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Foreword

Among the numerous books and monographs published so far on the memristor,
memcapacitor, and meminductor, the Radwan-Fouda book stands out as the most
comprehensive, scholarly, and timely. The book has both depth and breadth—it
covers practically all aspects of memory circuit elements that have been published
in the literature, including important contributions from the authors themselves.
Each chapter is carefully organized, well-illustrated, and written pedagogically so
even the uninitiated will find it to be eminently readable. The references are
comprehensive and surprisingly up-to-date, including some obscure papers, and
several future papers that have not yet seen the light of day. Every serious
researcher on memristors, memcapacitor, and meminductors will find this book
indispensable.

USA Leon Chua
February 2015
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Preface

Due to the huge challenges in the continuous scaling of technology, there is a need
to search for alternatives that are compatible with CMOS and can provide high
performance in nanoscale dimension, especially in memories due to the enormous
data storage required for many applications. Memristor-based technology offers a
feasible solution for post-CMOS memories and reconfigurable analog modules,
which are essential in modern electronics and systems-on-chip (SOC). The history
of memristor goes back to 1971 and 1976 when L. Chua, the father of nonlinear
circuits, postulated the existence of passive circuit elements and their promising
applications. Recently in 2008, HP Lab recognized practically the first memristor
based on nanoscale titanium dioxide films though their Nature paper. Thus, mem-
elements such as memristor, memcapacitor, and meminductor have become very
vital components in many applications, due to their unique behaviors which cannot
be obtained using other conventional elements, so modeling of these elements has
become necessary.

This book tries to study the modeling and analysis of these elements in analog
and digital designs as well as their new fundamentals in the circuit theory. The
literature survey includes the main properties of memristor, mathematical repre-
sentations (ideal, generic, and extended), physical models, types, and some appli-
cations. A generalized mathematical class of mem-elements are discussed and
validated through different emulator circuits with experimental results. The concept
of fractional-order elements have been extended to cover the memristor model with
its basic characteristics such as step and sinusoidal responses.

Memristor-based oscillators are considered one of the nonlinear analog blocks
required for many applications such as chaotic memristor oscillators and artificial
neuron networks. Realizations of memristor-based oscillators have been discussed
via replacing resistors with memristors to achieve oscillation, or by replacing
capacitors with memristors to construct relaxation reactance-less oscillators. The
advantages of such oscillators are related to low frequency, nanoscale, and simple
designs and can be used in neuromorphic systems. Different topologies of memr-
istor-based relaxation oscillators have been discussed, either symmetric or asym-
metric types, with analytical formulas of oscillation frequency and conditions for
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oscillations derived. The analyses of these oscillators are introduced with their
numerical simulations, and verified using PSPICE circuit simulations showing great
matching. Moreover, many fundamentals are also discussed such as the effect of
boundary dynamics, series and parallel connections, as well as power analysis in
memristor-based circuits.

Recently, there are huge concerns regarding memristors in digital signal pro-
cessing (DSP) circuits to enhance the performance and realize very high density
nonvolatile memories in neural networks. This can be achieved by mapping the
high/low logic into the memristors’ high/low resistances. Recently, the potential to
divide the memristance levels to build multilevel digital circuits, such as ternary and
redundant circuits, are discussed. The concepts have been initiated by designing a
half-ternary adder based on the memristor, then the concept is generalized for
redundant half adder, full adder, and N-bit adder circuits. The advantages of such
circuits is that the speed is independent on the operand, and parallel processing can
be handled efficiently. Moreover, a general approach to build digital functions using
mixed memristor-transistor circuits are investigated, such as multipliers.

Similarly, the basic definitions of memcapacitor and meminductor are introduced
with their step response with the settling time formulas, sinusoidal response, power
and energy calculations, and the effect of boundary dynamics. Then, the boundary
dynamics under sinusoidal excitations are used as bases to analyze any periodic
signal by Fourier series expansion. Moreover, the analytical analyses of series and
parallel connections as well as resistive-less memcapacitor-based relaxation oscil-
lator are discussed with closed-form expressions for oscillation frequency and
conditions for oscillation. Different memcapacitor and meminductor emulators are
summarized with their mathematical modeling, numerical simulation, and verified
using PSPICE simulations.

Giza Ahmed G. Radwan
February 2015 Mohammed E. Fouda
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Chapter 1
Introduction

Before 1971, Only nine types of two-terminal (five passive and four active) elements
were required to model any electrical component or circuit. Each element was defined
by a relation between the state variables of the network: current I , voltage V , charge
Q, and flux ϕ. Although there is another classification depending on linearity of the
element, in reality, all circuit components are nonlinear and can only be approximated
to linear within a certain range. In this chapter, we present a brief review of linear
one-port passive elements followed by a presentation of the layout for this book.

1.1 Review of Basic Linear Circuit Elements

There are two types of elements found in electric circuits: passive elements and active
elements. An active element is capable of generating energy, while a passive element
is not. Examples of passive elements are resistor, capacitor, inductor, transformer,
and gyrator. Examples of typical active elements are VCVS, VCCS, CCCS, and
CCVS. In the following sections a brief introduction to passive elements is given,
but for more details, see [1].

1.1.1 Resistor

Materials in general have a characteristic behavior of resisting the flow of electric
charge. This physical property, or the ability to resist current, is known as resistance
and is represented by the symbol R which is the proportionality constant between
voltage and current. Georg Simon Ohm (1787–1854), a German physicist, is cred-
ited with finding the relationship between current and voltage for a resistor. This
relationship is known as Ohm’s law.
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2 1 Introduction

v = iR. (1.1)

The resistance R can be measured in the lab as follows:

R = ρ
L

A
, (1.2)

where ρ is known as the resistivity of the material in ohm-meters, A is the cross-
sectional area, and L is the length. The power consumption on the resistance is
given as

P = iv = i2 R = v2/R. (1.3)

1.1.2 Capacitor

A capacitor is a passive element designed to store energy in its electric field. Capac-
itors are used extensively in electronics, communications, computers, and power
systems. They are used in the tuning circuits of radio receivers and as dynamic
memory elements in computer systems.

When a voltage source is connected to the capacitor, the source deposits a positive
charge q on one plate and a negative charge on the other. The capacitor is said to
store the electric charge. The amount of charge stored, represented as q, is directly
proportional to the applied voltage by:

q = Cv, (1.4)

where C , the constant of proportionality, is known as the capacitance of the capacitor.
The unit of capacitance is the Farad (F), in honor of the English physicist Michael
Faraday (1791–1867). Although the capacitance C of a capacitor is the ratio of
the charge q per plate to the applied voltage v, it does not depend on q or v. The
capacitance depends on the physical dimensions of the capacitor and is given as

C = εA

d
, (1.5)

where A is the surface area of each plate, d is the distance between the plates, and ε

is the permittivity of the dielectric material between the plates. The current–voltage
relation of the capacitor is given as

i = C
dv

dt
. (1.6)



1.1 Review of Basic Linear Circuit Elements 3

The instantaneous power delivered to the capacitor is calculated as

p = iv = Cv
dv

dt
. (1.7)

Therefore, the energy stored in the capacitor is given as

w(t) =
∫ t

−∞
p(τ )dτ = 1

2
C

(
v2(t) − v2(−∞)

)
. (1.8)

We note that v(−∞) = 0, because the capacitor was uncharged at t = −∞. Thus,

U (t) = 1

2
Cv2(t) = q2

2C
. (1.9)

1.1.3 Inductor

An inductor is a passive element designed to store energy in its magnetic field.
Inductors find numerous applications in electronic and power systems. They are
used in power supplies, transformers, radios, TVs, radars, and electric motors.

The voltage across the inductor is linearly proportional to the rate of change of
current as

v = L
di

dt
, (1.10)

where L is the constant of proportionality called the inductance of the inductor. The
unit of inductance is the henry (H), named in honor of the American inventor Joseph
Henry (1797–1878).

The inductance of an inductor depends on its physical dimension and construction.
Formulas for calculating the inductance of inductors of different shapes are derived
from the electromagnetic theory and can be found in standard electrical engineering
handbooks. For example, the inductance of al solenoid is calculated as

L = N 2μA

l
, (1.11)

where N is the number of turns, l is the length, A is the cross-sectional area, and μ

is the permeability of the core. The current–voltage relationship is obtained as

i = 1

L

∫ t

−∞
v(τ )dτ. (1.12)
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The inductor is designed to store energy in its magnetic field. The power delivered
on the inductor as a function of the current is

p = vi =
(

L
di

dt

)
i. (1.13)

Therefore, the energy stored is given as

U = L
∫ i

i(−∞)

(t)idi = 1

2
Li2(t) − 1

2
Li2(−∞). (1.14)

which will tend to w = 1
2 Li2(t) since i(−∞) = 0.

1.1.4 Fractional-Order Elements

Integer calculus is considered as a very narrow subset of the fractional-order calculus.
Therefore, the integer elements were also extended to the fractional-order elements
for better modeling and interpretations of many physical phenomena. For example,
the integer capacitor has 90◦ phase difference between the voltage and the current,
while the fractional-order capacitor has 90α◦ phase difference. It is clear that at
the special case α = 1, the fractional-order capacitor acts as an integer capacitor.
Therefore, the extra degree of freedom α in the fractional-order capacitor increases
the design flexibility and enhances the system’s design. A brief introduction to the
basic definition, realizations, and some applications of the fractional-order elements
are discussed in the following sections.

1.1.4.1 Fractional Calculus and Its Applications

The history of fractional calculus dates back to 1695 with the work of scientists
such as L’Hospital and Leibniz, though the first logic definitions were proposed
by Liouville in 1834, Riemann in 1847, and Grunwald in 1867 [2, 3]. Fractional
calculus can be considered as a superset of integer-order calculus, which has the
potential to accomplish what integer-order calculus cannot. The first approximation
of the fractional-order derivative in terms of a complicated system of integer orders
was proposed in 1964 [4], but this approximation was good only in a certain band
of frequencies. Furthermore, different realizations of the fractional elements were
introduced during the past few years [5–8] using different techniques. The theory
of fractional-order elements comes from the frequency-dependent losses in the con-
ventional elements as proved recently in [9, 10]. Many books and researches during
the past three decades have aimed to increase the accessibility of fractional calcu-
lus for remodeling most of the existing applications and analyzing new models in
basic natural sciences. For example, many papers recently have tried to model the
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electrical impedance of vegetables and fruits into simple electrical circuit connections
using a single fractional capacitor [11, 12]. Generally, the fingerprints of the applied
fractional calculus could be built up to include many physical phenomena based
on differentiation and integration [13]. Various numerical techniques were intro-
duced to solve linear and nonlinear fractional-order differential equations (FODEs)
[14, 15], which model different physical problems.

Fractional calculus depends on the history of the function, which is more real-
istic and suitable for modeling, analyzing, and synthesizing and for solving many
problems in bioengineering [16–18]. Thus different biomedical models can be rep-
resented by simple connections of fractional circuit elements [19]. The existence
of an extra degree of freedom in the fractional order makes its performance always
superior to that of the traditional integer calculus, which can be used to describe
the behavior of complex systems and materials. Moreover, modeling with fractional
calculus is used to extract more generalized information and fundamentals [20–23].
In addition, the output can be optimized to be closer to the experimental results by
adjusting the extra parameters and using a suitable optimization technique.

From the circuit perspective, the general theorems related to linear oscillators have
been recently generalized to the fractional-order case, beginning with mathematical
proofs, through circuit simulations, and ending with experimental results [24, 25].
A main basis in most of these generalizations is that the frequency of oscillation
for using fractional elements of order α, is proportional to ω

1/α
o1 where ωo1 is the

frequency of oscillation in the case of integer elements and if α = 0.5 (order one
half), the oscillation frequency increases by a power of 2, which is required for many
high frequency applications. Also, the generalizations of filter theorems are studied
for one or two fractional elements of the same orders showing new fundamentals and
features rather than those of known filters [26–28].

1.1.4.2 Basic Definition of Fractional Capacitor

The most important definition of the fractional derivative was introduced by Caputo
[3] which is denoted by (1.15). If α = 1.2, then m = 2, so the fractional derivative
of order 1.2 is equivalent to an integer derivative of order 2 followed by a fractional
integral of order 0.8.

a Dα
t f (t) :=

⎧⎨
⎩

1
Γ (m−a)

∫ t
a

f (m)(τ )

(t−τ)α+1−m dτ (m − 1) < α < m

dm

dtm f (t) α = m
(1.15)

There are many numerical approximations for the above definition; the most
important one is driven as in (1.16) by Grünwald-Letnikov [29]. In this definition
Γ and h are the gamma function and the step size, respectively. It is clear that the
summation takes into account all previous values of f (t) which cover all the historical
background of the function. When α = 1, all items inside the summation will be zero
except for m = 0, 1, which will be reduced to the traditional backward difference
formula
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a Dα
t f (t) = lim

h→0

1

hαΓ (−α)

t−a
h∑

m=0

Γ (m − α)

m! f (t − mh) (1.16)

Another advantage of the fractional derivative comes from the Laplace trans-
form of the fractional derivative, for example, L{a Dα

t f (t)} = F(s)/sα , which is
equivalent to the relation between the current and voltage across the fractional-order
capacitor V (s) = I (s)/(C f sα), where C f is the value of the fractional capacitor.
Then the phase difference between the current and voltage will be απ/2. In the case
of integer order of the capacitor (α = 1), the general case returns to the well-known
phase difference π/2.

1.1.4.3 Realization of Fractional Elements

The modeling of fractional-order systems (e.g., the fractional capacitor) was dis-
cussed during the previous three decades from different points of view. The math-
ematical approximation of the equivalent transfer function (1/s) to higher integer
order within a certain region of frequencies, passing through its realization using
many branches of resistors and capacitors whose values are related to certain fac-
tors, where 0 < α < 1, is shown in Fig. 1.1a [8], or a tree shape of equal values
can be used to realize the half-order fractional element as shown in Fig. 1.1b [30].
Other realizations of fractional elements using chemical reactions between different
materials are discussed in [30–32]. All these realizations were a good approximation
for the fractional element within a certain range of frequencies. Moreover, a new
half-order capacitor based on fractal structures was introduced in [33, 34].

In the near future, if scientists are able to realize a wide band fractional capacitor
of order α where 0 < α < 1 only, this will be enough to obtain the full range of α

as follows:

(a) (b)

Fig. 1.1 Floating fractional-order capacitor realizations
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• A fractional capacitor of order 1 < α ≤ 2 can be obtained through the use of
a general impedance converter (GIC) whose input impedance is given by Zin =
Z1 Z2 Z3/(Z4 Z5).

• A fractional inductor of order 0 < β ≤ 2 can be realized by using the well-known
gyrator circuit whose input impedance is inversely proportional to ZL . So if ZL

is a fractional capacitor of order β, the input impedance of the gyrator acts as a
fractional inductor of the same order.

1.2 Memristor

Professor Leon Chua noted that there are four different mathematical relations con-
necting pairs of the four fundamental circuit variables current i , voltage v, charge
q, and flux ϕ. The relation between these variables is deduced from Faraday’s law
of induction. A resistor is defined by the relationship between voltage v and current
i (dv = Rdi), the capacitor is defined by the relationship between charge q and
voltage v (dq = Cdv), and the inductor is defined by the relationship between flux ϕ

and current i (dϕ = Ldi). In addition, the current i is defined as the time derivative
of the charge q and according to Faraday’s law, the voltage v is defined as the time
derivative of the flux ϕ. This relation is shown in Fig.1.2a.

Leon Chua compared the above model to that of Aristotle’s theory of matter.
According to this theory all matter consists of earth, water, air, and fire. Each of
these elements exhibits two of the four fundamental properties of moistness, dryness,
coldness, and hotness. This is shown in Fig. 1.2b [35]. Thus, depending on the above
theory he saw a striking resemblance and predicted the existence of the fourth kind
of element and called it memristor.
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Fig. 1.2 a The relation between the circuit elements, and b Aristotle’s theory of matter
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1.3 Historical Background of the Mem-Element

The hypothesis of the presence of a resistor with memory concept existed even before
Prof. Chua postulated its existence in a seminal paper in 1971 [36]. Indeed, the first
man-made memristor dates back to 1801 [37].

In 1960, Prof. Bernard Widrow of Stanford University developed a new circuit
element called the memistor. The memistor was a three-terminal device for which the
conductance between two of the terminals was controlled by the time-integral of the
current into the third terminal. Thus, the resistance of the memistor was controlled by
charge. Memistors formed the basic components of the neural-network architecture
called ADALINE (ADAptive LInear NEuron) [38]. Later, it was proved that the
memistor and memristor are different devices [39]. In fact, Widrow’s memistor is a
gadget, not a circuit element.

In 1968, F. Argall published a paper, “Switching phenomena in titanium oxide
thin films” [40], which shows results similar to that of the memristor model proposed
by Stanley Williams and his team later on.

In 1971, Leon Chua mathematically predicted [36] that there is a fourth fun-
damental circuit element characterized by a relationship between charge and flux
linkage.

In 1976, Leon Chua and Sung Mo Kang published a paper entitled “Memristive
devices and systems” [41], generalizing the theory of memristors and memristive
systems, including a property of zero crossing in the Lissajous curve characterizing
current versus voltage behavior.

In 1980, Chua generalized his theory to higher-order nonlinear elements and
presented two basic approches to device modeling [42]. Moreover, Chua introduced
the general element which can represent the circuit elements.

In 1990, S. Thakoor et al. demonstrated a tungsten-oxide variable-resistance
device that is electrically reprogrammable [43].

Four years later, in 1994, Buot and Rajgopal published an article entitled “Binary
information storage at zero bias in quantum-well diodes” [44]. The article described
current voltage characteristics similar to that of the memristor in AlAs/GaAs/AlAs
quantum-well diodes.

In 2000, Beck et al. of IBMs Zurich Research Laboratory, described reproducible
resistance switching effects in thin oxide films [45]. The hysteretic features of these
switches are similar to those of the memristor.

Apart from the devices mentioned above, it is interesting to note that between
1994 and 2008 there were many other devices developed with behavior similar to
that of the memristor, but only the HP scientists were successful in finding a link
between their work and the memristor postulated by Chua.

In 2007, two U.S. patents were issued. It described implementations of two-
terminal resistance switches similar to memristors in reconfigurable computing archi-
tectures, signal processing, and pattern recognition.
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In 2008, the memristor in device form was developed by Stanley Williams and
his group in the Information and Quantum Systems (IQS) Lab at HP. Dmitri Strukov,
Gregory Snider, Duncan Stewart, and Stanley Williams, of HP Labs, published
an article identifying a link between the two-terminal resistance switching behav-
ior found in nanoscale systems and Leon Chua’s memristor [46]. However, Victor
Erokhin and M.P. Fontana claimed to have developed a polymeric memristor before
the titanium-dioxide memristor developed by Stanley Williams’ group [47]. In April
2008, a U.S. patent including basic claims to a nanoscale two-terminal resistance
switch crossbar array formed as a neural network [48] was issued, and in August, a
U.S. patent including claims covering the device described in the Nature article [49]
was issued. Moreover, in October, the U.S. patent including basic claims to a tunable
nanoscale two-terminal resistance switch [50] was issued.

Since the announcement of the breakthrough by Stanley Williams’ group, numer-
ous papers with the aim to analyze the elementary attributes of the memristor have
been published as shown in Fig. 1.3. Moreover, different publications introduce mem-
ristor fabrication, models, and applications as will be discussed in the next section.
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1.4 Organization of the Book

This book includes seven chapters and is organized as follows:
Chapter 2 gives a review of the memristor: theory, mathematical representations,

phyiscal models, and applications.
Chapter 3 investigates two models for double-loop hysteresis behavior of the mem-

elements which are based on very simple dimensionless equations and then show how
physical voltage- and current-controlled memristor models can be derived. Moreover,
the HP model is generalized to the fractional-order domain. The effect of the added
fractional-order parameter on the memristor characteristics and output behavior are
introduced. Due to the lack of memristor samples, the emulators are very useful to be
used instead of memristor samples. The incremental/decremental, positive/negative,
and memristance/memductance are introduced and their tunable circuit emulators
are presented which are capable of emulating these devices. Moreover, their mathe-
matical models are derived. Experimental results are given.

Chapter 4 introduces memristive oscillators which are a novel topic in nonlinear
circuit theory, where the behavior of the reactive elements is emulated by the mem-
ristor. The mathematical analyses of different memristor-based reactance-less oscil-
lators are introduced, for example, a memristor-based voltage-controlled oscillator
is introduced with two different topologies in addition to the effect of the boundary
of the memristor on this oscillator. New symmetric and asymmetric memristive two-
gate relaxation oscillators are introduced. The generalized analysis for the proposed
memristive two-gate oscillator is introduced, and four special cases for different mis-
matching of the memristors are introduced. The oscillation frequency, duty cycle, and
condition for oscillations expressions are derived for all proposed oscillator circuits.
These circuits are verified using PSPICE and numerical simulations showing great
matching. In addition, the power consumption in two series memristor is calculated
to assist in calculating the power consumed in the oscillators.

Chapter 5 highlights the potential of memristor in binary and multilevel digital
circuits. First, a ternary half adder circuit is introduced to address the concept of
multilevel circuit based on the memristor. Then, a complete case study for redundant
half adder, full adder, and N-bit adder circuit based on the memristor analyzed to
build an adder that has speed independent on the operand showing the potential of
this element in arithmetic circuit is given. Moreover, a new approach to build digital
circuit using the memristor is introduced based on replacing the complete pull-down
network with one memristor to work as calculating/saving element to decreasing the
number of transistors. An example to implement redundant multiplier circuit based
on this approach is then introduced. All these circuits are verified using PSPICE
simulations.

Chapter 6 discusses the boundary dynamics of charge controlled memcapacitor
for Joglekar’s window function, which describes the nonlinearities of the memca-
pacitor’s boundaries. The derived formulas are used to predict the behavior of the
memcapacitor under different voltage excitation sources showing great matching
with the circuit simulations. The boundary dynamics under sinusoidal excitation

http://dx.doi.org/10.1007/978-3-319-17491-4_2
http://dx.doi.org/10.1007/978-3-319-17491-4_3
http://dx.doi.org/10.1007/978-3-319-17491-4_4
http://dx.doi.org/10.1007/978-3-319-17491-4_5
http://dx.doi.org/10.1007/978-3-319-17491-4_6
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are used as bases to analyze any periodic signal by Fourier series. Moreover, the
analytical analysis of two memcapacitors connected in series and in parallel taking
into consideration the effect of mismatch in mobility factor and polarity of each
one is given. Also, a new memcapacitor emulator without using any memristor is
introduced with its mathematical modeling and numerical simulation, and verified
using PSPICE simulations. In addition, the power and energy in memcapacitor is
calculated.

Chapter 7 introduces different applications based on memcapacitor. Focusing on
two main applications; (1) resistive-less memcapacitor-based relaxation oscillator
where closed-form expressions for oscillation frequency and conditions for oscilla-
tion are derived and two special cases are discussed in detail. Moreover, the effect of
boundary on the relaxation oscillator is introduced. (2) Memcapacitor-based synapse
circuit is discussed. All the results have been verified using PSPICE simulations
showing good matching.

Chapter 8 analyzes the current controlled meminductor under different current
excitation signals: DC, sinusoidal, and periodic current signals. The proposed analy-
sis offers closed-form expressions for the meminductance for each case. A general
closed-form expression for the meminductance is derived under any periodic wave-
form and this formula has been validated by applying a square wave as an example.
The power and energy of meminductor are also calculated. Furthermore, memin-
ductor emulators are developed to fit the obtained formulas, which are built using
commercial off-the-shelf components.
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Chapter 2
Memristor: Models, Types, and Applications

2.1 The Missing Element History

The first concept and realization of memory resistor device was proposed by Widrow
in 1960 [1]. It was named memistor and had three terminals. The resistance of this
memistor was variable and could be controlled and sensed using the control (DC
current) and sensing (AC current) terminals. The significant difference between the
transistor and the memistor is that the memistor resistance is controlled by the instan-
taneous time integral of the control current, which is the accumulated charge passing
through the memistor. However, the memistor was not linked to the fundamentals of
circuit theory because it is an “ill-posed” element, a 3-terminal device is said to be
well posed if it has sufficient information to predict the current and voltage associ-
ated with all the three terminals when the device is connected to an arbitrary external
circuit [2]. Moreover, in 1968, through the Electromagnetic theory, Fano et al. listed
that there are four fundamental circuit elements: resistor, capacitor, inductor, and an
unknown element [3].

However, the first practical mathematical concept and realization was introduced
by the father of nonlinear circuits, Prof. Leon Chua, in 1971 in his seminal paper
[4]. It is well known that the four main fundamental circuit variables are current, i ,
voltage, V , charge, q, and flux, ϕ. For linear elements, f (V, i) = 0, f (V, q) = 0
where i = dq/dt , and f (ϕ, i) = 0 where V = dϕ/dt , which represent the linear
resistor (v = i R), the capacitor (q = CV), and the inductor (ϕ = Li), respectively.
Chua predicted mathematically that there is a device representing the missing relation
characterized by g(ϕ, q) = 0 which he named the memristor. Moreover, he presented
an electromagnetic interpretation of the memristor characteristics [4]. Also Chua
defined two types of memristors; charge-controlled and flux-controlled based on
their memristance relation. They are called charge-controlled and flux-controlled
memristor, when the memristance relation is a single-valued function of the charge
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q or flux linkage ϕ, respectively. The voltage across a charge-controlled memristor
is given by:

v(t) = M(q(t))i(t) (2.1a)

M(q) = dϕ(q)/dq (2.1b)

Similarly, the current of a flux-controlled memristor is given by:

i(t) = W (ϕ(t))v(t) (2.2a)

W (ϕ) = dq(ϕ)/dϕ (2.2b)

where M(q) and W (q) have units of resistance (�) and conductance (�). The instan-
taneous power dissipated by the memristor is given by

p(t) = M(q(t))i2(t) or p(t) = W (ϕ(t))v2(t) (2.3)

Five years after the Chua’s first paper on the memristor, Chua and his student,
at this time, Kang published a paper and defined a wider class of systems called
memristive systems in 1976 [5]. In this paper, they proposed a generic equation to
describe the memristive devices and systems. This equation is

y = g(x, u, t)u (2.4a)

dx

dt
= f (x, u, t) (2.4b)

where x is the state variable, u and y are the input and the output of the system,
respectively, f is a continuous n-dimensional function and g is a continuous scalar
function. This special structure was proposed to distinguish between memristive
systems and dynamical systems.

2.2 HP Memristor

Since Chua postulated the existence of the memristor, scientists were observing
pinched hysteresis characteristics in different materials and structures besides report-
ing the current–voltage characteristics. Until 2008, when HP Labs announced that
they found the missing element and published their findings in Nature [6]. In addi-
tion, the HP team introduced the first basic model of memristor which is governed
by the mathematical formulation of Chua’s memristive systems [5, 6].

The HP memristor was built based on titanium dioxide, which is a stable com-
pound. The memristor structure is composed of two chemically different layers; TiO2
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Fig. 2.1 How HP memristor works (adopted from [8])

(high impedance) adjacent to the molecules, and closer to the top platinum elec-
trode, the titanium dioxide was missing around 2.5 % of its oxygen which is called
oxygen-deficient titanium dioxide TiO2 (conductive) [7, 8]. The oxygen vacancies
are donors of electrons, so the vacancies are positively charged as shown in Fig. 2.1.
When applying a positive voltage to the top electrode of the device, it will repel the
oxygen vacancies in the TiO2 layer (doped region) down into the pure TiO2 layer
(undoped region). Transferring the oxygen vacancies from the TiO2−x layer to TiO2
layer which increases the width of TiO2−x layer and decreases the width of TiO2. But,
applying a negative voltage has the opposite effect where the oxygen vacancies are
attracted to the electrode making the undoped layer wider and decreases the doped
layer.

According to the previous description, the HP team presented a mathematical
model for their memristor. This model is based on two series resistors Ron and Roff

where Ron and Roff are the doped and the undoped region resistances. It is assumed
that the physical device is of width, D, and the doped region of width, w, as shown in
Fig. 2.2. Note that the doped region with width, w, is the state variable which changes
depending on the charge [6].

M(t) = Ron
w(t)

D
+ Roff

(
1 − w(t)

D

)
(2.5a)

dw

dt
= μv Ron

D
i(t) (2.5b)

where μv is the average ion mobility.
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Fig. 2.2 HP memristor
model

D
w

tPtP

2.3 Basic Memristor Fingerprints

There are three characteristic fingerprints, memristors should exhibit [9, 10]:

• The device must exhibit a pinched hysteresis loop in the voltage–current plane
for any bipolar periodic signal excitation as Chua said “If it is pinched, it is a
memristor” [11].

• The pinched hysteresis lobe area should decrease monotonically as the excitation
frequency increases.

• The pinched hysteresis loop should shrink to a single-valued function when the
frequency tends to infinity.

2.4 Memristor Models

This element is very important due to its potential in life applications, thus it should
be properly modeled in order to be used in the analysis, design, and simulation of
memristor-based circuits. In 2008, the first practical model was described by HP
Labs in [6], then later several models were proposed. In this section a brief summary
is presented.

2.4.1 Linear Ion Drift Model

The year 2008 witnessed the solid-state memristor existence by the HP Labs team [6].
Strukov et al. published their results that described the memristor device in which
the pinched hysteresis existed between the current and the voltage, described as
illustrated in the second row of Table 2.1. The actual memristance is dependent on the
ratio between the value of the dynamic state variable w(t), representing the thickness
of the oxygen-deficient titanium dioxide layer (TiO2x ) and the device thickness D.
Strukov et al. included some basic equations for an ideal model of the memristor,
where this model assumes that the vacancies have freedom to move around the entire
length of the device. But it is not true, since vacancies slow down a lot at the boundary
because if they move through the entire device, it means that there will be no physical
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oxygen vacancies in the device and the length of the doped region is zero, which does
not make sense. Similarly, the doped region cannot take up all the device length; since
it will leave no undoped region and the device will not work. In order to overcome
the boundary problem, a window function ( f (w) or f (x)) is adopted and added to
the state variable derivative.

2.4.2 Nonlinear Ion Drift Model

The linear drift model produces the hysteresis characteristics of the memristor, but it
also has some limitations regarding basic electrodynamics. Studies and experiments
have proved that the behavior of the implemented memristors are quite nonlinear
and the linear ion drift model is not accurate enough. This model assumes that the
memristor is a voltage-controlled element having nonlinear dependency between the
voltage and the state derivative. Moreover, asymmetric switching behavior is con-
sidered. Lehtonen et al. [12] proposed a model based on the results of [13]. The
current–voltage relationship and state variable derivative of this model are described
in the third row of Table 2.1 where α, β, γ, χ, a and m are experimental fitting para-
meters, and n determines how the state variable can affect the current. Here, the state
variable w is normalized within the interval [0, 1]. This model shows asymmetric
switching behavior where during the ON state, the I–V curve follows a tunneling
process (sinh part). But, during the OFF state, the I–V curve behaves similar to a
PN junction (the exponential part). The exponential model presents a more reason-
able description of a functional memristive device. The fact that this model is more
sensitive to voltage levels gives it the flexibility to reconcile stable reading with fast
writing. A low voltage level can be used during the read process which will lead to a
very long switching time that translates into a more stable device. On the other hand,
a higher voltage level can be used for writing the memristor in much smaller time
intervals.

2.4.3 Simmons Tunnel Barrier Model

A more accurate physical model was proposed by [14] where this device is modeled
as a resistor in series with an electron tunnel barrier. But in the previous models,
the device is modeled as two series resistors for doped and undoped oxide regions.
This model assumes nonlinear and asymmetric switching behavior due to an expo-
nential dependence of the movement of the ionized dopants. Besides, this model
exhibits nonlinear and asymmetric switching characteristics. The width of Simmons
tunnel barrier is the state variable x [15]. The relationship between the current
and the voltage is shown as an implicit equation based on the Simmons tunnel-
ing model [14]. Fourth row in Table 2.1 shows the state variable derivative relation
where Coff, Con, aoff, aon, ioff, ion, and b are fitting parameters. Con is an order
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of magnitude larger than Coff, and they both have an effect on the magnitude of the
change of x . ion and ioff confine the current threshold in an effective way. These
current thresholds are useful in digital applications. The values of aoff and aon force
the upper and the lower bound for x , respectively, so there is no need for a window
function. This model is the most accurate model for the memristor but it suffers
some problems; (1) it is complicated, (2) the relationship between current and volt-
age is not explicit, and (3) it is not a generic model, since it describes a specific type
of memristor. A complicated SPICE model of Simmons tunnel barrier is proposed
in [16].

2.4.4 Threshold Adaptive Memristor Model

In Kvatinsky et al. [17], introduced a simple and a generic model which fits the
aforementioned models even the physical model with acceptable error. This simple
model is built based on a couple of assumptions for analysis simplification and
computational efficiency; (1) no change in the state variable below a certain threshold,
and (2) instead of exponential dependence, there is a polynomial dependence involved
between the memristor current and the internal state drift derivative. The dependence
of the internal state derivative on current and the state variable itself is modeled by
multiplying two degenerate functions: one is a function of current and the other
is dependent on state variable x as obvious in the fifth row in Table 2.1. Where
koff, kon, αoff, and αon are constants (koff > 0, kon < 0). ioff and ion are current
thresholds and x is the internal state variable. The functions foff(x) and fon(x) act
as the window functions, constraining x to the bounds [xon, xoff]. Moreover, two
current–voltage relationships to fit the previous models (written in Table 2.1). In the
first relation, the memristance is linearly proportional to the state variable x which
fits the first two models. However, the second relation is built to fit Simmons tunnel
barrier where the memristance is exponentially proportional to the state variable x
where λ is a fitting parameter and should satisfy λ = ln(ROFF/RON). RON and ROFF

are effective memristances at bounds xon and xoff, respectively.
As stated in [17], the TEAM model is accurate enough with a mean error of 0.2 %

and can boost the simulation runtime by 47.5 %. It also satisfies the convergence
conditions, computational efficiency required by simulation engines and also the
requirements of a memristive system. The conditions for the previous model induc-
tion is introduced in details in [17]. A comparison between the different memristive
device models is listed in Table 2.2.

2.4.5 Window Functions

Each model has a certain region which can work entirely. For example, the linear ion
drift model can work only in the interval of [0, D]. So to prevent the state variable
from getting out of the bound, and also to add more nonlinear behavior close to the
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Table 2.2 Comparison of different memristor adopted from [17]

Model Linear ion drift Nonlinear ion
drift

Simmons tunneling
barrier

TEAM

State variable 0 ≤ w ≤ D 0 ≤ x ≤ 1 aoff ≤ x ≤ aon xon ≤ x ≤
xoff

Control
mechanism

Current Voltage Current Current

I–V relation Explicit Explicit Ambiguous Explicit

Memristance
relation

Explicit Ambiguous Ambiguous Explicit

Generic No No No Yes

Accuracy Lowest Low accuracy Highest Sufficient

Threshold exists No No Yes Yes

bounds, the derivative of the state variable is multiplied by a window function. So,
the window functions should give two things; (1) a state variable working interval,
and (2) the nonlinearity near boundaries to force it to reach zero when the state
variable is at the bounds. In the following, some of the window functions that have
been proposed are introduced in the next sections. Moreover, a comparison between
different window functions is listed in Table 2.3.

2.4.5.1 HP

In Strukov et al. [6, 18], proposed a simple window function f (w) that reaches its
maximum at the center of the device, w = 0.5D, and decreases toward the boundaries
where it will reach zero speed at the terminal states w = 0 or w = D. This simple
function f (w) is w(D − w)/D2, 0 < w < D in which the boundary conditions are
f (0) = f (D) = 0. This function has a symmetric behavior which does not describe
the real nonlinearities of the memristor. All the properties of this window function
are shown in Table 2.3.

2.4.5.2 Joglekar

Joglekar and Wolf have developed a generic symmetric window function [19]. The
authors added a control parameter to control the nonlinearity of the function, which
is f (x) = 1(2x1)2p in which p is a positive control parameter and x = w/D. The
function looks similar to the rectangular window function when p increases, and
the nonlinear drift phenomenon decreases. Moreover, the boundary conditions are
simple as f (0) = f (1) = 0. Also, the state variable function will approximate the
linear drift assumption f (0 < x < 1) ≈ 1 when p ≤ 5 [19, 20]. On the other hand,
the main disadvantage of HP’s and Joglekar’s window function is at the boundaries
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where the state variable may cling at the boundary and it becomes difficult to change
due to the zero value of the window function at either boundary.

2.4.5.3 Biolek

Biolek et al. introduced a window function with a solution for the modeling inac-
curacy of Joglekar’s window function and introduced the first PSPICE model for
the memristor in [21]. This SPICE model is most commonly used to simulate the
memristor in analog and digital circuits ideas. The presented window function is
f (x) = 1(x − sgn(−i))2p where p is a positive integer, i is the memristor current
and sgn(i) = 1 when i ≤ 0 and sgn(i) = 0 when i < 0. Biolek et al. introduced this
model to overcome the problem of Joglekar’s window function (stuck at the bound-
ary). Biolek’s function is designed to resolve this problem by using sgn(−i) which
gives different values for approaching and receding the boundaries. But, this raises
another problem which is the continuity condition at the boundaries. Also, It should
be noted that Biolek’s window function is a multivalued function which hardens the
analysis of the memristor-based circuits [22].

2.4.5.4 Prodromakis

In Prodromakis et al. [23], handled a problem in the aforementioned window func-
tions which is the scalability. The authors designed this window function to be
scalable and include HP’s window function. This window function is f (x) =
j
(
1 − [(x − 0.5)2 + 0.75]p

)
where p is a control parameter and is a positive real

number unlike the constraint of the control parameter being an integer in the
Joglekar’s and Biolek’s functions. Also, when p = 1, this model is reduced to
HP’s window function. The scalable factor j is used to adjust the maximum value
of the window function fmax. The properties of this window function are shown
in Table 2.3.

2.4.5.5 Piecewise

In [24], the piecewise window function is presented. This window function is con-
tinuously differentiable and consists of three nonlinear pieces. Also, a single-valued
function between the memristance and the charge can be obtained. This window
function is shown in Table 2.3 where a ∈ (0, 0.5), b ∈ Z

+, and x0, k ∈ R
+. But,

there are certain conditions to ensure the continuous differentiability of this window
function as given in [24].
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2.4.5.6 TEAM

This window function is designed to fit the behavior of Simmon tunnel model barrier
[17]. There are two functions for ON and OFF switching and do not have to be equal
like the Simmons tunnel barrier model where the dependence on x is asymmetric. The
parameters xon, xoff, and wc are fitting parameters. More details about this window
can be found in [17].

2.5 Mathematical Modeling of HP Memristor

The transient response under any voltage supply vs(t) on the memristor based on the
linear dopant HP’s memristor model was discussed before in [20, 25, 26]. Assuming
that the memristance value Rm is at an initial value Ri , then the current passing
through the memristor is given by:

i(t) = vi (t)

Rm(t)
= 1

ηk

dx

dt
= −1

ηkRd

dRm(t)

dt
, (2.6)

where η reflects the memristor polarity, k = μn Ron/D2, and Rd = Roff − Ron.
Therefore

R2
mc(t) = R2

i − 2ηk Rdϕ(t), Rm(t) = min(max(Rmc(t), Ron), Roff), (2.7)

where ϕ(t) is the flux at time t, Rmc(t) is the calculated memristance, Rm(t) is the
final memristance value after the clipping conditions to make sure that Rm(t) ∈
[Ron, Roff]. Based on the HP’s paper [6], let us assume that Ron = 100 �, Roff =
16,000�,μn = 10−14, D = 10 nm for the upcoming examples. For example, if
vs(t) = Vo (DC supply), the value of the memristance is given by [20]:

Rm(t) =
√

R2
i − 2kηRd Vot, Rm ∈ [Ron, Roff], (2.8)

Figure 2.3 illustrates the changes of the memristance value versus time, initial
value Ri and also versus the voltage amplitude Vo. However, if vs(t) = t , then the

memristance value can be obtained as: Rm(t) =
√

R2
i − kηRdt2, Rm ∈ [Ron, Roff] as

shown in Fig. 2.4 where the memristance reaches its minimum value Ron at different
times based on the initial value.
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(a) (b)

Fig. 2.3 The memristance value in case of step input voltage vs(t) = Vo, η = +1 versus a time−Vo
plane when Ri = 1000 �, and b time − Ri plane when Vo = −1 V

Fig. 2.4 The transient
response of the memristance
value under ramp input
source vs(t) = t V, when
η = +1 for different values
of Ri = 1, 5, 7, 10, 12 k�
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As discussed before, the basic characteristics of the memristor appear under sinu-
soidal input vs(t) = Vosin(ωt + θ), where the memristance value can be calculated
as [25]:

Rm(t) =
√

R2
i − 2kηRd Vo

ω
(cos(θ) − cos(ωt + θ)), Rm ∈ [Ron, Roff], (2.9)

Figure 2.5 shows the input voltage and memristance for two different frequencies
f = 0.5 Hz and f = 1 Hz where the memristance reaches its maximum in the first
case as the flux increases unlike the second case. Moreover, the effect of the angle
θ is shown in Fig. 2.6. Figure 2.7 presents the time waveforms of the input voltage,
current as well as the i − v and R − v characteristics for two different frequencies
where the range of Rm decreases as the frequency increases. Also, Fig. 2.8 shows the
rotation effect of the i − v characteristic versus frequencies until the memristance
effect disappeared at high frequency. The upper limit of the memristance versus the
Vo − f is shown in Fig. 2.9a which illustrates the resistance range for many case.
From the previous discussion, the hysteresis loop should decrease as the frequency
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Fig. 2.5 The input voltage and the memristance value versus the Vo − time plane when the input
voltage is vs(t) = Vosin(2 f t + θ) when Ri = 1 k� for two different frequencies; a f = 0.5 Hz,
and b f = 1 Hz

Fig. 2.6 The memristance contours versus time − θ plane when the input voltage is vs(t) =
Vosin(2 f t + θ), Ri = 1 k�, and f = 0.5 Hz

increases. Figure 2.9b shows the upper loop where A1 and A2 are the areas when the
voltage increases and decreases, respectively. The area enclosing the i − v hysteresis
is inversely proportional to the frequency f which validates the previous figures.
Moreover, the relationship between the charge and flux can be obtained by:

q =
∫ t

0
i(τ )dτ =

∫ t

0

v(τ )√
R2

i − 2kηRdϕ(τ)

d(τ ) =
√

R2
i − 2kηRdϕ − Ri

ηk Rd
. (2.10)
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Fig. 2.7 The input voltage, current, i − v, and Rm − v responses when the input voltage is vs(t) =
−sin(2 f t + θ), Ri = 1 k�,θ = 0, and for two different frequencies f = 1 and 5 Hz
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Fig. 2.8 The i − v characteristics for sinusoidal input with Ri = 1 k�,θ = 0, Vo = −1 V for four
different frequencies f = 1,10,100,500 Hz

The flux–charge relationship is represented by a parabola centered at (ϕ, q) =
(

R2
i

2ηk Rd
,

Ri
ηk Rd

). More discussion about the periodic responses and sensitivity analysis

of the flux were presented in [25].
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(a) (b)

Fig. 2.9 a The upper limit of the memristance under sinusoidal input with Ri = 1 k�, θ = 0
versus the Vo − frequency plan, and b the area inside the i − v hysteresis loop

2.6 Mathematical Representations of Time-Invariant
Memristor

In 2014 Chua [27], introduced three mathematical representations of time-invariant
memristors, each one has two forms depending on whether the input signal is a
current source (current-controlled memristor) or a voltage source (voltage-controlled
memristor). In the following sections, we will present these three representations as
follows:

2.6.1 Extended Memristor

An extended memristor is defined as:

• Current-controlled extended memristor

v = R(x, i)i, (2.11a)

dx

dt
= f (x, i), (2.11b)

where limi→0 R(x, i) �= ∞.
• Voltage-controlled extended memristor

i = G(x, i)v, (2.12a)

dx

dt
= g(x, v), (2.12b)

where limv→0 G(x, v) �= ∞.



28 2 Memristor: Models, Types, and Applications

For example [27], let us consider an extended memristor which is defined by the
following equations:

v = R(x, i)i = 0.01x2i3, (2.13a)

dx

dt
= f (x, i) = −x3 − 2x2 + (3 + t2)x . (2.13b)

When i = I , the DC V − I curve can be obtained by solving the DC equilibrium
equation dx

dt = 0, then f (x, I ) = 0 = x(I 2 − (x − 1)(x − 3)). Therefore, x = 0 is
an equilibrium state independent of the value of I . The other two states are given by
x = −1 ± √

4 + I 2.
Although there are three V − I branches are V = 0 and V = 0.01(−1 ±√

4 + I 2)2 I 3 as shown in Fig. 2.10a but the first curve (V = 0) is unstable, while
the other two curves are stable [27]. The pinched i − v pinched characteristic when
i = 10sin(2π f t) for two different frequencies f = 5 and 20 Hz are also shown in
Fig. 2.10b.

It should be noted that satisfying (2.11) and (2.12) is not enough to obtain an
extended memristor model. For example [27], let us assume the following system:

v = R(x, i)i, R(x, i) = αx

i
(2.14a)

dx

dt
= βi. (2.14b)
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where α and β are constants. Let us apply current source, i(t) = cos(t), across
this memristor. Thus, the state variable is x(t) = x(0) + β

∫ t
0 sin(τ )dτ = sin(t)

assuming zero initial conditions. Substituting into (2.14), we obtain v = αβsin(t) so
i2 + v2 = cos2(t) + (αβsin(t))2 = 1 for β = 1/α. This means that Lissajous figure
in the v − i plane is the unit circle which is not pinched at the origin (v, i) = (0, 0).
The previous system defines 1 Farad capacitor. So, we can reach a remark which is

If v − i plane isn’t pinched, i t’s not a memristor .

2.6.2 Generic Memristor

A generic memristor is defined in

• Current-controlled generic memristor

v = R(x)i, (2.15a)

dx

dt
= f (x, i), (2.15b)

• Voltage-controlled generic memristor

i = G(x)v, (2.16a)

dx

dt
= g(x, v). (2.16b)

2.6.3 Ideal Memristor

An ideal memristor is defined as

• Current-controlled ideal memristor

ϕ = ϕ1(q). (2.17)

Or

v = R(q)i, (2.18a)

dq

dt
= i, (2.18b)
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where R(q) = dϕ1(q)
dq is called memristance in Ohm (�). The constitutive relation

of current-controlled ideal memristor can be recovered to ϕ1(q) = ϕ0+∫ t
0 R(q)dq

where ϕ0 is an arbitrary constant.
• Voltage-controlled ideal memristor

q = q1(ϕ). (2.19)

Or

i = G(ϕ)v, (2.20a)

dϕ

dt
= v, (2.20b)

where G(ϕ) = dq1(ϕ)
dϕ

is called memductance in Siemens(S). The constitutive
relation of voltage-controlled ideal memristor can be recovered to q1(ϕ) = q0 +∫ t

0 G(ϕ)dϕ where q0 is an arbitrary constant.

2.6.3.1 Memristor Siblings

Every ideal memristor can be recast into a generic memristor with a scalar state
variable x defined via a differentiable one-to-one function in the following steps:

For a given constitutive relation between y and u

y = y1(u). (2.21)

1. Choose any differentiable one-to-one function

x = x1(u), (2.22)

and calculate its inverse function as

u = x−1
1 (x). (2.23)

2. Differentiate (2.21) relative to u then substitute by (2.23) to calculate y
u = Z as

follows:

Z(x) = dy1(u)

du
|u=x−1

1 (x)
. (2.24)

3. The relation between the state derivative dx
dt and u is calculated by:

f (x,
du

dt
) = f1(x)

du

dt
, (2.25)
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where

f1(x) = dx1(u)

du
|u=x−1

1 (x)
. (2.26)

4. Define the memristor sibling as follows:

y = Z(x)u, (2.27a)

dx

dt
= f1(x)u, (2.27b)

The aforementioned are applicable for current- or voltage-controlled memristor
siblings by setting (ϕ, q) or (q, ϕ) instead of (y, u), respectively. Thus, Z(.) become
R(.) or G(.) for current or voltage-controlled memristor.

Since the function x = x1(u) can be chosen to be any differentiable one-to-
one function, it follows that every ideal memristor has an uncountable number of
memristor siblings that would give the same voltage response to a given input current
i(t) (the same current response to a given input voltage v(t)). So as Chua said “Indeed,
every Ideal Memristor is the mother of an infinite family of equivalent Generic
Memristors” [27].

2.6.3.2 Ideal Generic Memristor

This is a small subclass of generic memristor where F(x) = ∫ dx
f1(x)

is one-to-one
function.

An example of creating an ideal generic memristor sibling [27] is given by assum-
ing that the constitutive relation between (y, u) is

y = u + u3/3 (2.28)

by following the previous steps;
Step 1: the arbitrary differentiable one-to-one function is x = u3 = x1(u). So the

inverse relation is given by u = x
1
3 = x−1

1 (x).

Step 2: Z(x) = dy1(u)
du |

u=x
1
3

= 1 + x
2
3 .

Step 3: f1(x) = dx1(u)
du |

u=x
1
3

= 3x
2
3 .

Step 4: The memristor sibling is given as follows:

y = (1 + x
2
3 )u, (2.29a)

dx

dt
= 3x

2
3 u. (2.29b)
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In case of current-controlled ideal generic memristor sibling is given by:

v = (1 + x
2
3 )i, (2.30a)

dx

dt
= 3x

2
3 i. (2.30b)

But for current-controlled ideal generic memristor sibling is given by:

i = (1 + x
2
3 )v, (2.31a)

dx

dt
= 3x

2
3 v. (2.31b)

It is worth to be noted that HP memristor is the trivial ideal generic Memristor
[6] as proved in [27].

2.7 Memristor Implementation Types

This section describe briefly some recent implementations of the memristor based
on different materials. Till now there is no data sheet for the memristor because
it is not being available commercially. Since the hysteresis is an indicator of the
memristive properties for any material, there are huge efforts using different materials
for implementations where experimental results are obtained.

• Titanium dioxide memristor
The resistive switching characteristics of titanium dioxide were originally des-
cribed in 1960 [28]. Then, around 300 papers were published on titanium dioxide
until 2008 [8]. For example, IBM published an article in 2000 regarding structures
similar to that described by HP [29], also Samsung has a U.S. patent for oxide-
vacancy-based switches [30]. In 2008, HP reported that the memristor can be
obtained based on the titanium dioxide [6] and published a U.S. patent application
related to the memristor construction [31].

• Polymeric (ionic) memristor
Different realizations of a polymeric memristor have been published even before
the HP memristor. For instance, in 2004, Krieger et al. proposed a structure of a
passive layer between electrode and active thin films, which enhanced the extrac-
tion of ions from the electrode to create functioning nonvolatile memory cells
[32]. Also in 2008, Erokhin and Fontana developed a polymeric memristor [33].
Then in 2009, Berzina et al. reported results on the improved performance of
electrochemically controlled polymeric memristors [34].

• Ferroelectric memristor
The first ferroelectric memristor was proposed in 1963 [35] where the basic idea
of this device is to perform the function of memory in ferroelectric material,
and to control the field-effect conductance of a semiconductor by the permanent
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polarization of the ferroelectric material. But in 2012, the ferroelectric memristor
was proposed in [36] based on a thin ferroelectric barrier sandwiched between
two metallic electrodes. Switching the polarization of the ferroelectric material by
applying a positive or negative voltage across the junction can lead to two orders of
magnitude resistance variation: ROFF >> RON (an effect called Tunnel Electro-
Resistance). In general, the polarization does not switch abruptly. The reversal
occurs gradually through the nucleation and growth of ferroelectric domains with
opposite polarization. During this process, the resistance is neither RON or ROFF,
but in between. When the voltage is cycled, the ferroelectric domain configuration
evolves, allowing a fine-tuning of the resistance value. The ferroelectric memris-
tor’s main advantages are that the ferroelectric domain dynamics can be tuned,
offering a way to engineer the memristor response, and that the resistance varia-
tions are due to a purely electronic phenomena, and aiding device reliability as no
deep change to the material structure is involved.

• Resonant-tunneling diode memristors
Memristive properties have appeared in certain types of quantum well diodes with
special doping designs of the spacer layers between the source and drain regions
[37, 38].

• Graphene Oxide memristors
Choi and his team have made flexible memristors using thin graphene oxide films
[39]. They use a similar design, swapping titanium dioxide for graphene oxide.
After depositing 50-micrometer-wide aluminum wires on a 6.5 cm2 piece of plas-
tic, they spin a solution containing suspended graphene oxide flakes onto the
surface. This forms a thin film of overlapping graphene oxide flakes over which
the researchers deposit the top aluminum wire array. This results in 25 memristors,
each 50µm wide. Also, in 2012, Williams and his team in Hewlett-Packard Devel-
opment Company introduced a patent about fabricating the defective graphene-
based memristor [40]. A graphene-based memristor includes a first electrode, a
defective graphene layer adjacent to the first electrode, a memristive material that
includes a number of ions adjacent to the defective graphene layer, a second elec-
trode adjacent to the memristive material, and a voltage source that generates an
electric field between the first and the second electrodes. Under the influence of
the electric field ions in the memristive material form an ion conducting channel
between the second electrode and the defective graphene layer is formed.

• Silicon Oxide memristors
In 2010, researchers developed silicon oxide memristive substrates that show
promise for transitioning much of the worlds current fab and production infrastruc-
ture to memristor production [41]. Mehonic et al. reported a study of resistive
switching in a silicon-based memristor device in which the active layer is silicon-
rich silica. The resistive switching phenomenon is an intrinsic property of the
silicon-rich oxide layer and does not depend on the diffusion of metallic ions to
form conductive paths. Switching exhibits the pinched hysteresis I/V loop char-
acteristic of memristive systems, and on/off resistance ratios of 104:1 or higher
can be easily achieved. Scanning tunneling microscopy suggests that switchable



34 2 Memristor: Models, Types, and Applications

conductive pathways are 10 nm in diameter or smaller. Programming currents can
be as low as 2µA, and transition times are on the nanosecond scale [41].

• Spin memristive systems
Spin-based memristive systems, as opposed to molecular and ionic nanostructure-
based systems, rely on the property of degree of freedom in electron spin. In
these types of systems, electron spin polarization is altered, usually through the
movement of a magnetic domain wall separating polarities, allowing for hysteresis-
like behaviors to occur.
In 2009, Wang et al. described three examples of possible spintronic memristors
[42]. These examples are based upon spin-torque-induced magnetization switching
and magnetic domain wall motion. Also, they proved that the spintronic device
can be designed to explore and memorize the continuum state of current and
voltage based on interactions of electron and spin transport. Moreover, in 2011,
an experimental proof of the spintronic memristor based on domain wall motion
by spin currents in a magnetic tunnel junction was introduced [43].
Certain types of semiconductor spintronic structures exhibit memristive behavior
[44]. The mechanism of the memristive behavior in such structures is based entirely
on the electron spin degree of freedom which allows for a more convenient control
than the ionic transport in nanostructures. When the external excitation is changed,
the adjustment of electron spin polarization is delayed because of the diffusion and
relaxation processes causing hysteresis.

2.8 Memristor-Based Applications

After HP invented the passive model of the memristor, researchers from all over
the world have started significant experiments to demonstrate the applications of
the memristor. Memristors have been proposed for a wide range of applications
such as nonlinear analog circuit design, chaotic systems, nonvolatile memory, and
neuromorphic systems as will be briefly discussed in this section.

2.8.1 Analog Circuits

2.8.1.1 Memristor-Based Sinusoidal Oscillators

The idea of memristor-based sinusoidal oscillators has been introduced in many
recent publications [45–47] which depends on the replacement of some or all resis-
tors with memristors in the most common oscillator circuits and investigating the
response. For example, the four Wien oscillators family have been tested using mem-
ristors where sustained oscillations were reported and an approximated oscillation
frequency is obtained in [46]. Figure 2.11 shows the four different Wien oscilla-
tors with the replacement of R1 with memristor Rm(t). These four cases have been
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Fig. 2.11 Schematics of other members of Wien oscillator family. a Type A, b Type B, c Type C,
and d Type D

discussed using PSPICE circuit simulations and Fig. 2.12a shows the output response
and the memristance value for each case.

It is important to note that the sustained oscillation is achieved although the
memristance value oscillates, which reflects the time-dependent oscillating poles
as shown in Fig. 2.12b as a good example for parametric oscillation. The effect of
the initial resistance Ri on the oscillation frequency using numerical and PSPICE
simulations is also discussed in [48] as shown Fig. 2.14. Other circuits that validate
the same concept for third-order oscillators were introduced in [49]. Moreover, a
complete resistorless oscillator where all resistors are replaced with memristors was
discussed as shown in Fig. 2.13 [50] where six resistors have been replaced with
memristors and sustained oscillation has been achieved.

Fig. 2.12 a Transient response for the four Wien oscillator family and b oscillating poles in the
s-plane of type “A”
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Fig. 2.13 Resistorless
memristor-based oscillator

Fig. 2.14 Effect of Ri on
the oscillation frequency

2.8.1.2 Programmable Analog Circuits

In many analog circuits such as amplifiers and filters, resistors need to be programmed
for adaptation to particular applications or for compensation of PVT (Process, Volt-
age, and Temperature) variations. The programmable resistor with fine resolution and
small parasitics is very useful in many analog and RF range differential circuits. By
using the programmable resistance, it can be adopted for programmable attenuators,
programmable gain amplifiers and programmable filters, among others.

The most popularly used method to realize programmable resistors takes the
form of switch-controlled resistors composed of an array of weighted resistors and
switches. However, it has a critical drawback due to the fact that these switches,
typically MOS switches, introduce large parasitic capacitances and resistances. Fur-
thermore, the parasitic values are dependent on the switch state. The state-dependent
large parasitics limit the resolution and the number of bits of switching resistors.
In particular, programming and control of the amount of charge on the floating gate
require high voltages for the tunneling and injection to allow electrons with sufficient
energy to tunnel through the insulating oxide from/to the floating gate, and thus leads
to long-term reliability problems. Another problem with floating-gate devices is that
the long-term charge storage capabilities are unreliable. The charge stored on the
floating gate may slowly leak away with time and this problem will get worse, as the
process scales down with reduced oxide thickness.
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(a)

(b)

Fig. 2.15 Circuit schematic of a programmable resistor using memristor and b programmable gain
amplifier using the programmable resistor [51, 52]

The authors in [51, 52] introduced a programmable resistor with fine resolution
which is built using a memristor as shown in Fig. 2.15a. This programmable resis-
tor consists of a floating memristor, simple series switches (S), provides very high
impedances (ROFF) during the normal mode operation and low impedances (RON) for
the programming duration, and two blocking capacitors CB to block DC mismatch
or even order mismatches, which can cause unbalanced flux between the differential
signals where this circuit suffers from any unbalanced flux amount across the mem-
ristor. Any kind of odd order mismatches will not hurt the differential balance by its
nature. Even for the capacitor mismatch, it does not even contribute to the voltage
imbalance, unlike the case of the differential gain. In order to ease the programming
and controllability operations, they proposed a pulse-coded memristor programming
method where the memristance is programmed by patterning the pulse waveform. In
case of a voltage-controlled memristor, the flux can be linearly controlled by deter-
mining the number of pulses (NPULSE), duty ratio, pulse amplitude (VPT), and pulse
frequency (ωPT). In this circuit, the memristance decreases or increases depending
on the accumulated flux of the memristor as discussed in Sect. 2.5.

The authors used this idea of programmable resistor to build a programmable gain
amplifier, shown in Fig. 2.15b, where the ac voltage gain is Av = gm(ro//RL) where
gm is the differential transconductance of M1 and M2, ro is the amplifier’s output
impedance formed M1 and M2 and RL is the load resistance. Therefore, the ac gain
is a function of RL so by controlling RL , we can control the ac gain of the amplifier.
Thus, the gain decreases or increases depending on the accumulated flux due to pulse
source. This memristor-loaded amplifier circuit shows a fine gain resolution over the
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wide tuning range under low-voltage programming pulses, other performances such
as linearity and speed are exactly the same, as those of the cases with linear load
resistors. This circuit becomes more advantageous when the application frequency is
in the RF range, since the blocking capacitors can be integrated together with CMOS
active devices for higher input frequencies.

Another programmable memristor circuit is proposed by Pershin and Di Ventra in
2010 [53]. This memristor-based circuit works as a digital-controlled potentiometer
which consists of a memristor and a couple of FETs. Two external control signals
are used to program the memristance Rm between two limiting values R1 and R2.
Furthermore, several programmable analog circuits have been introduced such as a
programmable threshold comparator, a programmable gain amplifier and a program-
mable relaxation oscillator.

Several other papers have been published for introducing different variable gain
amplifier (VGA) topology utilizing titanium dioxide (TiO2) memristors [54–56].
The TiO2 solid-state memristor was employed in the feedback branch of an invert-
ing voltage amplifier and was programmed externally so the typical circuit gain is
M/R1 followed by a low-pass filter to remove the DC voltage. In [54], the circuit
was analyzed based on charge-controlled and voltage-controlled memristor models.
Furthermore, in [56], the circuit was experimentally tested using a solid-state mem-
ristor. The experimental results show overall good performance of the memristor as a
gain setting element in the op-amp feedback branch, where modifying the resistance
of the memristor shunts the output impedance of the voltage amplifier, achieving
distinct multiple gain levels.

2.8.1.3 Adaptive Filters

In Driscoll et al. [57], introduced the memristive adaptive filters where the memristive
properties of vanadium dioxide are used. The authors experimentally demonstrated
the adaptive filter functionality by constructing a simple RmLC band-pass filter shown
in Fig. 2.16 by adding a VO2 memristive device Rm in series with an external capac-
itor C and inductor L . The inset shows an optical photograph of the two-terminal
device used, a 5µm × 20µm VO2 region lithographically defined by gold contacts.

Fig. 2.16 Schematic for
RmLC adaptive filter,
small-signal transfer
function (Vout/Vin), and time
series of the off-resonance
“A” sequence of pulses and
on-resonance “B” sequence
of pulses [57, 58]
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Moreover, the adaptive filter transfer function (Vout/Vin) plotted before and after
off-resonance A and on-resonance B pulses and solid lines are RLC band-pass filters
fit to data, which generates the ωo and Q values in the legend showing in Fig. 2.16.

However, in [59], another memristor model is used to obtain first- and second-
order low-pass filter. This memristor is based on fabricated zinc oxide (ZnO)
nanowires grown on the copper layer of a printed circuit board which shows similar
characteristics as memristive metal/oxide/metal structures. The ZnO device is used
with a capacitor and an inductor to form a low-pass adaptive filter where the mem-
ristor reacts to different input voltage bias and changes its resistance accordingly.
Also, the gain, damping, and Q-factor of the low-pass filters are observed to vary
with small input voltages.

2.8.1.4 Loop Filter of Phase-Locked Loop

In communication systems, charge-pump phase-locked loop (CPPLL) is extensively
used in frequency synthesis and clock recovery. Figure 2.17a shows a schematic
diagram of CPPLL, which consists of a phase and frequency detector (PFD), a charge
pump (CP), a loop filter (LF), a voltage-controlled oscillator (VCO), and a divider
(÷N ). In Zhao et al. [60], proposed a memristor-based controlled proportional-
integral (PI) controller to design the loop filter in the charge-pump phase-locked loop
(CPPLL). The low-pass PI controller is based on a monotonic increasing piecewise
linear (PWL) memristor where a periodic rectangular pulse current source is applied
as the input. The proportionality constant of the PI controller is controlled by the
width of the pulse, i.e., the amount of charge passing through the memristor, which
effectively controls the bandwidth of the controller. This circuit is very useful for
fast locking when CPPLL is in the unlocked state, and to lower phase noise when
CPPLL is in the locked state. In addition, the loop filter is passive and easy to design
compared to other implementations such as adaptive bandwidth phase-locked loops
(PLLs).

(a)

(b)

Fig. 2.17 a Schematic diagram of CPPLL and b memristor-based filter circuit [60]
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2.8.2 Neuromorphic Circuits

A neuromorphic system is a mixed mode analog–digital system mimicking neural
architecture to pattern neurons by real-time computation, simulation, and emulating
the nervous system. But to simulate neural networks in electronic regime neurons
and synapses (connections between neurons), this requires an implementation with
very low power consumption. Electronic synapses are more difficult to engineer as
they require being flexible as well as dynamic with memory capability. Scientists
have simulated brains of small animals (cat, rat, and spider) [61–64] but associat-
ing computer memory more than terabytes (e.g., Blue Gene/P of IBM). Thus, the
memristor plays a significant role to perform as a synapse with negligible power
thrust [65, 66]. In Pershin et al. [66] have designed a memristor emulator which
shows associative memory function with three electronic neurons connected by two
memristor–emulator synapses. Also, S.H. Jo made a memristor with a Ag and Si
active layer forming a highly conductive Ag-rich region and a less conductive Ag-
poor region (Fig. 2.18). This hybrid system is capable of spike timing dependent
plasticity (STDP) [67, 68] which is an important synaptic function. If the synapse
update rate is 1 Hz, then this system can continue synaptic operation for around
5 years. The basic idea of STDP in memristive devices was proposed before [69] and
a practical implementation of circuit learning was demonstrated by patterning the
learning of an amoeba-like cell into a memristive system [64].

2.8.3 Chaotic System

Because of the random nature of chaotic systems, the memristor as a nonlinear ele-
ment is well applicable for encryption and random number generation. The memristor
makes it possible for better control and simpler versions of chaotic systems. Chua
modeled the memristor to produce a chaotic attractor with negative conductance

Fig. 2.18 Schematic illustration of using memristors as synapses between neurons [58, 64]
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Fig. 2.19 Schematic of the
proposed circuit [71]

and capacitor [70]. Though it was merely simulation based but the simplicity and
functionality initiated memristor-based chaotic systems. Recently Muthuswamy and
Chua demonstrated the simplest chaotic oscillator [71] where they used an inductor–
capacitor–memristor series circuit as shown in Fig. 2.19. Though, the memristor was
actively realized, and the pinched hysteresis loop was shown by both experimental
and theoretical simulation where the memristance function is R(x) = β(x2 −1) and
ẋ = iM − αx − iM x . The nonlinearity of the memristor adds up to the third state
variables along with the inductor and the capacitor and the simplest system is also
BIBO stable. Around the same time, Muthuswamy has shown another simpler prac-
tical implementation [72, 73] of the memristor in generating chaos. The difference
between the two circuits is that in [72] the memristor is flux controlled, whereas in
[71] it is charge controlled but both realizations look similar.

On the other hand, Cheng has demonstrated a memristor oscillator which gives
periodic orbits of chaos from a 2-scroll transient chaos [74]. In another paper [75],
a similar transition is observed but with more complicated dynamical behavior of
the memristor where the initial condition plays the major role in generating periodic
chaos. The effect of the initial condition on chaotic behavior is well studied in [76]
where both the piecewise linear model and cubic model of the memristor are shown
capable of periodic orbits somewhat similar to Hopf bifurcation. The theoretical study
of generating chaos has also appeared in [77] with a cubic model of a flux-controlled
memristor.

Recently, a chaotic circuit based on HP memristor was published in [78]. The
circuit makes use of two HP memristors in an antiparallel connection as shown in
Fig. 2.20a. The circuit is based on the topology of the canonical Chua’s oscillator
with the Chua’s diode substituted by two HP memristors in antiparallel connection.
The circuit consists of one negative resistor, two capacitors, an inductor, and two
memristors. Numerical results of chaotic behavior are reported in Fig. 2.20, which
shows the attractor obtained where three different bi-dimensional projections are
also shown.

In order to increase chaos order, the memristive chaos circuits are extended to
the fractional order as discussed in [79] where the fractional order is added to a
memristor-based Chua’s circuit for the first time. Moreover, a numerical solution of
the fractional-order memristor-based Chua’s equations was derived including dynam-
ical behavior and stability analysis. In [80], the authors extended the simple chaotic
circuit (shown in Fig. 2.19) to the fractional-order domain where the numerical solu-
tion was given using a predictorcorrector method and stability analysis of the system
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Fig. 2.20 Chaotic circuit and the attractors a circuit based on two HP memristors in antiparallel, b
x-y phase plane, c y-z phase plane, and d y-w1 phase plane [78]

equilibria are carried out, with the aim to show that chaos can be found when the
order of the derivative is 0.965.

The most common application for chaotic systems is building secure commu-
nication systems but the main problem is how to sync between the receiver and
transmitter [81]. A novel kind of compound synchronization among four chaotic
systems was investigated in [82], where a sufficient condition is obtained to ensure
compound synchronization among four memristor chaotic oscillator systems based
on the adaptive technique. Moreover, a secure communication scheme via adap-
tive compound synchronization of four memristor chaotic oscillator systems was
introduced. The authors derive the corresponding theoretical proofs and numerical
simulations to demonstrate the validity and feasibility of the proposed control tech-
nique. Also, in [83], another chaotic oscillator was introduced which depends on the
Van der Pol oscillator coupled to a linear circuit (VDPCL). This circuit has a very
special stability property, exhibits interesting spectral characteristics, which makes
it suitable for chaos-based secure communication applications.
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Another category of chaotic oscillators is introduced in [84] which is inductance
free. This circuit is composed of a twin-T oscillator, a passive RC network, and
a flux-controlled memristor. The circuit exhibits complicated chaotic behavior of
double periodicity.

2.8.4 Digital Applications

2.8.4.1 Memrories

Resistive Random Access Memory (RRAM) is a two-terminal device where the
switching medium is sandwiched between top and bottom electrodes and the resis-
tance of the switching medium can be modulated by applying electrical signal (cur-
rent or voltage) to the electrodes. Even though large electrical nonvolatile resistance
changes are also observed in ferroelectric RAM (FeRAM), magnetic RAM (MRAM),
and phase change of material states RAM (PRAM).

One simple approach to integrate RRAM cells with conventional CMOS circuitry
is 1T1R (1 transistor + 1 resistance switching element) structure [85, 86]. The select
transistor controls the location of the switching element to be accessed. The 1T1R
approach can be integrated with CMOS. However, since each switching element
requires one transistor in this approach, the storage density will still be limited by
transistor scaling and the advantages of the simple two-terminal RRAM devices have
not been fully utilized.

Generally, the memristor essentially shows resistive switching behavior as it has
metal–insulator–metal configuration. Before the physical evolution of the memris-
tor, researchers have demonstrated high density memory applications of resistive
switching [85–87] where the insulating layer works as a storage medium. Though
the memristive characteristics were not realized, and the results held the memristor as
a promising candidate as a nonvolatile memory. In [88] Chen assumed a Pt/MgZnO/Pt
device as a memristor and showed its resistive switching characteristics which are
reversible and steady, leading toward nonvolatile memory. Recently as a nonvolatile
memory the density of the memristor is reported to be 100 Gbits/cm2 in [89] which
requires very low energy compared to the existing flash memory.

HP lab experimentally demonstrated the nonvolatility of the memristor which
is CMOS compatible, fast in response, and requires very low power [13, 14, 90].
The nonvolatile memristor latch in [90] is shown to have high endurance of 104
write cycles. In [13], 1 × 17 cross point arrays of the Pt/TiO2/Pt memristor was
fabricated to show the nonvolatility where the oxygen vacancies were engineered
for controlling polarity and resistance of switching. The mathematical explanation
of resistive switching of Pt/TiO2/Pt memristor revealed that with higher applied
current the switching time reduces sharply to decrease the input energy exponentially
[14]. A comprehensive mathematical illustration of the memristor as nonvolatile
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memory has been reported in [91] which will help to design a memristive system for
memory applications. The nonvolatile memory capability of the memristor will turn
on computers without rebooting them and hopefully in the future no physical RAM
will be required separately.

In [92], The authors introduced a study of a memristor-based nonvolatile SRAM
(or memristor latch) cell to achieve fast bit-to-bit parallel store/restore operations,
low store/restore energy consumption, and a compact cell area which is suitable
for low power mobile applications. This memristive nonvolatile 8T2R (Rnv8T) cell
includes two fast-write memristor (RRAM) devices vertically stacked over the 8T,
and a novel 2T memristor switch, which provides both memristor control and SRAM
write-assist functions. The write-assist feature enables the Rnv8T cell to use read
favored transistor sizing to prevent read/write failure at lower VDDs. Moreover, the
authors also fabricated the first macro-level memristor-based nonvolatile SRAM.
This 16 Kb Rnv8T macro achieved the lowest store energy and R/W VDDmin(0.45V)

of any nonvolatile SRAM or two-macro solution.
Field programmable gate arrays (FPGAs) offer programmability at relatively low

development cost and good performance. The common FPGA architecture consists
of a regular, flexible and programmable two-dimensional array of configurable logic
blocks (CLBs). Usually, a CLB consists of-lookup tables (LUTs), multiplexers and
flip-flops (FFs). LUTs are used to implement combinational logic circuits. All con-
figurable resources (inclusive of the LUTs) are controlled by the configuration bits
stored in a static random access memory cell (SRAM). However, an SRAM is unable
to retain the configuration bits should either a malfunction occur at the power supply,
or the power is turned off. A possible solution consists of storing the configuration
bits in a nonvolatile flash memory; thus the flash memory is integrated into the FPGA.
This leads to issues such as a larger silicon area, increase in cost and most impor-
tantly very slow data retrieving time. Moreover, as technology enters the very deep
submicron and nanoscales, a substantial increase of leakage current is encountered
when the FPGA is in standby mode, hence causing additional power dissipation.
Thus an alternative nonvolatile memory block (as a LUT) based on the memristor as
a storage device was proposed in [93] to overcome the above mentioned issues.

2.8.4.2 Logic Implementation

One exciting application of memristors is using them as the basic building block of
a logic gate. In [94] a memristor-based logic gate—the IMPLY gate is implemented.
The IMPLY gate can be used to implement all binary operations of two variables.

Borghetti et al. [94] used memristors to realize material implication, and then
realized all the fundamental Boolean operations using material implication. The basic
implication gate/latch circuit is shown in Fig. 2.21b. Two memristors, P and Q, are
connected using a common horizontal nanowire to a load resistance, RG , which is
connected to the ground. The states of P and Q are represented by logic values
p and q, respectively. The vertical nanowires cross over the horizontal nanowires
and a layer of memristive switching material forming P and Q. Each memristive
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Fig. 2.21 a Idealized memristive electrical characteristics, b basic implication circuit, and c truth
table for IMP operation [94, 95]

device can be assigned to logic 1 or logic 0 by using the tri-state drivers. When
applying a negative voltage, VSET a device is assigned logic 1 set (operation TRUE).
Also when applying a positive voltage, VCLEAR a device is assigned logic 0 clear
(operation FALSE), and hence a high memristance is considered as logic 0 and a
low memristance is considered as logic 1. VCOND is defined as a negative voltage
with a magnitude smaller than VSET which does not change the state of the driven
device. The notation p ← x indicates that the state of switch P (the logic value p)
is changed to x the next time P is pulsed by VCLEAR, VSET or VCOND.

The memristive IMP operation q ← pIMPq is implemented by applying VSET to
Q and VCOND to P simultaneously, in order for the two pulses and the load resistor
RG to change the states of p and q depending on their previous states. When P is in
a high memristance state (logic 0), the applied voltage on Q is roughly VSET and Q
is turned on (q=1) and p stays unchanged. On the other hand when P is in a low
memristance state (logic 1) the voltage on the common terminal becomes VCOND and
the voltage across memristor Q is roughly VSET − VCOND and both P and Q stay
unchanged. Figure 2.21c shows the truth table for operation q ← pIMPq.

Using material implication the 16 binary operations of two variables were realized
in the supplementary information of [94]. By using these functions any arithmetic
circuit can be realized. The delay can be calculated by calculating how many IMPLY
operations are performed in each gate as shown in Table 2.4 [96].

Using these logic gates, any combinational logic can be designed. In Shaltoot
and Madian [97], introduced two different memristor-based architectures of carry
lookahead adder. The first one is based on conventional carry lookahead adder based
on implication. And the second one is simplified carry lookahead adder based on
IMPLY gate. Moreover, their proposed circuits gave better results comparable to the
conventional carry lookahead adder for increasing the number of bits. As a result,
many circuits can be built using the full adder circuit such as multipliers [98].
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Table 2.4 Boolean operations implemented via material implication

Operation Implementation Devices area

p NAND q =p IMP (q IMP 0) 3

p AND q =(p IMP (q IMP 0)) IMP 0 4

p NOR q =((p IMP 0) IMPq) IMP 0 4

p OR q =(p IMP 0) IMP q 3

p XOR q =(p IMP q) IMP((q
IMPp)IMP 0)

3

NOT p =p IMP 0 2
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Chapter 3
Memristor Mathematical Models
and Emulators

Recently, different mathematical models describing the generic memristors have
been introduced [1–3]. But, the first model of the memristor was introduced by HP
in [4], where the memristor current voltage relationship was described by

v(t) = [xd(t)Ron + (1 − xd(t))Roff]i(t), (3.1)

where i(t) represents the current through the memristor, v(t) is the voltage across
the memristor, Ron and Roff are the minimum and maximum achievable resistances
of the memristor, respectively. The memristor resistance depends on state variable
xd(t) which is the ratio between the doped region length and the full length D of the
memristor and is given by

dxd

dt
= ηki(t). (3.2)

Integrating (3.2) and substituting in (3.1); assuming zero initial condition for the
current, the memristance Rm can then be given by (3.3)

Rm = Rin − ηkq(t), (3.3)

where η ∈ −1, 1 represents the memristor polarity, k = μv Ron(Roff−Ron)

D2 �/C; μv is
the ion mobility, and Rin is the initial resistance of the memristor.
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3.1 Continuous Symmetrical Model

A simple symmetrical double-loop hysteresis behavior model describing an ideal
generic model can be written as [1]:

k(t) = y(t)

x(t)
=

⎛
⎝a + b

t∫

0

x(τ )dτ

⎞
⎠ , (3.4)

When x(t) = sin(ωt), then
∫ t

0 x(τ )dτ will be always positive then k(t) (either
memristance or transmemristance) can be rewritten as k(t) = a + b

ω
(1 − cos(ωt)).

Therefore, k(t) ∈ [a, a + 2b
ω

] which has an average of (a − Δk) and amplitude
Δk where Δk = b

ω
. It is clear that the value of k(t) is inversely proportional to the

frequency, and Δk decays as frequency increases toward the value a as ω tends to
infinity. Then, let us define fth at which the maximum value of k(t) is equal to 1 %
above a, i.e., 2Δk = 0.01a. Then, if f > fth , the values of k(t) can be approximately
fixed and equals to a. Then the value of fth can be given by fth = 100b

πa Hz.

When x(t) = cos(ωt), then
∫ t

0 x(τ )dτ may be positive or negative and k(t) can
be rewritten as k(t) = a + b

ω
sin(ωt). Therefore, k(t) ∈ [a − b

ω
, a + b

ω
] with an

average of a and amplitude Δk where Δk = b
ω

. Similarly, k(t) approaches the value
a as ω tends infinity. Then, the value fth , is given by fth = 50b

πa Hz. As a result of
the above analysis, k(t) will expand in both directions which reflects that y = ±x
will be a symmetry line of such hysteresis. The polarity of a which determines the
operating quadrant are shown in Fig. 3.1 as well as four different cases.

There are two different implementations of the previous model where x(t) is
represented by a current (voltage) and y(t) is represented by a voltage (current)
which is called current (voltage)-controlled memristive device, respectively. It is

V(t)

i(t)

+

+

+

+

-

-

-

-
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(a,b)=(1,1)
(a,b)=(1,-2)
(a,b)=(-1,1)
(a,b)=(-1,-2)
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Fig. 3.1 Regions where the hysteresis appears when x(t) = cos(ωt), a polarity of a, and b four
different cases of hysteresis
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worth noting that the authors of [5] have recently proposed conditions for symmetric
pinched hysteresis. The above model satisfies these conditions and is simpler than
the one in [5].

3.1.1 Current-Controlled Memristor

Assuming x(t) = i(t)
Ire f

, y(t) = v(t)
Ire f Rs

, where Ire f is an arbitrary reference current
and Rs is an arbitrary resistance. By substituting into (3.12), the current-controlled
memristor equation and the memristance Rm = v(t)/ i(t) are given by (a = b =
±1) [1]:

v(t) = ±i(t)Rs ± i(t)Rs

Ire f

t∫

0

i(τ )dτ = ±i(t)Rs ± i(t)Rs

Ire f
q(t), (3.5a)

Rm = ±Rs ± Rs

Ire f
q(t). (3.5b)

It is seen here that Rm is a function of the accumulated current which is essen-
tially the charge q(t); similar to (3.3). Note that there are four different possibilities
for Rm , which are (+,+), (+,−), (−,+), and (−,−) they, respectively, represent
incremental/decremental Rm and incremental/decremental negative Rm . The first
subplot of Fig. 3.2 shows the I–V characteristics for three different frequencies with
sinusoidal input current i(t) with Ire f = 1µA and Rs = 10 k�. The effect of Ire f

is also illustrated for fixed frequency in the second plot where the hysteresis loop
rotates and shrinks. The range of the memristance (the maximum and minimum val-
ues of Rm) for sine and cosine inputs and versus different frequencies and Ire f are
shown, respectively in Fig. 3.3. It is clear that the memristive effect appears strongly
in the lower frequencies and also for smaller values of Ire f .

3.1.2 Voltage-Controlled Memristor

Setting x(t) = v(t)
Vre f

, y(t) = i(t)
Vre f Gs

, where Vre f is an arbitrary reference voltage
and Gs is an arbitrary transconductance. By substituting into (3.12), the voltage-
controlled memristor equation and its transmemristance Gm are given by
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i(t) = ±v(t)Gs ± Gs
v(t)

Vref

t∫

0

v(τ )dτ = ±v(t)Gs ± Gs
v(t)

Vref
ϕ(t), (3.6)

Gm = ±Gs ± Gs

Vre f
ϕ(t). (3.7)

where ϕ(t) is the accumulated flux. Similarly, there are four different possibilities rep-
resenting incremental/decremental Gm and incremental/decremental negative Gm ,
respectively. Figure 3.4 shows the effect of Vre f and frequency on the I–V charac-
teristics for different cases.

3.1.3 Circuit Emulators

To validate the previous discussion and due to the absence of physical commercially
memristors, this section discusses two different emulator circuits followed by circuit
simulations. The first emulator is based on the current-controlled memristor and the
other for the voltage-controlled memristor discussed above as shown in Figs. 3.5 and
3.6 where two current conveyor (CCII) devices (built using the commercial AD844
current feedback op amps), a voltage multiplier (built using the commercial AD633
multiplier), and a noninverting or inverting buffer (built using a general purpose op
amp such as the TL082) are needed. Analysis of Fig. 3.5 reveals that the input current
is given by [1]:

iin(t) = Vin − V f b

Rs
, (3.8)
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Fig. 3.5 Current-controlled
decremental/incremental
memristor emulator
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where Vin is the applied voltage and V f b is the feedback voltage given by

V f b = Kη
R2

1

R2C
iin(t)

t∫

0

iin(τ )dτ = Kη
R2

1

R2C
iin(t)qin(t) (3.9)

The incremental/decremental memristor can be achieved by the buffer operation
where η is either 1 or −1, respectively. The memristance is thus given by

Rm(t) = Rs + Kη
R2

1

R2C
qin(t), (3.10)

which is similar to (3.3) if Rs
Ire f

= K
R2

1
R2C where K = 1/10 for the AD633.

Similarly, for the voltage-controlled memristor (Fig. 3.6), the transmemristance
can be obtained by:

Gm(t) = Gs − Kη
R2

2

R2
1 R3 R4C

ϕ(t). (3.11)



3.1 Continuous Symmetrical Model 57

Fig. 3.7 I–V characteristics, a incremental memristor Ire f , C, Rs = 1, 1µF, 4 k�, and b decre-
mental memristor Ire f , C, Rs = 1, 0.1µF, 4 k�

Figure 3.7 shows the PSPICE simulation results for the incremental and
decremental memristors. The advantage of these emulators that they can be imple-
mented easily using any of the available CMOS designs for current conveyors [6]
and four quadrant multipliers [7].

3.2 Continuous Nonsymmetrical Model

In order to modify the previous model to obtain a nonsymmetric I–V hysteresis, a
new term will be added as follows [1]:

y(t) = x(t)

⎛
⎝a + c

t∫

0

x(τ )dτ

⎞
⎠ + b

dx(t)

dt
, (3.12)

When x(t) = sin(ωt), the relationship between x(t) and y(t) is given by:

y(t) =
(

a + c

ω

)
x(t) ±

(
bω − c

ω
x(t)

) √
1 − x2(t). (3.13)

Generally for each value of x there are two values of y except at the pinched point
(x p, yp) which can be calculated by

x p = bω2

c
, yp =

(
a + c

ω

)
x p, x p ≤ 1, (3.14)

and the line y = (a + c
ω
)x(t) is the symmetry line. Moreover, the hysteresis is

always passing by the points (1, a + c
ω
), (0, yo = ±bω), and (−1,−a − c

ω
). For

fixed values of a, b, and ω and different c, the outer boundary points are fixed. The
pinched point x p and the intersection with the vertical axis increase as b increases
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as shown in Fig. 3.8a. The effect of c for fixed a, b, and ω is shown in Fig. 3.8b
where the intersection points of the hysteresis with the vertical axis are fixed, but the
pinched and boundary points are affected. Similarly, the effect of the parameter a is
shown in Fig. 3.8c with the same pinched point. Note that if x p = bω2

c > 1, then
there is no pinched point and the hysteresis consists of a single loop as shown in
Fig. 3.8d. To illustrate the symmetry of the hysteresis, Fig. 3.9 shows the 3D pinched
hysteresis versus the parameter c where the symmetry line rotates as c increases from
negative to positive values.

When x(t) = cos(ωt), the line y = ax(t) is the symmetry line and the pinched
point is given by x p = bω2

c , yp = abω2

c , x p ≤ 1. Moreover, the hysteresis is always
passing by the points (1, a), (0, yo = ±bω), and (−1,−a) as shown in Fig. 3.10a.
The existence of pinched and single loop can be controlled through the parameter b
as shown in Fig. 3.10b. More cases are summarized in Fig. 3.11.
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Fig. 3.9 The x–y projection rotation versus c when x(t) = sin(ωt)
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3.2.1 Experimental Results

The circuit of Fig. 3.5 was practically implemented as shown in Fig. 3.12a with
Rs = R1 = 1 k� and with R2 set as a 500 � variable resistor. The buffer sign
was chosen to be +1 enabling a direct connection of the multiplier output to the
noninverting input of U1. The observed double-loop hysteresis is shown in Fig. 3.12b
when C = 1µF and the sinusoidal input voltage has a frequency f = 150 Hz.

Note that the Y-axis in Fig. 3.12b is the voltage Vout1 of the op amp U1, which
is also equal −iin R1. Similar double-loops were observed for (C = 0.1µF, f =
2 kHz) and (C = 2.2 nF, f = 100 kHz) which confirm the persistence of the behav-
ior over a wide range of input frequencies.

Figure 3.12c shows the experimentally observed nonsymmetrical loop after con-
necting the differentiator circuit, shown in a box within Fig. 3.12a, between the
points labeled X and Y (i.e., across Rs). The selected values for the differentiator
were Cd = 10µF, Rd1 = 200 �, and Rd2 = 5 k�.
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Fig. 3.12 Experimental results of a current-controlled memristor; a implemented circuit, b Vin −
Vout1 showing a symmetrical-loop at R2 = 270 � and c Vin − Vout1 showing a nonsymmetrical
loop after adding the differentiator subcircuit
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3.3 Switching Model

From a circuit design perspective, reducing the complexity of implementing (3.12)
requires finding an alternative to the analog multiplier block. A technique previously
introduced in [8] implies replacing the multiplication function by a bipolar nonlinear
switching function. Applying this technique to (3.12) yields the following model

y(t) = ±ax(t) ± b

{
x(t)

∫ t
0 x(τ )dτ > c

−x(t)
∫ t

0 x(τ )dτ ≤ c
. (3.15)

The hysteresis loop is confined between the two lines y = (±a ± b)x and y =
(±a ∓ b)x . For memristive behavior, the condition |b| < 1 must hold. Figure 3.13
shows four different cases of (a, b) while Fig. 3.14 illustrates the effect of the phases
φ on the x–y projection when the input x(t) = sin(ωt + φ).

Fig. 3.13 The projection
x–y for different values
(a, b) with c = 0.1,
x(t) = sin(ωt), and
ω = 0.5 rad/s
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Fig. 3.15 Circuit realization of the double-loop switching model with Spice and experimental
results

Figure 3.15a shows a circuit implementation using a comparator (op amp U3)

and two ideal switches (S1 and S2). A Spice simulation is shown in Fig. 3.15b with
Rs = R1 = 1 k�, R2 = 270 �, C = 1µF, and b = 0.7. The experimentally
observed loop is shown in Fig. 3.15c for the same component values, R2 = 100 �

and the frequency of the sinusoid Vin set to 100 Hz. The switches were realized,
respectively, with NMOS and PMOS transistors from an LM4007 chip while the
two sources ±bVin in Fig. 3.15a where obtained from Vin through simple inverting
and noninverting op amp amplifiers. It is worth noting that these emulator circuits
show nonvolatility so long as they are excited. This is experimentally verified through
exciting Fig. 3.15a with a square wave input instead of the sinusoid. A typical 4-corner
hysteresis loop (shown in the corner of Fig. 3.15a) is observed. With no excitation,
the charge stored on the capacitor eventually disappears through the op amp output
resistance and other leakage paths.
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3.4 Fractional-Order Model

Modeling using the concept of fractional calculus penetrates the basic fundamentals
of many applications due to its advantages and also since the conventional integer-
order modeling is only a narrow subset of the fractional calculus. The main advan-
tages of fractional-order modeling are its long memory dependency and also the
ability to increase the degrees of freedom for the system through the added fractional-
order parameters. Many ground rules in many applications have been generalized in
the fractional-order sense such as in the control theory [9–11], circuit theory [12–15],
special filters [16], synchronization [17], neuron systems [18], resonance [19], sta-
bility analysis [20–22], and in the fractional-order Smith chart [23, 24]. In the circuit
theory, the fractional-order element (FOE) is considered as a generalized element
that covers the conventional three passive elements which are inductor, resistor,
and capacitor when the fractional-order parameter equals −1, 0, and 1 respectively.
One of the realizations of the half-order capacitor can be obtained by dipping a
capacitive-type probe, coated with a porous film of polymer of particular thickness,
into a polarizable medium [25].

3.4.1 Fractional-Order Elements Relations

The fractional-order elements or constant phase elements (CFE) (like fractional-order
capacitor (FOC) and fractional-order inductor (FOI)), which model the practical
elements (frequency dependent losses), were introduced [26, 27]. Recently, fractional
calculus is generalized and a mathematical paradigm is provided for describing the
behavior of mem-elements with memory. Ohm’s law is generalized and proved in
case of fractional mem-element which is called memfractance [28].

The conventional elements are linked as shown in Fig. 3.16a where links (1),
(2), and (3) represent R, L , and C ; moreover, link (4) represents the memristor.
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Fig. 3.16 a Fractional-order element relations, and b fractional-order capacitor, inductor symbol,
and memristor symbols, respectively
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The fractional-order capacitor (FOC) relates between the fractional derivative of the
charge and the voltage which is represented in link (5) and link (8) with fractional-
order 1 − α and α, respectively. Also, the fractional-order inductor (FOI) relates
between the fractional derivative of the flux and the current which is represented in
link (6) and link (8) with fractional-order 1 − α and α, respectively. So, the missing
link is between the fractional-order derivative of charge and the fractional-order
derivative of flux (link (9)) representing the fractional-order memristor (FOM). All
the links are linear elements except link (4) and link (9) which are nonlinear elements.

Generally, the relation between any fractional-order derivative of charge Dαq
and any fractional-order derivative of flux Dβϕ represents one of the elements R, L ,
C , M , FoC, FOI, and FOM depending on the resulting order and linearity between
the elements. Also, this relation could be generalized to include memcapacitor and
meminductor in addition to fractional-order memcapacitor (FOMC) and fractional-
order meminductor (FOMI).

3.4.2 Fractional-Order Memristor Model

The fractional differential equation of memristor state [29, 30] can be given by

dαx

dtα
= ±ki(t) f (x). (3.16)

By differentiating the memristance Rm , then

dα Rm

dtα
= −Rd

dαx

dtα
. (3.17)

Substituting by (3.17) into (3.16)

dα Rm

dtα
= ∓k Rdi(t) f (x), (3.18)

where Rd is the difference between Roff and Ron . For linear window function f (x) =
1 and substituting in (3.1)

Rmdα Rm = ∓k Rdv(t)dtα. (3.19)

By integrating both sides,

Jα Rmdα Rm = ∓k Rd Jαv(t)dtα. (3.20)

Using the basic definition of the fractional integral introduced by Riemann–
Liouville [31], which was given by
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Jα f (t) = 1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ )dτ. (3.21)

Therefore, the left-hand side of (3.21) can be calculated by parts as follows:

L .H.S = Jα Rmdα Rm = 1

Γ (α)

∫ Rm

Ri

(Rm − Ri )
α−1 Rd R

= (Rm − Ri )
α

Γ (α + 1)

(
Ri + Rm − Ri

α + 1

)
. (3.22)

Substituting by (3.21) and (3.22) into (3.20), then the memristance is given
by solving

(Rm + αRi )(Rm − Ri )
α = ∓α(α + 1)k Rd

∫ t

o
(t − τ)α−1v(τ )dτ. (3.23)

When the fractional-order memristor becomes a conventional memristor at α = 1,
then

R2
m = R2

in ∓ 2k Rd

∫ t

0
v(τ )dτ = R2

in ∓ 2k Rdϕ(t), (3.24)

where ϕ(t) represents the flux. It is clear that the above equation gives the same
results which are proposed in [32, 33]. In the next section, the step response of the
memristor resistance will be discussed as follows:

3.4.3 Step Input Voltage

In case of applying step input voltage across the memristor the input signal is
defined by

v(t) = VDC u(t), (3.25)

where u(t) is the unit step function. By substituting from (3.25) into (3.24), then the
resistance of the memristor is given by

(Rm + αRi )(Rm − Ri )
α = ∓(α + 1)k Rd VDC tα. (3.26)

The positive or negative sign in (3.26) discusses the polarity effect for both the
memristor and the applied voltage VDC ; consequently, two cases will be discussed
in the following subsections.
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The memristor circuit is connected as shown in Fig. 3.17 where the positive of
the supply is connected to the negative of the memristor then the resistance of the
memristor is given by:

(Rm + αRi )(Rm − Ri )
α = (α + 1)k Rd VDC tα. (3.27)

It is clear from the previous equation that the resistance of the memristor increases
from the initial value until it reaches its maximum Roff in a certain time period which
is called the saturation time tsat . Figure 3.18a shows the memristor behavior when
the applied step input voltage and the memristor parameters μv, D, VDC , Roff,
Ron are equal to 10−10 cm2 s−1 V−1, 10 nm, 1 V, 38 k�, 100 �, respectively, for
different values of α. From Fig. 3.17b, the saturation time depends on the value of the
fractional-order α where the saturation time increases as α increases for certain VDC .

The general formula of the saturation time tsat in the fractional-order case at which
the memristor resistance increases from its initial value Rin up to Roff is given by:

Fig. 3.17 Memristor configurations with the input voltage
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Fig. 3.18 a Memristor resistance versus α and time, and b memristance versus time for different α



3.4 Fractional-Order Model 67

0 1 2 3

10
0

10
5

V
DC

  (volt)

t sa
tm

ax
 (

se
c)

=0.5α α α=1 =1.5
(a) (b)

t sa
tm

ax
 (

se
c)

V DC
  (volt)α
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tsat = (Rof f − Ri )

(
Rof f + αRi

(α + 1)k Rd VDC

)1/α

. (3.28)

The maximum saturation time can be obtained when Rin = Ron as follows:

tsatmax = Rd

(
Rof f + αRon

(α + 1)k Rd VDC

)1/α

. (3.29)

For the conventional model of the memristor α = 1, the saturation time will be
reduced to the formula given in [32, 33].

The saturation time surface as a function of the α − VDC plane and three different
cases of α = 0.5, 1, and 1.5 are shown in Fig. 3.19a, b, respectively. It is clear from
the above response that the saturation time can be controlled through the fractional-
order where it can be less than 1 sec when α < 0.5 up to higher values when α > 0.5.
It is worthy to note that the memristor will act as a linear resistor as α tends to 0 with
resistance Rin .

3.4.4 Sinusoidal Input

The applied voltage to any circuit can be represented by sinusoidal signals using
Fourier series. For a single sinusoidal input which is given by v(t) = Vosin(2π f t) or
v(t) = Vocos(2π f t) for t > 0. The fractional integration of sinusoidals is given by

Jαsin(2π f t) =
2π f tα+1

1 F2

[
1; 1 + α

2 , 3+α
2 ;−π2 f 2t2

]

Γ (α + 2)
, (3.30a)

Jαcos(2π f t) =
tα1 F2

[
1; 1+α

2 , 1 + α
2 ;−π2 f 2t2

]

Γ (α + 1)
. (3.30b)
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Fig. 3.20 a Numerical transient simulation for changing α, and b matching with conventional case
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Fig. 3.21 Numerical simulation of I –V hysteresis at a α = 0.25, b α = 0.5, and c α = 0.7
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The memristance should be enclosed between the minimum resistance Ron

and the maximum resistance Roff, so for v(t) = Vosin(2π f t), the memristance is
given by

(Rm + αRi )(Rm − Ri )
α = ∓2πk f Rd Votα+1

1 F2

[
1; α + 2

2
,
α + 3

2
;−π2 f 2t2

]
,

(3.31)
For the integer case at α = 1, which gives the same results as in [33]. The

resistance of the memristor is given by

Rm =
√

R2
in ± 4k Rd

Vo

ωo
sin2

(
ωot

2

)
. (3.32)

Figure 3.20a shows a numerical simulation for changing fractional-order α for
sinusoidal input vin = 0.1sin(t). Moreover, Fig. 3.20b shows matching between
the general case and the conventional case for α = 1 for vin = sin(10t). The effect
of changing the fractional-order is clear as depicted in Fig. 3.21 for Vo = 10mV,

f = 1Hz, k = 104, Ron = 100� and Rof f = 38k�.

3.5 Memristor Emulation Circuits for Analog Applications

Due to the lack of memristor samples, researchers tend to use emulators which
emulate the behavior of the mem-elements. The previous emulators depend on the
commercial off-shelf components which are implemented using op amps, multipliers,
NMOS, and PMOS transistors [1, 34].

3.5.1 Simple COTS Realization of Floating Memristor

3.5.1.1 Memductor Model

The current-controlled memristor model was discussed in [4] where the constitutive
relationship between the charge q, flux-linkage ϕ, and the memristance is a function
of the state variable, current, and time. In contrast, the model of the memductor was
discussed in [35] where memductance is a function of flux ϕ and the change rate of
memductance Gm is given as follows:

Ġm(ϕ) = αH(ϕ)vm, (3.33)

where H(ϕ) is considered as a normalized window function having the nonidealities
of the memductance change rate. For the sake of simplicity, let us assume that H(ϕ) =
1 representing the linear model of the memductor as discussedin [36]. By integrating
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both sides relative to time, the memductance is given by

Gm = Gmo + αϕ(t), (3.34)

where Gmo is the initial memductance. The memductance is linearly proportional
to the flux. Moreover, in [1], the authors introduced a simple model for a double
hysteresis model for the mem-elements where the voltage-controlled memductor
equation is given by

im = Gsvm + Gsvm

T Vre f
ϕ(t), (3.35)

where Gs is the initial transconductance, T is the integration factor, and Vre f is an
arbitrary reference. So the memductance is given by

Gm = Gs + Gs

T Vre f
ϕ(t). (3.36)

As is obvious, both models give the same modeling equation for the memductor
where α = Gs/(T Vre f ).

Numerical simulations upon changing different parameters of the memductor are
shown in Figs. 3.22 and 3.23 of the sinusoidal input voltage v(t) with 1 V ampli-
tude. Figure 3.22a shows the IV characteristics of the memductor for three different
frequencies where the area inside the hysteresis loops decreases by increasing the
input frequency. Moreover, Fig. 3.22b shows the IV characteristics for three different
values of α. Also, the hysteresis loop sizes are dependent on the value of α, where
upon decreasing α, the hysteresis loops decrease until α tends to zero and the mem-
ductance tends to its initial value Gmo. The maximum obtained memductance Gm

where the memductance changes from Gmo to maximum Gm , shown in Fig. 3.23,
plotted for the range of α spanning from 0.001 to 0.1 and for the frequency range
from 0.01 to 100 Hz of the input signal.
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Fig. 3.22 I–V hysteresis of the memductor for Gmo = 1 m� for different a frequencies at α =
0.01, and b α at 1 Hz frequency
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In order to implement the memductor whose memductance varies and is controlled
by the flux linkage. Therefore, a voltage-controlled transconductance is needed in
addition to a differential voltage integrator to integrate the voltage across the transcon-
ductance and generate the flux which controls the transconductance as shown in
Fig. 3.24.

Moreover, the nonideal model of the memductor can be implemented by adding
a window function H(ϕ) after the integrator to reshape the control voltage and
boundary effect to the model.

3.5.1.2 Circuit Realization

The voltage-controlled transconductance is implemented using LM13700 [37] which
is connected as shown in Fig. 3.25 to implement a floating voltage-controlled
transconductance Gm which is proportional to the control voltage Vc and its transcon-
ductance is given by

Gm = 9.6 IABC
RA

R
, (3.37)

where IABC represents the transconductance amplifier bias current. From the PSPICE
simulation, it is found that IABC is linearly proportional to the control voltage
(IABC = aVc + Io) where a represents the reciprocal of the control resistance
Rc and Io is the initial current. The data sheet of the transconductance [37] states
that it is recommended to use Rc = 15 k� and as a result the corresponding initial
current Io = 905.057µA. Substituting IABC into (3.37), the transconductance Gm

is given by

Gm = 0.64RA

R
Vc + 8.6885

RA

R
(m�). (3.38)

Fig. 3.23 The maximum
memductance for different
frequencies and α
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Fig. 3.24 Behavioral model
of linear memductor

mV mG

pV

nV

pV

nV

By comparing (3.34) and (3.34), the control voltage Vc should represent the flux
linkage of the memductor. The flux linkage can be obtained by integrating the dif-
ference voltage of the memductor terminals (Vp, Vn) and is given as follows:

Vc = 1

R1C1

∫ t

−∞
(Vp − Vn)dτ = 1

R1C1
ϕpn(t) (3.39)

The integrator circuit is built as shown in Fig. 3.26, where an inverting integrator
is used and two buffer amplifiers to prevent the loading effect of the integrator on the
transconductance circuit. By substituting into Gm , the transconductance is given by

Gm = 0.64
RA

R R1C1
ϕ(t) + 8.6885

RA

R
(m�). (3.40)

The previous equation emulates the memductors equation where Gmo = 8.6885 RA
R

(m�) and α = 0.64 RA
R R1C1

(m).

3.5.1.3 Experimental Results

The circuit is practically assembled on a printed circuit board using LM13700 and
TL084 (Opamp) shown in Fig. 3.27 where C1, R1, R, and RA equal 1µF, 1 k�,

Fig. 3.25 Floating voltage-controlled transconductance implementation using LM13700
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100 k�, and 10 k�, respectively. The emulator is tested using NI ELVIS Kit and
the voltage results are taken to MATLAB to plot current–voltage hysteresis (as NI
ELVIS does not plot hysteresis curves X-Y). In order to obtain the input current to
the emulator, series resistor is connected where the input current is proportional to
the voltage difference across it with gains equal to the inverse of this resistor; so in
the following results, a 1 k� resistor is used.

In case of the memductor series with a resistor R, the voltage across the memductor
vm = Vin/(1+Gm R) where vin is the input voltage, and Gm is the memductance. By
substituting into (3.34), integrating both sides, and simplifying the resulting equation.
The memductance is given as follows:

Gm = − 1

R
+

√( 1

R
+ Gmo

)2 + 2α

R
ϕ(t). (3.41)

Vm
Gm

C1

C1

R1

R1

Vp

Vn

Fig. 3.26 Generation of the flux control circuit of the memductor

(a) (b)

Fig. 3.27 Printed circuit board of voltage-controlled memristor emulator
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In case of applying a sinusoidal signal v(t) = Ao sin(ωt), the flux is given by

ϕ(t) = 2Ao

ω
sin2

(ω

2
t
)

+ ϕo. (3.42)

Moreover, in the case of square signal with A1 amplitude for positive half cycle,
A2 amplitude for negative half cycle and zero DC term, the flux is given by

ϕ(t) = ϕo +
{

A1τ τ ≤ Th

(A1 + A2)τ − A2Th Th < τ ≤ T
(3.43)

where τ = mod(t, T ). These equations gives similar results to the experimental
results using appropriate values of Gmo and α.

This emulator was tested using different voltage excitation signals [36]: sinu-
soidal signal with frequency 10 and 50 Hz, square wave signal with frequency 10 Hz
and triangular wave signal with frequency 10 Hz. Figure 3.28a, b show the transient
voltage (blue line) and current (green line) of the emulator for sinusoidal signal with
amplitude 1 V, also Fig. 3.28c, d show the corresponding double-loop pinched I–V
hysteresis of the memductor which decreases with increasing the input frequency.
Also a square wave signal with amplitude ±0.5 V with 10 Hz frequency is applied
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Fig. 3.28 Emulator response under sinusoidal signal at frequency 10 and 50 Hz
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Fig. 3.29 Emulator response under square wave signal at frequency 10 Hz, a transient voltage and
current, and b I–V hysteresis
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Fig. 3.30 Emulator response under triangular wave signal at frequency 10 Hz, a transient voltage
and current, and b I–V hysteresis

and the transient voltage (blue line) and current (green line) shown in Fig. 3.29 which
a high functionality of the emulator to be used in a memristor-based relaxation oscil-
lator. The voltage across the memductor increases for positive pulse and decreases
for negative pulse so the memductance decreases and increases for positive and neg-
ative pulses, respectively. Moreover, Fig. 3.30 shows the response of the triangular
wave excitation with amplitude ±1 V with 10 Hz frequency and I–V hysteresis in
case of triangular excitation.

3.5.2 MOS Realization of Memristor Emulator

Although, the MOS realization of the memristor is discussed in [38], it was
implemented by four differential difference current conveyors (DDCC) as an inte-
grator, squarer, multiplier, and summer. This subsection discusses a recent emulator
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Fig. 3.31 The idea of the
memristor emulator

inV mR

ini
ini

C
inV

cV

which is implemented using only a voltage-controlled resistor (VCR) and one second
generation current conveyor (CCII) which has a smaller size and is more reliable [39].

3.5.2.1 Mathematical Model

Different modeling equations of the memristor were introduced in [40]. In HP’s lab
model, the rate of change in the memristance was given by

d Rm

dt
= kmi(t). (3.44)

By integrating both sides, the memristance is given by:

Rm(t) = Ro + kmq(t), (3.45)

where Ro is the initial memristance. According to the previous equation, the mem-
ristor can be defined as a variable resistor and its value depends on the charge passing
through it so it can be emulated by a voltage-controlled resistor (VCR) where the
control voltage is proportional to the passing charge. The control voltage Vc is gener-
ated by mirroring the current passing through VCR and imposing it into a capacitor
so the voltage across the capacitor is the required control voltage Vc = qin/C as
shown in Fig. 3.31.

For the practical realization of VCR, it can be realized using a MOS transistor
working in the triode region where transconductance is proportional to gate voltage.
Moreover, a simple model of double-loop hysteresis of a memristive element is
discussed in [1] which is applied for memristance and transconductance which is
given by

Gm(t) = Go + k′
mq(t), (3.46)

where Go is the initial transconductance and k′
m (�−1 C−1) is the transconductance

mobility constant.

3.5.2.2 Mos Realization

This emulator was implemented using VCR and CCII+ which is used to mirror
the current passing through the VCR to create the control voltage Vc as shown in
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Fig. 3.32 The emulator
circuit

1 Vc

C

VCR

V2

V
Z

X

Y

C
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II
+

Fig. 3.32. In the following subsections, the realization of VCR and CCII will be
discussed and used in the memristor emulator.

CCII Implementation

The second generation current conveyor is a three-terminal active circuit (X, Y, Z).
The input–output relation of CCII could be described by the following equation.

⎡
⎣ VX

IY

IZ

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 0
±1 0 0

⎤
⎦

⎡
⎣ IX

VY

VZ

⎤
⎦ (3.47)

The relation between the current of the X terminal and the Z terminal depends on
the type of CCII, where a positive sign is related to the noninverting type (CCII+),
and a negative sign is related to the inverting type (CCII−).

Several literatures have been published in this topic to enhance current and volt-
age transfer accuracy, increase output current capability, or implement a rail-to-rail
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Fig. 3.33 Wide range CCII+ implementation
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Table 3.1 Transistors aspect
ratios of CCII+ Transistors W (µm) L (µm)

Mn1–Mn4 20 1

Mn5–Mn6 30 2

Mn7–Mn9 4 0.5

Mn10–Mn11 120 1.5

Mp1–Mp4 3 0.5

Mp5–Mp6 90 2

Mp7 90 0.35

Mp8–Mp10–Mp11 140 2

Mp9 4 0.5

CCII using complementary differential pairs [41]. Nevertheless, the previous archi-
tectures suffer from some drawbacks such as increasing power consumption and large
transconductance variation. A modified structure has been proposed in [42] and used
in the implementation of this circuit to overcome the aforementioned drawbacks. In
addition, the presented structure can operate under a minimum supply voltage and
reduce offset voltage between X and Y terminals.

The complete MOS realization of CCII+ is shown in Fig. 3.33, the input stage
is a wide range differential input transconductance amplifier (Mn1–Mn6), (Mp1–
Mp7) to extend the region of operation up to rail-to-rail, and to improve bandwidth
of input stage [42]. Moreover, the buffering circuit (Mn7–Mn10), (Mp8–Mp10) was
used to ensure low input impedance at the X terminal and to provide rail-to-rail swing
capability.

Using the circuit analysis presented in [42], it was proven that VX = VY and
IX = IZ such that a current follower stage ( Mn11, Mp11) has been added to convey
the current pass through the X terminal to Z terminal.

CCII+ was implemented using TSMC 0.13µm technology; the aspect ratios of
transistors are given in Table 3.1; it was selected to enhance linearity performance
and to alleviate the offset in voltage and current results from channel length modu-
lation effect.

VCR Implementation

Variable resistor, especially voltage control resistor (VCR), is an essential element in
different electronic circuits such as the variable gain amplifier and signal generators.
A floating voltage control resistor is implemented using the circuit proposed in [43] to
ameliorate linearity and dynamic range of VCR. As shown in Fig. 3.34, VCR consists
of two operational amplifiers, six resistors (100 k�), two capacitors, and an NMOS
transistor that operates in the triode region. The drain current of enhancement-type
NMOS transistor (MN1) which operates in the triode region is Ids = β(Vgs − Vth −
Vds
2 )Vds where β = μnCox

W
L , μn is the mobility of electrons; Cox is the oxide
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Fig. 3.34 Implementation of
floating voltage-controlled
resistor

V1 V

MN1

C C

RR

Vctrl

Vx

R
R R

R

2

capacitance per unit area; Vth is the threshold voltage of NMOS transistor; and W
and L are width and length of the bypass transistor respectively.

From the analysis of the VCR circuit, Vx = V1 + V2 = Vds |M N1 + 2Vs |M N1.
Moreover, by adding two capacitors with the same value (C1 = C2 = C = 2pF), a
floating gate technique can be implemented [43]. The gate voltage of bypass transistor
Vg = 0.5(Vx + Vctrl) where Vctrl is the control voltage. As a result, the gate source
voltage of bypass transistor (MN1) is

Vgs = 1

2
(Vds + Vctrl). (3.48)

By substituting into the drain current’s equation, the drain current of bypass tran-
sistor can be calculated as follows:

Ids = β

(
Vctrl

2
− Vth

)
(V1 − V2). (3.49)

The current passing through bypass transistor is linearly proportional to the
applied voltage. Furthermore, the equivalent resistance of bypass transistor RV C R =
2/β(Vctrl − 2Vth). The equivalent resistance is independent on the input voltage or
the output voltage; moreover, it is proportional to the control voltage. However, to
ensure the linearity of the VCR, the bypass transistor should operate in the triode
region so Vctrl ≥ Vds +2Vth . This condition can be satisfied by choosing appropriate
values for the aspect ratio.

Mathematical Model

Using the designed VCR and CCII to implement the emulator shown in Fig. 3.32.
The current passing through VCR is given by:

I = β

(
Vctrl

2
− Vth

)
(V1 − V2). (3.50)
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Fig. 3.35 I–V pinched hysteresis of the emulator: a C = 10 uF, and b C = 100 pF
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Fig. 3.36 Transient response of the emulator for sinusoidal input at 1 Hz. a Instantaneous current
passing through memristor, and b Instantaneous memristance

The control voltage Vctrl(t) = q(t)/C where q(t) is the time integral of the passing
current through VCR. So the transconductance of VCR is given as follows:

Gm = βq(t)

2C
− Gmo, (3.51)

where Gmo is the initial transconductance and is given by Gmo = βVth . The rate of
change in the transconductance is proportional to the passing current and is given by

dGm

dt
= β

2C
i(t) = k′

mi(t). (3.52)

This circuit is designed using TSMC 0.13µm technology with dual supply
±1.5 V. Figure 3.35a, b shows I–V pinched hysteresis of the designed emulator for
β = 138.74µA/V2 for C = 10µF and C = 100 PF, respectively. From (3.52), the
speed of this emulator is controlled by the aspect ratio of the bypass transistor and
integrating capacitor value C . The working frequency range is scaled by the same
scaling factoras that of the capacitor as shown in Fig. 3.35. Also, a variable capacitor
can be used to tune the emulator to work in any desirable frequency range.
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Figure 3.36a, b shows the instantaneous memristance and current passing through
the circuit for applied voltage v(t) = 0.5 sin(2π t) V where the memristance changes
from around 7–35 k�.

3.5.2.3 Testing Applications

One of the recent applications of the memristor is to design relaxation oscillators by
replacing the capacitor with memristors as discussed in [44, 45] which can also be
used as a voltage-controlled oscillator [46, 47]. The memristor is used to emulate the
effect of charging and discharging of capacitor voltage where memristance increases
or decreases depending on the polarity of the applied voltage. The previous emulator
is used in the relaxation oscillator, shown in Fig. 3.37, instead of solid-state memristor.

Using the same procedure used in [44] to derive expressions for oscillation
frequency and conditions for oscillation, the current passing through memristor
i(t) = Gm(Vo − Vre f )/(Gm Ra + 1). By substituting into (3.52) and integrating
from Gmn to Gmp which are the transconductances corresponding to Vn and Vp,
respectively, during the positive time half cycle Th is given by

Th = Ra(Gmp − Gmn) + ln(
Gmp
Gmn

)

k′
m(Voh − Vre f )

, (3.53)

where Gmp and Gmn are given by

Gmp = 1

Ra

Voh − Vp

Vp − Vre f
, Gmn = 1

Ra

Vn − Vol

Vre f − Vn
. (3.54)

A similar expression can be obtained for negative time half cycle Tl so the oscil-
lation frequency fo = D/Th where D = (Voh − Vol)/(Vre f − Vol). The condition
for oscillation is obtained from Gmp > Gmn and is given by

Vre f >
Voh Vn − Vol Vp

Voh − Vp − Vol + Vn
. (3.55)

Fig. 3.37 Memristor-based
voltage-controlled
relaxation oscillator Ra Vp

Vn

Vin Vo

Rm

Vref
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Fig. 3.39 Transient simulation of voltage-controlled oscillator

Figure 3.38 shows the transient simulation of relaxation oscillator using this emu-
lator for Vp, Vn, Voh, Vol , Vre f , and Ra equal 0.25 V,−0.325 V, 0.5 V,−0.5 V, 0 V,
and 5 k� where the emulator is designed using C = 10µF and β = 138.74µA/V2.
The time of positive half cycle equals 327 ms with relative error to the calculated
value equals 4.9759 percent due to nonlinearity of VCR. The circuits oscillate with
the frequency equal 1.47 Hz and the memristance changes from 5 to 9.2857 k�.
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By controlling Vref of memristor-based relaxation oscillator, the frequency
changes depending on the value of Vre f . As obvious from Fig. 3.39, the oscilla-
tor output frequencies are 0.99, 1.47, and 2.127651 Hz for Vref = 40 mV, 0 V and
−40 mV using the same aforementioned parameter values.

Also the emulator is tested in Wien oscillator where the feedback resistor is
replaced with a memristor as discussed in [48–50] and shown in Fig. 3.40a. The
circuit oscillates with a frequency equal to 22.6757 kHz for C, R, R1, and R2 equal
to 1 nF, 10 k�, 1 k�, and 2 k�, respectively. Moreover, the memristance changes
from 4.416 to 6.458 k� as shown in Fig. 3.40b.
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Chapter 4
Memristor-Based Relaxation Oscillator
Circuits

Oscillators are the key component in electronic systems since there is always a need
for a repetitive signal with a given frequency and waveform for timing, modulation,
and test and measurement applications [1]. Oscillators circuits are designed to pro-
duce a repetitive, oscillating signal, often a sine wave or a square wave. The two
main types of oscillators are sinusoidal and relaxation oscillators. Sinusoidal oscil-
lators are based on positive feedback, where a frequency selective network is used
to determine the frequency of oscillation of the sinusoidal output. Relaxation oscil-
lators are used to produce square waves, pulses, and triangular waves. Square waves
are one of the most important signals in digital applications. Relaxation oscillator is
basically an astable multivibrator which is an electronic circuit that operates between
two quasi-stable states (on and off states) at a certain frequency and whose period
depends on the charging and discharging of a storing element which is convention-
ally a capacitor. This chapter discusses some relaxation oscillators which generate
square waveform without using any reactive element.

4.1 Introduction

Recently, the first memristor-based oscillator without the use of any capacitors or
inductors was introduced in [2–4]. The increase/decrease of memristor resistance
according to the applied voltage resembles the charging/discharging of a reactive
element. The inherent delay in the memristor response is exploited to realize the
oscillator function. The resistance-storage property of the memristor eliminates the
need for an energy-storing reactive element, i.e., capacitor or inductor. It should be
noted that even ring oscillators are formed of delay stages, which depend on the
charging/discharging of intrinsic and extrinsic capacitances. Figure 4.1a shows the
oscillator circuit based on a voltage divider between a resistor and a memristor,
and a feedback function (F(V i)), which is similar to the conventional relaxation
oscillator [1].

© Springer International Publishing Switzerland 2015
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Fig. 4.1 a First memristor-based oscillator circuit, b transfer function of F(V i) showing transition
between different operating points [2]

The memristor is connected in a polarity such that the memristance Rm increases
for positive Vi and decreases for negative Vi . The threshold voltages Vp and Vn

should be selected such that Vn , 0, Vp. A simple implementation of F(Vi ) using two
comparators and an AND gate is shown in Fig. 4.1a. The oscillator is traced as shown
in Fig. 4.1b, assuming that we start at point ‘a’.

a → b: At ‘a’ a positive voltage is applied to the memristor since Vo = Voh. The
memristor resistance will increase, and so will Vi until the operating point reaches ‘b’.

b → c: At b′ the value of Vi will just pass Vp, thus Vo will switch to Vol, and the
operating point will jump to ‘c’.

c → d: At ‘c’ a negative voltage is applied to the memristor. The memristor
resistance will decrease, and so will |Vi | until the operating point reaches ‘d’.

d → a: At ‘d’ the value of Vi will just pass Vn , thus Vo will switch to Voh, and
the operating point will jump to ‘a’.

The general expressions for the oscillation conditions and the oscillation fre-
quency are obtained as well as the circuit realization which is suitable for low power
applications and biomedical applications.

4.2 Voltage Controlled Oscillators

In general, the oscillator circuit consists of a single memristor M , resistor Ra , and
control circuit F(Vi ) to control the resistance swing of the memristor to keep it within
the required resistance range [5]. Another circuit could be obtained if the memristor
M is exchanged with the resistor Ra , but the control circuit F(Vi ) in this case will
be changed as shown in Fig. 4.2 [5].



4.2 Voltage Controlled Oscillators 87
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Fig. 4.2 Basic arrangements of relaxation oscillator: a R-M reactance-less oscillator, and b M-R
reactance-less oscillator

4.2.1 R-M Relaxation Oscillator

The control circuit F(Vi ) of this arrangement basically consists of two comparators
ANDed together as shown in Fig. 4.3a and its output is given as

F (Vi ) =
{

Voh V ′
p≤ V i < Vp

Vol otherwise
(4.1)

where V ′
p = Vref + Vn − Vol, and Voh, Vol, Vp and Vn are maximum supply voltage,

minimum supply voltage, and the threshold voltages which control the maximum and
minimum resistances of the memristor respectively. The resistance of the memristor
using the linear model, which was proposed in [6, 7], is given as

(a)

(b)

(c)

Fig. 4.3 a R-M reactance-less oscillator, b hysteresis loop of F(Vi ), and c the corresponding state
diagram of the control circuit
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R2
m(t) = R2

in + 2k′
∫ t

0
Vm(t)dt . (4.2)

By differentiating the previous equation with respect to time

Rmd Rm = k′Vm (t) dt = k′
(

Vo (t) Rm

Rm + Ra

)
dt, (4.3)

where k′ = μv Ron(Roff − Ron)/D2 which depends on the mobility factor μv

(m2 s−1 V−1), minimum resistance Ron, maximum resistance Roff , and memristor
length D(m).

Previously, the explanation for the hysteresis of relaxation oscillators in electronic
circuits was discussed in [8]. In this circuit, the concept of oscillation of the R-M
oscillator can be traced as shown in Fig. 4.3b, c. Assuming the start point to be
Vi ∈ [V ′

p, Vp], the output voltage is Voh which means that the rate of the change of
the memristance is positive as in (4.3) as a result of which the memristance increases,
then Vi increases until it reaches Vp. When Vi increases a little more than Vp, the
control circuit F(Vi ) will be equal to Vol, which means that the rate of change of the
memristance is negative. Consequently, the resistance decreases, also Vi decreases
until it reaches Vn . When Vi increases a little more than Vn , the control circuit F(Vi )

will be equal to Voh and since Vi = V ′
p, the memristance will increase and so on as

shown in the state diagram in Fig. 4.3c.
As charges pass through the memristor, the memristance value will change within

the range Rm ∈ (Ron, Roff ). But if this memristance reaches one of its boundaries
Ron or Roff , it will be constant as long as the direction of current does not change.
Therefore for a sustained oscillation, Rm should not reach one of its boundaries. In
case of reaching one of the boundaries, the input voltage Vi becomes saturated which
results in constant output voltage. Thus, the use of two comparators to control the
transition operation using two reference voltages Vp and Vn , where the condition for
oscillation is given as

Ron < Rmn < Rmp < Roff , (4.4)

where Rmp and Rmn are the memristances at which Vi reaches Vp and Vn and the
output voltage is Voh and V ol respectively. The values of Rmn and Rmp as a function
Vref are given as

Rmn = Ra
(
Vn − Vref

)
Vol − Vn

, Rmp = Ra
(
Vp − Vref

)
Voh − Vp

. (4.5)
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Therefore, the necessary and sufficient condition for oscillation for Vref and Ra

can be obtained. From (4.4) and (4.5) where the first condition for oscillation is
given as

(
Vn − Vol

Vref − Vn

)
Ron < Ra <

(
Voh − Vp

Vp − Vref

)
Roff . (4.6)

The voltage across the memristor must be within the range of Vn and Vp to keep
the memristance within the range of Rmn and Rmp, which means that Rmn must be
less than Rmp as given by (4.7a) and Ra must satisfy the condition in (4.6) as given
by (4.7b). The final oscillation condition for Vref is given by the intersection range
between (4.7a) and (4.7b), which can be summarized in (4.7c).

Vref < min

(
Vp,

(V ohV n − VpVol)

Voh − Vol − Vp + Vn

)
, (4.7a)

max

(
Vn (Ron + Ra) − RonVol

Ra
,

Vp
(
Roff + Ra

) − Roff Voh

Ra

)
< Vref , (4.7b)

max

(
Vn (Ron + Ra) − RonVol

Ra
,

Vp
(
Roff + Ra

) − Roff Voh

Ra

)
< Vref

< min

(
Vp,

(V ohV n − VpVol)

Voh − Vol − Vp + Vn

)
. (4.7c)

Figure 4.4 identifies the region of existence of oscillatory behavior, where the
working Ra range is plotted versus the reference voltage Vref where this range
increases as Vref increases. When Vref = 0, the working Ra range is from 100 �

to 12.66 k� and when Vref is maximum, the working Ra range becomes between
60 � and 22.79 k�. Also at Ra = 3 k�, the circuit will oscillate where Vref is in
the range (−0.4833, 1/3).

Using the same procedure proposed in [2] taking into consideration the reference
voltage and by integrating (4.3) from Rmn to Rmp through time TH where Vo = Voh,

the time of positive half cycle TH is given as

TH =
(
Rmp − Rmn

) (
Rmp + Rmn + 2Ra

)
2k′ (Voh − Vref

) . (4.8)

The time of negative half cycle TL and the duty cycle D are

TL = TH

(
Voh − Vref

)
(
Vref − Vol

) , D = Vref − Vol

Voh − Vol
. (4.9)
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Fig. 4.4 Ra versus Vref for {Roff , Ron, Voh, Vol, Vp, Vn} = {38 k�, 100 �, 1V,−1 V, 0.75 V,

−0.5 V}

The frequency of oscillation is given as

fo = 1

TH

(
Vref − Vol

)
(Voh − Vol)

, (4.10a)

fo = 2k′ D
(
Voh − Vref

) (
Voh − Vp

)2
(Vn − Vol)

2

R2
a

(
Vref

(
Vol + Vp − Voh − Vn

) + VohVn − Vol Vp
) (

Vref
(
Vol + Voh − Vp − Vn

) + VohVn + Vol Vp − 2VohVol
) .

(4.10b)

As is clear from (4.10) the frequency of oscillation can be controlled by differ-
ent means such as by changing Ra since fo is inversely proportional to R2

a or by
changing Vref . When Vref increases within the range specified by (4.7), the values
of Rmn and Rmp decrease and hence the frequency of oscillation will increase as
shown in Fig. 4.5a. When Vref = 0, the previous equations will be reduced to their
special cases, introduced in [2]. As an example, let the memristor parameters be{

Ron, Roff , d, μv
} = {

100 �, 38 k�, 10 nm, 10−10 cm2 s−1 V−1
}

and the other
circuit parameters be {Vol, V oh, Vn, Vp} = {−1 V, 1 V, −0.5 V, 0.75 V}. Using
the previous data, the range of oscillation frequency changes as Vref changes. For
the lower bound of the memristor resistance Rmn = Ron then Ramin = Ron

2Vref +1

and Rmp = Ron

(
3−4Vref
2Vref +1

)
. The frequency of oscillation in this case from (4.10) is

equal to

fo =
37900

(
1 − V 2

ref

) (
2Vref + 1

)2

(2 − 6Vref )(6 − 2Vref )
. (4.11)
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For the upper memristance bound where Rmp = Roff , the Ramax = Roff
3−4Vref

,

therefore Rmn = Roff

(
2Vref +1
3−4Vref

)
, and the frequency of oscillation are obtained as

fo =
37900

(
1 − V 2

ref

) (
3 − 4Vref

)2

(380)2(2 − 6Vref )(6 − 2Vref )
. (4.12)

The maximum range of Vref for oscillation from (4.7) and (4.10) is −0.4935 <

Vref < (1/3) where the minimum value of Vref comes from the intersection of the
Ramin and the Ramax curves. From (4.6) and Fig. 4.5a, the valid range of Ra increases
with increasing Vref , which enhances the flexibility of the relaxation oscillator.
Moreover, the oscillation frequency range is [0.1969 Hz–3.158 kHz] and [25.78 Hz–
3 MHz) when Vref = 0 and V ref = Vref max

= 1/3 V respectively. Another advantage
of using Vref is that the circuit can operate under all positive or negative voltages as
long as Voh > Vp > Vref > Vn > Vol as shown in Fig. 4.5b.

Using the PSPICE model proposed in [9], the output oscillations for three
different values of V ref = {−0.3, 0, 0.3} for {Ra, Roff , Ron, V oh, Vol, Vp, Vn} =
{3 k, 38 k, 100, 1, −1, 0.75, −0.5} are shown in Fig. 4.6a. It is clear from the figure
that the big change in the oscillation frequency is by changing V ref . Figure 4.6b
shows the output response when all voltage parameters are positive such that Ra,

Roff , Ron, Voh, Vol, Vp, Vn and Vref equal 3 k�, 38 k�, 100 �, 3 V, 1 V, 2.6 V,

1.5 V and 2 V respectively. The frequency of oscillation from (4.10) equals 18.716 Hz
which matches the frequency obtained from the PSPICE simulation.
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Vref
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Fig. 4.6 a PSPICE transient simulation of the output voltage Vout for different Vref , Vref = −0.3 V
(upper), Vref = 0 V (middle) and Vref = 0.3 V (lower), and b PSPICE transient simulation results
of linear dopant model for Rm (upper), Vi (middle) and Vo (lower)

4.2.2 M-R Based Oscillator

In this section, another arrangement where the memristor is replaced with a resistor is
discussed. The control circuit of the R-M oscillator is different since Vi ∈ [Vn, Vp],
the output voltage is Voh and so the memristance increases. Then, the voltage Vi

decreases until the memristance reaches its minimum resistance Ron and the mem-
ristor becomes saturated so that no oscillation occurs if an AND gate is used in the
control circuit. Therefore, to get an oscillation the AND should be replaced by a
NAND as shown in Fig. 4.7a. Then, the control function F(Vi ) is given as

F (Vi ) =
{

Voh Vp < Vi < V ′
p

Vol otherwise
(4.13)

Using the hysteresis loop of the oscillator, shown in Fig. 4.7b, the concept of
oscillation is discussed as follows: assume Vi ∈ [Vp, V ′

p] which means that Vo = Voh

so that the memristance increases and Vi decreases until Vi reaches less than Vp; then
the output voltage Vo will be changed to Vol and also Vi will be changed to V ′

n and
so the memristance decreases and Vi increases until it reaches more than Vn ; then
Vo will be changed to Voh and Vi will be changed to V ′

p and also the memristance
increases and so on as shown in the state diagram in Fig. 4.7b.

In this case, the value of Rmn and Rmp is given as

Rmn = Ra
Vn−V ol

Vref − Vn
, Rmp = Ra

Voh−V p

Vp − Vref
. (4.14)
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Fig. 4.7 a M-R reactance-less oscillator, b hysteresis loop of F(Vi ), and c the corresponding state
diagram of the control circuit

Therefore, the necessary and sufficient condition for oscillation on V ref and Ra

can be obtained as

Ron
Vref − Vn

Vn−V ol
< Ra < Roff

Vp − Vref

Voh−V p
. (4.15)

The value of the reference voltage Vref should ensure that the memristance does
not leave the range [Rmn, Rmp]. Therefore, the condition on Vref for oscillation is
given as

max

(
V n,

(V ohV n − VpVol)(
Voh − Vol − Vp + Vn

)
)

< V ref

< min

(
Vp

(
Ra + Roff

) − Ra Voh

Roff
,

Vn (Ra + Ron) − Ra Vol

Ron

)
. (4.16)

For Ra = 3 k�, the circuit will oscillate when Vref is in the range (−0.7484,

0.466). Figure 4.8 determines the working range of Ra versus the reference voltage
Vref of the M-R oscillator, where the working Ra range decreases as Vref increases.
When Vref = 0, and −0.7484 (the minimum value), the working Ra changes from
[300 �–38 k�] to [0.65 �–94.88 k�] respectively.

Using the same previous procedure, the voltage across the memristor Vm is given as

Vm (t) =
(
Vo (t) − Vref

)
Rm

Rm + Ra
(4.17)
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Fig. 4.8 Working Ra range
versus Vref for
{Roff , Ron, Voh, Vol, Vp, Vn}
= {38 k�, 100 �,

1 V,−1 V, 0.5 V,−0.75 V}

Using the value of Vm(t) in (4.3), then

Rmd Rm = k′
((

Vo (t) − Vref
)

Rm

Rm + Ra

)
dt. (4.18)

By integrating (4.18) from Rmp to Rmn through TH , the time of positive half cycle
is given by (4.8). The time of negative half cycle and the duty cycle are given by
(4.9) but here in this case the M-R oscillator, Rmn and Rmp are different from the
R-M oscillator so that the frequency of oscillation is given as

fo = 2k′ D
(
Voh − Vref

) (
Vp − Vref

)2(
Vref − Vn

)2

Ra
2
(
Vref

(
Voh + Vn − Vp − Vol

) − VohVn + Vol Vp
) (

Vref
(
Voh + Vn + Vp + Vol − 2V ref

) − VohVn − Vol Vp
) .

(4.19)

The frequency range changes as Vref changes as shown in Fig. 4.9a for {Roff , Ron,

Voh, Vol, Vp, Vn} = {38 k�, 100 �, 1 V, −1 V, 0.5 V,−0.75 V}, respectively.
Figure 4.9b shows the obtained oscillation frequency versus the change in Ra for
three different values of Vref = {−0.3, 0, 0.3} V.

It is clear from the figure that there is a big change in the oscillation frequency by
changing Vref , which is also shown in Fig. 4.10a for {Ra, Roff , Ron, Voh, Vol, Vp, Vn}
= {3 k, 38 k, 100, 1,−1, 0.5,−0.75} respectively. Figure 4.10b shows the output
response when all voltage parameters are positive such that Ra, Roff , Ron, Voh, Vol,

Vp, Vn and Vref equal 3 k�, 38 k�, 100 �, 3 V, 1 V, 2.5 V, 1.4 V and 2 V respec-
tively. The frequency of oscillation from (4.19) equals 34.45 Hz, which matches the
frequency obtained from the PSPICE simulation in Fig. 4.10b.

The special case of the M-R oscillator is at grounded Vref , which simplifies the
previous equations. The oscillation conditions are given as

Ron
|Vn|

|Vol| − |Vn| < Ra < Roff
Vp

Voh−V p
,

Ra

Ra + Roff
<

Vp

Voh
<

Vn

Vol
<

Ra

Ra + Ron
.

(4.20)
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Fig. 4.10 a PSPICE transient simulation of the output voltage Vout for different Vref , where Vref =
0.3 V (upper), Vref = 0 V (middle) and Vref = −0.3 V (lower), and b PSPICE transient simulation
results for Rm (upper), Vi (middle) and Vo (lower)

The frequency of oscillation fo and the frequency range are given as

fo = 2k′ |Vol| VohVp
2Vn

2

Ra
2
(
Voh

2Vn
2 − Vol

2Vp
2
)
(Voh − Vol)

= X

Ra
2 , (4.21)

where X is a variable and function of k′, Voh, Vol, Vp and Vn , the maximum and
minimum frequencies which could be obtained are given by the following closed
form:

X(
Voh
Vp

− 1)
2

Roff
2 < fo <

X(
Vol
Vn

− 1)
2

Ron
2 . (4.22)

From (4.10) and (4.19), the oscillation frequency is linearly proportional to the
dopant drift mobility μv which is a physical property of the memristor material.
Therefore, for higher oscillation frequencies, highly dopant material should be used.
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4.2.3 Memristor-Based VCO

In the above discussion of the circuits, the duty cycle D is linearly proportional to the
reference voltage Vref , which means that the reference voltage controls the frequency
and the duty cycle. As a result these circuits can be used as modulator circuits; the
modulated signal will be proportional to the signal applied to the modulator. Using
the above circuits, this modulator can be used as a digital/analog modulator if the
input signal is a digital/analog signal as shown in Fig. 4.11.

For sustained oscillation, the necessary and sufficient conditions for oscillation
must be satisfied and the amplitude of the input signal must be a subset from the
range of Vref , which is (−0.4935, 1/3) V in the R-M circuit. From (4.12) and (4.19),
it is clear that the frequency depends on Vref as shown in Figs. 4.5a and 4.9a and
thus this circuit can be used as a VCO. In case of the R-M oscillator, Fig. 4.5a shows
that the oscillation frequency increases with increasing Vref but in case of the M-R
oscillator, Fig. 4.9b shows that the oscillation frequency decreases with increasing
Vref . For example in the R-M circuit, Fig. 4.11a shows the VCO output response
which has different frequencies where a multi-level input is applied with amplitudes
{−0.3 V, 0 V, 0.3 V}. A small delay exists in the output response due to the small
dopant mobility and the sudden change in Vref where the memristor needs time to
change its state between the maximum and minimum resistances Rmp and Rmn.
Figure 4.11b shows the output voltage for applying a sinusoidal input with 0.3 v
amplitude and 1 Hz frequency.

Fig. 4.11 PSPICE transient simulation of R-M oscillator using the same parameters for a multilevel
input and b sinusoidal input
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The nonlinear oscillation frequency of the R-M oscillator can be linearized for a
certain range of Vref by neglecting higher order terms

fapp ≈ γ
(
(ac (Voh + Vol) + (ad + cb) VohVol) Vref − acVohVol

)
,

(4.23a)

γ = 2k′(Voh − Vp
)2

(Vn − Vol)
2

R2
a (Voh − Vol) (ac)2

, a = VohVn − VolVp, b = Vol + Vp − Voh − Vn,

(4.23b)

c = VohVn + VolVp − 2VohVol, d = Vol + Voh − Vp − Vn .

(4.23c)

For the same data in the R-M oscillator, the percentage error between the exact
and the approximated formulas is less than 2 % when Vref ∈ [−0.05, 0.05].

One of the advantages of this VCO is the use of the memristor to emulate the
effect of the charging and discharging of the reactive elements which are commonly
used in the conventional VCO. Moreover, the size of this circuit is very small due to
the nanosize of the memristor compared to the size of the conventional VCOs which
contain capacitors or inductors. However, the oscillation frequency of this VCO is
nonlinear with the reference voltage Vref but could be approximated to be linear as
discussed before at small ranges of Vref .

4.2.4 Discussion and Comparison

The modified circuits can operate with all voltage supplies either positive or neg-
ative but the necessary and sufficient conditions for oscillation should be satisfied.
Furthermore, by changing Vref the oscillation frequency can be controlled for both
cases. The oscillation frequency in both oscillators is linearly proportional to the
dopant mobility which depends on the used material. Table 4.1 shows a numerical
comparison between the two reactance-less oscillators for three different values of
Vref = {−0.3, 0, 0.3} when {Roff , Ron, Voh, Vol} = {38 k�, 100 �, 1 V,−1 V},
and {V p, Vn} equal to {0.75 V, −0.5 V} and {0.5 V, −0.75 V} for the R-M and the
M-R oscillators respectively. It is clear from this table that by changing the value
of Vref between −0.3 and 3.0 V and using the same circuit parameters, the maxi-
mum oscillation frequency is scaled to be in the range of [7 %, 2588 %] and [2543 %,
10 %] of fomax(Vref = 0) for the R-M and the M-R relaxation oscillator respectively.
In addition, the ratio ( f omax/ fomin) equals 1309, 16,040, 1,14,099 Hz for the R-M
oscillator and 1,14,096, 16,059, 1421 Hz for the M-R oscillator when Vref equals
−0.3, 0, 0.3 V, respectively, which illustrates how the reference voltage affects the
controllability of these oscillators.
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Table 4.1 The oscillation parameters of the R-M and M-R oscillators for three different cases of
Vref

R-M Oscillator M-R Oscillator

Vref (V) −0.3 0 0.3 −0.3 0 0.3

Ramin (�) 250 100 62.5 180 300 420

Ramax (k�) 9.0476 12.667 21.11 60.8 38 15.2

fomin (Hz) 0.168 0.1969 0.7165 0.4224 0.118 0.139

fomax (Hz) 220.025 3158.33 81751.7 48194 1895 197.53

foRa=3k�
(Hz) 1.5279 3.50926 35.4825 173.776 18.95 3.5759

4.3 Effect of Boundary on R-M Oscillator

In this section, we will discuss the effect of changing Joglekar’s window function
f (x) = 1 − (2x − 1)2p for linear ion drift model [10]. The effect of changing the
dopant value p is discussed for nonlinear p = 1 and linear p = ∞ as shown in
Fig. 4.12 on R-M oscillator, which can similarly done for M-R oscillator [11].

4.3.1 Mathematical Analysis

The values of Rmp and Rmn are given by the same relations in (4.5), also the necessary
and sufficient condition for oscillation on Vref and Ra can be obtained as in (4.6)
and (4.7). As known, the rate of change of the parameter x for the HP memristor
[12] which represents the ratio between the doped length to the total length of the
memristor is

dx

dt
= −ki (t) f (x) = −k

Vo − Vref

Rm + Ra
f (x) , (4.24)

Fig. 4.12 Window function
for linear and nonlinear drift
model
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d Rm

dt
= k′ (Vo − Vref ) f (x)

Rm + Ra
, (4.25)

where the function f (x) represents the nonlinear dopant drift of the memristor
behavior. In case of f (x) = 1, the system has a linear draft dopant which leads to
the previous case. However at p = 1, the window function f (x) = 4x(1 − x) so
the rate of change is

dx

dt
= −k(Vo − Vref )

4x (1 − x)

Roff + Ra − (Roff − Ron)x
. (4.26)

Therefore,

∫ xmp

xmn

(
Roff + Ra

x
+ Ron + Ra

1 − x

)
dx =

∫ TH

0
4k

(
Vref − Vo

)
dt, (4.27)

where xmn and xmp correspond to the state variable values of the memristance Rmn

and Rmp respectively. After integration and performing some simplifications, the
time of positive half cycle TH is given as

TH =
(
Roff + Ra

)
ln

(
Roff −Rmn
Roff −Rmp

)
+ (Ron + Ra) ln

(
Rmp−Ron
Rmn−Ron

)

4k(Voh − Vref )
. (4.28)

The time of negative half cycle is calculated by the same formula in (4.9) and the
frequency of oscillation is given as

fo = 1

TH

(Vref − Vol)

(Voh − Vref )
, (4.29)

and the duty cycle is given by (4.9). Figure 4.13 shows that the range of memristance
Rm changes from 3 to 4.5 k� and the oscillation frequency equals 6.476 Hz, which
matches the frequency and Rm range in (4.6) and (4.29) respectively.

In case of grounded Vref , the time of positive half cycle is

TH =
(
Roff + Ra

)
ln

(
Roff −Rmn
Roff −Rmp

)
+ (Ron + Ra) ln

(
Rmp−Ron
Rmn−Ron

)

4kVoh
, (4.30)

and the time of negative half cycle is given as

TL = TH
Voh

|Vol| . (4.31)
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Fig. 4.13 Transient simulation results of nonlinear dopant model for Rm (upper), Vi (middle)
and Vo (lower) for Ra, Roff , Ron, Voh, Vol , Vp , Vn , and Vref equal 3 k�, 38 k�, 100 �, 3 V, 1 V,
2.6 V, 1.5 V, and 2 V respectively

Therefore, the duty-cycle and the periodic time are D = |Vol |
Voh−Vol

, and T =
TH

(
1 − Voh

Vol

)
(same as linear case), respectively, and the necessary and sufficient

conditions for oscillation are still the same as in (4.6); however, (4.7c) is simplified
to (4.32) which matches the linear model at Vref = 0 [2].

Vp > Vn
Voh

Vol
. (4.32)

When the memristance Rm reaches one of the boundaries Ron or Roff , the oscilla-
tion frequency becomes zero as expected. For example, let Ra, Roff , Ron, Voh, Vol,

Vp, and Vn equal 3 k�, 38 k�, 100 �, 1 V, −1 V, 0.75 V and −0.5 V respectively.
The oscillation frequency will be equal to 1.788 Hz and the memristance Rm changes
from 3 to 9 k�.

Figure 4.14 shows that the curves of the oscillation frequency for different Ra are
not enclosed between Ramax and Ramin curves as in the case of the linear dopant
model shown in Fig. 4.5a, due to the nonlinearity of the model which appears in the
oscillation frequency equations (4.30) and (4.31).

Fig. 4.14 The oscillation
frequency versus Vref
for different cases of Ra
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4.3.2 Discussion and Comparison

Due to the behavior of the nonlinear model of the memristor, when the memristor
clings to one of its boundaries Ron or Roff , the oscillation frequency will be zero as
shown in Fig. 4.15a. But in the case of the linear model, the memristor would not
cling to its boundary due to the discontinuity of the model as shown in Fig. 4.15b.
It is clear that the maximum frequency fomax equals 290.1, 31.34, and 8.242 Hz
when (Ra, Vref ) is equal to (129.5 �, 0.3 V), (148 �, 0 V), and (305 �, −0.3 V),
respectively, for the nonlinear dopant drift model. However, there is no maximum in
the linear model due to the windowing discontinuity effect of the model.

Actually the dopant value is unknown due to the variations in the fabrication
process but its value is enclosed between nonlinear dopant p = 1 and linear dopant
p = ∞. For designing a good memristor-based oscillator, the frequency variation
range should be very narrow as shown in Fig. 4.15 where it is better to design the
oscillator between the first and the second intersections of linear and nonlinear dopant
curves from Ra = 4.037 to Ra = 12.348 k� in the case Vref = 0 V curve where the
maximum change in the frequency is � f = 0.2963 Hz.

From Eqs. (4.10) and (4.30), the oscillation frequency is linearly proportional to
the dopant drift mobility μv, which is a physical property of the memristor material
so in case of need for higher frequencies, highly dopant material should be used. A
summary table of all the needed equations for designing a memristor-based reactance-
less oscillator is introduced in Table 4.2.
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Table 4.2 Controlled reactance-less oscillator summary

Linear window Nonlinear window

TH (Rmp−Rmn)(Rmp+Rmn+2Ra)
2k′(Voh−Vref )

(Roff +Ra)ln

(
Roff −Rmn
Roff −Rmp

)
+(Ron+Ra )ln

(
Rmp−Ron
Rmn−Ron

)

4k(Voh−Vref )

Duty cycle
Vref −Vol
Voh−Vol

Ra range Ron
Vn−Vol
Vref −Vn

< Ra < Roff
Voh−Vp
Vp−Vref

Rm range Ra
Vn−Vref
Vol−Vn

< Rm < Ra
Vp−Vref
Voh−Vp

Condition
of
oscillation

max
(

Vn (Ron+Ra )−RonVol
Ra

,
Vp(Roff +Ra)−Roff Voh

Ra

)
< V

ref
< min

(
Vp ,

(V ohV n−Vp Vol)

(Voh−Vol−Vp+Vn)

)

4.4 Two-Series Memristors Analysis

Generally, there are four different connections for two memristors in series as shown
in Fig. 4.16, where the output is the common node between the two memristors [13].
The instantaneous memristance of each memristor and the rate of change in its state
are given as

Rm (t) = Rin − Rd x (t) , (4.33a)

dx

dt
= ηkiin (t) , (4.33b)

where Roff , Ron, Rd and x represent the maximum and minimum achievable resis-
tances of the memristor, their difference, the state variable of the memristor, respec-
tively, and η represents the polarity of the memristor, where the wide black line of
the memristor’s symbol refers to the positive terminal and vice versa.

Substituting by (4.33b) into the derivative of (4.33a), the rate of change in the
memristance is

d Rm

dt
= ∓k Rdiin (t) , (4.34)

Fig. 4.16 Different
configurations of two series
memristors
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The rates of change in the resistance of the two memristors are given as

d Ra

dt
= k′

aiin (t) ,
d Rb

dt
= k′

biin (t) , (4.35)

where k′
a = −ηka Rd , and k′

b = −ηkb Rd (�2 V−1 s−1).
The current through the memristors is the same so the rate of change in the first

memristance Ra is a fraction of the rate of change in the other memristance Rb

d Ra

dt
= α

d Rb

dt
, (4.36)

where the mismatch factor α = k′
a/k′

b. By integrating both sides of (4.36) with
respect to time, the relation between the two memristances Ra and Rb is given as

Ra(t) = αRb(t) + Rind , (4.37)

where Rind = Rina − αRinb , Rina and Rinb are the initial memristances of the first
memristor Ra , and second memristor Rb respectively. The output voltage Vo is a
voltage divider across the two series memristances; assuming grounded reference
voltage, and after substituting by the relation between the two memristances (4.37),
the output voltage can be obtained as

Vo = Vin
Rb(t)

(α + 1) Rb (t) + Rind

. (4.38)

The output voltage Vo is a function of the initial memristances Rina , Rinb and
the instantaneous value of Rb so the instantaneous value of Rb should be calculated
first. From (4.34) and (4.35), the rate of change of the memristance of Rb is given
by (4.39a). Substituting by the value of Ra from (4.37) and integrating from Rinb to
Rb, the expression of the memristance Rb is given as (4.39b)

d Rb

dt
= −k′

b
Vin

Rb(t) + Ra(t)
, (4.39a)

(
Rb(t) − Rinb

) [
(α + 1)

(
Rb (t) + Rinb

) + 2Rind

] = −2k′
bϕ(t), (4.39b)

where ϕ(t) represents the flux, assuming zero initial flux. Using the PSPICE memris-
tor model proposed in [9], with Joglekar’s window function and high doping factor
p = 100, Fig. 4.17 shows the memristances Ra and Rb for α = 2 when applying a
square wave input of ±1 v and 2 Hz frequency where the maximum memristances
reached at transition from positive to negative voltages equals Rb = 13.663 k� and
Ra = 17.365 k�, matching the calculation results with a relative error around 0.32 %
due to the nonlinearity of the window function of the model.



104 4 Memristor-Based Relaxation Oscillator Circuits

Fig. 4.17 PSPICE
simulation of the
memristances Ra and Rb for
α = 2, Rina = Rinb =
10 k�, k′

a = 2 k′
b =

758 M�2 V−1 s−1
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The memristance Rb must be real and positive so by solving the second order
equation (4.39b) using quadratic formula, there is a solution at a certain range as
shown in Fig. 4.18 for equal initial memristance. The hashed region shows that no
solution could be obtained for the corresponding α and ϕ.

The memristance Rb is a function of α, Rina , Rinb , and k′
b. Figure 4.19 shows

the change in the memristance Rb due to the change in ϕ(t) and α. It is clear from
Fig. 4.19a that the memristance Rb increases with increase in the negative α; also, the
solution is valid for positive ϕ only which matches the existence region in Fig. 4.18.
Furthermore, for α > −1 in Fig. 4.19b, the memristance decreases with increasing

Fig. 4.19 The memristance behavior for Rina = Rinb = 1 k�
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α and negative ϕ and there is no solution for positive ϕ, which matches the existence
region in Fig. 4.18.

Four special cases based on α can be studied as follows:

1. k′
a = 0, which means that Ra is a resistor in series with the memristor Rb so

α = 0, then (4.39b) becomes

(
Rb(t) − Rinb

) [
Rb (t) + Rinb + 2Ra

] = −2k′
bϕ (t) . (4.40)

Here, two subcases are available, where k′
b may be positive or negative depending

on the polarity of the memristor which will control the change of the memristance
either by decreasing or increasing the memristance respectively. Figure 4.20a
shows PSPICE simulation of the instantaneous memristance Rb and the output
voltage Vo for square wave input with amplitude = ±1 v, frequency = 2 Hz and
positive k′

b where maximum Rb = 12.848 k� which matches the calculations
from formula (4.40).

2. k′
b = 0, which means that Rb is a resistor in series with the memristor Ra so

α = ∞. By replacing the value of Rb by its value from (4.37), the general
expression is given as

(
Rina − Ra (t)

α

) [
(α + 1)

(
Ra (t) − Rina

α
+ 2Rinb

)
+ 2Rind

]
= 2k′

bϕ (t) .

(4.41)

By multiplying both sides by α and taking limit when α tends to ∞, the memris-
tance expression is given as

(
Ra(t) − Rina

) [
Ra(t) + Rina + 2Rb

] = −2k′
aϕ (t) . (4.42)
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Fig. 4.20 PSPICE simulation of memristance and Vo for a case 1: memristance Rb for Rinb = 1 k�,
Ra = 1 k� and k′

b = 379 M�2 V−1 s−1, and b case 2: memristance Ra for Rb = 1 k�, Rina = 1 k�

and k′
a = 379 M�2 V−1 s−1
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The previous expression is similar to the first case as is obvious from Fig. 4.20b,
where the memristance Ra increases until the input voltage Vin changes its state,
where Ra reaches 12.848 k� for square wave input with amplitude =1 v, fre-
quency = 2 Hz and positive k′

a .
3. k′

a = k′
b = k′

ab, which means that Ra and Rb are memristors having the same
polarities so α = 1 as shown in Fig. 4.16a, b. The memristance Rb can be given
from

(
Rb (t) − Rinb

) (
Rb (t) + Rina

) = −k′
abϕ (t) . (4.43)

The two memristances Ra and Rb will increase or decrease together depending on
the sign of k′

ab as Ra(t) = Rb(t) + Rind . Figure 4.21a shows a PSPICE transient
simulation of the memristances when applying square wave input, where the
maximum Rb = 10.305 k�, matching the analytic results obtained from (4.43)
with relative error = 0.4237 %. Also, the difference between Rb and Ra curves
is constant as shown in the figure and is equal to 1 k�. In the special case of the
previous expression, where Rinb = Rina = Rin, the memristance Rb is given as

R2
b (t) = R2

in − k′
abϕ (t) , (4.44)

which is the same expression as the memristance of a single memristor but in the
single memristor k′

ab = 2k′ where k′ = ∓k Rd . The applied flux is distributed
on the two memristors equally (see Fig. 4.16a, b) which makes sense because the
voltage is divided across the two memristances as shown in Fig. 4.21a.

4. k′
a = −k′

b, which means that Ra and Rb are memristors but with opposite polar-
ities so α = −1 (see Fig. 4.16c, d) and Ra + Rb = Rina + Rinb = constant

Rb (t) = Rinb − k′
b

Rina + Rinb

ϕ (t) . (4.45)
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Fig. 4.21 PSPICE transient simulation of the memristances Ra and Rb, and the output voltage for
k′

ab = 379 M�2 V−1 s−1 : a at α = 1, Rinb = 2 k� and Rina = 1 k�, b α = −1, Rinb = Rina =
10 k�
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The memristance Rb is linear with the applied flux. Moreover, the negative sign
of α may result from k′

a or k′
b, thus two cases are available; the first case when k′

a
is negative which means that the first memristor is reversed. The memristance Ra

increases, and the memristance Rb decreases for positive applied voltage, on the
other hand, when k′

b is negative the memristance Rb increases and the memristance
Ra decreases if the applied flux is positive and vice versa. Figure 4.21b shows the
PSPICE simulation of the memristance in case of α = −1, where k′

a is negative
and k′

b is positive so the memristance Ra decreases and Rb increases in case of
negative applied voltage and vice versa.

4.5 Symmetric Memristive Two-Gate Oscillator

The symmetric memristor-based oscillator circuit consists of two memristors, an
inverter and two comparators whose outputs are connected to the NAND gate. The
two comparators are used to make sure that the memristor resistance always varies
between two limits to achieve the oscillation function at the output of the NAND
gate [14]. The two memristors are connected instead of the relaxation RC circuit to
emulate the behavior of the charging and the discharging of the capacitor as shown
in Fig. 4.22.

4.5.1 Oscillation Concept

The voltage across the two memristors is equal to Vo1 − Vo due to the structure of
the circuit. So the two memristances increase or decrease with a value depending on
the memristor polarities and the applied voltage sign until the voltage Vin reaches to
Vp or Vn , then due to the logic gates, Vo will be inverted and the two memristances
change their direction by (decreasing or increasing) with a value until Vin reaches
Vn or Vp, respectively, as discussed in the previous section when applying a square
wave input.

Fig. 4.22 The symmetric
memristive two-gate circuit
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bR

oVinV1oV
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4.5.2 Mathematical Analysis

The input voltage Vin of the two comparators is given as

Vin = Vo1 Rb + Vo Ra

Ra + Rb
. (4.46)

By substituting from (4.37) by the value of Ra into (4.46), we obtain:

Vin = (Vo1 + αVo) Rb + Vo Rind

Ra + Rb
. (4.47)

In order to obtain the maximum and minimum resistances which can be achieved
by the memristance Rb at Vin = Vp, Rb will be Rbp at Vo = Voh, and Vo1 = Vol.
Then

Rbp =
(
Voh − Vp

)
Rind

(α + 1) Vp − (Vol + αVoh)
. (4.48)

Similarly by replacing Vp, Voh and Vol by Vn, Vol and Voh, respectively,

Rbn = (Vn − Vol) Rind

(Voh + αVol) − (α + 1) Vn
. (4.49)

For sustainable oscillation, some conditions must be satisfied which are Ron < Rbn <

Rbp < Roff , first for Rbn < Rbp, then

(
Vp + Vn

)
Rind < (Voh + Vol) Rind . (4.50)

But Rind may be positive or negative so the condition will be
(
Vp + Vn

)
<

(Voh + Vol) for positive Rind but for negative Rind the condition will be
(
Vp + Vn

)
>

(Voh + Vol). The other conditions come from Ron < Rbn and Rbp < Roff as follows:

Ron
(Voh + αVol) − (α + 1) Vn

Vn − Vol
< Rind < Roff

(α + 1) Vp − (Vol + αVoh)

Voh − Vp
.

(4.51)
Consequently, another condition on Vp, and Vn should be obtained as

Roff

Ron
>

((α + 1) Vn − (Voh + αVol)) (Voh − Vp)

((α + 1) Vp − (Vol + αVoh)) (Vol − Vn)
. (4.52)

Note that the greater-than “>” sign for positive Rind will be reversed in case of
negative Rind . To derive an expression for the oscillation frequency and the duty
cycle, the resistance will change from Rbn to Rbp through the time of a half cycle
(ThC ). So by integrating (4.39b) from Rbn to Rbp, where the applied input voltage is
constant and (Vo1 − Vo) = (Voh − Vol). ThC is given as
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ThC =
∣∣Rbp − Rbn

∣∣ ((α + 1)
(
Rbp + Rbn

) + 2Rind

)
2k′

b |Vo1 − Vo| . (4.53)

The circuit is symmetric for Th and TL because the time for the memristance to
change from Rbn to Rbp is equal to the time to change from Rbp to Rbn; so the duty
cycle = 50 % and the oscillation frequency f is given as

f = k′
b (Voh − Vol)∣∣Rbp − Rbn

∣∣ ((α + 1)
(
Rbp + Rbn

) + 2Rind

) , (4.54a)

f =
∣∣∣∣∣

k′
b

(
(α + 1) Vp − Vol − αVoh

)2

R2
ind

(Voh − Vol)
(
Voh + Vol − Vp − Vn

) ((α + 1) Vn − Voh − αVol)
2(

(α + 1)
(
Vp − Vn

) − (α − 1) (Voh − Vol)
)
∣∣∣∣∣ .

(4.54b)

As discussed in the previous section α has four special values:

1. α = 0, (i.e. k′
a = 0) the maximum and minimum memristances are given by

(4.55a) and the oscillation frequency is given by (4.55a) as follows:

Rbp = Ra
Voh − Vp

Vp − Vol
, Rbn = Ra

Vn − Vol

Voh − Vn
, (4.55a)

fo = k′
b

(
Vp − Vol

)2
(Vn − Voh)

2

R2
a (Voh − Vol)

(
Voh + Vol − Vp − Vn

) (
Vp − Vn + Voh − Vol

) .

(4.55b)

The conditions for oscillation are given as

Vp + Vn < Voh + Vol, (4.56a)

Ron
Voh − Vn

Vn − Vol
< Ra < Roff

Vp − Vol

Voh − Vp
, (4.56b)

2. α = ∞, (i.e., k′
b = 0) which means that Rb is a resistor and Ra is a memristor

so Ra will change its state such that the maximum and minimum resistances Rap

and Ran should be calculated by substituting from (4.48) and (4.49) into (4.37)
and are given as

Rap = Rind

Vp − Vol

(α + 1) Vp − Vol − αVoh
, (4.57a)

Ran = Rind

Voh − Vn

Voh + αVol − (α + 1) Vn
. (4.57b)
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By taking limits to (4.57) when α tends to ∞, the memristances, corresponding
to Vp and Vn are given as

Rap = Rb
Vp − Vol

Voh − Vp
, Ran = Rb

Voh − Vn

Vn − Vol
. (4.58)

By dividing the denominator and numerator of (4.54) by α3, taking limits at α

tends to ∞ and using αk′
b = k′

a . The oscillation frequency is given as

fo = k′
a

(
Vp − Voh

)2
(Vn − Vol)

2

R2
b (Voh − Vol)

(
Voh + Vol − Vp − Vn

) (
Voh − Vol − V p + Vn

) ,

(4.59)
and the oscillation conditions are given as

Vp + Vn < Voh + Vol, (4.60a)

Ron
Voh − Vp

Vp − Vol
< Rb < Roff

Vn − Vol

Voh − Vn
. (4.60b)

3. α = 1, (i.e., k′
a = k′

b) the maximum and minimum memristances are given as

Rbp = (Rina − Rinb )
Voh − Vp

2Vp − Vol − Voh
, (4.61a)

Rbn = (Rina − Rinb )
Vn − Vol

Voh + Vol − 2Vn
, (4.61b)

and Ra = Rb + Rina − Rinb . The oscillation frequency

fo = k′
b

(
2Vp − Voh − Vol

)2
(2Vn − Vol − Voh)

2

2
(
Rina − Rinb

)2
(Voh − Vol)

(
Voh + Vol − Vp − Vn

) (
Vp − Vn

) .

(4.62)

The oscillation frequency is inversely proportional to the difference of the initial
memristances Rina and Rinb , so in case of Rina = Rinb , no oscillation will be
obtained which makes sense where Vin is always constant, so the output will be
constant. But for different initial memristances, Rind has two cases: positive or
negative, for the positive case the conditions for oscillation are given by (4.63),
otherwise the conditions for oscillation will be given by changing the less-than
sign “<” to the greater than sign “>”.

Vp + Vn < Voh + Vol, (4.63a)
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Ron
Voh + Vol − 2Vn

Vn − Vol
< Rind < min

(
Roff

2Vp − Vol − Voh

Voh − Vp
, Rd

)
. (4.63b)

4. α = −1, (i.e., k′
a = −k′

b) the maximum and minimum memristances are given as

Rbp = (Rina + Rinb )
Voh − Vp

Voh − Vol
, (4.64a)

Rbn = (Rina + Rinb )
Vn − Vol

Voh − Vol
, (4.64b)

and Ra = −Rb + Rina + Rinb . The oscillation frequency is

fo = k′
b (Voh − Vol)

2

2
(
Rina + Rinb

)2 (
Voh + Vol − Vp − Vn

) . (4.65)

The oscillation frequency is inversely proportional to the sum of the initial mem-
ristances Rina and Rinb and the oscillation conditions are given as

Vp + Vn < Voh + Vol, (4.66a)

max

(
2Ron, Ron

Voh − Vol

Vn − Vol

)
< Rind < min

(
Roff

Voh − Vol

Voh − Vp
, 2Roff

)
.

(4.66b)

4.5.3 Circuit Validation

In the following circuit simulations, the spice model of the memristor, introduced
in [9], is used with Joglekar’s window function and doping coefficient p = 100.
The global setting transient simulation is done using PSPICE simulator for the
four special cases, which were introduced in the previous subsection, for the
circuit parameters {Vol, Voh, Vp, Vn} = {−1 V, 1 V, 0.5 V, −0.75 V}, and∣∣k′

a

∣∣ = ∣∣k′
b

∣∣ = 379 M�2 V−1 s−1.
Figure 4.23a shows PSPICE transient simulation for α = 0 at Ra = 3 k� and

Rbin = 1 k� where Rb changes from Rbn = 428.57 � to Rbp = 1 k�. The out-
put voltage Vo oscillates with a frequency of 178.56 Hz giving an excellent matching
with the values of the calculated results from (4.54) and (4.55). Also, when α tends to
∞, Fig. 4.23b shows the transient simulation of the memristance Ra which changes
from 9 to 21 k� and for Rb = 3 k� where the oscillation frequency equals 1.7546 Hz
which matches the calculated values from (4.58) and (4.59), where k′

a is negative.
Similarly, Fig. 4.23c shows the transient simulation of the memristances Ra and Rb

for α = 1. The memristances Ra and Rb change from 2.3343 to 2.9996 k� and
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Fig. 4.23 PSPICE transient simulation for a α = 0, b α = ∞, c α = 1, d α = −1

from 334.423 to 999.6 �, respectively, for
{

Rinb , Rina

} = {1 k�, 3 k�} showing a
relative error of 0.3269 % with the calculated values, and the oscillation frequency
equals 170.52 Hz which matches the calculated frequency value where k′

a and k′
b

are positive. Finally, at α = −1, Fig. 4.23d shows the transient simulation of the
memristances Ra and Rb which change from 1.5087 to 1.7537 k� and from 251.751
to 502.216 �, respectively, for

{
Rinb , Rina

} = {1 k�, 1 k�} with maximum rel-
ative error with the calculated values, showing an error equal to 0.4432 %, and the
simulated oscillation frequency equals 745.39 Hz with 1.66 % relative error where
k′

a is negative and k′
b is positive.

4.6 Asymmetric Memristive Two-Gate Oscillator

In the previous section, we discussed several special cases of the two-gate memristor-
based relaxation oscillator showing the oscillation frequencies and oscillation con-
ditions with a duty cycle of 50 %. This property comes from the symmetric circuit
structure. In this section, an asymmetric oscillator will be introduced for one of the
special cases which is at α = 0 [13]. The conventional way to build an asymmetric
oscillator from a symmetric one is by adding a diode in the path of the signal which
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Fig. 4.24 Asymmetric
two-gate memristor-based
oscillator circuit
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will result in an asymmetric circuit due to its behavior by adding a parallel branch
to the resistor that consists of a resistor and diode as shown in Fig. 4.24.

4.6.1 Mathematical Analysis

The mathematical analysis of the asymmetric oscillator will be the same as the
symmetric one where Ra depends on the current flow direction. When Vo = Vol, the
diode will be ON by assuming ideal diode (diode will be short circuit) so Ra will
be replaced by R1//R2, otherwise at Vo = Voh, Ra = R1. The value of Ra affects
the change rate of the memristor’s resistance so the time of the positive half cycle
will be unequal to the time of the negative half cycle. The resistances Rmp and Rmn

which are corresponding to Vp and Vn are given as

Rmp = R1
Voh−V p

Vp − Vol
, Rmn = (R1//R2)

Vn − Vol

Voh − Vn
. (4.67)

The time of positive and negative half cycle are given as

Th =
(
Rmp − Rmn

) (
2R1 + Rmp + Rmn

)
2k′ (Voh − Vol)

, (4.68a)

Tl =
(
Rmp − Rmn

) (
2R1//R2 + Rmp + Rmn

)
2k′ (Voh − Vol)

. (4.68b)

So the oscillation frequency and the duty cycle are given as

fo = k′ (Voh − Vol)(
Rmp − Rmn

) (
R1//R2 + R1 + Rmp + Rmn

) , (4.69a)

D = 0.5
2R1 + Rmp + Rmn

R1//R2 + R1 + Rmp + Rmn
. (4.69b)

The asymmetric oscillator has higher oscillation frequency than the symmetric
one due to the parallel branch which reduces the resistance, where 2R1 becomes
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Fig. 4.25 PSPICE transient
simulation of asymmetric
oscillator
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R1//R2 + R1. Furthermore, the oscillation frequency and the duty cycle are a
function of R1, R2, Vp, Vn, Vol and Voh so we have a lot of parameters to
satisfy the required behavior. The duty cycle is always larger than 50 % (Th is
larger than TL) where R1//R2 is less than R1. Figure 4.25 shows the PSPICE sim-
ulation of the asymmetric oscillator at Vp, Vn, R1, R2, Voh and Vol equal to
0.5 V, −0.75 V, 1 k�, 3 k�, 1 V and −1 V respectively.

The simulated oscillation frequency and duty cycle are equal to 154.27 Hz and
0.6813, respectively, with relative errors equal to 11.737 and 6.875 %, respectively,
of the calculated values due to the nonideality of the diode where the simulation is
done using D1N4148.

The idea of using a diode to get the asymmetric oscillator could be used in case
of α = ∞, where Ra is a memristor and Rb is a resistor parallel to a diode and series
resistor and a similar expression for the asymmetric oscillator could be obtained.

4.6.2 Discussion and Comparison

In this subsection, comparison between the different cases of α for symmetric topol-
ogy is made. Figure 4.26 shows the change in oscillation frequency at Voh, Vol,
Vn , Vp, k′

a , k′
b, Rina , Rinb equal to 1 V, −1 V, −0.75 V, 0.5 V, 379 M�2 V−1 s−1,

379 M�2 V−1 s−1, 1 k�, 1 k�, respectively, for different values of the mismatch fac-
tor α. The derived expressions of the oscillation frequency are inversely proportional
to the square of the series resistance Ra , and Rb as in case of α = 0, ∞ respectively.
As shown in Fig. 4.26a, the oscillation frequency at α = 0 is higher than at α = ∞
for the same parameters in the same common range; also the α = 0 case has a wider
range of series resistance which means that the oscillation frequency has less sensi-
tivity to change in the series resistance than the α = ∞ case. Similarly, in Fig. 4.26b,
the oscillation frequency in case of α = −1 is higher than the oscillation frequency
in the case of α = 1 with a wider range relative to the resistance. The maximum or
minimum frequencies of the different cases are calculated at minimum or maximum
Rind , respectively, where the oscillation frequency is inversely proportional to Rind .
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Fig. 4.26 a The oscillation frequency versus change of the series resistor for α = 0, ∞, and b the
oscillation frequency versus change of the initial memristance Rind for α = 1, −1

The oscillation frequency in the cases of α = 1 and α = −1 depends on the initial
state of the memristor Rina and Rinb according to (4.62) and (4.65) respectively. The
oscillation frequency in case of α = 1 is inversely proportional to the square of the
difference between Rina and Rinb , so no oscillation can be obtained at Rina = Rinb . On
the other hand, the oscillation frequency in case of α = −1 is inversely proportional
to the square of the sum of Rina and Rinb . Moreover, the oscillation frequency in the
cases of α = 0 and α = ∞ is independent of the memristor initial state according
to (4.55b) and (4.59), which is inversely proportional to the square of the resistances
Ra and Rb respectively.

The generalized oscillation frequency (4.54) is proportional to k′ which is linearly
proportional to the mobility factor of the memristor material, so to get a higher
oscillation frequency range a high mobility material should be used.

4.7 Power Consumption of Two Series Memristors

In Sect. 4.4, the analysis of memristance of each memristor was introduced for four
different connections. In this section we used these modeling equations in order to
calculate the power consumption in each memristor or resistor. As is well known,
the power consumed in the two series memristor is given as

p(t) = V 2
in

Ra + Rb
(4.70)
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and the power consumed in the memristances Ra and Rb are given as

p(t) = V 2
in

Ra + Rb
(4.71)

pa(t) = V 2
in Ra

(Ra + Rb)2 (4.72a)

pb(t) = V 2
in Rb

(Ra + Rb)2 (4.72b)

So the power consumed in the four aforementioned special cases can be studied
as follows:

1. k′
a = 0(α = 0), where memristance Rb is reduced to

Rb(t) = −Ra +
√

(Ra + Rinb )
2 − 2k′

bϕ(t) (4.73)

by substituting into (4.71) and (4.72), the consumed power by Ra and the total
power consumption are given as

pa(t) = V 2
in Ra

(Ra + Rinb )
2 − 2k′

bϕ(t)
(4.74a)

p(t) = V 2
in√

(Ra + Rinb )
2 − 2k′

bϕ(t)
(4.74b)

Figure 4.27 shows a plot of power consumption of sinusoidal input v(t) =
sin(2π f t) for Ra = Rinb = 1 k�, k′

b = 379 M�2 V−1 s−1, and f = 100 Hz.
Figure 4.27b shows the power consumption versus applied voltage where a
pinched hysteresis exists even for the power consumption in the resistor Ra .

2. k′
b = 0(α = ±∞), where the memristance Ra reveals

Ra(t) = −Rb +
√

(Rb + Rina )
2 − 2k′

aϕ(t) (4.75)

by substituting into (4.71), the total consumed power is

p(t) = V 2
in√

(Rb + Rina )
2 − 2k′

aϕ(t)
(4.76)

Figure 4.28 shows a plot of power consumption for Ra = Rinb = 1 k�,
k′

a = −379 M�2 V−1 s−1, and f = 100 Hz. Figure 4.27b shows the power
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Fig. 4.27 Plot of power consumption in Ra and Rb for α = 0
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Fig. 4.28 Plot of power consumption in Ra and Rb for α = ±∞

consumption versus applied voltage where a pinched hysteresis exists even for
the power consumption in the resistor Rb.

3. k′
a = k′

b = k′
ab(α = 1), the memristances Ra and Rb are

Ra(t) = 0.5(Rina − Rinb ) + 0.5
√

(Rinb + Rina )
2 − 4k′

abϕ(t) (4.77a)

Rb(t) = 0.5(Rinb − Rina ) + 0.5
√

(Rinb + Rina )
2 − 4k′

abϕ(t) (4.77b)

and the consumed power is

p(t) = V 2
in√

(Rinb + Rina )
2 − 4k′

abϕ(t)
(4.78)

Figure 4.29 shows a plot of power consumption for Rinb = 2Rina = 2 k�, k′
ab =

−379 M�2 V−1 s−1, and f = 100 Hz. Figure 4.27b shows the pinched hysteresis
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Fig. 4.29 Plot of power consumption in Ra and Rb for α = 1

between power consumption and applied voltage where the power consumption
in each memristor is pinched and total is pinched.

4. k′
a = −k′

b(α = −1), where the memristance Ra is

Ra(t) = Rina − k′
a

Rina + Rinb

ϕ(t) (4.79)

and the consumed power is

p(t) = V 2
in

Rina + Rinb

(4.80)

Figure 4.30 shows a plot of power consumption for Rina = Rinb = 1 k�, k′
a =

−k′
b = −379 M�2 V−1 s−1, and f = 100 Hz. It worth to note that the power

consumption is pinched for each memristor but the total power consumption
is not pinched, since the power consumed in the anti-connected memristances is
proportional to the square of the applied voltage. However, in the other three cases,
the power consumed has nonlinear pinched relation with the applied voltage.

The power consumption in the memristor-based relaxation oscillators can be cal-
culated using the aforementioned formulas where Vin is square wave with amplitude
±VDD and period T . So we can assume that the power consumption is governed by
p(t) = V 2

in

√
a + bϕ where a = (Rina + Rinb )

2 for all cases and b = −2k′ for α = 0
and ±∞ or b = −4k′ for α = 1 or b = 0 for α = −1. Therefore, the average power
consumption for symmetric oscillator is given as

pavg = 1

T

∫ T

0
p(τ )dτ = 4

bT

√
a + bVDDT

2
(4.81)
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Fig. 4.30 Plot of power consumption in Ra and Rb for α = −1

But as previously discussed that the case of α = 1 would not oscillate, so there
are only three special cases. Also, the initial memristance will be replaced by either
Rmn or Rmp.
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Chapter 5
Memristor-Based Multilevel Digital Systems

5.1 Number Systems

A number system is defined as a writing system for expressing numbers or a
mathematical representation of numbers. This system covers a given set of num-
bers such as integers and rational numbers as shown in Table5.1.

Mainly, the most famous two types of number systems are as follows:

1. A conventional number system that is positional weighted, nonredundant, and a
unique system.

2. A redundant number system in which each number of this system could be rep-
resented in more than one way.

where each system has its own advantages and disadvantages [1].

5.1.1 The Conventional Number Systems

The internal representation of numeric values in digital systems such as computers
and calculators is called the computer number format where numbers are stored as
binary digits. This representation consists of a stream of bits where each bit is capable
to save either 1 or 0. This limitation comes from the fact that the hardware realization
of each bit is based on transistors which have two levels ON or Off states. There are
many positional systems such as ternary, octal, decimal, and hexadecimal systems
whose bases are 3, 8, 10, and 16, respectively. Table5.2 shows a comparison between
different positional systems, and an example of six digits for each of them with its
equivalent decimal value. It is clear that the number of digits required to represent
any decimal number d is very big in binary and decreases as the base increases from
the formula Ndigits = int

(
logad

) + 1 where the int(.) gives the integer value, a is
the base.

© Springer International Publishing Switzerland 2015
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Table 5.1 Main categories of the number systems

N Natural numbers x such that x ∈ {0, 1, 2, 3, . . . . . . . . . . . . ..}
Z Integer numbers x such that x ∈

{. . . . . .−3, −2, −1, 0, 1, 2, 3, . . . . . . . . . }
Q Rational number x

y such that x and y ∈ N, y �= 0

R Real number x such that x ∈ (−∞,∞)

C Complex number (x + iy) such that x and y ∈ R, i = √−1

Table 5.2 A comparison between binary, ternary, octal, decimal, and hexadecimal systems

System Base Set of digits Example Decimal value

Binary 2 {0, 1} 1011010 90

Ternary 3 {0, 1, 2} 2101102 1739

Octal 8 {0, 1, 2, 3, 4, 5, 6, 7} 7625423 2,042,643

Decimal 10 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 9652863 9,652,863

Hexadecimal 16 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} FA8B59 16,419,673

A number X is represented in this system as follows:

X =
Wd−1∑
i=0

xi wi (5.1)

where xi is the digit value in the i th location which satisfies (0 ≤ xi ≤ r − 1),
r is the system base, Wd is the word length, and wi is the weight associated with
location i which is equal to r i . The conventional number system can be represented
using different types of representations such as using signedmagnitude, complement
representation, or binary offset representation. The most widely used number system
is the binary number system, with radix 2, numbers in binary domain have different
representations using signed magnitude; one’s and two’s complement.

5.1.1.1 Signed Magnitude Representation

For the binary system, this is the simplest methodwhere themagnitude of the number
in binary is written first, then the sign is added at the most left digit; 1 or 0 in case of
negative or positive, respectively. An Wd -bits number can be only represented from
0 to (2Wd − 1) for unsigned numbers and from −(2Wd−1 − 1) to (2Wd−1 − 1) in the
signed magnitude representations.

5.1.1.2 Complement Representation

Addition and subtraction are performed without the sign of the operand, this is the
main advantage of this representation. Positive number is represented normally like
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the previous system but the negative number representation is a little bit different,

−X = R − X (5.2)

where R is selected to be rk , where k is the number of the digits of that number. So
in order to subtract two numbers X and Y, the equation is converted from,

X − Y (5.3)

X + (R − Y ) → R − (Y − X) (5.4)

If Y > X then the result does not need any more modifications but if X > Y the
result needs a correction to remove the R term which is discarded if R = rk [2].

There are two alternatives of complement representations which are:

1. Radix complement which is called two’s complement in the binary system.
2. Diminished radix complement (which is called one’s complement in the binary

system.

5.1.1.3 Binary Offset Representation

The representation is exactly like the two’s complement except for the sign bit which
is complemented. Table5.3 shows the four different realizations of the decimal values
between −7 and 7 using signed magnitude, one’s complement, two’s complement,
and the binary offset representations using 4 bits.

5.1.1.4 Ternary Number System

In 1840 an English inventor, Thomas Fowler introduced for the first time a new
method of performing math using ternary base system [3]. Following his lead, in
1958 two Russian inventors Sergei Sobolev and Nikolay Brusentsov developed a
ternary electronic machine named Setun [4]. Donald E. Knuth wrote in his book
Art of Computer Programming, “Perhaps the prettiest number system of all, is the
balanced ternary notation” [4]. It also differs from the normal ternary representation
as it uses different set (−1, 0, 1) rather than (0, 1, 2). Each digit location in balanced
ternary represents either adding or subtracting a power of 3. Fractional numbers work
in a similar way but in this case the digits after the decimal point are represented as a
power of 3−1. A given example of a balanced ternary number is the decimal number
21which can be represented in balanced notation: 1110, this numeral is interpreted as:
1x33−1x32+1x31+ 0x30, or 27−9+3−0, in decimal notation.Balanced ternary has
a lot of advantages such as the ± consistency cuts down the carry-in multiplication
process, and the addition table has only two symmetric carries instead of three.
Moreover, the negative notation makes the system more efficient in all arithmetic



124 5 Memristor-Based Multilevel Digital Systems

Table 5.3 A comparison between the four different realizations using 4 bits
Decimal Signed Magnitude One’s complement Two’s complement Binary offset representation
-8 - - - - - - - - 1 0 0 0 0 0 0 0
-7 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 1
-6 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0
-5 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1
-4 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0
-3 1 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1
-2 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0
-1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1

0
1 0 0 0 1 1 1 1

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1
2 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0
3 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1
4 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0
5 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1
6 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0
7 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1

operations, so no need for an extra bit for the sign. Brian Hayes claims that the
ternary-based system is themost efficient economical radix of all integer systems [5].
Nowadays, many applications like sigma-delta modulated processor [6] and ternary
optical computers [7] use ternary adders due to the advantages mentioned before.

Table 5.4 shows the normal ternary system or using three digits where the last
digit represents the sign digits which are either 0 or 2 for positive and negative values.
The two’s complement of these values are listed in the second columns where the
new digits (except the sign digit) can be obtained by subtracting each digit from
2. Three’s complement is the same as the two’s complement after adding 1 in the
negative values as discussed before. The last column illustrates the balanced ternary
representationwithout sign digit as the negative and positive numbers use same digits
as discussed before.

Table 5.4 Normal, complement, and balanced ternary system
Decimal Normal Ternary Two’s complement Three’s complement Balanced Ternary
-8 2 2 2 2 0 0 2 0 1 1 0 1
-5 2 1 2 2 1 0 2 1 1 1 1 1
-3 2 1 0 2 1 2 2 2 0 0 1 0
-1 2 0 1 2 2 1 2 2 2 0 0 1

0
2 0 0 2 2 2

0 0 0 0 0 0
0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 1
2 0 0 2 0 0 2 0 0 2 0 1 1
3 0 1 0 0 1 0 0 1 0 0 1 0
6 0 2 0 0 2 0 0 2 0 1 1 0



5.1 Number Systems 125

5.1.2 Redundant Number Systems

From theprevious discussion, the conventional radix r systemsuse {0, 1, 2, . . . , r −1}
set and any number can be written in a unique representation. However in the redun-
dant number systems, more than r digits are used to represent any number in radix r
system, for example, the ternary systemwith base 3 can be represented using the digit
set s1 = {0, 1, 2, 3} or s2 = {−2, −1, 0, 1, 2}. Therefore, the number 10)Decimal
can be written as 31)s1 and 101)s1 based on the set s1 and similarly for other cases.
The extra digits increase the representation flexibility which means that any number
can be represented by different ways (not a unique representation). It is clear that
as the extra degrees of freedom increase the alternative representations increase for
the same number. One of the main advantages of the redundant number system is its
speed in the arithmetic operations by eliminating the carry from rippling (carry-free
addition) [8–10]. The next section gives a brief introduction about two different types
of redundant number systems.

5.1.2.1 Signed Digit Code

Signed Digit Code (SDC) is a redundant number system similar to the binary rep-
resentation except that each digit x can take more than one of two values ‘0’ or ‘1’,
it takes one of three values ‘−1’, ‘0,’ or ‘1’. By using this representation, the addi-
tion can be performed without any carry propagation delay, i.e., carry-free addition
and subtraction, which leads to another improvement in multiplication units of this
system as discussed in [2].

5.1.2.2 Canonic Signed Digit Code (CSDC)

Canonic Signed Digit Code (CSDC) is a special case of the signed digit code where
it is not possible to have two nonzero consecutive digits; i.e., xi xi+1= 0, 0 ≤ i ≤
Wd−2. The conversion is accomplished by converting any string of consecutive 1’s
to a series of zeroes between 1 and 1 while the series of 1 is converted to a series
of zeroes between 1 and 1. For example, 1110SDC is equivalent to 10010CSDC and
111SDC is equivalent to 1001CSDC. Removing consecutive nonzero digits will remove
any carry propagationwhichwill speedup the arithmetic operations. Figure5.1 shows
a comparison between the addition of two numbers 10d and 2d using the traditional
binary method and also based on the CSDC method.
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Fig. 5.1 The addition of two
numbers using a
conventional binary system
and b CSDC method

(a) (b)

5.2 Addition and Subtraction Circuits

There are many types of adders these days but most of them face problems with
speed as they all are dependent on the size of the operands that are added or sub-
tracted. Creating an adder that is independent on operand length is impossible under
conventional number systems so investigating unconventional number systems like
the redundant base system leads to overcome the problem of rippling carry. Other
adders that are working under conventional systems introduce reasonable compari-
son between complexity and speed, the next section highlights some of the famous
adder/subtract circuits built in the conventional systems, themain difference between
addition and subtraction circuits is that the negative value is needed to be converted
to two’s complement representation before the addition is completed.

5.2.1 Ripple-Carry Adder (RCA)

The ripple-carry adder possesses the simplest architecture of all adders [2], the main
building block for this adder is the full adder. It consists of three XORed inputs
that represent the sum of the block, and majority circuit that represents the carry,
the block diagram of the full adder is shown in Fig. 5.2a. By cascading full adder
blocks, a larger adder could be created as seen in Fig. 5.2b. Size and speed of the
adder is dependent on the input operand. Two inputs X, Y with length Wd could be
added by connecting blocks of full adder with its carry-out connected to the next
adder carry-in. The sum and carry can be calculated sequentially starting from least
significant bit (LSB) rippling the carry through all adders till it reaches the MSB.

(a) (b)

Fig. 5.2 a Full adder block diagram. b Ripple-carry adder architecture
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The speed of the RCA can be determined by the propagation time of the carry which
is in the order of Wd .

5.2.2 Carry-Lookahead Adder (CLA)

The Carry-Lookahead Adder (CLA) was introduced for the first time byWeinberger
and Smith [11] as a tree-like circuit in order to compute the carry [12, 13]. Reduc-
ing the time for the propagation of the carry to (log2(Wd)) [2] can be achieved by
writing the equation of the carry in a recursive way based on propagating and gener-
ating signals. Propagated and generated signals are two signals coming from direct
observation of the truth table of the full adder circuit as shown in Table5.5.

There are three different cases for the carry: “killed” which means that the output
carry is equal to “0” independent of Cin, “generated” which means that the output
carry is equal to “1” independent of Cin, or “propagate” which depends on the
XORing between X and Y. Therefore, the carry equation of a general block K can
be written as:

C0,k = G K + PK C0,k−1 (5.5)

Then by using a recursive method the output carry could be rewritten as a function
of all previous carries as follows:

C0,k = G K + PK (G K−1 + PK−1(· · · + P1(G0 + P0Ci,0))) (5.6)

5.2.3 Carry-Select Adder

The carry-select adder is a way to speed up the addition process by replicating the
hardware and selecting the result via amultiplexer after calculating the actual carry of
each stage in a parallel way [14]. There are two types of adders based on this concept
linear carry-select adder and the square root carry-select adder. The difference is

Table 5.5 Full adder truth
table

X Y Cin Sum Co Carry case

0 0 0 0 0 Kill

0 0 1 1 0 Kill

0 1 0 1 0 Propagate ‘P’

0 1 1 0 1 Propagate ‘P’

1 0 0 1 0 Propagate ‘P’

1 0 1 0 1 Propagate ‘P’

1 1 0 0 1 Generate ‘G’

1 1 1 1 1 Generate ‘G’
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based on how each stage is sized, the square root carry-select is much faster than the
normal linear one.

5.2.4 Carry-Skip Adder

The carry-skip adder consists of partitions; each partition is simply an RCA block
with a skipping pass for the carry [15]. The ANDing of the propagate signals pi =
ai ⊕bi is used as a selection of themultiplexer shown in Fig. 5.3 where the input carry
has a direct path. This method reduces the time for the propagation of the carry to the
order

√
Wd by dividing the adder into smaller adders where the carry is generated,

propagated, or killed depending on the input to these adders [2].
The comparison of the ripple, linear select, and square root select adders were

presented in [15] where the delay versus the number of bits is large in case of ripple
select adder, then decreases in the linear select adder case and is smallest in the
square root adder architecture. Moreover, the advantages of the Canonic Signed
Digit Code (CSDC) in the speed relative to other number systems are detected due to
the cancelation of carry propagation which means that the addition of two numbers
independent of their size can be carried out in two steps as discussed before.

The question now is what is the best radix from the economical prospective? The
answer of this questionwas presented in [5]where the author introduced ameasure for
the economical radix, this definition was based on the product of the fractional radix
R and the number of digits (width) W to represent a number X . So, the optimized
function can be written as E (R, X) = R ∗ logR X assuming that the radix is a real
number R ∈ R. For example, E (10, 100) = 10×3 = 30, and E (2, 100) = 13.288.
The optimum value of the radix for a fixed X is evaluated by ∂ E

∂ R = 0 which tends
to Roptimum = e as proved by [5]. Figure5.4a shows the function E(R, X) versus
R − X plane when R ∈ [1.5, 10] and X ∈ [10, 106] where the minimum occurs
at R = e. Figure5.4b shows the projection E − R in case of R ∈ [1, 10] where the
minimum curve represents the function at X = 10 and the maximum curve when
X = 106. In all cases, the minimum exists when the radix becomes e 
 2.718.
However, the radix should be an integer for real implementation, so this chapter will
focus on R = 3 which is the closest integer value to the optimum radix.

Full Adder Cin 0

a0b0

Full Adder

a1b1

Full Adder

a2b2

Full Adder

a3b3

2x1
Mux

C0

p0p1p2p3

s0s1s2s3

Fig. 5.3 4-bits Carry-skip adder
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Fig. 5.4 a The function E (R, X) versus the plane R − X , and b the E − R projection

The binary systemwas amandatory choice since all the hardware implementations
are based on the transistor level which has two digital states ON and OFF which
represent “1” and “0,” respectively. Therefore, there was a need for a device which
can handle more than two states. The idea of this chapter is to make use of the
Memristor properties to have any number of levels that will help us in the realization
of any radix system.

5.3 Memristor-Based Digital Circuits

Recently, many research papers have investigated the use of the memristor in
arithmetic-based circuits either by different architectures and/or different concepts.
The basic arithmetic operations which are addition, subtraction, and multiplication
are discussed in this chapter using the memristor as a supporting element like a
switch to build circuits that perform these operations. The advantages of using the
memristor are related to the advantages of different radix, nanoscale device, power
consumption, and area. Theoretically, any number of states can be designed using
the memristor by mapping the memristance range into discrete ranges as required.
So, multilevel memories and multilevel arithmetic units can be available in the near
future based on memristors.

5.3.1 Memristor Quantization

The quantization concept of the memristance into N equally spaced ranges with
guardinggaps has been investigated recently in [16–19]. Thememristance continuous
range varies between two parameters Ron and Roff, which defines the minimum
(Ron) and the maximum (Roff) resistance values of the memristor. That range of
resistance can be divided into N levels where each level represents a certain value
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Fig. 5.5 Memristor quantization a three levels, and b five levels

(nominal value). Each nominal value has a range of resistances ΔR around it, which
is considered to be the margin of this level. Figure5.5 shows how the memristance
range could be divided in case of three levels as shown in Fig. 5.5a and five levels as
in Fig. 5.5b where the margin for each range ΔR is reduced as the number of levels
increases.

Simply for equispaced levels, the memristance range with each level is given by:

ΔR = (Roff − Ron)/N (5.7)

The nominal value of each region is defined as:

Rcenter,n = Ron + (2n − 1)
ΔR

2
where n = 1, 2, . . . N (5.8)

For example, if the number of levels is three then ΔR = (Roff − Ron)/3.
Using HP nominal values [20] for both Ron = 100� and Roff = 16 k�, their
center values are {R−1, R0, R1} ≈ {2.5 k�, 7.5 k�, 12.5 k�} with margins from
{100�, 5 k�, 10 k�} to {5 k�, 10 k�, 16 k�}, respectively. It has been suggested
to use a guarding gap between each two regions to prevent false detection of the
region [16] especially with small N . It can be easily noticed that if the number of
levels increases, the size of each region ΔR becomes smaller which raises the diffi-
culty of detecting the region with good accuracy. Also sometimes it could be a better
idea to divide the region in an unequal way based on the probability of occurrence.
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5.3.2 One Memristor One Transistor Circuit

In [21], the authors used a passive memristor, a switch and a pulse generator to
perform logic operations as shown inFig. 5.6a and its equivalentmemristor-based cell
in Fig. 5.6b, where the signal P(t) is the reading signal, and I (t) is the input signal.
If the input is “1” then the current flow inside the memristor and the memristance
increases however “0”means hold status. After that the reading signal P(t) is applied
to extract the internal memristance value and to activate a path from the memristor to
the output signal y(t). It is worth mentioning that after the reading phase, the inverse
of the input signals should be applied to return the memristor back to its initial value
which is called the resetting mechanism.

5.3.3 Doublet Generator Circuit

The doublet generator circuit [22] shown in Fig. 5.7 consists of one memristor, four
switches (from T1 to T4), and a current source. If T1 (T2) and T4 (T3) are on, the
direction of the current source will feed the negative (positive) terminal, and the
other terminal will be connected to the ground as shown in Fig. 5.8a, b. Otherwise,

u(t)

v(t)

+

-

Pulse 
Generator

P(t)

y(t)

P(t)

(a)

C
ell

u(t)

Pulse 
Generator

y(t)

(b)

Fig. 5.6 a Memristor-based cell, and b equivalent cell

Fig. 5.7 Doublet generator
memristor-based circuit

IS

T1 T2

T3 T4

B1 B2
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Fig. 5.8 Doublet generator memristor-based different cases a T 1 and T 4 are on, b T 2 and T 3 are
on, c all switches are on, d all switches are off

if all switches are off (or on) at the same time, the current source will no longer feed
the memristor as shown in Fig. 5.8c, d.

Assuming a linear dopant memristor [20], the memristance is given by:

Rm (t) = Roff−
(
Roff−Ron

)
x (t) ,

dx (t)

dt
= ±ki (t) (5.9)

Since the current is constant in the double generator circuit, then the change in
the memristance can be written as:

ΔRm (Δt) = ∣∣k Is
(
Roff−Ron

)
Δt

∣∣ (5.10)

where “Is” is the current source and “�t” is the width of the input signals “B2B1.”
The pulse width could be calculated to change the memristance value from one state
to another. So, the value ofΔRm can be controlled via k, Is,

(
Roff−Ron

)
, or Δt . Let

the memristor parameters k, Roff, and Ron be as in the HP paper [20], the current
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Is = 0.5mA, then the pulse width can be calculated to change the memristance
change ΔRm based on the required number of levels.

Since the memristor memorizes the current that is passed through it and its final
memristance depends on the input signals, so there is a need to reset the memristor
to its initial value (original state) by reversing the current which is the resetting
mechanism. For the doublet generator circuit, if the input is “10” which means that
B2 = 1 and B1 = 0, then after reading the memristor there is a need to apply the
resetting to return back the memristor to its initial state. This can be achieved by
applying the reverse polarity of the input B2 = 0 and B1 = 1 which is equivalent
to reversing the current passing through the memristor. Another resetting technique
can be applied as introduced in [19].

5.4 Memristor-Based Adder/Subtraction Circuits

5.4.1 Memristor-Based Ternary Half Adder Circuit

The first ternary half adder/subtraction circuit was presented in [23] using balanced
ternary notation {1, 0, 1} which has many advantages as follows:

1. Better for the representation of positive and negative numbers
2. No sign bit is needed
3. Easier in the addition/subtraction process.

The truth table of the half adder ternary circuit is shown in Table5.6, where X and
Y are the inputs of the half adder circuit, Sum and Carry are the outputs of the half
adder. Therefore, there are five different states of the output as shown in Fig. 5.9a.

By observing these states it can be noticed that the memristance continuous range
should be divided into five regions. These regions (states) are not divided equally as
they have different probabilities. For example, the state R0 is the result of three differ-
ent input cases; {0, 0}, {1,−1} or {−1, 1} while the state R−2 is the result of adding
two negative ones together {−1,−1} which is one case only. Figure5.9b shows how
the memristance range is divided between these five regions. Note that for cascading
purposes, it is required to resolve the output into sum and carry where each of them

Table 5.6 Balanced ternary half adder truth table

X 1 1 1 0 0 0 1 1 1

Y 1 0 1 1 0 1 1 0 1

Sum)decimal −2 −1 0 −1 0 1 0 1 2

Sum 1 1 0 1 0 1 0 1 1

Carry 1 0 0 0 0 0 0 0 1

State R−2 R−1 R0 R−1 R0 R1 R0 R1 R2
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Fig. 5.9 a Balanced ternary half adder output distinct states, and b memristor-balanced ternary
quantization levels

Table 5.7 Balanced ternary
memristance regions

Region From To (k�) Average (k�)

R+2 100� 2 1

R+1 2 k� 6 4

R0 6 k� 10 8

R−1 10 k� 14 12

R−2 14 k� 16 15

has three levels as the balanced ternary system. The previous state is summarized in
Table 5.7, the pulse width is calculated to give jump on the memristance equal to
4 k�.

Figure5.10 depicts the expected result of adding two bits together using one
memristor and one transistor cell in a serial way where Iij is the normalized input
current. After the inputs enter, the reading signal P(t) will be applied, followed by
a reverse version of previously entered signals to reset the memristor to its initial
state again. For the first addition process as an example, two positive ones are added
together, after that a reading signal P(t) is used to read the memristance followed by
two negative ones to reset the memrsitor. The memristance starts to increase with the
applied input current then it increases again under the applied P(t) at this moment
the memristance is laid in the upper region. SumM is the voltage across the memristor
after rescaling to have the range from −2 to 2 under the applied reading signal P(t),
the last two subfigures are the normalized sum and carry of the actual result that
is needed. The glitch that appears is due to the reading pulse which increases the
memristance in the first half cycle and decreases it in the second part of the reading
pulse. To convert the five levels into a balanced ternary system, the extreme cases
R+2 and R−2 are somehow needed to be converted into “1” and “−1,” respectively,
in the carry as shown from Table 5.6. So, Fig. 5.11 shows a modified architecture of
the adder circuit which consists of four memristors M1, M2, and M3 for the Sum part
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Fig. 5.10 Sequence of
adding two values using
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Table 5.8 Comparator
output in different regions

Region X Y

Rm > R+1,+2 0 1

R−1,−2 < Rm <

R+1,+2

1 1

R−1,−2 > Rm 1 0

and M4 for the carry part, two comparators, a pulse generator, and some switches.
The first memristor M1 works exactly as the 1T 1M logic cell, the memristance
equivalent value corresponding to the polarity of the input signal is calculated and
then compared using the two comparators. The purpose of the comparators is to
detect if the memristance is located in the two outer regions as shown in Table5.8.
The output of these comparators X and Y are then used to feed six switches that
control the multiplexer [23].
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Fig. 5.12 Simulation result for half adder memristor-based circuit

Figure5.12 shows the simulation results for the previous circuit using OrCad. The
memristor model used is based on the Biolek model [24], with p = 10, uv = 10 f ,
Ron = 100 �, and Roff = 16 k�, all switches are idea switches with Von = 1V and
Voff = 0V. The first subfigure is the applied input in current form I. For example,
assume two positive ones are added together, two inputs with 0.5mA are applied
with pulse width 50ms for the input and 12.5ms for the reading pulse. The second
subfigure illustrates the change in the memristances and the final two subfigures are
the sum and the carry.

5.4.2 Memristor-Based Redundant Half Adder Circuit

As discussed before, the Canonic Signed Digit Code (CSDC) is a special case of
Signed Digit Code (SDC), where any two consecutive digits must include at least a
“0,” so converting from SDC to CSDC can be done by transforming every [011 . . . 1]
and

[
01 1. . . 1

]
to a series of zeroes between “1” and “−1” [100 . . .1] and [100 . . . 1],

respectively.
Table5.9 shows the truth table of the CSD redundant binary full adder, where

only unique cases are represented as inputs X , Y and Z , while the repeated ones
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Table 5.9 Truth table of the
redundant full adder

X -1 -1 -1 -1 -1 0 1 1 1 1
Y -1 -1 -1 0 1 0 0 1 1 1
Z -1 0 1 0 0 0 0 -1 0 1

Sum 1 0 -1 -1 0 0 1 1 0 -1
Carry -1 -1 0 0 0 0 0 0 1 1

Decimal value -3 -2 -1 -1 0 0 1 1 2 3
Sum 2-bits 01 00 10 10 00 00 01 01 00 10
Carry 2-bits 10 10 00 00 00 00 00 00 01 01

0R
(S)(C)
(0)(0)

1R
(S)(C)
(1)(0)

2 -R
(S)(C)
(0)(-1)

1 -R
(S)(C)
(-1)(0)
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Carry = 00
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Fig. 5.13 a Full adder graph representation, and b sum and carry output extraction

are omitted. The two red columns are forbidden cases in the CSD as the appearance
of three positive ones or three negative ones are not allowed in this representation.
Therefore, five different states from “R−2” to “R+2” are needed where each state
represents different values for the sum and the carry as shown in Fig. 5.13a. To
represent theCSD into two bits representation to implement aCanonic SignedDigital
Redundant Binary Adder (CSDRBA), assume “−1, 0, 1” are mapped into “10, 00,
01,” respectively, as shown in the last two rows of Table5.9. Also, Fig. 5.13b shows
the values of the sum and the carry of the redundant adder mapped onto each region
of the quantized memristor [25].

xn−1 xn−2 . . . x1 x0
yn−1 yn−2 . . . y1 y0
sn−1 sn−2 . . . s1 s0

cn−1 cn−2 cn−3 . . . c0
zn zn−1 zn−2 . . . z1 z0

(5.11)

The CSDC addition can be always free of the carry propagation by generating the
sum value and the carry value in parallel, then adding the carry to the sum, which
can also be done in parallel. For example, the addition of (X = 35) and (Y = −11)
as in Eq. (5.12); the result equals “24” as expected in two steps where each two bits
are being added by a single full adder unit. By speeding up the arithmetic addition
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without the carry propagation, the multiplication process could be improved due to
the reduction in the number of addition and subtraction cycles. Recently, the concept
of canonic signed digit is used in many applications like digital filters [26, 27] and
high speed multipliers [28].

100101
010101

110000
001000

0111000

(5.12)

Adding Stage

Figure5.14 shows the complete schematic of the adding circuit, which consists of a
single doublet generator circuit, four comparators, inverters,ANDgates, and switches
[25, 29]. Two current sources are used, where (IS) is used for writing on the memris-
tor, and the other (IS/1000) is used for reading. The comparators and the AND gates
are used to extract the output sum. The sequence of the adding stage is explained in
the flowchart shown in Fig. 5.15.

Figure5.16 shows the relationship between the voltages of the comparators inside
the adding circuit, where the first two comparators (comp1 and comp 2) are used
to make “S1” equal to “1” if the output is in the region “R+1”; while the other two
comparators (comp3 and comp4) are used to make “S2” equal “1” in the region
“R−1”; otherwise, the sum should be zero. Note that the output of each comparator
will be “1”, if the result of multiplying the reading current and the memristance was
larger than its reference value.

Moreover, the write and the read signals are used with different current sources in
order to have a less destructive effect on the memristance. The current source values
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comparator3
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Fig. 5.14 Architecture of the adding stage
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Fig. 5.15 Flow chart of the
addition process
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and the pulse width of the input signal are calculated to change the memristance
from one nominal value to another on the writing cycle. The comparators’ reference
voltage values are shown in Fig. 5.16, where “Ir” (the reading current value) is equal
to (Is/1000). Figure5.17a shows an example of how the addition process is achieved
and how the input sequence {00, 00, and 01} affects the memristance value. The
write signal is high while the inputs enter the doublet generator in series. The read
signal is then activated by connecting the memristor to the reading current pulse of
the comparator to extract the output as shown in Fig. 5.17b. Note that all the above
sequences assume that the memristor value is pre-initialized to its middle range [29].
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Fig. 5.17 Example of adding {00, 00, 10} a writing phase, b reading phase

Carry Propagating Stage

Figure5.18 shows the carry circuit, which has similar architecture to the adding stage
except for the comparator part. The least significant bit of the carry will be equal to
“1,” if the memristance was larger than “Vref2 ,” then the most significant bit will be
equal to “1” if the memristance was less than “Vref3 ,” and “0” elsewhere. It is worth
mentioning that the carry circuit can be removed by using the same circuit of the sum
stage to extract the carry directly, but it will prevent cascading the full adder blocks,
to build an N-bit adder as will be explained in the next section.
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Fig. 5.18 Architecture of the propagating stage

5.4.3 N-Bits CSD Redundant Binary Adder

The block diagram of the full adder is shown in Fig. 5.19a, where “Bn2Bn1” are
the inputs of stage “n,” which is connected internally to the adding and carry stage
switches; “Pts” and “Ptc” are the write/read signals of the adding and carry stages,
respectively, while “Sn2Sn1” and “Cn2Cn1” are the output sum and carry of the full
adder [29]. Figure5.19b shows the architecture of the N-bits Canonic Signed Digital
Redundant Binary Adder (CSDRBA). The N-bit adder consists of “N” full adder
blocks, two switches for each input and two switches between each stage.
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Fig. 5.19 a Full adder block diagram, and b N-bits CSDRBA
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Figure5.20 shows the signal diagram that explains the addition process sequence
as follows:

1. The first two cycles (adding two inputs serially and generating the sum and carry
for them):

a. “M” signal is high for two clock cycles, so all switches from (T11, T12) to
(Tn1, Tn2), which are connected to the input, are on, and all switches from
(Tx11, Tx12) to (Tx(n−1)1, Tx(n−1)2) between stages are off.

b. Two pairs of input digits enter the full adder serially.
c. “Pts” and “Ptc” are high, which means that writing on the memristors takes

place.

2. The third cycle (the carry result propagates to the second stage):

a. The “M” signal becomes low for one clock cycle, which means that all input
switches are off, and all switches between stages are on (carry propagation).

b. The “Ptc” signal becomes too low to read from the carry stage, while “Pts”
remains high, which means that writing is taking place in the adding stage
(reading the carry and adding it to the next stage).

3. The fourth cycle (output extraction): “Ptc” and “Pts” signals are set low to read
the output of the adding block and the carry of the last block, which gives us the
final output.

Fig. 5.20 Input and control
signals sequence
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Fig. 5.21 Simulation result of the CSDRBA

5.4.3.1 Simulation Results

Figure5.21 shows the result of the full adder; “v(B2)” and “v(B1)” are the most
and the least significant bits of the input signal, respectively, following the truth
table. “Read” is the reading pulse signal. “Case 1” is an example of the addition
process; three inputs {01, 01, 00} are added, followed by a reading signal, then a
resetting mechanism should be applied by reversing all previously entered currents
{10, 10, 00}. The output is extracted with the reading pulse, leading to sum= 00 and
carry= 01; the result exactlymatches the truth table. It can be noticed that the input is
entered serially, with 50ms pulse width and a level of 1V. Each output consists of two
bits, representing one of the three states of the redundant digit. Therefore, addition
and subtraction of multilevel digital systems can be achieved using memristor-based
circuits which have been verified by many examples presented in [29]. Moreover,
the next section will address how to build any combinational relationships based on
mixed MOS-memristor design circuits.

5.5 Memristor-Based Redundant Multiplier

5.5.1 CMOS Architecture

In CMOS technology any function could be implemented as a network of switches
organized into a pull-up network and a pull-down network as shown in Fig. 5.22a.
The pull-up network is used to pull the output up to vdd by opening a path from
vdd to the output. While the pull-down network is used to pull down the output to
the ground. The pull-up network is a combination of PMOS switches connected in
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series, parallel, or a combination of both that represent the function F . Similarly, the
pull-down network is a combination of NMOS switches. To implement a function
F using CMOS we build the pull-down network then complement the topology to
build the pull-up network, for example if the following function F(x, y, z) is needed
to be implemented, F = x · y + z where x, y, and z are the inputs of the function,
“.” means ANDing the inputs which is converted to series connection in the pull-
down network while “+” means ORing the inputs which is converted to parallel
connection in the pull-down network. Complement topology means converting each
series\parallel connection in pull-down to parallel\series connection in pull-up as
shown in Fig. 5.22b.

5.5.2 Memristor-Based Digital Circuit

The general implementation of any function using the memristor-based architecture
is similar to the CMOS circuit, the pull-down network is replacedwith onememristor
and a comparator circuit while the pull-up network is built using ideal switches as
shown in Fig. 5.23a with current source Is connected to the memristor via the pull-up

Fig. 5.23 Memristor
implementation a general
architecture, and b
implementation of
F= x · y + z

M1

P
ul

l-
up

 n
et

w
or

k

IS

PtIS/1000

S9

Vref1

C0

Z0

(a)

M1

IS

PtIS/1000

S9

Vref1

C0

Z0

x y

z

(b)



5.5 Memristor-Based Redundant Multiplier 145

Fig. 5.24 Memristance to
bit representation
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network [30]. So, when the pull-up network is on, it creates a path from the current
source to the memristor. That current will flow and change the memristance then by
using a reading signal the memristor will be connected to another current source with
lower value to read the memristance then it is compared to the reference Vref1. The
memristance changes its value depending on the level of current used Is and how
much time switches in the pull-up network remain open. The output of the circuit is
stored as a change in the memristance.

The concept behind building any function is similar to the concept of CMOS
circuit, by using the pull-up network to pass the current to the memristor to change
its memristance from one state to another then using a comparator to detect that
change as shown in the following Fig. 5.24 R0 is the initial value of the memristance
and if the inputs do not create an open path from the current source, no change will
happen to the memristance, by using the comparator to compare the memristance to
RC , zero will be detected. On the other hand, if the inputs create an open path for the
current source the memristance value will change from R0 to R1 crossing the value
RC then by using the comparator the value of the memristance will be greater than
the comparing value RC leading to an output one. In order to build a circuit that drives
the same previous function F using the memristor (see Fig. 5.23b), it is achieved by
replacing the complete pull-down network with one memristor and a comparator.
Note that, inputs are applied in parallel then a reading signal is applied in the next
cycle to read the change of the memristance till applying a resetting mechanism to
the circuit [30].

Figure5.25 shows the simulation results of the previous circuit, where the first
three subfigures are the inputs x, y, and z, while the fourth and fifth subfigures are
the reading signal and the output, respectively. The input enters the circuit in the first
cycle followed by a reading phase then a resetting phase thus the sequence will be
(write-read-reset). All input combinations have been verified.

5.5.3 Redundant Multiplier

5.5.3.1 Two-Bit Redundant Multiplier Cell

The inputs of the redundant multiplier are in the form of one of three values
{−1, 0 or 1}, this representation for the redundant system could be converted to
a two-bit representation so the inputs will be {10, 00, and 01}, respectively. The
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Fig. 5.25 Simulation results for function F = x · y + z

Table 5.10 Truth table of the
redundant multiplier

A b C A
(a1a0)

b
(b1b0)

c
(c1c0)

AB

0 0 0 00 00 00 0

0 1 0 00 01 00 1

0 −1 0 00 10 00 2

1 0 0 01 00 00 4

1 1 1 01 01 01 5

1 −1 −1 01 10 10 6

−1 0 0 10 00 00 8

−1 1 −1 10 01 10 9

−1 −1 1 10 10 01 10

Table 5.11 Karnaugh map
for output c1

b1
b0

00 01 11 10
00 0 0 X 0

a0
01 0 0 X 1

a1
10 X X X X X
11 0 1 X 0

c1 = a1b0 + a0b1

multiplication table of the redundant multiplier is as follows in Table5.10, where
a, b are the inputs, while c is the multiplier output. {a1a0, b1b0, and c1c0} are
the two-bit equivalent representation for a, b, and c, respectively. Using Karnaugh,
the Boolean expression of c1 and c0 could be easily calculated as a function of
four inputs a1a0b1b0 as shown in Tables5.11 and 5.12. The implementation of the
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Table 5.12 Karnaugh map
for output c1

b1
b0

00 01 11 10
00 0 0 X 0

a0
01 0 1 X 0

a1
10 X X X X X
11 0 0 X 1

c1 = a0b0 + a1b1

Fig. 5.26 Two-bit multiplier
circuit
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two-bit redundant multiplier is done using the explained idea where each one of the
outputs is a function in four inputs. The switches (S1 to S4) are used to implement
function c0 while switches (S5 to S8) are used to implement function c1. Then the
outputs are extracted using two comparators comp0 for function c0 and comp_1 for
function c1 as shown in Fig. 5.26. The simulation result for the two-bit multiplier is
shown in Fig. 5.27 where each input consists of two bits that represent three cases,
the inputs were ordered in the same order shown in the truth table and the outputs
follow the desired response.

5.5.3.2 N×N Memristor-Based Tree Redundant Multiplier

In 1964 Wallace showed an efficient way to implement a multiplier based on a
tree-like structure [31]. The implementation is simply based on multiplier cells and
full adder circuits as shown in Fig. 5.28 where a 3 × 3 multiplier of two numbers
X = {X3X2X1} and Y = {Y3Y2Y1} (where each digit can take one of three values
{−1, 0, 1}), the result of multiplication is then added together generating the output
of the multiplier. The multiplier consists of 9 multiplier cells MC , three redundant
binary adders (RBA), and some switches. The redundant binary full adder is used to
add three pairs of digits and an output pair of digits that represent sum and another
pair for the carry. The input to RBA is entered in a serial way and it has two control
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Fig. 5.27 Simulation results for two-bit multiplier circuit

Fig. 5.28 Implementation of
3 × 3 multiplier
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Fig. 5.29 Inputs X and Y of the 3 × 3 multiplier

Fig. 5.30 Output M of the 3 × 3 multiplier

signals Ws and Wc which stand to write to the sum and carry stages, respectively.
The multiplier works as follows [30]:

1. The inputs enter in pairs to the multiplier cells for one clock cycle
2. First read signal (read1) is activated to feed the RBA with first level inputs
3. Second read signal (read2) is activated to feed the RBA with second level inputs
4. Third read signal (read3) is activated to feed the RBA with third level inputs
5. Fourth read signal (read4) is activated to feed the RBA with the carry
6. Global read to Mc1, Mc9, and RBA is activated.

To validate the previous procedure, the simulation results for the multiplier circuit
are shown in Figs. 5.29 and 5.30, where the input to the multiplier circuit is shown
in pairs {10, 00, 01} which represent {−1, 0, 1} where this simulation shows the
multiplication when X = 5 and Y = 3 [30].
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Chapter 6
Memcapacitor: Modeling, Analysis,
and Emulators

6.1 Introduction

In 1980, Chua generalized the definition of the axiomatic approach of 2-terminal
elements to define an infinite variety of higher order basic circuit elements. Moreover,
Chua defined a new general element and named it as the v(α) − i (β) element [1]. This
element has a constitutive relation involving only the 2 variables v(α) and i (β) and has
a symbol shown in Fig. 6.1. Chua visualized these new elements as a circuit element
array shown in Fig. 6.2 where each dot with integer coordinates (α, β) represents a
v(α) − i (β) element. Hence, the 4 dots with coordinates (0, 0), (−1, 0), (0,−1), and
(−1,−1) correspond to a Resistor, Inductor, Capacitor, and Memristor, respectively.

Chua’s elementary circuit element quadrangle was extended to include higher
order elements: memcapacitor and meminductor as shown in Fig. 6.3 [2]. The two
elements, memcapacitor and meminductor, were first postulated at the openingm
lecture of the First Memristor and Memristive Systems Symposium held at UC
Berkeley in 2008 [3]. The memcapacitance Cm links between the magnetic flux
ϕ and the time integral of the charge σ , while the meminductance Lm provides a
relationship between the charge q and the time integral of flux ρ. Figure 6.4 shows
the number of publications related to the memcapacitor during the last six years.
Note that circuit elements with even higher order dynamics are yet to be defined.

6.1.1 Memcapacitive Systems

In 2009, Di ventra, Pershin, and Chua defined a generalized model for the memca-
pacitive systems [4], where nth-order voltage-controlled memcapacitive system is
defined by

© Springer International Publishing Switzerland 2015
A.G. Radwan and M.E. Fouda, On the Mathematical Modeling of Memristor,
Memcapacitor, and Meminductor, Studies in Systems, Decision and Control 26,
DOI 10.1007/978-3-319-17491-4_6
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Fig. 6.1 Symbol for a
v(α) − i (β) element [1]
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Fig. 6.2 Circuit element array: each dot with coordinates (α, β) denotes a v(α) − i (β) element [1]

q(t) = C(x, Vc, t)Vc(t), (6.1a)

ẋ = f (x, Vc, t), (6.1b)
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Fig. 6.3 Extension of
fundamental passive
elements
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Fig. 6.4 Number of
publications during the last
6 years using engineering
village database (December
2014)

where q(t) is the charge on the capacitor at time t , Vc(t) is the corresponding voltage,
and C is the memcapacitance (for memory capacitance), which depends on the state
of the system. Similarly, they defined an nth-order charge-controlled memcapacitive
system as

Vc(t) = C−1(x, q, t)q(t), (6.2a)

ẋ = f (x, q, t), (6.2b)

where C−1 is an inverse memcapacitance.
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Fig. 6.5 Schematics of a
pinched hysteresis loop of a
memcapacitive system [4, 5]

They defined a subclass of the memcapacitive devices by deducing the voltage-
controlled memcapacitive systems equation to (6.3) to represent the voltage-
controlled memcapacitor.

q(t) = C

[ ∫ t

to
Vc(τ )dτ

]
Vc(t), (6.3)

and the charge-controlled memcapacitive systems equation to (6.4) to represent the
nth charge-controlled memcapacitor.

Vc(t) = C−1
[ ∫ t

to
q(τ )dτ

]
q(t). (6.4)

By the basic definition of the classical circuit theory, every capacitor must be
“lossless,” i.e., NOT dissipative. So, the memcapacitor should also be a lossless
element. Besides, the previous systems should have a pinched hysteresis in the q − v
plane at the origin (q, v) = (0, 0) to represent memcapacitor.

Moreover, Di ventra et al. defined the energy stored in the system as

Pc = Vc(t)I (t) (6.5a)

Uc(t) =
∫ t

to
Vc(τ )I (τ )dτ. (6.5b)

Note that the energy of a passive memcapacitive system cannot exceed the amount
of previously added energy so Uc ≥ 0. They defined the energy added to/removed
from the system (

∫
Vc(q)dq) as the area between the curve and the q-axis. The areas

of shaded regions U1 and U2 give the amount of added/removed energy in each half-
period. The signs of U1 and U2 are determined by the direction on the loop. For the
direction shown in Fig. 6.5, U2 is positive and U1 is negative. The system is passive
if U1 + U2 = 0, dissipative if U1 + U2 > 0, and active if U1 + U2 < 0.
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6.1.2 Mathematical Representations of Time-Invariant
Memcapacitor

Similar to Chua’s representations of the memristor, discussed in Chap. 2, three
mathematical representations of time-invariant memcapacitors are defined. Each
representation has two forms; charge-controlled memcapacitor or voltage-controlled
memcapacitor. These three representations can be breifly presented as follows:

6.1.2.1 Extended Memcapacitor

An extended memcapacitor is defined as

• Charge-controlled extended memcapacitor

v = C−1(x, q)q = D(x, q)q, (6.6a)

dx

dt
= f (x, q), (6.6b)

where limq→0 D(x, q) �= ∞.
• Voltage-controlled extended memcapacitor

q = C(x, v)v, (6.7a)

dx

dt
= g(x, v), (6.7b)

where limv→0 C(x, v) �= ∞.

These extended memristor is the same to Di ventra’s definition, discussed in the
previous section, but with adding a condition on the constitutive relation.

6.1.2.2 Generic Memcapacitor

A generic memcapacitor is defined in

• Charge-controlled generic memcapacitor

v = D(x)i, (6.8a)

dx

dt
= f (x, i), (6.8b)

http://dx.doi.org/10.1007/978-3-319-17491-4_2
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• Voltage-controlled generic memcapacitor

q = C(x)v, (6.9a)

dx

dt
= g(x, v), (6.9b)

6.1.2.3 Ideal Memcapacitor

An ideal memcapacitor is defined as

• Charge-controlled ideal memcapacitor

ϕ = ϕ1(q). (6.10)

Or

v = D(σ )q, (6.11a)

dσ

dt
= q, (6.11b)

where D(σ ) = dϕ1(σ )
dσ

is called memelastance in inverse Farad (F−1). The
constitutive relation of charge-controlled ideal memcapacitor can be recovered
to ϕ1(σ ) = ϕ0 + ∫ t

0 D(σ )dσ where ϕ0 is an arbitrary constant.
• Voltage-controlled ideal memcapacitor

σ = σ1(ϕ). (6.12)

Or

q = C(ϕ)v, (6.13a)

dϕ

dt
= v, (6.13b)

where G(ϕ) = dσ1(ϕ)
dϕ

is called memcapacitance in Farad (F). The constitutive
relation of voltage-controlled ideal memcapacitor can be recovered to σ1(ϕ) =
σ0 + ∫ t

0 C(ϕ)dϕ where σ0 is an arbitrary constant.
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6.1.3 Physical Realizations

A lot of prospective research on the realization of the solid-state memcapacitor
has been started [6–9]. In 2009, Bratkovski et al. introduced a realization for a
memcapacitor device which included two electrodes and a memcapacitive matrix
interposed between them [6]. The mobile dopants are contained within the memca-
pacitive matrix and are repositioned within the memcapacitive matrix by applying
the programming voltage across the two electrodes to change the capacitance of the
memcapacitor. Also, another memcapacitor device includes a memcapacitive matrix
interposed between two electrodes where the capacitance of the memcapacitor device
depends upon an initial voltage applied across the memcapacitive matrix and gives
results similar to the analysis introduced in the coming sections [10].

In 2009, Martinez et al. suggested a possible realization of a solid-state
memcapacitive system [7]. Their approach relied on the slow polarization rate of
a medium between plates of a regular capacitor. The multilayer structure is formed
by metallic layers separated by an insulator so that tunneling between the layers
can occur as shown in Fig. 6.6 [7]. Where a metamaterial medium consisting of N
metal layers embedded into an insulator is inserted between the plates of a regular
capacitor. It is assumed that the electron transfer between the external plates of the
capacitor (with charge ±q) and internal metal layers (with charges Qk) is negligible.
Therefore, the internal charges Qk can only be redistributed between the internal lay-
ers creating a medium polarization. The suggested memcapacitor shows the pinched
hysteresis in charge–voltage and capacitance–voltage curves, and both negative and
diverging capacitance within certain ranges of the field. Their proposal can be eas-
ily realized experimentally and indicates the possibility of information storage in
memcapacitive devices. The authors derived an expression for the capacitance of the
whole structure which is given as

C = q

Vc
= 2Co

2 + ∑N
i=1[Δ − 2Δi−1] Qi

q

, (6.14)

where Δ = δ/d,Δi = ∑i
j=1 δ j/d for i = 1, 2, . . . , N − 1,Δo = 0 and

Co = εoεr S/d is the capacitance without internal metal layers. As obvious from
the previous equation, the memcapacitance is a function of the charge q.

Martinez et al. proposed a realization of a bistable nonvolatile memcapacitor in
2011 [11]. Its design utilizes a strained elastic membrane as one plate of the parallel-

Fig. 6.6 Multilayer
structure of solid-state
memcapacitor [7]
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Fig. 6.7 Schematic of the
bistable nonvolatile elastic
membrane memcapacitor
connected to the voltage
source V (t) [11] V(t)

0

1

plate capacitor as shown in Fig. 6.7. The top plate of a regular parallel plate capacitor
is replaced by a flexible strained membrane. Because of two equilibrium positions
of the membrane (represented by a double-well potential sketched on the right-hand
side of the figure), stable high and low capacitance configurations are possible in such
a system. A voltage pulse of an appropriate amplitude can be used to reliably switch
the memcapacitor into the desired capacitance state. Moreover, charge–voltage and
capacitance–voltage curves of such a system demonstrate hysteresis.

Moreover, there have been other realizations for the memcapacitive devices
observed in nanopores [8], certain diode structures [12], and ferroelectric materials
such as Pb(Zr1x T ix )O3 or BaTiO3. The ferroelectric capacitor has a structure of a
metal–insulator–metal (MIM) capacitor, in which the insulating layer is formed by
ferroelectric material [13].

6.1.4 First-Order Memcapacitor Model

The nonlinear mathematical model of the memcapacitor is very important since it
describes the real behavior of the memcapacitor near to the boundary which affects
the response of the memcapacitor. The first nonlinear model of mem-element sys-
tems was proposed by Joglekar [14] which represents a symmetric window function
and gives single-valued characteristics under any excitation source. The Joglekar’s
window function decreases as the boundary approaches until it reaches the boundary
where it tends to zero as shown in Fig. 6.8. The second common nonlinear model
was proposed by Biolek [15] where the window function depends on a discontinu-
ous window decreasing toward zero as the boundary layer approaches any of the two
ends and sharp discontinuity transitions when the excitation source reverses its polar-
ity. Biolek’s window function may allow for multivalued characteristics under the
sign-varying of the excitation source. This analysis is built depending on Joglekar’s
window function which is more suitable for most mem-elements due to its single-
valued characteristics.
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Fig. 6.8 Joglekar’s window
function f(x) for different
p = 1, 2, 5, and 100
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The charge-controlled model of the memcapacitor is introduced in [16] based on
the general model of the memcapacitor [4]. The reciprocal of the capacitance D is
given as

D(t) = Dmax + x(t)(Dmin − Dmax ), D ∈(Dmax , Dmin), (6.15)

where x(t) represents the state variable of the memcapacitor, Dmax and Dmin are the
reciprocal of the boundaries of the memcapacitance Cmax and Cmin , respectively.
This definition is an analogy to the definition of HPs memristor which was presented
in 2008 [14]. The state equation of the memcapacitance was defined as

dx

dt
= k f (x)q(t) = k f (x)

dσ

dt
, (6.16)

where σ(t) is the time integral of the charge q(t). The rate of change of the state
variable is directly proportional to the mobility factor k and the window function
which is modeled by Joglekar’s window function [14] which is given as f (x) =
1 − (2x − 1)2p, where p represents the doping factor of the memcapacitor which
affects the rate of change in memcapacitor state variable as shown in Fig. 6.8. The
pinched hysteresis relation of charge-controlled memcapacitor is given from

q(t) = C(t, x, q)v(t) or v(t) = D(t, x, q)q(t). (6.17)

6.2 Mathematical Modeling of Memcapacitor

The memcapacitor is modeled using the charge passing through it as given as (6.15)
and is a function of the state variable x . In order to obtain an implicit relation of
memcapacitance, (6.16) is substituted in the derivative of (6.15) so

dD

dt
= ηk(Dmin − Dmax )q(t). (6.18)
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Fig. 6.9 Memcapacitor
model
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The rate of change of charge in the memcapacitance is proportional to the charge
passing through the memcapacitor. By integrating (6.18) relative to time assuming
zero initial current, if the current exists, it vanishes with time and produces an initial
capacitance Co. The memcapacitance is given as (6.19) so the circuit model of this
equation is represented by two series capacitors; the first one has a capacitance Co

and the other one is 1/k′σ(t) where σ(t) is the time integral of the charge passing
through Co as shown in Fig. 6.9.

D = Din + ηk′σ(t), (6.19)

where k′ = k (Dmin − Dmax ), Din represents the inverse of the initial
memcapacitance, and Dmax −Do

k′ < σ(t) <
Dmin−Do

k′ . The main parameters that affect
the memcapacitances are Co and k′. The input voltage can be written as follows:

v(t) = D(t)q(t) =
(

Din + ηk′σ(t)

)
dσ

dt
. (6.20)

By integrating both sides relative to time assuming zero initial condition, the input
time integral of charge is given as

σ(t) =
−Din +

√
D2

in + 2ηk′ϕ(t)

ηk′ , (6.21)

where ϕ(t) is the flux (time integral of the voltage). The input charge is given as

q(t) = v(t)√
D2

in + 2ηk′ϕ(t)
. (6.22)

Hence, the memcapacitance is equal to

D2(t) = D2
in + 2ηk′ϕ(t). (6.23)

As it is clear the change in the reciprocal of the memcapacitance square is directly
proportional to the flux ϕ(t). Moreover, the initial voltage on the memcapacitor leads
to a change in its initial memcapacitance Cin1 into Cin2 so it can be assumed that
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ϕ(0) = 0. In addition, Eqs. (6.19) and (6.23) represent two equivalent expressions
for the memcapacitance so any one of them can be used to model the memcapacitor
depending on which model makes the analysis easier. Also, it is worth noting that
this linear model analysis can be considered a good approximation for the highly
doped nonlinear model where p > 10.

The input current is the rate of change in the charge passing through the memca-
pacitor so I (t) = dC

dt Vc(t) + C(t) dVc
dt . The time derivative of the memcapacitance

is given as:
dC(t)

dt
= − ηk′C3

ov(t)

(1 + 2ηC2
o k′ϕ(t))3/2 = −ηk′C3(t)v(t) (6.24)

Hence, the current passing through memcapacitor is

i(t) = d(C(t)v(t))

dt
= C(t)

dv(t)

dt
− ηk′C3(t)v2(t) = C(t)

(dv(t)

dt
− ηk′C2(t)v2(t)

)

(6.25)

Thus, the stored energy is given as

Uc(t) =
∫ t

to
C(τ )

(
v(τ )

dv(τ )

dt
− ηk′C2(τ )v3(τ )

)
dτ. (6.26)

6.3 Boundary Dynamics of Memcapacitor

In this section; solution of nonlinear models is derived using the memcapacitance
which is given as (6.15) [17]. The modeling equations of the memcapacitor can
be represented as a space state representation which describes the memcapacitor
behavior and are given from (6.16) and (6.17) as follows:

(
dσ
dt
dx
dt

)
= 1

D(t)

(
1 0

k f (x) −D(t)

) (
v(t)

0

)
(6.27)

The rate of change of the memcapacitance state variable x(t) is given as

dx

dt
= k f (x)

D(t)
v(t), (6.28)

by integrating both sides relative to time where the state variable changes from xin

to x(t)
x∫

xin

Dmax + x Dd

f (x)
dx =

t∫

0

kv(t)dt, (6.29)
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where x(t) = (D(t) − Dmax )/Dd , xin = (Din − Dmax )/Dd , Dd = Dmin − Dmax

and Ds = Dmin + Dmax .
The nonlinear dopant model of memcapacitor is f (x) = 1 − (2x − 1)2p and by

substituting by f (x) into (6.29) and by letting y = 1 − 2x so dx = −dy/2 , the
integral equation (6.29) can be written as follows:

y∫

yin

Ds − y Dd

1 − y2p
dy =

t∫

0

−4kv (t) dt, (6.30)

where y and yin are given as (Ds − 2D (t)) /Dd and (Ds − 2Din) /Dd , respectively.
The time integral of the right-hand side equals −4kϕ (t) but the left-hand side part
is divided into two integrations and are given as follows:

I1 =
∫

1

1 − y2p
dy =

∞∑
r=0

y2pr+1

2pr + 1
+ c, (6.31a)

I2 =
∫

y

1 − y2p
dy =

∞∑
r=0

y2pr+2

2pr + 2
+ c. (6.31b)

From (6.30) and (6.31), the left-hand side L.H.S. is Ds I1|y
yin − Dd I2|y

yin so let

h(D(t), p) = Ds I1 − Dd I2 hence L.H.S. = h(D(t), p) − h(Din, p). By substi-
tuting by (6.30) into L.H.S. we get:

h(D(t), p) =
∞∑

r=0

y2pr+1
(

(2pr + 2)Ds − (2pr + 1)Dd y

(2pr + 1)(2pr + 2)

)
,

=
∞∑

r=0

(
Ds − 2D(t)

Dd

)2pr+1 (
Ds + 2(2pr + 1)D(t)

(2pr + 1)(2pr + 2)

)
. (6.32)

The implicit relation of the memcapacitance for any dopant drift window function
having any arbitrary p is given as follows:

∞∑
r=0

(
2D (t) − Ds

Dd

)2pr+1 (
Ds + 2 (2pr + 1) D (t)

(2pr + 1) (2pr + 2)

)
=

∞∑
r=0

(
2Din − Ds

Dd

)2pr+1 (
Ds + 2 (2pr + 1) Din

(2pr + 1) (2pr + 2)

)
+ 4kϕ (t) (6.33)

This relation can be used for dopant drift model even when p tends to infinity where
(6.33) will be deduced to (6.23) by taking limits when p tends to infinity. Although
it is not easy to get a closed form expression for each p but in case of the minimum
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window function p = 1, it easy to prove that the memcapacitance can be given as
follows:

(
C(t)

Cin

)Dd
(

Cmax − C(t)

Cmax − Cin

)Dmax (
Cin − Cmin

C(t) − Cmin

)Dmin

= e4kϕ(t) (6.34)

Equation (6.33) gives a closed form solution for instantaneous memcapacitance for
any voltage excitations but in order to use this closed form, it is needed to prove
that this function is a bijective function (one-to-one function); by differentiating flux
ϕ (t) relative to D(t) and checking that this function is a monotonic function across
the working region (Dmax , Dmin) which means that it does not change its derivative
sign across this region as is previously discussed in [18].

Figure 6.10a shows the change of memcapacitance due to change in flux for dif-
ferent doping factors p = 1, 2, 5, and 100 where Cin, Cmin, Cmax , and k are equal to
1µF, 10 nF, 10µF and 10 MC−1s−1, respectively. Moreover, Fig. 6.10b shows the
relative error in memcapacitance in reference to the memcapacitance of the linear
model which is defined as

(
C p − C∞

)
/C∞. As obvious for p > 10; the behavior

of higher value p is similar to the linear model p = ∞.
In the following section, the memcapacitor response with its closed form expres-

sions will be derived for different input voltage signals: DC, sinusoidal, and periodic
signals which will be analyzed for linear and nonlinear dopant drift models [17, 19].
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Fig. 6.10 a Memcapacitance–flux characteristics, and b relative error in capacitance–flux for dif-
ferent p of Joglekar’s window for {k, Cmin, Cmax , Cin} = 10 M, 10 nF, 10µF, 100 nF
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6.4 Memcapacitor Response Under Voltage Excitations

6.4.1 Step Response

Step response is important to characterize any system where step voltage v (t) =
vDCu(t), where u(t) is a unit step function, and vDC is the amplitude which may be
positive or negative. To obtain an expression for the memcapacitance, the flux ϕ(t)
should be calculated which is the time integration of the excitation voltage. In this
case the flux of step input is equal to VDCt so the memcapacitance for the linear case
is given as

C (t) = Cin√
1 + 2C2

ink′VDCt
, C(t) ∈ (Cmin, Cmax ). (6.35)

The current and the instantaneous power can be calculated by:

ic(t) = ic1(t) + ic2(t) = CovDCδ(t) + vDC
dC(t)

dt
(6.36a)

Pc(t) = Pc1(t) + Pc2(t) = Cov2
DCu(t)

du(t)

dt
+ v2

DC
dC(t)

dt
(6.36b)

Hence, the stored energy is given as

Uc(t) = Uc1(t) + Uc2(t) =
∫ t

to
Pc1(τ )dτ +

∫ t

to
Pc2(τ )dτ, (6.37a)

Uc1(t) = 1

2
Co(v

2
DC − v2

o), (6.37b)

Uc2(t) =
∫ t

to
v2

DC
dC(t)

dt
dt = v2

DC(C(t) − Co), (6.37c)

Uc(t) = 1

2
(2C(t) − Co)v

2
DC − 1

2
Cov2

o. (6.37d)

where vo is the initial voltage on the memcapacitor. The terms Pc1(t) and Uc1(t)
are the instantaneous power and energy due to the voltage rate of change which is
identical to the conventional capacitor, however, the terms Pc2(t) and Uc2(t) are the
instantaneous power and energy due to the memcapacitance rate of change which
does not exist in the conventional capacitor. Under zero initial condition vo = 0, the
total energy will be positive (charging phase) and negative (discharging phase) when
C(t) > 0.5Co and C(t) < 0.5Co, respectively. The stored energy in the memca-
pacitor increases or decreases until the memcapacitor reaches one of its boundaries
where there is a zero rate of change in the memcapacitor and the energy saturates.
Also as obvious, the stored energy has the same profile of the memcapacitance C(t),
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Fig. 6.11 Transient
memcapacitance for different
positive applied voltage at
doping factor p = 1 (dotted
line) and p = ∞ (solid line)
for {k, Cmin, Cmax , Cin} =
{10 Meg, 10 nF, 10 F,

100 nF}
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but with gain equals v2
DC. The maximum and minimum stored energy are given as

(Cmax − 0.5Cmin)v2
DC and (Cmin − 0.5Cmax )v2

DC, respectively.
But for the nonlinear case the memcapacitance is given as follows:

(
C(t)

Cin

)Dd
(

Cmax − C(t)

Cmax − Cin

)Dmax (
Cin − Cmin

C(t) − Cmin

)Dmin

= e4kVDCt . (6.38)

The expression of the memcapacitance could be expanded to C(t) = Cin −
C3

ink′vDCt using the binomial theory for C2
ink′VDCt < 0.5 so when the step voltage

increases the memcapacitance decreases in case VDC is positive as shown in Fig. 6.11
where the initial memcapacitance is 100 nF and the rate of decrease in the memca-
pacitance depends on the amplitude of the applied voltage until the memcapacitance
reaches its minimum Cmin . As obvious that the rate of change in the nonlinear model
is slower than the linear case so the time to reach its boundary is larger. Moreover
in case of negative applied voltage, the memcapacitance increases as the absolute of
the applied voltage increases until the memcapacitance reaches its maximum Cmax .

From the previous discussion, there is a certain time duration in which the mem-
capacitance reaches its boundary either maximum or minimum depending on the
sign of the input voltage which is called the saturation time tsat which is calculated
from:

tsat = C2
in − C

2
bd

2C2
inC2

bdk′VDC
, (6.39)

where Cbd represents the boundary memcapacitance which is either Cmax or Cmin .
Moreover, the saturation time for nonlinear case is given as

tsat = 1

4kVDC
ln

((
Cbd

Cin

)Dd
(

Cmax − Cbd

Cmax − Cin

)Dmax (
Cin − Cmin

Cbd − Cmin

)Dmin
)

, (6.40)

The previous expression shows that the memcapacitor will reach its boundary at
infinity since it would not cling to its boundary. The maximum saturation time for the
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linear model is reached when the memcapacitor changes its state from the minimum to
maximum values or vice versa. Therefore, this maximum saturation time is given as:

tsat |max p=∞ = Cmax + Cmin

2Cmax Cmink|VDC| , (6.41)

which is a function of the applied voltage and the mobility factor k. But for the
nonlinear model p = 1, the maximum saturation time is infinite so a new definition
for maximum saturation time was defined [17, 19] where it can be assumed that the
memcapacitor is saturated if the state variable reaches xon or xoff which correspond
to Dsatmin and Dsatmax respectively and are given as follows:

Dsatmin = Dmax (1 − xon) + xon Dmin, (6.42a)

Dsatmax = Dmax
(
1 − xoff

) + xoff Dmin . (6.42b)

So to reach the maximum saturation time from Dsatmin to Dsatmax or vice versa is
defined by substituting in (6.40) as follows:

tsat | max
p = 1

= 1

4k |VDC| ln
((

xoff

xon

)Dmax
(

1 − xon

1 − xoff

)Dmin
)

. (6.43)

But Joglekar’s window function f (x) = 1 − (2x − 1)2p is symmetric so xoff =
1 − xon , as a result the previous equation becomes:

tsat | max
p = 1

= Cmax + Cmin

4Cmax Cmink |VDC| ln
(

xoff

xon

)
, (6.44)

which is similar to the linear model relation but is larger by a scaling factor

α = 1
2 ln

(
xoff
xon

)
. The maximum saturation time depends on the capacitance bound-

aries and the applied voltage where it is linearly inversely proportional to the applied
voltage. Figure 6.12a shows the maximum saturation time for linear and nonlinear
models where case I shows the saturation time when xon and xoff are 0.1 and 0.9,
respectively, where α = 1.0986 which is approximately equal to the linear case,
moreover case II shows the saturation time when xon and xoff are 0.01 and 0.99,
respectively, where α = 2.2976. As obvious from Fig. 6.12b α is a decreasing func-
tion relative to xon where it reaches zero when xon = xoff = 0.5 and tends to ∞
when xon tends to zero which matches Eq. (6.40).
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Fig. 6.12 Maximum saturation time versus voltage amplitude for {k, Cmin, Cmax } = {10 Meg,

10 nF, 10 uF}

6.4.2 Sinusoidal Response

One of the main important responses which should be obtained is the sinusoidal
response where a single tone signal is applied to the memcapacitor. For the capacitor,
the I–V curve is a circle, but in case of the memcapacitor, the I–V curve is deformed
as shown in Fig. 6.13a for different frequencies due to the memory effect. Moreover,
when the frequency increases, this curve becomes more circular and tends to act
more like the capacitor at very high frequencies. The pinched q − v hysteresis of
the simulated memcapacitor is shown in Fig. 6.13b for different input frequencies
using the spice model which is proposed in [20]. Also when the frequency increases,
the area inside the q − v hysteresis decreases and the curve becomes more linear. If
the q − v characteristic is pinched, this element represents a memcapacitor which is
similar to the i − v characteristic in the memristor [4].

Assuming a single tone voltage is applied to the memcapacitor given as v(t) =
Vosin(ω0t), then by substituting into (6.23), the memcapacitance of linear model
can be given as

D2(t) = D2
in + 4k′Vo

ωo
sin2

(
ωot

2

)
(6.45)

The current passing through the memcapacitor is given as

I =
CoVo

(
ωocos(ωot) − 4ηC2

o k′Vosin4(ωot/2
)

(
1 + 4ηC2

o k′Vosin2(ωot/2)

ωo)

)3/2 (6.46)

For ωo � 4C2
o k′Vo, the current relation is reduced to I = CoVoωocos(ωot).

The stored energy in the memcapacitor through sinusoidal excitation is shown in
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Fig. 6.13 PSPICE simulation of linear model: a I-V characteristics of the memcapacitor, and
b q − V hysteresis for k, Cmin, Cmax = 10 Meg, 10 nF, 10µF
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Fig. 6.14 Energy stored in memcapacitor under sinusoidal excitation

Fig. 6.14 for sinusoidal input at Vo, η, k, Cmin, Cmax and Co are equal to 1 V, 1,
10 MC−1 · s−1, 10 nF, 10µF and 100 nF respectively for different frequencies. As
obvious, the stored energy becomes zero after an integer number of periods which
means that this memcapacitor is balanced and the average consumption power is
zero.

However, in the nonlinear case, the memcapacitance is given as

((
Cbd

Cin

)Dd
(

Cmax − Cbd

Cmax − Cin

)Dmax (
Cin − Cmin

Cbd − Cmin

)Dmin
)

= exp

(
8kVo

ωo
sin2

(
ωot

2

))

(6.47)
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It is clear from (6.45) and (6.47) that the memcapacitance relation is a function
of the input amplitude and the frequency where the memcapacitance decreases by
increasing the frequency, moreover the area inside the hysteresis curve decreases as
shown in Fig. 6.13b. The verification of the memcapacitance Eq. (6.45) compared to
the spice simulation of the memcapacitor is as shown in Fig. 6.15b and Fig. 6.15a for
the linear model and the nonlinear model, respectively.

When the frequency increases, the memcapacitance tends to be the initial mem-
capacitance Cin . Figure 6.16a shows the effect of changing the frequency on the
transient simulation of the memcapacitance where the range of the memcapacitance
decreases by increasing the frequency. Moreover, Fig. 6.16b shows the 3D surface of
the pinched q − v characteristic versus the frequency where the curve rotates when
increasing the frequency until the effect of the memory vanishes which means that
there is a linear relation between the charge and the voltage.
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Fig. 6.15 PSPICE transient simulation of the memcapacitance: a p = ∞, and b p = 1 for
{Vo, k, Cmin, Cmax , Cin, fo} = {1 V, 10 M, 10 nF, 10µF, 100 nF, 1 Hz}
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Fig. 6.16 a Memcapacitance for sinusoidal input voltage and b 3D q − v pinched hysteresis of
memcapacitance versus frequency
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6.4.3 General Periodic Excitation Response

Any periodic signal could be expanded using Fourier series expansion as a composite
of the summation of the DC signal and the sinusoidal signals

v(t) = ao +
∞∑

n=1

ancos(nωot) + bnsin(nωot), (6.48)

where ao represents the DC component in the applied signal and an and bn represent
the amplitudes of cosine and sine terms of the nth harmonic component of the signal.
By substituting by (6.48) into (6.23), the instantaneous memcapacitance for linear
model is given as

D2(t) = D2
in + 2k′

(
aot +

∞∑
n=1

1

nωo

(
ansin(nωot) − bn(cos(nωot) − 1)

))
.

(6.49)

A similar expression can be obtained for nonlinear model by substituting by (6.48)
into (6.34) which describes the nonlinear behavior of the applied periodic signals.

Any periodic signals having a DC component (ao �= 0) lead the memcapacitor to
saturate, since the average of (6.49) increases or decreases with time depending on the
sign of ao, thus a condition on the periodic signal for zero, net DC component should
be obtained which comes from ao = 0. But in case of nonzero ao, the memcapacitor
reaches one of its boundaries after the time given in (6.23) where VDC = ao.

6.4.3.1 Square Wave Signal Response

As an example of periodic signal; the memcapacitor is biased by a square wave signal
which is defined by

v (t) =
{

Vo1 0 < τ < αT
Vo2 αT < τ < T

, 0 < α < 1, τ = mod(t) (6.50)

The applied signal alternates with sharp transitions between two different voltages
that can be: (a) both are positive; (b) both are negative; or (c) one is positive and
the other is negative. Therefore, the previous step response can be used periodically
using the last value as the initial value of the next step. So the memcapacitance
changes up and down as the voltage changes periodically. By applying Fourier series
expansion to the input signal, the coefficients are given as ao = αVo1 + (1 − α) Vo2,
an = (Vo1−Vo2)

nπ
sin (2αnπ) and bn = (Vo1−Vo2)

nπ
(1 − cos (2αnπ)).

As obvious from (6.49), there is a DC term (ao) which leads to saturation so the
square wave signal has two cases:
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Fig. 6.17 Transient capacitance for square wave signal input at p = 1 (dotted line) and p = ∞
(solid line) a without DC component, b with DC component = 0.2 V, and c two successive positive
and negative pulses

1. Zero DC component: which means that the accumulated voltage (i.e., net flux = 0)
after N periods is zero so Vo1

Vo2
= α−1

α
should be satisfied then the instantaneous

memcapacitance will be a function of the summation of some sinusoidal wave-
forms as shown in (6.49). Figure 6.17a shows the instantaneous memcapacitance
under square wave input with Vo1, Vo2, and α equal 1,−1, and 0.5 V, respec-
tively, since the memcapacitance increases and decreases depending on the sign
of the applied voltage with nonlinear curves where the change in the square of
inverse memcapacitance is directly proportional to the instantaneous net voltage
which is a function of Vo1 and Vo2. Moreover, the range of the memcapacitance
decreases by increasing the input frequency.
The instantaneous memcapacitance expression could be written by using the
behavior of the square signal which is given during any period by
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1

C2 (t)
=

⎧⎨
⎩

1
C2

o
+ 2ηk′Vo1τ 0 < τ < αT

1
C2

o
+ 2ηk′ (αT (Vo1 − Vo2) + Vo2τ) αT < τ < T

(6.51)

2. Non Zero DC component: where the accumulated voltage leads the memcapacitor
to saturate. Figure 6.17b shows that the instantaneous memcapacitance decreases
with time due to the DC component in the input signal where Vo1, Vo2 and α

equal 1,−1 and 0.7 V, respectively. The memcapacitance reaches saturation after
a number of periods given as:

nsat = Cmin + Cmax

2kCminCmax aoT
(6.52)

In case of applying successive positive and negative pulses, the memcapaci-
tance decreases/increases depending on the sign of the DC component. For instance,
Fig. 6.17c shows two positive successive pulses followed by two positive successive
pulses where the memcapacitance decreases starting from 100 nF for positive pulses
and increases for negative pulses till it reaches its ordinal value 100 nF.

Similarly, this analysis can be done for any periodic signals that can be expanded
using Fourier series by substituting in the general expression of the instantaneous
memcapacitance in (6.49).

6.5 Detailed Analysis of Two Series Memcapacitors

6.5.1 Mathematical Analysis

The memcapacitor is modeled by a first-order differential equation where the rate of
change in each memcapacitor is given as:

1

C2
a

dCa

dt
= −ηak′

aqa(t), (6.53a)

1

C2
b

dCb

dt
= −ηbk′

bqb(t). (6.53b)

If the charge passing through them is the same, then

1

C2
a

dCa

dt
= ηak′

a

ηbk′
b

1

C2
b

dCb

dt
, (6.54)

Let α = (ηak′
a)

(ηbk′
b)

representing the mismatch between the two memcapacitors, by

integrating both sides, the instantaneous memcapacitance Ca is given as
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1

Ca
= α

Cb
+ 1

Cina
− α

Cinb
, (6.55)

where Cina and Cinb represent the initial memcapacitance of the memcapacitors Ca

and Cb, respectively. The equivalent memcapacitance of two series memcapacitors
is given as

1

Ceq
= α + 1

Cb
+ 1

Cina
− α

Cinb
(6.56)

As shown in (6.56), the equivalent input memcapacitance can be written as a
function in Cb only, thus this analysis focuses on Cb. The charge passing through
the memcapacitor q(t) = (CaCb)

(Ca+Cb)
Vin(t), and Vin is the applied voltage thus by

substituting by (6.55), q(t) = CbCind
Cb+(α+1)Cind

Vin(t), where 1
Cind

= 1
Cina

− α
Cinb

. The

rate of change in memcapacitor Cb is independent on Ca and is equal to:

(
α + 1

C3
b

+ 1

C2
b Cind

)
dCb

dt
= −ηbk′

bVin(t) (6.57)

By integrating both sides relative to time, where the memcapacitance Cb changes
from Cinb to Cb(t), and the left-hand side represents a time integral of voltage which
is flux ϕ(t). The memcapacitance is given as:

α + 1

C2
b

+ 2

Cind

1

Cb
−

(
α + 1

C2
inb

+ 2

CinbCind
+ 2ηbk′

bϕ(t)

)
= 0. (6.58)

By solving this equation by quadratic formula; 1
Cb

= (−b ± √
b2 − 4ac)/2a,

where a = α+1, b = 2
Cind

, and c = (α−1)Cina−2Cinb

C2
inbCina

−2ηbk′
bϕ(t). The instantaneous

memcapacitance Cb is given as

1

Cb
= −1

α + 1

(
1

Cind
∓

√( 1

Cina
+ 1

Cinb

)2 + 2(α + 1)ηbk′
bϕ(t)

)
. (6.59)

A similar expression can be obtained for memcapacitance Ca using (6.55) [21].
The memcapacitance Cb should be real and positive and in between the maximum

and minimum achievable memcapacitances so by equating (6.59) by maximum and
minimum memcapacitances, the following conditions on flux are obtained:
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Fig. 6.18 The valid solution
region of two series
memcapacitors
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ϕmin = (Cinb − Cbmin)(α(Cinb − Cbmin) + Cinb + 3Cbmin)

2ηbk′
bC2

inbC2
bmin

, (6.60a)

ϕmax = (Cinb − Cbmax )(α(Cinb − Cbmax ) + Cinb + 3Cbmax )

2ηbk′
bC2

inbC2
bmax

. (6.60b)

The hashed region, in Fig. 6.18, shows the valid solution of equation (6.59) for
the corresponding α and ϕ. As obvious there is a point of intersection where mem-
capacitance Cb does not change its values. This intersection point αc is given as

αc = − (Cinb(Cbmin + Cbmax ) + 2CbminCbmax )

(Cinb(Cbmin + Cbmax ) − 2CbminCbmax )
. (6.61)

Figure 6.18 is plotted for the following parameters: (Cmax , Cinb, k, ηb) =
(10µF, 10 nF, 100 nF, 10 M, 1) and the intersection point (αc, ϕc) equals (−1.4994,

−0.227).

6.5.2 Practical Cases

In general, there are four different special cases which are very important to study,
shown in Fig. 6.19, where the output is the common node between the two memca-
pacitors.

Fig. 6.19 Different
configurations of
memcapacitors in series
connections
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The memcapacitance Cb is a function of α, Cina, Cinb, Cind , and k′
b. There are

four special cases based on α that can be studied as follows:

1. Both Ca and Cb are two memcapacitors with the same mobility factors (k′
a = k′

b)

and with the same polarities so α = 1 as shown in Fig. 6.19a. The instantaneous
memcapacitance Cb is given as

1

Cb
= −1

2Cind
+

√
1

4

( 1

Cina
+ 1

Cinb

)2 + ηbk′
bϕ(t). (6.62)

2. Both Ca and Cb are two memcapacitors with the same mobility factors (k′
a = k′

b)

and with different polarities so α = −1 as shown in Fig. 6.19b. The sum of the
reciprocal of the two memcapacitances is constant from (6.55). The instantaneous
memcapacitance Cb is given as

1

Cb
= 1

Cinb
+ ηbk′

bϕ(t)
CinaCinb

Cina + Cinb
. (6.63)

3. Ca is a capacitor and Cb is a memcapacitor, so by putting k′
a = 0, the effect of

memcapacitor Ca is eliminated, so α = 0 as shown in Fig. 6.19c. The instanta-
neous memcapacitance Cb is given as

1

Cb
= −1

Cina
+

√( 1

Cina
+ 1

Cinb

)2 + 2ηbk′
bϕ(t). (6.64)

4. The last case when Cb is a capacitor and Ca is a memcapacitor thus k′
b = 0 and

α = ∞ as shown in Fig. 6.19d. The instantaneous memcapacitance Ca is given
as

1

Ca
= −1

Cinb
+

√( 1

Cina
+ 1

Cinb

)2 + 2ηak′
aϕ(t). (6.65)

6.5.3 Circuit Simulation and Validation

Due to the lack of memcapacitor samples which are not commonly available for
experimental realization, the SPICE model of memcapacitor proposed by Z. Biolek
et al. [16] is used with the following parameters: (Cmax , Cmin, Cina, Cinb, K , p) =
(10µF, 10 nF, 100 nF, 150 nF, 10 M, 100) respectively and applying a sinusoidal
voltage source with amplitude of 1 V and frequency of 1 Hz.

As discussed in the previous subsection, four cases exist, in the case of α = 1,
where the two memcapacitors have the same mobility and same polarities; the instan-
taneous expression of the memcapacitance as a function of the flux is given as (6.62)
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Fig. 6.20 Instantaneous memcapacitance for series case : a α = 1, b α = −1, c α = 0, and
d α = ∞

which matches the PSPICE simulation as obvious from Fig. 6.20a where the max-
imum and minimum capacitances of Cb are 150 and 55.5 nF, respectively, which
matches numerical simulation in (6.60) for the same parameters.

In the case of α = −1 where the two memcapacitors have opposite polarities and
the same mobility factor; the memcapacitance is given as (6.63) which matches the
numerical simulation as shown in Fig. 6.20b, where the maximum and the minimum
capacitances of Cb are 150 and 41.15 nF, respectively, with maximum relative error
with calculated expression from (6.63) is equal to 5.94 % due to the effect of the
dopant ratio, as the linear doping case p is infinite where the sum of the reciprocal
of the two capacitances is constant.

In the case of α = 0, the capacitance of Cb is given as (6.64) which matches
the PSPICE simulation as shown in Fig. 6.20c where the maximum and minimum
memcapacitance of Cb are equal to 150 and 49.44 nF, respectively.

Finally, the last case: α = ∞, where Cb is a capacitor with constant memca-
pacitance equal to 150 nF, and Ca is a memcapacitor and its capacitance is given as
(6.65) which matches PSPICE simulation results where the maximum and minimum
capacitances are equal to 100 and 42.44 nF, respectively.
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6.6 Detailed Analysis of Two Parallel Memcapacitors

6.6.1 Mathematical Analysis

As we discussed the series connections of two memcapacitors connected in parallel
is discussed as shown in Fig. 6.21, where the voltage across the memcapacitors is the
same so the input memcapacitance for each one could be given as in (6.23).

1

C2(t)
= 1

C2
in

+ 2ηk′ϕ(t). (6.66)

Due to the parallel connection the input charge is the sum of input charge to each
branch so the input charges is given as:

qin(t) = v(t)

⎛
⎝ 1√

1
C2

ina
+ 2ηak′

aϕ(t)
+ 1√

1
C2

inb
+ 2ηbk′

bϕ(t)

⎞
⎠ . (6.67)

Thus the equivalent input memcapacitance is given as

Ceq(t) =
2∑

j=1

Cinj√
1 + 2C2

in jη j k′
jϕ(t)

. (6.68)

As discussed before, there are four special cases as shown in Fig. 6.21 where
Fig. 6.21a represents the case of α = 1 and ηa = ηb = 1, Fig. 6.21b represents the
case α = −1 and ηa = −ηb = 1, Fig. 6.21c represent the case α = 0 and ηb = 1
and finally, Fig. 6.21d represents α = ∞ and ηa = 1.

Fig. 6.21 Different
configurations of
memcapacitors in parallel
connections: a α = 1,
b α = −1, c α = 0, and
d α = ∞

Ca Cb Ca CbVi Vi

(c) (d)

(a) (b)

Cb CaVi ViCa Cb
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6.6.2 Circuit Simulation and Validation

In parallel memcapacitors simulations, the following parameters are used: (Cmax ,

Cmin, Cina, Cinb, K , p) = (10µF, 10 nF, 50 nF, 100 nF, 10 M, 100) respectively
and applying a sinusoidal voltage source with amplitude of 0.5 V and with 1 Hz
frequency.

In the case of α = 1, the instantaneous expression of the equivalent memca-
pacitance as a function of the flux is given as (6.68) which matches the PSPICE
simulation as obvious from Fig. 6.22a where the maximum and minimum capaci-
tances of Cb are 150 and 86 nF respectively matching numerical simulation in (6.68)
for the same parameters with maximum relative error with calculated expression
equals 1.2176 %. In the case of α = −1, the equivalent memcapacitance is given as
(6.68) which matches the PSPICE simulation as shown in Fig. 6.22a, where the max-
imum and the minimum memcapacitances of Cb are 160 and 126.5 nF, respectively,
with maximum relative error equal to 0.3766 %. For the case of α = 0, the equivalent
memcapacitance which matches the PSPICE simulation as shown in Fig. 6.22c where
the maximum and minimum capacitance of Cb are 150 and 98.9 nF, respectively,
with maximum relative error equals 0.202 %. Moreover, the last case: α = ∞, the
equivalent memcapacitance matches the PSPICE simulation where the maximum and

0 1 2 3
0.08

0.1

0.12

0.14

0.16

Time (Sec)

C
eq

 (
 F

)

Calculated
Simulated

(a)

0 1 2 3
0.12

0.13

0.14

0.15

0.16

0.17

Time (Sec)

Calculated
Simulated

(b)

0 1 2 3
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Time (Sec)

Calculated
Simulated

(c)

0 1 2 3
0.135

0.14

0.145

0.15

0.155

Time (Sec)

C
eq

  (
nF

)

Calculated
Simulated

(d)

μ

C
eq

 (
 F

)
μ

C
eq

 (
 F

)
μ

Fig. 6.22 Instantaneous memcapacitance in parallel case: a α = 1, b α = −1, c α = 0, and
d α = ∞
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minimum capacitances are 150 and 137.6 nF, respectively, with maximum relative
error equals 0.218 %.

6.7 General Analysis of Series and Parallel Memcapacitors

In general the memcapacitors may not match so let us assume that each memcapacitor
has αk where α represents the matching factor and its polarity relative to the standard
memcapacitor (so α may be positive or negative). As a result, each memcapacitor
can be characterized by initial memcapacitance Co and mismatch factor α.

6.7.1 Series Memcapacitors

N series memcapacitors can be modeled using the σ -controlled memcapacitor model,
see Fig. 6.9. In the series case, the charge passing through the memcapacitors is equal
so they have the same time integral of charge σ(t). The inverse of the equivalent
memcapacitance is given as follows:

1

Ceq
=

N∑
j=1

(
1

Coj
+ α j k

′σ(t)

)
(6.69)

Let 1
Cot

= ∑N
j=1

1
Co j

and k′
t = k′ ∑N

j=1 α j . So 1
Ceq

= 1
Cot

+ k′
tσ(t). The equiva-

lent memcapacitor has parameters (Cot , k′
t ). For identical memcapacitors having the

same Co and α, the equivalent memcapacitor has Cot = Co/N and k′
t = Nk′.

Figure 6.23 shows perfect matching of the derived expressions with simulations
for N = 3, 5, and 10 series identical memcapacitors under sinusoidal excitation
v(t) = sin(2π t). As obvious in Fig. 6.23, the memcapacitance starts from Cot =
Co/N and behaves according to the derived formula. Furthermore, the slope of the
hysteresis depends on Cot and the area inside the loops decreases by increasing N.

In case of existing opposite polarities (anti-series) in N series identical memca-
pacitors, where α j is either 1 or −1, the inverse of the equivalent memcapacitance
is given as:

1

Ceq
=

N∑
j=1

(
1

Coj

)
+ (m − n)k′σ(t), (6.70)

where m and n are the number of forward- and reverse-connected memcapacitors,
respectively. So, the equivalent memcapacitor has Coeq = ∑N

j=1
1

Co j
and k′

t =
(m − n)k′. It is worth noting that for m = n, the equivalent memcapacitance is
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Fig. 6.23 Validation of PSPICE simulation (stars) and calculated expressions (solid lines) of series
memcapacitors for a transient equivalent memcapacitance, b corresponding charge–voltage hystere-
sis, and c equivalent memcapacitance for anti-series memcapacitors for {k, η, Cmin, Cmax , Co} =
{10 MC−1 · s−1, 1, 10 nF, 10µ F, 100 nF}, respectively

constant and equals to the sum of inverse initial memcapacitances. As it is clear from
Fig. 6.23c there is perfect matching between analytic expressions and the PSPICE
simulations for anti-series memcapacitors where at m = n = 3, the equivalent
memcapacitance is constant and equals Co

6 = 16.7 nF. But in case of m = 2 and
n = 3 the equivalent memcapacitor has Coeq = 20 nF and k′

t = −k′.

6.7.2 Parallel Memcapacitors

In case of N parallel memcapacitors, the voltage across the memcapacitors is equal
so the flux-controlled model makes the analysis easier in this case. The input charge
will be the sum of charges passing through every memcapacitor which is given as
follows:
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q(t) =
N∑

j=1

v(t)√
1

C2
o j

+ 2α j k′ϕ(t)
(6.71)

hence, the input memcapacitance is equal to

Ceq(t) =
N∑

j=1

Co j√
1 + 2α j k′C2

o j
ϕ(t)

(6.72)

For identical memcapacitors with the same initial memcapacitance Co and
polarities,

Ceq(t) = NCo√
1 + 2αk′C2

oϕ(t)
(6.73)

Thus, the equivalent memcapacitor has Cot = NCo and k′
t = k′/N 2.

Figure 6.24 shows perfect matching of the derived expressions with spice
simulation for N = 3, 5, and 10 parallel identical memcapacitors under sinusoidal
excitation v(t) = sin(2π t) for {k, Cmin, Cmax , Co} = {10 MC−1 · s−1, 10 nF,

10µF, 100 nF} respectively. As obvious in Fig. 6.24, the input memcapacitance starts
from Cot = NCo and the hysteresis loops area increases by increasing N when the
slope of the hysteresis equals Cot .
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Fig. 6.24 Validation of PSPICE simulation (stars) and calculated expressions of parallel memca-
pacitors (solid lines) for a transient input memcapacitance, and b charge–voltage hysteresis
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6.8 Charge-Controlled Memristor-Less Memcapacitor
Emulator

The memcapacitor is not commercially available for experimental research, so a lot
of emulators are introduced to emulate the behavior of the memcapacitor. There are
two different ways to emulate the memcapacitor. The first one by transforming the
memristor to memcapacitor using a R−C mutator where the resistor R is replaced
by the memristor to obtain memcapacitor. Thus, emulators are implemented using
CCII and memristor [22–24] which is not easily available or implemented with
memristor model using a light-dependent resistor (LDR) [25]. The alternative is
building a memcapacitor without using any other mem-elements as proposed in this
section [26].

In case of linear window function f (x) = 1. By integrating (6.16), the state
variable is given as

x = x0 + k

t∫

0

q(τ )dτ, (6.74)

where x0 represents the initial state of the memcapacitor which corresponds to the ini-
tial capacitance C0. By substituting (6.74) into (6.15), the instantaneous capacitance
of the memcapacitor is given as

1

C(t)
= 1

C0
+ k′

t∫

0

q(τ )dτ, k′ = k(
1

Cmin
− 1

Cmax
). (6.75)

When applying positive voltage to the memcapacitor, the charge sign is positive
then the capacitance increases so this is called incremental memcapacitor configura-
tion and if a negative voltage is applied to the memcapacitor, the charge is negative so
the capacitance decreases so this configuration is called decremental memcapacitor.

In Fig. 6.25, the q − v pinched hysteresis loop of the memcapacitor shrinks and
rotates decreasing the applied frequency because the capacitance is inversely pro-
portional to the integration of charge which is a function of the frequency.

Recently, a memristor emulator was introduced which emulates the behavior of
the memristor using off the shelf components to use it in memristive circuits [27].
By using a similar analogy between current and charge for the resistance and the
capacitor respectively, the model is developed.

The emulator can be designed to emulate the change of capacitor by changing
the applied voltage difference as shown in Fig. 6.26a. In Fig. 6.26b, the input current
across the capacitor is given as

iin = c0
d(vin − vFB)

dt
. (6.76)
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(a) (b)

Fig. 6.25 Numerical simulation of memcapacitor for k′, C0 and V0 are 1015 �/C,100 nF and
1 V, respectively. a Charge voltage pinched hysteresis for sinusoidal input, and b instantaneous
capacitance and charge of the memcapacitor at 10 Hz
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Fig. 6.26 The incremental configuration of the memcapacitor emulator a simplified circuit, and
b memcapacitor symbol

This relation could be rewritten as a function of charge and by comparing it with
(6.75) to get the required behavior:

vin = q(t)

Cin
+ vFB = q(t)

C0
+ k′q(t)

t∫

0

q(τ )dτ. (6.77)

Thus we need to implement the vFB term so we need a copy of the input current to
be integrated and then multiplied by its integration. In Fig. 6.27, the voltage across
the capacitor C1 is the integration of the mirrored input current then this voltage is
buffered to reduce the loading effect, a copy of VC1 is integrated again by the active
integrator then multiplied by VC1 to obtain VFB. Also the implementation needs an
inverting buffer because of the inversion of the active integrator. The feedback voltage
is given as:
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vFB = q(t)

C2
1

1

RC2

t∫

0

q(τ )dτ. (6.78)

In Fig. 6.27, the incremental memcapacitor is emulated using a single multiplier,
four opamps, resistors, capacitors, and a current controlled current source which
could be implemented using the same circuit in [27]. Furthermore, the decremental
memcapacitor could be implemented in the same way but without using the inverting
buffer in the feedback as there is a required inversion from the active integrator. The
previous circuit emulates the behavior of a charge-controlled memcapacitor where
k′ = 1

RC2
1C2

.

Figure 6.28 shows PSPICE pinched hysteresis at frequency 10 Hz which gives a
great matching with the numerical simulation for the same parameters.
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1
1CV
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1

(a) (b)

Fig. 6.27 Concept of the memcapacitor emulator. a Input capacitance as function of VFB, and
b emulating circuit

(a) (b)

Fig. 6.28 PSPICE simulation of the memcapacitor for R, C1, C2, C0, and V0 are
1 k�, 1µF, 1µF, 100 nF, and 1 V respectively at frequency = 10 Hz. a Charge–voltage pinched
hysteresis for sinusoidal input, and b instantaneous current, charge, and voltage of the simulated
memcapacitor
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Recently, more practical emulators have been introduced in [28, 29]. In these
emulation circuits, a memristive circuit, built by analog components, is transformed
into a memcapacitor emulator. In addition, these emulators are theoretically analyzed
and experimentally tested.
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Chapter 7
Memcapacitor Based Applications

7.1 Introduction

There are many applications based on the mem-elements such as in the chaotic
systems due to their nonlinearities. A third-order passive circuit with a voltage-
controlled memcapacitor was proposed in [1] to generate chaotic oscillation. More-
over, another circuit consists of conventional R, C, L and one with charge-controlled
memcapacitor to generate a chaotic oscillation was introduced in [2]. Recently, in
[3] an emulation for the memcapacitor is introduced using Field-Programmable Gate
Arrays (FPGAs) to realize two-element chaotic and hyperchaotic circuits.

The second application of the memcapacitor is modeling the neural networks. In
[4, 5], the authors proposed a CNN cell structure implementing the basic McCulloch-
Pitts neuron model, shown in Fig. 7.1a where the output (Y) is activated whenever
the sum of Wi weighted input signals ini exceeds the applied threshold Th. The cell
structure is shown in Fig. 7.1b [4] where each synapse cell consists of a single mem-
capacitance CM and three switches. The switch controlled by the template coefficient
ABi, j is used to enable the given synapse to influence the cell state VX , while the
start signal initiates the processing. Switches pr−si, j are used for connecting the
memcapacitor to the programming voltages Vpr1 and Vpr2. Since higher amplitude
pulses are usually required for programming, it is necessary to separate the memca-
pacitors from the rest of circuitry during the programming phase. The ABi, j and the
start-driven switches can serve this purpose. Since the output voltage VY is provided
by the cell output buffer (a relatively strong driver) it can be used directly for the
neighborhood inputs. This enables the synapse to have either a positive VY = VDD

or a negative VY = 0 contribution to the cell state.
In this chapter, two main applications are discussed. The first one is the

memcapacitor-based relaxation oscillators where the expressions for sustained oscil-
lation and oscillation frequency are introduced for linear and nonlinear models. In
addition, the memcapacitor-based bridge synapses is introduced with a mathematical
modeling of the bridge.

© Springer International Publishing Switzerland 2015
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Fig. 7.1 a McCulloch and Pitts neuron model, and b memcapacitor-based cell structure [5]

7.2 Resistive-Less Memcapacitor-Based Oscillator

The memristor-based reactance-less oscillator in addition to the oscillation concept
where the memristor replaces the capacitor in the relaxation oscillator was introduced
in [6], but the memristor and resistor are heavily power-consuming elements which
are not suitable for low-power applications such as biomedical applications and
system wake-up [7, 8]. So here, the resistor and the memristor will be replaced by
two memcapacitors in general as shown in Fig. 7.2a [9]. Four different cases can
be extracted from this generalized circuit depending on whether each element is a
capacitor or memcapacitor. The first case when two capacitors are used (where a
capacitor is a special case of memcapacitor at k = 0), the circuit cannot oscillate
since there no dynamic state may be defined where the voltage Vi is constant. The
other three cases have at least one memcapacitor where nonlinear dynamics is able
to change the system states.

(a) (b) (c)

Fig. 7.2 Resistive-less memcapacitor-based relaxation oscillator a circuit diagram, b state diagram
of the oscillator, and c transfer function of the two comparators and AND gate
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7.2.1 Mathematical Analysis

The following analysis assumes two memcapacitors are used which is the general
case as will be discussed later. In case of two series memcapacitors Cma and Cm b,
the rate of change in the reciprocal of memcapacitances are

1

C2
ma

dCma

dt
= −ηak′

aqa(t), (7.1a)

1

C2
mb

dCmb

dt
= −ηbk′

bqb(t), (7.1b)

where Cma and Cmb are the memcapacitances Ca and Cb, respectively, and k′ =
k(1/Cmin − 1/Cmax). The charge passing through them is the same so 1

C2
ma

dCm a
dt =

α 1
C2

mb

dCm b
dt where the proportionality constant α equals (ηa k′

a)/(ηb k′
b ) and repre-

sents the mismatch between the two memcapacitors. By integrating both sides, the
instantaneous memcapacitance Cma is given by:

1

Cma
= α

Cmb
+ 1

Cind
, (7.2)

where 1/Cind = 1/Cina − α/Cinb, Cina, and Cinb represent the initial memcapaci-
tance of the memcapacitors Ca and Cb, respectively. The charge passing through the
memcapacitors is the same qa (t) = qb (t) so Cma (Vo − Vin) = CmbVin and substi-
tuting by (7.2), the input voltage to the comparators can be calculated as follows:

Vi = Vo
Cind

(α + 1) Cind + Cmb
. (7.3)

At the critical values where Vi = Vp or Vn , the memcapacitance of Cmb is given
by Cbp or Cbn , respectively, where

Cbp = Cind

(
Voh − (α + 1) Vp

Vp

)
, (7.4a)

Cbn = Cind

(
Vol − (α + 1) Vn

Vn

)
. (7.4b)

where Vol and Voh are the minimum and maximum output voltages, respectively.

Starting from Vo = Voh (between points (a) and (b) shown in Fig. 7.2b, c),
dCmb

dt
is negative (for ηb = 1) which means that the Cm b decreases and Vin increases until
reaches to Vp (point (b)), the upper comparator would change its output to be Vol

and the output of the lower comparator is still Voh . Therefore, the output of the AND
gate is Vol and Vi inverted to −Vp (point (c)). So the output of upper comparator
changes to Voh , lower comparator changes to Vol and Vo is still Vol . As a result
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of that the memcapacitance Cmb increases and |Vi | decreases until reaches to |Vn|
(point (d)), which is negative, such that the lower comparator output is Voh and the
upper comparator is still Voh so the output of the AND gate will be Voh and Vi will
change to |Vn| (point (a)) and so on.

By increasing the input positive voltage Vi , the memcapacitance Cmb decreases
(the change in Cma is proportional to the change in Cmb depending on α) so for
Vp > |Vn|, Cmb < Cmn . Therefore, the necessary and sufficient condition for oscil-
lation is obtained from the restriction on the memcapacitance’s value Cmb which
should be within its boundary Cmin < Cbp < Cmb < Cbn < Cmax . So the conditions
for oscillation are given by

VpCmin

Voh − (α + 1) Vp
< Cind <

VnCmax

Vol − (α + 1) Vn
, (7.5a)

Cind
Voh − (α + 1) Vp

Vp
< Cind

Vol − (α + 1) Vn

Vn
. (7.5b)

The charge passing through the memcapacitor q(t) = (Ca Cb)/ (Ca + Cb ) Vo(t)
and substituting by (7.2), this charge can be written as:

q (t) = CmbCind

Cmb + (α + 1) Cind
V o (t) . (7.6)

Then, from (7.1), the rate of change in memcapacitance Cmb , which is not an
implicit function Cma , is

−
(

α + 1

C3
mb

+ 1

C2
mb

Cind

)
dCb

dt
= ηbk′

bVo(t). (7.7)

By integrating both sides relative to time, where the memcapacitance Cb changes
from Cbn to Cbp through Th .

∫ Cbp

Cbn

(
α + 1

C3
mb

+ 1

C2
mb

Cind

)
dCb = −ηbk′

b

∫ Th

0
Vo(t)dt . (7.8)

The time of positive half cycle Th is given by

Th = 1

2ηbk′
bVoh

(
1

Cbn
− 1

Cbp

) (
(α + 1)

(
1

Cbn
+ 1

Cbp

)
+ 2

Cind

)
. (7.9)
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A similar expression can be obtained for the time of negative half cycle TL ,
for Vo = Vol . So the oscillation frequency is

fo = 2Dηbk′
bVoh(

1
Cbp

− 1
Cbn

) (
(α + 1)

(
1

Cbn
+ 1

Cbp

)
+ 2

Cind

) , (7.10)

where D = |Vol | / (Voh + |Vol |) representing the duty cycle of the oscillator. Sub-
stituting by (7.4), the oscillation frequency is

fo = 2Dηb k′
b VohC2

ind

(
Voh − (α + 1) Vp

)2
(Vol − (α + 1) Vn)2(− (α + 1)

(
Voh Vn + Vol Vp

) + 2Voh Vol
) (

Vol Vp − Voh Vn
) . (7.11)

The oscillation frequency is linearly proportional to the mobility factor k of the
memcapacitor; so to obtain higher ranges of oscillation frequency, a high mobility
factor memcapacitor should be used. Moreover, the oscillation frequency is propor-
tional to C2

ind which can be controlled via the initial values of the memcapacitances
and the parameter α. Moreover, this oscillator can give low oscillation frequencies
where there are many parameters to control the frequency instead of an RC oscillator
which requires high capacitor and resistor values.

7.2.2 Special Cases

There are four cases similar to the mentioned cases in series memcapacitors, but here
we are interested in two cases only which are α = 0, and α = ∞.

7.2.2.1 C-MC Oscillator Configuration

In this case ka = 0 so Ca is a capacitor and Cmb is a memcapacitor with ηb = 1
which should be positive such that the oscillation frequency is positive as shown in
Fig. 7.3a. The conditions for oscillation and the oscillation frequency are reduced to

iV

bmC

oV
pV

nV

aC

(a)

iV

bC

oV
pV

nV

am
C

(b)

Fig. 7.3 Oscillator topologies a α = 0, and b α = ∞
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Cmin
Vp

Voh − Vp
< Ca < Cmax

Vn

Vol − Vn
, Vp > Vn

Voh

Vol
. (7.12a)

fo = 2Dk′
b VohC2

a

(
Voh − Vp

)2
(Vol − Vn)2(

Vp Vol − Vn Voh
) (

2Voh Vol − Voh Vn − Vol Vp
) . (7.12b)

The maximum and minimum oscillation frequencies can be obtained from (7.12)
by replacing Ca with its minimum and minimum value. They are given by

fomax = 2Dk′
b Voh C2

max V 2
n

(
Voh − Vp

)2

(
Vp Vol − Vn Voh

) (
2Voh Vol − Voh Vn − Vol Vp

) , (7.13a)

fomin = 2Dk′
b Voh C2

min V 2
p (Vol − Vn)2

(
Vp Vol − Vn Voh

) (
2Voh Vol − Voh Vn − Vol Vp

) . (7.13b)

7.2.2.2 MC-C Oscillator Configuration

This case is the opposite of the previous case where k′
b = 0 so Cb is a capacitor and

Cma is a memcapacitor with ηa = −1 as shown in Fig. 7.3b. The memcapacitance
Cma increases for increasing the input voltage Vi so for Vp > Vn , Cap > Can .
Substituting by Cind, ηbk′

b = ηak′
a/α in (7.6) and (7.12) and by taking the limit at

α tends to ∞. The condition for oscillation and oscillation frequency are given as
follows:

Cmin
Vol − Vn

Vn
< Cb < Cmax

Voh − Vp

Vp
, Vp > Vn

Voh

Vol
. (7.14a)

fo = 2Dk′
a VohC2

b V 2
p V 2

n(
V 2

p V 2
ol − V 2

n V 2
oh

) , (7.14b)

where the maximum and minimum oscillation frequencies are

fomax = 2Dk′
bVoh C2

max V 2
n

(
Voh − Vp

)2

(
V 2

p V 2
ol − V 2

n V 2
oh

) , (7.15a)

fomin = 2Dk′
a Voh C2

min V 2
p (Vol − Vn)2

(
V 2

p V 2
ol − V 2

n V 2
oh

) . (7.15b)

Figure 7.4 shows the maximum and minimum obtained oscillation frequency for
the two cases α = 0 and α = ∞ where the memcapacitor parameters Cmin, Cmax

and k are 10 nF, 10µF and 10 MC−1s−1, respectively. Figure 7.4a, b show the effect
of changing Vp and Vn for Vn = −0.5 V and Vp = 0.75 V, respectively, where
Ca = 1µF for α = 0 and Cb = 1µF for α = ∞. The oscillation frequency
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Fig. 7.4 Numerical simulation for α = 0 and α = ∞ for Voh and Vol are 1 V and −1 V

increases for increasing series capacitance (Ca for α = 0 and Cb for α = ∞) when
using the same parameters. The oscillation frequency in case of α = ∞ is higher than
in case of α = 0 for the same working region given from conditions for oscillation
as shown in Fig. 7.4c.

7.2.3 Simulation Verification

Due to the lack of memcapacitor samples and the fact that they are not commercially
available, the SPICE model of the memcapacitor is used which was proposed in
[10]. The simulation was performed for the two different cases where memcapacitor
parameters Cmin, Cmax and k are 10 nF, 10µF and 107 C−1s−1, respectively. The
oscillator is designed to satisfy the conditions for oscillation where Vol , Voh, Vn and
Vp are −1, 1,−0.5 and 0.75 V, respectively.

The solid curve of Fig. 7.5 shows the transient response of this oscillator for α = 0
where the oscillation frequency fo = 0.8325 Hz for Ca = 0.1µF matching the
calculated frequency from (7.13). The memcapacitance Cmb changes from 0.0333

Fig. 7.5 Transient response
of output voltage for α = 0
(solid line) and α = ∞
(dotted line)
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to 0.1µF. Moreover, the dotted curve in Fig. 7.5 shows the transient response for
α = 8 where the oscillation frequency = 4.496 Hz for Cb = 0.1µF matching that
calculated from (7.15). The memcapacitance Cma changes from 0.1 to 0.3µF.

7.2.4 Stored Energy

The energy stored in the memcapacitor is discussed in [11], which is defined as

U =
∫ t

to
I V dτ, (7.16)

and the current I = d(CV )/dt = ĊV + CV̇ , where C is the total capacitance
((CaCb)/(Ca + Cb)), so

U =
∫ t

to
(ĊV 2 + CV V̇ )dτ = U1 + U2. (7.17)

In order to get the energy stored by cycle, let t = T + to. Across period T , the
voltage is Voh for to < t < to + Th so the memcapacitance Cmb changes from Cbn

to Cbp as discussed in the manuscript. And, when to + Th < t < to + T , the output
voltage is Vol and memcapacitance Cmb changes from Cbp to Cbn , so

U1 =
∫ t

to
(ĊV 2

o )dτ = V 2
o

∫ t

to

dC

dτ
dτ = V 2

o

∫ C2

C1

dC. (7.18)

Therefore,

U1 = V 2
oh

∫ Cnegedge

Cposedge

dC + V 2
ol

∫ Cposedge

Cnegedge

dC

= V 2
oh

(
Cnegedge

− Cposedge

)
+ V 2

ol

(
Cposedge

− Cnegedge

)
, (7.19)

where Cnegedge
and Cposedge

are the negative edge and positive edge transition capac-
itances. The negative edge and positive edge transition capacitances

Cnegedge
= CbpCind

Cbp + (α + 1)Cind
, Cposedge

= CbnCind

Cbn + (α + 1)Cind
. (7.20)
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Here, in the used oscillator topology Voh = −Vol so U1 = 0 but for U2, the
derivative of the output voltage is impulses so

U2 =
∫ t

to
CV V̇ dτ = Cnegedge

(Voh − Vol)Voh + Cposedge
(Vol − Voh)Vol . (7.21)

The total capacitance is given by

C(t) = CmbCind

Cmb + (α + 1)Cind
. (7.22)

So the total stored energy is given by

U = U2 = CbpCind

Cbp + (α + 1)Cind
(Voh −Vol)Voh + CbnCind

Cbn + (α + 1)Cind
(Vol −Voh)Vol .

(7.23)
For Vol = −Voh ,

U = 2CindV 2
oh

(
Cbp

Cbp + (α + 1)Cind
+ Cbn

Cbn + (α + 1)Cind

)
= Const. (7.24)

7.3 Boundary Effect on Memcapacitor-Based Oscillator

In this subsection, the effect of the nonlinear model (p = 1) on the oscillation
frequency where f (x) = 4x(1 − x) is discussed.

7.3.1 C-MC Oscillator Configuration

In this case, the oscillation concept is traced as was discussed in Sect. 7.2.2.1, where
the values of Cmp and Cmn are given by the same relations in (7.4). The necessary
and sufficient conditions for oscillation are obtained as in (7.12). Besides, the rate of
change of the parameter x is

dx

dt
= −k

Vo

Dm + Da
f (x) = −4kx(1 − x)

Vo

Dm + Da
, (7.25)

where Da = C−1
a and Dm = C−1

m . Substituting by Dm , then

(
Dmax + Da

x
+ Dmin + Da

1 − x

)
dx

dt
= −4kVo. (7.26)
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By integrating the left-hand side term from xmn (corresponding to Cmn) to xmp (cor-
responding to Cmp)and the right-hand side term from 0 to TH . After integration and
performing some simplifications, the time of positive half cycle TH is given by

TH =
(Dmax + Da)ln

(
xmp
xmn

)
− (Dmin + Da)ln

(
1−xmp
1−xmn

)

4kVoh
. (7.27)

Substituting by xmn and xmp. The oscillation frequency is given as follows:

fo = 2kVoh

(Dmax + Da)ln
(

Dmp−Dmax
Dmn−Dmax

)
+ (Dmin + Da)ln

(
Dmin−Dmn
Dmin−Dmp

) , (7.28)

where Dmn = C−1
mn and Dmp = C−1

mp .

7.3.2 MC-C Oscillator Configuration

Moreover, in this case, the necessary and sufficient conditions for oscillation also
obtained as in (7.14). By doing the same aforementioned steps, the oscillation fre-
quency in case of nonlinear dopant model (p = 1) is given by

fo = 2kVoh

(Dmax + Db)ln
(

Dmn−Dmax
Dmp−Dmax

)
+ (Dmin + Db)ln

(
Dmin−Dmp
Dmin−Dmn

) . (7.29)

7.3.3 Results and Discussion

In the aforementioned expressions, the oscillation frequency is always linearly pro-
portional to the doping factor k of the memcapacitor; so for more higher ranges of
oscillation frequency, more high doping factor memcapacitors should be used. Also,
as clear from (7.28) and (7.29), the oscillation frequency in linear case is propor-
tional to the square of series capacitance Ca or Cb that are bounded by Camin and
Camax or Cbmin and Cbmax obtained from (7.12) and (7.14), respectively. However, in
case of nonlinear model, the oscillation frequency tends to zero at minimum and
maximum series capacitance as shown in Fig. 7.6 and has peaking in at certain series
capacitance. Figure 7.6 is plotted for Cmin, Cmax, k, Vol , Voh, Vn , and Vp equal to
10 nF, 10µF, 10 MC−1S−1, −1, 1, 0.5, and 0.75 V, respectively. Moreover, MC-C
configuration gives higher frequency than C-MC configuration for linear and nonlin-
ear models in the common region [Camin , Cbmax ] except a narrow region in nonlinear
case as shown in Fig. 7.6.
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In case of using 100 nF series capacitance, the oscillation frequency in case of
MC-C configuration is higher than in case of C-MC configuration as clear in Fig. 7.6.
Figure 7.7a shows the transient response for nonlinear dopant drift model (p = 1)
where the oscillation frequency = 0.512 Hz matching that calculated from (7.28)
where the memcapacitance Cm changes from 0.0333 to 0.1µF. Moreover, in MC-C
oscillator configuration, the obtained oscillation frequency is 1.0437 Hz matching the
calculated from (7.29) as shown in Fig. 7.7b. But here, memcapacitance Cm changes
from 0.1 to 0.3µF.

It is worth to be noted that the memcapacitor behavior differs from memristor
behavior where the memristor decreases with positive applied voltage but memcapac-
itor increases so the conditions for oscillations are reversed. Also expression for the
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Fig. 7.7 PSPICE simulation of nonlinear model (p = 1). a C-MC oscillator and b MC-C oscillator
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oscillation frequency is the near the same but replace R with 1/C in memristor-based
oscillator expression to get memcapacitor-based oscillator. Moreover, no power con-
sumption in memcapacitor makes the memcapacitor-based oscillators suitable for
low-power applications.

7.4 Memcapacitor Bridge Synapses

The idea of memcapacitor-based synapses was introduced in [12, 13] which is similar
to the memristor synaptic circuit proposed in [14]. The synaptic bridge circuit consists
from four memcapacitors connected in two parallel branches; each branch has two
series memcapacitors connected with reversed polarity as shown in Fig. 7.8. The two
parallel branches are connected between excitation source and ground. This bridge
has two identical memcapacitors for instance; Dm1 and Dm4 are identical having the
same initial memcapacitance and same polarity also Dm2 and Dm3 are identical. In
case of exciting the bridge, the memcapacitance of each pair of memcapacitors (e.g.,
(Dm1, Dm3)) increases or decreases depending on the sign of the applied signal with
the same rate but the other pair decreases or increases, respectively. The midpoint
voltage (Vp or Vn) in a branch changes inversely with the midpoint voltage (Vn or
Vp) of the other branch; for example, Vp increases, Vn decreases, and vice versa.
These point voltages with respective to the input are given by

Vp = Dm2

Dm1 + Dm2
Vin (7.30a)

Vn = Dm4

Dm3 + Dm4
Vin (7.30b)

Fig. 7.8 Memcapacitor
bridge circuit [12, 13]
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The differential output voltage of the bridge is the difference between Vp and Vn and
is given by

Vout = Vp − Vn =
[

Dm2

Dm1 + Dm2
− Dm4

Dm3 + Dm4

]
Vin (7.31)

which can be rewritten as a relationship Vout = ψVin, where ψ represents the synaptic
weight and is given by

ψ = Dm2

Dm1 + Dm2
− Dm4

Dm3 + Dm4
(7.32)

The positive/negative synaptic weight is represented if the previous equation is
greater/less than zero, respectively. As discussed before when the memelastances
Dm1 and Dm4 are equal and also Dm2 and Dm3 are equal, then the input elastance of
each branch are equal so Dm1 + Dm2 = Dm3 + Dm4. Applying a current pulse as an
input, the input charge q(t) is divided equally to the two branches and the input volt-
age is Vin = (Dm1 + Dm2)q(t)/2 and the midpoint voltages are Vp = 0.5Dm2q(t),
and Vn = 0.5Dm4q(t). Consequently, the synaptic weight is given by

ψ = Vp − Vn

Vin
= Da − Db

Da + Db
(7.33)

where Da = Dm2 = Dm3 and Db = Dm1 = Dm4. The memcapacitor bridge circuit
is connected to the differential amplifier with three transistors as shown in Fig. 7.9
to implement the complete synaptic circuit where the differential amplifier performs
the voltage-to-current conversion.

Fig. 7.9 Memcapacitor
bridge synaptic circuit
[12, 13]
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7.4.1 Mathematical Analysis of Memcapacitor Bridge

The used model of the current-controlled memcapacitor was introduced by Biolek
et. al [10] where the reciprocal of the memcapacitance D(t) is given by

D(t) = Dmin + x(t)(Dmax −Dmin), D ∈ [Dmax,Dmin] (7.34a)
dx

dt
= ηkq(t) f (x) (7.34b)

where x(t) represents the state variable of the memcapacitor, Dmax and Dmin are
the inverse memcapacitances of Cmin and Cmax, respectively. The parameter k is the
mobility factor and the window function f (x) is given by f (x) = 1 − (2x − 1)2p

based on Joglekar’s window function [10], andη represents the polarity of the memca-
pacitor. The analyses of series and parallel memcapacitors were discussed in details
in the previous section for voltage excitation and for linear memcapacitor model
p = ∞. However, the analysis in [13] was based on the highest nonlinear case when
p = 1, therefore, f (x) = 4x(1 − x).

7.4.1.1 Two Anti-Series Memcapacitor Analysis

In order to simplify the analysis, the solution of the memcapacitance is performed
on the state variable and then transformed to the memcapacitance using (7.34). The
state variables of the two memcapacitors are given by

dxa

dt
= 4ηakqa(t)xa(1 − xa) (7.35a)

dxb

dt
= 4ηbkqb(t)xb(1 − xb) (7.35b)

In case of series memcapacitors, qa(t) = qb(t) = q(t) where q(t) = ∫ t
0 i(τ )dτ . By

separating the variables and integrating both sides of (7.35a) relative to time

∫ xa

xoa

(
1

xa
+ 1

1 − xa

)
dxa = 4ηak

∫ t

0
q(τ )dτ (7.36)

where xoa is the initial state of Da . After performing previous integrations and doing
some simplifications, the state variable of Da is given by

xa = xoa

xoa + (1 − xoa )e
−4ηakσ(t)

, xa ∈ [0, 1] (7.37)

where σ(t) is the time integral of the charge passing through memcapacitor. Similarly,
the state variable of Db is given by
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xb = xob

xob + (1 − xob )e
−4ηbkσ(t)

, xb ∈ [0, 1] (7.38)

where xob is the initial state of Db. The initial state variables are given by

xoa = Doa − Dmin

Dd
, xob = Doa − Dmin

Dd
(7.39)

where Doa and Dob are the initial memelastances of Da and Db, respectively. Sub-
stituting by xa and xb to get Da and Db

Da(t) = Dmin + Dd(Doa − Dmin)

Doa − Dmin + (Dmax − Doa )e
−4ηakσ(t)

(7.40a)

Db(t) = Dmin + Dd(Dob − Dmin)

Dob − Dmin + (Dmax − Dob)e
−4ηbkσ(t)

(7.40b)

where Dd = Dmax−Dmin. The voltage across the two memcapacitors due to the exci-
tation current is V (t) = (Da + Db)q(t). The difference and sum of memelastances
are given as follows:

Da − Db = Dd(xa − xb) (7.41a)

Da + Db = 2Dmin + Dd(xa + xb) (7.41b)

In order to obtain maximize the linear region, a symmetric behavior should be
obtained. So the initial state variables are related together by xob = 1 − xoa . Also,
the polarities of memcapacitor are reversed so ηb = −ηa = η. The weight function
ψ(t) is given by

ψ(t)= Dd
[
(Doa − Dmin)

2e−4ηkσ(t) − (Dmax − Doa)2e4ηkσ(t)
]

2[Dmin+Dmax][Doa−Dmin][Dmax−Doa]+(Dmax−Doa )2(3Dmin−Dmax)e4ηkσ(t)+(Doa−Dmin)2(Dmin+Dmax)e−4ηkσ(t)

(7.42)

Practically, the memcapacitor has an initial capacitance depending on fabrication
so to ensure the linear region, the memcapacitance should be changed to the middle
point. The circuit published in [15] can be used to do this operation. Moreover, it is
clear that applying a pulse to the bridge will change the initial memcapacitances so
this pulse should be repeated with the opposite polarity to remove the effect of the
initial pulse. Doublet generator circuit can be used to do this rule [16] which will
prevent memcapacitor variations. This doublet circuit gives high speed and similar
area between the positive and the negative cycles.
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7.4.1.2 Maximum Pulse Period

It is required to apply a strong pulse such that the memcapacitance changes its state.
From (7.37), the time integral of charge σ(t) for one memcapacitor, as function of
the state variable, is given by

σ(t) = 1

4ηk
ln

(
x(1 − xo)

xo(1 − x)

)
(7.43)

where xo is the initial state variable and η memcapacitor polarity. As obvious from
the previous equation that xo should not equal either 0 or 1 where the memcapacitor
cling to one of its boundaries where an infinite σ is required to change this state
which is not practical. Therefore, let us assume that minimum and maximum state
values are 0.01 and 0.99. The needed σ equal 2.298ηk(C.S). In case of applying a
unit pulse current with period T and amplitude Io as input to synaptic bridge circuit.
The current is divided equally into the two branches. So, the current passing through
each memcapacitor is mathematically defined as i(t) = 0.5Io(u(t) − u(t − T )) so
the time integral of the charge is given by

σ(t) = Io

4
t2, t ∈ [0, T ] (7.44)

Thus, the maximum σ equals IoT 2/4. The required pulse period Tp is needed such
that the memcapacitor changes its state completely as function of initial memelas-
tance

Tp =
√

1

k|Io| ln

(
(D − Dmin)(Dmax − Do)

(Do − Dmin)(Dmax − D)

)
(7.45)

Figure 7.10 shows the pulse width Tp as a function of the theoretical maximum
memelastance divided by the maximum memelastance when k = 10 M(CS)−1 and
Io = 1µA. It is obvious that the time increases as the theoretical maximum meme-
lastance increases, and the pulse width tends to ∞ at Dth/Dmax = 1.

7.4.2 Weight Programming

Equation (7.33) defines the synaptic weighting operation in the memcapacitor bridge.
The synaptic weight processing was performed with very small or narrow pulses so
that their effect on the change in the memcapacitor was negligible. By contrast, the
pulses for synaptic weight programming must be strong enough to change the charge
operating point of the memcapacitor. If the synaptic weight ψ is larger than 0, then
it is called positive synaptic weight and its condition is

Da > Db (7.46)
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Fig. 7.10 Pulse width
versus changing the initial
memelastance
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By substituting (7.40) and simplifying the expression at the same discussed condi-
tions (ηb = −ηa = η and xoa = 1 − xob ), the condition of positive synaptic weight
is reduced to

σ(t) <
1

4ηk
ln

(
Doa − Dmin

Dmax − Doa

)
(7.47)

Similarly, the conditions for negative weight or zero synaptic weight are Da < Db

and Da = Db, respectively, and can be reduced to

σ(t) >
1

4ηk
ln

(
Doa − Dmin

Dmax − Doa

)
(7.48)

and

σ(t) = 1

4ηk
ln

(
Doa − Dmin

Dmax − Doa

)
, (7.49)

respectively.
Figure 7.11 shows the regions in which the synaptic weight is either positive,

negative, or zero for k = 10 M(CS)−1, Cmin = 100 nF, and Cmax = 10µF. The
linearity of the memcapacitor bridge circuit was discussed in detail in [12] and is
discussed briefly in the next section.

7.4.3 SPICE Validation

Simulations were performed using memcapacitor SPICE model, proposed in [10]
with the following parameters k = 10 M(CS)−1, Cmax = 10µF, and Cmin = 100 nF.
Moreover, the initial state variable is assumed to be either 0.01 or 0.99 where the
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Fig. 7.11 Synaptic weight
regions

corresponding initial memcapacitances are 9.99µF and 100 nF. And, the excitation
source is current pulse signal with amplitude Io = 1µA and pulse width Tp = 2 S.

Mathematical analysis of memcapacitor bridge circuit is verified using SPICE
simulations as shown in Fig. 7.12 for p = 1 showing a perfect matching. As obvious
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Fig. 7.12 PSPICE verification for memcapacitances, voltage drop across memcapacitors, and the
synaptic weight
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in Fig. 7.12d, the linearity of the synaptic weight in three regions, beginning area,
center area, and ending area, where the weight is almost constant at the beginning
and ending areas and increases in the center area.
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Chapter 8
Meminductor: Modeling, Analysis,
and Emulators

8.1 Introduction

The third mem-element is the meminductor (short for memory + inductor), which
was postulated for the first time in [1] as one of the higher order elements. Then, Chua
presented at the opening lecture of the First Memristor and Memristive Symposium
held at UC Berkeley in 2008 [2]. The meminductor represents the link between charge
q(t) and time integral of the flux ρ(t). Figure 8.1 shows the number of publications
based on the meminductor versus the last six years. In 2009, Di ventra, Pershin
and Chua defined the general models for the meminductive systems in [3] which
described the nth-order current-controlled meminductive system

ϕ(t) = Lm(x, i, t)i(t), (8.1a)

ẋ = f (x, i, t). (8.1b)

where Lm is the meminductance and the nth-order flux-controlled meminductive
system is defined as follows:

I (t) = L−1(x, ϕ, t)ϕ(t), (8.2a)

ẋ = f (x, ϕ, t). (8.2b)

with L−1 being the inverse meminductance. A subclass of current-controlled memin-
ductor can be defined by reducing (8.1) to

ϕ(t) = L

[∫ t

to
I (τ )dτ

]
I (t), (8.3)
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Fig. 8.1 Number of
publications versus the last
six years based on the
engineering village database
(December 2014)
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and a flux-controlled meminductor subclass by reducing (8.2)

I (t) = L−1
[∫ t

to
ϕ(τ)dτ

]
ϕ(t). (8.4)

The power and the stored energy in the meminductive systems [3] are given by

PL = VL(t)IL(t) (8.5a)

UL =
∫ t

to
VL(τ )IL(τ )dτ (8.5b)

VL and IL are the voltage across the meminductive system and input current, respec-
tively.

Recently, a realization for meminductor is introduced in [4]. The authors demon-
strate pinched hysteretic magnetic flux–current signals at room temperature. This
device is built based on the spin hall magnetoresistance effect in several nanometer-
thick thin films, exhibiting the nonvolatile memorizing property and magnetic energy
storage ability of the meminductor.

But, the first theoretical meminductor model is build by Biolek et al. based on the
idea of a simple electromechanical system [5], shown in Fig. 8.2. The coil has two
terminal; one fixed (on the left) and one sliding terminal, which can be moved within
limits defined by distances lmin and lmax from the fixed terminal. The slider positions
lmin and lmax determine the limiting values of the coil inductances Lmin and Lmax.
So, the state variable x , which enclosed between 0 and 1, is defined as

Fig. 8.2 Electromechanical
model of the
meminductor [5]

max

min



8.1 Introduction 209

x = l − lmin

lmax − lmin
. (8.6)

The coil inductance L is, roughly speaking, proportional to the square of the
number of turns N . So, the meminductance introduced by Biolek’s Lm is enclosed
between minimum meminductance Lmin and maximum meminductance Lmax which
is given as follows:

Lm(t) ≈
(√

Lmin + x(t)(
√

Lmax − √
Lmin)

)2
, (8.7)

where the rate of change in the state variable x(t) is given by

dx

dt
= KLi(t), (8.8)

which is directly proportional to the mobility factor KL . The Spice model of the
mem-elements is introduced in [6, 7] and can be found in Appendix A.

Mathematical modeling of mem-elements is essential to study their behavior in
order to easily implement them in circuits where different current and voltage sig-
nals are applied. These analyses were introduced for the memristor in [8] and more
definitions were defined for mem-elements like saturation time and mem-element
range in [9].

8.2 Mathematical Representations of Time-Invariant
Meminductor

Three mathematical representations of time-invariant meminductors can be defined.
Each representation has two forms; current-controlled meminductor or flux-
controlled meminductor. These three representations can be briefly presented as
follows:

8.2.1 Extended Meminductor

An extended meminductor is defined as

• Current-controlled extended meminductor

ϕ = L(x, i)i, (8.9a)

dx

dt
= f (x, i), (8.9b)

where limi→0 L(x, i) �= ∞.
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• Flux-controlled extended meminductor

i = L−1(x, ϕ)ϕ, (8.10a)

dx

dt
= g(x, ϕ), (8.10b)

where limϕ→0 L−1(x, ϕ) �= ∞.

8.2.2 Generic Meminductor

A generic meminductor is defined in

• Current-controlled generic meminductor

ϕ = L(x)i, (8.11a)

dx

dt
= f (x, i), (8.11b)

• Flux-controlled generic meminductor

i = L−1(x)ϕ, (8.12a)

dx

dt
= g(x, ϕ), (8.12b)

8.2.3 Ideal Meminductor

An ideal meminductor is defined as

• Current-controlled ideal meminductor

ρ = ρ1(q). (8.13)

Or

ϕ = L(q)i, (8.14a)

dq

dt
= i, (8.14b)
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where L(q) = dρ1(q)
dq is called meminductance in Henry (H ). The constitutive

relation of current-controlled ideal meminductor can be recovered to ρ1(q) =
ρ0 + ∫ t

0 L(q)dq where ρ0 is an arbitrary constant.
As obvious that Biolek’s meminductor model, presented in the previous section,
belongs to the ideal model representation.

• Flux-controlled ideal meminductor

q = q1(ρ). (8.15)

Or

q = L−1(ρ)v, (8.16a)

dρ

dt
= v, (8.16b)

where G(ρ) = dq1(ρ)
dρ

is called inverse meminductance in inverse Henry (H−1).
The constitutive relation of flux-controlled ideal meminductor can be recovered

to q1(ρ) = q0 + ∫ t
0 C(ρ)dρ where q0 is an arbitrary constant.

8.3 Mathematical Model of Meminductor

In the linear circuit theory, the voltage across the conventional inductor is proportional
to the rate of change of the current passing through the inductor and the proportional
constant is the known inductance. However, the inductance of the meminductor
was given by (8.7), and it is a function of the state variable x [9]. Therefore, the
implicit relation between the meminductance and the current can be obtained by
differentiating (8.7) with respect to time and substituting (8.8)

1

2
√

Lm(t)

d Lm(t)

dt
= KL(

√
Lmax − √

Lmin)i(t). (8.17)

By integrating both sides with respect to time, the meminductance is given by

Lm(t) = (
√

Lo + K ′
Lq(t))

2
, (8.18)

where K ′
L=KL(

√
Lmax − √

Lmin), q(t) = ∫ t
−∞ i(τ )dτ and Lo represents the initial

meminductance. The instantaneous meminductance is a quadratic equation of the
charge q(t). The voltage can be defined as the rate of change of the flux, so the
voltage across the meminductor is given by:

VL(t) = dϕ(t)

dt
= d

dt
(L(t)iL(t)) = L(t)

diL(t)

dt
+ iL(t)

d L(t)

dt
. (8.19)
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Then the voltage is given by:

VL(t) = 2K ′
L

√
L(t)i2

L(t) + L(t)
diL(t)

dt
. (8.20)

By substituting into (8.6), the power and energy are given by:

PL(t) = 2K ′
L

√
L(t)i3

L(t) + L(t)iL(t)
diL(t)

dt
(8.21a)

UL(t) =
∫ t

to

(
2K ′

L

√
L(τ )i3

L(τ ) + L(τ )iL(τ )
diL(τ )

dτ

)
dτ (8.21b)

8.4 Meminductor Response Under Current Excitations

In this section, we investigate the response of the meminductor under step (DC), sinu-
soidal, and periodic current signals. In addition some fundamentals were introduced
such as saturation time, power, and energy [9].

8.4.1 Step Response

A DC current is mathematically defined by the step current i(t) = iDC u(t), where
u(t) is the unit step function and the amplitude iDC may be positive or negative [10].
By substituting into (8.18), the meminductance is given by

Lm(t) = (
√

Lo + K ′
LiDC t)

2
. (8.22)

The meminductance increases when iDC is positive until the meminductance
reaches its maximum Lmax. However in case of negative iDC , the meminductance
decreases until it reaches its minimum Lmin as shown in Fig. 8.3a, b for Lmin, Lmax, Lo

and KL are equal to 0.1, 10, 1 mH, and 10 A−1s−1, respectively (these values are
used throughout the chapter).

From the previous discussion, there is a certain time duration in which the memin-
ductance reaches its boundary either maximum or minimum depending on the sign
of the input voltage so the saturation time should be calculated. The saturation time
is given by

tsat =
√

Lbd − √
Lo

K ′
LiDC

, (8.23)
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(a) (b)

Fig. 8.3 Step response of meminductor due to DC current excitation for a positive current, and b
negative current

where Lbd represents the boundary meminductance at either Lmax or Lmin depending
on the polarity of the applied current. The maximum saturation time is reached when
the meminductor changes its state from the minimum to maximum values or vice
versa. Therefore, the maximum saturation time is

tsatmax =
√

Lmax − √
Lmin

K ′
L |iDC | = 1

KL |iDC | , (8.24)

where the maximum saturation time is inversely proportional to the amplitude and
mobility factor of the meminductor.

The time derivative of the current step signal is impulse signal with amplitude
iDC . Hence, the voltage across the meminductor is

VL(t) = VL1(t) + VL2(t) = LoiDCδ(t) + iDC
d L(t)

dt
, (8.25)

where VL1(t) and VL2(t) are the voltage across the meminductor due to the change
of current and meminductance, respectively. So the power and energy for Lmin <

L < Lmax are given by

PL(t) = PL1(t) + PL2(t) = Loi2
DC u(t)

du(t)

dt
+ i2

DC
d L(t)

dt
(8.26a)

UL(t) =
∫ t

to
PL1(τ )dτ +

∫ t

to
PL2(τ )dτ = UL1(t) + UL2(t) (8.26b)

UL1(t) = 1

2
Lo(i

2
DC − i2

o ) (8.26c)

UL2(t) = i2
DC (L(t) − Lo) (8.26d)

UL(t) = 1

2
i2
DC (2L(t) − Lo) − 1

2
i2
o Lo, (8.26e)
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where io is the initial current in the meminductor. The terms PL1(t) and UL1(t)
are the instantaneous power and energy due to the current rate of change which
is identical to the conventional inductor, however the terms PL2(t) and UL2(t)
are the instantaneous power and energy due to the meminductance rate of change
which is the added part in the meminductor. Under zero initial current io = 0, the
total energy will be positive (charging stage) and negative (discharging stage) when
L(t) > 0.5Lo and L(t) < 0.5Lo, respectively. The energy stored in the meminduc-
tor increases/decreases for positive/negative input step until meminductance reaches
to Lmax or Lmin, respectively.

8.4.2 Sinusoidal Response

The inductor has a linear relation between flux ϕ(t) and current i(t) and a circular
relation between voltage V (t) and current i(t). But, the meminductor has a pinched
hysteresis between flux ϕ(t) and current i(t) as shown in Fig. 8.4a and a nonlin-
ear persimmon-shaped relation between voltage V (t) and current i(t) as shown in
Fig. 8.4b. The pinched hysteresis shrinks until it becomes linear by increasing the
applied frequency and the elliptic relation expands till it becomes circular as shown
in Fig. 8.4a, b, respectively. As obvious from Fig. 8.4b, the I–V hysteresis have an
even symmetry around the voltage axis.

Assuming that a single tone current is applied on the meminductor given by
i(t) = iosin(ωot), and then by substituting into (8.18), the meminductance is given by

Lm(t) =
(√

Lo + 2K ′
L

i0

ωo
sin2

(
ωot

2

))2

. (8.27)
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Fig. 8.4 Sinusoidal response of meminductor for different frequencies a flux–current hysteresis,
and b current–voltage hysteresis
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The meminductance range decreases until it reaches a value of zero where the
meminductance will not change its initial value Lo by increasing the applied fre-
quency as shown in Fig. 8.5 at Lo = 1 mH for positive or negative applied current.

Substituting into (8.20), the voltage across the meminductor is given by:

VL(t) = 2K ′
Li2

o

(√
Lo + 2K ′

Lio

ωo
sin2

(
ωot

2

))
sin2(ωot)

+ io

(√
Lo + 2K ′

Lio

ωo
sin2

(
ωot

2

))2

cos(ωot) (8.28)

when ωo tends to infinity, the meminductor voltage equation tends to VL(t) =
ωo Loiocos(ωot). Figure 8.6 shows the transient power and stored energy into the
meminductor for sinusoidal input with amplitude io = 10 mA and frequency fo =
0.1 Hz. It is obvious that the instantaneous stored energy equals zero after a complete
period which means that the average consumed power is zero.
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Fig. 8.6 Transient numerical simulation for power and energy of meminductor under sinusoidal
excitation
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8.4.3 Periodic Signals Response

Any periodic signal can be expanded using Fourier series expansion as a composite
of summation of DC signal and sinusoidal signals (sines and cosines)

i(t) = ao +
∞∑

n=1

ancos(nωot) + bnsin(nωot), (8.29)

where ao represents the average of the applied signal (DC component) and an and bn

represent the amplitude of the sinusoidal signals with multiple frequencies. Substi-
tuting by (8.29) into (8.18), the instantaneous meminductance is given by

Lm(t) =
(√

Lo + k′
L

(
aot +

∞∑
n=1

1

nωo

(
ansin(nωot) + 2bnsin2

(
nωot

2

))))2

.

(8.30)

The DC component is represented by ao which causes the meminductor to sat-
urate reaching one of its boundaries so the average number of periods where the
meminductor saturates is given by:

Ns1 =
√

Lbd − √
Lo

K ′
LaoT

. (8.31)

where Nsat is the least integer function of Ns1. For example, we will apply this
concept to the square wave signal in the following subsection.

8.4.3.1 Square Wave Signal Response

The meminductor is biased by a square wave signal which is defined by

i(t) =
{

io1 0 < τ < αT
io2 αT < τ < T

, 0 < α < 1 (8.32)

where τ = t mod(T ), the applied signal alternates between positive and negative
voltages with sharp transitions. By applying Fourier series expansion to the input
signal, the coefficients are given by

ao = αio1 + (1 − α)io2, (8.33a)

an = (io1 − io2)

nπ
sin(2αnπ), (8.33b)

bn = (io1 − io2)

nπ
(1 − cos(2αnπ)). (8.33c)
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Fig. 8.7 Square wave response for different frequencies a instantaneous meminductance and
b flux–current hysteresis

As obvious from (8.30), the DC term (ao) leads to the saturation so the square
wave signal shows two cases:

1. Zero DC component: which means that the accumulated charge after each period is
zero so io1

io2
= α−1

α
should be satisfied. Figure 8.7a shows the instantaneous memin-

ductance under square wave input with io1, io2 and α equal to 10 mA, −10 mA,
and 0.5, respectively, where the meminductance increases and decreases depend-
ing on the sign of the applied current with nonlinear curves. Also its hysteresis
curve is shown in Fig. 8.7b. The instantaneous meminductance expression can
be written by using the behavior of the square signal where the discussed step
response can be used periodically using the last value as the initial value of the
next step. So the meminductance changes up and down as the current changes
periodically which is given during any period by:

Lm(t) =

⎧⎪⎨
⎪⎩

(√
Lo + K ′

Lio1τ
)2

0 < τ < αT(√
Lo + K ′

L

(
io1αT + io2(τ − αT )

))2
αT < τ < T

. (8.34)

2. Nonzero DC component: the accumulated charge, due to DC components, leads
the meminductor to be saturated. Figure 8.8 shows that the instantaneous memin-
ductance increases with time until it reaches the maximum meminductance Lmax

whereio1, io2, and α equal 10 mA, −10 mA, and 0.6, respectively. The memin-
ductance reaches saturation after an average number of periods which is given
by

Nsat =
√

Lbd − √
Lo

K ′
L T (αio1 + (1 − α)io2)

. (8.35)
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Fig. 8.8 Instantaneous
meminductance for different
frequencies under square
wave signal with DC
component
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8.5 Memristor-Based Meminductor Emulator

Recently, many research articles are focused on the emulators as discussed in the
previous sections. But, there is no significant research in the area of the meminductor
emulator circuits. In this section, the meminductor emulator is built using a memristor
and mutator to transform the memristor into a meminductor as shown in Fig. 8.9 [9,
11–13]. The relations of MR and ML are accomplished by linear transformation
which is given by the following matrix:

[
v1

i1

]
=

[
skx 0

0 ky

] [
v2

−i2

]
(8.36)

where kx and ky are real constants and their values depend on the mutator imple-
mentation. This linear transformation transforms (ϕ, q) into (ρ, q) which represents
the constitutive relation of the meminductor. Such that the meminductance is given
by

Lm = kx

ky
Rm . (8.37)

Since the memristor samples are not commercially available yet, thus we will
use a memristor emulator instead of a solid-state memristor. Also this model is
different than the previous emulator models so the emulator should be modified to fit
this model. Recently, different memristor emulators were introduced showing good
behavior [14, 15], however, the most practical one was introduced in [16] where the
authors implemented and tested the emulator experimentally. Despite the fact that

Fig. 8.9 Meminductor
emulator block diagram

MRML1v 2v

1i 2i1i

1v
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Fig. 8.10 Modified memristor emulator

this emulator is designed to model the memristance Rm = Rs + kq(t), it should
be modified to fit this model. To build a meminductor having the same discussed
meminductance according to the previous equation, we need to build a memristor in
which memristance is given by Rm = ky

kx
Lm . Then by substituting with (8.18), the

memristance should be

Rm = ky

kx

(
Lo + 2K ′

L

√
Loq(t) + K ′2

L q2(t)
)
. (8.38)

Figure 8.10 shows the modified memristor emulator where the input current of
the memristor imr is given by

imr = Vmr − Vfb

Rs
. (8.39)

The feedback voltage Vfb is given by

Vfb =
(

R2

20R1C1
qmr (t) + R3

200R2
1C2

1

q2
mr (t)

)
imr (8.40)

By substituting into (8.39), the input voltage of the memristor Vmr is given by

Vmr =
(

Rs + R2

20R1C1
qmr (t) + R3

200R2
1C2

1

q2
mr (t)

)
imr (8.41)

so the input memristance is

Rm =
(

Rs + R2

20R1C1
qmr (t) + R3

200R2
1C2

1

q2
mr (t)

)
(8.42)

By comparing the coefficients in (8.42) and (8.38), the emulator parameters can

be obtained where Rs = ky
kx

Lo, R = 8 ky
kx

Lo and R1C1 = 1.6L3/2
o

K ′
L

. Figure 8.11 shows

the transient input current and input voltage; and I–V hysteresis of the memristor
emulator under current excitation with i(t) = 0.5 sin(200π t)mA where the circuit
parameters are Rs = 1 K	, R = 2 K	, R1 = 0.5 K	, C1 = 1µF and R2 = 1 K	.
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Fig. 8.11 Circuit model simulation of modified memristor’s emulator a transient input current and
voltage and b current–voltage hysteresis
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Fig. 8.12 Transient simulation results of meminductor emulator

The designed memristor emulator is connected to the mutator to obtain the com-
plete realization of meminductor emulator where kx and ky are equal to 0.001 and 1,
respectively. Figure 8.12a, b show a transient simulation of the meminductor current
Iml , Voltage Vml , and flux ϕml , moreover, Fig.8.12c, d show I–V hysteresis and I–ϕ

hysteresis, respectively.
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8.6 Memristor-Less Meminductor Emulators

Recently, a simple symmetrical double-loop hysteresis behavior of mem-elements
can be obtained with the following modeling equation, proposed in [16].

Y (t) = X (t)

(
a + k

∫ t

0
X (τ )dτ

)
, (8.43)

where X (t) is the normalized control signal, Y (t) is the normalized dependent signal,
a and k are scaling constants.

Figure 8.13 shows the hysteric relation between X and Y for a = k = 1 and
X (t) = sin(2π f t). It is obvious that the hysteresis loop shrinks with increasing the
frequency and the slope tends to the initial value a which is the main property in
the mem-elements (for more details review Chap. 3). In case of the meminductor,
a pinched hysteresis should exist between flux and current as discussed in (8.1)
and (8.2). Therefore in current-controlled meminductor, X (t) and Y (t) represent the
current and the flux, respectively. So, (8.1) is reduced to:

ϕ(t) =
(

a + k
∫ t

to
i(τ )dτ

)
i(t) (8.44)

Therefore, the meminductance Lm can be written as

Lm = a + k
∫ t

0
i(τ )dτ = a + kq(t) (8.45)

where a represents the initial meminductance (Lo) assuming zero initial charge
(q(0) = 0). The previous equation represents a first-order model of current-
controlled meminductor which can be generalized to higher order model by adding
higher order terms of charge q(t). Figure 8.14 shows the hystereses of the current-
controlled meminductor with a = 1 mH and k = 100 H/C for applying sinusoidal

Fig. 8.13 Hysteresis
relation between X–Y for
different frequencies
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Fig. 8.14 Numerical simulation of current-controlled meminductor.

current input with amplitude 100µA and frequencies 1 Hz(Red), 5 Hz(Blue), and
10 Hz(Green), where the hysteresis loops shrink by increasing the applied frequency.
Therefore, the I–V is not a circle for low frequencies due to the nonlinear relation.
But for the high frequencies, the I–V plot becomes a circle.

In case of applying a sinusoidal signal to the meminductor, the meminductance
spans between two values: maximum and minimum achievable meminductances and
the difference is inversely proportional to the applied frequency. Figure 8.15 shows
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the maximum and minimum for the meminductance for a = 1 mH , k = 100 H/C,

and Io = 100µA, where the meminductance changes between [a, a + 2k Io/ω] and
[a + 2k Io/ω, a + 2k Io/ω] in case of sin and cos, respectively.

Similarly, the flux-controlled meminductor model can be deduced by setting
X (t) = ϕ(t) and Y (t) = i(t). So the current–flux relation and inverse memin-
ductance are given by:

i(t) =
(

a + k
∫ t

to
ϕ(τ)dτ

)
ϕ(t) (8.46a)

L−1
m = a + k

∫ t

0
ϕ(τ)dτ = a + kρ(t) (8.46b)

where ρ represents the time integral of the flux assuming zero initial condi-
tions. Figure 8.16 shows the hystereses of the flux-controlled meminductor with
a = 1000 H−1 and k = 10 G H−1V−1S−1 by applying sinusoidal current input
with amplitude 100µA and frequencies 1 Hz(Red), 5 Hz(Blue), and 10 Hz(Green).
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Fig. 8.16 Numerical simulation of flux-controlled meminductor
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8.6.1 Circuit Realization of Meminductor Emulator

In order to realize the implicit relation between the flux and the current of current-
controlled meminductor given in (8.44), a voltage–current relation should exist to
make it easier for implementation. The implicit relation of flux–current which should
be realized is given by:

ϕ(t) = (Lo + kq(t))i(t) (8.47)

As known, the voltage is the time derivative of the flux so the voltage–current implicit
relation is given as

Vin(t) = d

dt

((
Lo + kq(t)

)
i(t)

)
(8.48)

As obvious from the previous equation, we need to calculate the charge and then
multiply it with the current. Therefore, the input current is mirrored and imposed
in R (through CCII+) creating Vx = iin R which is integrated with gain 1/(R1C1)

and multiplied by Vx as shown in Fig. 8.17. The output voltage is summed with Vx

creating Vy which is given by:

Vy =
(

1 + α

R1C1

∫ t

0
Vx (τ )dτ

)
Vx (8.49)

where α is the multiplier gain. The voltage Vy is differentiated creating the feedback
voltage Vfb which is mirrored to terminal X of the CCII+ creating the input voltage
Vin = Vfb which is given by

Vin = R2C2
d

dt

((
R + αR2

R1C1
q(t)

)
iin

)
(8.50)

By comparing the previous equation with (8.48), Lo = R R2C2 and k = α R2C2
R1C1

R2.

Fig. 8.17 Circuit schematic
of current-controlled
meminductor emulator
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Fig. 8.18 Circuit schematic
of voltage-controlled
meminductor emulator
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Similarly, for the voltage-controlled meminductor, the voltage–current relation is
given as follows:

Vin(t) = d

dt

(
i(t)

a + kρ(t)

)
(8.51)

As in the flux-controlled case, the input current is mirrored and imposed in R
creating Vx = iin R. Then Vx is divided by a voltage Vy which is obtained from
summing a constant voltage VDC and the time integral of Vy such that

Vy(t) = Vx (t)

a + k
∫ t

0 Vy(τ )dτ
(8.52)

where Vy represents the accumulated flux which is differentiated to generate the
input voltage Vin. Figure 8.18 shows the circuit which emulates the behavior of the
voltage-controlled meminductor and then the voltage–current relation is given by:

Vin(t) = R2C2
d

dt

(
β

i(t)R

Vdc + 1
R1C1

ρ(t)

)
(8.53)

where β is the divider gain. By comparing the previous two equations, a =
Vdc/(β R R2C2) and k = 1/(β R R1 R2C1C2).

8.6.2 Circuit Validation

The current-controlled meminductor emulator is assembled using AD844 as CCII+
and AD633 as a multiplier with gain α = 0.1 and summer with R = 500	, R1 =
R2 = 1 K	, C1 = C2 = 100 nF and sinusoidal current input with amplitude 100µA
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Fig. 8.19 PSPICE simulations of current-controlled emulator a flux, voltage, and meminductance;
and b V–I and φ–I hystereses

and frequency 10 Hz. Figure 8.19a shows the transient input voltage Vin, flux ϕ, and
the input meminductance Lin. Figure 8.19b shows the current–voltage and current–
flux hysteresis of the current-controlled meminductor showing the pinched double
loops hysteresis. Due to the nonidealities of the used integrated circuits (ICs), the
hysteresis loops are not full symmetric.

Similarly, the flux-controlled meminductor emulator is verified using SIMULINK
which gives similar simulation results as Fig. 8.16 which can be assembled using
AD844 and AD734 as a divider.
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Appendix A
Memristor, Memcapacitor, and Meminductor

A.1 Memristor

The first SPICE model of the memristor was proposed by Biolek et al. [1] where
the effect of boundary is taken into consideration using Joglekar and Biolek window
functions [2].

.SUBCKT memristor Plus Minus PARAMS:
+ Ron=1K Roff=100K Rinit=80K D=10N uv=10F p=1
***********************************************
* DIFFERENTIAL EQUATION MODELING *
***********************************************
Gx 0 x value={ I(Emem) *uv*Ron/Dˆ2*f (V (x) ,p) }
Cx x 0 1 IC={(Roff-Rinit) / (Roff-Ron) }
Raux x 0 1T
* RESISTIVE PORT OF THE MEMRISTOR *
*******************************
Emem plus aux value={-I (Emem) * V (x) * (Roff-Ron) }
Roff aux minus {Roff}
***********************************************
*Flux computation*
***********************************************
Eflux flux 0 value={SDT (V(plus,minus) ) }
***********************************************
*Charge computation*
***********************************************
Echarge charge 0 value={SDT (I (Emem) ) }
***********************************************
* WINDOW FUNCTIONS
* FOR NONLINEAR DRIFT MODELING *
***********************************************
*window function, according to Joglekar
.func f(x,p)={1-(2*x-1)ˆ(2*p)}
*proposed window function
;.func f(x,i,p)={1-(x-stp(-i) )ˆ(2*p) }
.ENDS memristor
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A.2 Memcapacitor

SPICE model of the memcapacitor was introduced in [3]

.SUBCKT memC Plus Minus PARAMS:
+ Cmin=10nF Cmax=10uF Cinit=100nF k=10meg p=1 IC=0
***********************************************
* Input port *
***********************************************
Emc Plus Minus value={DM(v (x)) (v(charge) + ICCinit)}
***********************************************
* Charge computation.
***********************************************
Gq 0 charge value={I(Emc)}
Cq charge 0 1
Rq charge 0 1G
***********************************************
* State-space equation
***********************************************
.param xinit {(1/Cinit-1/Cmax) / (1/Cmin-1/Cmax)}
Gx 0 x value={v (charge) kwindow (v (x) ,p)};
Cx x 0 1 IC={xinit}
Rx x 0 1G
.func DM(x)={1/Cmax + (1/Cmin-1/Cmax) *x};
.func window (x,p)={1-(2*x-1)**(2*p)}; window function
.ENDS memC

A.3 Meminductor

The only SPICE model of the meminductor was introduced by Biolek et al. [4]

.SUBCKT memL Plus Minus PARAMS:
+ Lmin=1mH Lmax=20mH Linit=5mH k=10 p=10 IC=0
***********************************************
* Input port *
***********************************************
Vsense Plus + 0 V; sensing of the meminductor current
Gml + Minus value={(V(flux)+IC*Linit)/LM(V(x))};
***********************************************
*Flux computation via time-domain integration of meminductor voltage*
***********************************************
Gflux 0 flux value={V(plus,minus)}
Cflux flux 0 1
Rflux flux 0 1G
.param xinit {(sqrt(Linit)-sqrt(Lmin))/(sqrt(Lmax)-sqrt(Lmin))}
Gx 0 x value={I(Vsense)*k*windowJ(V(x),p)}; Joglekar window,
;Gx 0 x value={I(Vsense)*k*windowB(V(x),I(Vsense),p)}; Biolek window
Cx x 0 1 IC={xinit}
Rx x 0 1G
***********************************************
*Functions for defining meminductance and boundary effects
***********************************************
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.func LM(x)={(sqrt(Lmin)+x*(sqrt(Lmax)-sqrt(Lmin)))ˆ2};

.func windowJ(x,p)={1-(2*x-1)ˆ(2*p)}; Joglekar window,

.func windowB(x,xd,p)={1-(x-stp(-xd))ˆ(2*p)}; Biolek window
***********************************************
*Computing charge and time-domain integral of flux (TIF)
***********************************************
Gcharge 0 0 value={SDT(I(Vsense))}
Gintflux 0 0 value={SDT(V(flux))}
.ENDS memL
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