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Preface 

Motivation 

Modem enterprises rely on database management systems (DBMS) to collect, 
store and manage corporate data, which is considered a strategic corporate re
source. Recently, with the proliferation of personal computers and departmen
tal computing, the trend has been towards the decentralization and distribution 
of the computing infrastructure, with autonomy and responsibility for data now 
residing at the departmental and workgroup level of the organization. 

Users want their data delivered to their desktops, allowing them to incor
porate data into their personal databases, spreadsheets, word processing doc
uments, and most importantly, into their daily tasks and activities. They want 
to be able to share their information while retaining control over its access and 
distribution. 

There are also pressures from corporate leaders who wish to use information 
technology as a strategic resource in offering specialized value-added services 
to customers. Database technology is being used to manage the data associated 
with corporate processes and activities. Increasingly, the data being managed 
are not simply formatted tables in relational databases, but all types of ob
jects, including unstructured text, images, audio, and video. Thus, the database 
management providers are being asked to extend the capabilities of DBMS to 
include object-relational models as well as full object-oriented database man
agement systems. Corporations are also using the World Wide Web and the 
Internet to distribute information, conduct electronic commerce, and form vir
tual corporations where services are provided by a collection of companies, 
each specializing in a certain portion of the market. This implies that organi
zations will form federations in which they will share information for the good 
of the virtual enterprise. 

Rather than viewing a database as a passive repository of information, users, 
managers, and database system providers want to endow databases with active 
properties, so that corporate databases can become an active participants in 
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corporate processes, activities and workflows. Thus, there is a real need for ac
tive databases that can deliver timely infonnation to users based on their needs, 
as expressed in profiles and subscriptions. Further, active databases must deal 
with important events and critical conditions in real-time, that is, as they hap
pen, and take appropriate actions to ensure the correctness and quality of data. 
Finally, organizations are extracting historical data from on-line transaction 
processing databases, loading it into data warehouses for on-line analytical 
processing, and mining it for important patterns and knowledge. These pat
terns drive decision-making processes to improve corporate workflow, enhance 
customer satisfaction, and attain competitive advantage. 

Clearly, the trends discussed above pose new requirements and challenges 
for the design and implementation of next-generation database management 
systems. For example, we cannot rely on traditional transaction processing 
models with their stringenllocking protocols because many corporate activities 
require support for long-running transactions. In federated systems one cannot 
impose a processing protocol on a federation partner, rather one must rely on 
negotiated contracts and commitments for specified levels of service. 

New workflow models are required to define computer- and database-suppor
ted activities to cooperate in the integration and sharing of infonnation among 
functional units in the organization. The reengineering of processes and acti
vities can benefit from these new workflow models. These concepts may find 
their way into the new database management systems or into "middle-ware" 
products that work in conjunction with the DBMS. 

Advanced Transaction Models and Architectures 

It is in the context of evolving requirements, uses and expectations for data
base management systems that we have assembled this important collection of 
papers authored by world-renowned thinkers, designers and implementors of 
database systems to address the issues associated with advanced transaction 
models and architectures. The issues discussed in the book include: 1) work
flow models, 2) new transaction models, protocols and architectures, 3) se
mantic decomposition of transactions, 4) distributed processing, 5) real-time 
transaction processing, 6) active databases, and 6) new concurrency models for 
transactional workflows. 

We have divided the book into sections and have grouped the papers into 
topic areas. Part I deals with Workflow Transactions. D. Worah and A. Sheth 
discuss the role of transactions in workflows, including such topics as recov
ery and error handling for long-running workflows. G. Alonso and C. Mohan 
address architectures for workflow management systems, and discuss the chal
lenges facing designers of such systems. 

Part II deals with tool-kit approaches to transaction processing. R. Barga 
and C. Po present a Reflective Transaction Framework for implementing ad-
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vanced transaction models as well as semantics-based concurrency control. L. 
Mancini, I. Ray, S. Jajodia and E. Bertino address flexible commit protocols 
and show how a general framework can address specific issues such as sagas, 
workflows, long-lived activities and transactions, and transaction dependen
cies. 

Part ill addresses semantic issues associated with transactions, specifically 
within the context of the ConTracts Model, and also in the semantic decom
position of transactions. A. Reuter, K. Schneider and F. Schwenkreis provide 
a survey of the ConTracts model, and show how it can be used for handling 
workflows and properties dealing with the correctness of long-running transac
tions. P. Ammann, S. Jajodia. and I. Ray focus on the semantics-based decom
position of transactions, introduce concepts such as compensating steps and 
semantic histories, and prove useful properties of valid decompositions and the 
processing of such decomposed transactions. 

Part IV deals with concurrency control and recovery of transactions. L. 
Daynes, M. Atkinson, and P. Valduriez discuss how one can customize con
currency control for "persistent" Java. They present a programming model 
and a transaction shell to support user trade-off analysis and design decisions. 
C. Martin and K. Ramamritham provide a formal model for recovery of ad
vanced transactions. They couch their model in the form of requirements, as
surances and rules to ensure failure atomicity, transaction durability, and recov
ery. They discuss the model and framework within the context of the ARIES 
and ARIESIRH recovery protocols. 

Part V focuses on transaction optimization techniques. A. Helal, Y-S. Kim, 
M. Nodine, A. Elmagarmid, and A. Heddaya discuss the failings of current 
architectures, propose a novel approach based on pre- and post-optimization, 
and discuss the role of query optimization as it relates to query decomposition, 
site assignment and replication strategies. 

Part VI discusses how the Event-Condition-Action (ECA) paradigm from 
active databases can be used to implement transaction models. A. Anwar, S. 
Chakravarthy, M. Viveros present this approach within the Zeitgeist object
oriented database management system. 

Part vn discusses the role of inter- and intra-transaction parallelism in the 
context of both on-line transaction processing (OLTP) and on-line analytical 
processing (OLAP). C. Hasse and G. Weikum present these concepts within 
the framework of the PLENTY system which supports both kinds of transaction 
processing. This is quite different from the current approach in which OLAP 
is done separately in a data warehouse which is constructed by extracting data 
from corporate on-line transaction processing systems. 

Part Vill is devoted to Real-Time Data Management and P. Jensen, N. Sopar
kar and M. Tayara discuss real-time concurrency and coordination control in 
the context of distributed systems. 
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Part IX completes our collection with a focus on Mobile Computing. J. 
Shanmugasundaram, A. Nithrakashyap, J. Padhye, R. Sivasankaran, M. Xiong, 
and K. Ramamritham discuss transaction models in the context of mobile sys
tems in which low bandwidth, low storage capacity and insufficient power im
pose new challenges for client-server communication and transactions. 

We would like to extend our sincerest thanks to Mr. Indrajit Ray who assisted 
with every aspect of preparing this book, from collection of manuscripts from 
the authors to dealing with the Kluwer staff regarding ~TEX-related issues. 
Thanks are also due to our publisher, Mr. Alex Greene, whose enthusiasm and 
support for this project was most helpful. 

SUSHIL JAJODIA AND LARRY KERSCHBERG 
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I Workflow Transactions 



1 TRANSACTIONS IN 
TRANSACTIONAL WORKFLOWS 

Devashish Worah and Amit Sheth 

Abstract: Workflow management systems (WFMSs) are finding wide applica
bility in small and large organizational settings. Advanced transaction models 
(A1Ms) focus on maintaining data consistency and have provided solutions to 
many problems such as correctness, consistency, and reliability in transaction 
processing and database management environments. While such concepts have 
yet to be solved in the domain of workflow systems, database researchers have 
proposed to use, or attempted to use A1Ms to model workflows. In this paper 
we survey the work done in the area of transactional workflow systems. We then 
argue that workflow requirements in large-scale enterprise-wide applications in
volving heterogeneous and distributed environments either differ or exceed the 
modeling and functionality support provided by AT Ms. We propose that an ATM 
is unlikely to provide the primary basis/or modeling o/workflow applications, 
and subsequently workflow management. We discuss a framework for error han
dling and recovery in the METEOR2 WFMS that borrows from relevant work in 
A1Ms, distributed systems, software engineering, and organizational sciences. 
We have also presented various connotations of transactions in real-world orga
nizational processes today. Finally, we point out the need for looking beyond 
A1Ms and using a multi-disciplinary approach for modeling large-scale work
flow applications of the future. 

1.1 INTRODUCTION 

A workflow is an activity involving the coordinated execution of multiple tasks 
performed by different processing entities [Krishnakumar and Sheth, 1995]. A 
workflow process is an automated organizational process involving both hu
man and automated tasks. Workflow management is the automated coordina-

S. Jajodia et al. (eds.), Advanced  Transaction  Models  and Architectures
© Springer Science+Business Media New York 1997
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tion, control and communication of work as is required to satisfy workflow 
processes [Sheth et al., 1996a]. There has been a growing acceptance of work
flow technology in numerous application domains such as telecommunications, 
software engineering, manufacturing, production, finance and banking, health 
care, shipping and office automation [Smith, 1993, Joosten et al., 1994, Geor
gakopoulos et al., 1995, Fischer, 1995, Tang and Veijalainen, 1995, Sheth 
et al., 1996b, Palaniswami et al., 1996, Bonner et al., 1996, Perry et al., 1996]. 
Workflow Management Systems (WFMSs) are being used in inter- and intra
enterprise environments to re-engineer, streamline, automate, and track organi
zational processes involving humans and automated information systems. 

In spite of the proliferation of commercial products for workflow manage
ment (including modeling and system supported enactment), workflow tech
nology is relatively immature to be able to address the myriad complexities as
sociated with real-world' applications. The current state-of-the-art is dictated by 
the commercial market which is focused toward providing automation within 
the office environment with emphasis on coordinating human activities, and 
facilitating document routing, imaging, and reporting. However, the require
ments for workflows in large-scale multi-system applications executing in het
erogeneous, autonomous, distributed (HAD) environments involving multiple 
communication paradigms, humans and legacy application systems far exceeds 
the capabilities provided by products today [Sheth, 1995]. 

Some of the apparent weaknesses of workflow models that need to be ad
dressed by the workflow community include the lack of a clear theoretical 
basis, undefined correctness criteria, limited support for synchronization of 
concurrent workflows, lack of interoperability, scalability and availability, and 
lack of support for reliability in the presence of failures and exceptions [Bre
itbart et al., 1993, Jin et al., 1993, Georgakopoulos et al., 1995, Mohan et al., 
1995, Alonso and Scbek, 1996b, Kamath and Ramamritham, 1996a, Leymann 
et al., 1996, Alonso et al., 1996a]. In addition, a successful workflow-enabled 
solution should address many of the growing user needs that have resulted 
from: 

• emerging and maturing infrastructure technologies and standards for dis
tributed computing such as the World Wide Web, Common Object Re
quest Broker Architecture [OMG, 1995b], Distributed Common Object 
Model (DCOM), ActiveX, Lotus Notes, and Java. 

• increasing need for electronic commerce using standard protocols such 
as Electronic Data Interchange (ED!) (e.g., ANSI X.12 and HL7), 

• additional organizational requirements in terms of security and authenti
cation, 

• demands for integrated collaboration (not just coordination) support, 
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• increasing use of heterogeneous multimedia data, and 

• requirements to support dynamic workflows to respond to the fast chang
ing environment (e.g., defense planning), or for supporting today's dy
namic and virtual enterprises. 

Workflow technology has emerged as a multi-disciplinary field with sig
nificant contributions from the areas of software engineering, software pro
cess management, database management, and distributed systems [Sheth et al., 
1996a]. In spite of the standardization efforts of the Workflow Management 
Coalition [Coalition, 1994], a consensus on many broader aspects have not yet 
been achieved. 

Work in the areas of transaction processing [Gray and Reuter, 1993] and 
database systems, and many (but not all) efforts related to ATMs [Elmagarmid, 
1992, Chrysanthis and Ramamritham, 1991, Georgakopoulos et aI., 1994], are 
based on a strong theoretical basis. They have proposed or documented solu
tions (although many of which have yet to be implemented) to problems such 
as correctness, consistency, and recovery when the constituent tasks are trans
actional, or the processing entities provide a transactional interface. There 
exists a strong school of thought, primarily comprised of researchers from 
the database community, which views a workflow model as an extension of 
ATMs [Georgakopoulos and Hornick, 1994, Georgakopoulos et al., 1994, Chen 
and Dayal, 1996, Biliris et al., 1994, Weikum, 1993, Waechter and Reuter, 
1992]. However, it has also been observed [Breitbart et al., 1993, Alonso et al., 
1996b, Worah and Sheth, 1996] that ATMs have limited applicability in the 
context of workflows due to their inability to model the rich requirements of 
today's organizational processes adequately. 

Traditional database transactions provide properties such as failure atomicity 
and concurrency control. These are very useful concepts that could be appli
cable in workflows. For example, failure atomicity can be supported for a task 
that interacts with a DBMS, or a group of tasks using the two-phase commit 
protocol. There is a potential need for concurrency control and synchronization 
of workflow processes for addressing correctness concerns during workflow 
execution [Jin et al., 1993, Alonso et al., 1996a]. Based on our review of re
quirements of existing applications using workflows [Worah and Sheth, 1996], 
we feel that transactional features form only a small part of a large-scale work
flow application. Workflow requirements either exceed, or significantly differ 
from those of ATMs in terms of modeling, coordination and run-time require
ments. It would definitely be useful to incorporate transactional semantics such 
as recovery, relaxed atomicity and isolation to ensure reliable workflow execu
tions. Nevertheless, to view a workflow as an ATM, or to use existing ATMs 
to completely model workflows would be inappropriate. We do not think that 
existing ATMs provide a comprehensive or sufficient framework for modeling 
large-scale enterprise-wide workflows. 
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Our observations in this chapter reflect our experience in modeling and 
development efforts for a real-world workflow application for immunization 
tracking [Sheth et al., 1996b, Palaniswami et al., 1996], experience in try
ing to use flexible transactions in multi-system telecommunication applica
tions [Ansari et aI., 1992], and our understanding of the current state of the 
workflow technology and its real-world or realistic applications [Sheth et al., 
1996b, Medina-Mora and Cartron, 1996, Bonner et al., 1996, Ansari et al., 
1992, Vivier et al., 1996, Sheth and Joosten, 1996]. 

We emphasize the need for looking beyond the framework of ATMs for mod
eling and executing workflow applications. The term transaction as it is used 
in business processes today has multiple connotations, database transactions 
being only one of them. For example, EDI transactions are used for defining 
interfaces and data formats for exchange of data between organizations and 
Health Level 7· (HL 7) transactions are used to transfer patient data between 
health care organizations. We discuss other uses of this term in section 1.7. 
Workflow systems should evolve with the needs of the business and scientific 
user communities, both in terms of modeling and run-time support. Of course, 
it is possible that in some specific domains, ATM based workflow models may 
be sufficient, however, we believe, such cases would be very few. 

The organization of this chapter is as follows. Sections 2 through 5 are 
tutorial in nature. In section 2 we review the research in the domain of ATMs. 
The next section discusses the characteristics of transactional workflows and 
significant research in this area. One of the primary focus of transactional 
workflows is recovery. In section 4 we highlight the issues involved in recovery 
for workflow systems. Section 5 discusses the types of errors that could occur 
during workflow execution. In section 6 we discuss a practical implementation 
of error handling and recovery in a large-scale WFMS. Section 6 provides a 
perspective into the characteristics and interpretation of transactions as they 
exist in workflow applications today. Finally, we conclude the paper with our 
observations regarding the role of transactions in transactional workflows. 

1.2 ADVANCED TRANSACTION MODELS 

In this section we will briefly describe some of the ATMs discussed in the 
literature [Gray and Reuter, 1993, Elmagarmid, 1992]. These models can be 
classified according to various characteristics that include transaction struc
ture, intra-transaction concurrency, execution dependencies, visibility, durabil
ity, isolation requirements, and failure atomicity. ATMs permit grouping of 
their operations into hierarchical structures, and in most cases relax (some of) 
the ACID requirements of classical transactions. In this section, we discuss 
some of the ATMs that we feel are relevant in the context of workflow systems. 
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1.2.1 Nested Transactions 

An important step in the evolution of a basic transaction model was the ex
tension of the flat (single level) transaction structure to multi-level structures. 
A Nested Transaction [Moss, 1982] is a set of subtransactions that may recur
sively contain other subtransactions, thus forming a transaction tree. A child 
transaction may start after its parent has started and a parent transaction may 
terminate only after all its children terminate. If a parent transaction is aborted, 
all its children are aborted. However, when a child fails, the parent may choose 
its own way of recovery, for example the parent may execute another sub
transaction that performs an alternative action (a contingency subtransaction). 
Nested transactions provide full isolation at the global level, but they permit 
increased modularity, finer granularity of failure handling, and a higher degree 
of intra-transaction concurrency than the traditional transactions. 

1.2.2 Open Nested Transactions 

Open Nested Transactions [Weikum and Schek, 1992] relax the isolation re
quirements by making the results of committed subtransactions visible to other 
concurrently executing nested transactions. This way, a higher degree of con
currency is achieved. To avoid inconsistent use of the results of committed 
subtransactions, only those subtransactions that commute with the committed 
ones are allowed to use their results. Two transactions (or, in general, two op
erations) are said to commute if their effects, i.e., their output and the final state 
of the database, are the same regardless of the order in which they were exe
cuted. In conventional systems, only reati'operations commute. Based on their 
semantics, however, one can also define update operations as commutative (for 
example increment operations of a counter). 

1.2.3 Sagas 

A Saga [Garcia-Molina and Salem, 1987] can deal with long-lived transac
tions. A Saga consists of a set of ACID subtransactions TI, ... , Tn with a pre
defined order of execution, and a set of compensating subtransactions CT I, ... , 
CTn_}, corresponding to TI, ... , Tn-I. A saga completes successfully, if the 
subtransactions T I, ... , Tn have committed. If one of the subtransactions, say 
Tk, fails, then committed subtransactions T}, ... , Tk-l are undone by executing 
compensating subtransactions CTk-l, ... , CTI. Sagas relax the full isolation 
requirements and increase inter-transaction concurrency. An extension allows 
the nesting of Sagas [Garcia-Molina et al., 1991]. Nested Sagas provide use
ful mechanisms to structure steps involved within a long running transaction 
into hierarchical transaction structures. This model promotes a relaxed notion 
of atomicity whereby forward recovery is used in the form of compensating 
transactions to undo the effects of a failed transaction. 



8 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

1.2.4 Multi-Level Transactions 

Multi-Level Transactions are more generalized versions of nested transactions 
[Weikum and Schek, 1992, Gray and Reuter, 1993]. Subtransactions of a multi
level transactions can commit and release their resources before the (global) 
transaction successfully completes and commits. If a global transaction aborts, 
its failure atomicity may require that the effects of already committed subtrans
actions be undone by executing compensating subtransactions. A compensat
ing subtransaction t- semantically undoes effects of a committed subtransac
tion t, so that the state of the database before and after executing a sequence 
t t- is the same. However, an inconsistency may occur if other transaction 
s observe the effects of subtransactions that will be compensated later [Gray 
and Reuter, 1993, Garcia-Molina and Salem, 1987, Korth et al., 1990b]. Open 
nested transactions use the commutativity to solve this problem. Since only 
subtransactions that commute with the committed ones are allowed to access 
the results, the execution sequence t s t- is equivalent to s t t- and, according to 
definition of compensation, to s, and therefore is consistent. A somewhat more 
general solution in the form of a horizon of compensation, has been proposed 
in [Krychniak et al., 1996] in the context of multi-level activities. 

1.2.5 Flexible Transactions 

Flexible Transactions [Elmagarmid et al., 1990, Zhang et al., 1994a] have been 
proposed as a transaction model suitable for a multidatabase environment. A 
flexible transaction is a set of tasks, with a set of functionally equivalent sub
transactions for each and a set of execution dependencies on the subtransac
tions, including failure dependencies, success dependencies, or external de
pendencies. To relax the isolation requirements, flexible transactions use com
pensation and relax global atomicity requirements by allowing the transaction 
designer to specify acceptable states for termination of the flexible transaction, 
in which some subtransactions may be aborted. IPL [Chen et al., 1993] is 
a language proposed for the specification of flexible transactions with user
defined atomicity and isolation. It includes features of traditional programming 
languages, such as type specification to support specific data formats that are 
accepted or produced by subtransactions executing on different software sys
tems, and preference descriptors with logical and algebraic formulae used for 
controlling commitments of transactions. Because flexible transactions share 
some more of the features of a workflow model, it was perhaps the first ATM 
to have been tried to prototype workflow applications [Ansari et al., 1992]. 

1.2.6 ACTA and its derivatives 

Reasoning about various transaction models can be simplified using the ACTA 
metamodel [Chrysanthis and Ramamritham, 1992]. ACTA captures the impor-
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tant characteristics of transaction models and can be used to decide whether 
a particular transaction execution history obeys a given set of dependencies. 
However, defining a transaction with a particular set of properties and assur
ing that an execution history will preserve these properties remains a difficult 
problem. 

In [Biliris et al., 1994], the authors propose a relaxed transaction .facility 
called ASSET. It is based on transaction primitives derived from the ACTA 
framework that can be used at a programming level to specify customized, 
application specific transaction models that allow cooperation and interaction. 
The transaction primitives include a basic and an extended set of constructs 
that can be used in an application that needs to support custom transactional 
semantics at the application level. These can be used to support very limited 
forms of workflows that involve transaction-like components. In some sense, 
this demonstrates the limitations one may face when trying to use an ATM as a 
primary basis for workflow modeling. 

1.3 TRANSACTIONAL WORKFLOWS 

The term transactional workflows [Sheth and Rusinkiewicz, 1993] was intro
duced to clearly recognize the relevance of transactions to workflows. It has 
been subsequently used by a number of researchers [Breitbart et al., 1993, 
Rusinkiewicz and Sheth, 1995, Krishnakumar and Sheth, 1995, Georgakopou
los et al., 1995, Tang and Veijalainen, 1995, Leymann et al., 1996]. Trans
actional workflows involve the coordinated execution of multiple related tasks 
that require access to HAD systems and support selective use of transactional 
properties for individual tasks or entire workflows. They use ATMs to spec
ify workflow correctness, data-consistency and reliability. Transactional work
flows provide functionality required by each workflow process (e.g., allow task 
collaboration and support the workflow structure) which is usually not avail
able in typical DBMS and TP-monitor transactions. Furthermore, they address 
issues related to reliable execution of workflows (both single and multiple) in 
the presence of concurrency and failures. 

Transactional workflows do not imply that workflows are similar or equiv
alent to database transactions, or support all the ACID transaction properties. 
They might not strictly support some of the important transaction features sup
ported by TP monitors (e.g., concurrency control, backward recovery, and con
sistency of data). Nevertheless, such workflows share the objectives of some of 
the ATMs in terms of being able to enforce relaxed transaction semantics to a 
set of activities. 

In a somewhat conservative view, transactional workflows are workflows 
supported by an ATM that defines workflow correctness and reliability crite
ria [Georgakopoulos et al., 1995]. In such a workflow, the tasks are mapped 
to constituent transactions of an advanced transaction supported by an ATM 
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[Georgakopoulos et al., 1994], and control flow is defined as dependencies be
tween transactional steps. Similarly, in [Weikum, 1993] an extra control layer 
in terms of dependencies is added to ATM to provide functionality to the trans
actions running in a large-scale distributed information systems environment. 

A WFMS may provide transactional properties to support forward recovery, 
and use system and application semantics to support semantic based correct 
multi-system application execution [Sheth, 1995, Krishnakumar and Sheth, 
1995]. These could include transaction management techniques such as log
ging, compensation, etc. to enable forward recovery and failure atomicity. In 
addition, the workflow could exhibit transactional properties for parts of its exe
cution. It might use transaction management technology such as transactional
RPC between two components of a WFMS (e.g, scheduler and task manager), 
an extended commit coordinator [Miller et al., 1996], or a transactional proto
col (XA) between a task manager and a processing entity, 

In our view, the scope of transactional workflows extends beyond the purview 
of database transactions and ATMs. Workflow executions include tasks that 
might involve database transactions; however, large-scale workflow applica
tions typically extend beyond the data-centric domains of databases and in
frastructures that inherently support transaction semantics (e.g., TP-monitors), 
to more heterogeneous, distributed and non-transactional execution environ
ments. 

1.3.1 Previous Research on using Transactions for WorkHows 

Two major approaches have been used to study and define transactional work
flows. The first one utilize a workflow model that is based on supporting or
ganizational processes (also called business process modeling) as its basis, and 
complements it with transactional features to add reliability, consistency, and 
other transaction semantics. In the second approach, ATMs are enhanced to in
corporate workflow related concepts to increase functionality and applicability 
in real-world settings. The degree to which each of the models incorporates 
transactional features varies, and depends largely on the requirements (such as 
flexibility, atomicity and isolation of individual task executions and multiple 
workflow instances, etc.) of the organizational processes it tries to model. In 
the remainder of this section, we discuss some of the research that has been 
done using ATMs and workflows. 

ConTracts [Waechter and Reuter, 1992] were proposed as a mechanism for 
grouping transactions into a multitransaction activity. A ConTract consists of a 
set of predefined actions (with ACID properties) called steps, and an explicitly 
specified execution plan called a script. An execution of a ConTract must be 
forward-recoverable, that is, in the case of a failure the state of the ConTract 
must be restored and its execution may continue. In addition to the relaxed 



TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 11 

isolation, ConTracts provide relaxed atomicity so that a ConTract may be in
terrupted and re-instantiated. 

Workflow applications are typically long-lived compared to database trans
actions. A workflow is seen as a Long-Running Activity in [Dayal et al., 1990, 
Dayal et al., 1991]. A Long-Running Activity is modeled as a set of execution 
units that may consist recursively of other activities, or top-level transactions 
(i.e., transactions that may spawn nested transactions). Control flow and data 
flow of an activity may be specified statically in the activity's script, or dy
namically by Event-Condition-Action (ECA) rules. This model includes com
pensation, communication between execution units, querying the status of an 
activity, and exception handling. 

Motivated by advanced application requirements, several ATMs have been 
proposed (refer to [Chrysanthis and Ramamritham, 1991, Georgakopoulos and 
Hornick, 1994] for frameworks for defining and comparing ATMs, [Elma
garmid, 1992] for several representative ATMs, for a representative model and 
specification that support application specific transaction properties, and [Bre
itbart et al., 1993, Hsu, 1993, Rusinkiewicz and Sheth, 1995] for earlier views 
on relationships between workflows and ATMs). ATMs extend the traditional 
(ACID) transaction model typically supported by DBMSs to allow advanced 
application functionality (e.g., permit task collaboration and coordination as it 
is required by ad hoc workflows) and improve throughput (e.g., reduce tran
saction blocking and abortion caused by transaction synchronization). How
ever, many of these e~tensions have resulted in application-specific ATMs that 
offer adequate correctness guarantees in a particular application, but not in oth
ers. Furthermore, an ATM may impose restrictions that are unacceptable in one 
application, yet required by another. If no existing ATM satisfies the require
ments of an application, a new ATM is defined to do so. 

In [Georgakopoulos et al., 1994], the authors define an extended (advanced) 
transaction framework for execution of workflows called the Transaction Spec
ification and Management Environment (TSME). A workflow in this frame
work consists of constituent transactions corresponding to workflow tasks. In 
addition, workftows have an execution structure that is defined by an ATM; 
the ATM defines the correctness criteria for the workflow. The TSME claims 
to support various ATMs (extended transaction models) to ensure correctness 
and reliability of various types of workflow processes. Extended transactions 
consist of a set of constituent transactions and a set of dependencies between 
them. These transaction dependencies specify the transaction execution struc
tures or correctness criteria. A programmable transaction management mecha
nism based on the ECA rules [Dayal et al., 1990] is used to enforce transaction 
state dependencies. 

Semantic transaction models aim to improve performance and data consis
tency by executing a group of interacting steps within a single transaction and 
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relaxing the ACID properties of this transaction in a controlled manner. In 
[Weikum, 1993], the author suggests that semantic transaction concepts be 
merged with workflow concepts to promote workflow systems that are con
sistent and reliable. The author defines a transactional workflow to be a control 
sphere that binds these transactions by using dependencies to enforce as much 
behavioral consistency as possible thereby enforcing reasonable amount of data 
consistency. 

The METEOR! [Krishnakumar and Sheth, 1995] workflow model is an inte
gration of many of the approaches described above. A workflow in METEOR 
is a collection of mUltiple tasks. Each of the tasks could be heterogeneous 
in nature. The execution behavior of the tasks are captured using well-defined 
task structures. This model supports tasks that have both transactional and non
transactional semantics. Groups of tasks along with their inter-task dependen
cies can be modeled as compound tasks. The compound tasks have their task 
structures too. Transactional workflows can be modeled using transactional 
tasks and transactional compound tasks as the basis of the workflow model. 
The METEOR2 WFMS [Miller et al" 1996, Sheth et al" 1996b] is based on 
the METEOR model. It extends the model in terms of providing better sup
port for failure recovery and error handling in heterogeneous and distributed 
workflow environments (see section 1.6.1 for additional details). 

The Exotica project [Alonso et al., 1995a, Alonso et al., 1996b] explores 
the role of advanced transaction management concepts in the context of work
flows. A stated objective of this research is to develop workflow systems that 
are capable enough (in terms of reliability, scalability, and availability) to deal 
with very large, heterogeneous, distributed and legacy applications. One of the 
directions of this project is to research the synergy between workflow systems 
and advanced transaction models; the results that follow point in the direction 
that workflow systems are a superset of advanced transaction models [Alonso 
et al., 1996b] since workflow systems incorporate process and user oriented 
concepts that are beyond the purview of most ATMs. Partial backward re
covery has been addressed in the context of the FlowMark WFMS [Leymann, 
1995] by generalizing the transactional notions of compensation. 

One of the projects in which transactional semantics have been applied to 
a group of steps define a logical construct called a Consistency unit (C-unit) 
[Tang and Veijalainen, 1995]. A C-unit is a collection of workflow steps and 
enforced dependencies between them. C-units relax the isolation and atomicity 
properties of transactional models. The authors also discuss how C-units can 
be used to develop transactional workflows that guarantee correctness of data 
in the view of integrity constraints that might exist across workflow processing 
entities. 

The INformation CArrier (INCA) [Barbara et al., 1996a] workflow model 
was proposed as a basis for developing dynamic workflows in distributed en-
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vironments where the processing entities are relatively autonomous in nature. 
In this model, the INCA is an object that is associated with each workflow and 
encapsulates workflow data, history and processing rules. The transactional 
semantics of INCA procedures (or steps) are limited by the transaction sup
port guaranteed by the underlying processing entity. The INCA itself is neither 
atomic nor isolated in the traditional sense of the terms. However, transac
tional and extended transactional concepts such as redo of steps, compensating 
stepsand contingency steps have been included in the INCA rules to account 
for failures and forward recovery. 

In the Nested Process Management environment [Chen and Dayal, 1996] 
a workflow process is defined using a hierarchical collection of transactions. 
Failure handling is supported using a two-phase approach. During the first 
phase of recovery, a bottom-up lookup along the task tree is performed to de
termine the oldest parent transaction that does not need to be compensated. 
The next phase involves compensation of all the children of this parent. In this 
model, failure atomicity of the workflow is relaxed in terms of compensating 
only parts of the workflow hierarchy. 

The Workflow Activity Model(WAMO) [Eder and Liebhart, 1995] defines a 
workflow model that enables the workflow designer in modeling reliable work
flows [Eder and Liebhart, 1996]. It uses an underlying relaxed transaction 
model that is characterized by relaxing i) failure atomicity of tasks, ii) serial
izability of concurrent and interleaved workflow instance executions, and iii) 
relaxing isolation in terms of externalization of task results. 

Thus we see that transaction concepts have been applied to various de
grees in the context of workflows. They have been used to define application 
specific and user-defined correctness, reliability and functional requirements 
within workflow executions. In the next section, we discuss features specific 
to transactions and ATMs that would be useful for implementing recovery in a 
WFMS. 

1.4 WORKFLOW RECOVERY 

Reliability is of critical importance to workflow systems [Georgakopoulos et al., 
1995, Georgakopoulos, 1994, Jin et al., 1993]. WFMS should not only be func
tionally correct, but should also be robust in the view of failures. Workflow 
systems (both commercial and research prototypes) in their current state, lack 
adequate support for handling errors and failures in large-scale, heterogeneous, 
distributed computing environments [Georgakopoulos et al., 1995, Alonso and 
Schek, 1996b, Kamath and Ramamritham, 1996a, Sheth et al., 1996a, Ley
mann et al., 1996]. Failures could occur at various points and stages within the 
lifetime of the workflow enactment process. They could involve failures asso
ciated with the workflow tasks (such as unavailability of resources, incorrect 
input formats, internal application failures, etc.), failures within the workflow 
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system components (such as schedulers, databases, etc.), and failures in the 
underlying infrastructure (such as hardware and network failures). Reliabil
ity in the context of workftows requires that tasks, their associated data, and 
the WMFS itself be recoverable in the event of failure, and that a well defined 
method exists for recovery. 

A workflow process is heavily dependent on the organizational structure, 
and business policies within an organization. Workflows are activities that are 
horizontal in nature and are spread across the organizational spectrum as com
pared to transaction processing activities (e.g., database transactions) that are 
more vertical or hierarchical in nature and might form only part of the work
flow process. In other words, hierarchical decomposition used for complex ad
vanced transaction models is not sufficient for modeling workflows. A WFMS 
needs to support recovery of its tasks, associated data and the workflow process 
as a whole. The heterogeneous nature of workflow tasks and processing enti
ties might preclude any transactional semantics that are required for assuring 
transactional behavior of the workflow or the constituent tasks themselves. A 
viable recovery mechanism should be consistent with and should support the 
overall goal of the business process concerned. 

Valuable research addressing recovery has been done in transaction manage
ment and ATMs [Bernstein et al., 1987, Gray and Reuter, 1993, Korth et al., 
1990b, Moss, 1987, Waechter and Reuter, 1992, Chen and Dayal, 1996] (see 
sections 1.2 and 1.3.1). A strictly data-centric approach has been used to ad
dress recovery issues in transaction processing. The problem domain of recov
ery in a WFMS is broader than that of transaction systems and ATMs due to 
its process-oriented focus, and diverse multi-system execution requirements. 
Although the ideas proposed in ATMs are limited in terms of the domains and 
environments they apply to, they are valuable in terms of their semantics and 
overall objectives. In the next section, we discuss the value and applicability of 
transaction concepts in the context of workflow recovery. 

1.4.1 Transaction Concepts in Modeling Workflow Recovery 

Earlier, we have discussed some of the ATMs that have been proposed in the 
literature. Recovery involves restoration of state - a concept which is voiced 
by transactional systems also. Later, we also reviewed some of the work in 
transactional workflows, and different approaches for incorporating transac
tional semantics into workflow models. We feel that transaction concepts are 
necessary for a recovery mechanism to be in place; however, basing a work
flow recovery framework on a transactional (or advanced) transactional model 
would be naive. 

As discussed in section 1.2.1, the hierarchical model in nested transactions 
[Moss, 1982] allows finer grained recovery, and provides more flexibility in 
terms of transaction execution. In addition to database systems, nested transac-
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tions can been used to model reliable distributed systems [Moss, 1987]. There 
is a lot to learn from work done in nested transactions. It provides a model for 
partitioning an application system into recoverable units; transaction failure is 
often localized within such models using retries and alternative actions. Work
flow systems can borrow these ideas to a great extent, and tasks can be retried 
in the case of certain failures (e.g., failures related to unavailability of input 
data, or inadequacy of resources for executing a task at a processing entity), 
or alternate tasks can be scheduled to handle other more serious errors (e.g., 
when a certain number of retries fail, or when a task cannot be activated due to 
unavailability of a processing entity) that might cause a task to fail. 

In the work on nested process management systems [Chen and Dayal, 1996] 
(discussed in section 1.3.1), the authors present a formal model of recovery 
that utilizes relaxed notions of isolation and atomicity within a nested tran

saction structure. Although, this model is more relaxed in terms of recovery 
requirements as compared to nested transactions, it is strict for heterogeneous 
workflow environments that involve tasks that are non-transactional in nature. 
Moreover, the recovery model uses backward recovery of some of the child 
transactions for undoing the effects of a failed global transaction. The back
ward recovery approach has limited applicability in workflow environments in 
which it is either not possible to strictly reverse some actions, or is not feasi
ble (from the business perspective) to undo them since this might involve an 
additional overhead or conflict with a business policy (e.g., in a banking appli
cation). 

The notion of compensation is important in workflow systems. Undoing of 
incomplete transactions (or backward recovery) is an accepted repair mecha
nism for aborted transactions. However, this concept is not directly applicable 
to most real-world workflow tasks which are governed by actions that are in 
general permanent (e.g, human actions and legacy system processing). One 
can define a semantically inverse task (commonly referred to as compensat
ing tasks), or a chain of tasks that could effectively undo or repair the damage 
incurred by a failed task within a workflow. In addition to Sagas, semantic tran
saction models have been proposed to address many such issues in which fail
ure atomicity requirements have been relaxed. Compensation has been applied 
to tasks and groups of tasks (spheres) to support partial backward recovery in 
the context of the FlowMark WFMS [Leymann, 1995]. 

Work on flexible transactions[Elmagarmid et al., 1990, Zhang et al., 1994a] 
discusses the role of alternate transactions that can be executed without sac
rificing the atomicity of the overall global transaction. This provides a very 
flexible and natural model for dealing with failures. These concepts are ap
plicable in workflow environments also. A prototype workflow system that 
implments a flexible transaction model has been discussed in [Alonso et al., 
1996b]. 
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In transactional models, the unit of recovery is a transaction. . Each tran
saction has a predefined set of semantics that are compliant with the transaction 
processing system. The model for recovery in a workflow system is more in
volved since the recovery process should not only restore the state of the work
flow system, but should proceed forward in a manner that is compliant with the 
overall organizational process. 

Recovery of Workflow Tasks A task (activity or step) forms a basic unit 
of execution within a workflow model. A task is a logical unit of work that is 
used to satisfy the requirements of the business process that defines the work
flow concerned. In database systems, it is sufficient to maintain before and 
after images of the data affected by a transaction to guarantee enough infor
mation needed to recover that transaction in case of its failure. Recovery of 
tasks, therefore, should be addressed from a broader perspective; in addition to 
focusing on data-centric issues, one must focus on the overall business model 
associated with the actions within a task. 

The tasks within a workflow could be arbitrarily complex and heterogeneous 
(Le., transactional and non-transactional) in nature. A workflow model pro
posed in [Georgakopoulos et al., 1994] compares database transactions to tasks 
within a workflow, thereby regarding a workflow task to be the unit of recovery. 
This parallelism is valid when the tasks are relatively simple, obey transactional 
semantics and are executing within an environment that can enforce the trans
actional behavior of a group of tasks. Most real-world workflow applications 
and run-time environments are far more complex in nature and may be spread 
across arbitrary autonomous systems. Hence, a uniform recovery model based 
solely on transactional assumptions is inapplicable to commercial workflow 
systems. 

Many task models .have been defined for workflow systems [Attie et al., 
1993, Krishnakumar and Sheth, 1995, Rusinkiewicz and Sheth, 1995]. In spite 
of this fact, it is difficult to determine the exact execution state of a task since 
these task models do not model detailed task execution: One could implement 
a workflow system involving special tasks that reveal their internal state to the 
WFMS layer; however, this workflow solution is not general enough to handle 
tasks that are diverse and arbitrarily complex in nature. Guaranteeing strict 
failure atomicity akin to that in database transactions is therefore difficult for 
workflow tasks. Hence, recovery of tasks should be addressed from a broader 
perspective. One should focus on the overall business process model when 
trying to decide the next action to be performed when resolving task failures. 

In the case of non-transactional tasks, it is difficult to monitor the exact 
state of the task once it has been submitted for execution. This lack of control 
could leave the system in an undeterministic state in view of failures. In such a 
scenario, automatic recovery of a failed task becomes impossible due to lack of 
run-time feedback or transactional guarantees from the processing entities. The 
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role of the human (e.g., workflow administrator) is important for recovery in 
such situations for determining the state of the failed task based on information 
that is external to the workflow system. In the METEOR2 system [Worah, 
1997], a special task is used to cleanup the remnants of such failures and to 
restore the workflow system to a consistent state. It could involve the role of a 
human or an application that is programmed to be able to reconfigure the data 
and applications associated with a task to restore it to a consistent state. 

Recovery of Workflow Data Data plays an important role in workflow 
systems, as is in the case of a DBMS and a TP-system. Data recovery issues 
have been studied extensively in the context of database systems. Logging 
and shadow paging are common mechanisms used in transaction processing 
to record state of critical data persistently. Several check pointing mechanisms 
have been discussed in literature [Bernstein et al., 1987] to enhance the perfor
mance of the recovery process. These principles can be applied to workflow 
systems in situations related to making the state of the workflow components 
persistent and the recovery process more efficient. In the case of distributed 
WFMSs, it is also important to replicate data across machines to enhance data 
availability in the view of hardware and network failures. This problem, once 
again, has been studied extensively in the area of distributed databases; its ap
plicability has also been studied in workflow systems [Alonso et al., 1995b] to 
enhance their availability. 

1.5 WORKFLOW ERROR HANDLING 

Error handling is another critical area of workflow research that has not re
ceived adequate attention [Georgakopoulos et al., 1995, Alonso and Schek, 
1996b]. The cause of errors in workflow systems could be multifarious. Errors 
are logical in nature; they could be caused due to failures within the workflow 
system, or failures occurring at the task level. 

Error handling in database systems has typically been achieved by abort
ing transactions that result in an error [Gray and Reuter, 1993]. Aborting or 
canceling a workflow task, would not always be appropriate or necessary in a 
workflow environment. Tasks could encapsulate more operations than a data
base transaction, or the nature of the business process could be forgiving to 
the error thereby not requiring an undo operation. Therefore, the error han
dling semantics of traditional transactional processing systems are too rigid for 
workflow systems. 

A mechanism for dealing with errors in an ATM for long running activities 
was proposed in [Dayal et al., 1990, Dayal et al., 1991]. It supported forward 
error recovery, so that errors occurring in non-fatal transactions could be over
come by executing alternative transactions. Although, this model provides well 
defined constructs for defining alternative flow of execution in the event of er-
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rors, it is restrictive in tenns of the types of activities (relaxed transactions) 
and the operating environment (a database) that fonn the long running process 
and therefore, it does not provide the error modeling capabilities of capturing 
workflow errors. 

We can characterize the types of errors arising in a WFMS into three broad 
categories: 

• Infrastructure errors: these errors result from the malfunctioning of the 
underlying infrastructure that supports the WFMS. These include com
munication errors such as loss of infonnation, and hardware errors such 
as computer system crashes and network partitioning. 

• System errors: these errors result from faults within the WFMS software. 
This could be caused due to faults in the hardware, or operating system. 
An example is the crash of a workflow scheduler. 

• Application and user errors: these errors are closely tied to each of the 
tasks, or groups of tasks within the workflow. Due to its dependency on 
application level semantics, these errors are also tenned as logical errors 
[Krishnakumar and Sheth, 1995]. For example, one such error could 
involve database login errors that might be returned to a workflow task 
that tries to execute a transaction without having pennission to do so at a 
particular DBMS. A failure in enforcing inter-task dependencies between 
tasks is another example of an application error. 

The above categorization is a descriptive model for categorizing errors within 
WFMSs. Large-scale WFMSs typically span across heterogeneous operating 
environments; each task could be arbitrarily complex in nature. To be able to 
detect and handle errors in such a diverse environment, we need a well-defined 
error model that would help us specify, detect and handle the errors in a sys
tematic fashion. In 1.6.1.3 we define a hierarchical error model that fonns the 
basis for handling errors in the METEOR2 WFMS. 

In the previous sections, we have discussed research done in the area of 
ATMs, transactional workflows, and the problem of error handling and recov
ery in WFMSs. In the next section we outline issues that are important for 
implementing a reliable WFMS. In doing so, we discuss a specific example of 
a WFMS that exploits many of the concepts from transactional systems and 
ATMs to include support for error handling and recovery. 

1.6 TRANSACTIONS. ATMS AND RECOVERY IN LARGE-SCALE 

WFMSS 

Pervasive network connectivity, coupled with the explosive growth of the Inter
net has changed our computational landscape. Centralized, homogeneous, and 
desktop-oriented technologies have given way to distributed, heterogeneous 
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and network-centric ones. Workflow systems are no exceptions. They would 
typically be required to operate in such diverse environments in a reliable man
ner. Implementation of error handling and recovery in a WFMS is affected 
by numerous factors ranging from the underlying infrastructure (e.g., DBMS, 
TP-monitor, Lotus Notes, CORBA, Web), architecture of the supporting frame
work (e.g., centralized vs. distributed), nature of the processing entities (e.g., 
open vs. closed, transactional vs. non-transactional, human vs. computer sys
tem), type of tasks (user vs. system, transactional vs. non-transactional), and 
the nature of the workflow application (e.g., ad-hoc vs. administrative vs. pro
duction). Most of these issues are beyond the purview of transaction-based 
systems, and therefore have not been adequately tackled by them. 

A single recovery mechanism cannot be applied to all workflow applica
tions due to the diversity of their business logic. Also, the variations in WFMS 
run-time architectures and execution environments would dictate the choice of 
suitable recovery mechanisms. A workflow is a collection of tasks; the tasks 
could be arbitrary in nature. It is impossible to include task specific semantics 
within a generalized recovery framework since task behavior is orthogonal to 
that of the workflow process. Nevertheless, a WFMS should provide the nec
essary infrastructure to support error handling and recovery as needed by the 
task. It should also provide tools to allow users to specify failure handling se
mantics that are conformant with the governing business process model. This is 
an important characteristic that differentiates failure handling in workflow sys
tems from that in transaction processing where it suffices to satisfy the ACID 
properties for transactions. 

ATMs provide techniques for handling failures (see Section 1.2). However, 
most of these ATMs do not discuss any aspects of implementation. Imple
mentation of processes in workflow systems require support for business level 
details such as groups, roles, policies, etc. ATMs are weak in this aspect, since 
they define models that are focused towards the tasks themselves (in this case 
advanced transactions). Therefore, workflow systems are implemented at a 
higher level of granularity than ATMs. In fact, in [Alonso et al., 1996b] sagas 
and flexible transactions have been implemented using a WFMS. 

WFMSs in distributed environments are dependent on inter-process commu
nication across possibly heterogeneous computing infrastructures. In such sys
tems, it is important that communication between processes is reliable. Trans
actional RPC mechanisms have been used in distributed transaction processing 
to guarantee reliable messaging between distributed processes. They can also 
be incorporated into workflow systems [Wodtke et al., 1996] to guarantee trans
actional messaging between the workflow components thereby increasing the 
level of fault-tolerance of the WFMS infrastructure. 

TP-monitors have been used extensively to guarantee transactional seman
tics across distributed process spaces. They are, therefore, a viable middleware 



20 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

technology for implementing workflow systems. However, their use within a 
workflow environment comes with a lot of cost: 1) it is not feasible to impose 
infrastructural homogeneity (e.g., use of TP-monitors) across autonomous or
ganizations, and 2) it is very expensive to maintain and administer especially 
when workflow process span multiple organizations. Emerging infrastructure 
technologies such as Web, CORBA, and DCOM, on the other hand, provide 
more open and cost effective solutions for implementing large-scale distributed 
workflow applications [Sheth et al., 1996b, Palaniswami et al., 1996]. In partic
ular, the COllliA standard [OMG, 1995b] includes specifications for services 
[OMG, 1995a] such as the Object Transaction Service (OTS), the Concurrency 
Control Service, and the Persistence Service that can be combined to form 
a framework for achieving TP-monitor-like functionality in a HAD environ
ments. 

1.6.1 Error Handling and Recovery in the METEOR2 WFMS 

The study of workflow systems is inter-disciplinary, and stems from areas such 
as distributed systems, database management, software process management, 
software engineering, and organizational sciences [Sheth et al., 1996a]. Error 
handling and recovery are equally critical in these domains, and numerous so
lutions have been suggested to address these problems [Bhargava, 1987, Bern
stein et al., 1987, Cristian, 1991,Saastamoinen, 1995]. 

In this section, we present an error handling and recovery framework that 
we have implemented for the distributed run-time of the METEOR2 WFMS. 
This solution has been based on principles and implementation ideas that we 
have borrowed from related research in databases, advanced transaction mod
els, software engineering and distributed systems. Due to lack of space, brevity 
is key in our discussions (for additional details, see [Worah, 1997]). 

1.6.1.1 Overview of METEOR2 Workflow Model. The METEOR2 
workflow model is an extension of the METEOR [Krishnakumar and Sheth, 
1995] model, and is focused towards supporting large-scale multi-system work
flow applications in heterogeneous and distributed operating environments. The 
primary components of the workflow model include 1) processing entities and 
their interfaces, 2) tasks, 3) task managers, and 4) the workflow scheduler. 

• Processing Entity: A processing entity is any user, application system, 
computing device, or a combination thereof that is responsible for com
pletion of a task during workflow execution. Examples of processing 
entities include word processors, DBMSs, script interpreters, image pro
cessing systems, auto-dialers, or humans that could in turn be using ap
plication software for performing their tasks. 
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• Interface: The interface denotes the access mechanism that is used by ·the 
WFMS to interact with the processing entity. For example, a task that 
involves a database transaction could be submitted for execution using a 
command line interface to the DBMS server, or by using an application 
programming interface from within another application. In the case of a 
user task that requires user-input for data processing, the interface could 
be a Web browser containing an HTML form. 

• Task: A task represents the basic unit of computation within an instance 
of the workflow enactment process. It could be either transactional or 
non-transactional in nature. Each of these categories can be further di
vided based 01) whether the task is an application, or a user-oriented task. 
Application tasks are typically computer programs or scripts that could be 
arbitrarily complex in nature. A user task involves a human performing 
certain actions that might entail interaction with a GUI-capable termi
nal. The human interacts with the workflow process by providing the 
necessary input for activating a user task. Tasks are modeled in the work
flow system using well-defined task structures [Attie et al., 1993, Rusin
kiewicz and Sheth, 1995, Krishnakumar and Sheth, 1995] that export the 
execution semantics of the task to the workflow level. A task structure 
is modeled as a set of states (e.g., initial, executing, fail, done), and the 
permissible transitions between those states. Several task structures have 
been defined - transactional, non-transactional, simple, compound, and 
two-phase commit [Krishnakumar and Sheth, 1995, Wang, 1995]. 

• Task Manager: A task manager is associated with every task within the 
workflow execution environment. The task manager acts as an interme
diary between the task and the workflow scheduler. It is responsible for 
making the inputs to the task available in the desired format, for submit
ting the task for execution at the processing entity, and for collecting the 
outputs (if any) from the task. In addition, the task manager communi
cates the status of the task to the workflow scheduler. 

• Workflow Scheduler: The workflow scheduler is responsible for coordi
nating the execution of various tasks within a workflow instance by en
forcing inter-task dependencies defined by the underlying business pro
cess. Various scheduling mechanisms have been designed and imple
mented [Wang, 1995, Miller et al., 1996, Das, 1997, Palaniswami, 1997], 
ranging from highly centralized ones in which the scheduler and task 
managers reside within a single process, to a fully distributed one in 
which scheduling components are distributed within each of the distributed 
task manager processes. 

We will focus our discussions on a run-time implementation of a distributed 
architecture for the METEOR2 WFMS. A recovery framework has been de-
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fined for this architecture. The basic distributed model has been enhanced 
with additional functionality to 1) handle various forms of errors, 2) use tran
saction semantics at run-time, 3) monitor active workflow components, 4) re
cover failed components, and 5) log critical data that is necessary to restore the 
state of a failed workflow. 

1.6.1.2 ORBWork: A Distributed Implementation ofthe METEOR2 
WFMS. ORB Work is a distributed run-time engine for METEOR2 WFMS. 
It has been implemented using CORBA [OMG, 1995b] and Web infrastruc
ture technologies [Sheth et a1., I 996b, Das, 1997, Worah, 1997]. The for
mer provides the necessary distribution and communication capabilities for the 
workflow components, and the latter makes it possible for humans to inter
act with the Object Request Broker (ORB)2 based workflow layer. The main 
components of ORB Work are shown in Figure 1.1. In this implementation, 
task managers, recovery units, data objects, monitors, and clean-up tasks are 
implemented as CORBA objects. 
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Figure 1.1 System Schematic for the Recovery Framework in ORBWork 

In METEOR2, the workflow process that defines the overall organizational 
process is captured in the form of a workflow map that is specified by a work
flow designer. This determines the data and control dependencies that need 
to be enforced as part of the workflow scheduling process. Due to the dis
tributed nature of the workflow engine, ORB Work does not have a centralized 
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scheduling entity. The scheduling mechanism is embedded in each of the task 
managers. 

Each task managers performs four primary functions: 1) task activation, 2) 
error handling and recovery of task and its own errors, 3) logging of task inputs, 
outputs, and its internal state, and 4) scheduling of dependent task managers as 
defined by the workflow process. Task managers communicate with each via 
the ORB using object method invocations. Due to the location transparency 
offered by CORBA, they are able to communicate seamlessly irrespective of 
the host they execute on. 

Input and output data elements to the tasks are represented as CORBA ob
jects internal to ORB Work. These CORBA objects are wrappers around the ac
tual data elements. This allows workflow data objects to be distributed within 
the ORB environment. Task managers logically enforce workflow data depen
dencies and pass data by exchanging references to these data objects. 

User tasks have associated "to-do" worklists (not shown in the figure) that 
provide a list of pending tasks for the user. User inputs form one of the implicit 
dependencies for a user task manager. User (human) tasks communicate with 
the task managers using HTML forms and Common Gateway Interface (CGI) 
functionality provided by Web servers. In our current implementation, CGI 
scripts are implemented as CORBA clients to user task manager objects. Ref
erences to CORBA objects that encapsulate the user provided data are passed 
as inputs to the task manager. 

ORB Work is subject to numerous errors and failures. The architecture of 
ORB Work, as described above, does not provide support for error handling, 
other than what is already inherent to the components themselves. The dis
tributed nature of our workflow architecture alleviates problems associated with 
a single point of failure. This allows scope for incorporating fault-tolerant fea
tures into the framework. However, distribution adds to the complexity of the 
system in terms of management of the various components and detection of 
failures. This problem is compounded due to the asynchronous communication 
paradigm used in workflow communication models. Moreover, the communi
cation infrastructure is subject to failures, and could adversely affect workflow 
enactment. In the following two sections, we describe the error model that 
we have used to capture such errors, and the failure handling components that 
form our recovery framework. For a detailed discussion on ORBWork, see 
[Das, 1997]. 

1.6.1.3 Modeling Errors in METEOR2. The METEOR2 error model 
has been defined in a hierarchical manner. We have based it on the layered 
nature of the METEOR2 workflow model. It enables us to describe and clas
sify the various errors that occur during workflow execution. This, in effect, 
makes it possible to modularize our error handling algorithms during workflow 
execution. Errors are detected and masked as close to the point of occurrence 
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as possible to prevent them from propagating to other, unrelated components 
of the WFMS. We use a three-tiered approach to classify errors within the 
METEOR2 workflow model: 

1. Task and Workflow Errors: this class forms the lowest level within our 
hierarchy and includes all errors that are specific to tasks, and their inter
task dependencies. Application and user errors (as discussed in Section 
1.5) are defined and modeled at this level. The workflow designer is 
responsible for defining these errors during the workflow definition pro
cess. The workflow system does not preclude a task from handling its 
errors on its own; in such cases, only unhandled errors would be cate
gorized as task errors within the WFMS. Some of these errors may have 
implications on the whole workflow process. A task error that cannot be 
resolved is eventually reported to its task manager; such an error falls into 
the category of task manager errors. 

2. Task Manager Errors: this class of errors involves all task errors that 
could not be resolved at the task level (as described earlier), and errors 
that are specific to the task manager itself. For example, the latter in
cludes errors such as 

• not being able to prepare the inputs for the task, 

• not being able to submit a task for execution, 

• not being able to recover the state of task during failure recovery, 
and 

• not being able to handle a task error that might have occurred. 

A task manager error that remains unhandled is reported as a workflow 
error to the scheduler. 

3. WFMS Errors: These are the highest level of errors within our model and 
include 

• system errors that affect the task scheduling mechanism, 

• communication errors between the scheduler and the task managers, 

• other failures in workflow components that are common to all in
stances of a workflow type (e.g., failure recovery units, log man
agers, etc.), and 

• errors that could not be handled at the level of the task manager. 

In our model, task and workflow errors are logical in nature. Error handling at 
this level is achieved by retries, aborts, cancellations, and by trying alternate 
tasks. Task manager and WFMS errors are system errors caused due to failures 
within the WFMS software. Task manager errors are either handled at the level 
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of the task manager itself (e.g., retrying task submission for a task that cannot 
be submitted). WFMS errors are handled by the recovery components within 
the WFMS, or by a human that would be provided with information necessary 
to handle the error. 

Principles relating to classification of errors, and handling them in a modular 
fashion have been commonplace in computer architecture, programming lan
guages, and software engineering. We have mapped the ideas to our workflow 
model, and have defined the error-handling semantics so that they are in syn
chrony with the overall business process that defines the workflow. Although, 
this model has been applied within the METEOR2 WFMS, in principle, it is 
applicable to any workflow model that has a well-defined modular architecture. 
The error handling capabilities in ORBWork, are developed on the basis of this 
error model. 

1.6.1.4 Recovery Framework in ORBWork. In this section, we de
scribe the recovery framework for ORBWork (see Figure 1.1). In defining 
the recovery framework, we have extended the ORBWork workflow engine in 
terms of being able to handle failures ranging from the task level to the level of 
the workflow system components. The recovery model assumes a distributed, 
component-based architecture for the WFMS, and a communication mecha
nism (in this case CORBA) that makes it possible to interact with components 
across host boundaries. 

Persistence is an essential part of our recovery framework. We have used 
an object-oriented approach wherein the various workflow components are re
sponsible for logging their respective states to stable storage. This approach 
is very similar to the notion of recoverable objects in the distributed object
oriented framework of Arjuna[Shrivastava et al., 1991]. In our model, data 
objects inherit from a base interface that attributes it with capabilities to save 
and restore its state at runtime from stable storage. A Local Persistence Store 
(LPS) is used as the stable storage mechanism for logging local data critical for 
recovery purposes. We have used a DBMS as the basis for our LPS. A DBMS 
provides transactional capabilities to log data. A Global Persistence Store is 
used for logging at the level of the GRM. Logging is done at various stages 
within the workflow enactment process. For example, 1) task Managers log the 
state of their tasks (including error codes returned by the task, for future de
bugging and error recovery), inputs that they receive from other task managers, 
and outputs that they send out to dependant task managers; 2) data objects log 
the state of their data they encapsulate. 

Failures in distributed systems are hard to detect, unless there is a fault
tolerant detection mechanism in place. This problem is compounded espe
cially when most of the components communicate in an asynchronous mode. 
Distributed workflow systems fall into this category due to their asynchronous 
coordination model. In ORBWork, we have provided additional services for 
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monitoring distributed components, to address the issue of failure detection. 
In this regard, we have borrowed ideas from other work done in reliable dis
tributed systems [Birman and Renesse, 1994, Maffeis, 1996]. 

Task Managers and data objects on each host are monitored by a Local Re
covery Manager (LRM) process executing on the same machine. On startup, 
the task managers and data objects, register with the LRM on their host. Once, 
these components are no longer required within the workflow process, they 
deregister from the LRM. The LRM maintains a watch-list of currently reg
istered components that are supposed to be executing as part of the workflow 
process instance on its host. When an object registers with the LRM, the LRM 
logs this message and appends it to the list. On deregistration, these objects 
are removed from the list. The LRM contains a watchdog that periodically, 
polls each of the components on the watch-list to ensure their liveliness. When 
a failed component is detected, the LRM reactivates the component, which in 
tum, restores its own state from local logs. The LRM checkpoints it logical 
view of the local system to the local log to enable its own recovery. In addition 
to the LRM, each host contains a daemon process called the Local Activation 
Daemon (LAD) (not shown in the figure) that is endowed with the ability to 
create processes (for the various CORBA objects) on the various hosts. 

A Global Recovery Manager (GRM) executing on a reliable host in the 
workflow execution environment monitors the liveliness of all the LRMs and 
is responsible for reactivating any failed LRMs. On recovery, the failed LRMs 
synchronize the state of their respective local systems based on their local logs 
and create any task managers that might have failed in the interim. Due to 
the infancy of the CORBA standard, and unavailability of many of its object 
services, we had to rely on programmatic efforts to implement many of the 
features that we would have otherwise liked to have been supplied by the ORB 
vendor. The implementation of error handling is achieved via the use of ex
ceptions and try-catch blocks that help to isolate the normal flow of execution 
from the abnormal case during run-time. 

Local configuration files (not shown in the figure) are used on each host by 
the LAD. These files are used for directory lookup for the various components 
(i.e., task manager, data object, LRM, GRM) during activation or recovery of 
the processes. 

During the definition of the workflow design, it might not be feasible to 
capture all errors and causes of failures that might occur during the enactment 
process. Also, especially in the case of non-transactional tasks, it is not always 
possible to undo the effects of a task that might have completed partially. We 
therefore feel that the role of a human is indispensable within the workflow re
covery framework. In our model, we have allocated a special human-performed 
task, called the cleanup task to serve the functionality of bringing the system 
to a consistent state after such irrecoverable failure. This mode of restoration is 



TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 27 

used only when the WFMS is unable to handle the recovery process automati
cally. 

Let us summarize the main characteristics of our recovery framework. 

• Workflow recovery is implemented in a distributed CORBA and Web 
based execution environment. 

• A notion of hierarchical monitoring of workflow components has been 
used to detect failures, and to initiate the recovery process (i.e., GRM 
monitors the LRMs; LRMs monitor task managers and data objects; task 
managers monitor tasks). This allows failures to be localized, and their 
effects to be masked as close to the point of occurrence as possible. 

• The recovery model ensures that there is no single point of failure. There
fore, the failure of a host does not significantly affect the performance of 
tasks within another (unless they are directly dependant on each other). 

• The performance of the workflow system would degrade progressively 
in the case of failures; however, once the failure has been restored, the 
WFMS would execute normally. 

• Each workflow component is responsible for logging its own state. The 
persistence mechanism used is also local to the component itself. 

• The workflow components are responsible for managing their own recov
ery actions once they have been recreated. 

• The recovery mechanism is semi-automated. The role of the human is 
crucial both during the workflow design process and the enactment. The 
workflow designer specifies the run-time behavior of the error handling 
and forward recovery mechanism. The workflow administrator is respon
sible for fixing drastic system failures (e.g., machine crash, network par
titioning), and for cleanup of failed tasks that cannot be handled by the 
WFMS. 

• The distribution and hierarchical nature of the recovery mechanism makes 
the system scaleable and manageable. 

In this section we have briefly described the design and implementation 
of error handling and recovery in the distributed run-time of the METEOR2 
WFMS (see [Worah, 1997] for more details). We have used this discussion 
to illustrate the applicability of concepts and basic mechanisms from tradi
tional and ATMs within a practical workflow execution environment. Also, 
our discussion is suggestive of the need to look for solutions beyond ATMs for 
addressing reliability issues in WFMSs. 
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1.7 TYPES OF TRANSACTIONS IN THE REAL-WORLD: 
BEYOND DATABASE TRANSACTIONS 

As practicing researchers, the idea of using related transaction models for mod
eling workflows was appealing to us. We felt that such a model could provide 
a rigor or structure that was lacking in the work on workflow management 
[Ansari et al., 1992, Breitbart et al., 1993]. There are few, if any, examples of 
successes in developing systems that implement ATMs for significant commer
cial, large-scale multi-system applications. 

Requirements of such applications include: 

1. capability to explicitly define the functionality and organizational struc
ture of organizational process involved, 

2. support of coordination and execution of tasks in heterogeneous intra
and inter-enterprise environments, 

3. modeling and support for human involvement with the run-time system, 
and 

4. error handling and failure recovery. 

Workflow management is specifically defined to address these real-world 
challenges. It provides the tools to integrate humans, computer systems, infor
mation resources and organizational processes into a unified solution. Hence, 
the requirements of WFMSs are far more challenging than those faced by cur
rent database systems [Alonso and Schek, 1996b]. In workflow applications, 
database resources might comprise only a part of the entire solution. For a task 
that entirely interacts with a DBMS, executing it as a transaction is often a de
sirable choice. At the same time, workflows involve other user and application 
tasks (e.g., tasks that interact with legacy systems) that are non-transactional in 
nature. 

Due to the wide acceptance and applicability of workflows to application 
domains that extend beyond transaction based (primarily database related) en
vironments, the term transaction is being used in a more loose manner with 
various connotations. These interpretations are based on: 1) the type of tasks 
and processing entities that are part of the workflow process, 2) the applica
tion domain or semantics of the organizational process that is being modeled, 
3) the communication infrastructure that is used to develop the WFMS, and 4) 
transactional or advanced transactional semantics (such as relaxed isolation and 
atomicity) that can be attributed to the tasks, sub-workflow, or the workflow as 
a whole. It is important to understand each of these interpretations to be able to 
appreciate the similarities and differences between transactions from the world 
of database systems and those involved in the realm of multi-system workflow 
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management systems. Let us consider some of the frequently encountered in
terpretations for the term transactions in the context of real-world workflow 
applications and WFMS that support workflow applications: 

1. Task specific interpretation in databases and distributed transaction 
processing. In general, a workflow task is considered to be a black box 
that is functional in nature, i.e., the functionality of the task is orthogonal 
to that of the workflow process [Alonso et al., 1995b]. The tasks them
selves could be transactional or non-transactional in nature [Rusinkiewicz 
and Sheth, 1995, Krishnakumar and Sheth, 1995]. Transactional tasks are 
those that minimally support the atomicity property and maximally sup
port all ACID properties of traditional transaction models [Miller et aI., 
1996, Krishnakumar and Sheth, 1995]. These tasks typically include 
those that interact with a DBMS by using BEGIN_ TRANSACTION -
END_TRANSACTION semantics, contracts (stored procedures), and two
phase commit (2PC) tasks [Wang, 1995, Miller et al., 1996] for synchro
nizing transactions across multi-DBMSs. In addition, tasks that use the 
XA-Protocol [Gray and Reuter, 1993] based RPC to communicate with 
transactional processing entities such as a TP-monitor in a distributed en
vironment [Wodtke et al., 1996] can also be included in this category. 
Non-transactional tasks are used to include applications that cannot en
sure isolation or atomicity as a part of the workflow process. Such task 
types are commonplace in the real-world and involve activities requiring 
interaction with humans, legacy systems, and others that interface with 
other processing entities that do not provide transactional support (e.g., 
HTTP servers, Lotus Notes, file systems, word processors, spreadsheets 
and decision support systems). 

2. Domain specific interpretation. The move from a paper-based society 
to a paper-less one, and the increasing popularity of electronic commerce 
have led to evolution of standards for electronic data exchange across 
organizations. Some of these include (EDI) standards such as ANSI 
Accredited Standards Committee (ASC) X12 that are used in numerous 
commercial settings (e.g., ANSI 270 and 271 transactions for healthcare 
eligibility inquiry and response used in [Sheth et al., 1996b]), and the 
ANSI HL 7 standard that is used specifically in the medical domain. The 
term transaction in this setting refers to the exchange of sufficient data 
in a standard electronic format necessary to complete a particular busi
ness action often using domain specific information. This view of a tran
saction tends to focus more on business requirements and contracts rather 
than on the need for maintaining data consistency within a database or to 
support atomicity or other transactional property between communicat
ing processes or for a RPC call. Workflow technology is being applied 
in various forms to application domains such as manufacturing, bank-
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ing, healthcare and finance that use domain specific transaction formats 
extensively. One of the tasks within a workflow process could involve 
sending data from one information system to another using an EDI tran
saction. At the receiving end, another workflow task could write the data 
that it receives to a DBMS in a transactional (having ACID properties) 
manner. The semantics associated with each of these transactions are dif
ferent. Hence, the WFMS would have to be designed so that it can deal 
with different transaction forms in an appropriate manner. 

3. Business-process specific interpretation. Database transactions and tran
saction processing aim at preserving data consistency and ensuring reli
ability in case of faults and failures. These semantics cannot be applied 
directly to workflow systems since tasks within a workflow process are 
both transactional and non-transactional in nature. However, at the same 
time, workflow systems should be correct and reliable. Correctness and 
reliability in the case of workflow systems is more applicable from a 
broader perspective - that of the organizational process involved in ad
dition to the data that forms a part of the process. According to [Eder and 
Liebhart, 1995], a workflow transaction should ensure consistency from 
the business process point of view. The notion of a workflow transaction 
according to this view, is broader as compared to that of traditional trans
actions. Implementation support for such a concept would require an 
additional layer of control than that provided in transaction processing 
since workflows include features (e.g., roles, worklists, error handling) 
that are not available in (advanced) transaction models and transaction 
processing systems. 

4. Infrastructure specific interpretation. Workflow management systems 
are large-scale applications that can be implemented using various in
frastructure technologies such as Customized Transaction Management 
(CTM) [Georgakopoulos et aI., 1995], Distributed Object Management 
specifically using CORBA [Georgakopoulos et aI., 1994, Miller et aI., 
1996, Sheth et aI., 1996b, Wodtke et aI., 1996, Schuster et aI., 1994], 
World Wide Web [Palaniswami et al., 1996, Sheth et al., 1996b, Tech
nologies, 1995], TP-monitors [Wodtke et aI., 1996], Lotus Notes [Rein
wald and Mohan, 1996] and security services (as in secure transactions 
supported in the electronic commerce and Web-based services). The con
cept of transactions has been addressed in many of these technologies 
to some extent. For example CORBA provides an Object Transaction 
Service as a part of the Common Object Services Specification [OMG, 
1995a] that enables objects in distributed environments to take part in a 
transactional context; TP-monitors also provide transactional semantics 
in a distributed environment. The HTTP protocol used in the Web para
digm, on the other hand, does not provide any transactional semantics. 
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Hence, we see that different interpretations of transactions are supported 
by each of these infrastructures. 

From the above discussion, it is important to observe that the notion of 
transactions in workflow management is more general compared to that in 
transaction processing and DBMSs.. Its interpretation could involve various 
variables associated with the factors mentioned above. Unlike advanced tran
saction systems, WFMS interact with database systems if required as part of 
the organizational process, however; this is not their primary focus. 

1.8 CONCLUSION 

We view workflow management as an attractive approach to programming in 
the large for enterprise applications. Tasks within a workflow are modeled at a 
higher degree of granularity than traditional database transactions (i.e., compo
nent transactions in a ATM or subtransactions in a distributed transaction). The 
tasks themselves could be either transactional (e.g., database transactions, and 
processes interacting with a TP-monitor) or non-transactional (e.g., human
oriented activities, and processes that do not observe one or more of the tran
saction properties). Also, most real-world workflow processes involve acti
vities that are long running in nature and execute in distributed and heteroge
neous environments. The processing entities that execute or carry out a task 
might not support the protocol for guaranteeing transaction behavior. At the 
same time, it is desirable that workflow systems be reliable and ensure correct 
execution of processes just as transactions guarantee such characteristics for 
ensuring data consistency. It has been accepted that strict ACID transactions 
do not have direct applicability in the workflow domain as workflow systems 
differ to a large degree from traditional database systems. 

In our perspective, the role of ATMs in workflow systems is of a supportive 
nature. Advanced transaction modeling concepts are quite restricted in terms 
of being directly applicable in process-oriented, large-scale workflow applica
tions that run in HAD computing environments. Workflow systems today are 
still weak in terms of characteristics such as fault-tolerance, consistency, and 
in their support for recovery in case of exceptions and failures. ATMs have ad
dressed most of these problems in the domain of database systems. Research 
in the areas of workflow systems can benefit from these approaches from a 
conceptual point of view. 

Transactional semantics such as atomicity and isolation in their strict sense 
are not practical in workflow systems since tasks in a workflow domain are gen
erally long-lived and could themselves be non-transactional in nature. Many of 
the solutions for recovery in transaction processing systems can be used to ad
dress recovery issues in workflow systems, for example, advanced transaction 
concepts such as compensation can be mapped to the workflow domain in terms 
of a compensating task that could be used to undo (often partially) what was 
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done by an incomplete task; logs similar to those in transaction processing 
could be maintained for recording the history of the workflow process, thereby 
aiding in the recovery process [Krishnakumar and Sheth, 1995, Alonso et al., 
1995b, Eder and Liebhart, 1996]. 

To address many of these advanced issues, workflow systems should borrow 
ideas that have been used effectively in concurrent, large-scale distributed and 
database systems, but should not rely entirely on them as many of these systems 
have developed models for environments that are limited in scope as compared 
to that in workflow systems. 

In conclusion, we summarize the observations we have made in this chapter: 

• There are several interpretations for transactions in organizational pro
cesses today and all or most of them may need to be accommodated in a 
workflow technology that supports organizational processes. 

• Features offered by ATMs meet a very restricted subset of requirements 
of large-scale enterprise-wide workflow systems (see the appendix for a 
normative comparison of ATMs and workflow systems). 

• We do not see ATMs as being a primary basis for modeling and exe
cuting workflow systems that have real-world commercial applicability. 
However these models provide useful features (e.g., relaxed atomicity, 
relaxed isolation, concurrency control and recovery) which can be used 
in components (e.g., tasks) that form a part of a WFMS. Traditional tran
saction processing and ATMs provide valuable concepts that can be ap
plied towards partly solving the problem of error handling and recovery 
inWFMSs. 

• Implementing reliable large-scale WFMSs involve requirements that are 
beyond the capabilities of transaction systems and ATMs (e.g., distribu
tion of the workflow architecture, heterogeneity of the operating environ
ment, business process governing the workflow, organizational structure 
of the enterprise, nature of the tasks, etc.). A lot of valuable research has 
been done on error handling and recovery in the areas of distributed sys
tems, software engineering, and organizational sciences. Research and 
development in the domain of reliable WFMS should leverage these ef
forts to supplement the limitations of traditional transaction and ATM 
based systems. 

There is a need for multi-disciplinary research to address the challenging 
issues raised by emerging workflow technology. Humans are an essential part 
of any organizational process, and human work involves many diverse issues. 
Therefore, research involving expertise from multiple disciplines is most likely 
to bring the highest return. Information is another critical asset of any organiza
tion, as discussed in [Sheth et al., 1996a]; we believe that more human-centric 
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approaches with integral support for information management are needed for 
a successful workflow technology. We need to look beyond the capabilities 
provided by transaction processing systems and ATMs in modeling the com
plexities of large-scale, mission-critical workflow applications of the future. 

Notes 

1. METEOR refers to the project carried out at Bellcore. METEOR2 is its follow on atthe 
LSDIS Lab of the University of Georgia. 

2. The Object Request Broker forms the core of the CORBA model; it is the middleware 
layer that makes it possible for distributed objects to communicate with each other. For details 
see [OMG, 1995b). 
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Appendix: A Normative Perspective 

Theoretical 
Foundation 

Granularity 
Methodology 

Correctness Criteria 

Failure Atomicity 
Concurrency Control 
Recovery 

Error Handling 
Task! Activities 

Processing Entities 

Coordination Support 
Modeling Organiza
tional Structure 
Worklists 
Flexibility 
Implementation Status 

Applicability to Non
DBMS applications 

Advanced Transaction Workflow Systems 
Models 

Usually good theoretical 
basis. 

Transactions. 
Data-centric. Emphasis 
on data consistency. 
Serializability. 

Inherent. 
Inherent. 
Well-defined. Rollback 
and compensation. 

Limited. 
Supports transactions 
only. 
Usually DBMS. 

Limited. 
Usually absent. 

No support. 
Varied. 
Very few exist. 

Very limited. 

Weak dependency, ex
cept for scheduling com
ponents. Driven by prac
tical considerations. 
Tasks, activities, or steps 
Process-centric. Empha
sis on task coordination. 
Primitive, often limited 
to scheduling. 
Not part of most models. 
Limited support. 
Insufficient support. 
Forward recovery when 
supported. 
Very limited. 
Supports both human 
and application tasks. 
Heterogeneous systems 
(e.g., DBMSs, TP moni
tors, legacy applications, 
humans) 
Inherent. 
Varies significantly. 

Strong support. 
Good. 
Numerous commer
cial products and few 
research prototypes. 
Extensive. 



2 WORKFLOW MANAGEMENT: THE 
NEXT GENERATION OF DISTRIBUTED 

PROCESSING TOOLS 
Gustavo Alonso and C. Mohan 

Abstract: Workflow management systems have attracted a great deal of atten
tion due to their ability to integrate heterogeneous, distributed applications into 
coherent business processing environments. In spite of their limitations, existing 
products are enjoying a considerable success but it would be a mistake not to try 
to see beyond current systems and applications. In today's computer environ
ments, the trend towards using many small computers instead of a few big ones 
has revived the old dream of distributed computing. There is, however, a signifi
cant lack of tools for implementing, operating and maintaining such systems. In 
particular, there are no good programming paradigms for parallel architectures in 
which the basic building blocks are stand alone systems. Workflow management 
provides this key functionality, suggesting its potential as crucial component of 
any distributed environment. This chapter describes in detail such functionality 
and provides some insight on how it can be applied in environments other than 
business processing. 

2.1 INTRODUCTION 

One of the basic platforms in which to implement generic distributed systems is 
commodity hardware and software, usually in the form of clusters of worksta
tions connected via a network. The continuous increase in computing power, 
storage capacity, and communication speed has made these share nothing con
figurations viable and cost effective alternatives to more tightly integrated mul
tiprocessor architectures. There is also the added advantage of having most of 
the necessary infrastructure already in place, both in terms of hardware (clus-
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ters of personal computers connected by a Local Area Network) and software 
(the many existing applications). The only component missing in such environ
ments is the necessary glue to make a coherent whole out of many autonomous, 
heterogeneous, loosely coupled building blocks. This problem has been ad
dressed from many different perspectives, federated database systems [Schaad 
et al., 1995], TP-monitors [Gray and Reuter, 1993, Obermack, 1994], persis
tent queuing [Alonso et al., 1995a, Mohan and Dievendorff, 1994], CORBA 
[OMG, 1995b], process centered software engineering [Ben-Shaul and Kaiser, 
1995] and workflow management systems [Hsu, 1995] being among the best 
examples. 

From a practical point of view, these different approaches can be roughly di
vided in four categories: interface definition, communication, execution guar
antees, and development environment. These four categories also correspond 
to the functionality needed in a distributed environment. In spite of this, exist
ing products and research efforts tend to emphasize only one of the categories, 
e.g, TP-monitors for execution guarantees; CORBA as an interface definition; 
queuing systems as communication platforms; or workflow systems for devel
oping distributed applications. Such narrow focus is one of the major limita
tions of these approaches. Users or designers interested in getting two or more 
of the four categories of functionality have to resort to combine several heavy
weight solutions, which adversely affects performance and usability. Examples 
to prove this point abound, perhaps the most clear one being the transactional 
services described in the CORBA standard. These services can only be imple
mented using what today is known as a TP-monitor. In fact, current implemen
tations do exactly just that: bundle together a CORBA implementation and a 
commercial TP-monitor. Since both were designed as stand-alone systems and, 
in practice, must solve many similar problems, the resulting system incorpo
rates a great deal of redundancy and mismatches. As a result, performance and 
the overall functionality are adversely affected. A more reasonable approach 
would be to implement the CORBA standard with the transactional services in
cluded as part of the original design instead of as an orthogonal module. This 
would still not be enough, however, as the resulting system would lack, for in
stance, a development environment. To address this latter point, the OMG (Ob
ject Management Group) and the Workflow Management Coalition are joining 
efforts to define a CORBA Workflow Facility. But as with the transactional 
services, such facility will only be truly operational and useful when the de
sign incorporates and integrates all these different technologies from the very 
beginning and not as separate tools. 

This same example occurs in many other environments and products. The 
underlying problem is that no system incorporates the four categories of func
tionality in the design and, hence, it is not possible to rely on a truly integrated 
system. But building such system is only possible if the existing partial solu-
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tions are first generalized and their functionality becomes available in the form 
of open systems. It is possible to identify trends in industry that point clearly 
into this direction (the example of CORBA is one, the incorporation of transac
tional guarantees and queuing systems in workflow tools is another), but much 
remains to be done. The role workflow management systems will play in fu
ture computing environments is directly related to the idea of integrating the 
four categories of functionality. One of the factors that have made workflow 
management so successful is the support they provide for developing complex 
applications over distributed systems using already existing tools. This same 
concept can be generalized, turning workflow management into one of the ba
sic technologies for developing large scale distributed applications based on 
autonomous components. Thus, workflow management should evolve as part 
of larger, tightly integrated architectures. In order for this to happen, work
flow management needs to be reinterpreted from a perspective going beyond 
current products. This includes generalizing the notion of process, as has been 
suggested by several workflow designers [Emmrich, 1996, Leymann, 1995], 
instead of focusing solely on business processes reengineering. In this way, 
a workflow management system can become a very high level programming 
language linking, within a single control logic, heterogeneous applications re
siding over a wide geographic area. Additional technology such as CORBA, 
queuing systems or TP-monitors will then complete the integrated distributed 
system in which to exploit the coarse parallelism and distributed characteristics 
of workflow processes. 

2.2 WORKFLOW MANAGEMENT SYSTEMS 

2.2.1 Workflow Concepts 

Workflow management is a relatively new term. The ideas and concepts asso
ciated with it, however, have been around for quite some time. The notion of 
workflow management can be traced back to prototypes and research carried 
out many years ago. Some [Swenson et al., 1994] propose as the earliest an
cestors the SCOOP project [Zisman, 1978] and Office Talk [Ellis et al., 1991]. 
Others see the roots of workflow management in the work of imaging com
panies [Frye, 1994]. In the database community workflow ideas have been 
proposed under many disguises, mostly in the form of advanced transaction 
models [Elmagarmid, 1992, Waechter and Reuter, 1992, Garcia-Molina et al., 
1991, Kreifelts et al., 1991, Nodine and Zdonik, 1990]. The Workflow Manage
ment Coalition [Hollinsworth, 1996] suggests no less than six areas that have 
had a direct influence on the development of workflow management as it is to
day: image processing, document management, electronic mail and directories, 
groupware, transactional systems, project support applications, business pro
cess re-engineering, and structured system design tools. Even one of the most 
popular workflow modeling paradigms [ActionTechnologies, 1993, Medina-
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Process Model 

o.ta connector ~ 

Figure 2.1 Basic components of a workflow process 

Mora et al., 1993] can be traced back to early work on artificial intelligence 
and speech theory. In general, the need for workflow functionality was iden
tified long ago by different communities as they realized the potential offered 
by computers and communications. For instance, just in the last decade, sim
ilar ideas were discussed in areas such as paperless office [Tsichritzis, 1982], 
office automation [Bracchi and Pemici, 1985], groupware [Ellis et al., 1991], 
or computer supported cooperative work [Kreifelts et al., 1991]. 

In spite of this early interest, the technology to develop full functional sys
tems has become available only in the last few years. To certain extent, work
flow management has found its window of opportunity in this decade thanks 
to organizational management trends such as business process reengineering 
[Hammer and Champy, 1993]. As a result, it is uncommon to find a product 
that it is not directly associated with the reengineering world. But this is likely 
to change in the future as workflow systems diversify and incorporate ideas 
from other areas. 

2.2.2 Process Representation 

The notion of process is central to any workflow system. A process is a com
plex sequence of computer programs and data exchanges controlled by a meta
program. It is usually represented as an annotated directed graph in which 
nodes represent steps of execution, edges represent the flow of control and 
data among the different steps, and the annotations capture the execution logic. 
Other forms of representation are possible (for instance based on rules [Ben
Shaul and Kaiser, 1995]) but the underlying concepts are essentially the same 
regardless of the representation. These are shown in Figure 2.1 and can be 
described as follows: 

Execution unit is the basic instruction of the workflow language. It can be 
compared with a procedure call in a programming language. Similarly to pro-
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cedure calls, it can correspond to an internally defined procedure (a process), 
to a structured block of instructions (a block), or to a remote procedure call to 
an external application (an activity). Associated with each execution unit there 
is an input and an output data container used to store the inputs and outputs of 
the execution unit. A state is associated with each execution unit, as well as 
two conditions, one to determine when the execution unit can start and another 
to determine when it has been completed successfully. 

~¢ 8 
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Figure 2.2 The execution unit as the basic building block of a workflow model 

Process is the equivalent of a program. It specifies the execution logic by 
linking execution units via control and data connectors. To allow nesting, a 
process can be represented as an execution unit, in which case it becomes one 
more step within another process. The possible states of a process are shown 
in Figure 2.3. 

EVALUATION OF CONDITIONS SystIfm Events PROCESS STATES 

Figure 2.3 State diagram of a process 

Blocks allow the modular decomposition of a process very much like in 
structured programming. A block is equivalent to a series of execution units 
bracketed by a BEGIN ... END. It is essentially another process except that 
it has no name and can not be reused. Contrary to sub-processes, which are 
bound to the parent process at run time, blocks are instantiated at compilation 
time. It is possible to associate certain semantics with blocks to denote special
ized types of structures such as loops, case statements, and fork or parallel-do 
operations. 
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Activities correspond to the invocation of external applications. Processes 
and blocks are structuring constructs that have no effect outside the workflow 
system. Activities correspond instead to interactions with the external world. 
They can be manual if they require human intervention to be started, or auto
matic if they can be started without human intervention. In general, manual 
activities correspond to activities that also require user involvement to be com
pleted (filling a form, providing some information, making a decision). Au
tomatic activities, on the other hand, usually do not require user participation 
(transactions over a database, index calculations, statistical calculations, etc.). 
Associated with each activity there is an application and a set of eligible users 
indicating which application is to be invoked and the users allowed to execute 
it. Figure 2.4 shows the possible states of a manual activity (automatic activities 
have a similar but slightly simpler state graph). 

Flow of control will not 
reach ftlellCfMly 

EVALUATION OF CONDmONS SyaIem Ewn18 ACTIVITY STATES 

Figure 2.4 State diagram of an activity 

Data containers provide a persistent repository for the input and output pa
rameters of an execution unit. In the case of processes, the input data container 
collects input parameters for the entire process. When the process starts to 
be executed, these input parameters are distributed among the input containers 
of the execution units within the process. As these execution units terminate, 
their outputs are transferred from their own output data containers to the out
put container of the process. For activities, the input data container stores the 
parameters to use when invoking the application and the output data container 
stores the application's return values. 

Data connectors are used to specify data flow between execution units. For 
instance, the input data container of a process is mapped to the different input 
data containers of the execution units within the process by indicating via data 
connectors which variable in the process container corresponds to which vari
able in an execution unit container. The same mechanism is used to pass the 
results produced by an activity as inputs to another activity. Together, data con
tainers and data connectors eliminate the need for global variables and allow 
each execution unit to define its own parameters. The use of data connectors 
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forces the workflow programmer to explicitly state the data flow within the 
process and helps to optimize data migration in applications distributed over a 
wide geographic area. 

Control connectors indicate the flow of control among execution units. In 
general, control connectors can only be used between execution units at the 
same level of nesting, which strengthes the modularity of the language. That is, 
it is not possible to add a control connector between activities of two different 
blocks, or between an activity external to a process and an activity within the 
process. Each control connector has a condition attached to it, which is used to 
determine when the control connector is to be followed. 

Conditions are boolean expressions over data in the data containers. They 
indicate when certain actions should take place. In the case of execution units, 
there are two types of conditions to be considered: start and end conditions. 
The former specifies when an execution unit can start to execute (the exact 
meaning varies depending on whether the execution unit is a block, a process 
or an activity). The latter is used to determine when an execution unit has 
terminated successfully, usually by checking the return code provided in the 
corresponding output data container. In the case of control connectors, condi
tions indicate whether the connector should be followed or not. If the condition 
of a connector is evaluated to true, the execution unit at its end is taken out of 
the inactive state (the exact action depends on the nature of the execution unit). 
If the condition associated to a connector evaluates to false, it indicates that 
the connector will not be f'Ollowed. Marking a control connector as false trig
gers the procedure of dead path elimination which marks off all connectors 
and execution units that will never be executed. This helps to determine when 
a process has terminated its execution. 

Applications represent the external programs to be invoked as part of the 
execution of an activity. Applications are registered with the workflow system 
very much like applications being installed in an operating system. The regis
tration process allows the workflow system to establish in which network ad
dresses a given application can be found, access permissions associated with it, 
under which operating system it runs, associated paths, input parameters, and 
any other additional information necessary to invoke the application remotely. 
Once registered, applications are invoked by linking them to activities. 

Staff represents users and sets of users. Similarly to applications, users must 
be registered with the workflow system. Users must be registered. individually 
and later on they can be grouped into more meaningful sets, usually known 
as roles. Roles allow the system to refer to groups (programmers, managers, 
engineers, sales representatives) when allocating work, instead of having to 
deal with individual users. When an activity or a process is defined, part of the 
information specified is the users or group of users that are eligible to execute 
the activity or to start the process. 
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Figure 2.5 Functional architecture of a workflow management system 

2.2.3 Architecture 

Architectural details vary from product to product and are evolving very quickly 
as products try to cope with more demanding environments. It is possible, how
ever, to distinguish a set of features common to most systems by looking at the 
functionality that needs to be provided. 

2.2.3.1 Functional Description. The basic functionality of a workflow 
system can be divided in three major areas: design and development, exe
cution environment, and interfaces. Usually, these three areas are also re
ferred to as Buildtime, Runtime control and Runtime interactions respectively 
[Hollinsworth, 1996, WFMC, 1994]. 

For design and development, workflow systems provide a language along the 
lines described above as well as several tools to register users and applications. 
Programming, i.e., designing, a workflow process is usually done through a 
graphical interface in which execution units are represented as a variety of se
lectable icons and connectors as directed links between these icons. This ap
proach is perhaps the most user friendly but it has several drawbacks, the main 
one being that it becomes rather cumbersome to visualize and manipulate large 
and complex processes. Current systems usually provide a more textual lan
guage in which to specify processes but, in most cases, these languages are not 
adequate for large scale programming. It is likely that, in the future, more so
phisticated languages will be supported. Additional tools are also provided for 
debugging and compiling the process description into object code that can be 
used for execution. Current systems provide only a primitive development en
vironment but, given the key role it plays, it is likely that the buildtime compo
nent of future systems will be significantly enhanced [Leymann, 1995, Silver, 
1995]. 

The execution environment can be divided in two parts: persistent storage 
and process navigation. Persistent storage provides a repository where all the 
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necessary information about the system can be kept and retrieved at any time. 
Persistent storage is managed via a storage server. Since the information in
volved is often complex and it is necessary to support complex queries over it, 
most systems use a database management system for this purpose. The advan
tage of relying on persistent storage is that it makes possible to recover from 
failures without losing data (forward recovery) and also provides the means to 
maintain a record of the execution of processes. These two features open up 
many interesting possibilities when programming distributed applications. For 
instance, the fact that the execution is persistent implies that failures will not 
require to repeat the entire process, execution can be resumed from the point 
where it was left when the failure occurred. It is possible to subdivide the per
sistent storage in several areas according to the data stored: audit trail, active 
instances , and environment information. The audit trail contains information 
about already executed processes. In business environments this provides the 
information necessary to evaluate the organization's performance, system evo
lution, potential bottlenecks as well as supporting data mining and analysis 
techniques. Active instances correspond to the persistent state of processes 
being executed, which can be queried through monitoring tools provided by 
the user interface. The environment information corresponds to the staff and 
applications. It is used to locate applications and to determine the invocation 
method as well as to locate users and to determine their access rights. Process 
navigation is performed by the navigation server or WFM Engine. It mainly 
involves evaluating the conditions specified for activities and control connec
tors, activating or deactivating control connectors and triggering status changes 
in execution units according to the events taking place in the system. Usually, 
all these operations are performed as transactions over the underlying storage 
server. 

Finally, a workflow system supports two types of interfaces: users and appli
cation interfaces. Users interact with the workflow ~ystem through a worklist 
which acts as a repository for all the activities assigned to the user. This in
terface can be as simple as a list of manual activities waiting to be selected by 
the user or as sophisticated as a dynamic interface to the audit trail for query
ing information regarding already executed processes. The worklist is created 
when the user logs-in and updated every time a new activity becomes ready for 
execution (updates are sent using the environment information, which is also 
kept up-to-date regarding which users are connected to the system at any given 
time and from which location). Applications are handled on a location basis. 
Users will usually connect to the system from a PC or workstation. These lo
cations will have an application interface so applications can be started when 
users decide to execute an activity. But it is also possible to have application 
interfaces in locations where no users are connected. This allows, for instance, 
to connect to mainframes, specialized workstations or execute automatic acti-
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Figure 2.6 Runtime architecture of IBM FlowMark 

vities across wide area networks. Which type of connections are allowed and 
supported depends largely on the intended use of the product, i.e., whether it is 
a collaboration tool to be used in a LAN environment or a production tool to be 
used in conjunction with OLTP (On Line Transaction Processing) and OLAP 
(On Line Analytical Processing) systems. 

2.2.3.2 Runtime Architecture. Current workflow management systems 
serve as platforms for executing distributed applications designed according 
to business rules. The same functionality they provide for business processes 
can be used in generic distributed applications. Thus, very much like in the 
case of TP-monitors [Gray and Reuter, 1993], workflow systems are slowly 
evolving towards specialized, multi-platform distributed operating systems. As 
a generic example of existing architectures, Figure 2.6 shows the architecture 
of FlowMark [mM, 1995, Leymann, 1995]. 

Most workflow systems are built on top of a database management system. 
In the case of FlowMark, the database is Object Store (represented in Figure 
2.6 as OSS and DB which together act as the storage server). Most other sys
tems are based on relational databases, for instance: ActionWorkflow is based 
on Microsoft SQL Server, WorkFlo of FileNet uses Oracle, and InConcert of 
XSoft can use Informix, Oracle or Sybase engines [Silver, 1995, The, 1994]. 
The navigation server, represented in Figure 2.6 by the FMS component, is usu
ally implemented as a client of the database since most navigation steps involve 
getting information in and out of the database. 

The rest of the system components used during the execution of a process are 
connected to the navigation servers, which can also be connected among them
selves [Alonso et al., 1995b]. These connections do not need to be over a LAN, 
they can also take place through a WAN or even from mobile clients [Alonso 
et al., 1996c]. A common configuration is to have the application and user in
terface in the same location where the user accesses the system. This allows the 
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user both to access the corresponding worklist and to execute activities locally 
(which, of course, also requires to have the application locally installed). In 
Figure 2.6 this is represented by the Runtime Client (RTC), the Program Exe
cution Client (PEC), and the application (APP). These correspond to the user 
interface, application interface and application being invoked respectively. It 
is also possible to configure nodes to host only one application interface and 
specialized applications. Such configuration plays an important role when au
tomatic activities are involved, for instance, when a series of transactions are 
executed over a database server. 

2.2.4 Process Execution 

The way execution proceeds in a workflow system is best illustrated with an ex
ample (this example follows the architecture and runtime interactions of Flow
Mark) [Alonso et al., 1996c]. An execution unit becomes ready for execution 
as a result of a navigation step. In the case of processes, when they reach the 
"active" state all of their starting activities are set to ready and any necessary 
input data transferred to the corresponding input data containers. In the case 
of activities, when they reach the "ready" state, the navigator performs role 
and staff resolution to determine all the users who are eligible to execute the 
activity and updates the worklists of all these users by including the activity as 
a new workitem. If the activity is an automatic activity, then it immediately 
changes to the "active" state during which the navigator locates a node where 
the activity can be executed. When the corresponding application is invoked, 
the activity then switches to "executing". Manual activities, on the other hand, 
must wait until a user selects the activity for execution. In this case, the ex
change of messages between the different components is shown in Figure 2.7. 

Manual activities appear in the worklist of all users eligible to execute it. 
When a user selects the activity, the user interface sends a start activity mes
sage to the navigator. The navigator reacts to this message by taking several 
steps. First, the activity is deleted from the worklists of all other users by 
sending a message to these worklists indicating that the activity is no longer 
available. Second, a transaction is started over the storage server to retrieve the 
information related to the corresponding application. This information allows 
the navigator to determine which application interface will be responsible for 
executing the activity. It is possible for an application to reside in many loca
tions. If it requires interaction with the user, the application is usually invoked 
at the user's location, otherwise simple heuristics can be used to select the most 
appropriate location (load balancing, overhead, pre-established priorities, etc.). 
Once the application interface has been selected, a start program message is 
sent to it. As the third and final step, the navigator sends an activity running 
message to the user interface from where the activity was selected so the status 
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Figure 2.7 Steps involved in the execution of an activity 

of the activity can be updated and the progress of its execution monitored from 
the user interface. 

Any communication between the application and the workflow system takes 
place through API calls to the application interface. Application interfaces are 
multi-threaded so as to be able to cope with several applications being executed 
simultaneously at the same location. Thus, upon receiving a start program mes
sage, the application interface spawns a thread for the particular application and 
this thread will start the application. Any initial parameters to be passed to the 
application when it is invoked are sent to the application interface along with 
the start program message. The application may, however, request additional 
information from its input data container by issuing API calls to the applica
tion interface. These calls are received by the application interface which will 
forward a data request message to the navigator. The navigator, upon receiv
ing such request, executes a transaction over the storage server and forwards 
the requested data to the application interface. The application interface then 
completes the API call by returning the data to the application. When the ap
plication terminates, the application interface sends a program terminated mes
sage to the navigator, along with any values returned by the application. At the 
navigator, this message triggers the execution of a transaction that will store the 
values returned by the application in the appropriate output data container. The 
navigator then proceeds to perform the corresponding navigation steps: check 
the end condition of the activity, if it is false the status of the activity is set 
to "terminated", if it is true the activity status is set to "finished" and then the 
outgoing control connectors evaluated, and so forth. As a final step, the navi-



WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 47 

gator sends an activity terminated message to the user interface indicating that 
the selected activity has completed its execution. This message results in the 
activity being deleted from the worklist. 

2.3 FUNCTIONALITY AND LIMITATIONS OF WORKFLOW 
MANAGEMENT SYSTEMS 

There are three key features in any successful workflow product: availability, 
scalability and industrial strength design [Alonso and Schek, 1996a, Mohan, 
1996, Georgakopoulos et al., 1995]. Without availability, workflow systems 
will not be used for mission critical processes. Without scalability, they will 
not be used to support large organizations. Without industrial strength, their 
applicability is greatly reduced. The problem with these obvious requirements 
is that they exceed those of current database and transaction processing tech
nology, which can be considered the state-of-the-art in corporate computing. 
As a consequence, the robustness and technological maturity reached in the 
transaction processing area is all but lacking in workflow systems [Gawlick, 
1994]. In spite of their initial success, current systems still need to be further 
developed along these three areas: 

2.3.1 Availability 

The goal of current systems is to become the central tool for the coordination of 
mission critical processes. The most likely candidates to use current workflow 
systems are large corporations in which the number of potential users can be 
in the tens of thousands, the number of concurrent process in the hundreds of 
thousands, and the number of sites connected to the WFMS in the thousands, 
distributed over a wide geographic area and based on heterogeneous systems 
[Kamath et al., 1996]. In such environments, availability is a key feature. For
tunately, most failures in a workflow system can be masked using the redun
dancy inherent to the architecture. For instance, it is common to have the same 
application installed in several nodes. If one of them is not available, it may be 
possible to invoke the application at a different node. The same applies to all 
other components except to the storage server. A workflow system acts as an 
execution engine driven by the storage server, currently implemented in most 
systems as a centralized database. This centralized database becomes, sooner 
or later, a bottleneck and a single point of failure. It is certainly possible to rely 
on the underlying database to provide the necessary degree of availability. This 
approach has significant disadvantages, however. In the first place, database 
techniques are usually product based, i.e., the primary and the backup are the 
same database. In practice, this would tie the workflow architecture to a partic
ular database and is in conflict with the distributed and heterogeneous nature of 
the system. It would also require either a backup for every individual system 
or a single remote backup for the entire system, which may be distributed over 
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a wide area network. Such solution would be fairly expensive and it does not 
provide a good way to cope with the heterogeneity of the storage servers (it is 
not reasonable to expect that all "workflow clusters" will use the same data
base as storage server). In the second place, the granularity used in database 
solutions is very fine, mainly pages or log records [Mohan, 1993], and ignores 
the semantics of the application. The advantage of having a well defined ap
plication and a limited set of interactions would be lost. Finally, availability 
is always achieved at a price. When and how to pay this price should be an 
adjustable parameter so as to make the system as flexible as possible. 

One way to address these concerns is to provide a backup architecture that is 
database independent, uses knowledge of the semantics of workflow operations 
to optimize the exchange of information between the primary and the backup, 
and allows to adjust the degree of availability in the system [Kamath et aI., 
1996]. For this purpose, standard database techniques such as hot-standby, 
cold-standby, I-safe, and 2-safe, can be used [Gray and Reuter, 1993]. These 
approaches can be combined to provide a flexible mechanism for high avail
ability on workflow systems. Three process categories are defined: normal, 
important and critical. Critical processes use a 2-safe, hot standby policy, i.e., 
critical processes can resume execution almost immediately after a failure. Im
portant processes use a 2-safe, cold standby approach, i.e., execution can be re
sumed after failures but only after some delay necessary to update the backup. 
Normal processes do not use any backup strategy, i.e., execution can only be 
resumed after the failure has been repaired but, in exchange, normal processes 
do not create any extra overhead in the workflow system. 

Since the degree of availability is set at the process instance level, it is no 
longer possible to predetermine the primary and backup locations for a pro
cess. For this reason and to achieve database independence, there is no single 
backup for the system. Each storage server will act as both primary and backup 
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depending on the particular process instance, as shown in Figure 2.8. Thus, 
the backup mechanism can be implemented as part of the standard communi
cations between storage servers. The only difficulty being that the primary and 
the backup may have different schemas (for instance, between a relational data
base and an object-oriented database). This problem can be solved by relying 
on semantic information about the workflow language, which is used to define 
a canonical representation in which each component of a workflow process is 
uniquely identified. When passing information between primary and backup, 
this is done using the canonical representation. In practice, this means that the 
primary only reports state changes to the components of a process, opening up 
the opportunity to optimize storage and communication overhead. In addition, 
this backup architecture also allows to perform load balancing in the system 
by moving the execution of a process from one location to another. For this 
it is enough to upgrade the copy at the backup so it acts as the primary copy. 
The mechanism is the same as if a failure would have occurred except in that 
the change to the backup is triggered by the system according to performance 
considerations. This provides an effective way to migrate processes and sets 
the basis for scalable architectures. 

2.3.2 Scalability 

Due in part to the emphasis placed on cooperation by the first workflow prod
ucts, most of them were designed with small groups in mind. In many ways, 
workflow systems have been victims of their own success since once users re
alized the potential of workflows, these engines were applied in large scale en
vironments for which they were not designed [Alonso and Schek, 1996a, Mo
han, 1996, Georgakopoulos et al" 1995, Silver, 1995]. Other design issues 
aside, the main problem of current systems in terms of scalability is that they 
rely on a centralized database to implement the storage server, thereby intro
ducing a serious bottleneck in the architecture. There are, of course, several 
advantages to the centralized approach: lightweight clients, centralized mon
itoring and auditing, simpler synchronization mechanisms, and overall design 
simplicity. But, in general, a centralized database results not only in scalability 
problems but also in performance limitations. The latter are not usually a con
cern in business processes but they are if the workflow system executes many 
automatic activities. Such problems can be addressed in several ways: using 
distributed execution instead of centralized control, and providing a way to tie 
together several workflow systems, each with its own storage server, into a big
ger system. The former approach is still largely a research proposal, the latter 
a solution currently adopted by most products. 

The idea of distributed execution was pioneered by the INCAS prototype 
[Barbara et al., 1996a]. In INCAS, the execution of a process takes place 
through an Information Carrier. The information carrier is an object that mi-
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grates from location to location as execution proceeds. It contains all the in
fonnation relevant to the execution of the process so as to allow navigation 
to take place by consulting the data in the infonnation carrier. A similar ap
proach is followed by EXOTICAlFMQM, AowMark on Message Queue Man
ager [Alonso et al., 1995a]. In ExoticaIFMQM, each node functions indepen
dently, the only interaction between nodes being through persistent messages 
used to trigger the next step in the execution. The basic idea is to partition 
the process definition into independent subsets that are distributed to the nodes 
were execution may take place. In contrast to the infonnation carrier of IN
CAS, where all the infonnation moves from node to node as navigation takes 
place, in ExoticaIFMQM each node stores locally all the infonnation it needs 
to perfonn navigation on a given process. Such an approach has also been 
followed by other prototype systems [Wodtke et al., 1996]. This greatly re
duces the communication overhead between nodes and solves some additional 
problems related to monitoring and state detection. Independently of the fonn 
in which navigation takes place, the advantage of the distributed approach is 
that the need for a centralized database is avoided, which eliminates the perfor
mance and scalability bottleneck. Moreover, the resulting architecture is more 
resilient to failures since the crash of a single node does not stop the execu
tion of other active processes. It is also possible to combine this distributed 
approach with a backup mechanism such as the one described above to provide 
both scalability and availability. 

An alternative to distributed execution is to use several identical, indepen
dent systems. One primitive fonn of this approach has been successfully used 
in environments that tolerate load partition. If all processes are entirely inde
pendent of each other and the shared resources (corporate databases, for in
stance) are capable of supporting the accumulated load, it is possible to use 
several identical systems, each one executing part of the total load. This ap
proach allows linear growth but it does not really address more fundamental 
problems as there is no way for the independent systems to communicate with 
each other. A more sophisticated solution is based on the same mechanisms 
described above for increasing the availability of the system. Both critical pro
cesses and important processes are replicated somewhere else in the system. 
Instead of using the copy for backup purposes, it is possible to use it to mi
grate the execution of processes from the primary to other locations as the load 
at the primary increases. In this way, the scalability problem becomes just a 
matter of providing enough locations in which processes can be run. All these 
locations will share the environment infonnation, which can be easily repli
cated at all sites since it does not change often. The links between the different 
locations (necessary for the backup architecture) can also be used for commu
nication between navigation servers so as to allow a navigation server to invoke 
a subprocess at a different location [Alonso et al., 1995b]. 
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The idea of process migration and remote invocation requires to have re
liable communications between the different locations. As with many other 
distributed applications, workflow systems should rely on persistent queuing to 
provide some basic guarantees in the exchange of information [Alonso et al., 
1995a]. These basic features, already in place in many distributed systems, are 
not present in current workflow products, limiting their ability to implement 
solutions to the existing problems. Thus, a first step in the evolution of any 
workflow system is, therefore, to provide the industrial strength of databases 
and TP-monitors. 

2.3.3 Industrial Strength 

Any new system needs some time to evolve and resolve the design inconsis
tencies, limitations and lack of flexibility of the initial versions. After this evo
lution period, products become more stable, their functionality well defined, 
reaching a degree of maturity that makes them reliable, understood and ac
cepted by users. Workflow systems have not yet reached such a state. The 
demands placed on existing workflow systems go well beyond their capabili
ties and, in many cases, the customer profile designers had in mind was quite 
different from that of the actual users [Silver, 1995]. The limitations on scal
ability and availability discussed above are obvious examples, but there are 
many other glaring limitations. Some of them are product specific and related 
to the history behind the product (whether it evolved from a document man
agement system, the tools available at the time it was designed, the position 
of the company in the market, etc.). Examples abound: inability to use sub
processes due to the way data is handled, scalability problems due to the un
derlying database, architectural limitations due to the communication system 
used, excessive emphasis on modeling philosophy, and so forth. These limita
tions are being quickly corrected as the products start to gain a wider customer 
base and experience with users provides the necessary feedback. There are, 
however, another set of limitations common to most systems that have no easy 
solution but need to be addressed before workflow systems can claim to have 
reached any reasonable degree of maturity. 

Among these open questions, the one most often mentioned is exception 
handling. In environments where the number of concurrent instances may be 
in the hundreds of thousands with every instance taking several weeks to com
plete, exceptions affecting single processes are likely to occur. Moreover, it 
is also likely that, occasionally, the behavior of all active instances needs to 
be modified to accommodate changes in the organization. These two types of 
changes are currently not satisfactorily supported. The difficulty they pose de
rives from the way process instances are stored. There are two ways of doing 
it: as a compiled program or, more often, as a collection of database entries. 
Once created, modifying this implicit or explicit "script" is not an easy matter. 
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Any possible exception that may appear during the execution must be coded in 
as part of the behavior of the process. Otherwise, exceptions to the expected 
behavior can only be solved by aborting the entire process (or by invoking a 
subprocesses that hopefully can solve the situation, but this creates a consid
erable overhead for the end user). Ideally, exceptions should be handled in a 
more uniform way, allowing the user to access the process definition, do the 
necessary changes and resume the execution of the process. This requires a 
very flexible handling of the process definition: rescheduling activities that 
have been modified, reusing results that have not been affected by the modifi
cation, and mapping the state of the old process to the state of the new process. 
Existing systems are still too rigid to provide such capabilities. 

Another important issue is the interaction with external applications. In cur
rent systems, it is usually not possible to suspend the execution of the external 
application when the corresponding activity is suspended or the entire process 
aborted. It is also not possible to control any side effects that the application 
may cause. As a result, failures and rollback of processes become a fairly 
complex issue for the user. Currently, these problems are solved via manual 
intervention (even detecting that there is a problem is left to the user in some 
systems). In the future, a tighter integration will be desirable. This may be 
achieved by using standard interfaces or by using persistent queues as a way of 
ensuring reliable asynchronous communication between autonomous systems 
[Alonso et al., 1995a]. 

A third issue related to industrial strength is the ability to express logical 
units within the workflow language. For this, transactional concepts could be 
used. There is an extensive literature on advanced transaction models [Elma
garmid, 1992] which has touched upon many areas related to workflow man
agement [Alonso et al., 1996b, Breitbart et al., 1993, Waechter and Reuter, 
1992, Garcia-Molina et aI., 1991, Nodine and Zdonik, 1990]. Transactions are 
an excellent abstraction to encapsulate behavior (atomicity and isolation, for 
the most part) and have proven extremely useful in developing a widely ac
cepted theory of transaction management. Current commercial workflow sys
tems, however, do not incorporate transactional notions but there are many in
dications that this will change in the future [Alonso et al., 1996a, Alonso et aI., 
1996b, Chen and Dayal, 1996, Eder and Liebhart, 1996, Mohan, 1996, Hagen, 
1996, Ben-Shaul and Kaiser, 1995, Leymann, 1995, Sheth and Rusinkiewicz, 
1993]. In a workflow environment, transactions can playa significant role as 
a system component. Persistence in workflow systems is achieved by using 
a database, a feature that it is unlikely to change. Interactions with databases 
require to use transactions (as shown in Figure 2.7). The very nature of the 
environment requires to use transactions if execution guarantees have to be 
provided. The same problems of distributed commitment and atomicity that 
arise in any distributed environment also arise in a workflow system. These 
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problems could be addressed using the concepts successfully implemented in 
TP-monitors [Gray and Reuter, 1993]. In addition, transactions may also play 
a significant role in the workflow language. As has already been pointed out 
[Alonso et al., 1996b], many of the ideas proposed in advanced transaction 
models can be used in workflow environments: compensation [Garcia-Molina 
et al., 1991], alternative execution [Nodine and Zdonik, 1990], spheres of con
trol and atomicity [Leymann, 1995], to mention a few. Thus, workflow sys
tem can be seen as a ubiquitous programming environment for implement
ing the applications targeted by advanced transaction models [Alonso et al., 
1996b, Georgakopoulos et al., 1996, Georgakopoulos and Hornick, 1994]. An 
example of how transaction may influence the workflow language is the use 
made of transactions in Encina, a TP-monitor that provides transactional C 
[Transarc, 1995]. Transactional C is an extension of C in which it is possible 
to bracket sets of instructions (usually service invocations) within a transaction 
and specify what t'o do in case the transaction commits or aborts. The same 
idea, as well as more sophisticated concepts, can be applied to the workflow 
language to allow the programmer of workflow processes to specify, for ex
ample, units of atomicity or compensation expanding several activities [Ley
mann, 1995] or alternative execution paths in case of exceptions [Alonso et al., 
1996b]. 

2.4 EVOLUTION OF WORKFLOW MANAGEMENT SYSTEMS 

2.4.1 Distributed Environments 

As mentioned throughout the chapter, the future of workflow management is 
strongly tied to the evolution of distributed computing. As such, distributed 
environments require the four categories of functionality discussed in the intro
duction: interface definition, communication, execution guarantees, and devel
opment environments. While existing products are far from providing the four 
categories, they are slowly converging towards systems that do provide such 
functionality in an integrated an efficient manner. In such systems, workflow 
concepts could be one of the basic tools for programming distributed systems. 

The characteristics of such distributed environment can be easily derived 
from the target architecture of existing systems. A quick look to the manuals 
of products such as implementations of the CORBA standard, TP-monitors, 
queuing systems, and workflow tools reveals striking similarities in their archi
tecture. In all cases, the system can be succinctly described as shown in Figure 
2.9. 

In general, the client represents the user program invoking the services pro
vided by the distributed system. The client usually resides outside the dis
tributed system but interacts with it through a well defined set of APIs. The 
service provider determines the nature of the system since it plays the role of 
scheduler, navigator, and system controller. It provides core functionality such 
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Figure 2.9 Generic architecture of a distributed system 

as name services, registration facilities, protocol translations, and request rout
ing. It also serves as the link between all other system components. The server 
is generally a simple proxy for the resource manager, acting as a common in
terface and implemented as a wrapper. Finally, the resource manager is the ap
plication that performs the operations requested by the client. In TP-monitors, 
for instance, the resource managers tend to be databases. 

The advantage of such architecture is that the services provided can be dis
tributed. Each server/resource manager pair can reside in a different location, 
with the service provider in charge of routing client requests to the appropriate 
node after locating a server adequate to the request submitted. Many issues 
are involved in this simple exchange: load balancing, replication, system con
figuration, name services, communication overhead, etc., all of which must be 
balanced in order to have a suitable system, regardless of the concrete appli
cation. The difference between CORBA implementations, TP-monitors, and 
workflow management systems lies on the assumptions made about the com
ponents shown in Figure 2.9. CORBA provides a standarized interface in order 
to have all servers looking alike. A TP-monitor provides similar normalization 
but with an emphasis on the transactional properties of the service provider. 
A workflow tool concentrates on the way the client concatenates service invo
cations and on facilitating the interaction with non-standarized resource man
agers (the server components being designed on an ad-hoc basis). Although 
these systems perform basically the same function, only workflow manage
ment pays sufficient attention to the concatenation of service invocations, i.e., 
to the programming aspects as seen from the client. CORBA relies on object 
oriented languages for this purpose, usually C++, TP-monitors have their own 
language, for instance, transactional C in Encina [Transarc, 1995], but none of 
them offers the flexibility and functionality provided by workflow management 
systems. 

2.4.2 Process Support Systems 

The most precise and simplest characterization of a process is as a complex 
sequence of computer programs and data exchanges controlled by a meta
program (the process itself). This characterization is useful in that it implic-
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itly incorporates the goals of any process support system. It also covers a 
wide range of process types including business processes, virtual enterprises, 
software processes, manufacturing processes, scientific experiments, and ge
ographic modeling. Such notion of process has proven to be very helpful in 
developing support tools for applications executing in a distributed fashion and 
over heterogeneous platforms, as it is the case in most process types. Existing 
workflow systems, however, target in most cases either business processes or 
imaging systems, with a few research prototypes addressing other areas [Mei
danis et al., 1996, Ben-Shaul and Kaiser, 1995]. Such narrow purpose design 
along with the limitations mentioned in the previous section significantly re
strict the applicability of current products. For instance, recent attempts to 
use commercial workflow products to support scientific applications have been 
rather disappointing [Meidanis et al., 1996, Bonner et al., 1996]. These re
sults are not surprising, since the problems faced by current workflow systems 
are pervasive and appear in many application areas. Thus, the two main chal
lenges of workflow management systems is to incorporate their functionality 
into a generic distributed system as the one described above, and generalizing 
the notion of process so as to provide support for any type of process based 
distributed computation, not just for business applications. 

2.4.3 Programming in Heterogeneous, Distributed Environments 

Regardless of whether the final system is seen as a distributed environment or 
as a process support system, the key aspect is the variety of computer tools 
available as basic building blocks. Workflow management provides the mech
anisms to integrate these tools into a more meaningful system by combining 
them as necessary on a per process basis. Individual applications act as re
source managers, while the workflow system acts as the language to specify 
the interactions between these service providers as well as serving as the exe
cution environment in which those interactions take place. 

Scientific data management offers a good example of the generalization of 
the concept of process and of the utilization of workflow tools in a distributed, 
heterogeneous environment. Scientific applications are known for the size and 
volume of the data involved [Hachem et al., 1993, Katz and et al., 1993]. More
over, scientific data has the added problem of the multiple formats in which the 
information is represented and the multiple transformation to which it is sub
jected. Most existing research in scientific data management often overlooks 
the fact that scientific data is seldom used raw. In most cases, the data under
goes complex and successive transformations as part of sophisticated models 
of physical phenomena. Such transformations are a source of derived data 
which cannot be interpreted correctly without knowledge about how it was 
created. To make matters worse, the transformations and models themselves 
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Figure 2.10 Scientific modeling as a workflow process 

may evolve as more precise knowledge is available. Support for tracking these 
data dependencies and evolution is all but lacking in current systems. 

Consider, for instance, the model shown in Figure 2.10 as a typical exam
ple of how scientific data is handled. The purpose of the model is to study 
the changes in the erosion patterns, vegetation and hydrographic characteris
tics of a given area. The model can be divided in three parts. The erosion 
model takes information about the slopes of the area, its soil characteristics, 
and vegetation cover to produce an estimate of the erosion of the terrain. Note 
that the soil information is obtained directly from available data. However, the 
slope information is not readily available and requires taking elevation samples 
and processing them to get the desired information. This is done by using two 
more models, the Digital Elevation Reconstruction and Slope Analysis. The 
data about vegetation changes is the result of a vegetation evolution model. 
This model takes several inputs, some of them primitive, i.e. raw data such 
as the soil map, and some of them derived (by applying other models). Fi
nally the discharge model involves interpolating rainfall records, calculating 
the storm coverage and applying a flow analysis algorithm to define an hydro
graph (showing the flow of water at a given point). 

Workflow systems provide the tools necessary to capture such modeling acti
vities. Figure 2.10 can be viewed as a workflow process in which the control 
flow follows the modeling logic and the data flow corresponds to the outputs 
of particular algorithms that are used as inputs to the next set of algorithms. 
Using a workflow system for such purpose helps to solve many of the prob
lems posed by scientific data. To start with, the execution is persistent and can 
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be distributed across many different nodes which, first, provides a considerable 
degree of reliability and, second, opens up the opportunity to parallelize and 
distribute expensive computations across a network of computers. Moreover, 
the auditing and monitoring tools of the workflow system keep track of every 
step of the execution and the data produced. Questions such as the lineage of 
a data set (how it was produced), data dependencies between data sets, and the 
algorithms involved in a given model can be easily answered by consulting the 
audit data of the workflow system. Moreover, complex tasks such as automatic 
change propagation (triggering the execution of a process when one of its inputs 
changes) and maintaining data consistency can be performed automatically by 
the system by using the information recorded about every process. 

These ideas can be applied in a variety of scientific environments, once 
the workflow engine has been modified to support generic processes. The 
necessary enhancements are no different from those discussed in this chapter 
(scalability, availability, industrial strength, generalization of the modeling lan
guage) and some work is currently being done in this direction [Bonner et aI., 
1996, Meidanis et al., 1996, Alonso and El Abbadi, 1994]. A workflow system 
is, however, not just a repository for process dependencies. It can also play 
an important role in the usability of parallel and distributed environments such 
as clusters of workstations and pes. Moreover, by not requiring to modify 
existing applications, workflow management systems may provide a straight 
forward solution to the problem of exploiting the parallelism inherent in such 
hardware clusters. A good example of this is the complex sequence of pro
gram invocations shown in Figure 2.10. Assuming the necessary hardware is 
available, each of the steps of the model depicted could be executed in a dif
ferent machine, with the workflow tool acting as the scheduler for the overall 
computation. In this way, in a first stage, the vegetation model, the orographic 
data extraction and the spatial interpolation programs could be invoked in par
allel at different sites. In a second stage, the storm discharge, and the erosion 
and precipitation models could be invoked in parallel, and so forth. In such 
scenarios, the workflow system takes on the role of distributed operating sys
tem facilitating the integration of independent systems into a single coherent 
whole. Ideally, workflow management systems should provide such function
ality independently of the type of application process. Thus, future workflow 
systems may be constructed as tools over which concrete distributed applica
tions (business oriented, scientific process support, virtual enterprises, etc.) are 
built. 

2.5 CONCLUSIONS 

Workflow management systems have had a considerable success as the first 
tools capable of both exploiting the coarse grained parallelism implicit in busi
ness processes and integrating heterogeneous systems into a coherent whole. 
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The notion of process, understood as a complex sequence of program invo
cations and data exchanges, has been widely accepted and applied in many 
areas. Unfortunately, existing workflow systems suffer from significant lim
itations that restrict their applicability. Among these limitations, one of the 
most relevant is their inability to support generic processes. This has lead to 
disappointing results when current products have been used in areas other than 
business processes. Other limitations arise from problems not very different in 
nature from those encountered in tools such as TP-monitors or CORBA envi
ronments. These similarities, as shown in the previous sections, are not sur
prising when taking into consideration the fact that all of these systems have 
basically the same goals. Solving these limitations requires to develop a new 
understanding of workflow management. In particular, workflow management 
systems should be incorporated as key functionality in tools supporting dis
tributed applications, as well as be enhanced to support a more generic notion 
of process. From a functional point of view, the advances in communication 
and computing technology allow, and even require, to view workflow manage
ment systems as process support systems, i.e., meta-programming tools and 
execution environments for generic processes. The possibilities of such an 
approach have been clearly shown in the area of business process reengineer
ing, where workflow management systems have provided an efficient way of 
designing very complex distributed applications reusing existing components. 
The example discussed above regarding scientific computing shows how these 
same ideas can be successfully applied in many other areas, turning workflow 
management into a key ~omponent of future distributed systems. In this regard, 
it is important to point out that none of the issues discussed in this chapter are 
tied to business processes, although the initial motivation to work on them may 
have been business applications. These issues are common to many distributed 
applications. Efforts like TP-monitors, CORBA, or queuing systems are ad
dressing additional crucial aspects of distributed execution environments, and 
workflow management should be viewed as one more effort in this direction. 
The focus on business process has helped to create an initial market and al
lowed to gain important experience in the usage of workflow systems. The 
next step is to extrapolate these ideas to other areas and combine workflow 
technology with other ongoing efforts in distributed computing to arrive at the 
next generation of distributed processing tools. 
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3 A REFLECTIVE FRAMEWORK FOR 
IMPLEMENTING EXTENDED 

TRANSACTIONS 
Roger S. Barga and Calton Pu 

Abstract: It is commonly accepted that the traditional transaction model used 
in database systems is not well-suited for advanced application domains, because 
it is lacking in functionality and performance. In recent years, numerous ex
tended transactions have been proposed to address the requirements of advanced 
database applications. Extended transaction proposals can largely be categorized 
into two areas: advanced transaction models and semantics-based concurrency 
control protocols. Few extended transactions have been ever implemented, not 
even as research prototypes, and today most remain mere theoretical constructs. 
Thus, while the research literature bulges with papers there is no practical way 
to readily leverage these results for the advanced applications for which they 
were designed. As a consequence, extended transactions have had little impact 
on industry. 

In this chapter we present the Reflective Transaction Framework, as a prac
tical method to systematically extend both functionality and interface of a con
ventional TP monitor to implement extended transactions. The framework pro
vides principled access to existing TP monitor functions and data structures, and 
carefully extends available transaction services to implement extended transac
tions. The design of the Reflective Transaction Framework is a synthesis of 
techniques: computational reflection for principled, effective access to TP mon
itor systems internals; meta object protocols to provide explicit descriptions of 
extended transaction behaviors; and, good software engineering practices for 
abstraction and modularity of the individual software modules that implement 
the framework. Using the framework, application developers can implement ad
vanced transaction models and semantics-based concurrency control protocols 
on production quality TP monitor software, where they can be applied to real-
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world applications. It is our hope that this work will help bring together research 
advances in transaction processing and commercial transaction processing sys
tems, an interaction from which both sides may benefit. 

3.1 INTRODUCTION 

A vast majority of the ideas that have been proposed in the context of advanced 
transaction models and semantics-based concurrency control have remained, at 
least thus far, just that - proposed. In many cases, these extended transac
tions have been shown to have the potential to improve both performance and 
functionality of traditional transactions for emerging database applications [EI
magarmid, 1992]. However, few of these extended transactions have been im
plemented, not even as research prototypes, and most remain mere theoretical 
constructs [Mohan, 1994]. Today, extended transactions are on the critical path 
for a variety of advanced database applications [Silberschatz et aI., 1996], and 
the time is ripe for their incorporation into commercial transaction processing 
(TP) systems where they can be applied to real-world applications. 

We have introduced the Reflective Transaction Framework [Barga, 1997, 
Barga and Pu, 1995] to support the implementation of extended transactions 
on production quality TP monitor software. The insight behind our work is the 
observation that in most cases, the base functionality provided by a conven
tional TP monitor is "almost right" to implement advanced transaction models 
and semantics-based concurrency control protocols. While certain functions 
and data structures are missing, existing functions and data structures of the 
TP monitor software are basically correct. We do not propose that transaction 
systems should simply include more features to implement selected extended 
transaction models. There is no consensus as to which extended transactions 
a transaction system should include for advanced applications; most likely, 
there never will be, since each advanced transaction model and semantics
based concurrency control protocol is optimized for a particular application. 
Furthermore, as application requirements continue to evolve, transaction pro
cessing requirements will change and new models will be introduced. Instead, 
we present a software framework that opens the existing functionality of a TP 
monitor in such a way that allows programmers access and control over the 
system, and to tailor the framework to the needs of a particular application. 
This is called an open implementation [Kiczales, 1992]. The open implemen
tation provided by the Reflective Transaction Framework gives the application 
programmer principled access to TP monitor functions and data structures, and 
carefully extends the TP monitor functionality with extended behaviors to im
plement extended transactions. 

The design of the Reflective Transaction Framework draws from a variety 
of techniques to achieve the open implementation of a conventional TP moni
tor. The framework uses computational reflection [Maes, 1987] for principled, 
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effective access to TP monitor systems internals. A meta level interface, or 
meta object protocol [Kiczales et al., 1991], is used to provide explicit descrip
tions of extended transaction behaviors. Good software engineering practices 
are followed for abstraction and modularity of the individual software modules 
that implement the framework. 

The implementation of the Reflective Transaction Framework introduces 
transaction adapters, reflective software modules built on top of TP monitor 
software. Transaction adapters leverage existing transaction services of the un
derlying TP monitor, to the extent possible, as building blocks for constructing 
extended transaction functionality. Transaction adapters contain a representa
tion, or meta-level description, of selected functional aspects of the underlying 
TP monitor, and maintain a causal connection [Maes, 1987] between this rep
resentation and the actual behavior of the system. The causal connection is two
way; not only are changes in the TP monitor reflected in equivalent changes to 
the representation, but changes in the representation will also cause changes 
in the behavior of the underlying TP monitor. Each extended transaction has 
meta-level representation, causally-connected with a transaction running on the 
TP monitor, that holds information about the transaction and how it is used; in 
essence this representation defines control and policy. The causal connection 
between the Reflective Transaction Framework and underlying TP monitor is 
built on the ability to intercept transaction events, together with the means to 
access TP monitor functions through an available application programming in
terface (API). The strengths of the Reflective Transaction Framework lie in: 

1. Incremental Design. The Reflective Transaction Framework does not 
expose the entire TP monitor functionality, but only selected aspects of 
it. Access to TP monitor functionality and extended transaction behav
iors is carefully organized through a well-documented interface, not ran
dom user hacking of internals. In addition, programmer access to ex
tended transaction behaviors can be graduated to match application re
quirements. This is very different from letting an application programmer 
randomly change the implementation, as happens when a large number 
of more or less random "hooks" or callbacks into the implementation are 
provided. The framework preserves the original TP monitor application 
interface and functionality, enabling extended transactions to be gradu
ally deployed without having to reimplement existing applications. 

2. Interoperability. The Reflective Transaction Framework insulates tran
saction extensions from each other, so that multiple extended transactions 
can exist in one address space and be used in a single program, along 
with traditional transactions. They are interoperable. This addresses two 
fundamental problems with tailorability: (i) the framework allows the ad
dition of transaction extensions to the TP monitor without requiring all 
programs to pay the additional cost, even if they do not make use of those 
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extensions. And (ii) the framework allows programmers to use in one 
address space different transaction operations that are alike but have been 
extended differently. For example, an application can select a commi t op
eration designed for cooperative group transactions [Nodine and Zdonik, 
1990], or a commi t operation designed for nested transactions [Moss, 
1985], etc. Systems that are only globally tailorable typically can not 
support multiple applications, because interface customizations diverge. 
By allowing programmers to explicitly control the scope of extensions, 
at the level of individual transactions, it is possible to customize the TP 
monitor to suit any number of different applications. 

3. Extensibility. While the abstractions and extended functions provided 
by the Reflective Transaction Framework are sufficient to implement a 
wide range of existing transaction models and semantics-based concur
rency control protocols, we anticipate the continued introduction of new 
extended transactions. Transaction adapters are designed for quick and 
easy extension. Each adapter encapsulates a set of extensions specific to 
a selected aspect of TP monitor functionality. This limits the scope of 
what is effected by an adapter and makes it easy to incrementally extend 
this functionality. As a result, the framework itself can be extended to 
implement new extended transactions for emerging applications. 

4. Practical Approach. Transaction adapters do not duplicate existing tran
saction functionality, but instead implement extensions to the services 
provided by a TP monjtor. These extensions leverage existing function
ality and data structures, to the extent possible, for constructing extended 
transaction abstractions and services. This not only eliminates unnec
essary infrastructure development by building on existing services, but 
provides efficient, robust base processing for extended transactions. 

The contribution of the Reflective Transaction Framework, then, is a prac
tical method to systematically extend the functionality of a conventional TP 
monitor to implement advanced transaction models and semantics-based con
currency control protocols. Using the framework, application developers will 
be able to apply extended transactions in real, working environments. It is our 
hope that this work will help bring together research advances in transaction 
processing and commercial transaction processing systems, an interaction from 
which both sides may benefit. 

3.2 EXTENDING A CONVENTIONAL TP MONITOR 

Transaction processing (TP) monitors supporting atomic transactions are a 
well established technology that have been around for almost 20 years. TP 
monitors provide a general framework for transaction processing, supplying 
the "glue" to bind together the many functional components of a transaction 
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processing system through services like multithreaded processes,.. interprocess 
communication, queue management, and system management [Bernstein, 1990]. 

Early TP monitors, such as mM's CICS, were proprietary and constructed 
from single monolithic proprietary systems, but modem TP monitors, such as 
Transarc's Encina. DEC's ACMSxp, and mM's CICS/6000, are modular and 
constructed from open transaction processing middleware [Bernstein, 1996]. 

These middleware modules provide the basic functional building blocks re
quired of any TP monitor for transaction processing, such as a Transaction 
Manager, Lock Manager, Log Manager and Resource Manager. Each 
module exports its transaction services through a relatively simple and uniform 
"application programming interface" (API). The relationships between an ap
plication and the modular functional components in a TP monitor are depicted 
in Figure 3.1. 

Transactional 
Applicillion 

-----------------------------------------

Transaction Processing System 

Figure 3.1 Modular Functional, Components of a TP Monitor 

One seemingly straightforward way to implement extended transactions wo
uld be to directly use the available functionality found in the functional com
ponents of a TP monitor. Two major impediments complicate this proposition. 
First, conventional TP monitors have a fixed application-level interface and a 
fixed implementation of system services. Application developers traditionally 
access transaction services through the atomic transaction control operations, 
such as BegiILTransaction, Comrni LTransaction, and AborLTransaction~ 
Ideally, programmers would be able to define and then use similar transaction 
control operations for extended transactions, such as Spli LTransaction or 
JoiILTransaction for programming with the split/join transaction model [Pu 
et al., 1988]. However, the single, fixed interface of the TP monitor does not 
provide access to the underlying transaction services or permit extensions. The 
functional components of a TP monitor provide a rich set of transaction ser
vices, but require the application developer learn intricate details of the TP 
monitor and available API; the size and complexity of the API itself presents 
a formidable barrier to even the most accomplished programmers. Second, 
is the level of customization of the TP monitor. The transaction system-level 
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code functions 'underneath' the code of an application program, is not subject 
to the same programming abstractions. This requires the TP monitor to be cus
tomized outside the application, rather than within it, making it impossible for 
an application to specify its requirements for extended transaction behaviors 
at runtime. At best, the TP system programmer could adjust the TP moni
tor functionality through the API to implement a selected extended transaction 
model a priori. Unfortunately, this approach is at the cost of reusability of the 
TP monitor by applications with other requirements. These issues, and oth
ers, combine to give users no convenient way to directly use a conventional TP 
monitor to define new application interfaces or leverage existing transaction 
services to implement extended transaction functionality. Efforts to provide 
implementation support for extended transactions have thus gravitated towards 
construction of entirely new transaction processing facilities. These efforts, 
though laudable, have limited practicality. 

Computational reflection offers a conceptual tool, the notion of a reflective 
module, to address the challenges of extending a conventional TP monitor to 
implement extended transactions. Intuitively, a reflective module allows ap
plications to observe and modify properties of their own behavior, especially 
properties that are typically observed from some external, meta-level point of 
view. Reflective modules contain a representation of selected aspects of the 
system, and maintain a causal connection between this representation and the 
actual behavior of the system. The causal connection is two-way; not only are 
changes in the system reflected in equivalent changes to the representation, but 
changes in the representation will also cause changes in the actual state and be
havior of the system. An application can use this representation to both reason 
about selected aspects of the system, and adjust the representation to influence 
system behavior. Following the open implementation approach [Kiczales et aI., 
1991, Kiczales. 1992], a reflective module can be designed to provide a meta 
interface that allows applications to extend and control the implementation of 
the module's primary interface. 

Thus, a reflective module with an open implementation enables an appli
cation to extend both interface and system services, and to participate in the 
modules implementation strategy in a principled way. 

3.3 THE REFLECTIVE TRANSACTION FRAMEWORK 

The Reflective Transaction Framework is a flexible software framework that 
supports the implementation of extended transactions on a conventional TP 
monitor. The framework is designed to be implemented as a thin software 
layer over an existing TP monitor. The implementation introduces transaction 
adapters, reflective software modules built on top of the individual functional 
components of the TP monitor. Each adapter provides a representation of se
lected aspects of the underlying functional component, and provides a primary 
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interface to a set of extended transaction services and a meta interface to adjust 
these extended services. The Reflective Transaction Framework ties together 
the individual transaction adapters and provides a single, integrated interface 
for applications to systematically extend both application interface and func
tionality of a conventional TP monitor to implement extended transactions. 

The extensions provided by transaction adapters leverage, to the extent pos
sible, transaction functionality already provided by the underlying TP moni
tor. The additional transaction functionality provided by transaction adapters 
supplies the necessary building blocks for constructing a wide range of ex
tended transactions; examples include structured relationships between indi
vidual transactions, transaction restructuring, recording and tracking inter-tran
saction dependencies, delegation of resources between transactions, specifica
tion of transaction management events and constraints on event occurrences, 
and relaxed notions of lock conflicts. The techniques used by the extensions 
in transaction adapters are not novel; for example, other systems using similar 
approaches are ASSET [Biliris et al., 1994], DOMS [Georgakopoulos et al., 
1994], and the ACTA meta model [Chrysanthis and Ramamritham, 1990]. 
However, the techniques are applied in a unique way to the problem of carefully 
extending the existing functionality of a conventional TP monitor. 

3.3.1 Extensions Through Transaction Events 

One key to the Reflective Transaction Framework's ability to extend the func
tionality of a TP monitor is a mechanism that integrates extensions with the un
derlying TP monitor. The Reflective Transaction Framework uses transaction 
events to provide such a binding mechanism. In an event-based system, com
ponents announce some system occurrence by explicitly raising an event of a 
particular name. Other parties, interested in learning of the occurrence, register 
event handlers which execute in response to a raised event. Events are gen
erally recognized as an effective technique for implementing loosely-coupled, 
flexible systems in which relationships between code components must be dy
namicallyestablished [Sullivan and Notkin, 1992]. 

In the Reflective Transaction Framework, every transaction control oper
ation represents a possible transaction event, such as BegiILTransaction, 
commi LTransaction, or JoiILTransaction a transaction changing state (to 
ACTIVE, ABORTED, COMMITIED, etc.), is a potential transaction event, or 
when a transaction requests a service (Le., lock request) from the TP monitor. 
Consequently, all relationships between a transaction and the TP monitor are 
subject to change simply by changing the set of handlers associated with any 
given transaction event. Since the Reflective Transaction Framework allows an 
application to associate handlers with each transaction event, it is possible for 
an application to specify its requirements for extended transaction behaviors at 
runtime at the granularity of each (extended) transaction. 
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To see how this works, consider the processing of the Commi LTransacti -
on control operation for an extended transaction. This transaction control op
eration raises an event that can be intercepted by a transaction adapter in the 
Reflective Transaction Framework. If there are inter-transaction dependencies, 
such as a commit dependency or abort dependency, the transaction adapter can 
take appropriate actions, possibly delaying the actual commit of the transaction, 
terminating abort-dependent transactions, or performing commit preprocess
ing. The Reflective Transaction Framework's use of transaction events as a 
mechanism to integrate transaction extensions is only part of the solution. Ex
tended transaction processing often requires the ability to observe and reason 
about the state of active transactions, and to effect control over the underlying 
TP monitor. This is accomplished through reflection and causal connection. 

3.3.2 Implementing Reflection and Causal Connection 

In the Reflective Transaction Framework, reflection and causal-connection are 
implemented using transaction adapters. Each adapter corresponds to a par
ticular functional aspect of the TP monitor, such as transaction execution, lock 
management, transaction conflict detection, log management, and transaction 
recovery. The relationship between transaction adapters and TP monitor func
tional components is illustrated in Figure 3.2. To expose, or reify the internal 
state of the TP monitor, each adapter contains a number of meta objects that 
represent or model selected structures and behaviors of the underlying func
tional component. Each adapter provides a meta interface that allows the state 
and behavior of these meta objects to be locally and incrementally adjusted. 
Furthermore, when the user modifies a meta object in an adapter, the modifica
tion is reflected to the actual computational state of the functional component in 
the TP monitor. Figure 3.4 outlines select transaction adapters, along with meta 
objects and meta interface commands each provides. Thus, transaction adapters 
provide access to aspects of a legacy TP monitor that are often hidden, enabling 
users to "reach in" and adjust or extend the behavior of the legacy system using 
the meta interface. This relationship between adapters at the meta level and 
legacy TP monitor at the base level is termed causal-connection [Maes, 1987], 
and is satisfied by all reflective systems. 

Applications access transaction adapters using commands in the meta inter
face. Changes or modifications that an application makes to meta objects in 
an adapter, using the meta interface commands, affect the behavior of the TP 
monitor for only tluJt application. For example, if an application would like 
to relax isolation properties of a transaction in order to facilitate cooperation 
with other concurrently running applications, it issues the appropriate meta in
terface commands to change the conflict detection method for that transaction. 
Therefore, adapters enable an application to extend the underlying mechanisms 
of the legacy TP monitor incrementally, dynamically, and in a modular manner 
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at the granularity of each (extended) transaction execution. In the remainder of 
this section, we provide details on how reification, reflective computation, and 
reflective update are implemented in the Reflective Transaction Framework. 
Additional details on the design and implementation of transaction adapters 
can be found in companion articles [Barga and Pu, 1996, Barga and Pu, 1995]. 

Transactional Application 
Meta Intu!oct Meta llIleT/oce Meta illleTjoce Meta Interface 

Transaction Mgr. Lock Conflict Log 
Adapter Adapter Adapter Adapter 

Transaction Mgr.1 Lock Mgr'l Log Mgr. 

TPMonitor 
Low-levt:l System Programming Inlujace 

Transaction E'Vtlll Facility 

Metalevel 

Baselevel 

Figure 3.2 Transaction Adapters in the Reflective Transaction Framework. 

Reification. In the Reflective Transaction Framework, reification is the rep
resentation of structural and computational state of the underlying TP monitor 
component as an object within the corresponding transaction adapter. This ef
fectively provides a representation of the system at the meta level. Reification is 
implemented using callbacks, also commonly referred to as upcalls. Upcalls 
support efficient cross-layer communications and enable the functional com
ponents in the TP monitor to pass relevant state information to a transaction 
adapter in the meta level where it is reified, as illustrated in Figure 3.3. The 
most important decisions made in designing each transaction adapter were se
lecting those aspects of the underlying TP monitor component that should be 
reified. As an example, for the Lock Adapter depicted in Figure 3.3, such 
aspects include the locks being held by each extended transaction, pending 
lock requests, the procedure used to grant lock requests, and the structure of 
the lock table. Depending on the transaction model one wishes to implement, 
other aspects may also be reified. For example, the operations being performed 
on a locked data object, or the mode in which a lock has been granted to a 
transaction. For generality, each adapter was designed based on the structure, 
function, and commands of the well-documented TP monitor reference archi
tecture [Gray and Reuter, 1993]. The reference architecture was selected to 
allow observations on TP monitors in general, yet be concrete enough to re
veal implementation details on modem commercial TP monitors. To identify 
the transaction and TP monitor structures and state that would be reified by the 
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adapters, we referred to ACTA [Chrysanthis and Ramamritham, 1992], a logic
based formalism for defining and cOillparing transaction models. ACTA pro
vides unifying abstractions for describing extended transaction functions and 
behaviors, and delineated dimensions of change for realizing extended transac
tions. A more detailed discussion of transaction adapter design can be found in 
a companion paper [Barga and Po, 1995]. The essential point is that the meta 
objects in the transaction adapters and commands presented in the meta inter
face are not ad-hoc, but were defined within the context of general TP monitor 
functionality and extended transaction behaviors. Further, to ensure the flexi
bility of transaction adapters they were designed to be incrementally extensible. 
Should the need arise, additional aspects of the underlying TP monitor func
tional component can be reified as meta objects in the adapter by using the ap
propriate TP monitor upcalls and adding reification methods to the transaction 
adapter. Reifying selected aspects of the underlying TP monitor component 
into metalevel objects that are dynamically accessible and modifiable enables 
reflective computation and reflective update. 

Lock Adapter Meta Interface 

[I] [I] [I] [I] I········ 
TnnMCdon Lock List Lock Infonnatloa 

[ TI'IIDSIIdion Event Handle. 1 
t=~~======~---------kfomHU~. 

causal-connection 
R~n __________________ ~::.....----, 

Lock Manager Application Programming Interface 

Lock Tobie Pendilll Lock Requ .... Lock Compatibility 

Figure 3.3 Reflective update and reification form causal-connection. 

Reflective Computation. The shift in computation from the TP monitor 
functional component to reflective computation in the transaction adapter oc
curs in an event-driven manner. A transaction significant event is raised when
ever a transaction attempts to change state, e.g. the transaction aborts or com
mits, or when a transaction requests a service from the TP monitor. For each 
transaction event there is an adapter assigned to process the event. When the 
event is raised execution control is passed to the assigned transaction adapter, 
along with all information relating to the event. For example, when the LOCK 

MANAGER detects a lock conflict between two transactions during a lock re
quest, control is passed to the Lock Adapter through an upcall, along with all 
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infonnation pertaining to the conflicting request. The Lock Adapter can then 
apply operation or application-specific semantic infonnation to detennine if 
the request should be granted according to the semantics of the transaction 
model. The Lock Adapter can then grant the lock request, or deny it by sim
ply returning control back to the LOCK MANAGER, effectively implementing 
semantics-based concurrency control. As this example illustrates, reflective 
computation not only allows transaction adapters to expose default behaviors 
of the underlying TP monitor, but also augment legacy functionality with new 
extended functionality. 

Reflective Update. If the reflective computation updates the reified data, 
then the modifications are reflected down to the actual computational state of 
the underlying TP monitor component in what is called a reflective update. 
Reflective update is implemented through calls to the API provided by each 
TP monitor functional component. Through the API the transaction adapter 
can update the structures and computational state of the underlying functional 
component. The most challenging issue when implementing an adapter is to 
identify the appropriate API calls in order to implement each reflective up
date. Ideally, this task is perfonned only once, by the designer of the Re
flective Transaction Framework, who is familiar with the inner workings of 
the monitor functional components. When an adapter needs to perfonn a re
flective update, it issues the appropriate sequence of API calls, as illustrated 
in Figure 3.3. Thus, each transaction adapter not only reifies aspects of the 
TP monitor functional component, enabling reflective computation, but also 
provides the means to affect the state and control the component's behavior 
through reflective update, fonning the causal-connection between the tran
saction adapters and legacy TP monitor. 

3.3.3 A Separation of Programming Interfaces 

Application programmers develop transactional applications using a set of tran
saction model-specific verbs, or transaction control operations. For exam
ple, atomic database transactions are initiated by the operation BegiILTrans
action, and tenninated by either a Commi LTransaction or AborLTransac· 
tion operation. Extended transactions, on the other hand, often introduce addi
tional operations to control their execution, such as the operation Spli LTrans
action introduced by the split/join transaction model, or the operation Join
Group introduced in the cooperative group model. Indeed, a transaction model 
defines not only defines the control operations available to a transaction, but 
also the semantics of these operations. For example, whereas the Commi LTran
saction operation of the atomic transaction model implies the transaction is 
tenninating successfully and that its effects on data objects should be made 
pennanent in the database, the Commi LTransaction operation of a member 
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Transaction Management Adapter - reifies state information for 
transactions executing extended behaviors, and provides meta 
interface commands to control these extended transactions and 
adjust the behavior of the underlying TRANSACTION MAN

AGER functional component. Commands in the Transaction 
Management Adapter meta interface include: Instantiate, 
Select, Delegat~Ops, FormLDependency, Creat~Group, 

Creat~Tran, Terrninat~Tran, and Wait. Primary meta ob
jects reified by the Transaction ManagementAdapter include a 
metatransaction descriptor for each extended transaction, a re
flective transaction table, and a transaction dependency graph. 

Conflict Adapter - reifies information on the conflicts that occur 
between transactions attempting to acquire shared resources, and 
provides a meta interface to control the definition of conflict and 
appropriately adjust the behavior of the underlying LOCK MAN

AGER. Commands in the Conflict Adapter meta interface include: 
Relax-Conflict, NO_Conflict, Allow, Wait and Revoke. Pri
mary meta objects reified by the Conflict Adapter include a a 
compatibility table defining conflict relationships between oper
ations, and a no-conflict table that records all conflicts explicitly 
relaxed between extended transactions. 

Lock Adapter - reifies information on locks held by transactions 
and on the state of the lock table, and provides meta interface 
commands that control the locks held by extended transactions 
and adjust the behavior of the underlying LOCK MANAGER func
tional component. Commands in the Lock Adapter meta inter
face include: Releas~Lock, Acquir~Lock, Delegat~Lock, 
Share, Wai t, Peak and UpgradELMode. Primary meta objects 
reified by the Lock Adapter include a transaction lock list, lock 
mode table, and an active locks list. 

Figure 3.4 Transaction Adapters in the Reflective Transaction Framework 
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transaction in a cooperative transaction group implies only that its effects on 
data objects be made persistent and visible to transactions that belong to the 
same group. 

To accommodate this diversity between different advanced transaction mod
els, we introduce a separation of programming interfaces to the TP monitor. 
This separation follows the open implementation approach [Kiczales, 1992], 
pioneered in the meta-object protocol [Kiczales et al., 1991], in which thejUnc
tional interface is separated from the meta interface. The purpose of the meta 
interface is to modify the behavior, or semantics, of the functional interface. 
In our separation of interfaces, presented in Figure 3.5, both the transaction 
demarcation interface and extended transaction interface are functional, subdi
vided for clarity only. 

The separation of programming interfaces to the legacy TP monitor pro
vides the means to talk about existing transaction models, and also introduce 
new extended transaction behaviors and interfaces. Default transaction behav
iors remain available through the standard transaction demarcation interface. 
New extended transaction behaviors can be defined using the meta interface, 
and made available to to application through the introduction of new extended 
transaction control operations in the extended transaction interface. The ex
tended transaction interface augments the default transaction demarcation in
terface with new extended control operations, so the TP system programmer 
can perform the meta-programming of the TP monitor in a clean, concise man
ner that does not deviate significantly from 'normal' programming. 

3.4 APPLICATIONS OF THE 
REflECTIVE TRANSACTION FRAMEWORK 

The Reflective Transaction Framework would not be of great value unless it 
supported the extended functionality required to rapidly implement a wide 
range of advanced transaction models and semantics-based concurrency con
trol protocols for advanced applications. Our experience in this regard has been 
very positive [Barga and Pu, 1996, Barga and Pu, 1995]. In this section, we il
lustrate the application of the Reflective Transaction Framework to implement 
advanced transaction models and semantics-based concurrency control proto
cols. In our discussion, we outline the process of using the framework from 
the perspective of both TP system programmer and application developer, and 
briefly describe operational aspects of adapters in supporting the extended tran
saction functionality. 

3.4.1 Implementing Advanced 1ransaction Models 

The split/join transaction model was proposed for open-ended activities such 
as computer-aided design and manufacturing (CAD/CAM) [Pu et al., 1988]. 
Open-ended activities are characterized by uncertain duration, uncertain devel-



76 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Base Interface: provides ACID Extended Transaction Interface: provides 
transaction functionality... an interface for extended transaction models. 
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"", .. ~ Transaction Proce!sing Monitor 

Transaction demarcation interface - presents the default tran
saction interface offered by the legacy TP monitor. When 
used alone it provides default transaction behavior of atomic 
transaction semantics. Control operations in the tran
saction demarcation interface include: begin - transaction, 
cornmi t -transaction, and abort -transaction. 

Extended transaction interface - presents an extensible interface 
to new extended behaviors added to the TP monitor and is used 
when applications require extended transaction functionality and 
semantics. Operations in the extended transaction interface in
clude transaction control operations defined by specific extended 
transaction models, such as the operations Split, Join, Spawn, 
Creat~Group, etc. 

Meta interface - allows applications to view selected aspects of 
the underlying TP monitor functionality and to make modifica
tions. The meta interface provides commands for programmers 
to locally and incrementally adapt the functionality of the TP 
monitor to the requirements of an extended transaction. Some 
of the operations in the meta interface include: delegateOp, 
delegateLock, formDependency, noConflict,andselect. 

Figure 3.5 Separation of Interfaces to the Reflective Transaction Framework 
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opments and interaction with other concurrent activities. Due to these char
acteristics, sometimes it is desirable to release earlier modified data of a tran
saction to other transactions. The split/join transaction model provides two 
operations to dynamically restructure transactions, namely spli t and j cin. 
A transaction T may split into two transactions Ta and Th, providing applica
tions with a mechanism to release data objects that are no longer needed and, 
hence, release intermediate results to other transactions. Two transactions can 
also join together to become one transaction, or use combinations of split and 
join to allow transfer of resources from one transaction to another. 

Synthesizing the spli t function. When a transaction T 1 splits, by exe
cuting the transaction control operation spli t (T2), it must first create a new 
transaction (T 2) and then delegate responsibility for executing some of its oper
ations to this new transaction. To be more precise, Tl transfers to T2 responsi
bility for all uncommitted operations on a particular set of data objects, referred 
to as the DelegateSet. In practice, users define the DelegateSet by selecting the 
objects to split from the re-structured transaction. At the time of the split, a new 
transaction is created, instantiated, and then operations invoked on objects in 
the DelegateSet by Tl are delegated to T2. The transactions Tl and T2 can then 
commit or abort independently. The following code segment illustrates how 
the spli t transaction control operation is synthesized using commands in the 
meta interface: 

split (NewTran, DelegateSet) { 
II instantiate new transaction. 
instantiate(NewTran); 
II add splitljoin transaction interface to NewTran 
select (NewTran, SplitJoin); 
II delegate locks related to objects in delegate set. 
delegate_lock (NewTran, DelegateSet); 
II delegate ops related to objects in delegate set. 
delegate_op(NewTran, DelegateSet); 
II initiate execution of the newly created transaction. 
begin (NewTran) ; 
II return execution control to base·level transaction 
return; 

Figure 3.6 Spli t transaction control operation. 

Once the extended functionality of the split transaction control operation has 
been defined using the meta inteiface, it can then be added to the extended 
transaction inteiface where it will be available for applications programmers 
to use. 
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Application Programming Using the spli t Operation. In order to mo
tivate the need for the split and join operations, consider the requirements of 
CAD support for a team of engineers designing a computer chip. Since the de
sign process may take an arbitrarily long time and involve multiple engineers, 
the principal engineer might like to split off responsibility for the design of spe
cific subsystems to component engineers who can either join their results into 
the working chip design at a later time or choose to commit or abort their de
signs independently. Such requirements are not satisfied by traditional database 
transactions in an easy and straightforward manner but can be easily satisfied 
by the split/join transaction model. The code fragment below outlines how an 
application programmer might use the split and join operations to dynamically 
restructure a transaction to release subsystem data objects and operations to a 
separate transaction and, later, join with a separate transaction: 

BegilLTransaction PE..Tran 
begin 

instantiate(PE-Tran) 
seiect(pE-Tran, SplitJoin) 

... { data manipulation} 

split(CE-Tran, Subsystem) 

... { data manipulation } 

join(QA.-Tran,*) 
end 
CommiLTransaction {CAD-Ilesign} 

(1) 

(2) 
(3) 

(4) 

(5) 

(6) 

Line 1 declares the beginning of the principal engineer's transaction using 
the BegiILTransaction command found in the the primary interface. This is 
significant, because it notifies the transaction management system that the oper
ations between this point and the commi LTransaction command in line 6 are 
to be executed atomically, according to the traditional transaction model. Thus, 
lines 1 and 6 bracket the transaction. The purpose of the instantiate meta 
interface command in line 2 is to notify the Reflective Transaction Framework 
of the programmers intention to "renegotiate" the base transaction model. The 
select meta interface command in line 3 details the terms of the renegotiation, 
selecting the split/join model for the transaction. The importance of the select 
command is twofold. First, it determines the control operations and semantics 
that are available to the transaction. In this example, the split/join model adds 
two new transaction control operations, namely split and join, while the begin, 
commit and abort commands have the same semantics as the corresponding 
commands in the traditional database transaction model. Second, it informs the 
transaction adapters in the Reflective Transaction Framework how to process 
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transaction events on behalf of this transaction, such as lock request conflicts, 
transaction dependencies that might arise during execution, etc. In line 4, the 
application programmer uses the new extended transaction control operation 
spli t, where CE_Tran is the name of the new transaction created for the com
ponent engineer and Subsystem is the subcomponent that is to be delegated to 
the component engineer's transaction. Finally, in line 5, the application pro
grammer uses the new extended transaction control operation j ain to merge 
the results and resources held by the transaction PE_Tran with an existing qual
ity assurance program, QA_Tran. 

One can see from this example that there is no description of creating the 
new transaction for the component engineer, no explicit delegation of the locks 
held on data objects in Subsystem, and no explicit delegation of the data ma
nipulation operations pertaining to Subsystem when the application is written. 
With the exception of the instantiate and select operations, the programmer 
simply uses familiar transaction control operations to write the application. 

Transaction Adapters Behind the Scenes. Continuing with our exam
ple, we now examine how transaction adapters work behind the scenes to sup
port extended transaction behavior on a legacy TP monitor. We begin with the 
instantiate meta interface command in line 2. During execution, the in
stantiate command causes control to be passed to the Transaction Management 
Adapter, which reifies information for the transaction PE_Tran, including the 
transaction identifier (TRIO), current execution status of the transaction, and 
control operations available to the transaction. Next, the Transaction Manage
ment Adapter directs the other adapters to create initial entries for objects will 
be reified for this transaction during its execution, and then it returns control 
back to the base transaction for processing. The select command in line 3 also 
causes control to be passed to the Transaction Management Adapter, which up
dates the transaction meta object to contain the transaction control operations 
spli t and jain, specified by the split/join advanced transaction model. 

Processing resumes on the base TP monitor, until the transaction control 
operation spl i t (CE_ Tran I Subsys tern) is processed in line 4. Split is a tran
saction control operation defined the extended transaction interface for the 
transaction PE_Tran. When the transaction invokes a control operation, the 
actual code executed is determined by its metatransaction (see Figure 3.7). 
When the spli t operation is invoked by the transaction, processing involves 
first verifying this control operation is permitted for the transaction, and once 
it has been verified then the function is executed, as illustrated in Figure 3.7. 
For the execution of the split operation, as defined in Figure 3.6, the first meta 
interface command directs the Transaction Management Adapter to create a 
metatransaction descriptor for the new transaction CE_Tran. This change is re
flected down onto the TRANSACTION MANAGER, resulting in the creation of a 
new base level transaction. The commands instantiate and select are then pro-
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cessed by the Transaction Management Adapter to initialize the meta objects 
for the transaction CE_Tran. Next, the Lock Adapter delegates locks on all data 
objects in the delegate set Subsystem from the transaction PKTran to the tran
saction CE_Tran. This change is first made first to the meta object lockTable, 
and through causal connection the change is reflected down to the LOCK MAN
AGER through the API commands releaseLock and acquireLock. Once 
the delegate_lock command is complete, the Transaction Management Adapter 
processes the delegate_op command. Finally, the begin command is processed 
by the Transaction Management Adapter, which sets the execution mode of 
the transaction CE_Tran to active and returns control to the TP monitor to be
gin base level processing. 
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Figure 3.7 Transaction control operation redirection 

3.4.2 Implementing Semantics-Based Concurrency Control 

Concurrency control is based on a simple intuition: if the order in which two 
operations take place does not affect the results, then the transaction-processing 
system should allow different transactions to perform these compatible oper
ations concurrently. Fundamental to all concurrency control protocols is the 
notion of conflict - incompatibility between operations or transactions. Most 
commercial transaction processing systems define conflict in terms of read 
and wri te operations [Bernstein et al., 1987] - two operations conflict if both 
access the same data object and one is a write operation. This syntactic def
inition of conflict has been criticized as being too restrictive for advanced ap
plications where conflicts can be defined at a more abstract semantic level. 
The basis of semantics-based concurrency control (SBCC) is the introduc
tion of a relaxed notion of conflict, that is typically weaker than traditional 
read/wri te conflict and thus allows more concurrency [Badrinath and Ra
mamritham, 1991, Chrysanthis and Ramamritham, 1990, Ramamrithan and Pu, 
1995, Ramamritham and Chrysanthis, 1992]. 
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The Reflective Transaction Framework provides an extensible concurrency 
control facility that enables individual transactions to define semantic notions 
of conflict, with the only limitation that it be expressible in terms of an oper
ation compatibility table or an explicit relaxed conflict relationship between 
transactions. The compatibility table specifies actions the framework should 
take given certain conflicting operations, dynamic dependency relationships 
that are formed as a result of the conflict, and specifies conflicts between trans
actions that have been explicitly relaxed. An operation compatibility table has 
the advantage of being simple for application programmers to create, and can 
be loaded and efficiently tested at run-time. To illustrate the flexibility of this 
approach we describe how the Reflective Transaction Framework can be used 
to specify and implement three SBCC protocols. They are operation commu
tativity, operation recoverability, and transaction cooperation. The framework 
is not limited to this selection, rather, they were selected because they form 
the basis for a number of related SBCC protocols and illustrate key operational 
aspects of the framework. 

Specifying Operation Commutativity. The simplest operation compati
bility relationship used to determine if two operations can execute concurrently 
is commutativity. If two operations commute, then their effects on the state of a 
data object or their return values are the same, irrespective of their execution or
der (for example, two read operations commute). When a transaction invokes 
an operation, it can be executed if it commutes with every other uncommitted 
operation. Further, if the transaction processing system allows only commuting 
operations to execute concurrently, then it prevents cascading aborts. 

The commutativity of operations on a data object is specified in advance via 
the operation compatibility table. As a simple example, consider operations on 
a bank account data object for commercial banking applications. For this data 
type we define the operations Deposi t, wi thdraw, and Balance. The Deposi t 
operation adds a specified amount to the account balance, wi thdraw subtracts 
a specified amount from the account balance, and Balance returns the current 
value of the account. From the semantics of these operations the application 
developer or TP system programmer can construct an operation compatibility 
table, as illustrated in Table 3.1. Columns in the compatibility table represent 
operations currently holding a lock, while rows represent operations requesting 
a lock. Entries marked SOK indicate the requested operation is semantically 
compatible (commutes) with the concurrently executing operation, while an 
entry marked CON indicates the requested operation conflicts. There are no 
dynamic dependencies to be recorded, hence this field is left blank; a semicolon 
is used as the field delimiter. 

Specifying Operation Recoverability. Another semantic notion proposed 
to relax conflicts among operations, weaker than operation commutativity, is 
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Table 3.1 Operation commutativity for ACCOUNT data type. 

Account:COMM Balance Deposit Withdraw 
Balance SOK;; CON;; CON;; 
Deposit CON;; SOK;; CON;; 
Withdraw CON;; SOK;; CON;; 

recoverability [Badrinath and Ramamritham, 1991]. An operation OJ is re
coverable, relative to another operation OJ, if the value returned by OJ, and 
hence the observable semantics of OJ, is independent of whether OJ executed 
immediately before OJ. Thus, if transaction Tj precedes transaction 1j, and Tj 
aborts then 1j is immune from cascading aborts since the operation effects on 
1j remains the same. 

Unlike commutativity, recoverability does not require equivalence of states 
for operations to execute concurrently. Hence, operation commutativity implies 
operation recoverability, but operation recoverability does not directly imply 
operation commutativity. Whenever an operation is recoverable but not com
mutative, relative to another concurrent operation, both operations are allowed 
to perform concurrently. However, a dynamic commit-dependency relation is 
set between the transaction that attempts to perform the operation and transac
tions that have already performed recoverable operations with respect to that 
transaction. For our example above, 1j can not commit until Tj either commits 
or aborts. At the time of commit, then, a transaction will have to wait until all 
the other transactions on which it has a commit-dependency have completed in 
order to maintain database consistency. 

As with commutativity, operation recoverability is specified in advance us
ing a compatibility table designed for recoverability. This is illustrated in 
Table 3.2 for the ACCOUNT data object, in which the commit dependencies 
that arise due to recoverability are specified as CD. When the Reflective Tran
saction Framework is evaluating an operation conflict condition between two 
transactions and it relaxes the conflict using recoverability semantics, the com
mit dependency between the two transactions will be recorded in a dependency 
graph. Commit dependencies that arise from recoverable operations will be 
tracked through the execution of the transactions and used to sequence tran
saction completion. 

Application Programming Using SBCC Protocols. If an application 
developer identifies data objects that are hot spots hot spot or concurrency bot
tleneck concurrency bottlenecks in a system, they can construct operation com
patibility tables for these data objects. Applications using the Reflective Tran
saction Framework can then select these compatibility tables for semantics
based transaction synchronization. To illustrate, we will continue with the 



THE REFLECTIVE TRANSACTION FRAMEWORK 83 

Table 3.2 Operation recoverability for ACCOUNT data type. 

Account:RECV Balance Deposit Withdraw 
Balance SOK;CD SOK;CD SOK;CD 
Deposit CON; SOK;CD CON; 
Withdraw CON; SOK;CD CON; 

CAD example introduced previously, in which a team of engineers are working 
together to design a computer chip. During initial chip design, several com
ponent engineers would be inserting new components for the chip, perform
ing lookups on existing components, and modifying existing specifications and 
deleting outdated or unnecessary components. One possible concurrency bot
tleneck in this activity are data objects of type ComponenLLog - a container 
for specifications of the individual components in the chip, each identified by a 
component identifier (key). 

Table 3.3 File Log:comm. operation commutativity for COMPONENTLOG data type. 

Log:comm Insert Delete Lookup Sort Modify 
Insert SOK;; SOK;; SOK;; CON;; SOK;; 
Delete SOK;; SOK;; SOK;; CON;; SOK;; 
Lookup SOK;; SOK;; SOK;; SOK;; SOK;; 
Sort CON;; CON;; CON;; SOK;; CON;; 
Modify SOK;; SOK;; SOK;; CON;; SOK;; 

Table 3.4 File Log:recv. operation recoverability for COMPONENTLOG data type. 

Log:recv Insert Delete Lookup Sort Modify 
Insert SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD; 
Delete SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD; 
Lookup SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD; 
Sort SOK;CD; CON;; SOK;CD; SOK;CD; CON;; 
Modify SOK;CD; SOK;CD; SOK;CD; CON;; SOK;CD; 

The COMPONENTLoG has five operations defined: Insert, Delete, Lookup, 
Sort, and Modify. The operation Insert adds a new key (key, item) into 
the ComponenLLog. If the key is already in the table it will return failure; 
else it returns success. Delete removes the pair with the given key from the 
ComponenLLog. If the key is not present it will return failure; else it returns 
success. The Sort operation sorts the entries in ascending order. Lookup 
returns the value of the item associated with a given key if it exists in the 
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ComponenLLog; else it returns failure. Modify will replace the current value 
of the item with the new value for the given key. Tables 3.3 and 3.4 illustrate 
the commutativity and recoverability properties of the operations performed on 
data objects of type COMPONENTLoG. For simplicity, it is assumed that trans
actions will operate concurrently on different parameters (keys) on the objects 
of type COMPONENTLOG. These operation compatibility tables would be en
tered into individual files, either using a simple text editor or a graphical utility 
provided for formatting compatibility tables. 

The code fragment below outlines how an application programmer might 
use these compatibility tables for semantics based concurrency control, and 
illustrates the use of the framework to permit explicit transaction cooperation. 

BegilLTransaction CELTran 
begin 

instantiate(CE.... Tran) 
select(CE....Tran, Conflict, Log:comm) 
select(CE....Tran, Conflict, Log:recv) 
Lookup(CIDJl7, compspec) 

· .. { data manipulation } 
Modify(CIDJl7, compspec) 
· .. { data manipulation } 
Insert(CID_I09, nullspec) 
· .. { data manipulation } 
NoConflict(QA-Tran,CID_l09) 
· .. { data manipulation } 

Modify(CID_I09, compspec) 
end 
CommiL Transaction {CEL Tran } 

(1) 

(2) 
(3) 

(4) 
(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

The BegirLTransaction command in line 1 declares the beginning of the 
component engineer's transaction, and together with the comrni LTransaction 
in line 10 brackets the transaction. The command instantiate in Line 2 reg
isters the transaction with the Reflective Transaction Framework. The select 
meta interface command in line 3 indicates the transactions intention to use 
semantic information to relax lock conflicts, and specifies the compatibility ta
ble LOG:COMM is to be used (a file pathname could also be supplied). The 
select meta interface command in line 4 specifies an additional compatibility 
table LOG:RECV is to be used to relax conflicts; the order in which compati
bility tables are selected using the select command will determine the order 
which they are applied to relax lock conflicts. 

If a syntactic conflict (R/W) is detected during transaction execution, the TP 
monitor will raise a lock conflict event and the conflict adapter will be invoked 
for semantic conflict testing. For example, if an uncommitted transaction has 
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perfonned a Lookup operation (a read-typed operation) on the COMPONENT

LOG data object and transaction CR..Tran requests to perfonn a Modify oper
ation (a write-typed operation) in line 6, the TP monitor would detect a syn
tactic conflict. Since the conflict adapter registered a handler for the event, and 
transaction CR..Tran has selected a commutativity table to relax lock conflicts 
(Table 3.3), the framework will perfonn a table lookup to detennine if the op
erations are semantically compatible and can be executed concurrently. If the 
operations are semantically compatible (SOK) the conflict adapter will grant 
the lock and increment the counter of lock holders, enabling both transactions 
to own the lock. 

In summary, if an application programmer wishes to use semantics-based 
concurrency control for transaction synchronization, they first create compati
bility tables for data objects that have been identified a hot spots or concurrency 
bottlenecks. To use available compatibility tables, an application will then reg
ister the transaction with Reflective Transaction Framework and then select 
from the available semantic compatibility tables. During execution, the Reflec
tive Transaction Framework will allow transactions to perfonn operations on 
data objects, without conflicting with other transactions that hold locks on the 
object, if the semantic specification relaxes the conflict. In certain cases where 
the order of the access to a data object implies dynamic dependencies between 
transactions, the framework will record and track the dependencies throughout 
transaction execution. 

Transaction Adapters Behind. the Scenes. Continuing with our exam
ple, we now examine how transaction adapters work behind the scenes to 
support semantics-based concurrency control. The meta interface command 
instantiate in line 2 perfonns the same initialization of the adapters as the 
previous advanced transaction model example. The select command in line 
3 and in line 4 perfonns two functions. First, it infonns the framework of 
the transactions intension to utilize semantic infonnation to relax lock con
flicts, and Transaction Management Adapter responds by registering the Con
flict Adapter as the handler for lock conflict events. Second, it instructs the 
Conflict Adapter to load the specified compatibility tables for the transaction; 
if the file can not be found" or an error occurs loading the file then the Conflict 
Adapter is unregistered and an error code is returned. During the execution of 
CR..Tran, all lock conflict events will be handled by the Conflict Adapter. 

During transaction execution, the Lock function of the underlying TP mon
itor perfonns usual Read / wri te conflict testing for all lock requests. If a 
lock conflict is detected, an event is raised. Infonnation passed to the con
flict adapter includes the identifier of the transaction requesting the lock, the 
operation being requested, and a list of the transactions currently holding a 
lock on the data object. The Conflict Adapter uses the function relaxCon
flict to implement semantic compatibility testing. Operationally, Lock and 
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relaxConflict combine to form a two-step semantic conflict test. Step one, 
executed by Lock, performs a standard syntactic conflict test based on the up
date type of the operation (e.g. read orwri te). Step two, performed only when 
a conflict is detected, is executed by the relaxConflict function to perform 
semantic compatibility testing to determine if the two operations are seman
tically compatible. The function relaxConflict relaxes conflicts between 
transactions by two means: compatibility table(s) defining conflict relation
ships between operations, and a no_conflict table that records all conflicts ex
plicitly relaxed between transactions. Using these two sources of information, 
relaxConflict implements the following rule to determine whether there is a 
conflict between two transactions: 

A conflict detected by the TP monitor can be relaxed if either of the following 
conditions hold true: 

1. the semantics of the data object indicate that the operation for which the 
lock is being requested is compatible with all uncommitted operations 
holding a lock in an incompatible mode; 

2. the transaction holding the lock on the data object has explicitly indicated 
that the transaction requesting the lock has permission to perform the 
operation, regardless of the basic conflict; 

The relaxed conflict rule effectively states that a transaction may acquire 
a lock if all other transactions owning the lock in an incompatible mode are 
relaxed by either operation semantics or explicit agreement between the trans
actions. The generality of this relaxed conflict rule allows the conflict adapter 
to selectively present and change the definition of conflict for one or more un
derlying data objects or transactions. This is illustrated in Figure 3.8. 

When a inter-transaction dependency directive, such as a commit depen
dency CD, is found in an operation compatibility table, the conflict adapter 
records the dependency in the transaction dependency graph TRAND using the 
Transaction Adapter command form-dependency. Checks are performed to 
prevent dependency cycles from being formed. During transaction termination 
the Transaction Management Adapter procedures PreConuni t and PreAbort 
take the necessary actions to ensure that all requisite transactions have com
pleted (the transactions have either committed or aborted), and all pending 
transactions are notified that PE-Tran has completed. 

By utilizing these commands to adapt the definition of conflict offered by 
the underlying TP system, the conflict adapter is able to implement a vari
ety of semantics-based concurrency control protocols discussed in the liter
ature [Barga et al., 1994]. This semantics based concurrency control is all 
performed through extensions to the underlying conflict detection and locking 
performed by the TP monitor, demonstrating that the use of a conventional 
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Figure 3.8 Transaction control operation redirection 

locking mechanism does not preclude the use of semantics-based concurrency 
control protocols. 

3.5 CONCLUSION 

We have introduced the Reflective Transaction Framework as a practical method 
to implement extended transactions on conventional TP monitors. We de
scribed how the framework achieves an open implementation of the TP mon
itor, so that applications have access to and control over the underlying func
tionality of the TP in a way that allows the programmer to tailor extended trans
actions to the needs of a particular application. Access to TP monitor system 
functionality and extended transaction behaviors is principled in the sense that 
the meta level interface and extended transaction interface allow access to this 
functionality without forcing the TP monitor to expose the internal data struc
tures and functions that are actually used. This independence from actual im
plementation allows intercession guards and runtime checks to be performed. 
The framework does not expose the entire TP monitor system functionality, but 
only selected aspects of it. The TP systems programmer only needs to go as far 
as application developers require. If only certain advanced transaction mod
els or semantics-based concurrency control protocols are required, only those 
extended transaction behaviors need be provided; other extended transaction 
behaviores can be incrementally added to the framework over time. 

The implementation of the Reflective Transaction Framework is based on 
transaction adapters, reflective software modules built on top of TP monitor 
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functional components. Transaction adapters use events to reify extended tran
saction state and selected aspects of the TP monitor into distinct meta-level ob
jects, and use the existing application programming interface to reflect changes 
to the computational state of the TP monitor. Extensions provided by the 
transaction adapters build on the available functionality of the TP monitor, to 
the extent possible, and provide the programmer with a clean meta interface 
through which they can customize and extend the system functionality. This 
allows extensions and model improvements to be quickly incorporated, and as 
a result,the framework can remain up to date with application requirements. 

The Reflective Transaction Framework provides a flexible foundation for 
implementing application-specific extended transactions. We have applied the 
framework to implement a wide range of advanced transaction models [Barga 
and Pu, 1995], including split transactions [Pu et al., 1988], cooperative group 
transactions [Nodine and Zdonik, 1990], and Sagas [Chrysanthis and Ramam
ritham, 1992], and a number of semantics-based concurrency control proto
cols [Barga and Pu, 1996], including commutativity [Weihl, 1988a], recover
ability [Badrinath and Ramamritham, 1991], cooperative serializability [Ra
mamritham and Chrysanthis, 1992], and epsilon-serializability [Ramamrithan 
and Pu, 1995]. We have also used it to incrementally develop new advanced 
transaction models, building on models previously added to the framework, 
such as the cooperative-split model which combines cooperative group trans
actions with split transactions. 

It is our hope the Reflective Transaction Framework will provide a clear 
migration path to incorporate research advances in transaction processing into 
real, working environments where they can be applied. We have implemented 
a proof-of-concept prototype of the framework on production transaction pro
cessing software, namely the Encina Toolkit [Encina, 1993]. The Encina 
Toolkit has been used to construct several modem distributed TP monitors, in
cluding mM's CICS/6000, DEC's ACMS/xp, and the Encina TP monitor. As 
such, our Encina implementation of the Reflective Transaction Framework can 
be used with any ·of these commercial TP monitors for experimenting with ex
tended transactions. Our implementation on Encina was clearly facilitated by 
an available event callback mechanism and open API to the transaction services 
of the toolkit. A valid question is whether the additional work of exposing the 
API and adding an event mechanism to other transaction processing systems 
would be worthwhile. The answer to this is in part economical. There are only 
a handful of commercially significant TP monitors in circulation, most of which 
offer only conventional database transactions. This compares to thousands of 
applications written on top of them, and possibly thousands more that could 
be developed using extended transactions. It is our opinion that any additional 
work invested in transaction processing systems software to enable a system, 
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such as the Reflective Transaction Framework, to widen their application reach 
and make application development easier should yield a large payoff. 
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4.1 INTRODUCTION 

The classical transaction model for managing database systems has been an 
immense success, both theoretically and commercially. Nonetheless, there has 
long been recognition (see for example [Gray, 1981, Elmagarmid, 1992, Ko
rth, 1995]) that the standard model is too restrictive for many advanced data
base applications. For example, in a cooperative environment, if long-duration 
activities are executed as atomic transactions, they may significantly delay the 
execution of shorter activities. In the case of multidatabase systems, the au
tonomy requirements of the component local databases are in direct conflict 
with the atomicity property of classical transactions. Consequently, in re
cent years, a number of works have attempted to extend the traditional atomic 
transaction model to support more flexible transaction processing. Examples 
of such models are nesteq transactions [Moss, 1985], Sagas [Garcia-Molina 
and Salem, 1987], CgnTract [Reuter, 1989], ACTA [Chrysanthis and Ramam
ritham, 1990], Flex [Bukhres et al., 1993], DOMS [Georgakopoulos et al., 
1994], and Asset [Biliris et al., 1994]. 

A crucial limitation of many of these extended transactions models (e.g., 
[Moss, 1985, Garcia-Molina and Salem, 1987, Reuter, 1989]) is that they have 
been proposed with specific applications in mind, which seriously limits the 
flexibility of these models. A specific model may be provided by the system 
but the user cannot specify which one. Moreover, if an application has needs 
with slightly different requirements, they lack the necessary expressive power 
to model these applications. For example, the nested transaction model is most 
suitable in applications that have a hierarchical structure with a good degree of 
internal parallelism. The Saga model is useful only when the subtransactions 
are relatively independent and each subtransaction can be successfully com
pensated. The ConTract model is also based on rigid compensation policies for 
transactions. 

ACTA, DOMS, and Flex provide formal frameworks to express the proper
ties of extended transactions and dependencies among them. ACTA [Chrysan
this and Ramamritham, 1990] classifies these dependencies into two broad cat
egories based on a transaction's effect on the commit and abort of other trans
actions and on the data items it accesses. Although ACTA is able to specify a 
wide variety of transaction models, it fails to capture transaction dependencies 
which arise due to events other than commit or abort of the transactions. Ex
amples of such events are various error conditions which do not influence the 
commit or abort of transactions but which nonetheless need to be addressed. 
The secure dependencies present among subtransactions of a multilevel secure 
distributed transaction [Jajodia and McCollum, 1993, Jajodia et al., 1994] is an
other example. The DOMS project's [Georgakopoulos et al., 1994] transaction 
model provides a specification language similar to ACTA and, therefore, suf
fers from similar shortcomings as ACTA. 
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Flex [Bukhres et al., 1993] is a transaction specification model that offers 
flexibility by providing primitives for specifying dependencies between trans
actions. The specifiable dependencies can be broadly categorized into two 
types, those that define the execution order on the subtransactions of a Flex 
transaction (i.e., commit/abort dependencies) and those that define the depen
dencies of subtransactions on events not belonging to the transaction. How
ever, Flex does not allow a programmer to specify the communication (Le., 
synchronization) between parallelly executing transactions. Also, a Flex tran
saction specification cannot include any information about how to compensate 
subtransactions. 

Asset [Biliris et al., 1994] is different from other works in that it provides 
ACTA based language primitives for specifying dependencies between a set of 
concurrent, cooperating transactions. These primitives allow the programmer 
to define custom transaction semantics to match the needs of the specific ap
plication and are general enough to be incorporated in any database system. 
However, even with these flexible primitives, Asset, like ACTA, cannot imple
ment transaction dependencies that arise due to events other than commit or 
abort of transactions or data sharing among them. It does not offer an experi
enced programmer the flexibility to alter the commit protocol so as to provide a 
more versatile commit facility, while at the same time retaining simple default 
interfaces for the naive user. Such a feature seems useful in many situations. 

A more recent work, that by Barga and Pu [Barga and Pu, 1995], proposes 
the reflective transaction framework as a practical and modular method to im
plement extended transaction models. This work provides the flexbility of lan
guage primitives to construct extended transactions. However it does not allow 
the programmer to specify synchronization between parallely executing trans
actions; hence the framework's suitability for designing extended transactions 
that execute in a distributed or multidatabase setting is limited. 

In this paper we propose the H-transaction model alongwith a set of lan
guage primitives that allow programmers to implement a large number of tran
saction dependencies including flexible commit. The dependencies that can be 
implemented in our model include the commit/abort dependencies that can be 
specified by the ACTA framework and those present in the multilevel secure 
transaction model. Our work focuses on transaction control at the program
ming language level, and proposes a linguistic construct that separates the cod
ing of the transaction from the definition of the application's control flow. All 
control aspects needed for transaction cooperation and dependencies are coded 
separately. Transactions can be thus coded without worrying about managing 
concurrent computations, communications, etc. This simplifies the work of the 
programmer and also increases code reusability. 

The programmer can use our primitives directly as part of a programming 
language to specify various commit and abort dependencies among transaction 
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and to realize relaxed correctness criteria to satisfy their specific application 
needs. Alternatively, the programmer can use a higher level declarative lan
guage to specify the dependencies among transactions. In this case,a pre
compiler can automatically translate the higher level description of the depen
dencies into our primitives. Further our primitives allow the programmer to 
define their own custom primitives having well-defined interfaces. (An exam
ple of this is the noSignalServiced primitive shown later in section 4.5.4) This 
feature adds to the flexibility of our model by allowing application specific 
transaction models to be supported. 

The remainder of this paper is organized as follows. We describe the H
transaction model in section 4.2. Section 4.3 discusses how flexible transaction 
dependencies can be specified in our model followed by a description of our 
primitives in section 4.4. In section 4.5, we show that our primitives can sup
port not only various extended transaction models but models that are cus
tomized to meet the specific application needs as well. Section 4.6 concludes 
with a brief discussion of our future work. 

4.2 OVERVIEW OF OUR APPROACH 

4.2.1 The System Architecture 

A transaction Tj in our model is defined to be any sequence of operations on 
data items (both persistent and volatile) delimited by either the BegiILTrans(Tj) 
... EncLTrans(Tj) pair or the BegiILTrans(Tj) ... AbOrLTrans(Tj) pair. A tran
saction is written in a high level language supporting persistence and the new 
transaction processing primitives that we introduce. 

An H-transaction is composed of a set of such transactions and includes a 
definition of a set of dependencies among these transactions; this set of depen
dencies includes, but is not limited to, the commit or abort relationships among 
the component transactions. The programmer is able to specify different re
lationships among the component transactions by defining a coordinate block 
in the H-transaction that describes these relationships. The coordinate block 
can be either a program fragment in the high level language or it may be a 
declarative description of the transaction dependencies. In section 4.3 we show 
how coordinate blocks can be specified as a program fragment in the high level 
language. 

Basic transaction processing is achieved at every site by the cooperation of 
Transaction Manager, the Log Manager, the Lock Manager and the Resource 
Manager. These components together form what is known as the Transaction 
Processing (TP) subsystem at the particular site and ensures the atomicity, con
sistency, isolation, and durability (ACID) properties [Gray and Reuter, 1993] 
of the transactions executing at that site. The TP subsystem implements the 
basic transaction control operations like commit, abort, savework, rollback, 
begin-transaction, lock data items etc. 
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On top of the TP subsystem at every site, we assume that there is a Tran
saction Management Adapter (TMA) module that enhances the functionality 
of the underlying TP subsystem by implementing an extended interface of the 
TP system for our new transaction processing primitives. The notion of Tran
saction Management Adapter is borrowed from [Barga and Pu, 1995] where 
the authors propose also a lock adapter and a conflict adapter as add-on mod
ules on top of an existing TP system to enhance the TP system's functionality. 
A discussion on these other adapters is beyond the scope of this work (although 
we allow these adapters in our architecture), as we focus mostly on transaction 
termination dependencies. 

A transaction T j executing at some site interacts with the TMA-TP module 
at that site via a coordinator module (eM). This coordinator module acts as a 
transaction event handler and implements among other things the coordinate 
block of the H-transaction of which Tj is a part. Before transaction Tj gets exe
cuted its eM is started as a set of concurrently executing threads. Execution of 
a transaction primitive by a transaction Tj is the transaction event that causes 
the eM corresponding to Tj to react and handle the event.! If a thread with the 
same name as the event is defined within the eM then the thread gets activated 
otherwise the eM lets the underlying TMA-TP module handle the event as ap
propriate. The executing threads can in tum invoke other primitives that are part 
of the TMA-TP module in order to actually handle the event. The coordinator 
module can be viewed as an extended form of the notion of metatransaction of 
[Barga and Pu, 1995] to include executing codes and a mechanism to specify 
and handle inter-transaction communication and synchronization. 

Specifically a eM can be divided into [wo distinct parts: A required set 
of compiler-generated event interceptors and an optional set of programmer 
defined event handler. The latter is essentially the programmer defined coor
dinate block of the H-transaction. The set of event interceptors includes: (1) 
the mechanism to pass on relevant parameters from the run-time environment 
to the other system modules and vice versa, and (2) the information as to how 
a particular event is to be handled, i.e. whether by a programmer defined event 
handler or by the underlying TMA-TP module. In particular, the set of event 
interceptors contains mechanism to communicate with other eMs of the same 
H-transactions and to pass on parameters to these eMs. An event interceptor 
is awakened by the occurrence of an event and then either invokes one of the 
threads in the eM or invokes an action exported by the TMA-TP module. Fi
nally, the eM may contain a set of invariants for each component transaction. 
These invariants constitute the predicates that need to be satisfied before and 
after a transaction execution. 

In a distributed setup the eM at the originating (coordinating) site of an H
transaction is of the form just described. At remote sites where component 
transactions get executed, lightweight eMs are created. The lightweight eMs 
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contain only the compiler generated event interceptors. Their function is to in
voke the relevant threads executing at the CM of the coordinating site or at the 
TMA-TP module at the local site. They act as the interface between the TMA
TP at the remote site and the CM at the coordinating site. If the programmer 
does not explicitly specify any coordinate block (i.e. the programmer has not 
defined any thread to handle transaction events) then such lightweight CMs get 
loaded at every site and act as forwarding agents for transaction events to the 
TMA-TP module at each site. The CM at the coordinating site executes the 
programmer defined code to perform the coordinating operations, as for exam
ple the decision to commit an H-transaction, commit some components of the 
H-transaction while aborting other components or taking some other action. If 
no component transaction of the H-transaction is executing at the coordinating 
site, the TMA-TP subsystem at this site is responsible only for the housekeep
ing funotions (e.g., writing log records etc.) for the H-transaction as a whole 
and for its components, while the TMA-TP subsystems at the remote sites exe
cute the component transactions as well as perform housekeeping (only for the 
component transaction executing at that site). 

An H-transaction submitted by the user to the transaction processing system 
at a particular site (the coordinating site) is executed as follows: 

1. If the programmer has specified a coordinate block with the H -transaction 
then 

(a) When the H-transaction gets initiated, create a coordinator module 
at the coordinating site. This CM has two parts - the event intercep
tor part and the event handler. 

(b) Create a table R in the event interceptor that maps events to the re
spective handlers located in either the local TMA-TP system or in 
the programmer defined primitives. 

(c) If the H-transaction consists of component transactions that are to 
be executed at remote sites then spawn a lightweight CM at each 
of these sites to contain only the mechanism to communicate with 
other CMs and a copy of the table R. 

2. If the programmer has not specified any coordinate block then 

(a) Create a lightweight CM at the coordinating site to pass on the event 
that has occurred to the underlying TMA-TP module. 

(b) If it is a distributed setup, spawn similar lightweight CMs at the 
remote sites too. 

3. When a transaction event occurs for some transaction T; (that is T; exe
cuted some transaction primitive), the event interceptor in the CM asso
ciated with T; is awakened. 
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(a) If the event has been the execution of some transaction primitive 
defined by the programmer then the event interceptor first checks the 
invariants, if any, that constitute the precondition for the primitive. 
If these invariants are satisfied then the eM invokes the thread with 
the same name executing within the eM at the coordinating site. 
Note that prior to or alongwith invoking a thread at the coordinating 
site's eM, the event interceptor may also invoke actions at the local 
TMA-TP subsystems. 

(b) The thread at the coordinating site's eM gets activated, performs 
the actions defined by its code and returns control to the to the event 
interceptor of the eM associated with Tj. 

(c) The initiating eM checks for postcondition satisfaction and depend
ing on the outcome of this test, returns the result of the thread ex
ecution to the transaction as if for a normal transaction primitive 
call. Note that before the result is returned, the eM may invoke any 
function at the local TMA-TP subsystem. 

(d) If the event has been the execution of some primitive not defined by 
the programmer, then the event interceptor allows the local TMA-TP 
subsystem to handle the event appropriately. 

4. The decision to end an executing H-transaction comes from the eM at 
the coordinating site. When this happens the different eMs at the various 
site all terminate and control gets returned to the TMA-TP subsystem at 
the coordinating site. 

Figure 4.1 gives a schematic diagram on how transaction events in a remote 
transaction are handled by the cooperation of the lightweight eM at the remote 
site, the eM at the coordinating site and the TMA-TP subsystems at both the 
sites. In the figure the begitLtrans event is handled as a local TP system call by 
the TMA-TP subsystem at the remote site; the end-trans event is intercepted 
by the lightweight eM at the remote site and forwarded to the eM at the coor
dinating site. The latter in tum invokes a TP system call at its local TMA-TP 
subsystem. We have specifically left out the semantics of the two different 
events here. 

Our model allows the programmer to define not only application specific 
transaction events (an example of which will be given later on in section 4.5.4), 
but also to redefine with ease the semantics of ordinary transaction events such 
as transaction completion or transaction begin, commit and abort. The pro
grammer defined behavior get precedence over the default behavior and can 
thus be imposed on the latter. 

In the following we give an example to illustrate the execution model for a 
programmer defined coordinator. 
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Figure 4.1 Event Handling Sequence for Transaction Events 

4.2.2 Illustrative Example 

Figure 4.2, illustrates the execution of an H-transaction that involves multiple 
sites. A programmer wants to coordinate the two component transactions T 1 
and T2 such that either T1 commits or T2 commits, but not both. Note that T1 
and T 2 may both abort. We assume that for the purpose of commit or abort 
of transactions the TMA-TP at various sites rely on the commit protocol of 
the underlying TP system. In particular for the current discussion we assume 
that the commit protocol used at all sites is Early Prepare (EP) [Stamos and 
Cristian, 1993]. Figure 4.2 shows how the user's H-transaction, the TMAs and 
the CMs interface with the TP systems. Directed solid arrows represent the 
interaction between the different components of the systems. 

When the user submits an H-transaction at Siteu, the coordinating code spec
ified in the H-transaction is loaded as the coordinator module CMu. The TMAu 
submits each of the component transactions T 1 and T 2 to the TMAs at Site1 and 
Site2. These remote TMAs in turn loads the respective lightweight CMs (which 
have a much lesser functionality than CMu) and then request their underlying 
TP systems to execute the component transactions. 

When T 1 completes, it invokes an encLtrans operation that prompts the oc
currence of the event. This invocation awakens the event interceptor in CM1 
which asks TMA1 to prepare to commit T 1. The TP system at Site1 forces 
a prepare log record and sends an acknowledgement to CM1. At this point 
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CMl sends an end....trans message to CMu. Note that this message can be seen 
as the yes vote sent by participants when they are ready to commit in the EP 
commit protocol. CMu in turn decides to commit T 1 and abort T 2 and accord
ingly informs its TMA. TMAu asks the TP subsystem at the coordinating site 
to force a commit record for T l, an abort record for T 2 and a commit record 
for the H-transaction, and then acknowledges to CMu. After this CMu sends 
a commit(Tl} message to CMl at Sitel and an abort(T2} message to CM2 at 
Site2. CMl will cause TMAl to invoke commit(Tl} at its TP system while 
CM2 will cause TMA2 to invoke abort(T2}. The TP system at Sitel writes a 
commit record for T 1 and forgets about T l, while the TP system at Site2 writes 
an abort record for T 2 and forgets about it. 

T 

If 

i 
T 

___________________ \!!,e! !I:f!a!1!8f~,!n-,'J ~Lte.l' ______________________ _ 

eM 

Eldcnded TP System at 
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Figure 4.2 Execution model for a programmer defined coordinator 

Note that the above scenario represents the execution sequence when T 1 

finishes before T2. IfT2 were to complete first, T2 would have committed and 
T 1 would have aborted. 

4.3 AN EXAMPLE OF TRANSACTION DEPENDENCIES 

We offer the programmer two methods for specifying transaction dependen
cies. With the first approach the programmer directly uses the high level lan
guage and our new transaction processing primitives to specify the dependen-
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cies. With the second approach the programmer uses a declarative language in 
a notation we have proposed to specify the dependencies among transactions. 
A pre-compiler then translates this higher level description into a correspond
ing code in the high level language we use to specify transactions. The first 
approach gives more expressive power to the programmer than the second one 
and hence we will concentrate mostly on this approach; on the other hand the 
second approach is easier to use. In the following we show by an example, 
how the programmer can express these dependencies in our model to define 
coordinate blocks for a group of transactions using the high level language. 

We assume that the programmer wants to design an H-transaction consisting 
of four component transactions Tlo T2, T3 and T4 which will be executed at dif
ferent sites. The application requires that at most one of T 1 or T 2 commits with 
T 1 being preferred to T 2 and either both T 3 and T 4 commit or none of them. 
In short, one and only one of the following sets of transactions commits: {}, 
{Ttl, {T2}, {T3, T41, {Tl' T3, T4} or {T2' T3, T4}. By using our primitives 
the programmer will be developing the program fragment shown in figure 4.3 
for this application. Note that although we use some of our new language prim
itives before they have been presented in the paper, a detailed understanding of 
the primitives is not required at this stage. 

From the program fragment, we find that the H-transaction consists of two 
coordinate blocks specified by the two coordinate ... using delimiters. Each 
block contains code that implements the dependencies between those transac
tions that are defined within the blocks. In the figure, the coordinate block 
coordinate ... using ... end implements the dependency between transactions 
Tl and T2 (viz. only one ofTl orT2 can commit with Tl being preferred) while 
the block coordinate ... using default implements the dependency among T 3 
and T 4 (viz. either both commit or none do). Note that the latter commit depen
dency is the standard commit dependency implemented in the various commit 
protocols (like Early Prepare). We assume that each transaction processing 
system implements a default commit protocol. The second coordinate block 
in the example in figure 4.3 specifies "default" as the coordinator module for 
transactions T3 and T4. 

Of interest to this discussion is the coordinate block for transactions T 1 and 
T 2 specified by the programmer in the form of a program fragment within the 
sub-block using ... end. This program fragment implements the eM for T 1 

and T 2 and contains definitions of some of the primitives that the programmer 
invokes within the transactions. 

The transactions T 1 and T 2 are defined sequentially within the H-transaction 
(and not within a cobegin ... coend block which would have implied parallel 
execution) with Tl being defined before T2. The sequential definition of trans
actions naturally entails a precedence relation between these two transactions. 
Each transaction must be initiated by the initiate primitive before being able to 
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coordinate 
initiate(T 1 • T 2) ; 

begiJLtranS (T 1) 

emLtrans (T 1); 
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end; 
coordinate 
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thread emLtrans (M) { 
ifM=Tl then 

} 

{ commit (Tl); abort (T2); exit; } 
ifM=T2 then 

{ commit (T 2); abort (T 1); exit; } 

thread abort..trans (M) { 
ifM=T2then 
{ abort (T 1. T 2) exit; } 

} 

Figure 4.3 Program in the high level language for an H-transaction consisting of four 

transactions 

start its execution. After a transaction is initiated, it is assigned a transaction 
identifier in the system and an environment is set up for its execution. 

After the H-transaction is submitted to the system, the TMA-TP module 
at the coordinating site assigns transaction identifiers to the H-transaction as 
well as its components and then loads the eM for the coordinating site. The 
TMA-TP module at the coordinating site then submits transaction Tl to the 
remote site's TMA-TP. The remote TMA-TP module establishes the remote 
lightweight coordinator to execute on top of itself and then begins to execute 
Tl. Note that the eMs as a unit represent the interface to the TMA-TP systems 
for an H-transaction. 

Suppose T 1 executes an encLtrans; the eM at T 1 's site sends a prepare
to-commit Tl message to its underlying TMA-TP module and then invokes 
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encLtrans at the coordinating site's eM. (In figure 4.3 encLtrans has been de
fined by the programmer in the coordinate block.) The eM at the coordinating 
site asks the eM for T 1 to invokes commit(T 1) and asks the eM for T 2 to in
voke abort(T2) at the respective underlying TMA-TP. The respective TMA-TP 
module consequently force a commit log record for T 1 and an abort log record 
for T2 and acknowledges the respective eMs. Also the TMA-TP module at 
the coordinating site forces appropriate log records for T1 and T2. Note that 
the TMA-TP module can force an abort log record for T 2 although T 2 was 
never submitted to a remote site for execution. This is because when the H
transaction was submitted, the TMA established a local identifier for T2. This 
causes T 1 and T 2 to terminate. 

T 1 may alternatively execute an aborLtrans command during its execution. 
This aborLtrans command may have been invoked explicitly by T 1 or it may 
have been invoked by the TMA-TP because T1 could not successfully com
plete. If the TMA-TP module at the remote site aborts T 1, the eM at the remote 
site informs the eM at the coordinating site by sending an aborLtrans message 
to the eM at the coordinating site that T 1 has aborted. On the other hand if 
T 1 invokes aborLtrans, the eM at the remote site forwards the invocation of 
aborLtrans by T 1 to the eM of the coordinating site. The eM at the coordi
nating site executes aborLtrans according to the implementation specified by 
the programmer in the thread aborLtrans. The thread returns without execut
ing any explicit abort (or commit) command and the coordinating eM does not 
send any specific instructions back to the eM at the remote site (it merely re
turns). As a result T 1 stops its execution but remains alive in the system until an 
explicit abort comes from the coordinator module to terminate it.2 The TMA
TP module at the coordinating site now submits T 2 for execution at a remote 
site. As before a eM will be created at the remote site for T2. Subsequently 
invocation of encLtrans or aborLtrans by T 2 will be trapped by the eM at the 
remote site and forwarded to the eM at the coordinating site for execution. If 
T 2 executes encLtrans, the corresponding thread will commit T 2 and abort T 1. 
If, on the other hand, T 2 executes abOrLtrans, both T 1 and T 2 will be aborted. 
This will terminate the eMs for T1 and T2. Note that for the description of the 
implementation of the coordinator for T 1 and T 2 in figure 4.3 we have assumed 
that eMu in figure 4.2 submits T1 and T2 sequentially to each of the respective 
TMAs. Moreover eMu does not submit T 2 if T 1 commits. 

Once the eM for T 1 and T 2 terminates, the control is transferred to the next 
step in the program. The TMA-TP module at the coordinating invokes the 
default coordinator in the system (i.e. the default commit protocol) for T 3 and 
T4. T3 and T4 proceed concurrently in the system as they are within a cobegin 
... coendblock. When T3 and T4 commits the execution H-transaction is over. 

Note that in any coordinate block, we can refer to only those transaction 
identifiers that are in the scope of the block. In figure 4.3, transactions T 1 and 
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T 2 are scoped in the coordinate block defined by the programmer but not T 3 

and T4. Consequently we can define encLtrans and aborLtrans only for Tl and 
T 2 within this block. 

4.4 PRIMITIVES FOR FLEXIBLE COMMIT 

We now describe our transaction processing primitives. These primitives are 
broadly classified into two types: basic primitives and new primitives. The 
basic primitives are so named because their semantic counterparts are found 
in almost all conventional transaction processing systems. The new primitives 
are the ones we define and that lend expressive power and flexibility to our 
model. These primitives are essentially control primitives which modify the 
state of the transaction. There are six possible states. A transaction which 
has been submitted to the system, but has not yet started its execution is in 
the initial state. While executing its code, the transaction is in the running 
state. After it has executed all its code (either successfully or unsuccessfully), 
the transaction moves to the completed state. From the completed state the 
transaction terminates by moving either to the committed state or to the aborted 
state. From any of these five states a transaction can enter a sixth state - the 
error state. In this case the transaction can either execute an error handler 
(if provided by the system or by the programmer as part of the transaction) or 
return to its previous state and then continue execution from the next instruction 
in the transaction's code (possibly generating an error message in the process). 

4.4.1 Basic Primitives 

initiate(Th ... , Tn) This primitive initiates the transactions Th ... Tn. It re
turns new transaction identifiers in the variables T 1, ... Tn and sets up the 
environment necessary for the execution of the transactions. The transac
tions are started by calling the begiILtransO primitive. The scope of the 
variables Tj used in an initiate primitive is the program block containing 
this initiate primitive. The initiate(Tj) primitive must precede all use of 
the variable Tj within an H-transaction. 

begilLtrans(Tj) This primitive starts the execution of the transaction whose 
transaction identifier is Tj. This primitive can be redefined by the pro
grammer. 

sid = saveworkO The saveworkO primitive is used to establish a savepoint in 
the transaction execution. The invocation of this primitive causes the sys
tem to save the current state of processing. Each transaction manager 
writes a savepoint record on the local transaction log, while the current 
values of any local variables are saved on the volatile memory. The save
work call returns a handle which is assigned to the identifier sid (called 
a savepoint identifier). This identifier can be used subsequently to refer 
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to that savepoint, and in particular to the state of the system when this 
savepoint was established. The scope of the binding between the save
point and the identifier sid is the block in which the "sid = saveworkO" is 
executed. Control can jump from inside of a block to a savepoint within 
an encompassing block, but not the other way round. 

rollback(sid) This primitive takes as a parameter the identifier of a previ
ously established savepoint and reestablishes (or returns to) the savepoint. 
More precisely, when the rollback(sid) function is invoked, it restores the 
state of the system to the state that existed when the savepoint denoted 
by the savepoint identifier sid, was established; the execution of the tran
saction then continues from the statements that follow the savepoint sid. 
The successful termination of the rollback primitive is indicated by the 
restoration of the savepoint denoted by sid. This primitive can only be 
invoked within a transaction code. 

restart(T j) This primitive is a part of the coordinator module and cannot be 
invoked by a transaction. When called, this primitive starts the execution 
of the transaction whose identifier is Tj. If the transaction Tj was pre
viously executed (partially or fully), then all changes effected by Tj are 
discarded before the transaction execution is restarted. 

commit(Tt, ... , Tn) This primitive is implemented in the TMA-TP module 
and is part of the commit protocol. It cannot be invoked directly by a 
component transaction. Rather, it has to be invoked by the coordinator 
module. This primitive commits the operations of the transactions which 
are its parameters, by first writing the log records and then communicat
ing the commit decision to the transaction managers of these transactions. 
In other words, this command forms the final phase of any commit pro
tocol between the coordinator and the transactions TI , ... , Tn. 

abort(TI' ... , Tn) This primitive aborts the transactions specified as parame
ters. If the primitive abort(Tj) is invoked before Tj has started its execu
tion, then Tj never starts its execution and is discarded from the system. 
Like the commit primitive, abort is a part of the TMA-TP module and 
can be invoked only by the coordinator module. 

cobegin ... coend These two primitives act as bracketing constructs for speci
fying concurrently executing transactions. Control flow does not proceed 
beyond the cobegin ... coend block until all of the transactions created 
by the block complete. Cobegin ... coend can be nested. 

4.4.2 New Primitives 

emLtrans(Tj)< support_code> The encLtrans is a system defined primitive 
which can be redefined by the programmer as a coordinator module thread. 
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Its execution signifies the successful completion of the transaction Tj, 
specified by a previous matching begiILtrans(Tj), and indicates a willing
ness to commit the work of Tj. The programmer's definition of encLtrans 
gets precedence over the default definition for the primitive. 

If the programmer has not redefined the encLtrans primitive, the default 
execution takes place. In this case the eM for Tj notes the completion 
of Tj; it asks the relevant TMA-TP module to force a prepare log record 
and sends vote messages relevant to the default commit protocol to the 
coordinator for the H-transaction. The control flow does not proceed 
beyond the encLtrans call, until the transaction manager for Tj receives 
either a commit or an abort decision. If the primitive is invoked without 
any parameter, then it commits the transaction within which it has been 
invoked. 

As mentioned earlier, it is possible to overload this primitive to have a 
more flexible programmer-defined commit protocol. From transaction 
Tj's point of view the execution of the programmer-defined encLtrans is 
the same as the default execution. That is the completion of the tran
saction Tj is recorded by a prepare log record and control is passed to 
the thread of the same name being executed at the coordinator. If the 
thread for encLtrans does not contain an explicit invocation of the commit 
or abort primitives, the control proceeds beyond the transaction Tj after 
the thread completes execution and returns. However, the transaction Tj 
remains unterminated until an explicit invocation of commit or abort is 
eventually performed by the coordinator module for Tj. 

Note that this primitive has two parts: encLtrans(Tj) and support_code. 
The second part is an optional piece of program code which can be in
cluded by the programmer. This program code is not executed when the 
encLtrans primitive is invoked. Rather, the coordinator module can direct 
the TMA-TP module for Tj to execute this program code by invoking the 
calLsupport primitive (explained next). 

calLsupport(Tj , ... , Tm} This primitive can be invoked only as part of the pro
grammer defined coordinator. With this primitive the coordinator module 
can direct the transaction managers of the transactions Tj, ... , Tm to ex
ecute the supporLcodes specified as part of the corresponding encLtrans 
primitives in these transactions. The program fragment for suppOrLcode 
of each Tk runs within the scope of Tk. If a SUpporLcode is invoked 
while the corresponding transaction is running, then the execution of the 
SupporLcode is deferred until the transaction completes. The calLsupport 
returns to the invoking thread, when all the executing suppOrLcodes fin
ish. This primitive along with the programmer specified suppOrLcode are 
useful in cases where the coordinator module wants to perform some task 
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beyond merely committing/aborting after the transaction has executed an 
encLtrans primitive. 

aborLtrans(Tj) The aborLtrans is a system defined primitive which can also 
be redefined by the programmer as a coordinator module thread. In both 
cases, it signifies the unsuccessful completion of the transaction Tj, spec
ified by a previous begiILtrans(Tj), and indicates a decision to abort the 
work. However, the aborLtrans does not actually abort the transaction. 
Rather the actual abort is performed by the abort primitive which is in
voked by default and will always abort Tj. In case the aborLtrans prim
itive is redefined by the programmer, the new definition gets preference 
over the default definition. If the thread for aborLtrans does not contain 
an explicit invocation of the abort primitive, status of the transaction Tj 
remains unterminated until an explicit invocation of abort is eventually 
performed by the coordinator for Tj. The termination of the aborLtrans 
primitive itself is similar to the encLtrans primitive as explained above. 

Table 4.1 Partial Syntax for the Coordinate Block 

Keyword Syntax 

coordinate-block 

transaction 

trans-command 

protocol 

protocolcode 

protocol-command 

thread-command 

coordinate transaction using protocol 

begiJLtrans(trans-id) trans-command encLtrans(trans-id) 
I initiate(trans-id) 
I cobegin transaction coend 
I transaction; transaction 

aborLtrans(trans-id) 
I host-language-command 

default I protocolcode 

protocol-command 
I protocolcode ; protocol-command 

thread begiJLtrans 
I thread encLtrans(parameter) thread-command 
I thread aborLtrans(parameter) thread-command 
I thread identifier(formal-par-sequence) thread-command 

commit(trans-ids) I abort(trans-ids) I restart(trans-ids) 
! calLsupport(trans-ids)! exit 
I thread-command;thread-command 
! host-language-command 

coordinate < transaction> using < protocol> This primitive defines the co
ordinate block whose partial syntax is described in table 4.1. (Note that 



FLEXIBLE COMMIT PROTOCOLS 107 

only the enhancements required in a standard programming language to 
support such a syntax is shown in the table. Anything not been defined is 
assumed to follow the syntax of the host language.) The coordinate block 
consists of two components: the transaction component and the protocol 
component. The protocol component defines the coordinator module for 
the set of transactions specified in the transaction component. The pro
tocol component can be the keyword default, in which case one of the 
traditional commit protocols like two-phase commit or early prepare is 
used. Or it can be a programmer specified dependency among the trans
actions in the high level declarative language or it can be a programmer 
defined code in which case it contains the code for each of the primitives 
that the programmer wants to define or redefine, including begiILtranS(t), 
encLtrans(t) and aborLtrans(t). The scope of the redefined primitives is 
limited to the corresponding transaction component. 

Within the coordinate block the programmer can define persistent vari
ables which can live across the boundaries of transactions involved in 
the coordinate block. These persistent variables may be useful for flow 
control. 

The control flow does not proceed beyond the coordinate block until ei
ther the transaction component completes or the coordinator module is 
terminated in a manner explained below. 

thread identifier For efficiency and ease of implementation as daemons, the 
protocol component is programmed as a set of concurrently executing 
threads. The thread primitive allows the programmer to define a coor
dinator module thread which is activated by a transaction event. The 
identifier specifies the event which activates the thread. When a coor
dinate block is encountered, the coordinator module is created. It waits 
for any of the events named in its threads. When such an event occurs 
the corresponding thread is activated. If the thread encounters an exit 
command, the coordinator module terminates thereby causing the entire 
coordinate block to end. This is true even if there are transactions in the 
transaction component which are either yet to be executed or are cur
rently executing concurrently. These transactions have to be taken care 
of by a subsequent coordinate block otherwise may lead to the problem 
of orphan transactions.3 

On the other hand if an exit command is not encountered, the thread 
does not cause the coordinator module to terminate. Instead when the 
thread completes, it returns control to the transaction component. If an 
exit command is never encountered, the coordinator module terminates 
when all transactions have completed their execution and the coordinate 
block has terminated. 
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exit Invocation of this command causes the termination of the coordinator 
module. 

Table 4.2 summarizes the transaction primitives in our model. The first 
column of table 4.2 lists the different primitives. The primitives have been 
grouped into three categories - (i) primitives that allow the structuring of the 
H-transaction (ii) primitives that can be invoked from within the transaction 
component of a coordinate block and (iii) primitives that can be invoked from 
only within the protocol component of a coordinate block. The second column 
specifies where the programmer can use each primitive from viz., inside or out
side a protocol component. The third column gives the system component that 
provides the interface to a particular primitive. When a primitive is invoked, 
this system component executes the primitive first. It in tum may invoke other 
system components in order to carry on the execution of the primitive. 

Table 4.2 Summary of Transaction Primitives 

Primitive Name Invocation Relative to Interface Exported Nested Redef-
Protocol Component By Definition inition 

coordinate ... using outside language support no no 
cobegin ... coend outside language support yes no 

initiate outside/inside TMA-TP no 
sid = savework outside TMA-TP no 
rollback outside TMA-TP no 
begilLtrans outside CMorTMA-TP yes yes 
end-trans outside CMorTMA-TP yes yes 
aborLtrans outside CMorTMA-TP yes 

thread inside CM no 
commit inside TMA-TP no 
abort inside TMA-TP no 
restart inside TMA-TP no 
caiLsupport inside TMA-TP no 
exit inside TMA-TP no 

The fourth column specifies which primitives provide a bracketing construct 
to specify nesting from the syntactic point of view. Finally the fifth column 
indicates whether a primitive can be redefined by the programmer in the coor
dinate block. Note that we allow only begiILtrans, end.trans and aborLtrans to 
be redefined in the current model of H-transactions. 

4.4.3 Discussion 

In the course of a transaction execution, a sid = saveworkO primitive may be 
executed more than once. In such cases it is preferable to assign each time a 
new handle which is generated by the system since otherwise the transaction 



FLEXIBLE COMMIT PROTOCOLS 109 

loses the ability to refer to the exact savepoint among those that were estab
lished previously.4 As an example, suppose the programmer wants to undo the 
effects of a loop based on certain conditions established during the execution 
of the loop. If a savepoint is established within the loop and the same savepoint 
identifier is employed, then the programmer can undo only the latest iteration 
of the loop. This is because the programmer loses reference to the other save
point handles. (Note, however, that if a programmer establishes a savepoint 
just before a loop, then the effects of all iterations of the loop can be fully un
done. This is possible because the scoping rules of the savepoint identifier is 
the block in which the sid = saveworkO primitive is executed.) 

Note that although the restart(Ti) command may seem semantically equiv
alent to a rollback to the beginning of the transaction, there is one important 
difference between the two. The restart primitive can be executed only by the 
coordinator; a transaction cannot restart itself. The rollback primitive, on the 
other hand, is invoked by the transaction itself. The coordinator does not have 
any idea about savepoints established by a transaction and hence is not allowed 
to execute a rollback primitive. 

Finally, note that a coordinator for a transaction Ti can multiply invoke com
mit or abort primitives for Ti. Usually this occurs if Ti is to be conditionally 
aborted or committed. In such cases, the first execution at runtime of either 
primitive takes effect while the others, if executed subsequently, performs only 
null operations and generates warning messages. Further, the initiate command 
can be invoked from both outside or inside a coordinate block. If it is invoked 
from oustide a coordinate block then the scope of the identifier Ti specified in 
the invocation of initiate is the entire program code for the H-transaction; else 
the scope is limited only to the particular coordinate block from which initiate 
is invoked. In the former case we can have a number of coordinate blocks for 
a single transaction Ti defined within the scope of the identifier Ti; however, at 
most two coordinators can actually be involved for terminating Ti. The scoping 
rules ensure that every time an encLtrans or an aborLtrans is invoked, it gets 
bound to only one thread, viz. to the thread which is defined at point closest 
to the invocation. Hence, the closest coordinator will execute encLtrans (or 
abOrLtrans) without committing or aborting Ti and a second will perform the 
actual commit or abort operation. 

4.5 REALIZING VARIOUS TRANSACTION DEPENDENCIES 

We now show how different transaction dependencies that are present in var
ious extended transaction models can be specified using our primitives. We 
would like to emphasize here that we are interested in only the termination de
pendencies among transactions. We do not attempt to capture dynamic depen
dencies that are not known a priori. Such dynamic dependencies arise mostly 
due to data sharing among the transactions. 



110 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

4.5.1 ACTA Framework 

The ACTA framework defines two major types of termination dependencies 
among pairs of transactions. (i.e. dependencies that arise between transactions 
due to commit or abort of one of them and not due to data sharing among them). 
These dependencies are the commit dependency and the abort dependency de
fined as follows: 

Commit Dependency If transaction T; develops a commit dependency on tran
saction Tj then T; cannot commit until Tj either commits or aborts. Note 
that this does not imply that if Tj aborts, then T; should abort as well. 

Abort Dependency If transaction T; develops an abort dependency on tran
saction Tj then if Tj aborts T; should also abort. Note that this does not 
imply that T; should commit if Tj commits, nor that Tj should abort if T; 
aborts. 

Note that an abort dependency implies a commit dependency. If T 1 develops 
an abort dependency on T 2, then T 1 must wait for the commit decision of T 2; 
hence T 1 cannot commit before T 2, i.e. there is a commit dependency between 
Tl and T2. In figures 4.4 and 4.5 we show how our primitives can be used to 
express the commit and abort dependencies of ACTA. 

In figure 4.4, suppose that T 1 wants to commit. It executes an emLtrans 
primitive which causes the emLtrans thread at the coordinator to be executed. 
Since T2 has not yet executed the emLtrans (or aborLtrans) primitive, the 
variable doneT2 is false. Consequently the emLtrans thread sets the vari
able completedTl to true and then returns. As no commit or abort decision 
has been taken for T 2 by the coordinator module, T 1 cannot terminate at this 
time by committing. On the other hand if T 1 had decided to abort, it would 
have executed the aborLtrans primitive, which in turn, would have caused the 
aborLtrans thread to be executed at the coordinator. This would abort T 1 irre
spective of whether T 2 commits or aborts. 

When T 2 decides to commit or abort, the variable doneT2 will be set to true 
by one of the threads encLtrans or aborLtrans. If T 2 executes an aborLtrans 
primitive, the corresponding thread aborts T2. The aborLtrans thread then finds 
that the variable completedTl is set to true (which indicates that Tl is waiting 
to commit) and hence commits Tl. If, on the other hand, T2 executes the 
encLtrans primitive (indicating that it wants to commit), the encLtrans thread 
commits T 2 first and then, noticing that completedTl is set to true, commits 
T 1. At this point the program terminates. 

From the above discussion it is clear that the program in figure 4.4 imple
ments the ACTA commit dependency between Tl and T2. Figure 4.5 imple
ments an abort dependency between T 1 and T 2. The reason is similar to the one 
above with the only difference being that if T 2 executes an aborLtrans primi
tive, the corresponding aborLtrans thread in the coordinator aborts both T 2 and 



void commiLdependency 0 
{ coordinate ; 

initiate (T 1. T 2) ; 
cobegin 

begilLtranS (T 1 ) 

end.trans (T 1) ; 
begilLtranS (T 2) 

end.trans (T 2) ; 
coend; 
using { 
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completedTl := false; doneT2 := false; 
thread end.trans (M) { 

} 
end 

} 

if doneT2 then {commit(T 1); exit ;} 
else ifM = T2 then { 

commit(T2); doneT2 = true; 
if completedTl then { commit(T 1); exit ;}} 

else completedTl = true ; } 
thread aborLtrans (M) { 

} 

ifM = T2 then {abort(T2); doneT2=true; 
if completedTl then {commit(Tl); exit;}} 

else abort(T d ; 

Figure 4.4 ACTA commit dependency 

T 1, even if T 1 has previously decided to commit. Moreover, if T 1 is yet to reach 
a decision when T 2 has decided to abort, T 1 gets aborted. 

4.5.2 Sagas 

Saga [Garcia-Molina and Salem, 1987] is a transaction model that provides 
system support for the execution of a long-lived transactions. In sagas, a long
lived transaction is executed as a number of shorter subtransactions without 
sacrificing the atomicity of the larger transaction, although other transactions 
may see the effects of a partial saga execution. 

A saga consists of a set of flat transactions Tl, T2, ... , Tn that execute se
quentially within the context of the saga, but can interleave arbitrarily with 
component transactions of other sagas. For each Tj (1~i< n) there is a com
pensating transaction CTj which, if executed, semantically undoes the effects 
of Tj. A compensating transaction CTj is executed iff the transaction Tj has 
committed and the saga of which Tj is a part, has aborted. A saga commits 
if all T/s successfully commit and aborts if any Tj aborts. If a saga aborts, 
it compensates for the effects of all committed components T/s by executing 
their corresponding compensating CT/s. The compensating transactions are 
executed in the reverse order of the commits of the corresponding Tj's. Note 
that there is no compensating transaction for the last component transaction Tn. 
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void abOrLdependency 0 
{ coordinate ; 

initiate (Tl,T2) ; 
cobegin 

begilLtrans (T II 

end-trans (T II ; 
begilLtrans (T 2) 

end-trans (T 2) ; 
coend; 
using { 

completedTi := false; doneT2 := false; 
thread end-trans (M) { 

} 
end 

} 

} 

if doneT2 then {commit(Tl); exit;} 
else ifM = T2 then {commit(T2); doneT2 = true; 

if completedTi then { commit(Tll; exit ;}} 
else completedTi = true ; 

thread aborLtrans (M) { 

} 

ifM = T2 then {abort(T2,Tll; exit;} 
else abort(T II ; 

Figure 4.5 ACTA abort dependency 

This is because if Tn commits then the entire saga commits. The final outcome 
of a saga is either the sequence: 

1. T1. T2, ... , Tn-1. Tn if all Tj's commit, or 

2. T1. T2, ... , Tj , CTj-l,'''' CT2, CT1 if any Tj aborts . 
............. 
abort 

In figure 4.6 we show how the semantics of a saga can be achieved with our 
primitives. The saga program consists of one coordinate block which controls 
the execution flow of the transactions T1, ... , Tn and the corresponding com
pensating transactions CTn- 1, ... , CT1. In the transaction component of the 
coordinate block the Tj's and the CT/s (if so required) are executed sequen
tially. If Tn successfully completes, then the coordinator aborts CTn-1. ... , 

CTI (as no compensation is required) and the saga terminates successfully. On 
the other hand, if any Tj aborts, the thread abOrLtrans(Tj) in the coordinator is 
executed, which aborts the transaction Tj, ... , Tn as well as the compensating 
transactions CTn-l, ... , CTj. In this way the transactions remaining to be ex-
ecuted, viz., CTj-1. ... , CTI become exactly those required to compensate the 
effects ofthe already committed transactions T 1. ... , Tj- 1. If a CT k aborts, the 
thread abOrLtrans(CTk) in the coordinator gets executed, which in tum restarts 
the compensating transaction CTk. In this way the effects of all the committed 
transactions are compensated for and the saga aborts. 
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void saga 0 
{initiate (Tl.T2, ... ,Tn,CT1,CT2, ... ,CTn-d; 

coordinate 

} 

begirLtrans (Tl) 

en<Ltrans; 

begin..trans (Tn) 

en<Ltrans; 
begin..trans (CTn-l) 

en<Ltrans; 

en<Ltrans; 
using 

end; 

thread en<Ltrans (M) { 
commit(M) ; 
ifM = Tn then {abort(CTl. ... ,CTn-l); exit}; 

} 
thread aborLtrans (M) { 

case (M) do 

} 

Tl: {abort(Tl, ... ,Tn, CTl,CT2, ... ,CTn-l ); exit} ; 
T2: abort(T2, ... ,Tn,CT2, ... ,CTn-d; 
T3: abort (T3," .,Tn,CT3, ... ,CTn-d; 

Tn: abort(Tn) ; 
CT 1: restart(CT 1) ; 
CT 2: restart(CT 2) ; 

Figure 4.6 Implementation of a saga 

4.5.3 Workflows and Long Lived Activities 

ACID properties of transactions have the limitation that hide any internal struc
ture to be perceived and referred to from outside of the transaction. Conse
quently if there is an activity that consists of multiple steps of processing with 
an explicit flow of control among these steps, it is difficult to model it as a 
transaction. 
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Workflows have been suggested as a way of implementing long-lived acti
vities which have some kind of an internal .structure, in terms of shorter tran
saction like components [Dayal et al., 1990]. Workflows allow dependencies 
among transactions to be expressed and also allows correctness requirements 
among the component transactions that are less stringent than serializability 
and isolation. 

We show by an example how a workflow can be expressed by our primitives. 
The example workflow involves planning for a trip by John Doe. He plans to 
leave on the 3rd of June by either Delta, or United, or American in that order, 
stay at the hotel Ambassador from the 3rd until the 6th of June. and rent a car 
from either National or Avis with no preference. IT any of the reservations (i.e., 
flight, hotel or car) cannot be made, John Doe would like to cancel his trip. 

In the example in figure 4.7 the different components flightReservation, hotel
Reservation, carReservation, cancelFlightReservation and cancel Hotel Reser
vation perform the actual reservation or cancellation operations. The single 
coordinate block for the workflow contains the transactions Tl, ... , T6 and 
the compensating transactions CThCT2. CTI compensates for any committed 
flight reservation made by Th T2, or T3 in case either the hotel reservation or 
the car reservation cannot be made. CT 2 compensates for a committed hotel 
reservation if the car reservation is unsuccessful. 

Every time a transaction completes, it invokes the encLtrans thread at the 
coordinator which then enforces the control flow of the activity. The successful 
completion of the workflow is indicated by the commit of either T 5 or T 6. In 
this case the coordinator ensures that CT 1 or CT 2 are aborted. 

If any transaction decides to abort, it invokes the aborLtrans thread at the 
coordinator. The execution of the aborLtrans thread for a transaction Tj aborts 
all transactions Tj that follow Tj in the workflow and compensates for the com
mitted Tk'S preceding Tj in the workflow. In case any compensating transaction 
CTj gets aborted, it has to be reexecuted until it successfully completes. 

4.5.3.1 Semiatomicity. A formalization of the workflow model is pro
vided in [Zhang et al., 1994b]. In this paper a workflow is synonymous to a 
flexible transaction. The structure of a flexible transaction T is viewed as a 
set of the so called representative partial order of subtransactions. The sub
transactions within a representative partial order are related by the precedence 
relation. Each representative partial order gives an alternative for the execution 
of the flexible transaction. There is also a preference relation which defines the 
preferred order of the alternatives. Each subtransaction is categorized as either 
retriable, compensatable, or pivot. 

The execution of a flexible transaction T preserves the property of semi
atomicity if one of the following conditions is satisfied: 
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void workflow 0 
{ 

} 

initiate(Tl ,T2,T3,T 4,T5,T6,CTl,CT2) 
coordinate 
airline* air; % persistent variable 

begilLtrans(T 1 ) 

flightReservation(Delta, 613/96) ; 
air = Delta; 

end....trans(T t> ; 
begilLtrans(T 2) 

ftightReservation(United, 613/96) ; 
air = United ; 

end....trans(T 2) ; 
begilLtrans(T 3) 

flightReservation(American, 613/96) ; 
air = American ; 

end....trans(T3) ; 
begilLtrans(T 4) 

hoteIReservation(Ambassador, 613/96, 616/96) ; 
end....trans(T 4) ; 
cobegin 

begilLtrans(T 5) 
carReservation(National, 613/96, 616196) ; 

end....trans(T 5) 
begilLtrans(T 6) 

carReservation(Avis, 6/3/96, 616/96) ; 
end....trans(T 6) 

coend; 
begilLtrans( CT 1 ) 

canceIAightReservation(air, 613/96) ; 
end....trans(CT t>; 
begilLtrans( CT 2) 

canceIHoteIReservation(Ambassador, 613/96, 616196) ; 
end....trans(CT2); 

using 

end 

thread end....trans (M) do { 

}; 

case M of { 

}; 

Tl : { commit (Tl); abort (T2,T3);} ; 
T2: { commit (T2); abort (Tl,T3);} ; 
T3 : { commit (T3); abort (T 1 ,T2);} ; 
T5: {commit (T5); abort (T6,CTl,CT2); exit;} ; 
T6: {commit (T6); abort (T5,CTl,CT2); exit;} ; 
default: commit (M); % commit T 4 or CT lor CT 2 

thread aborLtrans (M) do { 
noSet = union (noSet,M) ; 

}; 

if subseteq({T 1 ,T2,T3},noSet) then 
{abort (Tl,T2,T3,T4,T5,T6,CTl,CT2); exit} 

if subseteq(T 4 ,noSet) then 
abort (T4,T5,T6,CT2); 

if subseteq( {T 5 ,T 6} ,noSet) then 
abort (T 5,T 6); 

if M==CT 1 or M==CT 2 then 
restart(M); 

Figure 4.7 Workflows: reservations 
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1. All its subtransactions in one representative partial order commit and all 
attempted subtransactions not in the committed representative partial or
der are either aborted or have their effects undone. 

2. No partial effects of its subtransactions remain permanent in local data
base. 

In [Zhang et aI., 1994b] the authors provide a commit protocol which dy
namically commits subtransactions as soon as possible. An alternative repre
sentative partial order is executed if an attempted subtransaction aborts. In this 
case subtransactions which have already been committed in the failed repre
sentative partial order are compensated for. 

Given an instance of a flexible transaction we can implement a coordinator 
for this flexible transaction in a manner similar to implementing a workflow, 
shown previously. In fact a compiler can be made to generate the codes for 
such a coordinator, given an appropriate description of the flexible transaction 
with the different precedence and preference relations. 

4.5.4 Secure Distributed Transactions 

A major problem of all lock-based concurrency protocols in multilevel secure 
(MLS) database systems is that in order to avoid a covert channel any read lock 
acquired by a higher security level transaction on a lower security level data 
object must be released whenever a lower level transaction attempts to acquire 
a write lock on the same data object. Unfortunately, this requirement has grave 
implications for the corresponding commit protocol, specially the early prepare 
commit protocol (EP) [Mohan et al., 1986, Stamos and Cristian, 1993]. What 
it implies is that read locks may get released within a subtransaction's window 
of uncertainty (period after a participant has voted yes to commit a subtrans
action, but before it receives the commit or abort decision from the coordina
tor), possibly resulting in nonserializable executions [Jajodia and McCollum, 
1993, Jajodia et aI., 1994]. 

Consider the history in figure 4.8 showing two distributed transactions Low 
and High such that transaction Low is at a lower security level than transaction 
High. Each distributed transaction consists of two subtransactions Low I , Low2 
and Highl' High2 with LoWI and Highl executing at Site 1 and Low2 and High2 
executing at Site 2 respectively. Among the data objects accessed by Low and 
High are x and y with the security level of x being the same as that of y and 
equal to the security level of transaction Low. Data object x is at Site 1 while 
y is at Site 2. The order of execution of each subtransaction is shown in figure 
4.8. The event yes in the figure signifies that the subtransaction has completed 
execution and has sent an yes vote to the coordinator. Note that when w[x] is 
invoked by LoWI the operation cannot be delayed waiting for Highl to release 
the read lock on x. This is in order to avoid a covert channel between the the 
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security levels of transactions High and Low. Consequently, although Highl 
is in its window of uncertainty when LoWl requests write lock on x, the read 
lock on x by Highl has to be released. Basic EP protocol does not take into 
account that read locks may be released during a subtransaction's window of 
uncertainty. In this case EP will commit both distributed transactions High and 
Low thereby leading to the non-serializable history shown in figure 4.8. 

I. window ofuncenainty for subtransaction Highl 
Site 1 

Hight: begin ...•.. rlx) •...•. yes 

~ read lock on x by Hight 
: need 10 be released bere 

begin •...•. wlx) •..... yes commitLow 

·1 

If High commits alibis 
poinllb. history will be 
non·serializab,le. 

begin ... . , . r[y] ., .... yes coJmitHigh 

LoW2: begin ...•.. wlY) ..•.•. yes commilLow 

Hight -+ Lowt AND LoW2 -+ High2 ==> High -+ Low -+ High 

Figure 4.8 Example history illustrating problem with EP in MLS systems 

To overcome this problem, a secure EP commit protocol (SEP) has been 
proposed in [Atluri et al., 1994]. It implements the following secure commit 
dependency in addition to the conventional commit/abort dependencies for dis
tributed systems: 

Given any two participants Ti and Tj of a multilevel secure distributed 
transaction T, there is a secure commit dependency between Ti and Tj, 

denoted by Ti 4 Tj, defined as follows: 

If either Ti or Tj releases any of its low read locks within its window 
of uncertainty, before all participants complete, then both Ti and Tj are 
aborted. 

In other words, to prevent nonserializable executions, SEP aborts a dis
tributed transaction if any of its lower reading subtransactions is compelled 
to release a lower level read lock within the subtransaction's window of un
certainty, before the other subtransactions complete. As usual, SEP guarantees 
that either all participants abort or all of them commit. 

SEP for MLS systems can be implemented within our framework by in
corporating the GetSignal primitive introduced in [Bertino et al., 1997]. The 
basic idea is that the lock manager at a site notifies the transaction manager 
by sending the latter a signal (similar to raising an exception), that a higher 
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level subtransaction at that site has released one of its lower level write locks 
because a lower level subtransaction at the same site has requested a write lock 
on the same data item 5. Each signal received by the transaction manager from 
the lock manager identifies a lower level data object x that has been read by 
the higher level subtransaction T; and indicates a new value for x. Before the 
higher level subtransaction can commit, the subtransaction has to handle these 
exceptions generated by the lock manager and the GetSignal primitive is used 
by the programmer to specify how signals from lower level subtransactions are 
to be handled by the higher level subtransaction. 

The GetSignal primitive has the syntax: GetSignal[[sll -+ handlerd, ... , 
[sIn -+ handlern]]. It has two exit points: A standard one which is the next 
instruction after the GetSignal and an exceptional continuation which is repre
sented by the expression 

[sit -+ handlerl] , ... , [sin -+ handlern] 

On receiving a signal from the lock manager, the transaction manager locates 
the savepoint sl; that immediately precedes the read of the data object identified 
by the signal and associates the savepoint identifier sl; with this signal. For 
example, if the signal indicates a new value for the data object x, then the 
signal label sl; established by the first step sl; = SaveWorkO preceeding the 
operation r;[x] in the subtransaction body, is chosen. Each of the sl;'s in the 
expression for the GetSignal primitive, represents one such savepoint identifier 
that has been associated to a signal; handler; represents a programmer specified 
piece of code to be executed in order to handle the associated signal. We say 
the savepoint sl; covers the data object in question. 

If multiple low read locks of T; had to be released, the transaction manager 
receives multiple signals, one for each broken lock. It buffers all such signals. 
Later on when T; invokes a GetSignal call, the transaction manager considers 
all the signals it has buffered for T;, and selects one signal to be serviced as 
follows: It selects that signal whose associated savepoint identifier covers all 
the low reads with released read locks. 

The default invocation for the getSignal primitive is: GetSignal[ -+ handler]. 
In this case, for any signal that needs to be serviced, the same code of handler 
is executed. 

We now show how it is possible to implement a commit protocol that en
forces the secure dependency among subtransactions of a multilevel secure 
distributed transaction T. The SEP protocol is achieved by adding a suitable 
GetSignal call as the supporLcode (refer to the discusion on the semantics of 
the primitive en<Ltrans(T;)< support_code> in section 4.4.2) for each sub
transaction T; and making the coordinator module invoke a calLsupport for 
each of the lower reading subtransactions to invoke in its tum, the GetSignal 
calls. 
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Figure 4.9 shows an H-transaction, T, that implements the SEP protocol for 
committing three concurrent subtransactions Tb T2 and T3. These three sub
transactions are related to each other by the secure dependency Tj 4 Tj (1 ~ i, 
j ~ 3, i :f j). In this example transactions T 1 and T 3 read data at lower security 
levels, but not T2. We assume that a secure two-phase locking protocol is used 
to provide local concurrency control at each site. 

As each subtransaction Tb T2, and T3 completes, it invokes the emLtrans 
thread in the coordinator module and enters its corresponding window ofuncer
tainty. When the last of the subtransactions has invoked the end-trans thread, 
the coordinator module executes the calLsupport primitive for transactions T 1 

and T3. Note that the calLsupport is not invoked for T2 as this subtransaction 
does not read down. The calLsupport primitive in tum causes the supporLcodes 
defined in T 1 and T 3 to be executed. 

Each supporLcode is of the form < GetSignal[ -t aborLtrans(Tj)]; noSignal
Serviced>. The GetSignal call has the format of the default invocation. Thus 
if there is any signal to be serviced the exceptional continuation of GetSignal 
denoted by aborLtrans(Tj) gets executed. On the otherhand if there is no sig
nal the statement following the GetSignal is executed - in this case the thread 
noSignalServiced defined in the coordinator module. 

If any of Tl or T3 invokes aborLtrans (indicating it had to release a lower 
level read lock within its window of uncertainty), the coordinator module thread 
aborLtrans aborts all the three subtransactions T 1, T 2 and T 3 and then exits. On 
the other hand if both T 1 and T 3 invokes noSignalServiced it implies that none 
of them had a signal to service, i.e. none of the subtransactions had to release a 
lower level read lock within its window of uncertainty. At this point it is assured 
that the H-transaction T comprising of the three subtransactions is two-phased 
and hence the noSignalServiced thread commits the three subtransactions and 
exits. 

Note that the GetSignal and calLsupport primitives can be used in tandem 
by the programmer to implement more complex secure commit protocols like 
the ones shown in [Ray et al., 1996]. All that the programmer has to do is 
write a suitable SupporLcode and coordinator module thread corresponding to 
the desired behavior of each subtransaction. The support code should define 
how signals are to be serviced and what needs to be done in the absence of any 
signal and may invoke programmer defined coordinator module threads. 

4.5.5 Contingent Transactions 

A contingent transaction [Elmagarmid, 1992] is a set of two or more compo
nent transactions Tl, T2,"" Tn with the property that at most one of the trans
actions, say Tj, commits. A contingent transaction T = {T1, T2, ... , Tn} is 
executed as follows: T 1 gets executed first. If it commits then the transaction T 



120 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

void secure...distributed.commit 0 
{ 

} 

initiate (Tl,T2,Ts) ; 
coordinate 
cobegin 

begilLtrans (T 1) 
r[x] ; 
sl2 = SaveWorkO ; 
w[z] ; 
r[y] ; 1* this is a low read *1 
sIs = SaveWorkO; 
r[ q] ; 1* another low read *1 

end...trans (T I) {GetSignal[ -+ aborLtrans(T 1) ]; 
noSignalServiced ; } ; 

begilLtrans (T 2) 
rIo] ; 
w[p] ; 

end...trans (T 2) ; 
begilLtrans (T s) 

r[s] ; 1* this is a low read *1 
sl2 = SaveWorkO ; 
r[y] ; 1* another low read *1 
w[q] ; 

end....trans (Ts) {GetSignal[-+ aborLtrans(Ts) ]; 
noSignalServiced ;}; 

coend; 
using 

end 

thread end...trans (M) { 

} 

completedSet := union(completedSet,M); 
if completedSet = {Tl,T2,Ts} 

then calLsupport(T 1, T s); 

thread noSignalServiced (M) { 
commitSet:= union(commitSet,M) ; 
if commitSet = {Tl,Ts} 

then {commit (Tl,T2,Ts); exit;} 
} 
thread aborLtrans (M) { 

abort (T},T2,Ts); exit; 
} 

Figure 4.9 A secure distributed commit protocol 

commits and ends. If T 1 aborts, T 2 gets executed and if it commits, T commits 
and ends, and so on. 

The program fragment in figure 4.10 shows how a contingent transaction 
can be implemented within our framework. In the example the contingent tran
saction consists of three component transactions Tlo T2 and T3. Note the se
quential definition of the three transactions in the body of the H-transaction 
(they are not within any cobegin ... coend block) ensures that first T 1 gets exe
cuted and invokes en<LtransO or abOrLtransO. Then depending on whether the 
H-transaction terminates or not T2 and/or T3 gets executed. 



void contingentO 
{ 

} 

initiate(Tl ,T2,T3) ; 
coordinate 

begiJLtrans (T 1) 

emLtrans (T}); 
begin...trans (T 2) 

end.trans (T2); 
begilLtrans (T 3) 

end-trans (T 3); 
using 

end 
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thread end-trans (M) { 
ifM=Tl tben 

} 

{ commit (T}); abort (T2,T3); exit; } 
ifM=T2 tben 

{commit (T2); abort (Tl,T3); exit;} 
ifM=T3 then 

{commit (T3); abort (Tl,T2); exit;} 

thread aborLtrans (M) { 

} 

abortSet = union(M,abortSet) ; 
if subseteq({Tl,T2,T3},abortSet) then 
{ abort (Tl,T2,T3) exit; } 

Figure 4.10 Example of a contingent transaction 

4.5.6 Nested Transactions 

A nested transaction is a transaction that is executed from inside the dynamic 
scope of another transaction. Nested transactions can further create nested 
transactions and the nesting can proceed to arbitrary depths. The transaction at 
the root of this tree of transactions is called the root transaction and the transac
tions at the interior nodes (called parents) or leaves of this tree are jointly called 
subtransactions. Subtransactions execute atomically with respect to their sib
lings. 

Each of the parent transactions is suspended until all its nested transactions 
terminates (Le., commits or aborts). However, the semantics of commit for 
the nested transactions are different from that for the root transaction. When 
a nested transaction (parent or leaf) commits, the changes that it made to the 
database are made accessible to its parent, but are not made permanent. The 
changes are made permanent only when the root transaction commits. Abort 
semantics for both root and subtransactions are similar to the abort semantics 
for the classical transaction. Furthermore, a subtransaction can access any data 
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item that is currently accessed by one of its ancestors without forming a con
flict. 

We illustrate the implementation of the termination dependency of a nested 
transaction in our model by a simple example. The example involves a tran
saction nested to two levels, which makes travel arrangements for John Doe. 
If at any stage a reservation cannot be made, the trip is cancelled. At any 
stage thus, if the trip is to be cancelled, any previous reservation has to be can
celled. Note that unlike in the workflow model where previous reservations 
are cancelled by explicitly executing compensating transactions, in the nested 
transaction we do not require any compensating transaction. This is because 
of the fact that the effects of subtransactions are made permanent only at the 
commit of the root transaction. We assume that the code for the subtransac
tions are already there for the example in figure 4.11. Also note that the actual 
implementation of nested transactions requires proper implementation of the 
data-sharing dependencies among the subtransaction. We assume that such 
mechanism are already in place. 

void nested-transactions 0 
{ 

} 

initiate(Tl.T2.Ta.T4); 
coordinate 
begiILtrans(T 1) 

begiILtrans(T 2) 
ftightReservation(United. 6/3/96) 

eDlLtrans(T 2) ; 

begiILtrans(T a) 
hotelReservation(Ambassador. 6/3/96. 6/6196) 

eDlLtrans(T a) ; 

begin..trans(T 4) 
carReservation(Avis. 6/3/96. 6/6196) 

end..trans(T 4) ; 

eDlLtrans(T 1) ; 
using 

thread eDlLtrans (M) do { 
ifM = Tl then commit (TloT2.Ta.T4); exit; 

}; 
thread aborLtrans (M) do { 

abort (TloT2.Ta.T4); exit; 
}; 

end 

Figure 4.11 Nested transactions 
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4.6 CONCLUSIONS AND FUTURE WORK 

This paper presents a flexible commit facility that allows the programmer to 
achieve various transaction dependencies of different extended transaction mod
els. The transaction dependencies are implemented by a set of coordinator 
modules that interact with the system's default commit/abort mechanism. The 
programmer is provided with a small set of transaction primitives by which he 
can develop application specific coordinator modules. Moreover, the program
mer can redefine some of these primitives for additional flexibility by providing 
the code for the implementation of the new definitions. The compiler of a data
base programming language can also use these primitives to support higher 
level constructs for transactions. In this case, the compiler can automatically 
generate the appropriate codes needed for coordination of a set of transactions 
from a high level description of their dependencies. 

Not only can the programmer re-define some of the existing primitives, he 
can also define newer primitives with well-defined interfaces to satisfy his par
ticular requirements. In this case these new primitives are defined as new 
threads of a coordinator and are invoked from a transaction. An example of 
such a new application specific primitive has been the noSignalServiced prim
itive shown in section 4.5.4, where it was used to support the secure dependen
cies among transactions. Allowing custom primitives with well-defined inter
faces seems useful for supporting some other extended transaction models not 
discussed in this work, like the split-join transaction model. For example in 
the case of split-join transactions, the programmer can define two new threads 
split and join in the protocol component. The split thread starts a new tran
saction and delegates a set of data to the new transaction. The join thread is the 
complement of the split thread; it joins to transactions. 

Our commit facility seems to be a practical way to implement extended tran
saction models on top of existing TP systems following the same approach as 
that of [Barga and Pu, 1995]. In this work, the authors extend Transarc's Encina 
TP system [Encina, 1993, Gray and Reuter, 1993] by developing transaction 
management adapters on top of Encina. We choose to use a similar approach. 
Our transaction management adapters offer the same functionality as the tran
saction management adapter of [Barga and Pu, 1995] while our coordinator 
module can viewed as an extended version of the notion of metatransactions 
of [Barga and Pu, 1995] built on top of transaction management adapters. A 
coordinator module in an H-transaction lists the set of primitives that are in
voked by a component transaction alongwith an indication as to what type of 
primitive each is (for example if it is a system primitive or it is one of the new 
primitives that we have defined). It also contains the codes for these primitives. 
In this manner we can support extended transaction models on conventional TP 
system once the transaction adapter layer has been implemented. 
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One advantage of our scheme over [Barga and Po, 1995] is our ability to sup
port application specific dependencies that do not fit into any general model. 
The secure dependency is one such example. We plan to implement the pro
posed primitives within the framework of an ongoing project on MLS tran
saction processing system. When these current set of primitives are combined 
with the flexible secure two-phase locking proposed in [Bertino et al., 1997], 
we should have a complete flexible MLS transaction processing system that 
supports both classes of dependencies, transaction as well as data dependen
cies between MLS transactions. 

Notes 

I. Note that a process can be made to react to an event in many different ways: The event 
can generate an interrupt to the process; the event can send a message to a port at which the 
process listens or the event can invoke a RPC at the process. We choose not to specify the exact 
mechanism so as to keep the model as much implementation independent as possible. 

2. In most commit protocols, if any subtransaction aborts, the coordinator always sends an 
abort decision to all participants. However, in our protocol the coordinator may not send an 
abort decision. Instead the coordinator can ask the transaction to restart its execution. This can 
be useful in many situations. For example suppose the subtransaction was aborted because of a 
site crash. Then when the site comes up, the subtransaction can be restarted. 

3. A transaction T; is an orphan if it is never explicitly terminated by any coordinator module 
within the H-transaction. When a transaction T; is orphan the locks acquired by T; are not 
released and the updates made by T; are not made permanent. This may cause a number of 
problems like deadlock or unsatisfiable dependencies. A complete discussion is outside the 
scope of this paper. 

4. We assume here that the programmer does not save the contents of an sid before reusing 
it. 

5. Such a facility of the lock manager notifying the transaction manager about early lock 
release by transactions is available in some secure transaction processing system like Informix 
Online/Secure [Informix, 1993] 

Acknowledgments 

This work was partially supported by an ARPA grant, administered by the Office of 

Naval Research under grant number NOOI4-92-J-4038, by National Science Founda

tion under grants IRI-9303416 and INT- 9412507, and by National Security Agency 
under grant MDA904-94-C-6118. The work of E. Bertino and L. Mancini was carried 

out while visiting George Mason University during summer 1995. 



5 CONTRACTS REVISITED 
Andreas Reuter, Kerstin Schneider 

and Friedemann Schwenkreis 

Abstract: To meet the correctness requirements of mission-critical processes 
workflow systems have to commit guarantees regarding their behavior in case 
of failures and concurrency. The ConTract model is a conceptual framework for 
the reliable execution oflong-lived computations in a distributed environment in
cluding workflows. This paper focuses on the aspect of maintaining consistency 
in ConTracts and containing consistency violations. It will give an overview of 
how consistent execution is formally treated in the ConTract model. We present 
a correctness criterion, which introduces a formal basis to verify execution histo
ries and to build up correctness ensuring mechanisms. It is a unified criterion for 
recoverability and permeability, named as invariant-based serializability, which 
is based on a conflict-relationship between invariants in the ConTract model. A 
formal definition of compensation is given and extensions of the compensation 
mechanism are introduced. These extensions are a first step to leverage the con
cept of compensation such that it can be used as a general-purpose mechanism 
as in real applications. In particular, the support of semi-transactional steps and 
the performance can be enhanced and advanced semantics of workflows can be 
supported. 

5.1 INTRODUCTION 

The ConTract model is a conceptual framework for the reliable execution of 
long-lived computations in a distributed environment. Properties like this are 
particularly important for applications which during the past ten years or so 
have come to be known as "workflow". This does not say ConTracts embody 
a workflow system; they do, however, provide a complete run-time system, 
including an execution model, a failure model, etc. for advanced workflow ap
plications. One might say that ConTracts are to workflow what the Java virtual 
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machine is to Java-based applications. Since it was first presented in 1988, 
the ConTract model has evolved in multiple ways: First, there has been a se
quence of prototype implementations, none of which encompasses the full set 
of concepts. Second, a number of ideas from the ConTract model have been in
corporated into commercial products, either indirectly, via the literature, or via 
osmosis, by members of the ConTract team joining the respective development 
teams. And finally, the original research group (at the type level, that is; the 
people have changed) has continued to work on some of the more fundamental 
issues of long-running computations, such as formal consistency constraints 
and their implications on the execution model, on recovery, and so on. 

This paper will focus on the aspect mentioned last, i.e. the problem of main
taining consistency in ConTracts and containing consistency violations. Ex
isting workflow systems basically ignore those problems. Their vendors put it 
more mildly by saying the system provides the application with all the inter
faces required to take care of consistency by itself. So, whereas many of the 
technical aspects related to distributed execution, naming, security etc. have 
been solved and made their ways into standards, consistency maintenance is 
still a hard problem, where research has to - and can - make a contribution. The 
paper will give an overview of how consistent execution is formally treated in 
the ConTract model. 

5.1.1 The Motivation For ConTracts 

First and foremost, ConTracts were designed to achieve reliable execution for 
long-running computations. In a sense, ConTracts were to provide a level of 
system support to such computations that is comparable to what transactions 
do for short interactive applications. Don't get this wrong: The level at which 
a distributed system supports both models is what is comparable; the actual 
concepts and techniques are quite different. 

The first question to come up is: What is a long-lived computation, as op
posed to a short (interactive) transaction? It certainly does not help to set a 
fixed elapsed time limit, such as: Whatever completes faster than within 10 
seconds is a short computation, everything else is a long-lived computation. 
Either there are counter-examples on both sides of the limit, or the limit is set 
so high (or so low) that it becomes irrelevant. So we better define long-lived 
computations by their properties, especially those properties that lack support 
in current (operating) systems. Here is a list of some important traits that can 
be found in long-running computations such as workflow, but which do not 
hold for transactional applications: 

• A long computation is one which cannot or should not be rolled back. 
The transactional style of aborting a failed computation implies the no
tion of retry: When a transaction has been aborted, just try again after 
system restart, or after having checked the input data, or whatever. Now, 
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if restarting the computation is too expensive, or if it causes the applica
tion to miss a critical deadline, or if rollback is not feasible in the first 
place, we have a computation that must be continued rather than rolled 
back, even if something goes wrong: a long-lived computation. 

• A long-lived computation must be kept alive acr!lss system shutdowns, 
reorganizations and other regular interruptions of normal system oper
ation. In particular, a deactivation of all participating clients must not 
cause the computation to terminate. 

• A long-lived computation involves many clients, mostly in the sense that 
it moves through the distributed system, activating one client interaction 
after the other. It must be possible, though, for two or more clients to be 
attached to the same long-lived computation simultaneously. 

• A long-lived computation may not be specified completely at the moment 
it starts. Depending on its progress and some intermediate results its fur
ther plan will be developed as it progresses. In many cases, the decision 
about what to do next depends on the computation's own execution his
tory. 

Of course, some so-called long-lived computations do really go on for a very 
long time: If you consider everything related to the construction of, say, a 
power plant as processing one big order, the related computation that maps the 
order processing onto the distributed system will be active for a couple of years. 

Once you accept the goal of providing system services that will make such 
long-running computations persistent in that they will automatically be recov
ered and continued as long as the application has not declared completion, the 
question is, which particular mechanisms are required, and how they interact 
with existing system services. 

5.1.2 A Brief Survey of the Model 

On first approximation, a long-running computation is just the execution of a 
program - a long one, for that matter. So if we had a persistent programming 
language, i.e. one which allows the program to be restarted after a crash right 
where it was interrupted, wouldn't that solve the problem? 

It would indeed solve a portion of the problem, but leave out some important 
aspects. Of course, a persistent run-time environment is mandatory for achiev
ing reliable execution of long-lived computations. But there is another side 
to this observation: Which functions are needed in a programming language 
that is suited for writing long-running programs? Will anyone do, such as a 
persistent C? 

We claim the answer is "no", and we hope some of the more subtle reasons 
can be appreciated by the end of the paper. A simple quantitative argument is 
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the following: Classical programming languages have been designed for imple
menting software modules, which get invoked, perform their function within, 
say, IOms and then return without leaving any context around. A workflow, on 
the other hand, can last for years, i.e. we look at elapsed times of 108 seconds. 
So the temporal horizon of programming a workflow is 10 to 11 orders of mag
nitude larger compared to implementing some module - it is quite obvious that 
the programming constructs adequate for the short range will not be completely 
sufficient for activities that are 100 million times longer. 

In the following, we will briefly outline the additional mechanisms that have 
been introduced in the ConTract model to support "programming in the long". 

First and most obviously, a long-running activity has explicit control flow, 
with all the constructs such as sequence, case, and loop. In addition, in long 
computations one typically finds many asynchronous (parallel) execution paths, 
so this must be part of the model. Fig. 5.1 shows a simple graphical represen
tation of this. 

Source 

/ o case 

~ 
~ooV 
o 

Figure 5.1 A ConTract script describes the control flow of a long-lived computation using 

all the basic constructs of a parallel programming language. 

The ConTract model assumes that the nodes of the control flow graph (called 
"steps") are not single statements of some programming language (or base 
blocks); they rather represent programs, methods, applications, etc. which can 
be invoked through a call interface. Each such program comes with its own 
n,m-time system, executes in single-user mode and eventually returns control 
to the run-time system of the long-running computation!. So there is a clear 
division of responsibilities - a contract, if you will: The application is respon
sible for what happens inside a step, the system is responsible for keeping the 
control flow hetween steps alive, according to the specification. The control 
flow description is often referred to as "script" in workflow systems. 
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In order to support programming of truly long-lived computations, one needs 
more than persistent control flow, though. Fig. 5.2 shows the specifications that 
can be associated with a step in the ConTract model. 

ConTract program variables(context) 

~~~~ 

compensation step 

Figure 5.2 Control features associated with each ConTract step 

First, each step must be complemented by a compensation step, which per
forms the (semantically) inverse function of the step. This is required, because 
in a long-running computation one cannot keep the updates locked until the 
end, as is the case in transactional systems. 

Second, each entry point into a step is protected by a so-called entry invari
ant. This is a predicate expression, typically based on shared data in a database, 
that must evaluate to ''true'' in order to actually invoke the step procedure. So 
even if the control flow has arrived at a certain step, its invocation will not 
happen unless the entry invariant holds2 • While compensation takes care of 
the fact that updates cannot be locked for a long time, entry invariants cope 
with the fact that data read by a long-running computation cannot be protected 
either. 

Finally, there is a construct called exit invariant. It basically binds result 
values of a step to the variables in a predicate expression, thereby establishing 
the fact that a certain condition was fulfilled at that point in time. Steps that 
will be executed in the future can then refer back to such an exit invariant as 
part of their own entry invariant, checking whether something important has 
changed since ''that step back there" executed. 

Fig. 5.2 also shows an example of a local programming variable of a Con
Tract, i.e. a long-lived computation. Such variables are visible to all steps be
longing to the same computation, but they are not visible to either the outside 
(other computations) or the inside (programs executing as a step). Since these 
variables reflect the execution history of a computation, which must be made 
accessible in an easy way, the ConTract model suggests a versioning scheme 
for all variables. So each assignment operation leaves the most recent value 
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unchanged and creates a new version of the same variable. Since this is very 
different from normal program variables, they are called "context variables" in 
the ConTract model. 

5.2 TRANSACTIONS IN A WORKFLOW ENVIRONMENT 

This paper started out by saying that transactions are not adequate for mod
eling long-lived computations. On the other hand, they have the great virtue 
of providing a model for execution, failure, recovery, and synchronization in 
one simple formalism - an atomic state transition. There is no point in trying 
to relax or modify the transactional properties, hoping that the result will be 
a comparably simple model for long-lived executions. Each of the problems 
referred to by the ACID-properties has to be addressed individually for such 
environments, and the resulting architecture will not be as uniform and ele
gant as a transaction - but then, the problem to be solved is substantially more 
complicated. 

So modifying the transaction model will not do, and ConTracts are not an 
extended transaction model. They will use transactions, though, in a variety of 
ways, which will be explained in this section. 

5.2.1 Use of ACID-Transactions 

ACID transactions are used in a ConTract environment at two levels of abstrac
tion. 

First, transactions appear at the control flow level. It is possible to let multi
ple steps execute as part of one (distributed) ACID transaction. This specifica
tion (which is not shown in Fig. 5.2) is part of the overall definition of steps and 
control flow. The default, enforced by the system in case the application does 
not explicitly specify transaction control, is the execution of each step as an 
ACID transaction. Of course, this has an effect only if the resource managers 
used by the step program do support transactions. 

The second usage of transactions happens ''under the covers" of a ConTract 
system, and it is totally unrelated to whether or not transactions are used at the 
control flow level. 

Fig. 5.3 illustrates the basic idea. For simplicity, assume a linear control 
flow from step B to step C, which in general will be running on different nodes 
of the network. Once B has completed, the fact that it has completed must be 
reliably recorded - otherwise a system crash in that time window might cause 
B to be activated again. In addition, control must be transferred to step C, and 
the fact that all this has happened must be recorded at yet another node (called 
CM for ConTract manager). This makes sure that somebody will be there to 
initiate recovery in case the node executing C should crash before completion. 
Since all three actions must happen together or none must take effect, the ad-



CONTRACTS REVISITED 133 

System transaction A 

transfer 
control 

receive 
request 

Figure 5.3 Distributed ACID transactions are the base mechanism for implementing reli

able transfer of control. 

equate implementation mechanism is a distributed ACID transaction involving 
the nodes of steps B and C, and the node running CM. 

5.2.2 Semi-Transactional Activities 

As mentioned in the previous section, there are and will be components which 
are not aware of something like a distributed transaction or a two phase commit 
protocol. However, many real world applications need these components to 
fulfill their tasks. Hence, the question comes up how ConTracts can cope with 
such non-conforming components and what the benefits will be. 

The major benefit of using ConTracts even in case of non-conforming steps 
is the guarantee that state changes of the process (script) are made atomic. That 
means, that the effects of such steps regarding the process are protected by a 
transaction. In contrast, their effects to the "outside world" may be unprotected. 
That's the reason why we will call them semi-transactional in the following. 

It is an obvious observation that without a transactional protection and with
out the control of the transaction by the system there will be intervals in time 
when the system is unable to determine the state of a step automatically. Hence, 
the system needs "help" from outside which results usually in a message to the 
administrator. However, a reliable system should minimize the "window in 
time" when human intervention is needed and provide as much information as 
possible to support humans while solving the problem. 

To achieve the two objectives in ConTracts, several extensions to the original 
model are necessary. We will briefly introduce some of these extensions: 
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• The system must be aware of semi-transactional steps, i.e. the definition 
of the script has to contain a classification of steps such that the run-time 
system is enabled to determine necessary actions in case of problems. 

• Recovery strategies are much more complex (but also flexible). The re
covery of a semi-transactional step may require the execution of several 
other steps. This will be taken into account e.g. by the partial compensa
tion in section 5.4.4. 

• The notion of dependencies has to be extended. Up to now, control flow 
can be defined by using abort and commit dependencies. 

• The usage of semi-transactional steps do impact the semantics of other 
parts of a script, e.g. transactions and compensation. Proper constraints 
have to be introduced to avoid indeterministic behavior. 

The more we extend the features of ConTracts, the more information must be 
provided by the script programmer to use these features. Or in other words, the 
more you can use the transactional features of ConTracts, the less information 
is needed on the script-level. 

5.3 RECONSIDERING CORRECTNESS 

The original model of ConTracts [Waechter and Reuter, 1992] introduced an 
implicit notion of correctness by describing the properties of a ConTract in 
an informal fashion. In particular, the definition of the invariant based con
currency control mechanism was very brief which lead to confusion. Since 
workflow systems are more and more demanding transactional features, execu
tion models like ConTracts need to come up with a very precise definition of 
their semantics. 

5.3.1 'Iransactional Properties and Con'Iracts 

The major benefit of classic database transactions was their simplicity, repre
sented by the ACID properties [Gray and Reuter, 1993]. Unfortunately, these 
properties have major drawbacks in case of long-running executions like work
flows [Gray, 1981]. Anyway, programmers of applications have to be supported 
by a proper abstraction like transactions to avoid the programming overhead for 
failure handling, recovery and multi-user anomalies. The ConTract model was 
introduced to provide such an abstraction with the following properties. 

5.3.1.1 Recoverability. To avoid the shortcomings of the atomicity prop
erty, a two-layered recovery approach has been introduced: 

1. Recovery at the step level 
Steps which are protected by a transaction are recovered by recovering 
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the surrounding transaction, i.e. active transactions are rolled back. For 
non-transactional steps a message to the administrator is generated. The 
administrator has to recover the step (either forward or backward) and 
then has to inform the ConTract processing system about the result of the 
recovery. 

2. Recovery at the script level. 
A ConTract 3 is forward recoverable, i.e. after a failure the state of the 
script is recovered and then recovery is initiated for every step (and ev
ery transaction) which was active when the failure occured. After this 
first phase of recovery, the ConTract will continue its execution (forward 
recovery). 

Recovery is handled by the run-time system of ConTracts except for non
transactional steps. Hence, a programmer of a ConTract does not need to pro
vide any code for failure recovery. 

Forward recovery is performed after any type of failure, in order to keep the 
ConTract going. It must be possible, though, for the application to terminate an 
active ConTract and ask the system to revoke what has been done so far; this 
type of recovery is called compensation [Gray, 1981]. 

Thus, a ConTract guarantees its compensability. The details of compensa
tion in ConTracts will be described in section 5.4.1. 

5.3.1.2 Permeability. Work performed by a ConTract is isolated in a trans
actional sense only while a transaction is executed. If the transaction finishes, 
all changes will become visible to the outside world if the application does not 
define any further restrictions by using the so-called invariant concept. 

5.3.1.3 Consistency. The consistency property of transactions is based on 
the properties of atomicity and isolation. If a transaction runs isolated and 
atomic, and it is started on a consistent state, it produces a consistent state after 
it has finished its execution. During the execution a transaction may produce 
inconsistent states which are not visible to the "outside world". A basic as
sumption of this approach is that transactions have to check themselves if they 
violate any consistency constraints defined on the data (e.g. during the commit 
phase). If they encounter the violation of a constraint, they have to roll-back. 

This notion of consistency has been extended. A ConTract may define in
termediate states (during the execution) as consistent. So, intermediate results 
will become visible to other executions. 

5.3.1.4 Durability. The notion of durability has also been extended in the 
ConTract model. The execution itself is durable, i.e. the state of the process 
and all variables (context) are durable. Furthermore, intermediate results which 
become visible during the execution do have the durability property. 
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5.3.2 Recovery and Serializability 

The correctness criteria in the area of transaction processing systems [Bernstein 
et al., 1987] are derived from the properties of transactions: 

1. Serializability (SR) 
Due to the isolation property, an execution history must be equivalent to 
a history which contains only the serial (non-interleaved) execution of 
transactions. 

2. Strictness (ST) 
Due to the atomicity property of transactions, it has to be guaranteed that 
either the complete results of a transaction become visible to other trans
actions (commit case) or all effects are undone (rollback case). Since 
cascading aborts must be avoided, simple recoverability (Re) is not suf
ficient. 

Since both criteria have to be guaranteed during the execution of a transaction, 
Alonso et al. [Alonso et al., 1994] came up with a unified criterion: the so
calledprejix reducibility (PRED). 

In the following, we will define the correctness criterion used in ConTracts. 
Similar to the approach in [Alonso et al., 1994] we will develop a unified cri
terion for both, recoverability and permeability. The difference between trans
actional correctness and our approach hinges on the special notion of what a 
conflict is. 

5.3.3 The Conflict Relationship 

The core element of almost every correctness criterion is the definition of a 
conflict relationship between the basic operations of executions. As described 
in [Ramamritham and Chrysanthis, 1996] two classes of conflicts can be dis
tinguished: 

1. Conflicts between operations of the same execution must be handled by 
the structural dependencies of the operations (control flow) which are 
defined at programming-time. 

2. Conflicts between operations of different executions are due to a conflict 
relation. The conflict relation can be used by a scheduler to generate only 
correct schedules. 

A basic assumption of all the criteria is that an execution will be correct if it is 
the only execution in the system; this corresponds to the C of "ACID". Hence, 
execution histories which are equivalent to a serial execution history will be 
correct. In essence, this means that almost every correctness criterion is based 
on some sort of serializability. 
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Since ConTracts are not isolated the way transactions are, conflicts are due to 
explicitly defined constraints - the invariants. To get this straight, some helpful 
definitions are introduced to give a better understanding of what invariants are 
and how they are used. 

Definition 5.1 (Path) (a,b) says there exists a direct path from step a to step 
b. This means step b must be executed directly after step a. If there is a path 
(a,b) and a path (b,c) then we say that there is a path (a,c)+ (transitivity). 
And ifeither (a,b) or (a,b)+, we will use (a,b)* 

The concatenation of paths EB is defined as (a,b)* EB (b,c)* = (a,c)*. 
We will use (b,c)* E (a,d)* to denote the fact that (a,d)* can be written as: 

{(a,b)* EB (b,c)*) EB (c,d)*. 

Paths define the structural dependencies of steps, i.e. the flow of control (see 
also [Schwenkreis and Reuter, 1996]). By convention, it is allowed to use the 
special notation (start,a)* to denote the path from the start of a ConTract to 
the step a. 

Definition 5.2 (Step execution) The successful execution of a step f trans
forms a state of data objects s (see [Bernstein et al., 1987]) to another state 
I. We will use f{s) to denote the state s', i.e. the state produced by step f. 

Definition 5.3 (Exit invariant) An exit invariant i~ of a step s is a conjunction 
of predicates Pi 

i~ = Pl/\P2/\ .. ·/\Pn 

We will use Pk E i~ to denote the fact that Pk is one of the predicates of i~. 

If a step is executed it checks whether its exit invariant holds and requests the 
system to ensure that it will not be violated (called establishing an invariant). 
If the exit invariant is not fulfilled at the end of a step, the step will be rolled 
back. 

Definition 5.4 (Predicate reference) A predicate reference r(i~,Pk) is a pred
icate with the following property: 

Pk E i~ /\ r(i~,Pk) {::} Pk 

Predicate references can be used in a ConTract definition to "point" to a predi
cate established by a previous step (see section 5.1.2). 

Definition 5.5 (Entry invariant) An entry invariant i~ of a step s is a conjunc
tion of predicate references rj: 

i~=rl/\r2/\ ... /\r3 

/\ 

'Vrj: rj = r{i~,Pk) /\ 

3(a,s)* such that (s,a)* ¢ {(start,a)* EB (a,s)*) 



138 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

We will use r E i~ to denote the fact that r is one of the predicate references of 
·s 'n· 
An entry invariant can be used to define a condition which is needed by a step 
as a prerequisite for a successful execution. 

Entry invariants can only be defined by using predicate references which 
refer to predicates of exit invariants of previous steps, i.e. a constraint needed 
by a step S2 must be established by a previous step SI. 

In the following we will use i(s) to denote the result of the evaluation of the 
predicate i at a current state s. 

Given the definitions of invariants the special conflict relation of ConTracts 
can be introduced: 

Definition 5.6 (potential conflict) A step a is in a potential conflict with a step 
b denoted by conf( a, b) if there exists a state s with: 

i~(s) ::} -'i~(b(s)) V 1~(S) ::} -'i~(b(s)) 

A step a is in conflict with another step if its invariants may be violated by the 
other step. Note that this notion of conflict is not symmetric. 

5.3.4 Execution Histories and Correctness 

Loops which are defined in the ConTract instance will be un-rolled at run-time. 
Therefore, the system generates so-called step instances from steps to be able 
to distinguish multiple executions of the same step. 

Definition 5.7 (Step instance) A step instance"? is a run-time version of a step 
s. "? has the semantics and effects of s and has the same invariants. The index 
i denotes the i-th instantiation of step s. We will use scurrent to denote the most 
recent instantiation of a step during the execution of a script (or zero if it is the 
first time). 

The following rules are used to execute a script and preserve the ordering de
fined in the script: 

Definition S.S (Script-conform execution) An execution of a ConTract is script
conform if the following rules are used to interpret a script: 

1. At the start of a ConTract the system generates instances for all steps Sj 

which do not have a predecessor step (VSj: -,3(a,sj)). 

2. If a step instance s has finished its execution, the system looks for all 
successor steps aj which can be executed (Vaj: 3(s,aj)). A new instance 
(aiurrent+ 1) is created and executed for each of these steps. 

With the execution algorithm of ConTract the history of a ConTract processing 
system can be defined. 
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Definition 5.9 (Processing history) The history H of a ConTract processing 
system is a set 8 of step instances S and a partial order ~ defined over the set 
of step instances H = (8, ~). The set of step instances may also contain special 
step instances EOC which indicate the end of a ConTract. EOC(s) will be used 
to denote the End-of-ConTract step of the ConTract which has executed S. The 
ordering relation (Sj ~ Sk) says that Sj was executed before Sk. 
We will use He to denote the reduced history of a single ConTract C. 

Similar to the approach in [Alonso et al., 1994] the history can be expanded to 
include the compensational semantics of ConTracts. 

Definition 5.10 (Expanded processing history) Let H = (8,~) be a history. 
Its expansion iI is a tuple (S,~) where: 

I. S is a set of step instances which is derived from 8 in the following way: 

(a) For each ConTract Cj E H, ifsj E 8 then Sj E S. 
(b) For all Sj E 8I\EOC(sj) ¢ 8, a compensating step instance sil must 

appear in S. 
2. The partial order, ~, is determined as follows: 

(a) For every two step instances, Sj and Sk, ifsj ~ Sk then Sj ~ Sk. 
(b) All non-compensating step instances of a ConTract must precede the 

compensating step instances of this ConTract. 
(c) For every two compensating step instances, sil and Sj-l, ifsj ~ Sj 

he --1 ~ --1 t n Sj ~ Sj 

The expanded history contains all step instances of the original history. Addi
tionally, for all running ConTracts, the history is expanded by all compensating 
step instances of all non-compensating step instances. The order of the com
pensating step instances is the reverse order of their original steps. 

Now that we have introduced the notion of histories, the conflict relation of 
definition 5.6 can be refined 

Definition 5.11 (Specific confticts) A step instance a is in a conflict with an
other step instance b of a different ConTract due to a predicate Pk of an exit 
invariant, denoted by confx(a, b,Pk) if: 

3Pk E i~ with -, pk(b(s» 1\ a ~ b 1\ 

3c E S with 3 rj E i~ 1\ rj = r(i~,Pk) where -,rj(b(s» 1\ -, C ~ b 

A step instance a is in conflict with another step instance b of a different 
ConTract due to a predicate Pk referenced by an entry invariant, denoted by 
con/n(a,b,p) if: 

3rj =E i~: with -, rj{b(s» 1\ b ~ a 1\ 

3c E S 1\ rj = r(i~,Pk) 1\ C ~ b 
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Since the invariant mechanism is based on a paradigm similar to a producer I 
consumer relationship, a real conflict may only arise if an invariant invalidating 
step is executed in between a step which established a part of the (exit) invariant 
and a step which needs the established constraint (a part of the entry invariant). 

With this more specific definition of conflicts of steps (or step instances) the 
binary conflict relation of ConTracts becomes obvious: 

Definition 5.12 (Invariant-based ordering) A ConTract CA is in conflict with 
another ConTract CB due to a predicate p, denoted by Cp(CA,CB) if there are 
two step instances sA, sB of these ConTracts in S where: 

confx(sA, sB ,p) V confn (sB, sA ,p) 

An expanded history S implicates a partial order of ConTracts based on the 
conflict relation of definition 5.11. As in every serializability based criterion 
the last step is to define the correctness criterion of a history. 

Definition 5.13 (Invariant-based serializability) A history S is correct if its 
expanded history S fulfills the following constraints: 

1. The history of every single ConTract was generated by a script conform 
execution (see definition 5.8). 

There are some implications of this correctness criterion which should be men
tioned. 

• It can be shown that the correctness criterion is prefix closed, i.e. if a 
history is correct, it implicates that every prefix of the history is correct. 
Hence, it can be directly used for a scheduler; even though, it will never 
be implemented using the classical scheduling approach. 

• Basically, the criterion differentiates between two classes of invariants 
- invariants for compensating steps and invariants for non-compensating 
steps. 

• Invariant-based serializability does not force serializability for ConTracts 
as a whole. Only parts protected by an exit-/entry-invariant "bracket" do 
have the serializability property. 

• One of the interesting features of the invariant concept, the selection of 
policies (cooperation of ConTracts), is currently not taken into account 
and will be covered by future extensions. Since the criterion is mainly 
intended to ensure the compensability of ConTracts, these extensions will 
only result in minor changes. 
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5.4 COMPENSATION IN DETAIL 

Compensating activities as introduced in section 5.3.1.1 are a very common 
approach to realize undo behavior for long-running executions [Elmagarmid, 
1992, Garcia-Molina and Salem, 1987]. Although the mechanism is used in 
almost every advanced transaction model, it is introduced in a very informal 
way. 

5.4.1 A Basic Definition of Compensation 

The idea of compensation in the area of transactions came up when it was re
alized that atomicity/rollback is not applicable in case of long-running execu
tions [Gray, 1981]. The first attempt to formalize compensation was presented 
in [Korth et al., 1990b] which tried to unify rollback and compensation. The 
resulting notion of compensation was very restrictive in terms of what compen
sating (trans-)actions have to guarantee: Compensating activities as defined in 
[Korth et al., 1990b] have to generate a state of the accessed data objects which 
is identical to the state at the point in time the original activity started, i.e. 
objects in the database( s) must have the same value. 

Observations of the real world have shown that compensating actions usu
ally do not reestablish a previous state (of data). In particular, they do not 
reestablish the state at the start of the original activity. Hence, compensation is 
a very flexible means and almost similar to the forward running case. However, 
a simple property of compensation motivates the need to distinguish compen
sating activities from usual ones: 

Compensation must not (finally) fail 
To be more specific, if a compensation is needed, there is no way to execute 
an alternative like another compensation. Hence, if a run-time system can
not execute a compensating activity, the only thing it can do is to inform the 
administrator. 

Definition 5.14 (Acceptance function) There exists afunction gf (acceptance 
function) for every step f which maps a state s to a boolean value: 

gf: s --+ TRUE,FALSE 

The acceptance function checks whether the state s satisfies the constraints of 
f in order to be executed successfully. 

With the introduced definitions of paths and of acceptance functions the se
mantics of compensation can be defined. 

Definition 5.15 (Compensation) fe is a compensation step of step'/ if: 

gf(s) = TRUE=* gf(fcof(s)) = TRUE A 

if,/c}* Agfc(J(s)) = TRUE 
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In the general case comp( a, b) is used to indicate that step a is a compensation 
of step b. 

The acceptance function of fc returns true if applied to the state after the exe
cution off(s) (denoted by feof(s) in the above definition). The compensating 
function fc generates a state which fulfills the requirements of the acceptance 
function off. 

Problem: 
The execution of the compensating step!c after the execution of the original 
step f can be intervened by other steps ai • Hence, precautions must be taken to 
guarantee that the acceptance function of fe is not violated such that fc cannot 
be executed in the future. 

A criterion which does not make any assumptions about the usage of steps 
inside of a ConTract is very restrictive. It does not allow the violation of the 
acceptance function of the compensating steps during the execution of a Con
Tract. This is taken into account by definition 5.16. 

Definition 5.16 (Indirect compensability) A step f executed by a ConTract is 
indirectly compensable (denoted CI(J,a)) with regard to another step of the 
same ConTract a E CSteps(J) if: 

comp(a,j) 

V 

(J,a) A (ae,!c) A (gfc(s) = TRUE ~ gfc(aeoa(s)) = TRUE) 

CI(J,ai) A CI(ai,d) ~ ct(J,d) (transitivity) 

CI(J,ai) V Ct(J,ai) ~ Cj(J,ai) 

The violation of the acceptance function of a compensating step!c can be al
lowed, if the step a, which causes the violation, belongs to the same Con
Tract. It must be executed after the original step f, and it must be guaranteed 
that its compensation ae is executed before fe to reestablish a state which sat
isfies the acceptance function of !c. One implication of this property is that 
gfc{ae{s)) = TRUE. The criterion holds also for a compensation step, if its 
original step satisfies the criterion. 

Definition 5.17 (Indirect compensation chain) The ordered set of all d' with 
Cj(J,d') is called indirect compensation chain off (le(J)): 

le(J) = {d' I Cj(J,d')} and ai < d if Cj{ai,d) 

The reduced chain I~(J) containing only non-compensating steps can be di
rectly derived: 

I~(J) = le(J) \ {at I comp{d',d),j < k,d E le(J)} 
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The indirect compensation chain consists of all steps for which the indirect 
compensation relation holds. The reduced chain omits all compensation steps 
contained in Ie (f) 

Definition S.18 (Absolute compensability) A step f executed by a ConTract 
is absolutely compensable with regard to an arbitrary step a (denoted CA (f, a)) 
if: 

-,C/(f,a) A 

gfc{s) = TRUE => gfc{a{s)) = TRUE A 

'tiff E I~(f): CA{ff,a) 

A step f is absolute compensable with regard to another step a, if it is ensured 
that the acceptance function of the compensation function fe is not violated 
by the execution of a. Additionally, step a must not violate the acceptance 
functions of the compensation steps belonging to the steps in the reduced in
direction chain in order to preserve the possibility to reestablish a proper state 
forfe. 

Based on our notion of compensability (definition 5.15) we can prove that 
the introduced criteria are sufficient to guarantee the compensability of Con
Tracts. 

Given an arbitrary point in time after the execution of a step f of a ConTract, 
we will find a state s produced by the execution of an ordered set of steps 
denoted by (a" 0 •.• 0 a l 0 f{s)). In the following we will use A = {al , ... ,an} 
to denote the set of steps executed after f. 

Theorem 1 (Execution dependent compensability) If all steps which have been 
executed successfully after f either preserve absolute compensability or indi
rect compensability, it is guaranteed that the compensating step!c is executable 
when it has to be executed. 

Proof: 
We will prove the theorem above by an induction over the setA. 

1. Basic assumption: 
If A is empty the current state is f(s), then gfc(j{s)) = TRUE (def. 5.15), 
i.e. the compensating step off can be executed if directly applied to f(s). 

2. Conclusion: 
If A has n elements n E No and gfc{an 0 •.• oal of{s)) = TRUE we have to 
prove that gfc(an+1 oa" 0 ••• oal of(s)) is true, when!c has to be executed. 
If gfc(a" 0 ••• oal of(s)) = FALSE it must be ensured that gfc will become 
TRUE whenfe has to be executed. 
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(a) an+1 fulfills CA (j,an+1) and gfc(an 0 ..• oal of(s)) = TRUE: 
Since gfc(an 0 ... oal of(s)) = TRUE and CA(j,an+1), it is ensured 
that gfc (an+l oano ... oal of(s)) = TRUE (see definition 5.18). Hence 
fe can be executed successfully. 0 

(b) an+l fulfills CA(j,an+l ) and gfc(an 0 ••• oal of(s)) = FALSE: 
There must be steps ak inA which satisfy Ct(j,ak ). The executabil
ity of fe is guaranteed by guaranteeing the executability of the steps 
belonging to I~ (j). Since an+ 1 preserves the executability (def. 5.18) 
of all the compensation steps in I~ (j), the acceptance gfc will become 
TRUE whenfe has to be executed. 0 

(c) an+l fulfills Cj(j,an+l ) /\gfc(an 0 ••• oal of(s)) = FALSE: 
In this case, there must be a step b with CI(b,an+l ) /\ b E I~(j) for 
which gbc = TRUE (see def. 5.16). Since C1( b, an+ 1 ) guarantees that 
gbc will become TRUE after the execution of a~+1, and a~+l must 
be executed before be the executability of fe is guaranteed when it 
can be executed (sometimes after the execution of be). 0 

(d) an+l fulfills Cj(j,an+l ) /\gfc(an 0 ••• oal of(s)) = TRUE: 
This is the case where a step probably violates the acceptance func
tionfe. Two sub-cases can be distinguished: 

• There exists a step b E A,b i- f with CI(b,an+l ) /\ Cj(j,b). 
This case can be treated similar to the previously dicussed case. 
D 

• C1(j,an+1): 
Since the precedence relation of definition 5.16 guarantees that 
a~+l will be executed before fe and reestablishs a state where 
gfc = TRUE, the executability offe is guaranteed when needed. 0 

5.4.2 Script-based Compensation 

Compensating a step can be a complex task with several branches in the con
trol flow. Moreover, compensating activities can contain real actions and re
quire interactions. In some cases several machines and people are involved 
in the execution of the compensation. This requires to allow (sub-)scripts as 
compensations rather than simple steps only. 

Script-based compensation has the following additional advantages com
pared to a simple step-based compensation. 

• Script-based compensation allows the use of forward recovery in case of 
failures during the execution of the compensations. 

• In case of the final failure of compensation the usage of a script-based 
compensation leaves more parts in an consistent state and requires less 
manual intervention. 
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• The parts of a compensating script which were finished successfully, be
come durable. Hence, results of the compensation become available as 
early as possible. 

Introducing script-based compensation leads to a slightly extended program
ming model. The implementation of a script-based compensation can contain 
- as the name suggests - script level code. Still, the activity compensated by a 
script is a single step and basically this step code has to be understood. In a 
workflow environment, on the other side, there are many constraints to be met 
by a compensation, for example constraints derived from informational, behav
ioral, administrational, technical or organizational aspects [Curtis et al., 1992]. 
One example is the selection of different counter-actions, that are needed for 
the cancelation of a flight reservation, depending on the point in time and state 
of the execution. This behavioral aspect is best expressed on script level. 

Script-based compensations are expressed as a set of steps with a defined 
control flow resembling a block. 

Definition 5.19 (Block) Let A be a set of steps and 0 * the binary path relation 
from definition 5.1. A tuple B = (A, 0*) is a Block if: 

(3a EA: ((Vc EA\{a}: (a,c)*) t\ (Vc EA: -, (c,a)))) 

(We will use SB to denote the step of the block B with this property) t\ 

(3bEA: ((VCEA\{b}: (c,b)*)t\(VCEA: -, (b,c)))) 

(We will use eB to denote the step of the block B with this property) t\ 

(Va EA\{sB,eB}: (-, 3b ¢A: (a,b) V (b,a))) t\ 

((Va¢A: (-, (a,eB) V -,(sB,a))) V (sB=eB)) 

We are referring to all steps of a block B with the notation BSteps. 

As mentioned above, the control flow in a ConTract is defined by paths. 
For the moment, we make no further assumptions about the events, transitions, 
context or final states that are defined in a process except the existence of paths. 
In the following we take as a basis the flow of control in the case of no failures. 

The structure of a block has to fulfill some requirements. Exactly one step 
starts the block and a path exists from this step to any other step in the block. 
There is exactly one step at the end of the block, and a path exists from any 
other step in the block to this step. Only the first step and the last step are 
allowed to have direct predecessors or direct successors outside of the block, 
respectively. If the block contains only a single step, the first step is the last 
step. 

Definition 5.20 (Acceptance function of a block) The acceptance function of 
the start step of a block B is also the acceptance function of B. We will use gB 
to denote the acceptance function of a block B. 
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Definition 5.21 (Script-based compensation) A block B = (A, ()*) is a script
based compensation of step f if: 

if,SB)* /\ 

gBif(s» = TRUE /\ 

'Va,b E A with (a,b) : ga(Si) = TRUE =? gb(a(si» = TRUE /\ 

gf(s) = gf(Bof(s» 

We will use comp(B,a) to indicate that block B is a compensation of step a. 

Assuming the compensation definition contains only a single step it is equiv
alent to the standard step-based compensation. It has to be mentioned that a 
compensation definition is not allowed to contain compensating steps for the 
included activities. 

A script-based compensation does not change the correctness criterion of the 
execution of a ConTract (def. 5.13). It has to be ensured that the compensation 
of every successfully finished step is executable. The state after the execu
tion of a step in the ConTract has to fulfill the requirements of the acceptance 
function of the start step of its compensation. The state after the execution of 
a step within the compensating block has to fulfill the acceptance function of 
its direct successors. It may be useful to allow only certain structures for the 
compensating block (e.g., only sequences of steps). 

5.4.3 Comprehensive Compensation 

So far the compensating activities relate only to single steps. But there are 
situations, especially in workftows, where it is suitable to compensate a se
quence or a group of steps with a single compensating activity. We call this 
comprehensive compensation. For example, if there are some activities, which 
together create and work on a complex document, it is most efficient to com
pensate them all together by destroying the whole document. It is possible for 
a comprehensive compensating activity to invalidate the associated compensat
ing activities of previous steps. 

Furthermore observations of the real world have shown that the point in 
time a compensation is initiated is very important. And not only the actual 
time for compensation is important, but although the state of the execution 
of the ConTract. Franking a letter can be compensated separately as long as 
the letter is not dispatched. After that, the charges for the stamps are lost. 
This means compensating activities associated to previous activities will not 
be needed anymore. Depending on the actual state of the execution a dynamic 
selection of the valid compensating activities is required. 

These examples motivate the compensation of groups of steps as a whole 
and the dynamic determination of compensating activities. Of course, it is not 
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practical to allow compensating activities for any arbitrary group of steps. Only 
blocks can be compensated by the corresponding compensating blocks. 

Definition 5.22 (Comprehensive compensation) A block Be = (ABc! 0*) is a 
comprehensive compensation of block B = (AB' 0*) if: 

(eB,sBJ* A 

gBc(B(s» = TRUE A 

Va,b EABc with (a,b): ga(Si) = TRUE~ gb(a(si» = TRUE A 

gB(S) = gB(BeoB(s» 

We will use comp(A,B) to indicate that block A is a compensation of block B. 

Definition 5.23 (Compensable block) A block in a ConTract which has an as
sociated compensating block is a compensable block. We will use CBlocks to 
denote the set of compensable blocks of ConTract C. 

The correctness criterion (def. 5.13) ensures that each set of successfully 
completed steps can be compensated. We have to adapt the correctness criteria 
for compensation [Waechter and Reuter, 1992] to the enhanced definition of 
compensation. So far it was only necessary for each step in the script to have 
exactly one valid compensating step. Now the requirement of a deterministic 
and unambiguous compensation for each partial execution of the ConTract is 
more difficult to fulfill. For every set of successfully completed steps we need 
an unambiguous disjunctive partitioning into compensable blocks. If that is 
guaranteed, the correctness criteria for the execution of a ConTract (def. 5.13) 
can still be fulfilled. It is sufficient to ensure the existence of the compensations 
for the definition of a script. The actual compensation depends on the set and 
order of successfully executed step instances and must be determinable at run
time. 

Definition 5.24 (Compensable ConTract) A ConTract C is compensable if: 

V Bl E CBlocks: (V B2 E CBlocks\{Bl} : eB i: eB2) A 

Va E CSteps: (3B E CBlocks: a = eB) 

Every single step of the ConTract is the end step for exactly one single com
pensable block. This can be tested for the definition of a script. 

Definition 5.25 (Block instance) A block instance ii is a run-time version of 

Block B. ii denotes the i-th instantiation of block B. Ii contains the instantia
tion of every step in block B generated for the i-th successful execution of block 

B. Not necessarily an instance for every step in B shows up in Ii, because 
some steps might not have been executed. Instances for the start step and the 
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end step of B are always included in. Ii CBlocks denotes all block instances of 
ConTract C in the history. 

It has to be mentioned that a single step instance can belong to more then one 
block instance. 

Definition 5.26 (Partitioning) P is a partitioning of the set of step instances 
of a ConTract C into block instances if: 

P~ CBlocks A 

V B1,B2 E P with B1 i= B2 : (B1 nB2 = {}) A 

Vs E He: (3B E P: s E B) 

A unique partitioning into compensable block instances is always possible for 
a compensable ConTract. This partitioning can be efficiently computed using 
the order of block instances in the history. Reversing this ordering the compen
sation can be derived directly from the partitioning. 

Definition 5.27 (partial order of block instances) Let H = (S, --<) be a his
tory of a ConTract processing system. Let B be a set of block instances. A 

H - - - - - H-
binary relation --< is defined on B with (V B1,B2 E B: (B1 --< B2 :# eEl --< 
eE2 ))· 

We will briefly describe how to determine the unique partitioning. The step 
instances are sorted by their completion time in the history, which in tum is 
determined by the flow of control. We take as the basis the reduced history of 
the ConTract. A compensable block instance of the ConTract becomes valid 
with the successful completion of its last step. 

The following actions will be repeated until He is empty and all valid com
pensable block instances are determined. 

1. We select the last completed step instance from the reduced history; that 
is, a step without successor in the history. If there are several such steps, 
we take one of them randomly. This step instance determines an instance 
of a valid compensable block. 

2. All step instances associated to this block instance are removed. 

It can be easily shown, that the computed partitioning is the only possible par
titioning with He and CBlocks. 

After the valid compensable block instances are determined, their associ
ated compensation can be executed according to the inverse order of block 
instances. 

The definitions of indirect compensability (def. 5.16), of absolute com
pensability (def. 5.18), and of the indirect compensation chain (def. 5.17) 
are adapted accordingly. The theorem of execution dependent compensation 
(theorem 1) can be applied to the modified definitions. 
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5.4.4 Partial Compensation 

The analysis of processes in workflow environments has shown that sometimes 
it is necessary or suitable to go back to an earlier state of the execution and to 
proceed with the process in a different way than before. For example, it is a 
good idea to periodically confer with the customer during the planning phase 
of a power plant. If the customer disagrees with the actual plans, all effects 
which where introduced since the last agreement have to be compensated. 

Supporting partial compensation of a ConTract will change the execution 
model. Partial compensation can lead to a lot of complications. It is more 
difficult to ensure the correctness of the execution of a ConTract. Therefore 
partial compensation has to be applied with great care. 

If we decide to reject only a part of a ConTract, we have to pay attention to 
the relationships between the blocks to be compensated. 

Definition 5.28 (Compensation dependency) A compensation dependency be
tween a compensable block A and a compensable block B exists if: 

A and B finished successfully ::o? 

it is allowed to compensate only both or none of them. 

The compensation dependency relation is transitive. We will use A IX! B to 
denote that a compensation dependency between block A and block B exists. 

On account of the application, dependencies between the compensable blocks 
may exist, such that the compensation of one block leads to the necessity of 
compensating the other. Hence, certain groups of compensable blocks always 
have to be compensated as a whole. These dependencies are modeled by the 
programmer. Additionally, all steps which are grouped into the same tran
saction are compensation dependent of each other. Moreover, only a part of a 
ConTract with a certain structure is allowed to be compensated separately to 
preserve correctness. We call a set of steps with this property a compensable 
section. Compensable sections are the subsets of the total set of steps of the 
ConTract, which we allow to be compensated separately. 

Definition 5.29 (Partial ordering of blocks) Let B be a set of blocks. A prece
dence relation --< is defined over B with VAI,A2 E B: (AI --<A2 :<=> ((eAl'eA2}*)' 

Definition 5.30 (Compensable section) A set of steps CS is a compensable 
section of ConTract C if: 

CS c CSteps " 
Va E CS: ((3B E CBlocks: a = eB) ::o? BSteps ~ CS) " 

Va E CS: ((3B E CBlocks: a = eB) ::o? 

(V BjSteps ~ C : (B IX! Bj ::o? BjSteps ~ A))) " 
VB E CBlocks : ((3BjSteps ~ CS : Bj --< B) ::o? BSteps ~ CS) 
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The structure of a compensable section has to fulfill the following require
ments. Either all steps of a compensable block are included in the compensable 
section or none at all. Inclusion of a compensable block leads to the inclusion 
of all compensation dependent blocks. A compensable section has to contain 
all successors of its included compensable blocks. 

Due to limited space, we omit the definition for the compensable section 
for block instances. However, this definition can be derived straight forward 
from definition 5.30. To determine a compensable section at runtime the actual 
disjunctive partition of a history He is taken as the basis. Either all steps of 
a valid compensable block instance are included or none at all. Inclusion of 
a valid compensable block instance leads to the inclusion of all compensation 
dependent block instances as well as all of its successors in the current partition. 

It is obvious that partial compensation does not compromise the correctness 
notion of ConTracts. Hence, a formal proof is not presented in this article. 

5.5 SUMMARY 

The ConTract model is not intended to be just another "extended transaction 
model". Instead, it has been developed (and maintained) to define a reliable 
basis for long-running executions like workflows. In the last five years we have 
spent a lot of effort to permanently evaluate our approach based on observations 
of the "real world". In result, many features have been made more concrete and 
others have been extended. For instance, the support of semi-transactional steps 
is one of the recent extensions while the internal usage of transactions has been 
revised several times already. 

The presented correctness criterion introduces a formal basis to verify ex
ecution histories and to build up correctness ensuring mechanisms. We are 
strongly convinced that in mission-critical processes correctness will become 
more and more important. Hence, workflow systems have to commit guaran
tees regarding their behavior in case of failures and concurrency. 

There is also a need to elaborate on compensation. The presented extensions 
are a first step to leverage the concept of compensation such that it can be 
used as a general-purpose mechanism as in real applications. In particular, the 
support of semi-transactional steps can be enhanced by a flexible compensation 
and advanced semantics of applications can be supported (e.g. durable parts). 

In parallel to the evolution of the model itself the prototype implementation 
(APRICOTS) is continued to illustrate two things: We do build real systems to 
prove our concepts, and we still have a long way to go to prove the consistency
related concepts. 

Notes 

1. For ease of reference, this run-time environment will be referred to as the "ConTract 
manager". 
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2. Of course, something must happen in such a situation to keep the computation going. For 
details of this mechanism called "conflict resolution" see [Waechter and Reuter, 1992]. 

3. In the following we will use the word ConTract to denote an executable instance of a 
ConTract definition (a script or ConTract template). 



6 SEMANTIC-BASED 
DECOMPOSITION OF TRANSACTIONS 

Paul Ammann, Sushi I Jajodia 
and Indrakshi Ray 

Abstract: Sometimes transactions must be decomposed into steps. The need 
for decomposition arises in a variety of different domains. For example, long 
duration transactions may be decomposed to improve performance, global trans
actions in multidatabases may be decomposed to preserve local database auton
omy, and multilevel secure transactions may be decomposed to avoid leaking 
sensitive information. To achieve these various objectives, a decomposition sac
rifices those desirable properties, namely atomicity, consistency, and isolation, 
that form the foundation of syntactically based correctness approaches such as 
conflict serializability. We remedy this loss by defining a semantic view of cor
rectness organized around a new set of desirable properties that are specifically 
designed for reasoning about decompositions. The exact details of the semantic 
correctness properties depend on the domain being addressed; in this chapter, we 
focus on the long duration transaction domain. Using our method an application 
developer can show that a given decomposition indeed refines the original trans
actions in a satisfactory way. The semantic correctness properties are formulated 
in terms of semantic histories. For efficiency reasons, allowable interleavings of 
steps are described with syntactically specified successor sets. We discuss a two
phase locking based mechanism for realizing successor sets in a typical database 
system. 

6.1 INTRODUCTION 

Decomposing transactions into steps is a common method of achieving diverse 
goals in a variety of domains. To illustrate this point. we describe the decom
position of transactions in three domains, namely long-duration transactions, 
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multidatabases, and multilevel secure databases. In each case, the decompo
sition undermines one or more of the foundation properties of syntactically
based correctness approaches. The properties are atomicity, consistency, and 
isolation, and they are used in correctness approaches such as conflict serial
izability. In this chapter we remedy the loss of these properties by developing 
a semantic approach to correctness, which we illustrate in the long duration 
transaction domain. We identify a set of replacement properties that are specif
ically designed to reason about decompositions and show how these properties 
can be established for a given application. 

In database applications where some transactions are of long duration, per
formance requirements may dictate that execution histories be accepted even 
though operations of transactions interleave in ways that are not correct with 
respect to serializability criteria. For example, locks may be released early, or 
transactions may be split explicitly into steps. Consider the simple example 
of making a hotel reservation. A reserve transaction might consist of ensur
ing that there are still rooms vacant, selecting a vacant room that matches the 
customer's preferences, and recording billing information. Since the reserve 
transaction might last a relatively long time - for example, when the customer 
makes reservations by phone - it may be desirable to execute the three steps of 
the reserve transaction separately, thereby allowing other transactions access 
to key database objects. Some steps may be undesirable at sensitive points in 
a given execution history. For example, a report transaction may be undesir
able if interleaved between certain steps in one or more reserve transactions. 
As will be subsequently illustrated in this chapter, our semantic approach can 
determine if a decomposition into steps js correct with respect to the original 
collection of transactions. 

A multidatabase is an integrated collection of heterogeneous databases [Bu
khres and Elmagarmid, 1996]. The constituent or local databases require both 
design autonomy to accommodate their diverse legacy nature and execution 
autonomy to ensure that local transactions are not unduly blocked by global 
transactions. Control of global transactions, which are decomposed into steps 
that execute at the local database, must be distributed to avoid bottlenecks and 
tolerate failure in the global database. Integrity constraints must be maintained, 
not only on each local database, but also on the global database. These goals 
cannot be achieved simultaneously with syntactic correctness criteria such as 
serializability, but a semantic based approach can determine if a given applica
tion does indeed have the desired properties. 

In multilevel secure databases there is a need for multilevel transactions -
transactions that both read and write at a range of security levels. A major out
standing problem with standard methods of handling multilevel transactions is 
the treatment of atomicity. Specifically, for a multilevel transaction decom
posed into single-level sections there is no assurance that either all or none of 
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the sections will be present in a given execution history. The chief difficulty is 
that a high section of a transaction may be unable to complete due to violations 
of the integrity constraints, and a rollback of sections at lower or incomparable 
levels can be exploited to implement a covert channel. For details of how a 
semantic approach to correctness can overcome this problem, see [Ammann 
et al., 1996]. 

The traditional transaction model relies on the properties of atomicity, con
sistency, and isolation [Bernstein et al., 1987]. Atomicity ensures that either 
all actions of a transaction complete successfully or all of the transaction's 
effects are absent. Consistency ensures that a transaction when executed by it
self, without interference from other transactions, maps the database from one 
consistent state to another. Isolation ensures that no transaction ever views the 
partial effects of some other transaction even when transactions execute concur
rently. Decomposing transactions into steps generally forces one to relinquish 
these three properties to some degree. 

Decomposition of a transaction into steps sacrifices atomicity since the atom
icity of the single logical action is lost. Interleaving steps of transactions ex
poses each to the partial effects of the others. Hence, if a transaction aborts after 
committing some of its steps, it may not be possible to remove all of its effects. 
This difficulty arises because transactions that read from the aborted transaction 
may have committed. In addition, the aborted transaction may have generated 
outputs. Thus traditional undo [Bernstein et al., 1987] is not possible; the solu
tion is to semantically undo the actions of the aborted transactions. We achieve 
semantic undo with compensating steps [Garcia-Molina, 1983, Garcia-Molina 
and Salem, 1987]. 

Decomposition not only sacrifices atomicity, but also impacts consistency 
and isolation. Execution of a step may leave the database in an inconsistent 
state, which other transactions or steps may access, so it is necessary to reason 
about the interleavings of the steps of different transactions. Although the step
by-step decomposition of a single transaction into steps may be understood 
easily in isolation, reasoning about the interleaving of these steps with other 
transactions, possibly also decomposed into steps, is more difficult. 

To remedy the loss of atomicity, consistency, and isolation, we develop prop
erties suitable for reasoning about decompositions. These properties are enu
merated in section 6.5. The properties are formulated in terms of semantic 
histories, which not only list the sequence of steps forming the history, but also 
convey information regarding the state of the database before and after execu
tion of each step in the history. All possible semantic histories must satisfy 
the given properties for a particular decomposition to be considered accept
able, both when considered by itself, and also with respect to the original set of 
transactions. 
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We adopt the Object Z specification language [Duke and Duke, 1990] for 
expressing model-based specifications. Object Z is an extension of the Z spec
ification language [Spivey, 1992] to include object oriented features. Object Z 
is based on set theory, first order predicate logic, and a schema calculus to or
ganize large specifications. Knowledge of Object Z is helpful, but not required, 
for reading this chapter, since we narrate the formal specifications in English. 
Table 6.1 briefly explains the Object Z notation used in our examples. Other 
specification and analysis conventions specific to Object Z are explained as the 
need arises. 

The rest of the chapter is organized as follows. Section 6.2 briefly describes 
the work related to semantic based transaction processing. Section 6.3 specifies 
an example application in Object Z. Section 6.4 describes our model. Section 
6.5 describes the necessary and desirable properties of a correct decomposi
tion. Section 6.6 gives examples of decompositions. Section 6.7 describes the 
notion of successor sets which is necessary for efficiently implementing our 
model. In section 6.8 we develop our correctness criterion for concurrent ex
ecution of transactions and present a concurrency control mechanism. Section 
6.9 concludes the chapter. 

6.2 RELATED WORK 

The work on semantic based concurrency control can be classified into two 
major categories. In the first category [Herlihy, 1987, Herlihy and Weihl, 1991, 
Weihl, 1984, Weihl, 1988b] the authors exploit the semantics of operations to 
increase concurrency. Instead of using low level database operations like read 
or write to access the database objects, the authors propose the use of high 
level operations for this purpose. Commutativity of these operations, and not 
the read/write operations, is used to determine conflicts between transactions, 
resulting in more concurrency. In these works, the authors use serializability as 
the correctness criterion. 

Our work falls in the second category [Agrawal et aI., 1993, Farrag and 
Ozsu, 1989, Garcia-Molina, 1983, Garcia-Molina and Salem, 1987] which is 
based on exploiting semantics of transactions to increase concurrency. In these 
works, the researchers decomposed transactions into steps and developed se
mantic based correctness criteria. Researchers have variously introduced the 
notions of transaction steps, countersteps, allowed vs. prohibited interleavings 
of steps, and implementations in locking environments. The focus is typically 
on implementing a decomposition supplied by the database application devel
oper, with relatively little attention to what constitutes a desirable decomposi
tion and how the developer should obtain such a decomposition. We find the 
decomposition process itself to be worthy of attention, so we give the devel
oper a model in which to decompose transactions, and we define properties to 
assure the developer as to the soundness of a given decomposition. Only then 
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Table 6.1 Relevant Object Z Notation 

Set of Natural Numbers 
Powerset of Set A 
Cardinality of Set A 
Set Difference (Also schema 'hiding') 
Forward Composition of A with B 
Ordered Pair (x, y) 
Partial Function from A to B 
Partial Injective Function from A to B 
Relation A with Set B Removed from Domain 
Relation A with Range Restricted to Set B 
Domain of Relation A 
Range of Relation A 
Function A Overridden with Function B 
Variable x? is an Input 
Variable x! is an Output 
State Variable x before an Operation 
State Variable X after an Operation 
Before and After State of Variable x 
Temporal Operator Always 
Temporal Operator Eventually 
Temporal Operator Next 
Operation 

do we consider the problem of implementing our decomposition in a two-phase 
locking environment. 

6.3 THE HOTEL DATABASE 

We present our ideas with a running example of a hotel database. We use the 
class definition of Object Z to specify the hotel database. Syntactically, a class 
definition is a named box, in which the constituents of the class are defined 
and related. The constituents of a class include type and constant definitions, 
state schema, initialization schema, operation schemas, and history invariants. 
A schema is a two-dimensional notation used in Object Z to specify the state as 
well as operations on the state. The state schema is nameless and consists of 
two parts: the top part contains declarations of the state variables, and the bot
tom part specifies the constraints on these variables. The initialization schema, 
named INIT, defines the possible initial states. An operation schema, which is 
named after the operation, also consists of two parts: the bottom part specifies 
the operation using preconditions and postconditions and the top part contains 
declarations of the variables used in the bottom part. A history invariant is a 
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predicate defined over a sequence of operations which further constrains the 
behavior of the objects. 

An Object Z specification appears in figure 6.1. The specification assumes 
two basic types, Guest and Room, which enumerate all possible guests and all 
possible hotel rooms, respectively. The enumerated type Status lists the two 
values, Available and Taken, which indicates the status of each room. 

[Guest, Room] 

Status ::=Available I Taken 

otel 

I total:N 

res: N 

ST : Room -++ Status 

RM : Guest >++ Room 

#RM=res 

dom(ST I> {Taken}) = ranRM 

eserve Cancel 

6.(res,ST,RM); g? : Guest; r! : Room 6.(res,RM,ST) 

res < total; g? rt. domRM 
g? : Guest 

ST(r!) = Available g? E domRM 

res' = res + 1 res' = res-l 

ST' = ST E!) {r! H Taken} RM' = {g?} <:l RM 

RM' = RMU {g? H r!} ST' = ST E!) {RM(g?) H Available} 

eport 

currentST! : Room -++ Status 

currentRM! : Guest >++ Room 

currentST! = ST 

currentRM! = RM 

Figure 6.1 Initial Specification of the Hotel Database 

The class Hotel models the hotel database. The database objects may be 
constants or variables. The hotel database has a constant total which is the 
number of rooms in the hotel. The hotel database has three variables, namely, 
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res, RM and ST which are declared in the state schema. The natural number 
res counts current reservations, and the partial injection RM relates guests to 
rooms. Our particular example does not allow guests to register multiple times, 
which is reflected in the fact that RM is an injective function. The example 
could be modified easily with different constraints. The partial function ST 
records the status of each room. Additional integrity constraints on the objects 
in hotel database appear in the bottom part of the state schema. There are two 
such constraints: 

1. #RM = res. The number of guests who have been assigned rooms (the 
size of the RM function) equals the total number of reservations (res). 

2. dom(ST ~ {Taken} ) = ran RM. The set of rooms that are taken (dom(ST ~ 
{Taken}» is exactly the set of rooms reserved by guests (ranRM). 

The three operation schemas Reserve, Cancel and Report describe the three 
transactions in the hotel database. Reserve reserves a room for guest g1 and 
produces as output a room assignment r!. Reserve has a precondition that there 
must be fewer than total reserved rooms and g1 must be a new guest. Since 
the domain of RM is the set of guests with reservations, the latter is captured 
by checking that g1 ¢ domRM. Reserve has a postcondition that some room 
r! with status Available is chosen, the number of reservations is incremented, 
the status of r! is changed to Taken, and the ordered pair g1 f-7 r! is added 
to the function RM. Cancel cancels a reservation for guest g1. Cancel has a 
precondition that g1 is a guest and a postcondition that res is decremented, g1 
is removed from the domain of the function RM, and the status of the room for 
g1 is changed to Available. Report has no precondition, and merely produces 
the state components ST and RM as outputs. 

Since the role of initialization is peripheral to our analysis, we omit initial
ization schemas here. Instead, we assume that the database has been initialized 
to a consistent state. As no history invariants are needed to restrict the execu
tion of operations, we do not specify any history invariant. 

6.4 THE MODEL 

In our model, a database is specified as a collection of objects, along with 
some invariants or integrity constraints on these objects. At any given time, 
the state is determined by the values of the objects in the database. A change in 
the value of a database object changes the state. The invariants are predicates 
defined over the objects. A database state is said to be consistent if the values 
of the objects satisfy the given invariants. 

A transaction is an operation that transforms one database state to another. 
Associated with each transaction is a set of preconditions and a set of post
conditions. A precondition limits the database states to which a transaction 
can be applied. A postcondition constrains the possible database states after a 
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transaction completes. For example, a Reserve transaction has a precondition 
that the hotel have at least one room available and a postcondition that there 
be some room available before the reservation that is taken after the reserva
tion. Postconditions also constrain outputs. For example, the room r! output by 
Reserve must be available initially. Together, preconditions and postconditions 
must ensure that if a transaction executes on a consistent state, the resulting 
state is also consistent. 

Instead of executing a transaction as an atomic unit, we wish to break a 
transaction into steps and execute each of these steps as an atomic unit. A de
composition of a transaction is a sequence of steps. In place of the transaction, 
the steps execute atomically in order. A transaction that has been decomposed 
into two or more steps is referred to as a multistep transaction. 

One possible approach to decomposition is to treat the steps as transac
tions. In particular, one could insist that the integrity constraints hold after each 
step, which is the decision taken in the Saga model [Garcia-Molina and Salem, 
1987]. As the naive decomposition below demonstrates, such a requirement is 
too strong for some applications, and so we develop a more flexible approach. 

6.4.1 A Naive Decomposition of the Reserve Transaction 

Suppose we break up the Reserve transaction into the following three atomic 
steps. 

Step 1: Increment the number of reserved rooms. 

Step 2: Pick a room with status Available and change it to Taken. 

Step 3: Assign the room selected in Step 2 to the guest. 

aiveRl __ _ 
D.(res) 

res < total 
res' = res + 1 

aiveR2 __ _ 

D.(ST) 
r! : Room 

ST(r!) =Available 
ST' =snJ) 

{r! f-t Taken} 

aiveR3 __ _ 

D.(RM) 
r! : Room 
g? : Guest 

g? ft domRM 
RM' = RMU {g? f-t r!} 

Figure 6.2 A Naive Decomposition of Reserve 

A naive specification of these steps is given in figure 6.2. From a formal per
spective, the naive decomposition has a fatal flaw, in that none of the proposed 
steps, considered by itself, maintains the invariants in Hotel. For example, 
NaiveRl does not maintain the invariant #RM = res since NaiveRl increments 
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the value of res, but does not alter RM. Fonnally, the computed preconditions 
of all three steps simplify to false, indicating that none of the steps can be safely 
executed in an implementation. Executing any of the proposed steps violates 
the invariants, and other transactions are exposed to the inconsistent state. For 
example, Report produces an inconsistent output if executed in a state in which 
the second invariant does not hold. 

6.4.2 Generalizing the Original Invariants 

The example demonstrates that some decompositions are unacceptable. Specif
ically, a decomposition may yield steps that leave the database in a state in 
which the invariants do not hold. The arrow labeled NaiveR] in figure 6.3(a) 
illustrates this possibility. Once the invariants are violated, the fonnal basis for 
assessing the correctness of subsequent behavior collapses. 

Insisting on decompositions where each step maintains database consistency 
does solve this problem. However, the infonnal description of the steps into 
which Reserve is broken is perfectly satisfactory, and it is excessive to insist 
that the invariants of Hotel hold at all intennediate steps. Later in figure 6.4 
we show the correct fonnal specification of the three steps of the Reserve tran
saction which we denote by RI, R2 and R3; CancelD and ReportD denote the 
single steps of Cancel and Reserve transaction respectively. But before show
ing the specifications we present a fonnal model that can accommodate the 
notion that some - but not all - violations of the invariants are acceptable. 

Figure 6.3(b) illustrates a model that allows inconsistent states - as defined 
by the invariants - that are nonetheless acceptable. The temporary inconsis
tency introduced by RI is allowed, and steps of some other transactions, for 
example CancelD, can tolerate the inconsistency introduced by RI, and so are 
allowed to proceed. The chosen approach is to generalize the original set of in
variants and decompose transactions such that each step satisfies the new set of 
invariants. The model in figure 6.3(b) has many advantages, including greater 
concurrency among steps. We fonnalize the model as follows. 

Let I denote the original invariants, and let ST denote the set consisting of 
all consistent states; that is, ST = {ST : ST satisfies I}. In the standard model, 
a transaction Tj always accesses a consistent ST E ST. If STj denotes the state 
after the execution of Ti, then STi is also in ST. When Tj is broken up into 
steps Sil, ... ,Sin, each step Sij executes atomically. If ST ij represents the state 
resulting from the partial execution of Ti through step Sij, it is possible that 
STij no longer satisfies the invariants I and so lies outside ST. Figure 6.3(a) 
illustrates this possibility for the naive decomposition of the hotel example. 

In our approach, we define a new set of invariants J by relaxing the original 
invariants I. We decompose each transaction such that execution of any step 
results in a state that satisfies J. Let ST = {ST : ST satisfies J}. The relationship 
between ST and ST is shown in figure 6.3(b). The inner circle denotes ST 
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and the outer circle denotes ST (signifying that ST CST). The ring denotes 
the set of all states that satisfy J but not I . The important part about figure 
6.3(b) is that the set of inconsistent but acceptable states is formally identified 
and distinguished from the states that are unacceptable. The advantage is that 
formal analysis can be used to investigate activities in ST. 

5<:1 of all database Sta"" 

Set of all consistent 
d.l3base states 

(a) Standard classification of 
database states 

Set of ioconsistenl 
bUI acccplllblc staleS 

(b) Database states as classified 
in our model 

Figure 6.3 Classification of the Database States 

To reason about decomposing transactions into steps and to avoid the prob
lems of a naive decomposition, we use auxiliary variables to generalize the 
invariants. Auxiliary variables are a standard method of reasoning about con
current executions [Owicki and Gries, 1976] and, in particular, have been ap
plied to the problem of semantic-based concurrency control [Garcia-Molina, 
1983, Appendix C). Our work focuses more on the decomposition than does 
[Garcia-Molina, 1983], and so we emphasize the role of auxiliary variables 
more strongly. We stress that the auxiliary variables are introduced for purposes 
of analysis; the goal is to eliminate such variables from an implementation. 

6.4.3 Compensating Steps 

When transactions are decomposed into steps, it may not complete successfully 
if a precondition of a step is not satisfied, or if the user aborts the transaction, 
or if the system crashes. Incomplete transactions pose special problems in 
semantic oriented models because steps may commit before it is determined 
whether the transaction can complete. For example, suppose a Reserve tran
saction aborts after its first step Rl commits. Some mechanism must undo the 
effects of Rl. Nullifying the effects of Rl using the backwards recovery method 
of traditional undo [Bernstein et al. , 1987], where the state that existed before 
Rl is physically restored, is not possible because steps of other transactions 
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may have read the updates of Rl. Instead we adopt the forward recovery solu
tion of a compensating step [Garcia-Molina, 1983, Garcia-Molina and Salem, 
1987]; such a step semantically undoes the effects of the committed step R1 
but does not disturb transactions that may have read from R1. 

Like other steps of a transaction, compensating steps execute atomically. 
However, the role of a compensating step differs from that of other steps. A 
compensating step is not considered part of the normal processing of a tran
saction; it is initiated only to semantically undo a transaction. 

For a transaction Ti that has been decomposed into n steps Sil, ... , Sin we 
specify n - 1 compensating steps denoted by Ci2, ... , Cin . The compensating 
step Cij semantically undoes the cumulative effect of steps Sil, ... ,SiU-l). This 
is in contrast to the approach used in [Garcia-Molina, 1983, Garcia-Molina and 
Salem, 1987] where a compensating step Cij is used to semantically undo the 
operations performed by a single step Sij. The difference between the appr
oaches is not significant; our choice simplifies the presentation. 

6.4.4 Semantic Histories 

We are interested in the relationship between the original specification and the 
specification with the generalized invariants. In particular, we would like to 
know if and when the database returns to a consistent state. 

Before we proceed further, we make a distinction between a type of a step 
and an instance of a step. The three steps R1, R2 and R3 of the Reserve tran
saction are examples of different types of steps in the hotel example. 

Histories, defined subsequently, reflect actual transactions, and must refer
ence instances of steps and compensating steps. A history may contain many 
instances of a step of a given type. In cases where it not necessary to distin
guish the role of steps from that of compensating steps, we use the term 'step' 
generically and denote an instance of either a step or a compensating step of 
transaction Ti as Tij. Where the roles differ, we use Sij to denote an instance 
of a step and Cij to denote an instance of a compensating step. The type of an 
instance of a step T ij is denoted by ty( T ij ). 

Definition 6.1 [Stepwise Serial History] A stepwise serial history H over a 
set of transactions T = {TI, ... , Tm} is a sequence of steps and compensating 
steps such that 

1. a step T ij either appears exactly once in H or does not appear at all, 

2. for any two steps Sij and T ik, Sij precedes Tik in H if Sij precedes Tik in Ti, 

3. ifTik E H, then Sij E H for j = 1, ... , (k-1), 

4. if a compensating step Cij E H, then Sij ¢ H and Tik ¢ H for k > j. 

Condition (1) ensures that every step of a transaction occurs at most once. 
Condition (2) ensures that the order of the steps in a transaction is preserved. 
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Condition (3) ensures that for every step, preceding steps in the corresponding 
transaction are present. Condition (4) ensures that a compensating step termi
nates a transaction. 

Unlike typical definitions of histories, our notion of a history does not refer
ence the operations on data elements, such as read and write. Such operations 
are introduced and integrated into the definition of histories as we further refine 
our specifications. 

Example 6.1 < Sll, Sll > is not a stepwise serial history since it violates con
dition 1. < S13,S12 > is not a stepwise serial history since it violates conditions 
2 and 3. < Sll, C 12, S12 > is not a stepwise serial history since it violates con
dition 4. < Sll,S21,S12,S13 > and < Sll,S21,C12,S22 > are stepwise serial 
histories. 

Definition 6.2 [Complete Execution] Consider a transaction T; decomposed 
into steps Sil, ... , Sin with compensating steps C;2, ... , C;n. The execution of 
T; in a history H is a complete execution if either (i) all n steps of Ti appear 
in H or (ii) some steps ofT;, namely, Sil, ... , Sij appear in H followed by the 
corresponding compensating step C;(j+1)' where j < n. 

The sequences Sil,'" ,Sin and Sil, ... ,Sij, C;(j+1) are examples of execution 
sequences [Garcia-Molina, 1983] of transaction T;. The sequence Sil, ... ,Sin 
is a successful execution sequence of T;, and the sequence Sil,'" ,S;j, C;(j+1) is 
an unsuccessful execution sequence of T;. 

Example 6.2 For the hotel database, an execution of a Reserve transaction T; 
is complete in H if either (i) all three steps Sil, S,"2, and S;3 ofT; appear in H, 
or (ii) Sil and C;2 appear in H, or (iii) Sil, S;2 and C;3 appear in H. Case(i) is 
an example of successful complete execution. Cases(ii) and (iii) are examples 
of unsuccessful complete executions. 

To introduce state information, we define semantic history. 

Definition 6.3 [Semantic History] A semantic history H is a stepwise serial 
history bound to 

1. an initial state, and 

2. the states resulting from the execution of each step in H. 

Informally, we use the term partial semantic history for cases in which the 
execution of at least one transaction actually is incomplete, but from a formal 
perspective, partial semantic histories are just semantic histories. Complete 
semantic histories are a special case of a semantic histories: 

Definition 6.4 [Complete Semantic History] A semantic history H over a set 
of transactions T is a complete semantic history if the execution of each T; in 
T is complete. 
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Next we define what it means for a semantic history to be correct. 

Definition 6.5 [Correct Semantic History] A semantic history H is a correct 
semantic history if 

1. the initial state is in ST, 

2. the states before and after each step in H are in ST, and 

3. the precondition for each step is satisfied in the corresponding state. 

Definition 6.6 [Correct Complete Semantic History] A complete semantic 
history H is a correct complete semantic history if 

1. H is a correct semantic history, and 

2. the final state is in ST. 

6.5 PROPERTIES OF VALID DECOMPOSITION 

To ensure the correct behavior of an application in which transactions have 
been decomposed into steps, we propose a set of necessary and desirable prop
erties. 

6.5.1 Composition Property 

When transactions have been decomposed into steps, we can state a property 
relating steps in a decomposition to the original transaction. We call this re
quirement the composition property. 

Composition Property Let Sil, ... ,Sin be the steps of transaction Ti and ST 
be a state that satisfies the original integrity constraints I. Then executing the 
sequence of steps Sil, ... ,Sin in isolation on ST is equivalent to executing Ti on 
ST, except for constraints on auxiliary variables. 

The composition property does not address what happens if the precondi
tion of some step is not satisfied and thus the execution cannot complete. From 
an implementation perspective, the composition property is similar to requir
ing that the sequential execution of the steps be view equivalent to that of the 
original transaction. 

6.5.2 Sensitive Transaction Isolation Property 

In our model, we allow transactions to access database states that do not sat
isfy the original invariants (that is, states in ST - ST). But we may wish to 
keep some transactions from viewing any inconsistency with respect to the 
original invariants. For example, some transactions may output data to users; 
these transactions are called sensitive transactions [Garcia-Molina, 1983]. We 
require sensitive transactions to appear to have generated outputs from a con
sistent state. This leads us to the next property. 
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Sensitive Transaction Isolation Property All output data produced by a 
sensitive transaction T; should have the appearance that it is based on a con
sistent state in ST, even though the decomposition of T; may access database 
states in ST - ST. 

In our model, we ensure the sensitive transaction isolation property by con
struction. There are two aspects to such a construction. First, for each sensitive 
transaction, we compute the subset of the original integrity constraints, I, rel
evant to the calculation of any outputs. Second, as pointed out by Rastogi, 
Korth, and Silberschatz [Rastogi et al., 1995], if outputs are generated by mul
tiple steps, interleavings between these steps must be controlled to ensure that 
outputs from later steps are consistent with outputs from earlier steps. 

6.5.3 Consistent Execution Property 

Similar to the consistency property for traditional databases, we place the fol
lowing requirement on semantic histories: 

Consistent Execution Property If we execute a correct complete semantic 
history H on an initial state (i.e., the state prior to the execution of any step in 
H) that satisfies the original invariants I, then the final state (i.e., the state after 
the execution of the last step in H) also satisfies the original invariants I. 

6.5.4 Semantic Atomicity Property 

When transactions have been broken up into steps, it may not be always pos
sible to complete a transaction. This happens if the precondition of some later 
step is not satisfied and the effects of the partially executed transactions cannot 
be undone by executing compensating steps. The semantic atomicity property 
ensures that such a situation is avoided; if a transaction has been partially exe
cuted, then it can complete. 

Semantic Atomicity Property Every correct semantic history Hp defined 
over a set of transactions T is a prefix of some correct complete semantic his
tory Hover T. 

Like all the other properties stated so far, semantic atomicity is a necessary 
property. The definition of semantic atomicity property is very general. Some 
applications may require a stronger property, the successful execution property, 
stated below. 
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6.5.5 Successful Execution Property 

The interleaving of steps of different transactions may result in a state from 
which it is not possible to successfully complete some transaction. The suc
cessful execution property ensures that such a situation is avoided; if a tran
saction has been partially executed, then it can complete without resorting to 
compensation. 

Successful Execution Property Every correct semantic history Hp defined 
over a set of transactions T is a prefix of some correct complete semantic his
tory Hover T such that for each Tj E T that is incomplete in Hp, H contains a 
successful execution sequence of Tj • 

Unlike the other properties we have stated so far, successful execution is 
an optional property. Successful execution property requires that all the pre
conditions of a transaction should appear in the first step. This in turn would 
require a large number of updates to be performed in the first step. (Precon
dition checks are often associated with updates; in such cases we require to 
perform the check and update atomically, that is, in the same step.) Thus in
sisting on successful execution property may force too many operations in the 
first step of the transaction - which is undesirable from the performance point 
of view. Hence we do not insist that applications have the successful execution 
property. 

6.6 EXAMPLES OF DECOMPOSITION 

6.6.1 A Valid Decomposition 

We now provide a valid decomposition of the hotel database which satisfies all 
the necessary properties described in the previous section. The class HotelD 
(short for Hotel Decomposition) in figure 6.4 specifies this valid decomposi
tion. 

We generalize the invariants by adding the auxiliary variables underway and 
acquired. underway is a natural number which denotes the reservations that 
have been partially processed. The auxiliary variable acquired denotes the 
set of rooms that have been taken but which have not yet been assigned to 
guests. The declarations of these auxiliary variables appear in the top part of 
the state schema. The two generalized invariants appear at the bottom of the 
state schema. They are: 

1. #RM + underway = res 

2. dom(STI> {Taken}) = ranRMUacquired 

Since the steps and compensating steps now comprise the operations of the 
decomposed hotel database, we specify operation schemas corresponding to 
each type of step and compensating step. Only the Reserve transaction is de
composed into three steps, namely RI, R2 and R3. RI has a precondition that 
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that there must be fewer than total rooms. The postcondition of Rl increments 
res and underway. The precondition of R2 is that the room to be assigned to 
the guest r! is Available. The postcondition of R2 changes the status of r! to 
Taken and inserts r! in the set acquired. The precondition of R3 is that g? must 
be a new guest. The postcondition of R3 inserts the ordered pair g? I-t r! to the 
function RM, removes r! from the set acquired and decrements underway. The 
compensating step CompR2 semantically undoes the effect of Rl. The precon
ditions of CompR2 are that the variables res and underway must be positive. 
The postcondition of CompR2 decrements res and underway. The compen
sating step CompR3 semantically undoes the cumulative effects of Rl and R2. 
The preconditions of CompR3 are that res and underway must be positive and 
r! must be in the set acquired. The postconditions of CompR3 decrement res 
and underway and remove r! from the set acquired and change the status of r! 
to Available. CancelD and ReportD represent the single steps of the Cancel and 
Report transaction respectively; the specifications of these steps are identical 
to the corresponding transactions. 

6.6.1.1 Composition Property. To implement a Reserve, its three steps 
must execute in order. The composition property for the hotel example, for
mally stated in Object Z, is as follows. 
Hotel A ((R13R23R3) \ (underway, acquired, underway' ,acquired')) <=> Reserve 

The left hand side gives the composition of the steps where the initial state 
is constrained to satisfy the original invariants and the auxiliary variables are 
hidden or suppressed. The right hand side is the original transaction Reserve. 
In Object Z a propositional relation between schemas - equivalence in this case 
- translates into the same relation between the predicates defining the schemas. 
The three steps satisfy the composition property; we omit the details of the 
proof in this chapter. 

6.6.1.2 Sensitive Transaction Isolation Property. Report is a sensi
tive transaction, and we establish the sensitive transaction isolation property 
by construction. A formal treatment is given in [Ammann et al., 1997]. Infor
mally, Report transaction outputs values of ST and RM. ST and RM appear in 
the following original invariant: 

dom(STI> {Taken}) = ranRM 
which can be derived from the generalized invariant 

dom(STI> {Taken}) = ranRMUacquired 
if the auxiliary variable acquired satisfies acquired = 0. Hence, to ensure that 
ReportD does not output inconsistent data we specify the following restriction 
as a history invariant. 

o((acquired", 0) =? (Oop '" ReportD)). 
The above notation means that it is always true when the auxiliary variable 
acquired is not the empty set, the next opemtion must not be the step ReportD. 
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Although Reserve is a sensitive transaction, it turns out that no additional 
preconditions are needed to ensure that the output r! reflects a consistent state. 

6.6.1.3 Consistent Execution Property. Consider any correct complete 
history H generated from the decomposition specified in figure 6.4. To prove 
the consistent execution property we must show that if H is executed in a con
sistent state, the final state is also consistent. 

When the database is in a consistent state, the auxiliary variables satisfy the 
following condition: underway = 0 1\ acquired = 0. 

Let rl, r2, r3, compr2, compr3 be the number of steps of type Rl, R2, 
R3, CompR2, CompR3 respectively in H. The auxiliary variable underway is 
incremented by steps of type Rl and decremented by steps of type R3, CompR2 
and CompR3. Since the initial state of H is consistent, the value of underway 
in the final state of H is given by the following expression 

underway = rl - (r3 + compr2 + compr3) (6.1 ) 

Similarly we have, 

1 acquired 1= r2 - (r3 + compr3) (6.2 ) 

Since H is complete, each step of type Rl has a corresponding step of type R2 
or CompR2. Similarly, each step of type R2 has a corresponding step of type 
R3 or CompR3. Thus we have 

r1 = r2 + compr2 (6.3 ) 

r2 = r3 + compr3 (6.4 ) 

From (6.1 -6.4 ) we can derive that in the final state of H, underway = 0 1\ 
acquired = 0 which means that the final state is consistent. 

6.6.1.4 Semantic Atomicity Property. Let Hp be any correct partial se
mantic history. Hp has one or more incomplete Reserve transactions. Con
sider an incomplete Reserve transaction. If this transaction has committed only 
step Rl, then it can complete by executing CompR2. This is possible because 
steps of no other transaction executing after Rl can violate the preconditions 
of CompR2. Similarly it can be shown that if the Reserve transaction has com
mitted steps Rl and R2, it is possible to execute CompR3 and complete the 
Reserve transaction. In this way all the incomplete Reserve transactions can be 
completed and the partial history Hp extended to a correct complete semantic 
history He. Hp is therefore a prefix of He. 
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oteLD 

res,underway: N 
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o (acquired i 0) => O(op i ReportD) 

Figure 6.4 A Valid Decomposition for the Hotel Database 
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6.6.2 An Invalid Decomposition 

In this section, we give an example of an invalid decomposition. Unlike the 
naive decomposition, the decomposition given below generates correct seman
tic histories. The decomposition is invalid because it does not satisfy one of the 
necessary properties, namely, the semantic atomicity property. 

To illustrate the possibility, we modify the HotelD specification. The modi
fied specification, known as DeadlockHotel, is shown in fig. 6.5. 

In the example specification, the cancel transaction is decomposed into steps 
Cl and C2. We introduce the auxiliary variable underwayC which keeps count 
of the cancel transactions that have completed step Cl but not step C2. The 
invariant #RM = res - underway in the HotelD is changed to #RM = res
underway + underwayC in DeadlockHotel. 

Also, we introduce a new structure clist which keeps track of the guests 
whose cancelations are in progress. The guest whose reservation is being can
celed is added to the clist in step Cl and is removed from the clist in step 
C2. To ensure that a guest whose cancelation is in progress is not canceled 
by some other transaction, we include precondition g? ct clist in step Cl. Cl 
has another precondition res> 0 which ensures that Cl executes when there is 
at least one reservation. The postcondition of Cl decrements res, increments 
underwayC and inserts g? in clist. The preconditions of C2 check that g? has 
a valid reservation, g? is in clist and underwayC is positive. The postcondi
tion of C2 removes g? from the domain of RM, makes the room which was 
assigned to g?, Available, removes g? from clist, and decrements underwayC. 
Since the cancel transaction is decomposed into two steps, we must specify 
CompC2, a type of compensating step, which semantically undoes the actions 
of Cl. CompC2 has four preconditions: res must be less than total, underwayC 
must be positive, g? must be in clist and g? must have a valid reservation. The 
postcondition of CompC2 increments res, decrements underwayC and removes 
g? from clist. 

The reserve transaction is broken into steps Resl, Res2 and Res3, similar to 
Rl, R2 and R3 of the HotelD specification. We impose an additional constraint 
that a room cannot be reserved for a guest whose cancelation is in progress; the 
precondition g? ct clist in step Res3 ensures this. We assume that this example 
has no Report transaction. 

Consider the partial history Hp =< S11 > where ty(S11) = Cl. Suppose in 
the initial state of Hp , John ct domRM. The cancel transaction T1 attempts to 
cancel the reservation for guest John. The execution of step S11 results in John 
being inserted in the clist. Now step S12 cannot execute since the precondition 
John ct domRM is not satisfied as John does not have any reservation. The 
compensating step C12 of type CompC2 also checks for these preconditions; 
since these preconditions are not satisfied, the compensating step cannot be 
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executed. The specification is therefore an invalid specification - it lacks the 
semantic atomicity property. 

The deadlock could be avoided by including the invariant dist ~ guest in 
DeadlockHotel. Omission of this constraint allows the database to enter an 
undesirable state where c? E dist 1\ c? ¢ guest, from which neither the next 
step or the compensating step could be executed. 

6.7 SUCCESSOR SETS 

After presenting examples of decomposition, we now describe mechanisms to 
efficiently implement our model. The decomposition process introduces addi
tional database objects (auxiliary variables) and imposes additional constraints 
(history invariants) on the execution of steps. The additional objects are present 
primarily to support analysis. For efficient implementation, we want to avoid 
instantiating the objects. Checking the satisfaction of history invariants before 
scheduling an operation is expensive and our goal is to avoid such checks in 
the implementation. Successor sets are the mechanism we use to achieve these 
objectives. 

Definition 6.7 [Successor Set] The successor set of ty( T ij), denoted SS (ty( Tij )), 
is a set of types of steps. 

At this point, the notion of successor sets is purely syntactic. Subsequently, 
we define the constraints under which a successor set description is correct with 
respect to a particular decomposition. But first we wish to define the notion of 
correct successor set histories. 

To achieve this goal we introduce the notion of conflict into our model. Two 
operations conflict if both operate on the same data item and at least one is a 
Write. Two steps Tij and Tpq conflict if they contain conflicting operations. It is 
easy to determine the set of conflicting steps once the code for the decomposed 
transactions is given. At this stage we only have the specification, but we would 
still like to define a notion of conflict. We define any state variable modified in 
a postcondition of an operation as being written in the specification. Similarly, 
we define any state variable referenced in a precondition or postcondition as 
being read in the specification. 

The read and write set of the steps of the decomposed hotel database, as 
obtained from the specifications (figure 6.4) is given in Table 6.2. Table 6.3 
gives the set of conflicting steps in the Hotel Database. 

The definition of conflict allows us to define a notion of correctness with 
respect to successor set descriptions that is not overly restrictive. 

Definition 6.8 [Correct Successor Set History] H is a correct successor set 
history if it satisfies the following conditions. 

1. H is a correct semantic history. 
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eadlockHotel 
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RM' = {g?} ..a RM; dist' = dist \ {g?} 
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Figure 6.5 Example Specification lacking Semantic Atomicity Property 
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Table 6.2 Read and Write Sets for Steps of Hotel Example 

Type of Step Variables Read Variables Written 
RI res, total, underway res, underway 
R2 ST, acquired ST, acquired 
R3 RM, underway, acquired RM, underway, acquired 

ReportD ST,RM 
CancelD res,ST,RM res,ST,RM 
CompR2 res, underway res, underway 
CompR3 res, ST, underway, acquired res, ST, underway, acquired 

Table 6.3 Conflicting Steps for Hotel Example 

Type of Step Types of Conflicting Steps 
RI RI, R3, CancelD, CompR2, CompR3 
R2 R2, R3, ReportD, CancelD, CompR3 
R3 RI, R2, R3, ReportD, CancelD, CompR2, CompR3 

ReportD R2, R3, CancelD, CompR3 
CancelD RI, R2, R3, ReportD, CancelD, CompR2, CompR3 
CompR2 RI, R3, CancelD, CompR2, CompR3 
CompR3 RI, R2, R3, CancelD, ReportD, CompR2, CompR3 

2. If Tj is incomplete in the prefix of H that ends at Tpq, and T ij is the last 
step in Tj such that (i) Tjj conflicts with Tpq and (ii) Tjj precedes Tpq in H 
then ty(Tpq) E SS(ty(Tij)). 

In the hotel example, there is one history invariant corresponding to the sen
sitive transaction isolation property. This history invariant forbids the execution 
of steps of type ReportD when the auxiliary variable acquired =1= 0. This his
tory invariant is satisfied as long as a step of type ReportD does not appear 
between steps of type R2 and R3 of reserve transaction. To ensure this we 
specify the successor sets as shown in Table 6.4. For the hotel example, the 
history invariant involving auxiliary variable is captured by the successor set 
description, and so neither the history invariant nor the auxiliary variables need 
to be implemented. 

With respect to the specifications given with history invariants, not all suc
cessor set descriptions are valid. Informally, a successor set is valid with re
spect to a specification containing history invariants if any correct successor set 
history can also be generated by the specification containing history invariants. 
Although desirable, the converse property does not hold in general since first
order logic history invariants have more expressive power than the successor 
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Table 6.4 Successor Sets for the Hotel Example 

SS of Type of Step Types of Steps in Successor Set 
SS(Rl) Rl, R2, R3, ReportD, CanceLD, CompR2, CompR3 
SS(R2) Rl, R2, R3, CanceLD, CompR2, CompR3 
SS(R3) Rl, R2, R3, ReportD, CanceLD, CompR2, CompR3 

SS(ReportD) Rl, R2, R3, ReportD, CanceLD, CompR2, CompR3 
SS(CanceLD) Rl, R2, R3, ReportD, CanceLD, CompR2,CompR3 
SS(CompR2) Rl, R2, R3, ReportD, CanceLD, CompR2,CompR3 
SS(CompR3) Rl, R2, R3, ReportD, CanceLD, CompR2,CompR3 

set mechanism. Formally, we describe valid successor set descriptions with the 
valid successor set property: 

Definition 6.9 [Valid Successor Set Property] A specification S2 that em
ploys a successor set description is valid with respect to specification Sl with 
history invariants if 

1. any correct successor set history generated by S2 is also a correct seman
tic history generated by Sl. 

2. S2 satisfies the semantic atomicity property. 

The second condition can be easily satisfied by ensuring that all compensat
ing steps are contained in each successor set description. The hotel example 
has the valid successor set property, where it turns out that the successor set 
specification generates exactly the same set of histories as the specification 
with history invariants. 

Suppose an application requires the successful execution property. Since 
successor set descriptions are less expressive than the first order predicates they 
replace, the set of histories for S2 may be a proper subset of the set of histo
ries for Sl. Therefore, the successful execution property must be reverified 
explicitly on histories generated by S2. 

6.8 CONCURRENT EXECUTION 

6.S.1 Correct Stepwise Serializable Histories 

For every pair of steps in a correct successor set history, all operations of one 
step appear before any operations of the other step. However if the steps of a 
transaction execute atomically and without any interleaving, the database sys
tem uses resources poorly. To improve efficiency we introduce the notion of 
correct stepwise serializable history. In a correct stepwise serializable history 
the steps of transactions need not be executed serially, but nevertheless the ef
fect is the same as that of a correct successor set history. 
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We develop stepwise serializability by defining history and equivalence in a 
manner similar to [Bernstein et al., 1987]. A history H defined over a set of 
transactions T involves precisely the operations of steps in T, H preserves the 
order of operations in each step in T and any pair of conflicting operations are 
ordered in H. Two histories H and H' are said to be equivalent if they are de
fined over the same set of steps, they have the same operations, and they order 
conflicting operations of steps in the same way. That is, for any pair of conflict
ing operations Pij and qkl belonging to Tij and Tkl (respectively), if Pij -<H qkl, 
then P;j -<H' qk/. A correct stepwise serializable history is one which is equiv
alent to a correct successor set history. A graph-theoretic characterization of 
correct stepwise serializable histories is given in [Ammann et al., 1997]. 

6.8.2 Concurrency Control Mechanism 

We now propose a concurrency control mechanism for our model and identify 
the issues relevant to an implementation. 

We make the following assumptions: 

1. Lock management is centralized. 

2. The steps of a transaction are submitted in order. That is an operation in 
step Tr(s+l) is submitted only after step Trs commits. 

3. If a transaction reads and writes the same data entity x, the read operation 
precedes the write operation. 

4. A transaction reads or writes an entity x at most once. 

5. The algorithms specified below execute atomically. 

Our mechanism uses two phase locking on the steps of the transactions. 
There are two modes in which a data item may be locked by a step - shared 
mode or exclusive mode. A step acquires an appropriate lock as a prerequisite 
for accessing a data item. A step is denied a lock if either another step holds 
a conflicting lock or if the step fails a test based on· successor sets. Locks 
acquired by a step are released when the step commits or aborts. 

For the purposes of this section, we define a step as a sequence of read and 
write operations followed by a commit or an abort operation, 

Tij = Oij(Xt} , Oij(X2) , ... , Oij(xn),Eij, 

where Oij(x) is either R;j(x) or W;j{x) and E;j is either Cij(x) or Aij(x) , and a 
transaction is a sequence of steps followed by a termination operation, 

T; =< Til,"" T;n, TR(T;) > 

We require the following data structures in addition to those required by the 
two phase locking protocol. 
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1. Active-Set - Set of Active Transactions 

Active-Set(x) - The active set for x keeps the list of all active transactions 
whose committed steps have accessed x. Whenever any step T ij that reads 
or writes x commits, the transaction Tj is added to Active-set(x). After 
the transaction Tj terminates, Tj is removed from Active-Set(x). 

2. Int-Set - Interleaving Sets 

Int-Set(Tj,x) - The interleaving set for x is associated with each active 
transaction Tj that accesses x. The interleaving set gives the types of the 
steps that can access the data item. If data item x has been accessed by 
step Tjj of Tj and T ij or any step of Tj occurring after T ij commits, then Int
set(Tj,x) is replaced by the successor set of the corresponding committed 
step. 

6.8.2.1 Algorithms. Before a read operation Rij(x) can proceed, step Tij 
needs a shared lock for x. There are two conditions for Tjj to acquire the shared 
lock: (i) No other step has an exclusive lock on x and (ii) Tjj is in Int-Set(Tk,x) 
for all active transactions Tk whose committed steps have accessed x. If either 
condition is not satisfied, the lock is not granted and step T ij must try again 
later. When Rjj(x) is retried, it must be re-executed from the first step of the 
algorithm. 

Algorithm for Read 
Procedure Process-read (Rij(x» 

begin 
if a step Tim is holding an exclusive lock on x 

exit; 1* Lock unavailable - Tij can retry later *1 
for each Tk E Active-set(x) 

if ty(Tij) f/. Int-set(Tt,x) 
exit; 1* Lock unavailable - Tjj can retry later *1 

lock x in shared mode; 
accept(Rjj(x»; 

end 
Before a write operation Wjj(x) can proceed, step Tjj needs an exclusive lock 

for x. There are two conditions for T ij to acquire the exclusive lock: (i) No other 
step has any lock on x and (ii) Tij is in Int-Set(Tk,x) for all active transactions 
Tk whose committed steps have accessed x. If either condition is not satisfied, 
the lock is not granted and step Tij must try again later. When Wjj(x) is retried, 
it must be re-executed from the first step of the algorithm. 

Algorithm for Write 
Procedure Process-write (Wij(x» 

begin 
if a step Tim is holding any lock on x 

exit; 1* Lock unavailable - Tij can retry later *1 
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for each Tk E Active-set(x) 
if ty(Tij) ¢ Int-set(Tk,X) 

exit; 1* Lock unavailable - Tij can retry later *1 
lock x in exclusive mode 
accept(Wij(x»; 

end 

A step commits when all the operations of a step are complete. For each data 
item x locked by the transaction in the current or previous steps, the interleaving 
set associated with this transaction and data item x is replaced by the successor 
set of the step. The transaction is included in the list of active transactions that 
have accessed x. All locks acquired by this step are released. 

Algorithm for Step Commit 
Procedure Process-stepcommit( Cij ) 
begin 

for each x locked by the transaction in this or previous step do 
Int-set(Ti,x) = SS(ty(Tij}}; 

for each entity x locked by the transaction in this step do 
begin 

end 

if Ti ¢ Active-set(x) 
Active-set(x) = Active-set(x) UTi; 

Release the lock on x which was acquired by T ij; 
end 

A step may not always complete successfully and may abort. The abort 
causes all the locks held by the step to be released. The abort of step Tij does 
not affect the data structures Active-set(x) or Int-set(Ti,x); these data structures 
are adjusted with the transaction termination processing. Traditional recovery 
for aborted transactions, such as undo, is required for the aborted step, but 
details are omitted. 

Algorithm for Step Abort 
Procedure Process-stepabort(Aij) 
begin 

1* Restore values written by Tij *1 
for each entity x locked by the transaction in this step do 

Release the lock on x which was acquired by T ij; 
end 

Termination removes a transaction from the set of active transactions. Since 
interleaving sets are associated only with active transactions, the interleaving 
set Int(Ti,x) is deleted when the transaction terminates. 

Algorithm for Transaction Terminate 
Procedure Process-terminate(TR(Ti}) 
begin 
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for each entity x which was accessed by Tj do 

end 

begin 
Active-set(x) = Active-set(x) - Tj; 
delete the structure Int-set(Tj,x) ; 

end 

6.8.2.2 Discussion. As with other locking protocols, our mechanism has 
potential for starvation of transactions and deadlock. Since these issues can be 
addressed in standard ways, we do not describe detailed algorithms for solving 
these problems. However, these issues must be dealt with if an implementation 
of our model is to developed. 

A variety of issues pertaining to supporting compensation must also be re
solved. One issue is reliably storing data items which may be needed by a 
compensating step in case a multistep transaction does not complete. A sec
ond issue deals with initiating the compensating steps. Garcia-Molina suggests 
[Garcia-Molina, 1983] that the initiation of the compensating step must be done 
by the system. Such an approach has the advantage that all transaction aborts, 
whether user-initiated or failure-related, can be treated in a uniform way. A 
third issue is recovery from system crash. Transactions that are incomplete at 
the time of the crash can either be compensated or continued. 

6.9 CONCLUSION 

In this work, we have provided the database application developer writing 
the specification conceptual tools necessary to reason about systems in which 
transactions that ideally should be treated as atomic - for reasons of analysis -
must instead be treated as a composition of steps - for reasons of performance. 
The developer begins with a specification produced via standard formal meth
ods, transforms some transactions in the specification into steps, and assesses 
the properties of the resulting system. The formal analysis at each step of 
this process provides assurance that the resulting system possesses the desired 
properties. 

Currently we are investigating how to apply semantic-based transaction de
composition to other areas like multidatabase applications and multilevel se
cure database systems. These areas impose some additional requirements which 
in tum pose new challenges to the decomposition process. We plan to investi
gate how typical applications in these areas can be processed using our model 
and study the relative advantages/disadvantages of our approach over the exist
ing syntactic approach. 

An important question is how well our model scales up to real-world appli
cations. The necessary properties must be demonstrated for applications which 
must be implemented by our model. In this work, we have used the Object Z 
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specification language and all the analysis are done by hand. However for real
world applications this may not be feasible and it may be necessary to automate 
to the maximum extent the discharge of proof obligations. Industrial-level tool 
support for such an endeavor is essential, and the use of existing automated 
theorem provers and model checkers needs to be investigated. 
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Abstract: We report on the issues raised when designing a customizable lock
ing mechanism for Persistent Java, a type-safe, object-oriented, orthogonally 
persistent system based on the language Java. Customizable locking mecha
nisms are supported by locking capabilities. A locking capability is a book
keeper of locks that automatically acquires locks with a customizable conflict 
detection mechanism. It implements the concepts of delegation of locks and 
ignorable conflicts, automatically keeps track of the dependencies created be
cause of ignored conflicts, and supports the setting of user-defined notifications 
for conflicts that can't be ignored. Locking capabilities are one of the primi
tive components of a more general framework that gives the ability to expert 
application programmers to implement new transaction behaviors in Java. The 
framework doesn't change the Java language specification, and allows the use of 
any Java classes to implement the body of transactions without change to either 
their source or compiled form. 

7.1 INTRODUCTION 

Persistent programming languages offer an attractive alternative to the increas
ing number of applications whose needs cannot be satisfied with traditional 
database support. The requirement of these so called non-traditional applica
tions have prompted the development of numerous transaction models whose 
semantics vary from the traditional transaction model as well as from each 
other [Elmagarmid, 1992, Barghouti and Kaiser, 1991]. The ever growing pro
liferation of transaction models, all unable to satisfy all needs, has definitively 
buried the hope of finding an universal model in the short term, if at all. In 
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the absence of a proper transaction model, most persistent application builders 
end up investing a significant amount of time developing in-house transaction 
models to circumvent the proposed transaction support in order to better ac
commodate the needs of their application. 

In order to minimize the cost of realizing new transaction models, appli
cation builders must be offered a simple framework which they can use to 
quickly define the transaction behavior they want and to incorporate it into the 
persistent programming system. Ideally, these extensions should not require 
the programmers to have an in-depth knowledge of how transaction processing 
mechanisms are implemented. Furthermore, each addition of a new transaction 
model should not require that the system be rebuilt. Instead, the system should 
be able to dynamically adjust itself to incorporate these extensions. Lastly, 
the user's extensions should be tightly integrated with $e system in order to 
minimize the impact on the overall performance of the system. 

This paper reports on our effort to augment Persistent Java (PJava), an al
ternative platform for the Java language [Atkinson et al., 1996], with such ex
tensible transaction management features. The paper specifically focuses on 
the issues raised when designing the addition and the implementation of a cus
tomizable locking mechanism for Persistent Java. 

7.1.1 Overview of Persistent Java 

The main goal of the Persistent Java (PJava) project is to leverage Java to sup
port faster development and better maintenance of persistent and transactional 
applications (e.g. [Jordan, 1996]) via provision of orthogonal properties. Pro
viding properties such as persistence and transaction semantics orthogonally 
has two benefits. 

1. Application programming is not polluted with considerations unrelated 
to the application logic itself, such as persistence or enforcement of some 
transactional properties. In particular, programmers do not have to ex
plicitly identify the data that may become persistent or may be used in a 
transactional way. Similarly, the standard Java code that would operate 
on transient data is used unchanged when it operates on persistent data 
or in a transactional context. The addition of the desired property (e.g., 
persistence, persistence + transaction) is achieved by simply composing 
the application code with some context-aware code that encapsulates the 
particularities of the application requirement (e.g., management of roots 
of persistence or monitoring of transaction execution). 

2. Any Java classes can be used to build applications in a specific opera
tional context (non-persistent Java, persistent Java, persistent and trans
actional Java) without any change to either the sources or the compiled 
form of these classes; no extra rewriting/pre-processing or code gener-
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ation steps are necessary to execute standard Java classes in PJava and 
obtain persistence or transaction semantics. Conversely, the source and 
compiled form of any classes programmed with PJava can be re-used in 
any standard Java development environment and executed by any stan
dard virtual machine, except for a minority of classes that encapsulate 
the use of built-in classes specific to PJava (the "context-aware" classes). 

The current PJava prototype realizes an alteI1lative platform for the Java lan
guage with provision of completely orthogonal persistence for data, meta data 
(classes) and code (methods). Persistence is added to the Java language with no 
perturbation to Java's semantics. Consequently, all Java classes can be re-used 
in persistent applications without any alteration to either their source or their 
compiled form. The reader is referred to [Atkinson and Morrison, 1995] for an 
extensive definition of orthogonal persistence and to [Atkinson et al., 1996] for 
its application to the language Java. From the application programmer's point 
of view, persistence is simply obtained by composing normal Java classes with 
a few other persistence-aware classes (in most cases one) that interact with an 
object that implements the PJStore interface. The localized persistent-aware 
code typically identifies the roots of persistence, binds these root objects to the 
application's variables, and triggers the stabilization of all updates! onto the 
persistent store. 

Our design to add extensible transaction management to Java follows a sim
ilar philosophy. Transactions are introduced into Java without changing the 
language definition and such that programmers don't have to explicitly iden
tify the data manipulated within transactions. The aim is to allow the use of 
any pre-existing Java classes to program the body of transactions without any 
alteration to the original source and compiled form of these classes. These tran
saction bodies can then be executed in the context of any defined transaction 
models. 

In order to achieve extensibility, we augment the PJava virtual machine with 
a Customizable Transaction Processing Engine (or CTPE). The intention is 
to give knowledgeable Java programmers the ability to define new transaction 
models by programming customization of the CTPE in Java using predefined 
primitive components. Primitive components are objects that abstract the key 
mechanisms of individual CTPE's components such as the lock and recovery 
managers. They give expert programmers control over the low-level mecha
nisms of the CTPE components without requiring any knowledge of the imple
mentation of these components. Primitive components allow the expert appli
cation programmers to define new transaction behaviors in a manner which we 
believe is both simple and safe. Ordinary Java programmers can then use these 
transaction models conveniently in their applications. 
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7.1.2 Customizable Concurrency Control 

Programming of customized concurrency controls will be supported by lock
ing capabilities in PJava. Locking capabilities implement lock delegation and 
ignorable conflicts [Biliris et al., 1994, Barga and Pu, 1995]. Theyautomati
cally keep track of access dependencies created because of ignored conflicts, 
allow queries about details of these dependencies (who depends on whom and 
for which· objects), and issue notifications on demand to support application 
handling of conflicts that can't be ignored. Locking capabilities permit the 
convenient implementation of a large set of locking protocols. The current 
design assumes the granularity of locking is an object. 

Locking capabilities also provide a comprehensive solution to deal transpar
ently with arbitrary composition of threads with transactions. This is essential 
to give the ability to compose transactions with arbitrary existing Java code 
since this code may spawn an arbitrary number of threads. The issue here is 
to make sure that these threads remain confined within the boundary of the 
transaction that spawned them and enforce the behavior of their enclosing tran
saction, except if explicitly programmed otherwise by the transaction model 
implementer. 

The rest of this paper is organized as follows. Section 7.1 gives an overview 
of our design. Section 7.3 details the programming model offered to ordi
nary programmers. Section 7.4 describes the framework offered to define new 
transaction models and how arbitrary Java code may be composed freely with 
transactions of any model. The customizable locking mechanism of PJava is 
discussed in section 7.5. Examples of how one can use the framework offered 
to implement various concurrency control semantics are given in section 7.6. 
Section 7.7 reviews related work. We conclude with a summary of the status 
of our design and implementation plans. 

7.2 DESIGN CHOICES 

Our design choices for augmenting PJava with extensible transaction manage
ment capabilities are led by three strong requirements: 

• The ability to extend PJava with user-defined transaction models should 
not compromise the existing safety and security mechanisms of the lan
guage Java, and should not introduce new safety or security holes. 

• No change may be made to the language definition. 

• Data and code used within a transaction must not differ from data and 
code used in a non-transactional context. We call this transaction inde
pendence. 

The following sections outline the three main principles of our design. 
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7.2.1 Transactions as Java objects 

A transaction defines a unit of work for which some properties must be en
forced. The basic interface common to all transaction models is made of op
erations for demarcating the boundaries of transactions, such as the classic 
begin/end/abort bracketing. 

Advanced transaction models extend this common interface with new opera
tions (e.g., operations for re-structuring the scope of transactions such as spli t 
and join [Kaiser and Pu, 1992], or for declaring a transaction as a member of 
a cooperative group [Fernandez and Zdonik, 1989]). Furthermore, the seman
tics of the same operation may vary from one transaction model to another. 
For instance, the operation end that indicates the successful termination of a 
transaction has different semantics depending on whether it is called in a flat 
transaction, in a sub-transaction in a nested transaction model, or in a member 
of a group transaction [Fernandez and Zdonik, 1989]. In the classic, flat tran
saction model, a successful termination requires that the updates made by the 
transaction be atomically and durably propagated to the persistent store, and 
made globally visible; in a nested transaction model, the successful termina
tion of a sub-transaction requires that the updates be atomically delegated to 
its parent transaction, and made visible only to the descendants of its parent 
transaction; in a group transaction model, the updates may be required to be 
atomically and durably propagated to the store and made visible only to the 
other transactions which are members of the same group. This shows the need 
for a transaction management interface that is both extensible (introduction of 
new operations) and polymorphic (operations may be redefined). 

Defining transactions as first-class objects allows the transaction concept 
to be introduced into Java without changing the Java language specification. 
These transaction classes provide a convenient framework for defining an ex
tensible and polymorphic interface for transaction management. Transaction 
models are implemented as classes and their instances execute transactions ac
cording to the semantics that their class defines. 

The dynamic loading and binding properties of Java permit new transaction 
models to be introduced as new transaction classes thatextend, or subclass,2 
existing classes without rebuilding or relinking an operational system. Fur
thermore, existing applications does not need to be recompiled to use a new 
transaction class as long as the class supports the operations required by the 
applications (Figure 7.2 of section 7.3 illustrates how this may be done in Java). 

7.2.2 Two-level interface 

Our design provides Java programmers with two APIs corresponding to two 
levels of understanding of transaction management. It presumes two categories 
of programmers: specialist programmers, with skills in transaction model spec
ification, who implement new transaction classes; and ordinary programmers 
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who program transactional applications using the classes defined by the former 
group. 

The intention is to organize transactional applications in four distinct layers 
of increasing re-usability and independence with respect to transaction man
agement issues. Figure 7.1 summarizes this layered approach (the size of each 
layer is not indicative of the volume of classes). 

Who programs what 
r-------------,r-------,----------------------------

Classes implementing 
Applications Logic 

Transaction 
body Classes 

(Runnable Objects) 

Typical Java 
application programmers 

~====~====:----------------------------

I 
Java programmers who understand 

Transaction-aware Classes the functional interface of the 
'--______________ ---' transaction model(s) used 

External Transaction API r--------------------,----------------------------
Transaction 
Classes 
(Transaction 

Models) 

public programming 
interface 

TransactionProcessor 

Transaction Definition Interface 

Primitives Lock Manager Recovery Manager 
Components API API 

Java programmers expert in 
defining transaction models 

abstract interface for specifying 
reaction to transactional events 

final, built-in classes 
Classes (' / ' ~<' / 

~ LockingCapability ~-"""""-' __ 1111111111~"1 
'------------------'-----------------------------

Key I Class I ~ Abstract Class .., extends 

( Interface ~ < Final Class ~ ----------- implements 

Figure 7.1 Extensible transaction management in P Java. 

Arbitrary Java 
Classes 

Transactional 

interface 

dependant 

PJava-dependant 
Classes 

The external transactional API (ETAPI) provides a functional view of tran
saction management to ordinary application programmers. The ETAPI is for 
programmers who understand the transactional needs of the application. They 
know which transaction class is best suited for their application, and understand 
how to use the interface of that transaction class in their application. 

Programmers using the ETAPI are responsible for the implementation of 
transaction-aware classes, which should account for a small portion of the ap
plication code. The transaction-aware classes isolate the rest of the application 
code from classes that depend on classes specific to the ETAPI. Transaction
aware classes typically encapsulate the creation of transaction objects, the defi
nition of the boundaries of transactions, and the invocation of the methods spe-
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cHic to the transaction objects. Hence, above the logical software layer made of 
transaction-aware classes, there is no discernible difference from ordinary Java 
programming, except that methods execute transactionally when invoked from 
within a transaction. The classes implemented on top of the transaction-aware 
layer can be exported "as is" for execution on virtual machines supporting stan
dard Java classes. 

The programming model offered by the ETAPI requires each transaction 
body to be organized into one or several Runnable objects, i.e., objects that 
implement the Runnable interface3 . Runnable objects are the basis for com
posing arbitrary Java code with arbitrary transaction objects. Composition 
via Runnable objects is similar to the approach taken for threads in Java and 
compensates for the lack of support for methods as first-class objects. The Core 
Reflection API promised with JDK 1.1 [JavaSoft, 1996] will help to limit the 
proliferation of Runnable classes. 

The ETAPI itself consists of a hierarchy of transaction classes, each class im
plementing a given transaction model. The root of the hierarchy is the abstract 
class TransactionShell. It provides two sets of methods that correspond to 
the two levels of understanding of transaction management mentioned above. 
The first set of public methods provides a programming interface for defin
ing the boundary of a transaction irrespective of the model that the transaction 
implements (see section 7.3). The methods of this set implement the interface 
TransactionProcessor and are final, therefore they cannot be overridden. 
The methods of the second set are all abstract and protected. They define 
the reactions of the transaction model with respect to transaction management 
events that may occur during the execution of transactions (see section 7.4). 
These methods are part of the mandatory methods that a transaction model im
plementer must define for safety and completeness reasons. Typical application 
programmers are not expected to define or explicitly use these methods. 

Only subclasses of the class TransactionShell implement transaction mod
els. They may also augment the basic interface of transactions with new tran
saction management primitives specific to the model they implement. 

The Transaction Definition Interface (TDI) provides an implementation view 
of transaction management. The TDI is for use by the expert programmer who 
wishes to augment the set of available transaction models in order to satisfy 
new needs. The TDI consists of Primitive components which may be used to 
implement a subclass of a TransactionShell. Primitive components are Java 
classes and interfaces that expose the visible functions of individual compo
nents of the CTPE. For safety reasons, all of the classes that compose the TDI 
are final. In the current design, the CTPE exposes an interface to only two 
components: the lock and the recovery manager. 
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7.2.3 Implicit transaction semantics 

Neither of the APIs contain functions to explicitly enforce transactional behav
ior. Such explicit functions would perform lock acquisition, data dependency 
tracking and recovery information generation. 

Our design uses automation to provide these functions implicitly for the 
following reasons. 

• Programmers are relieved of onerous and error prone tasks such as setting 
locks and notifying updates explicitly. This improves safety and reduces 
development-time. 

• The majority of code then operates unchanged in a transactional context. 
This we call transaction independence. It greatly increases code re-use as 
the vast majority of classes do not need to call transaction classes directly. 

This implicit mechanism should be contrasted with explicit mechanisms 
used in some Java bindings to databases and object stores. In those systems, 
code must be liberally sprinkled with calls explicitly claiming locks, notifying 
updates, etc. This means that all class re-use depends on being able to import 
the source form or automatically annotate the compiled form. It means that the 
application logic may be obscured and that classes cannot be easily exported. 
Perhaps most seriously, it means that it is easy to misinform the transactional 
engine by making an erroneous explicit call. 

7.2.4 Implementation choices 

To achieve implicit transaction semantics, three mechanisms are possible: pre
processing source code, post-processing compiler output4 ) or modifying an 
existing Java virtual machine (JVM). We have chosen the third approach for 
the reasons given below. 
Pre-processing Java Source 

Pre-processing the source code has the apparent advantage that it retains the 
ability for the code to run anywhere. This advantage is illusory as the code 
will only run where there is a transactional engine that matches the inserted 
calls. Such a transactional engine is not currently a standard property of Java. 
Unfortunately, many useful libraries are available only in class-file format. It is 
likely that the inserted method calls would have a significant overhead because 
of the many extra JVM instruction executed. Either maintenance is made more 
difficult because the application logic is obscured by the extra calls or the build 
process is made more complex by the extra pass before compilation. 
Post-processing Class files 

Post-processing class files means that the bytecode sequences in each method 
are analyzed and other bytecode sequences are inserted into them to perform 
the transaction control. It has the advantage that it is no longer necessary to ob
tain source code and that it does not obscure the application logic. Otherwise 
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its merits and demerits are identical with pre-processing, except that a build 
is now more complex because of an additional pass after compilation. This 
approach must use only the standard bytecode instructions specified in the ar
chitecture neutral format of Java classes [Lindholm and Yellin, 1996] in order 
to maintain the ubiquitous execution property of Java 
Modifying an existing JVM 

Our choice, of modifying an existing JVM, has the advantage that libraries 
of classes can be imported unchanged and that the application logic is therefore 
not obscured. Furthermore, changing a JVM allows optimizations that can not 
be possible in the two previous approaches. On the other hand, this approach 
has the disadvantage that we are locked in to the particular JVM implementa
tions we are able to change, and that there are therefore some classes that will 
run only on our JVMs. As observed above, if you want transactional behavior, 
then you limit your application to run only where there is a transactional en
gine. If the approach proves effective, as we believe it might, then it could be 
implemented widely, but this has non-technical implications. 

7.2.5 Outline of the modified JVM 

The modified JVM identifies at runtime when transaction semantics need to be 
enforced, and interacts directly with the CTPE's components. For instance, the 
modified JVM identify instructions that access or modify objects, and replaces 
them with new instructions that does the required implicit transaction activities 
in addition to the original instruction semantics. This replacement takes place 
when the instruction is first executed, in much the same way as quick instruc
tions avoid repeated dynamic binding in [Lindholm and Yellin, 1996]. This 
techniques avoids increasing the number of JVM cycles. 

The modified JVM also keeps track of which TransactionShell each Java 
thread is running under and uses it for interacting with the CTPE. This transac
tional context specifies to the CTPE the (possibly customized) semantics that 
must be enforced. 

All code must run within the scope of a transaction in PJava and all data ma
nipulations from within a transaction are constrained to conform to that tran
saction's behavioral requirements. All data types (classes) are treated equally 
with respect to transaction management. This eliminates the need to discrimi
nate the objects that enforce transaction properties from those that don't. 

7.3 PROGRAMMING MODEL 

The choice of an interface for defining the boundaries of transactions raises two 
issues. First, the interface must be flexible enough to encompass the largest 
range of programming styles. As an example, consider a simple GUI appli
cation with a single frame and several buttons to control the execution of a 
transaction (e.g., start a new transaction, end it, abort it or execute the op-
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public class ATMBackend { 
private TransactionProcessor _tp; 

} 

II Configuring the Backend server with a transaction implementation 
public ATMBackend( String model) { 

Class transactionModel = Class.forName(model); 
_tp = (TransactionProcessor) transactionModel.newInstanceO; 

} 
II ... 
public void serverLoopO { 

ATMRequest rq = null; 

} 

Object [] rq....args = new Object[1]; 
while ( (rq = nextRequest()) ! = null) { 

} 

switch (rq.rqid) { 
II fully specified request. Execute in one go 

case ATMRequest.RQ-EXECUTE: 
rq....args[O] = new Long(rq.amount); 
_tp.start(new MethodInvocation(rq.op,rq.ba,rq...args»; 
_tp.c1aimO; 
break; 
II Fragmented request 

case ATMRequest.RQ...BEGIN: 
_tp.startO; 
break; 

case ATMRequest.RQ_COMMIT: 
_tp.c1aimO; 
break; 

case ATMRequest.RQ...ABORT: 
_tp.killO; 
break; 

case ATMRequest.RQ_OP: 

} 

rq....args[O] = new Long(rq.amount); 
_tp.enter(new MethodInvocation(rq.op,rq.ba,rq...args»; 
break; 

Figure 7.2 An Auto-Teller Machine backend server. 
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erations selected via the buttons on its behalf). The simple bracketing of an 
arbitrary block of code with markers such as "begin" and "end" is not suf
ficient to describe the boundary of the transaction in that case, since the body 
of the transaction may be composed of several actions spread over the various 
event handling methods of the GU! application. Similarly, consider a back-end 
server that dispatches incoming requests to threads available in a pool. A given 
transaction may send more than one request, each being potentially dispatched 
to a different thread of the pool each time. Here again, the requirement of the 
application cannot be satisfied with a simple "begin"/"end" syntactic bracket
ing. 

The second issue is related to the confinement of errors within the bound
aries of the transaction that made them. More specifically, any exceptions left 
uncaught in the body of a transaction must remain confined within that tran
saction and must be propagated to the failure handling mechanism defined for 
that transaction. Since the body of a transaction is made of arbitrary Java meth
ods, a transaction body can spawn an arbitrary number of threads. This makes 
the detection and confinement of failure even more complex. 

The class TransactionShell offers a uniform framework for defining the body 
of a transaction. This framework enables both procedural and event-driven 
programming styles and deals with arbitrary multi-threaded transactions. The 
example given in Figure 7.2 illustrates these two styles (exception handling 
code is omitted for conciseness). 

In both cases, transactions are defined by creating an instance of a tran
saction class. An instance of a transaction class is really just a shell in which 
to execute a transaction according to the model defined by that transaction's 
class. A transaction is effectively created when the shell is invoked using its 
s tart method. If there is no current invocation, a transaction object is nothing 
but a empty shell. After an invocation completes, the transaction object can be 
invoked again, starting another transaction. 

In the procedural programming style, a transaction instance is directly as
sociated with an object that satisfies the Runnable interface. The body of the 
transaction consists only of the run method of the associated Runnable object, 
and the transaction terminates when the execution of this method completes 
(either normally or because of a failure). The result of the transaction may be 
obtained using the claim method of the transaction object. The start method 
is provided with both synchronous and asynchronous variants, and the claim 
method is provided with both blocking and non-blocking variants. 

In the event-based programming style, the transaction object is not directly 
associated with a Runnab 1 e object. Instead, the body of the transaction is made 
of all the Runnable objects that enter in the transaction between the boundaries 
explicitly defined by the programmer. When a thread calls the enter method 
of a transaction object t with a Runnable object 0, it executes 0 on behalf of 
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t. When the enter method returns, the thread is said to leave the transaction, 
i.e., it reverts the transaction it was before. 

The example in figure 7.2 illustrates one possible usage of the method en ter. 
For instance, the server may receive four consecutive requests: an RQ-BEGIN, 
followed by two RQ_EXECUTE, and finally an RQ_COMMIT. Upon reception of the 
first request, the server invokes the method start of the variable _tp, which 
hosts an instance of a TransactionShell. This starts a new transaction. Upon 
reception of each RQ_EXECUTE, the server invokes the method enter of the 
variable _tp. This effectively makes the server's thread participate in the tran
saction executed by the transaction shell _tp, for the time necessary to exe
cute the run method of the Runnable object given as an argument to enter 
(here, an instance of the Methodlnvocation class). In the case just described, 
the server's thread would participate twice in the transaction, once for each 
RQ_EXECUTE requests. 

Threads launched from within the body of a transaction automatically par
ticipate in that transaction. Such threads are called inner threads. No limitation 
is imposed on the number of threads that may participate in a transaction con
currently, except if programmed explicitly by a transaction class implementer. 

A multi-threaded transaction terminates when the end method of its shell 
is invoked and all its inner threads, as well as all the threads that entered the 
transaction prior to the call to end, are completed. Entering a transaction in a 
terminal state kills that transaction and raises an exception to the thread that 
attempted to enter the transaction. 

With the model just described, programmers are forced to specify the body 
of their transactions, or part of them, as Runnable objects, and cannot just 
bracket an arbitrary block of Java code with "begin" and "end" transaction 
marks. The rationale for this approach is to confine exceptions that are un
caught by transaction bodies to the limit of the transaction. By forcing the 
encapsulation of every piece of code that participates in the body of a tran
saction, a TransactionShell can catch all exceptions left uncaught by these 
transaction bodies simply by invoking the Runnable object within a try I 
catch Java block, and route the transaction execution to the code that deals 
with failures. 

Achieving the same confinement of exceptions with an approach based on 
block delimitation makes it necessary to either force the programmer to explic
itly catch exceptions and trigger manually the appropriate action (e.g., abort 
the faulting transaction), or to change the language definition to incorporate 
transaction bracketing as suggested in [Garthwaite and Nettles, 1996]. Both 
options are incompatible with our requirements. 

The example in Figure 7.2 also illustrates how the dynamicity of the lan
guage Java makes it possible for the ATMBackend class to change transaction 
model at runtime. For instance, the server loop can be augmented with an ad-
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ditional case statement for dealing with a new kind of request for changing the 
transaction model currently used. This additional request just needs a string 
containing the name of the class implementing the new transaction model. 
Then, using a mechanism similar to those already used in the constructor of 
the ATMBackend class, the _tp variable can be assigned a new instance of the 
new transaction class, providing this new class implements the Transaction
Processor interface. 

The class Meth'Jdlnvocation uses the reflexive functionalities of JDK 1.1, 
described in JavaSoft's draft of the Core Reflection API [JavaSoft, 1996] to 
support arbitrary method invocation given an object, a string holding a method 
name and an array of parameters needed for the method invocation. 

7.4 TRANSACTION SHELL 

New transaction models are introduced by defining subclasses of the abstract 
class TransactionShell. The TransactionShell is intended to make the 
definition of transaction classes simple and safe by: 

• enforcing programmed transaction classes to conform to the uniform pro
gramming model defined by the public interface of the class Transaction
Shell. Any transaction, irrespective of the model it implements, can then 
be composed with arbitrary Runnable objects. 

• automating all of the monitoring of transaction executions. The class 
TransactionShell relieves programmers from implementing the mon
itoring of all events that may occur during the execution of a transaction 
and impact on its behavior. 

• enforcing the definition of complete transaction behavior by requiring the 
programmer to fill in mandatory methods that will react to transaction 
execution events that may happen during the execution of a transaction. 

• using default, system-defined concurrency or recovery behaviors if not 
specified, 

• using a default, system-defined recovery procedure if the user-defined 
one fails (i.e., is either incomplete or erroneous). 

The class TransactionShell provides two sets of methods that correspond 
to the two levels of interface mentioned in section 7.1. The external interface 
is made of concrete public methods that implement the programming model 
described in the previous section. The internal interface is made of abstract 
protected methods. Each method specifies a response to a transaction execution 
event. Declaring these methods as abstract forces the programmer to specify 
a response to these events and thus guarantees the completeness of the tran
saction class's implementation. The class TransactionShell transparently 
detects these events and triggers the execution of the corresponding response. 
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These event handler methods return a boolean. They return true if the event 
is handled and false if the transaction class leaves the handling of the event 
to the class TransactionShell. The class TransactionShell provides a 
default response to each kind of event, which makes use of the default transac
tional attributes specified by the class implementors (see below). For efficiency, 
subclasses of TransactionShell can specify a set of events to ignore (using 
the ignoreEvents of the TransactionShell), which means the default han
dling mechanism will be triggered instead. This avoids unnecessary calls to 
empty event handlers. 

Hence, the task of a transaction class programmer consists of just defining a 
concrete implementation for each of the TransactionShell's abstract meth
ods, and implementing the transaction management functions specific to the 
corresponding transaction model. 

Table 7.1 List of the principal event handlers of a TransactionShell 

Category 

transaction's state 
transitions 

inner transaction 
invocations 

participant thread 
activities 

inner thread 
activities 

Events 

Name 

notifyBeqin,notifyEnd, 
notifyAbort 

notifylnvokee,notifyEndlnvokee, 
notifyFailedlnvokee 

notifyThreadEnter,notifyThreadLeave, 
notifyFailedEnteredThread 

notifyThreadStart,notifyThreadEnd, 
notifyFailedlnnerThread 

Table 7.1 lists the principal events sent to transaction objects5 . There are 
two categories of events: events related to a transition of the transaction state 
(e.g., initiation, normal termination or termination due to a failure), and events 
related to a change of the transaction structure which results from having a 
programming model that allows a transaction body to be composed of arbitrary 
participating threads running arbitrary Java code. 

Events related to the transition of transaction states are typically used to im
plement the semantics of the transaction model. Upon transaction initiation, the 
transaction class must react by assigning default primitive components for con
currency control and recovery management to the notified transaction object. If 
some components have been omitted during transaction initiation, the notified 
transaction object is automatically provided with equivalent primitive compo
nents set to a system-defined behavior (e.g., strict isolation for concurrency 
control). Upon transaction termination, the transaction class may define its se-
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mantics for publicizing the results of its transaction (Le., make them visible to 
all transactions or only some, or some of them to all, make them persistent, or 
delegate them, etc.). 

Events related to change of the transaction structure are further categorized 
as per transaction events and per participating thread events. 

Per transaction events concern the execution of inner transactions; they in
form of the attempt to start a transaction from within the notified transaction, 
and of the termination of the inner transactions. Upon reception of a inner 
transaction event, a transaction object may react by inhibiting the transaction 
semantics of the inner transaction prior to executing its body. In this case, 
the inner transaction just executes as a normal method call. This may be use
ful for preventing the composition of transactions of different classes (namely 
if the interaction between the transaction model of the invoker and those of 
the invokee is unknown) or for enforcing the "flatness" of a transaction. In
hibition of inner invocations is controlled via a protected method of the class 
TransactionShell. 

Per participating thread events concern individual threads that execute on be
half of a transaction. A thread participates in a transaction either because it has 
explicitly entered the scope of that transaction (via either the enter or start 
method of the public interface of a TransactionShell object), or because it 
has been created within a transaction (see section 7.3). Events notifying the 
participation of threads and the successful or abnormal end of their participa
tion are generated for each kind of thread. 

Before a thread participates in a transaction, it must be assigned some trans
actional attributes. Locking capabilities (discussed in section 7.5) are one ex
ample of such transactional attributes. These attributes are primitive compo
nent objects that define how a thread enforces the concurrency control and 
recovery behavior of the transaction it participates in. Assignment of transac
tional attributes must be done when the transaction object is notified of the par
ticipation of a thread. If no attributes are specified, the corresponding Trans
actionShell assigns default attributes to the thread. These default attributes 
are defined at transaction initiation time. 

When a thread leaves the scope of a transaction, the class Transaction
Shell arranges for the automatic re-installation of its previous transactional 
attributes. 

7.5 LOCKING CAPABILITIES 

The class LockingCapabi li ty is the major component offered by the Tran
saction Definition Interface for customizing concurrency controls. The concur
rency control of a subclass of the TransactionShell class is specified using 
instances of LockingCapabili ty. 
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A locking capability, or capability for short, is a book-keeper oflocks with a 
customizable conflict detection mechanism. A TransactionShell object can 
own several capabilities, but a capability belongs to a unique Transaction
Shell called the capability's owner. Every thread must be bound to a capa
bility, and several threads can be bound to the same capability (typically, all 
threads enclosed in the same TransactionShell are bound to the same capa
bility). By default, a thread is bound to the default capability of its enclosing 
TransactionShell. A thread may change the capability it is bound to during 
its execution, typically when it leaves a transaction and enters another one. 

When a thread runs, the capability it is bound to automatically acquires the 
locks protecting the objects the thread operates on. Locks are acquired with 
respect to the conflict detection mechanism encoded in the capability. Tran
saction model implementors customize the conflict detection mechanism of 
each capability by specifying ignore-conflict relationships. 

7.5.1 Ignoring Conflicts 

Transactions access and manipulate objects of the persistent store by invok
ing operations on them. Two operations are said to be compatible when they 
do not conflict. Two operations conflict if their effects on the state of an ob
ject or their return values (if any) are not independent of their execution order. 
When an invoked operation 0Pi conflicts with an operation OPj in progress, a 
dependency6 is formed if 0Pi is allowed to execute. Such dependencies reveal 
possible inconsistent states which may induce either an abortion of the depen
dent transaction or a specific commit ordering [Chrysanthis and Ramamritham, 
1994]. The traditional ACID transaction model usually prevents such depen
dencies from happening, while "extended" transaction models allow some of 
these dependencies to happen temporarily. 

A transaction management system must keep track of the ongoing opera
tions and of dependencies that have been induced by the conflict. Plava uses a 
customizable lock manager for this purpose. 

A lock manager detects conflicts as follows. Objects are associated with 
locks7• To perform an operation 0Pi on an object 0, the lock protecting 0 
must be acquired in a locking mode corresponding to 0Pi. The compatibility 
of locking modes (and thus of operations) is defined by a two dimensional 
compatibility table: one dimension corresponds to the current mode of lock, 
the other corresponds to the mode requested. The entry of the compatibility 
table corresponding to the current state of the lock and the mode of the lock 
request determines whether there is a conflict. If the request does not conflict, 
the requester is added to the set of owners of the lock. 

Plava considers only read/write locking modes which are easy to detect 
transparently at the level of the virtual machine: each lVM instruction that 
operates on an object can be categorized as either read or write. 
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Plava's customizable lock manager allows a lock request to specify, in ad
dition to the locking mode requested, a set of ignore-conflict relationships. An 
ignore-conflict relationship is a way to specify that one lock request can ig
nore an incompatible owner of the lock when diagnosing a conflict with the 
requested lock. For instance, a lock request issued from a transaction T I, spec
ifying a ignore-relationship with T2 (we say that Tl is non-conflicting with T2) 
will ignore any conflict with T2 when deciding whether the lock can be granted. 

Ignore-conflict relationships are specified using a labeled directed graph 
where vertices are locking capabilities and edges are ignore-conflict relation
ships. Edges are directed and labeled as either transitive or not. We use 

t -,t 

Cj succ Cj to denote a transitive edge directed from Cj to Cj and Cj succ Cj 
a intransitive edge from Cj to Cj. By default, edges are transitive. 

This labeling of edges restricts the set of predecessors a locking capability 
can ignore conflicts with. We call this set, Pred{ C) for a capabilityC, the set of 
effective predecessors of C. Thus, given a graph of locking capabilities, a lock
ing capability ignores conflicts with all its effective predecessors in that graph. 
For instance, given the graph of locking capabilities illustrated on figure 7.3, 
we have: 

t -,t 

Cp SUCC Cq SUCC Cr ~ Pred{Cr) = {Cq } 
t t 

Cp SUCC Cq succ Cs ~ Pred{Cs) = {Cp,Cq } 

Hence, Cs can ignore conflicts with both Cp and Cq, while Cr can ignore con
flicts only with Cq. 

More formally, the set of predecessors of a capabilityC is defined as: 

Pred{C) = Pred-,t{C) U [ U (7.1 ) 
V CiEPred,( C) 

where 
-,t 

Pred-,t{C) = { Cj I 3 Cj succ C} (7.2 ) 

t 
Predt{C) = { Cj I 3 Cj succ C} (7.3 ) 

Pred-,t{ C) denotes the set of immediate predecessors that forbid transitivity; 
Predt( C) denotes the set of immediate predecessors that allow transitivity. 

We also define Owner( I, M) as the set of locking capabilities which own 
lock I in mode M, and Iowner{l,M) as the set of owners of lock I in a mode 
Incompatible with mode M. For instance, in the case of read/write locking 
mode8, we have: 

Iowner{l,Read) = Owner{l, Write) (7.4) 

Iowner{l, Write) = Owner{l, Write) U Owner{/, Read) (7.5) 
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Lastly, we define NCW( C} as the set of capabilities which are Non-Conflicting 
With C: 

NCW(C) = {C}UPred(C} (7.6 ) 

With these definitions, a request for a lock I in mode M is granted to a locking 
capability C if: 

Iowner{l,M) ~ NCW(C) (7.7 ) 

As already mentioned, ignored conflicts create dependencies. More specifi
cally, a dependency is created for each Cj such that Cj E {Iowner (l, M) n Pred( Cj)). 
Plava keeps track of these dependencies and leaves to the TransactionShell 
programmer the interpretation and the elimination of these dependencies. Lock
ing capabilities can be queried about their dependencies at any time. An ex
ception is raised when a TransactionShell tries to release the locks of (one 
of) its locking capabilities that depend on at least one other capability. 

There are three ways to eliminate dependencies: abort the transaction that 
owns the dependent capability, wait for a specific commit order before releas
ing the lock, or transfer the responsibility for the locks, and thereby, the visi
bility of the state of the objects these locks protect, to one of the transactions 
the dependency comes from. The latter is called delegation of locks. 

Current Graph of 
Locking Capabjfities 

1t 

Cr 

lock I 

Owner(l, R )={ ) 
Owner(J, W) ={Cp) 

Lock Request 
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moileof 
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lock o 
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Figure 7.3 Example of graph of locking capabilities and how it customizes the lock man

ager's conflict detection mechanism. 
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7.5.2 Delegation 

Delegation of locks allows one locking capability to atomically transfer the re
sponsibility for its locks to another capability. Transferring lock responsibility 
means changing the ownership of the delegated locks, and thus transferring the 
control over the visibility of the objects the delegated locks protect. It also 
means transferring the dependencies that have been created for acquiring these 
locks. For instance, if a locking capability C 1 delegates its exclusive lock on 
an object 0 to a capability C2, Cl is no longer able to access 0 after the del
egation, until C2 releases O's lock or delegates it back to C1. Moreover, if Cl 
acquired the lock on 0 by ignoring a conflict with a capability C3, C1's depen
dency on C3 for 0 is also transferred, such that, after delegation, C2 depends 
on C3. 

We speak of global delegation when a capability transfers the responsibility 
for all its locks at once, and partial delegation when it transfers the responsi
bility for only a subset of its locks. The class LockingCapability provides 
both forms of delegation. The method for global delegation takes just one 
parameter: the delegatee LockingCapability. A partial delegation takes an 
additional parameter to enumerate the objects whose locks must be delegated. 

Global delegation is suitable for transaction models with well-defined devel
opment, that is, where the set of objects whose visibility will be delegated at 
the end of the transaction is known in advance. This is the case for the nested 
transaction model [Moss, 1981] and the colored action model [Shrivastava and 
Wheater, 1990]. Partial delegation is required for supporting dynamic restruc
turing of transactions [Kaiser and Pu, 1992], necessary in open-ended activity 
where developments are unpredictable and the set of objects that must be dele
gated is known only at the time when the need for restructuring the transaction 
occurs. 

7.5.3 Notification 

A transaction model programmer can specify notifications to be sent when its 
customized conflict detection mechanism diagnoses a conflict. Every locking 
capability can specify one conflict notification handler. Any object that imple
ments the ConflictNotificationHandler interface can be used as a handler. 
This interface is essentially made of a method that takes fives parameters: the 
capability the handler is bound to, the mode in which it holds the lock, the 
locking granule the lock protects (an object in the current design), the capabil
ity that requested a conflicting lock, and the mode of the requested lock. 

A ConflictNotificationHandler is typically used to mediate with end
users as part of the conflict resolution algorithm. Used together with the Lock
ingCapabili ty's methods for restructuring the visibility of transactions, it 
allows the support of powerful multi-user collaborative environments. 
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7.5.4 Summary 

In summary, programmers customize PJava's lock manager to achieve a given 
concurrency control using the following steps: 

• Instance(s) of the LockingCapabili ty required for implementing the 
desired concurrency control must be created for each instance of the 
TransactionShell using that concurrency control. 

• The position of the new LockingCapabili ty's instances in the current 
graph of locking capabilities must be specified. This is done using the 
class LockingCapability's methods for specifying immediate prede
cessors that allow or disallow the transitivity of the ignore-conflict (succ) 
relationship. These specifications effectively customize the conflict de
tection algorithm of PJava's lock manager. 

• A ConflictNotificationHandler must be bound to a LockingCapa
bility when its TransactionShell implements a model that requires 
notification for this instance of LockingCapabili ty. The object imple
menting the ConflictNotificationHandler interface (typically, the 
TransactionShell itself) can use an appropriate method of the Locking· 
Capability to resolve the notified conflict (e.g., to delegate the conflict
ing lock). 

• binding each thread that enters the transaction associated to the Trans
actionShell to one of the instances of LockingCapabi li ty owned by 
that TransactionShell. 

• querying all remaining dependencies, and determining the best way to 
eliminate them in order to end the TransactionShell. 

Most of the time, all the management of concurrency control for transactional 
purposes is confined within TransactionShells. The neat effect of this mech
anism is that all classes that implement the transaction bodies are not concerned 
at all with concurrency control issues. This allows PJava to use any existing 
Java classes to implement the body of any kind of transaction without changing 
a line of their code. Inversely, most of the code written in the context of PJava 
can be exported to a normal Java client. 

7.6 REALIZING TRANSACTION MODELS 

This section illustrates with several examples how one may use the framework 
we have described in this paper for realizing different transactional behaviors. 
Our tutorial examples focus primarily on concurrency control aspects. 
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7.6.1 Flat Transactions 

Our first example shows the realization of a simple flat transaction model that 
has ACID properties. In the following, we call the resulting transaction class 
FlatTransaction. 

The class FlatTransaction must extend the class TransactionShell in 
order for its instances to be known from the transaction processing engine 
of PJava. The implementor of the class FlatTransaction must then deal 
with two main issues: (i) the implementation of the semantics of its tran
saction model, namely the ACID semantics, and (ii), the definition of the re
sponses to all the events that may occur during the execution of an instance of 
FlatTransaction; that is, how to implement the abstract event handler meth
ods inherited from the class TransactionShell. 

As said in section 7.4, these events relate either to a transition of the tran
saction state, or to a change in the transaction structure (i.e., launching of inner 
transactions or inner threads, etc.). The former directly concerns the imple
mentation of the transaction semantics, while the latter is related to how well 
instances of FlatTransaction can compose with arbitrary Java code. 

A first solution would consist of triggering the abort of the transaction upon 
the occurrence of any events notifying an attempt to change the structure of the 
transaction. This over-simplistic solution allows only single-threaded flat trans
actions and significantly reduces the usability of the class FlatTransaction. 
A better design is to accept in the transaction any new threads that attempt to 
participate, and to assign these threads the transactional attributes required for 
enforcing the transaction's properties. Nested is prohibited just by transform
ing into simple method calls any inner invocations of transactions. 

More sophisticated schemes may be implemented by checking the class of 
the inner invoked transaction object, and selecting the appropriate action ac
cording to that class. For instance, some flat transaction models allow inner 
invocation of nested top-level transactions when they realize benevolent side
effects such as splitting overflowed indexes [Gray and Reuter, 1993]. If an 
instance of a class known to implement such benevolent side-effects is invoked 
from within a flat transaction, then the inner invocation may be allowed. 

From a concurrency control point of view, the ACID properties require strict 
isolation between transactions. The conflict detection algorithm of an instance 
of LockingCapabi 1 i ty created without inxxconflict, ignore-conflict relation
ships ignore-conflict relationships (i.e., without any predecessor in the graph 
of locking capabilities) realizes strict isolation. Thus, implementing strict iso
lation of an instance of FlatTransaction just requires the creation of a single 
LockingCapabi li ty without any predecessors nor successors in the graph of 
locking capabilities, and the binding to this capability of all the threads partic
ipating in the transaction. 
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To summarize, the FlatTransaction implementation consists of filling the 
inherited abstract methods as follows: 

• Upon transaction initiation (i.e., method notifyBegin), an instance of 
the class LockingCapabili ty is created and the current thread is bound 
to that locking capability. From now on, the newly created locking capa
bility will acquire the lock of any object used by that thread. 

• Upon notification of a transaction's successful termination (i.e., notify
End), all locks acquired by the transaction's locking capability are re
leased. Locks are also released upon notification of transaction failure 
(i.e., notifyAbort). The difference in the implementation of the two 
methods lies in the management of updates which is outside of the scope 
of this paper. 

• Upon any notification of a participating thread (i.e., methods notify
ThreadStart and notifyThreadEnter), the thread is bound to the no
tified transaction's LockingCapabili ty. 

• Upon notification of a failed participating thread (i.e., methods notify
FailedEnteredThread and notifyFailedlnnerThread), kill method 
inherited from TransactionShell is invoked on itself to kill the tran
saction. The ki 11 method arranges for rollback of each thread that was 
participating in the transaction to the point where they were before they 
entered the transactions. Inner threads are simply destroyed. 

• Upon any notification of an inner transaction invocation, the inner tran
saction behavior is inhibited. This is done by calling the inhibi t method 
inherited from TransactionShell. 

• Ignore all other event notifications at instantiation time and provide the 
corresponding methods with an empty implementation that just returns 
true. 

7.6.2 Nested Transactions 

The previous example emphasizes the handling of dynamic changes to the 
structure of transactions and only shows a very simple usage of locking ca
pabilities to implement concurrency control. 

We now focus on the uses of the class LockingCapability for building 
advanced concurrency control semantics by demonstrating the use of lock
ing capabilities to build an increasingly sophisticated closed nested transaction 
model. We refer the reader to [Harder and Rothermel, 1993] for a comprehen
sive description. Our examples do not make any restrictions on which tran
saction within a hierarchy of nested transactions is able to execute some code. 



CUSTOMIZABLE CONCURRENCY CONTROL FOR PERSISTENT JAVA 205 

Our initial example is a very simple nested transaction model without any 
parallelism and restricted to single-threaded transactions. This model allows 
only synchronous invocation of transactions. Thus a single thread supports 
the execution of an entire hierarchy of nested transactions. This model may 
be implemented using a single subclass of TransactionShell which we call 
STNestedTransaction. Enforcing single-threading is done by aborting in
stances of STNestedTransaction upon any notification of new participating 
threads to these instances. 

The concurrency control of the class STNestedTransaction can be formu
lated using the following locking rules: 

1. A transaction T may acquire a lock in mode M if all the transactions that 
hold the lock in a mode incompatible with M are ancestors of T. 

2. When a sub-transaction commits, it delegates all of its locks to its parent. 

3. When a top-level transaction commits, it releases all of its locks. 

4. When a transaction T aborts, it releases all of its locks (which includes the 
locks T has acquired itself and the locks delegated to T by its committed 
sub-transactions). 

These rules state that a sub-transaction can see all the intermediate actions 
of its ancestor transactions; when a sub-transaction commits, it incorporates 
its effects (and those of its committed descendants) into its parent transaction, 
and makes them visible to all of its parent's descendants. Sub-transactions 
shield the surrounding world from the actions they perform (rule 4): if a sub
transaction aborts, it re-installs the visibility states of the objects it has manip
ulated as they were prior to its execution. Since a parent transaction never runs 
concurrently with its sub-transactions, transactions can always share objects 
with their ancestors without further concurrency control [Harder and Rother
mel,1993]. 

Given the above locking rules, the class STNestedTransaction may be 
implemented as follows. Each instance of STNestedTransaction is given 
an instance of LockingCapabili ty at initiation time (i.e., method notify
Begin). If an instance T of STNestedTransaction is a sub-transaction (i.e., 
it has been invoked from another STNestedTransaction) the capability of T 
must take the capability of T's parent as a immediate transitive predecessor. If 
T is not a sub-transaction, its capability must not have any predecessors. Once 
the capability of a STNestedTransaction has been created, the current thread 
is bound to it and started. 

The graph of locking capabilities resulting from several nested invocations 
of STNestedTransaction is illustrated in Figure 7.4. The example shows the 
successive states of the graph after several nested invocations of transactions. 
The last step includes the start of another top-level STNestedTransaction. 



206 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

STNestedTransaction STNestedTransactio 

® STI 

time 

STNestedTransaction STNestedTransaction 

ST2 

synchronous 
invocation 

ST3 

ST4 

.. 
Figure 7.4 Dynamic construction of the graph of locking capabilities implementing the 

concurrency control of the class STNestedTransaction. 

Each invocation re-arranges the graph of locking capabilities in order to cus
tomize the conflict detection algorithm of the capability of each sub-transaction 
T such that conflicts with ancestors of T are ignored (rule 1). For instance, the 
invocation of the ST3 object, instance of STNestedTransaction, results in the 
installation of a transitive edge from C2 to C3. The set of capabilities that are 
non-conflicting with C3 becomes then NCW( C3) = {CI, C2, C3}. This effec
tively makes the transaction ST3 ignoring any conflict with both transactions 
STl and ST2. 

Furthermore, each hierarchy of nested transactions is strictly isolated from 
each other, since there is no edge between the capabilities of transactions from 
different hierarchies. This is the case for the transaction ST4 in our example. 

Upon notification of successful termination (notifyEnd), instances of ST
NestedTransaction either delegate all the locks of their capability to the ca
pability of their parent transaction if they are sub-transaction, or release the 
locks of their capability 

Generalizing the class STNestedTransaction to support only sibling par
allelism is straightforward from a concurrency control point of view since the 
same locking rules hold. The complexity of the implementation lies in the man
agement of the transaction structure itself. Generalizing the class STNes ted
Transaction further to support both parent-child and sibling parallelism re
quire some changes to the locking rules previously defined since a transaction 
can run concurrently with its sub-transactions. 

The locking rules proposed for this kind of parallelism requires the manage
ment of two sets of locks per transaction T [Harder and Rothermel, 1993]: one 
set for the locks T acquires during its execution (called held locks), and one for 
the locks T's sub-transactions delegate to T (called retained locks). 
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The rationale for this distinction is that a parent transaction can not allow 
its parallel sub-transactions to access its own objects without endangering the 
correctness of its computation. On the other hand, the locks delegated to a 
parent transaction T by its committed sub-transaction must be grantable to the 
other running descendants of that transaction. The locking rules for this model 
can then be formulated as follows: 

1. A transaction T may acquire a lock in mode M if (1) no other transaction 
holds that lock in a mode incompatible with M, (2) all transactions that 
retain the lock in a mode incompatible with M are ancestors of T. 

2. When a sub-transaction commits, it delegates all of its locks (held or 
retained) to its parent which retains the delegated locks (i.e., keeps them 
in its retained set). 

3. When a top-level transaction commits, it releases all of its locks (held or 
retained). 

4. When a transaction aborts, it releases all of its locks (held and retained). 

These locking rules may be implemented using two locking capabilities per 
transaction T: one for T's retained locks (called the retainer capability), the 
other for T's held locks (called the holder capability). Figure 7.5 exemplifies 
via a small example how these capabilities are used. 

Upon its initiation, a transaction creates two locking capabilities. The re
tainer capability is set as a transitive predecessor of the holder capability. Fur
thermore, the retainer capability of the parent transaction is made a transitive 
predecessor of the retainer of the initiated transaction. 

The graph of locking capabilities built for a two-level nested transaction is 
depicted on the top-left part of Figure 7.5. Notice that the threads participating 
in a transaction are bound to the holder capability of that transaction. This 

graph customizes the conflict detection algorithm of the locking capability 
Ch4 such that conflicts with Cr4 , Cr2 and Crl are ignored (e.g., NCW(Ch4) = 
{Cr4 ,Cr2,Crl}); that is, only conflicts with locks retained by T4, T2 and Tl 
are ignored by T4. Thus, a thread participating in T4 is not able to acquire 
a lock acquired by any thread of its ancestor Tlo but can acquire any of the 
locks retained by Tl (i.e., locks that were delegated to Tl by its committed 
descendants). 

Upon notification of a successful termination, a sub-transaction delegates 
all of the locks of its holder capability to its retainer capability, which in tum 
delegates all of its locks to the retainer capability of its parent transaction. 

This example demonstrates that locking capabilities can be used "passively" 
in order to act as a "database of locks". Such passive databases of locks are use
ful to implement domains of visibility such as group in engineering transaction 
models, or color in the colored action model of [Shrivastava and Wheater, 
1990]. 
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Figure 7.5 Graph of locking capabilities for a nested transaction model that allows both 

parent-child and sibling parallelism. 

7.7 RELATED WORK 

Our work is closely related to the previous efforts for incorporating the tran
saction concept into a general-purpose object-oriented programming language. 
Projects that have investigated these issues includes Argus [Liskov, 1988], 
Avalon/C++ [Eppinger et al., 1991], and AIjuna [Shrivastava and Wheater, 
1990]. 

Argus extends the programming language CLU. It allows computations to 
run as atomic transactions. Transactions can be nested, though only sibling 
parallelism is supported. Transactions are supported directly by the language 
which incorporates control structures such as topaction or action for speci
fying (sub or top-level) transactions and coenter for allowing synchronous in
vocations of multiple transactions. Transaction properties apply only on atomic 
objects. Atomic objects are like ordinary objects except that transaction prop
erties are automatically enforced for them. 

The Avalon/C++ and AIjuna systems differ from Argus mainly in their us
age of the class inheritance mechanism to provide transactional capabilities. 
Both systems are based on the C++ object-oriented language. In both systems, 
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user-defined objects must inherit from system provided classes9 in order to 
benefit from the transactional capabilities of the system. Programmers must 
then explicitly program the enforcement of the transactional properties, such 
as setting locks, using the methods inherited from these classes. Avalon/C++ 
is implemented on top of Camelot and supports nested transaction models. Ar
juna has proposed the usage of the more powerful multi-colored action model 
[Shrivastava and Wheater, 1990], though only nested transactions have been 

implemented as far as we know. 
All three systems make transactional properties dependent on the type of 

objects, and therefore introduce a dichotomy that impedes re-usability. All 
three systems also offer a way to customize concurrency properties of some 
objects by allowing the programming of user-defined atomic types. However, 
no framework is offered to define new transactional behaviors. 

More recently, several approaches for introducing transactions into the lan
guage Java have been described [Atkinson and Jordan, 1996]. [Garthwaite and 
Nettles, 1996] proposes an extension of the language Java with a new con
trol structure called transaction. A transaction statement defines a new 
scope; control is transferred at the end of that scope if an explicit rollback 
or comrni t statement is specified within the block. Uncontrolled leave of the 
block results in a default action (usually rollback). Concurrency control must 
be handled by the programmer via explicit setting of locks. The main draw
backs of this approach are its lack of flexibility and the necessity of changing 
the definition of the Java language. The authors motivated the latter as being 
better for integration with other similar control structures found in Java, though 
our design demonstrates that the same effect can be achieved without changing 
the language definition. 

[dos Santos and Theroude, 1996] proposes a binding between Java and rela
tional databases on top of JDBC to supplement Java with persistence. Tran
saction services are provided via a class Transaction that implements a sim
ple flat transaction model with ACID properties. The class Transaction pro
vides begin and comrni t methods. The body of a transaction consists of the 
code between these two method calls. 

These two approaches to add transactions to Java share the following short
comings: 

• there is no comprehensive solution for composing arbitrary Java code 
with the proposed transaction constructs. In particular, the problem of 
composing Java threads with transactions is not addressed despite the 
fact that threads are an essential construct of Java. 

• Only the ACID, flat transaction model is supported. 

• The enforcement of the transaction properties relies on the programmers 
who are required to explicitly request locks or note updates in their code. 
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This reliance on users breaks the safety of Java and platform-independence 
of the application code. 

Another approach that uses the Meta-Object protocols to introduce ''non
functional" properties, such as persistence and transactions, transparently to the 
application programmers has been proposed by [Wu and Schwiderski, 1996]. 
The idea is to subclass each application class that requires the addition of non
functional properties with a reflection class. This reflection class overrides the 
methods of the application class so that method calls are wrapped with calls to 
a meta-object before and after the application class's code is executed. End
user classes deal with the reflection classes rather than the original application 
classes. Reflection classes and bindings to meta-objects are generated via pre
processing techniques. The meta-objects are implemented in Java. 

[Wu and Schwiderski, 1996] proposes to use this approach to transparently 
supplement Java applications with user-defined concurrency control using meta
objects that implement locking. The drawbacks of this technique are (1) the 
loss of efficiency because of the extra Java method calls to meta-objects, (2) 
the loss of independence since a Java class cannot be re-used if access to its 
sources is not provided, (3) the proliferation of Java classes because of the gen
eration of reflection classes. Furthermore, the meta-object protocol of [Wu and 
Schwiderski, 1996] requires classes to be strictly encapsulated. Direct access 
to instance variables must be precluded because meta-objects are not able to 
intercept direct manipulation to the objects they are bound to. 

7.8 CONCLUSION 

A design for adding extensible transaction management features to Persistent 
Java (PJava) has been presented. It augments PJava with an extensible pool of 
transaction classes, and gives expert programmers the ability to extend this pool 
to accommodate the needs of new applications using a Transaction Definition 
Interface. This interface is made of primitive components intended to ease the 
programming of new transaction classes. Ordinary application programmers 
can then select the transaction class best suited to their needs. Selection of the 
proper transaction class may be done at development time or at runtime using 
Java's dynamic binding properties. 

The primitive components for programming concurrency control of trans
actions have also been presented. The main component is the class Locking
Capabi 1 i ty. It provides a simple and safe interface to a customizable locking 
mechanism which supports ignoring of conflicts, delegation of locks, auto
mated tracking of data dependencies created when ignoring of conflicts is ex
ploited, and user-defined notification of conflicts. These concepts are nicely 
integrated with the Java language and do not require any change to the lan
guage. 
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The main advantage of our approach is to offer transaction independence 
irrespective of the transaction model used: any Java classes can be used to 

implement the body of a transaction without any change to either the sources 
or the compiled form of these classes. In particular, locking capabilities and 
transaction shells provide a comprehensive solution to allow the arbitrary 
composition of threads with transactions transparently to the application. 
This is particularly valuable when implementing transaction bodies using lava 
classes delivered from third parties that cannot export the source of their classes 
for legal reasons. It also improves the productivity of the programmers who 
don't need to explicitly identify the data that may be used in a transactional 
way, or the code that may operate in a transactional context. 

The design lacks flexibility with respect to granularity issues. At the mo
ment, it is assumed that the transaction properties are enforced at the object 
granularity and for all data manipulations. However, the sizes of objects in Java 
are too small to realize locking efficiently. We are currently investigating addi
tional primitive components that would enable programmers to express larger 
granularities while maintaining transaction independence. 

Our immediate concern is to devise a lock manager that will support locking 
capabilities with minimal impact on the overall performance of Plava. Like 
most persistent object systems, Plava is optimized for navigational accesses 
and memory residence of active objects. Lock management implementation 
techniques defined today for either traditional disk-oriented [Gray and Reuter, 
1993, Eppinger et al., 1991] or main-memory database systems (e.g. [Garcia
Molina and Salem, 1992, Gottemukkala and Lehman, 1992]) do not meet our 
needs. The former are too slow, and the latter require the database to reside 
permanently in main memory. Recent proposals for implementing features 
such as ignoring of conflicts or delegation also rely on these techniques [Biliris 
et al., 1994, Barga and Pu, 1995] and, therefore, don't meet our needs either. 

Our solution to circumvent these problems will capitalize on our previous 
work on the design and implementation of efficient locking techniques for per
sistent object systems [Daynes et al., 1995, Daynes, 1995]. These techniques 
have shown performance measures encouraging enough to cope with the per
formance of persistent object systems. Our plan is to adapt these mechanisms 
to implement locking capabilities in our second prototype of Plava 

Notes 

1. Atomic propagation of updates onto the persistent stable store in PJava's parlance. 

2. Class extension is the mechanism for obtaining subclass in Java [Arnold and Gosling, 
1996]. 

3. An interface in Java specifies a collection of methods without implementing their bodies 
[Arnold and Gosling, 1996]. When a class implements an interface, it must provide implemen
tation of all the methods described in that interface. Interfaces provide encapsulation of method 
protocols without restricting the implementation to one inheritance tree. 
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4. Java compilers generate class files (one per class) which contain the methods in the form 
of sequences of Java bytecoded instructions interpreted by Java Virtual Machines. 

5. Events related to primitive components, such as conflict notification events, are sent to 
the primitive components rather than to the transaction objects they are assigned to. 

6. These dependencies are categorized as dependencies due to behavior in [Chrysanthis and 
Ramarnritham, 1994]. 

7. Objects are chosen as the locking granule in our design. 

8. PJava considers only read/write locking. However nothing precludes the use of arbitrary 
locking modes defined according to some semantic criteria with the mechanism just described. 

9. Arjuna provides a class StateManager for recovery and LockManager for both recov
ery and concurrency control. The equivalent Avalon/C++ classes are, respectively, the class 
Recoverable and the class Atomic. 

Acknowledgments 

The work at Glasgow on the PJava project is supported by a grant from Sun MicroSys

terns Inc. and by grant GRlK87791 from the British Engineering and Physical Sci

ences Research Council. We are grateful to Mick Jordan and Susan Spence for their 

comments and careful reading of ealier drafts of this document. 



8 TOWARD FORMALIZING RECOVERY 
OF (ADVANCED) TRANSACTIONS 

Cris PedregaI Martin and Krithi Ramamritham 

Department of Computer Science 
University of Massachusetts. Amherst 

Massachusetts. USA 

Abstract: Current literature on database transaction recovery reveals a seman
tic gap between high-level requirements (such as the all-or-nothing property) and 
the low-level descriptions of how these requirements are implemented (in terms 
of buffers and their policies, volatile and persistent storage, shadows, etc.). At 
the same time, fast growing demands for recovery in both traditional and ad
vanced transaction models require an increased understanding of the relation
ships between requirements and mechanisms, and the ability to craft recovery 
more flexibly and modularly. In this chapter we address these challenges, intro
ducing a framework to unify the different components of recovery as well as pro
viding the concepts and notation needd to reason about recovery protocols. We 
apply our framework to formalize the properties of ARIES, a production-quality 
recovery protocol, and show how it can accommodate ARIESIRH, a variant of 
ARIES that supports delegation. 

8.1 INTRODUCTION 

Recovery support in database transaction processing systems (TP) is provided 
to ensure consistency and correctness under logical as well as physical fail
ures. Even when we confine ourselves to the Failure Atomicity (FA, the all
or-nothing) property of transactions, several considerations determine how re
covery is achieved. For instance, different versions of ARIES [Mohan et al., 
1992a], and especially the case study reported in [Cabrera et al., 1993] demon
strate the need for different policies and hence different recovery protocols and 
mechanisms - depending on the size of the objects, frequency of access, and 
the system architecture, among other considerations. Furthermore, when fail
ure atomicity is to be achieved in parallel and distributed platforms, traditional 
recovery approaches do not perform well since they lead to unnecessary tran
saction aborts [Molesky and Ramamritham, 1995]. Finally, the growing impor-
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tance of advanced applications and nontraditional transaction models as well as 
relaxed correctness criteria places new semantics and performance demands on 
recovery. 

These important challenges show the need for new approaches to recovery; 
in particular, it is necessary to develop systematic methods to craft recovery 
both for the traditional FA correctness criterion, and for advanced transaction 
models and applications, which demand even more flexibility from the re
covery subsystem. In the current state of the art in recovery, however, good 
design and implementation is hampered by the gap between the abstract de
scription of the desired (high-level) recovery properties, and the very detailed 
implementation-oriented knowledge of how to build systems that support those 
properties. Specifically, there is a wide semantic gap between high-level re
quirements (such as the all-or-nothing property) and the low-level descriptions 
of how these requirements are implemented (in terms of buffers and their poli
cies, volatile and persistent storage, shadows, etc.). 

To address these problems, we introduce a framework to unify the different 
components of recovery as well as provide the concepts and notation needed to 
reason about recovery protocols. 

The framework conceptualizes recovery in the context of transaction pro
cessing systems by identifying the essential ingredients of recovery and pre
cisely prescribing their relationships thus stating various recovery properties of 
such systems. 

By formalizing recovery properties at each abstraction level, we allow the 
description of abstract properties (such as the Failure Atomicity requirement) 
without reference to a particular implementation, and of concrete mechanisms 
without reference to the abstract properties they support. This separation of the 
what from the how allows the use of abstraction both to understand and explain 
recovery schemes, and to precisely state and prove the properties with which 
they must comply. The only related work we are aware of is [Kuo, 1996], 
which formalizes an-ARIES based data manager in terms of input/output au
tomata but closer of abstraction of a particular implementation. In contrast, 
our formalism is broader, as it encompasses advanced transaction models, and 
it strives to define appropriate recovery abstractions and thus lead to a hierar
chical formalization of recovery and the concomitant separation of concerns 
provided by different levels of abstraction. 

In this chapter we apply our framework to ARIES, a production-quality, 
practical recovery protocol which supports traditional failure atomicity. We 
also broaden the scope by applying it to ARIES/RH, a variant of ARIES that 
supports delegation. Delegation [Chrysanthis and Ramamritham, 1994] allows 
a transaction to transfer responsibility over one or more of its operations to 
another transaction. This broadens the visibility of the delegatee, and allows 
control over the recovery properties of the transaction model. Thus, delegation 
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adds substantial semantic power to a conventional Transaction Management 
System. Examples of Advanced Transaction Models that can be synthesized 
using delegate are Joint Transactions, Nested Transactions, Split Transactions, 
and Open Nested Transactions [Chrysanthis and Ramamritham, 1994]. See 
section 8.3.3 for more details on delegation. 

The remainder of this chapter is organized as follows. In section 8.2 first 
we introduce the formal framework, presenting the ingredients of recovery and 
their properties in terms of histories. Then we state our assumptions and the 
necessary formal definitions. 

In section 8.3 we use the elements of section 8.2 to formally specify vari
ous recovery properties. We begin with the requirements for Failure Atomicity 
and Durability, which abstractly describe what one expects to hold in a sys
tem that offers recovery; we also extend these requirements to take Delegation 
into account. Then we formalize the assurances, which make explicit certain 
usual assumptions about the semantics of the basic mechanisms; for example, 
no aborted operation will be later committed by the recovery mechanisms. Fi
nally we specify the recovery mechanisms, the lowest level of the abstraction 
hierarchy. The mechanisms describe what recovery is built on; for example, 
the semantics of the persistent log. 

In section 8.4 we examine a concrete recovery protocol, ARIES, and show 
the application of our framework to make its properties precise; we also formal
ize ARIESIRH, the variant of ARIES that supports delegation through rewrit
ing of history. Finally, in section 8.5 we discuss the work involved in relaxing 
some of the assumptions of this chapter, and conclude with a summary. 

8.2 THE FORMAL MODEL 

We want to describe recovery in transaction processing systems in terms of 
its properties at different levels of abstraction. Recovery properties are state
ments that characterize the expected behavior of the system as a whole or some 
of its components. For example, at the topmost abstraction level, a recovery 
property of interest is Failure Atomicity, which we express as conditions on 
the occurrence of commits and aborts in an abstract history. At lower levels 
we express more specialized recovery properties in terms of more specialized 
entities, such as the persistent portion of the log. In this section we present 
our framework in terms of the various recovery properties, grouped by level of 
abstraction, and their relationships, both within a level, and across levels (when 
certain properties "ensure" or "restrict" others). 

Our framework consists of recovery ingredients grouped in four levels of ab
straction; for clarity, we use different names for the recovery properties at each 
level. We state the properties as predicates over histories and their projections; 
we introduce histories in the next section. Here we only give an overview (see 
Figure 8.1); in subsequent sections we define them precisely. At the top level 
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Figure 8.1 Recovery Ingredients 
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we have the recovery requirements, such as Failure Atomicity and Durability. 
Requirements are the properties that applications and users expect from a sys
tem that correctly supports recovery. Below the requirements lie three groups 
of rules: 

CTtAB: rules to commit/abort transactions and operations, 

xops: rules to execute operations, l and 

XREC: rules to effect recovery. 

Failure atomicity is primarily the concern of CTtAB; durability is primarily 
the concern of XREC. Thus the specifications of the abort and commit proto
cols are needed to demonstrate failure atomicity while the specifications of the 
recovery protocol are needed to demonstrate durability. 

These three rule groups correspond to an intuitive breakdown into compo
nents, but we must also account for the interaction between rules, which we do 
with an intermediate level of properties which we term assurances. Specifically, 
ensuring failure atomicity imposes certain restrictions on XOPS and XREC to 
assure that they will also work toward achieving failure atomicity, while dura
bility requires certain assurances on CTt AB and XOPS so that they will also 
work toward achieving durability. That these assurances hold must be demon
strated given the specifications of the corresponding rules; assuming the rules 
and the assurances one proves that the requirements are met. 
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The ingredients comprising the next level are specific protocols and policies 
(see Figure 8.1). They embody the semantics of basic mechanisms, such as the 
log, and algorithms for recovery. In this chapter we concentrate on the integra
tion of a specific recovery protocol (ARIES, and its variant with delegation). 

Specifically, we want to show that a given protocol meets certain require
ments. This can be done through a process of refinement. For instance, given 
that recovery protocols operate in phases, we specify the properties of each 
phase. We then show that these protocol properties satisfy the rules and along 
with the assurances given by CT/ AB and XOPS satisfy the requirements associ
ated with the crash recovery protocol. The details of each phase (say, specified 
via pseudo-code) can then be used to demonstrate that the properties associated 
with each phase in fact hold. 

The salient aspects of our framework include: 

• It enables the formal specification of the correctness of transaction exe
cutions during normal run-time as well as during recovery after a crash. 

• It provides a systematic delineation of the different components of recov
ery. 

• It allows the formalization of the behavior of recovery - through a process 
of refinement involving multiple levels of abstraction. This leads to a 
demonstration of correctness. 

8.2.1 Modeling Recovery through Histories 

Our goal is to frame recovery in terms of how different views of the events -
the histories - in a transaction system are related to each other. Informally, one 
can visualize a transaction system history as an execution trace - a chronolog
ical sequence - of transaction operations on data objects, such as updates, and 
transaction management events, such as commit. (We define precisely histories 
and their different events in the next section.) 

We model recovery in a transaction processing system by examining the 
properties of its different histories; each history applies to different entities in 
a transaction processing system. These histories are arranged in a hierarchy 
and are related to each other by projections, and it is the properties of these 
projections that describe the particulars of a recovery scheme (see Figure 8.2). 
The histories are as follows: 

• The history 1£ records all the events that occur in the system - including 
crashes. Clearly, this is an abstraction. 

• £. denotes the history known to the system, one that is lost in the event of 
a crash. £. is a projection of 1£; it contains the suffix of 1£ starting from 
the most recent crash event. (£. can be visualized as the system log.) 
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Figure 8.2 Histories in a Database Transaction System 

• SC denotes the history known to the system in spite of crashes. This is a 
projection of C. (SC can be visualized as the portion of the log that has 
been moved to stable storage). 

• Vob is a projection of C containing just the operations on ob. It denotes 
the state of ob known to the system. (Vob can be visualized as the volatile 
state of ob). 

• SVob is the state of ob that survives crashes. It is a projection of Vob; it 
contains the prefix OfVob. (SVob can be visualized as the stabilized state 
of ob). 

Assumptions. For ease of explanation, we focus first on database systems: 

1. that use atomic transactions, 

2. that perform in-place updates and logging for recovery, and whose oper
ations are atomic, and 

3. that use serializability as the correctness criterion for concurrent tran
saction executions. 

Then, in section 8.3.3 we relax the restrictions (1) and (3) by showing how to 
add the delegation primitive to the framework. Delegation allows the synthesis 
of advanced transaction models, whose correctness criteria relax and extend 
conventional serializability and Failure Atomicity. 

In this hierarchy of histories we ignore the presence of checkpoints. In Sec
tion 8.5, we discuss the extensions to the formal model that can deal with fur
ther relaxations of these restrictions. 
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8.2.2 Events, Histories, States 

Consider a database as a set of data objects each of which has a state that can 
be modified by operations executed on behalf of transactions. These objects 
may be stored in persistent storage (e.g., magnetic disk) or in volatile storage; 
we generally assume that all objects exist in persistent storage (some possibly 
in an outdated version), but some may be "cached" in faster volatile memory. 
Usually the system only manipulates objects in volatile memory, and this is 
what raises the recovery issues. 

Definition 8.1 [Object and Transaction Events] 
Invocation of an operation on an object is termed an object event The type 

of an object defines the object events that pertain to it. We use p,[ob] to denote 
the object event corresponding to the invocation of the operation p on object ob 
by transaction t. We write p, when ob is clear from context or irrelevant. (For 
simplicity of exposition we assume that a transaction does not invoke multiple 
instances ofp,[ob].) 

Commit( t) and abort( t) denote the commit and abort of transaction t, re
spectively. Commitfp,[ob]] and abortfp,[ob]] denote the commit and abort of 
operation p performed by transaction t on object ob, respectively. These are 
all transaction (management) events. When a transaction event is not issued by 
a transaction, we add a superscript; e.g., R when an operation is issued by the 
recovery system. 

Definition 8.2 [Crash, Recovery and Recovery-interval] 
A crash event denotes the occurrence of a system failure; a rec event denotes 

that the system has recovered from a failure. All events are totally ordered 
with respect to both crash and rec events. Different crashes and recoveries in 
a history are indicated by a subscript, as in reCk. Notice that during each (say, 
the k,h) recovery phase there may be multiple crashes, that we indicate with a 
superscript. Thus crash} is the first crash, and before reCk there may be several 
crashes crash~, ... , crashZ. 

We define the k'h recovery-interval to be the part of the history (see below) 
bounded by crash} and reCk. To reduce clutter we usually write crashk for 
crash} when it is clear from context. 

Remark: We assume throughout this chapter that recovery is completed be
fore any normal processing is allowed to restart (but see Section 8.5). This 
is reflected in this formalism by the existence of a single system-wide recov
ery event rec that represents the completion of a particular recovery phase. To 
model recovery concurrent with normal processing it suffices to introduce a set 
of per-object recovery events, each of which represents that its corresponding 
object has been successfully recovered. 
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Definition 8.3 [Histories] 
A history 1l [Bernstein et al., 1987, Chrysanthis and Ramamritham, 1994] 

is a partially ordered set of events invoked by transactions. Thus, object events 
and transaction management events are both part of the history 1l. We write 
c E 1l to indicate that the event c occurs in the history 1l. Notation -+11. denotes 
precedence ordering in the history 1l (we usually omit the subscript 1l) and::::} 
denotes logical implication. 

We write a -+"1t /3, where events a,c,/3 E 1l, to indicate that event c does 
not appear between a and /3 (other events may appear). Formally: a -+"1t 
/3 {:} a -+11. /3 /\ Ve ((a -+11. e -+11. /3) ::::} e # c). 

Definition 8.4 [Projections and States] 
A projection 1lP of a history 1l by predicate P is a history that contains all 

events in 1l that satisfy predicate P, preserving the order. For example, the 
projection of the events invoked by a transaction t is a partial order denoting 
the temporal order in which the related events occur in the history. We abuse 
notation and write 1l-E to denote the projection that removes all events in set 
E. For example, we are often interested in "projecting out" all uncommitted 
operations. 

1lc, is the projection of history 1l until (totally ordered) event c (it includes 
c). 1lc- is 1lc excluding event c.2 

Let 1l(ob) denote the projection of 1l with respect to the operations on a sin
gle object ob.3 Thus, a state s of an object is the state produced by applying the 
history 1l(ob) to the object's initial state So (s = state(so, 1l(ob))). For brevity, 
we will use 1l(ob) to denote the state of an object produced by 1l(ob) , implicitly 
assuming initial state so. 

Definition 8.5 [Uncommitted and Aborted Transaction Sets] 
We denote by Utli the set of uncommitted transactions in history 1l: t E 

Utli {:} commit(t) f/. 1l. The set of aborted transactions Atli in history 1l: 
t E Atli {:} abort(t) E 1l. Similarly we define the set of pending (uncommitted 
and unaborted) transaction operations PPli, the set of aborted operations Apli 
and the set of recovery operations Rpli. We drop the subscript, t, when it is 
clear from context. 

Definition 8.6 [Physical and Logical States] 
The physical state of an object ob after history 1l is the state of ob after 

1l(ob) is applied to the initial state of ob. The physical database state after 1l is 
the physical state of all the objects in the database after 1l is applied. This is 
denoted by 1lp. 

Consider the history 1l-RpUAp that results from removing from a history 1l 
all object operations performed by the recovery system and all aborted oper
ations. The logical database state, denoted by 1lL, is the physical state that 
results4 from 1l-RpUAP. 
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Definition 8.7 [Equivalence of Histories] 
Two histories 1£',1£" are equivalent when the (logical or physical) state 0/ 

the database after the execution 0/1£' is the same as the state after the execu
tion 0/1£" on the same initial state. Different equivalence relations result when 
the logical (L) or physical (P) state o/the database are considered/or each 0/ 
1£' and 1£". We define three: 1£'p == 1£~ 1£'p == 1££ 1£~ == 1££. 

Two histories 1£',1£" are operation commit equivalent when they are equiv
alent and all operations committed in one are committed in the other and vice
versa. We denote them 1£'p ==c 1£~ 1£'p ==C 1££ 1£~ ==C 1££. 

8.3 REQUIREMENTS, ASSURANCES &. RULES 

In transaction processing systems that adopt the traditional transaction model, 
transactions must be failure atomic, i.e., satisfy the all-or-nothing property. 
Failure atomicity requires that (a) if a transaction commits, the changes done 
by all its operations are committed5 and (b) if a transaction aborts unilaterally 
(logical failure) or there is a system failure before a transaction commits, then 
none of its changes remain in the system. Durability requires that changes 
made by a transaction remain persistent even if failures occur after the commit 
of the transaction. 

Thus, the goals of recovery are to ensure that enough information about the 
changes made by a transaction is stored in persistent memory to enable the 
reconstruction of the changes made by a committed transaction in the case of 
a system failure. It should also enable the rolling back of the changes made 
by an aborted transaction by keeping appropriate information around. These 
two goals must be accomplished while interfering as little as possible with the 
normal ("forward") operation of the system. 

In this section we use the formalism of section 8.2 to state the properties 
that characterize recovery at different levels of abstraction, from abstract to 
concrete (see Figure 8.1). We begin by specifying the requirements of Failure 
Atomicity and Durability, and how they are affected by the introduction of 
Delegation. We then discuss rules and assurances that enable the construction 
of recovery, and the associated restrictions they place on the recovery system. 
Finally, we discuss specific recovery mechanisms. This sets the stage for the 
discussion of a specific protocol (ARIES) in Section 8.4. 

8.3.1 Durability 

Durability requires that committed operations should persist in spite of crashes. 

1. When recovery is complete (after the recovery-interval (crashi, reCk», 
the logical state is equivalent to the state produced by committed opera
tions just before crashl: 
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2. After recovery, the physical state of .c mirrors the logical state of 1£ at 
that point: 

8.3.2 Failure Atomicity 

Transaction t is failure atomic if the following two conditions hold: 

All Operations invoked by a committed transaction are committed: 

(commit(t) E 1£) => Vob Vp ((pt[ob] E 1£) => (commit[pt[oblJ E 
1£)). 

Nothing Operations invoked by an aborted transaction are aborted: 

(abort(t) E 1£) => Vob Vp ({Pt[ob] E 1£) => (abort[pt[oblJ E 1£)). 

8.3.3 Failure Atomicity and Delegation 

Delegation allows a transaction to transfer responsibility for an operation to 
another transaction. After the delegation, the fate of the operation, i.e., its visi
bility and conflicts with other operations, are dictated by the scope and fate of 
the delegatee transaction. In this section we give just the essential definitions. 

Traditionally, the transaction invoking an operation is also responsible for 
committing or aborting that operation. With delegation the invoker of the oper
ation and the transaction that commits (or aborts) the operation may be differ
ent. Delegation is useful in synthesizing advanced transaction models because 
it broadens the visibility of the delegatee, and because it controls the recovery 
properties of the transaction model. The broadening of visibility is useful in 
allowing a delegator to selectively make tentative and partial results, as well as 
hints such as coordination information, accessible to other transactions. The 
control of the recovery makes it possible to decouple the fate of an operation 
from that of the transaction that made the operation; for instance, a transaction 
may delegate some operations that will remain uncommitted but alive after the 
delegator transaction aborted. Examples of Advanced Transaction Models that 
can be synthesized using delegate are Joint Transactions, Nested Transactions, 
Split Transactions, and Open Nested Transactions [Chrysanthis and Ramam
ritham, 1994]. For extensive treatments of delegation, see [Chrysanthis and 
Ramamritham, 1994]; delegation in the context of recovery is examined in 
[Pedregal Martin and Ramamritham, 1997]. 

Definition 8.8 [Invoking Transaction] 
A transaction t that issues an operation p on object ob is called the invoking 

transaction, and we denote it with a subscript: pt[ob). We drop the subscript 
when it is obvious or irrelevant. 
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Definition 8.9 [Responsible Transaction] A transaction t responsible for an 
operation p is in charge of committing or aborting p, unless it delegates it: 
ResponsibleTr(p[ob]) = t holds from when t performs p[ob] or t is delegated 
p[ob] until t either terminates or delegates p[ob]. 

Notice that without delegation, the transaction responsible for an operation 
is always the invoking transaction. 

Definition 8.10 [Delegation] 
We write delegate(t1, t2,Pto lob]) to denote that t1 delegates operation p (orig

inally invoked by to) to transaction t2. For this delegation we have: 
Precondition ResponsibleTr(p[ob]) = t1. 
Postcondition: ResponsibleTr(p[ob]) = t2. 

Adding Delegation. We now examine the consequences of adding the no
tion of delegation to the basic framework. This is an important extension as the 
semantics of delegation allows the synthesis of advanced transaction models 
whose correctness criteria relax serializability in various ways. In the presence 
of delegation, we say that transaction t is failure atomic if the following two 
modified conditions hold: 

All' All operations a committed transaction is responsible for are committed: 

(commit(1') E 1£) =} 

'tIob 'tip 'tit ((Pt[ob] E 1£ 1\ ResponsibleTr(pt[ob]) = 1') =} 

(commit[pt[ob]] E 1£)), 

Nothing' All operations an aborted transaction is responsible for are aborted: 

(abort(1') E 1£) =} 

'tIob 'tip 'tit ((Pt[ob] E 1£ 1\ ResponsibleTr(pt[ob]) = 1') =} 

(abort[pt[oblJ E 1£)), 

Changes with the addition of delegation. In the absence of delegation, 
the transaction that issued an operation remains responsible for it. Therefore, 
the abort/commit of one dictates the abort/commit of the other, respectively. 
When a transaction t delegates an operation p to another transaction l' it decou
pIes p's fate from its own (in the sense of committing or aborting). This causes 
some changes; however, most of the recovery properties remain unchanged, 
because they are formulated in terms of operations, not transactions. 

We now focus on the next level of specification, which is concerned with 
assurances. These are properties that the various components must preserve to 
allow the more abstract requirements to be satisfied. The components corre
spond to well-understood mechanisms and protocols, properties of which are 
rarely stated explicitly. 
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8.3.4 Assurances for Failure Atomicity 

Here we describe the restrictions imposed on recovery mechanisms to pro
vide assurances for Failure Atomicity. They are described as restrictions as 
they limit what can be done by the recovery mechanism to obtain the neces
sary assurances. Usually these restrictions are implicitly assumed by recovery 
schemes; they reflect the broad notion that the recovery mechanism is "well
behaved," i.e., that it does not abort committed operations or vice-versa, and 
that it only operates during the recovery phase. 

1. No aborted operation should be committed by the recovery system: 

VpVtVob(abortfpt[oblJ E 1i =? (commiffpt[oblJ f/.1i)) 

2. No committed operation should be aborted by the recovery system: 

VpVtVob(commitfpt[oblJ E 1i =? (abonRfpt[oblJ f/.1i)) 

3. Outside of a recovery-interval, object, commit, and abort operations can
not be invoked by the recovery system: 

VtVpVob(€ E W[ob],commiffpt[ob]],abonRfpt[ob]]}) =? 

V k( reCk --t -'e crashl+1) 
We define reco to precede all events in 1i so that k = 0 covers the interval 
before the first crash. 

4. If the recovery system aborts a transaction operation, then it will eventu
ally abort the transaction: 

VtVpVob(abonRfpt[oblJ E 1i =? aborf[t] E 1i) 

Delegation Assurances. The only restriction that needs reformulating is 
(4). 

4.' If the recovery system aborts an operation, then it will eventually abort 
the operation's responsible transaction: 

Vp,ob,t(aborffpt[ob]] E 1i =? abonR [ResponsibleTr(pt [ob])] E 1i) 

8.3.5 Assurances for Durability 

Here we describe the assurances provided to the recovery component so that 
it can achieve durability. The first assurance is central to the semantics of 
having a reliable logging mechanism. The rest can be seen as "technical" (i.e., 
for the completeness of the formalism): the next three make explicit the usual 
assumptions of "good behavior," and the last one ensures the base case for 
induction proofs (on the length of histories). 

1. All operations between two consecutive crashes crash; and crashj (or be
tween the initial state and crash!) which appear in 1icrashr also appear 
in cpashr, and they appear in the same order. 
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2. No operations are invoked by other systems during the recovery period 
(the recovery system may invoke operations to effect recovery). For
mally: 

VpVtVobV S(S.::p R 1\£0 E {pS[ob],eommirS[pt[ob]],abonS[pt[ob]]}) =? 

V k, i( erash~ -+ "'c reed 

3. No other part S of the transaction system commits an operation which 
was previously aborted. Formally: 

VSVpVtVob(S.::p Rl\abort[pt[obll E 1£ =? 

...,(abort[pt[obll-+1l eommirS[pt[ob]])) 

4. No other part of the system aborts an operation which was previously 
committed. 

V SVpVtVob(S.::p R 1\ eommit[pt[ob]] E 1£ =? 

...,(eommit[pt[obll-+1l aborrS[pt[ob]])) 

S refers to different components of the transaction processing system. 

5. History and log are both empty at the beginning: 1£0 = ¢ = £". 

8.3.6 Recovery Mechanisms Rules 

Here we specify the mechanisms that support recovery in terms of rules. For 
example, if an operation was uncommitted before a crash, it will not be com
mitted by the recovery system. 

1. After recovery, history £, reflects the effects of all committed operations, 
all aborted operations, all transaction management operations and all sys
tem operations (which includes undos of aborted operations). Those op
erations invoked by transactions, which have neither been committed nor 
aborted, are given by Pp crashL which we denote Aetops. None of these 

£ k 

operations is reflected. 

Vk(C;Ck =c (£c;ashf-)-ActoPS) 

2. During recovery, an operation performed by a transaction which is neither 
committed nor aborted before the crash is aborted by the recovery system. 

VpVtVobVk(Pt[ob] E (Aetops) =? 

(erash}-+1l aborrR[pt[obll-+1l reCk))) 

3. An operation invoked by a transaction committed before a crash is not 
aborted by the recovery system. 

JV-;f(OO-VtVpVobVk(eommit[pt[obll E£,ll =? 

...,(crashk -+1l aborrR[pt[obll-+1l reCk)) 
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4. If an operation invoked by a transaction was uncommitted before a crash, 
it is not committed by the recovery system. 

V'tV' pV' obV' k(commitfp,[ob]] ¢ CJV'-i/(\f- => 
..,(crashk -t1l commi~fp,[ob]] -t1l reck)) 

5. The recovery system does not invoke any operations outside the recovery
interval. 

V'p,ob,t(e E W[ob],commi~fp,[ob]],abor~fp,[ob]]}) => 
V' k(reck -t -'c CraShk+l) 

6. If the recovery system aborts an operation invoked by a transaction in 
a recovery interval, it also aborts the transaction before the end of that 
recovery interval. 

V'p,ob,t,k((crashk -t abor~fp,[ob]] -t reCk) => 
(crashk -t abor~[tj-t reCk)) 

8.3.7 Logging and Commit/Abort Protocols 

The commit/abort and logging protocols guarantee the following: 

AB-UNDO The undo of an operation is equated with the abort of the op
eration: 

V'pV'obV't(p,[obj E C => (undaR(pt[ob]) E C ¢> abor~(pt[ob]) E C)) 

LOG-CT All the committed operations are in the stable log at the time of 
a crash: 

V'i'v'pV'tV'ob(commit(p,[ob]) E 1{crashf-) => (Pt[obj E S.cJV'-i/(r-) 

8.4 A SPECIFIC RECOVERY PROTOCOL 

In this section we indicate how to apply our framework to a specific recovery 
protocol, ARIES, and how, when we extend ARIES with delegation (resulting 
in ARIESIRH) our framework adapts and covers the new extensions. First, 
we give an informal overview of ARIES and ARIESIRH. Second, we specify 
the assurances that ARIES and ARIESIRH assume from other components of 
recovery. Third, we specify the correctness properties satisfied by ARIES and 
ARIESIRH. Then, we show that the second and the third together conform to 
the rules that recovery protocols in general must satisfy. For brevity we present 
just a sample of the proofs. 

8.4.1 Overview of ARIES and ARIES/RH 

We first review ARIES to establish context and terminology, and then we ex
plain the modifications necessary for ARIESIRH [Pedregal Martin and Ra
mamritham, 1997]. The ARIES recovery method follows the repeating history 
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Figure 8.4 Backward Chains in the log 

paradigm and consists of three phases6 (see figure 8.3). Immediately after a 
crash, ARIES invalidates the volatile database. Analysis identifies which trans
actions must be rolled back (losers) and which must be made persistent (win
ners). Redo repeats history, redoing all transaction operations that had taken 
place up to the crash. Finally, using the analysis information, undo removes 
the operations from loser transactions. 

ARIES keeps, for each transaction, a Backward Chain (BC, see figure 8.4). 
All the log records pertaining to one transaction form a linked list BC, ac
cessible through Tr -List, which points to the most recent one. ARIES inserts 
compensation log records (CLRs) in the BC after undoing each log record's 
action.7 Applying delegate(tl,t2,ob)8 is tantamount to removing the subchain 
of records of operations on ob from BC(tl) and merging it with BC(t2)' Next 
we discuss ARIESIRH, which supports delegation without modifying the log. 
First we present the data structures, and we explain the normal processing. We 
then examine recovery processing, first the forward (analysis & redo) pass and 
then the backward (undo) pass. 

8.4.1.1 Data Structures. We must know which operations on which ob
jects each transaction t is responsible for, i.e., its Op-List(t). For that we use 
the Transaction List and expand each transaction's Object List found in con
ventional Database Systems; we also add a delegate type log record. 
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field name function 
LSN position within the LOG 
Tor transaction id of delegator 

TorBC delegator's backward chain 
Tee transaction id of delegatee 

TeeBC delegatee's backward chain 

Figure 8.5 Fields of the delegate log record 

TrJist. The Transaction List [Bernstein et al., 1987, Gray and Reuter, 1993, 
Mohan et al., 1992a] contains, for each Trans-ID, the LSN for the most recent 
record written on behalf of that transaction, and, during recovery, whether a 
transaction is a winner or a loser.9 

ObJist. For each transaction t there is an Object List Ob.List(t). In tenns of 
Op.List: Ob.List(t) = {ob I 3pro rob] E Op.List(t)}, i.e., the objects for which 
there is an operation for which t is responsible. The operation Pro rob] may have 
been invoked by to and the responsibility transferred to t via delegation. 

When transactions are responsible for specific operations (not a whole ob
ject), a certain object may appear in more than one Ob.List (but the associated 
operations will be different).l0 We identify the operations that a transaction is 
responsible for by introducing the notion of scope. 

For each object ob in Ob.List(tl) there is a set of scopes Scopes, that covers 
the operations to ob for which tl is currently responsible. A scope is a tuple 
(to, 11,12) where to is the transaction that actually did the operations (the invok
ing transaction), h is the first, and 12 the last LSN in the range of log records 
that comprise the scope. 
Delegate Log Records. We add a new log record type: delegate. Its type
specific fields (see figure 8.5) store the two transactions and the object involved 
in the delegation. 

8.4.1.2 Normal Processing. We sketch how ARIESIRH extends ARIES 
by showing how to handle delegations and operations. Other transactional 
events are modified as well; the reader is referred to [pedregal Martin and Ra
mamritham, 1997] for a complete account. 

• pt[ob] 

1. ADJUST SCOPES. If this is the first operation of t to ob since either t 
started or last delegated ob we must open a new scope. Otherwise, there is 
an active scope of t on ob that we must extend. 
!f ob ¢ Ob-List(t) then Ob-List(t) ~ Ob-List(t) U {ob} ; 
!f (t,_,_)l1 ¢ Ob-List(t)[oh] 

then create new scope 
else extend existing scope 

• delegate(t17 t2,ob) 
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1. WELL-FORMED? Verify that ob E Ob-List(t1), which tests, for this case, 
the precondition: pre(delegate(tbt2,op[ob])) ::} (ResponsibleTr(op[ob]) = 
t1). 

2. PREPARE LOG RECORD(S). 

Record delegator, delegatee. 

Rec.tor f- t1; Rec.tee f- t2; 

Link this log record into t1 's and t2 's backward chains. 

Rec.torBC f- BC(t1).PrevLSN; Rec.teeBC f- BC(t2).PrevLSN. 

3. TRANSFER RESPONSIBILITY. Move operations on ob from Op-List(t1) to 
Op-List(t2)' 
Add ob to delegatee's Ob-List and record that ob was delegated by t1' 

Ob-List(t2) f- Ob-List(t2) U {ob}; Ob-List(t2)[ob].deleg f- t1' 

Pass delegator's Scopes for ob to the delegatee and remove ob from the 
delegator's Ob-List. 

4. WRITE DELEGATION LOG RECORD(S). 

Write log record and mark it as the current head of the backward chains of 
delegator and delegatee. 

LOG[CurrLSN] f- Rec; BC(tt} f- CurrLSN; BC(t2) f- CurrLSN. 

8.4.1.3 Crash Recovery. In the rest of this section, we present the recov
ery phase of ARIESIRH, which includes a forward pass and a backward pass. 

Forward Pass. For brevity, we describe only the results of the forward pass 
of recovery. Details can be found in [Pedregal Martin and Ramamritham, 
1997]. Before the first pass of recovery starts, Winners = Losers = ¢. At 
the end of the forward pass Winners, Losers, and Object Lists are up to date, 
including the scopes of the operations. Specifically, after the Forward Pass the 
state is: 

• Ob-Lists are restored to their state before the crash, for all transactions. 

• Winners has all the transactions whose operations must survive (Le., which had 
committed before the crash). Losers has those whose operations must be oblit
erated. 

• LoserObs includes all objects in the Ob-Lists of loser transactions. We compute 

it after the forward pass ends, as LoserObs = U Ob-List(t). 
tELosen 

Backward Pass. To undo loser transactions, ARIES continually undoes the 
operation with maximum Log Sequence Number (LSN), ensuring monotoni
cally decreasing (by LSN) accesses to the log, with the attendant efficiencies. 

ARIES undoes all the operations invoked by a loser transaction. In the pres
ence of delegation, what we need instead is to undo all the operations that 
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were ultimately delegated to a loser transaction. Notice that by undoing the 
loser operations instead of the operations invoked by loser transactions, we are 
in fact applying the delegations, as we undo according to the fate of the final 
delegatee of each operation.12 

We show in [Pedregal Martin and Ramamritham, 1997] that it suffices to 
keep information on operation scopes to efficiently undo loser operations. There 
we also discuss how undo and delegation are integrated in the backward pass. 
Operation and delegation are the only records that require special processing. 
As with ARIES, ARIESIRH also visits each log record at most once and in a 
monotonically decreasing way. This reduces the cost of bringing the log from 
disk. 

8.4.2 Formalizing some properties of ARIES and ARIESjRH 

Policies. ARIES assumes the STEAL and NO-FORCE policy combination. That 
is, the restrictions associated with NO-STEAL and FORCE, which we formalize 
next, do not apply. 

NO-STEAL requires that no uncommitted operations be propagated to the 
stable database. If an operation is stable, its transaction must have committed. 
Formally: 

VD(ob) E prejix(C(ob») , VeE V(ob) 
(Pt[obj-+V(ob) c) ~ (commit(t) -+£(ob) e)). 

Notice that this specification of NO-STEAL does not impose an ordering or 
logging strategy; nor does it say how to record that a transaction is considered 
committed. 

FORCE prescribes that updated objects must be in the persistent database for 
a transaction to commit. Formally: 

VV(ob) Eprejix(C(ob»), Ve E D(ob) (commit(t) -+£(ob) c)) ~ 
(Pt[obj-+V(ob) c). 

Operation execution, Commit, and Abort. 
WAL: No operation to the stable database can be installed before a corre

sponding record of the operation is stored in the persistent log. This is called 
the Write-Ahead Log (WAL) rule. Formally: 

VV(ob) E prejix(C(ob») VeE V(ob) (Pt[obj-+V(Ob) c) ~ (Pt[obj-+S£(ob) c)) 
Semantics of Transaction Abort: If a transaction s is aborted, no other 

transaction t can operate on the same object until s's operations are aborted. 
Formally: 

VsVt (qs[obj-+£Pt[obj/\ abort(s) -+£Pt[ob]) ~ abort[qs[obll-+£Pt[obj 
Commit: The system considers a transaction committed when it has per

sistently logged all the operations and the commit record for the transaction. 
Formally: 
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V L E prefix(£) V £ E S£ 
(commit(t) -+L £) => (commit(t) -+sc £) /\ VPt E L(Pt -+sc £) 

Winners, Losers, LoserObs. 

• t E Winners {::::::? (Commit(t) -+ Crash) 
t is a winner if it committed before the crash. 

• t E Losers {::::::? (Begin(t) -+ Crash /\ ,lI Commit(t) E 1l) 
t is a loser if it was active but did not commit before the crash. 

Losers: an active transaction is by default a loser. If there is a commit 
record before the crash, its transaction is moved to Winners. Note that 
these sets are disjoint. 

• LoserObs = U Ob..List(t) 
tELosers 

i.e., ob E LoserObs => 3t E Losers: ob E Ob..List(t) 
LoserObs is the set of all objects for which there is a loser transaction 
that is responsible for an operation to that object. This means that a loser 
object has at least one operation that will be undone. 

Specification of ARIES. In the following, post(P) refers to the postcondition that 
a particular phase P (one of analysis, redo, undo) of ARIES satisfies. 

1. After a crash, £ = <P 

2. post(analysis) => 
VpVobVt(((Pt[ob] E S£ /\ commit(pt[ob]) fI. S£) ¢:} pt[ob] E Losers)) 

3. post(analysis) => 
VpVobVt{pf[ob] E S£ ¢:} ~[ob] E Losers) 

4. post(analysis) => 
VpVobVt((Pt[ob] E S£/\commit(pt[ob]) E S£) ¢:} pt[ob] E Winners) 

5. post(redo) => (£ = S£) 

6. post( undo) => 
VpVob((P[ob] E Losers) => 

(undif(P[ob]) E £) /\ VqVob(q[ob]-+cp[ob] => 
undif(p[ob]) -+c undif(q[ob]))) 

Here p[ob] and q[ob] indicate operations that may be done by a transaction 
or the system. 

7. V pV tV ob(undif[Pt[oblJ ¢:} aborrR [Pt [ob]]) 

8. post(undo) => £V'HI E prefix(£) 

9. ARIES is not active outside the recovery period. 
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Formalizing ARIESIRH. Because our framework is operation-based and not 
transaction-based, extending the formalization (preceding) and the proofs (fol
lowing) for ARIES to ARIESIRH only entails reasoning about chains of dele
gations, represented by scopes. 

8.4.3 Proof Sketches 

With the logging and commit/abort protocols and the recovery rules from Sec
tion 8.3, we show examples of proving that ARIES specifications conform to 
the specification of recovery protocols. 

• ARIES Specification 9 can be used to show that the recovery Specifica
tion 5 holds. 

• As a more involved example, LOG-CT ensures that ata crash, all com
mitted operations are indeed in S£'. From ARIES Specifications 2, 3 and 
6, we can infer that all uncommitted transaction operations and recovery 
system operations are undone. Further, these are the only operations that 
are undone. Recovery system operations include undos of aborted oper
ations. Hence, operations that are to be aborted are also undone. Further 
these operations are undone in an order consistent with ARIES Specifi
cation 6. Hence, we can infer Recovery Rule 1. 

Proving that an implementation of the ARIES protocol satisfies ARIES speci
fications involves: 

1. modeling the dirty page table, the transaction table, checkpoints, and dif
ferent types of LSNs. 

2. expressing the requirements stated above in terms of the properties of 
these entities with respect to the transaction management events and ob
ject events (i.e., during normal transaction processing) as well as during 
recovery steps. 

3. given the pseudo-code that provides the details of transaction process
ing in terms of these concrete entities, demonstrating that the correctness 
requirements on these entities in fact hold. 

8.5 FURTHER WORK AND SUMMARY 

We showed how our recovery framework can be used to deal with the basic 
recovery methods for atomic transactions that work in conjunction with in
place updates, the Write-Ahead Logging (WAL) protocol and the no-force/steal 
buffer management policies. Also, for ease of exposition, we assumed that re
covery processing was completed before new transactions were allowed. We 
also showed how to add delegation, and how the specifications and implemen
tations were modified. 
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The building blocks developed in Section 2, namely, histories, their projec
tions, and the properties of the (resulting) histories are sufficient to deal with 
situations where these and other assumptions are relaxed, suggesting further 
work. 

Beyond in-place updates. Some recovery protocols are based on the pres
ence of shadows in volatile storage. Updates are done only to shadows. If 
a transaction commits, changes made to the shadow are installed in the stable 
database. If it aborts, the shadow is discarded. To achieve this each object ob in 
such an environment is annotated by its version number obI, ob2, .. ob" where 
each version is associated with a particular transaction. When intention lists 
are used, some protocols make use of intention lists whereby operations are 
explicitly performed only when a transaction commits. The properties of these 
protocols can be stated by defining projections of history 1£ for each active 
transaction along with a projection with respect to committed transactions. 

Considering object to page mapping issues. The model of Section 2 
assumed that the object was both the unit of operation as well as the unit of disk 
persistence. In general, multiple objects may lie in a page or multiple pages 
may be needed to store an object. To model this, one more level of refinement 
must be introduced: the operations on objects mapping to operations on pages. 

Reducing delays due to crash recovery. Checkpointing is used in prac
tice to minimize the amount of redo during recovery. We can model check
points as a projection of the history S£ and, using that, redefine the require
ments of the redo part of the protocol. Some protocols allow new transactions 
to begin before crash recovery is complete. After the transactions that need 
to be aborted have been identified and the redo phase is completed, new tran
saction processing can begin. However, objects with operations whose abor
tions are still outstanding cannot be accessed until such abortions are done. 
This can be modeled by unraveling the recovery process further to model the 
recovery of individual objects and and by placing constraints on operation ex
ecutions. 

A voiding unnecessary abortions. In a multiple node database system, the 
recovery protocol must be designed to abort only the transactions running on 
a failed node [Molesky and Ramamritham, 1995]. This implies that not all 
transactions that have not yet committed need be aborted. To model this, the 
crash of the system must be refined to model crash of individual nodes and the 
recovery requirement as well as the protocols must be specified in a way that 
only the transactions running on the crashed nodes are aborted. 
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Summary 

We have used histories, the mainstay of formal models underlying concurrent 
systems, as the starting point of our framework to deal with recovery. The nov
elty of our work lies in the definition of different categories of histories, differ
ent with respect to the transaction processing entities that the events in a history 
pertain to. The histories are related to each other via specific projections. Cor
rectness properties, properties of recovery policies, protocols, and mechanisms 
were stated in terms of the properties of these histories. For instance, the prop
erties of the transaction management events and recovery events were specified 
as constraints on the relevant histories. The result then is an axiomatic spec
ification of recovery. We also gave a sketch of how the correctness of these 
properties can be shown relative to the properties satisfied by less abstract en
tities. Further, we showed how to extend the framework and prove correctness 
when we include delegation, whose semantics allows the construction of ad
vanced transaction models. We concluded discussing the directions in which 
to proceed to broaden the scope of our work. 

Notes 

1. This is affected by both concurrency control policies and recovery policies. 

2. Fonnally,1£e1l.< = 1£e- oe where 0 is the usual composition operator. 

3. 1£(oh) = PI lob) 0 P2 lob) 0 .•. 0 pn [ob) , indicates both the order of execution of the opera
tions, (Pi precedes Pi+ 1), as well as the functional composition of operations. 

4. Notice that 1£(ob) = 1£p and 1£(ob)-RpUAp = 1£L. 

5. This is one of the reasons we prefer to have ways by which the commitment of an oper
ation can be dealt with in addition to the commitment of transactions. Furthennore, we desire 
a fonnalism that can uniformly deal with recovery in advanced transaction models (where a 
transaction may be able to commit even if some of its operations do not). 

6. Some variants of ARIES merge the two forward passes into one, thus we also use only 
one forward pass. 

7. To avoid undoing an operation repeatedly should crashes occur during recovery. 

8. Notation delegate(tl, t2, ob) indicates delegation of all operation of tl on ob to t2. 

9. For each transaction t, Tr..List(t) contains the head ofthe BC(t), e.g., in fig. 8.4, BC(t) is 
Tr ..List( t). 

10. For example, this can occur in the case of non-conflicting operations, such as increments 
of a counter. 

11. To reduce clutter, '_' denotes a field that we do not change or are not interested in. 

I2.In ARIES, all loser operations are those invoked by loser transactions, so ARIESIRH 
reduces to ARIES when there is no delegation. 
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Abstract: Replication introduces a tension between query optimization and re
mote access control in a distributed database system. If we view a transaction 
as a partially-ordered set of queries and updates. then factors that affect quorum 
selection for the fragments accessed by a transaction as a whole are currently 
orthogonal to factors that affect the replica selection during the planning of in
dividual queries. Therefore. the two processes may act at cross-purposes to one 
another. Query optimization considers an individual query and selects a set of 
fragments that minimizes the computation and communication cost and allows 
computation to be pushed into the local site. Transaction management, on the 
other hand. selects quorums (sets of replicas to retrieve) based on replica avail
ability and on mutual consistency constraints such as quorum intersection among 
write operations or between read and write operations. Thus. transaction opti
mization narrows the "optimal" solution space for the queries it contains. Hence. 
transaction management should cooperate with query optimization to optimize 
transaction processing. 

In this book chapter. we discuss why and how to optimize transactions. We 
present a novel transaction optimization strategy that integrates query optimiza
tion techniques with transaction management. The proposed strategy chooses 
quorums of maximum intersection. while minimizing a communication and/or 
computation cost function. It also attempts to maximize the number of up-to
date copies of read quorums. so as to maximize the optimization space of the 
individual queries. 
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9.1 INTRODUCTION 

Distributed query optimization and transaction management have typically been 
separated into independent modules [Helal et al., 1996b]. A query, written in a 
convenient non-procedural language such as the relational SQL or QUEL [Ko
rth and Silberschatz, 1991], refers to logical elements of the distributed data
base, be they relations or views. The query is submitted first to a query optimiz
ing compiler (QOC) that transforms it into a procedural program operating on 
physical data that constitute fragments of the logical relations. This procedural 
program is generated carefully so as to minimize the 110, communication, and 
computation costs of executing the query. A traditional compiler then produces 
the final executable form of the query. The task of managing query execution 
falls on the shoulders of the transaction manager (TM), which constitutes part 
of the runtime system, and whose functionality is invoked via procedure calls 
inserted by the QOC. The TM ensures the ACID properties of the transaction 
by performing concurrency control, recovery, and atomic commitment. 

In a replicated distributed database [Helal et al., 1996a], fragments of data 
are replicated across several databases to increase its availability in a failure
intolerant environment. Here, availability concerns dictate that many consistent 
replicas be available at many sites. When a transaction accesses a set of frag
ments, efficiency concerns dictate that those accesses be clustered in as small 
a set of sites as possible. This process is simplest when there are few replicas 
to consider. Thus, the current goals of transaction management and replication 
conflict. 

Distributed transactions that access replicated data may suffer from variable 
processing delays. Depending on the degree of replication and on the data 
fragmentation strategy, a transaction may have to access a large number of 
physical fragments. This leads to 

1. an increased number of round-trip messages, 

2. an increase in the total message CPU processing time (for send and re
ceive at the transaction initiation site), and 

3. an increase in the number of execution threads used to spawn off multiple 
concurrent communication. 

We refer to each execution thread used to control a physical fragment as a 
shred, and the processing overhead due to a transaction's shreds as the shred
ding effect. Physical fragments are also referred to as shreds in this pa
per. While facilitating higher degree of concurrency and availability, fine-grain 
fragmentation and large-scale replication are responsible for the shredding ef
fect. 

The challenge that we address in this book chapter is how to alleviate the 
shredding effect while maintaining the same high levels of concurrency and 



TRANSACTION OPTIMIZATION TECHNIQUES 239 

availability. We view transactions as partially-ordered sets of queries and/or 
updates. We argue that in a replicated, distributed database and with transac
tions of this form, the QOC and the TM must communicate to ensure efficient 
transaction execution. We introduce a component of the QOC called the Tran
saction Optimizer (TO), that interacts with the TM to select the best set of 
replicas to access during the processing of a specific transaction. This allows 
the two modules to work together to ensure the transactional cognizant opti
mality of the query execution. That is, it chooses an execution that minimizes 
the communication and/or computation overhead of a transaction based on its 
overall collection of queries and updates (transactional) and a knowledge of 
current site availability (cognizant). 

9.1.1 Wha.t is Wrong with the Current Architecture? 

Architecturally, the split between QOC and TM handicaps the QOC dramati
cally, in that the QOC cannot take advantage of the run-time information about 
failure and performance that is readily available to the TM. This is especially 
true in the presence of replication in the distributed system. For example, 
since the QOC knows nothing about the availability of specific replicas, it may 
choose to access replicas that are unavailable due to site or communication 
failures. The QOC may also assume that the set of replicas are all up-to-date 
while in fact a replica or two could be lagging behind. When the TM discovers 
this information at runtime, it cannot invoke the QOC to revise the scope of its 
optimization space. 

Another example of this handicap arises from the ability of the transaction 
program to execute independent queries and updates under a single transaction. 
The precise choice of the queries to be so composed may not occur until run
time, for instance when the transaction program is allowed the power of con
ditional branching. Because the QOC optimizes each query separately, it may 
very well choose for different queries to touch physical copies whose union 
is strewn across much of the distributed system. We call each physical copy 
touched by a transaction a shred. Each shred requires a separate thread of 
control, thus a transaction with many shreds on different sites incurs a higher 
communication and computation overhead. 

This shredding effect in replicated distributed database systems introduces 
another reason for transaction optimization. In a distributed system, transaction 
management imposes a finer granularity on the transaction queries, resulting in 
more constituent parts for the transaction. This leads to the shredding of the 
transaction as a single control unit into multiple threads of costly controls. Our 
goal in this book chapter is to show how this effect can be mitigated by selecting 
quorums to cluster accesses to the same database and thus maximize our ability 
to piggyback shred control messages together. 



240 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

Query 1 

LFI 

Transaction 

Query 2 

LF2 

Quorum fonnation area 

Query I 

LFm 

LF = Logical Fragment 

PF = Physical Fragment 

Figure 9.1 Transaction composition 

Before discussing the implication of this effect, we give an example. Fig
ure 9.1 shows a transaction which has several queries. Each query accesses 
several data items. A read set R and a write set W are imposed on each tran
saction. For example, a single query transaction, A ~ B creates R = {A,B}, 
and W = 0. Each element in R U W is called a logical fragment. For each 
logical fragment, a data dictionary is accessed to obtain the corresponding set 
of physical fragments. Physical fragments could be disjoint entities of a larger 
data object, or identical replicas of the same data object. In this book chapter, 
we only consider physical fragments as identical replicas of logical fragment. 

Assume that a global transaction has I queries and each query accesses m 
logical fragments, on the average. If each logical fragment access requires a 
quorum of n physical fragments, the global transaction is actually transformed 
into I x m x n parts. If all the physical fragments are stored at different sites, the 
transaction manager may have to contact n sites up to m times for each query. 

Now consider the issue of optimizing the individual queries. During the 
query decomposition and optimization phase, each query will be considered 
separately, and sites chosen for each quorum will be based on optimal place
ment with respect to efficient query execution and pushing subquery execution 
down to the local sites. The query optimizer does not consider that a replica 
it needs may be accessed from some other site because it was read by some 
other query in the transaction, and consequently may select a different replica. 
Alternatively, it may be desirable to retrieve a replica from a site that is already 



TRANSACTION OPTIMIZATION TECHNIQUES 241 

[

TO QOC ..-.. 

I
r-'----1 
. TM ~ 

Distributed Physical Fragments 

II II II 
111111 

Figure 9.2 Query optimizer - transaction manager interaction 

being accessed by the transaction, but the query optimizer does not have the 
information to do this. 

For example, consider a transaction Tl that contains five queries, each of 
which accesses four logical fragments, where each logical fragment requires 
a read quorum of five physical replicas. If the replicas are distributed across 
hundreds of sites, then this transaction has 100 shreds. With improper quorum 
selection, the transaction manager may access up to 100 different sites during 
processing of our example query. Each additional site accessed by a transaction 
increases the processing overhead for ACID protocols such as two-phase com
mit. These protocols are communication-intensive in distributed database sys
tems. If we can cluster the shred accesses for each transaction, accessing phys
ical fragments that are available at the same site together, we can minimize the 
effects of transaction shredding and optimize the total transaction processing 
cost. 

Optimizing the number of communications for shred control in a transaction 
requires knowledge of transaction processing protocols. Minimizing the num
ber of shreds of a transaction is a constrained problem. In the transaction com
position of Figure 9.1, given that all physical fragments are replicas, a quorum 
consisting of a known minimum number of fragments must be included [Ozsu 
and Valduiez, 1991, Gifford, 1979, Thomas, 1979]. Improper quorum selection 
by the transaction manager may limit the success of our optimization against 
the shredding effect. 

9.1.2 How Should We Change the Architecture? 

In Figure 9.2, we propose a new architecture, in which the QOC and the TM 
interact. This architecture introduces a new module to the QOC, called the 
Transaction Optimizer (TO), that interacts with the TM to access site avail
ability information. 
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Based on this architecture, we introduce a novel transaction optimization 
strategy for minimizing communication and execution cost of the queries of 
the same transaction, and for minimizing the shredding effect caused by tran
saction management in replicated distributed database systems. The proposed 
transaction optimization strategy consists of two phases of interaction between 
the QOC and the TM. The first phase, called the pre-access phase, is a static 
phase where some decisions are made prior to any remote communication. In 
this phase, the QOC indicates to the TM which logical fragments it needs for 
each query in the transaction. The TM maps the logical fragments onto a set of 
physical fragments, and selects the candidate sites for all queries of the tran
saction in a way that maximizes the transaction optimization space. The TM 
then responds with availability and consistency information to the TO. The pre
access optimization applies ACID restrictions in the choice of the sites. This 
for example could include ensuring that the quorums formed are sufficiently 
large. 

In the second phase, or post-access optimization phase, the TO uses the 
availability and consistency information from the TM to rewrite the queries 
and to design an efficient overall execution plan. This phase starts after ini
tial communication is attempted with the remote sites initially included by the 
optimization process. All physical fragments that were selected during the pre
access phase and are currently available are locked, and at least one physical 
fragment for each logical fragment is up-to-date. The transaction optimizer 
generates the execution plan for each of its queries based on the optimization 
space determined in the pre-access phase, including the discovered realities of 
data availability, accessibility, and most importantly, up-to-dateness. 

Using the proposed two-phase optimization technique, the fine-grain de
composition effect of transaction processing (the shredding effect) can be con
trolled by a subsequent reversal composition step that groups together shredded 
elements belonging to different queries but destined to the same remote sites. 
As a result of using our transaction optimization technique, the total process
ing cost of transaction processing in replicated, distributed database systems 
can be minimized in the presence of concurrency control, replication control, 
and recovery control constraints. 

9.1.3 Chapter Organization 

The chapter is organized as follows. The rest of the introduction is devoted to 
a discussion of related work. Section 9.2 defines the problem and describes 
examples that motivate the need of transaction optimization. We specialize our 
discussion on the effects of transaction optimization in replicated distributed 
database systems. In Section 9.3, we describe the basic ideas behind our tran
saction optimization strategy and give a detailed description of our two-phase 
optimization algorithms. We also present examples that clarify the interac-
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tion between the transaction manager and the query optimizing compiler. Sec
tion 9.4 discusses the different ways the QOC can use information provided 
by the TM to globally optimize individual queries. Finally, conclusion of this 
work is given in Section 9.5. 

9.1.4 Related Work 

To our knowledge, the only work that relates to ours was proposed by Mohan 
in [Mohan, 1992]. Like this work, Mohan argued for the importance of the 
cooperation between transaction management and query optimization. Unlike 
our work that focuses on distributed transaction management including repli
cation [Helal et al., 1996a], Mohan focused on concurrency control, where 
locking information was made available to the query optimizer, so that the lat
ter makes intelligent decisions. For example, at some instances, locking was 
avoided by taking advantage of the isolation level of the optimized query in 
execution. A major difference between our optimization and Mohan's is that 
his comes from sacrificing the isolation property of transactions. In our opti
mization, ACID properties [Gray, 1981, Gray and Reuter, 1993] of transactions 
are maintained. In another less relevant work, Samar [Samaras et al., 1995] 
proposed a two-phase commit optimization in commercial distributed environ
ments. 

The classic survey paper for relational query optimization is [Jarke and 
Koch, 1984]. Also, a condensed survey and a good bibliographical resource 
on the query optimization problem is given in [loannidis, 1996]. 

9.2 PROBLEM DEFINITION 

As evident in the example given in Figure 9.1, if the shredding effect of tran
saction management goes unoptimized, processing and communication reso
urces will be wasted due to the repeated overhead associated with every shred
ded element. In general, the transaction manager should optimize transactions 
to choose quorums so as to cluster accesses to physical fragments that can be 
made from the same site. 

Quorum selection heuristics can be used in conjunction with a particular set 
of optimization objectives. These objectives could be 

1. to minimize the number of communication messages, 

2. to balance the load and reduce any skewed access in the system, or 

3. to minimize response time even at the expense of broadcast messages. 

Each one of these objectives impacts how quorums are selected. However, quo
rum selection is constrained also by the operational definition of the quorums 
themselves (the quorum intersection rules [Thomas, 1979, Gifford, 1979]). 
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The following example demonstrates an optimization that can be done dur
ing quorum selection. Assume that a distributed database system consists of 
seven sites, where Sj stands for site i (1 ~ i ~ 7). Logical data items A, B, 
C, have 5, 4, and 3 physical fragments, respectively. The physical fragments 
(replicas) of A are stored at S2, S3, Ss, S6, and S7. Those of B are stored at 
Slo S3, S4, and Ss, and those of C are stored at S4, Ss, and S6. Assume that 
the majority-consensus protocol is used for replica control. Further, assume 
that we have a transaction Tl, consisting of queries that access logical frag
ments A, B, and C. According to quorum parameters (weight of fragments 
and read/write thresholds), Tl must access at least three-copies quorum for A, 
two-copies quorum for B, and one-copy quorum for C. These assumptions are 
summarized in Table 9.1. 

Assume the replicas of A at S2, S6, and S7, and those of Bat Sl and S3, 
and those of C at S4 are selected for Tl as the candidate sites for the formation 
of the required quorums. The transaction manager of Tl then must contact a 
total of six remote sites to form the required quorums. Using different replicas, 
quorum formation of A could include copies at S3, Ss, and S6, and that of B 
could include copies at S3 and Ss, and that of C could include copies at Ss. 
Compared to six sites, this selection of quorums results in communication with 
only three sites. The selection of quorums therefore affects the size of the set 
of spanning sites. Because this optimization concerns all of the quorums that 
must be chosen for all queries in Tl, we call this process of minimizing the 
number of sites accessed transaction optimization. 

Table 9.1 Allocation table of replicas and required quorums for T1. 

Sites size of 

\ required 
DB items Sl S2 S3 S4 Ss S6 S7 quorum 

A ..; ..; ..; ..; ..; 3 
B ..; ..; ..; ..; 2 
C ..; ..; ..; 1 

1st Quorum B A B C A A 6 sites 
2nd Quorum - - A,B - A,B,C A - 3 sites 

The goal of the transaction optimization process is as follows: Each tran
saction accesses a set of logical fragments 8 j , 1 ~ i ~ m during the course of 
executing its queries and updates. Let d(8j ) be the set of sites which contain 
physical replicas for logical fragment 8j. Then let the subset of these that are 
available be represented by the function A(d(8j)). If the transaction requires 
a quorum of I replicas, then let (Q(A(d(8 j)))) be the set of all sets of size I 
containing fragments from sites A (d( 8 j ))). This is the set of all available quo
rums (by site). Then, for each logical fragment i, we want to select one of these 
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quorums, qi = q(Q(A(d(8d))) in such a way that minimizes the size of 

If several such options are available, we can arbitrate by choosing the quorums 
that are best from the standpoint of optimizing the individual queries. 

In the following section, we present our transaction optimization strategy 
that aims at minimizing the transaction shredding effect, and that also mini
mizes the set of spanning sites . We show how the transaction manager coop
erates with the transaction optimizer to achieve this optimization while main
taining the consistency of the data. 

9.3 A NOVEL TRANSACTION OPTIMIZATION STRATEGY 

In this section, we describe a new transaction optimization strategy that is fol
lowed for every operation on logical fragments. For each logical fragment, 
the pre-access phase attempts to lock a superset of its quorum (define this as a 
quorum superset) that will best suit the set of queries and updates that access 
it. This may involve giving less preference to copies with high communication 
cost, choosing a subset of the available replicas, or preferring a superset that 
has the highest affinity with other quorum supersets and extends the spanning 
set of sites accessed by the transaction as little as possible. Once all quorum 
supersets of the same transaction are decided, piggyback messages are sent to 
the remote sites. These messages attempt to access the version information for 
each copy, locking the fragment appropriately for use by the queries and up
dates in the transaction and returning its version information. Note that at least 
one of the replicas of each logical fragment accessed will be current. Also, the 
TM will detect if no message is returned in a reasonable time, and mark that 
site as being unavailable. 

Based on the replies, the post-access optimization proceeds. The replies 
indicate the up-to-dateness (or the degree of mutual consistency) among the 
copies. If all copies are up-to-date, better optimization will be possible. On the 
other hand, if only one copy is up-to-date, optimization becomes limited, and 
the cost of execution-time copying of the most up-to-date copy to other replicas 
should be weighed against the loss of parallelism. The post-access phase first 
weighs the relative merits of accessing the different fragments at each site, 
factoring up-to-dateness, and retrieval cost for all available fragments into a 
single cost metric that it uses for comparison. The result of this evaluation is 
a prioritized list of sites to use when accessing the physical fragments in the 
query. 

Once the prioritized list is generated, the post-access phase sets up one or 
more waves of piggyback messages (depending on the structure of the tran
saction). First, it processes the queries, then the updates. For each query, it iso
lates out the monodatabase subqueries, taking into account the cost information 
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from the pre-access phase and the prioritized list. It adds each monodatabase 
subquery to the piggyback message to the site it must execute on. It then ana
lyzes the updates together. Given an update requiring a write quorum of q, it 
piggybacks updates onto the messages for at least q sites, favoring sites that al
ready have messages being sent to them, and sites where multiple updates can 
be executed. As with the pre-access phase, "extra" updates may be generated 
if piggyback messages are being sent to more than q of the logical fragment's 
sites, as these updates can be done easily and will increase the consistency of 
the data. 

In the following, we give the details of the pre-access and the post-access 
optimization phases. 

9.3.1 Pre-Access Optimization 

The first phase (pre-access phase) of our transaction optimization attempts to 
select a set of likely sites to fulfill the quorum requirements for each logical 
fragment. It attempts to lock all physical fragments relevant to the transaction 
for reading or writing as needed, and returns the version and size information 
for each such physical fragment. The choice of sites to access is made with the 
following objectives in mind: 

1. Minimize the size of the spanning set (number of remote sites that must 
be contacted on behalf of the transaction). 

2. Minimize the cost of the spanning set (communication and computation 
cost function) of the remote sites. 

3. Minimize the total number of messages exchanged on behalf of the tran
saction. 

4. Maximize (at minimal or no cost) the ability to attain mutual consistency 
among the copies of the logical fragments accessed by the transaction 
given the above constraints. This optimization supports the subsequent 
post-access optimizations that will be discussed in Section 9.3.2. 

The pre-access phase of the optimization is implemented by the Algorithm 1 
whose details are shown in Figure 9.3. This algorithm takes as its input an 
AllocationTable like the one shown in Table 9.2. In this table, for each LFi, 
RemainingQuorum (shown in Algorithm 1 but not in Table 9.2) is the number 
of copies yet to be selected for the read/write quorum. It is initialized to the re
quired number of copies for a quorum (possibly with one or more extra copies 
if the network is failure-prone). For each Sk, EffectiveReplicas is the number of 
physical fragments at the site whose quorums have yet to be filled. It is initial
ized to the number of logical fragments it has available, and RoundTripTime is 
set to the last known round-trip-time to the site Sk. 

During computation, Algorithm 1 computes the RemainingCost as follows: 
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Algorithm 1 
Pre-Access Optimization (AllocationTable) returns Piggy

backMsgSet. 
Input: 

1. Set of logical fragments {LFj, 1 ~ i ~ m}. 
Output: 

1. ResultSet, a minimum cost spanning set over all LFj. 
Resultset is the union of all selected quorums for LFj. 

2. A set of piggyback messages 1-to-l mapped to ResultSet. 

ResultSet = 0. 
WHll..E some RemainingQuorum(LFj) in (1 ~j ~ m) =F 0 DO 

Select Sk with minimum RemainingCost. 
If a tie, favor a Sk already in ReswtSet. 

ResultSet = ResultSet U {Sk} 
FOR EACH LFj that has a replica at Sk DO 

Mark: the entry of Sk'S column of LF;'s row. 
Remainin~Quorum (LFj) -= 1. 
IF (RemamingQuorum (LFj) = 0) DO 

FOR EACH column S, that has a replica of LFj 
EffectiveReplicas (S,) -= 1. 

END /I if sIze of RemainingQuorum becomes 0 
END /I for each LFi at Sk 

END /I while there is a ReminingQuorum somewhere to select 
/I Piggyback requests to get one message per site 

FOR EACH Sk in ResultSet DO 
Piggyback all marked entries of Sk into one message. 
FOR EACH unmarked entries of Sk for some LF m 

Append LF m to Sk'S piggyback message. 
END /I piggback loop 
RETURN set of piggyback messages. 

END 

Figure 9.3 Pre-access optimization algorithm 
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Table 9.2 Example of allocation table input to pre-access algorithm. 

Sites size of 

\ required 
DB items Sl S2 S3 S4 S5 S6 S7 quorum 

A ..j ..j* ..j* ..j* ..j 3 
B ..j ..j* ..j ..j* 2 
C ..j ..j* ..j** 1 

Effective Replicas 1 1 2 2 3 2 1 
Round Trip Time 30 30 30 30 30 30 30 

. . RoundTripTime(Sk) 
RemammgCost(Sk) = EffectiveReplicas(Sk). 

This cost metric favors sites with a short round trip time (as remembered from 
previous accesses to the site) and a large number of physical fragments relevant 
to the transaction. When no relevant copies are left at a site, RemainingCost 
increases to 00. 

Note that with the input given by Table 9.2, the quorum supersets selected 
by Algorithm 1 would be, for logical fragment A, sites S3, S5 and S6, for logical 
fragment B, sites S3 and S5, and for logical fragment C, sites S5 and "extra" site 
S6. Those marked in the table with a "*,, are selected during the execution of 
the first while loop, while those marked with a "**,, are piggybacked onto the 
message during the second step of the bottom for loop. 

The output of Algorithm 1 is a set of physical fragment names, grouped 
by site. At this point, piggybacked request messages are sent to each site to 
lock each fragment according to the type of access, and return version and size 
information for each locked fragment. Round trip time is also returned for 
future pre-access optimizations. 

To fulfill its first objective, Algorithm 1 chooses quorums by favoring the 
ones that largely intersect with the union of all quorums of the same transaction. 
Choosing quorums this way maximizes the affinity results in a minimal size 
spanning set. To fulfill its second objective, Algorithm 1 attempts to build the 
minimal spanning set under the additional constraint of minimizing the cost 
function associated with accessing the data. The cost function could take into 
account communication cost, processing cost, and other factors. 

To fulfill its third objective, Algorithm 1 uses a piggybacking technique 
where different quorum elements destined to the same remote site are grouped 
together in a single piggyback message. The intuition behind this is to re
place multiple communication exchanges between two end points by exactly 
one round trip of communication exchange. This optimization sets the up
per bound on the number of requests that can be induced by a single global 
transaction to be linear in the number of database sites, regardless of the size 
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or number of queries in the transaction. Piggybacking therefore counters the 
communication effect of transaction shredding. 

To fulfill its fourth objective, Algorithm 1 attempts to extend the set of repli
cas locked during pre-access to include extra copies at no additional communi
cation cost. This is because the additional replicas are co-located with physical 
fragments that are already being accessed, and can be locked using the same 
piggyback message. The entry marked "**,, in Table 9.2 is an example of such 
a replica. 

The locking during the pre-access phase of additional copies at the sites 
where the piggyback messages are sent helps the optimization process during 
the post-access phase both for queries and updates. For queries, which do only 
reads, requesting more copies than needed provides higher availability. For 
example, having more copies available gives the query optimizer more latitude 
in selecting copies, giving it more opportunity to select copies from the same 
site as inputs to the same operation and then pushing the operation down into 
the site. It is also useful to have extra copies in case one of the sites fails 
or becomes inaccessible, or to improve response time by using the first read 
quorum that materializes. In the case of a write operation, piggybacking can 
be used to bring more copies into sync. This leads to a higher likelihood that 
more elements of subsequent read quorums are up-to-date. This, in tum, leads 
to more parallelism that can be exploited by the QOC. 

9.3.2 Post-Access Optimization 

Once a transaction manager at a remote site receives a piggyback message, 
the piggyback is unpacked and the quorum elements are decoded, and pro
cessed individually. We skip concurrency control details (see [Ozsu and Val
duiez, 1991, Bernstein and Goodman, 1984, Ceri and Pelagatti, 1984]), and 
continue from the point where the home transaction manager (where the tran
saction originated) receives a reply from one of the piggyback messages. At 
this point, access has already been made to physical data fragments and they 
are locked. The reply message consists of the acknowledgment of the request 
and a confirmation that the fragment is locked. In addition, a timestamp (or ver
sion numver) and size for each physical fragment is included (only the size of 
the most up-to-date fragment is important). When the home transaction man
ager receives all the timestamps of a quorum, it decides on the up-to-dateness 
and the size of the fragments. It constructs an AllocationTable similar to the 
one shown in Table 9.3 before it begins the post-access optimization phase, in 
which the actual execution of the queries of the transaction begins. The "*,, 
marks essential replicas while the "**,, marks extra replicas as discussed in 
Algorithm 1. The • marks up-to-date copies while the 0 marks copies that are 
lagging behind. Algorithm 2 whose details are shown in Figure 9.4 gives the 
details of the post-access optimization phase. 
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Table 9.3 Example of allocation table input to post-access algorithm. 

Sites up-to-date size of 

\ fragment required 
DB items S3 S5 S6 size quorum 

A • ...;* 0"';* • ...;* 12K 3 
B 0"';* • ...;* 8K 2 
C • ...;* 0"';** 18K 1 

Effective Replicas 2 3 2 
Round Trip Time 30 30 30 

The objectives of the post-access phase are as follows: 

1. Ensure that accesses by different queries to the same logical fragment 
by the same transaction also access the same physical fragment, except 
when query operations are pushed down into the individual databases. 

2. Reduce the number of sites accessed, under replication. 

3. Reduce the communication cost. 

4. Optimize and decompose each query. 

In order to minimize the communication cost associated with executing a 
query, the post-access phase specifies an effective retrieval cost for each site, 
and selects quorums to minimize the total effective retrieval cost: 

EffectiveRetCost(Si) = RoundTripTime+ 

(ByteTransferTime * 
EffectiveReplicas (Sj) 

ReplicaSize) 

We perceive the actual queries and updates in a transaction to take place in 
waves, where the queries and updates for each wave are piggybacked together 
to the same site as much as possible, and the number of waves is minimized. 
For each wave, the piggybacked messages to each site are generated as shown 
in Algorithm 3 whose details are shown in Figure 9.5. 

The post-access phase takes a heuristic approach towards accomplishing its 
objectives. It works towards ensuring that accesses by different queries to the 
same logical fragment by the same transaction also access the same physical 
fragment as much as possible by always using the order SitePerm when assign
ing operations to sites. A prefix of SitePerm contains the sites in the actual 
spanning set for the transaction. No site outside of the spanning set will be 
selected for access unless some query has a very efficient plan that requires the 
use of that site. In this case, updates may also be propagated to that site. Bar
ring this circumstance, all accesses will be focused on the sites in the spanning 
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Algorithm 2 
Post-Access Optimization (AllocationTable) returns SitePenn. 
Input: 

1. Minimum cost s,panning set from Algorithm 1. 
2. Up-to-dateness mfonnation for all copies accessed 

during the pre-access phase. 
3. Cost parameters measured during the pre-access phase. 

OutP1utS:' P A Pri "zed I' f' . th . . lte enn: ontI 1st 0 SiteS m e spannmg set. 
2. AllocTable: AllocationTable with cost infonnation added. 

1* Construct an Allocation Table *1 
Make AllocTable [num replicas x spanning set size]. 
FOR EACH site DO 

EffectiveReplicas = num physical fragments in the spanning set 
accessed tiy the transaction. 

RoundTripTime = value measured in the pre-access phase. 
END 
FOR EACH logical fragment, ReplicaSize = value retrieved 

in the pre-access phase. 
FOR EACH physical fuigment, Up-to-dateness = value retrieved 

pre-access phase. 
1* Make sure you nave available quorums for logical fragments *1 
SitePenn = (). 
WHILE some RemainingQuorum(LFj) in (1 ~j ~ m) =I 0 DO 

Compute the EffectiveRetCost of each column. 
Select Sk with minimum EffectiveRetCost. 
SitePenn = ( SitePenn, {Sk} ). 
FOR EACH LFj that has a replica at Sk DO 

Mark the entry of Sk'S column of LFj's row. 
Remainin8Quorum (LFj ) -= 1. 
IF (RemamingQuorum (LFj) = 0) DO 

FOR EACH column SI that has a replica of LFj 
EffectiveReplicas (S/) -= 1. 

END /I if size of RemainingQuorum becomes 0 
END /I for each LFj at Sk 

END /I while there is a ReminingQuorum somewhere to select 
RETURN SitePenn, AllocTable. 

END 

Figure 9.4 Post-access site prioritization algorithm 
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Algorithm 3 
Post-Access 

Penn,AllocationTable) 
Message Piggybacking (Site-

returns PiggybackMsgSet. 
Input: 

1. SitePenn from Algorithm 2. 
2. Allocation table from Algorithm 2. 

Output: 
1. PiggybackMsgSet: One message per site. 

PiggybackMsgSet = 0. 
IlPiggybackMsgSet is a set of the ordered pairs {< Sk,msgs >}, 

where Sk is the site for which {msgs} are sent 
FOR EACH query qi in the current wave DO 

NewPiggy6ackMsgs = QueryOpt(% SitePenn, Alloca
tionTable); 

site. 

rum. 

back 

IlQueryOpt functionality is discussed in the next section. 
PiggybackMsgSet = PiggybackMsgSet U NewPiggybackMsgs. 
Coalesce messages in PiggybackMsgSet that go to the same 

END II For each query 

FOR EACH update Uj in the current wave DO 
UpdateQuorumCount = num replicas needed for a write quo-

FOR EACH site Sk that already has a piggyback message DO 
If Sk has a copy of the logical fragment Uj updates DO 

Add an update message to Sk'S piggyback message. 
E~ateQuorumCount -= 1. 

END 
IF UpdateQuorumCount ~ 0, move to next update. 
ELSE FOR EACH site SI that does not already have a piggy-

messa~e, in SitePenn order, DO 
Add an update message to the piggyback message for SI. 
UpdateQUorumCount -= 1. 
IF UpdateQuorumCount ~ 0, move to the next update. 

END 
END II For each update 

RETURN PiggybackMsgSet. 
END 

Figure 9.5 Post-access message piggybacking 
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set. Thus, it also accomplishes the objective of reducing the number of sites 
accessed, under replication. 

The post-access phase reduces the communication cost by minimizing the 
number of sites accessed, and also by using the cost metric EffectiveRetCost in 
selecting the physical fragments to access during a specific wave. Given a rea
sonable query optimizer, the processing cost for decomposing and optimizing 
each query should also be reduced. 

9.4 QUERY OPTIMIZATION ISSUES 

9.4.1 Query Decomposition and Site Assignment 

Query optimizers operate on individual queries, reordering their operations so 
that they can be executed more efficiently. In a distributed database setting, a 
query optimizer does the following: 

1. The query optimizer pushes down select and project operations, and re
orders joins, so that the query is expressed as a query over a set of results 
of monodatabase queries, with one monodatabase query per site; 

2. It then reorders the query from the previous step such that all of the in
terdatabase joins are done in some optimal order; [Bodorik and Riordon, 
1988] maintains that near optimal results are achieved by reordering the 
joins to minimize the total size of the partial results; and 

3. Finally, it assigns the interdatabaseoperations to specific sites. 

Query optimization in a distributed database without replication is already 
an NP-hard problem, due primarily to the complexity of reordering the inter
database join operations. In a replicated, distributed database, the first step of 
collecting together operations on the same database into monodatabase sub
queries becomes far more complex, as replicated input logical fragments need 
to be assigned sites to minimize the cost of processing the query. To do a com
plete job, the optimizer must consider all possible combinations of logical frag
ment/site assignments, optimizing the query for each assignment, and selecting 
the optimal one based on minimizing the expected cost. Clearly, good heuris
tics need to be found for this phase of the query optimization as well. However, 
as this book chapter focuses on transaction optimization, we will merely exam
ine the ways in which the QOC can exploit the information provided by the 
TM. 

Some heuristics that the QOC might use in assigning reads of logical frag
ments to sites include the following: 

• Is there a copy in some site this query is already accessing? 
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• If there is not a copy in some site this query is already using, what is 
the most desirable site (from SitePerm, output of Algorithm 2) that has a 
copy of this logical fragment? 

• For a copy selected according to one of the above criteria, is this copy up
to-date? If not, is it better to bring that copy up-to-date or use a different 
copy that is already up-to-date? 

Note that answering some of these questions requires the use of metrics defined 
over the cost information gathered from the pre-access phase. The exact nature 
and use of these metrics is specific to the query optimizer. However, fragment 
size and round-trip-time are factors in determining how much it costs to bring a 
fragment up-to-date. The first access to a site should be penalized by the whole 
round-trip-time. Also, round-trip-time and fragment size are factors in the cost 
of retrieving a relation from a site. We expect these and other metrics to be 
useful during query optimization. 

9.4.2 Interim Replication 

Interim replication allows a query optimizer to identify where the up-to-date 
replicas for some logical fragment reside, and make a temporary copy of that 
fragment in a different site to expedite the processing of a query. For example, 
if A ~ B is the original query, A and B are large relations, and the result is small, 
it could be worth the overhead to temporarily replicate B at the site where A 
resides, and perform the join operation locally at that site. 

The idea of interim replication itself is a time optimization that belongs to 
the classical query optimization domain. However, interim replication mayor 
may not be advisable for a given query. Since our pre-access phase ensures that 
at least one up-to-date copy of a logical fragment is locked, a query optimizer 
can consider interim replication as a possibility when optimizing a specific 
query, as the actual data is guaranteed to be available. 

Additionally, though, we have shown how the process of updating "extra" 
copies in the post-access phase increases the number of up-to-date copies in the 
database. Therefore, under our optimization strategy, interim replication will 
be minimized. 

9.5 CONCLUSIONS 

Query optimization and transaction processing usually work against each other. 
In a replicated distributed database, performing query optimization of transac
tions consisting of sets of queries and updates requires cooperation between 
the query optimizer and the transaction manager. This is because physical frag
ments (replicas) are stored in several sites, and a global transaction has a large 
number of shredded elements, or threads of control for specific (groups of) 
physical fragments at different sites. If the number of shredded elements is not 
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optimized, the communication cost for transaction processing may be wasted 
due to the duplication of processing in query optimization and communication, 
and the repetition of transaction processing protocols for all shred elements of 
the transaction. 

In this book chapter, we introduced an architecture that allows the tran
saction manager and the query optimizer to cooperate to reduce the number 
of shredded elements. Specifically, we introduced a two-phase transaction op
timization strategy that minimizes the number of remote sites (spanning set) 
involved in a transaction, and consequently the total number of messages re
quired for transaction processing. We introduced quorum affinity and showed 
how to chose a set of quorums with maximum intersection (Algorithm 1). 
We also introduced piggybacking of requests concerning different quorum ele
ments residing in the same remote site. This way multiple requests by the same 
transaction to different copies that reside in the same site are grouped into a sin
gle piggyback message, thus bounding the total number of messages that are 
generated by a transaction to be linear in the number of sites (n). Piggybacking 
is especially needed in replicated distributed database system to mitigate the 
shredding effect. 

We have shown how and where the proposed transaction optimization strat
egy uses classical query optimization (in the second phase), and how it coop
erates with transaction management (in the first phase) to achieve better opti
mization. 

We also utilized piggybacking by inserting additional updates to additional 
copies that are not part of the quorums. Such insertion (or piggyback expan
sion) increases the degree of mutual consistency among the copies and in the 
same time incurs very little additional overhead. At any degree of mutual con
sistency, transaction execution is ACID, and one-copy serializability is guar
anteed. The higher the degree of mutual consistency, the more likely it is that 
future transactions will be able to find a nearby, up-to-date read quorum, thus 
aiding future optimization efforts. 
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10 AN EXTENSIBLE APPROACH TO 
REALIZING ADVANCED TRANSACTION 

MODELS 
Eman Anwar, Sharma Chakravarthy 

and Marissa Viveros 

Abstract: Use of databases for non-traditional applications has prompted the 
development of an array of transaction models whose semantics vary from the 
traditional model, as well as from each other. The implementation details of 
most of the proposed models have been sketchy at best. Furthermore, current ar
chitectures of most DBMSs do not lend themselves to supporting more than one 
built-in transaction model. As a result, despite the presence of rich transaction 
models, applications cannot realize semantics other than that provided by the 
traditional transaction model. 

In this paper, we propose a framework for supporting various transaction 
models in an extensible manner. We demonstrate how ECA (event-condition
action) rules, defined at the system level on significant operations of a tran
saction and/or data structures such as a lock table, allow the database implemen
tor/customizer to support: i) currently proposed extended transaction models, 
and ii) newer transaction models as they become available. Most importantly, 
this framework allows one to customize transaction (or application) semantics in 
arbitrary ways using the same underlying mechanism. Sentinel, an active object
oriented database system developed at the University of Florida, has been used 
for implementing several extended transaction models. 

10.1 INTRODUCTION 

The suitability of the traditional transaction model (with ACID properties) for 
serving the requirements of business-oriented applications has been long estab-
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lished. However, as the use of database management systems (DBMSs) encom
pass newer and non-traditional applications, it is necessary to re-examine the 
appropriateness of the traditional transaction model. This reassessment reveals 
that the ACID properties are too restrictive and in some cases inadequate for 
serving the requirements of non-traditional applications. Transactions in tra
ditional DBMSs are implicitly assumed to be competing for resources instead 
of cooperating for accomplishing a larger task. This fundamental assumption 
imposes restrictions on the use of the traditional transaction model for applica
tions other than the one it was intended for. For example, a strong demand for 
cooperation exists in CAD and software engineering environments. The tra
ditional transaction model prohibits any form of cooperation by requiring the. 
isolation of uncommitted transaction results. As another example, in a work
flow application, some of the (sub)tasks that deal with invoices may have to 
satisfy the ACID properties (on a small portion of the database) whereas other 
tasks may work on their own copy of the data objects and only require synchro
nization. 

The current solution for meeting the diverse requirements of novel applica
tions has been the proposal of advanced or extended transaction models such 
as nested transactions, Sagas, ConTract model, and Flex transactions [Moss, 
1981, Garcia-Molina and Salem, 1987, Reuter, 1989, Elmagarmid et al., 1990]. 
These transaction models relax the ACID properties in various ways to bet
ter model the parallelism, consistency, and serializability requirements of non
traditional applications. Unfortunately, there is no universal transaction model 
that satisfies the requirements of all known classes of applications. Rather, each 
transaction model tends to be application-specific, i.e., serve the requirements 
of a particular class of applications. Consequently, since a DBMS typically 
supports only one transaction model, a DBMS can only serve the requirements 
of a particular class of applications. Therefore, it is critical that the solution to 
this problem aims at a framework which readily supports multiple transaction 
models, as well as support them on the same DBMS. Choice of a transaction 
model is usually based on application needs and is best made at application 
development time, not at database development/configuration time. This ap
proach, if successful, will obviate the need for developing DBMSs suited for 
specific application classes. It is equally important to avoid hardwiring the se
mantics of all known transaction models (the kitchen-sink approach), as this 
increases runtime checking as well as the footprint of the transaction manager. 
In summary, there is a need for: i) a DBMS to be configured with different 
transaction models as needed by the application at run time, ii) a DBMS to 
support more than one transaction model at the same time, and iii) configur
ing/selecting a transaction model by the user. Below, we identify the goals of 
our research. 
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10.1.1 Goals 

• Provide a unifonn framework which allows for the specification and en
forcement of various transaction models! (including the traditional model) 
in the same underlying DBMS. More importantly, many scenarios require 
the specification and enforcement of dependencies amongst transactions 
where these dependencies do not necessarily confonn to any particular 
transaction model. Consequently, we aim at a general-purpose frame
work where it is possible to express and enforce both existing transaction 
models as well as arbitrary transaction semantics in the fonn of tran
saction dependencies. Transaction dependencies need to be supported to 
accommodate workflow applications. 

• Survey of the literature reveals a general tendency to propose advanced 
transaction models at the conceptual level only without paying much at
tention to the actual implementation details in tenns of data structures 
and primitive operations that are common to various transaction models. 
One of the main objectives of our approach has been to implement various 
transaction models to understand additional data structures/operations re
quired for each transaction model as well as to provide a platfonn for an
alyzing the behavior of applications adhering to various transaction mod
els. In essence, for various transaction models, the methodology pro
posed in this paper provides, at the implementation level, what ACTA 
[Chrysanthis and Ramamritham, 1990] provides at the conceptual level. 
In other words, our approach can be viewed as taking the conceptual for
malism of transaction models provided by ACTA [Chrysanthis and Ra
mamritham, 1990] and transfonning them to their operational fonn to 
gain insights into the implementation issues. 

• Currently, a large number of transaction models as well as variants of ex
isting models exist. This proliferation is partly due to the diverse require
ments needed by different applications as well as researchers extending 
a transaction model to its conceptual limit. We aim at using the actual 
implementation of transaction models as a platfonn for understanding 
their similarities and differences. This in turn may identify relationships 
amongst transaction models such as one transaction model subsuming 
another. Consequently, it may be possible to reduce the number of tran
saction models which need to be considered. 

• Understand the interactions of different transaction models. In other 
words, what are the semantics of running multiple concurrent applica
tions each adhering to a different transaction model? 
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10.1.2 Related Work 

Several alternative approaches to supporting various transaction models have 
been proposed by the research community. Some of these approaches have 
been incorporated into research prototypes although commercial DBMSs in
corporate very few of these research results [Mohan, 1994]. 

• Carnot [Attie et al., 1992] has taken the approach of providing a general 
specification facility that enables the formalism of most of the proposed 
transaction models that can be stated in terms of dependencies amongst 
significant events in different subtransactions. CTL (Computational Tree 
Logic) is used for the specification and an actor based implementation 
has been used for implementing task dependencies. 

• ASSET [Biliris et al., 1994] identifies a set of primitives using which a 
number of extended transaction models can be realized. Implementation 
of the primitives has been sketched. 

• TSME [Georgakopoulos et al., 1994] provides a transaction processing 
system toolkit which allows for the specification and enforcement of tran
saction dependencies. Rules are used as a mechanism for enforcing these 
dependencies. 

• [Barga and Pu, 1995] adopt a layered approach to realizing various tran
saction models. The notion of adapters are used to extend entities such as 
the lock manager with operations and data structures to support different 
transaction models. 

• ACTA [Chrysanthis and Ramamritham, 1990] proposed a conceptual
level framework for specifying, analyzing, and synthesizing extended 
transaction models using dependencies. 

• CORD [Heineman and Kaiser, 1997] proposed a DBMS architecture with 
a Concurrency Control Language (CCL) that allows a database applica
tion designer to specify concurrency control policies to tailor the behavior 
of a transaction manager. They have designed a rule-based CCL, called 
CORD, and have implemented a runtime engine that can be hooked up to 
a conventional transaction manager to implement the sophisticated con
currency control required by advanced database applications. 

• A proposal for supporting advanced transaction models by extending cur
rent transaction monitors' capability [Mohan, 1994]. 

In this paper, a pragmatic solution is proposed by adapting the active data
base paradigm for modifying the system behavior (as opposed to the applica
tion behavior) using sets of ECA rules. The basic idea is to allow the database 
administrator (DBA) to build or equivalently emulate the desired transaction 
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behavior by using ECA (event-condition-action) rules to either: i) modify the 
behavior of a transaction model supported by the system or ii) support differ
ent transaction models (including the traditional one) by providing rule sets on 
primitive data structures. Our approach differs from current approaches in that 
we use the active database paradigm as a mechanism for supporting extended 
transaction models in a novel way2. Our approach also models and enforces 
auxiliary semantics (other than those defining transaction semantics) useful for 
a number of applications within the same framework. For example, to reduce 
the possibility of rollbacks and unnecessary waits by transactions, it might be 
necessary to define semantics which specify thresholds on the number of long
lived transactions in the system. 

This paper is structured as follows. Section 2 outlines our approach based on 
the active database paradigm as well as presenting details of several alternative 
ways for supporting extended transaction models in an active database envi
ronment. Section 3 describes Zeitgeist's transaction manager (an OODBMS 
developed at Texas Instruments) and how we incorporated active capability at 
the systems level into Zeitgeist producing Sentinel. The implementation details 
for realizing transaction models using this platform are given in Section 4. A 
discussion of the extensibility of our approach is presented in Section 5 while 
conclusions and future directions for research are given in Section 6. 

10.2 OUR APPROACH 

A transaction performs a number of operations during the course of its execu
tion - some specified by the user and some performed by the system to guaran
tee certain properties. The semantics of the operations performed by the system 
differ from one transaction model to the other. For instance, the semantics of 
the commit operation in the traditional transaction model entails updating the 
log, making all updates permanent in the database, and releasing all locks held. 
This is in contrast to the commit of a subtransaction (in the nested transaction 
model) where all locks are inherited by the parent and the updates not made 
permanent until all superior transactions commit. As another example, a tran
saction in the traditional transaction model can acquire an exclusive-lock on 
an object if no other transaction holds any lock on that object. This is differ
ent from the nested transaction model where a subtransaction may acquire an 
exclusive-lock on an object even if one of its ancestor transactions holds a lock 
on that object. Moreover, some transactions perform operations which are very 
specific to that transaction model (and not shared by other transaction models). 
As an example, in the Split transaction model, a transaction may perform the 
operation split which causes the instantiation of a new top-level transaction and 
the delegation of some uncommitted operations to it. 

It is apparent that in order to support different transaction models in the same 
DBMS, one should not hardwire the semantics of operations such as commit, 
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abort, read and write.3 Instead, a flexible mechanism is needed for associating 
computations with these system operations, as well as with some operations 
performed by the system on behalf of users, where these computations define 
the semantics of these operations depending on the transaction model chosen 
for executing a specific application. Furthermore, for this mechanism to be 
effective and extensible, it should be independent of the programming model 
and the environment. And this is precisely what active capability supported at 
the system level offers. 

Briefly, active DBMSs couple database technology with rule-based pro
gramming to achieve the capability of reacting to database stimuli, commonly 
referred to as events. Active DBMSs consist of passive databases and a set of 
event-condition-action (ECA) rules. An ECA rule specifies an action to be ex
ecuted upon the occurrence of one or more events, provided a condition holds. 
Therefore, by treating the significant operations performed by transactions as 
events and executing particular computations (i.e., condition checking and ac
tion execution) when these events are detected, it is possible to realize various 
transaction semantics. For example, consider the acquire-exclusive-lock oper
ation. By treating this operation as an event, it is possible to associate with it 
one or more condition-action pairs ClAl, C2A2, ... , CnAn, where each CiAi de
fines the semantics of this operation in a particular transaction model. Hence, 
to obtain the semantics of lock acquisition in the nested transaction model, the 
CiAi defining its semantics should be activated. Consequently, obtaining the 
transaction semantics of a particular transaction model entails activating the 
correct CiAi pair for each operation defined in the desired transaction model. 

There are many advantages to using active capability as a mechanism for 
realizing various transaction models. First, the utility of active capability for 
supporting application specific behavior has been well established, as can be 
observed by the presence of this capability in almost all commercial models, 
its introduction into SQL3, and the number of research prototypes being devel
oped. The availability of expressive event specification languages (e.g., Snoop, 
Samos, Ode, Reach) that allow sequence, conjunction and time related events 
can be beneficial for modeling some of the synchronization aspects of work
flow and other transaction models. 

Currently, most of the DBMSs (commercial or otherwise) provide active ca
pability at the application level. This allows the user/application developer to 
specify events and rules on application level data (objects) to add additional be
havior to applications asynchronously. None of these DBMSs support changes 
to the DBMS behavior asynchronously, a feature necessary for supporting dif
ferent transaction models. Once this capability is available, it can be used for 
other purposes, such as restricting the number of concurrent transactions, reor
ganization of B-trees, etc. However, the presence of active capability at the ap
plication level does not guarantee that it can be used at the system level as well. 
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In fact, depending upon the approach taken it may not even be easy/possible to 
port the design to the systems level without great difficulty. 

We will illustrate later that our approach to the design of active capability 
allowed us to port it to the systems level with relative ease. In fact, the imple
mentation discussed in this paper supports both application level and system 
level active capability in a uniform manner. To the best of our knowledge, 
most of the commercial systems as well as research prototypes do not support 
active capability at the systems level. 

10.2.1 Realizing Transaction Models using EGA rules 

Active database paradigm can be used in a number of ways to support flexi
ble transaction models. Below, we examine these alternatives and discuss the 
merits of each approach, ease of its implementation, and the extent to which it 
can support extended transaction models. The alternatives for supporting dif
ferent transaction given a DBMS can be broadly classified into the following 
approaches: 

1. Provide a set of rules that can be used from within applications to get 
the desired transaction semantics. This approach assumes that the un
derlying DBMS supports some transaction model. In this approach, the 
desired transaction semantics is obtained by enabling the rule sets pro
vided. For example, we assume that there is a set of rules for sagas that 
can be enabled by a command giving the user the semantics of the saga 
transaction model. Without any loss of generality we shall assume that 
rules are in the form of ECA rules, i.e., event, condition and action rules 
(along with coupling modes, event contexts, priority etc.). This approach 
certainly enhances the functionality of the system and is a concrete ap
proach towards supporting extended transaction models. 

One advantage of this approach is that new rule sets can be defined (of 
course by a DBA or a DBC) and added to the system. It may also be 
possible to add additional rules to slightly tweak. the semantics of a tran
saction model. A limitation is that the set of rules defined are over the 
events of the transaction model supported by the system, e.g., commit, 
abort, etc. Consequently, only those transaction models which are very 
similar to the underlying transaction model can be expressed using this 
alternative. To elaborate, the Split transaction model cannot be expressed, 
if the underlying transaction model is the classical ACID model, since the 
split transaction primitive is not provided by the traditional transaction 
model. 

2. Identify a set of critical events on the underlying data structures used by 
a DBMS (such as the operations on the lock table, the log, and deadlock 
and conflict resolution primitives) and write rules on these events. This 
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approach does not assume any underlying transaction model. This ap
proach can be used to support different transaction models including the 
traditional transaction model. In this approach, system level ECA rules 
are defined on data structure interfaces to support flexible transactions. 

A distinct advantage of this approach is that it will be possible to support 
workflow and newer transaction models irrespective of whether they are 
extensions of the traditional transaction model. To elaborate, the rules are 
now defined on low-level events which act on the data structures directly 
thereby providing finer control for defining transaction semantics. For 
instance, a rule can be defined on lock table events such as acquire-lock 
and release-lock. This is in contrast to defining rules on high-level events 
such as commit, abort etc. Another advantage is that a DBMS can be con
figured using a subset of the transaction models available at the system 
generation time. This approach may be able to offset the performance 
disadvantage currently observed in active database systems. The system 
designer will be in a better position (relatively) to support or extend tran
saction models.4 

This approach is similar to the one taken in [Unland and Schlageter, 
1992]. They introduce a flexible and adaptable tool kit approach for 
transaction management. This tool kit enables a database implemen
tor or applications designer to assemble application-specific transaction 
types. Such transaction types can be constructed by selecting a meaning
ful subset from a starter set of basic constituents. This starter set provides, 
among other things, basic components for concurrency control, recovery, 
and transaction processing control. 

3. This is a generator approach using the second alternative. In this approach 
a high-level specification of a transaction model (either by the user or 
by the person who configures the system) is accepted and automatically 
translated into a set of rules. The specification is assumed at the compile 
time so that either rules or optimized versions of code corresponding to 
the rules are generated. The advantage of this approach is that the burden 
of writing rules is no longer on the DBA. 

In this paper, we use the second approach which we believe is versatile and 
meets most of our goals mentioned earlier. Our approach for supporting a given 
transaction model Tx using active capability is essentially a three step process: 

1. Identify the set of operations executed by transactions in the model un
der consideration. Both application visible and internal operations are 
taken into account. For example, application visible operations such as 
begin transaction and internal operations such as acquire lock are con
sidered. Some of these operations are treated as events, i.e., their execu
tion is trapped by the active DBMS. It should be emphasized that not all 
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events detected are associated with operations implemented in the sys
tem. Rather, these events can be abstract or external events. 

2. The second step involves identifying the condition which needs to be 
evaluated when an event occurs (e.g., checking for conflicts at lock re
quest time) and the action to be performed if the condition evaluates to 
true (e.g., granting the lock to the requesting transaction). The events, 
conditions and actions yield pools of events, conditions, and actions, re
spectively, which are stored in the DBMS. These pools, depicted in Fig
ure 10.1, form the building blocks from which rules are constructed. 

3. The final step involves combining an event, a condition and an action to 
compose an ECA rule. Each ECA rule defines the semantics of a smaller 
unit of the transaction model under consideration. For instance, an ECA 
rule may define the semantics of the acquire lock operation. This process 
is repeated until a rule set defining the entire semantics of a transaction 
model, is built. We allow for the cascading of rule execution. This occurs 
when the action component of a rule raises event(s) which may trigger 
other rule(s). 

This approach allows sharing of the building blocks in several ways. Events, 
conditions, and actions are shared across rules sets composed for different tran
saction models. In addition, intermediate rules can also be shared by other 
rules. Although Figure 10.1 shows a single level for clarity, a hierarchy of 
rules is constructed from the building blocks. The overlap of events, condi
tions and actions for different rule sets clearly indicates the modularity and 
reusability aspect of our approach. This is further substantiated in the section 
on implementation. 

To summarize, our approach encapsulates the semantics of a transaction 
model into a set of ECA rules. These rules are derived from the analysis of 
each transaction model as well as examination of their similarities and differ
ences. This encapsulation is done at the level of significant operations (e.g., 
begin-transaction, commit) that can be treated as events and/or at the level of 
internal operations on data structures (e.g., lock-table). Once the semantics of 
a transaction model is composed in terms of these building blocks, rules are 
written for each block. The availability of begin and end events are useful to 
model the semantics without having to introduce additional events. Also, the 
availability of coupling modes and composite events are used to avoid explicit 
coding of control as much as possible. 

The mechanism described above can also be applied for customizing auxil
iary behavior. By trapping the operations that are executed by applications, it 
is possible to perform auxiliary actions as required by the user/system designer 
(Le., other than those defining the transaction semantics). A good example of 
this is in systems where optimal performance is achieved when the number 
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Figure 10.1 Rule Composition 

of transactions in the system does not exceed a particular threshold (e.g., load 
balancing and buffer sizes). Therefore, it is necessary to check the number of 
transactions and not allow the threshold to be exceeded. This can be accom
plished by trapping the operation begin transaction and checking the number 
of active transactions at that point. If the number is found to be less than the 
threshold, then allow the transaction to continue execution, otherwise either 
abort the transaction or make it wait. Similarly, in banking applications there 
may be a limit on the number or amount of withdrawals in a day. By defining 
a rule which is triggered upon detection of the begin operation, it is possible 
to check the number or amount of withdrawals appropriately and either con
tinue or abort the transaction. To summarize, not only does the active database 
paradigm allow for the specification of transaction semantics but arbitrary se
mantics as well in an extensible manner. 

10.3 IMPLEMENTATION DETAILS 

Sentinel, an active Object Oriented Data Base Management System (OODBMS) 
developed at UF, was used as the platform for implementing the traditional 
transaction model, nested transactions and Sagas using ECA rules. Sentinel 
was developed by incorporating system level active capability into Zeitgeist, an 
object-oriented DBMS developed at Texas Instruments. In the following sec
tions, we first begin by describing Zeitgeist with special emphasis given to its 
transaction manager. We then proceed by explaining how active behavior was 
incorporated at the systems level into Zeitgeist and then used to realize various 
transaction models. 

10.3.1 Zeitgeist 

Zeitgeist is an OODBMS which uses the C++ language to define the 00 con
ceptual schema as well as to manipulate the internal object structure. Per-
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sistence is achieved by translating C++ objects into record fonnat and storing 
them in an underlying storage manager, Ingres 6.0.3 in this case. A background 
process creates a shared memory segment (where the transaction manager's 
data structures are maintained) as well as resolves any deadlocks. Concurrency 
control is provided by maintaining lock infonnation in the shared memory seg
ment and regulating its access using semaphores. Recovery is provided by the 
storage manager. 

classZILtx ( 

public: 

friend class zgUII: 
friend class waiVor; 

long lid; /Idle lransacdon identifier 
int pid; lithe process identification Dumber of the ttaDSaCtion 

loog sgo; II the storq:e group Dumber where the object on which the transactioo is blocked is stored 

long obno; lithe object number of the object on whicb tbe transaction is blocked 

char slaWS; /I the current SlaWS of the b3Dsacticm 

daar lockmode; lithe lockmodc requested for the objetl on wbidl the II'aDSaCtion is blocked 

int semno; /I the semapbore number on which the transaction is queued 
zgLbJink • bead; /llIlis points 10 a linked list of die locks cum:ndy held by the transaction 

zgCtx • nextr; /I tbis poinu to the next IraDsaction bashed to this same bucket 

IImetbods 

int remove_tx(zILshmem *); 

long geLtidO (return tid;} 

long 5eLUd(long l){tid = 1; return tid;} 

cbar JeLstatusO {retlDD status;} 

In' seo.Jock(long.long. -J; 
int seUo<:k-no_wail(long,long. char); 

int upgrade_lock.....no_wait(lon8. long. char): 

int end.J"-O: 
iot cleanup(); 

zlLtx(zgubmem *); 

-z,UxO{}: 

Figure 10.2 The Transaction Class. 

Zeitgeist's transaction manager is implemented using three classes namely, 
the zeitgeist class, the zgUX class, and the zgt..ht class. The zeitgeist class 
implements transaction operations such as aborLtransaction, begiILtransaction 
and commiLtransaction while the zgux class implements operations related 
to locks such as lock-release and lock-acquisition. The zgLht implements 
the lock hash table. Due to space considerations we only depict the zgux 
class definition which is given in Figure 10.2. The transaction manager's data 
structures (e.g., lock table, hash table) are maintained in shared memory. The 
zgLinit process (in the background) is responsible for creating and attaching 
the shared memory segment, for allocating and initializing a specific number 
of semaphores, and for creating and initializing the data structures. This pro
cess must be executed before any application can begin execution. Access to 
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these data structures is regulated using exclusive semaphores. The relationship 
between the above mentioned three classes is illustrated in Figure 10.3 . 

...... M...., 

b P QeJ\1p lie 1ocbIode.1IO 0 

p ..... Dc 

Figure 10.3 Architecture of Zeitgeist's Transaction Manager. 

10.3.2 Making Zeitgeist Active at the Systems Level 

Sentinel [Anwar et al., 1993, Chakravarthy et al., 1994, Chakravarthy et al., 
1995] is an active object-oriented DBMS that seamlessly integrates ECA rules 
into the object-oriented paradigm. The Sentinel architecture is an extension 
of the passive Zeitgeist system architecture [Texas Instruments, 1993]. The 
Zeitgeist class hierarchy was modified to include new class definitions which 
are necessary for supporting active capability. Figure 10.4 depicts the class 
hierarchy of Sentinel with respect to the Zeitgeist classes. Specifically, the 
classes introduced are the Reactive, Notifiable, Event, Rule and Event Detector 
classes. Note that the classes introduced for making Zeitgeist active (by making 
it a subclass of the Reactive class as shown in Figure 10.4) is the same for 
supporting both application- and system-level active capabilities. By making 
the Zeitgeist class Reactive, all system-defined methods are potential events. 
Similarly, by making any application object reactive (by making it a subclass 
of the Reactive class), any method of that class are potential events. 

In Sentinel, objects are classified into three categories: passive, reactive and 
notifiable. Passive objects are conventional objects which receive messages, 
perfonn some operations and then return results. They do not generate events. 
An object that needs to be monitored (by infonning other objects of its state 
changes) cannot be passive. Reactive objects, on the other hand, are objects 
that need to be monitored (i.e., on which rules will be defined). A reactive 
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object can declare any, possibly all, of its methods as an event generator. All 
methods declared as event generators constitute a reactive object's event in
terface. Once a method is declared as an event generator, its invocation will 
generate a primitive event. The primitive event can be generated either be
fore or after the execution of the method depending on which event modifier 
was specified by the user. The event will be generated before execution and 
after execution if the user specifies the begin and end modifier, respectively. 
In addition, if the user specifies both modifiers then two primitive events will 
be generated, one before execution and one after execution of the respective 
method. Lastly, Notifiable objects are those objects that are capable of being 
informed of the events produced by reactive objects. Therefore, notifiable ob
jects become aware of a reactive object's state changes and take appropriate 
measures (by evaluating conditions and executing actions) in response to those 
state changes. Notifiable objects subscribe to the primitive events generated by 
reactive objects. After subscription, the reactive objects propagate their gener
ated primitive events to the notifiable objects. Events and rules are examples 
of notifiable objects. Rules receive events from reactive objects, send them to 
their local event detector, and take appropriate actions. Event detectors receive 
events from reactive objects, store them along with their parameters, and use 
them to detect primitive and complex events. In the following paragraphs we 
briefly outline the implementation of the Reactive, Notifiable, Event and Rule 
classes. The reader is referred to [Anwar et al., 1993] for a detailed implemen
tation of these classes. 

--- --- -- --- --- - ----- -- ----- ---- ----- ------ ---- -- -------- --, , , 

, , :. ~i~~~,- ___________________________________________________ _ 

Figure 10.4 System Level Active Functionality. 

The Reactive Class: The public interface of the Reactive class consists of 
methods by which objects acquire reactive capabilities. For an object to be 
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reactive, i.e., have the ability to generate primitive events when methods in its 
event interface are invoked, it must be an instance of a class derived from the 
Reactive class.5 Subclasses of the Reactive class will inherit several methods 
the most important of which is the Subscribe method. This method allows No
tifiable objects to subscribe to the primitive events generated by instances of 
subclasses of the Reactive class. Once this subscription takes place, the notifi
able object will be informed of the primitive events generated by the Reactive 
object. For example, if X is a Reactive object and Y is a Notifiable object, then 
Y will be informed of the primitive events generated by X after the statement 
X.Subscribe(Y) is executed. 
The Notifiable Class: Similarly, the public interface of the Notifiable class 
consists of methods which allow objects to receive and record primitive events 
generated by reactive objects. For an object to be notifiable it must be an in
stance of a class derived from the Notifiable class, i.e., an instance of a subclass 
of the Notifiable class. The method Record defined in this class documents the 
parameters computed when an event is raised, namely, the oid of the reactive 
object generating the event, the event generated, the time-stamp of when the 
event was generated, and the number and actual values of the parameters sent 
to the reactive object. 
The Event Class Hierarchy: The Event class is the superclass of an event 
class hierarchy which defines the common structure and behavior shared by all 
event types. Each event type is a subclass of the Event class. The event types 
that are supported are primitive as well as complex. The Primitive subclass is 
for modeling primitive events which are basically method invocations. Cre
ation of a primitive event object requires indicating the method which raises 
the event and when the event should be raised, i.e., before or after execution of 
the method. 
The Rule Class: The primary structure defining a rule is the event which 
triggers the rule, the condition which is evaluated when the rule is triggered, 
and the action which is executed when the rule is triggered. Therefore, creation 
of a rule object X is accomplished by executing the statement Rule X( eventid, 
Condition, Action), where eventid is the oid of the event object representing 
the event that triggers the rule X, Condition is a function that is to be executed 
when the event is triggered and Action is a function to be executed if the Con
dition function returns true. 

10.4 REALIZING TRANSACTION MODELS 

In accordance with the second alternative for realizing various transaction mod
els using the active database paradigm, we performed the following steps : 

• We first stripped the underlying DBMS of its built-in transaction model. 
This was necessary since the semantics of operations such as lock acqui
sition, commit, and abort differ from one transaction model to the other, 
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and thus we did not want these operations to have particular semantics. 
This was accomplished by removing all code from all the methods of 
both the zeitgeist and zgt...1x classes, since methods of these classes imple
mented Zeitgeist's transaction management. Consequently, at this point, 
if any of the methods of these classes were to be invoked, nothing would 
happen. 

• The second step involved treating the methods of the zeitgeist and zgt...1x 
classes as events. Thus it was necessary to derive the zeitgeist and zgt...1X 
classes from the Reactive class as previously illustrated in Figure 10.4. 
Once these classes were derived from the Reactive class and methods of 
the class declared as events, the semantics of methods in these two classes 
became: 

1. Signal the occurrence of an event when this method is invoked by 
any transaction. The entity which is notified of the occurrence of the 
event is the local event detector (LED) object. 

2. Marshal the parameters of the event to the LED. For example, if the 
event which is detected is lock-acquisition, marshal the transaction 
identifier, the identifier of the object to be locked, and the lock mode 
requested to the LED object. 

3. Once the event along with its parameters are received by the LED, 
the LED is responsible for determining which rule should be trig
gered by the occurrence of this event, and then evaluating the corre
sponding condition and executing the action if the condition holds. 
Note that each application has its own local copy of the LED. This 
allows the application to enable particular rule sets which the LED 
is responsible for detecting. Consequently, each application can ad
here to different transaction semantics by maintaining its own LED 
and enabling whichever rule sets it requires. 

Using the approach sketched above, we have implemented: the traditional 
transaction model, sagas, and the nested transaction model. There are 18 rules 
used for the implementation of the traditional transaction model, 22 rules for 
Sagas, and 36 rules for the nested transaction model. The reader is referred to 
[Chakravarthy and Anwar, 1995, Anwar, 1996] for the actual ECA rules used 
for these transaction models. 

We learned several important aspects of the use of ECA rules while imple
menting the various transaction models. The availability and use of nested exe
cution of rules was beneficial for decomposing tasks to avoid replication. This 
was useful for the nested transactions where the commit and abort operations 
are extensions/modifications of the conventional commit and abort operations. 
While implementing Sagas, it became apparent that the semantics of abort of a 
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Sagas component transaction is different from the abort of a Sagas compensat
ing transaction. The abort of a Sagas component transaction starts executing 
the compensating transactions in reverse order whereas the abort of a Sagas 
compensating transaction needs only restart them. This necessitated that we 
change the abort semantics dynamically (at runtime). We could easily accom
plish this in our approach as design of active capability in Sentinel supports 
dynamic enabling and disabling of rules as well as subscription of events to 
rules. Prototype implementation also indicated how composite events can be 
beneficially used for synchronization purposes. For example, synchronizing 
the commit of a superior with respect to all its children can be accomplished 
by dynamically creating (which is possible in Sentinel) a Conjunction event, 
where the commit of each child is a component of the Conjunction event. The 
semantics of a Conjunction event expects all the component events to occur for 
the Conjunction event itself to be signaled, disregarding the order of constituent 
event occurrences. Consequently, once the Conjunction event is signaled, it im
plies that all the children have committed and thus the parent can continue its 
execution. 

10.5 EXTENSIBILITY 

In this section we discuss the extensibility aspects of our approach. There are 
two distinct aspects of extensibility that need to be addressed: i) extensibility 
ofECA rules as compared to other approaches (object-oriented and tool-kit) to 
extensibility and ii) extensibility in modeling newer transaction models. Below, 
we address each of the above. 

We believe that ECA rules at the systems level provide yet another, but more 
powerful form of extensibility. In contrast to the other two approaches (object
oriented and tool-kit), this approach provides greater control at runtime (with 
respect to the object-oriented approach) and allows one to redefine semantics 
dynamically. In a sense, the binding of rules can be controlled by other rules 
instead of overloading which provides a fixed form of dynamic association. 

In contrast to the tool-kit approach, use of rules allows one to support both 
application-level and system-level modification of behavior in a uniform man
ner. Further, our approach does not preclude the inline incorporation/compilation 
of rules to avoid the performance overhead that is associated with rule process
ing. However, the use of rules allows one to modularize and prototype systems 
relatively easily. 

So far we have used ECA rules defined at the systems level to achieve the 
semantics of various transaction models. The rule sets defined for the various 
transaction models focus on the concurrency control aspect of transaction mod
els. Since Zeitgeist uses a lock based method for achieving concurrency con
trol, we also adopted this method in our rules. In particular, we defined events 
for the operations such as lock-acquisition, lock-release and upgrade-lock. An-
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other reason which prompted our use of a lock-based mechanism for concur
rency control, is that it is used in most commercial DBMSs, is well understood 
and is perhaps the most popular of the concurrency control mechanisms. How
ever, it is important to realize that our approach to realizing transaction models 
is not limited to a particular concurrency control method. Rather, our approach 
is extensible enough to be applied to other concurrency control mechanisms, 
e.g., optimistic concurrency control (DCC). 

To show the extensibility of our approach let us assume that DCC using 
timestamp ordering is preferred over a lock based method. The basic notion 
behind DCC is to allow transactions to read, compute, and update local copies 
freely without updating the actual database. Some information is maintained 
with each data item to ensure serializability of committed transactions. Once 
a transaction completes it enters a validation phase which consists of checking 
if the updates maintain the consistency of the database (i.e., the commit of the 
transaction is serializable). If the answer is affirmative, then the updates are 
made persistent in the database, otherwise the transaction is aborted. 

The three rules of the DCC algorithm [Kung and Robinson, 1981] using 
read and write sets can be translated into ECA rules when the commit is issued 
by a transaction. In Zeitgeist only the object-id is kept in the shared memory 
data structures (along with some other information, but not the value). Local 
copies of the objects are maintained in the application/client address space. By 
modifying the tables in the shared memory to keep the timestamp information, 
it is relatively easy to implement the DCC algorithm based on timestamp order 
by writing rules on the commit and disabling rules on acquire lock etc. The list 
of objects accessed by a transaction is already maintained (although there is no 
distinction between read and write objects) in shared memory. 

As previously mentioned, we have concentrated on using ECA rules for the 
concurrency aspects of transaction models. This, however, does not prohibit 
its utilization to other aspects of transaction management. Consequently, our 
approach can also be used for the recovery aspects of transaction management 
as well as other aspects such as deadlock detection and deadlock resolution. 
Usage of this paradigm in these other areas of transaction management entails 
identifying the data structures and operations that need to be detected or trapped 
as well as defining the semantics of the operations using ECA rules. Therefore, 
the exact same process used for supporting the concurrency control aspects is 
utilized to other aspects of transaction management. 

10.6 CONCLUSIONS 

In this paper, we have taken an extensible approach to support extended tran
saction models. We have demonstrated a novel application ECA rules at the 
systems level and concomitant functionality required to support various tran
saction models. We have shown the implementation details of making a DBMS, 
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such as Zeitgeist active at the systems level. We have analyzed several extended 
transaction models and derived detailed ECA rules (using low-level data struc
tures) necessary for modeling traditional transactions, Sagas, and nested trans
actions (with sibling concurrency). We have shown that by not hardwiring the 
semantics of operations such as commit, abort and acquire-lock, and detecting 
events (primitive and abstract) at runtime, it is possible to realize different tran
saction models. Our approach is extensible and can with relative ease support 
current transaction models as well as newer transaction models as they become 
available (by reusing existing rules as much as possible). The DBC can add 
or modify the class interface of the underlying data structures and define ad
ditional rules on its operations. In order to demonstrate the versatility of our 
approach, we have used data structures (on which rules were defined) that are 
similar to those found in most commercial transaction managers. In particular, 
our approach assumes no specific underlying architecture or database model 
and can be applied to any active DBMS. 

In this paper, we focused on addressing the concurrency control and func
tionality issues related to supporting various transaction models. We are cur
rently investigating other related issues, primarily recovery, performance, and 
optimization of system level ECA rules, and more importantly allowing the 
concurrent execution of applications adhering to different transaction models. 

Notes 

1. This paper delimits itself to the discussion to concurrency control aspects of a transaction 
model; recovery issues are currently being investigated and is not addressed in this paper. 

2. Although TSME [Georgakopoulos et al., 1994] also use rules for enforcing transaction 
dependencies, they have not specified implementation-level details of event detection, condition 
evaluation, and action execution. 

3. Although support for different transaction models, to some extent, can be accomplished 
in an object-oriented environment by creating a transaction hierarchy and overloading the oper
ations or methods, this approach is specific to the model used rather than the system. 

4. We would like to point out that the use of ECA rules by themselves will not make the 
system completely flexible. However, we do believe that the process of identifying primitive 
events, details of conditions/actions and writing these rules will make us reexamine the current 
architecture and the data structures to progress towards a modular systems architecture. 

5. Another way a class can become a reactive class is if it is a friend class of another reactive 
class. 
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11 INTER- AND 
INTRA-TRANSACTION PARALLELISM 

FOR COMBINED OLTPjOLAP 
WORKLOADS 

Christof Hasse and Gerhard Weikum 

Abstract: 
This paper presents the architecture and run-time mechanisms of an exper

imental prototype system, PLENTY, that is specifically geared for combined 
OLTP/OLAP workloads with update transactions and complex queries concur
rently executing on the same database. The system is able to parallelize both 
retrieval and update transactions at the level of precedence-graph scripts with 
nodes corresponding to SQL-like statements or internal operator trees. Employ
ing this form of intra-transaction parallelism in a multi-user environment reduces 
the lock duration and thus the potential for data contention, so that OLTP and 
OLAP applications can be reconciled with good performance on the same shared 
database. The implementation of the underlying concurrency control and recov
ery mechanisms is based on multi-level transactions. In addition to presenting 
the overall architecture and internals of this approach, the paper also discusses 
heuristic scheduling strategies for combined workloads within the given frame
work. 

11.1 INTRODUCTION 

Online transaction processing applications (OLTP applications) are character
ized by a potentially large number of concurrently executing, relatively short 
update transactions with high throughput demands. A transaction typically 
comprises a few primary-key-driven SQL commands in the simplest case (e.g., 
TPC-B Debit/Credit [Gray, 1993]) up to twenty or thirty SQL commands (e.g., 
TPC-C NewOrder [Gray, 1993]), and should have a response time in the order 
of a few seconds at worst. Online analytical processing applications (OLAP ap
plications), on the other hand, are characterized by complex decision-support 
queries with a moderate degree of concurrency. OLAP transactions typically 
include one or more resource-demanding queries with joins and aggregations 
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on very large tables (see, e.g., TPC-D [Raab, 1995]). The TPC-C StockLevel 
transaction may be viewed as a simple OLAP transaction; much more complex 
examples arise in data mining applications, e.g., on customers and sales data, 
or in portfolio management and financial trading applications within banks. 

Traditionally, OLTP and OLAP applications cannot be easily reconciled on 
the same database because of the resulting resource contention and, especially, 
data contention caused by locking or whatever concurrency control protocol is 
used. There are several approaches to overcome or work around this problem: 

1. OLTP and OLAP applications are run on two different databases, where 
the OLAP database is a read-only snapshot copy of the OLTP database 
which is periodically (e.g., on a daily basis) brought up to date. This is 
a widely used approach that forms the core of most data warehousing 
architectures [Widom, 1995]. Its inherent disadvantage is that OLAP 
transactions are run on potentially stale data. 

2. To reduce the data contention between OLTP and OLAP transactions, 
OLAP transactions are executed in a relaxed isolation mode, sacrifizing 
serializability. This can be done by using, for example, the SQL isolation 
level "Read Committed" [Berenson et al., 1995], or by transforming an 
OLAP transaction into a chain of separate transactions with intermediate 
commit points. The problem here is that OLAP transactions may see 
inconsistent data (unless specific knowledge on the possible transaction 
interleavings is available and can be exploited [Shasha et al., 1995]). 

3. Since OLAP transactions are mostly read-only transactions, simple multi
version concurrency control protocols [Chan et ,al., 1982, Mohan et al., 
1992b, Brown and Carey, 1992] can eliminate the need for locking in 
the OLAP transactions, while still guaranteeing a consistent view of the 
data that reflects the most recent committed state. However, these pro
tocols are not applicable for OLAP transactions that contain a few up
dates; this case is not exactly typical, but does appear in some applica
tions. More general multi-version concurrency control protocols [Bern
stein et al., 1987] that uniformly deal with read-only and update transac
tions have not (yet) matured to industrial viability. 

4. By exploiting semantic properties of the application's database opera
tions, most notabably, the commutativity of certain operations, the con
flict probability of transactions can be significantly reduced [O'Neil, 1986, 
Lynch et al., 1994]. This approach is primarily applicable to OLTP trans
actions where increment and decrement operations on numerical data 
(e.g., financial data) are frequent. Alleviating the data contention among 
OLTP transactions is a significant benefit also for OLAP transactions, as 
it reduces the probability of transitive waiting and thus the duration of 
data-contention delays. 
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5. Finally, parallelizing long OLAP transactions reduces the duration for 
which locks need to be held in proportion to the achievable speedup. This 
again reduces the conflict probability and the delays upon conflicts. 

Among these approaches, the first two are prevalent in practice. Unfortu
nately, whereas they are acceptable in many mining-style applications where 
not quite recent or slightly inconsistent data is tolerable in statistical evalua
tions, applications such as financial trading require both up-to-date and con
sistent data and can, therefore, not be served by one of these approaches. The 
methods 3 through 5, on the other hand, provide theoretically well-founded so
lutions that are generally applicable without such caveats. Among these three, 
the multi-version concurrency control method (approach 3) has gained most 
practical relevance and has been well investigated. However, its limitation to 
read-only transactions may be a problem for some applications. Therefore, it is 
important to study the approaches 4 and 5 in more depth, and investigate also 
to what extent the methods 3, 4, and 5 can be combined. For example, a novel 
approach to combining multi-version protocols with exploiting commutativity 
properties of update operations has been recently proposed in [Jagadish et al., 
1997]. In this paper, we explore the alternative research avenue of combining 
semantic concurrency control and intra-transaction parallelism (approaches 4 
and 5) for alleviating the data contention among OLTP and OLAP transactions. 

The paper presents an architecture for a combined OLTP/OLAP server that 
has been fully implemented in an experimental prototype system for shared
memory multiprocessors, coined PLENTY (standing for "ParalleL Execution 
of Nested Transactions on plentY of processors"). The architecture supports 
intra-transaction parallelism for both read-only and update transactions and can 
exploit semantic properties like the commutativity of specific operations. The 
execution engine employs multi-level transactions as a rigorous basis for its 
high-concurrency transaction manager. While this forms the core of the sys
tem's execution mechanisms (as far as the paper's subject is concerned), the 
paper also presents execution strategies for the combination of inter- and intra
transaction parallelism in that it discusses heuristics for the CPU scheduling of 
transactions and subtransactions. 

The remainder of the paper is organized as follows. Section 11.2 briefly 
introduces the necessary background on multi-level transactions. Section 11.3 
gives an overview of the architecture of the PLENTY prototype. Sections 11.4 
through 11.6 then constitute the paper's algorithmic core: Section 11.4 dis
cusses a precedence graph concept for driving parallelized transactions and its 
relationships to multi-level transactions, Section 11.5 outlines the algorithms 
for concurrency control and recovery, which are based on [Weikum and Hasse, 
1993], and Section 11.6 introduces the CPU scheduling heuristics. Section 11.7 
illustrates the applicability of our approach with a case study of a (simplified) 
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foreign-exchange banking application. We conclude with an outlook on open 
issues. 

11.2 BACKGROUND ON MULTI-LEVEL TRANSACTIONS 

Multi-level transactions [Weikum, 1991, Weikum and Schek, 1992] are a vari
ant of nested transactions where the nodes in a transaction tree correspond to 
executions of operations at particular levels of abstraction in a layered system. 
The edges in a transactions tree represent the implementation of an operation 
by a sequence of operations at the next lower level. 

The point of multi-level transactions is that the semantics of high-level op
erations can be exploited in the conflict definition in order to increase concur
rency. For example, in the conflict relation shown in Figure 11.1, two Buy 
and Sell operations on the same investment account are not in conflict, given 
that they essentially decrement and increment counters, and can therefore be 
admitted concurrently. However, executing such high-level operations in par
allel requires that a low-level synchronization mechanism takes care of possible 
low-level conflicts, e.g., on indexes or data pages. Therefore low-level locks 
are acquired only for the duration of the high-level operation and are released 
at the end of the operation, that is, at the end of the subtransaction, thereby 
reducing the low-level lock conflicts. 

Retrieve Sell Buy 
Retrieve + - -

Sell - + + 
Buy - + + 

Figure 11.1 Conflict definition for Retrieve, Sell, and Buy operations 

Figure 11.2 shows the concurrent execution of two banking transactions T1 
and T2. The execution of the read/write operations at the lower page level is not 
acceptable with respect to T1 and TI. For example, Tl would still hold locks 
for the write operation on p and q. Therefore, T2 would have to be delayed 
until the end of T1, so that no parallelism would be feasible. However, at the 
higher level, one can exploit the fact that the Sell and Buy operations do not 
conflict. Therefore the execution of the Sell and Buy operations is correct, 
namely, serializable with respect to T1 and TI. Furthermore, the execution of 
the read/write operations at the lower level is serializable with respect to the 
operations at the higher level, and therefore the high-level operations appear 
as if they were isolated subtransactions. Thus, by exploiting the semantics of 
the operations at the higher level and by early release of low-level locks, multi
level transactions provide the potential for more concurrency. 

Intra-transaction parallelism can be turned into inter-subtransaction paral
lelism at the lower level [Weikum and Hasse, 1993]. Since the subtransaction 
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Buy(x) Sell(y) Sell(z) 

TI ~I --4i-------------------+.! .. -----b.I .. ------------
.... 

Buy(x) .... ~ 
" . 
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Transaclioru 

Tl 1-1 --+:-1·.-----, 

T1~···I ..... ~ ...... _! ........ i ... :J 
. R/W(q) R/W(s) R/W(r) 
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Timeline 

Figure 11.2 Concurrent execution of two transactions 

management at the lower level handles subtransactions independently of their 
parent transaction, a transaction may execute multiple subtransactions concur
rently, as illustrated in Figure 11.2 by subtransactions T12 and T13 of T1. So, 
provided that control flow dependencies at the higher level are observed, the 
resulting subtransactions of the same transaction can be executed in parallel 
without having to bother about possible violation of data consistency. How
ever, although the high-level operations of two parallel subtransactions do not 
conflict, low-level conflicts may arise. For example, when T12 and T13 are 
executed in parallel, low-level conflicts on s and q would arise so that subtrans
action T13 must be delayed until after T12 releases its (low-level) locks. Thus, 
by simply exploiting the properties of multi-level transactions, intra-transaction 
parallelism involving update operations of the same transaction can be easily 
accomodated. 

11.3 THE PLENTY ARCHITECTURE 

This section gives an overview of the PLENTY prototype system for shared
memory multiprocessor architectures [Hasse, 1995]. Being designed as a per
formance experiment platform, PLENTY contains a simple relational database 
engine. Relations can be stored as heap, hash, or B-tree files; the implementa
tion of this storage layer is based on the BSD 4.4 database library. The storage 
layer has been extended by a page buffer that is managed under an LRU policy 
and integrated with PLENTY's transaction manager. 

Design of PLENTY'S tuple layer is similar to Volcano system [Graefe, 
1994]. On top of the storage layer, PLENTY provides an operator-tree in
terface. Each operator consumes one or more tuple streams and produces one 
or more result stream. The leaves of an operator tree are scans on stored rela
tions or indices, and the root of a tree delivers a result to the application. Tuple 
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streams can be synchronous such that the consuming operator is responsible for 
the demand-driven evaluation of the corresponding subtree, or asynchronous 
such that the producing operator eagerly delivers tuples in a data-driven man
ner, subject to dataflow control to avoid overflow of intermediate tuple buffers. 
The operators themselves are expected to reside in an extensible operator li
brary. A few basic operators such as nested-loop join have been implemented; 
more operators can be added relatively easily. Operators can have parameters 
in addition to the tuple streams, and they can use a global variable space along 
with stack-based computations. 

Application clients submit a query or update operation by invoking an opera
tor tree, where the operator tree should be regarded as the code that is generated 
for an SQL operation. In addition, clients can combine multiple operations of 
this sort into a script, similar to a (very simple form of) stored procedure. This 
is discussed in more detail in Section 11.4. 

Clients can combine either an entire script or an arbitrary set of operator
tree invocations into a transaction by issueing the corresponding BOT (begin 
of transaction) and EOT (end of transaction) or RBT (rollback transaction) 
calls. The transaction manager internally implements each transaction as a 
multi-level transaction where the invoked operators in an operator tree are the 
higher-level operations and the reSUlting page accesses form the lower-level 
operations. 

The process model of PLENTY is that of a multi-threaded server. Each 
invoked operator can spawn a separate thread within a shared address space. 
This holds for operators in the same tree as well as operators in different trees of 
the same transaction and also across different transactions. The implementation 
is based on the POSIX thread library. 

The complete PLENTY system contains about 30,000 lines of C code. It is 
running on shared-memory multiprocessors under Sun Solaris 2.3 and compat
ible platforms. A particularity is that it can be recompiled to run in a simula
tion mode, where all thread-related calls are replaced by corresponding calls 
of the simulation library CSIM [Mesquite, 1995] and all internal functions of 
PLENTY issue additional calls to use virtual processors and virtual disks and 
consume the corresponding virtual time. Note, however, that the same code is 
executed in both simulation and real-execution mode. The main purpose of the 
simulation mode is to be able to run performance experiments on configura
tions with resources that exceed those that are available to us. 

11.4 GRANULARITY OF PARALLELISM 

As discussed in Section 11.3, applications can interact with PLENTY by in
voking operator trees. Within these operator trees, disjoint subtrees can be ex
ecuted in parallel and pipelining may be exploited along a producer-consumer 
path. In addition, the usual form of data parallelism is feasible in PLENTY, 
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too, by instantiating an operator multiple times and partitioning its incoming 
tuple streams such that each operator instance processes one of the resulting 
streams. In PLENTY the resulting "wide" tree is represented explicitly; that is, 
subtree templates are replicated. Note that there may be more compact ways 
of representing a data-parallel operator tree, and also note that some operators 
require more sophisticated dataflow directives for the proper routing of parti
tioned tuple streams; but these issues are not in the focus of the current paper. 

So far, the parallelization is in line with the standard architecture of parallel 
database systems [DeWitt and Gray, 1992, Graefe, 1994]. Applications with 
data-intensive individual operations such as join queries benefit largely from 
this architecture. However, applications that rather consist of many simple 
operations including primary-key-driven updates do not benefit at all, as none 
of the simple operations justifies parallelizing an individual operator nor does 
the simple form of operator trees warrant the use of function parallelism or 
pipelining. Consider, for example, an application that updates a large number 
of single tuples with each update based on a specified primary key. Without 
rewriting the entire application, no parallelism could be exploited. 

To this end, PLENTY offers to the application clients the option to combine 
a set of application functions in a simple form of stored-procedure-like scripts 
(similar in style to [Reuter and Schwenkreis, 1995] but much more limited). A 
script in this sense is a precedence graph, i.e., an acyclic directed graph, whose 
nodes correspond to the invocation of application functions. This captures, in 
a very simple style, two types of control flow of the application: connected 
nodes are processed sequentially whereas parallel branches in the graph de
note parallelism. Note that, although such a script bears some relationship to 
workflow specifications [Rusinkiewicz and Sheth, 1995, Georgakopoulos et al., 
1995, Mohan, 1996, Jablonski and Bussler, 1996], this approach is, of course, 
way too limited for real workflow applications. Recall that our goal here has 
been to build an experimental platform for studying the mutual impact of inter
and intra-transaction parallelism; the simple script approach is sufficient for 
this purpose. 

The application functions that correspond to the nodes of a script's graph 
can be arbitrary C functions. Typically, each such function would contain one 
call to invoke an operator tree of the database engine. As an example of a script 
consider the NewOrder transaction of the TPC-C benchmark [Gray, 1993] as 
depicted in Figure 11.3. The precedence graph contains a BOT source and an 
EOT sink as transaction brackets. Within these brackets, each SQL operation, 
or actually its corresponding operator tree, along with the surrounding applica
tion code constitutes one node of the graph. Whenever there is a control flow or 
data flow dependency between two nodes (e.g., output parameters of one func
tion are input parameters of the other), a total order is enforced by connecting 
the two nodes with an edge. For example, the"Select District" and "Update 
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District" steps should be sequential as the latter may depend on the outcome of 
the former (e.g., the district may not exist in the database), whereas the "Select 
Warehouse" and "Select District" steps are independent of the district process
ing and thus form a parallel branch. 

Figure 11.3 Precedence graph representation of a NewOrder transaction 

Obviously, the main potential for intra-transaction parallelism in this case 
stems from the processing of the set of ordered items; this is shown by the 
parallel branches each starting with a "Select Item" operation. Note that within 
each such branch, the control flow is sequential. Further note that the number of 
these parallel branches would actually be variable; the benchmark specifies the 
number of ordered items as a uniformly distributed random variable between 
5 and 15. Scripts can be configured at run-time, after all input parameters of 
a transaction are known; this is supported by means of a set of simple graph
constructing functions such as "AddNode( ... )", "AddPrecedence( ... )", and so 
on. 

So the granularity of intra-transaction parallelism in PLENTY can be an ap
plication function of a graph-type script, or an operator instance of an operator 
tree invoked from an application function. In this paper, we will focus on the 
coarser granularity, the script nodes, as this is the novel aspect of PLENTY. The 
mapping of these granules to the process architecture of PLENTY is straight
forward: each node of the precedence graph spawns one thread. The mapping 
to subtransactions of a multi-level transaction is less straightforward. The nat
ural default mapping would be to spawn a new subtransaction for each invoked 
operator tree. Since typically an application function of a script would invoke 
exactly one operator tree, this default mapping coincides with viewing each 
node of the precedence graph as one subtransaction. However, in some appli
cations, the enhanced concurrency that is potentially obtained from multi-level 
transactions may be less important than limiting the overhead of the transaction 
management. Therefore, it is also allowed to combine a sequential path of 
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nodes into a single subtransaction by explicitly issueing BOS (begin of sub
transaction) and EOS (end of subtransaction) calls at the beginning and end 
of the path. Such a specification is graphically illustrated in Figure 11.4, with 
subtransactions shown as shaded boxes. The transactional semantics of such a 
subtransaction is that it forms a unit of isolation and atomicity at the page level 
of the system. This means that all page locks that are acquired in the course 
of the execution are held until EOS. As usual, tuple level locks are acquired as 
well and held until EOT, the completion of the entire transaction. Note that, 
with the coarser granularity of multi-operation subtransactions, multiple high
level locks are acquired between the BOS and EOS of one subtransaction. 

Figure 11.4 Subtransactions of a NewOrder transaction 

The flexibility in the mapping of script nodes to subtransactions is limited to 
nodes in the same sequential path. We disallow grouping nodes from parallel 
branches (i.e., non-ordered nodes according to the partial order defined by the 
precedence graph) into one subtransaction. The reason is that any pair of pos
sibly concurrently executing nodes may cause low-level conflicts at the page 
level when one of them invokes a high-level update operation (e.g. , a conflict on 
index data). Thus, unless the nodes are definitely executed sequentially (as en
forced by a precedence edge), we need a low-level concurrency control mecha
nism. But this is exactly why we use subtransactions. So potentially conflicting 
concurrent execution units must belong to different subtransactions. Note that 
the same argument would hold for whatever form of low-level execution units 
is used, and not only for a multi-level transaction architecture. Further note that 
similar considerations have recently been brought up in the context of denoting 
transaction boundaries in workflow specifications [Leymann, 1995] without 
going into implementation issues. The PLENTY architecture essentially offers 
a (admittedly not very refined but working) solution to this workflow-related 
problem as well. 
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11.5 TRANSACTION MANAGEMENT INTERNALS 

This section discusses the implementation of PLENTY's transaction manager, 
with particular consideration of how the parallelized execution of scripts (see 
Section 11.4) interacts with the log and recovery management. The transaction 
manager of PLENTY uses multi-level transactions internally: at the higher 
level, each invoked operator tree is viewed as an operation of a transaction, and 
at the lower level each of these operations corresponds to a subtransaction that 
consists of a set of page reads and writes. The concurrency control for both lev
els is implemented by the same generic lock manager that is driven by conflict 
predicates for the operations under consideration. For example, consider the 
operations Retrieve, Buy, and Sell, shown in Figure 11.1, which have been im
plemented and included as operators in PLENTY's operator library. The lock 
manager expects a conflict-testing function for each pair of operators, to decide 
if there is a conflict or not (based only on the two operators and their actual pa
rameters). Typically, the test is based on the (state-independent) commutativity 
of the operations; so it is reasonably straightforward for an application to pro
vide these functions. Special care is taken in the deadlock detection to consider 
also the fact that transactions wait for the completion of subtransactions which 
may lead to deadlocks that arise from the combination of lock waits at both 
levels (and could not be recognized by the local view of one level only). 

As discussed in prior publications [Weikum, 1991, Weikum and Schek, 
1992], employing a multi-level concurrency control protocol requires also a 
multi-level approach to recovery. The multi-level recovery method that has 
been implemented in PLENTY is an improved version of the algorithm de
scribed in [Weikum and Hasse, 1993]. It is based on undo logging for the high
level operations (Le., the invoked operator trees) and page-level redo logging 
for subtransactions, using the following principles: 

1. Transaction atomicity: Transaction undo, both for rolling back a single 
transaction and for undoing loser transactions after a crash, makes a back
ward pass over the high-level log file, following a backward chain for 
each loser transaction. A log entry (apart from Bar and Ear or RBT 
log records) describes an inverse or compensating operation for the cor
responding forward operation. A log record is generated in a log buffer 
when the forward operation completes, and is forced to the disk-resident 
log file when the subtransaction to which the forward operation belongs 
is made persistent by the low-level log manager. 

2. Subtransaction atomicity: Subtransactions are guaranteed to be atomic 
by the low-level recovery, so that the high-level undo pass will always 
"see" only the effects of complete subtransactions and is thus well-defined. 
This guarantee is implemented by applying the DB Cache method [El
hardt and Bayer, 1984] to the sets of page writes that are enclosed within 
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subtransactions. This method keeps transient page before-images in the 
buffer pool, ensuring that dirty buffer pages are not flushed to disk before 
the end of a subtransaction, and writes the complete set of after-images to 
a circular log file in a single, sequential and atomic disk liD. Upon restart
ing the system after a crash, the low-level recovery is initiated first; it 
makes a forward pass over the low-level log file and redoes all completed 
subtransactions found on the log by re-installing these subtransactions' 
after-images into the database. 

3. Transaction persistence: The liD efficiency of the logging method is im
proved by deferring the log disk liD of the low-level log manager until 
the end of a transaction rather than force-writing after-images upon each 
end-of-subtransaction. This ensures the persistence of completed trans
actions. However, since page-level locks are released upon the end of a 
subtransaction, one has to be careful about possible incompatibilities be
tween the serialization order of subtransactions and the ordering of their 
after-image-sets on the log file. Adding the proper bookkeeping of de
pendencies leads to the notion of "persistence spheres". A persistence 
sphere is associated with a subtransaction or transaction T, and contains 
all after-images of T itself and, in addition, the after-images of all sub
transactions that have a page-level write-write or write-read conflict with 
T. Persistence spheres are formed dynamically as transactions are exe
cuted, log liDs take place, and dirty buffer pages are written back into 
the disk-resident database. When a subtransaction needs to be made per
sistent, the entire persistence sphere is written to disk in a sequential and 
atomic liD and then dropped from the bookkeeping. As newly produced 
after-images supersede previous not yet forced after-images, this method 
yields a batching effect for the log liDs and reduces the overall log liD 
rate. Details of the method are given in [Weikum and Hasse, 1993). 

During the high-level undo pass of a restart, both low-level redo logging and 
high-level undo logging are again in effect to ensure restart idempotence. In 
contrast to [Weikum and Hasse, 1993), PLENTY has adopted ARIES-like com
pensation log records (CLRs) [Mohan et al., 1992a) for tracking the progress 
of undo steps: a CLR marks the successful completion of an undo step in the 
high-level log and points to the predecessor of the undone forward operation 
within the same transaction. Further techniques for reducing the overhead of a 
multi-level recovery method, such as merging the high-level log and the page
level log into a single log file, are discussed in [Lomet, 1992, Weikum and 
Hasse, 1993), but are not of specific interest in this paper. 

Finally, consider how parallelized scripts are taken care of by this multi-level 
logging and recovery method. Recall from Section 11.4 that a script corre
sponds to a precedence graph of application functions and that subtransaction 
boundaries are constrained such that all operator tree invocations within a sub-
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transaction must lie on a sequential path. Thus the precedence graph directly 
induces a coarser precedence graph between the subtransactions. Then, undo
ing a transaction can exploit essentially the same intra-transaction parallelism 
that is feasible in the transaction's forward execution, and this is achieved by 
simply reversing the edges of the precedence graph. The reverse precedence 
edges are included in the high-level log records. When the undo pass follows 
the backward chain of a transaction, it takes notes on all encountered inverse 
precedences. By default, undo steps are spawned asynchronously as separate 
threads, so that the undo pass can proceed with the next (or, actually, chrono
logically preceding) log record before the undo step is completed. However, 
when a log record is referenced by one or more inverse precedences, the corre
sponding undo step is initiated only after the undo steps for all the referencing 
log records are completed. The reason for this special care is that the corre
sponding high-level operations on a sequential path within a transaction are 
not necessarily commutative, whereas one can always assume commutativity 
for the high-level operations that reside in different parallel branches (otherwise 
the parallelization should be disallowed in the first place). Note that the multi
level transaction management also supports that such a parallelized transaction 
rollback proceeds in parallel to the forward processing of other transactions. 
The correctness of this approach is further investigated from a theoretical an
gle in [Hasse, 1996]. 

As an example, Figure 11.5 shows the log records written for the execution 
of Figure 11.2. In the figure, a system failure is assumed to occur before T1 
can finish. The figure also includes the log records that are written during the 
restart to undo T1. It is assumed that T1 's subtransactions T12 and T13 have 
no precedence constraints between them, but both must follow T11. Thus, the 
undo log records for these two parallel subtransactions both contain a reverse 
precedence pointer to the log record of T11. 

Undo chain 

Hip-level 
undo log 

Page-level 
mIolog 

I~:::::::;:::=;--------~ 
I, I I 

" , 
:,....----~ 

S)'IIem Failure 

Figure 11.5 Log records written by PLENTY 



INTER- AND INTRA-TRANSACTION PARALLELISM 291 

11.6 SCHEDULING STRATEGIES 

So far, the focus of the paper has been on execution mechanisms for inter
and intra-transaction parallelism, and efficiency considerations are limited to 
striving for the highest possible concurrency (by means of semantic multi-level 
concurrency control) and low overhead (by means of efficient logging and re
covery algorithms as well as light-weight thread management). In this section, 
we consider the major issue in the execution strategies, namely, the actual CPU 
scheduling of transactions and subtransactions. We make the simplifying as
sumption that no parallelism is exploited within an invoked operator tree (al
though this would be more than appropriate in a real application), and rather fo
cus on intra-transaction parallelism at the script level, which is the major novel 
issue of this paper. Thus, the units of the CPU scheduling are transactions and 
subtransactions as specified at the script level (see Section 11.4).-Note that this 
restricted setting poses already very challenging resource management prob
lems; combining this form of intra-transaction parallelism with intra-operator 
parallelism and pipelining within operator trees would be an even greater chal
lenge that is beyond this paper's scope (nor has been tackled in the literature, 
to our knowledge). 

In terms of the scheduling theory [Graham et al., 1979, Lawler et al., 1993, 
Pinedo, 1995], we are dealing with a precedence-constrained multiprocessor 
scheduling problem, where all subtransactions of all transactions form the pool 
of dispatchable tasks with precedences described by the union of the corre
sponding transactions' precedence graphs. This problem is known to be NP
hard; so there is virtually no hope for a scheduling strategy that is both efficient 
and optimal in the quality of the produced schedules. In fact, however, the 
problem that we are addressing here is even more complex than the precedence
constrained multiprocessor scheduling problem in a number of ways: 

1. The scheduling problem considered here is a hierarchical one with two 
levels: subtransactions are the actual dispatchable units that are assigned 
to processors, but the overall performance metrics, throughput or mean 
response time, are tied to the unit of transactions. Unfortunately, the 
literature on scheduling contains only little work along these lines. Good 
heuristic algorithms have been developed for the case when there are no 
precedence constraints [Turek et al., 1992, Turek et al., 1994] and the 
case with trees as precedence graphs [Wolf et al., 1995, Chekuri et al., 
1995, Garofalakis and Ioannidis, 1996] (motivated by operator trees for 
database queries), but these cannot be applied to our problem. 

2. We address an online scheduling problem where the tasks arrive at the 
system over time and the scheduler needs to make dynamic decisions as 
tasks arrive. This area is still largely unexplored (see, e.g., [Feldmann 
et al., 1993] for recent theoretical results). 
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3. Even online scheduling usually makes the assumption that the task execu
tion time is exactly known at the arrival of the task. This assumption does 
not hold in real applications. There, the best we can hope for is an esti
mation of the task's execution time (and other resource demands such as 
memory requirements), based on task types and probability distributions 
for the execution time of the various types. 

4. The CPU scheduling of transactions and subtransactions interacts in a 
complex way with the concurrency control. For example, transactions 
that wait for a lock are not dispatchable at all, and assigning many pro
cessors to transactions that are likely to become blocked soon would be 
an unwise scheduling decision. Unfortunately, the nature of transactional 
locking is too complex to tie in locks as an additional resource type into 
standard scheduling theory. 

The additional complexity discussed above justifies using a set of pragmatic 
heuristics for the scheduling of transactions and subtransactions, as elaborated 
in the following. Problem 3 above, lack of exact information, is circumvented 
by indeed relying on estimates. For each node in the script of a transaction 
type, we expect statistical knowledge of the node's execution time so that we 
can derive an expected execution time for each subtransaction. For the pur
pose of scheduling decisions, we treat these estimates as if they were exact, 
given that we cannot make any intelligent decisions at all if no information is 
available (in that case, a first-come-first-served strategy is the only reasonable 
choice). However, we take into account dynamic corrections in two ways: first, 
statistical expectations may change due to long-term workload evolution, and 
second, derived information like the total execution time of an entire path in 
the precedence graph is incrementally recomputed at run-time as we gain more 
information about the actual execution time of running or already completed 
subtransactions. 

Problem 1 of the above list, the hierarchical nature of the scheduling units, 
is addressed by using a two-tier scheduling strategy based on the following 
considerations: 

• Primary scheduling: We are primarily interested in the performance of 
transactions (as subtransactions are transparent to the applications). Our 
objective is to minimize the mean transaction response time for a given 
throughput (Le., arrival rate) of different transaction types. If each tran
saction were a sequential program and preemption is disallowed, it is 
well-known that the mean response time is minimized by a shortest-task
first (STF) strategy [Pinedo, 1995]. However, since a transaction can 
use multiple processors in our setting, the STF rule needs to be mod
ified into a least-work-first (LWF) strategy [Sevcik, 1994], where the 
work of a transaction is defined as the sum of the execution time of all 
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its subtransactions regardless of whether these are parallel or sequential. 
An additional consideration finally is that the remaining work of a tran
saction changes as the transaction makes progress. This suggests actually 
using the dynamic counterpart of LWF, namely a least-remaining-work
first (LRWF) strategy [Sevcik, 1994]. However, a major drawback of this 
family of strategies is that it may treat different classes of transactions in 
an unfair manner, so that long transactions would become susceptible to 
starvation. Thus, in spite of the above considerations, we have actually 
adopted the conservative first-come-first-served (FCFS) strategy at the 
transaction level. Studies of the LRWF strategy, with possible enhance
ments to prevent starvation, are an interesting subject of future work. 

• Secondary scheduling: The actual dispatchable units are the subtransac
tions of active transactions. We consider all subtransactions of the same 
transaction as a task group and now address the scheduling of tasks within 
a group. The simplest idea would be to apply the LWF rule to subtrans
actions, too. However, this heuristics would aim at a minimum mean 
response time of the subtransactions, which is an inadequate metrics at 
this scheduling level. As the transaction is completed only when its last 
subtransaction terminates, there is no point in considering the mean re
sponse time within a task group. Rather what matters is the duration 
of the entire "mini-schedule" that is constituted by the task group. This 
metric is known as the makespan of a schedule; minimizing the makespan 
amounts to maximizing the throughput. For a "vanilla" task system with 
sequential tasks and dynamic arrivals but without precedence constraints, 
a well-known, effective heuristics towards minimizing the makespan is 
the longest-task-first (LTF) strategy [pinedo, 1995]. Note that each sub
transaction is indeed a sequential task, but the existence of precedence 
constraints requires a more refined strategy. The most important schedul
ing heuristics for tasks with precedences is the critical-path method (CP), 
which always gives top priority to the task that heads the longest path 
in the precedence graph [Pinedo, 1995]. These two heuristics, LTF and 
CP, can be combined and further generalized into another heuristics that 
we refer to as the most-work-first (MWF) strategy, where the work of a 
subtransaction is defined as the sum of its own execution time and the ex
ecution times of all subtransactions that follow it in the precedence graph. 
We have adopted this method for the subtransaction scheduling. 

PLENTY provides a library of different scheduling algorithms for these 
two levels of CPU scheduling to support experimentation, but the FCFSIMWF 
combination outlined above is the heuristics that we advocate for our problem 
setting. In addition, PLENTY can enforce a specified bound on the maximum 
number of processors that a transaction may use, to avoid that a single tran
saction monopolizes the system in that it uses many processors while attain-
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ing only a moderate speedup. This bound will be referred to as the DIP limit 
where DIP means degree of intra-transaction parallelism. Ideally the scheduler 
would itself select optimal values for these DIP limits; however, this is beyond 
the scope of this paper (and the state of the art in general, unless one considers 
special cases). Rather we resort to turning the DIP limit into a tuning knob that 
can be specified on a per transaction type basis. We disallow preemption, un
less a subtransaction becomes blocked due to locking (where a high-level lock 
wait is attributed to the subtransaction that issued the lock request, although the 
lock will eventually be held until EOT rather than EOS). 

The final point in the above list of problems beyond standard scheduling is 
the interrelationship of CPU scheduling with data locking (problem 4). Al
though the presented scheduling strategy does not explicitly consider locking, 
it behaves favorably also in terms of lock-contention issues. In particular, the 
MWF strategy for the subtransactions of running transactions contributes to 
short lock durations by "pushing" transactions that would cause long lock waits 
if they block other transactions. One may conceive further enhancements to the 
scheduling strategy along these lines, by dynamically adjusting the priority of 
transactions and their subtransactions depending on whether they block other 
transactions or subtransactions. Exploring this research direction is left for fu
ture work, however. 

The implementation of the described scheduling strategy is based on a trans
action-ready-list that contains all transactions that have at least one subtransac
tion that is ready to run, and a separate subtrans-ready-list for each transaction 
that contains all its subtransactions that are ready to run (i.e., whose predeces
sors in the precedence graph are terminated) and are not blocked by a lock wait. 
The transaction-ready-list is kept sorted in FCFS order (i.e., the transactions' 
arrival time), whereas each subtrans-ready-list is kept sorted in descending or
der by the total execution time of the subtransactions' direct and transitive suc
cessors including themselves (i.e., in MWF order). The scheduling component 
needs to make a decision upon different types of events, in particular, upon the 
EOS of a subtransaction and the BOT and EOT of a transaction. The schedul
ing decisions at these points are summarized in pseudo-code form in Figure 
11.6. 

11.7 AN APPLICATION STUDY 

This section illustrates the usefulness of the PLENTY architecture with a case 
study of a real application. In a joint project with the Ubilab of the Union Bank 
of Switzerland a combined OLTP/OLAP workload from the area of the for
eign exchange has been studied. The following discussion simplifies the actual 
application but captures major characteristics of the workload. The OLTP tran
saction under consideration is the so-called currency swap which is a major 
business type for foreign exchange. The OLAP transaction that we focus on 
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upon the arrival oC transaction Ti: 
if number-of-idle-processors > 0 
then assign an idle processor to the BOT processing of TI~; 

upon the EOT oC transaction Ti: 
inspect the high-level lock queues and wake up all subtransactions Tjk 

that have become unblocked by the lock releases of TI 
by placing Tjk in the subtrans-ready-list ofTj 
and placing Tj in the transaction-ready-list; 

while number-of-idle-processors > 0 
and transaction-ready-list is not exhausted do 

let Tj be the next transaction of the list; 
while number of processors in use by subtransactions of Tj < DIP limit of Tj 
and number-of-idle-processors > 0 
and subtrans-ready-list ofTj is not exhausted do 

let Tjk be the next subtransaction of the list; 
assign one processor to Tjk and decrement number-of-idle-processors; 

od 
od 

upon the EOS oC subtransaction Tim: 
inspect the page-level lock queues and wake up all subtransactions Tjk 

that have become unblocked by the lock releases of TIm 
by placing Tjk in the subtrans-ready-list ofTj; 

check the successors of Tjk as to whether all their predecessors are completed, 
and if so, place those successors into the subtrans-ready-list of Tj; 

while number-of-idle-processors > 0 
and transaction-ready-list is not exhausted do 

let Tj be the next transaction of the list; 
while number of processors in use by subtransactions of Tj < DIP limit of Tj 
and number-of-idle-processors > 0 
and subtrans-ready-list ofTj is not exhausted do 

let Tjk be the next subtransaction of the list; 
assign one processor to Tjk and decrement number-of-idle-processors; 

od 
od 

Figure 11.6 Pseudo code of the scheduling component 



296 ADVANCED TRANSACTION MODELS AND ARCHITECTURES 

performs a profit analysis which assesses the amounts of different currencies 
that the bank. is going to hold in the future. 

A swap is a deal where two trading partners exchange equivalent amounts 
of money in two currencies for a period of time. For example, one bank. buys 1 
million US Dollars (USD) for 1.5 millions Swiss Franks (SFR). At some point 
in the future, for example, half a year later, the second bank. takes back the 
amount of 1 million USD for an amount of say 1.4 millions SFR where the 
difference to the original 1.5 millions SFR corresponds to the different interest 
rates of the two currencies. The first chart in Figure 11.7 shows several of these 
cash flows. As the bank. performs many of these swap deals, the balance of the 
currency accounts varies over time. The resulting balance of the USD account 
is shown in the second chart of Figure 11.7. 
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Figure 11.7 Effect of foreign-exchange transactions 

Each swap corresponds to two cash flows on the same currency. Multi
level transactions are well suited for this type of application. By exploiting the 
counter-incrementing and -decrementing semantics of Buy and Sell operations, 
concurrent updates of the account balance are possible without blocking of 
transactions. Thus, almost all lock conflicts between swap transactions can be 
eliminated. 
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For decision support of the trading process, traders may want to assess the 
amount of USD the bank will hold over time. The balance of a currency is 
assessed by computing the profit according to the expected interest rate for 
this currency. Since both the account balance and the expected interest rate 
vary over time, this assessment is actually a computation over a time series. In 
simplified tenns, for each day, the balance is multiplied by the interest rate to 
compute the daily profit. Then the daily profits are summed up to compute the 
total profit. This type of profit analysis is schematically depicted in the third 
and fourth chart of Figure 11.7. Note that the interest rate curve is actually an 
input parameter of the transaction; traders can assess their currency accounts 
with different expectations about the future trends in interest rates. The com
putations over time series are well suited for parallelism since the overall time 
interval can be split into smaller time intervals and the computations on these 
smaller intervals can be perfonned in parallel. 

Since the profit analysis accesses a large amount of data, its response time 
may be criticial in that it serves to provide online trading support. Further
more, because the retrieve operations on the balance values of the various 
currencies are even in semantic conflict with the Buy and Sell operations of 
the swap transactions, the profit-analysis transactions may lead to unaccept
able lock contention. Thus, we have the typical problem of combining OLTP 
(the swap transactions) and OLAP (the profit analyses). To reconcile the two 
transaction types, we proceed in two steps. In the first step, intra-transaction 
parallelism is exploited for the profit-analysis transactions by partitioning the 
computation based on time intervals. This is of direct benefit for the OLAP 
transactions' response time, and, in addition, it reduces the duration for which 
retrieve locks are held. Under very high load, this step may not be sufficient to 
avoid lock contention. Thus, as a second step, we consider also Parallelizing 
the swap transactions, again based on time interval partitioning for its balance 
updates, thus reducing the lock duration of Buy and Sell locks as well. The 
scripts for the two parallelized transaction types are shown in Figures 11.8 
and 11.9. Note that each node of the parallel branches is actually a sequence 
of smaller operations each operating on one tuple of the Balance (and Inter
estRate) time series, and that subtransaction boundaries can be superimposed 
flexibly on those operations by grouping say every ten successive operations 
into one subtransaction. 

11.8 CONCLUSION 

This paper has presented a carefully designed combination of mechanisms and 
strategies towards better support of mixed OLTP I OLAP workloads. From 
an algorithmic point of view, the major contribution is the integration of multi
level transaction management with the parallelization of transaction scripts and 
the two-tier scheduling algorithm. From a systems point of view, we have 
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Figure 11.8 Precedence graph for the swap transactions 

Figure 11.9 Precedence graph for the profit-analysis transactions 
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shown the feasibility of the approach by integrating all components in the fairly 
comprehensive PLENTY prototype system. 

PLENTY has been aiming particularly at workloads with high data con
tention. Obviously, it is not the only promising approach towards reducing the 
adverse performance impact of locking, as we discussed in the introduction of 
this paper. Combinations of other techniques, especially transient versioning, 
with parallelized multi-level transactions are certainly worthwhile to explore. 
An application class where the PLENTY approach appears to be particularly 
beneficial is text index management, for example, for Web or intranet search 
engines. Inserting a new document may require hundreds of index updates that 
can be elegantly embedded into a multi-level transaction, thus guaranteeing a 
consistent view of search terms to text queries with complex search predicates 
[Weikum and Schek, 1992, Barbara et al., 1996b, Kamath and Ramamritham, 
1996b, Kaufmann and Schek, 1996]. 

To some extent, PLENTY may also be a good candidate as a low-level plat
form to support transactional workflows [Rusinkiewicz and Sheth, 1995, Geor
gakopoulos et al., 1995, Mohan, 1996, Jablonski and Bussler, 1996]. Work
flow management requires, of course, a much richer specification and run
time environment, but the specific problem of embedding multiple activities 
or invoked applications of a workflow into a transactional sphere [Leymann, 
1995, Worab and Sheth, 1996] appears to be related to the mapping of the 
nodes of a PLENTY script onto subtransactions. Further studies along these 
lines are planned, within the context of the MENTOR project on enterprise
wide workflow management [Wodtke et al., 1996, Weissenfels et al., 1996] 
(whereas otherwise MENTOR is completely unrelated to PLENTY). 

Finally, a problem area that we have merely touched on in the PLENTY 
project is that of tuning the resource management for complex multi-class 
workloads [Weikum et al., 1994, Brown et al., 1994, Rabm and Marek, 1995]. 
For example, we have introduced a limit for a transaction's degree of intra
transaction parallelism as a tuning knob. Ideally, such knobs should be auto
matically set by the system itself and dynamically adjusted depending on the 
current load characteristics. The COMFORT project [Weikum et al., 1994], 
for example, has made some modest contributions towards this ambitious goal 
of automatic performance tuning, and we plan to continue striving for a better 
analytical foundation of and effective algorithms for self-tuning information 
systems. 
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Abstract: 

12 TOWARDS DISTRIBUTED 
REAL-TIME CONCURRENCY AND 

COORDINATION CONTROL 
Paul Jensen, Nandit Soparkar 

and Malek Tayara 

Concurrency control is an important issue for environments in which shared data 
and system resources must be managed in real-time (i.e., with implicit or ex
plicit time constraints). The real-time responsiveness and consistency require
ments, which often conflict with each other, suggest that traditional transaction 
processing paradigms need to be modified for target applications. The time cog
nizant concurrency control techniques developed for centralized systems must 
be extended and adapted to the distributed environment. We discuss techniques 
developed for real-time transaction systems for partitioning data and concur
rency control to support diverse consistency and responsiveness requirements -
often within the same application. Furthermore, we suggest that some of the 
application-specific requirements may be better met by lower level communica
tion and coordination protocols. 

12.1 INTRODUCTION 

Transaction processing systems have been highly successful for the concur
rent and fault-tolerant access of persistent data. In an effort to accrue similar 
advantages for time-critical applications and emerging technologies, suitable 
concurrency control (CC) techniques are being considered currently in the re
search community. There is an increasing need for real-time data management 
for diverse distributed applications such as groupware, manufacturing automa
tion, air traffic control, telecommunications, etc. (e.g., see [Ellis and Gibbs, 
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1989, Clauer et al., 1993, Reddy et al., 1993, Lortz and Shin, 1993, Musa, 
1995, Zhou et al., 1996]). These environments have shared data and common 
system resources, and their needs are reflected as consistency requirements 
(CR) and real-time responsiveness (RTR). In broad terms, RTR refers to the 
performance of the system being such as to meet the application requirements 
(e.g., meeting task deadlines or providing sufficient responsiveness for inter
active environments). Similarly, the CR issues are also application-specific, 
and well-understood in the context of data management (e.g., consistency of 
values among replicas). Several studies, largely for centralized environments, 
suggest that the performance, functionality and applicability of data manage
ment middleware may be substantially enhanced if temporal considerations are 
taken into account. In fact, convergent techniques from transaction processing, 
distributed systems, and real-time computing (e.g., see [Soparkar et al., 1996]), 
are indicated for managing CR and RTR in the target applications. 

The motivation for distributed real-time CC is based on several factors. First, 
an examination of real-life applications indicate a need for CR and RTR; sev
eral existing studies do not examine actual applications. Especially as systems 
evolve and become more complex, ad hoc techniques alone fail to suffice. Sec
ond, the target domains exhibit widely varying CR and RTR needs among and 
within applications. In practice, these needs are met often by a recourse to 
solutions that are application-specific, and which incur a high cost to maintain 
and prove inflexible in the long run. Third, concurrent distributed executions 
indicate that to ensure CR, the atomic execution of semantically coherent se
quences of operations, which we refer to as transactions (see [Soparkar et al., 
1996]), must be supported. Sometimes such executions are effected implicitly 
(e.g., to guarantee specific CR) without being referred to as transactions (e.g., 
see [Jensen et al., 1997]). Fourth, there is a need to provide a programming 
paradigm that is uniform across different techniques (e.g., including process 
group protocols; see [Birman, 1993]) to improve the ease of development and 
performance. Such an environment would also help in the scale-up and evolu
tion of the applications. 

Instances of transactions occur in almost all the distributed application do
mains. For example, in groupware editing of a document, a sequence of changes 
made to a portion of the document by one user would need to be protected from 
other users' actions in order to reflect the desired changes correctly. As another 
example, consider a situation where one user creates a picture, and a different 
user moves the picture to a specific location on the screen. These two activities 
would need to be atomic with regard to each other to ensure that an incomplete 
version of the picture is not moved. In some cases, even human protocols may 
be used to coordinate the activities, although the provision of the requisite pro
tocols by the system would improve performance. Note that there are implicit 
RTR needs associated with this interactive application. 
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There may be situations where a distributed transaction is used to group to
gether the actions of several users. For instance, suppose that a telescope is to 
be focused by several geographically dispersed users who are responsible for 
different controls. One user may be responsible for the horizontal movement 
of the device, the second may handle the vertical movement, and a third may 
adjust the focal length to maintain a sharp image. To keep the view observed 
through the device focused, the actions of the three users may be grouped to
gether as a single transaction. Again, there may be additional timing consider
ations that need to be observed among the users' actions to maintain the focus. 
Managing distributed executions of this nature is a form of coordination con
trol, and may be stated suitably in the form of CR and RTR requirements on 
the data (e.g., see [Soparkar et al., 1 995b)). 

The CR in target distributed applications typically require that autonomous 
executions from separate sites be coordinated with one another. For this pur
pose, the two widely used approaches are: the transaction model (e.g., see 
[Bernstein et al., 1987)) and the process group model (e.g., see [Cheriton and 
Zwaenepoel, 1985, Birman and Joseph, 1987b)). The transaction model has 
techniques for ordering concurrent transactions and ensuring their atomicity. 
Process groups are characterized by modeling the distributed system as a col
lection of processes that communicate by multicasting messages. Again, tech
niques are provided for ordering concurrent messages as well as ensuring the 
atomicity of message delivery. These two different approaches share these 
common aspects that simplify development of distributed applications. In fact, 
at the level of protocol implementation, they appear similar (e.g., see [Guer
raoui and Schiper, 1994, Jensen et al., 1997)). 

It has been observed that neither traditional transaction processing, nor tra
ditional distributed computing techniques, are suited to all applications uni
formly. Some applications are better suited to transactions, whereas others are 
better coordinated by group multicast techniques. Generally, transactions are 
better suited to cases where a high degree of CR is needed, whereas process 
group approaches are better in terms of RTR. Most distributed applications 
could benefit from a good meld of the performance and consistency criteria 
(e.g., see [Birman, 1994, Cheriton and Skeen, 1993)). We argue that existing 
techniques from several domains, complemented by new ones, will eventually 
emerge as a set of appropriate approaches for distributed real-time data man
agement. 

There is an inherent difficulty in meeting the RTR and CR simultaneously, 
and this has been identified in transaction processing as well as distributed 
real-time systems (e.g., see [Soparkar et al., 1994)). Therefore, there is need to 
exploit application-specific semantics and to use alternative means to obtain CR 
guarantees while achieving better RTR. We examine how techniques developed 
for real-time CC may be applied effectively in distributed environments. We 
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discuss a logical design to segregate the data and CC into distinct levels such 
that the RTR and CR issues within a level are addressed in a unifonn manner, 
whereas the issues may differ from the other levels. Furthennore, we discuss 
the use of distributed middleware protocols which may be more efficient, and 
accrue similar advantages, when compared with transaction-oriented system. 

12.2 RESPONSIVENESS AND CONSISTENCY 

An examination of different applications illustrates the differing needs of RTR 
and CR - sometimes within the same application. Simple working descrip
tions of the RTR and CR for the applications suffice for our discussions. For 
instance, in groupware environments, RTR may mean a responsiveness which 
closely approximates a shared workspace for physically co-located users. On 
the other hand, for a manufacturing environment, RTR could reflect the close 
temporal coupling of separate machines which need to be coordinated. 

In the examples to follow (parts of which appear in [Jensen and Soparkar, 
1995]), it is not difficult to state suitable RTR and CR needs associated with 
the data (as in [Soparkar et aI., 1995b]). An example may be to require that 
distributed replicas of a data item not be mutually inconsistent longer than some 
period. In tum, this would impose RTR needs on the executions that affect the 
values of the data items. 

12.2.1 Simple Concurrency Control 

There are several applications requiring basic real-time control to manage ac
cess to shared resources. For instance, in groupware, consider a shared doc
ument being edited by several users simultaneously. The RTR suggests that 
changes being effected by a user should be made visible locally to the user im
mediately, and also, be propagated to the other users. However, if a remote user 
simultaneously makes conflicting changes (local to the remote location), then 
a CR problem may arise in tenns of the contents of the document. On the other 
hand, if an attempt were made to ensure a consistent document across aliloca
tions (e.g., by using exclusive locks), then the CC itself may cause inadequate 
RTR (e.g., due to the time-consuming acquisition of remote locks). 

Groupware applications may also exhibit characteristics which pennit greater 
RTR because their CR considerations are less crucial (e.g., as compared to a 
database environment). Consider data that represents the "presentation" ser
vices in groupware (e.g., a shared pointer, or a shared view of a document). 
The utility of such data lies in providing "instantaneous" interaction among 
users. However, it may not matter much if, occasionally, a shared pointer or a 
shared view is not synchronized for some users for a brief period. Clearly, such 
situations reflect relaxed CR. 
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12.2.2 More Elaborate Coordination Control 

Distributed executions may involve more complicated control. For example, 
consider automating the task of lifting and cutting a pipe in manufacturing. 
Two robots may lift the pipe, and other robots may cut the pipe. Separate 
autonomous controllers for each robot are often needed for reasons of modu
larity, and these controllers must be coordinated with one another. There may 
be several constraints among the robots as regards their actions. For instance, 
the lifting robots may need to act in close synchrony, and also, lifting must be 
accomplished prior to the cutting (e.g .. see [Shin, 1991]). Such requirements, 
translated into RTR and CR constraints, could be managed by the use of CC or 
low-level communication primitives. The latter helps in achieving RTR more 
easily, and may be able to meet time constraints better. For instance, the use of 
totally ordered multicasts (e.g., see [Birman, 1993]) invoked from within the 
application programs, could help in synchronizing the actions efficiently. 

More elaborate coordination is exhibited in considering an observation sys
tem in scientific domains for mobile objects (adapted from [Soparkar et aI., 
1994]). The system consists of several tracking stations (i.e., sites), each of 
which has its own computing and scheduling resources. That is, there are sev
eral processing sites that manage object-sensors, cameras, and locally store 
data pertaining to the readings, positions, etc. 

Periodically, the sensors update the data regarding the objects as tracked at 
each local site, and this data is also sent to specific coordinator sites. The co
ordinator receives track data from several sites and correlates the data gathered 
to create the global tracking information. It is necessary to do the correlation 
since the data obtained at each site may be individually insufficient to iden
tify the objects accurately. The globally correlated data is also disseminated 
among the sites, and this data affects local decisions at the sites. Finally, global 
decisions may be taken sporadically for a variety of actions to be executed si
multaneously among several sites. For instance, cameras may be activated to 
take photographs of a particular object from several angles at a particular time, 
to be then provided to the users. 

Assume that at each site, local transactions update the local track data. Also, 
assume that the collection and correlation of the local track data from the dif
ferent sites, and the dissemination of the global track data, together constitute 
one type of distributed transaction. The reading of the local track data and 
subsequent writing of the global track data at each site constitute the local sub
transaction for the distributed transaction. 

Suppose that an erroneous local track is recorded at one of the locations 
- perhaps due to a malfunctioning sensor. This fault may be detected only 
after the local track data is collected and correlated with (correct) track data 
from other sites (but before the corresponding global track is committed). Con
sequently, erroneous global track data may be generated and disseminated to 
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several sites. Such a distributed transaction should be aborted as soon as pos
sible. In standard transaction processing, the execution of a commit protocol 
ensures that all the subtransactions of the aborted distributed transaction do 
indeed abort. 

The price paid for employing a standard commit protocol may be high. 
Blocking may cause a situation where none of the sites have recent global 
track data, and awaiting the coordinator's final decision may unnecessarily 
cause poor RTR. The fast local commit of a subtransaction would be much 
more suitable - optimistically assuming that the distributed transactions usu
ally commit. However, uncoordinated local commitment may cause some sites 
to commit the erroneous global track data they receive, and subsequently to 
expose the data to other transactions. For instance, a transaction that positions 
the camera at a site may base its computation on the prematurely committed, 
and hence inaccurate, global track data. Therefore, there is a need to recover 
from the effects of the incorrectly committed data by compensatory actions. In 
our example, the compensatory actions may re-position the camera based on 
the past history of the execution in an application-specific manner. 

12.3 ENABLING TECHNOLOGIES 

In the context of distributed real-time data management, a coherent picture is 
not available, nor is there consensus regarding the accepted paradigms. The 
primary reasons are the difficult issue of addressing simultaneously the often 
conflicting demands of CR and RTR. 

In contrast, centralized real-time CC, which is a special case of distributed 
real-time data management, is well-studied. Due to the inherent architecture 
of distributed systems, we advocate an approach that begins with centralized 
real-time CC, and thereafter, addresses distributed control. That is, each site in 
a distributed setting should largely function autonomously with its own local 
CC, and coordination be effected among the multiple sites for managing the 
distributed executions. Therefore, the local CC module must handle the local 
CR as well as the RTR for the local executions, and coordinating agents should 
manage the interaction among sites. Several studies have advocated this gen
eral approach (e.g., see [Son, 1988, Soparkar and Ramamritham, 1996, Son, 
1996, Ozsoyoglu and Snodgrass, 1995, Kao and Garcia-Molina, 1992, Gra
ham, 1992]). In consequence, there is need to understand both the centralized 
as well as the distributed scheduling issues. 

12.3.1 Centralized CC for RTR 

In an environment with RTR needs for transactions, all executions may not be 
desirable even if they happen to meet the CR (e.g., by being serializable). In 
fact, a schedule where all transactions meet their deadlines may be better than 
another where some deadlines are not met - even if the latter schedule has a 
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shorter overall execution time. It is in trying to meet the RTR that traditional 
CC must be modified. The general approach adopted in centralized real-time 
CC is to generate schedules that are optimized for RTR in various ways (e.g., 
see [Graham, 1992, Ramamritham, 1993, Ozsoyoglu and Snodgrass, 1995, Kao 
and Garcia-Molina, 1992]). By suitably delaying or aborting input operations, 
better RTR schedules may be effected, and most of the techniques are described 
as such. 

Re-examining traditional CC indicates that merely improving concurrency is 
of limited utility (e.g., see [Soparkar et al., 1996]). The traditional approach has 
the goal of certifying as large a number of schedules as possible that meet the 
CR (e.g., see [Papadimitriou, 1986]). The expectation is that this would enable 
the CC to adversely affect the performance minimally, and therefore, every 
schedule meeting the CR is regarded as being equally desirable. Therefore, 
the goal of traditional CC is to preserve the CR (i.e., generate logically correct 
executions) while maintaining a high level of parallelism (i.e., the number of 
allowable executions). Clearly, traditional CC schedulers do not attempt to 
provide better RTR explicitly. That is, it is assumed implicitly that the order 
of the input sequence of operations will provide good RTR, and to the extent 
possible, the sequence is output unchanged. In fact, allowing a large number of 
schedules implies that schedules exhibiting worse RTR may also be generated 
- although, it also allows for a wider choice to find better performing schedules. 

12.3.2 Characterization Efforts 

Surveys (e.g., see [Ramamritham, 1993, Ozsoyoglu and Snodgrass, 1995, Kao 
and Garcia-Molina, 1992]) indicate efforts have focused on applying real-time 
scheduling to resolve conflicts that arise among transactions in order to meet 
the RTR needs. Various combinations of real-time and CC techniques have 
been considered, and "rules-of-thumb" have been identified and studied empir
ically. 

In order for the CC to meet the RTR, some efforts attempt to relax the CR 
(e.g., see [Korth et al., 1990a, Soparkar et al., 1995b, Kuo and Mok, 1992]). 
These approaches rely on the performance benefits of increased concurrency 
over traditional CR. For instance, [Lin et al., 1992] illustrates specific situa
tions in which non-traditional CR may help meet RTR needs, and where the 
durability of transaction executions may not be essential. However, such an 
approach is obviously limited in meeting CR in general settings: indeed, dis
cussions in [Graham, 1992] emphasize the importance of traditional CR even 
in typical real-time computing environments. 

The characterization efforts for distributed cases are few (e.g., see [Ramam
ritham, 1993, Soparkar et al., 1995a, Soparkar et al., 1994, Purimetla et al., 
1995, Ulusoy, 1992]); the difficulties lie in characterizing the CR and RTR 
in distributed environments, and the lack of solutions for issues such as syn-
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chronization and atomic commitment (e.g., see [Soparkar and Ramamritham, 
1996]). While it may be argued that centralized real-time CC should be com
pletely understood first, it remains a fact that most of the target applications are 
inherently distributed. 

12.3.3 Performance Studies 

Most of the existing research results in real-time CC have been in the context 
of performance studies (e.g., see [Ramamritham, 1993, Lee and Son, 1995, 
Ozsoyoglu and Snodgrass, 1995, Kao and Garcia-Molina, 1992]). 'JYpically, 
different work sets, loads on the system, and fairly innovative techniques for 
CC are examined by running extensive simulations, and conclusions are drawn 
from the empirical results. Several locking or time-stamping CC protocols are 
examined in conjunction with heuristic preemption policies. Often, optimistic 
approaches to CC have been found to perform favorably in certain situations 
(e.g., see [Haritsa et al., 1990, Huang et al., 1991]). In general, the data access 
patterns are assumed unknown a priori, although some simulation experiments 
do take into account the patterns - with the expected improvement in RTR. A 
few studies have used analytic models, such as [Song and Liu, 1990], in which 
an application to monitor certain real-time systems situations using lock-based 
multi-version CC protocols is studied. Similarly, the inclusion of priorities in 
the handling of different system resources such as the processors, and buffers, 
for the transactions, is studied analytically in [Carey et al., 1989]. However, 
real-life applications are often not considered for the workloads, platforms etc., 
and furthermore, usually only a single RTR factor is addressed. 

A useful development for improved RTR is the availability of main-memory 
resident database systems (e.g., see [Garcia-Molina and Salem, 1992]). These 
have arisen due to increased memory sizes and smaller data requirements in 
new application domains. Since the number of disk accesses is reduced, and 
data may be made durable selectively, transactional accesses to the data become 
more efficient. In real-time environments, this is particularly useful since the 
validity of a significant part of the data is time-bound, and therefore, there is 
little utility in making such data permanently durable. 

12.3.4 Real-time and Distributed Systems 

Scheduling theory (e.g., see [Lawler et al., 1992]) indicates that even for rela
tively simple situations, the issue of guaranteeing RTR is computationally ex
pensive. The issue of ensuring CR only exacerbates this problem (e.g., see 
[Soparkar et al., 1995b]). Coupled with uncertain execution times, multi-tasked 
environments with preemption, varying RTR needs, and unexpected delays 
etc., these problems indicate that in pragmatic terms, relying on heuristics for 
scheduling is unavoidable in all but very simple cases. 
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In distributed environments, the problems in meeting RTR and CR needs 
are more difficult. 1Ypically, distributed computing approaches let these is
sues be handled by the application designers or users, and provide them some 
tools to do so. Of note are the use of multicast message ordering schemes 
(e.g., see [Birman, 1993]) which forego transactional CR in many simple in
stances, and thereby achieve higher RTR. The approach efficiently implements 
transaction-like primitives in a communication subsystem for common modes 
of multicasts. However, as CR and RTR demands grow, obtaining less stringent 
orderings become increasingly difficult, and transactional semantics appear to 
be necessary (e.g., see [Jensen et aI., 1997]). In general, where it is possible 
to circumvent the inefficiencies that affect RTR in transaction-oriented com
puting, group communication protocols should be supported for simpler dis
tributed interactions. 

12.3.5 Application-specific Approaches 

Approaches specific to particular applications are narrowly focused. As such, 
they are similar to the implement-test-re-implement cycles prevalent in unstruc
tured real-time system development (e.g., see [Stankovic, 1988]). In the inter
ests of short-term costs, simple-minded approaches are used to develop work
ing systems which, unfortunately, often do not scale-up or evolve well. They 
usually have a poor characterization of the CR needs, and RTR is often "han
dled" by upgrading to the next higher-speed processing environment. These 
approaches do not work in more complex environments due to the CR needs. 

Instances of application-specific approaches include meeting of RTR on 
transactions that procure approximate information from a database (e.g., see 
[Smith and Liu, 1989]). The idea explored has been to improve the required 
estimates that are gathered depending on the remaining time available. Another 
approach specific to a few real-time control environments is described in [Kuo 
and Mok, 1992] which considers liberal CR. Similarly, for specific cases, the 
need for CC may be entirely avoided as described in [Audsley et al., 1991]. 

12.4 LOGICAL SYSTEM ARCHITECTURE 

We describe a generic distributed real-time CC architecture which could be 
suitably modified to represent actual cases. Following [Soparkar et al., 1996], 
a distributed real-time system architecture consists of n sites, Sl, S2, ... , Sn, in
terconnected by a communications network as shown in Figure 12.1. Each site 
Sj has a largely autonomous local system which must meet the local CR and 
RTR needs. The local CC, should not distinguish between transactions and sub
transactions. The data, which may be replicated, is stored in a local database. 
The coordination effort is distributed among the sites in the form of n intercon
nected software agents which are independent with regard to one another. All 
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user programs 

communications network 

) 
local transactions and 
global subtransactions 

Figure 12.1 Distributed real-time system architecture 

interaction among the sites, including the synchronization, is managed by the 
software agents. 

We regard each database as a set of entities, and the data is persistent in that 
it may have lifetimes greater than the processes that access it. The state of a 
database is a mapping from entities to their corresponding values. A transaction 
is a data accessing part of an application program, and may be regarded as a 
sequence of operations performing a semantically coherent task. In fact, a 
transaction is the unit for the consistent access of the database as well as the 
unit for recovery in case of an abort. A consistent access is left unspecified 
except that it should reflect the application semantics. Similarly, the CR of the 
concurrent executions is regarded as being application-specific. 
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12.4.1 Providing RTR at Local Sites 

For providing RTR in centralized environments, the basic approaches incorpo
rate real-time scheduling techniques with CC. Such approaches work well for 
specific RTR and workloads, but not necessarily for general cases. Often, they 
are difficult to implement since the CC interacts with lower levels of the oper
ating system, and are relatively inflexible. There are several are several surveys 
(e.g., see [Ramamritham, 1993, Kao and Garcia-Molina, 1992, Ozsoyoglu and 
Snodgrass, 1995]) that describe the various available techniques and studies. 

A simple alternative may be described as follows. First, note that one rea
son why the traditional CC does not work well for RTR is that it has only two 
choices with regard to an input operation - either to schedule it, or to delay 
it. That is because traditional CC schedules one operation at a time. Instead, 
we suggest scheduling a set of input operations at a time - thereby providing 
the potential to apply scheduling heuristics for RTR to the operations (e.g., 
[Soparkar et al., 1996]). Second, we propose addressing the RTR prior to en
suring the CR (by using CC after the real-time scheduling). This would imply 
that a change in the CC per se is not needed, and yet would allow schedulers to 
handle different RTR needs with the same CC. This flexibility in our approach 
may outweigh potential disadvantages of not being able to provide RTR to the 
same degree as that of a combined CR and RTR approach. 

12.4.2 Distributed Real-time CC 

Executions that access data at a particular site include local transactions as well 
as subtransactions from distributed transactions. For the granularities of time 
in the target applications, it is acceptable to assume that the local clocks across 
the separate sites are well-synchronized. We suggest the use of synchroniza
tion protocols across the sites to manage distributed executions. Note that CR 
(e.g., serializability) may be guaranteed using techniques available in federated 
database systems (e.g., see [Soparkar et al., 1991, Mehrotra et al., 1992]). 

It is also possible to use lower-level communication primitives (e.g., suitable 
forms of multicast orderings) to synchronize the distributed executions (e.g., 
see [Birman, 1993, Birman and Joseph, 1987a, Garcia-Molina and Spauster, 
1991]). Such approaches may require an effort by the users, or the application 
program itself, to initiate the needed synchronization and coordination. 

12.4.3 Levels with Differing Requirements 

As discussed in the examples, there are varying RTR and CR needs - some
times within the same application. One approach to this problem is to find ways 
to categorize and isolate the particular needs, and provide distinct mechanisms 
to meet varying requirements and which may be used within one application, 
(e.g., see categorized transactions of [Purimetla et al., 1995, Kim and Son, 
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1995]). Following along these lines, Figure 12.2 depicts a logical architecture 
for the separation of data and CC into levels in a distributed environment. Sites 
Sl,S2, .. ' ,Sn represent the separate locations, and at any given site Sj, the levels 
Aj,Bj, and Uj, represent three disjoint data sets, with different RTR and CR re
quirements. The data within a given level across the sites (e.g., A1,A2, ... ,An) 
may have various CR constraints among them (e.g., in terms of replication, the 
constraint would be "equality"). It is certainly possible to have several more 
levels as necessary for a given application environment. 

12.4.3.1 Level A. This level corresponds to high RTR and low CR. For 
example, data associated with presentation services in groupware may fall into 
this level: it may be acceptable for users to occasionally see an action being 
done - and then undone - due to conflicts with other actions. 

As an example, in a situation where several scientists are together studying a 
geophysical terrain pictured on their computers, a single pointer on the screen 
may be used to draw the attention of the entire team to particular points of 
interest. Since the team may be involved in discussions on what they observe, 
the pointer manipulations would need to be effected in real-time. Furthermore, 
conflicts arising due to the simultaneous access of the pointer may be resolved 
in a simple manner (e.g., by restoring the pointer to its original position, by 
giving one movement preference over others, etc.). 

12.4.3.2 Level B. This level corresponds to high CR, even if RTR is rela
tively poor - such as in the case of standard, conservative CC techniques (e.g., 
from database management systems). 

For example, in manufacturing automation, situations may demand that a 
distributed set of actions be effected only if the set is guaranteed to be com
mitted. Consider the setting of parameter values for the operation of several 
machine tool units. This may involve intricate and time-consuming changes 
to be made. It would be costly to repeat that work in case conflicting changes 
invoked by other tasks prevents the intended changes from being effected. In 
such environments, it may be worthwhile for the CC to ensure first that any 
changes reflected would indeed be effected (and not "aborted" due to other 
concurrent activities). This implies that the required exclusive access to the 
relevant data and resources must be ensured. 

12.4.3.3 Level U. This level corresponds to user or application managed 
CC with varying RTR and CR requirements. Application-specific semantics 
may be incorporated within the application program code itself. 

For example, group communication protocols, voice or video stream syn
chronization, and interactions among the levels described, may be effected 
within level U. Also, advanced semantics-based CC, such as compensating 
transactions (e.g., see [Elmagarmid, 1992, Levy, 1991, Soparkar et al., 1994]), 
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Figure 12.2 Logical system structure with levels. 

may be incorporated into this level. Therefore, Level U is expected to manage 
shared data and resources in an environment that exhibits both RTR and CR 
in varying degrees. The approaches to CC for this level are likely to be very 
challenging. 

The levels A and B correspond to simple concurrency control, whereas the 
elaborate distributed coordination examples would belong to level U. 

12.5 SYNCHRONIZATION USING APPLICATION SEMANTICS 

While it is advisable to use the standard CR where possible in order to accrue 
their obvious advantage (e.g., see [Gray and Reuter, 1993]), they pose prob
lems for RTR. Ensuring CR in a distributed execution may use synchronization 
mechanisms such as distributed commitment (e.g., the two-phase commit pro
tocol - see [Bernstein et aI., 1987]). If for any reason a site does not obtain the 
final message for the protocol, the execution in question may be blocked until 
the necessary message is received - leading to poor RTR. A different problem 
that may arise is that the local CC may dictate that a subtransaction be aborted 
in favor of others with higher RTR priorities, and that may be impossible to 
achieve for similar reasons. Therefore, some of the stringent CR must be re
laxed (e.g., see [Singhal, 1988, Stankovic, 1988]), and this may be achieved by 
taking recourse to application semantics. 

As example approaches which may be used in Level U, we describe the 
concept of relaxed atomicity from [Soparkar et al., 1994], and discuss commu
nication level primitives. The provision of several such tools to the application 
designers and users would allow their use as and when indicated by the appli
cations. This is similar to the concept of "unbundling" services to be used as 
required in the context of real-time database technology (e.g., see [Soparkar 
and Ramamritham, 1996]). 
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12.5.1 Relaxed Atomicity 

A compensating transaction is a recovery transaction that is associated with 
a specific forward transaction that is committed, and whose effects must be 
undone. The purpose of compensation is to ''undo'' a forward transaction se
mantically without causing cascading aborts. Compensation guarantees that 
CR is established based on application semantics. The state of the database af
ter compensation takes place may only approximate the state that would have 
been reached, had the forward transaction never been executed (e.g., see [Korth 
et al., 1990b, Levy, 1991]). 

A distributed transaction may be regarded as a collection of local subtrans
actions, each of which performs a semantically coherent task at a single site. 
The subtransactions are selected from a well-defined library of routines at 
each site. For distributed transactions that can be compensated-for, each for
ward subtransaction is associated with a predefined compensating subtransac
tion. Compensating for a distributed transaction need not be coordinated as a 
global activity (e.g., see [Levy et al., 1991b, Levy, 1991, Levy et al., 1991a]). 
Consequently, the compensating subtransactions are assumed to have no inter
dependencies, share no global information, and to not need the use of a commit 
protocol (i.e., local sites run the compensations autonomously). 

An adaptive strategy may be described that assures "semantic" atomicity as 
a contingency measure. The idea is that when blocking becomes imminent, 
sites should decide locally to switch from a standard commit protocol to the 
optimistic version. In the event that the global coordinator decides to abort the 
entire transaction, compensating executions may be executed at each site where 
the subtransactions in question were locally committed. 

This strategy provides a means to deal with a fast approaching RTR deadline 
for a subtransaction executing at a particular site. If the site in question has 
not yet sent a message indicating preparedness to commit to the coordinator, 
then it may be unilaterally aborted. On the other hand, if that message has 
already been sent, then the subtransaction may be optimistically committed 
- the expectation being that the final decision for a distributed transaction is 
usually to commit. 

A simple example of compensatory actions may be described in the con
text of groupware editing. A user may make certain changes to one part of 
a document, and may optimistically commit the changes rather than to await 
confirmation from other users that it is safe to do so. Occasionally, there may 
occur an incorrectly committed change, and thereupon. a user-specified com
pensatory action may be taken to restore a state that meets application-specific 
CR (e.g., see [Prakash and Knister, 1994]). 
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12.5.2 Communication Level Approaches 

Transactional techniques for providing CR in distributed environments have 
proven useful for their simplicity from a usage perspective. However, relaxed 
CR in applications suggest communication level approaches, such as use of 
multicasts. In [Jensen et al., 1997], a framework is developed which applies 
CC theory to to multicast techniques. The framework provides a better under
standing of the manner in which CR for distributed applications may be main
tained. This understanding also leads to more efficient multicast techniques 
which incorporate application semantics. Since it is difficult to state CR for 
different applications explicitly (as in database transaction systems), a sequen
tial message ordering is regarded as being correct by definition. Thereafter, 
based on the manner in which events can commute in a distributed history, the 
correctness of other concurrent, non-sequential histories is exhibited. The com
mutativity of events is derived from application semantics (in a similar manner 
to non-conflicting operations in CC theory). 

While researchers are analyzing real-time multicast techniques, effective 
protocols are also being developed. In [Kopetz and Grunsteidl, 1993, Abdelza
her et al., 1996], protocols are described which provide bounded time message 
transport make them suitable for applications with specific RTR needs. Fur
thermore, the ordering and atomicity provided for multicast messages make 
them useful in effecting transaction-like CR. 

12.6 CONCLUSIONS 

We have considered several concurrency and coordination control issues for 
distributed real-time data management. In discussing developments that may 
serve as appropriate approaches, we have provided an architectural framework 
for concurrency control mechanisms for use in such systems. Our approach 
partitions the data and concurrency control logically into levels based on the 
different real-time responsiveness and consistency requirements within appli
cations. Within this general framework, we have indicated how several existing 
traditional and newly developed techniques may be used to satisfy the desired 
application requirements. In particular, systems which provide a number of 
user-managed alternatives to standard concurrency control are in a good po
sition to handle diverse needs. Experience from research with experimental 
systems suggests that our approach may be profitably used in managing con
current executions in these environments. 
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Abstract: An important limitation in broadcast disk environments is the low 
bandwidth available for clients to communicate with servers. Whereas advanced 
applications in such environments do need transaction processing capabilities, 
given the asymmetric communication bandwidth, we show that serializability 
is too restrictive in such environments and hence propose a weaker alternative. 
Specifically, this paper considers the execution of updates under transactional 
semantics in broadcast disk environments, and develops a weaker correctness 
criterion. While this is applicable to transaction processing in general, this paper 
describes mechanisms to achieve this criterion in broadcast disk environments. 
We show that read-only transactions need not contact the server and can just 
read consistent data "off the air" without, for example, obtaining locks. Update 
transactions, however, need to validate their updates at the server. 

13.1 INTRODUCTION 

Mobile computing systems [Imielinski and Badrinath, 1994] are becoming a re
ality. The limitations in bandwidth, storage capacity and power of these mobile 
systems pose significant research challenges to the computer science commu
nity. As mobile computing systems continue to evolve, they will be used to run 
sophisticated applications, which in the past, were used only on "stationary" 
computing systems. Many of these applications will require transaction pro
cessing involving large databases. The performance of the transaction manager 
is the key to the performance of any large database management system. A 
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large amount of research has gone into the development of efficient transaction 
management schemes [Bernstein et al., 1987]. Given that mobile computing is 
an emerging technology, it is not surprising that little research has been done 
on supporting transaction processing in such environments. In this chapter, we 
address transaction processing issues in mobile computing environments, par
ticularly those based on a data broadcasting approach exemplified in [Zdonik 
et al., 1994]. 

A broadcast disk is an abstraction of a data-dissemination based system for 
wireless communication environments. The server periodically broadcasts val
ues of certain data items deemed to be of interest to (a subset of) its clients. 
Hence the clients can view the broadcast medium as a disk from which they 
read the data they need. Also, the server can simulate multiple disks with dif
ferent speeds by broadcasting certain data items more frequently than others. 
An important consideration in such an environment is the limited amount of 
bandwidth available for clients to communicate with the server. This band
width limitation prevents the transactions at the clients from contacting the 
server for locking data or validating its updates. Hence, providing support for 
transactions in such an environment is a challenging research issue. 

[Herman et al., 1987] discuss transactional support in an asymmetric band
width environment. However, they use serializability as the correctness crite
rion, which we show is very expensive to achieve in such environments. In 
[Acharya et al., 1996], the authors discuss the tradeoffs between currency of 
data and performance issues when some of the broadcast data items are up
dated by processes running on the server. However, no transactional support 
is present either at the server or at the clients. The updates are made only by 
processes running on the server, while the processes on clients are assumed to 
be read-only. However, the following examples show that the clients may also 
need to update the data: 

• Next generation road traffic management systems will make significant 
use of broadcast databases. These systems will store and broadcast infor
mation about traffic conditions, weather forecasts and driver advisories. 
The information will be used by drivers and possibly even autonomous 
vehicles to select the optimal route to their destinations. The data will 
be updated by various sources - special vehicles traveling on various im
portant roads and gathering traffic data in "real time", by satellites and 
computers monitoring weather conditions and by law enforcement agen
cies responding to accidents or other emergencies. Since it is essential 
'that the driver (or any querying entity) be presented with a consistent pic
ture of the traffic conditions, transaction semantics will be useful for the 
query and update operations. 

• Broadcast databases may also be used to facilitate operations in large, 
mostly "robotic" industrial plants. Data gathered from various sensors 
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around the plant about conditions on the factory floor are broadcast to 
various operators and robots. For example, service personnel, equipped 
with mobile workstations, can access this data to carry out their work 
more effectively. As in the traffic management example, note that the 
service engineer must access sensor data values that are mutually con
sistent. This requires enforcement of transactional semantics on various 
update and query operations. 

• Consider a server that stores stock trading data for a large stock market. 
The server continuously broadcasts information about current prices and 
trading volumes of various financial instruments, current values of vari
ous market indexes, and similar data items. Some of the clients (brokers, 
stock traders, market regulators) use mobile workstations to access this 
data and perform a wide variety of financial transactions. Since it is im
portant to keep data (e.g. stock trades or liability of a broker) consistent at 
both server and clients, operations performed by clients can benefit from 
transactional semantics. 

Motivated by these examples, in this chapter we propose a new correctness 
criterion for transaction processing in broadcast disk environments where the 
clients can also perform updates on the database. We also describe mecha
nisms and protocols to ensure correctness according to the new criterion. With 
the proposed correctness criterion and the mechanisms for transaction process
ing, read-only transactions running on mobile clients are always able to read 
consistent values without contacting the server (to acquire locks or to validate 
their reads), i.e., they will be able to read data "off the air". Two protocols 
are proposed for update transactions in clients. The first is a hybrid approach 
where the transactions at mobile clients contact the server for write locks and 
for validation of their reads, at the time of commit. This combines aspects from 
optimistic and pessimistic concurrency control protocols. The other protocol 
is similar to the conventional optimistic concurrency control [Bernstein et al., 
1987] protocol where the transactions contact the server for validation of their 
data access at the time of commit. 

The outline of this chapter is as follows. In Section 13.2, we motivate the 
need for a new correctness criterion in broadcast disk environments with ex
amples. In Section 13.3 we propose some correctness and consistency require
ments from the perspective of a user and show their relationship to serializabil
ity. In Section 13.4 we discuss the weakening of these requirements. In Section 
13.5 we outline the mechanisms and protocols that are required to ensure con
sistency according to the requirements in Section 13.4. We conclude with an 
outline of future work in Section in 13.6. 
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13.2 MOTIVATION FOR WEAKENING SERIALIZABILITY 

In this section, it is argued that using serializability as the correctness criterion 
for transaction processing might be too restrictive in broadcast disk environ
ments. Two justifications are provided for the above claim. First, it is shown 
that achieving serializability would be very expensive in broadcast disk envi
ronments. We then illustrate, using some examples, that traditional (conflict) 
serializability is not always necessary and that users might be satisfied with 
a weaker correctness criterion. The correctness criterion alluded to here is in 
fact weaker than view serializability [Papadimitriou, 1988], as will be shown 
in later sections. 

The main problem in ensuring serializability in broadcast disk environments 
is the fact that serializability is a global property, i.e., a property involving 
all the transactions accessing shared data items. Because of this, transactions 
running at a client either have to communicate local information to the server 
and/or other clients or the transactions have to ensure that local operations per
formed do not lead to non-serializable schedules. The first alternative involves 
expensive communication by the client while the second alternative may lead 
to unnecessary aborts. An example which illustrates the basic problem is given 
below. 

Example 1. Assume that in broadcast disk environment, clients only know 
the local transaction execution history and history of updates at the server. Con
sider two read transactions Tl and T3 at two different clients A and B respec
tively and two transactions T2 and T4 which run at the server. Now consider 
the following execution history: 

(13.1 ) 

If transactions running on clients do not inform the server about the opera
tions performed by them, then the server would only be aware of the history, 

Client A would be aware of the history, 

and Client B would be aware of the history, 

If both Tl and T3 commit, then the server and both the clients would see 
serializable histories. However, the global history would not be serializable. 
Thus, either Tl or T3 would have to be aborted. However, since the operations 
performed by Tl and T3 are not communicated, and assuming that there exists 
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Tl-T2-T3-T4 T2-T3 T4-Tl-T2 

00 00 00 

Figure 13.1 Serialization Graphs 

no way to inform clients TI and T3 except by expensive message passing, both 
TI and T3 would have to be aborted. This is wasteful by itself since the abortion 
of either TI or T3 would have ensured a serializable history. Unnecessary aborts 
would also occur if the execution history is: 

(13.2 ) 

This is because client A is aware of the above history and would not be able 
to distinguish it from the previous case. Thus, in this case too, TI would have 
to be aborted. A similar argument can be made for T3. Essentially, in the ab
sence of communication from read-only transactions to the server, to preserve 
serializability, the read-only transactions will have to be aborted even in cases 
like history 13.2 assuming the worst case scenario as in history 13.1 . The 
above examples illustrate that serializability in broadcast disk environments is 
either very expensive to achieve or would involve unnecessary aborts. 

In the rest of the section, we illustrate via examples how serializability can 
be weakened while still giving intuitively correct histories. Our correctness 
notion, although weaker than the traditional serializability, still maintains con
sistency of the database and of the values read by transactions. Despite the fact 
that such correct executions are possible even in non-mobile environments, it is 
especially important to allow such executions in mobile environments because 
of the high cost of acquiring locks or validating transactions. 

Example 2. Consider the following history of transaction execution for 
transactions TI, T2, T3 and T4, where TI and T3 are transactions which per
form only read operations in the history. Data items x and y are accessed by 
these transactions. Note that this example is the same as Example 1 with the 
exception of commit CI of T1• 

This history is not serializable since there is a cycle in Figure 13.1(a). How
ever, the final state of the database after this execution is exactly the same as 
that of the serial execution of T2 T4, the two transactions which perform updates 
in the history. That is, the final state of the database is consistent. 

If the history is considered up to time C3, the serialization graph for com
mitted transactions is depicted in Figure 13.1 (b). At this point, T3 can be com
mitted without any inconsistency, since T3 views a consistent database and the 
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database state at this point is also consistent. Further, at the point of Cl, a serial
ization graph can be formed as in Figure 13.1(c) with Tl and all the committed 
update transactions interacting with T1. The operations of read transaction T3 
are removed from the history when the serialization graph is constructed since 
Tl can not see any of the effects ofT3. Therefore, in Figure 13.1(c), Tl views 
a serializable history with the history formed by the operations from update 
transactions and itself. Again, at this point, the state of the database is consis
tent. 

In the above example, although the global history is not serializable, each 
read transaction reads consistent values and views some serial order that is 
consistent. Since update transactions are committed at the server, they can be 
guaranteed to be serializable. On the other hand, read-only transactions are 
executed at the client. They only view committed data values broadcast by the 
server and since these data values are consistent, clients can commit without 
producing any inconsistency in their outputs. The crux of this weakened cri
terion is that each read transaction can view a different serial execution order 
of a subset of update transactions and itself. Through the concurrency control 
of update transactions, all the transactions see their own consistent "view", and 
the consistency of the database can also be maintained. 

13.3 FORMALIZATION OF CONSISTENCY REQUIREMENTS 

In the following sections, we come up with a correctness criterion that is appro
priate for broadcast disk environments. We do this by first viewing correctness 
requirements from the perspective of the user in a traditional database system 
and exploring the correctness criterion implied by these requirements. We then 
weaken these requirements in the context of broadcast disks. This section ex
presses the requirements of users in a traditional database system and studies 
how view serializability matches with them. 

For the rest of the chapter, we make the following basic assumptions about 
the database system. 

1. The initial state of the database is consistent. 

2. A transaction is the unit of consistency. Each transaction that modifies 
the database transforms the database from one consistent state to another. 
Further, the only way to get from one consistent state to another is by 
executing a transaction as though it were executed in isolation on the 
initial consistent state. 

13.3.1 Requirements 

We now informally specify the requirements from the perspective of a user 
and justify these requirements. Consider a history 1£. 1£ is legal iff all of the 
following hold: 
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1. The final state of the database after the occurrence of all the operations 
of committed transactions in 1£J (the committed projection of 1£), in the 
same order as in 1£, is consistent. 

2. The committed final state of the database is the same as the state pro
duced by the transformations of all and only the committed transactions 
performed in some serial order on the initial state of the database. Fur
ther, all the transactions whose transformations "affect" the final state of 
the database in this order of execution should read! the same values of 
objects and perform the same transformations as they did in the history 
1£. 

3. The values of the objects read (if any) by a committed transaction in 1£ 
are consistent and are the same as the values of those objects in a data
base state produced by the transformations of some subset of committed 
transactions in 1£. 

4. Every prefix 1£' of 1£ satisfies the above criteria. 

Intuitively, for a history to be legal, requirement 1 says that the user wants to 
see the database in a consistent state after the completion (execution and com
mitment or abortion) of all transactions in the history. Requirement 2 states that 
all and only the effects of committed transactions, as reflected in the history, are 
visible in the database. Requirement 3 states that the values read by commit
ted transactions in the history are consistent committed values. Requirement 4 
states that the above properties hold for all the prefixes of the history because 
the state of the database should be consistent in the event of failures. 

13.3.2 Formalization of Requirements 

We now formalize the informally defined user requirements for a legal history 
1£ as follows. A history 1£ is legal iff there exists a serial order S of all and 
only the committed transactions in 1£ such that: 

1. The final state of the database after the occurrence of all the operations 
of committed transactions in 1£J (the committed projection of 1£) in the 
same order as in 1£, is the same as the state of the database on running 
each committed transaction in 1£ in the serial order S. 

Justification. Since the final state of the database must be consistent (re
quirement 1), the final state of the database should be the state resulting 
from running some number (~ 0) of transactions one after the other (as
sumption 1) in some serial order. Also, by requirement 2, we can infer 
that the final state of the database must be the same as the state resulting 
from running committed transactions in 1£ in some serial order on the 
initial state of the database. 
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2. At least one of the following two statements hold: 

• Each transaction in S reads the same values of objects and performs 
the same transformations on the database as it does in the history 1£. 

• There exists some suffix of transactions in S such that when these 
transactions are run in the same order as in S on any consistent state 
of the database, they read the same values of objects and perform 
the same transformations on the database as they did in the history 
1£. This suffix is the set of transactions which "affect" the final state 
of the database. 

Justification. By requirement 2, each transaction which affects the final 
state of the database should read the same values of objects and perform 
the same transformation on the database as in the history 1£. If all transac
tions affect the final state, then we have the first part of the above formal 
requirement. On the other hand, not all transactions may affect the final 
state of the database. 

Example 3. Consider the following history : 

Tl[a]j T2[a]j wl[a]j w2[a]j w3[a]j C3j C2j Cl 

Assume that the above history runs in a database with just one object, a. 
Since T3 writes onto a without performing any read operations on objects 
in the database, the operations performed by the other transactions, Tl 
and T2, do not affect the final state of the database. Irrespective of their 
operations, the final state of the database is going to reflect only the final 
write operation by T3. Thus, the final state of the database is the same 
as the one produced by running the transactions in the order TIT2T3 on 
the initial state of the database. Note, however, that if there are multiple 
objects in the database, then, Tl and T2 may affect the final state of the 
database. If they were executed in a state that is different from the state 
in which they were executed in the history (for example, in the order 
TIT2T3), they may write to an object other than a and hence affect the 
final state of the database. In this case, the final state of the database will 
not be the same as the state produced by running the transactions in some 
serial order. 

Since not all transactions may affect the final state of the database, this 
means that there should exist a serial ordering of transactions S, which 
satisfies requirement 1, such that a suffix of S consists of exactly the set of 
transactions which affect the final state of the database ({ T3} in the above 
example). Also, since no other transaction before this suffix affects the 
final state of the database, the transactions in this suffix when executed 
in the order specified by S on any consistent state (or equivalently, on 
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any state got by some serial execution of transactions, by assumption 2) 
should produce the same final state of the database (T3 would lead to the 
same state, whatever be the database state it is run on, as long as that state 
is consistent). This together with requirement 2 implies the second part 
of the above formal requirement. 

3. Each committed transaction in 1£ reads the same values of objects as in 
the state after some serial execution of some set of committed transactions 
in 1£. 

Justification. Since each transaction reads consistent values of objects 
(requirement 3), the values of objects read should be the same as the val
ues of objects after the execution of some number of transactions in some 
serial order (assumption 1). Further, since only the transformations of 
committed transactions in 1£ should be seen (requirement 3), the formal 
requirement follows. 

4. The above three requirements also hold for each prefix 1£' of 1£. 

Justification. Follows from requirement 4. 

13.3.3 Comparison with View SerializabiJity 

In this subsection, we explore the relationship between the correctness crite
rion presented in the previous subsection and view serializability. In order to 
formally capture the relationship, we first spell out the knowledge made avail
able to schedulers. Most traditional transaction processing systems assume that 
schedulers have similar knowledge [Bernstein et aI., 1987], but they have been 
listed here for completeness. 

A scheduler which determines legal histories is assumed to know the follow
ing: 

1. the history of read, write, commit and abort operations of transactions. 

2. that a transaction is a deterministic program and its actions depend only 
on the values it reads from the database. 

3. that each transaction terminates when run in isolation on a consistent 
state. 

4. the identity of data objects in the database. 

A scheduler does not have any information about the following: 

1. the internals of a transaction except what is available in the knowledge of 
schedulers. 
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2. correspondence between transaction execution traces and transaction pro
grams. In particular, a scheduler cannot determine whether two tran
saction execution traces in a history are due to the execution of the same 
program. 

3. the values read from and written to the database. 

4. number of values an object in the database can take. 

We now characterize the set of histories which satisfy the formal require
ments and which are acceptable by some scheduler. The proofs of the claims 
made are long and hence only the sketches of the proofs are presented. 

Theorem 1 If schedulers know the number of objects in the database and this 
number is finite, then the set of histories which satisfy the formal requirements 
and which can be accepted by some scheduler is a strict superset of the set of 
view serializable histories. 

Proof Sketch 13.1 It is easy to see that every view serializable history also 
satisfies the formal requirements given in section 13.3.2. Thus the set of sched
uler acceptable histories which satisfy the formal requirements is a superset 
of the set of view serializable histories. Further, Example 3 gives a history 
which satisfies the formal requirements but which is not view serializable. The 
theorem follows from the above statements. 

Theorem 2 If there are infinite number of objects in the database or if the 
schedulers do not know the number of objects in the database, then the set of 
histories which satisfy the formal requirements and which can be accepted by 
some scheduler is exactly the set of view serializable histories. 

Proof Sketch 13.2 It is easy to see that the set of scheduler acceptable his
tories which satisfy the formal requirements is a superset of the set of view 
serializable histories. Also, given the knowledge available to schedulers, the 
only way that a scheduler can determine that the final state is consistent af
ter the ocurrence of a history 1£ is if all committed transactions in 1£ read the 
same values of objects as they do in some serial execution. If this were not the 
case, then the behavior of transactions is unknown and they could potentially 
write arbitrary values to data objects and thus make the final state inconsis
tent. Also, the only way that schedulers can determine that transactions in 1£ 
read the same values of objects as they do in some serial history S is if each 
transaction reads values of objects from the same transaction in both histories. 
But this would mean that 1£ is view serializable. 

13.4 WEAKENED REQUIREMENTS 

In this section, we propose a weaker correctness criterion stemming from weak
ened user requirements. We first present the motivation for weakening user re-
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quirements and then state the requirements informally before expressing them 
formally. The work presented here differs from that in [Garcia-Molina and 
Wiederhold, 1982] in two respects. First, we do not assume that the scheduler 
knows whether transactions are read-only in all possible executions. Also, in 
our correctness criterion, it is sufficient that read-only transactions are serial
ized with respect to a subset of update transactions without being serialized 
with respect to all the update transactions. 

13.4.1 Motivation for Weaker Requirements 

In earlier sections it was shown that ensuring serializability in broadcast disk 
environments may lead to expensive communication or unnecessary aborts. 
Communication is expensive because of the limited bandwidth available from 
clients to the server and unnecessary aborts take place because the scheduler 
has to be conservative in the absence of global information. In this light, it 
would be worthwhile to come up with a correctness criterion that is weaker 
than serializability and would avoid the above costs. The requirements stated 
in the previous section could be weakened to achieve this goal. We illustrate 
this with an example of a history that is accepted by the weakened requirements 
but not by the original requirements. 

Consider a variation of the history in Example 1: 

rdx); W2[X); C2i r3[x); r3[y); W4[Y); C4; rl[Y); Cli C3 

Only T2 and T4 perform write operations in this history. The transaction 
TI sees these two transactions in the order T4T2 (since it reads the value of an 
object, y, after T4 writes to it reads the value of another object, x, before T2 
writes to it). Similarly T3 sees these two transactions in the order T2T4. Thus 
in any serial order of the committed transactions TI, T2. T3• T4, at least one of 
TI and T3 would be executed in a state of the database that is different from 
the state in which it was executed in the history. Thus the scheduler would not 
know what operations this transaction would perform. This transaction may 
also write to an object (even though this transaction is read-only in the history, 
it could perform an update in another history if it reads different values of 
objects) that is untouched by other transactions, thus leading to a final state of 
the database that is different from the final state produced by the above history. 
Thus the requirements would not be satisfied by this history. However is this 
history still "correct"? 

In the above history, the final state of the database is the one produced by 
running the two update transactions (the transactions that perform write op
erations in the history), T2 and T4. Hence, the final state of the database is 
consistent. Further, each transaction reads consistent values of objects because: 

• TI reads values of objects that are the same as those in a state produced 
by running T4 on the initial state of the database 
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• T3 reads values of objects that are the same as those in a state produced 
by running T2 on the initial state of the database 

• T2 and T4 do not perfonn any read operations and hence, vacuously read 
consistent values of objects 

For schedulers to accept such histories, weaker requirements need to be 
specified. 

13.4.2 Weakened Requirements 

The weakened requirements differ from the requirements outlined in section 
13.3.1 in only the second part. Instead of requiring the final state of the database 
to contain the effect of all transactions as in the original requirements, only the 
effects of update transactions in the history are required to be present in the 
final database state. More precisely, the second part of the requirements is 
modified as follows in the weakened correctness requirements: 

• The committed final state of the database is the same as the state produced 
by the transfonnations of all and only committed update transactions per
fonned in some order on the initial state of the database. Further, all the 
transactions whose transfonnations "affect" the final state of the database 
in this order of execution should read the same values of objects and per
fonn the same transfonnations as they did in the history 11.. 

Transactions that perfonn only read operations in a history may perfonn up
dates when run in a database state that is different from the one in which it 
is run in the history. An implication of the weakening of requirements is that 
these transactions may see serialization orders that are different from the serial 
order seen by the update transactions. Thus, update operations that may be 
done by these transactions, when run in the global serial order of update trans
actions, are ignored. However, this may still be acceptable to users since the 
transactions read consistent values of objects and the final state of the database 
is consistent. 

13.4.3 Formalizing Weakened Requirements 

A history 11. satisfies the weakened requirements iff there exists a serial order 
S of all and only the committed transactions in 11. such that: 

1. The final state of the database after the occurrence of all the operations 
in committed transactions in 1I.J (the committed projection of 11.), in the 
same order as in 11. is the same as the state of the database on running 
each committed update transaction in 11. in the order S. 

2. At least one of the following two statements hold: 
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• Each transaction in S reads the same values of objects and performs 
the same transformation on the database as it does in the history 1-£. 

• There exists some suffix of transactions in S such that when these 
transactions are run in the same order as in S on any consistent state 
of the database, they read the same values of objects and perform 
the same transformation on the database as they did in the history 
1-£. This suffix is the set of transactions which "affect" the final state 
of the database. 

3. Each committed transaction in 1-£ reads the same values of objects as in 
the state after some serial execution of some set of committed transactions 
in 1-£. 

4. The above two requirements also hold for each prefix 1-£' of 1-£. 

The final state of the database should be the same as that obtained by running 
all the committed update transactions in some serial order. Thus all update 
transactions are serialized with respect to each other. Transactions that do not 
make updates may see serialization orders that are different from the order seen 
by update transactions. Each of these transactions is serialized after a subset of 
the update transactions, and hence, reads consistent values. This subset would 
include all transactions that it "directly or indirectly reads from". The lack 
of a global serialization order involving transactions which perform only read 
operations in the history can be effectively used in broadcast disk environments, 
as is shown in the next section. 

13.5 MECHANISMS TO GUARANTEE CORRECTNESS 

In this section, we propose mechanisms and protocols that are required to en
sure correctness according to the criteria described in the previous sections. 
Specifically, we consider the weakened correctness criteria described in Section 
13.4. The mechanisms and protocols to enforce this criterion are influenced 
mainly by the assumption that contacting the server in a broadcast disk envi
ronment is not cost-effective as only limited bandwidth is available for client
to-server communication. A key feature of our protocol is that it eliminates 
the need for client-to-server communication for read-only transactions, while 
ensuring correctness according to requirements described in Section 13.4. 

The rest of this section is organized as follows. We begin by describing the 
concept of a broadcast disk from an implementation point of view. We then 
describe the protocol followed by clients and the server to ensure correctness 
even when read transactions do not contact the server at all. The protocol 
involves steps to be taken by a client to read or write database items and extra 
processing required at client and server while committing a transaction. We 
then prove that adherence to this protocol results in transaction histories that 
are acceptable according to the requirements described in Section 13.4. 
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13.5.1 Broadcast Disks 

Broadcast disk is a form of data-dissemination based system appropriate for 
wireless communication environments. The sever periodically broadcasts val
ues of all the data items in the database. The clients view the broadcast medium 
as a disk and can read the value of various data items by listening to the broad
cast. For writing an item in the database, the clients contact the server with 
appropriate information. The period of broadcast of different data items can 
be different (i.e. "hot" data items may be broadcast more frequently). This 
is analogous to having several disks with different rotation speeds. In this pa
per, however, we only consider a single disk - i.e., all the items are broadcast 
with the same period. At the beginning of each broadcast cycle the server may 
broadcast several items of control information such as indices. Indices help 
clients save power by determining the exact times when the receiving units 
need to be switched on. The format and techniques of actual broadcasts have 
been described in detail in [Acharya et al., 1996]. Our protocol requires addi
tional control information to be broadcast in order to ensure correctness. 

13.5.2 Protocol 

To ensure correctness when read-only transactions do not contact the server, 
both clients and server have to perform certain additional functions. We first 
describe the functionality provided by the server. 

13.5.2.1 Server Functionality. The server is responsible for three main 
tasks: 

• Broadcast the values of all data items in the database in a periodic manner. 
We assume that all data items are broadcast with the same period. We 
term this period as a broadcast cycle. 

• Provide locking and validation services to update transactions. The write 
operations in a broadcast disk database are mostly similar to write oper
ations in conventional client-server databases. The concurrency control 
approach can either be hybrid or purely optimistic. Under the hybrid 
approach, the server grants write locks on each item a client wishes to 
write. Write locks granted by our broadcast database server only pre
vent other transaction from writing that data item. It does not prevent 
the server from broadcasting the previously committed value of that data 
item (thus allowing read operations on that data item to succeed). Under 
the optimistic approach, the server validates each transaction at commit 
time to ensure serializability. Thus, in both cases the server ensures that 
write-write conflicts are avoided. 

• The server broadcasts two items of control information at the beginning 
of each broadcast cycle. One is an update list which is a list of all updates 



TRANSACTION PROCESSING IN BROADCAST DISK ENVIRONMENTS 335 

made to the database. The list consists of entries that are three-tuples of 
the form < T,ob,c >, indicating that transaction T, updated the value of 
data object ob and committed between the beginning of broadcast cycles 
c - 1 and c. The other is the serialization graph, which is a dependency 
graph of all the update transaction validated at the server. Note that to 
construct a dependency graph, the update transactions have to inform the 
server of not only the items they have written, but also about the items 
they had read and the cycles in which they read the items. 

In short, the server is responsible for the actual broadcast, maintaining se
rializability of the update transactions and providing sufficient information to 
read-only transactions such that they can make decisions about the consistency 
of the data items they have read. 

13.5.2.2 Client Functionality. The clients can execute two types of trans
actions - read-only and update. We describe the protocol followed by clients 
to read and write items in the database, and the extra steps required during the 
commit of an update transaction. 

• Read Operation: When a transaction needs to read a data item, it first 
reads the update list and the serialization graph broadcast at the beginning 
of the broadcast cycle. Using the update list, the transaction can add its 
own dependency edges in the serialization graph, for the read/write oper
ations it has carried out so far and the read operation it intends to perform 
next. If the resulting serialization graph is acyclic, the transaction reads 
the value of the data item during the ongoing broadcast cycle. Otherwise, 
the transaction aborts. 

• Write Operation: When a transaction wishes to write a data item in the 
database, it can take two different approaches, depending on whether the 
optimistic or hybrid concurrency control mechanism is in use. 

- Optimistic Concurrency Control: Under the optimistic approach, the 
update transaction first makes a local copy of the data item and up
dates that copy. This copy is sent to the server at commit time. 

- Hybrid Concurrency Control: If hybrid concurrency control is in 
use, then the client sends a request for write lock to the server. The 
server grants the request if the item is not already locked. The server 
continues to broadcast the previously committed value of the data 
item. The transaction then sends the new value of the data item to 
the server. This value appears on the broadcast after the transaction 
has committed. 

• Commit Operation: The commit time processing is different for read
only and update transactions. 
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- Read-Only Transactions: If a transaction does not write any data 
items during its execution, its commit operation is trivial: do noth
ing. This is because each read operation is validated before it is 
performed, and if the transaction has not aborted during its course, 
there is little it needs to do at commit time. There is no need to 
contact the database server. Notice that this protocol has an interest
ing implication: the server does not need know anything about the 
read-only transactions. This augers well for scalability. 

- Update Transactions: If a transaction is an update transaction (Le. 
it has written onto some data item in the database), it must convey 
all the information necessary for the server to update the entries in 
the update list and the serialization graph. Consequently, depending 
upon whether optimistic or hybrid concurrency control scheme is in 
use, following actions are taken at commit time: 

* Hybrid Concurrency Control: As the hybrid approach requires 
that the client acquire locks on every data item it wishes to write, 
the server is always aware of all the data items updated by the 
transaction that is about to commit. Hence, at commit time, the 
client only needs to send to the database a list of all the data 
items it has read and the broadcast cycle number in which each 
item was read. The server checks its serialization graph to en
sure that the dependencies induced by the read operations, do 
not result in a cycle in the graph. If a cycle is detected, then 
the transaction is aborted. Otherwise, the serialization graph 
and update list are updated to reflect the operations of this tran
saction. 

* Optimistic Concurrency Control: Under optimistic concurrency 
control, the client is not required to obtain locks on data items 
they wish to write. Instead, all the updates are validated at the 
server at commit time. At commit time, the transaction sends 
to server a record of all the data items it has updated and their 
values. In addition, it also sends a list of all the data items it 
has read and the broadcast cycle number in which each item 
was read. The server checks to see if these reads and writes in
troduce any cycles in the serialization graphs. If they do not, 
the transaction is allowed to commit and the serialization graph 
and update list are updated to reflect the operations of this tran
saction. Otherwise, the transaction is aborted. 
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13.5.3 Proof of Correctness 

In this section we informally prove that if the protocol described in the previ
ous section is followed, it guarantees correctness according to the correctness 
criteria described in Section 13.4.3. 

• Proof of weakened formal requirement 1. This follows from the fact that 
the server ensures the serializability of all update transactions. 

• Proof of weakened formal requirement 2. The first statement of this re
quirement always holds since the server ensures that all update transac
tions are serialized in the traditional sense. 

• Proof of weakened formal requirement 3. The server broadcasts updated 
values of data items if and only if the updating transaction commits suc
cessfully. Thus, in any broadcast cycle, the values of the data items re
flect only the changes introduced by transactions that committed before 
the beginning of this broadcast cycle. Before each read operation, the 
client verifies it against the current update list and the serialization graph 
to ensure that the read operation does not introduce any cycles in the se
rialization graph. Hence it follows that each transaction reads values of 
objects that are the same as the values in a state produced by running 
some of the committed transactions that committed before the beginning 
of this broadcast cycle in some serial order. 

• Proof of weakened formal requirement 4. This follows by noting that the 
protocol is followed by each transaction. 

13.6 CONCLUSIONS AND FUTURE WORK 

In this chapter we have presented a new correctness criterion appropriate for 
environments like broadcast disks where client-to-server communication band
width is limited and asymmetric. We have also presented mechanisms and pro
tocols by which this correctness criterion can be enforced in broadcast disk 
environment. We plan to extend this work in the following directions: 

• Study the implications of weakening scheduler restrictions on the set of 
acceptable histories. 

• Investigate extensions to the mechanisms which better exploit the poten
tial of the correctness criterion. 

• Explore ways to minimize the control information exchanged between 
the clients and the server. 

• Evaluate and compare the performance of various mechanisms through 
simulation. 
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• Examine the possibility of using multi-version concurrency control meth
ods. 

Notes 

1. This should not be confused with the reads-from relation between transactions in a history. 
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