data set (how it was produced), data dependencies between data sets, and the
algorithms involved in a given model can be easily answered by consulting the
audit data of the workflow system. Moreover, complex tasks such as automatic
change propagation (triggering the execution of a process when one of its inputs
changes) and maintaining data consistency can be performed automatically by
the system by using the information recorded about every process.

These ideas can be applied in a variety of scientific environments, once
the workflow engine has been modified to support generic processes. The
necessary enhancements are no different from those discussed in this chapter
(scalability, availability, industrial strength, generalization of the modeling lan-
guage) and some work is currently being done in this direction [Bonner et al.,
1996, Meidanis et al., 1996, Alonso and El Abbadi, 1994]. A workflow system
is, however, not just a repository for process dependencies. It can also play
an important role in the usability of parallel and distributed environments such
as clusters of workstations and PCs. Moreover, by not requiring to modify
existing applications, workflow management systems may provide a straight
forward solution to the problem of exploiting the parallelism inherent in such
hardware clusters. A good example of this is the complex sequence of pro-
gram invocations shown in Figure 2.10. Assuming the necessary hardware is
available, each of the steps of the model depicted could be executed in a dif-
ferent machine, with the workflow tool acting as the scheduler for the overall
computation. In this way, in a first stage, the vegetation model, the orographic
data extraction and the spatial interpolation programs could be invoked in par-
allel at different sites. In a second stage, the storm discharge, and the erosion
and precipitation models could be invoked in parallel, and so forth. In such
scenarios, the workflow system takes on the role of distributed operating sys-
tem facilitating the integration of independent systems into a single coherent
whole. Ideally, workflow management systems should provide such function-
ality independently of the type of application process. Thus, future workflow
systems may be constructed as tools over which concrete distributed applica-
tions (business oriented, scientific process support, virtual enterprises, etc.) are
built.

2.5 CONCLUSIONS

Workflow management systems have had a considerable success as the first
tools capable of both exploiting the coarse grained parallelism implicit in busi-
ness processes and integrating heterogeneous systems into a coherent whole.
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The notion of process, understood as a complex sequence of program invo-
cations and data exchanges, has been widely accepted and applied in many
areas. Unfortunately, existing workflow systems suffer from significant lim-
itations that restrict their applicability. Among these limitations, one of the
most relevant is their inability to support generic processes. This has lead to
disappointing results when current products have been used in areas other than
business processes. Other limitations arise from problems not very different in
nature from those encountered in tools such as TP-monitors or CORBA envi-
ronments. These similarities, as shown in the previous sections, are not sur-
prising when taking into consideration the fact that all of these systems have
basically the same goals. Solving these limitations requires to develop a new
understanding of workflow management. In particular, workflow management
systems should be incorporated as key functionality in tools supporting dis-
tributed applications, as well as be enhanced to support a more generic notion
of process. From a functional point of view, the advances in communication
and computing technology allow, and even require, to view workflow manage-
ment systems as process support systems, i.e., meta-programming tools and
execution environments for generic processes. The possibilities of such an
approach have been clearly shown in the area of business process reengineer-
ing, where workflow management systems have provided an efficient way of
designing very complex distributed applications reusing existing components.
The example discussed above regarding scientific computing shows how these
same ideas can be successfully applied in many other areas, turning workflow
management into a key component of future distributed systems. In this regard,
it is important to point out that none of the issues discussed in this chapter are
tied to business processes, although the initial motivation to work on them may
have been business applications. These issues are common to many distributed
applications. Efforts like TP-monitors, CORBA, or queuing systems are ad-
dressing additional crucial aspects of distributed execution environments, and
workflow management should be viewed as one more effort in this direction.
The focus on business process has helped to create an initial market and al-
lowed to gain important experience in the usage of workflow systems. The
next step is to extrapolate these ideas to other areas and combine workflow
technology with other ongoing efforts in distributed computing to arrive at the
next generation of distributed processing tools.
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3 A REFLECTIVE FRAMEWORK FOR
IMPLEMENTING EXTENDED
TRANSACTIONS

Roger S. Barga and Calton Pu

Abstract: It is commonly accepted that the traditional transaction model used
in database systems is not well-suited for advanced application domains, because
it is lacking in functionality and performance. In recent years, numerous ex-
tended transactions have been proposed to address the requirements of advanced
database applications. Extended transaction proposals can largely be categorized
into two areas: advanced transaction models and semantics-based concurrency
control protocols. Few extended transactions have been ever implemented, not
even as research prototypes, and today most remain mere theoretical constructs.
Thus, while the research literature bulges with papers there is no practical way
to readily leverage these results for the advanced applications for which they
were designed. As a consequence, extended transactions have had little impact
on industry.

In this chapter we present the Reflective Transaction Framework, as a prac-
tical method to systematically extend both functionality and interface of a con-
ventional TP monitor to implement extended transactions. The framework pro-
vides principled access to existing TP monitor functions and data structures, and
carefully extends available transaction services to implement extended transac-
tions. The design of the Reflective Transaction Framework is a synthesis of
techniques: computational reflection for principled, effective access to TP mon-
itor systems internals; meta object protocols to provide explicit descriptions of
extended transaction behaviors; and, good software engineering practices for
abstraction and modularity of the individual software modules that implement
the framework. Using the framework, application developers can implement ad-
vanced transaction models and semantics-based concurrency control protocols
on production quality TP monitor software, where they can be applied to real-
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world applications. It is our hope that this work will help bring together research
advances in transaction processing and commercial transaction processing sys-
tems, an interaction from which both sides may benefit.

3.1 INTRODUCTION

A vast majority of the ideas that have been proposed in the context of advanced
transaction models and semantics-based concurrency control have remained, at
least thus far, just that — proposed. In many cases, these extended transac-
tions have been shown to have the potential to improve both performance and
functionality of traditional transactions for emerging database applications [El-
magarmid, 1992]. However, few of these extended transactions have been im-
plemented, not even as research prototypes, and most remain mere theoretical
constructs [Mohan, 1994]. Today, extended transactions are on the critical path
for a variety of advanced database applications [Silberschatz et al., 1996], and
the time is ripe for their incorporation into commercial transaction processing
(TP) systems where they can be applied to real-world applications.

We have introduced the Reflective Transaction Framework [Barga, 1997,
Barga and Pu, 1995] to support the implementation of extended transactions
on production quality TP monitor software. The insight behind our work is the
observation that in most cases, the base functionality provided by a conven-
tional TP monitor is “almost right” to implement advanced transaction models
and semantics-based concurrency control protocols. While certain functions
and data structures are missing, existing functions and data structures of the
TP monitor software are basically correct. We do not propose that transaction
systems should simply include more features to implement selected extended
transaction models. There is no consensus as to which extended transactions
a transaction system should include for advanced applications; most likely,
there never will be, since each advanced transaction model and semantics-
based concurrency control protocol is optimized for a particular application.
Furthermore, as application requirements continue to evolve, transaction pro-
cessing requirements will change and new models will be introduced. Instead,
we present a software framework that opens the existing functionality of a TP
monitor in such a way that allows programmers access and control over the
system, and to tailor the framework to the needs of a particular application.
This is called an open implementation [Kiczales, 1992]. The open implemen-
tation provided by the Reflective Transaction Framework gives the application
programmer principled access to TP monitor functions and data structures, and
carefully extends the TP monitor functionality with extended behaviors to im-
plement extended transactions.

The design of the Reflective Transaction Framework draws from a variety
of techniques to achieve the open implementation of a conventional TP moni-
tor. The framework uses computational reflection [Maes, 1987] for principled,
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effective access to TP monitor systems internals. A meta level interface, or
meta object protocol [Kiczales et al., 1991], is used to provide explicit descrip-
tions of extended transaction behaviors. Good software engineering practices
are followed for abstraction and modularity of the individual software modules
that implement the framework.

The implementation of the Reflective Transaction Framework introduces
transaction adapters, reflective software modules built on top of TP monitor
software. Transaction adapters leverage existing transaction services of the un-
derlying TP monitor, to the extent possible, as building blocks for constructing
extended transaction functionality. Transaction adapters contain a representa-
tion, or meta-level description, of selected functional aspects of the underlying
TP monitor, and maintain a causal connection [Maes, 1987] between this rep-
resentation and the actual behavior of the system. The causal connection is two-
way; not only are changes in the TP monitor reflected in equivalent changes to
the representation, but changes in the representation will also cause changes
in the behavior of the underlying TP monitor. Each extended transaction has
meta-level representation, causally-connected with a transaction running on the
TP monitor, that holds information about the transaction and how it is used; in
essence this representation defines control and policy. The causal connection
between the Reflective Transaction Framework and underlying TP monitor is
built on the ability to intercept transaction events, together with the means to
access TP monitor functions through an available application programming in-
terface (API). The strengths of the Reflective Transaction Framework lie in:

1. Incremental Design. The Reflective Transaction Framework does not
expose the entire TP monitor functionality, but only selected aspects of
it. Access to TP monitor functionality and extended transaction behav-
iors is carefully organized through a well-documented interface, not ran-
dom user hacking of internals. In addition, programmer access to ex-
tended transaction behaviors can be graduated to match application re-
quirements. This is very different from letting an application programmer
randomly change the implementation, as happens when a large number
of more or less random “hooks” or callbacks into the implementation are
provided. The framework preserves the original TP monitor application
interface and functionality, enabling extended transactions to be gradu-
ally deployed without having to reimplement existing applications.

2. Interoperability. The Reflective Transaction Framework insulates tran-
saction extensions from each other, so that multiple extended transactions
can exist in one address space and be used in a single program, along
with traditional transactions. They are interoperable. This addresses two
fundamental problems with tailorability: (i) the framework allows the ad-
dition of transaction extensions to the TP monitor without requiring all
programs to pay the additional cost, even if they do not make use of those
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extensions. And (ii) the framework allows programmers to use in one
address space different transaction operations that are alike but have been
extended differently. For example, an application can select a commit op-
eration designed for cooperative group transactions [Nodine and Zdonik,
1990], or a commit operation designed for nested transactions [Moss,
1985], etc. Systems that are only globally tailorable typically can not
support multiple applications, because interface customizations diverge.
By allowing programmers to explicitly control the scope of extensions,
at the level of individual transactions, it is possible to customize the TP
monitor to suit any number of different applications.

3. Extensibility. While the abstractions and extended functions provided
by the Reflective Transaction Framework are sufficient to implement a
wide range of existing transaction models and semantics-based concur-
rency control protocols, we anticipate the continued introduction of new
extended transactions. Transaction adapters are designed for quick and
easy extension. Each adapter encapsulates a set of extensions specific to
a selected aspect of TP monitor functionality. This limits the scope of
what is effected by an adapter and makes it easy to incrementally extend
this functionality. As a result, the framework itself can be extended to
implement new extended transactions for emerging applications.

4. Practical Approach. Transaction adapters do not duplicate existing tran-
saction functionality, but instead implement extensions to the services
provided by a TP monitor. These extensions leverage existing function-
ality and data structures, to the extent possible, for constructing extended
transaction abstractions and services. This not only eliminates unnec-
essary infrastructure development by building on existing services, but
provides efficient, robust base processing for extended transactions.

The contribution of the Reflective Transaction Framework, then, is a prac-
tical method to systematically extend the functionality of a conventional TP
monitor to implement advanced transaction models and semantics-based con-
currency control protocols. Using the framework, application developers will
be able to apply extended transactions in real, working environments. It is our
hope that this work will help bring together research advances in transaction
processing and commercial transaction processing systems, an interaction from
which both sides may benefit.

3.2 EXTENDING A CONVENTIONAL TP MONITOR

Transaction processing (TP) monitors supporting atomic transactions are a
well established technology that have been around for almost 20 years. TP
monitors provide a general framework for transaction processing, supplying
the “glue” to bind together the many functional components of a transaction
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processing system through services like multithreaded processes, interprocess
communication, queue management, and system management [Bernstein, 1990].
Early TP monitors, such as IBM’s CICS, were proprietary and constructed
from single monolithic proprietary systems, but modern TP monitors, such as
Transarc’s Encina, DEC’s ACMSxp, and IBM’s CICS/6000, are modular and
constructed from open transaction processing middleware [Bernstein, 1996].
These middleware modules provide the basic functional building blocks re-
quired of any TP monitor for transaction processing, such as a Transaction
Manager, Lock Manager, Log Manager and Resource Manager. Each
module exports its transaction services through a relatively simple and uniform
“application programming interface” (API). The relationships between an ap-
plication and the modular functional components in a TP monitor are depicted
in Figure 3.1.

Resource
Transaction Lock
e jo——| Manager
Begin_Trausaction Manager Manager
p— Log
e -—
Commit Manager
Transactional
Application

1 Transaction Processing System

Figure 3.1 Modular Functional Components of a TP Monitor

One seemingly straightforward way to implement extended transactions wo-
uld be to directly use the available functionality found in the functional com-
ponents of a TP monitor. Two major impediments complicate this proposition.
First, conventional TP monitors have a fixed application-level interface and a
fixed implementation of system services. Application developers traditionally
access transaction services through the atomic transaction control operations,
such as Begin Transaction, Commit_Transaction, and Abort_Transaction.
Ideally, programmers would be able to define and then use similar transaction
control operations for extended transactions, such as Split_Transaction or
Join Transaction for programming with the split/join transaction model [Pu
et al., 1988]. However, the single, fixed interface of the TP monitor does not
provide access to the underlying transaction services or permit extensions. The
functional components of a TP monitor provide a rich set of transaction ser-
vices, but require the application developer learn intricate details of the TP
monitor and available API; the size and complexity of the API itself presents
a formidable barrier to even the most accomplished programmers. Second,
is the level of customization of the TP monitor. The transaction system-level
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code functions "underneath’ the code of an application program, is not subject
to the same programming abstractions. This requires the TP monitor to be cus-
tomized outside the application, rather than within it, making it impossible for
an application to specify its requirements for extended transaction behaviors
at runtime. At best, the TP system programmer could adjust the TP moni-
tor functionality through the API to implement a selected extended transaction
model a priori. Unfortunately, this approach is at the cost of reusability of the
TP monitor by applications with other requirements. These issues, and oth-
ers, combine to give users no convenient way to directly use a conventional TP
monitor to define new application interfaces or leverage existing transaction
services to implement extended transaction functionality. Efforts to provide
implementation support for extended transactions have thus gravitated towards
construction of entirely new transaction processing facilities. These efforts,
though laudable, have limited practicality.

Computational reflection offers a conceptual tool, the notion of a reflective
module, to address the challenges of extending a conventional TP monitor to
implement extended transactions. Intuitively, a reflective module allows ap-
plications to observe and modify properties of their own behavior, especially
properties that are typically observed from some external, meta-level point of
view. Reflective modules contain a representation of selected aspects of the
system, and maintain a causal connection between this representation and the
actual behavior of the system. The causal connection is two-way; not only are
changes in the system reflected in equivalent changes to the representation, but
changes in the representation will also cause changes in the actual state and be-
havior of the system. An application can use this representation to both reason
about selected aspects of the system, and adjust the representation to influence
system behavior. Following the open implementation approach [Kiczales et al.,
1991, Kiczales. 1992], a reflective module can be designed to provide a meta
interface that allows applications to extend and control the implementation of
the module’s primary interface.

Thus, a reflective module with an open implementation enables an appli-
cation to extend boeth interface and system services, and to participate in the
modules implementation strategy in a principled way.

3.3 THE REFLECTIVE TRANSACTION FRAMEWORK

The Reflective Transaction Framework is a flexible software framework that
supports the implementation of extended transactions on a conventional TP
monitor. The framework is designed to be implemented as a thin software
layer over an existing TP monitor. The implementation introduces transaction
adapters, reflective software modules built on top of the individual functional
components of the TP monitor. Each adapter provides a representation of se-
lected aspects of the underlying functional component, and provides a primary
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interface to a set of extended transaction services and a meta interface to adjust
these extended services. The Reflective Transaction Framework ties together
the individual transaction adapters and provides a single, integrated interface
for applications to systematically extend both application interface and func-
tionality of a conventional TP monitor to implement extended transactions.

The extensions provided by transaction adapters leverage, to the extent pos-
sible, transaction functionality already provided by the underlying TP moni-
tor. The additional transaction functionality provided by transaction adapters
supplies the necessary building blocks for constructing a wide range of ex-
tended transactions; examples include structured relationships between indi-
vidual transactions, transaction restructuring, recording and tracking inter-tran-
saction dependencies, delegation of resources between transactions, specifica-
tion of transaction management events and constraints on event occurrences,
and relaxed notions of lock conflicts. The techniques used by the extensions
in transaction adapters are not novel; for example, other systems using similar
approaches are ASSET [Biliris et al., 1994], DOMS [Georgakopoulos et al.,
1994], and the ACTA meta model [Chrysanthis and Ramamritham, 1990].
However, the techniques are applied in a unique way to the problem of carefully
extending the existing functionality of a conventional TP monitor.

3.3.1 Extensions Through Transaction Events

One key to the Reflective Transaction Framework’s ability to extend the func-
tionality of a TP monitor is a mechanism that integrates extensions with the un-
derlying TP monitor. The Reflective Transaction Framework uses transaction
events to provide such a binding mechanism. In an event-based system, com-
ponents announce some system occurrence by explicitly raising an event of a
particular name. Other parties, interested in learning of the occurrence, register
event handlers which execute in response to a raised event. Events are gen-
erally recognized as an effective technique for implementing loosely-coupled,
flexible systems in which relationships between code components must be dy-
namically established [Sullivan and Notkin, 1992].

In the Reflective Transaction Framework, every transaction control oper-
ation represents a possible transaction event, such as Begin Transaction,
Commit_Transaction, or Join Transaction a transaction changing state (to
ACTIVE, ABORTED, COMMITTED, etc.), is a potential transaction event, or
when a transaction requests a service (i.e., lock request) from the TP monitor.
Consequently, all relationships between a transaction and the TP monitor are
subject to change simply by changing the set of handlers associated with any
given transaction event. Since the Reflective Transaction Framework allows an
application to associate handlers with each transaction event, it is possible for
an application to specify its requirements for extended transaction behaviors at
runtime at the granularity of each (extended) transaction.
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To see how this works, consider the processing of the Commit_Transacti-
on control operation for an extended transaction. This transaction control op-
eration raises an event that can be intercepted by a transaction adapter in the
Reflective Transaction Framework. If there are inter-transaction dependencies,
such as a commit dependency or abort dependency, the transaction adapter can
take appropriate actions, possibly delaying the actual commit of the transaction,
terminating abort-dependent transactions, or performing commit preprocess-
ing. The Reflective Transaction Framework’s use of transaction events as a
mechanism to integrate transaction extensions is only part of the solution. Ex-
tended transaction processing often requires the ability to observe and reason
about the state of active transactions, and to effect control over the underlying
TP monitor. This is accomplished through reflection and causal connection.

3.3.2 Implementing Reflection and Causal Connection

In the Reflective Transaction Framework, reflection and causal-connection are
implemented using transaction adapters. Each adapter corresponds to a par-
ticular functional aspect of the TP monitor, such as transaction execution, lock
management, transaction conflict detection, log management, and transaction
recovery. The relationship between transaction adapters and TP monitor func-
tional components is illustrated in Figure 3.2. To expose, or reify the internal
state of the TP monitor, each adapter contains a number of meta objects that
represent or model selected structures and behaviors of the underlying func-
tional component. Each adapter provides a meta interface that allows the state
and behavior of these meta objects to be locally and incrementally adjusted.
Furthermore, when the user modifies a meta object in an adapter, the modifica-
tion is reflected to the actual computational state of the functional component in
the TP monitor. Figure 3.4 outlines select transaction adapters, along with meta
objects and meta interface commands each provides. Thus, transaction adapters
provide access to aspects of a legacy TP monitor that are often hidden, enabling
users to “reach in” and adjust or extend the behavior of the legacy system using
the meta interface. This relationship between adapters at the meta level and
legacy TP monitor at the base level is termed causal-connection [Maes, 1987],
and is satisfied by all reflective systems.

Applications access transaction adapters using commands in the meta inter-
face. Changes or modifications that an application makes to meta objects in
an adapter, using the meta interface commands, affect the behavior of the TP
monitor for only that application. For example, if an application would like
to relax isolation properties of a transaction in order to facilitate cooperation
with other concurrently running applications, it issues the appropriate meta in-
terface commands to change the conflict detection method for that transaction.
Therefore, adapters enable an application to extend the underlying mechanisms
of the legacy TP monitor incrementally, dynamically, and in a modular manner
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at the granularity of each (extended) transaction execution. In the remainder of
this section, we provide details on how reification, reflective computation, and
reflective update are implemented in the Reflective Transaction Framework.
Additional details on the design and implementation of transaction adapters
can be found in companion articles [Barga and Pu, 1996, Barga and Pu, 1995].

Transactional Application

Meta Interface Meta Interface | Meta Interface | Meta Interface
Transaction Mgr.| Lock | Conflict Log

Adapter Adapter | Adapter | Adapter Metalevel

] Baselevel

Transaction Mgr.| Lock Mgr. Log Mgr.

TP Monitor

Low-level System Programming Interface

Transaction Event Facility

Figure 3.2 Transaction Adapters in the Reflective Transaction Framework.

Reification. In the Reflective Transaction Framework, reification is the rep-
resentation of structural and computational state of the underlying TP monitor
component as an object within the corresponding transaction adapter. This ef-
fectively provides a representation of the system at the meta level. Reification is
implemented using callbacks, also commonly referred to as upcalls. Upcalls
support efficient cross-layer communications and enable the functional com-
ponents in the TP monitor to pass relevant state information to a transaction
adapter in the meta level where it is reified, as illustrated in Figure 3.3. The
most important decisions made in designing each transaction adapter were se-
lecting those aspects of the underlying TP monitor component that should be
reified. As an example, for the Lock Adapter depicted in Figure 3.3, such
aspects include the locks being held by each extended transaction, pending
lock requests, the procedure used to grant lock requests, and the structure of
the lock table. Depending on the transaction model one wishes to implement,
other aspects may also be reified. For example, the operations being performed
on a locked data object, or the mode in which a lock has been granted to a
transaction. For generality, each adapter was designed based on the structure,
function, and commands of the well-documented TP monitor reference archi-
tecture [Gray and Reuter, 1993]. The reference architecture was selected to
allow observations on TP monitors in general, yet be concrete enough to re-
veal implementation details on modern commercial TP monitors. To identify
the transaction and TP monitor structures and state that would be reified by the
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adapters, we referred to ACTA [Chrysanthis and Ramamritham, 1992], a logic-
based formalism for defining and coraparing transaction models. ACTA pro-
vides unifying abstractions for describing extended transaction functions and
behaviors, and delineated dimensions of change for realizing extended transac-
tions. A more detailed discussion of transaction adapter design can be found in
a companion paper [Barga and Pu, 1995]. The essential point is that the meta
objects in the transaction adapters and commands presented in the meta inter-
face are not ad-hoc, but were defined within the context of general TP monitor
functionality and extended transaction behaviors. Further, to ensure the flexi-
bility of transaction adapters they were designed to be incrementally extensible.
Should the need arise, additional aspects of the underlying TP monitor func-
tional component can be reified as meta objects in the adapter by using the ap-
propriate TP monitor upcalls and adding reification methods to the transaction
adapter. Reifying selected aspects of the underlying TP monitor component
into metalevel objects that are dynamically accessible and modifiable enables
reflective computation and reflective update.

Lock Adapter Meta Interface
o o o | O I T |

Transaction Lock List Lock Information

Transaction Event Handler
Reflective Update —J

UPCALL causal-connection | AFI Call

Reification

’_Lock Manager Application Programming Interface
4 Ny D oy S s X
- S o 0 8 | ok INoK
- X | NOK | NOK
-] -

Lock Table Pending Lock Requests Lock Compatibility

Figure 3.3 Reflective update and reification form causal-connection.

Reflective Computation. The shift in computation from the TP monitor
functional component to reflective computation in the transaction adapter oc-
curs in an event-driven manner. A transaction significant event is raised when-
ever a transaction attempts to change state, e.g. the transaction aborts or com-
mits, or when a transaction requests a service from the TP monitor. For each
transaction event there is an adapter assigned to process the event. When the
event is raised execution control is passed to the assigned transaction adapter,
along with all information relating to the event. For example, when the LOCK
MANAGER detects a lock conflict between two transactions during a lock re-
quest, control is passed to the Lock Adapter through an upcall, along with all
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information pertaining to the conflicting request. The Lock Adapter can then
apply operation or application-specific semantic information to determine if
the request should be granted according to the semantics of the transaction
model. The Lock Adapter can then grant the lock request, or deny it by sim-
ply returning control back to the LOCK MANAGER, effectively implementing
semantics-based concurrency control. As this example illustrates, reflective
computation not only allows transaction adapters to expose default behaviors
of the underlying TP monitor, but also augment legacy functionality with new
extended functionality.

Reflective Update. If the reflective computation updates the reified data,
then the modifications are reflected down to the actual computational state of
the underlying TP monitor component in what is called a reflective update.
Reflective update is implemented through calls to the API provided by each
TP monitor functional component. Through the API the transaction adapter
can update the structures and computational state of the underlying functional
component. The most challenging issue when implementing an adapter is to
identify the appropriate API calls in order to implement each reflective up-
date. Ideally, this task is performed only once, by the designer of the Re-
flective Transaction Framework, who is familiar with the inner workings of
the monitor functional components. When an adapter needs to perform a re-
flective update, it issues the appropriate sequence of API calls, as illustrated
in Figure 3.3. Thus, each transaction adapter not only reifies aspects of the
TP monitor functional component, enabling reflective computation, but also
provides the means to affect the state and control the component’s behavior
through reflective update, forming the causal-connection between the tran-
saction adapters and legacy TP monitor.

3.3.3 A Separation of Programming Interfaces

Application programmers develop transactional applications using a set of tran-
saction model-specific verbs, or transaction control operations. For exam-
ple, atomic database transactions are initiated by the operation Begin Trans-
action, and terminated by either a Commit_Transaction or Abort_Transac-
tion operation. Extended transactions, on the other hand, often introduce addi-
tional operations to control their execution, such as the operation Split_Trans-
action introduced by the split/join transaction model, or the operation Join-
Group introduced in the cooperative group model. Indeed, a transaction model
defines not only defines the control operations available to a transaction, but
also the semantics of these operations. For example, whereas the Commit_Tran-
saction operation of the atomic transaction model implies the transaction is
terminating successfully and that its effects on data objects should be made
permanent in the database, the Commit_Transaction operation of a member
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Transaction Management Adapter — reifies state information for
transactions executing extended behaviors, and provides meta
interface commands to control these extended transactions and
adjust the behavior of the underlying TRANSACTION MAN-
AGER functional component. Commands in the Transaction
Management Adapter meta interface include: Instantiate,
Select, Delegate_Ops, Form Dependency, Create_Group,
Create_Tran, Terminate_Tran, and Wait. Primary meta ob-
jects reified by the Transaction Management Adapter include a
metatransaction descriptor for each extended transaction, a re-
flective transaction table, and a transaction dependency graph.

Conflict Adapter — reifies information on the conflicts that occur
between transactions attempting to acquire shared resources, and
provides a meta interface to control the definition of conflict and
appropriately adjust the behavior of the underlying LOCK MAN-
AGER. Commands in the Conflict Adapter meta interface include:
Relax Conflict, No_Conflict, Allow, Wait and Revoke. Pri-
mary meta objects reified by the Conflict Adapter include a a
compatibility table defining conflict relationships between oper-
ations, and a no-conflict table that records all conflicts explicitly
relaxed between extended transactions.

Lock Adapter — reifies information on locks held by transactions
and on the state of the lock table, and provides meta interface
commands that control the locks held by extended transactions
and adjust the behavior of the underlying LOCK MANAGER func-
tional component. Commands in the Lock Adapter meta inter-
face include: Release_Lock, Acquire_Lock, Delegate_Lock,
Share, Wait, Peak and Upgrade Mode. Primary meta objects
reified by the Lock Adapter include a transaction lock list, lock
mode table, and an active locks list.

Figure 3.4 Transaction Adapters in the Reflective Transaction Framework
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transaction in a cooperative transaction group implies only that its effects on
data objects be made persistent and visible to transactions that belong to the
same group.

To accommodate this diversity between different advanced transaction mod-
els, we introduce a separation of programming interfaces to the TP monitor.
This separation follows the open implementation approach [Kiczales, 1992},
pioneered in the meta-object protocol [Kiczales et al., 1991}, in which the func-
tional interface is separated from the meta interface. The purpose of the meta
interface is to modify the behavior, or semantics, of the functional interface.
In our separation of interfaces, presented in Figure 3.5, both the transaction
demarcation interface and extended transaction interface are functional, subdi-
vided for clarity only.

The separation of programming interfaces to the legacy TP monitor pro-
vides the means to talk about existing transaction models, and also introduce
new extended transaction behaviors and interfaces. Default transaction behav-
iors remain available through the standard transaction demarcation interface.
New extended transaction behaviors can be defined using the meta interface,
and made available to to application through the introduction of new extended
transaction control operations in the extended transaction interface. The ex-
tended transaction interface augments the default transaction demarcation in-
terface with new extended control operations, so the TP system programmer
can perform the meta-programming of the TP monitor in a clean, concise man-
ner that does not deviate significantly from *normal’ programming.

3.4 APPLICATIONS OF THE
REFLECTIVE TRANSACTION FRAMEWORK

The Reflective Transaction Framework would not be of great value unless it
supported the extended functionality required to rapidly implement a wide
range of advanced transaction models and semantics-based concurrency con-
trol protocols for advanced applications. Our experience in this regard has been
very positive [Barga and Pu, 1996, Barga and Pu, 1995]. In this section, we il-
lustrate the application of the Reflective Transaction Framework to implement
advanced transaction models and semantics-based concurrency control proto-
cols. In our discussion, we outline the process of using the framework from
the perspective of both TP system programmer and application developer, and
briefly describe operational aspects of adapters in supporting the extended tran-
saction functionality.

3.4.1 Implementing Advanced Transaction Models

The split/join transaction model was proposed for open-ended activities such
as computer-aided design and manufacturing (CAD/CAM) [Pu et al., 1988].
Open-ended activities are characterized by uncertain duration, uncertain devel-
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Base Interface: provides ACID Extended Transaction Interface: provides

transaction functionality... an interface for extended transaction models.
Metalevel Interface: provides i EN
control over implementation, L Il ]

Transaction Procedsing Monitor

Transaction demarcation interface — presents the default tran-
saction interface offered by the legacy TP monitor. When
used alone it provides default transaction behavior of atomic
transaction semantics. Control operations in the tran-
saction demarcation interface include: begin-transaction,
commit-transaction, and abort-transaction.

Extended transaction interface — presents an extensible interface
to new extended behaviors added to the TP monitor and is used
when applications require extended transaction functionality and
semantics. Operations in the extended transaction interface in-
clude transaction control operations defined by specific extended
transaction models, such as the operations Split, Join, Spawn,
Create_Group, etc.

Meta interface — allows applications to view selected aspects of
the underlying TP monitor functionality and to make modifica-
tions. The meta interface provides commands for programmers
to locally and incrementally adapt the functionality of the TP
monitor to the requirements of an extended transaction. Some
of the operations in the meta interface include: delegateOp,
delegatelLock, formDependency, noConflict, and select.

Figure 3.5 Separation of Interfaces to the Reflective Transaction Framework
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opments and interaction with other concurrent activities. Due to these char-
acteristics, sometimes it is desirable to release earlier modified data of a tran-
saction to other transactions. The split/join transaction model provides two
operations to dynamically restructure transactions, namely split and join.
A transaction T may split into two transactions T, and T}, providing applica-
tions with a mechanism to release data objects that are no longer needed and,
hence, release intermediate results to other transactions. Two transactions can
also join together to become one transaction, or use combinations of split and
join to allow transfer of resources from one transaction to another.

Synthesizing the split function. When a transaction T; splits, by exe-
cuting the transaction control operation split (Tq), it must first create a new
transaction (T2) and then delegate responsibility for executing some of its oper-
ations to this new transaction. To be more precise, T; transfers to Ty responsi-
bility for all uncommitted operations on a particular set of data objects, referred
to as the DelegateSet. In practice, users define the DelegateSet by selecting the
objects to split from the re-structured transaction. At the time of the split, a new
transaction is created, instantiated, and then operations invoked on objects in
the DelegateSet by T, are delegated to Ty. The transactions T; and T3 can then
commit or abort independently. The following code segment illustrates how
the split transaction control operation is synthesized using commands in the
meta interface:

split (NewTran, DelegateSet) {
// instantiate new transaction.
instantiate{NewTran);
// add split/join transaction interface to NewTran
select (NewTran, SplitJoin);
// delegate locks related to objects in delegate set.
delegate_lock {(NewTran, DelegateSet);
// delegate ops related to objects in delegate set.
delegate_op(NewTran, DelegateSet);
// initiate execution of the newly created transaction.
begin (NewTran) ;
// return execution control to base-level transaction
return;

Figure 3.6 Split transaction control operation.

Once the extended functionality of the split transaction control operation has
been defined using the meta interface, it can then be added to the extended
transaction interface where it will be available for applications programmers
to use.
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Application Programming Using the split Operation. Inorder to mo-
tivate the need for the split and join operations, consider the requirements of
CAD support for a team of engineers designing a computer chip. Since the de-
sign process may take an arbitrarily long time and involve multiple engineers,
the principal engineer might like to split off responsibility for the design of spe-
cific subsystems to component engineers who can either join their results into
the working chip design at a later time or choose to commit or abort their de-
signs independently. Such requirements are not satisfied by traditional database
transactions in an easy and straightforward manner but can be easily satisfied
by the split/join transaction model. The code fragment below outlines how an
application programmer might use the split and join operations to dynamically
restructure a transaction to release subsystem data objects and operations to a
separate transaction and, later, join with a separate transaction:

Begin_Transaction PE_Tran )
begin
instantiate(PE_Tran) 2
select(PE_Tran, SplitJoin) 3)

...{ data manipulation }
split(CE_Tran, Subsystem) (€]
...{ data manipulation }

j;)in(QA_TYan,*) (&)

end
Commit_Transaction {CAD_design} ©®

Line 1 declares the beginning of the principal engineer’s transaction using
the Begin Transaction command found in the the primary interface. This is
significant, because it notifies the transaction management system that the oper-
ations between this point and the Commit_Transaction command in line 6 are
to be executed atomically, according to the traditional transaction model. Thus,
lines 1 and 6 bracket the transaction. The purpose of the instantiate meta
interface command in line 2 is to notify the Reflective Transaction Framework
of the programmers intention to “renegotiate” the base transaction model. The
select meta interface command in line 3 details the terms of the renegotiation,
selecting the split/join model for the transaction. The importance of the select
command is twofold. First, it determines the control operations and semantics
that are available to the transaction. In this example, the split/join model adds
two new transaction control operations, namely split and join, while the begin,
commit and abort commands have the same semantics as the corresponding
commands in the traditional database transaction model. Second, it informs the
transaction adapters in the Reflective Transaction Framework how to process
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transaction events on behalf of this transaction, such as lock request conflicts,
transaction dependencies that might arise during execution, etc. In line 4, the
application programmer uses the new extended transaction control operation
split, where CE_Tran is the name of the new transaction created for the com-
ponent engineer and Subsystem is the subcomponent that is to be delegated to
the component engineer’s transaction. Finally, in line 5, the application pro-
grammer uses the new extended transaction control operation join to merge
the results and resources held by the transaction PE_Tran with an existing qual-
ity assurance program, QA_Tran.

One can see from this example that there is no description of creating the
new transaction for the component engineer, no explicit delegation of the locks
held on data objects in Subsystem, and no explicit delegation of the data ma-
nipulation operations pertaining to Subsystem when the application is written.
With the exception of the instantiate and select operations, the programmer
simply uses familiar transaction control operations to write the application.

Transaction Adapters Behind the Scenes. Continuing with our exam-
ple, we now examine how transaction adapters work behind the scenes to sup-
port extended transaction behavior on a legacy TP monitor. We begin with the
instantiate meta interface command in line 2. During execution, the in-
stantiate command causes control to be passed to the Transaction Management
Adapter, which reifies information for the transaction PE_Tran, including the
transaction identifier (TRID), current execution status of the transaction, and
control operations available to the transaction. Next, the Transaction Manage-
ment Adapter directs the other adapters to create initial entries for objects will
be reified for this transaction during its execution, and then it returns control
back to the base transaction for processing. The select command in line 3 also
causes control to be passed to the Transaction Management Adapter, which up-
dates the transaction meta object to contain the transaction control operations
split and join, specified by the split/join advanced transaction model.
Processing resumes on the base TP monitor, until the transaction control
operation split (CE_Tran, Subsystem) is processed in line 4. Split is a tran-
saction control operation defined the extended transaction interface for the
transaction PE_Tran. When the transaction invokes a control operation, the
actual code executed is determined by its metatransaction (see Figure 3.7).
When the split operation is invoked by the transaction, processing involves
first verifying this control operation is permitted for the transaction, and once
it has been verified then the function is executed, as illustrated in Figure 3.7.
For the execution of the split operation, as defined in Figure 3.6, the first meta
interface command directs the Transaction Management Adapter to create a
metatransaction descriptor for the new transaction CE_Tran. This change is re-
flected down onto the TRANSACTION MANAGER, resulting in the creation of a
new base level transaction. The commands instantiate and select are then pro-
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cessed by the Transaction Management Adapter to initialize the meta objects
for the transaction CE_Tran. Next, the Lock Adapter delegates locks on all data
objects in the delegate set Subsystem from the transaction PE_Tran to the tran-
saction CE_Tran. This change is first made first to the meta object lockTable,
and through causal connection the change is reflected down to the LOCK MAN-
AGER through the API commands releaseLock and acquireLock. Once
the delegate_lock command is complete, the Transaction Management Adapter
processes the delegate_op command. Finally, the begin command is processed
by the Transaction Management Adapter, which sets the execution mode of
the transaction CE_Tran to active and returns control to the TP monitor to be-
gin base level processing.

Figure 3.7 Transaction control operation redirection

3.4.2 Implementing Semantics-Based Concurrency Control

Concurrency control is based on a simple intuition: if the order in which two
operations take place does not affect the results, then the transaction-processing
system should allow different transactions to perform these compatible oper-
ations concurrently. Fundamental to all concurrency control protocols is the
notion of conflict — incompatibility between operations or transactions. Most
commercial transaction processing systems define conflict in terms of read
and write operations [Bemnstein et al., 1987] — two operations conflict if both
access the same data object and one is a write operation. This syntactic def-
inition of conflict has been criticized as being too restrictive for advanced ap-
plications where conflicts can be defined at a more abstract semantic level.
The basis of semantics-based concurrency control (SBCC) is the introduc-
tion of a relaxed notion of conflict, that is typically weaker than traditional
read/write conflict and thus allows more concurrency [Badrinath and Ra-
mamritham, 1991, Chrysanthis and Ramamritham, 1990, Ramamrithan and Pu,
1995, Ramamritham and Chrysanthis, 1992].
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The Reflective Transaction Framework provides an extensible concurrency
control facility that enables individual transactions to define semantic notions
of conflict, with the only limitation that it be expressible in terms of an oper-
ation compatibility table or an explicit relaxed conflict relationship between
transactions. The compatibility table specifies actions the framework should
take given certain conflicting operations, dynamic dependency relationships
that are formed as a result of the conflict, and specifies conflicts between trans-
actions that have been explicitly relaxed. An operation compatibility table has
the advantage of being simple for application programmers to create, and can
be loaded and efficiently tested at run-time. To illustrate the flexibility of this
approach we describe how the Reflective Transaction Framework can be used
to specify and implement three SBCC protocols. They are operation commu-
tativity, operation recoverability, and transaction cooperation. The framework
is not limited to this selection, rather, they were selected because they form
the basis for a number of related SBCC protocols and illustrate key operational
aspects of the framework.

Specifying Operation Commutativity. The simplest operation compati-
bility relationship used to determine if two operations can execute concurrently
is commutativity. If two operations commute, then their effects on the state of a
data object or their return values are the same, irrespective of their execution or-
der (for example, two read operations commute). When a transaction invokes
an operation, it can be executed if it commutes with every other uncommitted
operation. Further, if the transaction processing system allows only commuting
operations to execute concurrently, then it prevents cascading aborts.

The commutativity of operations on a data object is specified in advance via
the operation compatibility table. As a simple example, consider operations on
a bank account data object for commercial banking applications. For this data
type we define the operations Deposit, Withdraw, and Balance. The Deposit
operation adds a specified amount to the account balance, Withdraw subtracts
a specified amount from the account balance, and Balance returns the current
value of the account. From the semantics of these operations the application
developer or TP system programmer can construct an operation compatibility
table, as illustrated in Table 3.1. Columns in the compatibility table represent
operations currently holding a lock, while rows represent operations requesting
a lock. Entries marked SOK indicate the requested operation is semantically
compatible (commutes) with the concurrently executing operation, while an
entry marked CON indicates the requested operation conflicts. There are no
dynamic dependencies to be recorded, hence this field is left blank; a semicolon
is used as the field delimiter.

Specifying Operation Recoverability. Another semantic notion proposed
to relax conflicts among operations, weaker than operation commutativity, is
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Table 3.1 Operation commutativity for ACCOUNT data type.

Account:COMM Balance Deposit Withdraw
Balance SOK;; CON;; CON;;
Deposit CON;; SOK;; CON;;
Withdraw CON;; SOK;; CON;;

recoverability [Badrinath and Ramamritham, 1991]. An operation O; is re-
coverable, relative to another operation O;, if the value returned by O;, and
hence the observable semantics of O;, is independent of whether O; executed
immediately before O;. Thus, if transaction T; precedes transaction T}, and T;
aborts then 7; is immune from cascading aborts since the operation effects on
T; remains the same.

Unlike commutativity, recoverability does not require equivalence of states
for operations to execute concurrently. Hence, operation commutativity implies
operation recoverability, but operation recoverability does not directly imply
operation commutativity. Whenever an operation is recoverable but not com-
mutative, relative to another concurrent operation, both operations are allowed
to perform concurrently. However, a dynamic commit-dependency relation is
set between the transaction that attempts to perform the operation and transac-
tions that have already performed recoverable operations with respect to that
transaction. For our example above, T; can not commit until 7; either commits
or aborts. At the time of commit, then, a transaction will have to wait until all
the other transactions on which it has a commit-dependency have completed in
order to maintain database consistency.

As with commutativity, operation recoverability is specified in advance us-
ing a compatibility table designed for recoverability. This is illustrated in
Table 3.2 for the ACCOUNT data object, in which the commit dependencies
that arise due to recoverability are specified as CD. When the Reflective Tran-
saction Framework is evaluating an operation conflict condition between two
transactions and it relaxes the conflict using recoverability semantics, the com-
mit dependency between the two transactions will be recorded in a dependency
graph. Commit dependencies that arise from recoverable operations will be
tracked through the execution of the transactions and used to sequence tran-
saction completion.

Application Programming Using SBCC Protocols. If an application
developer identifies data objects that are hot spots hot spot or concurrency bot-
tleneck concurrency bottlenecks in a system, they can construct operation com-
patibility tables for these data objects. Applications using the Reflective Tran-
saction Framework can then select these compatibility tables for semantics-
based transaction synchronization. To illustrate, we will continue with the



THE REFLECTIVE TRANSACTION FRAMEWORK 83

Table 3.2 Operation recoverability for ACCOUNT data type.

Account:RECV Balance Deposit Withdraw
Balance SOK;CD - SOK:CD SOK:CD
Deposit CON; SOK;CD CON;
Withdraw CON; SOK;CD CON;

CAD example introduced previously, in which a team of engineers are working
together to design a computer chip. During initial chip design, several com-
ponent engineers would be inserting new components for the chip, perform-
ing lookups on existing components, and modifying existing specifications and
deleting outdated or unnecessary components. One possible concurrency bot-
tleneck in this activity are data objects of type Component_Log — a container
for specifications of the individual components in the chip, each identified by a
component identifier (key).

Table 3.3 File Log:comm, operation commutativity for COMPONENTLOG data type.

Log:comm Insert Delete Lookup Sort Modify
Insert SOK;; SOK;; SOK;; CON;; SOK;;
Delete SOK;; SOK;; SOK;; CON;; SOK;;
Lookup SOK;; SOK;; SOK;; SOK;; SOK;;
Sort CON;; CON;; CON;; SOK;; CON;;
Modify SOK;; SOK;; SOK;; CON;; SOK;;

Table 3.4 File Log:recv, operation recoverability for COMPONENTLOG data type.

Log:recv || Insert Delete Lookup Sort Modify
Insert SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD;
Delete SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD;
Lookup SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD;
Sort SOK;CD; CON;; SOK;CD; SOK;CD; CON;;
Modify SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD;

The COMPONENTLOG has five operations defined: Insert, Delete, Lookup,
Sort, and Modify. The operation Insert adds a new key (key, item) into
the Component_Log. If the key is already in the table it will return failure;
else it returns success. Delete removes the pair with the given key from the
Component_Log. If the key is not present it will return failure; else it returns
success. The Sort operation sorts the entries in ascending order. Lookup
returns the value of the item associated with a given key if it exists in the
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Component_Log; else it returns failure. Modify will replace the current value
of the item with the new value for the given key. Tables 3.3 and 3.4 illustrate
the commutativity and recoverability properties of the operations performed on
data objects of type COMPONENTLOG. For simplicity, it is assumed that trans-
actions will operate concurrently on different parameters (keys) on the objects
of type COMPONENTLOG. These operation compatibility tables would be en-
tered into individual files, either using a simple text editor or a graphical utility
provided for formatting compatibility tables.

The code fragment below outlines how an application programmer might
use these compatibility tables for semantics based concurrency control, and
illustrates the use of the framework to permit explicit transaction cooperation.

Begin_Transaction CE_Tran )
begin
instantiate(CE_Tran) ?2)
select(CE_Tran, Conflict, Log:comm) 3)
select(CE_Tran, Conflict, Log:recv) @
Lookup(CID_87, compspec) (&)
...{ data manipulation }
Modify(CID_87, compspec) 6)
...{ data manipulation }
Insert(CID_109, nullspec) )
...{ data manipulation }
NoConflict(QA_Tran,CID_109) 8
...{ data manipulation }
Modify(CID_109, compspec) )
end
Commit_Transaction {CE_Tran} (10)

The Begin_Transaction command in line 1 declares the beginning of the
component engineer’s transaction, and together with the Commit_Transaction
in line 10 brackets the transaction. The command instantiate in Line 2 reg-
isters the transaction with the Reflective Transaction Framework. The select
meta interface command in line 3 indicates the transactions intention to use
semantic information to relax lock conflicts, and specifies the compatibility ta-
ble LOG:COMM is to be used (a file pathname could also be supplied). The
select meta interface command in line 4 specifies an additional compatibility
table LOG:RECYV is to be used to relax conflicts; the order in which compati-
bility tables are selected using the select command will determine the order
which they are applied to relax lock conflicts.

If a syntactic conflict (R/W) is detected during transaction execution, the TP
monitor will raise a lock conflict event and the conflict adapter will be invoked
for semantic conflict testing. For example, if an uncommitted transaction has
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performed a Lookup operation (a read-typed operation) on the COMPONENT-
L oG data object and transaction CE_Tran requests to perform a Modify oper-
ation (a write-typed operation) in line 6, the TP monitor would detect a syn-
tactic conflict. Since the conflict adapter registered a handler for the event, and
transaction CE_Tran has selected a commutativity table to relax lock conflicts
(Table 3.3), the framework will perform a table lookup to determine if the op-
erations are semantically compatible and can be executed concurrently. If the
operations are semantically compatible (SOK) the conflict adapter will grant
the lock and increment the counter of lock holders, enabling both transactions
to own the lock.

In summary, if an application programmer wishes to use semantics-based
concurrency control for transaction synchronization, they first create compati-
bility tables for data objects that have been identified a hot spots or concurrency
bottlenecks. To use available compatibility tables, an application will then reg-
ister the transaction with Reflective Transaction Framework and then select
from the available semantic compatibility tables. During execution, the Reflec-
tive Transaction Framework will allow transactions to perform operations on
data objects, without conflicting with other transactions that hold locks on the
object, if the semantic specification relaxes the conflict. In certain cases where
the order of the access. to a data object implies dynamic dependencies between
transactions, the framework will record and track the dependencies throughout
transaction execution.

Transaction Adapters Behind the Scenes. Continuing with our exam-
ple, we now examine how transaction adapters work behind the scenes to
support semantics-based concurrency control. The meta interface command
instantiate in line 2 performs the same initialization of the adapters as the
previous advanced transaction model example. The select command in line
3 and in line 4 performs two functions. First, it informs the framework of
the transactions intension to utilize semantic information to relax lock con-
flicts, and Transaction Management Adapter responds by registering the Con-
flict Adapter as the handler for lock conflict events. Second, it instructs the
Conflict Adapter to load the specified compatibility tables for the transaction;
if the file can not be found, or an error occurs loading the file then the Conflict
Adapter is unregistered and an error code is returned. During the execution of
CE_Tran, all lock conflict events will be handled by the Conflict Adapter.
During transaction execution, the Lock function of the underlying TP mon-
itor performs usual Read / Write conflict testing for all lock requests. If a
lock conflict is detected, an event is raised. Information passed to the con-
flict adapter includes the identifier of the transaction requesting the lock, the
operation being requested, and a list of the transactions currently holding a
lock on the data object. The Conflict Adapter uses the function relaxCon-
flict to implement semantic compatibility testing. Operationally, Lock and
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relaxConflict combine to form a two-step semantic conflict test. Step one,
executed by Lock, performs a standard syntactic conflict test based on the up-
date type of the operation (e.g. read orwrite). Step two, performed only when
a conflict is detected, is executed by the relaxConflict function to perform
semantic compatibility testing to determine if the two operations are seman-
tically compatible. The function relaxConflict relaxes conflicts between
transactions by two means: compatibility table(s) defining conflict relation-
ships between operations, and a no_conflict table that records all conflicts ex-
plicitly relaxed between transactions. Using these two sources of information,
relaxConflict implements the following rule to determine whether there is a
conflict between two transactions:

A conflict detected by the TP monitor can be relaxed if either of the following
conditions hold true:

1. the semantics of the data object indicate that the operation for which the
lock is being requested is compatible with all uncommitted operations
holding a lock in an incompatible mode;

2. the transaction holding the lock on the data object has explicitly indicated
that the transaction requesting the lock has permission to perform the
operation, regardless of the basic conflict;

The relaxed conflict rule effectively states that a transaction may acquire
a lock if all other transactions owning the lock in an incompatible mode are
relaxed by either operation semantics or explicit agreement between the trans-
actions. The generality of this relaxed conflict rule allows the conflict adapter
to selectively present and change the definition of conflict for one or more un-
derlying data objects or transactions. This is illustrated in Figure 3.8.

When a inter-transaction dependency directive, such as a commit depen-
dency CD, is found in an operation compatibility table, the conflict adapter
records the dependency in the transaction dependency graph TRAND using the
Transaction Adapter command form-dependency. Checks are performed to
prevent dependency cycles from being formed. During transaction termination
the Transaction Management Adapter procedures PreCommit and PreAbort
take the necessary actions to ensure that all requisite transactions have com-
pleted (the transactions have either committed or aborted), and all pending
transactions are notified that PE_Tran has completed.

By utilizing these commands to adapt the definition of conflict offered by
the underlying TP system, the conflict adapter is able to implement a vari-
ety of semantics-based concurrency control protocols discussed in the liter-
ature [Barga et al., 1994]. This semantics based concurrency control is all
performed through extensions to the underlying conflict detection and locking
performed by the TP monitor, demonstrating that the use of a conventional
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Figure 3.8 Transaction control operation redirection

locking mechanism does not preclude the use of semantics-based concurrency
control protocols.

3.5 CONCLUSION

‘We have introduced the Reflective Transaction Framework as a practical method
to implement extended transactions on conventional TP monitors. We de-
scribed how the framework achieves an open implementation of the TP mon-
itor, so that applications have access to and control over the underlying func-
tionality of the TP in a way that allows the programmer to tailor extended trans-
actions to the needs of a particular application. Access to TP monitor system
functionality and extended transaction behaviors is principled in the sense that
the meta level interface and extended transaction interface allow access to this
functionality without forcing the TP monitor to expose the internal data struc-
tures and functions that are actually used. This independence from actual im-
plementation allows intercession guards and runtime checks to be performed.
The framework does not expose the entire TP monitor system functionality, but
only selected aspects of it. The TP systems programmer only needs to go as far
as application developers require. If only certain advanced transaction mod-
els or semantics-based concurrency control protocols are required, only those
extended transaction behaviors need be provided; other extended transaction
behaviores can be incrementally added to the framework over time.

The implementation of the Reflective Transaction Framework is based on
transaction adapters, reflective software modules built on top of TP monitor
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functional components. Transaction adapters use events to reify extended tran-
saction state and selected aspects of the TP monitor into distinct meta-level ob-
jects, and use the existing application programming interface to reflect changes
to the computational state of the TP monitor. Extensions provided by the
transaction adapters build on the available functionality of the TP monitor, to
the extent possible, and provide the programmer with a clean meta interface
through which they can customize and extend the system functionality. This
allows extensions and model improvements to be quickly incorporated, and as
a result, the framework can remain up to date with application requirements.

The Reflective Transaction Framework provides a flexible foundation for
implementing application-specific extended transactions. We have applied the
framework to implement a wide range of advanced transaction models [Barga
and Pu, 1995], including split transactions [Pu et al., 1988], cooperative group
transactions [Nodine and Zdonik, 1990], and Sagas [Chrysanthis and Ramam-
ritham, 1992], and a number of semantics-based concurrency control proto-
cols [Barga and Pu, 1996], including commutativity [Weihl, 1988a], recover-
ability [Badrinath and Ramamritham, 1991], cooperative serializability [Ra-
mamritham and Chrysanthis, 1992], and epsilon-serializability [Ramamrithan
and Pu, 1995]. We have also used it to incrementally develop new advanced
transaction models, building on models previously added to the framework,
such as the cooperative-split model which combines cooperative group trans-
actions with split transactions.

It is our hope the Reflective Transaction Framework will provide a clear
migration path to incorporate research advances in transaction processing into
real, working environments where they can be applied. We have implemented
a proof-of-concept prototype of the framework on production transaction pro-
cessing software, namely the Encina Toolkit [Encina, 1993]. The Encina
Toolkit has been used to construct several modern distributed TP monitors, in-
cluding IBM’s CICS/6000, DEC’s ACMS/xp, and the Encina TP monitor. As
such, our Encina implementation of the Reflective Transaction Framework can
be used with any of these commercial TP monitors for experimenting with ex-
tended transactions. Our implementation on Encina was clearly facilitated by
an available event callback mechanism and open API to the transaction services
of the toolkit. A valid question is whether the additional work of exposing the
API and adding an event mechanism to other transaction processing systems
would be worthwhile. The answer to this is in part economical. There are only
a handful of commercially significant TP monitors in circulation, most of which
offer only conventional database transactions. This compares to thousands of
applications written on top of them, and possibly thousands more that could
be developed using extended transactions. It is our opinion that any additional
work invested in transaction processing systems software to enable a system,



THE REFLECTIVE TRANSACTION FRAMEWORK 89

such as the Reflective Transaction Framework, to widen their application reach
and make application development easier should yield a large payoff.
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Abstract: Although numerous extended models have been proposed to over-
come the limitations of the standard transaction model, most of these models
have been proposed with specific applications in mind and, therefore, they fail
to support applications with slightly different requirements. In this paper, we
propose the H-transaction framework along with a set of powerful transaction
control primitives to support a wide range of transaction dependencies includ-
ing fiexible commit. Our set of transaction control primitives can be broadly
classified into two types: basic primitives that are found in almost all conven-
tional transaction processing systems and new primitives that lend expressive
power and flexibility. These primitives can be used to separate the coding of the
transactions from the application’s control aspects needed for preserving coop-
eration and dependencies among transactions. The reason behind this separation
is to simplify the work of the programmer since transactions can be coded with-
out worrying about managing concurrent computations, communications, etc.
We show that our primitives have expressive power to support a number of ex-
tended transaction models including nested transactions, sagas, workflows and
contingent transactions. Moreover, our primitives allow the programmers to de-
fine their own primitives — having well-defined interfaces — so that application
specific transaction models such as the distributed multilevel secure transactions
can also be supported.
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4.1 INTRODUCTION

The classical transaction model for managing database systems has been an
immense success, both theoretically and commercially. Nonetheless, there has
long been recognition (see for example [Gray, 1981, Elmagarmid, 1992, Ko-
rth, 1995]) that the standard model is too restrictive for many advanced data-
base applications. For example, in a cooperative environment, if long-duration
activities are executed as atomic transactions, they may significantly delay the
execution of shorter activities. In the case of multidatabase systems, the au-
tonomy requirements of the component local databases are in direct conflict
with the atomicity property of classical transactions. Consequently, in re-
cent years, a number of works have attempted to extend the traditional atomic
transaction model to support more flexible transaction processing. Examples
of such models are nested transactions [Moss, 1985], Sagas [Garcia-Molina
and Salem, 1987], ConTract [Reuter, 1989], ACTA [Chrysanthis and Ramam-
ritham, 1990], Flex [Bukhres et al., 1993], DOMS [Georgakopoulos et al.,
1994], and Asset [Biliris et al., 1994].

A crucial limitation of many of these extended transactions models (e.g.,
[Moss, 1985, Garcia-Molina and Salem, 1987, Reuter, 1989]) is that they have
been proposed with specific applications in mind, which seriously limits the
flexibility of these models. A specific model may be provided by the system
but the user cannot specify which one. Moreover, if an application has needs
with slightly different requirements, they lack the necessary expressive power
to model these applications. For example, the nested transaction model is most
suitable in applications that have a hierarchical structure with a good degree of
internal parallelism. The Saga model is useful only when the subtransactions
are relatively independent and each subtransaction can be successfully com-
pensated. The ConTract model is also based on rigid compensation policies for
transactions.

ACTA, DOMS, and Flex provide formal frameworks to express the proper-
ties of extended transactions and dependencies among them. ACTA [Chrysan-
this and Ramamritham, 1990] classifies these dependencies into two broad cat-
egories based on a transaction’s effect on the commit and abort of other trans-
actions and on the data items it accesses. Although ACTA is able to specify a
wide variety of transaction models, it fails to capture transaction dependencies
which arise due to events other than commit or abort of the transactions. Ex-
amples of such events are various error conditions which do not influence the
commit or abort of transactions but which nonetheless need to be addressed.
The secure dependencies present among subtransactions of a multilevel secure
distributed transaction [Jajodia and McCollum, 1993, Jajodia et al., 1994] is an-
other example. The DOMS project’s [Georgakopoulos et al., 1994] transaction
model provides a specification language similar to ACTA and, therefore, suf-
fers from similar shortcomings as ACTA.
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Flex [Bukhres et al., 1993] is a transaction specification model that offers
flexibility by providing primitives for specifying dependencies between trans-
actions. The specifiable dependencies can be broadly categorized into two
types, those that define the execution order on the subtransactions of a Flex
transaction (i.e., commit/abort dependencies) and those that define the depen-
dencies of subtransactions on events not belonging to the transaction. How-
ever, Flex does not allow a programmer to specify the communication (i.e.,
synchronization) between parallelly executing transactions. Also, a Flex tran-
saction specification cannot include any information about how to compensate
subtransactions.

Asset [Biliris et al., 1994] is different from other works in that it provides
ACTA based language primitives for specifying dependencies between a set of
concurrent, cooperating transactions. These primitives allow the programmer
to define custom transaction semantics to match the needs of the specific ap-
plication and are general enough to be incorporated in any database system.
However, even with these flexible primitives, Asset, like ACTA, cannot imple-
ment transaction dependencies that arise due to events other than commit or
abort of transactions or data sharing among them. It does not offer an experi-
enced programmer the flexibility to alter the commit protocol so as to provide a
more versatile commit facility, while at the same time retaining simple default
interfaces for the naive user. Such a feature seems useful in many situations.

A more recent work, that by Barga and Pu [Barga and Pu, 1995], proposes
the reflective transaction framework as a practical and modular method to im-
plement extended transaction models. This work provides the flexbility of lan-
guage primitives to construct extended transactions. However it does not allow
the programmer to specify synchronization between parallely executing trans-
actions; hence the framework’s suitability for designing extended transactions
that execute in a distributed or multidatabase setting is limited.

In this paper we propose the H-transaction model alongwith a set of lan-
guage primitives that allow programmers to implement a large number of tran-
saction dependencies including flexible commit. The dependencies that can be
implemented in our model include the commit/abort dependencies that can be
specified by the ACTA framework and those present in the multilevel secure
transaction model. Our work focuses on transaction control at the program-
ming language level, and proposes a linguistic construct that separates the cod-
ing of the transaction from the definition of the application’s control flow. All
control aspects needed for transaction cooperation and dependencies are coded
separately. Transactions can be thus coded without worrying about managing
concurrent computations, communications, etc. This simplifies the work of the
programmer and also increases code reusability.

The programmer can use our primitives directly as part of a programming
language to specify various commit and abort dependencies among transaction
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and to realize relaxed correctness criteria to satisfy their specific application
needs. Alternatively, the programmer can use a higher level declarative lan-
guage to specify the dependencies among transactions. In this case, a pre-
compiler can automatically translate the higher level description of the depen-
dencies into our primitives. Further our primitives allow the programmer to
define their own custom primitives having well-defined interfaces. (An exam-
ple of this is the noSignalServiced primitive shown later in section 4.5.4) This
feature adds to the flexibility of our model by allowing application specific
transaction models to be supported.

The remainder of this paper is organized as follows. We describe the H-
transaction model in section 4.2. Section 4.3 discusses how flexible transaction
dependencies can be specified in our model followed by a description of our
primitives in section 4.4. In section 4.5, we show that our primitives can sup-
port not only various extended transaction models but models that are cus-
tomized to meet the specific application needs as well. Section 4.6 concludes
with a brief discussion of our future work.

4.2 OVERVIEW OF OUR APPROACH
4.2.1 The System Architecture

A transaction T; in our model is defined to be any sequence of operations on
data items (both persistent and volatile) delimited by either the Begin_Trans(T;)
... End_Trans(T;) pair or the Begin_Trans(T;) ... Abort_Trans(T;) pair. A tran-
saction is written in a high level language supporting persistence and the new
transaction processing primitives that we introduce.

An H-transaction is composed of a set of such transactions and includes a
definition of a set of dependencies among these transactions; this set of depen-
dencies includes, but is not limited to, the commit or abort relationships among
the component transactions. The programmer is able to specify different re-
lationships among the component transactions by defining a coordinate block
in the H-transaction that describes these relationships. The coordinate block
can be either a program fragment in the high level language or it may be a
declarative description of the transaction dependencies. In section 4.3 we show
how coordinate blocks can be specified as a program fragment in the high level
language.

Basic transaction processing is achieved at every site by the cooperation of
Transaction Manager, the Log Manager, the Lock Manager and the Resource
Manager. These components together form what is known as the Transaction
Processing (TP) subsystem at the particular site and ensures the atomicity, con-
sistency, isolation, and durability (ACID) properties {Gray and Reuter, 1993]
of the transactions executing at that site. The TP subsystem implements the
basic transaction control operations like commit, abort, savework, rollback,
begin-transaction, lock data items etc.
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On top of the TP subsystem at every site, we assume that there is a Tran-
saction Management Adapter (TMA) module that enhances the functionality
of the underlying TP subsystem by implementing an extended interface of the
TP system for our new transaction processing primitives. The notion of Tran-
saction Management Adapter is borrowed from [Barga and Pu, 1995] where
the authors propose also a lock adapter and a conflict adapter as add-on mod-
ules on top of an existing TP system to enhance the TP system’s functionality.
A discussion on these other adapters is beyond the scope of this work (although
we allow these adapters in our architecture), as we focus mostly on transaction
termination dependencies.

A transaction T; executing at some site interacts with the TMA-TP module
at that site via a coordinator module (CM). This coordinator module acts as a
transaction event handler and implements among other things the coordinate
block of the H-transaction of which T; is a part. Before transaction T; gets exe-
cuted its CM is started as a set of concurrently executing threads. Execution of
a transaction primitive by a transaction T; is the transaction event that causes
the CM corresponding to T; to react and handle the event.! If a thread with the
same name as the event is defined within the CM then the thread gets activated
otherwise the CM lets the underlying TMA-TP module handle the event as ap-
propriate. The executing threads can in turn invoke other primitives that are part
of the TMA-TP module in order to actually handle the event. The coordinator
module can be viewed as an extended form of the notion of metatransaction of
[Barga and Pu, 1995] to include executing codes and a mechanism to specify
and handle inter-transaction communication and synchronization.

Specifically a CM can be divided into two distinct parts: A required set
of compiler-generated event interceptors and an optional set of programmer
defined event handler. The latter is essentially the programmer defined coor-
dinate block of the H-transaction. The set of event interceptors includes: (1)
the mechanism to pass on relevant parameters from the run-time environment
to the other system modules and vice versa, and (2) the information as to how
a particular event is to be handled, i.e. whether by a programmer defined event
handler or by the underlying TMA-TP module. In particular, the set of event
interceptors contains mechanism to communicate with other CMs of the same
H-transactions and to pass on parameters to these CMs. An event interceptor
is awakened by the occurrence of an event and then either invokes one of the
threads in the CM or invokes an action exported by the TMA-TP module. Fi-
nally, the CM may contain a set of invariants for each component transaction.
These invariants constitute the predicates that need to be satisfied before and
after a transaction execution.

In a distributed setup the CM at the originating (coordinating) site of an H-
transaction is of the form just described. At remote sites where component
transactions get executed, lightweight CMs are created. The lightweight CMs
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contain only the compiler generated event interceptors. Their function is to in-
voke the relevant threads executing at the CM of the coordinating site or at the
TMA-TP module at the local site. They act as the interface between the TMA-
TP at the remote site and the CM at the coordinating site. If the programmer
does not explicitly specify any coordinate block (i.e. the programmer has not
defined any thread to handle transaction events) then such lightweight CMs get
loaded at every site and act as forwarding agents for transaction events to the
TMA-TP module at each site. The CM at the coordinating site executes the
programmer defined code to perform the coordinating operations, as for exam-
ple the decision to commit an H-transaction, commit some components of the
H-transaction while aborting other components or taking some other action. If
no component transaction of the H-transaction is executing at the coordinating
site, the TMA-TP subsystem at this site is responsible only for the housekeep-
ing functions (e.g., writing log records etc.) for the H-transaction as a whole
and for its components, while the TMA-TP subsystems at the remote sites exe-
cute the component transactions as well as perform housekeeping (only for the
component transaction executing at that site).

An H-transaction submitted by the user to the transaction processing system
at a particular site (the coordinating site) is executed as follows:

1. If the programmer has specified a coordinate block with the H-transaction
then

(a) When the H-transaction gets initiated, create a coordinator module
at the coordinating site. This CM has two parts - the event intercep-
tor part and the event handler.

(b) Create a table R in the event interceptor that maps events to the re-
spective handlers located in either the local TMA-TP system or in
the programmer defined primitives.

(c) If the H-transaction consists of component transactions that are to
be executed at remote sites then spawn a lightweight CM at each
of these sites to contain only the mechanism to communicate with
other CMs and a copy of the table R.

2. If the programmer has not specified any coordinate block then
(a) Create a lightweight CM at the coordinating site to pass on the event
that has occurred to the underlying TMA-TP module.
(b) If it is a distributed setup, spawn similar lightweight CMs at the

remote sites too.

3. When a transaction event occurs for some transaction T; (that is T; exe-
cuted some transaction primitive), the event interceptor in the CM asso-
ciated with T; is awakened.
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(a) If the event has been the execution of some transaction primitive
defined by the programmer then the event interceptor first checks the
invariants, if any, that constitute the precondition for the primitive.
If these invariants are satisfied then the CM invokes the thread with
the same name executing within the CM at the coordinating site.
Note that prior to or alongwith invoking a thread at the coordinating
site’s CM, the event interceptor may also invoke actions at the local
TMA-TP subsystems.

(b) The thread at the coordinating site’s CM gets activated, performs
the actions defined by its code and returns control to the to the event
interceptor of the CM associated with T;.

(c) The initiating CM checks for postcondition satisfaction and depend-
ing on the outcome of this test, returns the result of the thread ex-
ecution to the transaction as if for a normal transaction primitive
call. Note that before the result is returned, the CM may invoke any
function at the local TMA-TP subsystem.

(d) If the event has been the execution of some primitive not defined by
the programmer, then the event interceptor allows the local TMA-TP
subsystem to handle the event appropriately.

4. The decision to end an executing H-transaction comes from the CM at
the coordinating site. When this happens the different CMs at the various
site all terminate and control gets returned to the TMA-TP subsystem at
the coordinating site.

Figure 4.1 gives a schematic diagram on how transaction events in a remote
transaction are handled by the cooperation of the lightweight CM at the remote
site, the CM at the coordinating site and the TMA-TP subsystems at both the
sites. In the figure the begin_trans event is handled as a local TP system call by
the TMA-TP subsystem at the remote site; the end_trans event is intercepted
by the lightweight CM at the remote site and forwarded to the CM at the coor-
dinating site. The latter in turn invokes a TP system call at its local TMA-TP
subsystem. We have specifically left out the semantics of the two different
events here.

Our model allows the programmer to define not only application specific
transaction events (an example of which will be given later on in section 4.5.4),
but also to redefine with ease the semantics of ordinary transaction events such
as transaction completion or transaction begin, commit and abort. The pro-
grammer defined behavior get precedence over the default behavior and can
thus be imposed on the latter.

In the following we give an example to illustrate the execution model for a
programmer defined coordinator.
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Figure 4.1 Event Handling Sequence for Transaction Events

4.2.2 Illustrative Example

Figure 4.2, illustrates the execution of an H-transaction that involves multiple
sites. A programmer wants to coordinate the two component transactions T,
and To such that either T; commits or T, commits, but not both. Note that T,
and T2 may both abort. We assume that for the purpose of commit or abort
of transactions the TMA-TP at various sites rely on the commit protocol of
the underlying TP system. In particular for the current discussion we assume
that the commit protocol used at all sites is Early Prepare (EP) [Stamos and
Cristian, 1993]. Figure 4.2 shows how the user’s H-transaction, the TMAs and
the CMs interface with the TP systems. Directed solid arrows represent the
interaction between the different components of the systems.

When the user submits an H-transaction at Site,,, the coordinating code spec-
ified in the H-transaction is loaded as the coordinator module CM,,. The TMA,,
submits each of the component transactions T, and T5 to the TMAs at Site; and
Sitep. These remote TMAs in turn loads the respective lightweight CMs (which
have a much lesser functionality than CM,)) and then request their underlying
TP systems to execute the component transactions.

When T; completes, it invokes an end_trans operation that prompts the oc-
currence of the event. This invocation awakens the event interceptor in CM,;
which asks TMA; to prepare to commit T;. The TP system at Site; forces
a prepare log record and sends an acknowledgement to CM;. At this point
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CM; sends an end._trans message to CM,,. Note that this message can be seen
as the yes vote sent by participants when they are ready to commit in the EP
commit protocol. CM,, in turn decides to commit T; and abort T and accord-
ingly informs its TMA. TMA, asks the TP subsystem at the coordinating site
to force a commit record for Ty, an abort record for T2 and a commit record
for the H-transaction, and then acknowledges to CM,,. After this CM, sends
a commit(T;) message to CM; at Site; and an abort(T2) message to CM; at
Sites. CM; will cause TMA; to invoke commit(T;) at its TP system while
CM,, will cause TMA; to invoke abort(T2). The TP system at Site; writes a
commit record for Ty and forgets about T;, while the TP system at Site, writes
an abort record for T» and forgets about it.

User H-transaction at Site
I%_T]}* """""""""""""""""""" T Hommmommmrm e L1,
Zl s E g
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Figure 4.2 Execution model for a programmer defined coordinator

Note that the above scenario represents the execution sequence when T;
finishes before Ty. If Ty were to complete first, Ty would have committed and
T, would have aborted.

4.3 AN EXAMPLE OF TRANSACTION DEPENDENCIES

We offer the programmer two methods for specifying transaction dependen-
cies. With the first approach the programmer directly uses the high level lan-
guage and our new transaction processing primitives to specify the dependen-
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cies. With the second approach the programmer uses a declarative language in
a notation we have proposed to specify the dependencies among transactions.
A pre-compiler then translates this higher level description into a correspond-
ing code in the high level language we use to specify transactions. The first
approach gives more expressive power to the programmer than the second one
and hence we will concentrate mostly on this approach; on the other hand the
second approach is easier to use. In the following we show by an example,
how the programmer can express these dependencies in our model to define
coordinate blocks for a group of transactions using the high level language.

We assume that the programmer wants to design an H-transaction consisting
of four component transactions Ty, T2, T3 and T4 which will be executed at dif-
ferent sites. The application requires that at most one of T; or T commits with
T, being preferred to Ty and either both T3 and T4 commit or none of them.
In short, one and only one of the following sets of transactions commits: {},
{T1}, {T2}, {Ts, T4}, {T1, T3, T4} or {To, T3, T4}. By using our primitives
the programmer will be developing the program fragment shown in figure 4.3
for this application. Note that although we use some of our new language prim-
itives before they have been presented in the paper, a detailed understanding of
the primitives is not required at this stage.

From the program fragment, we find that the H-transaction consists of two
coordinate blocks specified by the two coordinate ... using delimiters. Each
block contains code that implements the dependencies between those transac-
tions that are defined within the blocks. In the figure, the coordinate block
coordinate ... using ... end implements the dependency between transactions
T, and T2 (viz. only one of T; or T can commit with T; being preferred) while
the block coordinate ... using default implements the dependency among T3
and T4 (viz. either both commit or none do). Note that the latter commit depen-
dency is the standard commit dependency implemented in the various commit
protocols (like Early Prepare). We assume that each transaction processing
system implements a default commit protocol. The second coordinate block
in the example in figure 4.3 specifies “default” as the coordinator module for
transactions T3 and Tj.

Of interest to this discussion is the coordinate block for transactions T; and
T, specified by the programmer in the form of a program fragment within the
sub-block using ... end. This program fragment implements the CM for T;
and T3 and contains definitions of some of the primitives that the programmer
invokes within the transactions.

The transactions T; and T are defined sequentially within the H-transaction
(and not within a cobegin ... coend block which would have implied parallel
execution) with T; being defined before To. The sequential definition of trans-
actions naturally entails a precedence relation between these two transactions.
Each transaction must be initiated by the initiate primitive before being able to
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void example()

coordinate
initiate(T;,T2) ;
begin_trans (T;)
end._trans (T1);
begin_trans (T2)
end_trans (T2);
using
thread end_trans (M) {
if M =T then
{ commit (T); abort (T2); exit; }
if M == T then
{ commit (T2); abort (T1); exit; }
}
thread abort_trans (M) {
if M == T then
{ abort (T1,T2) exit; }
}
end;
coordinate
initiate(T3,T4) ;
cobegin
begin_trans (T3)
end_trans (T3);
begin_trans (T4)
end_trans (T4);
coend
using default

}

Figure 4.3 Program in the high level language for an H-transaction consisting of four
transactions

start its execution. After a transaction is initiated, it is assigned a transaction
identifier in the system and an environment is set up for its execution.

After the H-transaction is submitted to the system, the TMA-TP module
at the coordinating site assigns transaction identifiers to the H-transaction as
well as its components and then loads the CM for the coordinating site. The
TMA-TP module at the coordinating site then submits transaction T to the
remote site’s TMA-TP. The remote TMA-TP module establishes the remote
lightweight coordinator to execute on top of itself and then begins to execute
T1. Note that the CMs as a unit represent the interface to the TMA-TP systems
for an H-transaction.

Suppose T; executes an end._trans; the CM at T ’s site sends a prepare-
to-commit T; message to its underlying TMA-TP module and then invokes
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end_trans at the coordinating site’s CM. (In figure 4.3 end_trans has been de-
fined by the programmer in the coordinate block.) The CM at the coordinating
site asks the CM for T, to invokes commit(T;) and asks the CM for T to in-
voke abort(T3) at the respective underlying TMA-TP. The respective TMA-TP
module consequently force a commit log record for T; and an abort log record
for T, and acknowledges the respective CMs. Also the TMA-TP module at
the coordinating site forces appropriate log records for T; and To. Note that
the TMA-TP module can force an abort log record for Ts although Ty was
never submitted to a remote site for execution. This is because when the H-
transaction was submitted, the TMA established a local identifier for To. This
causes T; and T to terminate.

T; may alternatively execute an abort_trans command during its execution.
This abort_trans command may have been invoked explicitly by T or it may
have been invoked by the TMA-TP because T; could not successfully com-
plete. If the TMA-TP module at the remote site aborts T;, the CM at the remote
site informs the CM at the coordinating site by sending an abort_trans message
to the CM at the coordinating site that T; has aborted. On the other hand if
T; invokes abort_trans, the CM at the remote site forwards the invocation of
abort_trans by T; to the CM of the coordinating site. The CM at the coordi-
nating site executes abort_trans according to the implementation specified by
the programmer in the thread abort_trans. The thread returns without execut-
ing any explicit abort (or commit) command and the coordinating CM does not
send any specific instructions back to the CM at the remote site (it merely re-
turns). As aresult T, stops its execution but remains alive in the system until an
explicit abort comes from the coordinator module to terminate it.2 The TMA-
TP module at the coordinating site now submits Ty for execution at a remote
site. As before a CM will be created at the remote site for T. Subsequently
invocation of end_trans or abort_trans by T, will be trapped by the CM at the
remote site and forwarded to the CM at the coordinating site for execution. If
Ty executes end_trans, the corresponding thread will commit T2 and abort T .
If, on the other hand, Ty executes abort_trans, both T; and T will be aborted.
This will terminate the CMs for T; and T5. Note that for the description of the
implementation of the coordinator for T; and T in figure 4.3 we have assumed
that CM,, in figure 4.2 submits T; and T, sequentially to each of the respective
TMAs. Moreover CM,, does not submit T if T; commits.

Once the CM for T; and T, terminates, the control is transferred to the next
step in the program. The TMA-TP module at the coordinating invokes the
default coordinator in the system (i.e. the default commit protocol) for T3 and
Ty4. T3 and T4 proceed concurrently in the system as they are within a cobegin
... coend block. When T3 and T4 commits the execution H-transaction is over.

Note that in any coordinate block, we can refer to only those transaction
identifiers that are in the scope of the block. In figure 4.3, transactions T; and
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T, are scoped in the coordinate block defined by the programmer but not T3
and T4. Consequently we can define end_trans and abort_trans only for T; and
Ty within this block.

4.4 PRIMITIVES FOR FLEXIBLE COMMIT

We now describe our transaction processing primitives. These primitives are
broadly classified into two types: basic primitives and new primitives. The
basic primitives are so named because their semantic counterparts are found
in almost all conventional transaction processing systems. The new primitives
are the ones we define and that lend expressive power and flexibility to our
model. These primitives are essentially control primitives which modify the
state of the transaction. There are six possible states. A transaction which
has been submitted to the system, but has not yet started its execution is in
the initial state. While executing its code, the transaction is in the running
state. After it has executed all its code (either successfully or unsuccessfully),
the transaction moves to the completed state. From the completed state the
transaction terminates by moving either to the committed state or to the aborted
state. From any of these five states a transaction can enter a sixth state - the
error state. In this case the transaction can either execute an error handler
(if provided by the system or by the programmer as part of the transaction) or
return to its previous state and then continue execution from the next instruction
in the transaction’s code (possibly generating an error message in the process).

4.4.1 Basic Primitives

initiate(Ty, ..., T,) This primitive initiates the transactions T;, ... T,. It re-
turns new transaction identifiers in the variables Ty, ... T, and sets up the
environment necessary for the execution of the transactions. The transac-
tions are started by calling the begin_trans() primitive. The scope of the
variables T; used in an initiate primitive is the program block containing
this initiate primitive. The initiate(T;) primitive must precede all use of
the variable T; within an H-transaction.

begin_trans(T;) This primitive starts the execution of the transaction whose
transaction identifier is T;. This primitive can be redefined by the pro-
grammer.

sid = savework() The savework() primitive is used to establish a savepoint in
the transaction execution. The invocation of this primitive causes the sys-
tem to save the current state of processing. Each transaction manager
writes a savepoint record on the local transaction log, while the current
values of any local variables are saved on the volatile memory. The save-
work call returns a handle which is assigned to the identifier sid (called
a savepoint identifier). This identifier can be used subsequently to refer
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to that savepoint, and in particular to the state of the system when this
savepoint was established. The scope of the binding between the save-
point and the identifier sid is the block in which the “sid = savework()” is
executed. Control can jump from inside of a block to a savepoint within
an encompassing block, but not the other way round.

rollback(sid) This primitive takes as a parameter the identifier of a previ-
ously established savepoint and reestablishes (or returns to) the savepoint.
More precisely, when the rollback(sid) function is invoked, it restores the
state of the system to the state that existed when the savepoint denoted
by the savepoint identifier sid, was established; the execution of the tran-
saction then continues from the statements that follow the savepoint sid.
The successful termination of the rollback primitive is indicated by the
restoration of the savepoint denoted by sid. This primitive can only be
invoked within a transaction code.

restart(T;) This primitive is a part of the coordinator module and cannot be
invoked by a transaction. When called, this primitive starts the execution
of the transaction whose identifier is T;. If the transaction T; was pre-
viously executed (partially or fully), then all changes effected by T; are
discarded before the transaction execution is restarted.

commit(Ty, ..., T,) This primitive is implemented in the TMA-TP module
and is part of the commit protocol. It cannot be invoked directly by a
component transaction. Rather, it has to be invoked by the coordinator
module. This primitive commits the operations of the transactions which
are its parameters, by first writing the log records and then communicat-
ing the commit decision to the transaction managers of these transactions.
In other words, this command forms the final phase of any commit pro-
tocol between the coordinator and the transactions Ty, ..., T,.

abort(T, ..., T,) This primitive aborts the transactions specified as parame-
ters. If the primitive abort(T;) is invoked before T; has started its execu-
tion, then T; never starts its execution and is discarded from the system.
Like the commit primitive, abort is a part of the TMA-TP module and
can be invoked only by the coordinator module.

cobegin ... coend These two primitives act as bracketing constructs for speci-
fying concurrently executing transactions. Control flow does not proceed
beyond the cobegin ... coend block until all of the transactions created
by the block complete. Cobegin ... coend can be nested.

4.4.2 New Primitives

end_trans(T;)< support_code > The end_trans is a system defined primitive
which can be redefined by the programmer as a coordinator module thread.
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Its execution signifies the successful completion of the transaction T;,
specified by a previous matching begin_trans(T;), and indicates a willing-
ness to commit the work of T;. The programmer’s definition of end_trans
gets precedence over the default definition for the primitive.

If the programmer has not redefined the end_trans primitive, the default
execution takes place. In this case the CM for T; notes the completion
of T;; it asks the relevant TMA-TP module to force a prepare log record
and sends vote messages relevant to the default commit protocol to the
coordinator for the H-transaction. The control flow does not proceed
beyond the end_trans call, until the transaction manager for T; receives
either a commit or an abort decision. If the primitive is invoked without
any parameter, then it commits the transaction within which it has been
invoked.

As mentioned earlier, it is possible to overload this primitive to have a
more flexible programmer-defined commit protocol. From transaction
T;’s point of view the execution of the programmer-defined end_trans is
the same as the default execution. That is the completion of the tran-
saction T; is recorded by a prepare log record and control is passed to
the thread of the same name being executed at the coordinator. If the
thread for end_trans does not contain an explicit invocation of the commit
or abort primitives, the control proceeds beyond the transaction T; after
the thread completes execution and returns. However, the transaction T;
remains unterminated until an explicit invocation of commit or abort is
eventually performed by the coordinator module for T;.

Note that this primitive has two parts: end_trans(T;) and support_code.
The second part is an optional piece of program code which can be in-
cluded by the programmer. This program code is not executed when the
end_trans primitive is invoked. Rather, the coordinator module can direct
the TMA-TP module for T; to execute this program code by invoking the
call_support primitive (explained next).

call_support(T}, ..., T;») This primitive can be invoked only as part of the pro-
grammer defined coordinator. With this primitive the coordinator module
can direct the transaction managers of the transactions T}, ..., T, to ex-
ecute the support_codes specified as part of the corresponding end_trans
primitives in these transactions. The program fragment for support_code
of each T runs within the scope of T;. If a support_code is invoked
while the corresponding transaction is running, then the execution of the
support_code is deferred until the transaction completes. The call_support
returns to the invoking thread, when all the executing support_codes fin-
ish. This primitive along with the programmer specified support_code are
useful in cases where the coordinator module wants to perform some task
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beyond merely committing/aborting after the transaction has executed an
end_trans primitive.

abort_trans(T;) The abort_trans is a system defined primitive which can also

be redefined by the programmer as a coordinator module thread. In both
cases, it signifies the unsuccessful completion of the transaction T;, spec-
ified by a previous begin_trans(T;), and indicates a decision to abort the
work. However, the abort_trans does not actually abort the transaction.
Rather the actual abort is performed by the abort primitive which is in-
voked by default and will always abort T;. In case the abort_trans prim-
itive is redefined by the programmer, the new definition gets preference
over the default definition. If the thread for abort_trans does not contain
an explicit invocation of the abort primitive, status of the transaction T;
remains unterminated until an explicit invocation of abort is eventually
performed by the coordinator for T;. The termination of the abort_trans
primitive itself is similar to the end_trans primitive as explained above.

Table 4.1 Partial Syntax for the Coordinate Block

Keyword

Syntax

coordinate-block

transaction

trans-command

protocol

protocolcode

protocol-command

thread-command

coordinate transaction using protocol

begin_trans(trans-id) trans-command end_trans(trans-id)
| initiate(trans-id)

| cobegin transaction coend

| transaction ; transaction

abort_trans(trans-id)
| host-language-command

default | protocolcode

protocol-command
| protocolcode ; protocol-command

thread begin_trans

| thread end_trans(parameter) thread-command

| thread abort_trans(parameter) thread-command

| thread identifier(formal-par-sequence) thread-command

commit(trans-ids) | abort(trans-ids) | restart(trans-ids)
| call_support(trans-ids)| exit

| thread-command;thread-command

| host-language-command

coordinate < transaction > using < protocol > This primitive defines the co-
ordinate block whose partial syntax is described in table 4.1. (Note that
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only the enhancements required in a standard programming language to
support such a syntax is shown in the table. Anything not been defined is
assumed to follow the syntax of the host language.) The coordinate block
consists of two components: the transaction component and the protocol
component. The protocol component defines the coordinator module for
the set of transactions specified in the transaction component. The pro-
tocol component can be the keyword default, in which case one of the
traditional commit protocols like two-phase commit or early prepare is
used. Or it can be a programmer specified dependency among the trans-
actions in the high level declarative language or it can be a programmer
defined code in which case it contains the code for each of the primitives
that the programmer wants to define or redefine, including begin_trans(t),
end_trans(t) and abort_trans(t). The scope of the redefined primitives is
limited to the corresponding transaction component.

Within the coordinate block the programmer can define persistent vari-
ables which can live across the boundaries of transactions involved in
the coordinate block. These persistent variables may be useful for flow
control.

The control flow does not proceed beyond the coordinate block until ei-
ther the transaction component completes or the coordinator module is
terminated in a manner explained below.

thread identifier For efficiency and ease of implementation as daemons, the
protocol component is programmed as a set of concurrently executing
threads. The thread primitive allows the programmer to define a coor-
dinator module thread which is activated by a transaction event. The
identifier specifies the event which activates the thread. When a coor-
dinate block is encountered, the coordinator module is created. It waits
for any of the events named in its threads. When such an event occurs
the corresponding thread is activated. If the thread encounters an exit
command, the coordinator module terminates thereby causing the entire
coordinate block to end. This is true even if there are transactions in the
transaction component which are either yet to be executed or are cur-
rently executing concurrently. These transactions have to be taken care
of by a subsequent coordinate block otherwise may lead to the problem
of orphan transactions.’

On the other hand if an exit command is not encountered, the thread
does not cause the coordinator module to terminate. Instead when the
thread completes, it returns control to the transaction component. If an
exit command is never encountered, the coordinator module terminates
when all transactions have completed their execution and the coordinate
block has terminated.
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exit Invocation of this command causes the termination of the coordinator
module.

Table 4.2 summarizes the transaction primitives in our model. The first
column of table 4.2 lists the different primitives. The primitives have been
grouped into three categories - (i) primitives that allow the structuring of the
H-transaction (ii) primitives that can be invoked from within the transaction
component of a coordinate block and (iii) primitives that can be invoked from
only within the protocol component of a coordinate block. The second column
specifies where the programmer can use each primitive from viz., inside or out-
side a protocol component. The third column gives the system component that
provides the interface to a particular primitive. When a primitive is invoked,
this system component executes the primitive first. It in turn may invoke other
system components in order to carry on the execution of the primitive.

Table 4.2 Summary of Transaction Primitives

Primitive Name Invocation Relative to  Interface Exported  Nested Redef-
Protocol Component By Definition  inition
coordinate ... using  outside language support no no
cobegin ... coend outside language support yes no
initiate outside/inside TMA-TP - no
sid = savework outside TMA-TP - no
rollback outside TMA-TP - no
begin_trans outside CM or TMA-TP yes yes
end_trans outside CM or TMA-TP yes yes
abort_trans outside CM or TMA-TP - yes
thread inside CM - no
commit inside TMA-TP - no
abort inside TMA-TP - no
restart inside TMA-TP - no
call_support inside TMA-TP - no
exit inside TMA-TP - no

The fourth column specifies which primitives provide a bracketing construct
to specify nesting from the syntactic point of view. Finally the fifth column
indicates whether a primitive can be redefined by the programmer in the coor-
dinate block. Note that we allow only begin_trans, end_trans and abort_trans to
be redefined in the current model of H-transactions.

4.4.3 Discussion

In the course of a transaction execution, a sid = savework() primitive may be
executed more than once. In such cases it is preferable to assign each time a
new handle which is generated by the system since otherwise the transaction
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loses the ability to refer to the exact savepoint among those that were estab-
lished previously.# As an example, suppose the programmer wants to undo the
effects of a loop based on certain conditions established during the execution
of the loop. If a savepoint is established within the loop and the same savepoint
identifier is employed, then the programmer can undo only the latest iteration
of the loop. This is because the programmer loses reference to the other save-
point handles. (Note, however, that if a programmer establishes a savepoint
just before a loop, then the effects of all iterations of the loop can be fully un-
done. This is possible because the scoping rules of the savepoint identifier is
the block in which the sid = savework() primitive is executed.)

Note that although the restart(T;) command may seem semantically equiv-
alent to a rollback to the beginning of the transaction, there is one important
difference between the two. The restart primitive can be executed only by the
coordinator; a transaction cannot restart itself. The rollback primitive, on the
other hand, is invoked by the transaction itself. The coordinator does not have
any idea about savepoints established by a transaction and hence is not allowed
to execute a rollback primitive.

Finally, note that a coordinator for a transaction T; can multiply invoke com-
mit or abort primitives for T;. Usually this occurs if T; is to be conditionally
aborted or committed. In such cases, the first execution at runtime of either
primitive takes effect while the others, if executed subsequently, performs only
null operations and generates warning messages. Further, the initiate command
can be invoked from both outside or inside a coordinate block. If it is invoked
from oustide a coordinate block then the scope of the identifier T; specified in
the invocation of initiate is the entire program code for the H-transaction; else
the scope is limited only to the particular coordinate block from which initiate
is invoked. In the former case we can have a number of coordinate blocks for
a single transaction T; defined within the scope of the identifier T;; however, at
most two coordinators can actually be involved for terminating T;. The scoping
rules ensure that every time an end_trans or an abort_trans is invoked, it gets
bound to only one thread, viz. to the thread which is defined at point closest
to the invocation. Hence, the closest coordinator will execute end_trans (or
abort_trans) without committing or aborting T; and a second will perform the
actual commit or abort operation.

4.5 REALIZING VARIOUS TRANSACTION DEPENDENCIES

We now show how different transaction dependencies that are present in var-
ious extended transaction models can be specified using our primitives. We
would like to emphasize here that we are interested in only the termination de-
pendencies among transactions. We do not attempt to capture dynamic depen-
dencies that are not known a priori. Such dynamic dependencies arise mostly
due to data sharing among the transactions.



110 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

4.5.1 ACTA Framework

The ACTA framework defines two major types of termination dependencies
among pairs of transactions. (i.e. dependencies that arise between transactions
due to commit or abort of one of them and not due to data sharing among them).
These dependencies are the commit dependency and the abort dependency de-
fined as follows:

Commit Dependency If transaction T; develops a commit dependency on tran-
saction T; then T; cannot commit until T; either commits or aborts. Note
that this does not imply that if T; aborts, then T; should abort as well.

Abort Dependency If transaction T; develops an abort dependency on tran-
saction T; then if T; aborts T; should also abort. Note that this does not
imply that T; should commit if T; commits, nor that T; should abort if T;
aborts.

Note that an abort dependency implies a commit dependency. If T; develops
an abort dependency on Tg, then T; must wait for the commit decision of Ts;
hence T; cannot commit before Ts, i.e. there is a commit dependency between
T; and Ts. In figures 4.4 and 4.5 we show how our primitives can be used to
express the commit and abort dependencies of ACTA.

In figure 4.4, suppose that T; wants to commit. It executes an end_trans
primitive which causes the end_trans thread at the coordinator to be executed.
Since Ty has not yet executed the end_trans (or abort_trans) primitive, the
variable doneT2 is false. Consequently the end_trans thread sets the vari-
able completedT1 to true and then returns. As no commit or abort decision
has been taken for Ty by the coordinator module, T; cannot terminate at this
time by committing. On the other hand if T; had decided to abort, it would
have executed the abort_trans primitive, which in turn, would have caused the
abort_trans thread to be executed at the coordinator. This would abort T; irre-
spective of whether T, commits or aborts.

When T; decides to commit or abort, the variable doneT2 will be set to true
by one of the threads end_trans or abort_trans. If T executes an abort_trans
primitive, the corresponding thread aborts T. The abort_trans thread then finds
that the variable completedT1 is set to true (which indicates that T; is waiting
to commit) and hence commits T;. If, on the other hand, T, executes the
end_trans primitive (indicating that it wants to commit), the end_trans thread
commits T first and then, noticing that completedT1 is set to true, commits
T;. At this point the program terminates.

From the above discussion it is clear that the program in figure 4.4 imple-
ments the ACTA commit dependency between T; and T,. Figure 4.5 imple-
ments an abort dependency between T; and Ts. The reason is similar to the one
above with the only difference being that if T, executes an abort_trans primi-
tive, the corresponding abort_trans thread in the coordinator aborts both T and
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void commit_dependency ()

{ coordinate ;
initiate (T1,T2);
cobegin
begin_trans (Ty)
end_trans (Ty) ;
begin_trans (T3)
end_trans (T2) ;
coend ;
using {
completedT1 := false ; doneT?2 := faise ;
thread end_trans (M) {
if doneT2 then {commit(T); exit ;}
else if M == T then {
commit(T2); doneT2 = true ;
if completedT1 then { commit(T1); exit ;}}
else completedT1 = true ; }
thread abort_trans (M) {
if M == T then {abort(T2) ; doneT2=true;
if completedT1 then { commit(Ty); exit ;}}
else abort(T; ) ;
}
}
end
}

Figure 4.4 ACTA commit dependency

T, even if T has previously decided to commit. Moreover, if T is yet to reach
a decision when T has decided to abort, T; gets aborted.

4.5.2 Sagas

Saga [Garcia-Molina and Salem, 1987] is a transaction model that provides
system support for the execution of a long-lived transactions. In sagas, a long-
lived transaction is executed as a number of shorter subtransactions without
sacrificing the atomicity of the larger transaction, although other transactions
may see the effects of a partial saga execution.

A saga consists of a set of flat transactions Ty, T, ..., T, that execute se-
quentially within the context of the saga, but can interleave arbitrarily with
component transactions of other sagas. For each T; (1<i< n) there is a com-
pensating transaction CT; which, if executed, semantically undoes the effects
of T;. A compensating transaction CT; is executed iff the transaction T; has
committed and the saga of which T; is a part, has aborted. A saga commits
if all T;’s successfully commit and aborts if any T; aborts. If a saga aborts,
it compensates for the effects of all committed components T;’s by executing
their corresponding compensating CT;’s. The compensating transactions are
executed in the reverse order of the commits of the corresponding T;’s. Note
that there is no compensating transaction for the last component transaction T,,.
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void abort_dependency ()

{ coordinate ;
initiate (T1,T2);
cobegin
begin_trans (T;)
end_trans (Ty) ;
begin_trans (T2)
end_trans (T2) ;
coend ;
using {
completedT1 := false ; doneT2 := false ;
thread end_trans (M) {
if doneT2 then {commit(T; ); exit ;}
else if M == T2 then {commit(T2); doneT2 = true ;
if completedT1 then { commit(T, ); exit ;}}
else completedT1 = true ;
thread abort_trans (M) {
if M == T2 then { abort(T2,T1); exit; }
else abort(T; ) ;
}
}
end

Figure 4.5 ACTA abort dependency

This is because if T, commits then the entire saga commits. The final outcome
of a saga is either the sequence:

1. Ty, Ty, ..., T,—1, T, if all T;’s commit, or

2. Ty, Ty, ..., T; ,CTi_q, ..., CT,, CT; if any T; aborts.
\b/’
abort

In figure 4.6 we show how the semantics of a saga can be achieved with our
primitives. The saga program consists of one coordinate block which controls
the execution flow of the transactions Ty, ..., T, and the corresponding com-
pensating transactions CT,_;, ..., CT;. In the transaction component of the
coordinate block the T;’s and the CT;’s (if so required) are executed sequen-
tially. If T, successfully completes, then the coordinator aborts CT,_;, ...,
CT; (as no compensation is required) and the saga terminates successfully. On
the other hand, if any T; aborts, the thread abort_trans(T;) in the coordinator is
executed, which aborts the transaction T;, ..., T, as well as the compensating
transactions CT,_1, ..., CT;. In this way the transactions remaining to be ex-
ecuted, viz., CT;_y, ..., CT; become exactly those required to compensate the
effects of the already committed transactions Ty, ..., T;_;. If a CTy aborts, the
thread abort_trans(CTy) in the coordinator gets executed, which in turn restarts
the compensating transaction CTy. In this way the effects of all the committed
transactions are compensated for and the saga aborts.
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void saga ()
{ initiate (Ty,T2,...,T,,CT1,CT2,....CTy—1);
coordinate
begin_trans (T1)

end_trans;
begin_trans (T2)

end_trans;

begin_trans (T,)

end_trans;
begin_trans (CT,—1)

end_trans;

begin_trans (CT2)
end_trans;
begin_trans (CTy)
end_trans ;
using
thread end_trans (M) {
commit (M) ;
if M ==T, then {abort(CTy,...,CTa—1); exit };
}
thread abort_trans (M) {
case (M) do
Ty: { abort(Ty,...,Tn, CT1,CTy,...,.CTa1 ); exit} ;
Ta: abort(Ts,...,T,CT2,...,CTa—1);
Tj3: abort (T3,...,Ts,CT3,....CTy—1);
;I',.: abort(T,) ;
CTy: restart(CTy) ;
CTa: restart(CTg) H
CT,—1: restart(CT,—1) ;
}
end ;

Figure 4.6 Implementation of a saga

4.5.3 Workflows and Long Lived Activities

ACID properties of transactions have the limitation that hide any internal struc-
ture to be perceived and referred to from outside of the transaction. Conse-
quently if there is an activity that consists of multiple steps of processing with
an explicit flow of control among these steps, it is difficult to model it as a
transaction.



114 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Workflows have been suggested as a way of implementing long-lived acti-
vities which have some kind of an internal structure, in terms of shorter tran-
saction like components [Dayal et al., 1990]. Workflows allow dependencies
among transactions to be expressed and also allows correctness requirements
among the component transactions that are less stringent than serializability
and isolation.

We show by an example how a workflow can be expressed by our primitives.
The example workflow involves planning for a trip by John Doe. He plans to
leave on the 3rd of June by either Delta, or United, or American in that order,
stay at the hotel Ambassador from the 3rd until the 6th of June. and rent a car
from either National or Avis with no preference. If any of the reservations (i.e.,
flight, hotel or car) cannot be made, John Doe would like to cancel his trip.

In the example in figure 4.7 the different components flightReservation, hotel-
Reservation, carReservation, cancelFlightReservation and cancelHotelReser-
vation perform the actual reservation or cancellation operations. The single
coordinate block for the workflow contains the transactions T, ..., T¢ and
the compensating transactions CT;,CT2. CT; compensates for any committed
flight reservation made by T;, T, or T3 in case either the hotel reservation or
the car reservation cannot be made. CT2 compensates for a committed hotel
reservation if the car reservation is unsuccessful.

Every time a transaction completes, it invokes the end_trans thread at the
coordinator which then enforces the control flow of the activity. The successful
completion of the workflow is indicated by the commit of either Ts or Tg. In
this case the coordinator ensures that CT; or CTs are aborted.

If any transaction decides to abort, it invokes the abort_trans thread at the
coordinator. The execution of the abort_trans thread for a transaction T; aborts
all transactions T; that follow T; in the workflow and compensates for the com-
mitted T)’s preceding T; in the workflow. In case any compensating transaction
CT; gets aborted, it has to be reexecuted until it successfully completes.

4.5.3.1 Semiatomicity. A formalization of the workflow model is pro-
vided in [Zhang et al., 1994b]. In this paper a workflow is synonymous to a
flexible transaction. The structure of a flexible transaction T is viewed as a
set of the so called representative partial order of subtransactions. The sub-
transactions within a representative partial order are related by the precedence
relation. Each representative partial order gives an alternative for the execution
of the flexible transaction. There is also a preference relation which defines the
preferred order of the alternatives. Each subtransaction is categorized as either
retriable, compensatable, or pivot.

The execution of a flexible transaction T preserves the property of semi-
atomicity if one of the following conditions is satisfied:



FLEXIBLE COMMIT PROTOCOLS

void workflow ()

initiate(T1,T2,T3,T4,T5,Te,CT1,CT2)
coordinate
airline* air; % persistent variable

begin_trans(T1)
flightReservation(Delta, 6/3/96) ;
air = Delta ;
end_trans(T;1) ;
begin_trans(T?2)
flightReservation(United, 6/3/96) ;
air = United ;
end_trans(T2) ;
begin_trans(T3)
flightReservation(American, 6/3/96) ;
air = American ;
end_trans(T3) ;
begin_trans(T4)
hotelReservation(Ambassador, 6/3/96, 6/6/96) ;
end_trans(T4) ;
cobegin
begin_trans(Ts)
carReservation(National, 6/3/96, 6/6/96) ;
end_trans(Ts)
begin_trans(Ts)
carReservation(Avis, 6/3/96, 6/6/96) ;
end_trans(Tg)
coend;
begin_trans(CT; )
cancelFlightReservation(air, 6/3/96) ;
end_trans(CT1);
begin_trans(CT2)
cancelHotelReservation(Ambassador, 6/3/96, 6/6/96) ;
end_trans(CT?2);

using
thread end_trans (M) do {
case M of {
T; : { commit (T1); abort (T2,T3);} ;
Tz : { commit (T2); abort (T;,T3):} ;
Ts : { commit (T3); abort (T1,T2);} ;
Ts : { commit (T5); abort (Tg,CT1,CT2); exit;} ;
Te : { commit (Tg); abort (T5,CT1,CT2); exit;} ;
default: commit (M); % commit T4 or CT;jor CT2
}
}
thread abort_trans (M) do {
noSet = union (noSet,M) ;
if subseteq({T1,T2,T3},noSet) then
{ abort (T1,T2,T3,T4,T5,T6,CT1,CT2); exit }
if subseteq(T4,noSet) then
abort (T4,T5,Te,CT2);
if subseteq({Ts,Te },noSet) then
abort (Ts,Té);
if M==CT; or M==CT; then
restart(M);
3
end

Figure 4.7 Workflows: reservations
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1. All its subtransactions in one representative partial order commit and all
attempted subtransactions not in the committed representative partial or-
der are either aborted or have their effects undone.

2. No partial effects of its subtransactions remain permanent in local data-
base.

In [Zhang et al., 1994b] the authors provide a commit protocol which dy-
namicaily commits subtransactions as soon as possible. An alternative repre-
sentative partial order is executed if an attempted subtransaction aborts. In this
case subtransactions which have already been committed in the failed repre-
sentative partial order are compensated for.

Given an instance of a flexible transaction we can implement a coordinator
for this flexible transaction in a manner similar to implementing a workflow,
shown previously. In fact a compiler can be made to generate the codes for
such a coordinator, given an appropriate description of the flexible transaction
with the different precedence and preference relations.

4.5.4 Secure Distributed Transactions

A major problem of all lock-based concurrency protocols in multilevel secure
(MLS) database systems is that in order to avoid a covert channel any read lock
acquired by a higher security level transaction on a lower security level data
object must be released whenever a lower level transaction attempts to acquire
a write lock on the same data object. Unfortunately, this requirement has grave
implications for the corresponding commit protocol, specially the early prepare
commit protocol (EP) {Mohan et al., 1986, Stamos and Cristian, 1993]. What
it implies is that read locks may get released within a subtransaction’s window
of uncertainty (period after a participant has voted yes to commit a subtrans-
action, but before it receives the commit or abort decision from the coordina-
tor), possibly resulting in nonserializable executions [Jajodia and McCollum,
1993, Jajodia et al., 1994].

Consider the history in figure 4.8 showing two distributed transactions Low
and High such that transaction Low is at a lower security level than transaction
High. Each distributed transaction consists of two subtransactions Low, Lows
and High,, High, with Low; and High; executing at Site 1 and Low, and Highy
executing at Site 2 respectively. Among the data objects accessed by Low and
High are x and y with the security level of x being the same as that of y and
equal to the security level of transaction Low. Data object x is at Site 1 while
y is at Site 2. The order of execution of each subtransaction is shown in figure
4.8. The event yes in the figure signifies that the subtransaction has completed
execution and has sent an yes vote to the coordinator. Note that when w(x] is
invoked by Low, the operation cannot be delayed waiting for High; to release
the read lock on x. This is in order to avoid a covert channel between the the
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security levels of transactions High and Low. Consequently, although High;
is in its window of uncertainty when Low; requests write lock on x, the read
lock on x by High; has to be released. Basic EP protocol does not take into
account that read locks may be released during a subtransaction’s window of
uncertainty. In this case EP will commit both distributed transactions High and
Low thereby leading to the non-serializable history shown in figure 4.8.

! window of uncertainty for subtransaction Highy |
Site 1 [ |
Highy :begin...... x]...... yes conkmil”,'g;,
‘ read lock on x by Highy :
: need to be released here
Lowy : begin......w[x]...... es commit, If High commits at this
w1 ® wix) ¥ HLow point the history will be
non-serializable.
Site 2
Higho : begin...... fyl...... yes com'milH,-g,,
Lowg : begin...... wlyl...... yes commitggy

High; — Low; AND Lowg — Highy = High — Low — High

Figure 4.8 Example history illustrating problem with EP in MLS systems

To overcome this problem, a secure EP commit protocol (SEP) has been
proposed in [Atluri et al., 1994]. It implements the following secure commit
dependency in addition to the conventional commit/abort dependencies for dis-
tributed systems:

Given any two participants T; and T; of a multilevel secure distributed
transaction T, there is a secure commit dependency between T; and T;,
denoted by T; N T;, defined as follows:

If either T; or T; releases any of its low read locks within its window

of uncertainty, before all participants complete, then both T; and T; are
aborted.

In other words, to prevent nonserializable executions, SEP aborts a dis-
tributed transaction if any of its lower reading subtransactions is compelled
to release a lower level read lock within the subtransaction’s window of un-
certainty, before the other subtransactions complete. As usual, SEP guarantees
that either all participants abort or all of them commit.

SEP for MLS systems can be implemented within our framework by in-
corporating the GetSignal primitive introduced in [Bertino et al., 1997]. The
basic idea is that the lock manager at a site notifies the transaction manager
by sending the latter a signal (similar to raising an exception), that a higher
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level subtransaction at that site has released one of its lower level write locks
because a lower level subtransaction at the same site has requested a write lock
on the same data item . Each signal received by the transaction manager from
the lock manager identifies a lower level data object x that has been read by
the higher level subtransaction T; and indicates a new value for x. Before the
higher level subtransaction can commit, the subtransaction has to handle these
exceptions generated by the lock manager and the GetSignal primitive is used
by the programmer to specify how signals from lower level subtransactions are
to be handled by the higher level subtransaction.

The GetSignal primitive has the syntax: GetSignal[[sly — handler], ...,
[sl. — handler,]]. It has two exit points: A standard one which is the next
instruction after the GetSignal and an exceptional continuation which is repre-
sented by the expression

[sly = handler,),...,[sl, — handler,)

On receiving a signal from the lock manager, the transaction manager locates
the savepoint s/; that immediately precedes the read of the data object identified
by the signal and associates the savepoint identifier s/; with this signal. For
example, if the signal indicates a new value for the data object x, then the
signal label si; established by the first step sl; = SaveWork() preceeding the
operation r;[x] in the subtransaction body, is chosen. Each of the s/;’s in the
expression for the GetSignal primitive, represents one such savepoint identifier
that has been associated to a signal; handler; represents a programmer specified
piece of code to be executed in order to handle the associated signal. We say
the savepoint sl; covers the data object in question.

If multiple low read locks of T; had to be released, the transaction manager
receives multiple signals, one for each broken lock. It buffers all such signals.
Later on when T; invokes a GetSignal call, the transaction manager considers
all the signals it has buffered for T;, and selects one signal to be serviced as
follows: It selects that signal whose associated savepoint identifier covers all
the low reads with released read locks.

The default invocation for the getSignal primitive is: GetSignal[— handler].
In this case, for any signal that needs to be serviced, the same code of handler
is executed.

We now show how it is possible to implement a commit protocol that en-
forces the secure dependency among subtransactions of a multilevel secure
distributed transaction T. The SEP protocol is achieved by adding a suitable
GetSignal call as the support_code (refer to the discusion on the semantics of
the primitive end_trans(T;)< support_code > in section 4.4.2) for each sub-
transaction T; and making the coordinator module invoke a call_support for
each of the lower reading subtransactions to invoke in its turn, the GetSignal
calls.
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Figure 4.9 shows an H-transaction, T, that implements the SEP protocol for
committing three concurrent subtransactions Ty, T2 and T3. These three sub-
transactions are related to each other by the secure dependency T; = T;(1 <4,
j <3,1i#]). In this example transactions T; and T3 read data at lower security
levels, but not Ty. We assume that a secure two-phase locking protocol is used
to provide local concurrency control at each site.

As each subtransaction Tp, To, and T3 completes, it invokes the end.trans
thread in the coordinator module and enters its corresponding window of uncer-
tainty. When the last of the subtransactions has invoked the end_trans thread,
the coordinator module executes the call_support primitive for transactions T
and T3. Note that the call_support is not invoked for T as this subtransaction
does not read down. The call_support primitive in turn causes the support_codes
defined in T; and Tj to be executed.

Each support_code is of the form < GetSignal[— abort_trans(T;)]; noSignal-
Serviced >. The GetSignal call has the format of the default invocation. Thus
if there is any signal to be serviced the exceptional continuation of GetSignal
denoted by abort_trans(T;) gets executed. On the otherhand if there is no sig-
nal the statement following the GetSignal is executed - in this case the thread
noSignalServiced defined in the coordinator module.

If any of T; or T3 invokes abort_trans (indicating it had to release a lower
level read lock within its window of uncertainty), the coordinator module thread
abort_trans aborts all the three subtransactions T;, T2 and T3 and then exits. On
the other hand if both T, and T3 invokes noSignalServiced it implies that none
of them had a signal to service, i.e. none of the subtransactions had to release a
lower level read lock within its window of uncertainty. At this point it is assured
that the H-transaction T comprising of the three subtransactions is two-phased
and hence the noSignalServiced thread commits the three subtransactions and
exits.

Note that the GetSignal and call_support primitives can be used in tandem
by the programmer to implement more complex secure commit protocols like
the ones shown in [Ray et al.,, 1996]. All that the programmer has to do is
write a suitable support_code and coordinator module thread corresponding to
the desired behavior of each subtransaction. The support code should define
how signals are to be serviced and what needs to be done in the absence of any
signal and may invoke programmer defined coordinator module threads.

4.5.5 Contingent Transactions

A contingent transaction [Elmagarmid, 1992] is a set of two or more compo-
nent transactions Ty, To, ..., T, with the property that at most one of the trans-
actions, say T;, commits. A contingent transaction T = {Ty, To, ..., T,} is
executed as follows: T, gets executed first. If it commits then the transaction T
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void secure_distributed_commit ()
{
initiate (T1,T2,T3) ;
coordinate
cobegin
begin_trans (T1)
rx];
slo = SaveWork() ;
wiz] ;
iyl ; /* this is a low read */
sl = SaveWork() ;
rlq] ; /* another low read */
end_trans (T1) {GetSignal[— abort_trans(T1) ];
noSignalServiced ; } ;
begin_trans (T2)
tlo] ;
wip];
end_trans (T2) ;
begin_trans (T3)
tfs]; /* this is a low read */
slo = SaveWork() ;
iyl ; /* another low read */
wiq];
end_trans (T3) {GetSignal[— abort_trans(T3) ];
noSignalServiced ;} ;
coend ;
using
thread end_trans (M) {
completedSet := union(completedSet,M);
if completedSet = {T;,T2,T3}
then call_support(T;,T3);

thread noSignalServiced (M) {
commitSet := union(commitSet,M) ;
if commitSet = {T1,T3}
then { commit (T1,T2,T3); exit ;}

}

thread abort_trans (M) {
abort (T1,T2,T3); exit;

}

end

Figure 4.9 A secure distributed commit protocol

commits and ends. If T; aborts, Ty gets executed and if it commits, T commits
and ends, and so on.

The program fragment in figure 4.10 shows how a contingent transaction
can be implemented within our framework. In the example the contingent tran-
saction consists of three component transactions T;, T and T3. Note the se-
quential definition of the three transactions in the body of the H-transaction
(they are not within any cobegin ... coend block) ensures that first T; gets exe-
cuted and invokes end_trans() or abort_trans(). Then depending on whether the
H-transaction terminates or not Ty and/or T3 gets executed.
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void contingent()

initiate(T1,T2,T3) ;
coordinate
begin_trans (T1)

end_trans (T1);
begin_trans (T2)

end_trans (T?2);
begin_trans (T3)

end_trans (T3);
using
thread end_trans (M) {

if M ==Tj then
{ commit (T;); abort (T2,T3); exit; }

if M ==T3 then
{ commit (T2); abort (T1,T3); exit; }

if M == T3 then
{ commit (T3); abort (Ty,T2); exit; }

}

thread abort_trans (M) {
abortSet = union(M,abortSet) ;
if subseteq({T1,T2,T3},abortSet) then
{ abort (T1,T2,T3) exit; }

}

end

Figure 4.10 Example of a contingent transaction

4.5.6 Nested Transactions

A nested transaction is a transaction that is executed from inside the dynamic
scope of another transaction. Nested transactions can further create nested
transactions and the nesting can proceed to arbitrary depths. The transaction at
the root of this tree of transactions is called the root transaction and the transac-
tions at the interior nodes (called parents) or leaves of this tree are jointly called
subtransactions. Subtransactions execute atomically with respect to their sib-
lings.

Each of the parent transactions is suspended until all its nested transactions
terminates (i.e., commits or aborts). However, the semantics of commit for
the nested transactions are different from that for the root transaction. When
a nested transaction (parent or leaf) commits, the changes that it made to the
database are made accessible to its parent, but are not made permanent. The
changes are made permanent only when the root transaction commits. Abort
semantics for both root and subtransactions are similar to the abort semantics
for the classical transaction. Furthermore, a subtransaction can access any data
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item that is currently accessed by one of its ancestors without forming a con-
flict.

We illustrate the implementation of the termination dependency of a nested
transaction in our model by a simple example. The example involves a tran-
saction nested to two levels, which makes travel arrangements for John Doe.
If at any stage a reservation cannot be made, the trip is cancelled. At any
stage thus, if the trip is to be cancelled, any previous reservation has to be can-
celled. Note that unlike in the workflow model where previous reservations
are cancelled by explicitly executing compensating transactions, in the nested
transaction we do not require any compensating transaction. This is because
of the fact that the effects of subtransactions are made permanent only at the
commit of the root transaction. We assume that the code for the subtransac-
tions are already there for the example in figure 4.11. Also note that the actual
implementation of nested transactions requires proper implementation of the
data-sharing dependencies among the subtransaction. We assume that such
mechanism are already in place.

void nested-transactions ()

{
initiate(T; ,T2,T3,T4);
coordinate
begin_trans(T; )
begin_trans(T?2)
flightReservation(United, 6/3/96)
end_trans(T2) ;
begin_trans(T3)
hotelReservation(Ambassador, 6/3/96, 6/6/96)
end_trans(T3) ;
begin_trans(T4)
carReservation(Avis, 6/3/96, 6/6/96)
end_trans(T4) ;
end_trans(Ty) ;
using
thread end_trans (M) do {
if M == T then commit (T1,T2,T3,T4); exit ;
}
thread abort_trans (M) do {
abort (T1,T2,T3,T4); exit ;
I8
end
}

Figure 4.11 Nested transactions



FLEXIBLE COMMIT PROTOCOLS 123

4.6 CONCLUSIONS AND FUTURE WORK

This paper presents a flexible commit facility that allows the programmer to
achieve various transaction dependencies of different extended transaction mod-
els. The transaction dependencies are implemented by a set of coordinator
modules that interact with the system’s default commit/abort mechanism. The
programmer is provided with a small set of transaction primitives by which he
can develop application specific coordinator modules. Moreover, the program-
mer can redefine some of these primitives for additional flexibility by providing
the code for the implementation of the new definitions. The compiler of a data-
base programming language can also use these primitives to support higher
level constructs for transactions. In this case, the compiler can automatically
generate the appropriate codes needed for coordination of a set of transactions
from a high level description of their dependencies.

Not only can the programmer re-define some of the existing primitives, he
can also define newer primitives with well-defined interfaces to satisfy his par-
ticular requirements. In this case these new primitives are defined as new
threads of a coordinator and are invoked from a transaction. An example of
such a new application specific primitive has been the noSignalServiced prim-
itive shown in section 4.5.4, where it was used to support the secure dependen-
cies among transactions. Allowing custom primitives with well-defined inter-
faces seems useful for supporting some other extended transaction models not
discussed in this work, like the split-join transaction model. For example in
the case of split-join transactions, the programmer can define two new threads
split and join in the protocol component. The split thread starts a new tran-
saction and delegates a set of data to the new transaction. The join thread is the
complement of the split thread; it joins to transactions.

Our commit facility seems to be a practical way to implement extended tran-
saction models on top of existing TP systems following the same approach as
that of [Barga and Pu, 1995]. In this work, the authors extend Transarc’s Encina
TP system [Encina, 1993, Gray and Reuter, 1993] by developing transaction
management adapters on top of Encina. We choose to use a similar approach.
Our transaction management adapters offer the same functionality as the tran-
saction management adapter of [Barga and Pu, 1995] while our coordinator
module can viewed as an extended version of the notion of metatransactions
of [Barga and Pu, 1995] built on top of transaction management adapters. A
coordinator module in an H-transaction lists the set of primitives that are in-
voked by a component transaction alongwith an indication as to what type of
primitive each is (for example if it is a system primitive or it is one of the new
primitives that we have defined). It also contains the codes for these primitives.
In this manner we can support extended transaction models on conventional TP
system once the transaction adapter layer has been implemented.
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One advantage of our scheme over [Barga and Pu, 1995] is our ability to sup-
port application specific dependencies that do not fit into any general model.
The secure dependency is one such example. We plan to implement the pro-
posed primitives within the framework of an ongoing project on MLS tran-
saction processing system. When these current set of primitives are combined
with the flexible secure two-phase locking proposed in [Bertino et al., 1997],
we should have a complete flexible MLS transaction processing system that
supports both classes of dependencies, transaction as well as data dependen-
cies between MLS transactions.

Notes

1. Note that a process can be made to react to an event in many different ways: The event
can generate an interrupt to the process; the event can send a message to a port at which the
process listens or the event can invoke a RPC at the process. We choose not to specify the exact
mechanism so as to keep the model as much implementation independent as possible.

2. In most commit protocols, if any subtransaction aborts, the coordinator always sends an
abort decision to all participants. However, in our protocol the coordinator may not send an
abort decision. Instead the coordinator can ask the transaction to restart its execution. This can
be useful in many situations. For example suppose the subtransaction was aborted because of a
site crash. Then when the site comes up, the subtransaction can be restarted.

3. Atransaction T; is an orphan if it is never explicitly terminated by any coordinator module
within the H-transaction. When a transaction T; is orphan the locks acquired by T; are not
released and the updates made by T; are not made permanent. This may cause a number of
problems like deadlock or unsatisfiable dependencies. A complete discussion is outside the
scope of this paper.

4. We assume here that the programmer does not save the contents of an sid before reusing
it.

5. Such a facility of the lock manager notifying the transaction manager about early lock
release by transactions is available in some secure transaction processing system like Informix
Online/Secure [Informix, 1993]
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Andreas Reuter, Kerstin Schneider
and Friedemann Schwenkreis

Abstract: To meet the correctness requirements of mission-critical processes
workflow systems have to commit guarantees regarding their behavior in case
of failures and concurrency. The ConTract model is a conceptual framework for
the reliable execution of long-lived computations in a distributed environment in-
cluding workflows. This paper focuses on the aspect of maintaining consistency
in ConTracts and containing consistency violations. It will give an overview of
how consistent execution is formally treated in the ConTract model. We present
a correctness criterion, which introduces a formal basis to verify execution histo-
ries and to build up correctness ensuring mechanisms. It is a unified criterion for
recoverability and permeability, named as invariant-based serializability, which
is based on a conflict-relationship between invariants in the ConTract model. A
formal definition of compensation is given and extensions of the compensation
mechanism are introduced. These extensions are a first step to leverage the con-
cept of compensation such that it can be used as a general-purpose mechanism
as in real applications. In particular, the support of semi-transactional steps and
the performance can be enhanced and advanced semantics of workflows can be
supported.

5.1 INTRODUCTION

The ConTract model is a conceptual framework for the reliable execution of
long-lived computations in a distributed environment. Properties like this are
particularly important for applications which during the past ten years or so
have come to be known as “workflow”. This does not say ConTracts embody
a workflow system; they do, however, provide a complete run-time system,
including an execution model, a failure model, etc. for advanced workflow ap-
plications. One might say that ConTracts are to workflow what the Java virtual
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machine is to Java-based applications. Since it was first presented in 1988,
the ConTract model has evolved in multiple ways: First, there has been a se-
quence of prototype implementations, none of which encompasses the full set
of concepts. Second, a number of ideas from the ConTract model have been in-
corporated into commercial products, either indirectly, via the literature, or via
osmosis, by members of the ConTract team joining the respective development
teams. And finally, the original research group (at the type level, that is; the
people have changed) has continued to work on some of the more fundamental
issues of long-running computations, such as formal consistency constraints
and their implications on the execution model, on recovery, and so on.

This paper will focus on the aspect mentioned last, i.e. the problem of main-
taining consistency in ConTracts and containing consistency violations. Ex-
isting workflow systems basically ignore those problems. Their vendors put it
more mildly by saying the system provides the application with all the inter-
faces required to take care of consistency by itself. So, whereas many of the
technical aspects related to distributed execution, naming, security etc. have
been solved and made their ways into standards, consistency maintenance is
still a hard problem, where research has to - and can - make a contribution. The
paper will give an overview of how consistent execution is formally treated in
the ConTract model.

5.1.1 The Motivation For ConTracts

First and foremost, ConTracts were designed to achieve reliable execution for
long-running computations. In a sense, ConTracts were to provide a level of
system support to such computations that is comparable to what transactions
do for short interactive applications. Don’t get this wrong: The level at which
a distributed system supports both models is what is comparable; the actual
concepts and techniques are quite different.

The first question to come up is: What is a long-lived computation, as op-
posed to a short (interactive) transaction? It certainly does not help to set a
fixed elapsed time limit, such as: Whatever completes faster than within 10
seconds is a short computation, everything else is a long-lived computation.
Either there are counter-examples on both sides of the limit, or the limit is set
so high (or so low) that it becomes irrelevant. So we better define long-lived
computations by their properties, especially those properties that lack support
in current (operating) systems. Here is a list of some important traits that can
be found in long-running computations such as workflow, but which do not
hold for transactional applications:

s A long computation is one which cannot or should not be rolled back.
The transactional style of aborting a failed computation implies the no-
tion of retry: When a transaction has been aborted, just try again after
system restart, or after having checked the input data, or whatever. Now,
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if restarting the computation is too expensive, or if it causes the applica-
tion to miss a critical deadline, or if rollback is not feasible in the first
place, we have a computation that must be continued rather than rolled
back, even if something goes wrong: a long-lived computation.

m A long-lived computation must be kept alive across system shutdowns,
reorganizations and other regular interruptions of normal system oper-
ation. In particular, a deactivation of all participating clients must not
cause the computation to terminate.

» A long-lived computation involves many clients, mostly in the sense that
it moves through the distributed system, activating one client interaction
after the other. It must be possible, though, for two or more clients to be
attached to the same long-lived computation simultaneously.

m  Along-lived computation may not be specified completely at the moment
it starts. Depending on its progress and some intermediate results its fur-
ther plan will be developed as it progresses. In many cases, the decision
about what to do next depends on the computation’s own execution his-

tory.

Of course, some so-called long-lived computations do really go on for a very
long time: If you consider everything related to the construction of, say, a
power plant as processing one big order, the related computation that maps the
order processing onto the distributed system will be active for a couple of years.

Once you accept the goal of providing system services that will make such
long-running computations persistent in that they will automatically be recov-
ered and continued as long as the application has not declared completion, the
question is, which particular mechanisms are required, and how they interact
with existing system services.

5.1.2 A Brief Survey of the Model

On first approximation, a long-running computation is just the execution of a
program - a long one, for that matter. So if we had a persistent programming
language, i.e. one which allows the program to be restarted after a crash right
where it was interrupted, wouldn’t that solve the problem?

It would indeed solve a portion of the problem, but leave out some important
aspects. Of course, a persistent run-time environment is mandatory for achiev-
ing reliable execution of long-lived computations. But there is another side
to this observation: Which functions are needed in a programming language
that is suited for writing long-running programs? Will any one do, such as a
persistent C?

We claim the answer is “no”, and we hope some of the more subtle reasons
can be appreciated by the end of the paper. A simple quantitative argument is
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the following: Classical programming languages have been designed for imple-
menting software modules, which get invoked, perform their function within,
say, 10ms and then return without leaving any context around. A workflow, on
the other hand, can last for years, i.e. we look at elapsed times of 10® seconds.
So the temporal horizon of programming a workflow is 10 to 11 orders of mag-
nitude larger compared to implementing some module - it is quite obvious that
the programming constructs adequate for the short range will not be completely
sufficient for activities that are 100 million times longer.

In the following, we will briefly outline the additional mechanisms that have
been introduced in the ConTract model to support “programming in the long”.

First and most obviously, a long-running activity has explicit control flow,
with all the constructs such as sequence, case, and loop. In addition, in long
computations one typically finds many asynchronous (parallel) execution paths,
so this must be part of the model. Fig. 5.1 shows a simple graphical represen-
tation of this.

Source

Figure 5.1 A ConTract script describes the control flow of a fong-lived computation using
all the basic constructs of a parallel programming language.

The ConTract model assumes that the nodes of the control flow graph (called
“steps”) are not single statements of some programming language (or base
blocks); they rather represent programs, methods, applications, etc. which can
be invoked through a call interface. Each such program comes with its own
run-time system, executes in single-user mode and eventually returns control
to the run-time system of the long-running computation®. So there is a clear
division of responsibilities - a contract, if you will: The application is respon-
sible for what happens inside a step, the system is responsible for keeping the
control flow between steps alive, according to the specification. The control
flow description is often referred to as “script” in workflow systems.
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In order to support programming of truly long-lived computations, one needs
more than persistent control flow, though. Fig. 5.2 shows the specifications that
can be associated with a step in the ConTract model.

ConTract program variables(context)

compensation step

control flow in control flow out

.__entry exit
1nvariant nvariant

Figure 5.2 Control features associated with each ConTract step

First, each step must be complemented by a compensation step, which per-
forms the (semantically) inverse function of the step. This is required, because
in a long-running computation one cannot keep the updates locked until the
end, as is the case in transactional systems.

Second, each entry point into a step is protected by a so-called entry invari-
ant. This is a predicate expression, typically based on shared data in a database,
that must evaluate to “true” in order to actually invoke the step procedure. So
even if the control flow has arrived at a certain step, its invocation will not
happen unless the entry invariant holds>. While compensation takes care of
the fact that updates cannot be locked for a long time, entry invariants cope
with the fact that data read by a long-running computation cannot be protected
either.

Finally, there is a construct called exit invariant. It basically binds result
values of a step to the variables in a predicate expression, thereby establishing
the fact that a certain condition was fulfilled at that point in time. Steps that
will be executed in the future can then refer back to such an exit invariant as
part of their own entry invariant, checking whether something important has
changed since “that step back there” executed.

Fig. 5.2 also shows an example of a local programming variable of a Con-
Tract, i.e. a long-lived computation. Such variables are visible to all steps be-
longing to the same computation, but they are not visible to either the outside
(other computations) or the inside (programs executing as a step). Since these
variables reflect the execution history of a computation, which must be made
accessible in an easy way, the ConTract model suggests a versioning scheme
for all variables. So each assignment operation leaves the most recent value
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unchanged and creates a new version of the same variable. Since this is very
different from normal program variables, they are called “context variables” in
the ConTract model.

5.2 TRANSACTIONS IN A WORKFLOW ENVIRONMENT

This paper started out by saying that transactions are not adequate for mod-
eling long-lived computations. On the other hand, they have the great virtue
of providing a model for execution, failure, recovery, and synchronization in
one simple formalism - an atomic state transition. There is no point in trying
to relax or modify the transactional properties, hoping that the result will be
a comparably simple model for long-lived executions. Each of the problems
referred to by the ACID-properties has to be addressed individually for such
environments, and the resulting architecture will not be as uniform and ele-
gant as a transaction - but then, the problem to be solved is substantially more
complicated.

So modifying the transaction model will not do, and ConTracts are not an
extended transaction model. They will use transactions, though, in a variety of
ways, which will be explained in this section.

5.2.1 Use of ACID-Transactions

ACID transactions are used in a ConTract environment at two levels of abstrac-
tion.

First, transactions appear at the control flow level. It is possible to let multi-
ple steps execute as part of one (distributed) ACID transaction. This specifica-
tion (which is not shown in Fig. 5.2) is part of the overall definition of steps and
control flow. The default, enforced by the system in case the application does
not explicitly specify transaction control, is the execution of each step as an
ACID transaction. Of course, this has an effect only if the resource managers
used by the step program do support transactions.

The second usage of transactions happens “under the covers” of a ConTract
system, and it is totally unrelated to whether or not transactions are used at the
control flow level.

Fig. 5.3 illustrates the basic idea. For simplicity, assume a linear control
flow from step B to step C, which in general will be running on different nodes
of the network. Once B has completed, the fact that it has completed must be
reliably recorded - otherwise a system crash in that time window might cause
B to be activated again. In addition, control must be transferred to step C, and
the fact that all this has happened must be recorded at yet another node (called
CM for ConTract manager). This makes sure that somebody will be there to
initiate recovery in case the node executing C should crash before completion.
Since all three actions must happen together or none must take effect, the ad-
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System transaction A

transfer receive
control request

Figure 5.3 Distributed ACID transactions are the base mechanism for implementing reli-
able transfer of control.

equate implementation mechanism is a distributed ACID transaction involving
the nodes of steps B and C, and the node running CM.

5.2.2 Semi-Transactional Activities

As mentioned in the previous section, there are and will be components which
are not aware of something like a distributed transaction or a two phase commit
protocol. However, many real world applications need these components to
fulfill their tasks. Hence, the question comes up how ConTracts can cope with
such non-conforming components and what the benefits will be.

The major benefit of using ConTracts even in case of non-conforming steps
is the guarantee that state changes of the process (script) are made atomic. That
means, that the effects of such steps regarding the process are protected by a
transaction. In contrast, their effects to the “outside world”” may be unprotected.
That’s the reason why we will call them semi-transactional in the following.

It is an obvious observation that without a transactional protection and with-
out the control of the transaction by the system there will be intervals in time
when the system is unable to determine the state of a step automatically. Hence,
the system needs “help” from outside which results usually in a message to the
administrator. However, a reliable system should minimize the “window in
time” when human intervention is needed and provide as much information as
possible to support humans while solving the problem.

To achieve the two objectives in ConTracts, several extensions to the original
model are necessary. We will briefly introduce some of these extensions:



134 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

»  The system must be aware of semi-transactional steps, i.e. the definition
of the script has to contain a classification of steps such that the run-time
system is enabled to determine necessary actions in case of problems.

= Recovery strategies are much more complex (but also flexible). The re-
covery of a semi-transactional step may require the execution of several
other steps. This will be taken into account e.g. by the partial compensa-
tion in section 5.4.4.

= The notion of dependencies has to be extended. Up to now, control flow
can be defined by using abort and commit dependencies.

m  The usage of semi-transactional steps do impact the semantics of other
parts of a script, e.g. transactions and compensation. Proper constraints
have to be introduced to avoid indeterministic behavior.

The more we extend the features of ConTracts, the more information must be
provided by the script programmer to use these features. Or in other words, the
more you can use the transactional features of ConTracts, the less information
is needed on the script-level.

5.3 RECONSIDERING CORRECTNESS

The original model of ConTracts [Waechter and Reuter, 1992] introduced an
implicit notion of correctness by describing the properties of a ConTract in
an informal fashion. In particular, the definition of the invariant based con-
currency control mechanism was very brief which lead to confusion. Since
workflow systems are more and more demanding transactional features, execu-
tion models like ConTracts need to come up with a very precise definition of
their semantics.

5.3.1 Transactional Properties and ConTracts

The major benefit of classic database transactions was their simplicity, repre-
sented by the ACID properties [Gray and Reuter, 1993]. Unfortunately, these
properties have major drawbacks in case of long-running executions like work-
flows [Gray, 1981]. Anyway, programmers of applications have to be supported
by a proper abstraction like transactions to avoid the programming overhead for
failure handling, recovery and multi-user anomalies. The ConTract model was
introduced to provide such an abstraction with the following properties.

5.3.1.1 Recoverability. To avoid the shortcomings of the atomicity prop-
erty, a two-layered recovery approach has been introduced:

1. Recovery at the step level
Steps which are protected by a transaction are recovered by recovering
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the surrounding transaction, i.e. active transactions are rolled back. For
non-transactional steps a message to the administrator is generated. The
administrator has to recover the step (either forward or backward) and
then has to inform the ConTract processing system about the result of the
recovery.

2. Recovery at the script level.
A ConTract 3 is forward recoverable, i.e. after a failure the state of the
script is recovered and then recovery is initiated for every step (and ev-
ery transaction) which was active when the failure occured. After this
first phase of recovery, the ConTract will continue its execution (forward
recovery).

Recovery is handled by the run-time system of ConTracts except for non-
transactional steps. Hence, a programmer of a ConTract does not need to pro-
vide any code for failure recovery.

Forward recovery is performed after any type of failure, in order to keep the
ConTract going. It must be possible, though, for the application to terminate an
active ConTract and ask the system to revoke what has been done so far; this
type of recovery is called compensation [Gray, 1981].

Thus, a ConTract guarantees its compensability. The details of compensa-
tion in ConTracts will be described in section 5.4.1.

5.3.1.2 Permeability. Work performed by a ConTract is isolated in a trans-
actional sense only while a transaction is executed. If the transaction finishes,
all changes will become visible to the outside world if the application does not
define any further restrictions by using the so-called invariant concept.

5.3.1.3 Consistency. The consistency property of transactions is based on
the properties of atomicity and isolation. If a transaction runs isolated and
atomic, and it is started on a consistent state, it produces a consistent state after
it has finished its execution. During the execution a transaction may produce
inconsistent states which are not visible to the “outside world”. A basic as-
sumption of this approach is that transactions have to check themselves if they
violate any consistency constraints defined on the data (e.g. during the commit
phase). If they encounter the violation of a constraint, they have to roll-back.

This notion of consistency has been extended. A ConTract may define in-
termediate states (during the execution) as consistent. So, intermediate results
will become visible to other executions.

5.3.1.4 Durability. The notion of durability has also been extended in the
ConTract model. The execution itself is durable, i.e. the state of the process
and all variables (context) are durable. Furthermore, intermediate results which
become visible during the execution do have the durability property.
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5.3.2 Recovery and Serializability

The correctness criteria in the area of transaction processing systems [Bernstein
et al., 1987] are derived from the properties of transactions:

1. Serializability (SR)
Due to the isolation property, an execution history must be equivalent to
a history which contains only the serial (non-interleaved) execution of
transactions.

2. Strictness (ST)
Due to the atomicity property of transactions, it has to be guaranteed that
either the complete results of a transaction become visible to other trans-
actions (commit case) or all effects are undone (rollback case). Since
cascading aborts must be avoided, simple recoverability (RC) is not suf-
ficient.

Since both criteria have to be guaranteed during the execution of a transaction,
Alonso et al. [Alonso et al., 1994] came up with a unified criterion: the so-
called prefix reducibility (PRED).

In the following, we will define the correctness criterion used in ConTracts.
Similar to the approach in [Alonso et al., 1994] we will develop a unified cri-
terion for both, recoverability and permeability. The difference between trans-
actional correctness and our approach hinges on the special notion of what a
conflict is.

5.3.3 The Conflict Relationship

The core element of almost every correctness criterion is the definition of a
conflict relationship between the basic operations of executions. As described
in [Ramamritham and Chrysanthis, 1996] two classes of conflicts can be dis-
tinguished:

1. Conflicts between operations of the same execution must be handled by
the structural dependencies of the operations (control flow) which are
defined at programming-time.

2. Conflicts between operations of different executions are due to a conflict
relation. The conflict relation can be used by a scheduler to generate only
correct schedules.

A basic assumption of all the criteria is that an execution will be correct if it is
the only execution in the system,; this corresponds to the C of “ACID”. Hence,
execution histories which are equivalent to a serial execution history will be
correct. In essence, this means that almost every correctness criterion is based
on some sort of serializability.
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Since ConTracts are not isolated the way transactions are, conflicts are due to
explicitly defined constraints - the invariants. To get this straight, some helpful
definitions are introduced to give a better understanding of what invariants are
and how they are used.

Definition 5.1 (Path) (a,b) says there exists a direct path from step a to step
b. This means step b must be executed directly after step a. If there is a path
(a,b) and a path (b,c) then we say that there is a path {(a,c)" (transitivity).
And if either (a,b) or {a,b)™, we will use {a,b)*

The concatenation of paths @ is defined as (a,b)* & (b,c)* = (a,c)*.

We will use (b,c)* € (a,d)* to denote the fact that (a,d)* can be written as:
({a,b)" @ (b,c)*) ® (c,d)".

Paths define the structural dependencies of steps, i.e. the flow of control (see
also [Schwenkreis and Reuter, 1996]). By convention, it is allowed to use the
special notation (start,a)* to denote the path from the start of a ConTract to
the step a.

Definition 5.2 (Step execution) The successful execution of a step f trans-
forms a state of data objects s (see [Bernstein et al., 1987]) to another state
s'. We will use f(s) to denote the state s, i.e. the state produced by step f.

Definition 5.3 (Exit invariant) An exit invariant i of a step s is a conjunction
of predicates p;

L =p1AP2A...Apn
We will use py € i, to denote the fact that py is one of the predicates of ;.

If a step is executed it checks whether its exit invariant holds and requests the
system to ensure that it will not be violated (called establishing an invariant).
If the exit invariant is not fulfilled at the end of a step, the step will be rolled
back.

Definition 5.4 (Predicate reference) A predicate reference r(i,p) is a pred-
icate with the following property:
Pr € BA(i, Pk) € pr

Predicate references can be used in a ConTract definition to “point” to a predi-
cate established by a previous step (see section 5.1.2).
Definition 5.5 (Entry invariant) An entry invariant i, of a step s is a conjunc-
tion of predicate references r;:

B=riArpA...Ar3

A
Vi orp=r(ig,p) A
I(a, s)* such that (s,a)* & ((start,a)* ® (a,s)*)
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We will use r € i, to denote the fact that r is one of the predicate references of
.

An entry invariant can be used to define a condition which is needed by a step
as a prerequisite for a successful execution.

Entry invariants can only be defined by using predicate references which
refer to predicates of exit invariants of previous steps, i.e. a constraint needed
by a step so must be established by a previous step s;.

In the following we will use i(s) to denote the result of the evaluation of the
predicate i at a current state s.

Given the definitions of invariants the special conflict relation of ConTracts
can be introduced:

Definition 5.6 (Potential conflict) A step a is in a potential conflict with a step
b denoted by conf(a,b) if there exists a state s with:

i5(s) = ~ix(b(s)) V iz(s) = ~ia(b(s))

A step a is in conflict with another step if its invariants may be violated by the
other step. Note that this notion of conflict is not symmetric.

5.3.4 Execution Histories and Correctness

Loops which are defined in the ConTract instance will be un-rolled at run-time.
Therefore, the system generates so-called step instances from steps to be able
to distinguish multiple executions of the same step.

Definition 5.7 (Step instance) A step instance ¥ is a run-time version of a step
5. 5 has the semantics and effects of s and has the same invariants. The index
i denotes the i-th instantiation of step s. We will use 3™ to denote the most
recent instantiation of a step during the execution of a script (or zero if it is the
first time).

The following rules are used to execute a script and preserve the ordering de-
fined in the script:

Definition 5.8 (Script-conform execution) An execution of a ConTract is script-
conform if the following rules are used to interpret a script:

1. At the start of a ConTract the system generates instances for all steps s;
which do not have a predecessor step (Vs; : ~3(a,s;)).

2. If a step instance 5 has finished its execution, the system looks for all
successor steps a; which can be executed (Va; : 3(s,a;)). A new instance
(am ent+1) s created and executed for each of these steps.

With the execution algorithm of ConTract the history of a ConTract processing
system can be defined.
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Definition 5.9 (Processing history) The history H of a ConTract processing
system is a set S of step instances 5 and a partial order < defined over the set
of step instances H = (8, <). The set of step instances may also contain special
step instances EOC which indicate the end of a ConTract. EOC(3) will be used
to denote the End-of-ConTract step of the ConTract which has executed 5. The
ordering relation (5; < 5;) says that 5; was executed before 5y.

We will use Hc to denote the reduced history of a single ConTract C.

Similar to the approach in [Alonso et al., 1994] the history can be expanded to
include the compensational semantics of ConTracts.

Definition 5.10 (Expanded processing history) Let H = (S, <) be a history.
Its expansion H is a tuple (S, <) where:

1. Sis a set of step instances which is derived from S in the following way:

(a) For each ConTract C; € H, if5; € S then 5; € S.
(b) Forall 5; € SAEOC(5;) € S, a compensating step instance 5;* must
appear in S.

2. The partial order, <, is determined as follows:

(a) For every two step instances, 5; and 5y, if 5; < 5k then 5; < 5.
(b) All non-compensating step instances of a ConTract must precede the
compensating step instances of this ConTract.
(c) For every two compensating step instances, §; ! and S'j_l, ifs; <5Si
=1~ =1
thens; " <;
The expanded history contains all step instances of the original history. Addi-
tionally, for all running ConTracts, the history is expanded by all compensating
step instances of all non-compensating step instances. The order of the com-
pensating step instances is the reverse order of their original steps.

Now that we have introduced the notion of histories, the conflict relation of
definition 5.6 can be refined

Definition 5.11 (Specific conflicts) A step instance a is in a conflict with an-
other step instance b of a different ConTract due to a predicate py of an exit
invariant, denoted by conf,(a,b,py) if:
3px € B with = pr(b(s)) A a<bA
3¢ € Swith Ar; € £ Arj = r(i2,pi) where —rj(b(s)) A ¢ X b
A step instance @ is in conflict with another step instance b of a different
ConTract due to a predicate py, referenced by an entry invariant, denoted by

conf,(a,b,p) if:
Irj=€i&: with-ri(b(s)) ANb=<an
JeeS A ri=r(i&,px) A ¢xb
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Since the invariant mechanism is based on a paradigm similar to a producer /
consumer relationship, a real conflict may only arise if an invariant invalidating
step is executed in between a step which established a part of the (exit) invariant
and a step which needs the established constraint (a part of the entry invariant).

With this more specific definition of conflicts of steps (or step instances) the
binary conflict relation of ConTracts becomes obvious:

Definition 5.12 (Invariant-based ordering) A ConTract Cy is in conflict with
another ConTract Cg due to a predicate p, denoted by C,(Ca,Cp) if there are
two step instances 3,58 of these ConTracts in S where:

conf, (54,58, p) V conf,, (55,5, p)

An expanded history § implicates a partial order of ConTracts based on the
conflict relation of definition 5.11. As in every serializability based criterion
the last step is to define the correctness criterion of a history.

Definition 5.13 (Invariant-based serializability) A history S is correct if its
expanded history S fulfills the following constraints:

1. The history of every single ConTract was generated by a script conform
execution (see definition 5.8).

2.YCe8Vp:=Ci(CiCi)

There are some implications of this correctness criterion which should be men-
tioned.

m It can be shown that the correctness criterion is prefix closed, i.e. if a
history is correct, it implicates that every prefix of the history is correct.
Hence, it can be directly used for a scheduler; even though, it will never
be implemented using the classical scheduling approach.

m  Basically, the criterion differentiates between two classes of invariants
- invariants for compensating steps and invariants for non-compensating
steps.

»  Invariant-based serializability does not force serializability for ConTracts
as a whole. Only parts protected by an exit-/entry-invariant “bracket” do
have the serializability property.

= One of the interesting features of the invariant concept, the selection of
policies (cooperation of ConTracts), is currently not taken into account
and will be covered by future extensions. Since the criterion is mainly
intended to ensure the compensability of ConTracts, these extensions will
only result in minor changes.
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5.4 COMPENSATION IN DETAIL

Compensating activities as introduced in section 5.3.1.1 are a very common
approach to realize undo behavior for long-running executions [Elmagarmid,
1992, Garcia-Molina and Salem, 1987]. Although the mechanism is used in
almost every advanced transaction model, it is introduced in a very informal
way.

5.4.1 A Basic Definition of Compensation

The idea of compensation in the area of transactions came up when it was re-
alized that atomicity/rollback is not applicable in case of long-running execu-
tions [Gray, 1981]. The first attempt to formalize compensation was presented
in [Korth et al., 1990b] which tried to unify rollback and compensation. The
resulting notion of compensation was very restrictive in terms of what compen-
sating (trans-)actions have to guarantee: Compensating activities as defined in
[Korth et al., 1990b] have to generate a state of the accessed data objects which
is identical to the state at the point in time the original activity started, i.e.
objects in the database(s) must have the same value.

Observations of the real world have shown that compensating actions usu-
ally do not reestablish a previous state (of data). In particular, they do not
reestablish the state at the start of the original activity. Hence, compensation is
a very flexible means and almost similar to the forward running case. However,
a simple property of compensation motivates the need to distinguish compen-
sating activities from usual ones:

Compensation must not (finally) fail
To be more specific, if a compensation is needed, there is no way to execute
an alternative like another compensation. Hence, if a run-time system can-
not execute a compensating activity, the only thing it can do is to inform the
administrator.

Definition 5.14 (Acceptance function) There exists a function gs (acceptance
function) for every step f which maps a state s to a boolean value:

g s = TRUE,FALSE

The acceptance function checks whether the state s satisfies the constraints of
f in order to be executed successfully.

With the introduced definitions of paths and of acceptance functions the se-
mantics of compensation can be defined.

Definition 5.15 (Compensation) f, is a compensation step of step f if:

gr(s) = TRUE = gs(f.of(s)) = TRUE A
(f.fo)* Ng(f(s)) = TRUE
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In the general case comp(a,b) is used to indicate that step a is a compensation
of step b.

The acceptance function of f, returns true if applied to the state after the exe-
cution of f(s) (denoted by f, of(s) in the above definition). The compensating
function f, generates a state which fulfills the requirements of the acceptance
function of f.

Problem:

The execution of the compensating step f. after the execution of the original
step f can be intervened by other steps a’ . Hence, precautions must be taken to
guarantee that the acceptance function of f; is not violated such that £, cannot
be executed in the future.

A criterion which does not make any assumptions about the usage of steps
inside of a ConTract is very restrictive. It does not allow the violation of the
acceptance function of the compensating steps during the execution of a Con-
Tract. This is taken into account by definition 5.16.

Definition 5.16 (Indirect compensability) A step f executed by a ConTract is
indirectly compensable (denoted C(f,a)) with regard to another step of the
same ConTract a € CSteps(f) if:

comp(a,f)
\

(f,a) A (ac,f:) N(gs.(s) = TRUE = gr(acoa(s)) = TRUE)

Ci(f,d) ACi(d',d) = C}(f,d) (transitivity)
Gi(f,d) vV Cf (f,d) = Ci(f,da)

The violation of the acceptance function of a compensating step f, can be al-
lowed, if the step a, which causes the violation, belongs to the same Con-
Tract. It must be executed after the original step f, and it must be guaranteed
that its compensation a, is executed before f. to reestablish a state which sat-
isfies the acceptance function of f;. One implication of this property is that
gr.(ac(s)) = TRUE. The criterion holds also for a compensation step, if its
original step satisfies the criterion.

Definition 5.17 (Indirect compensation chain) The ordered set of all a* with
C}(f,d*) is called indirect compensation chain of f (I.(f)):

L) ={& | C}(f,d")} and di < & if C}(, )

The reduced chain I.(f) containing only non-compensating steps can be di-
rectly derived:

L(f) = 1.() \ {d" | comp(a*,d),j <k, & € I:(f)}



CONTRACTS REVISITED 143

The indirect compensation chain consists of all steps for which the indirect
compensation relation holds. The reduced chain omits all compensation steps
contained in I.(f)

Definition 5.18 (Absolute compensability) A step f executed by a ConTract
is absolutely compensable with regard to an arbitrary step a (denoted Cy(f,a))

lf:.

—|C1(f,a) A
gr.(s) = TRUE = g (a(s)) = TRUE A
VP € IL(f) : Ca(b,a)

Ca(f,d) ACa(d,d) = CL(f,&) (transitivity)

A step f is absolute compensable with regard to another step a, if it is ensured
that the acceptance function of the compensation function f; is not violated
by the execution of a. Additionally, step @ must not violate the acceptance
functions of the compensation steps belonging to the steps in the reduced in-
direction chain in order to preserve the possibility to reestablish a proper state
for f,.

Based on our notion of compensability (definition 5.15) we can prove that
the introduced criteria are sufficient to guarantee the compensability of Con-
Tracts.

Given an arbitrary point in time after the execution of a step f of a ConTract,
we will find a state s produced by the execution of an ordered set of steps
denoted by (a"o...oal of(s)). In the following we will use A = {a',...,a"}
to denote the set of steps executed after f.

Theorem 1 (Execution dependent compensability) Ifall steps which have been
executed successfully after f either preserve absolute compensability or indi-
rect compensability, it is guaranteed that the compensating step f. is executable
when it has to be executed.

Proof:
We will prove the theorem above by an induction over the set A.

1. Basic assumption:
If A is empty the current state is f(s), then gy (f(s)) = TRUE (def. 5.15),
i.e. the compensating step of f can be executed if directly applied to f(s).

2. Conclusion:
If A has n elements n € Ng and gg. (a"o...o0a of(s)) = TRUE we have to
prove that g (a"*10a"o...0al of(s)) is true, when f; has to be executed.
If g.(a"o...0a! of(s)) = FALSE it must be ensured that g, will become
TRUE when f, has to be executed.
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(@) @™t fulfills C4(f,a"*!) and g (a"o...0a' of(s)) = TRUE:

Since gr.(a"o...0al of(s)) = TRUE and Ca(f,a"t), it is ensured
that g, (@ oa"o...0a! of (s)) = TRUE (see definition 5.18). Hence
f can be executed successfully. O

(b) @™ fulfills Ca(f,a"*!) and g, (a" o...0al of(s)) = FALSE:

There must be steps a* in A which satisfy Cjf (f,a*). The executabil-
ity of f, is guaranteed by guaranteeing the executability of the steps
belonging to I”(f). Since a"*! preserves the executability (def. 5.18)
of all the compensation steps in I’.(f), the acceptance g. will become
TRUE when f; has to be executed. O

a"*! fulfills C; (f,a"*!) Agr(a"o...0a' of(s)) = FALSE:

In this case, there must be a step b with C(b,a"+*) Ab € I%(f) for
which g, = TRUE (see def. 5.16). Since C;(b,a"**) guarantees that
gb, Will become TRUE after the execution of a"*!, and a"*! must
be executed before b, the executability of f, is guaranteed when it
can be executed (sometimes after the execution of b.). O

a"t! fulfills C} (f,a"**) Ags(a"o...0at of(s)) = TRUE:
This is the case where a step probably violates the acceptance func-
tion f,. Two sub-cases can be distinguished:

= There exists a step b € A,b # f with Cy(b,a") A C}(f,b).
This case can be treated similar to the previously dicussed case.
O

s Cf,a"th):
Since the precedence relation of definition 5.16 guarantees that
a’t1 will be executed before f. and reestablishs a state where
gr. = TRUE, the executability of f. is guaranteed when needed.O

5.4.2 Script-based Compensation

Compensating a step can be a complex task with several branches in the con-
trol flow. Moreover, compensating activities can contain real actions and re-
quire interactions. In some cases several machines and people are involved
in the execution of the compensation. This requires to allow (sub-)scripts as
compensations rather than simple steps only.

Script-based compensation has the following additional advantages com-
pared to a simple step-based compensation.

Script-based compensation allows the use of forward recovery in case of
failures during the execution of the compensations.

In case of the final failure of compensation the usage of a script-based
compensation leaves more parts in an consistent state and requires less
manual intervention.



CONTRACTS REVISITED 145

®  The parts of a compensating script which were finished successfully, be-
come durable. Hence, results of the compensation become available as
early as possible.

Introducing script-based compensation leads to a slightly extended program-
ming model. The implementation of a script-based compensation can contain
- as the name suggests - script level code. Still, the activity compensated by a
script is a single step and basically this step code has to be understood. In a
workflow environment, on the other side, there are many constraints to be met
by a compensation, for example constraints derived from informational, behav-
ioral, administrational, technical or organizational aspects [Curtis et al., 1992].
One example is the selection of different counter-actions, that are needed for
the cancelation of a flight reservation, depending on the point in time and state
of the execution. This behavioral aspect is best expressed on script level.

Script-based compensations are expressed as a set of steps with a defined
control flow resembling a block.

Definition 5.19 (Block) Let A be a set of steps and ()* the binary path relation
from definition 5.1. A tuple B = (A,()*) is a Block if:

(Ja€A:((VceA\{a}: {(a,c)*)AN(VcE€A:~{c,a))))
(We will use sp to denote the step of the block B with this property) A
(3beA: ((Vce A\{b}: (c,b)*)AN(Vc€A:~ (b,c))))
(We will use ep to denote the step of the block B with this property) A
(Va€ A\{sp,e}: (— IbZA: (a,b)V (b,a))) A
(VagA:(~(aep) V ~ (sg,a))) V (58 =ep))

We are referring to all steps of a block B with the notation BSteps.

As mentioned above, the control flow in a ConTract is defined by paths.
For the moment, we make no further assumptions about the events, transitions,
context or final states that are defined in a process except the existence of paths.
In the following we take as a basis the flow of control in the case of no failures.

The structure of a block has to fulfill some requirements. Exactly one step
starts the block and a path exists from this step to any other step in the block.
There is exactly one step at the end of the block, and a path exists from any
other step in the block to this step. Only the first step and the last step are
allowed to have direct predecessors or direct successors outside of the block,
respectively. If the block contains only a single step, the first step is the last
step.

Definition 5.20 (Acceptance function of a block) The acceptance function of
the start step of a block B is also the acceptance function of B. We will use gp
to denote the acceptance function of a block B.
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Definition 5.21 (Script-based compensation) A block B= (A, ()*) is a script-
based compensation of step f if:

(f, SB)* A
g5(f(s)) = TRUE A
Va,b € A with (a,b) : g,(s;) = TRUE = gp(a(s;)) = TRUE A
gr(s) = gr(Bof(s))

We will use comp(B, a) to indicate that block B is a compensation of step a.

Assuming the compensation definition contains only a single step it is equiv-
alent to the standard step-based compensation. It has to be mentioned that a
compensation definition is not allowed to contain compensating steps for the
included activities.

A script-based compensation does not change the correctness criterion of the
execution of a ConTract (def. 5.13). It has to be ensured that the compensation
of every successfully finished step is executable. The state after the execu-
tion of a step in the ConTract has to fulfill the requirements of the acceptance
function of the start step of its compensation. The state after the execution of
a step within the compensating block has to fulfill the acceptance function of
its direct successors. It may be useful to allow only certain structures for the
compensating block (e.g., only sequences of steps).

5.4.3 Comprehensive Compensation

So far the compensating activities relate only to single steps. But there are
situations, especially in workflows, where it is suitable to compensate a se-
quence or a group of steps with a single compensating activity. We call this
comprehensive compensation. For example, if there are some activities, which
together create and work on a complex document, it is most efficient to com-
pensate them all together by destroying the whole document. It is possible for
a comprehensive compensating activity to invalidate the associated compensat-
ing activities of previous steps.

Furthermore observations of the real world have shown that the point in
time a compensation is initiated is very important. And not only the actual
time for compensation is important, but although the state of the execution
of the ConTract. Franking a letter can be compensated separately as long as
the letter is not dispatched. After that, the charges for the stamps are lost.
This means compensating activities associated to previous activities will not
be needed anymore. Depending on the actual state of the execution a dynamic
selection of the valid compensating activities is required.

These examples motivate the compensation of groups of steps as a whole
and the dynamic determination of compensating activities. Of course, it is not
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practical to allow compensating activities for any arbitrary group of steps. Only
blocks can be compensated by the corresponding compensating blocks.

Definition 5.22 (Comprehensive compensation) A block B, = (Ap,,()*) is a
comprehensive compensation of block B = (Ag,()*) if:

(eBasBc)* A
gs.(B(s)) = TRUE A
Va,b € Ag, with (a,b) : g4(s;) = TRUE = gp(a(s;)) = TRUE A
ga(s) = ga(BcoB(s))

We will use comp(A, B) to indicate that block A is a compensation of block B.

Definition 5.23 (Compensable block) A block in a ConTract which has an as-
sociated compensating block is a compensable block. We will use CBlocks to
denote the set of compensable blocks of ConTract C.

The correctness criterion (def. 5.13) ensures that each set of successfully
completed steps can be compensated. We have to adapt the correctness criteria
for compensation [Waechter and Reuter, 1992] to the enhanced definition of
compensation. So far it was only necessary for each step in the script to have
exactly one valid compensating step. Now the requirement of a deterministic
and unambiguous compensation for each partial execution of the ConTract is
more difficult to fulfill. For every set of successfully completed steps we need
an unambiguous disjunctive partitioning into compensable blocks. If that is
guaranteed, the correctness criteria for the execution of a ConTract (def. 5.13)
can still be fulfilled. It is sufficient to ensure the existence of the compensations
for the definition of a script. The actual compensation depends on the set and
order of successfully executed step instances and must be determinable at run-
time.

Definition 5.24 (Compensable ConTract) A ConTract C is compensable if:

VB, € CBlocks : (VBQ € CBlOCkS\{Bl} tep # eBz) A
Va € CSteps : (3B € CBlocks : a = ep)

Every single step of the ConTract is the end step for exactly one single com-
pensable block. This can be tested for the definition of a script.

Definition 5.25 (Block instance) A block instance B is a run-time version of
Block B. B' denotes the i-th instantiation of block B. B contains the instantia-
tion of every step in block B generated for the i-th successful execution of block
B. Not necessarily an instance for every step in B shows up in B!, because
some steps might not have been executed. Instances for the start step and the
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end step of B are always included in B'. CBlocks denotes all block instances of
ConTract C in the history.

It has to be mentioned that a single step instance can belong to more then one
block instance.

Definition 5.26 (Partitioning) P is a partitioning of the set of step instances
of a ConTract C into block instances if:

PC CBlocks A
VB1,Bs € Pwith B, # By : (Bl NBy = {}) A
Vi€ Hc: (3B €P: 5 € B)

A unique partitioning into compensable block instances is always possible for
a compensable ConTract. This partitioning can be efficiently computed using
the order of block instances in the history. Reversing this ordering the compen-
sation can be derived directly from the partitioning.

Definition 5.27 (Partial order of block instances) Let H = (S, <) be a his-
tory of a ConTract processing system. Let B be a set of block instances. A
H - R - - H -

binary relation < is defined on B with (V¥ B1,Bs € B: (B, < By :& éfh <
éBg))'

We will briefly describe how to determine the unique partitioning. The step
instances are sorted by their completion time in the history, which in turn is
determined by the flow of control. We take as the basis the reduced history of
the ConTract. A compensable block instance of the ConTract becomes valid
with the successful completion of its last step.

The following actions will be repeated until H¢ is empty and all valid com-
pensable block instances are determined.

1. We select the last completed step instance from the reduced history; that
is, a step without successor in the history. If there are several such steps,
we take one of them randomly. This step instance determines an instance
of a valid compensable block.

2. All step instances associated to this block instance are removed.

It can be easily shown, that the computed partitioning is the only possible par-
titioning with Hc and CBlocks.

After the valid compensable block instances are determined, their associ-
ated compensation can be executed according to the inverse order of block
instances.

The definitions of indirect compensability (def. 5.16), of absolute com-
pensability (def. 5.18), and of the indirect compensation chain (def. 5.17)
are adapted accordingly. The theorem of execution dependent compensation
(theorem 1) can be applied to the modified definitions.
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5.4.4 Partial Compensation

The analysis of processes in workflow environments has shown that sometimes
it is necessary or suitable to go back to an earlier state of the execution and to
proceed with the process in a different way than before. For example, it is a
good idea to periodically confer with the customer during the planning phase
of a power plant. If the customer disagrees with the actual plans, all effects
which where introduced since the last agreement have to be compensated.

Supporting partial compensation of a ConTract will change the execution
model. Partial compensation can lead to a lot of complications. It is more
difficult to ensure the correctness of the execution of a ConTract. Therefore
partial compensation has to be applied with great care.

If we decide to reject only a part of a ConTract, we have to pay attention to
the relationships between the blocks to be compensated.

Definition 5.28 (Compensation dependency) A compensation dependency be-
tween a compensable block A and a compensable block B exists if:

A and B finished successfully =

it is allowed to compensate only both or none of them.

The compensation dependency relation is transitive. We will use A< B to
denote that a compensation dependency between block A and block B exists.

On account of the application, dependencies between the compensable blocks
may exist, such that the compensation of one block leads to the necessity of
compensating the other. Hence, certain groups of compensable blocks always
have to be compensated as a whole. These dependencies are modeled by the
programmer. Additionally, all steps which are grouped into the same tran-
saction are compensation dependent of each other. Moreover, only a part of a
ConTract with a certain structure is allowed to be compensated separately to
preserve correctness. We call a set of steps with this property a compensable
section. Compensable sections are the subsets of the total set of steps of the
ConTract, which we allow to be compensated separately.

Definition 5.29 (Partial ordering of blocks) Let B be a set of blocks. A prece-
dence relation < is defined over BwithVA1,A2 € B: (A] < A2:& ((ea,,ea,)*)-

Definition 5.30 (Compensable section) A set of steps CS is a compensable
section of ConTract C if:
CS C CSteps A
Va € CS: ((IB € CBlocks : a = eg) = BSteps C CS) A
Vae€ CS: ((3B € CBlocks : a = ep) =
(VBiSteps C C: (B< B; = B;Steps C A))) A
VB € CBlocks : ((3B;Steps C CS : B; < B) = BSteps C CS)
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The structure of a compensable section has to fulfill the following require-
ments. Either all steps of a compensable block are included in the compensable
section or none at all. Inclusion of a compensable block leads to the inclusion
of all compensation dependent blocks. A compensable section has to contain
all successors of its included compensable blocks.

Due to limited space, we omit the definition for the compensable section
for block instances. However, this definition can be derived straight forward
from definition 5.30. To determine a compensable section at runtime the actual
disjunctive partition of a history H¢ is taken as the basis. Either all steps of
a valid compensable block instance are included or none at all. Inclusion of
a valid compensable block instance leads to the inclusion of all compensation
dependent block instances as well as all of its successors in the current partition.

It is obvious that partial compensation does not compromise the correctness
notion of ConTracts. Hence, a formal proof is not presented in this article.

5.5 SUMMARY

The ConTract model is not intended to be just another “extended transaction
model”. Instead, it has been developed (and maintained) to define a reliable
basis for long-running executions like workflows. In the last five years we have
spent a lot of effort to permanently evaluate our approach based on observations
of the “real world”. In result, many features have been made more concrete and
others have been extended. For instance, the support of semi-transactional steps
is one of the recent extensions while the internal usage of transactions has been
revised several times already.

The presented correctness criterion introduces a formal basis to verify ex-
ecution histories and to build up correctness ensuring mechanisms. We are
strongly convinced that in mission-critical processes correctness will become
more and more important. Hence, workflow systems have to commit guaran-
tees regarding their behavior in case of failures and concurrency.

There is also a need to elaborate on compensation. The presented extensions
are a first step to leverage the concept of compensation such that it can be
used as a general-purpose mechanism as in real applications. In particular, the
support of semi-transactional steps can be enhanced by a flexible compensation
and advanced semantics of applications can be supported (e.g. durable parts).

In parallel to the evolution of the model itself the prototype implementation
(APRICOTS) is continued to illustrate two things: We do build real systems to
prove our concepts, and we still have a long way to go to prove the consistency-
related concepts.

Notes

1. For ease of reference, this run-time environment will be referred to as the “ConTract
manager”’.
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2. Of course, something must happen in such a situation to keep the computation going. For
details of this mechanism called “conflict resolution” see [Waechter and Reuter, 1992].

3. In the following we will use the word ConTract to denote an executable instance of a
ConTract definition (a script or ConTract template).
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DECOMPOSITION OF TRANSACTIONS
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and Indrakshi Ray

Abstract: Sometimes transactions must be decomposed into steps. The need
for decomposition arises in a variety of different domains. For example, long
duration transactions may be decomposed to improve performance, global trans-
actions in multidatabases may be decomposed to preserve local database auton-
omy, and multilevel secure transactions may be decomposed to avoid leaking
sensitive information. To achieve these various objectives, a decomposition sac-
rifices those desirable properties, namely atomicity, consistency, and isolation,
that form the foundation of syntactically based correctness approaches such as
conflict serializability. We remedy this loss by defining a semantic view of cor-
rectness organized around a new set of desirable properties that are specifically
designed for reasoning about decompositions. The exact details of the semantic
correctness properties depend on the domain being addressed; in this chapter, we
focus on the long duration transaction domain. Using our method an application
developer can show that a given decomposition indeed refines the original trans-
actions in a satisfactory way. The semantic correctness properties are formulated
in terms of semantic histories. For efficiency reasons, allowable interleavings of
steps are described with syntactically specified successor sets. We discuss a two-
phase locking based mechanism for realizing successor sets in a typical database
system.

6.1 INTRODUCTION

Decomposing transactions into steps is a common method of achieving diverse
goals in a variety of domains. To illustrate this point, we describe the decom-
position of transactions in three domains, namely long-duration transactions,
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multidatabases, and multilevel secure databases. In each case, the decompo-
sition undermines one or more of the foundation properties of syntactically-
based correctness approaches. The properties are atomicity, consistency, and
isolation, and they are used in correctness approaches such as conflict serial-
izability. In this chapter we remedy the loss of these properties by developing
a semantic approach to correctness, which we illustrate in the long duration
transaction domain. We identify a set of replacement properties that are specif-
ically designed to reason about decompositions and show how these properties
can be established for a given application.

In database applications where some transactions are of long duration, per-
formance requirements may dictate that execution histories be accepted even
though operations of transactions interleave in ways that are not correct with
respect to serializability criteria. For example, locks may be released early, or
transactions may be split explicitly into steps. Consider the simple example
of making a hotel reservation. A reserve transaction might consist of ensur-
ing that there are still rooms vacant, selecting a vacant room that matches the
customer’s preferences, and recording billing information. Since the reserve
transaction might last a relatively long time — for example, when the customer
makes reservations by phone — it may be desirable to execute the three steps of
the reserve transaction separately, thereby allowing other transactions access
to key database objects. Some steps may be undesirable at sensitive points in
a given execution history. For example, a report transaction may be undesir-
able if interleaved between certain steps in one or more reserve transactions.
As will be subsequently illustrated in this chapter, our semantic approach can
determine if a decomposition into steps is correct with respect to the original
collection of transactions.

A multidatabase is an integrated collection of heterogeneous databases [Bu-
khres and Elmagarmid, 1996]. The constituent or local databases require both
design autonomy to accommodate their diverse legacy nature and execution
autonomy to ensure that local transactions are not unduly blocked by global
transactions. Control of global transactions, which are decomposed into steps
that execute at the local database, must be distributed to avoid bottlenecks and
tolerate failure in the global database. Integrity constraints must be maintained,
not only on each local database, but also on the global database. These goals
cannot be achieved simultaneously with syntactic correctness criteria such as
serializability, but a semantic based approach can determine if a given applica-
tion does indeed have the desired properties.

In multilevel secure databases there is a need for multilevel transactions —
transactions that both read and write at a range of security levels. A major out-
standing problem with standard methods of handling multilevel transactions is
the treatment of atomicity. Specifically, for a multilevel transaction decom-
posed into single-level sections there is no assurance that either all or none of
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the sections will be present in a given execution history. The chief difficulty is
that a high section of a transaction may be unable to complete due to violations
of the integrity constraints, and a rollback of sections at lower or incomparable
levels can be exploited to implement a covert channel. For details of how a
semantic approach to correctness can overcome this problem, see [Ammann
et al., 1996].

The traditional transaction model relies on the properties of atomicity, con-
sistency, and isolation [Bernstein et al., 1987]. Atomicity ensures that either
all actions of a transaction complete successfully or all of the transaction’s
effects are absent. Consistency ensures that a transaction when executed by it-
self, without interference from other transactions, maps the database from one
consistent state to another. Isolation ensures that no transaction ever views the
partial effects of some other transaction even when transactions execute concur-
rently. Decomposing transactions into steps generally forces one to relinquish
these three properties to some degree.

Decomposition of a transaction into steps sacrifices atomicity since the atom-
icity of the single logical action is lost. Interleaving steps of transactions ex-
poses each to the partial effects of the others. Hence, if a transaction aborts after
committing some of its steps, it may not be possible to remove all of its effects.
This difficulty arises because transactions that read from the aborted transaction
may have committed. In addition, the aborted transaction may have generated
outputs. Thus traditional undo [Bernstein et al., 1987] is not possible; the solu-
tion is to semantically undo the actions of the aborted transactions. We achieve
semantic undo with compensating steps [Garcia-Molina, 1983, Garcia-Molina
and Salem, 1987].

Decomposition not only sacrifices atomicity, but also impacts consistency
and isolation. Execution of a step may leave the database in an inconsistent
state, which other transactions or steps may access, so it is necessary to reason
about the interleavings of the steps of different transactions. Although the step-
by-step decomposition of a single transaction into steps may be understood
easily in isolation, reasoning about the interleaving of these steps with other
transactions, possibly also decomposed into steps, is more difficult.

To remedy the loss of atomicity, consistency, and isolation, we develop prop-
erties suitable for reasoning about decompositions. These properties are enu-
merated in section 6.5. The properties are formulated in terms of semantic
histories, which not only list the sequence of steps forming the history, but also
convey information regarding the state of the database before and after execu-
tion of each step in the history. All possible semantic histories must satisfy
the given properties for a particular decomposition to be considered accept-
able, both when considered by itself, and also with respect to the original set of
transactions.
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We adopt the Object Z specification language [Duke and Duke, 1990] for
expressing model-based specifications. Object Z is an extension of the Z spec-
ification language [Spivey, 1992] to include object oriented features. Object Z
is based on set theory, first order predicate logic, and a schema calculus to or-
ganize large specifications. Knowledge of Object Z is helpful, but not required,
for reading this chapter, since we narrate the formal specifications in English.
Table 6.1 briefly explains the Object Z notation used in our examples. Other
specification and analysis conventions specific to Object Z are explained as the
need arises.

The rest of the chapter is organized as follows. Section 6.2 briefly describes
the work related to semantic based transaction processing. Section 6.3 specifies
an example application in Object Z. Section 6.4 describes our model. Section
6.5 describes the necessary and desirable properties of a correct decomposi-
tion. Section 6.6 gives examples of decompositions. Section 6.7 describes the
notion of successor sets which is necessary for efficiently implementing our
model. In section 6.8 we develop our correctness criterion for concurrent ex-
ecution of transactions and present a concurrency control mechanism. Section
6.9 concludes the chapter.

6.2 RELATED WORK

The work on semantic based concurrency control can be classified into two
major categories. In the first category [Herlihy, 1987, Herlihy and Weihl, 1991,
Weihl, 1984, Weihl, 1988b] the authors exploit the semantics of operations to
increase concurrency. Instead of using low level database operations like read
or write to access the database objects, the authors propose the use of high
level operations for this purpose. Commutativity of these operations, and not
the read/write operations, is used to determine conflicts between transactions,
resulting in more concurrency. In these works, the authors use serializability as
the correctness criterion.

Our work falls in the second category [Agrawal et al., 1993, Farrag and
Ozsu, 1989, Garcia-Molina, 1983, Garcia-Molina and Salem, 1987] which is
based on exploiting semantics of transactions to increase concurrency. In these
works, the researchers decomposed transactions into steps and developed se-
mantic based correctness criteria. Researchers have variously introduced the
notions of transaction steps, countersteps, allowed vs. prohibited interleavings
of steps, and implementations in locking environments. The focus is typically
on implementing a decomposition supplied by the database application devel-
oper, with relatively little attention to what constitutes a desirable decomposi-
tion and how the developer should obtain such a decomposition. We find the
decomposition process itself to be worthy of attention, so we give the devel-
oper a model in which to decompose transactions, and we define properties to
assure the developer as to the soundness of a given decomposition. Only then
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Table 6.1 Relevant Object Z Notation

N Set of Natural Numbers

PA Powerset of Set A

#A Cardinality of Set A

\ Set Difference (Also schema ‘hiding’)
AgB Forward Composition of A with B
x+—y | Ordered Pair (x, y)

A - B | Partial Function from A to B

A »» B | Partial Injective Function from A to B
B<4gA | Relation A with Set B Removed from Domain
AD> B | Relation A with Range Restricted to Set B
domA | Domain of Relation A

ranA Range of Relation A

A®B | Function A Overridden with Function B
x? Variable x? is an Input

x! Variable x! is an Output

x State Variable x before an Operation

X State Variable x’ after an Operation

Ax Before and After State of Variable x

O Temporal Operator Always

O Temporal Operator Eventually

O Temporal Operator Next

op Operation

do we consider the problem of implementing our decomposition in a two-phase
locking environment.

6.3 THE HOTEL DATABASE

We present our ideas with a running example of a hotel database. We use the
class definition of Object Z to specify the hotel database. Syntactically, a class
definition is a named box, in which the constituents of the class are defined
and related. The constituents of a class include type and constant definitions,
state schema, initialization schema, operation schemas, and history invariants.
A schema is a two-dimensional notation used in Object Z to specify the state as
well as operations on the state. The state schema is nameless and consists of
two parts: the top part contains declarations of the state variables, and the bot-
tom part specifies the constraints on these variables. The initialization schema,
named INIT, defines the possible initial states. An operation schema, which is
named after the operation, also consists of two parts: the bottom part specifies
the operation using preconditions and postconditions and the top part contains
declarations of the variables used in the bottom part. A history invariant is a
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predicate defined over a sequence of operations which further constrains the

behavior of the objects.

An Object Z specification appears in figure 6.1. The specification assumes
two basic types, Guest and Room, which enumerate all possible guests and all
possible hotel rooms, respectively. The enumerated type Status lists the two
values, Available and Taken, which indicates the status of each room.

[Guest, Room]
Status ::= Available | Taken

—Hotel.
total : N
res: N

ST : Room + Status

RM : Guest »» Room

#RM = res
dom(ST > {Taken}) = ranRM

—Reserve

Alres,ST,RM); g? : Guest; r! : Room

res < total; g? € domRM
ST(r!) = Available

res’ =res+1

ST’ = ST & {r! — Taken}
RM’ =RMU{g? — r'}

—Cancel.
A(res,RM,ST)
87 : Guest

g7 € domRM

res’ =res—1

RM' = {g?} 9«RM

ST’ = ST ® {RM(g?) — Available}

—Report.

currentST! : Room > Status

currentRM" : Guest = Room

currentST! = ST
currentRM! = RM

Figure 6.1 Initial Specification of the Hotel Database

The class Hotel models the hotel database. The database objects may be
constants or variables. The hotel database has a constant fotal which is the
number of rooms in the hotel. The hotel database has three variables, namely,
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res, RM and ST which are declared in the state schema. The natural number
res counts current reservations, and the partial injection RM relates guests to
rooms. Our particular example does not allow guests to register multiple times,
which is reflected in the fact that RM is an injective function. The example
could be modified easily with different constraints. The partial function ST
records the status of each room. Additional integrity constraints on the objects
in hotel database appear in the bottom part of the state schema. There are two
such constraints:

1. #RM = res. The number of guests who have been assigned rooms (the
size of the RM function) equals the total number of reservations (res).

2. dom(ST > {Taken}) = ran RM. The set of rooms that are taken (dom (ST >
{Taken})) is exactly the set of rooms reserved by guests (ran RM).

The three operation schemas Reserve, Cancel and Report describe the three
transactions in the hotel database. Reserve reserves a room for guest g7 and
produces as output a room assignment r!. Reserve has a precondition that there
must be fewer than rotal reserved rooms and g7 must be a new guest. Since
the domain of RM is the set of guests with reservations, the latter is captured
by checking that g7 € dom RM. Reserve has a postcondition that some room
r! with status Available is chosen, the number of reservations is incremented,
the status of r! is changed to Taken, and the ordered pair g? — r! is added
to the function RM. Cancel cancels a reservation for guest g7. Cancel has a
precondition that g7 is a guest and a postcondition that res is decremented, g7
is removed from the domain of the function RM, and the status of the room for
g7 is changed to Available. Report has no precondition, and merely produces
the state components ST and RM as outputs.

Since the role of initialization is peripheral to our analysis, we omit initial-
ization schemas here. Instead, we assume that the database has been initialized
to a consistent state. As no history invariants are needed to restrict the execu-
tion of operations, we do not specify any history invariant.

6.4 THE MODEL

In our model, a database is specified as a collection of objects, along with
some invariants or integrity constraints on these objects. At any given time,
the state is determined by the values of the objects in the database. A change in
the value of a database object changes the state. The invariants are predicates
defined over the objects. A database state is said to be consistent if the values
of the objects satisfy the given invariants.

A transaction is an operation that transforms one database state to another.
Associated with each transaction is a set of preconditions and a set of post-
conditions. A precondition limits the database states to which a transaction
can be applied. A postcondition constrains the possible database states after a
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transaction completes. For example, a Reserve transaction has a precondition
that the hotel have at least one room available and a postcondition that there
be some room available before the reservation that is taken after the reserva-
tion. Postconditions also constrain outputs. For example, the room r! output by
Reserve must be available initially. Together, preconditions and postconditions
must ensure that if a transaction executes on a consistent state, the resulting
state is also consistent.

Instead of executing a transaction as an atomic unit, we wish to break a
transaction into steps and execute each of these steps as an atomic unit. A de-
composition of a transaction is a sequence of steps. In place of the transaction,
the steps execute atomically in order. A transaction that has been decomposed
into two or more steps is referred to as a multistep transaction.

One possible approach to decomposition is to treat the steps as transac-
tions. In particular, one could insist that the integrity constraints hold after each
step, which is the decision taken in the Saga model [Garcia-Molina and Salem,
1987]. As the naive decomposition below demonstrates, such a requirement is
too strong for some applications, and so we develop a more flexible approach.

6.4.1 A Naive Decomposition of the Reserve Transaction

Suppose we break up the Reserve transaction into the following three atomic
steps.

Step 1: Increment the number of reserved rooms.
Step 2: Pick a room with status Available and change it to Taken.

Step 3: Assign the room selected in Step 2 to the guest.

NaiveR1______ _NaiveR2_____ NaiveR3________
A(res) A(ST) A(RM)

r!: Room r!: Room
res < total ?.G

) g? : Guest

res’ =res+1 ST(r!) = Available

ST = ST® g? € domRM

{r!' — Taken} RM' = RMU{g? — r!}

Figure 6.2 A Naive Decomposition of Reserve

A naive specification of these steps is given in figure 6.2. From a formal per-
spective, the naive decomposition has a fatal flaw, in that none of the proposed
steps, considered by itself, maintains the invariants in Hotel. For example,
NaiveR1 does not maintain the invariant #RM = res since NaiveR1 increments
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the value of res, but does not alter RM. Formally, the computed preconditions
of all three steps simplify to false, indicating that none of the steps can be safely
executed in an implementation. Executing any of the proposed steps violates
the invariants, and other transactions are exposed to the inconsistent state. For
example, Report produces an inconsistent output if executed in a state in which
the second invariant does not hold.

6.4.2 Generalizing the Original Invariants

The example demonstrates that some decompositions are unacceptable. Specif-
ically, a decomposition may yield steps that leave the database in a state in
which the invariants do not hold. The arrow labeled NaiveR1 in figure 6.3(a)
illustrates this possibility. Once the invariants are violated, the formal basis for
assessing the correctness of subsequent behavior collapses.

Insisting on decompositions where each step maintains database consistency
does solve this problem. However, the informal description of the steps into
which Reserve is broken is perfectly satisfactory, and it is excessive to insist
that the invariants of Hotel hold at all intermediate steps. Later in figure 6.4
we show the correct formal specification of the three steps of the Reserve tran-
saction which we denote by R1, R2 and R3; CancelD and ReportD denote the
single steps of Cancel and Reserve transaction respectively. But before show-
ing the specifications we present a formal model that can accommodate the
notion that some — but not all — violations of the invariants are acceptable.

Figure 6.3(b) illustrates a model that allows inconsistent states — as defined
by the invariants — that are nonetheless acceptable. The temporary inconsis-
tency introduced by R1 is allowed, and steps of some other transactions, for
example CancelD, can tolerate the inconsistency introduced by R1, and so are
allowed to proceed. The chosen approach is to generalize the original set of in-
variants and decompose transactions such that each step satisfies the new set of
invariants. The model in figure 6.3(b) has many advantages, including greater
concurrency among steps. We formalize the model as follows.

Let I denote the original invariants, and let ST denote the set consisting of
all consistent states; that is, ST = {ST : ST satisfies /}. In the standard model,
a transaction T; always accesses a consistent ST € ST. If ST; denotes the state
after the execution of T;, then ST; is also in ST. When T; is broken up into
steps Si1,...,Sin, €ach step Sj; executes atomically. If ST;; represents the state
resulting from the partial execution of T; through step Sy, it is possible that
ST;; no longer satisfies the invariants / and so lies outside ST. Figure 6.3(a)
illustrates this possibility for the naive decomposition of the hotel example.

In our approach, we define a new set of invariants 1 by relaxing the original
invariants /. We decompose each transaction such that execution of any step
results in a state that satisfies 1. Let ST = {ST: ST satisfies T}. The relationship
between ST and ST is shown in figure 6.3(b). The inner circle denotes ST
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and the outer circle denotes ST (signifying that ST C §’i‘). The ring denotes
the set of all states that satisfy / but not /. The important part about figure
6.3(b) is that the set of inconsistent but acceptable states is formally identified
and distinguished from the states that are unacceptable. The advantage is that
formal analysis can be used to investigate activities in ST.

Figure 6.3 Classification of the Database States

To reason about decomposing transactions into steps and to avoid the prob-
lems of a naive decomposition, we use auxiliary variables to generalize the
invariants. Auxiliary variables are a standard method of reasoning about con-
current executions [Owicki and Gries, 1976] and, in particular, have been ap-
plied to the problem of semantic-based concurrency control [Garcia-Molina,
1983, Appendix C]. Our work focuses more on the decomposition than does
[Garcia-Molina, 1983], and so we emphasize the role of auxiliary variables
more strongly. We stress that the auxiliary variables are introduced for purposes
of analysis; the goal is to eliminate such variables from an implementation.

6.4.3 Compensating Steps

When transactions are decomposed into steps, it may not complete successfully
if a precondition of a step is not satisfied, or if the user aborts the transaction,
or if the system crashes. Incomplete transactions pose special problems in
semantic oriented models because steps may commit before it is determined
whether the transaction can complete. For example, suppose a Reserve tran-
saction aborts after its first step R1 commits. Some mechanism must undo the
effects of R1. Nullifying the effects of R1 using the backwards recovery method
of traditional undo [Bernstein et al., 1987], where the state that existed before
R1 is physically restored, is not possible because steps of other transactions
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may have read the updates of R1. Instead we adopt the forward recovery solu-
tion of a compensating step [Garcia-Molina, 1983, Garcia-Molina and Salem,
1987]; such a step semantically undoes the effects of the committed step R1
but does not disturb transactions that may have read from R1.

Like other steps of a transaction, compensating steps execute atomically.
However, the role of a compensating step differs from that of other steps. A
compensating step is not considered part of the normal processing of a tran-
saction; it is initiated only to semantically undo a transaction.

For a transaction T; that has been decomposed into n steps Si,...,S;, we
specify n — 1 compensating steps denoted by C,...,Ci,. The compensating
step C;; semantically undoes the cumulative effect of steps Si,...,S;j_1). This
is in contrast to the approach used in {Garcia-Molina, 1983, Garcia-Molina and
Salem, 1987] where a compensating step C;; is used to semantically undo the
operations performed by a single step S;;. The difference between the appr-
oaches is not significant; our choice simplifies the presentation.

6.4.4 Semantic Histories

We are interested in the relationship between the original specification and the
specification with the generalized invariants. In particular, we would like to
know if and when the database returns to a consistent state.

Before we proceed further, we make a distinction between a type of a step
and an instance of a step. The three steps R1, R2 and R3 of the Reserve tran-
saction are examples of different types of steps in the hotel example.

Histories, defined subsequently, reflect actual transactions, and must refer-
ence instances of steps and compensating steps. A history may contain many
instances of a step of a given type. In cases where it not necessary to distin-
guish the role of steps from that of compensating steps, we use the term ‘step’
generically and denote an instance of either a step or a compensating step of
transaction T; as Tj;. Where the roles differ, we use S;; to denote an instance
of a step and C;j to denote an instance of a compensating step. The type of an
instance of a step T}; is denoted by #y(T;).

Definition 6.1 [Stepwise Serial History] A stepwise serial history H over a
set of transactions T = {T1,...,T,} is a sequence of steps and compensating
steps such that

1. a step Tj; either appears exactly once in H or does not appear at all,

2. for any two steps S;j and Ty, S;j precedes Ty in H if S;j precedes Ty in T;,
3. ifTx€H, thenSj€Hforj=1,...,(k—1),

4. if a compensating step C;j € H, then S;j ¢ H and Ty, & H for k > j.

Condition (1) ensures that every step of a transaction occurs at most once.
Condition (2) ensures that the order of the steps in a transaction is preserved.
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Condition (3) ensures that for every step, preceding steps in the corresponding
transaction are present. Condition (4) ensures that a compensating step termi-
nates a transaction.

Unlike typical definitions of histories, our notion of a history does not refer-
ence the operations on data elements, such as read and write. Such operations
are introduced and integrated into the definition of histories as we further refine
our specifications.

Example 6.1 < S;1,S811 > is not a stepwise serial history since it violates con-
dition 1. < 813,812 > is not a stepwise serial history since it violates conditions
2 and 3. < 811,C12,812 > is not a stepwise serial history since it violates con-
dition 4. < 811,821,812,813 > and < 811,821,C12,S92 > are stepwise serial
histories.

Definition 6.2 [Complete Execution] Consider a transaction T; decomposed
into steps Si1,...,Sin with compensating steps Cp, ..., Cin. The execution of
T; in a history H is a complete execution if either (i) all n steps of T; appear
in H or (ii) some steps of T;, namely, S, ..., Sij appear in H followed by the
corresponding compensating step Cy1), where j < n.

The sequences Sj1,...,Sin and Sj, . ..,Sjj, Cj(j+1) are examples of execution
sequences [Garcia-Molina, 1983] of transaction 7;. The sequence Sj,...,Sin
is a successful execution sequence of T;, and the sequence Si1, .. ., S, Ci(j41) s
an unsuccessful execution sequence of T;.

Example 6.2 For the hotel database, an execution of a Reserve transaction T;
is complete in H if either (i) all three steps S;, Si2, and Si3 of T; appear in H,
or (ii) Sy and Ci3 appear in H, or (iii) Siy, Siz and Ci3 appear in H. Case(i) is
an example of successful complete execution. Cases(ii) and (iii) are examples
of unsuccessful complete executions.

To introduce state information, we define semantic history.

Definition 6.3 [Semantic History] A semantic history H is a stepwise serial
history bound to

1. an initial state, and
2. the states resulting from the execution of each step in H.

Informally, we use the term partial semantic history for cases in which the
execution of at least one transaction actually is incomplete, but from a formal
perspective, partial semantic histories are just semantic histories. Complete
semantic histories are a special case of a semantic histories:

Definition 6.4 [Complete Semantic History] A semantic history H over a set
of transactions T is a complete semantic history if the execution of each T; in
T is complete.
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Next we define what it means for a semantic history to be correct.

Definition 6.5 [Correct Semantic History] A semantic history H is a correct
semantic history if

1. the initial state is in ST,
2. the states before and after each step in H are in ST, and

3. the precondition for each step is satisfied in the corresponding state.

Definition 6.6 [Correct Complete Semantic History] A complete semantic
history H is a correct complete semantic history if

1. H is a correct semantic history, and

2. the final state is in ST.

6.5 PROPERTIES OF VALID DECOMPOSITION

To ensure the correct behavior of an application in which transactions have
been decomposed into steps, we propose a set of necessary and desirable prop-
erties.

6.5.1 Composition Property

When transactions have been decomposed into steps, we can state a property
relating steps in a decomposition to the original transaction. We call this re-
quirement the composition property.

Composition Property Let S, ...,S;, be the steps of transaction 7; and ST
be a state that satisfies the original integrity constraints /. Then executing the
sequence of steps S, ... ,Si, in isolation on ST is equivalent to executing 7; on
ST, except for constraints on auxiliary variables.

The composition property does not address what happens if the precondi-
tion of some step is not satisfied and thus the execution cannot complete. From
an implementation perspective, the composition property is similar to requir-
ing that the sequential execution of the steps be view equivalent to that of the
original transaction.

6.5.2 Sensitive Transaction Isolation Property

In our model, we allow transactions to access database states that do not sat-
isfy the original invariants (that is, states in ST — ST). But we may wish to
keep some transactions from viewing any inconsistency with respect to the
original invariants. For example, some transactions may output data to users;
these transactions are called sensitive transactions [Garcia-Molina, 1983]. We
require sensitive transactions to appear to have generated outputs from a con-
sistent state. This leads us to the next property.
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Sensitive Transaction Isolation Property All output data produced by a
sensitive transaction 7; should have the appearance that it is based on a con-
sistent state in ST, even though the decomposition of T; may access database
states in ST — ST.

In our model, we ensure the sensitive transaction isolation property by con-
struction. There are two aspects to such a construction. First, for each sensitive
transaction, we compute the subset of the original integrity constraints, /, rel-
evant to the calculation of any outputs. Second, as pointed out by Rastogi,
Korth, and Silberschatz [Rastogi et al., 1995], if outputs are generated by mul-
tiple steps, interleavings between these steps must be controlled to ensure that
outputs from later steps are consistent with outputs from earlier steps.

6.5.3 Consistent Execution Property

Similar to the consistency property for traditional databases, we place the fol-
lowing requirement on semantic histories:

Consistent Execution Property If we execute a correct complete semantic
history H on an initial state (i.e., the state prior to the execution of any step in
H) that satisfies the original invariants 7, then the final state (i.e., the state after
the execution of the last step in H) also satisfies the original invariants /.

6.5.4 Semantic Atomicity Property

When transactions have been broken up into steps, it may not be always pos-
sible to complete a transaction. This happens if the precondition of some later
step is not satisfied and the effects of the partially executed transactions cannot
be undone by executing compensating steps. The semantic atomicity property
ensures that such a situation is avoided; if a transaction has been partially exe-
cuted, then it can complete.

Semantic Atomicity Property Every correct semantic history H, defined
over a set of transactions T is a prefix of some correct complete semantic his-
tory H over T.

Like all the other properties stated so far, semantic atomicity is a necessary
property. The definition of semantic atomicity property is very general. Some
applications may require a stronger property, the successful execution property,
stated below.
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6.5.5 Successful Execution Property

The interleaving of steps of different transactions may result in a state from
which it is not possible to successfully complete some transaction. The suc-
cessful execution property ensures that such a situation is avoided; if a tran-
saction has been partially executed, then it can complete without resorting to
compensation.

Successful Execution Property Every correct semantic history H, defined
over a set of transactions T is a prefix of some correct complete semantic his-
tory H over T such that for each T; € T that is incomplete in H,, H contains a
successful execution sequence of 7;.

Unlike the other properties we have stated so far, successful execution is
an optional property. Successful execution property requires that all the pre-
conditions of a transaction should appear in the first step. This in turn would
require a large number of updates to be performed in the first step. (Precon-
dition checks are often associated with updates; in such cases we require to
perform the check and update atomically, that is, in the same step.) Thus in-
sisting on successful execution property may force too many operations in the
first step of the transaction - which is undesirable from the performance point
of view. Hence we do not insist that applications have the successful execution

property.

6.6 EXAMPLES OF DECOMPOSITION
6.6.1 A Valid Decomposition

We now provide a valid decomposition of the hotel database which satisfies all
the necessary properties described in the previous section. The class HotelD
(short for Hotel Decomposition) in figure 6.4 specifies this valid decomposi-
tion.

We generalize the invariants by adding the auxiliary variables underway and
acquired. underway is a natural number which denotes the reservations that
have been partially processed. The auxiliary variable acquired denotes the
set of rooms that have been taken but which have not yet been assigned to
guests. The declarations of these auxiliary variables appear in the top part of
the state schema. The two generalized invariants appear at the bottom of the
state schema. They are:

1. #RM + underway = res
2. dom(ST > {Taken}) = ran RM U acquired

Since the steps and compensating steps now comprise the operations of the
decomposed hotel database, we specify operation schemas corresponding to
each type of step and compensating step. Only the Reserve transaction is de-
composed into three steps, namely R1, R2 and R3. R1 has a precondition that
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that there must be fewer than total rooms. The postcondition of R1 increments
res and underway. The precondition of R2 is that the room to be assigned to
the guest r! is Available. The postcondition of R2 changes the status of ! to
Taken and inserts r! in the set acquired. The precondition of R3 is that g? must
be a new guest. The postcondition of R3 inserts the ordered pair g7 — r! to the
function RM, removes r! from the set acquired and decrements underway. The
compensating step CompR2 semantically undoes the effect of R1. The precon-
ditions of CompR2 are that the variables res and underway must be positive.
The postcondition of CompR2 decrements res and underway. The compen-
sating step CompR3 semantically undoes the cumulative effects of R1 and R2.
The preconditions of CompR3 are that res and underway must be positive and
r! must be in the set acquired. The postconditions of CompR3 decrement res
and underway and remove r! from the set acquired and change the status of 7!
to Available. CancelD and Repor:D represent the single steps of the Cancel and
Report transaction respectively; the specifications of these steps are identical
to the corresponding transactions.

6.6.1.1 Composition Property. To implement a Reserve, its three steps
must execute in order. The composition property for the hotel example, for-
mally stated in Object Z, is as follows.
Hotel A ((R13R23R3) \ (underway,acquired,underway ,acquired')) <> Reserve
The left hand side gives the composition of the steps where the initial state
is constrained to satisfy the original invariants and the auxiliary variables are
hidden or suppressed. The right hand side is the original transaction Reserve.
In Object Z a propositional relation between schemas — equivalence in this case
— translates into the same relation between the predicates defining the schemas.
The three steps satisfy the composition property; we omit the details of the
proof in this chapter.

6.6.1.2 Sensitive Transaction Isolation Property. Report is a sensi-
tive transaction, and we establish the sensitive transaction isolation property
by construction. A formal treatment is given in [Ammann et al., 1997]. Infor-
mally, Report transaction outputs values of ST and RM. ST and RM appear in
the following original invariant:

dom(ST > {Taken}) = ranRM
which can be derived from the generalized invariant

dom(ST > {Taken}) = ran RM Uacquired
if the auxiliary variable acquired satisfies acquired = @. Hence, to ensure that
ReportD does not output inconsistent data we specify the following restriction
as a history invariant.

O((acquired # @) = (Oop # ReportD)).
The above notation means that it is always true when the auxiliary variable
acquired is not the empty set, the next operation must not be the step ReportD.
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Although Reserve is a sensitive transaction, it turns out that no additional
preconditions are needed to ensure that the output 7! reflects a consistent state.

6.6.1.3 Consistent Execution Property. Consider any correct complete
history H generated from the decomposition specified in figure 6.4. To prove
the consistent execution property we must show that if H is executed in a con-
sistent state, the final state is also consistent.

When the database is in a consistent state, the auxiliary variables satisfy the
following condition: underway = 0 A acquired = .

Let r1, r2, r3, compr2, compr3 be the number of steps of type R1, R2,
R3, CompR2, CompR3 respectively in H. The auxiliary variable underway is
incremented by steps of type R1 and decremented by steps of type R3, CompR2
and CompR3. Since the initial state of H is consistent, the value of underway
in the final state of H is given by the following expression

underway = rl — (r3+ compr2 + compr3)  --- 6.1)
Similarly we have,
| acquired |= r2 — (r3 + compr3) e 6.2)

Since H is complete, each step of type R1 has a corresponding step of type R2
or CompR2. Similarly, each step of type R2 has a corresponding step of type
R3 or CompR3. Thus we have

rl = r24 compr2 ... 6.3)

r2 =r3 + compr3 .. 6.4)

From (6.1 —6.4 ) we can derive that in the final state of H, underway = 0 A
acquired = & which means that the final state is consistent.

6.6.1.4 Semantic Atomicity Property. Let H, be any correct partial se-
mantic history. Hp, has one or more incomplete Reserve transactions. Con-
sider an incomplete Reserve transaction. If this transaction has committed only
step R1, then it can complete by executing CompR?2. This is possible because
steps of no other transaction executing after R1 can violate the preconditions
of CompR2. Similarly it can be shown that if the Reserve transaction has com-
mitted steps R1 and R2, it is possible to execute CompR3 and complete the
Reserve transaction. In this way all the incomplete Reserve transactions can be
completed and the partial history H,, extended to a correct complete semantic
history H,. H, is therefore a prefix of H,.
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res,underway : N
ST : Room -+ Status
RM : Guest ~» Room

acquired : P Room

#RM + underway = res

dom(ST > {Taken}) = ranRM U acquired

_R1

_R2

A(res,underway)

res < total
res' =res+1

underway = underway+1

A(ST,acquired); r' : Room

ST(r!) = Available
ST' = ST & {r! — Taken}

acquired’ = acquired U {r'}

—R3

A(RM,acquired, underway)

g7 : Guest; r! : Room

g? ¢ domRM
RM' =RMU{g? - r'}
acquired’ = acquired \ {r'}

underway = underway — 1

—CancelD.

A(ST,RM, res)
g? : Guest

g? € domRM

res' =res—1

RM' = {g?} 9RM

—ReportD.

currentST! : Room -+ Status

currentRM! : Guest - Room

currentST! = ST
currentRM! = RM

—CompR2.

A(res,underway)

res > 0; underway > 0
res’ =res—1

underway = underway — 1

—CompR3

ST' = ST @ {RM(g?) > Available}

A(res,underway, acquired,ST)

r!: Room

res >0

underway > 0

r! € acquired

res’ =res—1

underway = underway — 1
acquired’ = acquired \ {r'}
ST’ = ST ® {r! — Available}

O(acquired # @) = O(op # ReportD)

Figure 6.4 A Valid Decomposition for the Hotel Database
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6.6.2 An Invalid Decomposition

In this section, we give an example of an invalid decomposition. Unlike the
naive decomposition, the decomposition given below generates correct seman-
tic histories. The decomposition is invalid because it does not satisfy one of the
necessary properties, namely, the semantic atomicity property.

To illustrate the possibility, we modify the HotelD specification. The modi-
fied specification, known as DeadlockHotel, is shown in fig. 6.5.

In the example specification, the cancel transaction is decomposed into steps
C1 and C2. We introduce the auxiliary variable underwayC which keeps count
of the cancel transactions that have completed step C1 but not step C2. The
invariant #RM = res — underway in the HotelD is changed to #RM = res —
underway + underwayC in DeadlockHotel.

Also, we introduce a new structure clist which keeps track of the guests
whose cancelations are in progress. The guest whose reservation is being can-
celed is added to the clist in step C1 and is removed from the clist in step
C2. To ensure that a guest whose cancelation is in progress is not canceled
by some other transaction, we include precondition g? ¢ clist in step C1. C1
has another precondition res > 0 which ensures that C1 executes when there is
at least one reservation. The postcondition of C1 decrements res, increments
underwayC and inserts g? in clist. The preconditions of C2 check that g? has
a valid reservation, g? is in clist and underwayC is positive. The postcondi-
tion of C2 removes g? from the domain of RM, makes the room which was
assigned to g7, Available, removes g7 from clist, and decrements underwayC.
Since the cancel transaction is decomposed into two steps, we must specify
CompC2, a type of compensating step, which semantically undoes the actions
of C1. CompC2 has four preconditions: res must be less than total, underwayC
must be positive, g7 must be in clist and g7 must have a valid reservation. The
postcondition of CompC2 increments res, decrements underwayC and removes
g? from clist.

The reserve transaction is broken into steps Resl, Res2 and Res3, similar to
R1, R2 and R3 of the HotelD specification. We impose an additional constraint
that a room cannot be reserved for a guest whose cancelation is in progress; the
precondition g? ¢ clist in step Res3 ensures this. We assume that this example
has no Report transaction.

Consider the partial history H, =< S1; > where ty(S11) = C1. Suppose in
the initial state of H,, John ¢ domRM. The cancel transaction T; attempts to
cancel the reservation for guest John. The execution of step S1; results in John
being inserted in the clisz. Now step S;2 cannot execute since the precondition
John & domRM is not satisfied as John does not have any reservation. The
compensating step C1o of type CompC2 also checks for these preconditions;
since these preconditions are not satisfied, the compensating step cannot be
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executed. The specification is therefore an invalid specification — it lacks the
semantic atomicity property.

The deadlock could be avoided by including the invariant clist C guest in
DeadlockHotel. Omission of this constraint allows the database to enter an
undesirable state where c¢? € clist A ¢? & guest, from which neither the next
step or the compensating step could be executed.

6.7 SUCCESSOR SETS

After presenting examples of decomposition, we now describe mechanisms to
efficiently implement our model. The decomposition process introduces addi-
tional database objects (auxiliary variables) and imposes additional constraints
(history invariants) on the execution of steps. The additional objects are present
primarily to support analysis. For efficient implementation, we want to avoid
instantiating the objects. Checking the satisfaction of history invariants before
scheduling an operation is expensive and our goal is to avoid such checks in
the implementation. Successor sets are the mechanism we use to achieve these
objectives.

Definition 6.7 [Successor Set] The successor set of ty(Tj;), denoted SS(ty(Ty;)),
is a set of types of steps.

At this point, the notion of successor sets is purely syntactic. Subsequently,
we define the constraints under which a successor set description is correct with
respect to a particular decomposition. But first we wish to define the notion of
correct successor set histories.

To achieve this goal we introduce the notion of conflict into our model. Two
operations conflict if both operate on the same data item and at least one is a
Write. Two steps T;; and Tp,, conflict if they contain conflicting operations. It is
easy to determine the set of conflicting steps once the code for the decomposed
transactions is given. At this stage we only have the specification, but we would
still like to define a notion of conflict. We define any state variable modified in
a postcondition of an operation as being written in the specification. Similarly,
we define any state variable referenced in a precondition or postcondition as
being read in the specification.

The read and write set of the steps of the decomposed hotel database, as
obtained from the specifications (figure 6.4) is given in Table 6.2. Table 6.3
gives the set of conflicting steps in the Hotel Database.

The definition of conflict allows us to define a notion of correctness with
respect to successor set descriptions that is not overly restrictive.

Definition 6.8 [Correct Successor Set History] H is a correct successor set
history if it satisfies the following conditions.

1. H is a correct semantic history.
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res,underway, underwayC : N; clist : P Guest; acquired : P Room

RM : Guest > Room; ST : Room - Status

#RM = res — underway + underwayC; dom(ST > {Taken}) = ranRM U acquired

_Res1

_Res2.

A(res,underway)

res < total; res' = res+1

underway = underway+ 1

A(ST,acquired); r! : Room

ST(r!) = Available; ST' = ST & {r! — Taken}

acquired’ = acquired U {r!}

~Res3

_C1

A(RM,underway, acquired)

g7 : Guest; r!: Room

underway > 0; r! & ranRM
g7 & domRM; g? & clist
RM' = RMU {g? ~ r'}
underway = underway — 1

acquired’ = acquired \ {r'}

Alres, clist,underwayC)
27 : Guest

res >0

g? & clist

res' =res—1

clis! = clistU {g?}
underwayC' = underwayC + 1

—C2
A(ST,RM, clist,underwayC)
g7 : Guest

g? € domRM; g? € clist

underwayC > 0

ST' = ST @ {RM(g?) —> Available}
RM' = {g?} 9 RM; clist = clist\ {g7}
underwayC' = underwayC — 1

—CompRes3.

A(res,underway,acquired, ST)

r!: Room

res > 0; underway > 0

r! € acquired; ST(r') = Taken
res' =res—1

underway = underway — 1
acquired’ = acquired \ {r'}
ST' = ST & {r! > Available}

—CompRes2

A(res,underway)

res>0
_underway > 0
res' =res—1

underway = underway — 1

—CompC2.
A(res, clist,underwayC)

g7 : Guest

res < total

g7 € clist; g7 € domRM
underwayC > 0

res’ =res+1

clist = clist\ {g?}
underwayC' = underwayC — 1

Figure 6.5 Example Specification Lacking Semantic Atomicity Property
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Table 6.2 Read and Write Sets for Steps of Hotel Example

Type of Step Variables Read Variables Written
R1 res, total, underway res, underway
R2 ST, acquired ST, acquired
R3 RM, underway, acquired RM, underway, acquired
ReportD ST, RM
CancelD res, ST, RM res, ST, RM
CompR?2 res, underway res, underway
CompR3 res, ST, underway, acquired | res, ST, underway, acquired
Table 6.3 Conflicting Steps for Hotel Example
Type of Step Types of Conflicting Steps
R1 R1, R3, CancelD, CompR2, CompR3
R2 R2, R3, ReportD, CancelD, CompR3
R3 R1, R2, R3, ReportD, CancelD, CompR2, CompR3
ReportD R2, R3, CancelD, CompR3
CancelD R1, R2, R3, ReportD, CancelD, CompR2, CompR3
CompR?2 R1, R3, CancelD, CompR2, CompR3
CompR3 R1, R2, R3, CancelD, ReportD, CompR2, CompR3

2. If T; is incomplete in the prefix of H that ends at Tyy, and Tj; is the last
step in T; such that (i) T;; conflicts with Ty, and (ii) T;; precedes Tyq in H
then ty(Tpq) € SS(ty(Ty))-

In the hotel example, there is one history invariant corresponding to the sen-
sitive transaction isolation property. This history invariant forbids the execution
of steps of type ReportD when the auxiliary variable acquired # &. This his-
tory invariant is satisfied as long as a step of type ReportD does not appear
between steps of type R2 and R3 of reserve transaction. To ensure this we
specify the successor sets as shown in Table 6.4. For the hotel example, the
history invariant involving auxiliary variable is captured by the successor set
description, and so neither the history invariant nor the auxiliary variables need
to be implemented.

With respect to the specifications given with history invariants, not all suc-
cessor set descriptions are valid. Informally, a successor set is valid with re-
spect to a specification containing history invariants if any correct successor set
history can also be generated by the specification containing history invariants.
Although desirable, the converse property does not hold in general since first-
order logic history invariants have more expressive power than the successor
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Table 6.4 Successor Sets for the Hotel Example

SS of Type of Step Types of Steps in Successor Set
SS(R1) R1, R2, R3, ReportD, CancelD, CompR2, CompR3
SS(R2) R1, R2, R3, CancelD, CompR2, CompR3
SS(R3) R1, R2, R3, ReportD, CancelD, CompR2, CompR3

SS(ReportD) R1, R2, R3, ReportD, CancelD, CompR2, CompR3
SS(CancelD) R1, R2, R3, ReportD, CancelD, CompR2,CompR3
SS(CompR2) R1, R2, R3, ReportD, CancelD, CompR2,CompR3
SS(CompR3) R1, R2, R3, ReportD, CancelD, CompR2,CompR3

set mechanism. Formally, we describe valid successor set descriptions with the
valid successor set property:

Definition 6.9 [Valid Successor Set Property] A specification Sy that em-
ploys a successor set description is valid with respect to specification Sy with
history invariants if

1. any correct successor set history generated by S, is also a correct seman-
tic history generated by S;.

2. 8, satisfies the semantic atomicity property.

The second condition can be easily satisfied by ensuring that all compensat-
ing steps are contained in each successor set description. The hotel example
has the valid successor set property, where it turns out that the successor set
specification generates exactly the same set of histories as the specification
with history invariants.

Suppose an application requires the successful execution property. Since
successor set descriptions are less expressive than the first order predicates they
replace, the set of histories for S may be a proper subset of the set of histo-
ries for S;. Therefore, the successful execution property must be reverified
explicitly on histories generated by So.

6.8 CONCURRENT EXECUTION
6.8.1 Correct Stepwise Serializable Histories

For every pair of steps in a correct successor set history, all operations of one
step appear before any operations of the other step. However if the steps of a
transaction execute atomically and without any interleaving, the database sys-
tem uses resources poorly. To improve efficiency we introduce the notion of
correct stepwise serializable history. In a correct stepwise serializable history
the steps of transactions need not be executed serially, but nevertheless the ef-
fect is the same as that of a correct successor set history.
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We develop stepwise serializability by defining history and equivalence in a
manner similar to [Bernstein et al., 1987]. A history H defined over a set of
transactions T involves precisely the operations of steps in T, H preserves the
order of operations in each step in T and any pair of conflicting operations are
ordered in H. Two histories H and H' are said to be equivalent if they are de-
fined over the same set of steps, they have the same operations, and they order
conflicting operations of steps in the same way. That is, for any pair of conflict-
ing operations p;; and gy belonging to Tj; and Ty (respectively), if p; <u qu,
then p;j <p qu. A correct stepwise serializable history is one which is equiv-
alent to a correct successor set history. A graph-theoretic characterization of
correct stepwise serializable histories is given in [Ammann et al., 1997].

6.8.2 Concurrency Control Mechanism

We now propose a concurrency control mechanism for our model and identify
the issues relevant to an implementation.
‘We make the following assumptions:

1. Lock management is centralized.

2. The steps of a transaction are submitted in order. That is an operation in
step T,(s41) is submitted only after step 7,; commits.

3. If a transaction reads and writes the same data entity x, the read operation
precedes the write operation.

4. A transaction reads or writes an entity x at most once.
5. The algorithms specified below execute atomically.

Our mechanism uses two phase locking on the steps of the transactions.
There are two modes in which a data item may be locked by a step - shared
mode or exclusive mode. A step acquires an appropriate lock as a prerequisite
for accessing a data item. A step is denied a lock if either another step holds
a conflicting lock or if the step fails a test based on successor sets. Locks
acquired by a step are released when the step commits or aborts.

For the purposes of this section, we define a step as a sequence of read and
write operations followed by a commit or an abort operation,

T,'j = 0,']()61),0,7()62), ceny Oij(xn),Eijy

where Oj(x) is either R;i(x) or Wji(x) and Ej; is either Cy(x) or A;(x), and a
transaction is a sequence of steps followed by a termination operation,

Ti =< Til)‘“aTinaTR(Ti) >

We require the following data structures in addition to those required by the
two phase locking protocol.
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1. Active-Set — Set of Active Transactions

Active-Set(x) — The active set for x keeps the list of all active transactions
whose committed steps have accessed x. Whenever any step T; that reads
or writes x commits, the transaction 7; is added to Active-set(x). After
the transaction 7; terminates, T; is removed from Active-Set(x).

2. Int-Set — Interleaving Sets

Int-Set(T;,x) — The interleaving set for x is associated with each active
transaction T; that accesses x. The interleaving set gives the types of the
steps that can access the data item. If data item x has been accessed by
step T;; of T; and Tj; or any step of T; occurring after T;; commits, then Int-
set(T;,x) is replaced by the successor set of the corresponding committed
step.

6.8.2.1 Algorithms. Before a read operation R;j(x) can proceed, step Tj;
needs a shared lock for x. There are two conditions for Tj; to acquire the shared
lock: (i) No other step has an exclusive lock on x and (ii) Tj; is in Int-Set(Ty x)
for all active transactions T, whose committed steps have accessed x. If either
condition is not satisfied, the lock is not granted and step T;; must try again
later. When Rj;(x) is retried, it must be re-executed from the first step of the
algorithm.
Algorithm for Read
Procedure Process-read (R;j(x))
begin
if a step Ty, is holding an exclusive lock on x
exit; /* Lock unavailable - T;; can retry later */
for each T € Active-set(x)
if ty(T;) & Int-set(Ty,x)
exit; /* Lock unavailable - Tj; can retry later */
lock x in shared mode;
accept(R;;(x));
end
Before a write operation W;;(x) can proceed, step T needs an exclusive lock
for x. There are two conditions for T;; to acquire the exclusive lock: (i) No other
step has any lock on x and (ii) Tj; is in Int-Set(Tj,x) for all active transactions
T, whose committed steps have accessed x. If either condition is not satisfied,
the lock is not granted and step T;; must try again later. When W;;(x) is retried,
it must be re-executed from the first step of the algorithm.
Algorithm for Write
Procedure Process-write (W;;(x))
begin
if a step T}, is holding any lock on x
exit; /* Lock unavailable - T;; can retry later */
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for each T; € Active-set(x)
if ty(T}j) & Int-set(Ty,x)
exit; /* Lock unavailable - Tj; can retry later */
lock x in exclusive mode
accept(W(x));
end

A step commits when all the operations of a step are complete. For each data
item x locked by the transaction in the current or previous steps, the interleaving
set associated with this transaction and data item x is replaced by the successor
set of the step. The transaction is included in the list of active transactions that
have accessed x. All locks acquired by this step are released.

Algorithm for Step Commit

Procedure Process-stepcommit(Cj;)
begin
for each x locked by the transaction in this or previous step do
Int-set(T;,x) = SS(ty(T}));
for each entity x locked by the transaction in this step do
begin
if T; & Active-set(x)
Active-set(x) = Active-set(x) U T;;
Release the lock on x which was acquired by Tj;
end

end

A step may not always complete successfully and may abort. The abort
causes all the locks held by the step to be released. The abort of step Tj; does
not affect the data structures Active-set(x) or Int-set(7};,x); these data structures
are adjusted with the transaction termination processing. Traditional recovery
for aborted transactions, such as undo, is required for the aborted step, but
details are omitted.

Algorithm for Step Abort

Procedure Process-stepabort(A;;)
begin
/* Restore values written by T;; */
for each entity x locked by the transaction in this step do
Release the lock on x which was acquired by Tj;;
end

Termination removes a transaction from the set of active transactions. Since
interleaving sets are associated only with active transactions, the interleaving
set Int(7;,x) is deleted when the transaction terminates.

Algorithm for Transaction Terminate

Procedure Process-terminate(7R(7;))
begin
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for each entity x which was accessed by T; do
begin
Active-set(x) = Active-set(x) — Tj;;
delete the structure Int-set(7;,x) ;
end
end

6.8.2.2 Discussion. As with other locking protocols, our mechanism has
potential for starvation of transactions and deadlock. Since these issues can be
addressed in standard ways, we do not describe detailed algorithms for solving
these problems. However, these issues must be dealt with if an implementation
of our model is to developed.

A variety of issues pertaining to supporting compensation must also be re-
solved. One issue is reliably storing data items which may be needed by a
compensating step in case a multistep transaction does not complete. A sec-
ond issue deals with initiating the compensating steps. Garcia-Molina suggests
[Garcia-Molina, 1983] that the initiation of the compensating step must be done
by the system. Such an approach has the advantage that all transaction aborts,
whether user-initiated or failure-related, can be treated in a uniform way. A
third issue is recovery from system crash. Transactions that are incomplete at
the time of the crash can either be compensated or continued.

6.9 CONCLUSION

In this work, we have provided the database application developer writing
the specification conceptual tools necessary to reason about systems in which
transactions that ideally should be treated as atomic — for reasons of analysis —
must instead be treated as a composition of steps — for reasons of performance.
The developer begins with a specification produced via standard formal meth-
ods, transforms some transactions in the specification into steps, and assesses
the properties of the resulting system. The formal analysis at each step of
this process provides assurance that the resulting system possesses the desired
properties.

Currently we are investigating how to apply semantic-based transaction de-
composition to other areas like multidatabase applications and multilevel se-
cure database systems. These areas impose some additional requirements which
in turn pose new challenges to the decomposition process. We plan to investi-
gate how typical applications in these areas can be processed using our model
and study the relative advantages/disadvantages of our approach over the exist-
ing syntactic approach.

An important question is how well our model scales up to real-world appli-
cations. The necessary properties must be demonstrated for applications which
must be implemented by our model. In this work, we have used the Object Z
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specification language and all the analysis are done by hand. However for real-
world applications this may not be feasible and it may be necessary to automate
to the maximum extent the discharge of proof obligations. Industrial-level tool
support for such an endeavor is essential, and the use of existing automated
theorem provers and model checkers needs to be investigated.
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7 CUSTOMIZABLE CONCURRENCY
CONTROL FOR PERSISTENT JAVA

Laurent Daynes, M.P. Atkinson
and Patrick Valduriez

Abstract: We report on the issues raised when designing a customizable lock-
ing mechanism for Persistent Java, a type-safe, object-oriented, orthogonally
persistent system based on the language Java. Customizable locking mecha-
nisms are supported by locking capabilities. A locking capability is a book-
keeper of locks that automatically acquires locks with a customizable conflict
detection mechanism. It implements the concepts of delegation of locks and
ignorable conflicts, automatically keeps track of the dependencies created be-
cause of ignored conflicts, and supports the setting of user-defined notifications
for conflicts that can’t be ignored. Locking capabilities are one of the primi-
tive components of a more general framework that gives the ability to expert
application programmers to implement new transaction behaviors in Java. The
framework doesn’t change the Java language specification, and allows the use of
any Java classes to implement the body of transactions without change to either
their source or compiled form.

7.1 INTRODUCTION

Persistent programming languages offer an attractive alternative to the increas-
ing number of applications whose needs cannot be satisfied with traditional
database support. The requirement of these so called non-traditional applica-
tions have prompted the development of numerous transaction models whose
semantics vary from the traditional transaction model as well as from each
other {Elmagarmid, 1992, Barghouti and Kaiser, 1991]. The ever growing pro-
liferation of transaction models, all unable to satisfy all needs, has definitively
buried the hope of finding an universal model in the short term, if at all. In
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the absence of a proper transaction model, most persistent application builders
end up investing a significant amount of time developing in-house transaction
models to circumvent the proposed transaction support in order to better ac-
commodate the needs of their application.

In order to minimize the cost of realizing new transaction models, appli-
cation builders must be offered a simple framework which they can use to
quickly define the transaction behavior they want and to incorporate it into the
persistent programming system. Ideally, these extensions should not require
the programmers to have an in-depth knowledge of how transaction processing
mechanisms are implemented. Furthermore, each addition of a new transaction
model should not require that the system be rebuilt. Instead, the system should
be able to dynamically adjust itself to incorporate these extensions. Lastly,
the user’s extensions should be tightly integrated with the system in order to
minimize the impact on the overall performance of the system.

This paper reports on our effort to augment Persistent Java (PJava), an al-
ternative platform for the Java language [Atkinson et al., 1996], with such ex-
tensible transaction management features. The paper specifically focuses on
the issues raised when designing the addition and the implementation of a cus-
tomizable locking mechanism for Persistent Java.

7.1.1 Overview of Persistent Java

The main goal of the Persistent Java (PJava) project is to leverage Java to sup-
port faster development and better maintenance of persistent and transactional
applications (e.g. [Jordan, 1996]) via provision of orthogonal properties. Pro-
viding properties such as persistence and transaction semantics orthogonally
has two benefits.

1. Application programming is not polluted with considerations unrelated
to the application logic itself, such as persistence or enforcement of some
transactional properties. In particular, programmers do not have to ex-
plicitly identify the data that may become persistent or may be used in a
transactional way. Similarly, the standard Java code that would operate
on transient data is used unchanged when it operates on persistent data
or in a transactional context. The addition of the desired property (e.g.,
persistence, persistence + transaction) is achieved by simply composing
the application code with some context-aware code that encapsulates the
particularities of the application requirement (e.g., management of roots
of persistence or monitoring of transaction execution).

2. Any Java classes can be used to build applications in a specific opera-
tional context (non-persistent Java, persistent Java, persistent and trans-
actional Java) without any change to either the sources or the compiled
form of these classes; no extra rewriting/pre-processing or code gener-
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ation steps are necessary to execute standard Java classes in PJava and
obtain persistence or transaction semantics. Conversely, the source and
compiled form of any classes programmed with PJava can be re-used in
any standard Java development environment and executed by any stan-
dard virtual machine, except for a minority of classes that encapsulate
the use of built-in classes specific to PJava (the “context-aware” classes).

The current PJava prototype realizes an alterfiative platform for the Java lan-
guage with provision of completely orthogonal persistence for data, meta data
(classes) and code (methods). Persistence is added to the Java language with no
perturbation to Java’s semantics. Consequently, all Java classes can be re-used
in persistent applications without any alteration to either their source or their
compiled form. The reader is referred to [Atkinson and Morrison, 1995] for an
extensive definition of orthogonal persistence and to [Atkinson et al., 1996] for
its application to the language Java. From the application programmer’s point
of view, persistence is simply obtained by composing normal Java classes with
a few other persistence-aware classes (in most cases one) that interact with an
object that implements the PJStore interface. The localized persistent-aware
code typically identifies the roots of persistence, binds these root objects to the
application’s variables, and triggers the stabilization of all updates! onto the
persistent store.

Our design to add extensible transaction management to Java follows a sim-
ilar philosophy. Transactions are introduced into Java without changing the
language definition and such that programmers don’t have to explicitly iden-
tify the data manipulated within transactions. The aim is to allow the use of
any pre-existing Java classes to program the body of transactions without any
alteration to the original source and compiled form of these classes. These tran-
saction bodies can then be executed in the context of any defined transaction
models.

In order to achieve extensibility, we augment the PJava virtual machine with
a Customizable Transaction Processing Engine (or CTPE). The intention is
to give knowledgeable Java programmers the ability to define new transaction
models by programming customization of the CTPE in Java using predefined
primitive components. Primitive components are objects that abstract the key
mechanisms of individual CTPE’s components such as the lock and recovery
managers. They give expert programmers control over the low-level mecha-
nisms of the CTPE components without requiring any knowledge of the imple-
mentation of these components. Primitive components allow the expert appli-
cation programmers to define new transaction behaviors in a manner which we
believe is both simple and safe. Ordinary Java programmers can then use these
transaction models conveniently in their applications.
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7.1.2 Customizable Concurrency Control

Programming of customized concurrency controls will be supported by lock-
ing capabilities in PJava. Locking capabilities implement lock delegation and
ignorable conflicts [Biliris et al., 1994, Barga and Pu, 1995]. They automati-
cally keep track of access dependencies created because of ignored conflicts,
allow queries about details of these dependencies (who depends on whom and
for which objects), and issue notifications on demand to support application
handling of conflicts that can’t be ignored. Locking capabilities permit the
convenient implementation of a large set of locking protocols. The current
design assumes the granularity of locking is an object.

Locking capabilities also provide a comprehensive solution to deal transpar-
ently with arbitrary composition of threads with transactions. This is essential
to give the ability to compose transactions with arbitrary existing Java code
since this code may spawn an arbitrary number of threads. The issue here is
to make sure that these threads remain confined within the boundary of the
transaction that spawned them and enforce the behavior of their enclosing tran-
saction, except if explicitly programmed otherwise by the transaction model
implementer.

The rest of this paper is organized as follows. Section 7.1 gives an overview
of our design. Section 7.3 details the programming model offered to ordi-
nary programmers. Section 7.4 describes the framework offered to define new
transaction models and how arbitrary Java code may be composed freely with
transactions of any model. The customizable locking mechanism of PJava is
discussed in section 7.5. Examples of how one can use the framework offered
to implement various concurrency control semantics are given in section 7.6.
Section 7.7 reviews related work. We conclude with a summary of the status
of our design and implementation plans.

7.2 DESIGN CHOICES

Our design choices for augmenting PJava with extensible transaction manage-
ment capabilities are led by three strong requirements:

»  The ability to extend PJava with user-defined transaction models should
not compromise the existing safety and security mechanisms of the lan-
guage Java, and should not introduce new safety or security holes.

= No change may be made to the language definition.

»  Data and code used within a transaction must not differ from data and
code used in a non-transactional context. We call this transaction inde-
pendence.

The following sections outline the three main principles of our design.
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7.2.1 Transactions as Java objects

A transaction defines a unit of work for which some properties must be en-
forced. The basic interface common to all transaction models is made of op-
erations for demarcating the boundaries of transactions, such as the classic
begin/end/abort bracketing.

Advanced transaction models extend this common interface with new opera-
tions (e.g., operations for re-structuring the scope of transactions such as split
and join [Kaiser and Pu, 1992], or for declaring a transaction as a member of
a cooperative group [Fernandez and Zdonik, 1989]). Furthermore, the seman-
tics of the same operation may vary from one transaction model to another.
For instance, the operation end that indicates the successful termination of a
transaction has different semantics depending on whether it is called in a flat
transaction, in a sub-transaction in a nested transaction model, or in a member
of a group transaction [Fernandez and Zdonik, 1989]. In the classic, flat tran-
saction model, a successful termination requires that the updates made by the
transaction be atomically and durably propagated to the persistent store, and
made globally visible; in a nested transaction model, the successful termina-
tion of a sub-transaction requires that the updates be atomically delegated to
its parent transaction, and made visible only to the descendants of its parent
transaction; in a group transaction model, the updates may be required to be
atomically and durably propagated to the store and made visible only to the
other transactions which are members of the same group. This shows the need
for a transaction management interface that is both extensible (introduction of
new operations) and polymorphic (operations may be redefined).

Defining transactions as first-class objects allows the transaction concept
to be introduced into Java without changing the Java language specification.
These transaction classes provide a convenient framework for defining an ex-
tensible and polymorphic interface for transaction management. Transaction
models are implemented as classes and their instances execute transactions ac-
cording to the semantics that their class defines.

The dynamic loading and binding properties of Java permit new transaction
models to be introduced as new transaction classes thatextend, or subclass,?
existing classes without rebuilding or relinking an operational system. Fur-
thermore, existing applications does not need to be recompiled to use a new
transaction class as long as the class supports the operations required by the
applications (Figure 7.2 of section 7.3 illustrates how this may be done in Java).

7.2.2 Two-level interface

Our design provides Java programmers with two APIs corresponding to two
levels of understanding of transaction management. It presumes two categories
of programmers: specialist programmers, with skills in transaction model spec-
ification, who implement new transaction classes; and ordinary programmers
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who program transactional applications using the classes defined by the former
group.

The intention is to organize transactional applications in four distinct layers
of increasing re-usability and independence with respect to transaction man-
agement issues. Figure 7.1 summarizes this layered approach (the size of each
layer is not indicative of the volume of classes).

‘Who programs what

Classes implementing Transaction ) Arbitrary Java
Applications Logic body Classes Typical Java Classes
application programmers
(Runnable Objects)
sz:va; program:r}ers r:vho u;u::rstand Transactional
Transaction-aware Classes the functional interface of the .
transaction model(s) used interface
External TransactionAPl dependant
Transaction public programming
Classes interface

(Transaction .
Models) Java programmers expert in
defining transaction models
' PJava-dependant
FlatTransaction

Classes
NestedTransaction

TransactionShell

| abstract interface for specifying
reaction to transactional events

Transaction Definition Interface

Primitives Lock Manager Recovery Manager
Components API API

Classes
LockingCapability
Key I Class . / Abstract Class l —— extends

FinalClass g  =-----=---- implements

Figure 7.1 Extensible transaction management in PJava.

final, built-in classes

The external transactional API (ETAPI) provides a functional view of tran-
saction management to ordinary application programmers. The ETAPI is for
programmers who understand the transactional needs of the application. They
know which transaction class is best suited for their application, and understand
how to use the interface of that transaction class in their application.

Programmers using the ETAPI are responsible for the implementation of
transaction-aware classes, which should account for a small portion of the ap-
plication code. The transaction-aware classes isolate the rest of the application
code from classes that depend on classes specific to the ETAPI. Transaction-
aware classes typically encapsulate the creation of transaction objects, the defi-
nition of the boundaries of transactions, and the invocation of the methods spe-



CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 189

cific to the transaction objects. Hence, above the logical software layer made of
transaction-aware classes, there is no discernible difference from ordinary Java
programming, except that methods execute transactionally when invoked from
within a transaction. The classes implemented on top of the transaction-aware
layer can be exported “as is” for execution on virtual machines supporting stan-
dard Java classes.

The programming model offered by the ETAPI requires each transaction
body to be organized into one or several Runnable objects, i.e., objects that
implement the Runnable interface®. Runnable objects are the basis for com-
posing arbitrary Java code with arbitrary transaction objects.  Composition
via Runnable objects is similar to the approach taken for threads in Java and
compensates for the lack of support for methods as first-class objects. The Core
Reflection API promised with JDK 1.1 [JavaSoft, 1996] will help to limit the
proliferation of Runnable classes.

The ETAPI itself consists of a hierarchy of transaction classes, each class im-
plementing a given transaction model. The root of the hierarchy is the abstract
class TransactionShell. It provides two sets of methods that correspond to
the two levels of understanding of transaction management mentioned above.
The first set of public methods provides a programming interface for defin-
ing the boundary of a transaction irrespective of the model that the transaction
implements (see section 7.3). The methods of this set implement the interface
TransactionProcessor and are final, therefore they cannot be overridden.
The methods of the second set are all abstract and protected. They define
the reactions of the transaction model with respect to transaction management
events that may occur during the execution of transactions (see section 7.4).
These methods are part of the mandatory methods that a transaction model im-
plementer must define for safety and completeness reasons. Typical application
programmers are not expected to define or explicitly use these methods.

Only subclasses of the class TransactionShell implement transaction mod-
els. They may also augment the basic interface of transactions with new tran-
saction management primitives specific to the model they implement.

The Transaction Definition Interface (TDI) provides an implementation view
of transaction management. The TDI is for use by the expert programmer who
wishes to augment the set of available transaction models in order to satisfy
new needs. The TDI consists of Primitive components which may be used to
implement a subclass of a TransactionShell. Primitive components are Java
classes and interfaces that expose the visible functions of individual compo-
nents of the CTPE. For safety reasons, all of the classes that compose the TDI
are final. In the current design, the CTPE exposes an interface to only two
components: the lock and the recovery manager.
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7.2.3 Implicit transaction semantics

Neither of the APIs contain functions to explicitly enforce transactional behav-
ior. Such explicit functions would perform lock acquisition, data dependency
tracking and recovery information generation.

Our design uses automation to provide these functions implicitly for the
following reasons.

m  Programmers are relieved of onerous and error prone tasks such as setting
locks and notifying updates explicitly. This improves safety and reduces
development-time.

m»  The majority of code then operates unchanged in a transactional context.
This we call transaction independence. 1t greatly increases code re-use as
the vast majority of classes do not need to call transaction classes directly.

This implicit mechanism should be contrasted with explicit mechanisms
used in some Java bindings to databases and object stores. In those systems,
code must be liberally sprinkled with calls explicitly claiming locks, notifying
updates, etc. This means that all class re-use depends on being able to import
the source form or automatically annotate the compiled form. It means that the
application logic may be obscured and that classes cannot be easily exported.
Perhaps most seriously, it means that it is easy to misinform the transactional
engine by making an erroneous explicit call.

7.2.4 Implementation choices

To achieve implicit transaction semantics, three mechanisms are possible: pre-
processing source code, post-processing compiler output!) or modifying an
existing Java virtual machine (JVM). We have chosen the third approach for
the reasons given below.
Pre-processing Java Source

Pre-processing the source code has the apparent advantage that it retains the
ability for the code to run anywhere. This advantage is illusory as the code
will only run where there is a transactional engine that matches the inserted
calls. Such a transactional engine is not currently a standard property of Java.
Unfortunately, many useful libraries are available only in class-file format. It is
likely that the inserted method calls would have a significant overhead because
of the many extra JVM instruction executed. Either maintenance is made more
difficult because the application logic is obscured by the extra calls or the build
process is made more complex by the extra pass before compilation.
Post-processing Class files

Post-processing class files means that the bytecode sequences in each method
are analyzed and other bytecode sequences are inserted into them to perform
the transaction control. It has the advantage that it is no longer necessary to ob-
tain source code and that it does not obscure the application logic. Otherwise
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its merits and demerits are identical with pre-processing, except that a build
is now more complex because of an additional pass after compilation. This
approach must use only the standard bytecode instructions specified in the ar-
chitecture neutral format of Java classes [Lindholm and Yellin, 1996] in order
to maintain the ubiquitous execution property of Java.
Modifying an existing JVM

Our choice, of modifying an existing JVM, has the advantage that libraries
of classes can be imported unchanged and that the application logic is therefore
not obscured. Furthermore, changing a JVM allows optimizations that can not
be possible in the two previous approaches. On the other hand, this approach
has the disadvantage that we are locked in to the particular JVM implementa-
tions we are able to change, and that there are therefore some classes that will
run only on our JVMs. As observed above, if you want transactional behavior,
then you limit your application to run only where there is a transactional en-
gine. If the approach proves effective, as we believe it might, then it could be
implemented widely, but this has non-technical implications.

7.2.5 Outline of the modified JVM

The modified JVM identifies at runtime when transaction semantics need to be
enforced, and interacts directly with the CTPE’s components. For instance, the
modified JVM identify instructions that access or modify objects, and replaces
them with new instructions that does the required implicit transaction activities
in addition to the original instruction semantics. This replacement takes place
when the instruction is first executed, in much the same way as quick instruc-
tions avoid repeated dynamic binding in [Lindholm and Yellin, 1996]. This
techniques avoids increasing the number of JVM cycles.

The modified JVM also keeps track of which TransactionShell each Java
thread is running under and uses it for interacting with the CTPE. This transac-
tional context specifies to the CTPE the (possibly customized) semantics that
must be enforced.

All code must run within the scope of a transaction in PJava and all data ma-
nipulations from within a transaction are constrained to conform to that tran-
saction’s behavioral requirements. All data types (classes) are treated equally
with respect to transaction management. This eliminates the need to discrimi-
nate the objects that enforce transaction properties from those that don’t.

7.3 PROGRAMMING MODEL

The choice of an interface for defining the boundaries of transactions raises two
issues. First, the interface must be flexible enough to encompass the largest
range of programming styles. As an example, consider a simple GUI appli-
cation with a single frame and several buttons to control the execution of a
transaction (e.g., start a new transaction, end it, abort it or execute the op-
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public class ATMBackend {
private TransactionProcessor _tp;
// Configuring the Backend server with a transaction implementation
public ATMBackend( String model) {
Class transactionModel = Class.forName(model);
_tp = (TransactionProcessor) transactionModel.newInstance();
}
7.
public void serverLoop() {
ATMRequest rq = null;
Object [ ] rq-args = new Object[1];
while ( (rq = nextRequest()) ! = null ) {
switch (rq.rqid ) {
// fully specified request. Execute in one go
case ATMRequest. RQ_LEXECUTE:
rq-args[0] = new Long(rq.amount);
tp.start(new MethodInvocation(rq.op,rq.ba,rq-args));
_tp.claim();
break;
// Fragmented request
case ATMRequest. RQ_BEGIN:
_tp.start();
break;
case ATMRequest. RQ_COMMIT:
_tp.claim();
break;
case ATMRequest. RQ_ABORT:
~tp.kill();
break;
case ATMRequest.RQ_OP:
rq-args[0] = new Long(rq.amount);
_tp.enter(new MethodInvocation(rq.op,rq.ba,rq-args));
break;

}
}
}
}

Figure 7.2 An Auto-Teller Machine backend server.
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erations selected via the buttons on its behalf). The simple bracketing of an
arbitrary block of code with markers such as “begin” and “end” is not suf-
ficient to describe the boundary of the transaction in that case, since the body
of the transaction may be composed of several actions spread over the various
event handling methods of the GUI application. Similarly, consider a back-end
server that dispatches incoming requests to threads available in a pool. A given
transaction may send more than one request, each being potentially dispatched
to a different thread of the pool each time. Here again, the requirement of the
application cannot be satisfied with a simple “begin”/“end” syntactic bracket-
ing.

The second issue is related to the confinement of errors within the bound-
aries of the transaction that made them. More specifically, any exceptions left
uncaught in the body of a transaction must remain confined within that tran-
saction and must be propagated to the failure handling mechanism defined for
that transaction. Since the body of a transaction is made of arbitrary Java meth-
ods, a transaction body can spawn an arbitrary number of threads. This makes
the detection and confinement of failure even more complex.

The class TransactionShell offers a uniform framework for defining the body
of a transaction. This framework enables both procedural and event-driven
programming styles and deals with arbitrary multi-threaded transactions. The
example given in Figure 7.2 illustrates these two styles (exception handling
code is omitted for conciseness).

In both cases, transactions are defined by creating an instance of a tran-
saction class. An instance of a transaction class is really just a shell in which
to execute a transaction according to the model defined by that transaction’s
class. A transaction is effectively created when the shell is invoked using its
start method. If there is no current invocation, a transaction object is nothing
but a empty shell. After an invocation completes, the transaction object can be
invoked again, starting another transaction.

In the procedural programming style, a transaction instance is directly as-
sociated with an object that satisfies the Runnable interface. The body of the
transaction consists only of the run method of the associated Runnable object,
and the transaction terminates when the execution of this method completes
(either normally or because of a failure). The result of the transaction may be
obtained using the claim method of the transaction object. The start method
is provided with both synchronous and asynchronous variants, and the claim
method is provided with both blocking and non-blocking variants.

In the event-based programming style, the transaction object is not directly
associated with a Runnable object. Instead, the body of the transaction is made
of all the Runnable objects that enter in the transaction between the boundaries
explicitly defined by the programmer. When a thread calls the enter method
of a transaction object ¢ with a Runnable object o, it executes o on behalf of
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t. When the enter method returns, the thread is said to /eave the transaction,
i.e., it reverts the transaction it was before.

The example in figure 7.2 illustrates one possible usage of the method enter.
For instance, the server may receive four consecutive requests: an RQ_BEGIN,
followed by two RQ_EXECUTE, and finally an RQ_COMMIT. Upon reception of the
first request, the server invokes the method start of the variable _tp, which
hosts an instance of a TransactionShell. This starts a new transaction. Upon
reception of each RQ_EXECUTE, the server invokes the method enter of the
variable _tp. This effectively makes the server’s thread participate in the tran-
saction executed by the transaction shell _tp, for the time necessary to exe-
cute the run method of the Runnable object given as an argument to enter
(here, an instance of the MethodInvocation class). In the case just described,
the server’s thread would participate twice in the transaction, once for each
RQ_EXECUTE requests.

Threads launched from within the body of a transaction automatically par-
ticipate in that transaction. Such threads are called inner threads. No limitation
is imposed on the number of threads that may participate in a transaction con-
currently, except if programmed explicitly by a transaction class implementer.

A multi-threaded transaction terminates when the end method of its shell
is invoked and all its inner threads, as well as all the threads that entered the
transaction prior to the call to end, are completed. Entering a transaction in a
terminal state kills that transaction and raises an exception to the thread that
attempted to enter the transaction.

With the model just described, programmers are forced to specify the body
of their transactions, or part of them, as Runnable objects, and cannot just
bracket an arbitrary block of Java code with “begin” and “end” transaction
marks. The rationale for this approach is to confine exceptions that are un-
caught by transaction bodies to the limit of the transaction. By forcing the
encapsulation of every piece of code that participates in the body of a tran-
saction, a TransactionShell can catch all exceptions left uncaught by these
transaction bodies simply by invoking the Runnable object within a try /
catch Java block, and route the transaction execution to the code that deals
with failures.

Achieving the same confinement of exceptions with an approach based on
block delimitation makes it necessary to either force the programmer to explic-
itly catch exceptions and trigger manually the appropriate action (e.g., abort
the faulting transaction), or to change the language definition to incorporate
transaction bracketing as suggested in [Garthwaite and Nettles, 1996]. Both
options are incompatible with our requirements.

The example in Figure 7.2 also illustrates how the dynamicity of the lan-
guage Java makes it possible for the ATMBackend class to change transaction
model at runtime. For instance, the server loop can be augmented with an ad-
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ditional case statement for dealing with a new kind of request for changing the
transaction model currently used. This additional request just needs a string
containing the name of the class implementing the new transaction model.
Then, using a mechanism similar to those already used in the constructor of
the ATMBackend class, the _tp variable can be assigned a new instance of the
new transaction class, providing this new class implements the Transaction-
Processor interface.

The class MethodInvocation uses the reflexive functionalities of JDK 1.1,
described in JavaSoft’s draft of the Core Reflection API [JavaSoft, 1996] to
support arbitrary method invocation given an object, a string holding a method
name and an array of parameters needed for the method invocation.

7.4 TRANSACTION SHELL

New transaction models are introduced by defining subclasses of the abstract
class TransactionShell. The TransactionShell is intended to make the
definition of transaction classes simple and safe by:

= enforcing programmed transaction classes to conform to the uniform pro-
gramming model defined by the public interface of the class Transaction-
Shell. Any transaction, irrespective of the model it implements, can then
be composed with arbitrary Runnable objects.

= automating all of the monitoring of transaction executions. The class
TransactionShell relieves programmers from implementing the mon-
itoring of all events that may occur during the execution of a transaction
and impact on its behavior.

= enforcing the definition of complete transaction behavior by requiring the
programmer to fill in mandatory methods that will react to transaction
execution events that may happen during the execution of a transaction.

®= using default, system-defined concurrency or recovery behaviors if not
specified,

= using a default, system-defined recovery procedure if the user-defined
one fails (i.e., is either incomplete or erroneous).

The class TransactionShell provides two sets of methods that correspond
to the two levels of interface mentioned in section 7.1. The external interface
is made of concrete public methods that implement the programming model
described in the previous section. The internal interface is made of abstract
protected methods. Each method specifies a response to a transaction execution
event. Declaring these methods as abstract forces the programmer to specify
a response to these events and thus guarantees the completeness of the tran-
saction class’s implementation. The class TransactionShell transparently
detects these events and triggers the execution of the corresponding response.
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These event handler methods return a boolean. They return true if the event
is handled and false if the transaction class leaves the handling of the event
to the class TransactionShell. The class TransactionShell provides a
default response to each kind of event, which makes use of the default transac-
tional attributes specified by the class implementors (see below). For efficiency,
subclasses of TransactionShell can specify a set of events to ignore (using
the ignoreEvents of the TransactionShell), which means the default han-
dling mechanism will be triggered instead. This avoids unnecessary calls to
empty event handlers.

Hence, the task of a transaction class programmer consists of just defining a
concrete implementation for each of the TransactionShell’s abstract meth-
ods, and implementing the transaction management functions specific to the
corresponding transaction model.

Table 7.1 List of the principal event handlers of a TransactionShell

Events

Category Name

transaction’s state notifyBegin, notifyEnd,
transitions notifyAbort

inner transaction  notifyInvokee, notifyEndInvokee,
invocations notifyFailedInvokee

participant thread notifyThreadEnter, notifyThreadLeave,

activities notifyFailedEnteredThread
inner thread notifyThreadStart, notifyThreadEnd,
activities notifyFailedInnerThread

Table 7.1 lists the principal events sent to transaction objects®. There are
two categories of events: events related to a transition of the transaction state
(e.g., initiation, normal termination or termination due to a failure), and events
related to a change of the transaction structure which results from having a
programming model that allows a transaction body to be composed of arbitrary
participating threads running arbitrary Java code.

Events related to the transition of transaction states are typically used to im-
plement the semantics of the transaction model. Upon transaction initiation, the
transaction class must react by assigning default primitive components for con-
currency control and recovery management to the notified transaction object. If
some components have been omitted during transaction initiation, the notified
transaction object is automatically provided with equivalent primitive compo-
nents set to a system-defined behavior (e.g., strict isolation for concurrency
control). Upon transaction termination, the transaction class may define its se-
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mantics for publicizing the results of its transaction (i.e., make them visible to
all transactions or only some, or some of them to all, make them persistent, or
delegate them, etc.).

Events related to change of the transaction structure are further categorized
as per transaction events and per participating thread events.

Per transaction events concern the execution of inner transactions; they in-
form of the attempt to start a transaction from within the notified transaction,
and of the termination of the inner transactions. Upon reception of a inner
transaction event, a transaction object may react by inhibiting the transaction
semantics of the inner transaction prior to executing its body. In this case,
the inner transaction just executes as a normal method call. This may be use-
ful for preventing the composition of transactions of different classes (namely
if the interaction between the transaction model of the invoker and those of
the invokee is unknown) or for enforcing the “flatness” of a transaction. In-
hibition of inner invocations is controlled via a protected method of the class
TransactionShell.

Per participating thread events concern individual threads that execute on be-
half of a transaction. A thread participates in a transaction either because it has
explicitly entered the scope of that transaction (via either the enter or start
method of the public interface of a TransactionShell object), or because it
has been created within a transaction (see section 7.3). Events notifying the
participation of threads and the successful or abnormal end of their participa-
tion are generated for each kind of thread.

Before a thread participates in a transaction, it must be assigned some trans-
actional attributes. Locking capabilities (discussed in section 7.5) are one ex-
ample of such transactional attributes. These attributes are primitive compo-
nent objects that define how a thread enforces the concurrency control and
recovery behavior of the transaction it participates in. Assignment of transac-
tional attributes must be done when the transaction object is notified of the par-
ticipation of a thread. If no attributes are specified, the corresponding Trans -
actionShell assigns default attributes to the thread. These default attributes
are defined at transaction initiation time.

When a thread leaves the scope of a transaction, the class Transaction-
Shell arranges for the automatic re-installation of its previous transactional
attributes.

7.5 LOCKING CAPABILITIES

The class LockingCapability is the major component offered by the Tran-
saction Definition Interface for customizing concurrency controls. The concur-
rency control of a subclass of the TransactionShell class is specified using
instances of LockingCapability.
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A locking capability, or capability for short, is a book-keeper of locks with a
customizable conflict detection mechanism. A TransactionShell object can
own several capabilities, but a capability belongs to a unique Transaction-
Shell called the capability’s owner. Every thread must be bound to a capa-
bility, and several threads can be bound to the same capability (typically, all
threads enclosed in the same TransactionShell are bound to the same capa-
bility). By default, a thread is bound to the default capability of its enclosing
TransactionShell. A thread may change the capability it is bound to during
its execution, typically when it leaves a transaction and enters another one.

When a thread runs, the capability it is bound to automatically acquires the
locks protecting the objects the thread operates on. Locks are acquired with
respect to the conflict detection mechanism encoded in the capability. Tran-
saction model implementors customize the conflict detection mechanism of
each capability by specifying ignore-conflict relationships.

7.5.1 Ignoring Conflicts

Transactions access and manipulate objects of the persistent store by invok-
ing operations on them. Two operations are said to be compatible when they
do not conflict. Two operations conflict if their effects on the state of an ob-
ject or their return values (if any) are not independent of their execution order.
When an invoked operation op; conflicts with an operation op; in progress, a
dependency® is formed if op; is allowed to execute. Such dependencies reveal
possible inconsistent states which may induce either an abortion of the depen-
dent transaction or a specific commit ordering [Chrysanthis and Ramamritham,
1994]. The traditional ACID transaction model usually prevents such depen-
dencies from happening, while “extended” transaction models allow some of
these dependencies to happen temporarily.

A transaction management system must keep track of the ongoing opera-
tions and of dependencies that have been induced by the conflict. PJava uses a
customizable lock manager for this purpose.

A lock manager detects conflicts as follows. Objects are associated with
locks”. To perform an operation op; on an object O, the lock protecting O
must be acquired in a locking mode corresponding to op;. The compatibility
of locking modes (and thus of operations) is defined by a two dimensional
compatibility table: one dimension corresponds to the current mode of lock,
the other corresponds to the mode requested. The entry of the compatibility
table corresponding to the current state of the lock and the mode of the lock
request determines whether there is a conflict. If the request does not conflict,
the requester is added to the set of owners of the lock.

PJava considers only read/write locking modes which are easy to detect
transparently at the level of the virtual machine: each JVM instruction that
operates on an object can be categorized as either read or write.
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PJava’s customizable lock manager allows a lock request to specify, in ad-
dition to the locking mode requested, a set of ignore-conflict relationships. An
ignore-conflict relationship is a way to specify that one lock request can ig-
nore an incompatible owner of the lock when diagnosing a conflict with the
requested lock. For instance, a lock request issued from a transaction 7T, spec-
ifying a ignore-relationship with T (we say that T; is non-conflicting with T2)
will ignore any conflict with T, when deciding whether the lock can be granted.

Ignore-conflict relationships are specified using a labeled directed graph
where vertices are locking capabilities and edges are ignore-conflict relation-
ships. Edges are directed and labeled as either transitive or not. We use

t

-t

C; succ Cj to denote a transitive edge directed from C; to C; and C; succ C;
a intransitive edge from C; to C;. By default, edges are transitive.

This labeling of edges restricts the set of predecessors a locking capability
can ignore conflicts with. We call this set, Pred(C) for a capabilityC, the set of
effective predecessors of C. Thus, given a graph of locking capabilities, a lock-
ing capability ignores conflicts with all its effective predecessors in that graph.
For instance, given the graph of locking capabilities illustrated on figure 7.3,
we have:

Cp succ Cq, succ C, = Pred(C,) = {C;}
Cp succ (o succ Cs = Pred(C;) = {Cp, Cy}

Hence, C; can ignore conflicts with both C, and Cy, while C, can ignore con-
flicts only with C,.
More formally, the set of predecessors of a capabilityC is defined as:

Pred(C) =Pred(C)U[ |J ({Ci}UPred(C))] (7.1)

V Ci€Pred,(C)
where
-t
Pred—(C) ={ C;i| 3 C;isuccC} 7.2)
t
Pred,(C) ={ C;| 3 C;succC} (713)

Pred-;(C) denotes the set of immediate predecessors that forbid transitivity;
Predy(C) denotes the set of immediate predecessors that allow transitivity.

We also define Owner(l,M) as the set of locking capabilities which own
lock ! in mode M, and I, (I,M) as the set of owners of lock / in a mode
Incompatible with mode M. For instance, in the case of read/write locking
mode®, we have :

Lowner (I, Read) = Owner(l, Write) (7.4)

Lowner (1, Write) = Owner(l, Write) U Owner(l, Read) (1.5)
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Lastly, we define NCW(C) as the set of capabilities which are Non-Conflicting

With C:
NCW(C) = {C}UPred(C) (7.6)

With these definitions, a request for a lock / in mode M is granted to a locking
capability C if:
Lowner(I,M) C NCW(C) amn

As already mentioned, ignored conflicts create dependencies. More specifi-
cally, a dependency is created for each C; such that C; € (Ipyner (I, M) N Pred(C;)).
PJava keeps track of these dependencies and leaves to the TransactionShell
programmer the interpretation and the elimination of these dependencies. Lock-
ing capabilities can be queried about their dependencies at any time. An ex-
ception is raised when a TransactionShell tries to release the locks of (one
of) its locking capabilities that depend on at least one other capability.

There are three ways to eliminate dependencies: abort the transaction that
owns the dependent capability, wait for a specific commit order before releas-
ing the lock, or transfer the responsibility for the locks, and thereby, the visi-
bility of the state of the objects these locks protect, to one of the transactions
the dependency comes from. The latter is called delegation of locks.

Current Graph o, Lock Request Requester
Locking Capabilities q Mode Requested
lock
Cd C e N
mode requested
t R w
Check mode of Free | grant| grant

Compatibility |requested g ¢
of locking lock grant| deny
modes w | deny | deny

Locking modes Lock
are compatible ? ) oyes E> granted
no

9

is
I0wner(lock, Mode Resquested)

lock 1

Filter out the
Owner(l, R )=(} non-conflicting a subset of yes |:> Ig‘:;l;ed
Owner(l, W) ={Cp} incompatible NCW(Requestef)
owners
no
Lock
denied

Figure 7.3 Example of graph of locking capabilities and how it customizes the lock man-

ager’s conflict detection mechanism.
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7.5.2 Delegation

Delegation of locks allows one locking capability to atomically transfer the re-
sponsibility for its locks to another capability. Transferring lock responsibility
means changing the ownership of the delegated locks, and thus transferring the
control over the visibility of the objects the delegated locks protect. It also
means transferring the dependencies that have been created for acquiring these
locks. For instance, if a locking capability C; delegates its exclusive lock on
an object O to a capability Co, C is no longer able to access O after the del-
egation, until C; releases O’s lock or delegates it back to C;. Moreover, if Cy
acquired the lock on O by ignoring a conflict with a capability Cs, C’s depen-
dency on Cs for O is also transferred, such that, after delegation, Co depends
on C3.

We speak of global delegation when a capability transfers the responsibility
for all its locks at once, and partial delegation when it transfers the responsi-
bility for only a subset of its locks. The class Lockin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>