
Springer Theses
Recognizing Outstanding Ph.D. Research

Numerical 
Simulation 
of Viscous Shocked 
Accretion Flows 
Around Black Holes

Kinsuk Giri



Springer Theses

Recognizing Outstanding Ph.D. Research



Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated and
endorsed by two recognized specialists, each published volume has been selected
for its scientific excellence and the high impact of its contents for the pertinent field
of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series will
provide a valuable resource both for newcomers to the research fields described,
and for other scientists seeking detailed background information on special ques-
tions. Finally, it provides an accredited documentation of the valuable contributions
made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

• They must be written in good English.
• The topic should fall within the confines of Chemistry, Physics, Earth Sciences,
Engineering and related interdisciplinary fields such as Materials, Nanoscience,
Chemical Engineering, Complex Systems and Biophysics.

• The work reported in the thesis must represent a significant scientific advance.
• If the thesis includes previously published material, permission to reproduce this
must be gained from the respective copyright holder.

• They must have been examined and passed during the 12 months prior to
nomination.

• Each thesis should include a foreword by the supervisor outlining the sig-
nificance of its content.

• The theses should have a clearly defined structure including an introduction
accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790

http://www.springer.com/series/8790


Kinsuk Giri

Numerical Simulation
of Viscous Shocked
Accretion Flows Around
Black Holes
Doctoral Thesis accepted by
the Jadavpur University, India

123



Author
Dr. Kinsuk Giri
National Tsing Hua University
Taiwan
People’s Republic of China

Supervisor
Prof. Sandip K. Chakrabarti
S. N. Bose National Centre
for Basic Sciences

Kolkata
India

ISSN 2190-5053 ISSN 2190-5061 (electronic)
ISBN 978-3-319-09539-4 ISBN 978-3-319-09540-0 (eBook)
DOI 10.1007/978-3-319-09540-0

Library of Congress Control Number: 2014947641

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Title had been modified from “Numerical Simulation of Viscous Accretion Flows Around
Black Holes Which Include Shocks”



Supervisor’s Foreword

When astronomers think of accretion flows around black holes, the first picture that
comes in mind is the standard disc model of Shakura and Sunyaev (1973, hereafter
SS73). Rightly so, since this model gives algebraic expressions for temperature,
density, flux etc. as a function of radial distance from the black hole for various
mass, mass accretion rate, viscosity parameter etc. However, as several authors,
notably Sunyaev and Truemper (1979) showed, a multi-colour black body emission
of SS73 disc fails to explain entire observed X-ray spectrum from a black hole
candidate, especially high-energy radiation, generally known as a power-law
component. Sunyaev and Titarchuk (1980, 1985) showed quantitatively that power-
law component is due to repeated inverse Compton scattering of low-energy
photons which interact with the electron cloud. Scientists made desperate attempts
to find the source of this Compton cloud. It was generally believed that the cloud
has to be somewhere close to the black hole (Zdziarski et al. 1994; Haardt and
Maraschi 1994; Narayan and Yi 1994; Esin et al. 1997; etc.). However, these efforts
only pushed the problem further: where is this elusive Compton cloud?

Meanwhile, in theoretical front, other ad-hoc and semi ad-hoc models were
surfacing. For instance, efforts were on to ‘mend’ arbitrary chopping off of the disc
by SS73 at an inner stable circular orbit or ISCO by a ‘transonic component’
(Muchotrzeb and Paczyński 1982). Radiation pressure-dominated thick accretion
disc models of Polish group (Abramowicz et al. 1978; Paczyński and Wiita 1980),
used pre-assigned angular momentum distribution and no advection. British group
also came up with ion-pressure-supported tori which were of low-angular
momentum, radiatively inefficient and hot (Rees et al. 1982). Advection-Dominated
Accretion Flows (ADAF) assumed that inner SS733 disc can evaporate and
resulting corona can emit very inefficiently.

Some purists, however, continue to struggle to find true configuration of
accretion flows around a black hole and how it changes with flow parameters.
Model to start with is clearly the Bondi flow (1952) solution which encompasses
pressure and advection self-consistently. Our first job was to generalise Bondi
flow solution by addition of angular momentum, viscosity and radiative transfer.
Over the last 25 years, since Chakrabarti (1989), this was done with students and
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collborators. First, only angular momentum and advection were added to Bondi
flow (Chakrabarti 1989; Abramowicz and Chakrabarti 1990). It was truly, radi-
atively inefficient (the sense with which Narayan and Yi (1994) and others latter use
the acronym ADAF) in that it conserves energy exactly and does not radiate
anything at all. It allows solutions with standing shock waves and numerical
simulations indicated that post-shock region is closest to what (non-accreting)
solution of thick torus configuration (Paczyński and Wiita 1980; Rees et al. 1982)
should have been, only more accurate, since it has advection and is now a part of a
global solution and not just an ad-hoc model. Furthermore, post-shock region till
inner sonic point (which Chakrabarti and collaborators termed as the CENtrifugal
pressure-supported BOundary Layer, or CENBOL) produced winds and outflows
also, a fraction of which goes off with flow angular momentum.

Next step was to include viscosity. For sub-critical α, (\αcrit) flow continues to
have a shock. For super-critical α ([ αcrit) topology changes dramatically and
accretion flow becomes shock-free, Keplerian and can enter into a black hole
through inner sonic point (Chakrabarti 1990a, b, 1996). Thus, all existing disc
models are unified: one can have a subsonic, shock-free Keplerian disc for higher α;
transonic advective discs (which could include shocks) for lower αand thick torus
in post-shock region, etc. Such a ‘Keplerian’ disc removes all deficiencies of an
SS73 disc as it continues till the black hole horizon and has a significant advection
close to the inner edge. Essential components of this most general solution
including jets/outflows are shown in Fig. 1. CENBOL is the storehouse of thermal
energy. This energy is extracted by soft-photons from the Keplerian disc through
inverse Comptonization. Of course, whether all these components would be present
simultaneously or not will depend on viscosity and mass supply rates (boundary
conditions).

Does this generalised solution explain spectral and timing properties of black
hole candidates? According to Chakrabarti and Titarchuk (1995) relative impor-
tance of Keplerian and sub-Keplerian accretion rates decide whether the black hole
will be in soft or hard states. Cooling of CENBOL in soft state reduces outflows/jets
(Garain et al. 2012). Oscillation of CENBOL, which takes place whenever cooling
timescale inside CENBOL roughly agrees with infall timescale (Molteni et al. 1996;
Chakrabarti, Acharyya and Molteni 2004; Garain et al. 2012). This oscillation
produces observed quasi-periodic oscillations (QPOs) even in outburst sources
(Ebisawa et al. 1996; Chakrabarti et al. 2008; Debnath et al 2008; Dutta et al. 2010).

However, there was a big caveat! Theoretical prediction of switching of solu-
tions from a transonic radiatively inefficient flow with a CENBOL for sub-critical α
to a generally Keplerian flow (having super-critical α) passing through the inner
sonic point must be shown to lead to a stable configuration. The questions obvi-
ously were: Is there really a critical viscosity αcrit at which flow topology changes?
If indeed α is higher on the equatorial plane (as is usually thought to be the reason
for all the outbursting sources), then do we have a stable two-component config-
uration—both being separately transonic, even though one moves relatively slower
compared to the other? Does the Keplerian component indeed weaken or in fact
disappear, inside the CENBOL? How does the interface between the Keplerian

vi Supervisor’s Foreword



component and the sub-Keplerian component behave? Does the oscillation of
CENBOL produce quasi-periodic oscillations (QPOs) as observed in black hole
candidates?

Thesis of Dr. Kinsuk Giri addresses precisely these very fundamental questions.
He uses two-dimensional finite difference (using total variation diminishing or TVD
criteria) code. This code was thoroughly described. Results of the code for inviscid
flow were presented and it was shown that they agree with theoretical predictions.
Then he describes implementation of viscosity in the code in great detail. In Chap. 4,
he tests Bondi flow solution and checked that there is negligible dissipation in the
code. From Chap. 5 onward new results on advective discs are presented. In Chap. 5,
he showed that when Rankine–Hugoniot conditions are not fulfilled, flow still forms
a shock, but it oscillates back and forth constantly trying to settle down. Reason for
this behaviour is that if there is already a solution through outer sonic point, the
solution through inner sonic point must require higher entropy and is favoured by the
flow. He also showed that pre-shock flow behaves more like a conical flow, while
post-shock region behaves like a flow in vertical equilibrium. Fourier transform of
shock location clearly indicated sharp peaks where QPOs are observed in black hole
candidates.

In Chap. 6, viscous flow was simulated for various α parameters. It was shown
that there is a critical α (αcrit which depends on energy and angular momentum)

Fig. 1 Generalised TCAF with CENBOL, Keplerian and sub-Keplerian flows and the outflows
(from Chakrabarti 2013)
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where solution topology changes as predicted before (Chakrabarti 1990a, b).
Fig. 6.3 and Fig. 6.15 beautifully illustrate this point. Simulations clearly showed
that for high α, the shock propagates away to ‘infinity’ leaving behind a Keplerian
disc. Within sub-critical α regime, interesting result was found: he showed that as
viscosity parameter is increased, outflow rate is decreased. This is because higher α
transports away angular momentum on the equatorial plane, leaving behind lower
angular momentum matter in the post-shock region which produces lesser cen-
trifugally driven outflow.

Formation of a ‘Keplerian’ disc is a necessary condition, but it is not sufficient to
have an SS73 type disc. ‘Keplerian’ flow must be cooled down to emit black body
radiation. So, in Chap. 7 of his thesis, Dr. Giri showed that cooling triggers
Keplerian component to settle down on the equatorial plane, raising its density
farther till an equilibrium height is achieved. Figures 7.3a and 7.4a show this.
Moreover, Keplerian and sub-Keplerian components co-exist without destroying
each other. Inner disc puffs up by thermal pressure. It behaves as an ion-pressure-
supported torus and acts as a Compton cloud. Thus, a single numerical simulation
was able to unify all disc models existing in the literature.

What do we go from here? It is clear that in a truly self-consistent disc, photons
have to be generated ab initio by thermal or magnetic bremsstrahlung process. They
need to scatter in denser disc region in order to produce multi-colour black body
spectrum from innermost disc. These photons would then be inverse Comptonized
by otherwise radiatively inefficient sub-Keplerian halo, giving up their own thermal
energy so as to produce harder X-rays. Another point of interest would be to see
how weaker magnetic fields are stretched out to produce dynamically important
toroidal fields which are ejected from the halo in order to produce collimation for
the jets (Fig. 1). Dynamics of these magnetic tori would be interesting: thicker
filaments would be diverted to vertical direction while thinner filaments would be
advected into CENBOL as drag force takes into effect. Since it is believed that
tension would be the strongest force inside a CENBOL (Chakrabarti and D’Silva
1994; Nandi et al. 2001), the filaments are expected to collapse by tension
destroying CENBOL momentarily and squirting matter out as relativistic jets.
Spectrum at this stage should soften. That would resolve remaining long standing
problems of acceleration and collimation of jets, and cause of variabilities of light
curves in enigmatic black hole candidates, such as GRS 1915 + 105.

Kolkata, India, August 2014 Prof. Sandip K. Chakrabarti
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Preface

The process by which a massive compact object (like white dwarfs, neutron stars,
black holes etc) gravitationally captures ambient matter is called accretion. The
accretion of matter on to a compact massive star is the likely source of energy in the
observed binary X-ray sources. Since black holes are ‘black’, there cannot be any
direct observational evidence of them. Thus they must be observed by detecting the
radiations emitted by accreting matter. For typical gas dynamical conditions found
in the interstellar medium and in the matter exchanged between the binary stars, it is
expected that accretion flows on to compact objects will be hydrodynamical or
magneto-hydrodynamical in nature. Thus, to study black hole accretion, it is nec-
essary to know the hydrodynamic properties of the flow of the matter as it is the
matter which, after all, will emit the radiation that we detect by satellites. The
variation of thermodynamic quantities such as the initial energy density of the
accreted matter plays important roles as the emitted radiation intensity from the
flow depends on the density and the temperature at each point of the flow at each
moment of time. So the spectral and temporal properties of emitted radiations are
directly determined by the hydrodynamical variables.

In my Ph.D. work, I mainly made effort to study the hydrodynamic properties of
the flow and its stability properties through time-dependent numerical simulations.
We started with time-dependent solutions of one-dimensional (spherically sym-
metric) and two-dimensional (axially symmetric) accretion flows around compact
objects, in particular black holes, after examining the steady-state solutions. We
describe the development of a two-dimensional hydrodynamic code and its appli-
cation to various astrophysical problems. A FORTRAN code for two-dimensional
numerical hydrodynamics has been developed to model viscous accretion discs. We
employ a grid-based finite difference method called the total variation diminishing
method (TVD). The effective shear viscosity present in the code is evaluated. The
simulations were carried out for flows in the Schwarzschild geometry. By numerical
simulation, we show that the theoretical solutions (with or without shocks) which
are claimed to be stationary are indeed so. When the shocks are absent, they show
steady oscillations. Our survey was carried out using the entire inflow parameter
space spanned by the specific energy, angular momentum, shear viscosity and a
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power-law cooling. It is believed that high-viscosity flows reside on the equatorial
plane, and supply low energy X-rays, while the low-viscosity and low-angular-
momentum flows fall rapidly on to the black holes away from the equatorial plane
and have little time to radiate X-rays. However, they can energise low-energy
photons and produce hard X-rays and contribute to the spectrum of black holes
candidates. In the thesis work, for the first time, numerically we have simulated
two-component advective flows (TCAF) where a cold Keplerian disc is surrounded
by hot sub-Keplerian flow. Interestingly, we have found the stability of this flow. It
is believed that the soft-photons originated from the low-temperature Keplerian
discs are reprocessed by the hot electrons of CENBOL through the inverse-
Comptonisation process. They are emitted as hard X-rays. Thermal pressure gra-
dient force at the shock location becomes significant in the transverse direction
which drives matter upward and downward in the from of jets or outflows. These
X-rays and outflows are observed.

Accretion flow dynamics during an outburst phase of transient BHCs can be
explained by a model analysis of spectral and temporal behaviour of the source. The
spectral and temporal properties of the black hole candidates can be explained using
several models, which generally include two components, namely a Keplerian disc
and a hot corona, only the nature of the corona varies from model to model. In the
observational prospect, TCAF model requires two accretion rates, namely the
Keplerian disc accretion rate and the halo accretion rate, the latter being composed
of a sub-Keplerian, low-angular-momentum flow which may or may not develop a
shock. In this solution, the relevant parameter is the relative importance of the halo
(which creates the Compton cloud region) rate with respect to the Keplerian disc
rate (soft photon source). Since last decade, TCAF model has been used to man-
ually fit data of several black hole candidates quite satisfactorily. Quasi-periodic
oscillations (QPOs) observed in X-rays are very important features for the study of
accreting black holes. Observations and possible explanations of QPOs in black
hole candidates have been reported quite extensively in the literature. Low- and
intermediate-frequency QPOs in black hole candidates are believed to be due to
oscillations of the shocks, i.e. Comptonising regions in an accretion flow. Using our
simulated TCAF, one can numerically simulate the light curves emitted from an
accretion disc for different accretion rates and also can find how the QPO fre-
quencies vary. Thus the explanations of spectral and timing properties of galactic
and extra-galactic black holes based on TCAF models appear to have firm
foundation.

In Chap. 1, we explain the terms associated with the title of the thesis. First, we
discuss the general view of accretion processes around compact objects, in par-
ticular around black holes. Then, we point out the basic properties of accretion
around non-rotating black holes. In case of the black hole physics, a full general
relativistic approach is recommended, but it makes the time-dependent hydrody-
namic equation which includes radiative transfer very complex. This problem is
circumvented using a pseudo-Newtonian potential. We briefly discuss the gov-
erning equations for fluid dynamical study in a pseudo-Newtonian geometry.
Subsequently, we discuss the mathematical aspects of shock waves and their
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presence in accretion processes. Historical studies of spherical accretion process
through various approaches are briefly presented. We start with the Bondi flow for
spherical accretion of an ordinary star. A qualitative discussion on the development
of disc accretion process is also presented. We then discuss the standard Keplerian
disc model. This model explains the nature of the multi-colour soft X-ray spectrum
very well but it fails to explain very high-energy radiation coming from the stellar
mass black holes and distant Quasars and AGNs. This brings the advective flows in
the picture. This component has lower angular momentum than a Keplerian disc,
and is called a sub-Keplerian flow. A realistic accretion flow may have both the
components, a sub-Keplerian flow surrounding a Keplerian flow. This is the so-
called two-component advective flow or TCAF model of Chakrabarti and
Titarchuk.

In Chap. 2, we give an overview on the past works done on numerical simulation
for accretion flows around black holes. We start with non-viscous cases. We also
point out some important simulations of viscous accretion discs. In the last Section
of this Chapter, we present the precise goals for this thesis work.

Chapter 3 describes the numerical methods employed to model accretion flows
and their implementation in a FORTRAN code. We present all the governing
equations for both non-viscous and viscous flows. We discuss the solution tech-
nique for a non-viscous system. Subsequently, we give all the schemes to incor-
porate turbulent viscosity in the non-viscous system. Finally, we add a power-law
cooling in our viscous system and study the properties.

In Chap. 4, we pointed out the procedure of simulation and the computational
box in details. We study the accretion processes on a black hole by numerical
simulation. We use a grid-based finite difference code for this purpose. Tests of the
code are made using the flow without angular momentum, namely, the Bondi flow.

In Chap. 5, we scan the parameter space spanned by the specific energy and the
angular momentum of the inflow and compare the time-dependent solutions with
those obtained from theoretical considerations. We found several important results:
(a) The time-dependent flow behaves close to a constant height model flow in the
pre-shock region and a flow in vertical equilibrium in the post-shock region. (b) The
infall time scale in the post-shock region is several times longer than the free-fall
time scale. (c) There are two discontinuities in the flow, one being just outside of
the inner sonic point. Turbulence plays a major role in determining the locations of
these discontinuities. (d) The two discontinuities oscillate with two different fre-
quencies and the post-shock flow behaves as a coupled harmonic oscillator.
A Fourier analysis of the variation of the outer shock location indicates a higher
power at the lower frequency and lower power at the higher frequency. The
opposite is true when the analysis of the inner shock is made. These behaviours will
have implications in the spectral and timing properties of the black hole candidates.

In Chap. 6, we study the time evolution of a rotating, axisymmetric, viscous
accretion flow around black holes using a grid-based finite difference method. We
use the Shakura-Sunyaev viscosity prescription. However, we compare with the
results obtained when all the three independent components of the viscous stress are
kept. We show that the centrifugal pressure-supported shocks become weaker with
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the inclusion of viscosity. The shock is formed farther out when the viscosity is
increased. When the viscosity is above a critical value, the shock disappears alto-
gether and the flow becomes subsonic and Keplerian everywhere except in a region
close to the horizon, where it remains supersonic. We also find that as the viscosity
is increased, the amount of outflowing matter in the wind is decreased to less than a
percentage of the inflow matter. Since the post-shock region could act as a reservoir
of hot electrons or the so-called Compton cloud, the size of which changes with
viscosity, the spectral properties are expected to depend on viscosity strongly: the
harder states are dominated by low-angular momentum and the low-viscosity flow
with significant outflows while the softer states are dominated by the high-viscosity
Keplerian flow having very little outflows.

In Chap. 7, we carry out a series of numerical simulations of viscous accretion
flows having a reasonable spatial distribution of the viscosity parameter. We add the
power-law cooling throughout the flow. We show that in agreement with the the-
oretical solutions of viscous transonic flows, matter having viscosity parameter
above a critical value becomes a Keplerian disc while matter having lesser viscosity
remains a low-angular momentum, sub-Keplerian flow. The latter component
produces centrifugal pressure-supported shock waves. Thus, for instance, the flows
having sufficiently high viscosity on the equatorial plane and low viscosity above
and below, produce a Two-Component Advective Flow (TCAF) where a Keplerian
disc is surrounded by a rapidly moving sub-Keplerian halo. We find that the post-
shock region of the Keplerian disc is evaporated and the configuration is stable.
This agrees with the theoretical models which attempt to explain the spectral and
timing properties of black hole candidates.

Finally, in Chap. 8, we draw concluding remarks and briefly mention our future
plans.
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Chapter 1
Introduction

Abstract We explain the terms associated with the title of the thesis. First, we discuss
the general view of accretion processes around compact objects, in particular around
black holes. Then, we point out the basic properties of accretion around non-rotating
black holes. In the case of black hole physics, a full general relativistic approach
is recommended, but it makes the time-dependent hydrodynamic equation, which
includes radiative transfer, very complex. This problem is circumvented using a
pseudo-Newtonian potential. We briefly discuss the governing equations for fluid
dynamical study in a pseudo-Newtonian geometry. Subsequently, we discuss the
mathematical aspects of shock waves and their presence in accretion processes.
Historical studies of the spherical accretion process through various approaches are
briefly presented. We start with the Bondi flow for spherical accretion of a normal
star. A qualitative discussion on the development of the disc accretion process is also
presented. We then discuss the standard Keplerian disc model. This model explains
the nature of the multi-coloured soft X-ray spectrum well but fails to explain the
high energy radiation coming from stellar mass black holes and distant Quasars and
AGNs. This brings advective flows into the picture. This component has lower angular
momentum than a Keplerian disc, and is called a sub-Keplerian flow. A realistic
accretion flow may have both components, a sub-Keplerian flow surrounding and a
Keplerian flow. This is the so-called two-component advective flow or TCAF model
of Chakrabarti and Titarchuk.

A black hole is the most COMPACT of gravitating objects in the sky. Briefly,
‘Compact Objects’ are born when a normal star dies. Compact stars are broadly
grouped into white dwarfs, neutron stars and black holes. The key factor that deter-
mines whether a star ends up as a white dwarf, a neutron star or a black hole is
believed to be the star’s initial mass. When a massive star has exhausted most of the
nuclear fuels in its core, the core collapses and a compact star is created. In general,
these stars differ from normal stars due to their exceedingly small size. As a result,
they have stronger gravitational attraction. As compact stars do not have nuclear fuel
to burn, they are unable to generate internal thermal pressure to protect them from
inward gravitational collapse. In case of white dwarfs, inward gravitational pressure
at the core is supported by electron degeneracy pressure, while for neutron stars the
support comes from the pressure of degenerate neutrons. However, black holes are
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2 1 Introduction

fully collapsed and nothing can neutralize the gravitational pull. This leads to their
collapse to singularity. It is believed that white dwarf stars originated from lighter
mass progenitor stars, while neutron stars and black holes originated from more
massive stars.

Of all the celestial objects, black holes are the simplest in form. The defining
feature of a black hole is the appearance of an event horizon, a boundary in space-
time through which matter and light can only pass inward towards the centre of the
black hole. All matter enters into its event horizon at the speed of light and thus
the inner boundary condition is fixed, independent of the mass of black holes or the
origin of the accreting matter. Nothing, not even light, can escape from inside the
event horizon. The simplest among the black holes is the Schwarzschild black hole,
which is a non-rotating black hole characterised only by its mass M.

Accretion flows are common in a variety of astrophysical systems, including
young stars, X-ray binaries and active galactic nuclei. The goal of the study of accre-
tion processes is to understand the basics of how matter enters into black holes both
theoretically as well as through numerical simulations, including the hydrodynam-
ics and radiations emitted from the matter before entering a black hole. Eventually,
one requires to fit the observation of radiations coming from individual systems.
Scientists have been trying to understand accretion flows around black holes for the
last five decades. Much theoretical work has been done on accretion models around
black holes. The main purpose is to know the distribution of (a) the density, radial
velocity and angular velocity of the accretion gas as a function of radius and time
by solving the basic equations of hydrodynamics, (b) the temperature of matter by
solving energy equation with account of viscosity and radiative losses and (c) angu-
lar momentum inside the flow and the way the angular momentum is transported.
A complete analytical solution of this problem does not exist, in part because some
of the physics is not fully known (e.g. viscous effects and the effects of radiative
losses). Hence, in this thesis we will mainly study the hydrodynamic properties of
flow and its stability properties through time-dependent numerical simulations.

1.1 Properties of Black Holes in a Nutshell

A region of space-time into which signals can enter, but from which no signal can
ever emerge, is called a black hole. Based on a simple calculation using Newton’s
gravitational theory, the existence of no-escape radius for light was suggested by
Laplace more than 200 years ago. The energy condition for a body of mass m starting
with velocity v to escape to infinity from the surface of a star of mass M and radius
R requires that the initial kinetic energy exceeds the gravitational binding energy:

mv2

2
≥ GMm

R
,
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i.e.

v ≥
√

2GM

R
,

where, G is the universal gravitational constant. Escape is only possible for veloci-
ties greater than

√
2GM/R. If the radius of the star is reduced, the escape velocity

increases until eventually it reaches the velocity of light. At this stage the radius is

rg = 2GM

c2 , (1.1)

where, c is the velocity of light. When even light cannot escape from a star, such a
star will become invisible. Using full general relativity theory of Einstein, Laplace’s
radius was found to be a correct estimate, though for an entirely different reason.
Laplace’s result is based on the assumption that stars of arbitrary mass may be
compactified to an arbitrarily small size and yet they remain stable—an assumption
that is known to be wrong due to gravitational instability.

The Schwarzschild solution of the gravitational field equations in the vacuum
region surrounding a point mass M is given as

ds2 =
(

1 − 2GM

c2r

)
c2dt2 − dr2(

1 − 2GM
c2r

) − r2
(

dθ2 + sin2 θ dϕ2
)

. (1.2)

The metric develops a singularity as r → 2GM
c2 . At this point,

g00 =
(

1 − 2GM

c2r

)
→ 0,

and

g11 = − 1(
1 − 2GM

c2r

) → ∞.

The quantity rg = 2GM
c2 is called the Schwarzschild radius or the gravitational

radius of mass M. If a spherical star is compressed by some astrophysical processes
to a radius smaller than the Schwarzschild radius, then the gravitational collapse
necessarily follows and collection of the entire matter at r = 0 is inevitable. If the
Sun were to become a black hole, the rg would be only 3 km.
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1.2 Gravitational Fields Around a Black Hole

From the metric above, we note that for r >> rg, the metric is Newtonian and thus
Newton’s laws of gravity prevails. However, at r ∼ rg, the general-relativistic effects
are important. For a wide range of accretion problems, such as in the case of binary
systems consisting of non-compact stars, the Newtonian theory of gravity is adequate
for the description of background gravitational forces. Extensive experience with
Newtonian astrophysics has shown that explorations of the relativistic regime can also
benefit from the use of model potentials, one of which is the well-known Paczyński-
Wiita pseudo-Newtonian potential that can be used around a Schwarzschild black
hole. Paczyński and Wiita (1980) potential is given as

� = − GM

(r − 2GM
c2 )

. (1.3)

Fortunately, the Keplerian distribution of angular momentum and the locations of the
marginally bound and marginally stable orbits as derived from this potential match
exactly those obtained from the exact general relativity theory. Hence, we carry out
our simulations assuming this potential. There is a similar potential for a rotating
black hole also. We now briefly describe the effective potential both of the general
relativistic and the pseudo-potential approach.

1.2.1 General Relativistic Approach

In the spherical polar coordinate system, adopting the gravitational constant G, the
central mass M and the velocity of light c to be unity (G = M = c = 1), the
Schwarzschild metric Eq. 1.2 is given as

ds2 = − (1 − 2/r) dt2 + (1 − 2/r)−1 dr2 + r2dθ2 + r2sin2θdφ2. (1.4)

Solving the geodesic equation one obtains

− ut = (1 − 2/r) ut = E = constant of motion, (1.5)

and, for θ = π/2,
uφ = r2uφ = l = constant of motion. (1.6)

Using the above equations in GR, the equation for the radial coordinate r of a test
particle orbiting a non-rotating black hole can be written as

(
dr

ds

)2

= E2 −
(

1 − 2

r

)(
1 + l2

r2

)
. (1.7)
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The second term on the RHS of Eq. 1.7 behaves like an effective potential (Veff ),

V2
eff =

(
1 − 2

r

) (
1 + l2

r2

)
, (1.8)

or

Veff = [
(

1 − 2

r

) (
1 + l2

r2

)
] 1

2 . (1.9)

By defining an effective potential Veff , one can classify the possible trajectories/orbits
as in classical mechanics.

The gravitational potential that a test particle around a Newtonian star feels is
given as

�N = −1

r
. (1.10)

The effective potential of a rotating gas with specific angular momentum l is obtained
by summation of the gravitational potential and the centrifugal potential.

VNewt(r) = 1 + �N + 1

2

l2

r2 . (1.11)

Here, we added the rest mass ‘1’ to compare with GR results.
In Fig. 1.1 we plot both Veff and VNewt against r to compare the GR potential with

the Newtonian one. We see some remarkable features. First, we notice that for small r,
Veff dives down decreasing r and Veff = 0 at r = rg = 2. rg is called the event horizon
or the Schwarzschild radius. Second, no matter how hard one throws a particle at a
Newtonian star it will bounce back, while a black hole definitely consumes a particle
if it is thrown ‘hard’ enough. The particle enters the black hole in trajectories known
as ‘capture orbits’. We will focus on the bound particles. Conditions for the circular
orbits are: (a) δVeff

δr = 0 and, (b) dr
ds = 0. Condition (a) gives the following equation:

r2 − l2r + 3l2 = 0. (1.12)

Thus, for l ≥ 2
√

3, the real values of r exist, which implies Veff has an extremum
for l ≥ 2

√
3. For l = 2

√
3, we have the position for the last stable orbit or the

marginally stable orbit (rms; shown in Fig. 1.1). Putting l = 2
√

3 in Eq. 1.12, we get
rms = 6. Imposing condition (b) in Eq. 1.9, and using Eq. 1.12 we get

E2 = (r − 2)2

r (r − 3)
. (1.13)

If we take the definition of specific angular momentum as −uφ/ut (e.g., Chakrabarti
1996), the specific Keplerian angular momentum curve is the locus of the extrema
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Fig. 1.1 Comparison of general relativistic (a) and Newtonian (b), effective potentials. a The
effective potential Veff is drawn for values of l = 0, 3.464, 3.75, 4 and 4.4, from the lowest curve
upwards, respectively. rms is the marginally stable radius. The dotted line for which Veff = 1
denotes rest mass energy of particle falling into the black hole. b The Newtonian effective potential
VNewt is drawn for the values of � = 3, 3.464 and 4.4 from the lowest curve upwards, respectively
(Chattopadhyay, 2003)

of Veff . Hence,

λ2
Kep =

(
−uφ

ut

)2

= r3

(r − 2)2 . (1.14)

Putting r = 6 and l = 2
√

3 into Eq. 1.9, we have

Veff(rms) =
√

8

9
. (1.15)

Therefore, the binding energy at rms is

Ebind = 1 −
√

8

9
= 5.72 %. (1.16)

When a particle enters into a black hole, Ebind amount of energy will be liberated as
radiation.
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1.2.2 Pseudo-Newtonian Approach

In the case of most astrophysical systems involving a rotating compact star or a black
hole, it is not essential that one solves the problem using full general relativity. As
long as one is not interested in processes very close (within rg to 2rg, say) to the
horizon, one may safely use the so-called Paczyński-Wiita potential (Paczyński and
Wiita 1980). Paczyński-Wiita potential or the pseudo-Newtonian potential is given
as

�PW = − 1

(r − 2)
. (1.17)

Adding the rest mass energy to this potential and then writing the effective potential

Veff(PW) = 1 + l2

2r2 + �PW. (1.18)

Putting the condition δVeff(PW)/δr = 0, we get

l2
Kep = r3

(r − 2)2 . (1.19)

We find that the specific Keplerian angular momentum distribution produced by �PW
is the same as that produced by exact GR calculations. We have already seen that
rms is the position of the minima of the Keplerian angular momentum. Taking the
minima of Eq. 1.19, we find, rms = 6.

Note that we are using two different notations for the specific angular momentum:
in GR we use λ and in pseudo-Newtonian potential we use � to differentiate these
two approaches. The binding energy at rms in pseudo-Newtonian description is

Ebind = 1 − Veff(PW) (rms) = 6.25 %. (1.20)

Thus, we find that the pseudo-Newtonian approach is quite accurate, and the error is
within a few per cents. In the following chapters, we shall use �PW to take care of
the general relativistic effects.

1.2.3 Fate of Matter When It Approaches the Innermost
Stable Orbit

As matter slowly drifts radially inwards in an accretion disc (probably determined
by the viscosity), roughly half of the gravitational energy of the matter is released
and radiated away if the disc is Keplerian (in the Newtonian case anyway). Once it
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reaches the innermost stable orbit, matter will rapidly fall into the black hole (i.e.
pass through the event horizon) taking with it its total mass-energy (including all of
its kinetic energy), adding to the mass of the black hole without further radiating
away much of its energy. Therefore, the binding energy at the innermost stable orbit
limits the maximum energy that can be radiated away by an accreting black hole.

1.3 Accretion Processes: General Views

In the astrophysical context, the process in which diffuse gas or matter is accumulated
around a compact object under the influence of gravity is called ‘accretion’. In other
words, accretion is a process in which gas and dust are accumulated around massive
celestial objects which could be stars, planets or any massive objects. The importance
of accretion as power source was first widely recognized in the study of binary
systems, especially X-ray binaries. There are two main reasons for which the matter
can be supplied to the compact object from the companion. At the time of its evolution,
one of the stars in the binary system may increase in radius, or the distance between
them may shrink such that the gravitational pull of the companion can remove the
outer layers of its envelope. This is called the Roche lobe overflow. On the other
hand, at some evolutionary phase, one of the stars may eject some of its mass in the
form of the stellar wind. This ejected material will be captured gravitationally by
companion. This process is known as wind accretion. Isolated compact stars with
mass M ∼ M� may also be accreting gas as they wander through the interstellar
medium of our galaxy. The number of such objects could be considerable. Thus
accretion is a process that can be considerably more efficient as a cosmic energy
source than many other commonly invoked mechanisms in astrophysics. Calculations
of accretion flows onto a compact star and the emitted radiation pattern are very
complex. Suppose the effective mean free path of gas particles is sufficiently short
that the flow is hydrodynamical in nature, first, one must determine the flow geometry.
In general, if the gas possesses intrinsic angular momentum, the flow will be two or
three dimensional, depending on the flow symmetry. In simple cases, the flow may
be spherical (a star dipped inside a static gas cloud) or disc-like (as in axisymmetric
flow of gas with intrinsic angular momentum). Matter falling into a compact star
tends to form a disc because an initially spherical mass of gas that starts spinning
will tend to flatten out. The faster it spins, the flatter it gets. So, if the falling material
is orbiting around the central mass, the spinning flattens the matter into an accretion
disc.

Figure 1.2 shows an accretion disc in a binary system. The yellow star on the right is
filling its Roche lobe and matter is therefore streaming over the compact object on the
left. Since the accreted matter possesses a significant amount of angular momentum,
it cannot fall directly onto the compact object, instead it forms an accretion disc
surrounding the compact object.

In general, some matter is assumed to rotate in Keplerian orbits inside an accretion
disc. But this is only possible when it is in equilibrium, i.e. gravity is balanced by the
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Fig. 1.2 Artist’s visualization
of a binary system. This
figure has been taken from
“http://upload.wikimedia.org/
wikipedia/commons/2/2a/
Accretion_disk.jpg”

centrifugal force and gas is sufficiently cold and has only rotational motion. If this
is the case, then nothing would have ever happened inside the accretion disc. In this
situation, matter would just go on revolving around the accreting star forever. How-
ever, this is not what happens because of viscosity which transports momentum, and
therefore angular momentum. The role of viscosity is to transfer angular momentum
from one gas layer to another which is further out from the accreting object. The first
gas layer will then move slightly closer to the accreting object as its new angular
momentum corresponds to a smaller orbit. Repeating this process many times, the
gas element eventually falls down to the central object and forms an accretion disc.

1.4 Fluid Dynamical Aspects of an Accretion Flow

In this section, we briefly discuss various conservation laws of fluid dynamics. If the
effective mean free path for particles lmf is shorter than the accretion flow spatial
length scale L:

lmf � L (1.21)

the accretion flow is hydrodynamical in nature and the system is regarded as a contin-
uous flow characterized by a velocity v, temperature T and density ρ. A continuum
physical system is described by the laws of conservation of mass, momentum and
energy. These conservation laws along with an equation of state explicitly describe
the nature of the flow dynamics considering the appropriate boundary conditions.

The conservation of mass of the flow is described by the continuity equation for
the density ρ and flow velocity v which is given by Landau and Lifshitz (1959)

http://upload.wikimedia.org/wikipedia/commons/2/2a/Accretion_ disk.jpg
http://upload.wikimedia.org/wikipedia/commons/2/2a/Accretion_ disk.jpg
http://upload.wikimedia.org/wikipedia/commons/2/2a/Accretion_ disk.jpg
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∂ρ

∂t
+ 	.(ρv) = 0. (1.22)

The momentum conservation is given by the Navier-Stokes equation:

∂v
∂t

+ v.	v = −1

ρ
	P + fexternal, (1.23)

where, P is the gas pressure at each point arising because of the thermal motion
of the gas particles and fexternal denotes the external forces like gravity, viscosity,
body forces, etc. Clearly, Navier-Stokes equation states that the rate of change of
momentum per unit volume is caused by pressure, viscous and gravity forces. The
energy equation for the gas element is given as

∂

∂t

(
1

2
ρv2 + ρE

)
+ 	.

[(
1

2
ρv2 + ρE + P

)
v
]

= f .v − 	.Frad − 	.q, (1.24)

where, the terms ρv2 and ρE measure the kinetic energy density and internal energy
density respectively. On the right-hand side, Frad represents the radiative flux vector
and q denotes the conductive heat flux. In general, q estimates the rate of transport of
thermal energy inside the gas due to random motions. Apart from these conservation
laws, an equation of state is necessary to describe an astrophysical flow. For this
purpose, the equation of state of a perfect gas is very useful, which is given as

P = ρkT

μmp
, (1.25)

where, k is the Boltzmann constant, mp is the mass of the hydrogen atom and μ is the
mean molecular weight for neutral hydrogen, μ = 1 and for fully ionized hydrogen,
μ = 1

2 .
The important physical phenomena exhibited by these hyperbolic conservation

laws is a shock. It is a genuinely nonlinear phenomenon in a flow. In the followig
section, we look at the shocks, their origins and physical properties.

1.5 Shocks

A shock is a place where certain jumps in thermodynamic variables, such as pressure
and temperature, take place. These develop spontaneously from smooth distributions
and can remain stable. The shock jump is self-forming and also self-maintaining.
This is unlike a contact discontinuity which must be put in the system initially and
will not re-sharpen itself if it is smeared out by some other process. Some familiar
examples of shock waves are the ‘sonic booms of a jet aircraft’, or the ‘bang from
a gun’. These sounds are our perceptions of a sudden jump in air pressure. It is
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convenient to define a shock in terms of Mach number. The Mach number is defined
as the ratio of the flow velocity to the velocity of the sound. If the Mach number
is less than unity, the flow is called subsonic and if it is greater than unity it is
called supersonic. A flow is called transonic if it makes a transition from subsonic
to supersonic flow or vice versa either continuously or discontinuously. The point
of continuous transition is called the sonic point and the location of discontinuous
transition is a shock. However, shocks and sonic points do not happen arbitrarily.
Several conditions are to be fulfilled simultaneously. First, we discuss the conditions
of shock formation (LL59).

1.5.1 Shock Conditions from Conservation Equations

Let us consider conservation of mass, momentum and energy (Eqs. 1.22, 1.23 and
1.24) for a gas in the conserved form

δU
δt

+ � · F = 0, (1.26)

with conserved variables

U =
⎛
⎝ ρ

ρv
ρ( v2

2 + e)

⎞
⎠ , (1.27)

and flux

F =
⎛
⎝

ρv
ρg + ρv ⊗ v

ρv(ρ + v2

2 + p
ρ )

⎞
⎠ , (1.28)

with g = δij, a metric tensor that allows us to write the momentum flux density
as a tensor. A discontinuity in a gas flow occurs over one or more surfaces, i.e.
the quantities change discontinuously as we cross such a surface, which is called
surface of discontinuity. Certain boundary conditions must be satisfied on surface of
discontinuity.

Consider applying Gausss theorem to a short cylindrical volume at a stationary
discontinuity with normal n = (0, 0, 1) in the z direction. This is equivalent to
working in the frame moving with the discontinuity. Gausss law for any divergence

∫
� · FdV =

∫

S

F · dA. (1.29)
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Adjusting our volume so that it is a narrow slab and oriented with normal n

[F · n] = (F2 − F1) · n = 0 (1.30)

across a discontinuity (where [..] refer to quantities on one side subtracted by those
on the other side).

First, the mass flux must be continuous, i.e. with F = ρv,

[ρv] = 0, (1.31)

where, v = vxi + vyj + vzk.
Second, the momentum flux must be continuous. The momentum flux per unit

area is given by �ij = pni + ρvivknk , where, n = nxi + nyj + nzk. Applying Gausss
theorem to each component we have three equations (each one through surfaces with
direction n):

[�·n] = 0, (1.32)

or, in a summation notation,

[�ijnj] = 0, (1.33)

or, orienting the shock normal along the z axis,

[�xz] = [�yz] = [�zz] = 0. (1.34)

For each of these equations, the conservation of momentum implies

[p + ρvx
2] = 0, [ρvxvy] = 0, [ρvxvz] = 0, (1.35)

while the second two equations (along with that for conservation of mass) imply that
the velocity components parallel to the discontinuity do not change.

Third, the energy flux has to be continuous. The conservation of energy leads to
the following shock condition:

[
ρv · n

(
v2

2
+ p

ρ
+ e

)]
= 0, (1.36)

where, e = internal energy.
Equations 1.31, 1.35 and 1.36 represent a complete system of boundary conditions

at a surface of discontinuity. There are two possibilities of two types of surface of
discontinuity. The first type is that there is no mass flux through the surface. But this
is not possible for an accretion flow around a black hole. So we consider the second
type, i.e. where the mass flux is non-zero. In other words, ρvx1 = ρvx2 �= 0, where,
1 and 2 represent quantities before and after the discontinuity. So, from Eq. 1.34, we
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get [ρvy = 0], [ρvz = 0], i.e. the tangential velocity is continuous at the surface of
discontinuity. So from Eqs. 1.35 and 1.36, we get

[
1

2
vx

2 + p

ρ
+ e

]
= 0. (1.37)

Thus, the following conditions of discontinuity must hold at the surface of disconti-
nuity:

[ρvx] = 0,
[
p + ρvx

2
]

= 0,

[
1

2
vx

2 + p

ρ
+ e

]
= 0. (1.38)

This kind of discontinuity of a flow is called a shock-wave or simply a shock. Equation
1.38 is called the normal Rankine-Hugoniot conditions and such a shock is termed
as a Rankine-Hugoniot shock.

1.5.2 Relation Between the Pre-shock and the Post-shock Mach
Numbers in an Adiabatic Case

In terms of the upstream Mach number, M1 = u1/a1 (a1 is upstream sound speed
and so on), and using an equation of state with adiabatic index γ it is possible to
show that

ρ2

ρ1
= v1

v2
= (γ + 1)M1

2

(γ − 1)M1
2 + 2

, (1.39)

and
p1

p2
= 2γM1

2

(γ + 1)
− (γ + 1)

(γ − 1)
. (1.40)

Also, the downstream Mach number (M2) is given by

M2
2 = 2 + (γ − 1)M1

2

2γM1
2 − (γ − 1)

. (1.41)

There are maximum density and velocity changes allowed across a shock jump that
depends on the adiabatic index. Strong shocks are those in which M1 → ∞ giving

ρ2

ρ1
= v1

v2
→ (γ + 1)

(γ − 1)
, (1.42)

p1

p2
→ 2γM1

2

(γ + 1)
(1.43)
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For γ = 5/3 the density and velocity ratio is 4. This is the maximum value. A strong
shock for a gas with γ = 5/3 can have a maximum density and velocity contrast
across the shock of 4.

Now, using the relation

γ = 1 + 1

n

in Eq. 1.41, we have

M2
2 = M1

2 + 2n

2M1
2(1 + n) − 1

. (1.44)

If M1 > 1 then clearly,

2M1
2 + 2M1

2n − 1 > M1
2 + 2n ⇒ M2 < 1, (1.45)

as

2M1
2 − 1 > 1, 2nM1

2 > 2n. (1.46)

So, for an adiabatic shock with constant γ the post-shock flow is subsonic.
Three different types of shocks are of special interest to us which correspond

to three extreme physical considerations (Chakrabarti 1990a). These are: Rankine-
Hugoniot shock, isentropic compression waves and isothermal shock.

1.5.3 Comments on Entropy

We note that we could look at p/ργ = K where, K is the coefficient in P = Kργ , on
both sides of the shock. The ratio

p1ρ1
−1

p2ρ2
−1 (1.47)

is not in general equal to 1. This means that K is not the same on both sides of the
shock and that entropy is not conserved across a shock. The gas jumps from one
adiabat to another of higher entropy. It may be puzzling to consider that we have
specified an equation of state on either side of the shock that implies that variations
are adiabatic. While we have assumed that p ∝ ργ on either side of the shock and
with the same γ, we have not specified that the constant K is the same on either
side of the discontinuity. Since the entropy cannot decrease across a shock, entropy
must be generated at the shock. Dissipation from viscosity and turbulence dictate the
shape of the actual shock interface on small scales (Chakrabarti 1990a).
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1.5.4 Rankine-Hugoniot Shocks, Isentropic Compression Waves
and Isothermal Shocks

A Rankine-Hugoniot shock is a dissipation-less shock where there is an increase
in entropy. The velocity jumps from the supersonic to the subsonic value and the
post-shock temperature is high. Thus the sound speed and the thickness of the flow
increases after the shock. In case of an isentropic compression wave, the entropy does
not change in the flow but a considerable part of the energy is lost at the shock. The
amount of entropy at the shock front is comparable to the entropy radiated away from
the disc which may help to maintain a proper balance of entropy. After a shock front
the gas is heated but this gas may cool in some cases back to its original temperature.
If the cooling length is short then we call the shock isothermal (Chakrabarti 1990a).

We can summarize three types of jumps (Chakrabarti 1990a). Let (E−, E+),
(T−, T+) and (s−, s+) be energies, temperatures and entropies of the flow, where
the subscripts ‘−’ and ‘+’ denote the quantities before and after the shock. Then,
for the Rankine-Huginiot shock,

E− = E+, T− < T+, s− < s+. (1.48)

For the isentropic compression wave,

E− < E+, T− < T+, s− = s+. (1.49)

For the isothermal shock,

E− < E+, T− = T+, s− > s+. (1.50)

Shocks in accretion flows (Chakrabarti 1989) are also an important phenomenon
which influence the geometry as well as the radiations emitted from the flow. We
will discuss this in Sect. 1.5.5.

1.5.5 Shocks in Accretion Flows (Chakrabarti 1989)

The rotating matter accreting around a black hole experiences mainly two forces
which dictate the motion of the particle trajectories. The first is the inward gravita-
tional force, Fg = 1

r2 and the second is the outward centrifugal force, Fcen = 1
r3 for

a flow having constant angular momentum. Both the principal forces strictly depend
on the radial distance. Therefore, the gravity dominates over the centrifugal force at
a distance either close to or far away from the black hole, whereas the centrifugal
force becomes comparable to gravity at intermediate locations. Accordingly, matter
at infinity feels the gravitational pull due to the black hole and accretes towards it with
increasing inward velocity which becomes supersonic at some point. The incoming
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matter is piled up behind the centrifugal barrier. At a distance of a few tens of rg the
outward centrifugal force starts to dominate over gravity and thus the matter slows
down. Therefore, the density goes up and matter makes a discontinuous transition
from a supersonic branch to the subsonic branch which is termed as a shock. Just
after the shock, the subsonic matter is again attracted towards the black hole due to
gravity and crosses the inner sonic point to become supersonic before crossing the
black hole horizon (Chakrabarti 1989, 1996).

1.6 Importance of Numerical Simulations in Astrophysics

An wide range of astrophysical phenomena are described by time-dependent flow
dynamical equations. If we want to seek the time evolution of the accretion phe-
nomena, we need to solve numerically the time-dependent equations since analytical
solutions are prohibitive in most cases. Hydrodynamic properties of matter can be
derived from basic flow equations such as the continuity, momentum and energy
equations. The flow equations consist of partial differential equations. These are
replaced by finite difference equations for simplified geometries and are numerically
solved with sufficient boundary conditions when the initial conditions are properly
specified. A number of numerical methods to solve the fluid equations have been
developed so far. The general requirement is that the obtained solutions must be
stable, should be computationally stable and the conserved quantities should remain
conserved. Some numerical methods may have more advantages than others in satis-
fying these requirements. So we need to select the most efficient numerical method
for solving a specific problem.

In the case of accretion flows around black holes, the system of equations reduces
the problem to a boundary value problem. The initial conditions are assumed to be
fixed and the boundary condition for the black holes is that the flow velocity of
matter is the same as the velocity of light on the horizon. However, it is impossible
to solve all the equations simultaneously (momentum equations, continuity equation
and energy equation) in an analytical way. So, we use a numerical method to solve
these equations. However, in order to trust the results of a numerical simulation,
one must have a thorough knowledge of the analytical solutions and, if possible, the
numerical solutions are to be validated with known analytical solutions, wherever
available.

1.7 An Overview of Steady Accretion Flow Models: Analytical
Aspects

There are several accretion and wind solutions in the literature, but their applicability
is restricted. To describe a black hole accretion, several quantities are important:
specific energy (ε), specific angular momentum (λ), viscous stress, etc. A mass
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accretion rate (Ṁ) is also needed. Some models use two mass accretion rates, one
for the Keplerian disc and the other for the sub-Keplerian disc.

Historically, the study of the interaction of a spherical gravitating star moving
supersonically with respect to a uniform medium started with the pioneering work of
Hoyle and Lyttleton (1939) and Bondi and Hoyle (1944). The problem was to quantify
the amount of matter which was accumulated on the star surface while coming from
the interstellar medium. The result was not complete as the gas pressure was ignored.
Several years later Bondi (1952) published his pioneering work on the spherical
accretion process. This solution was later applied by Parker (1959) to explain winds
emerging from the sun.

1.7.1 Spherical Accretion: Bondi Flow

The study of modern accretion processes on stars and compact objects began with the
revolutionary work on spherical flows onto normal stars by Bondi (1952). The objects
named ‘black holes’ were unknown (at least in the context of astrophysical object)
at the time of the publication of this paper. Bondi considered the situation where an
isolated star was at rest inside an ambient medium and the matter was accreted onto
the star’s surface spherically symmetrically due to gravitational attraction. To treat
the problem mathematically, one can take spherical polar coordinates (r, θ,φ) with
the origin at the centre of the star. The flow variables are independent of θ and φ
due to spherical symmetry. The gas velocity has only a radial component vr = v.
We consider radial flows near a central Newtonian star with mass M. Parameters
describing the flow are the density and sound speeds at infinity ρ∞ and a∞, and the
mass of the central object, M. It can also be subsonic throughout, depending on the
boundary condition. It is instructive to revisit the Bondi solution briefly as presented
by Chakrabarti (1990a).

We consider a spherically symmetric radial flow on a central star having mass M.
The motion of the gas is assumed to be steady and the flow has no magnetic field.
The increase in the mass of the central star is neglected and thus the external force
field remains unchanged. In spherical coordinates, the mass conservation equation
becomes

∂ρ

∂t
+ 1

r2

d

dr

(
ρvr2

)
= 0. (1.51)

For a steady flow, we can set ∂
∂t = 0. Then we have

1

r2

d

dr

(
ρvr2

)
= 0. (1.52)
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We integrate the previous equation to obtain the constant outflow or inflow rate

4πρvr2 = Ṁ, (1.53)

where, Ṁ is known as the accretion rate. Equation 1.52 may also written as

ρvr2 = ṁ, (1.54)

where, ṁ = Ṁ
4π . The equation of motion of the accreting matter of unit mass in the

steady-state condition is obtained from Euler equation where the only contribution
to the external force, fexternal, is from gravity. Due to spherical symmetry and steady-
state condition the Euler equation becomes

v
dv

dr
+ 1

ρ

dP

dr
+ 1

r2 = 0. (1.55)

In these equations, we have chosen the geometric units G = c = M = 1 where G is
the gravitational constant, c is the velocity of light. Hence, the unit of length, mass,
velocity and time would be GM/c2, M, c and GM/c3 respectively. Moreover, the
matter is considered to be adiabatic in nature that follows from the equation of state
P = Kργ where K is a constant which measures the specific entropy of the matter
and γ is the adiabatic index. We integrate radial momentum equation using adiabatic
sound speed, a2 = γP/ρ, to obtain the Bernoulli integral which is given as

E = 1

2
v2 + na2 − 1

r
= na2∞, (1.56)

where, E and n (= 1
γ−1 ) are the specific energy and polytropic index of the flow

respectively.
One can re-express the polytropic equation of state in terms of adiabatic sound

speed as

ρ =
(

a2

γK

)n

. (1.57)

Using the expression for ρ, Eq. 1.44 can be written as

Ṁ = a2nvr2. (1.58)

The new term Ṁ = γnKnṁ first introduced by Chakrabarti (1989) is also a conserved
quantity in the flow known as entropy accretion rate. Chakrabarti (1989, 1990a)
introduced a clever method of calculating the location of the sonic point (rc) and the
value of radial derivative of velocity ( dvr

dr ) at r = rc.
Differentiating Eqs. 1.56 and 1.58 and eliminating da/dr we get the gradient of

radial velocity
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Fig. 1.3 Plot of Mach
number (M) versus radius
(Log scale) of a Bondi flow
around a Newtonian star for
n = 3 and E = 0.01. The
transonic flows in accretion
and outflows are shown. This
solution was given byBondi
(1952). We have replotted this
solution. The curves from the
regions marked 1, 2, 3 and 4
are not transonic. Among
them, branch-2 is subsonic at
every point and can also be a
solution on a star. Branch-4 is
supersonic always and could
be excluded as unrealistic

dv

dr
=

2a2

r
− 1

r2

v − a2

v

= N

D
, (1.59)

where, N and D stand for numerator and denominator respectively.
A flow with a constant energy and entropy must be smooth at every point. Thus,

if at some point the denominator vanishes, the numerator must also vanish there as
dv/dr has to be finite. Such a special point is called the critical point of the flow. We
therefore have the critical point condition given as

v2
c = a2

c = 1

2rc
. (1.60)

The subscript ‘c’ denotes the flow variables at the critical point. The Mach number,
defined as the ratio of the flow radial velocity to the sound speed, is unity at the critical
point: M(rc)(= vc/ac) = 1. Therefore, the critical points are renamed as the sonic
points (rc). This sonic point, rc, would then correspond to a spherical surface called
the sound horizon. This name is particularly suited since any acoustic disturbance
created at the downstream region (r < rc, u < a) will not be carried out to the
upstream (r > rc, u > a).

Let us concentrate on the length scale of the accretion flow problem. Define the
‘accretion radius’, racc as the radius at which the kinetic energy of matter is balanced
by its potential energy and is given as
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racc = 2

v2∞
. (1.61)

This length scale gives the range of influence of the central star onto the gas cloud.
From the previous expression, it is clear that for r → ∞, contribution of gravity
is negligible and the flow does not feel any inward pull. But at the same location,
the sound speed has some non-zero value which asymptotically approaches to a∞.
As one now proceeds towards the central star, the flow velocity increases and the
flow must be subsonic at a large r. In the accretion process, the gradient of the radial
velocity must always be negative throughout the flow. In the vicinity of the accreting
star, the gravity dominates over all other forces. This makes the numerator negative.
Therefore, accretion is possible if and only if D > 0 this implies v > a, i.e., the flow
is supersonic in nature at that region. Thus the accretion flow solutions are always
transonic and transonic transition between sub- and supersonic branches occur at the
sonic point. This is not true for the Neutron star accretion where the whole accretion
could be subsonic. Limitation of the transonic flow solution can be clearly understood
when the flow variable (u or a) at the critical points is expressed in terms of a∞ and
is given as

ac =
(

n

n − 3/2

)1/2

a∞. (1.62)

This indicates that the transonic flow exists if and only if n > 3/2 i.e., for γ < 5/3.

More importantly, the conserved quantities E and Ṁ could be expressed in terms
of an unknown variable, rc using two critical point conditions. This implies that E
and Ṁ cannot be independent and this would provide a single parameter family of
solutions. The entropy accretion rate Ṁ can be estimated from a∞ as

Ṁc = 1

4

(
na∞

n − 3/2

)n−3/2

. (1.63)

The nature of the Bondi solutions needs a detailed study of radial velocity gradient
[(dv/dr)c] at the critical point. At this point, dv/dr = 0/0, so one must apply
L’Hospital rule to understand the behavior of the flow properly. Thus using the
critical point conditions at rc one obtains

(dv/dr)c = − 4a3
c

2n + 1
[1 ∓ √

n(n − 3/2)]. (1.64)

The nature of the critical points is dictated by the discriminant D = n(n − 3/2).

A transonic flow solution is possible when velocity gradient at the critical point
becomes real and it happens for n > 3/2. Classification of the critical points mainly
depends on the exact value of the discriminant (D) and Chakrabarti (1990a) has done
a detailed study on it, which will not be repeated here. For n > 2, a saddle type sonic
point exists since derivatives (dv/dr)c at the critical point are real and of opposite
signs. When n < 3/2,D < 0 and the critical point are of spiral type, critical point
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becomes nodal when n lies in the range 2 > n > 3/2. Thus, in a Bondi flow, the
behaviour of the critical point strongly depends on polytropic index (n) and its nature
is highly sensitive to the numerical value of n.

In Fig. 1.3, we replot the Bondi solution and present the variation of Mach number
with the logarithmic radial distance for a set of fixed input parameters n = 3 and
E = 0.01. The solid curves connect the flow solution from infinity to the star surface
and hence are considered to be physically significant. Details of the figure description
are shown in the caption.

1.7.2 Approaches to Disc-Type Solutions

In 1963, the first quasar QSO 3C273 was discovered (Hazard et al. 1963; Schmidt
1963). Various explanations were proposed and it was generally felt that the enormous
energy radiated by a QSO must be gravitational in nature. The computed luminosity
was found to be of the order of 1047 ergs per sec for reasonable parameters.

Using the Schwarzschild solution Salpeter (1964) explained that luminosity could
be due to Bondi accretion on very massive compact objects (>10 M�). Originally
these objects were called ‘collapsars’. Later the phrase ‘black hole’ was coined by
(Wheeler 1968). Lynden-Bell (1969) argued that the accretion close to the Eddington
rate on supermassive black holes must be responsible for this tremendous activity.
Some efforts were made to compute spherically symmetric Bondi accretion in the
presence of heating and cooling terms. Shapiro (1973a) included electron–electron
and electron–proton bremsstrahlung effects. Schvartsman (1971a), Zel’dovich and
Novikov (1973) and Shapiro (1973b) included effects of tangled magnetic field with
equipartition energy density. They found that the synchrotron radiation will be pre-
dominantly emitted in the infrared region. The effect of pre-heating on the luminosity
of the spherical emission was established by Ostriker et al. (1976). The boundary
layer of a neutron star where the flow settles down to zero velocity was first studied
by Shapiro and Salpeter (1975). Thus the importance of the inner boundary condi-
tion was recognized, and it was particularly realised that the boundary layer is an
extension of the disc flow itself. This concept was extended even for black holes by
Chakrabarti (1996), even when there was no hard surface. This is simply because
matter with angular momentum stays away from the black hole due to centrifugal
force and the centrifugal barrier behaves like a hard surface.

The simple spherical flow was very soon improved upon by adding an angular
momentum. Numerical integration of the non-relativistic fluid equations performed
by Hunt (1973) for the case of gravitating point source moving through the adiabatic
gas for different Mach numbers. Hunt found that in the case of a supersonic flow,
the source was preceded by the bow shock with an accretion rate comparable to the
classical value obtained by Bondi and Hoyle (1944).
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1.7.3 The Standard Disc Model

The so-called ‘standard Keplerian disc’ was then proposed by Shakura and Sunyaev
(1973). For a disc in nearly circular motion around a star or black hole, they expected
that vφ, the component of the velocity in the tangential direction to be large compared
to a small radial component vr . They also assumed that the disc is thin and integrated
physical quantities vertically. The paper (Shakura and Sunyaev 1973) made a simple
assumption that let all the matter move in Keplerian orbits inside the disc, even when
the disc has pressure and inertial forces and close to a black hole and even when the
viscosity is small. The inner edge of the disc was truncated at 6GM

c2 , i.e. 3 Schwarz-
schild radii for a non-rotating black hole. Here, G, M and c are the gravitational
constant, the mass of the black hole and the velocity of light respectively. The angu-
lar momentum was transported outward by viscous processes. It was also assumed
that the heat generated by viscosity was assumed to be radiated away instantaneously
from the surface. The viscous stress was assumed to be dominated by the Wrφ com-
ponent and the viscous stress is considered to be proportional to the local pressure
by the relation Wrφ = −αρvs

2, where α is a constant, ρ is density and vs is the
isothermal sound velocity. For causality, α < 1 always. The disc was assumed to be
in vertical equilibrium. The above work was carried out using Newtonian equations.

One can estimate the energy dissipation rate for the Keplerian accretion disc. The
energy per unit area dissipated per unit time would be

Q(R) = η�2R2(
d�

dR
)2. (1.65)

We can evaluate this for a steadily accreting Keplerian disc using

d�

dR
= −3

2
(
�

R
). (1.66)

After some simple algebra, for the steady-state disc, the energy flux, radiated from
unit surface area of the disc per unit time at a radius R can be written as

Q(R) = 3

8π
Ṁ

GM

R3

[
1 −

(
R0

R

)1/2
]

, (1.67)

Consider Eq. 1.67 for the energy dissipated per unit area for a nearly Keplerian
system in steady state. This viscously dissipated energy escapes as radiation from
the top and bottom of the disc. Let us integrate between inner and outer disc radii
(Rin, Rout) to estimate the total luminosity of the disc due to accretion

L(Rin, Rout) =
Rout∫

Rin

2πRQ(R)dR (1.68)
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After completing the algebra, for a Keplerian system accreting in a steady state with
an accretion rate Ṁ, the corresponding luminosity produced by the disc in between
Rin and Rout is given as

L(Rin, Rout) = 3GMṀ

2

[
1

Rin

[
1 − 2

3

(
R0

Rin

)1/2
]

− 1

Rout

[
1 − 2

3

(
R0

Rout

)1/2
]]

.

(1.69)
For Rin = R0 (the radius of the central star or the Schwarzschild radius) and R2 = ∞
the total luminosity radiated from the accretion disc becomes

Ldisc = GMṀ

2R0
. (1.70)

So, half the gravitational energy is radiated away from the accretion disc.
To compute the temperature and density structure of a disc, the opacity as a func-

tion of depth and wavelength must be taken into account. In case the Shakura-Sunyaev
disc is optically thick and opacity due to free-free absorption is more important than
the opacity due to scattering, each element of the disc surface radiates black body
spectrum with surface temperature T(R) given by equating the dissipation rate to the
black body flux

T(R) ≈ 5 × 107
(

M

M�

)−1/2

Ṁ1/4
17 (2R)−3/4

(
1 −

√
3

R

)1/4

K . (1.71)

In this equation M is measured in units of M�, Ṁ17 is in units of 1017 g s−1 and R
is measured in units of 2GMM�/c2.

This disc is radiatively very efficient. However, the disc is terminated at the last
stable circular orbit. The effective temperature of the radiation is around ∼1 keV for
stellar black holes (M ∼ 10M�). For Quasars, the radiation emitted from such a
disc is in the ultraviolet region and is widely known to produce the big blue bump.
This disc is an ideal solution, as it assumes the angular momentum distribution to be
predetermined (Keplerian λK ) and it has no solution below r = 3rg. The gas pressure
is assumed to be negligible. This model is unable to explain the observed emission
features of accreting black holes at energies higher than 10 keV.

Novikov and Thorne (1973) almost simultaneously completed this work to include
general relativity. Soon after the standard disc model was published Lightman and
Eardley (1974) pointed out that in a radiation pressure dominated region, viscosity
prescription of Shakura and Sunyaev was inconsistent if α remains constant and the
disc might break into thin rings. Eardley et al. (1975) had a very successful model
with a Keplerian disc which flares into a thick disc closer to the inner edge. They
considered a two-temperature flow and it was a single component disc with a small
accretion rate. Pringle (1976) showed that such a disc is thermally unstable.
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1.7.4 Thick Accretion Discs

Lynden-Bell (1978) first computed the steady-state structure of a flow with a constant
angular momentum in general relativistic flows and predicted that the flow would
develop giant vortices along the axis, since the centrifugal force would keep matter
away from the axis. He also found that discs thicken up closer to the black hole. These
models were later developed to produce thick accretion disc models. The work of
Lynden-Bell was extended and thick accretion disc models were constructed by
Paczyński and his collaborators (Kozlowski et al. 1978; Abramowicz et al. 1978;)
by choosing various combinations of angular momentum distribution. Abramowicz
et al. (1978) and Kozlowski et al. (1978) showed that a cusp exists at the inner edge
of the discs and the fat disc can be constructed whose inner edges extend down to
the marginally bound circular orbit, rmb (rmb = 4 GM/c2 for a Schwarzschild black
hole).

In (Paczyński and Wiita 1980) discovered a modified Newtonian potential which
we mentioned earlier. They (PW) were able to construct thick discs whose inner
radii lie within rms = (6 GM/c2) and match onto more standard thin discs. They
also showed that accretion can exceed the nominal critical rates and because of the
bloated shape of their discs, the total luminosities can exceed the nominal Eddington
luminosity. The first prescription of how the angular momentum should be distributed
in a general relativistic thick accretion disc was given by Chakrabarti (1985). The
Chakrabarti distribution makes use of the properties of the constant angular momen-
tum surfaces (which are also angular constant velocity surfaces for barotropic flows)
called von-Zeipel cylinders. The solution of Chakrabarti (1985) is valid for any
axisymmetric space-time, including the Kerr geometry.

1.7.5 Advective Discs

After the discovery of the pseudo-Newtonian potential (PW80), the transonic
accretion flow with angular momentum onto a black hole was investigated by Liang
and Thompson (1980), Abramowicz and Zurek (1981), Loska (1982), Muchotrzeb
(1983), Matsumoto et al. (1984) and Abramowicz (1985). Using the Paczyński-Wiita
potential Liang and Thompson (1980) argued that unlike a Bondi flow, a thin, rotat-
ing, adiabatic flow can have three sonic points, two of saddle type and one of centre
type. It was noticed by Abramowicz and Zurek (1981) that there exist two transonic
solutions with the same specific energy and the same specific angular momentum
but with two different sonic points. They argued that the disc could go back and forth
from one solution to the other. Chakrabarti (1989) showed that this is not possible,
since the entropy has to go up and down, which is impossible. It is well known in
the context of solar winds that if the flow has more than one saddle-type sonic point,
shocks may form (Holzer and Axford 1970). Chang and Ostriker (1985) found nec-
essary conditions for the existence of solutions with two sonic points when the gas is
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pre-heated and pointed out that these would often be satisfied in astrophysical envi-
ronments. They showed that the presence of pre-heating in a spherical flow would
increase the number of sonic points and shocks could form.

Meanwhile, important work on sub-Keplerian flows around black holes started. In
the late 1980s and early 1990s, improvements in space-borne (satellite) and ground-
based (radio antennas) instruments triggered the challenge to explain the observed
X-ray spectra of the black hole binaries. In the low energy ranges (<10 keV), the
spectrum was modelled as a black body spectrum but at high energies (few 100 keV)
there was a power-law behaviour whose slope changed from time to time. The stan-
dard disc and the thick-disc both were unable to reproduce the hard component (high
energy) of the spectrum which extend up to 100 keV and beyond. To explain this, the
presence of a hot (Te ∼ 109 K), optically thin plasma was required. At the same time,
an interesting feature called quasi-periodic oscillations (QPOs) was also observed in
most of the galactic black hole candidates. It was found that the X-ray variabilities
are quasi-periodic in nature and their Fourier decomposition shows a prominent peak
in the power density spectrum (PDS). The radio observations confirmed that the jets
and outflows that are observed in GBHs come out from the vicinity of the hole. To
explain the above features, a complete accretion disc model was needed instead of
different models to explain different observations.

Self-consistent studies of the accretion disc problem were started in the late 1980s
by Chakrabarti and his collaborators. In Chakrabarti (1989) presented a global solu-
tion for the astrophysical flow (will refer hereafter as the ‘Chakrabarti solution’).
According to Chakrabarti’s approach, the various properties of astrophysical flows
can be understood through a systematic study of the basic flow equations which
contain both the radial and azimuthal components of the velocity. These solutions
are perfectly stable and the global solutions seem to exist even without any viscos-
ity. This was because for a black hole accretion, the gravity eventually wins and
allows matter to sink in even with a constant angular momentum. The study of shock
waves in accretion discs also turned out to be important in black hole astrophysics.
The shocks in accretion discs are essential to explain many observable phenomenon.
Non-dissipative accretion discs around a black hole could be modelled in different
ways depending on the flow geometry. In the astrophysical literature, three mod-
els, namely Conical model, Constant Height model and Vertical Equilibrium model
(Chakrabarti 1990a) are mostly considered. An advective accretion disc is the one
that advects, or carries ‘something’, namely mass, entropy, energy, etc. This means
an advective disc should have a significant radial velocity which may even reach the
velocity of light on the horizon. Therefore, before entering into a black hole, matter
had to be supersonic (i.e., Mach number, Ma = v/a > 1, where v and a are radial
velocity and sound speed respectively). As v ∼ 0 at infinity, the matter must pass
through at least one sonic point (Ma = 1), and as a sub-Keplerian flow (i.e., a flow
with specific angular momentum λ < λK , the Keplerian angular momentum). Close
to the black hole, the matter falls very rapidly towards the horizon, thus making λ ∼
constant. One of the consequences of existence of multiple sonic points is that the
flow accreting through the outer sonic point can be slowed down by the centrifugal
barrier. This slowed down matter acts as a barrier to the faster fluid following it. If
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the strength of the barrier is strong enough then the shocks may form Chakrabarti
(1989) whose properties vary systematically as the flow parameters are changed.
For a large region of the parameter space (Chakrabarti 1990a), a stable solution can
have a standing shock wave. Depending on the physical parameters, a shock may
be steady or oscillating in nature, and it may even be absent. The oscillations of
the shock may give rise to the temporal variability in the form of QPOs which are
observed in many of the BH candidates. In this ‘boundary layer’, the flow kinetic
energy is converted into the thermal energy forming a hot Compton cloud which can
inverse-Comptonize the soft photons into hard photons and produce outflows and
winds (Chakrabarti 1999). This boundary layer is called the CENtrifugal pressure
supported BOundary Layer (or, CENBOL).

In the 1990s, the transonic flow model of the accretion was perfected after the
inclusions of heating, cooling, viscosity, etc. This paradigm is called the Advective
Disc Paradigm. Here the goal was to achieve a single paradigm so that the varied
observations from black hole candidates could be explained within a single frame-
work. The Advective Disc Paradigm appears to be the closest to reality as most of
the observations could be explained by using one or the other predictions of this
paradigm. A cartoon diagram is shown in Fig. 1.4.

1.7.6 Two Component Advective Flows

Chakrabarti and Titarchuk (1995), based on the solutions of viscous and inviscid
transonic flows around black holes (Chakrabarti 1989, 1990a, b) proposed that, in
general, the accretion disc should really have two components: a Keplerian accretion
on the equatorial plane and a sub-Keplerian halo which surrounds the Keplerian disc,
and the puffed up post-shock region of the flow should act as the Compton cloud. So,
Two Component Advective Flow (TCAF) (Fig. 1.5) is a combination of two types
of flows: a highly viscous Keplerian component which is accreted in long, viscous
timescale and a initially sub-Keplerian component, with higher radial velocity and
lower angular momentum. The sub-Keplerian flow is accreted in the short, free-fall

Fig. 1.4 Geometry of an advective disc around a black hole. We draw this cartoon diagram for
sub-Keplerian flow
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Fig. 1.5 Cartoon diagram of
a Two-Component Advective
Flow (TCAF) around black
holes which shows the
disc-outflows connection
(diagram has been taken from
Dr. Samir Mandal’s Ph.D
thesis 2005)

timescale. The Keplerian disc, because of its low energy, resides at the equatorial
plane, while matter with lower angular momentum flows above and below it. The
wind is predominantly produced from the post-shock (CENBOL) area. A transient
shock can also be present just outside the inner sonic point. The inner edge of the
Keplerian disc is terminated at the shock location. The amount of matter inside the
jet and outflow vary due to the shock-oscillation.

In the above discussions, we have concentrated on the theoretical models of accre-
tion flows. Basically they describe the stationary properties of an accretion disc. Some
of the theoretical models of the accretion disc which we discussed in the past have
been put to rigorous tests of numerical simulation. In Chap. 2, we present some
important developments in numerical simulation in this direction in the last three
decades. After that we present the goal of my thesis.
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Chapter 2
Overview of Numerical Simulations on
Accretion Processes and Our Objectives

Abstract We give an overview of the past work done on numerical simulation for
accretion flows around black holes. We start with non-viscous cases. We also point
out some important simulations of viscous accretion discs. In the last section of this
chapter, we present the precise goals for this thesis work.

2.1 Introduction

We turn now to present an overview of various simulations in astrophysics using
numerical methods to solve the basic conservation equations. Numerical simulations
of fluid flows in the vicinity of strongly gravitating compact objects require a three-
dimensional description because of their complex nature and lack of symmetry. To
provide a physical basis for the interpretative framework that the source is accretion
driven, a detailed description of the relevant hydrodynamical (and radiative) process
is required. One of the most convincing ways to study whether a solution is stable
or not is to perform time-dependent numerical simulations.

Prendergast (1960) was the first to carry out numerical simulation of gaseous
flows, while ignoring the pressure. His model expressed two constituent stars as two
mass points and ignored either release or accretion of the gas (see also, Huang 1965,
1966). These drawbacks were corrected by Prendergast and Taam (1974), who used
the beam scheme and with mass-accreting star of large size, were unable to find
the formation of any accretion disc. Biermann (1971) conducted simulations by the
characteristic line method for models close to wind accretion rather than accretion
discs. Sorensen et al. (1974, 1975) made calculations using fluid in cell method
(FLIC) and Cartesian coordinates. They took the mass-losing star and the mass-
accreting star into consideration and assumed the latter to be of sufficiently small
size to allow formation of an accretion disc. The results of their calculation showed
a gas stream from the L1 point flowing towards the compact star and formation
of an accretion disc. However, Wilson (1972) first investigated numerically time-
dependent accretion of inviscid matter onto a rotating (Kerr) black hole. This was the
first problem to which his formulation of the hydrodynamic equations was applied.
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Nowadays, there is a large body of numerical investigations in the literature dealing
with hydrodynamical integrations in static background space-times. Most of these
are based on the Wilson formulation of hydrodynamic equations and use schemes
based on finite differences with some amount of artificial viscosity. More recently,
researchers have started to use conservative formulations of the equations, and their
characteristic information, in the design of numerical schemes.

Satisfactory numerical solutions of hydrodynamical equations were obtained for
spherical accretion Kylafis and Lamb (1979) and for steady-state flow onto mag-
netic white dwarfs (Wada et al. 1980). In 1981, Langer et al. presented the first
time-dependent numerical solutions to hydrodynamical equations for accretion onto
a white dwarf. They demonstrated that the shock height underwent a periodic limit
cycle due to thermal instability in the bremsstrahlung dominated cooling. In their
next paper (1981), they described in detail their method of solution and considered
a wide range of accretion rates and white masses and radii of the white dwarfs. The
effect of cyclotron emission on the same work was included by Chanmugam et al.
(1985). Sawada et al. (1986a, b), Spruit et al. (1987) made a second attempt on the
same problem that Sorenson et al. (1976) had worked on earlier. They worked using
state-of-the-art techniques such as the Osher upwind finite difference method with
second-order accuracy, generalised curvilinear coordinates and a supercomputer of
vector type. The Osher upwind difference method can run the calculation stably
while suppressing the artificial viscosity at a low level and is a predecessor of the
Total Variation Diminishing (TVD) method, which is a representative modern com-
putational fluid dynamics scheme. As a result, they discovered in accretion disc the
presence of spiral shocks, the very feature that was never discovered using other
schemes with more dissipations. Since then, authors have been carrying out two-
dimensional simulation for accretion discs by various methods and they all obtained
spiral shocks (Spruit et al. 1987; Rozyczka and Spruit 1989; Matsuda et al. 1990;
Savonije et al. 1994; Godon 1997).

In the following, we present a summary of illustrative time-dependent accretion
simulations in hydrodynamics. We concentrate on the progress of multidimensional
simulations around black holes.

2.2 Simulation of Inviscid Flows

There are a variety of astrophysical situations in which one expects to find fluid
accreting onto a black hole. Among these are the stellar collapse to a black hole, a
black hole in a binary system and a supermassive black hole in active galactic nuclei.
Pioneering numerical efforts in the study of black hole accretion made use of the so-
called frozen star paradigm of a black hole. The first numerical attempt to study the
behaviour of matter around black holes was made nearly three decades ago (Hawley
and Smarr 1983). They developed a 2D axisymmetric, general relativistic, Eulerian,
first-order backward space difference technique inviscid hydrodynamic accretion
flow in a fixed Kerr black hole gravitational field. It was shown that the large angular
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momentum accretion is accompanied by shock waves that travel outwards. These
simulations also confirm the results of Wilson (1978) that non-steady shock waves
are formed which travel outward. A series of important simulations were carried
out with this code to show that thick accretion discs can indeed form in inviscid
flows (Hawley et al. 1984a, b). In these simulations, a shock wave was found but it
was not steady at all as it travelled outwards. Furthermore, theoretical models were
not mature enough (no radial velocity included, for example). Fryxell et al. (1987)
devoted their attention to the hydrodynamical aspects of the problem in adiabatic
approximation. They presented the results of a number of numerical simulations to
describe the dependence of hydrodynamical flows on the boundary conditions at the
surface of the gravitating object. In the above simulations, no standing shock waves
were found as the parameter space (spanned by energy and angular momentum) for
which standing shock may form was not used at the outer boundary. Livio et al. (1991)
showed that the shock cone exhibited a side-to-side motion, which was termed the
‘flip-flop’ instability. The flip-flop motion was accompanied by the episodic accretion
of material with high specific angular momentum of opposite signs. With a three-
dimensional extension of the axisymmetric code of Hawley et al. (1984a, b), Hawley
(1991) studied the global hydrodynamic non-axisymmetric instabilities in thick, con-
stant angular momentum accretion gas tori, orbiting around a Schwarzschild black
hole. Matsuda et al. (1992) were the first to show that 2D adiabatic flows are unstable
to ‘flip-flop’ instability even in the case of accretion from a homogeneous medium
so that the density or velocity gradients merely provide an initial perturbation. Ishii
et al. (1993) presented the results of two- and three-dimensional numerical hydro-
dynamical calculations of accretion flows of an isothermal gas past a gravitating
compact object. They found that 2D isothermal flows exhibit ‘flip-flop’ instability
both in homogeneous and non-homogeneous cases. In contrast to the finite difference
method, Lin and Pringle (1976) and Hensler (1982) performed calculations with a
particle method, the former in particular using the sticky particle method, which can
be called a predecessor of the Smoothed Particle Hydrodynamics (SPH) method. All
these calculations, having incorporated an artificial viscosity to stabilise the calcu-
lation, could not reveal the detailed structure of the inside of an accretion disc. The
SPH discretization approach satisfies that the available finite number of computa-
tional nodes or grid points follow the fluid (Lagrangian description). So, it (SPH) had
become a useful computational tool for complex two- and three-dimensional prob-
lems (Benz 1990), and it owes its popularity mostly to its computational simplicity.
Monaghan (1988) derived SPH equations for relativistic fluids moving in a static
metric. Kheyfets and Zurek (1990) devloped a formulation of SPH compatible with
the principles of general relativity in which the contact interactions are modelled
by spatial smoothing functions constructed explicitly in the local frame co-moving
with fluid. Laguna et al. (1993) took a logical step in the progression and applied the
SPH techniques in developing a computational tool to study the three-dimensional
dynamics of a relativistic ideal fluid in a static curved space-time geometry. Steinmetz
and Mueller (1993) compared one-dimensional plane-parallel hydrodynamic shock
solutions and spherical cloud collapse and suggested some improvements in the SPH
technique to minimise dissipation. Davis et al. (1993) compared the collisions of a
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Fig. 2.1 An example of the simulation of a thin accretion disc which includes a standing shock
wave. Mach number of the flow is plotted against the radial distance. Results at different times are
shown as solid curves. Analytical solution is shown as a dashed curve with vertical shock transition.
The flow forms the shock at the predicted location. This figure has been taken from Chakrabarti
and Molteni (1993)

main-sequence star with a white dwarf and showed satisfactory performance of SPH
as well as finite difference code. Laguna et al. (1994) compared a general relativistic
SPH code for one-dimensional plane-parallel shock solutions and spherical inflows
with and without pressure. They found good agreement with the analytical solution.
Several numerical works were done by various authors using SPH code written in
axisymmetric coordinate system using Pseudo-Newtonian potential. Chakrabarti and
Molteni (1993) presented the results of numerical simulations of thin accretion discs
and winds. They showed that their simulation agrees very well with the theoretical
work (Chakrabarti 1990a) on shock formation. The most significant conclusion was
that shocks in an inviscid flow were extremely stable. Figure 2.1 shows an exam-
ple of the simulation of a thin accretion disc which includes standing shock waves
(Chakrabarti and Molteni 1993). Mach number of the flow is plotted against the radial
distance (in units of Schwarzschild radius of the central black hole). Solid curves
are simulation results and dashed curves are the supersonic and subsonic branches,
respectively. Two vertical dashed lines indicate locations of analytically predicted
shock transitions, the outer one being stable. After a transient phase, a shock forms
near the inner edge which then travels outward till it reaches the outer stable shock.
Molteni et al. (1994) simulated the formation of a thick disc. For a large number of
cases they also found the formation of strong winds which are hot and subsonic when
originating from the disc surface very close to the black hole, but become supersonic
within a few tens of Schwarzschild radii of the black hole. They also showed that in
the case of higher angular momentum, the black hole accretes very less amount of
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Fig. 2.2 Pseudo-particles in
a smoothed particle
hydrodynamic simulation of a
two-dimensional
sub-Keplerian angular
momentum flow. The figure
has been taken from Molteni
et al. (1994)

matter and most of the matter is driven outwards as a strong wind. Figure 2.2 shows
the particle distribution in which the standing shock at X 16 is clearly visible. The
presence of oblique shock is also visible.

Sponholz and Molteni (1994) studied the shock formation around a Kerr black
hole and found differing shock locations in co-rotating and contra-rotating flows.
Molteni et al. (1996) extended their earlier numerical simulation (MLC96) of accre-
tion discs with shock waves when cooling effect are also included. They considered
bremsstrahlung and other power-law processes to mimic cooling in the simulation.
They observed that for a given angular momentum of the flow, the shock wave under-
goes a steady, radial oscillation with the period roughly equal to the cooling time. As
a result of oscillations, the energy output from the disc also varies quasi-periodically.

In 1982, Ami Harten published a groundbreaking paper that became the basis of
Computational Fluid Dynamics (CFD) research for many years to come. Under the
title ‘High Resolution Schemes for Hyperbolic Conservation Laws’, Harten intro-
duced the term total variation non-increasing (TVNI), which was later shortened by
other researchers to TVD. The details of the TVD scheme are discussed in the next
chapter. A series of numerical simulations of accretion flows around compact objects
have been done using TVD scheme. Ryu et al. (1993) described an explicit second-
order finite difference code based on a TVD scheme for self-gravitating cosmological
hydrodynamics systems. This code was developed to follow correctly the adiabatic
changes of extremely supersonic pre-shock flows with Mach number larger than 100
as well as very strong shocks. Various numerical experiments proved that the code
could handle the expanding low density regions very well as well as conserve the
total energy accurately. The details of the original TVD scheme are described in
detail in that paper. In continuation of the previous work, Ryu et al. (1995) analysed
the steady-state flow structure around a central object obtained from numerical sim-
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Fig. 2.3 Comparison of
analytical and numerical
results for 1D. Here,
E = 0.036 and λ = 1.80. The
long- and short-dashed
curves are the results of the
TVD and SPH simulations,
respectively. The solid curve
is the analytical result for the
same parameters. Upper
panel is the mass density in
arbitrary units, and the lower
panel is the Mach number of
the flow. Here the flow passes
through the outer sonic point
(at xo = 27.9), then through a
shock (at 7.89) and finally
through the inner sonic point
(at 2.563). This figure has
been taken from Molteni et al.
(1996)

ulations in the case with finite flow thickness. The calculation discussed in that paper
showed good qualitative agreement with similar calculations done previously in
Molteni et al. (1994). They suggested a possible explanation for the unstable behav-
iour of the thin accretion flow with vanishing thickness based on 1.5D model.

A comparative study between the results of TVD method and SPH method was
made by Molteni et al. (1996). They compared the results of numerical simulations
of thin and quasi-spherical accretion with existing analytical solutions. They showed
that in one-dimensional thin flows, the result of both simulations (with or without
shock) agrees well with each other and also with analytical solutions. Comparisons
of analytical and numerical solutions in one-dimensional case are given in Fig. 2.3.
See the caption for details. However, for two-dimensional thick flows, there was
some variation between the two results. With the confidence that their codes were
reasonably good to study time-dependent flows, they presented more complex behav-
iour of time-dependent accretion flows in their next paper (Ryu et al. 1997). In that
paper Ryu et al. (1997), they characterised the nature of thin, axisymmetric, inviscid
accretion flows of cold adiabatic gas with zero-specific energy in the vicinity of a
black hole by the specific angular momentum. They showed that when the flow has
small angular momentum (λ ≤ λmb, where λmb is marginally bound value), most
of the material is accreted into the black hole and when the flow has large angular
momentum (λ > λmb) almost no accretion into the black hole occurs. Igumenshchev
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and Beloborodov (1997) performed two-dimensional relativistic hydrodynamical
simulations of inviscid transonic disc accretion onto a rotating (Kerr) black hole. In
the next section, we discuss only the recent progress on simulations of viscous flows.

2.3 Simulation of Viscous Flows

The simulation of viscous accretion discs around black holes in astrophysics is cur-
rently an active field of research. The question of the two-dimensional structure of
flow patterns in accretion discs was first raised nearly three decades ago. On the the-
oretical side, since the pioneering work on SS73 thin disc models, parameterized by
the so-called α-viscosity in which the gas rotates with Keplerian angular momentum
and transported radially by viscous stress, have been applied successfully to many
models. All black hole accretion flow models require that angular momentum be
removed from the flow in some way so that the material can flow inward. It has
long been suspected that diffusion of angular momentum through an accretion flow
is driven by turbulence. The α-model (Shakura and Sunyaev 1973) introduced a
phenomenological shear stress into the equations of motion to model the effects of
this turbulence. Pringle (1981) pointed out that in presence of viscosity, most of the
matter of the disc accretes into the black hole while most of the angular momentum
is taken farther away by very little matter. Using α viscosity Urpin (1984) obtained
the flow structure by applying first- and second-order corrections to the standard
one-dimensional approximations of the equations of hydrodynamics.

Full two-dimensional simulations reported by Robertson and Frank (1986) fol-
lowed the viscous evolution of an accretion disc around a white dwarf. The first
two-dimensional hydrodynamical calculations with radiation transport for an accre-
tion disc around black holes was apparently those of Eggum et al. (1987). Meanwhile,
work had begun with turbulent viscosity by convection in accretion discs in various
approaches. Papaloizou and Lin (1988) and Ryu and Goodman (1992) studied con-
vective instabilities in thin gaseous discs and confirmed that angular momentum
transport can be supported by convective turbulence. Goldman and Wandel (1995)
investigated accretion discs where viscosity is solely given by convection and where
the energy transport is maintained by radiation and convection. They found the result-
ing viscosity too low by a factor of 10 to 100.

It has been shown by Chakrabarti (1989) that low angular momentum, non-
dissipative flows produce axisymmetric standing shock waves in tens of Schwarz-
schild radii, but the presence of a large viscosity (Chakrabarti 1990b) will remove
the shock wave since the Rankine-Hugoniot relation is not satisfied in highly dissi-
pative flow. The general conclusion was that the stable shock (Xs3 in the notation of
Chakrabarti 1990b) is weaker and forms farther away as the viscosity parameter is
increased. When the viscosity is very high, shocks do not form at all. A confirmation
of such an assertion, originally made in the context of isothermal flows, came through
both numerical simulations (Chakrabarti and Molteni 1995) and theoretical studies
of flows with more general equation of states (Chakrabarti 1996; Chakrabarti and
Das 2004; Das and Chakrabarti 2004).
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Chakrabarti and Molteni (1995) studied on numerical evolution of viscous isother-
mal discs, with particular emphasis on the nature of shocks in flows close to a black
hole. They showed that, if the transport of angular momentum follows Shakura and
Sunyaev (1973) α-viscosity prescription, a shock must form where a jump of angular
momentum takes place. When the viscosity is very small, they show that the transport
rates of angular momentum on both sides of the shock could match and the shock
can remain steady. In this case, the shock is weaker and forms farther away from
the black hole. When the viscosity parameter is increased, the shock wave is driven
outwards and the disc in the post-shock flow becomes Keplerian. They also find
that for high viscosity, the shock disappears and the disc becomes almost Keplerian
except very close to the inner edge of the disc. In Fig. 2.4a, b, the Mach number
and angular momentum variations in viscous (solid) and inviscid (dashed) flows are
shown. Igumenshchev et al. (1996) studied two-dimensional flows but concentrated
only on the inner region of the disc, namely the region less than 20rg . The main

Fig. 2.4 Comparison of
a Mach number and b angular
momentum variations in
viscous (solid) and inviscid
(dashed) isothermal thin
accretion discs. The viscosity
parameter αs = 0.01 is
chosen everywhere in the
simulation. Note that the
shock in the viscous disc
forms farther out and is
weaker and wider. The solid
curve in (b) marked
‘Keplerian’ is the Keplerian
distribution plotted for
comparison. Due to the
inefficiency of transfer of
angular momentum in the
pre-shock flow, a
mixed-shock forms with
higher angular momentum in
the post-shock flow
(Chakrabarti and Molteni
1993)
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interest was to study the transonic nature of the flow just before the matter enters into
the horizon. They find that a torus-like structure forms close to the black hole and the
angular momentum increases outward. Igumenshchev and Beloborodov (1997) used
the finite difference method and allowed the heat generated by viscosity heating to
be radiated away or absorbed totally. The computational box was up to 300rg , but the
outer boundary condition was that of a near-Keplerian flow having no radial velocity.
The inner boundary was kept at 3rg . Thus, the possibility of having a shock or the
inner sonic point was excluded. The disc was found to be stable for very high vis-
cosity parameter and less stable for lower α. Igumenshchev and Abramowicz (2000)
extended the earlier work by studying dependence on the polytropic index γ which
varied from 4/3 to 5/3 as well as viscosity parameter and again found that the stability
of the solutions depends on these parameters.

Using SPH code (Lanzafame et al. 1998), studied the behaviour of sub-Keplerian
viscous transonic flows when flow is neither isothermal nor restricted only to the equa-
torial plane as in CM95. They found that even two-dimensional thick discs, shocks
form and the steady shock location increase with viscosity as in one-dimensional
study of CM95. They also showed that beyond the critical viscosity when a steady
shock was not expected, the flow forms an unsteady shock which periodically evac-
uates the discs. Figure 2.5a–d show the drifting of steady shock location in a two-

(a) (b)

(c) (d)

Fig. 2.5 Drifting of the steady shock location in a two-dimensional, axisymmetric accretion
flows as the viscosity parameters. Here, the specific angular momentum λ = 1.6 and energy
E = 0.001955219. (a) is for the inviscid flow. b–d shows the effect of the introduction of viscosity
in the flow. The viscosity parameter α is 5 × 10−4 in (b), 10−3 in (c) and 1.5 × 10−3, respectively.
This figure has been taken from Lanzafame et al. (1998)
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Fig. 2.6 Snapshots of simulations of accretion discs around a 108 M� black hole by Smoothed
Particle Hydrodynamics for three different times in (a), (b) and (c). The dots are the particle
locations and arrows are drawn for every fifth particle for clarity. In (a), (b) and (c) times (in units
of rg/c) is marked in each box. Note the vertical as well as radial oscillation of the accretion shock
wave located at ∼ 13rg (from Chakrabarti et al. 2004)

dimensional, axisymmetric accretion flow as the viscosity parameter is increased
towards the critical value. Clearly, as in the one-dimensional case, higher viscosity
causes higher differential angular momentum transport between the pre-shock and
post-shock solutions and as a result the shock is drifted away in the radial direction
until the momentum balance is reached.

Chakrabarti et al. (2004) presented the results of several numerical simula-
tions of two-dimensional axisymmetric accretion flows around black holes using
Smoothed Particle Hydrodynamics (SPH) in the presence of cooling effects. They
consider both stellar black holes and supermassive black holes. They showed
examples of shock formation which exhibit radial and/or vertical oscillations. The
result of their simulation is shown in Fig. 2.6. In recent times, a few simulations
of disc-outflow coupling have been done (Nishikawa et al. 2007; McKinney and
Narayan 2007). However, the results are strongly dependent on the initial conditions
(Ustyugova et al. 1999) and it is difficult to simultaneously simulate the disc and the
outflow regions because the timescales of the accretion and outflow are in general
very different. Moreover, in these simulations, how the matter gets deflected from
the equatorial plane has been studied largely in the context of Keplerian disc regime.
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2.4 Goals of the Thesis

There exist a few dominating factors that determine the morphology of an accretion
flow. A significant factor is how fast the angular momentum of accreting matter can
be eliminated. The accreting matter invariably can have too much angular momentum
if the matter is supplied through Roche lobe overflow, which prohibits itself to fall
directly onto the black hole. Therefore, there must be a mechanism by which accreting
matter can rapidly transport a large amount of angular momentum. Most of the time,
some kind of effective viscosity is generally adopted for the purpose, but the physical
cause is not fully understood. On the other hand, if accretion is through winds, the
problem of transport of angular momentum is not so accurate. In this case, the
opposite problem, namely how to produce a Keplerian disc through transport of
angular momentum from a low angular momentum flow is more relevant. In our
work, viscosity in accreting matter is described as in the Shakura and Sunyaev (1973)
prescription. Viscosity is also an important parameter that controls the ability of the
accreting disc to produce dissipative heat from kinetic energy. Besides, the processes
of radiative cooling and optical thickness are significant. They determine whether the
disc will be stable as a single component or behave differently at different regions as,
for example, in two component advective flows (Chakrabarti and Titarchuk 1995).

In this thesis work, we extend the numerical work of Chakrabarti and Molteni
(1995), Molteni et al. (1996) and Lanzafame et al. (1998) and provide a model that
closely resembles realistic astrophysical accretion discs around black holes, while
being restricted to two dimensions. In particular, the hydrodynamic evolution of the
disc is followed with a grid-based Total Variation Diminishing (TVD) code, which
approximates a gas with a finite difference method (Harten 1983). The evolution
in phase space of this gas is determined by the Eulerian form of the hydrodynamic
equations. We start our work by studying the time variation of the evolution of
the inviscid accretion discs around black holes, and their properties. We also study
the change in the pattern of the flows when the strength of the shear viscosity is
varied. However, for a given set of incident flow parameters (e.g. specific energy,
specific angular momentum and viscosity), the flow may possess multiple critical
points (Chakrabarti 1989, 1990a, b). This suggests the possible existence of global
solutions in one dimension with standing and oscillating shocks located between
two critical points. Our objective is to verify these theoretical predictions through
numerical simulations under different input parameters. For a two-dimensional flow,
a completely self-consistent theoretical solution is not possible. Thus, a numerical
simulation is necessary to reveal the queries. The classifications were made using
three different models of the flow, namely a disc of constant thickness, a disc with
conical wedge cross section and a disc in vertical equilibrium (Chakrabarti and Das
2001). Our motivation was to study whether a simulated result reproduces theoretical
models or not. It has been shown by C89 that low angular momentum, non-dissipative
flows produce axisymmetric standing shock waves in tens of Schwarzschild radii,
but the presence of a large viscosity in Chakrabarti (1990b) will remove the shock
wave since the Rankine-Hugoniot relation is not satisfied in highly dissipative flow.
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Our aim is to verify these theoretical results through numerical simulations in two-
dimensional system. However, the viscous flow must also be cooled in order that not
only the flow has Keplerian angular momentum distribution but also its temperature
is cold enough so that a standard (Shakura and Sunyaev 1973) disc is produced. Thus,
our goal is also to form a Keplerian disc using numerical simulations that include
viscosity and cooling. In my thesis, the effect of the shear viscosity on the evolution
of non-self-gravitating discs is investigated when a simple power-law cooling takes
place inside the flow.

2.5 Some Remarks on Units and Dimensions

The radius of a non-rotating black hole rg = 2G M/c2 is only 3.0 km if M = M�.
A stellar mass black hole generally has M > 3M�. Hence, the radius is around
9 km. For a supermassive black hole, one can scale these numbers depending on the
mass of the black hole. However, the physical processes in accretion flows generally
have length scales of the order of the Schwarzschild radius and thus, it is convenient
to choose this as the unit of length. Similarly, it is well known that the velocity of
in-falling matter through the horizon is equal to the velocity of light (Chakrabarti
1996). Thus, it is expected that matter and sound velocities would be of this order
and thus the units may be chosen accordingly.

Keeping these in mind, we choose, 2G = c = M = 1. In this case, the unit
of velocity would be c, the unit of distance would be 2G M/c2 (the Schwarzschild
radius), the unit of time would be 2G M/c3 and the unit of angular momentum would
be 2G M/c. In this unit system, the pseudo-Newtonian potential is written as − 1

2(r−1)
.
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Chapter 3
Governing Equations and Computational
Methods

Abstract We describe the numerical methods employed to model accretion flows
and their implementation in a FORTRAN code. We present all the governing equa-
tions for both non-viscous and viscous flows. We discuss the solution technique for
a non-viscous system. Subsequently, we give all the schemes to incorporate turbu-
lent viscosity in the non-viscous system. Finally, we add a power-law cooling in our
viscous system and study the properties.

In this chapter, we present the equations describing our accretion flows as well as
the rationale behind the numerical method and numerical code we use to solve them.
We show that numerical simulations can be tractable only if one defines a physically
acceptable and realistic initial and boundary condition.

In fact, in an accretion disc close to a black hole, all matter is composed of discrete
particles, especially the free electrons and ions. So, it is expected that both in the
interstellar medium and in the plasma transferred between binary stars, the accre-
tion flow onto compact objects will be hydrodynamical in nature. So, the accretion
flow problems considered herein are assumed to be governed by the Navier-Stokes
equations, hereafter NS equations. This set of equations is simply a recasting of the
following conservation laws:

Conservation of Mass
Conservation of Momentum

Conservation of Energy

The equation of the application of the ‘Conservation of Mass’ law to a fluid flow is
called a continuity equation. Similarly, when the law of ‘Conservation of Momentum’
(i.e. Newton’s second law) is applied to a fluid flow, the resulting equations are
referred to as the momentum equations. Finally, the application of the ‘Conservation
of Energy’ law to a fluid flow yields an energy equation. Black holes have no hard
surfaces or magnetic fields like stars. However, the centrifugal barrier becomes strong
closer to the hole and matter stops virtually at the barrier. This barrier behaves like
a boundary layer (Chakrabarti 1990). Matter enters through an imaginary one-way
wall called the event horizon. The self-gravity and the slow increase in the central
mass are generally ignored. In the first chapter, we have discussed the fluid dynamical
aspects of an accretion flow. In this chapter, we present all the governing equations
that come from fluid dynamics to formulate the accretion flow problem in our system.
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3.1 Equations for Inviscid Flows

The conservation equations for inviscid flow, commonly referred to as the Euler
equations, are derived from the NS equations by ignoring the viscous stress tensor
and heat flux vector. This can be accomplished by simply setting the dynamic vis-
cosity equal to zero and thus the model is inviscid. Assuming the pseudo-Newtonian
potential (Paczyński and Wiita 1980), from Eq. 1.23, the Euler equations are given
as (Landau and Lifshitz 1959):

ρ

[
∂v
∂t

+ v.∇v
]

= ∇ P + ρG, (3.1)

where,

G = − 1

2(R − 1)2 R

R
R

, (3.2)

with the components,

Gr = − 1

2(R − 1)2 R

r

R
, (3.3)

Gz = − 1

2(R − 1)2 R

z

R
. (3.4)

Here, R = √
r2 + z2 in cylindrical coordinate system (r, θ, z) which has been chosen

in our system. It is noted that in cylindrical coordinates, the components of the
velocity vector are given as v = (vr , vφ, vz).

3.1.1 Ideal Gas Equation of State

For an ideal gas,

p = ρRT , (3.5)

where R = Ru/Mw is the specific gas constant with Ru , the universal gas constant
and Mw the molecular weight of the gas. For an ideal gas the following relation is
valid:

cp − cv = R, (3.6)

where cp is the specific heat at constant pressure and cv is the specific heat at constant
volume. γ is the ratio of specific heats, which is also called the adiabatic index and
is defined as

http://dx.doi.org/10.1007/978-3-319-09540-0_1
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γ = cp/cv. (3.7)

For an ideal gas, one can write

de = cvdT, (3.8)

and assuming that cv does not depend on temperature, the integration yields

e = e0 + cvT, (3.9)

where e0 is not uniquely determined, and one could choose any value for e at 0K.
We take e0 = 0 arbitrarily for simplicity. It is noted that

p = ρRT = R

cv

ρe = cp − cv

cv

ρe = ρ(γ − 1)e = (γ − 1)ρe. (3.10)

So, our equation of state is

p = (γ − 1)ρe,

or

p =
(

γ − 1

)(
E − ρv2

2

)
, (3.11)

where, E is the energy density function.

3.1.2 Equations for Inviscid Flows in Conservative Form

For the subsequent eigensystem analysis, it is advantageous to write the Euler equa-
tions in a column vector format, where each column represents the full set of con-
served properties—mass, momentum and energy. Note that all the column vectors,
being five dimensional, are denoted by half arrows and are thus distinguishable
from three-dimensional physical vectors. So, in case of axisymmetric, non-magnetic
flow without viscosity, combining Eqs. 1.22, 3.1 and 1.24, the mass, momentum and
energy conservation equations are written in compact column format using non-
dimensional units as (Molteni et al. 1996, LMC97):

∂q

∂t
+ 1

r

∂ (r F1)

∂r
+ ∂ F2

∂r
+ ∂G

∂z
= S, (3.12)
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where, the state vector is

q =

⎛
⎜⎜⎜⎜⎝

ρ

ρvr

ρvθ

ρvz

E

⎞
⎟⎟⎟⎟⎠ , (3.13)

the flux functions are

F1 =

⎛
⎜⎜⎜⎜⎝

ρvr

ρv2
r

ρvθvr

ρvzvr

(E + p)vr

⎞
⎟⎟⎟⎟⎠ F2 =

⎛
⎜⎜⎜⎜⎝

0
p
0
0
0

⎞
⎟⎟⎟⎟⎠ G =

⎛
⎜⎜⎜⎜⎝

ρvz

ρvrvz

ρvθvz

ρv2
z + p

(E + p)vz

⎞
⎟⎟⎟⎟⎠ , (3.14)

and the source function is,

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

ρvθ 2
r − ρr

2
(√

r2+z2−1
)2√

r2+z2

−ρvr vθ

r

− ρz

2
(√

r2+z2−1
)2√

r2+z2

− ρ(rvr +zvz)

2
(√

r2+z2−1
)2√

r2+z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.15)

Here, energy density E (without the potential energy) is defined as E = p/(γ − 1)

+ ρ(v2
r + v2

θ + v2
z )/2, ρ is the mass density, γ is the adiabatic index, p is the

pressure, vr , vθ and vz are the radial, azimuthal and vertical components of velocity
respectively. In the case of axisymmetric flow without viscosity, the equation for
azimuthal momentum states simply the conservation of specific angular momentum λ

dλ/dt = 0. (3.16)

3.2 Numerical Approach to Solving Equations

One of the important methods to solve numerically the partial differential equations
is known as the finite difference method. We briefly discuss the basics of this method.
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3.2.1 Finite Difference Methods

Finite difference methods are based on approximations in which the continuous flow
variables (e.g. density ρ, velocity v, etc.) are discretized. A finite set of discretized
values ρi and vi is defined at N distinct points in space called grid points. The advan-
tages of this method are richness and simplicity. Next, we discuss the discretization
process.

3.2.2 Discretization

We are interested in constructing a discretization for the hyperbolic system of con-
servation laws

Ut + F(U)x = 0. (3.17)

Assuming that the system has N equations, the Jacobian,

J = ∂F
∂U

, (3.18)

will be an N×N matrix. Furthermore, we know that J is diagnosable, since the system
is hyperbolic. Let us denote the eigenvalues, left eigenvectors and right eigenvectors
of J as λp, L p, R p, respectively, for p = 1, . . . , N . Thus, one can choose the left
and right eigenvectors so that for,

L = (L1L2.....L N ), R = (R1 R2....RN ), (3.19)

the relation RL = L R = I holds. That is, R and L are chosen to be inverses. In case
of a linear, constant coefficient system, the Jacobian is a constant matrix. In general,
the Jacobian, and hence its eigenstate, will be spatially varying.

As in the scalar case, the discretization is of the form

(Ui )t +
Fi+ 1

2
− Fi− 1

2

�t
= 0. (3.20)

For the grid point k, we need to compute the numerical flux functions at xk+ 1
2

and
xk− 1

2
. Later, we discuss computing of Fk+ 1

2
.

Based on the coordinate systems, finite difference method is classified into two
types of methods, Lagrangian and Eulerian methods. In practice, one can solve the
system of hyperbolic equations by advocating them on the mesh. Of course, there
is no ideal and universally acceptable method and some problems require entirely
different methods than others.
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3.2.3 Lagrangian Method

In a Lagrangian method, the location of the grid points is allowed to move along
with fluid. The advantage of this method is that it ensures conservative properties by
definition. The disadvantage of this method is that sometimes it has trouble to move
the mesh and the mesh could be distorted in a complicated way for incompressible
flows in two or higher dimensions and so the accuracy is lost in a significant manner.
There is also another disadvantage to this method: the method has to rely on artificial
viscosity for supplying the necessary entropy injection in shocks. The shocks are
unavoidably broadened over the smoothing scale and can no longer be resolved as
discontinuities.

3.2.4 Eulerian Method

On the other hand, the Eulerian method keeps the grid points fixed in positions, so
that distortion of the grid points is not required. In traditional Eulerian methods, the
space is discretized and the gas variables are represented on a mesh: x → xi and
t → tn . The numerical solution is obtained on these discrete mesh points. Thus, the
functions such as q(x, t) are replaced by their discrete counterparts q(xi , tn) = qi

n .
The equations must be formulated in a way that qi

n+1 can be derived from qi . The
difficulty is then to formulate the discretized form of the differential equations, such
that the solutions for the qi

n+1 are numerically stable and as close as possible to the
true q(x, t).

Though there are some truncation errors in this method, after a long run, the accu-
racy and positivity come back. In spite of this, the Eulerian method has the powerful
advantage of general application to two- and three-dimensional problems, compared
with Lagrangian methods. Actual applications of the Eulerian method to astrophysics
are extensive. There are decades of experience with Eulerian methods and for vari-
ous problems accurate schemes exist, which offer high-order spatial accuracy, have
negligible post-shock oscillations and low numerical diffusivity. Moreover, the mesh-
based codes offer superior resolving power for shocks, with some methods able to
capture shocks without artificial viscosity and with very low residual numerical vis-
cosity.

3.3 Stability of Finite Difference Methods

To model an accretion flow around black holes in astrophysics, we simulate it by
numerical hydrodynamic calculations. We select a Eulerian grid-based finite differ-
ence method called the Total Variation Diminishing (TVD) scheme. In the course of
calculations, three important things are: the time step (δt), the grid size (δr or δz)
and the boundary and initial conditions.



3.3 Stability of Finite Difference Methods 49

3.3.1 Time Step

The Courant condition for the time step δt given as

δt ≤ δx

(a + |v|) ,

should be satisfied everywhere. This is a necessary but not a sufficient condition.

3.3.2 Grid size

Grid sizes δr or δz are decided by consideration of space resolution for the difference
equations. Too coarse δr results in unjustifiable solutions due to its resolution and
too small δr or δz accumulates truncation errors in a long run of the simulation. So,
appropriate grid sizes are important. It is obvious that the grid size is related to time
step through the Courant condition.

3.3.3 Initial and Boundary Conditions

It is important to impose appropriate initial conditions. Unless this is done carefully,
the simulation may lead to non-physical or unexpected results. Boundary conditions
also play a significant role in obtaining the right solutions. In our case, the accretion
flows onto black holes, the inner boundary conditions must be specified at the position
of the last stable orbit of the black hole. But since for all the cases we do not know the
details at the boundary, the boundary conditions are eventually given approximately
or speculatively.

3.4 Flux Jacobians for Equations for Inviscid Flows

The first step in determining the eigensystem of the above conservation, Eqs. 3.12, is
to derive the corresponding Jacobian or transformation matrix that can be found by
taking partial derivatives of the flux vector components Fi with respect to the flow
vector components q j after expressing the flux vector solely in terms of the flow
vector. So, we take the following transformations (Chung 2002):
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q =

⎛
⎜⎜⎜⎜⎝

ρ

ρvr

ρvθ

ρvz

E

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ρ

l
m
n
e

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

q1
q2
q3
q4
q5

⎞
⎟⎟⎟⎟⎠ (say) (3.21)

Now, after some simple algebra, the sum of the two flux functions is given as

F =

⎛
⎜⎜⎜⎜⎝

ρvr

ρv2
r + p

ρvθvr

ρvzvr

(E + p)vr

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

l
l2 + p

lm
ρ
ln
ρ

(p+e)l
ρ

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

F1
F2
F3
F4
F5

⎞
⎟⎟⎟⎟⎠ (say). (3.22)

Hence, the Jacobian Matrix is given as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ F1
∂q1

∂ F1
∂q2

∂ F1
∂q3

∂ F1
∂q4

∂ F1
∂q5

∂ F2
∂q1

∂ F2
∂q2

∂ F2
∂q3

∂ F2
∂q4

∂ F2
∂q5

∂ F3
∂q1

∂ F3
∂q2

∂ F3
∂q3

∂ F3
∂q4

∂ F3
∂q5

∂ F4
∂q1

∂ F4
∂q2

∂ F4
∂q3

∂ F4
∂q4

∂ F4
∂q5

∂ F5
∂q1

∂ F5
∂q2

∂ F5
∂q3

∂ F5
∂q4

∂ F5
∂q5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After calculating all the partial derivatives and transformation of variables, the
final Jacobian Matrix is given as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

(γ−3)
2 vr

2 + (γ−1)
2 (vθ

2 + vz
2) (3 − γ )vr (1 − γ )vθ ((1 − γ )vz (γ − 1)

−vrvθ vy vr 0 0

−vrvz vz 0 vr 0

K1 K2 (1 − γ )vrvθ (1 − γ )vrvz γ vr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where,

K1 = − γ pvr

ρ(γ − 1)
− γ vr

2
(v2

r + v2
θ + v2

z ) + (γ − 1)vr (v
2
r + v2

θ + v2
z ),
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and

K2 = γ p

ρ(γ − 1)
+ γ

2
(v2

r + v2
θ + v2

z ) + (1 − γ )

2
(v2

r + v2
θ + v2

z ).

This is a nonlinear hyperbolic system of conservation laws as the determinant of the
Jacobian matrix has a positive real value. As soon as we get the Jacobian matrix for
the system, our problem becomes an eigenvalue problem. In the following section,
we give the details of our solution procedure.

The system of equations presented previously can be solved numerically by replac-
ing the partial derivatives by finite differences on a discrete numerical grid, and then
advancing the solution in time via some time-marching algorithm. The following
sections describe the numerical schemes, mainly those based on finite differences,
specifically designed to solve nonlinear hyperbolic systems of conservation laws.

3.4.1 Eigenvalues and Eigenvectors of the Jacobian matrix

The eigenvalues of the transformation matrix [A](say) are the roots λi of the char-
acteristic equation

det([A] − [λI ]) = 0, (3.23)

where [I ] is the identity matrix. It turns out that three eigenvalues are distinct and
two are repeated :

λ1 = vr −
√

γ p

ρ
,

λ2 = vr ,

λ3 = vr ,

λ4 = vr ,

λ5 = vr +
√

γ p

ρ
.

Here, sound speed a =
√

γ p
ρ

.

Each right eigenvector Ri , corresponding to eigenvalue λi , must satisfy the fol-
lowing matrix equation:

[A]Ri = λi Ri. (3.24)
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Thus, the corresponding right eigenvectors are

R1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

vr − a

vθ

vz

H − vr a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

vθ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

vr

vθ

vz

(v2
r +v2

θ +v2
z )

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

vz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,



3.4 Flux Jacobians for Equations for Inviscid Flows 53

R5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

vr + a

vθ

vz

H + vr a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where, H = (E+p)
ρ

is the enthalpy.
The left eigenvectors which are orthonormal to the right eigenvectors are obtained

by the relation:
Li.[A] = λi Li. (3.25)

Thus, the set of left eigenvectors can be determined from the inverse of the right
eigenvector matrix, [L] = [R]−1. So, the left eigenvectors are as follows:

L1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(γ−1)�
2 +avr

2a2

− (γ−1)vr +a
2a2

− (γ−1)vθ

2a2

− (γ−1)vz
2a2

(γ−1)

2a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L2 =

⎛
⎜⎜⎜⎜⎝

−vθ

0
1
0
0

⎞
⎟⎟⎟⎟⎠ ,

L3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − (γ−1)�
2a2

(γ−1)vr
a2

(γ−1)vθ

a2

(γ−1)vz
a2

− γ−1
a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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L4 =

⎛
⎜⎜⎜⎜⎝

−vz

0
0
1
0

⎞
⎟⎟⎟⎟⎠ ,

L5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(γ−1)�
2 −avr

2a2

− (γ−1)vr −a
2a2

− (γ−1)vθ

2a2

− (γ−1)vz
2a2

(γ−1)

2a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where, � = (v2
r +v2

θ +v2
z ). So, we calculated the eigenvalues and the corresponding

eigenvectors (left and right) of the Jacobian Matrix. The details of the numerical
method to solve the eigensystem is given in the following section. For this purpose,
we have used a Eulerian grid-based finite difference method known as the TVD
method. We discuss the TVD now.

3.4.2 Total Variation Diminishing Scheme

In the applied numerical formulation, the NS equations are discretized and solved
in time using first-order accurate explicit time marching. The physical fluxes F are
summed over all finite volume elements at each time level. A set of corrective eigen-
fluxes, closely tied to the eigensystem of the inviscid Euler equations, is further
added to the discretized equations to assure the stability of the numerical scheme.
One of the important methods to solve numerically the partial differential equations
is the finite difference method. It is noted that their presence renders the overall
discretization TVD.

Ami Harten (1983) published an important paper which became the basis of
research in CFD. Under the title High Resolution Schemes for Hyperbolic Con-
servation Laws, Harten introduced the term total variation non-increasing (TVNI),
which was later shortened by other researchers to TVD. In systems described by
partial differential equations, such as the following hyperbolic advection equation:

∂u

∂t
+ k

∂u

∂x
= 0, (3.26)
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the total variation (TV) is given as

T V =
∫

|∂u

∂x
|dx, (3.27)

and the TV for the discrete case is

T V =
∑

|(u j+1 − u j )|. (3.28)

A numerical method is said to be TVD if

T V (un+1) ≤ T V (un), (3.29)

where, n is the notation for time iteration scheme.
The TVD property implies, both physically and numerically, that the amount of

variation present within a solution at any time is limited by its initial and boundary
conditions. Harten (1983) described the application of his scheme to the set of one-
dimensional hydrodynamic equations in Cartesian geometry and presented some tests
including shock capturing. It is an explicit, second-order accurate scheme which is
designed to solve a hyperbolic system of the conservation equations, like the system
of the hydrodynamic conservation equations. It is a nonlinear scheme obtained by first
modifying the flux function and then applying a non-oscillatory first-order accurate
scheme to get a resulting second-order accuracy. The key merit of this scheme is to
achieve high resolution of a second-order accuracy, while preserving the robustness
of a non-oscillatory first-order scheme.

3.4.3 Characteristics of TVD

We now describe a nonlinear second-order accurate TVD scheme which builds
upon the first-order monotone upwind scheme described in the previous section.
The second-order accurate fluxes Ft

n+1/2 at cell boundaries are obtained by taking

first-order fluxes F (1),t
n+1/2 from the upwind scheme and modifying it with a second-

order correction. First, consider the case where the advection velocity is positive.
The first-order upwind flux F (1),t

n+1/2 comes from the averaged flux Ft
n in cell n. We

can define two second-order flux corrections

�F L ,t
n+1/2 = Ft

n − Ft
n−1

2
,�F R,t

n+1/2 = Ft
n+1 − Ft

n

2
, (3.30)

using three local cell-centred fluxes. We use cell n and the cells immediately left and
right of it. If the advection velocity is negative, the first-order upwind flux comes from
the averaged flux Ft

n+1 in cell n + 1. In this case, the second-order flux corrections
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�F L ,t
n+1/2 = − Ft

n+1 − Ft
n

2
,�F R,t

n+1/2 = − Ft
n+2 − Ft

n+1

2
, (3.31)

are based on cell n + 1 and the cells directly adjacent to it. Near extrema where the
corrections have opposite signs, we impose no second-order correction and the flux
assignment scheme reduces to first-order. A flux limiter φ is then used to determine
the appropriate second-order correction

�Ft
n+1/2 = φ

(
�F L ,t

n+1/2,�F R,t
n+1/2

)
, (3.32)

which still maintains the TVD condition. The second-order correction is added to
the first-order fluxes to get second-order fluxes. The first-order upwind scheme and
second-order TVD scheme are referred to as monotone upwind schemes for conser-
vation laws (MUSCL).

Time integration is performed using a second-order Runge-Kutta scheme. So, first
do a half-time step,

ut+�t/2
n = ut

n −
(

Ft
n+1/2 − Ft

n−1/2

�x

)
�t

2
, (3.33)

using the first-order upwind scheme to obtain the half-step values ut+�t/2. A full
time step is then computed as

ut+�t
n = ut

n −
(

Ft+�t/2
n+1/2 − Ft+�t/2

n−1/2

�x

)
�t , (3.34)

using the TVD scheme on the half-step fluxes Ft+�t/2.

3.4.4 Linearization of the Nonlinear Problem

Instead of solving the nonlinear problem, Roes approximate Riemann solver (Roe
1981) solves a linearized version of the problem. The Roes solver is one of the most
widely used methods because of its proven accuracy and low numerical dissipation.
The latter property of Roes method is known to play an important role in resolving
the boundary layer, for which excessive numerical dissipation can ruin the solution
accuracy. In the TVD scheme which is based on the Eulerian grid, the flux is computed
on the grid boundary, while the physical quantity is defined in the grid centre. We use
the Roe approximation Riemann solution to get the averaged values of the physical
quantities at the grid boundary:
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vr,i+ 1
2

=
√

ρivr,i + √
ρi+1vr,i+1√

ρi + √
ρi+1

, (3.35)

vθ,i+ 1
2

=
√

ρivθ,i + √
ρi+1vθ,i+1√

ρi + √
ρi+1

, (3.36)

vz,i+ 1
2

=
√

ρivz,i + √
ρi+1vz,i+1√

ρi + √
ρi+1

, (3.37)

Hi+ 1
2

=
√

ρi Hi + √
ρi+1 Hi+1√

ρi + √
ρi+1

, (3.38)

ai+ 1
2

=
{
(γ − 1)

[
Hi+ 1

2
− 1

2

(
v2

r,i+1 + v2
θ,i+1 + v2

z,i+1

)]} 1
2

. (3.39)

3.5 Viscous Accretion Flows

Until now, we have ignored viscosity. The most common astrophysical application of
viscosity is the accretion disc, so we introduce viscosity specifically to study viscous
evolution of accretion discs. We show how we introduce viscosity into the grid-based
finite difference method (Molteni et al. 1996). It has been found experimentally
that the magnitude of the shear stress in viscous flows is often proportional to the
symmetric components of the velocity gradient. This is analogous to Hookes law.
The component of the stress tensor due to viscosity is written as (Landau and Lifshitz
1959)

τvisc = −ζθg − 2ησ,

and there is no force if the fluid is simply rotating, so no dependence on r . The first
coefficient, ζ , is known as the bulk viscosity and is important in compressible flows.
The second term, η, is sometimes called the shear viscosity. Bulk viscosity is often
neglected in astrophysical flows except when considering the structure of shocks.
Both bulk and shear viscosities are often assumed to be independent of position and
temperature.

In an inertial frame of reference, revisiting Eq. 1.23, the general form of the equa-
tions of the flow (Batchelor 1967) is

ρ

[
∂v
∂t

+ v.∇v
]

= −∇ P + Fb + ∇.τ , (3.40)

where, v is the flow velocity, ρ is the fluid density, P is the pressure, τ is the stress
tensor and Fb represents body forces (per unit volume) acting on the fluid and ∇ is

http://dx.doi.org/10.1007/978-3-319-09540-0_1
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the Del operator. Typically, the body forces consist of only gravity forces, but may
include other types (such as electromagnetic forces). Here τ is the viscous stress
(or shear stress) having six mutually independent components. The six independent
components of the viscous stress tensor (Landau and Lifshitz 1959) are listed here
in cylindrical coordinates, τrr , τrφ , τr z , τφφ , τφz and τzz .

3.6 Comparison Between Non-viscous and Viscous Equations

3.6.1 Non-viscous Equations in General Form

It is our interest to re-split the equations written in compact form in Eq. 3.5. The
second, third and fourth rows of the matrix give us the vr , vφ and vz components of
momentum equations, respectively. Hence, re-splitting the vφ component, we have

∂

∂t
(ρvφ) + 1

r

∂

∂r
(rρvφvr ) = −ρvφvr

r
,

⇒ ρ
∂vφ

∂t
+ vφ

∂ρ

∂t
+ ρ

r

[
r

∂

∂r
(vφvr ) + vφvr

]
= −ρvφvr

r
,

⇒ ρ
∂vφ

∂t
+ vφ

∂ρ

∂t
+ ρ

r

[
rvr

∂vφ

∂r
+ rvφ

∂vr

∂r
+ vφvr

]
= −ρvφvr

r
,

⇒ ρ
∂vφ

∂t
+ ρvr

∂vφ

∂r
+

[
vφ

∂ρ

∂t
+ ρvφ

∂vr

∂r
+ ρvφvr

r

]
= −ρvφvr

r
. (3.41)

Meanwhile, re-splitting the first row of Eq. 3.12 (i.e. the continuity equation) it
becomes

∂ρ

∂t
+ 1

r

∂

∂r
(rρvr ) = 0,

⇒ ∂ρ

∂t
+ ρ

r
r
∂vr

∂r
+ ρ

r
vr = 0. (3.42)

Multiplying by vφ both sides of Eq. 3.42, we have

vφ

∂ρ

∂t
+ ρvφ

∂vr

∂r
+ ρvφvr

r
= 0. (3.43)

Hence from Eqs. 3.41 and 3.43 we get

ρ
∂vφ

∂t
+ ρvr

∂vφ

∂r
= −ρvφvr

r
. (3.44)
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3.6.2 Viscous Equations in General Form

If we split all the viscous stress tensors, three components of Eq. 3.40 take the fol-
lowing forms (Landau and Lifshitz 1959 and Acheson 1990). The vr component of
NS equations is given as

ρ

[
∂vr

∂t
+ vr

∂vr

∂r
+

v2
φ

r
+ vφ

r

∂vr

∂φ
+ vz

∂vr

∂z

]
= − ∂ P

∂r
+ μ

[
∂2vr

∂r2 + 1

r

∂vr

∂r
− vr

r2

+ 1

r2
∂2vr

∂φ2 + ∂2vr

∂z2 − 2

r2

∂vφ

∂φ

]
+ Fr .

(3.45)

Again, the vφ component is given as

ρ

[
∂vφ

∂t
+ vr

∂vφ

∂r
+ vφvr

r
+ vφ

r

∂vφ

∂φ
+ vz

∂vφ

∂z

]
= − 1

r

∂ P

∂φ
+ μ

[
∂2vφ

∂r2 + 1

r

∂vφ

∂r
− vφ

r2

+ 1

r2

∂2vφ

∂φ2 + ∂2vφ

∂z2 + 2

r2

∂vφ

∂φ

]
+ Fφ.

(3.46)

Finally, the vz component is given as

ρ

[
∂vz

∂t
+ vr

∂vz

∂r
+ vφ

r

∂vz

∂φ
+ vz

∂vz

∂z

]
= − ∂ P

∂z
+ μ

[
∂2vz

∂r2 + 1

r

∂vz

∂r

+ 1

r2

∂2vz

∂φ2 + ∂2vz

∂z2

]
+ Fz, (3.47)

where μ is the dynamic viscosity defined as μ = ηρ and η is called the kinematic
viscosity. Here, Fr , Fφ & Fz are the so-called body forces. The only body force
present in our system is gravitational force. Thus, Fφ = ρGφ, Fr = ρGr and
Fz = ρGz , where Gφ, Gr and Gz are the components of acceleration due to gravity,
namely

Gr = − 1

2(R − 1)2

r

R
,

and

Gz = − 1

2(R − 1)2

z

R
,

where, R = √
r2 + z2. For the axisymmetric case, Gφ = 0 and thus, Fφ = 0. As

we have chosen the axisymmetric case, we have neglected ∂
∂φ

added terms. So the
above equations reduce as follows:
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Equation 3.45 reduces to

ρ

[
∂vr

∂t
+vr

∂vr

∂r
+vz

∂vr

∂z

]
= −∂ P

∂r
− v2

φ

r
+μ

[
∂2vr

∂r2 + 1

r

∂vr

∂r
− vr

r2 + ∂2vr

∂z2

]
+ρGr .

(3.48)
Equation 3.46 takes the form

ρ

[
∂vφ

∂t
+ vr

∂vφ

∂r
+ vz

∂vφ

∂z

]
= −vφvr

r
+μ

[
∂2vφ

∂r2 + 1

r

∂vφ

∂r
− vφ

r2 + ∂2vφ

∂z2

]
. (3.49)

Equation 3.47 reduces to

ρ

[
∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z

]
= −∂ P

∂z
+ μ

[
∂2vz

∂r2 + 1

r

∂vz

∂r
+ ∂2vz

∂z2

]
+ ρGz . (3.50)

3.6.3 The Viscous Term

In case of a thin accretion flow, it is customary to use only τrφ component since it is
the dominant contributor to the viscous stress (Shakura and Sunyaev 1973). This is
responsible for transporting angular momentum along the radial direction. The other
components are assumed negligible. Thus, considering only τrφ , the only viscous
term which goes into Eq. 3.49 is

μ

[
∂2vφ

∂r2 + 1

r

∂vφ

∂r
− vφ

r2

]
= 1

r2

∂

∂r
(r2τrφ), (3.51)

where,

τrφ = μr
∂�

∂r
.

Here, � is angular velocity and defined as

� = vφ

r
.

The difference between Eqs. 3.44 and 3.49 is that the latter has an extra term

μ

[
∂2vφ

∂r2 + 1

r

∂vφ

∂r
− vφ

r2

]
(3.52)

which is the viscous term of tangential momentum component of NS equations. To
obtain viscous disc solution, this term is included into the inviscid system.
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3.6.4 The Viscous Term in Various Forms

We can express the viscous term in different ways. We can write this term as

1

r2

∂

∂r
(r2τrφ), (3.53)

where,

τrφ = μr
∂�

∂r
. (3.54)

Here, � is angular velocity and is defined as

� = vφ

r
. (3.55)

Hence, in the usual form

1

r2

∂

∂r
(r2τrφ) = 1

r2

∂

∂r

[
μr3 ∂

∂r

(
vφ

r

)]
. (3.56)

Hence, if we consider μ as a constant term throughout, Eq. 3.53 reduces to

μ

r2

∂

∂r

[
r2 ∂vφ

∂r
− rvφ

]
= μ

r2

[
r2 ∂2vφ
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+ 2r
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= μ

[
∂2vφ

∂r2 + 1

r

∂vφ

∂r
− vφ

r2

]
, (3.57)

which is the same as Eq. 3.52. As the second-order term ∂2vφ

∂r2 is very small, one could
neglect the term. Then, the viscous term reduces to

μ

(
1

r

∂vφ

∂r
− vφ

r2

)
= μ

∂�

∂r
. (3.58)

The expression in 3.58 is basically a good approximation of 3.57. Now, we turn
our focus on how to calculate the value of μ, the dynamic (kinematic) viscosity
coefficient.

3.6.5 Effects of Molecular Viscosity in Accretion Flows

The kinematic viscosity η has a dimension of L2/T , where L = length, T = time.
Diffusion at the molecular level generates viscosity and is called the molecular
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viscosity. Evidently, the molecular viscosity is microscopic in nature and is caused by
frictious and dragging interactions of individual neighbouring particles. For molecu-
lar viscosity, the appropriate length scale, L , is the mean free path and the appropriate
velocity, v, is the sound speed a (since this is the characteristic velocity of mole-
cules in a gas). Molecular viscosity acts because the molecules in a gas have random
motions that allow them to diffuse across shearing interfaces in a fluid. The effect of
this is to generate friction between adjacent regions of the fluid that move relative
to one another. It turns out, however, that the molecular viscosity is too small to
explain the evolutionary timescales of accretion discs. We therefore need to iden-
tify possible instabilities that can cause a turbulence larger than that caused by the
molecular viscosity. So, it is clear that some kind of macroscopic turbulent viscosity
must be present. Although some astrophysical winds may carry away some angular
momentum, it is not likely to be dominating.

3.6.6 Various Approaches to Quantify Turbulent Viscosity Based
on the α Prescription

Before we go into this discussion, we present here a very successful idea of parame-
terizing the viscosity without identifying its source. The idea goes back to Shakura
& Sunyaev (citealtbib12) who first proposed the so-called α- parameter to measure
the efficiency of angular momentum transport. It has long been suspected that the
diffusion of angular momentum through an accretion flow is driven by turbulence.
The SSα-model (Shakura and Sunyaev 1973) introduced a phenomenological shear
stress into the equations of motion to model the effects of this turbulence. This
shear stress is proportional to P . More specifically, it is assumed to be −αP , where
α is a dimensionless constant and P is the (gas or gas+radiation) pressure. This
shear stress permits an exchange of angular momentum between neighbouring. We
must also choose a viscosity coefficient. There are several tricks to find the value of
dynamic viscosity coefficient in SSα prescription. Some are discussed below.

Numerically, we used the viscous term in Eq. 3.44 and it is assumed that the
dynamic viscosity coefficient μ is not constant throughout the flow. For this case,
generally, the standard formula for μ is given as

μ = 2

3

αρa2

�
= 2

3

αρa2r

vφ

, (3.59)

where, α is a constant of order 1 and a is adiabatic sound speed. We know a2 = γ p
ρ

,

which implies that ρa2 = γ p, where γ is the adiabatic index. From Eq. 3.59, we
have

μ = 2

3

αγ pr

vφ

. (3.60)
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Using Eq. 3.60, the viscous term in Eq. 3.56 reduces to

1

r2

∂

∂r

[
2

3

αγ pr

vφ

r3 ∂

∂r
(
vφ

r
)

]
,

= 2

3

αγ

r

[
∂

∂r

(
pr3

vφ

∂vφ

∂r

)
− ∂

∂r
(pr2)

]
,

= 2

3

αγ

r2

[
pr3

vφ

∂2vφ

∂r2 − pr3

v2
φ

(
∂vφ

∂r

)2

+ ∂vφ

∂r

(
3r2 p

vφ

+ r3

vφ

∂p

∂r

)
−

(
2r p + r2 ∂p

∂r

)]
,

= 2αγ

3

[
pr

vφ

∂2vφ

∂r2 − pr

v2
φ

(
∂vφ

∂r

)2

+ ∂vφ

∂r

(
3p

vφ

+ r

vφ

∂p

∂r

)
−

(
2p

r
+ ∂p

∂r

)]
. (3.61)

The expression in 3.61 is the viscous term for this method. It is easy to include this
term in our non-viscous TVD scheme. This is a direct method.

Let, μ be constant throughout the flow. Then, one may use the viscous term Eq.
in 3.53 as in Lanzafame et al. (1998). In that case, the Shakura-Sunyaev turbulent
viscosity can be described by the following formula:

μ = αρaZdisc, (3.62)

where, the vertical thickness Zdisc is estimated from the assumption of the vertical
equilibrium condition and α is a parameter of order 1.

Zdisc
2 = 2

γ
ar(r − 1)2. (3.63)

So, using Eqs. 3.62 and 3.63, we can calculate the value of μ. Replacing this value
of μ into Eq. 3.52 (same as Eq. 3.57), we get the total amount of viscosity.

Let, μ be not a constant throughout the flow. Then, we can use the viscous form
in 3.53. Using SSα prescription, we can directly put the value of τrφ equal to −αp
(Chakrabarti and Molteni 1995; Chakrabarti 1996). First, we can calculate the value
of μ in the following way:

τrφ = −αp,

⇒ μr
∂�

∂r
= −αa2ρ

γ
,

⇒ μr

(
1

r

∂vφ

∂r
− vφ

r2

)
= −αa2ρ

γ
,
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⇒ μ = −
αa2ρ

γ(
∂vφ

∂r − vφ

r2

) . (3.64)

Replacing this value of μ in Eq. 3.52 (as well as in Eq. 3.57), we get the viscous solu-
tion. This method could be implemented in a direct and simplified way. In Eq. 3.53
we can directly put −αp in the place of τrφ . In that case, the viscous term reduces to

1

r2

∂

∂r
(−r2αp)

= −α

(
2p

r
+ ∂p

∂r

)
. (3.65)

The expression Eq. 3.53 characterises the tangential stress between adjacent layers
by a single parameter, α. This parameter carries all the uncertainties involved within
it. Naturally, α is a multi-variable dependent, α = α(v, r,�,�K , a) and its physics
is not known.

We can approximate Eq. 3.52 by Eq. 3.65 and it is a good estimation. Now, if we

ignore ∂2vφ

∂r2 and ∂vφ

∂r from (3.61), we have the reduced viscous term as

− 2αγ

3

(
2p

r
+ ∂p

∂r

)
, (3.66)

which can be compared to Eq. 3.65. The expression for μ in Eq. 3.65 is used through-
out our simulations in this thesis when we assume that the accretion disc is thin.

3.6.7 Description of Viscosity for Thick Accretion Flows

In case of thick accretion flow, all viscous stress could be significant in flow dynam-
ics. To perform dynamical calculation, one needs to fix a prescription for viscosity.
Assuming that the flow is thick h ∼ r , the α-prescription could be written as

μ = αsρ
a2

�k
, (3.67)

where, αs is constant of order 1, a is the adiabatic sound speed and

�k = [1

r

∂�

∂r
] 1

2 . (3.68)
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is the Keplerian angular velocity. This kind of formulation has been used before
(Igumenshchev et al. 1996). Using the value of μ from Eq. 3.68 in Eq. 3.57, we also
get the viscous solution for thin discs. Note that for a thick disc, all the viscous stress
components can have a significant contribution to transport the angular momentum
of the flow in both horizontal and vertical directions. So, one can easily use the value
for μ in Eq. 3.68 and it can be replaced in Eqs. 3.48, 3.49 and 3.50 and all the viscous
stress components are considered.

It is to be noted that the heat generated by the viscous dissipation is assumed to
be radiated away instantly. Thus, we do not consider any effect of the heating on the
dynamics of the flow in the present thesis.

In the literature, viscosity prescriptions other than those discussed here have also
been tried out, especially when the shock is present. We followed also the prescription
MacFadyen and Woosley (1999), where α was assumed to be constant when vφ > vr ,
while it is assumed to be scaled as vφ/vr in the pre-shock flow to reduce the shear. The
result remains similar to our present result. This is because the pre-shock flow, where
vφ > vr is cooler with a lower thermal pressure, and thus the angular momentum
transport rate is weaker. In the post-shock flow, due to high thermal pressure, the
angular momentum transport rate is higher and our disc becomes similar to Keplerian.
Thus, a constant α prescription plays a role similar to that in a Keplerian disc.

3.7 Implementation of Viscosity in the Numerical Scheme

If one could find the Jacobian matrix for viscous cases, then it is easy to derive the
eigenvalue values and corresponding eigenvectors. But unfortunately, it is impossible
to derive the Jacobian matrix for compressible viscous flow, i.e. the NS equations.
Also, there is no need for it. Only the inviscid part of the NS equations have wave
character and will show instability if not modelled properly. Physical viscosity helps
in that regard. We saw that the components of the viscous stress tensor, based on
a cylindrical frame of reference, are determined through local velocity gradients.
The local gradients of velocity and temperature are difficult to calculate unless we
use a simple finite difference method. We have done this. We have implemented the
viscous terms as source functions of a non-viscous system.

3.8 Energy Equation with Power-Law Cooling

Radiative processes very often play an important role in momentum and energy
conservation equations. Generally, flow equations are coupled to radiative transfer
equations and the stability conditions become more complicated. As far as the cooling
process goes, ideally one should use Comptonization, the dominant mechanism of
cooling in stellar systems. However, the process is highly nonlinear and non-local.
On the other hand, the bremsstrahlung cooling which could be computed from the
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local density and temperature is too weak to have any significant effect. Therefore, we
choose a power-law cooling in the energy equation having a temperature dependence
as T β . Hence the cooling rate is �powcool ∝ ρ2T β , where β > 0 is the cooling index.
The energy equation becomes:

∂(ρε)

∂t
+ ∇.(ρεv) + �powcool = 0, (3.69)

where, ε = pγ
(γ−1)

+ (v2
r + v2

θ + v2
z )/2 + g, is the specific energy, γ is the adiabatic

index, ρ is the mass density. Here, �cool is the expression for power-law cooling.
So, the energy conservation equation of the last row of Eq. 3.5 becomes

∂ E

∂t
+ 1

r

∂(E + p)rvr

∂r
+ ∂(E + p)vz

∂z
= − ρ (rvr + zvz)

2
(√

r2 + z2 − 1
)2 √

r2 + z2
−�powcool.

(3.70)
Here, energy density E (without the potential energy) is defined as E = p/(γ −1)+
ρ(v2

r +v2
θ +v2

z )/2, ρ is the mass density, γ is the adiabatic index, p is the pressure, vr ,
vθ and vz are the radial, azimuthal and vertical components of velocity, respectively.
The normal bremsstrahlung cooling is obtained by taking cooling index β = 1

2 . In
an electron-proton plasma, the expression for bremsstrahlung cooling process (Lang
1980) is given as

�brems = 1.43 × 10−27 Ne Ni T
1
2 Z2g f ergcm−3s−1, (3.71)

where,

Ni Z = ρ

(m p + me)
≈ ρ

m p
, (3.72)

i.e.

�brems = 1.43 × 10−27ρ2T
1
2 g f , (3.73)

where, m p is the mass of proton, T is the temperature, g f is the Gaunt factor. In
our work, to increase the cooling efficiency, we have taken the cooling index β = 1.
Other constants are as in Eq. 3.60. So the cooling term in Eq. 3.59 reduces to

�powcool = 1.43 × 10−27ρ2T g f , (3.74)

where, everything is expressed in the CGS units and g f is the Gaunt factor which
is assumed to be 1.0 in our work. The temperature T can be easily obtained from
the density (ρ) and pressure (p) calculated in our simulation. Using the ideal gas
equation, we get for temperature T
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T = p

ρ

μm p

kb
, (3.75)

where, kb is the Boltzmann constant. We assume μ = 0.5 for purely hydrogen gas.
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Chapter 4
Simulation Procedure and the Test of the Code

Abstract We point out the procedure of simulation and computational box in detail.
We study the accretion processes on a black hole by numerical simulation. We use a
grid-based finite difference code for this purpose. Tests of the code are made using
the flow without angular momentum, namely the Bondi flow.

A true accretion disc is indeed a complex, three-dimensional and time-dependent flow
which also contains viscous and radiative effects. However, we start with the most
simple case and slowly add more physics to make it realistic. However, we always
assume an axisymmetric flow and consider the behaviour in the meridional plane
(x–z plane). Thus essentially the flow is two-dimensional. We first ignore viscous
and radiative effects and the system reduces to a time-dependent inviscid flow; the set
of equations for this system are given in Eq. (3.12) in a dimensionless compact form.
Subsequently, we also include viscosity and cooling in our code. Once a simulation
procedure is built up for the non-viscous part, it is easy to modify this for viscous
and radiative parts. In this chapter, we discuss the simulation procedure and check
the validity of our code with a test case.

4.1 Simulation Procedure

We numerically solve the set of hydrodynamic equations shown in Eq. (3.12) using
an explicit–implicit finite difference scheme on the Eulerian grids. Our methods and
boundary conditions are similar to those of Molteni et al. (1996) and Ryu et al. (1997),
but we adopt a different injection and boundary conditions and carry out long-time
calculations to examine a quasi-steady structure of the accretion disc. We calculate
the flow dynamics in two dimensions using a finite difference method which uses
the principle of Total Variation Diminishing (TVD) described in Chap. 3 to carry out
hydrodynamic simulations.

4.1.1 Geometry Used for Our Simulations

To model the initial injection of matter, we consider an axisymmetric flow of gas
in the Pseudo-Newtonian gravitational field of a black hole of mass Mbh located at
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Fig. 4.1 Schematic diagram
of our computational box

the centre in the cylindrical coordinates [r, θ, z]. We assume that at infinity, the gas
pressure is negligible and the energy per unit mass vanishes. As mentioned before,
the gravitational field of the black hole can be described by Paczyński and Wiita
(1980) potential. The ambient matter which is falling towards a black hole can come
from any direction towards a black hole. But for simplicity, we simulate the accretion
flow in only the first quadrant of the box. Taking the reflection symmetry along r
and z directions, we can obtain the flows in the other three quadrants. In Fig. 4.1, the
computation box is shown. The center of the black hole coincides with the origin.
The matter that enters (denoted with arrow sign) into the computational box is the
incoming matter at the outer boundary.

4.1.2 Computational Box and Initial Conditions

The computational box occupies one quadrant of the r − z plane with 0 ≤ r ≤ ro and
0 ≤ z ≤ ro, where ro is assumed as the radius of the outer boundary where matter
is being injected. We mimic the horizon (r = 1) by placing an absorbing boundary
at a sphere of radius ri inside which all the material is completely absorbed. In our
simulations, ri varies from 1.5 to 2.5rg depending on the number of grids employed
and the resolution of the simulation. To begin the simulation, we fill in the black hole
surroundings with a very tenuous plasma of density ρbg = 10−6 and the temperature
as that of the incoming material. The incoming gas of density ρin = 1 enters the
box through the outer boundary located at r = ro. We have chosen the density of
the incoming gas ρin = 1 for convenience since, in the absence of self-gravity and
cooling, the density is scaled out, rendering the simulation results to be valid for any
accretion rate. Of course, this initial condition is totally washed out and replaced
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by the incoming matter in a dynamical timescale. Initially, the values of radial (vr ),
rotational (vφ) and azimuthal (vz) components are all chosen as zero for all the grids
except those on the outer boundary. Thus, the Mach number is zero everywhere at
the beginning of the simulation except at the outer boundary.

The adiabatic index γ = 4/3 is chosen. In the absence of self-gravity and cooling,
the density is scaled out, and thus the simulation results remain valid for any accretion
rate. All the calculations have been done with Nr × Nz cells. Here, Nr is the number
of grids we have chosen in radial direction while Nz represent the same in vertical
direction. In all our cases, we have chosen Nr = Nz . Thus, each grid size is �r =
�z = ro/Nr = ro/Nz .

4.1.3 Comments on Parameters and Assumptions

The black hole mass Mbh , the speed of light c and the Schwarzschild radius rg

are assumed to be the units of the mass, velocity and length, respectively. We use
r = R/rg , and z = Z/rg as the dimensionless distances along r-axis and z-axis in
the rest of the chapter. We also assume a polytropic equation of state for the accreting
(or, outflowing) matter, P = Kργ , where P and ρ are the isotropic pressure and
the matter density, respectively, γ is the adiabatic index (assumed in this paper to be
constant throughout the flow, and is related to the polytropic index n by γ = 1+1/n)
and K is related to the specific entropy of the flow. Since we ignore dissipation, the
specific angular momentum λ ≡ rvθ is constant everywhere.

4.1.4 Boundary Conditions

We use a simple continuous condition at the outer boundary for outflows in which all
the derivatives of fluid quantities were set to be zero at the boundaries. We found that
even with the simple continuous condition, reflection at the boundary was kept at a
minimum and did not affect the structure formed along the equatorial plane. Along
the symmetry axis (r = 0) and the equatorial plane (z = 0), the reflecting condition
was used.

As we consider only constant energy flows while keeping the boundary of the
numerical grid at a finite distance, we need the radial velocity vr , sound speed a
(i.e. temperature) of the flow and the incoming velocity at the boundary points. This
assumption implies that for a given specific angular momentum, vr and a are not
independent but are related by the following condition:

E = v2
r

2
+ a2

γ − 1
+ λ2

2r2 + g(r) = 0, (4.1)
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with negligible vz . Here, g(r) is radial force potential, which in the pseudo-
Newtonian model takes the form:

g(r) = −1

2
(r − 1)−1, (4.2)

where, vr and a are the dimensionless radial and sound velocities and r is non-
dimensional radial distance.

4.1.5 Comments on Timescales

Keeping these in mind, we choose 2G = c = M = 1, where, M is the solar mass, c
the velocity of light and G the gravitational constant. In this case, the unit of velocity
would be c, the unit of distance would be 2 G M/c2 (the Schwarzschild radius), the
unit of time would be 2 G M/c3 and the unit of angular momentum would be 2 G M/c.
All the simulations are carried out assuming a stellar mass black hole (M = 10M�).
The results remain equally valid for massive/supermassive black holes, only the time
and length are to be scaled with the central mass. We carry out the simulations till
several thousands of dynamical timescales are passed. In reality, this corresponds to
a few seconds in physical units. Once the system relaxes to an approximate steady-
state, the overall structure remains unchanged although there are still changes in the
detailed structure.

4.2 Comments on Code Parameters

While the model parameters discussed above describe the physical state of the initial
conditions, another set of parameters which may affect the simulations is that of
code parameters, which determine the details of the numerical simulation method.
These parameters are included into the code with their nominal values. Ideally, if the
values chosen for the code parameters are sufficient to yield accurate simulations,
the resulting simulations will be insensitive to variations in the code parameters. To
test whether the simulations are accurate, several test models have been numerically
evolved, each with the value of a single code parameter changed from its nominal
value, so as to yield a more numerically accurate simulation. If the nominal value
is in the correct range, then the test simulation will show little or no change from
the model run with nominal code parameters. A number of such tests are done with
simple accretion flow model and in the following section we point out some of
these.
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4.3 Tests: A Flow Without Angular Momentum

To validate the accuracy of the hydrodynamics code, or at least to increase confidence
in its results, a variety of test models were run which can be compared to analytical
solutions. So, as a test case, we run a model where the injected matter has no specific
angular momentum λ = 0 and follow the evolution. After long-time evolution, all
of our models achieved a quasi-steady state. In this study of accretion flows without
angular momentum around black holes, we used a Bondi flow to model a test case
and started with the solution at the injection boundary.

4.3.1 Bondi Flow Simulation

A Bondi flow is a spherical accretion of gas attracted by a point mass of Newtonian
gravity. As a test of the code, the Bondi flow was simulated. The numerical calculation
for the two-dimensional flow has been carried out with ro = 200rg and Nr = Nz =
900. Our computational box occupies one quadrant of the r z plane with 0 ≤ r ≤ 200
and 0 ≤ z ≤ 200. The incoming gas enters the box through the outer boundary,
located at ro = 200. Hence, the grid size is 0.22rg . We chose the units in such
a way that the outer boundary (ro) is chosen as unity and the matter density is
normalized to become unity. We assume the black hole to be non-rotating and we
use the pseudo-Newtonian potential − 1

2(r−1)
(Paczyński and Wiita 1980) to calculate

the flow geometry around a black hole (Here, r is in the unit of Schwarzschild radius
rg = 2 G M/c2). Velocities and angular momenta are measured in units of c, the
velocity of light and rgc, respectively. For the Bondi accretion flow, we have taken the
outer boundary values of vr s and as from standard Bondi flow solution in Paczyński
and Wiita (1980) potential. Instead of injecting matter from the outer boundary of z
coordinate, we have injected from the outer boundary of both r and z coordinates.
This has been done keeping in mind that the Bondi flow is spherically symmetric.
We run our time-dependent simulation up to a certain time so that the solution is
steady. The simulation lasted until a steady state was reached, and the result was
compared with the analytic solution. So, after reaching this time, we compare the
Mach number and the radial velocity distribution at the equatorial plane (z = 0)
of our computational box. In Figs 4.2a–b, we plotted the Mach number at radial
direction for both the (a) analytical solution and the (b) numerical simulation. In
Figs. 4.2c–d, the radial velocity distribution is shown for both the (c) analytical and
(d) numerical cases. It is interesting that our simulation results are identical to the
steady-state analytical solution. So we find that our simulation agreed well with
analytical solution for Bondi flows.

We draw the velocity vectors for our simulation quadrant (first quadrant). In
Fig. 4.3, velocity distributions are shown for the first quadrant. In Figs. 4.4a–b, we
show the snapshots of the density and temperature (in keV) profiles obtained in a
steady state purely from our hydrodynamic simulation. The density contour levels
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Fig. 4.2 a–d Comparison of the Mach number (a–b) and radial velocity distributions (c–d) of the
analytical pseudo-Bondi solution (a and c) and the radial distribution (at z = 0) obtained from the
time-dependent numerical simulations (b and d). In both the cases, the specific energy E = 0.0008.
We see that for both cases the analytical solution and time-dependent solution are identical

Fig. 4.3 The velocity vectors
of matter obtained from the
simulation for the Bondi Flow
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(a) (b)

Fig. 4.4 Density (a) and temperature (b) contours inside a spherical halo. Here, the densities are
in normalized units and temperatures are in keV. λ = 0 is chosen. See text for details

are drawn for 0.65 − 1.01 (levels increasing by a factor of 1.05) and 1.01 − 66.93
(successive level ratio is 1.1). The temperature contour levels are drawn for 16.88 −
107.8 (successive level ratio is 1.05). Spherical symmetry of Bondi flow is clearly
visible in our simulation result.
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Chapter 5
Simulation for Inviscid Sub-Keplerian Flows
and Shocks

Abstract We scan the parameter space spanned by the specific energy and the
angular momentum of the inflow and compare the time-dependent solutions with
those obtained from theoretical considerations. We found several important results:
(a) The time-dependent flow behaves close to a constant height model flow in the
pre-shock region and a flow in vertical equilibrium in the post-shock region. (c) The
infall timescale in the post-shock region is several times longer than the free-fall
timescale. (b) There are two discontinuities in the flow, one being just outside of the
inner sonic point. Turbulence plays a major role in determining the locations of these
discontinuities. (d) The two discontinuities oscillate with two different frequencies
and the post-shock flow behaves as a coupled harmonic oscillator. A Fourier analysis
of the variation of the outer shock location indicates a higher power at the lower
frequency and lower power at the higher frequency. The opposite is true when analysis
of the inner shock is made. These behaviours will have implications in the spectral
and timing properties of black hole candidates.

5.1 Introduction

In study of sub-Keplerian flows (i.e. accretion flows with angular velocity less that
the Keplerian value at all radii), numerical works and analysis have been done
(Chakrabarti and Molteni 1993; Molteni et al. 1994, 1996; Ryu et al. 1997). However,
it is instructive to learn how the nature of the flows changes with the inflow parame-
ters and whether the flow solution matches the analytical solution. Other unknowns
include the question of stability of the flows. Pattern and stabilities of the sub-
Keplerian flow with parameters space have been studied analytically (Chakrabarti
1989, 1990; Chakrabarti and Das 2001). It has been shown in Ryu et al. (1997) that
if the Rankine-Hugoniot condition is not satisfied, the shock is likely to oscillate.
The oscillating shocks were also observed in the presence of cooling (Chakrabarti et
al. 2004) and this phenomenon is widely assumed to be the cause of quasi-periodic
oscillations (QPOs) observed in radiations emitted by accretion flows around black
holes. Since the generic physical processes which cause oscillations of the shocks,
and therefore, the oscillations in the emitted radiation are the same in both the stellar

© Springer International Publishing Switzerland 2015
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and the massive/supermassive black holes, a thorough study of the nature of shock
oscillations and the dependence of the oscillation frequencies on flow parameters is
essential.

Here, we present results (Giri et al. 2010) of a series of simulations in which we
sample the entire region of the parameter space spanned by the specific energy and
specific angular momentum (Chakrabarti 1989, 1990; Chakrabarti and Das 2001),
i.e. the parameter space relevant for non-dissipative, non-magnetic and axisymmetric
hydrodynamic accretion flows. We use the axisymmetric grid-based TVD code. We
obtain a large number of important results. We investigate the effects of various ways
of injection of gas at the outer boundary in the numerical simulations of non-viscous
accretion flows. Our simulations show that an accretion shock formed and that the
structure and location of the shock is dynamically unstable and oscillates for some
cases. The instability could provide an explanation for quasi-periodic oscillations in
the black hole candidates.

5.2 Simulation of Non-rotating Flows with Different Boundary
Conditions Obtained from Standard Models

First, we run a model where the injected matter has no specific angular momentum
λ = 0 and follow the evolution. Here, the specific energy is chosen to beE = 0.023. In
Fig. 5.1, we compare the numerical solution with three models which are respectively
the flow with a constant height (CH), the flow with a wedge-shaped cross-section

Fig. 5.1 The variation of the
Mach number of a λ = 0.0,
E = 0.023 flow as a function
of the radial distance from the
black hole. The solid curve is
the solution obtained from the
simulation, while the other
curves are the theoretical
results for constant height
(CH), constant angle (CA)
and vertical equilibrium (VE)
model. The time-dependent
solution agrees well with that
of a constant height model
flow (Giri et al. 2010)
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(constant angle: CA) and the flow which is in vertical equilibrium (VE). See CD01 for
the definitions of these models. Here, we have taken ro = 50 rg and Nr = Nz = 256.
Thus, our computational box occupies one quadrant of the r−z plane with 0 ≤ r ≤ 50
and 0 ≤ z ≤ 50. The incoming gas enters the box through the outer boundary, located
at ro = 50. Hence, the grid size is 0.195 rg. The flow approaches the black hole
smoothly and supersonically. We find that the numerical solution on the equatorial
plane agrees well with the theoretical results obtained with a constant height flow
but not with the other two model solutions. As there is no angular momentum, there
is no question of shock, and so naturally the time-dependent solution matches the
analytical constant height model.

5.3 Simulation of Flows with Angular Momentum and Finite
Inflow Thickness

In the next set of simulations, we include the angular momentum. This set of simu-
lations has been carried out with ro = 50rg and Nr = Nz = 256. Thus, our computa-
tional box occupies one quadrant of the r − z plane with 0 ≤ r ≤ 50 and 0 ≤ z ≤ 50.
The incoming gas enters the box through the outer boundary, located at ro = 50.
Hence, the grid size is 0.195 rg. We assume a fixed Mach number M = vr/a = 10
at the outer boundary and zo/ro = 0.1, where zo and ro are the height and radial
distance of the injected matter at the outer boundary. We also consider the incoming
gas at the outer boundary which is cool and hence supersonic. We assume a fixed
Mach number M = vr/a which is large (M � 1) at the outer boundary. We consider
the inflow at the outer boundary which has a small thickness or a small arc angle
θ = arctan(hin/rb) � 1. With these assumptions, we can fix three parameters, vr , a
and h, and we are effectively left with a single free parameter, the specific angular
momentum λ, using which we classify the properties of accretion flows. In Fig. 5.2,
we present the classification of the solutions in the parameter space spanned by the
conserved energy and angular momentum (Chakrabarti 1989, 1990). In each region,
the solution is qualitatively different. The classifications are made in all the three
models, CH, CA and VE. For the detailed meaning of various divisions in the para-
meter space, see, C96. Briefly, for CH model, the curve abc denotes the boundary
between one (saddle type, on the left of the curve) and two sonic points (one saddle
type and one circle type) in the flow solution. The region abd contains flow parame-
ters which produce two saddle type and one circle type sonic points, but no steady
shock conditions are satisfied. The region dae has the same flow topologies as in
abd, but the steady shocks can form in accretion flows. The flow with parameters
from eaf can form steady shocks only in winds and outflows. The solution topology
in the region fag is the same as that in eaf , but the steady shock condition is not
satisfied. The points above ag has only one saddle type sonic point. The solutions
from points in bcedb have one saddle type and one circle type sonic points, however,
the solutions do not extend to infinity. Flows with parameters from other regions do
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Fig. 5.2 The parameter pairs
(E, λ) marked with filled
circles on the classification
diagram are used for
numerical simulations (Cases
A–H) in this chapter. See text
for details

Table 5.1 Sonic points and shock locations (if any) obtained from three models for all the Model
runs presented in this chapter

Vertical equilibrium Wedge shaped Constant height

Case E λ xin xout xs xin xout xs xin xout xs

A 2.962e-04 1.80 2.321 1003.44 31.027 2.45 12.59 11.104 2.75 42.12 –

B 0.02 1.85 2.154 – – 2.24 – – 2.36 56.1 11.42

C 0.03 1.75 2.296 – – 2.482 – – 3.37 36.1 –

D 0.02 1.75 2.341 – – 2.53 – – – 57.162 –

E 0.04 1.75 2.257 – – 2.44 – – 3.03 25.34 –

F 0.01 1.75 2.393 – – 2.60 28.825 – – 119.87 –

G 0.02 1.95 2.021 – – 2.05 – – 2.10 – –

H 0.02 2.05 – – – 2.06 – – – – –

not have any kind of steady solution. Similar curves for the other two models, namely
CA and VE, have similar meanings.

We have shaded one region which produces standing shocks in each model. The
Cases (A–H) which were run are given in Table 5.1 where the values of the conserved
energy and angular momentum (E, λ) are shown. These values are also marked inside
Fig. 5.2 with filled circles to show that depending on the theoretical model, the same
pair of flow parameters may or may not produce standing shocks. Our goal is to find
out which model is vindicated by numerical simulation results. In Table 5.1, we also
present the locations of the inner and outer sonic points, if any, and the stable shock
locations, if any. The Cases (A–H) that have been run are given in Table 5.1 where
the values of the conserved energy and angular momentum (E, λ) are shown. These
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Fig. 5.3 A comparison of the
theoretical results obtained
from various models
(marked) with those from
numerical simulations
(dotted) for the same outer
boundary condition (Case A).
Solid curves are for the
branch passing through outer
sonic point and long-dashed
curves are for the branch
passing through the inner
sonic point. Mach number
variation on the equatorial
plane is shown. The
pre-shock region matches that
of a constant height flow,
while the post-shock region is
similar to the flow in vertical
equilibrium. The presence of
two shocks in the numerical
solution may be noted (Giri et
al. 2010)

values are also marked inside Fig. 5.2 with filled circles to show that depending on the
theoretical model, the same pair of flow parameters may or may not produce standing
shocks. Our goal is to find which theoretical model is vindicated by the numerical
simulation results. In Table 5.1, we also present the locations of the inner and outer
sonic points, if any, and the stable shock locations, if any. In Fig. 5.3, we show the
results of Case A. The parameters used are λ = 1.80, E = 2.962 × 10−4. The dotted
curves give the variation of the Mach Number obtained from the numerical simulation
(for the grid on the equatorial plane) at four consecutive times 1.90, 1.91, 1.92 and
1.93 s. They are marked as 1, 2, 3 and 4 respectively. Superposed on these curves are
the theoretically obtained solutions for various models (marked) with the same outer
boundary condition—solid curves for supersonic branch and long-dashed-dotted
curves for subsonic branch. Theoretically, the steady shock is supposed to form
at 31.027 in vertical equilibrium model (Table 5.1). Numerically, however, we find
that the flow has formed a shock, but oscillates around a mean location. The flow
Mach Number jumps and becomes subsonic at around (x ∼ 28). However, the shock
location oscillates. In some part of the post-shock region, the flow has a ‘negative’
Mach number. In this case, matter actually flows outward, bouncing back from the
centrifugal barrier on the equatorial plane. At around (x ∼ 7), the flow becomes
supersonic and again forms a relatively weaker ‘inner shock’ at around (x ∼ 5). This
inner shock also oscillates. Several important facts arise out of this exercise: (a) The
inject matter behaves like a flow of constant thickness in the pre-shock region, (b) the
Mach number variation in the post-shock region is closer to that of the flow in vertical
equilibrium. Of course, the back-flow due to the centrifugal barrier is a major factor
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Fig. 5.4 The velocity vectors of matter obtained from the simulation for Case A. Due to centrifugal
barrier, matter bounces backward and forms the shock. The injected flow in the post-shock region is
deflected away from the equatorial region and enters into the black hole supersonically from higher
elevation (Giri et al. 2010)

to influence the post-shock region. This is clearly seen in Fig. 5.4 where the velocity
vectors are plotted. The back-flow diverts the matter from the post-shock region to
regions away from the equatorial plane and produces jets and outflows. Some of this
diverted matter enters into the black hole from a height and becomes supersonic at
around 2.5. Though as per injection condition at the outer boundary, the pre-shock
flow properties match the theoretical results of a constant height (CH) inflow, to
our surprise, the post-shock flow properties match closely the theoretical results
obtained assuming a hybrid-model inflow (Chakrabarti 1989). What this means is
that the shock locations from simulations may be somewhat different from those of
theoretical results that assume either the CH or vertical equilibrium (VE) condition
on both sides of the shock. The behaviour of the time-dependent solution is evident
in Fig. 5.5, where we plot the velocity vector field and the density contours at regular
intervals at times t = 1.50, 2.0, 2.5 and 3.0 s. The density contours in the post-shock
region resemble those of a thick accretion disc (Paczyński et al. 1980), though our
results are more realistic since the radial velocity is included here. The shock clearly
moves around and the outflow also shows corresponding fluctuations. The density
contours are for 0.01(0.01)0.1(0.1)1(1)13, where the density inside a parenthesis
gives the interval and left and right numbers are ‘from’ and ‘to’ density values.
The lowest density contour is at the highest altitude. The presence of two oscillating
shocks is clear from successive figures. Some matter could be seen deflected outwards
as outflows. The region close to the Z-axis remains empty due to the centrifugal
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Fig. 5.5 Time-dependent behaviour is best seen in the density contours and velocity vector fields
plotted at regular time intervals. Time in seconds is marked on each box. The flow is deflected at
the shock and contributes to the jets and outflows. Both the shock locations can be seen (Giri et al.
2010)

barrier. Turbulence slows down the flow and consequently, the infall time tinf = � δr
vr

,
where δr is the grid size and vr is the local radial velocity is longer than free-fall time
tff = r3/2 in the post-shock region. A detailed computation using the radial velocity
averaged over 20 grids in the vertical direction and using radial coordinate from the
outer shock to the event horizon shows that the ratio Rt = tinf /tff |post−shock ∼ 3.6
in this case. In the pre-shock region, Rt ∼ 1. The details related to infall and outfall
timescales are discussed in a future section.

5.3.1 Time Variation of Shock Locations

We continue our detailed investigation of Case A. In Fig. 5.6, we show the variation
of the outer (OS) and inner shock (IS) locations (dimensionless unit) with time
(in seconds). The oscillating nature settles down after an initial transient phase of
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Fig. 5.6 Variation of the
shock locations in
dimensionless units with time
(seconds). Case A parameters
are chosen for simulation. A
stellar mass M = 10 M�
black hole was chosen for the
purpose of time computation.
The time will scale with the
mass of the black hole in this
case since the dissipation of
the flow and the radiative
transfer were neglected (Giri
et al. 2010)

Fig. 5.7 a–b Power density
spectra of the time variation
of the a inner and the b outer
shock locations. The
frequencies are calculated
assuming M = 10 M�. It will
scale inversely with the mass
of the black hole. The outer
shock shows strong peaks at
1.56 and 17.97 Hz, while the
inner shock peaks at 17.97 Hz
only. Such an oscillation is
thought to cause the
quasi-periodic modulations in
X-ray intensities from black
hole candidates

(a)

(b)
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t ∼ 0.06. We clearly see the presence of oscillations in both the shocks, though the
amplitudes are larger for the outer shock. The outer shock location oscillates between
26 and 32 and the inner shock oscillates between 3 and 5.

In Figs. 5.7a–b, we present the power density spectrum (PDS) of the time varia-
tion of the shock locations. In (a) and (b), the PDSs for the inner and outer shock
locations are shown. The outer shock shows a peak at 1.56 Hz, but otherwise, both the
PDSs show strong peaks at ∼18 Hz. In the subsonic flow of the post-shock region,
the movement of inner shock also perturbs the outer shock location and thus the
high frequencies are the same. Because of the strong turbulence close to a black
hole which is formed due to the interaction of the incoming wave and the flow
bounced back from the centrifugal barrier, a weak shock is formed closer to the
black hole, though both the normal outer shock and the inner shock seem to oscillate
with the same frequencies—the outer shock shows more power at lower oscillation
frequency and the inner shock shows more power at higher oscillation frequencies.
As will be discussed later, these oscillations can cause significant modulations in the
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Fig. 5.8 The density contours (solid curves) and velocity vector fields (arrows) at four different
λs (λ1 = 1.75, upper left; λ2 = 1.85 lower left; λ3 = 1.95, upper right; λ4 = 2.05, lower right)
are shown
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X-ray intensity and cause so-called QPOs in black hole candidates (Molteni et al.
1996; Chakrabarti et al. 2004). It is interesting to study how the density and velocity
distributions change with the angular momentum (λ) of the flow keeping energy
(E) fixed. We again choose the flow parameters of Cases D, B, G and H (Table 5.1
and Fig. 5.2). We vary λ (1.75, 1.85, 1.95 and 2.05 respectively) while keeping the
specific energy the same. In Fig. 5.8, the density contours (solid curves) and velocity
vector fields (arrows) at four different λs (Case D, upper left; Case B, lower left;
Case G, upper right; Case H, lower right) are shown. Density contours are drawn
from the top solid lines to the bottom: 0.01, 0.02, . . ., 0.09, 0.1, 0.2, . . ., 0.9, 1, 2, 3,
. . ., 12, 13 respectively.

5.4 Infall Timescales of Sub-Keplerian Flows

In this section, we wish to compare the infall timescale and free-fall timescale of
matter which is accreted onto black holes. We took Case A for this experiment. In
Fig. 5.9, we compared the averaged infall velocities at four different times with free-
fall velocity. In the Fig. 5.9 1, 2, 3 and 4 represent infall velocities at 1.5, 2.0, 2.5
and 3.0 s respectively. Here, we have considered the infall velocity averaged over
20 grids above the equatorial plane. It is not necessary that it should be taken only
for 20 grids. It could be taken for any reasonable number of grids. Comparing with
the same solution at equatorial plane, we observed that in no part of the region does
the average velocity become negative and this fact differs with the case of equatorial
plane, where a part of the region belongs to the negative Mach number, i.e. negative
velocity. We calculate the infall timescale in the following way as τinfall=� δr

vr
, where

Fig. 5.9 Variation of average
infall velocities at four
different times with free-fall
velocities. The parameters for
the flow are E = 0.00029610
and λ = 1.80. The notations
1, 2, 3 and 4 represent infall
velocities at 1.5, 2.0, 2.5 and
3.0 s respectively. Here, we
have considered the average
infall velocity taking 20 grids
above the equatorial plane
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Table 5.2 Comparison of shock locations and timescales for simulation at different times (t) of
the run

λ = 1.80, E = 0.00029610

Time Shock location (rg) Infall time (ti) Free-fall time (tf ) Ratio (ti/tf )

1.50 29.980469 0.0395 0.0109 3.63569

2.0 27.6367190 0.0306 0.0096 3.17509

2.50 29.7851560 0.0385 0.0107 3.61000

3.0 27.0507810 0.0317 0.0092 3.43383

δr is the grid width and vr is the average velocity within the grid of the matter. The
infall times and free-fall times and their ratios after shock for four different stages of
accretion flow are given in Table 5.2. We calculate the infall time of the matter from
the location of the outer shock to event horizon. We are only interested to calculate
post-shock infall time and corresponding free-fall time. Here, it should be noted that
this infall time which we calculate may not be equal to the actual infall time because
we choose a particular number of grids for taking the average velocity. However, for
sufficiently large number of grids, the result should be reasonable. Calculation of
the infall timescale indicates that it is several times larger compared to the free-fall
time. From the table, we see that the ratio of infall and free-fall time always changes
implying that the infall time is influenced by the turbulence. This strong turbulence
may be the cause of the inner shock or bump (Giri et al. 2010). A detailed computation
using radial velocity, which is averaged over 20 grids in the vertical direction and
using radial coordinate from the outer shock to the event horizon, shows that the ratio
Rt = tinf /tff |post−shock ∼ 3.6 in this case. In the pre-shock region Rt ∼ 1.

We now focus our attention on the infall to free-fall time ratio by showing its
dependence on the flow parameters.

5.4.1 Infall Timescales for the Flows with Different Specific
Angular Momenta (λ)

We choose the flow parameters in such a way that we only vary λ (1.75, 1.85, 1.95
and 2.05 respectively) when the specific energies remain the same. We keep specific
energy as E = 0.02. In Fig. 5.10, we compare average infall velocities with respect
to radial distances at a particular time for four cases. In this case, we keep energy
fixed and vary the angular momenta λ1, λ2, λ3 and λ4 are 1.75, 1.85, 1.95 and 2.05
respectively. The infall and free-fall times are given in Table 5.3. We calculate the
infall time of the matter from the location of the outer shock to the event horizon. We
have ignored the pre-shock infall time as it nearly follows the free-fall time before
shock. From the table, we see that the ratio increases when the angular momentum
increases. The ratio Rt of the infall time and the free-fall time from the outer shock
increases almost monotonically, which are 2.06, 3.06, 4.63 and 4.52 respectively.
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Fig. 5.10 Variation of
average infall velocities with
respect to radial distances at a
particular time for four cases.
In this case, we keep energy
as fixed (E = 0.02) and vary
the angular momentum λ1,
λ2, λ3 and λ4 are 1.75, 1.85,
1.95 and 2.05 respectively

Table 5.3 Comparison of shock locations and timescales for flows with different specific angular
momenta (λ)

E = 0.02

λ Shock location(rg) Infall time(ti) Free-fall time(tf ) Ratio((ti/tf )

1.75 36.0351560 0.0293 0.0142 2.06120

1.85 38.1835900 0.0475 0.0155 3.06350

1.95 29.5898440 0.0494 0.0107 4.63119

2.05 29.1992200 0.0473 0.0105 4.52790

For all the cases, E = 0.02

5.4.2 Infall Timescales for the Flows with Different
Specific Energies (E)

We turn our attention to the behaviour of the same where the specific energy of
the flow is changed. The specific angular momentum is fixed. We took the angular
momentum as λ = 1.75. In Fig. 5.11, we compare averaged infall velocities with
respect to radial distances at a particular time for four cases. Here, we keep angular
momentum as a fixed number and vary the energies, which are 0.01, 0.02, 0.03 and
0.04 respectively. The infall and free-fall times are given in Table 5.4. We calculate
the infall time of the matter from the outer shock to the event horizon. We ignore
the pre-shock infall time as it nearly follows the free-fall time before shock. From
Table 5.4, we show no significant change in the ratios for different energies. So we
can conclude that the average infall timescale from the post-shock region appears to
be a few times longer than its free-fall timescale due to turbulence.
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Fig. 5.11 Variation of
average infall velocities with
respect to radial distances at a
particular time for four cases.
In this case, we keep angular
momentum as fixed
(λ = 1.75) and vary the
energies which are 0.01, 0.02,
0.03 and 0.04 respectively

Table 5.4 Comparison of shock locations and timescales for flows with different specific ener-
gies (E)

λ = 1.75

Energy Shock location(rg) Infall time(ti) Free-fall time(tf ) Ratio((ti/tf )

0.01 35.0585900 0.0398 0.0136 2.92000

0.02 36.0351560 0.0293 0.0142 2.06120

0.03 36.6210900 0.0305 0.0146 2.09526

0.04 37.9882800 0.0419 0.0154 2.7215

For all the cases, λ = 1.75

5.5 Ratio of the Outflowing and Incoming Matters

We now estimate the properties of outflow. Generally, all these quantities should
be functions of z. Here, we consider the properties of the outflows when they are
just launched or detached from the inflow. All their subsequent evolutions should
be due to the outflow itself and does not affect the inflow any longer. We noted
in Figs. 5.4 and 5.5 that a considerable amount of matter is ejected outwards after
they are bounced from the centrifugal barrier. It would be interesting to compute
the amount of matter that leaves the grid system due to outflows. In Figs. 5.12a–b,
we show the ratio of the outflow rate (calculated by adding those matter leaving the
grid) and inflow rate (calculated from the outer boundary condition) for these four
Cases (Cases B, D, G and H) presented before. Here only λ is varied. For clarity,
we present the results for λ = 1.75 and 1.85 in Fig. 5.12a and those for λ = 1.95
and 2.05 in Fig. 5.12b. We also calculate the averaged percentage of matter which
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(a) (b)

Fig. 5.12 Variation of ratio of outflowing matter to injected matter with time when the specific
angular momentum is increased: a λ = 1.75, 1.85, b λ = 1.95, 2.05 (Giri et al. 2010)

is going with outflow for different angular momenta. The mean ratios for the above
Cases are 0.42, 0.64, 0.56 and 0.58 respectively. From the above ratios, it is clear
that the percentage of outflowing matter increases with the increase in λ from 1.75
to 1.85. In this case, we also find that the amplitude of the percentage oscillation is
very high. However, in the case of high angular momentum, the amplitude of the
percentage oscillation is low. So we see that for higher λ, the percentage of matter
decreases. We notice that the amplitude and frequency of fluctuations in the outflow
rate are mainly dictated by the fluctuations of the outer shock location, though the
inner shock modulates it further.
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Chapter 6
Simulation of Viscous Accretion Flows

Abstract We study the time evolution of a rotating, axisymmetric, viscous accretion
flow around black holes using a grid-based finite difference method. We use the
Shakura–Sunyaev viscosity prescription. However, we compare with the results
obtained when all the three independent components of the viscous stress are kept. We
show that the centrifugal pressure supported shocks become weaker with the inclu-
sion of viscosity. The shock is formed farther out when the viscosity is increased.
When the viscosity is above a critical value, the shock disappears altogether and the
flow becomes subsonic and Keplerian everywhere except in a region close to the
horizon, where it remains supersonic. We also find that as the viscosity is increased,
the amount of outflowing matter in the wind is decreased to less than a percentage
of the inflow matter. Since the post-shock region could act as a reservoir of hot elec-
trons or the so-called Compton cloud, the size of which changes with viscosity, the
spectral properties are expected to depend on viscosity strongly: the harder states are
dominated by low angular momentum and the low-viscosity flow with significant
outflows while the softer states are dominated by the high-viscosity Keplerian flow
having very little outflows.

6.1 Introduction

In the previous chapter, the results of standing and oscillating shock formations in
inviscid flows were presented. We now extend this study by adding viscosity. While
the matter in accretion discs moves in nearly circular orbits, there is also a slow
drift of material inward. For this to occur, gas must lose angular momentum if it
is larger than the marginally stable value to begin with. This angular momentum
can be exchanged with other gases, or can be lost through torques acting on the
disc. Therefore, angular momentum transport occurs. It is this outward transport of
angular momentum that allows matter to drift inward, and this transfer of material
constitutes the accretion process. Without angular momentum transport, there would
be no transfer of matter inward and therefore no accretion: the gas would remain
in stable circular orbits. Of course, as shown by Chakrabarti (1989, 1990a), when
matter starts with low angular momentum, there is no need to have viscosity for

© Springer International Publishing Switzerland 2015
K. Giri, Numerical Simulation of Viscous Shocked Accretion Flows Around Black Holes,
Springer Theses, DOI 10.1007/978-3-319-09540-0_6

91



92 6 Simulation of Viscous Accretion Flows

the matter to accrete. In this case, the radiation emitted is also very low so that the
energy remains constant throughout. In this chapter, we include the viscous effects
responsible for angular momentum transfer in discs.

In the previous chapter, the oscillation phenomena in accretion flows around
black holes related to the QPO were reported. The study of an inviscid accretion
flow around black hole showed that the shock location changes with the change in
specific angular momentum (λ) and specific energy (E), both of which were constant.
In the present situation of a viscous flow, none of these is constant. Recently, one-
dimensional solution for quasi-spherical viscous flow was investigated by Lee et
al. (2011) who found that there are oscillatory propagating shocks moving outward
when the viscosity is large enough.

The theoretical work discussed in Chakrabarti (1989, 1996) were carried out for
a one-dimensional flow since otherwise the sonic point analysis would be difficult.
For a two-dimensional flow, a completely self-consistent theoretical solution is not
possible. This is why a numerical simulation of viscous accretion flows is necessary
to answer the following questions: (a) Do the conclusions based on theoretical con-
siderations continue to remain valid for a two-dimensional flow? (b) Do the shocks
survive for higher viscosity? (c) How does the outflow rate depend on viscosity? (d)
Are all the components of the viscous stress important in a thick accretion flow?
(e) Under what condition does the Keplerian flow form? In the previous chapter, the
oscillation phenomena in accretion flows around black holes related to the QPO were
reported. The study of an inviscid accretion flow around the black hole showed that
the shock location changes with the change in specific angular momentum (λ) and
specific energy (E), both of which are constant. In the present situation of viscous
flow, none of these is constant.

6.2 Computational Procedure

The set-up of our simulation is the same as that presented in the previous chapter.
Instead of an inviscid flow, we consider a viscous, axisymmetric flow in the pseudo-
Newtonian gravitational field of a point mass Mbh located at the centre in cylindrical
coordinates [x, θ, z]. All the governing equations for viscous accretion flow are
given in detail in Chap. 2 and also in Giri and Chakrabarti (2012). We will not repeat
them here. The numerical calculation for two-dimensional flow was carried out with
ro = 50rg and Nr = Nz = 512. The calculations were performed with 512 × 512
cells, so each grid has a size of 0.097 in units of the Schwarzschild radius. The
timescale of matter from the outer boundary is about 0.07s as computed from the
sum of dr/ < vr > over the entire radial grid, < vr > being averaged over 20 vertical
grids. In order to mimic the horizon of the black hole at one Schwarzschild radius,
we placed an absorbing inner boundary at R = 1.1rg , inside which all materials
are completely absorbed into the black hole. All the simulations were carried out
assuming a stellar mass black hole (M = 10M�). We carry out the simulations for
several hundreds of dynamical timescales. In reality, our simulation time corresponds

http://dx.doi.org/10.1007/978-3-319-09540-0_2
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to a few seconds in physical units. Now, we present the results for different cases
and for different sets of parameters.

6.3 Results and Discussions

As mentioned earlier, we chose the outer boundary of the simulation grid at r = 50.
We have run several simulations with different types of injection at the outer bound-
ary. For each case, we got many significant results. In the next section, we discuss
these results.

6.3.1 Isothermal Injection at the Outer Boundary

The specific angular momentum (λ) of the flow is chosen to be 1.66 (For comparison,
we note that the marginally stable angular momentum is 1.83 in this unit.) and the
specific energy (E) of the flow at the equatorial plane (z = 0) is chosen to be 0.0035.
The radial velocity pointing to the origin is chosen to be constant in all heights

v = (vr
2 + vz

2)
1
2 = 0.072. These injection parameters correspond to those of low

angular momentum transonic flow solutions and are qualitatively different from those
of earlier workers such as Igumenshchev et al. (1997, 2000) since they mainly inject
near Keplerian flow with no radial velocity. From the energy of the flow, we obtain
the sound speed at the equatorial plane to be 0.059. We employ an isothermal outer
boundary condition (Molteni et al. 1996). In other words, we take the same sound
speed at all heights at the outer boundary. We add the SSα viscous term in the non-
viscous system as discussed earlier. We stop the simulation at t = 24.75 s. This is
more than 300 times the dynamical time. Thus, the solution has most certainly come
out of the transient regime and started exhibiting solutions characteristics of its flow
parameters. The simulation results will be discussed now.

In Fig. 6.1a–b, we compare the Mach number and the density variations in the
equatorial plane of flow for various α. To make the comparison meaningful, all the
runs were carried out up to t = 24.75s. Each result is obtained starting with an
inviscid flow α = 0 (marked) and then gradually increasing α till the shock goes
out of the grid and eventually disappears. The values of α for which the curves are
drawn are (left to right in Fig. 6.1a and bottom to top in Fig. 6.1b): 0.0, 0.0175, 0.035,
0.0525, 0.06125, 0.07 and 0.0735 respectively. The shock location shifts outward
with viscosity exactly as predicted in Chakrabarti (1990a, b, 1996). For inviscid flow
(α = 0), the matter bounces back from the centrifugal barrier and flows outward near
the equatorial plane. As viscosity is enhanced, the angular momentum is transported
outward and hence specific angular goes up. The velocity goes down and density
goes up. This can be seen in Fig. 6.1b in the 3 − 30 rg region. In this particular
example, the shock disappears above ∼ α = 0.074, which is the critical value
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(a) (b)

Fig. 6.1 Variation of a Mach number and b density with radial distance in a viscous transonic flow
on the equatorial plane. As the viscosity parameter increases, the angular momentum is transported
outward shifting along with it the centrifugal pressure supported shock wave. The α parameters
are [left to right in a and bottom to top in b]: 0.0, 0.0175, 0.035, 0.0525, 0.06125, 0.07, 0.0735
respectively (Giri and Chakrabarti 2012)
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Fig. 6.2 Variation of shock locations through r − z plane for different αs. See text for details

of α here. Since the grid boundary is at a finite distance in a numerical grid, it is
difficult to show the disappearance of the shock since that would require changing
the boundary condition dynamically to let the shock through when it reached the
boundary. The results are indeed similar to the results of Chakrabarti and Molteni
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(1995) where one-dimensional viscous isothermal flow was treated using smoothed
particle hydrodynamics (SPH) code. As described in Chakrabarti (1990b), the critical
α (αc) is defined by that specific α for which the subsonic branch of the transonic
flow solution passes through both the inner and outer sonic points. Thus, αc clearly
depends on the injected flow parameters. Hence, for a different choice of injected
parameters, the critical value of α will be different. In Fig. 6.1a, we compared the
shock locations in equatorial plane (z = 0) for different α. Now, we show how
the nature of shock front changes in the entire r − z plane. In Fig. 6.2, we have shown
the shock locations through r − z plane for different α. The results shown is at the

Fig. 6.3 Changes in the density and velocity distribution with the change in viscous parameter α at
t = 24.75s. Here, densities are in normalised units, radius and velocity are in Schwarzschild units.
Here, α = 0.0 (top left), 0.0525 (top right), 0.0735 (bottom left), 0.074 (bottom right) respectively.
For details see the text (Giri and Chakrabarti 2012)
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time T = 24.75 s when the flow has achieved a steady state. Values of α for which the
shock locations are shown (from left to right): 0.0, 0.035, 0.0525, 0.06125, 0.0735
respectively. Here it is noted that with the increment of α not only the shock location
in equatorial plane but also the shock location along r −z plane shifting outwards, i.e.
both the one- and two-dimensional flows behave alike with the inclusion of viscosity.
In Fig. 6.3, we show how the density of matter and the velocities vary with viscosity.
We superpose contours of constant density and velocity. The length of the arrows
are proportional to velocity, the longest being that of v = 0.6. The results are for
t = 24.75s. α = 0.0 (a: top left), 0.0525 (b: top right), 0.0735 (c: bottom left), 0.074
(d: bottom right) respectively. The contour having minimum density has ρmin = 0.2.
The maximum density is (a) ρmax = 450, (b) ρmax = 395, (c) ρmax = 354 and
(d) ρmax = 286. The contour interval is δρ = 0.25. We observe that the standing
shock is truly two-dimensional and oblique (Chakrabarti 1996). Here three shocks
meet at a point. It is a good example of a prominent triple-shock which forms away
from the equatorial plane. However, it is not a pure triple-shock, since the matter
flows from right to the left for both the shocks facing the upstream. As the matter
flows in from the right-hand side and passes through the shock, it becomes hot and
puffs up as a thick accretion disc (see also, Molteni et al. 1994). The standing shock
moves outwards as the viscosity parameter is increased. Forα = 0.074 which is larger
than the critical α for this case and the shock disappears. In a numerical simulation
with a finite injection radius, the shock, albeit very weak, stays very close to the outer
boundary. The piled up angular momentum in the post-shock flow clearly drives the
shock outwards. In Fig. 6.4, we plot the time variation of the shock location at the
equatorial plane for various viscous parameter α. The values of α are (from bottom

Fig. 6.4 Variation of the
shock location at the
equatorial plane with time for
various viscous parameter α

(from bottom to top: 0.0,
0.0175, 0.035, 0.0525,
0.06125, 0.0735 respectively)
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to top): 0.0, 0.0175, 0.035, 0.0525, 0.06125, 0.0735 respectively. It is clear that the
average shock locations shift outwards when the value of α increases. Shocks close to
the black hole exhibit lower amplitude and higher frequency oscillations, while those
farther out show opposite effects. This is mainly because the frequency is decided by
the inverse of the infall time in the post-shock region. The compression wave in the
post-shock region bounces back from the centrifugal barrier and pushes the shock
outward. At some point the outward journey is stopped when post-shock pressure
drops and the shock turns back. Most interestingly, for α = 0.0525 and α = 0.06125,
the oscillation of the shock disappears and the standing shocks are formed, while
for other αs there are oscillations. This is not surprising, since, as was shown for
the inviscid flow (Chakrabarti 1990b) as well as the viscous flow (Chakrabarti and
Das 2004), the Rankine-Hugoniot relations are satisfied only in a limited region of
the parameter space, and beyond the critical viscosity the relation not satisfied at
all. In this case, the flow has two sonic points and the high entropy solution must
pass through the inner sonic point (Chakrabarti 1989). Hence, the flow generates
entropy through a shock jump, but the location itself cannot be fixed because the
Rankine-Hugoniot condition is not satisfied. This creates an unstable situation and

(a) (b)

(c) (d)

Fig. 6.5 Power density spectra of the time variation of the shock locations. The α parameters
chosen for Figures a, b, c and d are 0.0, 0.0175, 0.035 and 0.0735 respectively
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consequently, the shocks can oscillate (as shown in Chap. 5). It is easy to study the
nature of the oscillation of the shock location when viscosity is increased. So, to
fulfil our interest, we take the power density spectra of the same for four different αs.
In Fig. 6.5a–d, we present the power density spectrum (PDS) of the time variation
of shock locations. The α parameters chosen for Fig. 6.5a–d are 0.0, 0.0175, 0.035
and 0.0735 respectively. For α = 0.0735, the oscillation is prominent with a certain
frequency, while for the other cases no prominent oscillations are seen.

6.3.2 Viscous Effects on Outflows

Molteni et al. (1994) demonstrated that a large percentage of matter can leave the
disc as an outflow. Thus, it is important to investigate their influence on the dynamics
of inflow. It is interesting to study the effects of viscosity on the outflow rate since
Molteni et al. (1994) performed the simulation for inviscid discs. We observed earlier
that with viscosity, the shock recedes and becomes weaker. In Chakrabarti (1999),
it was suggested that the ratio Rṁ of the outflow to the inflow rate would be guided
by the compression ratio at the shock. In Fig. 6.6, we plot the time variation of the
ratio of the outflow to inflow rate as the viscosity is enhanced. The values are the
same as in Fig. 6.4 (from the top curve to the bottom curve). We clearly notice that
although the ratios exhibit short timescale fluctuations, the average values decrease
as viscosity is enhanced. This could have been guessed also from Figs. 6.3a–d, where

Fig. 6.6 Time variation of
the ratio of the outflow to
inflow rates as viscosity
parameter is enhanced.
Though there are short
timescale fluctuations, the
average values decrease as
viscosity is increased showing
a direct relation of the outflow
rate with the strength of the
shock. The viscosities are the
same as in Fig. 6.4 (from the
top curve to the bottom curve)
(Giri and Chakrabarti 2012)
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the lengths of the outgoing arrows in Fig. 6.3a–b are reduced in number and size in
Fig. 6.3c–d. The longest arrow corresponds to v ∼ 0.6.

6.3.3 Viscous Flow with a Constant Height Injection
in Radial Direction

For the sake of comparison with the results of inviscid flows presented in Chap. 4,
we simulate the case where the injection is purely in the −X direction. The injected
flow at the outer boundary has the same sound speed (temperature) as obtained from
the theoretical ‘constant height’ model. The specific energy and specific angular
momentum are E = 0.003 and λ = 1.76 respectively. The simulation was carried out
up to t = 7.63s, or about 100 dynamical time (computed as a sum of dr/ < vr > over
the whole radial grid, < vr > being averaged over 20 vertical grids). Figure 6.7 shows
the distribution of Mach number along the equatorial plane for α = 0.0 (dashed),
0.02 (solid), 0.035 (long dashed), 0.07 (dash-dotted) and 0.09 (log dash-dotted)

Fig. 6.7 Radial distribution of the Mach number on the equatorial plane for a flow with a constant
height injection in the radial direction at the outer boundary. The viscosity parameters are: α = 0.0
(dashed), 0.02 (solid), 0.035 (long dashed), 0.07 (dash-dotted) and 0.09 (log dash-dotted). The
inner shock disappears at about α ∼ 0.05 and the outer shock disappears at α ∼ 0.1 (Giri and
Chakrabarti 2012)

http://dx.doi.org/10.1007/978-3-319-09540-0_4
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respectively. As in Chap. 3 for inviscid flow, we see the formation of a strong (outer)
shock at ∼ 25 and a weak (inner) shock at ∼ 3 when the flow is inviscid. For α = 0.02
and 0.035, both the shocks still form, albeit being farther out and weaker. For higher
viscosity, the inner shock completely disappears. The outer shock disappears at even
higher viscosity. This shows that the critical viscosity for the inner shock is much
lower than that for the outer shock. Since theoretically only the outer shock was
predicted, this is therefore a totally new result and could not have been anticipated
without numerical simulations.

In Fig. 6.8, we show the density and velocity distributions for α = 0 (top left) and
0.02 (top right) respectively at the end of the simulation. We zoom the inner region

Fig. 6.8 The density and velocity distributions for α = 0 (top left) and 0.02 (top right) respectively
at the end of the simulation where the flow was injected with a constant height. We zoom the inner
region to show the shifting of the inner shock from ∼ 3 (bottom left) to ∼ 8 (bottom right) when
viscosity is increased (Giri and Chakrabarti 2012)

http://dx.doi.org/10.1007/978-3-319-09540-0_3
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to show how the inner shock has shifted from ∼ 3 (bottom left) to ∼ 8 (bottom right)
as viscosity is increased.

6.3.4 Vertical Equilibrium at the Outer Boundary

We now use a different model for injection in order to impress that the basic
results remain the same even when we assume the flow to be in vertical equilib-
rium (Chakrabarti 1989) at the outer boundary. We inject through 50 grids out of 512
grids, i.e. the height of the disc at the injection is nearly 5 Schwarzschild radii. In
this case, the injection rate of the momentum density is kept uniform throughout the
injected height at the outer edge. The specific angular momentum (λ) and the specific
energy (E) at the outer boundary is chosen to be the same as in the isothermal injection
case. Here too we stop the simulation at t = 24.75 s. The results of the simulation
are discussed now. In Fig. 6.9a–b, we show the distribution of Mach number on the
equatorial plane and that averaged over 15 grids from the equatorial plane when α

is 0.0, 0.018, 0.0225, 0.0315, 0.05 and 0.09 respectively (from the leftmost curve to
the rightmost curve). As the α parameter is increased, the flow behaviour changes
dramatically. As in the previous case, the shock rapidly propagates outward due to
the faster transport of angular momentum in the post-shock flow compared to the
pre-shock flow. However, since in the vertical equilibrium model, the ram pressure
of the injected flow is less, the turbulence and the back flow on the equatorial plane
remains important even for high α. Figure 6.10a–d show the distribution of specific

(a) (b)

Fig. 6.9 Variation of the a Mach number on the equatorial plane and b the Mach number averaged
over 15 vertical grids as a function of the radial distance on the equatorial plane as the α is increased
from 0 (leftmost curve) to 0.09 (rightmost curve). See the text for details (Giri and Chakrabarti
2012)
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(a) (b)

(c) (d)

Fig. 6.10 Comparison of the specific angular momentum distributions (thin curves) at equatorial
plane (z = 0) of an accretion flow as viscosity parameter α is varied. α = a 0.0, b 0.01, c 0.05 and
d 0.09. For all the cases, the result is compared with the Keplerian angular momentum distribution
(thick curves)

angular momentum at equatorial plane (z = 0) and Fig. 6.11a–d show the distribu-
tion of average specific angular momentum of the flow (density weighted average
over 15 vertical grids from the equatorial plane) at the end of our simulation for
different values of α (thin solid curve). For comparison, we plot the specific angular
momentum distributions of a Keplerian orbit (thick upper curve). In Fig. 6.11a–d, We
also plot a ‘Keplerian’ distribution (thick lower curve) at a height of 200 grids (∼ 20
Schwarzschild radii) and compare the 15 vertical grid average angular momentum
distribution that is obtained from the simulation at that height (dashed curve). The
latter ‘Keplerian’ distribution was obtained by equating the horizontal component
of the gravitational force at that height with the centrifugal force. All results are
shown at t = 24.75s. The α parameters chosen for Fig. 6.10a,b,c and d (also for
6.11a,b,c and d) are 0.0, 0.01, 0.05, and 0.09 respectively. We note that as the viscos-
ity is increased, the distribution in the post-shock region gradually becomes closer
to the Keplerian distribution, although below r = 3, the distribution is always highly
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(a) (b)

(c) (d)

Fig. 6.11 Comparison of the specific angular momentum distributions (thin curves) of an accretion
flow as viscosity parameter α is varied. α = a 0.0, b 0.01, c 0.05 and d 0.09. For all the cases, the
result is compared with the Keplerian angular momentum distribution (thick curves) (from Giri and
Chakrabarti 2012)

sub-Keplerian. At the shock, the distribution shows a jump. This is because for a
given α, the transport rates in the pre- and post-shock flows are different, being very
high in the post-shock region due to higher pressure. For high enough viscosity,
when the shock reaches infinity (large distance), the angular momentum distribution
becomes that of a Keplerian flow, which is what is expected. This is thus one scenario
by which a Keplerian disc may form in a highly viscous flow. In Fig. 6.12a–b, (a)
the time variation of shock locations at equatorial plane and (b) the average specific
angular momentum of the system is plotted as a function of simulation time. For
both the cases, the viscous effect (α = 0.05) is compared with inviscid (α = 0) flow.
The average specific angular momentum (λ̄) is obtained as

λ̄ =
∫

λρdr∫
ρdr
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(a) (b)

Fig. 6.12 a Time variation of outer shock locations (left) at equatorial plane and b averaged specific
angular momentum (right) in the whole system at time 24.75 s. See text for details

Fig. 6.13 Mach number
distribution of inviscid (top)
and viscous (bottom) flow at
r − z plane at the simulation
time 24.75 s when the flow
has achieved steady state
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Like in previous cases, the shock locations shift outwards when viscosity is added. It
is noted that when viscosity is absent in the flow, the average angular momentum of
the system remains almost constant with injected value but increases when viscosity
is incorporated in the system. Because of the transport of angular momentum, most
of the matter being injected into the disc is not consumed by the black hole, which is
indicated by the fact that λ̄ is significantly higher than injected λ. We turn our focus
on the time variation of temperature distribution of flow. So, one can easily perform
the study with Mach number distribution of flows for different times of simulation.

1

Fig. 6.14 Mach number distribution of a viscous flow on r − z plane. From top to bottom, the
successive maps are shown at different times of simulation. See text for details
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The overall behaviour of Mach number is clear in Fig. 6.13 where the image map
of the Mach numbers is plotted for both inviscid and viscous flows. We inject the
matter supersonically at the outer boundary. At the top of Fig. 6.13, Mach numbers
are shown on r − z plane for inviscid flows, while the same for the viscous flow
with α = 0.09 are shown in the bottom of Fig. 6.13. Black-shaded regions represent
the region where Mach number is greater than 1 (supersonic flow) and the white
region is for Mach number less than 1 (subsonic flow). All the results are shown on
the simulation time T = 24.75 s. The point of interest is that for viscous flows, the
region nearer to the equatorial plane of the flow became subsonic from supersonic.
The angular momentum of the system has been transported outwards with inclusion
of viscous stress, and hence the flow nearer to a black hole as well as equatorial
plane becomes subsonic. In the image map for viscous flows, we see that some
isolated supersonic blobs are generated at the post-shock subsonic region. In case
of higher viscosity, higher turbulences are also seen to form in the post-shock flow.
This is because more matter from a higher elevation falls on the equatorial plane
and converts the potential energy into heat and turbulent energy. We also tested
that this kind of blob changes their nature, size and position with time evolution
of the simulation. In Fig. 6.14, non-steady evolution of Mach number variation at
r − z plane of a viscous flow is shown. From the top to bottom, the image map of
Mach numbers is plotted at the successive time T = 9.90, 14.85, 19.8 and 22.27 s
respectively where α = 0.09 for each cases. The black-shaded regions at each map
stand for supersonic flow region, while the white-shaded regions represent subsonic
flow. So it is evident that the isolated supersonic blobs change their location and size
with time evolution. This kind of phenomena are expected to be reflected also in the
spectral property of the flow.

6.4 Effects of Boundary Location

It may be noted that we have run the simulations above for viscosity parameters
slightly below the critical viscosity, since the shock is approaching the outer bound-
ary. As we have injection of matter at the outer boundary, it would prevent the shock
from leaving the grid near the injection area. In order to prove that the shock actually
runs away and disappears, one requires an infinitely large boundary which is impos-
sible. However, that this must happen can be easily be shown by running a few cases
using the viscosity parameter from both sides of the critical value. In Fig. 6.15a–b, we
present two such cases with (a) E = 0.0035, λ = 1.66, xb = 50 and (b) E = 0.002,
λ = 1.66, xb = 100. The viscosity parameters are marked on the curves. The critical
viscosities are αc ∼ 0.0738 and 0.0325 respectively. We clearly see that for α < αc,
the shock first goes out farther before returning and settling down at a certain finite
distance with some small amplitude oscillation. However, for α > αc, the shock
never returns and continues to go outward. This behaviour is independent of the
location of the boundary.
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(a) (b)

Fig. 6.15 Evolution of the shock location as the viscosity parameter α is changed for two different
boundary conditions: a xb = 50, E = 0.0035, λ = 1.66; b xb = 100, E = 0.002, λ = 1.66. The
critical viscosities are αc = 0.0738 and 0.0325 respectively in these cases. In both the cases, when
α < αc, the shock first goes out farther before returning and settling down, while for α > αc, the
shock never returns and continues to go outward (Giri and Chakrabarti 2012)

6.5 Effects of Viscous Stress Components

It is interesting to understand the importance of various components of viscous
stress. We carried out simulations using the value of μ in Eq. (3.67) and either the rφ

component of the viscous stress or all the components of the viscous term. We clearly
find major differences in our results. These will be discussed now. In Fig. 6.16a–d,
the radial distribution of the Mach number and the specific angular momentum on the
equatorial plane and that averaged over 15 vertical grids from the equatorial plane are
shown. The dash–dotted curve shows the results when only the rφ component is used
and the solid curve shows the results when all the three components are used. The
results are plotted at t = 10s. The flow parameters are E = 0.035, λ = 1.66 and αs =
0.03. We also plot the results for the inviscid flows for comparison (dotted curve).
Note that the distribution of angular momentum inside the shock remains almost
constant when a single (rφ) component is used while it becomes similar to Keplerian
when all the three components are included. In Fig. 6.17a–d, we plot the distribution
of density and velocity when only rφ component of the viscous stress is used (top
left). Note that the jaggedness of the shock goes away when all three components
of the viscous stress are included (top right). A density maximum occurs in the
post-shock region. Thus, the post-shock region behaves like a thick accretion disc
(Paczyński and Wiita 1980) as was also pointed out in SPH simulations (Molteni et
al. 1994). The post-shock region, formed purely due to the centrifugal force, is known
as the CENtrifugal pressure dominated BOundary Layer or CENBOL as mentioned
earlier. This region is believed to be responsible to emit hard X-rays in black hole

http://dx.doi.org/10.1007/978-3-319-09540-0_3
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(a) (b)

(c) (d)

Fig. 6.16 Radial distribution of a & b Mach number, and c & d specific angular momentum on
the equatorial plane a & c and that averaged over 15 vertical grids from the equatorial plane b &
d for cases when only the rφ component (dashed-dotted) and all the three components (solid) are
used. The results are plotted at t = 10s. We also plot the results for the inviscid flow for comparison
(dotted). The angular momentum inside the shock remains almost constant when a single (rφ)
component is present, while it becomes similar to Keplerian when all the three components are
included (Giri and Chakrabarti 2012)

candidates by inverse Comptonization of soft photons coming from Keplerian discs
believed to form near the equatorial plane where the viscosity is high (Chakrabarti
and Titarchuk 1995). The corresponding specific angular momentum distributions
are in the bottom-left and bottom-right panels respectively. Note that up to the disc
centre the angular momentum rises rapidly and becomes almost Keplerian as shown
in Fig. 6.17c–d. The parameters chosen are the same as in Fig. 6.16. A comparison of
the behaviour with and without all the three components indicates that the behaviour
becomes smoother with transport of momentum taking place in all directions. The
outflow also has a larger specific angular momentum.
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Fig. 6.17 Distribution of density and velocity when only rφ component of the viscous stress is used
(top left). Note that the jaggedness of the shock goes away when all three components are included
(top right). Density maximum and a consequent thick accretion disc-like structure is formed in the
post-shock region in the latter case. The corresponding specific angular momentum distributions
are at the bottom left and bottom right respectively. The parameters are the same as in Fig. 6.16
(Giri and Chakrabarti 2012)
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Chapter 7
Effects of Power-Law Cooling
in Viscous Flows

Abstract We carry out a series of numerical simulations of viscous accretion flows
having a reasonable spatial distribution of the viscosity parameter. We add the power-
law cooling throughout the flow. We show that in agreement with the theoretical
solutions of viscous transonic flows, matter having viscosity parameter above a crit-
ical value becomes a Keplerian disc while matter having lesser viscosity remains
a low angular momentum, sub-Keplerian flow. The latter component produces cen-
trifugal pressure supported shock waves. Thus, for instance, flows having sufficiently
high viscosity on the equatorial plane and low viscosity above and below, produce
a Two Component Advective Flow (TCAF), where a Keplerian disc is surrounded
by a rapidly moving sub-Keplerian halo. We find that the post-shock region of the
Keplerian disc is evaporated and the configuration is stable. This agrees with the
theoretical models which attempt to explain the spectral and timing properties of
black hole candidates.

7.1 Introduction

In this chapter, we showed the results of simulations with low angular momentum,
inviscid flows in two dimensions. Chakrabarti (Chakrabarti 1990a, b; Chakrabarti and
Das 2001) predicted that the standing shocks are possible only when the viscosity
parameters is less than a critical value αcrit (which depends on other flow parameters).
If α is above this critical value, the shock would move outward and the disc would
become subsonic and Keplerian. In Chap. 6, we precisely see this. Radiative processes
of course play an important role in shaping the flow geometry. If a flow is optically
thick, the radiation is trapped and the matter is puffed up. If the matter is optically
thin, radiation would leak out and the flow would be more or less isothermal. We
have already seen that the viscosity transports angular momentum to make the flow
Keplerian. But we can only have a Shakura–Sunyaev (Shakura and Sunyaev 1973)
disc if the disc also cools appropriately.

Observation of non-thermal photons in the spectrum (Sunyaev and Truemper
1979) prompted the model builders to imagine that a hot electron cloud (the so-
called Compton cloud) along with the standard disc could resolve the issue (Sunyaev
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and Titarchuk 1980, 1985). Numerous suggestions and cartoon diagrams of the
illusive Compton cloud are present in the literature (e.g., Zdziarski 1988; Haardt
et al. 1994; Chakrabarti and Titarchuk 1995). Chakrabarti and Titarchuk (1995),
based on the solutions of viscous and inviscid transonic flows around black holes
(Chakrabarti 1989, 1990a, b) proposed that, in general, the accretion disc should
really have two components: a Keplerian accretion on the equatorial plane and a
sub-Keplerian halo that surrounds the Keplerian disc, and the puffed up inner part
of the flow (CENBOL) which is nothing but the Compton cloud. The soft radiation
coming from the Keplerian disc is intercepted by the hot sub-Keplerian flows in the
CENBOL region and is re-radiated after multiple scattering. This radiative of the
electron cloud. Depending on the relative importance of the Keplerian disc rate Ṁd

and the sub-Keplerian halo rate Ṁh , the electrons in the sub-Keplerian disc may
lose (inverse Compton scattering) or gain (Compton scattering) energy. When the
electron cloud gets hotter, the system is in the hard state and if the electron cloud
cools down by losing energy to the photons, the system is in the soft state. The hard
state is thus dominated by a power-law hard photon component.

The two component advective disc (TCAF) solution of Chakrabarti and Titarchuk
(1995) was able to explain the spectral and timing properties including time lags
observed in several black hole candidates (Wu et al. 2002; Smith et al. 2001a, b,
2002, 2007; Rao et al. 2000), there is as yet no work in the literature to show that
the TCAF solution is stable. The cause for concern was obvious: a Keplerian disc
is necessarily subsonic, while the sub-Keplerian flow is supersonic, and becomes
subsonic only at the shock wave. The region between the shock wave and the sonic
point near the horizon is known as the CENtrifugal pressure supported BOundary
Layer or CENBOL. Thus, the questions that remain unanswered are: (a) Under what
circumstances does TCAF actually form? (b) Would the Keplerian component remain
stable when the sub-Keplerian component flies by or is it disrupted? (c) What is the
fate of the inner Keplerian disc component when the hot CENBOL actually forms?
(d) How would the subsonic Keplerian disc and the subsonic CENBOL interact, and
finally (e) In presence of both the components how would the net angular momentum
distribution of the flow behave?

In this chapter, we address these vital issues. Through numerical simulations of
viscous accretion flow with power-law cooling effects, we show that when the injected
sub-Keplerian flow angular momentum is high enough and/or the viscosity is high
enough, TCAF would be formed, otherwise the sub-Keplerian flow would remain
sub-Keplerian. The TCAF, when formed, is a stable configuration, i.e. the Keplerian
component formed on the equatorial plane is not destroyed by the sub-Keplerian, fast
moving halo component. We also show that the hot CENBOL effectively removes the
Keplerian disc from the equatorial plane and the disc becomes truncated. In the work
in this chapter, we carry out numerical simulation in the presence of both viscous and
cooling effects. Physically, viscous heating increases post-shock pressure and also
transports angular momentum faster. As a result, the Rankine-Hugoniot condition
is satisfied away from the black hole. Cooling, on the other hand, reduces the post-
shock pressure and the shock moves inward. With the combined effect, the shock may
or may not move outward. Instead of using a constant α parameter throughout the
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simulation grid, we assume that α is maximum on the equatorial plane and gradually
goes down with vertical height (Giri and Chakrabarti 2013). We also use a power-
law cooling process throughout the flow. We see that a cool, dense Keplerian disc is
produced on the equatorial plane.

7.2 Computational Procedure

All the governing equations for viscous accretion flow are given in detail in Chap. 3
and we do not repeat it here. In Chap. 3, we presented the details of the implementation
of power-law cooling within the viscous system. So, we do not repeat it here. Earlier,
we had chosen a constant viscosity parameter α in the entire flow as is the trend in
the subject. In this chapter, we have chosen a more realistic α parameter, so that the
viscosity is high on the equatorial plane and low, away from from it. This is because,
as is well known in the case of the models of the dwarf novae outbursts, the high
viscosity on the equatorial plane actually drives the accretion (e.g., Cannizzo et al.
1982, 1995). Thus, the rate of transport of angular momentum on the equatorial
plane should be the highest. Away from the plane, the pressure falls very slowly, and
thus in order to reduce viscous effects, α itself must go down also. In the present
work, instead of using the same α for the whole r − z plane, we choose a smooth
distribution as

α = αmax −
[
αmax

(
z

rmax

)δ
]

, (7.1)

where, rmax = 200, 0 ≤ z ≤ 200 and δ > 0. In our case, we have chosen δ = 1.5.
In Fig. 7.1 we show how α changes in the z direction. Clearly, when z = 0, i.e.
at equatorial plane, α = αmax = 0.012 , while α = 0 for z = zmax = rmax. If
turbulence is the major source of viscosity, then, clearly it will be highest on the
equatorial plane. But a precise knowledge is required to get the distribution of how
alpha actually falls with height. That is why we assume a generic distribution. Since
we have no preferred choice one way or another, we ran our code with several
distributions of similar nature, but the basic result was found to remain the same. We
have also chosen αmax > αcrit so that on the equatorial region the flow can transport
angular momentum efficiently and form a Keplerian disc .

The set-up of our simulation has been described in Chap. 4. Instead of only viscous
flows, we add a power-law cooling in the Pseudo-Newtonian gravitational field of a
point mass Mbh located at the centre in cylindrical coordinates [r, θ, z]. The numerical
calculation has been carried out with ro = 200rg and Nr = Nz = 512. Thus, each
grid has a size of 0.39 in units of the Schwarzschild radius. Considering that we
are interested in the shock formation that takes place at a few tens of Schwarzschild
radii away and this grid size should be sufficient for this purpose. We typically
find that the infall time from the outer to the inner boundary is about ∼0.5 s. This is

http://dx.doi.org/10.1007/978-3-319-09540-0_3
http://dx.doi.org/10.1007/978-3-319-09540-0_3
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Fig. 7.1 Distribution of
viscous parameter α along z
direction. αmax = 0.012 is
taken
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computed from the sum of dr/<vr> over the entire radial grid, <vr> being averaged
over 20 vertical grids. In this work, we are interested to show (a) the formation of
CENBOL (at tens of Schwarzschild radii) and (b) the formation of a Keplerian disc
(few Schwarzschild radii thick). So, the resolution that we have (∼0.4 Schwarzschild
radii) is enough to catch these salient features. For a detailed study of turbulent cells,
we require to refine the grids. This will be done in the future. In order to mimic the
horizon of the black hole at one Schwarzschild radius, we placed an absorbing inner
boundary at R = 2.5rg , inside which all material is completely absorbed into the
black hole. All the simulations have been carried out assuming a stellar mass black
hole (M = 10M�). We carry out the simulations for several hundreds of dynamical
timescales. In reality, our simulation time corresponds to a few seconds in physical
units. Now, we present the results for different cases as well as different sets of
parameters.

7.3 Simulation Results

We assume the flow to be in vertical equilibrium (Chakrabarti 1989) at the outer
boundary. The injection rate of the momentum density is kept uniform throughout
the injected height at the outer edge. We inject through all the radial grids. We stop
the simulations at t = 95 s. This corresponds to more than two hundred times the
dynamical time of the flow. Thus, the presented solutions are at a time long after
the transient phase. The results of the simulation are discussed below. First, we
perform two-dimensional numerical simulations with viscosity and cooling for dif-
ferent values of specific angular momentum λ = 1.3, 1.5 and 1.7. In the absence
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Fig. 7.2 A comparison of the specific angular momentum distribution (solid curves) with injected
a λ = 1.3, b 1.5 and c 1.7 when the viscosity and the cooling effects are included. The results
are compared with the Keplerian angular momentum distribution (dotted curves). Note that, in b,
the Keplerian disc reaches till ∼110rg . In c, however, the Keplerian disc reaching towards the grid
boundary. The vertical boundaries are at t = 23.71, 35.57, 47.43, 73.34 and 95 s, respectively (Giri
and Chakrabarti 2013)

of viscosity, the angular momentum would have remained the same as that of the
injected value. In Fig. 7.2a–c, we show the distribution of specific angular momenta
(solid curve) with Keplerian angular momentum distribution (dotted curve) on the
equatorial plane when viscosity and cooling effects are added. The specific energy
(E) of the flow at the equatorial plane (z = 0) was chosen to be 0.001 at the outer
boundary. The viscosity parameter was chosen to be, αmax = 0.012 > αcrit and the
cooling index was chosen to be β = 1. In all the cases, the transient behaviours
are over within 1 s. In (a), where λ = 1.3, the angular momentum transport rate is
negligible even when viscosity and cooling are added. But the rate is significant for
the intermediate value: λ = 1.5 (b). For a large λ = 1.7, the angular momentum has
been transported rapidly and the distribution of specific angular momentum in (c)
coincides with its Keplerian value. From left to right, we have plotted for t = 23.7,



116 7 Effects of Power-Law Cooling in Viscous Flows

Fig. 7.3 Changes in the
density and velocity
distributions at t = 95 s a
without and b with the
inclusion of viscosity and
cooling. Densities in
normalised units are plotted
in logarithmic scale as in the
scale on the right. The density
ranges from log10ρ = −6 to
5 in both the figures. A
two-component flow is
clearly formed in b (Giri and
Chakrabarti 2013)

(a)

(b)

t = 35.6, t = 47.4, 73.3 and 95 s, respectively. In (a), the shock does not exist for
such low angular momentum flow (Chakrabarti 1989). So, the case will never pro-
duce any Keplerian disc also. Both (b) and (c) produce shocks as they have sufficient
angular momentum. While in (b) the shock remains standing forever, in Fig. 7.2c
the shock propagated outward and the whole disc becomes Keplerian. The reason
is that α < αcrit in (b) and α < αcrit in (c). In (c) if we run longer, the shock will
propagate to large distance making the whole post-shock region a Keplerian disc.
Only the region between the horizon and the inner sonic point (∼2.5rg) will remain
supersonic and sub-Keplerian. Figure 7.3a–b shows the velocity and density distrib-
ution of the flow (a) without viscosity and cooling and (b) with viscosity and cooling.
In order to have meaningful comparison, all the runs were carried out up to t = 95 s.
For both the cases, λ = 1.7 and E = 0.001 were chosen. In Fig. 7.3b, we take
αmax = 0.012 and β = 1. The α is higher than αcrit for the respective flow parame-
ters. The density distributions in Fig. 7.3 are plotted in the logarithmic scale shown
on the right. We note that on the equatorial plane, a Keplerian disc has formed out of
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Fig. 7.4 Temperature
distribution with logarithmic
scale for non-viscous and
viscous cases. For both the
cases, the temperature ranges
from log10T = −5 to 4.1
(Giri and Chakrabarti 2013)

(a)

(b)

the sub-Keplerian matter. Close to the outer boundary, near the equatorial plane, we
are injecting sub-Keplerian matter and thus the Keplerian disc is disrupted there. In
the realistic case, where the boundary is very far so that the equatorial injected matter
itself is Keplerian, no such disruption should be seen. In other words, the apparent
disruption of the Keplerian disc is an artefact of the simulation method. In Fig. 7.4a–
b, we show the temperature distributions in keV as per colour (logarithmic) scale
on the right. In the absence of cooling and viscosity, in Fig. 7.4a, the single compo-
nent sub-Keplerian flow forms. In Fig. 7.4b, because of higher viscosity, flows have
the Keplerian distribution near the equatorial region. Because of cooling effects, the
region with a Keplerian distribution is cooler and denser. Comparatively, low-dense
sub-Keplerian matter stays away from the equatorial plane. For both the cases, the
Centrifugal Pressure supported BOundary Layer (CENBOL) forms. Since the inner
boundary condition on the horizon forces the flow to be sub-Keplerian irrespective
of their origin (Chakrabarti 1990b, 1996), the Keplerian and sub-Keplerian matter
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(a)

(c)

(d)

(e)

(f)

(b)

Fig. 7.5 Time variation of density distribution (in logarithmic scale) at six different times: t =
20, 50, 70, 80, 90 and 95 s. The density range from log10ρ = −6 to 5.2. The CENBOL forms at
r ∼ 20 (Giri and Chakrabarti 2013)

mixes (at the location of shock) before entering into a black hole to form a single
component sub-Keplerian flow which is the CENBOL. A standard Keplerian disc
forms in two steps: (a) The viscosity must be sufficiently high (α > αcrit as discussed
in Paper II) to produce a Keplerian distribution and (b) The cooling must be suffi-
ciently high to emit a black body locally. In order to show how the Keplerian disc
actually forms out of a sub-Keplerian flows, in Fig. 7.5, we zoom the region close to
the equatorial plane and show the results at six different times: t = 20, 50, 70, 80, 90
and 95 s. Different colours correspond to different densities as marked in the scale on
the right. The red colour corresponds to ∼105, while yellowish green corresponds to
∼1, the injected density. The CENBOL is at r ∼ 20 where the density increases by a
factor of a few. Injected matter near the equatorial plane being strongly sub-Keplerian
disrupts the Keplerian disc in the region r ∼ 180 − 200. Note that the formation of
Keplerian disc is slow compared to the inflow velocity of the sub-Keplerian matter.
In the frame of the sub-Keplerian matter, the Keplerian disc behaves as an obstacle.
This causes the formation of a wake at the tip of the Keplerian flow. If one starts
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Fig. 7.6 Log–log plot of the
radial distribution of time
averaged temperatures (in
keV) of the Keplerian
component at t = 95 s. The
slope γ of the power-law
distribution T (r) ∼ r−γ is
2.6 (Giri and Chakrabarti
2013)

with a Keplerian disc and gives no viscosity, the disc will immediately accrete and
it will not remain Keplerian. So a disc can be Keplerian even without cooling. But
a disc cannot remain Keplerian without sufficient viscosity. We have already shown
in Fig. 7.2 that the angular momentum distribution of the flow close to the equatorial
plane is indeed Keplerian as far as the Keplerian component goes. Now, we wish to
show how the temperature is distributed. In the standard Keplerian disc (Shakura and
Sunyaev 1973), in the optically thick regime, the black body cooling law ∝ T (r)4

leads to the disc temperature distribution of T (r) ∼ r−3/4. However, the cooling
we employ here is ∝ T (r)β , where β = 1. This leads to a possible distribution of
T (r) ∼ r−3, steeper than a Keplerian disc emitting black body. In Fig. 7.6, we plot
the radial distribution of vertically averaged temperature at t = 95 s. We have plotted
between 30 and 150rg to avoid the boundary effects. The temperature just outside
CENBOL at r ∼ 20rg is found to be around 0.1 keV. The slope of the distribution
(T (r) ∼ r−γ ) is found to be γ = 2.6. This converged result is close to our predicted
value. In the future, when we add the Comptonization scheme inside the simula-
tion, we anticipate that T (r) ∼ r−3/4 distribution would be achieved. An important
question in this context is: Are the Keplerian disc formation and destruction times
the same, or are there some hysteresis effects? This issue is important since in the
outbursting black hole candidates, the rising and declining phases take totally dif-
ferent times (Chakrabarti et al. 2009; Debnath et al. 2010). To see whether there is a
hysteresis effect or not, we carry out a numerical experiment where we first allow the
Keplerian disc to form and then remove the viscosity so that the angular momentum
transport is not possible. In Fig. 7.7a–d, we show results of the simulations (with
parameters the same as in Fig. 7.5 at (a) t = 23.7 s and (b) t = 59 s, respectively. The
density scale is shown on the right (logarithmic). Now starting with the output of



120 7 Effects of Power-Law Cooling in Viscous Flows

(a) (b)

(c) (d)

Fig. 7.7 a–b Formation of a Keplerian disc from the injected sub-Keplerian flow in the presence
of viscosity and cooling effects: a at t = 23.7 s and b at t = 59 s. c–d Evaporation and mixing of
the Keplerian disc started after removal of cooling and viscosity: c at t = 95 s and d t = 118 s. For
all cases, density ranges from log10ρ = −6 to 5 (Giri and Chakrabarti 2013)

(b), we remove the viscosity and cooling and run again for another 59 s. In Fig. 7.7c,
we show the results at t = 95 s and in Fig. 7.6d we show the results at t = 118 s. We
note that turbulent cells are produced all over the flow and the flow pattern is greatly
disturbed. Most interestingly, if there were no hysteresis effects, Fig. 7.7b, c would
have been alike and Figs. 7.3a and 7.7d would have been alike. However, they are
not. Naturally, the spectrum would also have the corresponding effects. Clearly, we
need to carry the simulation for a much longer time to bring back the CENBOL in the
inviscid flow as in Fig. 7.3a. In the outburst sources (Mandal and Chakrabarti 2010),
exactly the same hysteresis effect can be seen. The time variation of the Keplerian
and the sub-Keplerian flows do not obey the same route in the onset and the decline
phases of the outbursts.
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7.3.1 Time Variation of Matter Contents in the Keplerian and
Sub-Keplerian Components

It is interesting to study the time variations of the matter contents of the Kep-
lerian (Mkep), the sub-Keplerian (Msubkep), the outflowing matter (Mout) and the
total matter (Mtot) in the system. Let us define the quantity of the total matter
in the system in dimensionless units. The total matter of the system for a par-
ticular time of run is defined by Mtot = 	(2πrdrdzρ), where the summation is
taken for all grids in the system. We have taken δλ = |λkep − λrun|, where, λkep
and λrun are Keplerian-specific angular momentum and specific angular momen-
tum obtained from our simulation, respectively. We have calculated δλ for each
grid point of our simulation box. So, if δλ is very small for a grid point, then this
grid point is said to be part of the Keplerian disc. The total Keplerian matter is
defined as Mkep = 	(2πrdrdzρ), where the summation is taken only for those
grids when δλ < 0.02. The total outflowing matter of the system is defined as
Mout = 	(2πrdrdzρ), where, δλ < 0.02 and vz > 0. Hence, total sub-Keplerian
matter of the system is defined as Msubkep = Mtot − (Mkep + Mout). In Fig. 7.8, we
plot the time variations of total (Mtot), Keplerian (Mkep) and sub-Keplerian (Msubkep)
matter of the flow with viscosity and cooling. The solid curve represents the total

Fig. 7.8 Time variations of the Total (Mtot), Keplerian (Mkep) and sub-Keplerian (Mkep) matter of
the system at a given instant. The solid curve represents the total matter of the system with time,
while dotted and dashed curve represents the variation of Keplerian and sub-Keplerian matter,
respectively
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Fig. 7.9 Time variations of the total, Keplerian, sub-Keplerian and outflowing matter in the system.
See text for details

matter of the system with time, while dotted and dashed curves represent the vari-
ation of Keplerian and sub-Keplerian matter, respectively. In that case, outflowing
matter is so less that it is neglected. Here, for both the cases, λ = 1.7 and E = 0.001,
αmax = 0.012 and β = 1. In comparison, in Fig. 7.9, time variations of Mtot, Mkep,
Msubkep and Mout are shown for the flow which is started initially with viscosity and
cooling (from t = 0 to t = 61) and then without viscosity and cooling (t = 61 to
t = 94.86). It is clear that the Keplerian matter is increasing in the system until the
viscosity and cooling are switched off, while the reverse is true for the sub-Keplerian
matter and outflows.

7.4 Comparison of Our Result with Other Models

It is pertinent to compare our results with the results of some of the previous
studies. Igumenshchev and Abramowicz (1999, 2000), Stone et al. (1999), Proga
and Begelman (2003) do not find the existence of shocks. In their simulations, the
authors mainly concentrated on the time evolution of injected Keplerian or almost
Keplerian disc . As the Keplerian flow itself is a subsonic flow, the time evolution of
the Keplerian flow will not produce a shock. These simulations were also viscous,
so a Keplerian flow remained Keplerian until the inner sonic point. By contrast, our
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flows are advective with a significant radial velocity component and the flow has
angular momentum much less than that of the Keplerian disc. With the addition
of viscosity, the distribution becomes Keplerian along the equatorial plane and the
cooling ensures that this Keplerian flow indeed radiates like a standard Keplerian
disc. Since above and below the equatorial plane the density is low, the viscosity and
cooling are inefficient, the flow remains sub-Keplerian and produces shocks. So, we
have a complete solution in which the equatorial part behaves like a Keplerian disc,
while the other part away from the equatorial plane behaves like a transonic flow
with shock waves.

It is evident that the outflows are generated from inflow at both Fig. 7.3a, b. The
centrifugal barrier (CENBOL) produces shock and the post-shock flow become hot.
Due to heating at the jet-base (CENBOL) and subsequent expansion in the vertical
direction, the outflow is generated from the disc. The excess thermal gradient force
along the vertical direction in the post-shock flow drives a part of the accreting matter
as the bipolar outflow which is believed to be the predecessor of the observed jet.
We thus have the indication that the shock heating is an important ingredient in the
ejection of matter from the disc surface. Indeed in the presence of cooling, the outflow
is found to be quenched (Garain et al. 2012).
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Chapter 8
Conclusions and Future Plans

Abstract We draw concluding remarks and briefly mention our future plans.

The goal of my thesis was to study accretion flows around black holes with a
two-dimensional axisymmetric system, and to understand the effects of viscosity
and cooling on the time evolution of these discs. The first step towards this accom-
plishment was the development of a numerical hydrodynamics computer code, which
can calculate the gravitational forces, centrifugal forces and inertial forces that decide
on the dynamics of a given system. The numerical hydrodynamics were added to an
already existing standard code developed by Ryu et al. (1993), and the method chosen
was Total Variation Diminishing (TVD). A black hole system in general is relativistic
in nature. In our work, we have used a pseudo-Newtonian potential (Paczyński and
Wiita 1980), which mimics the space time of a Schwarzschild black hole.

In the Introduction chapter, we briefly introduced black holes and the general
concept of accretion processes around black holes. To avoid complexity, we stud-
ied accretion processes in a strong gravitational field by considering the pseudo-
Newtonian potential. A discussion of the Paczyński and Wiita (1980) potential was
presented in Sect. 1.2. Next, we mentioned the fluid dynamical aspects of an accre-
tion flow. In Sect. 1.5, we discussed the accretion shocks close to the black hole
horizon. We discuss the genesis of shock conditions and the reason for formation
of shocks. We presented shock conditions of different limits and studied the nature
of Rankine-Hugoniot shocks for the accretion and winds around a compact object.
The importance of hydrodynamics and numerical simulations is pointed out. There
are quite a few accretion disc models present in the literature. We have listed some
of the basic accretion disc models in Sect. 1.8, starting from a Bondi flow. In this
section, we discussed the path breaking work of accretion process where a brief
description of thin accretion disc model, commonly known as the ‘standard Kep-
lerian disc’. This model, although explaining the luminosity shown by black hole
candidates fails to produce the high-energy power-law tail of the spectrum shown
by most black holes candidates. More importantly, in this model, accretion disc is
terminated at the marginally stable orbit, and the inner boundary conditions are not
satisfied since the advection of flow was completely ignored. Therefore, the basic
requirement of the accretion process around black hole, i.e. the transonic property,
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is not satisfied in this model and we proceeded further for future development of this
subject. Next, we presented another disc model known as the ‘Thick disc,’ which
have a few interesting features such as the production of supercritical luminosity, its
ability of jet collimation, etc. In Sect. 1.8.5, we pointed out advective discs models.
In the last section of the Introduction, we presented the most general form of the
accretion disc model, namely the Two Component Advective Flows or TCAF. This
disc model is obtained from the actual solution of governing equations, and it satisfies
all the boundary conditions of accretion processes onto black holes. TCAF explains
the observed spectral properties, the state transition, the variability class transitions,
quasi-periodic variations, etc.

In Chap. 2, we give an overview of numerical simulations of accretion processes
around black holes since the last three decades. We then present the goals of my
thesis. At the end of this chapter, we discuss the units and dimensions we used in our
simulations.

In Chap. 3, we investigated hydrodynamic simulations of accretion flows around
black holes. We presented the conservation equations for inviscid flows in compact
form. Next, we stated numerical approaches for solving these equations. We then
show the details of the structure of the equations for non-viscous system in our
simulations. We derived all the eigenvalues and the corresponding left and right
eigenvectors. So the solution method reduces to an eigenvalue problem. We then
discuss the TVD method by which we obtained the solutions from the eigenstructure.
Next, we incorporate turbulent viscosity in our system. We compare between the set
of equations of viscous flows and non-viscous flows. We pointed out how molecular
viscosity is negligible for accretion flows. Next, we include a simple power-law
cooling in our viscous flows. We show how the energy equations change with the
inclusion of cooling term.

In the next chapter, we describe the simulation procedure in detail. We discuss
the geometry, computational box that we have used in our simulations. We then
give the details of the initial and boundary conditions. We make some comments on
timescales and code parameters used in our simulations. At the end of the chapter, we
show some results of simple cases to check the validity of our code. We simulate the
exact Bondi flow solutions with our code and compare the results from the numerical
simulations with the theoretical results.

In an accretion flow, the study of standing and oscillatory shocks are of great
importance and they decide the spectral and temporal properties of a spectrum emit-
ted from the accretion flows. In Chap. 5, we presented the results of two-dimensional
hydrodynamic simulations of matter accreting onto a black hole. We systemati-
cally chose the flow parameters (E, λ) from the parameter space, which provides the
complete set of solutions of a black hole accretion flow. The parameter space was
classified into regions, which may or may not produce standing shocks (Chakrabarti
1989, 1990) in an inviscid flow. The classifications were made using three different
models of the flow, namely a disc of constant thickness, a disc with conical wedge
cross-section and a disc that is in vertical equilibrium (Chakrabarti and Das 2001).
Our motivation was to study whether a simulated result behaves like any one of these
theoretical models throughout. We observed that the flow behaved like that of the
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constant thickness before the shock. However, in the post-shock region, as the flow
expands vertically due to higher thermal pressure, it behaves like that of a flow in
vertical equilibrium. Second, the infall time in the post-shock region is several times
larger compared to the free-fall time, especially due to the formation of turbulence in
the post-shock region. Third, instead of only one possible shock transition, the flow
shows the formation of two shocks, one very close to the black hole (∼3–5) and the
other farther away depending on the angular momentum. Both the shocks showed
significant oscillations. While the inner shock oscillated faster than the outer shock,
each of them also oscillated at the frequency of the other, though at a lesser power.
These oscillations or their variants are long thought to cause the quasi-periodic oscil-
lations (QPOs) observed in black hole intensity (Molteni et al. 1996; Chakrabarti et
al. 2004). It is possible that not only the intermediate and low frequency QPOs are
explained by this process, the high frequency QPOs may also be explained by the
oscillations of the inner shock and the inner sonic point. However, since the volume
of matter, participating in the inner shock oscillation is very small, the modulation
at a high frequency would be negligible. We also observed that the outflows form
from the post-shock region. The rates are especially high, and vary episodically. The
amplitude and frequency of variation of the outflow rate is dictated by the amplitudes
and frequencies of the two shocks. The outflow can be anywhere between 40 and
80 % of the inflow rate, provided the flow is sub-Keplerian. Since the Keplerian flows
are subsonic, and therefore, strictly speaking no shocks, the outflows are not possible
from a Keplerian disc in this model.

In Chap. 6, we have presented the results of the numerical simulations of two-
dimensional, axisymmetric, viscous accretion flows. Three parameters, namely the
specific angular momentum, the specific energy and the viscosity parameter deter-
mine the complete solution, although the results depend somewhat on the injection
processes at the outer boundary. While both inviscid (Chakrabarti 1989) and viscous
(Chakrabarti and Das 2004) flows allow solutions with or without centrifugal barrier
dominated shock waves, we concentrated mostly on the cases when the shocks are
formed. We find that the shocks move outward as the viscosity is enhanced and the
post-shock region roughly attains a Keplerian distribution. When the viscosity para-
meter is very high, the shock moves to a large distance and the whole disc becomes
a Keplerian disc. We also found that the condition of standing shock wave formation
may be satisfied only in a range of the viscous parameter (keeping other parame-
ters as constants), which is in line with the conclusions drawn in Chakrabarti and
Das (2004). When the Rankine-Hugoniot conditions are not satisfied, the shocks
tend to oscillate (Ryu et al. 1997; Giri et al. 2010) and the frequency of oscillation is
decreased and amplitude is increased as the shock moves out. In the previous chapter,
we emphasized the formation of a weaker inner shock closer to the black hole. This
was not predicted by the theoretical works. In this paper, we find that this inner
shock also becomes weaker and moves outward when the viscosity is introduced.
The critical viscosity parameter for removal of the inner shock is lower than what is
needed to remove the outer shock. It is well known that the light curves of radiation
coming from an accretion disc around a black hole exhibit QPOs. It appears that in
the absence of a hard surface, the standing shock itself behaves like a hard surface and
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its oscillation changes the size of the post-shock region significantly. This could be
the cause of the low and intermediate frequency QPOs (Chakrabarti and Manickam
2000; Rodriguez et al. 2004; Remillard and McClintock 2006; Gliozzi et al. 2010;
Qu et al. 2010). When the viscosity is increased, the Keplerian rate is enhanced and at
the same time, the shock recedes to a large distance and the time period is increased.
Asymptotically, this means that a Keplerian disc should not show QPOs. We also
observe that away from the equatorial plane, the angular momentum is sub-Keplerian
(i.e. smaller compared to the specific angular momentum on the equatorial plane).

In Chap. 7, we simulated Two Component Advective Flow (TCAF). TCAF solu-
tion in the black hole astrophysics was formulated from the theoretical study of the
behaviour of topology of viscous flows around black holes. One component having a
higher viscosity is a cooler, Keplerian disc on the equatorial plane. The second com-
ponent is a low angular momentum and low viscosity flow, which forms a standing or
oscillating shock. The region between the shock and the inner sonic point behaves as
a boundary layer (the centrifugal pressure supported boundary layer or CENBOL).
Here, the kinetic energy of pre-shock matter is converted into thermal energy. The
flow is puffed up and forms a geometrically thick disc, which is the hot Compton
cloud. The CENBOL is the region that produces and collimates the outflows or jets.
The spectrum is softer when the CENBOL is smaller or non-existent. The spectrum is
harder when the CENBOL is present. When the CENBOL oscillates, low-frequency
QPOs form. Furthermore, it is the only configuration which arises out purely from
theoretical considerations. So it is important to prove that not only is the TCAF
configuration realizable, it is also a stable system. So far, there are no numerical
simulations in the literature to show that TCAF solution is realizable as a whole
and there is no simulation to show whether such a configuration is at all stable. It is
to be noted that in the literature, studies have been made on Bondi flows and thick
accretion discs (e.g. Hawley et al. 1984a, b; Molteni et al. 1996; Igumenshchev and
Abramowicz 2000), but a TCAF which is basically a combination of a generalized
Bondi flow and a Keplerian disc in the pre-shock region, and a thick accretion disc
and the outflow in the post-shock region has not been done. Our result, for the first
time shows that if one assumes that the viscosity is maximum on the equatorial plane,
then, a low-angular momentum injected flow is converted into a TCAF. We show
that the injected flow segregated in the Keplerian and sub-Keplerian components.
The sub-Keplerian component produced a shock at around 20rg (this depends on the
angular momentum of the injected flow) and the resulting CENBOL did not allow
the Keplerian disc to have the normal structure up to innermost stable circular orbit
or ISCO. The Keplerian flow remained extremely thin (about a grid thick) inside the
CENBOL. However, for r ≥ 20rg , the density of the flow becomes very high and
the temperature becomes very cool. The slope of the temperature distribution is in
line with our choice of β. We have also shown that there is clearly a hysteresis effect
in that, the time taken to form a Keplerian disc upon introduction of heating and
cooling is faster than the time it takes to return to the original inviscid configuration.
This is because the cooler matter of the Keplerian flow has lesser thermal drive to
fall in. It is possible that the hysteresis effects seen in the outburst sources in the
onset (turning on the viscosity) and the decline (turning off the viscosity) phases are
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precisely due to this effect: the formation and the disappearance of the Keplerian
flow takes different times.

The work developed in the thesis thus addresses very important and relevant issues
on accretion processes around black holes. We wish to study the spectral properties
for these systems. So far, we have captured all the salient features of the Keplerian disc
by introducing a power-law cooling effect. In order to produce an exact standard disc
that emits multicolour black body as well, we need to include the radiative transfer
problem ab initio. We need to generate photons using bremsstrahlung and scatter them
by the Keplerian (angular momentum) component to obtain black body radiation
self-consistently. The emitted photons would then scatter from the CENBOL and the
outflows and produce harder radiations, observed in black hole candidates. In the
future, we plan to carry out this analysis.

We have simulated accretion flows around black holes in a two-dimensional hydro-
dynamics system. In the future, this work is to be evolved by more self-consistent
work including three-dimensional magneto hydrodynamics and radiative transfer.
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